WorldWideScience

Sample records for wall carbon nanotubes

  1. Spontaneous and controlled-diameter synthesis of single-walled and few-walled carbon nanotubes

    Science.gov (United States)

    Inoue, Shuhei; Lojindarat, Supanat; Kawamoto, Takahiro; Matsumura, Yukihiko; Charinpanitkul, Tawatchai

    2018-05-01

    In this study, we explored the spontaneous and controlled-diameter growth of carbon nanotubes. We evaluated the effects of catalyst density, reduction time, and a number of catalyst coating on the substrate (for multi-walled carbon nanotubes) on the diameter of single-walled carbon nanotubes and the number of layers in few-walled carbon nanotubes. Increasing the catalyst density and reduction time increased the diameters of the carbon nanotubes, with the average diameter increasing from 1.05 nm to 1.86 nm for single-walled carbon nanotubes. Finally, we succeeded in synthesizing a significant double-walled carbon nanotube population of 24%.

  2. Metal-doped single-walled carbon nanotubes and production thereof

    Science.gov (United States)

    Dillon, Anne C.; Heben, Michael J.; Gennett, Thomas; Parilla, Philip A.

    2007-01-09

    Metal-doped single-walled carbon nanotubes and production thereof. The metal-doped single-walled carbon nanotubes may be produced according to one embodiment of the invention by combining single-walled carbon nanotube precursor material and metal in a solution, and mixing the solution to incorporate at least a portion of the metal with the single-walled carbon nanotube precursor material. Other embodiments may comprise sputter deposition, evaporation, and other mixing techniques.

  3. Theoretical study on the combined systems of peanut-shaped carbon nanotubes encapsulated in single-walled carbon nanotubes

    International Nuclear Information System (INIS)

    Wang, Guo; Huang, Yuanhe

    2012-01-01

    Highlights: ► The combined systems of peanut-shaped carbon nanotubes encapsulated in single-walled carbon nanotubes are investigated. ► The band structures and related electronic properties are calculated by using crystal orbital method. ► The carrier mobility and mean free path are evaluated under the deformation potential theory. -- Abstract: The combined systems of peanut-shaped carbon nanotubes encapsulated in both semiconducting and metallic single-walled carbon nanotubes are investigated by using self-consistent field crystal orbital method based on the density functional theory. The investigation indicates that the interaction between the two constituents is mainly contributed by the π orbitals. The encapsulation does not change the semiconducting or metallic nature of the single-walled carbon nanotubes, but significantly changes the band dispersion and decreases the frontier band width of the metallic one. The carrier mobility and mean free path of the metallic single-walled carbon nanotube increase greatly after the encapsulation. The calculated mobilities have the order of 10 3 cm 2 V −1 s −1 for both of the semiconducting and metallic double-walled carbon nanotubes.

  4. Ag-catalysed cutting of multi-walled carbon nanotubes

    International Nuclear Information System (INIS)

    La Torre, A; Rance, G A; Miners, S A; Lucas, C Herreros; Smith, E F; Giménez-López, M C; Khlobystov, A N; Fay, M W; Brown, P D; Zoberbier, T; Kaiser, U

    2016-01-01

    In this work, the cutting of carbon nanotubes is investigated using silver nanoparticles deposited on arc discharge multi-walled carbon nanotubes. The composite is subsequently heated in air to fabricate shortened multi-walled nanotubes. Complementary transmission electron microscopy and spectroscopy techniques shed light on the cutting mechanism. The nanotube cutting is catalysed by the fundamental mechanism based on the coordination of the silver atoms to the π-bonds of carbon nanotubes. As a result of the metal coordination, the strength of the carbon–carbon bond is reduced, promoting the oxidation of carbon at lower temperature when heated in air, or lowering the activation energy required for the removal of carbon atoms by electron beam irradiation, assuring in both cases the cutting of the nanotubes. (paper)

  5. Hot wire production of single-wall and multi-wall carbon nanotubes

    Science.gov (United States)

    Dillon, Anne C.; Mahan, Archie H.; Alleman, Jeffrey L.

    2010-10-26

    Apparatus (210) for producing a multi-wall carbon nanotube (213) may comprise a process chamber (216), a furnace (217) operatively associated with the process chamber (216), and at least one filament (218) positioned within the process chamber (216). At least one power supply (220) operatively associated with the at least one filament (218) heats the at least one filament (218) to a process temperature. A gaseous carbon precursor material (214) operatively associated with the process chamber (216) provides carbon for forming the multi-wall carbon nanotube (213). A metal catalyst material (224) operatively associated with the process (216) catalyzes the formation of the multi-wall carbon nanotube (213).

  6. Reactor scale modeling of multi-walled carbon nanotube growth

    International Nuclear Information System (INIS)

    Lombardo, Jeffrey J.; Chiu, Wilson K.S.

    2011-01-01

    As the mechanisms of carbon nanotube (CNT) growth becomes known, it becomes important to understand how to implement this knowledge into reactor scale models to optimize CNT growth. In past work, we have reported fundamental mechanisms and competing deposition regimes that dictate single wall carbon nanotube growth. In this study, we will further explore the growth of carbon nanotubes with multiple walls. A tube flow chemical vapor deposition reactor is simulated using the commercial software package COMSOL, and considered the growth of single- and multi-walled carbon nanotubes. It was found that the limiting reaction processes for multi-walled carbon nanotubes change at different temperatures than the single walled carbon nanotubes and it was shown that the reactions directly governing CNT growth are a limiting process over certain parameters. This work shows that the optimum conditions for CNT growth are dependent on temperature, chemical concentration, and the number of nanotube walls. Optimal reactor conditions have been identified as defined by (1) a critical inlet methane concentration that results in hydrogen abstraction limited versus hydrocarbon adsorption limited reaction kinetic regime, and (2) activation energy of reaction for a given reactor temperature and inlet methane concentration. Successful optimization of a CNT growth processes requires taking all of those variables into account.

  7. Multi-walled carbon nanotubes integrated in microcantilevers for application of tensile strain

    DEFF Research Database (Denmark)

    Dohn, Søren; Kjelstrup-Hansen, Jakob; Madsen, D.N.

    2005-01-01

    variations in the response. Using a simple resistor model we estimate the expected conductance-strain response for a multi-walled carbon nanotube, and compare to our results on multi-walled carbon nanotubes as well as measurements by others on single-walled carbon nanotubes. Integration of nanotubes...

  8. Electrochemical properties of double wall carbon nanotube electrodes

    OpenAIRE

    Pumera, Martin

    2007-01-01

    AbstractElectrochemical properties of double wall carbon nanotubes (DWNT) were assessed and compared to their single wall (SWNT) counterparts. The double and single wall carbon nanotube materials were characterized by Raman spectroscopy, scanning and transmission electron microscopy and electrochemistry. The electrochemical behavior of DWNT film electrodes was characterized by using cyclic voltammetry of ferricyanide and NADH. It is shown that while both DWNT and SWNT were significantly funct...

  9. Thermogravimetric Analysis of Single-Wall Carbon Nanotubes

    Science.gov (United States)

    Arepalli, Sivram; Nikolaev, Pavel; Gorelik, Olga

    2010-01-01

    An improved protocol for thermogravimetric analysis (TGA) of samples of single-wall carbon nanotube (SWCNT) material has been developed to increase the degree of consistency among results so that meaningful comparisons can be made among different samples. This improved TGA protocol is suitable for incorporation into the protocol for characterization of carbon nanotube material. In most cases, TGA of carbon nanotube materials is performed in gas mixtures that contain oxygen at various concentrations. The improved protocol is summarized.

  10. A Review of Double-Walled and Triple-Walled Carbon Nanotube Synthesis and Applications

    Directory of Open Access Journals (Sweden)

    Kazunori Fujisawa

    2016-04-01

    Full Text Available Double- and triple-walled carbon nanotubes (DWNTs and TWNTs consist of coaxially-nested two and three single-walled carbon nanotubes (SWNTs. They act as the geometrical bridge between SWNTs and multi-walled carbon nanotubes (MWNTs, providing an ideal model for studying the coupling interactions between different shells in MWNTs. Within this context, this article comprehensively reviews various synthetic routes of DWNTs’ and TWNTs’ production, such as arc discharge, catalytic chemical vapor deposition and thermal annealing of pea pods (i.e., SWNTs encapsulating fullerenes. Their structural features, as well as promising applications and future perspectives are also discussed.

  11. Thermal effect on transverse vibrations of double-walled carbon nanotubes

    International Nuclear Information System (INIS)

    Zhang, Y Q; Liu, X; Liu, G R

    2007-01-01

    Based on the theory of thermal elasticity mechanics, a double-elastic beam model is developed for transverse vibrations of double-walled carbon nanotubes with large aspect ratios. The thermal effect is incorporated in the formulation. With this double-elastic beam model, explicit expressions are derived for natural frequencies and associated amplitude ratios of the inner to the outer tubes for the case of simply supported double-walled carbon nanotubes. The influence of temperature change on the properties of transverse vibrations is discussed. It is demonstrated that some properties of transverse vibrations of double-walled carbon nanotubes are dependent on the change of temperature

  12. Single-walled carbon nanotubes as near-infrared optical biosensors for life sciences and biomedicine.

    Science.gov (United States)

    Jain, Astha; Homayoun, Aida; Bannister, Christopher W; Yum, Kyungsuk

    2015-03-01

    Single-walled carbon nanotubes that emit photostable near-infrared fluorescence have emerged as near-infrared optical biosensors for life sciences and biomedicine. Since the discovery of their near-infrared fluorescence, researchers have engineered single-walled carbon nanotubes to function as an optical biosensor that selectively modulates its fluorescence upon binding of target molecules. Here we review the recent advances in the single-walled carbon nanotube-based optical sensing technology for life sciences and biomedicine. We discuss the structure and optical properties of single-walled carbon nanotubes, the mechanisms for molecular recognition and signal transduction in single-walled carbon nanotube complexes, and the recent development of various single-walled carbon nanotube-based optical biosensors. We also discuss the opportunities and challenges to translate this emerging technology into biomedical research and clinical use, including the biological safety of single-walled carbon nanotubes. The advances in single-walled carbon nanotube-based near-infrared optical sensing technology open up a new avenue for in vitro and in vivo biosensing with high sensitivity and high spatial resolution, beneficial for many areas of life sciences and biomedicine. Copyright © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Improvements in Production of Single-Walled Carbon Nanotubes

    Science.gov (United States)

    Balzano, Leandro; Resasco, Daniel E.

    2009-01-01

    A continuing program of research and development has been directed toward improvement of a prior batch process in which single-walled carbon nanotubes are formed by catalytic disproportionation of carbon monoxide in a fluidized-bed reactor. The overall effect of the improvements has been to make progress toward converting the process from a batch mode to a continuous mode and to scaling of production to larger quantities. Efforts have also been made to optimize associated purification and dispersion post processes to make them effective at large scales and to investigate means of incorporating the purified products into composite materials. The ultimate purpose of the program is to enable the production of high-quality single-walled carbon nanotubes in quantities large enough and at costs low enough to foster the further development of practical applications. The fluidized bed used in this process contains mixed-metal catalyst particles. The choice of the catalyst and the operating conditions is such that the yield of single-walled carbon nanotubes, relative to all forms of carbon (including carbon fibers, multi-walled carbon nanotubes, and graphite) produced in the disproportionation reaction is more than 90 weight percent. After the reaction, the nanotubes are dispersed in various solvents in preparation for end use, which typically involves blending into a plastic, ceramic, or other matrix to form a composite material. Notwithstanding the batch nature of the unmodified prior fluidized-bed process, the fluidized-bed reactor operates in a continuous mode during the process. The operation is almost entirely automated, utilizing mass flow controllers, a control computer running software specific to the process, and other equipment. Moreover, an important inherent advantage of fluidized- bed reactors in general is that solid particles can be added to and removed from fluidized beds during operation. For these reasons, the process and equipment were amenable to

  14. Methods for Gas Sensing with Single-Walled Carbon Nanotubes

    Science.gov (United States)

    Kaul, Anupama B. (Inventor)

    2013-01-01

    Methods for gas sensing with single-walled carbon nanotubes are described. The methods comprise biasing at least one carbon nanotube and exposing to a gas environment to detect variation in temperature as an electrical response.

  15. Role of intertube interactions in double- and triple-walled carbon nanotubes.

    Science.gov (United States)

    Hirschmann, Thomas Ch; Araujo, Paulo T; Muramatsu, Hiroyuki; Rodriguez-Nieva, Joaquin F; Seifert, Max; Nielsch, Kornelius; Kim, Yoong Ahm; Dresselhaus, Mildred S

    2014-02-25

    Resonant Raman spectroscopy studies are performed to access information about the intertube interactions and wall-to-wall distances in double- and triple-walled carbon nanotubes. Here, we explain how the surroundings of the nanotubes in a multiwalled system influence their radial breathing modes. Of particular interest, the innermost tubes in double- and triple-walled carbon nanotube systems are shown to be significantly shielded from environmental interactions, except for those coming from the intertube interaction with their own respective host tubes. From a comparison of the Raman results for bundled as well as individual fullerene-peapod-derived double- and triple-walled carbon nanotubes, we observe that metallic innermost tubes, when compared to their semiconducting counterparts, clearly show weaker intertube interactions. Additionally, we discuss a correlation between the wall-to-wall distances and the frequency upshifts of the radial breathing modes observed for the innermost tubes in individual double- and triple-walled carbon nanotubes. All results allow us to contemplate fundamental properties related to DWNTs and TWNTs, as for example diameter- and chirality-dependent intertube interactions. We also discuss differences in fullerene-peapod-derived and chemical vapor deposition grown double- and triple-walled systems with the focus on mechanical coupling and interference effects.

  16. Multifunctional carbon nanotubes with nanoparticles embedded in their walls

    International Nuclear Information System (INIS)

    Mattia, D; Korneva, G; Sabur, A; Friedman, G; Gogotsi, Y

    2007-01-01

    Controlled amounts of nanoparticles ranging in size and composition were embedded in the walls of carbon nanotubes during a template-assisted chemical vapour deposition (CVD) process. The encapsulation of gold nanoparticles enabled surface enhanced Raman spectroscopy (SERS) detection of glycine inside the cavity of the nanotubes. Iron oxide particles are partially reduced to metallic iron during the CVD process giving the nanotubes ferromagnetic behaviour. At high nanoparticle concentrations, particle agglomerates can form. These agglomerates or larger particles, which are only partially embedded in the walls of the nanotubes, are covered by additional carbon layers inside the hollow cavity of the tube producing hillocks inside the nanotubes, with sizes comparable to the bore of the tube

  17. Single walled carbon nanotube network—Tetrahedral amorphous carbon composite film

    Energy Technology Data Exchange (ETDEWEB)

    Iyer, Ajai, E-mail: ajai.iyer@aalto.fi; Liu, Xuwen; Koskinen, Jari [Department of Materials Science and Engineering, School of Chemical Technology, Aalto University, POB 16200, 00076 Espoo (Finland); Kaskela, Antti; Kauppinen, Esko I. [NanoMaterials Group, Department of Applied Physics, School of Science, Aalto University, POB 15100, 00076 Espoo (Finland); Johansson, Leena-Sisko [Department of Forest Products Technology, School of Chemical Technology, Aalto University, POB 16400, 00076 Espoo (Finland)

    2015-06-14

    Single walled carbon nanotube network (SWCNTN) was coated by tetrahedral amorphous carbon (ta-C) using a pulsed Filtered Cathodic Vacuum Arc system to form a SWCNTN—ta-C composite film. The effects of SWCNTN areal coverage density and ta-C coating thickness on the composite film properties were investigated. X-Ray photoelectron spectroscopy measurements prove the presence of high quality sp{sup 3} bonded ta-C coating on the SWCNTN. Raman spectroscopy suggests that the single wall carbon nanotubes (SWCNTs) forming the network survived encapsulation in the ta-C coating. Nano-mechanical testing suggests that the ta-C coated SWCNTN has superior wear performance compared to uncoated SWCNTN.

  18. Alignment enhanced photoconductivity in single wall carbon nanotube films

    International Nuclear Information System (INIS)

    Liu Ye; Lu Shaoxin; Panchapakesan, Balaji

    2009-01-01

    In this paper we report, for the first time, the alignment enhanced photoconductivity of single wall carbon nanotube films upon laser illumination. The photoconductivity exhibited an increase, decrease or even 'negative' values when the laser spot was on different positions between contact electrodes, showing a 'position' dependent photoconductivity of partially aligned films of carbon nanotubes. Photon induced charge carrier generation in single wall carbon nanotubes and subsequent charge separation across the metal-carbon nanotube contacts is believed to cause the photoconductivity changes. A net photovoltage of ∼4 mV and a photocurrent of ∼10 μA were produced under the laser intensity of ∼273 mW with a quantum efficiency of ∼7.8% in vacuum. The photocurrent was observed to be in the direction of nanotube alignment. Finally, there was a strong dependence of the polarization of the incident light on the photocurrent and the orientation of the films influenced the dynamics of the rise and fall of the photocurrent. All of these phenomena clearly have significance in the area of design and fabrication of solar cells, micro-opto-mechanical systems and photodetectors based on carbon nanotubes.

  19. van der Waals interaction between a microparticle and a single-walled carbon nanotube

    International Nuclear Information System (INIS)

    Blagov, E. V.; Mostepanenko, V. M.; Klimchitskaya, G. L.

    2007-01-01

    The Lifshitz-type formulas describing the free energy and the force of the van der Waals interaction between an atom (molecule) and a single-walled carbon nanotube are obtained. The single-walled nanotube is considered as a cylindrical sheet carrying a two-dimensional free-electron gas with appropriate boundary conditions on the electromagnetic field. The obtained formulas are used to calculate the van der Waals free energy and force between a hydrogen atom (molecule) and single-walled carbon nanotubes of different radii. Comparison studies of the van der Waals interaction of hydrogen atoms with single-walled and multiwalled carbon nanotubes show that depending on atom-nanotube separation distance, the idealization of graphite dielectric permittivity is already applicable to nanotubes with only two or three walls

  20. Noise characteristics of single-walled carbon nanotube network transistors

    International Nuclear Information System (INIS)

    Kim, Un Jeong; Kim, Kang Hyun; Kim, Kyu Tae; Min, Yo-Sep; Park, Wanjun

    2008-01-01

    The noise characteristics of randomly networked single-walled carbon nanotubes grown directly by plasma enhanced chemical vapor deposition (PECVD) are studied with field effect transistors (FETs). Due to the geometrical complexity of nanotube networks in the channel area and the large number of tube-tube/tube-metal junctions, the inverse frequency, 1/f, dependence of the noise shows a similar level to that of a single single-walled carbon nanotube transistor. Detailed analysis is performed with the parameters of number of mobile carriers and mobility in the different environment. This shows that the change in the number of mobile carriers resulting in the mobility change due to adsorption and desorption of gas molecules (mostly oxygen molecules) to the tube surface is a key factor in the 1/f noise level for carbon nanotube network transistors

  1. Characterization of bundled and individual triple-walled carbon nanotubes by resonant Raman spectroscopy.

    Science.gov (United States)

    Hirschmann, Thomas Ch; Araujo, Paulo T; Muramatsu, Hiroyuki; Zhang, Xu; Nielsch, Kornelius; Kim, Yoong Ahm; Dresselhaus, Mildred S

    2013-03-26

    The optical characterization of bundled and individual triple-walled carbon nanotubes was studied for the first time in detail by using resonant Raman spectroscopy. In our approach, the outer tube of a triple-walled carbon nanotube system protects the two inner tubes (or equivalently the inner double-walled carbon nanotube) from external environment interactions making them a partially isolated system. Following the spectral changes and line-widths of the radial breathing modes and G-band by performing laser energy dependent Raman spectroscopy, it is possible to extract important information as regards to the electronic and vibrational properties, tube diameters, wall-to-wall distances, radial breathing mode, and G-band resonance evolutions as well as high-curvature intertube interactions in isolated double- and triple-walled carbon nanotube systems.

  2. Study on the Microwave Permittivity of Single-Walled Carbon Nanotube

    Science.gov (United States)

    Liu, Xiaolai; Zhao, Donglin

    2009-01-01

    In this article, we studied the microwave permittivity of the complex of the single-walled carbon nanotube and paraffin in 2-18GHz. In the range, the dielectric loss of single-walled carbon nanotube is higher, and the real part and the imaginary part of the dielectric constant decrease with the increase of frequency, and the dielectric constant…

  3. Single-walled carbon nanotube-induced mitotic disruption⋆

    OpenAIRE

    Sargent, L.M.; Hubbs, A.F.; Young, S.-H.; Kashon, M.L.; Dinu, C.Z.; Salisbury, J.L.; Benkovic, S.A.; Lowry, D.T.; Murray, A.R.; Kisin, E.R.; Siegrist, K.J.; Battelli, L.; Mastovich, J.; Sturgeon, J.L.; Bunker, K.L.

    2011-01-01

    Carbon nanotubes were among the earliest products of nanotechnology and have many potential applications in medicine, electronics, and manufacturing. The low density, small size, and biological persistence of carbon nanotubes create challenges for exposure control and monitoring and make respiratory exposures to workers likely. We have previously shown mitotic spindle aberrations in cultured primary and immortalized human airway epithelial cells exposed to 24, 48 and 96 μg/cm2 single-walled c...

  4. Single wall carbon nanotube supports for portable direct methanol fuel cells.

    Science.gov (United States)

    Girishkumar, G; Hall, Timothy D; Vinodgopal, K; Kamat, Prashant V

    2006-01-12

    Single-wall and multiwall carbon nanotubes are employed as carbon supports in direct methanol fuel cells (DMFC). The morphology and electrochemical activity of single-wall and multiwall carbon nanotubes obtained from different sources have been examined to probe the influence of carbon support on the overall performance of DMFC. The improved activity of the Pt-Ru catalyst dispersed on carbon nanotubes toward methanol oxidation is reflected as a shift in the onset potential and a lower charge transfer resistance at the electrode/electrolyte interface. The evaluation of carbon supports in a passive air breathing DMFC indicates that the observed power density depends on the nature and source of carbon nanostructures. The intrinsic property of the nanotubes, dispersion of the electrocatalyst and the electrochemically active surface area collectively influence the performance of the membrane electrode assembly (MEA). As compared to the commercial carbon black support, single wall carbon nanotubes when employed as the support for anchoring the electrocatalyst particles in the anode and cathode sides of MEA exhibited a approximately 30% enhancement in the power density of a single stack DMFC operating at 70 degrees C.

  5. Electronic properties of single-walled chiral carbon nanotube

    International Nuclear Information System (INIS)

    Mensah, S.Y.; Allotey, F.K.A.; Mensah, N.G.; Nkrumah, G.

    2001-09-01

    The electronic properties of single-walled chiral carbon nanotube has been studied using the model based on infinitely long carbon atoms wrapped along a base helix of single-walled carbon nanotubes(SWNTs). The problem is solved semiclassically, and current density J, resistivity ρ, thermopower α z , and electrical power factor P calculated. It is noted that the current density j displays negative differential conductivity, whiles the resistivity ρ increases with increasing electrical field. ρ also slowly increases at low temperatures and then gradually increases with increasing temperature. The thermopower α z shows interesting behaviour. Very intriguing is the electrical power factor which shows relatively large values. (author)

  6. Solution-phase synthesis of chromium-functionalized single-walled carbon nanotubes

    KAUST Repository

    Kalinina, Irina V.; Al-Hadeethi, Yas Fadel; Bekyarova, Elena; Zhao, Chao; Wang, Qingxiao; Zhang, Xixiang; Al-Zahrani, Ali; Al-Agel, Faisal Abdulaziz M; Al-Marzouki, Fahad M.; Haddon, Robert C.

    2015-01-01

    The solution phase reactions of single-walled carbon nanotubes (SWNTs) with Cr(CO)6 and benzene-Cr(CO)3 can lead to the formation of small chromium clusters. The cluster size can be varied from less than 1 nm to about 4 nm by increasing the reaction time. TEM images suggest that the clusters are deposited predominantly on the exterior walls of the nanotubes. TGA analysis was used to obtain the Cr content and carbon to chromium ratio in the Cr-complexed SWNTs. It is suggested that the carbon nanotube benzenoid structure templates the condensation of chromium atoms and facilitates the loss of carbon monoxide leading to well defined metal clusters.

  7. Solution-phase synthesis of chromium-functionalized single-walled carbon nanotubes

    KAUST Repository

    Kalinina, Irina V.

    2015-03-01

    The solution phase reactions of single-walled carbon nanotubes (SWNTs) with Cr(CO)6 and benzene-Cr(CO)3 can lead to the formation of small chromium clusters. The cluster size can be varied from less than 1 nm to about 4 nm by increasing the reaction time. TEM images suggest that the clusters are deposited predominantly on the exterior walls of the nanotubes. TGA analysis was used to obtain the Cr content and carbon to chromium ratio in the Cr-complexed SWNTs. It is suggested that the carbon nanotube benzenoid structure templates the condensation of chromium atoms and facilitates the loss of carbon monoxide leading to well defined metal clusters.

  8. (PC12) cell lines to oxidized multi-walled carbon nanotubes

    African Journals Online (AJOL)

    EB

    Methods: The pristine multi-walled carbon nanotubes (p-MWCNTs) were ... characterize the MWCNTs. ..... South Africa and NRF Focus Area, Nanotechnology ... of carbon nanotubes in drug delivery. Current. Opinion in Chemical Biology, 2005 ...

  9. Effect of doping on electronic properties of double-walled carbon and boron nitride hetero-nanotubes

    International Nuclear Information System (INIS)

    Majidi, R.; Ghafoori Tabrizi, K.; Jalili, S.

    2009-01-01

    The effect of boron nitride (BN) doping on electronic properties of armchair double-walled carbon and hetero-nanotubes is studied using ab initio molecular dynamics method. The armchair double-walled hetero-nanotubes are predicted to be semiconductor and their electronic structures depend strongly on the electronic properties of the single-walled carbon nanotube. It is found that electronic structures of BN-doped double-walled hetero-nanotubes are intermediate between those of double-walled boron nitride nanotubes and double-walled carbon and boron nitride hetero-nanotubes. Increasing the amount of doping leads to a stronger intertube interaction and also increases the energy gap.

  10. Effect of doping on electronic properties of double-walled carbon and boron nitride hetero-nanotubes

    Energy Technology Data Exchange (ETDEWEB)

    Majidi, R. [Department of Physics, Shahid Beheshti University, Evin, Tehran 19839-63113 (Iran, Islamic Republic of); Ghafoori Tabrizi, K., E-mail: K-TABRIZI@sbu.ac.i [Department of Physics, Shahid Beheshti University, Evin, Tehran 19839-63113 (Iran, Islamic Republic of); Jalili, S. [Department of Chemistry, K.N. Toosi University of Technology, Tehran 16315-1618 (Iran, Islamic Republic of)

    2009-11-01

    The effect of boron nitride (BN) doping on electronic properties of armchair double-walled carbon and hetero-nanotubes is studied using ab initio molecular dynamics method. The armchair double-walled hetero-nanotubes are predicted to be semiconductor and their electronic structures depend strongly on the electronic properties of the single-walled carbon nanotube. It is found that electronic structures of BN-doped double-walled hetero-nanotubes are intermediate between those of double-walled boron nitride nanotubes and double-walled carbon and boron nitride hetero-nanotubes. Increasing the amount of doping leads to a stronger intertube interaction and also increases the energy gap.

  11. Reduction of short wavelength reflectance of multi-wall carbon nanotubes through ultraviolet laser irradiation

    Science.gov (United States)

    Stephens, Michelle S.; Simonds, Brian J.; Yung, Christopher S.; Conklin, Davis; Livigni, David J.; Oliva, Alberto Remesal; Lehman, John H.

    2018-05-01

    Multi-wall carbon nanotube coatings are used as broadband, low-reflectance absorbers for bolometric applications and for stray light control. They are also used as high emittance blackbody radiators. Irradiation of single wall carbon nanotubes with ultraviolet (UV) laser light has been shown to remove amorphous carbon debris, but there have been few investigations of the interaction of UV light with the more complex physics of multi-wall carbon nanotubes. We present measurements of reflectance and surface morphology before and after exposure of multi-wall carbon nanotube coatings to 248 nm UV laser light. We show that UV exposure reduces the reflectivity at wavelengths below 600 nm and present modeling of the thermal cycling the UV exposure causes at the surface of the carbon nanotubes. This effect can be used to flatten the spectral shape of the reflectivity curve of carbon nanotube absorber coatings used for broadband applications. Finally, we find that the effect of UV exposure depends on the nanotube growth process.

  12. Optical Characterization and Applications of Single Walled Carbon Nanotubes

    Science.gov (United States)

    Strano, Michael S.

    2005-03-01

    Recent advances in the dispersion and separation of single walled carbon nanotubes have led to new methods of optical characterization and some novel applications. We find that Raman spectroscopy can be used to probe the aggregation state of single-walled carbon nanotubes in solution or as solids with a range of varying morphologies. Carbon nanotubes experience an orthogonal electronic dispersion when in electrical contact that broadens (from 40 meV to roughly 80 meV) and shifts the interband transition to lower energy (by 60 meV). We show that the magnitude of this shift is dependent on the extent of bundle organization and the inter-nanotube contact area. In the Raman spectrum, aggregation shifts the effective excitation profile and causes peaks to increase or decrease, depending on where the transition lies, relative to the excitation wavelength. The findings are particularly relevant for evaluating nanotube separation processes, where relative peak changes in the Raman spectrum can be confused for selective enrichment. We have also used gel electrophoresis and column chromatography conducted on individually dispersed, ultrasonicated single-walled carbon nanotubes to yield simultaneous separation by tube length and diameter. Electroelution after electrophoresis is shown to produce highly resolved fractions of nanotubes with average lengths between 92 and 435 nm. Separation by diameter is concomitant with length fractionation, and nanotubes that have been cut shortest also possess the greatest relative enrichments of large-diameter species. The relative quantum yield decreases nonlinearly as the nanotube length becomes shorter. These findings enable new applications of nanotubes as sensors and biomarkers. Particularly, molecular detection using near infrared (n-IR) light between 0.9 and 1.3 eV has important biomedical applications because of greater tissue penetration and reduced auto-fluorescent background in thick tissue or whole blood media. Carbon nanotubes

  13. Giant electrical power factor in single-walled chiral carbon nanotube

    International Nuclear Information System (INIS)

    Mensah, S.Y.; Allotey, F.K.A.; Mensah, N.G.; Nkrumah, G.

    2001-10-01

    Using the semiclassical approach we studied the thermoelectrical properties of single-walled chiral carbon nanotubes (SWNTs). We predict a giant electrical power factor and hence proposed the use of carbon nanotubes as thermoelements for refrigeration. (author)

  14. Respiratory toxicity of multi-wall carbon nanotubes

    International Nuclear Information System (INIS)

    Muller, Julie; Huaux, Francois; Moreau, Nicolas; Misson, Pierre; Heilier, Jean-Francois; Delos, Monique; Arras, Mohammed; Fonseca, Antonio; Nagy, Janos B.; Lison, Dominique

    2005-01-01

    Carbon nanotubes focus the attention of many scientists because of their huge potential of industrial applications, but there is a paucity of information on the toxicological properties of this material. The aim of this experimental study was to characterize the biological reactivity of purified multi-wall carbon nanotubes in the rat lung and in vitro. Multi-wall carbon nanotubes (CNT) or ground CNT were administered intratracheally (0.5, 2 or 5 mg) to Sprague-Dawley rats and we estimated lung persistence, inflammation and fibrosis biochemically and histologically. CNT and ground CNT were still present in the lung after 60 days (80% and 40% of the lowest dose) and both induced inflammatory and fibrotic reactions. At 2 months, pulmonary lesions induced by CNT were characterized by the formation of collagen-rich granulomas protruding in the bronchial lumen, in association with alveolitis in the surrounding tissues. These lesions were caused by the accumulation of large CNT agglomerates in the airways. Ground CNT were better dispersed in the lung parenchyma and also induced inflammatory and fibrotic responses. Both CNT and ground CNT stimulated the production of TNF-α in the lung of treated animals. In vitro, ground CNT induced the overproduction of TNF-α by macrophages. These results suggest that carbon nanotubes are potentially toxic to humans and that strict industrial hygiene measures should to be taken to limit exposure during their manipulation

  15. Finite element modeling of single-walled carbon nanotubes with introducing a new wall thickness

    International Nuclear Information System (INIS)

    Jalalahmadi, B; Naghdabadi, R

    2007-01-01

    A three-dimensional finite element (FE) model for armchair, zigzag and chiral single-walled carbon nanotubes (SWCNTs) is proposed. By considering the covalent bonds as connecting elements between carbon atoms, a nanotube is simulated as a space frame-like structure. Here, the carbon atoms act as joints of the connecting elements. To create the FE models, nodes are placed at the locations of carbon atoms and the bonds between them are modeled using three-dimensional elastic beam elements. Using Morse atomic potential, the elastic moduli of beam elements are obtained via considering a linkage between molecular and continuum mechanics. Also, a new wall thickness ( bond diameter) equal to 0.1296 nm is introduced. In order to demonstrate the applicability of FE model and new wall thickness, the influence of tube wall thickness, diameter and chirality on the Young's modulus of SWCNTs is investigated. It is found that the choice of wall thickness significantly affects the calculation of Young's modulus. For the values of wall thickness used in the literature, the Young's moduli are estimated which agree very well with the corresponding theoretical results and experimental measurements. We also investigate the dependence of elastic moduli on diameter and chirality of the nanotube. The larger tube diameter, the higher Young's modulus of SWCNT. The Young's modulus of chiral SWCNTs is found to be generally larger than that of armchair and zigzag SWCNTs. The presented results demonstrate that the proposed FE model and wall thickness may provide a valuable tool for studying the mechanical behavior of carbon nanotubes and their application in nano-composites

  16. When double-wall carbon nanotubes can become metallic or semiconducting

    International Nuclear Information System (INIS)

    Moradian, Rostam; Azadi, Sam; Refii-tabar, Hashem

    2007-01-01

    The electronic properties of double-wall carbon nanotubes (DWCNTs) are investigated via density functional theory. The DWCNTs are separated into four categories wherein the inner-outer nanotubes are metal-metal, metal-semiconductor, semiconductor-metal and semiconductor-semiconductor single-wall nanotubes. The band structure of the DWCNTs, the local density of states of the inner and outer nanotubes, and the total density of states are calculated. We found that for the metal-metal DWCNTs, the inner and outer nanotubes remain metallic for different distances between the walls, while for the metal-semiconductor DWCNTs, decreasing the distance between the walls leads to a phase transition in which both nanotubes become metallic. In the case of semiconductor-metal DWCNTs, it is found that at some distance the inner wall becomes metallic, while the outer wall becomes a semiconductor, and if the distance is decreased, both walls become metallic. Finally, in the semiconductor-semiconductor DWCNTs, if the two walls are far from each other, then the whole DWCNT and both walls remain semiconducting. By decreasing the wall distance, first the inner, and then the outer, nanotube becomes metallic

  17. Freestanding bucky paper with high strength from multi-wall carbon nanotubes

    International Nuclear Information System (INIS)

    Li, Zhonglai; Xu, Ju; O'Byrne, Justin P.; Chen, Lan; Wang, Kaixue; Morris, Michael A.; Holmes, Justin D.

    2012-01-01

    Bucky papers have been investigated by some research groups, however, due to different qualities of carbon nanotubes used, various results of strength and electronic properties were reported in the literatures. In this article, the effects of carbon nanotubes synthesized over different catalysts on the qualities of bucky papers were systemically investigated. Multi-wall carbon nanotubes were synthesized over a series of MgO supported catalysts with different weight ratios of Mo and Co. As the ratios of Mo/Co in the catalysts were increased from 0 to 3, the yields of carbon nanotubes were enhanced from 7 wt% to 400 wt%. However, the yield enhancement of carbon nanotubes was achieved at the expense of higher proportion of structural defects within carbon nanotubes, which has been proved by Raman spectroscopy and thermogravimetry analysis. It was demonstrated that the tensile strength of bucky paper composed of numerous MCNTs bundles strongly depends on the structure of carbon nanotubes used. By optimizing reaction conditions, a bucky paper with high strain up to 15.36 MPa and electrical conductivity of 61.17 S cm −1 was obtained by Supercritical Fluid (SCF) drying technique. -- Highlights: ► Multi-wall carbon nanotube bucky paper. ► Structural defects of carbon nanotubes. ► CoMo catalyst. ► Tensile strength of bucky paper.

  18. A Computational Experiment on Single-Walled Carbon Nanotubes

    Science.gov (United States)

    Simpson, Scott; Lonie, David C.; Chen, Jiechen; Zurek, Eva

    2013-01-01

    A computational experiment that investigates single-walled carbon nanotubes (SWNTs) has been developed and employed in an upper-level undergraduate physical chemistry laboratory course. Computations were carried out to determine the electronic structure, radial breathing modes, and the influence of the nanotube's diameter on the…

  19. Quantitative Analysis of Isolated Single-Wall Carbon Nanotubes with Their Molar Absorbance Coefficients

    Directory of Open Access Journals (Sweden)

    Shota Kuwahara

    2014-01-01

    Full Text Available The molar absorbance coefficients of metallic, semiconducting, and (6,5 chirality enriched single-wall carbon nanotubes were evaluated by a spray technique combined with atomic force microscopy. Single-wall carbon nanotubes with isolated and a single predominant electronic type were obtained by using the density-gradient ultracentrifugation technique. In the visible region, all coefficients had similar values around 2–5 × 109/mL mol−1 cm−1, independent of their diameter distribution and the electronic types of single-wall carbon nanotubes, and the εS22/εM11  and εS11/εM11 were estimated to be 1.0 and 4.0, respectively. The coefficient strongly depends on the length of single-wall carbon nanotubes, independent of their electronic types and chirality.

  20. Dependence of the electrical properties of defective single-walled carbon nanotubes on the vacancy density

    International Nuclear Information System (INIS)

    Luo Yu-Pin; Tien Li-Gan; Tsai Chuen-Horng; Lee Ming-Hsien; Li Feng-Yin

    2011-01-01

    The relationship between the electric properties and the vacancy density in single-walled carbon nanotubes has been investigated from first principles as well as the dependence of the influencing range of a vacancy in the nanotube on the nanotube chirality. Compared with the long-range interaction of the vacancies in a single-walled carbon nanotube with non-zero chiral angle, a much shorter interaction was found between vacancies in a zigzag single-walled carbon nanotube. In this study, we investigated the bandstructure fluctuations caused by the nanotube strain, which depends on both the vacancy density and the tube chirality. These theoretical results provide new insight to understand the relationship between the local deformation of a defective single-walled carbon nanotube and its measurable electronic properties. (condensed matter: electronic structure, electrical, magnetic, and optical properties)

  1. Center for Applications of Single-Walled Carbon Nanotubes

    Energy Technology Data Exchange (ETDEWEB)

    Resasco, Daniel E

    2008-02-21

    This report describes the activities conducted under a Congressional Direction project whose goal was to develop applications for Single-walled carbon nanotubes, under the Carbon Nanotube Technology Center (CANTEC), a multi-investigator program that capitalizes on OU’s advantageous position of having available high quality carbon nanotubes. During the first phase of CANTEC, 11 faculty members and their students from the College of Engineering developed applications for carbon nanotubes by applying their expertise in a number of areas: Catalysis, Reaction Engineering, Nanotube synthesis, Surfactants, Colloid Chemistry, Polymer Chemistry, Spectroscopy, Tissue Engineering, Biosensors, Biochemical Engineering, Cell Biology, Thermal Transport, Composite Materials, Protein synthesis and purification, Molecular Modeling, Computational Simulations. In particular, during this phase, the different research groups involved in CANTEC made advances in the tailoring of Single-Walled Carbon Nanotubes (SWNT) of controlled diameter and chirality by Modifying Reaction Conditions and the Nature of the catalyst; developed kinetic models that quantitatively describe the SWNT growth, created vertically oriented forests of SWNT by varying the density of metal nanoparticles catalyst particles, and developed novel nanostructured SWNT towers that exhibit superhydrophobic behavior. They also developed molecular simulations of the growth of Metal Nanoparticles on the surface of SWNT, which may have applications in the field of fuell cells. In the area of biomedical applications, CANTEC researchers fabricated SWNT Biosensors by a novel electrostatic layer-by-layer (LBL) deposition method, which may have an impact in the control of diabetes. They also functionalized SWNT with proteins that retained the protein’s biological activity and also retained the near-infrared light absorbance, which finds applications in the treatment of cancer.

  2. Estimation of mechanical properties of single wall carbon nanotubes ...

    Indian Academy of Sciences (India)

    Molecular mechanics; single wall carbon nanotube; mechanical proper- ... Fracture Mechanics); Rossi & Meo 2009). Furthermore, the work carried out by Natsuki & Endo. (2004), Xiao et al (2005) and Sun & Zhao (2005) in the direction of ..... Jin Y and Yuan F G 2003 Simulation of elastic properties of single walled carbon ...

  3. Novel fabrication of silica nanotubes using multi-walled carbon ...

    Indian Academy of Sciences (India)

    Administrator

    Abstract. Silica nanotubes were synthesized using multi-walled carbon nanotubes (MWCNTs) as template. The as-obtained samples were characterized by infrared spectroscopy (FTIR), X-ray diffraction (XRD), transmission electron microscopy (TEM), field emission scanning electron microscope (FE–SEM) and photo-.

  4. Mechanics of single-walled carbon nanotubes inside open single-walled carbon nanocones

    International Nuclear Information System (INIS)

    Ansari, R.; Hosseinzadeh, M.

    2013-01-01

    This study investigates the mechanical characteristics of single-walled carbon nanotubes (CNTs) inside open single-walled carbon nanocones (CNCs). New semi-analytical expressions are presented to evaluate van der Waals (vdW) interactions between CNTs and open CNCs. Continuum approximation, along with the the Lennard-Jones (LJ) potential function, is used in this study. The effects of geometrical parameters on alterations in vdW potential energy and the interaction force are extensively examined for the concentric CNT-open CNC configuration. The CNT is assumed to enter the nanocone either through the small end or the wide end of the cone. The preferred position of the CNT with respect to the nanocone axis is fully investigated for various geometrical parameters. The optimum nanotube radius minimizing the total potential energy of the concentric configuration is determined for different radii of the small end of the cone. The examined configuration generates asymmetric oscillation; thus, the system constitutes a nano-oscillator.

  5. The surface modifications of multi-walled carbon nanotubes for multi-walled carbon nanotube/poly(ether ether ketone) composites

    International Nuclear Information System (INIS)

    Cao, Zongshuang; Qiu, Li; Yang, Yongzhen; Chen, Yongkang; Liu, Xuguang

    2015-01-01

    Graphical abstract: Multi-walled carbon nanotube/poly(ether ether ketone) (MWCNT/PEEK) composites incorporating surface modified multi-walled carbon nanotubes (MWCNTs) as fillers were fabricated in a solution blending method in order to explore the dynamic mechanical and tribological properties of MWCNT/PEEK composites systematically. It is evident that surface modifications of MWCNTs have a significant impact on dispersibility of MWCNTs in PEEK, dynamic mechanical and tribological properties of MWCNT/PEEK composites. Typically, a clear effect of surface modifications of MWCNTs on tribological properties of MWCNT/PEEK composites was observed. A significant reduction in frictional coefficient of MWCNT/PEEK composites with the MWCNTs modified with ethanolamine has been achieved and the self-lubricating film on their worn surfaces was also observed. - Highlights: • The dispersibility of surface modified MWCNTs in PEEK has been studied. • MWCNTs modified with ethanolamine have showed a good dispersion in PEEK. • Surface modifications of MWCNTs have a significant impact on both dynamic mechanical and tribological properties of MWCNT/PEEK composites. - Abstract: The effects of surface modifications of multi-walled carbon nanotubes (MWCNTs) on the morphology, dynamic mechanical and tribological properties of multi-walled carbon nanotube/poly(ether ether ketone) (MWCNT/PEEK) composites have been investigated. MWCNTs were treated with mixed acids to obtain acid-functionalized MWCNTs. Then the acid-functionalized MWCNTs were modified with ethanolamine (named e-MWCNTs). The MWCNT/PEEK composites were prepared by a solution-blending method. A more homogeneous distribution of e-MWCNTs within the composites was found with scanning electron microscopy. Dynamic mechanical analysis demonstrated a clear increase in the storage modulus of e-MWCNT/PEEK composites because of the improved interfacial adhesion strength between e-MWCNTs and PEEK. Furthermore, the presence of e

  6. The surface modifications of multi-walled carbon nanotubes for multi-walled carbon nanotube/poly(ether ether ketone) composites

    Energy Technology Data Exchange (ETDEWEB)

    Cao, Zongshuang [Key Laboratory of Interface Science and Engineering in Advanced Materials, Ministry of Education, Taiyuan University of Technology, Taiyuan 030024 (China); Research Center of Advanced Material Science and Technology, Taiyuan University of Technology, Taiyuan 030024 (China); Qiu, Li [Key Laboratory of Interface Science and Engineering in Advanced Materials, Ministry of Education, Taiyuan University of Technology, Taiyuan 030024 (China); College of Chemistry and Chemical Engineering, Taiyuan University of Technology, Taiyuan 030024 (China); Yang, Yongzhen, E-mail: yyztyut@126.com [Key Laboratory of Interface Science and Engineering in Advanced Materials, Ministry of Education, Taiyuan University of Technology, Taiyuan 030024 (China); Research Center of Advanced Material Science and Technology, Taiyuan University of Technology, Taiyuan 030024 (China); Chen, Yongkang, E-mail: y.k.chen@herts.ac.uk [Key Laboratory of Interface Science and Engineering in Advanced Materials, Ministry of Education, Taiyuan University of Technology, Taiyuan 030024 (China); University of Hertfordshire, School of Engineering and Technology, Hatfield, Hertfordshire AL10 9AB (United Kingdom); Liu, Xuguang [Key Laboratory of Interface Science and Engineering in Advanced Materials, Ministry of Education, Taiyuan University of Technology, Taiyuan 030024 (China); College of Chemistry and Chemical Engineering, Taiyuan University of Technology, Taiyuan 030024 (China)

    2015-10-30

    Graphical abstract: Multi-walled carbon nanotube/poly(ether ether ketone) (MWCNT/PEEK) composites incorporating surface modified multi-walled carbon nanotubes (MWCNTs) as fillers were fabricated in a solution blending method in order to explore the dynamic mechanical and tribological properties of MWCNT/PEEK composites systematically. It is evident that surface modifications of MWCNTs have a significant impact on dispersibility of MWCNTs in PEEK, dynamic mechanical and tribological properties of MWCNT/PEEK composites. Typically, a clear effect of surface modifications of MWCNTs on tribological properties of MWCNT/PEEK composites was observed. A significant reduction in frictional coefficient of MWCNT/PEEK composites with the MWCNTs modified with ethanolamine has been achieved and the self-lubricating film on their worn surfaces was also observed. - Highlights: • The dispersibility of surface modified MWCNTs in PEEK has been studied. • MWCNTs modified with ethanolamine have showed a good dispersion in PEEK. • Surface modifications of MWCNTs have a significant impact on both dynamic mechanical and tribological properties of MWCNT/PEEK composites. - Abstract: The effects of surface modifications of multi-walled carbon nanotubes (MWCNTs) on the morphology, dynamic mechanical and tribological properties of multi-walled carbon nanotube/poly(ether ether ketone) (MWCNT/PEEK) composites have been investigated. MWCNTs were treated with mixed acids to obtain acid-functionalized MWCNTs. Then the acid-functionalized MWCNTs were modified with ethanolamine (named e-MWCNTs). The MWCNT/PEEK composites were prepared by a solution-blending method. A more homogeneous distribution of e-MWCNTs within the composites was found with scanning electron microscopy. Dynamic mechanical analysis demonstrated a clear increase in the storage modulus of e-MWCNT/PEEK composites because of the improved interfacial adhesion strength between e-MWCNTs and PEEK. Furthermore, the presence of e

  7. Effect of amino acid-functionalized multi-walled carbon nanotubes ...

    Indian Academy of Sciences (India)

    In a single-step, rapid microwave-assisted process, multi-walled carbon nanotubes were functionalized by -valine amino acid. Formation of amino acid on nanotube surface was confirmed by Fourier transform-infrared spectroscopy, thermogravimetric analysis, X-ray diffraction, field emission scanning and transmission ...

  8. Study on electroactive and electrocatalytic surfaces of single walled carbon nanotube-modified electrodes

    Energy Technology Data Exchange (ETDEWEB)

    Salinas-Torres, David [Departamento de Quimica Fisica and Instituto Universitario de Materiales de Alicante, Universidad de Alicante, Apdo. de Correos 99, E-03080 Alicante (Spain); Huerta, Francisco [Departamento de Ingenieria Textil y Papelera, Universidad Politecnica de Valencia, Plaza Ferrandiz y Carbonell, 1. E-03801 Alcoy (Spain); Montilla, Francisco, E-mail: francisco.montilla@ua.e [Departamento de Quimica Fisica and Instituto Universitario de Materiales de Alicante, Universidad de Alicante, Apdo. de Correos 99, E-03080 Alicante (Spain); Morallon, Emilia [Departamento de Quimica Fisica and Instituto Universitario de Materiales de Alicante, Universidad de Alicante, Apdo. de Correos 99, E-03080 Alicante (Spain)

    2011-02-01

    An investigation of the electrocatalysis of single-walled carbon nanotubes modified electrodes has been performed in this work. Nanotube-modified electrodes present a surface area much higher than the bare glassy carbon surfaces as determined by capacitance measurements. Several redox probes were selected for checking the reactivity of specific sites at the carbon nanotube surface. The presence of carbon nanotubes on the electrode improves the kinetics for all the reactions studied compared with the bare glassy carbon electrode with variations of the heterogeneous electron transfer rate constant up to 5 orders of magnitude. The most important effects are observed for the benzoquinone/hydroquinone and ferrocene/ferricinium redox couples, which show a remarkable improvement of their electron transfer kinetics on SWCNT-modified electrodes, probably due to strong {pi}-{pi} interaction between the organic molecules and the walls of the carbon nanotubes. For many of the reactions studied, less than 1% of the nanotube-modified electrode surface is transferring charge to species in solution. This result suggests that only nanotube tips are active sites for the electron transfer in such cases. On the contrary, the electroactive surface for the reactions of ferrocene and quinone is higher indicating that the electron transfer is produced also from the nanotube walls.

  9. Study on electroactive and electrocatalytic surfaces of single walled carbon nanotube-modified electrodes

    International Nuclear Information System (INIS)

    Salinas-Torres, David; Huerta, Francisco; Montilla, Francisco; Morallon, Emilia

    2011-01-01

    An investigation of the electrocatalysis of single-walled carbon nanotubes modified electrodes has been performed in this work. Nanotube-modified electrodes present a surface area much higher than the bare glassy carbon surfaces as determined by capacitance measurements. Several redox probes were selected for checking the reactivity of specific sites at the carbon nanotube surface. The presence of carbon nanotubes on the electrode improves the kinetics for all the reactions studied compared with the bare glassy carbon electrode with variations of the heterogeneous electron transfer rate constant up to 5 orders of magnitude. The most important effects are observed for the benzoquinone/hydroquinone and ferrocene/ferricinium redox couples, which show a remarkable improvement of their electron transfer kinetics on SWCNT-modified electrodes, probably due to strong π-π interaction between the organic molecules and the walls of the carbon nanotubes. For many of the reactions studied, less than 1% of the nanotube-modified electrode surface is transferring charge to species in solution. This result suggests that only nanotube tips are active sites for the electron transfer in such cases. On the contrary, the electroactive surface for the reactions of ferrocene and quinone is higher indicating that the electron transfer is produced also from the nanotube walls.

  10. Energy transfer from natural photosynthetic complexes to single-wall carbon nanotubes

    Energy Technology Data Exchange (ETDEWEB)

    Wiwatowski, Kamil [Institute of Physics, Faculty of Physics, Astronomy and Informatics, Nicolaus Copernicus University, Grudziadzka 5, 87-100 Torun (Poland); Dużyńska, Anna; Świniarski, Michał [Faculty of Physics, Warsaw University of Technology, Koszykowa 75, 00-662 Warsaw (Poland); Szalkowski, Marcin [Institute of Physics, Faculty of Physics, Astronomy and Informatics, Nicolaus Copernicus University, Grudziadzka 5, 87-100 Torun (Poland); Zdrojek, Mariusz; Judek, Jarosław [Faculty of Physics, Warsaw University of Technology, Koszykowa 75, 00-662 Warsaw (Poland); Mackowski, Sebastian, E-mail: mackowski@fizyka.umk.pl [Institute of Physics, Faculty of Physics, Astronomy and Informatics, Nicolaus Copernicus University, Grudziadzka 5, 87-100 Torun (Poland); Wroclaw Research Center EIT+, Stablowicka 147, Wroclaw (Poland); Kaminska, Izabela [Institute of Physics, Faculty of Physics, Astronomy and Informatics, Nicolaus Copernicus University, Grudziadzka 5, 87-100 Torun (Poland)

    2016-02-15

    Combination of fluorescence imaging and spectroscopy results indicates that single-walled carbon nanotubes are extremely efficient quenchers of fluorescence emission associated with chlorophylls embedded in a natural photosynthetic complex, peridinin-chlorophyll-protein. When deposited on a network of the carbon nanotubes forming a thin film, the emission of the photosynthetic complexes diminishes almost completely. This strong reduction of fluorescence intensity is accompanied with dramatic shortening of the fluorescence lifetime. Concluding, such thin films of carbon nanotubes can be extremely efficient energy acceptors in structures involving biologically functional complexes. - Highlights: • Fluorescence imaging of carbon nanotube - based hybrid structure. • Observation of efficient energy transfer from chlorophylls to carbon nanotubes.

  11. Electroluminescence from single-wall carbon nanotube network transistors.

    Science.gov (United States)

    Adam, E; Aguirre, C M; Marty, L; St-Antoine, B C; Meunier, F; Desjardins, P; Ménard, D; Martel, R

    2008-08-01

    The electroluminescence (EL) properties from single-wall carbon nanotube network field-effect transistors (NNFETs) and small bundle carbon nanotube field effect transistors (CNFETs) are studied using spectroscopy and imaging in the near-infrared (NIR). At room temperature, NNFETs produce broad (approximately 180 meV) and structured NIR spectra, while they are narrower (approximately 80 meV) for CNFETs. EL emission from NNFETs is located in the vicinity of the minority carrier injecting contact (drain) and the spectrum of the emission is red shifted with respect to the corresponding absorption spectrum. A phenomenological model based on a Fermi-Dirac distribution of carriers in the nanotube network reproduces the spectral features observed. This work supports bipolar (electron-hole) current recombination as the main mechanism of emission and highlights the drastic influence of carrier distribution on the optoelectronic properties of carbon nanotube films.

  12. Single-Walled Carbon Nanotubes as Fluorescence Biosensors for Pathogen Recognition in Water Systems

    Directory of Open Access Journals (Sweden)

    Venkata K. K. Upadhyayula

    2008-01-01

    Full Text Available The possibility of using single-walled carbon nanotubes (SWCNTs aggregates as fluorescence sensors for pathogen recognition in drinking water treatment applications has been studied. Batch adsorption study is conducted to adsorb large concentrations of Staphylococcus aureus aureus SH 1000 and Escherichia coli pKV-11 on single-walled carbon nanotubes. Subsequently the immobilized bacteria are detected with confocal microscopy by coating the nanotubes with fluorescence emitting antibodies. The Freundlich adsorption equilibrium constant (k for S.aureus and E.coli determined from batch adsorption study was found to be 9×108 and 2×108 ml/g, respectively. The visualization of bacterial cells adsorbed on fluorescently modified carbon nanotubes is also clearly seen. The results indicate that hydrophobic single-walled carbon nanotubes have excellent bacterial adsorption capacity and fluorescent detection capability. This is an important advancement in designing fluorescence biosensors for pathogen recognition in water systems.

  13. Vibrational Analysis of Curved Single-Walled Carbon Nanotube on a Pasternak Elastic Foundation

    DEFF Research Database (Denmark)

    Mehdipour, I.; Barari, Amin; Kimiaeifar, Amin

    2012-01-01

    . By utilizing He’s Energy Balance Method (HEBM), the relationships of the nonlinear amplitude and frequency were expressed for a curved, single-walled carbon nanotube. The amplitude frequency response curves of the nonlinear free vibration were obtained for a curved, single-walled carbon nanotube embedded...

  14. Synthesis of Carbon Nanotubes of Few Walls Using Aliphatic Alcohols as a Carbon Source

    Directory of Open Access Journals (Sweden)

    Francisco Espinosa-Magaña

    2013-06-01

    Full Text Available Carbon nanotubes with single and few walls are highly appreciated for their technological applications, regardless of the limited availability due to their high production cost. In this paper we present an alternative process that can lead to lowering the manufacturing cost of CNTs of only few walls by means of the use of the spray pyrolysis technique. For this purpose, ferrocene is utilized as a catalyst and aliphatic alcohols (methanol, ethanol, propanol or butanol as the carbon source. The characterization of CNTs was performed by scanning electron microscopy (SEM and transmission electron microscopy (TEM. The study of the synthesized carbon nanotubes (CNTs show important differences in the number of layers that constitute the nanotubes, the diameter length, the quantity and the quality as a function of the number of carbons employed in the alcohol. The main interest of this study is to give the basis of an efficient synthesis process to produce CNTs of few walls for applications where small diameter is required.

  15. Molecular discriminators using single wall carbon nanotubes

    International Nuclear Information System (INIS)

    Bhattacharyya, Tamoghna; Dasgupta, Anjan Kr; Ray, Nihar Ranjan; Sarkar, Sabyasachi

    2012-01-01

    The interaction between single wall carbon nanotubes (SWNTs) and amphiphilic molecules has been studied in a solid phase. SWNTs are allowed to interact with different amphiphilic probes (e.g. lipids) in a narrow capillary interface. Contact between strong hydrophobic and amphiphilic interfaces leads to a molecular restructuring of the lipids at the interface. The geometry of the diffusion front and the rate and the extent of diffusion of the interface are dependent on the structure of the lipid at the interface. Lecithin having a linear tail showed greater mobility of the interface as compared to a branched tail lipid like dipalmitoyl phosphatidylcholine, indicating the hydrophobic interaction between single wall carbon nanotube core and the hydrophobic tail of the lipid. Solid phase interactions between SWNT and lipids can thus become a very simple but efficient means of discriminating amphiphilic molecules in general and lipids in particular. (paper)

  16. Poly(ethylene-co-butylene) functionalized multi walled carbon nanotubes applied in polypropylene nanocomposites

    DEFF Research Database (Denmark)

    Daugaard, Anders Egede; Jankova Atanasova, Katja; Marín, Jose Manuel Roman

    2012-01-01

    A novel functionalized multi walled carbon nanotube (MWCNT) was prepared through grafting with α-azido-poly(ethylene-co-butylene) (PEB-N3). The PEB-N3 was prepared through a two step procedure and grafted onto an industrial grade multi walled carbon nanotube (MWCNT) through a highly efficient...

  17. Ab initio study of F- and Cl-functionalized single wall carbon nanotubes

    International Nuclear Information System (INIS)

    Pan, H; Feng, Y P; Lin, J Y

    2006-01-01

    First-principles calculations were carried out to study the functionalization of single wall carbon nanotubes by the chemical absorption of F and Cl atoms. Our results confirmed that the band gap of semiconductor zigzag carbon nanotubes is reduced on addition of F or Cl atoms on the walls of the nanotubes. For metallic armchair nanotubes, the doubly degenerate states crossing the Fermi level were separated by the introduction of F or Cl atoms. An additional energy level emerged near the Fermi level, due to coupling between the carbon nanotube and the F or Cl atom. For zigzag nanotubes, charge transfers of 0.27e from the tube to the Cl atom and of 0.41e to the F atom took place, while for armchair nanotubes, the charge transfers from the nanotube to Cl and F are 0.25 and 0.42e, respectively. The Cl-C and F-C bond lengths were found to be 2.09 and 1.49 A, respectively. The systems show semiconducting behaviour when charged with one electron per halogen atom, but remain metallic under hole injection, regardless of the chirality of the carbon nanotubes

  18. Femtosecond laser ablation of single-wall carbon nanotube-based material

    International Nuclear Information System (INIS)

    Danilov, Pavel A; Ionin, Andrey A; Kudryashov, Sergey I; Makarov, Sergey V; Mel’nik, Nikolay N; Rudenko, Andrey A; Yurovskikh, Vladislav I; Zayarny, Dmitry V; Lednev, Vasily N; Obraztsova, Elena D; Pershin, Sergey M; Bunkin, Alexey F

    2014-01-01

    Single- and multi-shot femtosecond laser surface ablation of a single-wall carbon nanotube-based substrate at 515- and 1030 nm wavelengths was studied by scanning electron microscopy and micro-Raman spectroscopy. The laser ablation proceeds in two ways: as the low-fluence mesoscopic shallow disintegration of the surface nanotube packing, preserving the individual integrity and the semiconducting character of the nanotubes or as the high-fluence deep material removal apparently triggered by the strong intrinsic or impurity-mediated ablation of the individual carbon nanotubes on the substrate surface. (letter)

  19. The effect of fibronectin on structural and biological properties of single walled carbon nanotube

    Energy Technology Data Exchange (ETDEWEB)

    Mottaghitalab, Fatemeh [Department of Nanobiotechnology, Faculty of Biological Sciences, Tarbiat Modares University, Tehran (Iran, Islamic Republic of); Farokhi, Mehdi [National cell bank of Iran, Pasteur Institute, Tehran (Iran, Islamic Republic of); Atyabi, Fatemeh [Department of Pharmaceutical Nanoechnology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran (Iran, Islamic Republic of); Omidvar, Ramin [Department of Biomedical Engineering, Amirkabir University of Technology (Tehran Polytechnic), Tehran (Iran, Islamic Republic of); Shokrgozar, Mohammad Ali, E-mail: mashokrgozar@pasteur.ac.ir [National cell bank of Iran, Pasteur Institute, Tehran (Iran, Islamic Republic of); Sadeghizadeh, Majid, E-mail: sadeghma@modares.ac.ir [Department Genetics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran (Iran, Islamic Republic of)

    2015-06-01

    Highlights: • Increasing the cytocompatibility of single walled carbon nanotube by loading fibronectin. • Enhancing the hydrophilicity and nanosurface roughness of single walled carbon nanotube after loading fibronectin. • Fibronectin makes the surface properties of single walled carbon nanotube more suitable for cell proliferation and growth. - Abstract: Despite the attractive properties of carbon nanotubes (CNTs), cytoxicity and hydrophobicity are two main considerable features which limit their application in biomedical fields. It was well established that treating CNTs with extracellular matrix components could reduce these unfavourable characteristics. In an attempt to address these issues, fibronectin (FN) with different concentrations was loaded on single walled carbon nanotubes (SWCNTs) substrate. Scanning electron microscope, atomic force microscopy (AFM), contact angles and X-ray photoelectron spectroscopy (XPS) were preformed in order to characterize FN loaded SWCNTs substrates. According to XPS and AFM results, FN could interact with SWCNTs and for this, the hydrophilicity of SWCNTs was improved. Additionally, SWCNT modified with FN showed less cytotoxicity compared with neat SWCNT. Finally, FN was shown to act as an interesting extracellular component for enhancing the biological properties of SWCNT.

  20. The effect of fibronectin on structural and biological properties of single walled carbon nanotube

    International Nuclear Information System (INIS)

    Mottaghitalab, Fatemeh; Farokhi, Mehdi; Atyabi, Fatemeh; Omidvar, Ramin; Shokrgozar, Mohammad Ali; Sadeghizadeh, Majid

    2015-01-01

    Highlights: • Increasing the cytocompatibility of single walled carbon nanotube by loading fibronectin. • Enhancing the hydrophilicity and nanosurface roughness of single walled carbon nanotube after loading fibronectin. • Fibronectin makes the surface properties of single walled carbon nanotube more suitable for cell proliferation and growth. - Abstract: Despite the attractive properties of carbon nanotubes (CNTs), cytoxicity and hydrophobicity are two main considerable features which limit their application in biomedical fields. It was well established that treating CNTs with extracellular matrix components could reduce these unfavourable characteristics. In an attempt to address these issues, fibronectin (FN) with different concentrations was loaded on single walled carbon nanotubes (SWCNTs) substrate. Scanning electron microscope, atomic force microscopy (AFM), contact angles and X-ray photoelectron spectroscopy (XPS) were preformed in order to characterize FN loaded SWCNTs substrates. According to XPS and AFM results, FN could interact with SWCNTs and for this, the hydrophilicity of SWCNTs was improved. Additionally, SWCNT modified with FN showed less cytotoxicity compared with neat SWCNT. Finally, FN was shown to act as an interesting extracellular component for enhancing the biological properties of SWCNT

  1. Single-Wall Carbon Nanotube-Coated Cotton Yarn for Electrocardiography Transmission

    Directory of Open Access Journals (Sweden)

    Yuliang Zhao

    2018-03-01

    Full Text Available We fabricated a type of conductive fabric, specifically single-wall carbon nanotube-coated cotton yarns (SWNT-CYs, for electrocardiography (ECG signal transmission utilizing a “dipping and drying” method. The conductive cotton yarns were prepared by dipping cotton yarns in SWNTs (single-wall carbon nanotubes solutions and then drying them at room temperature—a simple process that shows consistency in successfully coating cotton yarns with conductive carbon nanotubes (CNTs. The influence of fabrication conditions on the conductivity properties of SWNT-CYs was investigated. The results demonstrate that our conductive yarns can transmit weak bio-electrical (i.e., ECG signals without significant attenuation and distortion. Our conductive cotton yarns, which combine the flexibility of conventional fabrics and the good conductivity of SWNTs, are promising materials for wearable electronics and sensor applications in the future.

  2. Flow induced vibration and stability analysis of multi wall carbon nanotubes

    Energy Technology Data Exchange (ETDEWEB)

    Yun, Kyung Jae [Agency for Defense Development, Daejeon (Korea, Republic of); Choi, Jong Woon [Korean Intellectual Property Office, Daejeon (Korea, Republic of); Kim, Sung Kyun [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of); Song, Oh Seop [Chungnam National Univ., Daejeon (Korea, Republic of)

    2012-12-15

    The free vibration and flow induced flutter instability of cantilever multi wall carbon nanotubes conveying fluid are investigated and the nanotubes are modeled as thin-walled beams. The non-classical effects of the transverse shear, rotary inertia, warping inhibition, and van der Waals forces between two walls are incorporated into the structural model. The governing equations and associated boundary conditions are derived using Hamilton's principle. A numerical analysis is carried out by using the extended Galerkin method, which enables us to obtain more accurate solutions compared to the conventional Galerkin method. Cantilevered carbon nanotubes are damped with decaying amplitude for a flow velocity below a certain critical value. However, beyond this critical flow velocity, flutter instability may occur. The variations in the critical flow velocity with respect to both the radius ratio and length of the carbon nanotubes are investigated and pertinent conclusions are outlined. The differences in the vibration and instability characteristics between the Timoshenko beam theory and Euler beam theory are revealed. A comparative analysis of the natural frequencies and flutter characteristics of MWCNTs and SWCNTs is also performed.

  3. Properties of single-walled carbon nanotube-based aerogels as a function of nanotube loading

    International Nuclear Information System (INIS)

    Worsley, Marcus A.; Pauzauskie, Peter J.; Kucheyev, Sergei O.; Zaug, Joseph M.; Hamza, Alex V.; Satcher, Joe H.; Baumann, Theodore F.

    2009-01-01

    Here, we present the synthesis and characterization of low-density single-walled carbon nanotube-based aerogels (SWNT-CA). Aerogels with varying nanotube loading (0-55 wt.%) and density (20-350 mg cm -3 ) were fabricated and characterized by four-probe method, electron microscopy, Raman spectroscopy and nitrogen porosimetry. Several properties of the SWNT-CAs were highly dependent upon nanotube loading. At nanotube loadings of 55 wt.%, shrinkage of the aerogel monoliths during carbonization and drying was almost completely eliminated. Electrical conductivities are improved by an order of magnitude for the SWNT-CA (55 wt.% nanotubes) compared to those of foams without nanotubes. Surface areas as high as 184 m 2 g -1 were achieved for SWNT-CAs with greater than 20 wt.% nanotube loading.

  4. Activity and stability studies of platinized multi-walled carbon nanotubes as fuel cell electrocatalysts

    DEFF Research Database (Denmark)

    Stamatin, Serban Nicolae; Borghei, Maryam; Dhiman, Rajnish

    2015-01-01

    A non-covalent functionalization for multi-walled carbon nanotubes has been used as an alternative to the damaging acid treatment. Platinum nanoparticles with similar particle size distribution have been deposited on the surface modified multi-walled carbon nanotubes. The interaction between...

  5. Production and characterization of polymer nanocomposite with aligned single wall carbon nanotubes

    International Nuclear Information System (INIS)

    Chen Wei; Tao Xiaoming

    2006-01-01

    We reported a simple method to fabricate polymer nanocomposites with single-walled carbon nanotubes (SWNTs) having exceptional alignment and improved mechanical properties. The composite films were fabricated by casting a suspension of single walled carbon nanotubes in a solution of thermoplastic polyurethane and tetrahydrofuran. The orientation as well as dispersion of nanotubes was determined by scanning electron microscopy, transmission electron microscopy and polarized Raman spectroscopy. The macroscopic alignment probably results from solvent-polymer interaction induced orientation of soft segment chain during swelling and moisture curing. The tensile behavior of the aligned nanotube composite film was also studied. At a 0.5 wt.% nanotube loading, a 1.9-fold increase in Young's modulus was achieved

  6. Multi-wall carbon nanotubes with nitrogen-containing carbon coating

    Czech Academy of Sciences Publication Activity Database

    Tomšík, Elena; Morávková, Zuzana; Stejskal, Jaroslav; Trchová, Miroslava; Šálek, Petr; Kovářová, Jana; Zemek, Josef; Cieslar, M.; Prokeš, J.

    2013-01-01

    Roč. 67, č. 8 (2013), s. 1054-1065 ISSN 0366-6352 R&D Projects: GA ČR GPP108/11/P763; GA ČR GAP205/12/0911; GA ČR GA202/09/0428 Institutional support: RVO:61389013 ; RVO:68378271 Keywords : polyaniline coating * carbon ization * multi-wall carbon nanotubes Subject RIV: CD - Macromolecular Chemistry; BM - Solid Matter Physics ; Magnetism (FZU-D) Impact factor: 1.193, year: 2013

  7. Length-dependent optical properties of single-walled carbon nanotube samples

    International Nuclear Information System (INIS)

    Naumov, Anton V.; Tsyboulski, Dmitri A.; Bachilo, Sergei M.; Weisman, R. Bruce

    2013-01-01

    Highlights: ► Length-independent absorption per atom in single-walled carbon nanotubes. ► Reduced fluorescence quantum yield for short nanotubes. ► Exciton quenching at nanotube ends, sidewall defects probably limits quantum yield. - Abstract: Contradictory findings have been reported on the length dependence of optical absorption cross sections and fluorescence quantum yields in single-walled carbon nanotubes (SWCNTs). To clarify these points, studies have been made on bulk SWCNT dispersions subjected to length fractionation by electrophoretic separation or by ultrasonication-induced scission. Fractions ranged from ca. 120 to 760 nm in mean length. Samples prepared by shear-assisted dispersion were subsequently shortened by ultrasonic processing. After accounting for processing-induced changes in the surfactant absorption background, SWCNT absorption was found constant within ±11% as average nanotube length changed by a factor of 3.8. This indicates that the absorption cross-section per carbon atom is not length dependent. By contrast, in length fractions prepared by both methods, the bulk fluorescence efficiency or average quantum yield increased with SWCNT average length and approached an apparent asymptotic limit near 1 μm. This result is interpreted as reflecting the combined contributions of exciton quenching by sidewall defects and by the ends of shorter nanotubes

  8. Confinement in single walled carbon nanotubes investigated by spectroscopic ellipsometry

    International Nuclear Information System (INIS)

    Battie, Y.; Jamon, D.; Lauret, J.S.; Gu, Q.; Gicquel-Guézo, M.; En Naciri, A.; Loiseau, A.

    2014-01-01

    Thick films of single walled carbon nanotubes (SWCNTs) with different diameter and chirality distributions are characterized by combining transmission electron microscopy and spectroscopic ellipsometry. The dependence of the dielectric function with the increase of the SWCNT diameter occurs with a drastic redshift of the S 11 , S 22 and M 11 transition energies. The transfer integral parameter γ 0 of SWCNT is also evaluated and analyzed. We demonstrate that parts of the optical properties of SWCNTs are attributed to a one dimensional confinement effect. - Highlights: • Ellipsometric measurements are performed on carbon nanotube thick films. • The complex dielectric functions of conventional carbon nanotubes are given. • Confinement effects explain the variations of dielectric function of nanotubes

  9. Photovoltaic device using single wall carbon nanotubes and method of fabricating the same

    Science.gov (United States)

    Biris, Alexandru S.; Li, Zhongrui

    2012-11-06

    A photovoltaic device and methods for forming the same. In one embodiment, the photovoltaic device has a silicon substrate, and a film comprising a plurality of single wall carbon nanotubes disposed on the silicon substrate, wherein the plurality of single wall carbon nanotubes forms a plurality of heterojunctions with the silicon in the substrate.

  10. Modelling the nonlinear behaviour of double walled carbon nanotube based resonator with curvature factors

    Science.gov (United States)

    Patel, Ajay M.; Joshi, Anand Y.

    2016-10-01

    This paper deals with the nonlinear vibration analysis of a double walled carbon nanotube based mass sensor with curvature factor or waviness, which is doubly clamped at a source and a drain. Nonlinear vibrational behaviour of a double-walled carbon nanotube excited harmonically near its primary resonance is considered. The double walled carbon nanotube is harmonically excited by the addition of an excitation force. The modelling involves stretching of the mid plane and damping as per phenomenon. The equation of motion involves four nonlinear terms for inner and outer tubes of DWCNT due to the curved geometry and the stretching of the central plane due to the boundary conditions. The vibrational behaviour of the double walled carbon nanotube with different surface deviations along its axis is analyzed in the context of the time response, Poincaré maps and Fast Fourier Transformation diagrams. The appearance of instability and chaos in the dynamic response is observed as the curvature factor on double walled carbon nanotube is changed. The phenomenon of Periodic doubling and intermittency are observed as the pathway to chaos. The regions of periodic, sub-harmonic and chaotic behaviour are clearly seen to be dependent on added mass and the curvature factors in the double walled carbon nanotube. Poincaré maps and frequency spectra are used to explicate and to demonstrate the miscellany of the system behaviour. With the increase in the curvature factor system excitations increases and results in an increase of the vibration amplitude with reduction in excitation frequency.

  11. Investigation on single carbon atom transporting through the single-walled carbon nanotube by MD simulation

    International Nuclear Information System (INIS)

    Ding Yinfeng; Zhang Zhibin; Ke Xuezhi; Zhu Zhiyuan; Zhu Dezhang; Wang Zhenxia; Xu Hongjie

    2005-01-01

    The single carbon atom transporting through the single-walled carbon nanotube has been studied by molecular-dynamics (MD) simulation. We got different trajectories of the carbon atom by changing the input parameters. The simulation results indicate that the single carbon atom with low energy can transport through the carbon nanotube under some input conditions and result in different trajectories being straight line or 'rosette' or circular. (authors)

  12. Molecular level computational studies of polyethylene and polyacrylonitrile composites containing single walled carbon nanotubes: effect of carboxylic acid functionalization on nanotube-polymer interfacial properties

    Directory of Open Access Journals (Sweden)

    Shayesteh eHaghighatpanah

    2014-09-01

    Full Text Available Molecular dynamics and molecular mechanics methods have been used to investigate additive-polymer interfacial properties in single walled carbon nanotube – polyethylene and single walled carbon nanotube – polyacrylonitrile composites. Properties such as the interfacial shear stress and bonding energy are similar for the two composites. In contrast, functionalizing the single walled carbon nanotubes with carboxylic acid groups leads to an increase in these properties, with a larger increase for the polar polyacrylonitrile composite. Increasing the percentage of carbon atoms that were functionalized from 1% to 5% also leads to an increase in the interfacial properties. In addition, the interfacial properties depend on the location of the functional groups on the single walled carbon nanotube wall.

  13. Reinforcement of single-walled carbon nanotube bundles by intertube bridging

    Science.gov (United States)

    Kis, A.; Csányi, G.; Salvetat, J.-P.; Lee, Thien-Nga; Couteau, E.; Kulik, A. J.; Benoit, W.; Brugger, J.; Forró, L.

    2004-03-01

    During their production, single-walled carbon nanotubes form bundles. Owing to the weak van der Waals interaction that holds them together in the bundle, the tubes can easily slide on each other, resulting in a shear modulus comparable to that of graphite. This low shear modulus is also a major obstacle in the fabrication of macroscopic fibres composed of carbon nanotubes. Here, we have introduced stable links between neighbouring carbon nanotubes within bundles, using moderate electron-beam irradiation inside a transmission electron microscope. Concurrent measurements of the mechanical properties using an atomic force microscope show a 30-fold increase of the bending modulus, due to the formation of stable crosslinks that effectively eliminate sliding between the nanotubes. Crosslinks were modelled using first-principles calculations, showing that interstitial carbon atoms formed during irradiation in addition to carboxyl groups, can independently lead to bridge formation between neighbouring nanotubes.

  14. Advances in NO2 sensing with individual single-walled carbon nanotube transistors.

    Science.gov (United States)

    Chikkadi, Kiran; Muoth, Matthias; Roman, Cosmin; Haluska, Miroslav; Hierold, Christofer

    2014-01-01

    The charge carrier transport in carbon nanotubes is highly sensitive to certain molecules attached to their surface. This property has generated interest for their application in sensing gases, chemicals and biomolecules. With over a decade of research, a clearer picture of the interactions between the carbon nanotube and its surroundings has been achieved. In this review, we intend to summarize the current knowledge on this topic, focusing not only on the effect of adsorbates but also the effect of dielectric charge traps on the electrical transport in single-walled carbon nanotube transistors that are to be used in sensing applications. Recently, contact-passivated, open-channel individual single-walled carbon nanotube field-effect transistors have been shown to be operational at room temperature with ultra-low power consumption. Sensor recovery within minutes through UV illumination or self-heating has been shown. Improvements in fabrication processes aimed at reducing the impact of charge traps have reduced the hysteresis, drift and low-frequency noise in carbon nanotube transistors. While open challenges such as large-scale fabrication, selectivity tuning and noise reduction still remain, these results demonstrate considerable progress in transforming the promise of carbon nanotube properties into functional ultra-low power, highly sensitive gas sensors.

  15. Preparation of Hydroxypropyl-β-cyclodextrin Cross-linked Multi-walled Carbon Nanotubes and Their Application in Enantioseparation of Clenbuterol

    Institute of Scientific and Technical Information of China (English)

    Yu Jingang; Huang Dushu; Huang Kelong; Hong Yong

    2011-01-01

    A method of cross-linking multi-walled carbon nanotubes by a nucleophilic substitution of brominated multi-walled carbon nanotubes using hydroxypropyl-β-cyclodextrin anions was studied. The modified multi-walled carbon nanotube samples were characterized using thermogravimetric analysis, energy-dispersive X-ray spectros-copy, transmission electron microscopy, scanning electron microscopy, Raman spectroscopy and Fourier transform infrared spectroscopy. The hydroxypropyi-β-cyclodextrin modified multi-walled carbon nanotubes were used as a chiral stationary phase additive for thin-layer chromatography to separate clenbuterol enantiomers, and the chiral separation factor was increased.

  16. Analytical approach to phonons and electron-phonon interactions in single-walled zigzag carbon nanotubes

    Energy Technology Data Exchange (ETDEWEB)

    Kandemir, B S; Keskin, M [Department of Physics, Faculty of Sciences, Ankara University, 06100 Tandogan, Ankara (Turkey)

    2008-08-13

    In this paper, exact analytical expressions for the entire phonon spectra in single-walled carbon nanotubes with zigzag geometry are presented by using a new approach, originally developed by Kandemir and Altanhan. This approach is based on the concept of construction of a classical lattice Hamiltonian of single-walled carbon nanotubes, wherein the nearest and next nearest neighbor and bond bending interactions are all included, then its quantization and finally diagonalization of the resulting second quantized Hamiltonian. Furthermore, within this context, explicit analytical expressions for the relevant electron-phonon interaction coefficients are also investigated for single-walled carbon nanotubes having this geometry, by the phonon modulation of the hopping interaction.

  17. Analytical approach to phonons and electron-phonon interactions in single-walled zigzag carbon nanotubes

    International Nuclear Information System (INIS)

    Kandemir, B S; Keskin, M

    2008-01-01

    In this paper, exact analytical expressions for the entire phonon spectra in single-walled carbon nanotubes with zigzag geometry are presented by using a new approach, originally developed by Kandemir and Altanhan. This approach is based on the concept of construction of a classical lattice Hamiltonian of single-walled carbon nanotubes, wherein the nearest and next nearest neighbor and bond bending interactions are all included, then its quantization and finally diagonalization of the resulting second quantized Hamiltonian. Furthermore, within this context, explicit analytical expressions for the relevant electron-phonon interaction coefficients are also investigated for single-walled carbon nanotubes having this geometry, by the phonon modulation of the hopping interaction

  18. A new method of preparing single-walled carbon nanotubes

    Indian Academy of Sciences (India)

    A novel method of purification for single-walled carbon nanotubes, prepared by an arc-discharge method, is described. The method involves a combination of acid washing followed by high temperature hydrogen treatment to remove the metal nanoparticles and amorphous carbon present in the as-synthesized singlewalled ...

  19. Frequency Characteristics of Double-Walled Carbon Nanotube Resonator with Different Length

    Directory of Open Access Journals (Sweden)

    Jun-Ha LEE

    2016-05-01

    Full Text Available In this paper, we have conducted classical molecular dynamics simulations for DWCNTs of various wall lengths to investigate their use as ultrahigh frequency nano-mechanical resonators. We sought to determine the variations in the frequency of these resonators according to changes in the DWCNT wall lengths. For a double-walled carbon nanotube resonator with a shorter inner nanotube, the shorter inner nanotube can be considered to be a flexible core, and thus, the length influences the fundamental frequency. In this paper, we analyze the variation in frequency of ultra-high frequency nano-mechnical resonators constructed from DWCNTs with different wall lengths.DOI: http://dx.doi.org/10.5755/j01.ms.22.2.12951

  20. Reduction of single-walled carbon nanotube diameter to sub-nm via feedstock

    Energy Technology Data Exchange (ETDEWEB)

    Thurakitseree, T.; Zhao, Pei; Chiashi, Shohei; Maruyama, Shigeo [Department of Mechanical Engineering, University of Tokyo (Japan); Kramberger, Christian [Faculty of Physics, University of Vienna (Austria); Einarsson, Erik [Department of Mechanical Engineering, University of Tokyo (Japan); Global Center of Excellence for Mechanical Systems Innovation, University of Tokyo (Japan)

    2012-12-15

    Vertically aligned single-walled carbon nanotube arrays were synthesized from dip-coated binary Co/Mo catalyst by no-flow chemical vapor deposition (CVD) from either pure ethanol or acetonitrile as carbon feedstock. By changing to acetonitrile the mean diameter was reduced from 2.1 nm to less than 1.0 nm despite using identically prepared catalyst. The demonstrated diameter control on flat substrates is a versatile approach towards the direct synthesis of tailored single-walled carbon nanotubes. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  1. Effect of Novel Quercetin Titanium Dioxide-Decorated Multi-Walled Carbon Nanotubes Nanocomposite on Bacillus subtilis Biofilm Development

    Directory of Open Access Journals (Sweden)

    Diana S. Raie

    2018-01-01

    Full Text Available The present work was targeted to design a surface against cell seeding and adhering of bacteria, Bacillus subtilis. A multi-walled carbon nanotube/titanium dioxide nano-power was produced via simple mixing of carbon nanotube and titanium dioxide nanoparticles during the sol-gel process followed by heat treatment. Successfully, quercetin was immobilized on the nanocomposite via physical adsorption to form a quercetin/multi-walled carbon nanotube/titanium dioxide nanocomposite. The adhesion of bacteria on the coated-slides was verified after 24 h using confocal laser-scanning microscopy. Results indicated that the quercetin/multi-walled carbon nanotube/titanium dioxide nanocomposite had more negativity and higher recovery by glass surfaces than its counterpart. Moreover, coating surfaces with the quercetin-modified nanocomposite lowered both hydrophilicity and surface-attached bacteria compared to surfaces coated with the multi-walled carbon nanotubes/titanium dioxide nanocomposite.

  2. Application of multi-walled carbon nanotubes to enhance anodic ...

    African Journals Online (AJOL)

    STORAGESEVER

    2009-12-15

    Dec 15, 2009 ... Key words: Multi-walled carbon nanotubes, microbial fuel cell, Enterobacter cloacae, ... Aldrich) was prepared in absolute ethanol (Hu et al., 2006; Tkac .... incorporated Eu3+ by voltammetry and electrochemical impedance.

  3. INTER-LAYER INTERACTION IN DOUBLE-WALLED CARBON NANOTUBES EVIDENCED BY SCANNING TUNNELING MICROSCOPY AND SPECTROSCOPY

    DEFF Research Database (Denmark)

    Giusca, Cristina E; Tison, Yann; Silva, S. Ravi P.

    2008-01-01

    and the overall electronic structure for double-walled carbon nanotubes, is demonstrated by our experiments, showing that the effect the inner tube has on the overall electronic structure of double-walled nanotubes cannot be neglected, and is key to the opto-electronic properties of the system. We postulate...... that previous analysis of the opto-electronic properties on multiple-walled carbon nanotubes based purely on the outer layer chirality of the tube needs significant modification based on new understanding brought forth with our analysis....

  4. Functionalization of single-walled carbon nanotubes regulates their effect on hemostasis

    International Nuclear Information System (INIS)

    Sokolov, A V; Aseychev, A V; Kostevich, V A; Gusev, A A; Gusev, S A; Vlasova, I I

    2011-01-01

    Applications of single-walled carbon nanotubes (SWNTs) in medical field imply the use of drug-coupled carbon nanotubes as well as carbon nanotubes functionalized with different chemical groups that change nanotube surface properties and interactions between nanotubes and cells. Covalent attachment of polyethylene glycol (PEG) to carboxylated single-walled carbon nanotubes (c-SWNT) is known to prevent the nanotubes from interaction with macrophages. Here we characterized nanotube's ability to stimulate coagulation processes in platelet-poor plasma (PPP), and evaluated the effect of SWNTs on platelet aggregation in platelet-rich plasma (PRP). Our study showed that PEG-SWNT did not affect the rate of clotting in PPP, while c-SWNT shortened the clot formation time five times compared to the control PPP. Since c-SWNT failed to accelerate coagulation in plasma lacking coagulation factor XI, it may be suggested that c-SWNT affects the contact activation pathway. In PRP, platelets responded to both SWNT types with irreversible aggregation, as evidenced by changes in the aggregate mean radius. However, the rate of aggregation induced by c-SWNT was two times higher than it was with PEG-SWNT. Cytological analysis also showed that c-SWNT was two times more efficient when compared to PEG-SWNT in aggregating platelets in PRP. Taken together, our results show that functionalization of nanoparticles can diminish their negative influence on blood cells. As seen from our data, modification of c-SWNT with PEG, when only a one percent of carbon atoms is bound to polymer (70 wt %), decreased the nanotube-induced coagulation in PRP and repelled the accelerating effect on the coagulation in PPP. Thus, when functionalized SWNTs are used for administration into bloodstream of laboratory animals, their possible pro-coagulant and pro-aggregating properties must be taken into account.

  5. Functionalization of single-walled carbon nanotubes regulates their effect on hemostasis

    Energy Technology Data Exchange (ETDEWEB)

    Sokolov, A V; Aseychev, A V; Kostevich, V A; Gusev, A A; Gusev, S A; Vlasova, I I, E-mail: irina.vlasova@yahoo.com [Research Institute for Physico-Chemical Medicine, FMBA, M. Pirogovskaya Str. 1a, Moscow (Russian Federation)

    2011-04-01

    Applications of single-walled carbon nanotubes (SWNTs) in medical field imply the use of drug-coupled carbon nanotubes as well as carbon nanotubes functionalized with different chemical groups that change nanotube surface properties and interactions between nanotubes and cells. Covalent attachment of polyethylene glycol (PEG) to carboxylated single-walled carbon nanotubes (c-SWNT) is known to prevent the nanotubes from interaction with macrophages. Here we characterized nanotube's ability to stimulate coagulation processes in platelet-poor plasma (PPP), and evaluated the effect of SWNTs on platelet aggregation in platelet-rich plasma (PRP). Our study showed that PEG-SWNT did not affect the rate of clotting in PPP, while c-SWNT shortened the clot formation time five times compared to the control PPP. Since c-SWNT failed to accelerate coagulation in plasma lacking coagulation factor XI, it may be suggested that c-SWNT affects the contact activation pathway. In PRP, platelets responded to both SWNT types with irreversible aggregation, as evidenced by changes in the aggregate mean radius. However, the rate of aggregation induced by c-SWNT was two times higher than it was with PEG-SWNT. Cytological analysis also showed that c-SWNT was two times more efficient when compared to PEG-SWNT in aggregating platelets in PRP. Taken together, our results show that functionalization of nanoparticles can diminish their negative influence on blood cells. As seen from our data, modification of c-SWNT with PEG, when only a one percent of carbon atoms is bound to polymer (70 wt %), decreased the nanotube-induced coagulation in PRP and repelled the accelerating effect on the coagulation in PPP. Thus, when functionalized SWNTs are used for administration into bloodstream of laboratory animals, their possible pro-coagulant and pro-aggregating properties must be taken into account.

  6. Application of multi-walled carbon nanotubes to enhance anodic ...

    African Journals Online (AJOL)

    The effect of multi-walled carbon nanotube (MWCNT) modification of anodes and the optimisation of relevant parameters thereof for application in an Enterobacter cloacae microbial fuel cell were examined. The H – type microbial fuel cells were used for the fundamental studies, with a carbon sheet as a control anode and ...

  7. Growth of single-wall carbon nanotubes by chemical vapor deposition for electrical devices

    OpenAIRE

    Furer, Jürg

    2006-01-01

    Carbon emerges in di®erent forms. Diamond and graphite have been well known mate- rials for centuries. Moreover fullerenes and nanotubes were discovered only a few years ago. H. W. Kroto et al. depicted the fullerenes in 1985 [1]. A few years later, in 1991, S. Iijima described carbon nanotubes (CNTs) for the ¯rst time [2] (Figure 1.1). CNTs have a close relation to graphite, since a single-wall carbon nanotube is like a rolled-up graphite mono layer. However a nanotube has wi...

  8. Controlling the number of walls in multi walled carbon nanotubes/alumina hybrid compound via ball milling of precipitate catalyst

    Energy Technology Data Exchange (ETDEWEB)

    Nosbi, Norlin [School of Materials and Mineral Resources Engineering, Engineering Campus, Universiti Sains Malaysia (USM), 14300 Nibong Tebal, Seberang Perai Selatan, Pulau Pinang (Malaysia); Akil, Hazizan Md, E-mail: hazizan@usm.my [School of Materials and Mineral Resources Engineering, Engineering Campus, Universiti Sains Malaysia (USM), 14300 Nibong Tebal, Seberang Perai Selatan, Pulau Pinang (Malaysia); Cluster for Polymer Composite (CPC), Science and Engineering Research Centre, Engineering Campus, Universiti Sains Malaysia (USM), 14300 Nibong Tebal, Seberang Perai Selatan, Pulau Pinang (Malaysia)

    2015-06-15

    Graphical abstract: - Highlights: • We report that, to manipulate carbon nanotubes geometry and number of walls are by controlling the precipitate catalyst size. • Number of walls and geometry effects depend on the milling time of the precipitate catalyst. • Increasing milling of time will decrease the carbon nanotubes number of walls. • Increasing milling of time will increase the carbon nanotubes thermal conductivity. - Abstract: This paper reports the influence of milling time on the structure and properties of the precipitate catalyst of multi walled carbon nanotubes (MWCNT)/alumina hybrid compound, produced through the chemical vapour deposition (CVD) process. For this purpose, light green precipitate consisted of aluminium, nickel(II) nitrate hexahydrate and sodium hydroxide mixture was placed in a planetary mill equipped with alumina vials using alumina balls at 300 rpm rotation speed for various milling time (5–15 h) prior to calcinations and CVD process. The compound was characterized using various techniques. Based on high-resolution transmission electron microscopy analysis, increasing the milling time up to 15 h decreased the diameter of MWCNT from 32.3 to 13.1 nm. It was noticed that the milling time had a significant effect on MWCNT wall thickness, whereby increasing the milling time from 0 to 15 h reduced the number of walls from 29 to 12. It was also interesting to note that the carbon content increased from 23.29 wt.% to 36.37 wt.% with increasing milling time.

  9. Plasma excitations in a single-walled carbon nanotube

    Indian Academy of Sciences (India)

    The effect of different uniform transverse external magnetic fields in plasma frequency when propagated parallel to the surface of the single-walled metallic carbon nanotubes is studied. The classical electrodynamics as well as Maxwell's equations are used in the calculations. Equations are developed for both short- and ...

  10. Excitons in single-walled carbon nanotubes: environmental effect

    International Nuclear Information System (INIS)

    Smyrnov, O.A.

    2010-01-01

    The properties of excitons in semiconducting single-walled carbon nanotubes (SWCNTs) isolated in vacuum or a medium and their contributions to the optical spectra of nanotubes are studied within the elementary potential model, in which an exciton is represented as a bound state of two oppositely charged quasiparticles confined to the nanotube surface. The emphasis is given on the influence of the dielectric environment surrounding a nanotube on the exciton spectra. For nanotubes in the environment with a permittivity less than ∼ 1:8; the ground-state exciton binding energies exceed the respective energy gaps, whereas the obtained binding energies of excitons in nanotubes in a medium with permittivity greater than ∼ 4 are in good accordance with the corresponding experimental data and consistent with the known scaling relation for the environmental effect. The stabilization of a single-electron spectrum in SWCNTs in media with rather low permittivities is discussed.

  11. Production of vertical arrays of small diameter single-walled carbon nanotubes

    Science.gov (United States)

    Hauge, Robert H; Xu, Ya-Qiong

    2013-08-13

    A hot filament chemical vapor deposition method has been developed to grow at least one vertical single-walled carbon nanotube (SWNT). In general, various embodiments of the present invention disclose novel processes for growing and/or producing enhanced nanotube carpets with decreased diameters as compared to the prior art.

  12. Nicotine adsorption on single wall carbon nanotubes

    Energy Technology Data Exchange (ETDEWEB)

    Girao, Eduardo C. [Departamento de Fisica, Universidade Federal do Ceara, Caixa Postal 6030, Campus do Pici, 60455-900 Fortaleza, Ceara (Brazil); Fagan, Solange B.; Zanella, Ivana [Area de Ciencias Tecnologicas, Centro Universitario Franciscano - UNIFRA, 97010-032 Santa Maria, RS (Brazil); Filho, Antonio G. Souza, E-mail: agsf@fisica.ufc.br [Departamento de Fisica, Universidade Federal do Ceara, Caixa Postal 6030, Campus do Pici, 60455-900 Fortaleza, Ceara (Brazil)

    2010-12-15

    This work reports a theoretical study of nicotine molecules interacting with single wall carbon nanotubes (SWCNTs) through ab initio calculations within the framework of density functional theory (DFT). Different adsorption sites for nicotine on the surface of pristine and defective (8,0) SWCNTs were analyzed and the total energy curves, as a function of molecular position relative to the SWCNT surface, were evaluated. The nicotine adsorption process is found to be energetically favorable and the molecule-nanotube interaction is intermediated by the tri-coordinated nitrogen atom from the nicotine. It is also predicted the possibility of a chemical bonding between nicotine and SWCNT through the di-coordinated nitrogen.

  13. Collapse and stability of single- and multi-wall carbon nanotubes

    International Nuclear Information System (INIS)

    Xiao, J; Liu, B; Huang, Y; Zuo, J; Hwang, K-C; Yu, M-F

    2007-01-01

    The collapse and stability of carbon nanotubes (CNTs) have important implications for their synthesis and applications. While nanotube collapse has been observed experimentally, the conditions for the collapse, especially its dependence on tube structures, are not clear. We have studied the energetics of the collapse of single- and multi-wall CNTs via atomistic simulations. The collapse is governed by the number of walls and the radius of the inner-most wall. The collapsed structure is energetically favored about a certain diameter, which is 4.12, 4.96 and 5.76 nm for single-, double- and triple-wall CNTs, respectively. The CNT chirality also has a strong influence on the collapsed structure, leading to flat, warped and twisted CNTs, depending on the chiral angle

  14. Eradicating group A streptococcus bacteria and biofilms using functionalised multi-wall carbon nanotubes.

    Science.gov (United States)

    Levi-Polyachenko, Nicole; Young, Christie; MacNeill, Christopher; Braden, Amy; Argenta, Louis; Reid, Sean

    2014-11-01

    The aim of this study was to demonstrate that multi-wall carbon nanotubes can be functionalised with antibodies to group A streptoccocus (GAS) for targeted photothermal ablation of planktonic and biofilm residing bacteria. Antibodies for GAS were covalently attached to carboxylated multi-wall carbon nanotubes and incubated with either planktonic or biofilm GAS. Bacterium was then exposed to 1.3 W/cm(2) of 800 nm light for 10-120 s, and then serially diluted onto agar plates from which the number of colony forming units was determined. Photothermal ablation of GAS on the surface of full thickness ex vivo porcine skin and histological sectioning were done to examine damage in adjacent tissue. Approximately 14% of the GAS antibody-functionalised nanotubes attached to the bacterium, and this amount was found to be capable of inducing photothermal ablation of GAS upon exposure to 1.3 W/cm(2) of 800 nm light. Cell viability was not decreased upon exposure to nanotubes or infrared light alone. Compared to carboxylated multi-wall carbon nanotubes, antibody-labelled nanotubes enhanced killing in both planktonic and biofilm GAS in conjunction with infrared light. Analysis of GAS photothermally ablated in direct contact with ex vivo porcine skin shows that heat sufficient for killing GAS remains localised and does not cause collateral damage in tissue adjacent to the treated area. The results of this study support the premise that carbon nanotubes may be effectively utilised as highly localised photothermal agents with the potential for translation into the clinical treatment of bacterial infections of soft tissue.

  15. Aligned multi-walled carbon nanotube-reinforced composites: processing and mechanical characterization

    International Nuclear Information System (INIS)

    Thostenson, Erik T.; Chou, Tsuwei

    2002-01-01

    Carbon nanotubes have been the subject of considerable attention because of their exceptional physical and mechanical properties. These properties observed at the nanoscale have motivated researchers to utilize carbon nanotubes as reinforcement in composite materials. In this research, a micro-scale twin-screw extruder was used to achieve dispersion of multi-walled carbon nanotubes in a polystyrene matrix. Highly aligned nanocomposite films were produced by extruding the polymer melt through a rectangular die and drawing the film prior to cooling. Randomly oriented nanocomposites were produced by achieving dispersion first with the twin-screw extruder followed by pressing a film using a hydraulic press. The tensile behaviour of the aligned and random nanocomposite films with 5 wt.{%} loading of nanotubes were characterized. Addition of nanotubes increased the tensile modulus, yield strength and ultimate strengths of the polymer films, and the improvement in elastic modulus with the aligned nanotube composite is five times greater than the improvement for the randomly oriented composite. (author)

  16. Investigation of the interaction of carbon dioxide fluid with internal and external single-wall carbon nanotubes by DFT

    Directory of Open Access Journals (Sweden)

    M. Oftadeh

    2011-07-01

    Full Text Available The effective parameters of (5, 0 and (5, 5 single-wall carbon nanotubes during the interaction with carbon dioxide as sensors are determined. The interaction of carbon dioxide  molecules with internal and external walls of the nanotubes is studied using Gaussian 03 coding by density functional theory (DFT at the B3LYP/6-311G level of theory. CO2 rotation around tube axles vertically and parallel to the internal and external walls has been investigated. The carbon dioxide molecule is predicted to bind only weakly to nanotubes, and the tube-molecule interactions can be identified as physisorption. CO2 adsorption is stronger on external wallsthan on internal walls, and adsorption on the external wall of (5, 0 is stronger than on the external wall of (5, 5; the adsorption energies are exothermic and equal to -0.8884 and -0.0528 kcal/mol, respectively. The rotation energy barrier for (5, 5 is lower than that for (5, 0 in all rotations, therefore in these interactions (5, 5 is more active. The energy gap significantly changes in the presence of  carbon  dioxide molecules on the inside surface of (5, 0 and the electric conductivity is affected, but no remarkable change is observed in the electronic structure of (5, 5.

  17. Prospects for using multi-walled carbon nanotubes formed from renewable feedstock in hydrogen energy

    International Nuclear Information System (INIS)

    Onishchenko, D. V.

    2013-01-01

    Mechanoactivation of amorphous carbon synthesized from renewable feedstock promotes formation of multi-walled carbon nanotubes, and the best results were obtained using the feedstock of sphagnum moss. It is shown that the carbon nanotubes formed from different plant feedstock have a high sorption capacity with respect to hydrogen. (author)

  18. Superconductivity in single wall carbon nanotubes

    Directory of Open Access Journals (Sweden)

    H Yavari

    2009-08-01

    Full Text Available   By using Greens function method we first show that the effective interaction between two electrons mediated by plasmon exchange can become attractive which in turn can lead to superconductivity at a high critical temperature in a singl wall carbon nanotubes (SWCNT. The superconducting transition temperature Tc for the SWCNT (3,3 obtained by this mechanism agrees with the recent experimental result. We also show as the radius of SWCNT increases, plasmon frequency becomes lower and leads to lower Tc.

  19. Conjugated Polymer-Assisted Dispersion of Single-Wall Carbon Nanotubes : The Power of Polymer Wrapping

    NARCIS (Netherlands)

    Samanta, Suman Kalyan; Fritsch, Martin; Scherf, Ullrich; Gomulya, Widianta; Bisri, Satria Zulkarnaen; Loi, Maria Antonietta

    CONSPECTUS: The future application of single-walled carbon nanotubes (SWNTs) in electronic (nano)devices is closely coupled to the availability of pure, semiconducting SWNTs and preferably, their defined positioning on suited substrates. Commercial carbon nanotube raw mixtures contain metallic as

  20. Spray deposition of steam treated and functionalized single-walled and multi-walled carbon nanotube films for supercapacitors

    International Nuclear Information System (INIS)

    Zhao Xin; Chu, Bryan T T; Johnston, Colin; Sykes, John M; Grant, Patrick S; Ballesteros, Belen; Wang Weiliang

    2009-01-01

    Steam purified, carboxylic and ester functionalized single-walled carbon nanotube (SWNT) and multi-walled carbon nanotube (MWNT) films with homogeneous distribution and flexible control of thickness and area were fabricated on polymeric and metallic substrates using a modified spray deposition technique. By employing a pre-sprayed polyelectrolyte, the adhesion of the carbon nanotube (CNT) films to the substrates was significantly enhanced by electrostatic interaction. Carboxylic and ester functionalization improved electrochemical performance when immersed in 0.1 M H 2 SO 4 and the specific capacitance reached 155 and 77 F g -1 for carboxylic functionalized SWNT and MWNT films respectively. Compared with existing techniques such as hot pressing, vacuum filtration and dip coating, the ambient pressure spray deposition technique is suggested as particularly well suited for preparing CNT films at large scale for applications including providing electrodes for electrochemical supercapacitors and paper batteries.

  1. Decoration of Multi-walled Carbon Nanotubes by Metal ...

    African Journals Online (AJOL)

    The powder patterns of the as-prepared and acid treated MWCNTs are shown by the XRD spectra. The TEM results show the microstructure of the multi-walled carbon nanotubes well decorated with metal nanoparticles (Cu, Fe, Ni) and metal oxides (CuO, Fe2O3, NiO), while the SEM show the surface morphology.

  2. Comparative inhalation toxicity of multi-wall carbon nanotubes, graphene, graphite nanoplatelets and low surface carbon black.

    Science.gov (United States)

    Ma-Hock, Lan; Strauss, Volker; Treumann, Silke; Küttler, Karin; Wohlleben, Wendel; Hofmann, Thomas; Gröters, Sibylle; Wiench, Karin; van Ravenzwaay, Bennard; Landsiedel, Robert

    2013-06-17

    Carbon nanotubes, graphene, graphite nanoplatelets and carbon black are seemingly chemically identical carbon-based nano-materials with broad technological applications. Carbon nanotubes and carbon black possess different inhalation toxicities, whereas little is known about graphene and graphite nanoplatelets. In order to compare the inhalation toxicity of the mentioned carbon-based nanomaterials, male Wistar rats were exposed head-nose to atmospheres of the respective materials for 6 hours per day on 5 consecutive days. Target concentrations were 0.1, 0.5, or 2.5 mg/m3 for multi-wall carbon nanotubes and 0.5, 2.5, or 10 mg/m3 for graphene, graphite nanoplatelets and low-surface carbon black. Toxicity was determined after end of exposure and after three-week recovery using broncho-alveolar lavage fluid and microscopic examinations of the entire respiratory tract. No adverse effects were observed after inhalation exposure to 10 mg/m3 graphite nanoplatelets or relatively low specific surface area carbon black. Increases of lavage markers indicative for inflammatory processes started at exposure concentration of 0.5 mg/m3 for multi-wall carbon nanotubes and 10 mg/m3 for graphene. Consistent with the changes in lavage fluid, microgranulomas were observed at 2.5 mg/m3 multi-wall carbon nanotubes and 10 mg/m3 graphene. In order to evaluate volumetric loading of the lung as the key parameter driving the toxicity, deposited particle volume was calculated, taking into account different methods to determine the agglomerate density. However, the calculated volumetric load did not correlate to the toxicity, nor did the particle surface burden of the lung. The inhalation toxicity of the investigated carbon-based materials is likely to be a complex interaction of several parameters. Until the properties which govern the toxicity are identified, testing by short-term inhalation is the best option to identify hazardous properties in order to avoid unsafe applications or select

  3. Comparative inhalation toxicity of multi-wall carbon nanotubes, graphene, graphite nanoplatelets and low surface carbon black

    Science.gov (United States)

    2013-01-01

    Background Carbon nanotubes, graphene, graphite nanoplatelets and carbon black are seemingly chemically identical carbon-based nano-materials with broad technological applications. Carbon nanotubes and carbon black possess different inhalation toxicities, whereas little is known about graphene and graphite nanoplatelets. Methods In order to compare the inhalation toxicity of the mentioned carbon-based nanomaterials, male Wistar rats were exposed head-nose to atmospheres of the respective materials for 6 hours per day on 5 consecutive days. Target concentrations were 0.1, 0.5, or 2.5 mg/m3 for multi-wall carbon nanotubes and 0.5, 2.5, or 10 mg/m3 for graphene, graphite nanoplatelets and low-surface carbon black. Toxicity was determined after end of exposure and after three-week recovery using broncho-alveolar lavage fluid and microscopic examinations of the entire respiratory tract. Results No adverse effects were observed after inhalation exposure to 10 mg/m3 graphite nanoplatelets or relatively low specific surface area carbon black. Increases of lavage markers indicative for inflammatory processes started at exposure concentration of 0.5 mg/m3 for multi-wall carbon nanotubes and 10 mg/m3 for graphene. Consistent with the changes in lavage fluid, microgranulomas were observed at 2.5 mg/m3 multi-wall carbon nanotubes and 10 mg/m3 graphene. In order to evaluate volumetric loading of the lung as the key parameter driving the toxicity, deposited particle volume was calculated, taking into account different methods to determine the agglomerate density. However, the calculated volumetric load did not correlate to the toxicity, nor did the particle surface burden of the lung. Conclusions The inhalation toxicity of the investigated carbon-based materials is likely to be a complex interaction of several parameters. Until the properties which govern the toxicity are identified, testing by short-term inhalation is the best option to identify hazardous properties in

  4. A 66 fs highly stable single wall carbon nanotube mode locked fiber laser

    International Nuclear Information System (INIS)

    Yu, Zhenhua; Zhang, Xiao; Dong, Xinzheng; Tian, Jinrong; Song, Yanrong; Wang, Yonggang

    2014-01-01

    We demonstrate a highly stable mode locked fiber laser based on single wall carbon nanotubes. The mode locking is achieved by the evanescent field interaction of the propagating light with a single wall carbon nanotube saturable absorber in a microfiber. The pulse width is 66 fs, which, to the best of our knowledge, is the shortest pulse achieved in a carbon nanotube mode locked fiber laser. The maximum average output power is 26 mW, which is about 20 times larger than that of a typical carbon nanotube mode locked fiber laser. The center of the wavelength is 1555 nm, with 54 nm spectral width. The repetition rate is 146 MHz. To investigate the laser’s stability, the output pulses are monitored for 120 h and there is no significant degradation of the laser spectral width or shape. (paper)

  5. Optical spectroscopy of iodine-doped single-wall carbon nanotubes of different diameter

    International Nuclear Information System (INIS)

    Tonkikh, Alexander A.; Obraztsova, Elena D.; Pozharov, Anatolii S.; Obraztsova, Ekaterina A.; Belkin, Alexey V.

    2012-01-01

    Single-wall carbon nanotubes with polyiodide chains inside are interesting from two points of view. According to predictions, first, the iodine structure type inside the nanotube is determined by the nanotube geometry. Second, after iodination all nanotubes become metallic. In this work, we made an attempt to check both predictions. To study the diameter-dependent properties we have taken for a gas-phase iodination the pristine single-wall carbon nanotubes grown by three different techniques providing a different average diameter: a chemical vapor deposition with a Co/Mo catalyst (CoMoCat) with a diameter range (0.6-1.3) nm, a high-pressure CO decomposition (HiPCO) - a diameter range (0.8-1.5) nm, and an aerosol technique with Fe catalyst - a diameter range (1.3-2.0) nm. The Raman spectra have shown a complication of the polyiodide chain structure while the nanotube diameter increased. The optical spectroscopy data (a suppression of E 11 band in the UV-Vis-NIR absorption spectrum) have confirmed the theoretical prediction about transformation of all nanotubes into metallic phase after doping. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  6. Electrical conductivity of compacts of graphene, multi-wall carbon nanotubes, carbon black, and graphite powder

    NARCIS (Netherlands)

    Marinho, B.; Gomes Ghislandi, M.; Tkalya, E.; Koning, C.E.; With, de G.

    2012-01-01

    The electrical conductivity of different carbon materials (multi-walled carbon nanotubes, graphene, carbon black and graphite), widely used as fillers in polymeric matrices, was studied using compacts produced by a paper preparation process and by powder compression. Powder pressing assays show that

  7. Transient reflectivity on vertically aligned single-wall carbon nanotubes

    NARCIS (Netherlands)

    Galimberti, Gianluca; Ponzoni, Stefano; Ferrini, Gabriele; Hofmann, Stephan; Arshad, Muhammad; Cepek, Cinzia; Pagliara, Stefania

    2013-01-01

    One-color transient reflectivity measurements are carried out on two different samples of vertically aligned single-wall carbon nanotube bundles and compared with the response recently published on unaligned bundles. The negative sign of the optical response for both samples indicates that the free

  8. The effect of calcination on multi-walled carbon nanotubes produced by dc-arc discharge.

    Science.gov (United States)

    Pillai, Sreejarani K; Augustyn, Willem G; Rossouw, Margaretha H; McCrindle, Robert I

    2008-07-01

    Multi-walled carbon nanotubes were synthesized by dc-arc discharge in helium atmosphere and the effect of calcination at different temperatures ranging from 300-600 degrees C was studied in detail. The degree of degradation to the structural integrity of the multi-walled carbon nanotubes during the thermal process was studied by Raman spectroscopy, Scanning electron microscopy and High resolution transmission electron microscopy. The thermal behaviour of the as prepared and calcined samples was investigated by thermogravimetric analysis. Calcination in air at 400 degrees C for 2 hours was found to be an efficient and simple method to eliminate carbonaceous impurities from the nanotube bundles with minimal damage to the tube walls and length. The impurities were oxidized at a faster rate when compared to the nanotubes and gave good yield of about 50%. The nanotubes were observed to be damaged at temperature higher than 450 degrees C. The results show that this method is less destructive when compared liquid phase oxidation with 5 M HNO3.

  9. Quantum interference effects on the intensity of the G modes in double-walled carbon nanotubes

    International Nuclear Information System (INIS)

    Tran, Huy Nam; Blancon, Jean-Christophe Robert; Arenal, Raul

    2017-01-01

    The effects of quantum interferences on the excitation dependence of the intensity of G modes have been investigated on single-walled carbon nanotubes [Duque et al., Phys. Rev. Lett.108, 117404 (2012)]. In this work, by combining optical absorption spectroscopy and Raman scattering on individual index identified double-walled carbon nanotubes, we examine the experimental excitation dependence of the intensity of longitudinal optical and transverse optical G modes of the constituent inner and outer single-walled carbon nanotubes. The observed striking dependencies are understood in terms of quantum interference effects. Considering such effects, the excitation dependence of the different components of the G modes permit to unambiguously assign each of them as originating from the longitudinal or transverse G modes of inner and outer tubes.

  10. A black body absorber from vertically aligned single-walled carbon nanotubes

    Science.gov (United States)

    Mizuno, Kohei; Ishii, Juntaro; Kishida, Hideo; Hayamizu, Yuhei; Yasuda, Satoshi; Futaba, Don N.; Yumura, Motoo; Hata, Kenji

    2009-01-01

    Among all known materials, we found that a forest of vertically aligned single-walled carbon nanotubes behaves most similarly to a black body, a theoretical material that absorbs all incident light. A requirement for an object to behave as a black body is to perfectly absorb light of all wavelengths. This important feature has not been observed for real materials because materials intrinsically have specific absorption bands because of their structure and composition. We found a material that can absorb light almost perfectly across a very wide spectral range (0.2–200 μm). We attribute this black body behavior to stem from the sparseness and imperfect alignment of the vertical single-walled carbon nanotubes. PMID:19339498

  11. Fabrication of antibacterial PVA nanocomposite films containing dendritic polymer functionalized multi-walled carbon nanotubes

    Science.gov (United States)

    Sapalidis, Andreas; Sideratou, Zili; Panagiotaki, Katerina N.; Sakellis, Elias; Kouvelos, Evangelos P.; Papageorgiou, Sergios; Katsaros, Fotios

    2018-03-01

    A series of Poly(vinyl alcohol) (PVA) nanocomposite films containing quaternized hyperbranched polyethyleneimine (PEI) functionalized multi-walled carbon nanotubes (ox-CNTs@QPEI) are prepared by solvent casting technique. The modified carbon based material exhibits high aqueous solubility, due to the hydrophilic character of the functionalized hyperbranched dendritic polymer. The quaternized PEI successfully wraps around nanotube walls, as polycations provide electrostatic repulsion. Various contents of ox-CNTs@QPEI ranging from 0.05 to 1.0 % w/w were employed to prepare functionalized PVA nanocomposites. The developed films exhibit adequate optical transparency, improved mechanical properties and extremely high antibacterial behavior due to the excellent dispersion of the functionalized carbon nanotubes into the PVA matrix.

  12. Positron annihilation characteristics in multi-wall carbon nanotubes with different average diameters

    International Nuclear Information System (INIS)

    Tuyen, L A; Khiem, D D; Phuc, P T; Kajcsos, Zs; Lázár, K; Tap, T D

    2013-01-01

    Positron lifetime spectroscopy was used to study multi-wall carbon nanotubes. The measurements were performed in vacuum on the samples having different average diameters. The positron lifetime values depend on the nanotube diameter. The results also show an influence of the nanotube diameter on the positron annihilation intensity on the nanotube surface. The change in the annihilation probability is described and interpreted by the modified diffusion model introducing the positron escape rate from the nanotubes to their external surface.

  13. Ultrafast excitation energy transfer from encapsulated quaterrylene to single-walled carbon nanotube

    Energy Technology Data Exchange (ETDEWEB)

    Koyama, Takeshi, E-mail: koyama@nuap.nagoya-u.ac.jp [Department of Applied Physics, Nagoya University, Chikusa, Nagoya 464-8603 (Japan); Tsunekawa, Takuya [Department of Applied Physics, Nagoya University, Chikusa, Nagoya 464-8603 (Japan); Saito, Takeshi [Research Center for Advanced Carbon Materials, AIST, Tsukuba, Ibaraki 305-8565 (Japan); Asaka, Koji; Saito, Yahachi [Department of Quantum Engineering, Nagoya University, Chikusa, Nagoya 464-8603 (Japan); Kishida, Hideo [Department of Applied Physics, Nagoya University, Chikusa, Nagoya 464-8603 (Japan); Nakamura, Arao [Department of Applied Physics, Nagoya University, Chikusa, Nagoya 464-8603 (Japan); Toyota Physical and Chemical Research Institute, Nagakute, Aichi 480-1192 (Japan)

    2016-01-15

    We investigate excitation energy transfer from an encapsulated quaterrylene molecule to a single-walled carbon nanotube by means of femtosecond pump-probe spectroscopy. The time constant of energy transfer becomes shorter with increasing average diameter of nanotube: 1.4±0.2 ps for 1.0 nm, 1.1±0.2 ps for 1.4 nm, and 0.4±0.1 ps for 1.8 nm. The observed behavior is discussed considering the distance of less than 1 nm between the molecule and the nanotube wall. - Highlights: • Dynamical properties of excited states in quaterrylene/SWNT composites were studied. • Excitation energy transfer occurs in the time range of 0.4-1.4 ps. • The transfer rate depends on the nanotube diameter, i.e. molecule-nanotube wall distance. • This dependence indicates the feature of excitation energy transfer on the nanoscale.

  14. Modelling of single walled carbon nanotube cylindrical structures with finite element method simulations

    Science.gov (United States)

    Günay, E.

    2016-04-01

    In this study, the modulus of elasticity and shear modulus values of single-walled carbon nanotubes SWCNTs were modelled by using both finite element method and the Matlab code. Initially, cylindrical armchair and zigzag single walled 3D space frames were demonstrated as carbon nanostructures. Thereafter, macro programs were written by the Matlab code producing the space truss for zigzag and armchair models. 3D space frames were introduced to the ANSYS software and then tension, compression and additionally torsion tests were performed on zigzag and armchair carbon nanotubes with BEAM4 element in obtaining the exact values of elastic and shear modulus values. In this study, two different boundary conditions were tested and especially used in torsion loading. The equivalent shear modulus data was found by averaging the corresponding values obtained from ten different nodal points on the nanotube path. Finally, in this study it was determined that the elastic constant values showed proportional changes by increasing the carbon nanotube diameters up to a certain level but beyond this level these values remained stable.

  15. Modelling of single walled carbon nanotube cylindrical structures with finite element method simulations

    International Nuclear Information System (INIS)

    Günay, E.

    2016-01-01

    In this study, the modulus of elasticity and shear modulus values of single-walled carbon nanotubes SWCNTs were modelled by using both finite element method and the Matlab code. Initially, cylindrical armchair and zigzag single walled 3D space frames were demonstrated as carbon nanostructures. Thereafter, macro programs were written by the Matlab code producing the space truss for zigzag and armchair models. 3D space frames were introduced to the ANSYS software and then tension, compression and additionally torsion tests were performed on zigzag and armchair carbon nanotubes with BEAM4 element in obtaining the exact values of elastic and shear modulus values. In this study, two different boundary conditions were tested and especially used in torsion loading. The equivalent shear modulus data was found by averaging the corresponding values obtained from ten different nodal points on the nanotube path. Finally, in this study it was determined that the elastic constant values showed proportional changes by increasing the carbon nanotube diameters up to a certain level but beyond this level these values remained stable.

  16. Modelling of single walled carbon nanotube cylindrical structures with finite element method simulations

    Energy Technology Data Exchange (ETDEWEB)

    Günay, E. [Gazi University, Mechanical Engineering Department, 06570, Ankara (Turkey)

    2016-04-21

    In this study, the modulus of elasticity and shear modulus values of single-walled carbon nanotubes SWCNTs were modelled by using both finite element method and the Matlab code. Initially, cylindrical armchair and zigzag single walled 3D space frames were demonstrated as carbon nanostructures. Thereafter, macro programs were written by the Matlab code producing the space truss for zigzag and armchair models. 3D space frames were introduced to the ANSYS software and then tension, compression and additionally torsion tests were performed on zigzag and armchair carbon nanotubes with BEAM4 element in obtaining the exact values of elastic and shear modulus values. In this study, two different boundary conditions were tested and especially used in torsion loading. The equivalent shear modulus data was found by averaging the corresponding values obtained from ten different nodal points on the nanotube path. Finally, in this study it was determined that the elastic constant values showed proportional changes by increasing the carbon nanotube diameters up to a certain level but beyond this level these values remained stable.

  17. Turning refuse plastic into multi-walled carbon nanotube forest

    Directory of Open Access Journals (Sweden)

    Eugene Oh, Jaegeun Lee, Seung-Ho Jung, Seungho Cho, Hye-Jin Kim, Sung-Hyun Lee, Kun-Hong Lee, Kyong-Hwa Song, Chi-Hoon Choi and Do Suck Han

    2012-01-01

    Full Text Available A novel and effective method was devised for synthesizing a vertically aligned carbon nanotube (CNT forest on a substrate using waste plastic obtained from commercially available water bottles. The advantages of the proposed method are the speed of processing and the use of waste as a raw material. A mechanism for the CNT growth was also proposed. The growth rate of the CNT forest was ~2.5 μm min−1. Transmission electron microscopy images indicated that the outer diameters of the CNTs were 20–30 nm on average. The intensity ratio of the G and D Raman bands was 1.27 for the vertically aligned CNT forest. The Raman spectrum showed that the wall graphitization of the CNTs, synthesized via the proposed method was slightly higher than that of commercially available multi-walled carbon nanotubes (MWCNTs. We expect that the proposed method can be easily adapted to the disposal of other refuse materials and applied to MWCNT production industries.

  18. Turning refuse plastic into multi-walled carbon nanotube forest

    Science.gov (United States)

    Oh, Eugene; Lee, Jaegeun; Jung, Seung-Ho; Cho, Seungho; Kim, Hye-Jin; Lee, Sung-Hyun; Lee, Kun-Hong; Song, Kyong-Hwa; Choi, Chi-Hoon; Han, Do Suck

    2012-01-01

    A novel and effective method was devised for synthesizing a vertically aligned carbon nanotube (CNT) forest on a substrate using waste plastic obtained from commercially available water bottles. The advantages of the proposed method are the speed of processing and the use of waste as a raw material. A mechanism for the CNT growth was also proposed. The growth rate of the CNT forest was ∼2.5 μm min−1. Transmission electron microscopy images indicated that the outer diameters of the CNTs were 20–30 nm on average. The intensity ratio of the G and D Raman bands was 1.27 for the vertically aligned CNT forest. The Raman spectrum showed that the wall graphitization of the CNTs, synthesized via the proposed method was slightly higher than that of commercially available multi-walled carbon nanotubes (MWCNTs). We expect that the proposed method can be easily adapted to the disposal of other refuse materials and applied to MWCNT production industries. PMID:27877482

  19. Single-walled carbon nanotube networks for flexible and printed electronics

    International Nuclear Information System (INIS)

    Zaumseil, Jana

    2015-01-01

    Networks of single-walled carbon nanotubes (SWNTs) can be processed from solution and have excellent mechanical properties. They are highly flexible and stretchable. Depending on the type of nanotubes (semiconducting or metallic) they can be used as replacements for metal or transparent conductive oxide electrodes or as semiconducting layers for field-effect transistors (FETs) with high carrier mobilities. They are thus competitive alternatives to other solution-processable materials for flexible and printed electronics. This review introduces the basic properties of SWNTs, current methods for dispersion and separation of metallic and semiconducting SWNTs and techniques to deposit and pattern dense networks from dispersion. Recent examples of applications of carbon nanotubes as conductors and semiconductors in (opto-)electronic devices and integrated circuits will be discussed. (paper)

  20. Electromagnetic properties of inner double walled carbon nanotubes investigated by nuclear magnetic resonance

    KAUST Repository

    Bouhrara, M.; Abou-Hamad, E.; Alabedi, G.; Al-Taie, I.; Kim, Y.; Wagberg, T.; Goze-Bac, C.

    2013-01-01

    The nuclear magnetic resonance (NMR) analytical technique was used to investigate the double walled carbon nanotubes (DWNTs) electromagnetic properties of inner walls. The local magnetic and electronic properties of inner nanotubes in DWNTs were analyzed using 25% 13C enriched C 60 by which the effect of dipolar coupling could be minimized. The diamagnetic shielding was determined due to the ring currents on outer nanotubes in DWNTs. The NMR chemical shift anisotropy (CSA) spectra and spin-lattice relaxation studies reveal the metallic properties of the inner nanotubes with a signature of the spin-gap opening below 70 K.

  1. Electrocatalysis of oxygen reduction on nitrogen-containing multi-walled carbon nanotube modified glassy carbon electrodes

    International Nuclear Information System (INIS)

    Vikkisk, Merilin; Kruusenberg, Ivar; Joost, Urmas; Shulga, Eugene; Tammeveski, Kaido

    2013-01-01

    Highlights: ► Pyrolysis in the presence of urea was used for nitrogen doping of carbon nanotubes. ► N-doped carbon nanotubes were used as catalysts for the oxygen reduction reaction. ► N-doped carbon material showed a high catalytic activity for ORR in alkaline media. ► N-containing CNT material is an attractive cathode catalyst for alkaline membrane fuel cells. - Abstract: The electrochemical reduction of oxygen was studied on nitrogen-doped multi-walled carbon nanotube (NCNT) modified glassy carbon (GC) electrodes employing the rotating disk electrode (RDE) method. Nitrogen doping was achieved by simple pyrolysis of the carbon nanotube material in the presence of urea. The surface morphology and composition of the NCNT samples were investigated by scanning electron microscopy (SEM) and X-ray photoelectron spectroscopy (XPS). The SEM images revealed a rather uniform distribution of NCNTs on the GC electrode substrate. The XPS analysis showed a successful doping of carbon nanotubes with nitrogen species. The RDE results revealed that in alkaline solution the N-doped nanotube materials showed a remarkable electrocatalytic activity towards oxygen reduction. At low overpotentials the reduction of oxygen followed a two-electron pathway on undoped carbon nanotube modified GC electrodes, whereas on NCNT/GC electrodes a four-electron pathway of O 2 reduction predominated. The results obtained are significant for the development of nitrogen-doped carbon-based cathodes for alkaline membrane fuel cells.

  2. Mechanical properties of multi-walled carbon nanotube/epoxy polysulfide nanocomposite

    International Nuclear Information System (INIS)

    Shirkavand Hadavand, Behzad; Mahdavi Javid, Kimya; Gharagozlou, Mehrnaz

    2013-01-01

    Highlights: ► Preparation of epoxy polysulfide nanocomposite. ► Multi-walled carbon nanotubes have been modified and dispersed in epoxy polysulfide matrix. ► Mechanical properties of MWNT/epoxy polysulfide have been studied. - Abstract: In this research, multi-walled carbon nanotubes (MWCNTs) were modified by acid functionalization (H 2 SO 4 :HNO 3 = 1:3 by volume) and then mechanical properties of reinforced epoxy polysulfide resin by the both pure and treated MWNTs have been evaluated. For achieving this goal, different weight percentages of pure and treated MWCNT (0.1–0.3 wt%) were dispersed in the epoxy polysulfide resin separately and then mixed with curing agent. Experimental results have shown significant difference between acid treated and untreated MWCNTs in mechanical properties of epoxy polysulfide nanocomposites. In nanocomposite with 0.1–0.3% acid treated MWCNTs we observed increase of Young’s modulus from 458 to 723 MPa, tensile strength from 5.29 to 8.83 MPa and fracture strain from 0.16% to 0.25%. For understanding the structure and morphology of nanocomposite, the dispersion states were studied using scanning electron microscopy (SEM) and field emission electron microscopy (FESEM). The results showed better dispersion of modified carbon nanotube than unmodified in polymeric matrix

  3. Comparison of 4-chloro-2-nitrophenol adsorption on single-walled and multi-walled carbon nanotubes

    Directory of Open Access Journals (Sweden)

    Mehrizad Ali

    2012-09-01

    Full Text Available Abstract The adsorption characteristics of 4-chloro-2-nitrophenol (4C2NP onto single-walled and multi-walled carbon nanotubes (SWCNTs and MWCNTs from aqueous solution were investigated with respect to the changes in the contact time, pH of solution, carbon nanotubes dosage and initial 4C2NP concentration. Experimental results showed that the adsorption efficiency of 4C2NP by carbon nanotubes (both of SWCNTs and MWCNTs increased with increasing the initial 4C2NP concentration. The maximum adsorption took place in the pH range of 2–6. The linear correlation coefficients of different isotherm models were obtained. Results revealed that the Langmuir isotherm fitted the experimental data better than the others and based on the Langmuir model equation, maximum adsorption capacity of 4C2NP onto SWCNTs and MWCNTs were 1.44 and 4.42 mg/g, respectively. The observed changes in the standard Gibbs free energy, standard enthalpy and standard entropy showed that the adsorption of 4C2NP onto SWCNTs and MWCNTs is spontaneous and exothermic in the temperature range of 298–328 K.

  4. Supramolecular modification of multi-walled carbon nanotubes with β-cyclodextrin for better dispersibility

    International Nuclear Information System (INIS)

    He, Yi; Xu, Zhonghao; Yang, Qiangbin; Wu, Feng; Liang, Lv

    2015-01-01

    A novel hybrid material based on multi-walled carbon nanotubes was synthesized using organic synthesis, and the structures of multi-walled carbon nanotube derivatives were characterized by Fourier transform infrared spectroscopy, X-ray diffraction, thermogravimetric analysis, 1 H NMR spectroscopy, transmission electron microscopy, and scanning electron microscope. The analytical results indicated that β-cyclodextrin (β-CD) was anchored to the surface of Multi-walled carbon nanotubes (MWCNTs, OD: 10–20 nm, length: 10–30 μm) and dispersion experiments exhibited that the introduction of β-CD onto the MWCNTs would dramatically enhance the dispersion of MWCNTs in both ethanol and water media; the suspensions were found to be very stable for 2 months, and the results of this technique confirmed the experimental results. This novel technique would provide a new, simple, and facile route to prepare the modified nanomaterials based on silane-coupling agent and β-CD, and the obtained modified nanomaterials have great potential practical significance and theoretical value to develop the novel organic–inorganic hybrid material, which was very useful for water treatment and biological medicine

  5. Titanium dioxide, single-walled carbon nanotube composites

    Science.gov (United States)

    Yao, Yuan; Li, Gonghu; Gray, Kimberly; Lueptow, Richard M.

    2015-07-14

    The present invention provides titanium dioxide/single-walled carbon nanotube composites (TiO.sub.2/SWCNTs), articles of manufacture, and methods of making and using such composites. In certain embodiments, the present invention provides membrane filters and ceramic articles that are coated with TiO.sub.2/SWCNT composite material. In other embodiments, the present invention provides methods of using TiO.sub.2/SWCNT composite material to purify a sample, such as a water or air sample.

  6. Synthesis of single walled carbon nanotubes by dual laser vaporization

    CSIR Research Space (South Africa)

    Moodley, MK et al.

    2006-02-27

    Full Text Available Single-walled carbon nanotubes were synthesised by the laser vaporisation of graphite composite targets in a tube furnace. Two pulsed Nd:YAG lasers operating at fundamental (1 064 nm) and 2nd harmonic (532 nm) were combined, focused and evaporated...

  7. Synthesis of single walled carbon nanotubes by dual laser vaporization

    CSIR Research Space (South Africa)

    Moodley, MK

    2006-07-01

    Full Text Available Single walled carbon nanotubes were synthesized by the laser vaporization of graphite composite targets in a tube furnace. Two pulsed Nd:Yag lasers operating at fundamental (1064 nm) and 2 nd harmonic (532 nm) were combined, focused and evaporated...

  8. Water-Dispersible Multi-Walled Carbon Nanotubes and Novel Hybrid Nanostructures

    NARCIS (Netherlands)

    Pham, Tuan Anh; Son, Se Mo; Jeong, Yeon Tae

    2010-01-01

    Water-dispersible multi-walled carbon nanotubes (MWNTs) were successfully prepared by the chemical grafting of acylated MWNTs with adenosine. The MWNTs were first purified and oxidized in order to obtain carboxylic acid funcionalized MWNTs, which was further acylated with thionyl chloride to give

  9. Dispersion of Single Wall Carbon Nanotubes by in situ Polymerization Under Sonication

    Science.gov (United States)

    Park, Cheol; Ounaies, Zoubeida; Watson, Kent A.; Crooks, Roy E.; Smith, Joseph, Jr.; Lowther, Sharon E.; Connell, John W.; Siochi, Emilie J.; Harrison, Joycelyn S.; St.Clair, Terry L.

    2002-01-01

    Single wall nanotube reinforced polyimide nanocomposites were synthesized by in situ polymerization of monomers of interest in the presence of sonication. This process enabled uniform dispersion of single wall carbon nanotube (SWNT) bundles in the polymer matrix. The resultant SWNT-polyimide nanocomposite films were electrically conductive (antistatic) and optically transparent with significant conductivity enhancement (10 orders of magnitude) at a very low loading (0.1 vol%). Mechanical properties as well as thermal stability were also improved with the incorporation of the SWNT.

  10. Interaction between fullerene halves C_n (n ≤ 40) and single wall carbon nanotube

    International Nuclear Information System (INIS)

    Sharma, Amrish; Kaur, Sandeep; Mudahar, Isha

    2016-01-01

    We have investigated the structural and electronic properties of carbon nanotube with small fullerene halves C_n (n ≤ 40) which are covalently bonded to the side wall of an armchair single wall carbon nanotube (SWCNT) using first principle method based on density functional theory. The fullerene size results in weak bonding between fullerene halves and carbon nanotube (CNT). Further, it was found that the C-C bond distance that attaches the fullerene half and CNT is of the order of 1.60 Å. The calculated binding energies indicate the stability of the complexes formed. The HOMO-LUMO gaps and electron density of state plots points towards the metallicity of the complex formed. Our calculations on charge transfer reveal that very small amount of charge is transferred from CNT to fullerene halves.

  11. Purity Evaluation of Bulk Single Wall Carbon Nanotube Materials

    International Nuclear Information System (INIS)

    Dettlaff-Weglikowska, U.; Hornbostel, B.; Cech, J.; Roth, S.; Wang, J.; Liang, J.

    2005-01-01

    We report on our experience using a preliminary protocol for quality control of bulk single wall carbon nanotube (SWNT) materials produced by the electric arc-discharge and laser ablation method. The first step in the characterization of the bulk material is mechanical homogenization. Quantitative evaluation of purity has been performed using a previously reported procedure based on solution phase near-infrared spectroscopy. Our results confirm that this method is reliable in determining the nanotube content in the arc-discharge sample containing carbonaceous impurities (amorphous carbon and graphitic particles). However, the application of this method to laser ablation samples gives a relative purity value over 100 %. The possible reason for that might be different extinction coefficient meaning different oscillator strength of the laser ablation tubes. At the present time, a 100 % pure reference sample of laser ablation SWNT is not available, so we chose to adopt the sample showing the highest purity as a new reference sample for a quantitative purity evaluation of laser ablation materials. The graphitic part of the carbonaceous impurities has been estimated using X-ray diffraction of 1:1 mixture of nanotube material and C60 as an internal reference. To evaluate the metallic impurities in the as prepared and homogenized carbon nanotube soot inductive coupled plasma (ICP) has been used

  12. Fabrication and mechanical properties of multi-walled carbon nanotubes/epoxy nanocomposites

    International Nuclear Information System (INIS)

    Yeh, M.-K.; Hsieh, T.-H.; Tai, N.-H.

    2008-01-01

    Carbon nanotubes have better physical and mechanical behavior than the traditional materials. In this study, the multi-walled carbon nanotubes (MWNTs) were added to the epoxy resin as a reinforcement to fabricate MWNTs/epoxy nanocomposites. The pressure and temperature were applied to cure the MWNTs/epoxy compound by hot press method. Mechanical properties such as tensile strength, Young's modulus, and Poisson's ratio were measured. The effect of weight percentages of the MWNTs was investigated. Morphologies of the fracture surface of MWNTs/epoxy nanocomposites were observed by scanning electron microscope

  13. Single-Walled Carbon Nanotubes in Solar Cells.

    Science.gov (United States)

    Jeon, Il; Matsuo, Yutaka; Maruyama, Shigeo

    2018-01-22

    Photovoltaics, more generally known as solar cells, are made from semiconducting materials that convert light into electricity. Solar cells have received much attention in recent years due to their promise as clean and efficient light-harvesting devices. Single-walled carbon nanotubes (SWNTs) could play a crucial role in these devices and have been the subject of much research, which continues to this day. SWNTs are known to outperform multi-walled carbon nanotubes (MWNTs) at low densities, because of the difference in their optical transmittance for the same current density, which is the most important parameter in comparing SWNTs and MWNTs. SWNT films show semiconducting features, which make SWNTs function as active or charge-transporting materials. This chapter, consisting of two sections, focuses on the use of SWNTs in solar cells. In the first section, we discuss SWNTs as a light harvester and charge transporter in the photoactive layer, which are reviewed chronologically to show the history of the research progress. In the second section, we discuss SWNTs as a transparent conductive layer outside of the photoactive layer, which is relatively more actively researched. This section introduces SWNT applications in silicon solar cells, organic solar cells, and perovskite solar cells each, from their prototypes to recent results. As we go along, the science and prospects of the application of solar cells will be discussed.

  14. Influence of the contact geometry on single-walled carbon nanotube/Si photodetector response

    Science.gov (United States)

    Scagliotti, Mattia; Salvato, Matteo; De Crescenzi, Maurizio; Boscardin, Maurizio; Castrucci, Paola

    2018-03-01

    A systematic study of the optical response of photodetectors based on carbon nanotube/Si heterojunctions is performed by measuring the responsivity, the detectivity and the time response of the devices with different contact configurations. The sensors are obtained by dry transferring single-walled carbon nanotube films on the surface of n-doped Si substrate provided with a multifinger contact geometry. The experimental data show a consistent improvement of the photodetector parameters with the increase of the number of fingers without affecting the carbon nanotube film thickness for increase its optical transmittance as in previous experiments. The role of the electrical resistance of the carbon nanotube film is discussed. The obtained results confirm the method and suggest new perspectives in the use of nanostructured materials as part of semiconducting optical devices.

  15. Phototransformation-Induced Aggregation of Functionalized Single-Walled Carbon Nanotubes: The Importance of Amorphous Carbon

    Science.gov (United States)

    Single-walled carbon nanotubes (SWCNTs) with proper functionalization are desirable for applications that require dispersion in aqueous and biological environments, and functionalized SWCNTs also serve as building blocks for conjugation with specific molecules in these applicatio...

  16. Polyaniline–multi-wall-carbon nanotube nanocomposites as a dopamine sensor

    Directory of Open Access Journals (Sweden)

    REZA EMAMALI SABZI

    2010-04-01

    Full Text Available A composite of polyaniline with multi-wall-carbon nanotubes (PANi/ /MWCNTs was synthesized by an in situ chemical oxidative polymerization method. The PANi nanoparticles were synthesized chemically using aniline as the monomer and ammonium peroxydisulfate as the oxidant. The nanocomposites were prepared as a carbon paste using functionalized MWCNTs and PANi nanoparticles. The PANi–MWCNTs were characterized physically using scanning electron microscopy (SEM and the electrochemical behavior of the composites in acidic solution (HCl was investigated using cyclic voltammetry. The PANi/MWCNT composite electrode was used for studying dopamine (DA as an electroactive material. The cyclic voltammetric results indicated that multi-wall carbon nanotubes (MWCNTs significantly enhanced the electrocatalytic activity in favor of the oxidation of DA. The kinetics of the catalytic reaction was investigated using the chronoamperometry technique whereby the average va¬lue of the diffusion coefficient (D and the catalytic rate constant (k for DA were determined to be (7.98±0.8×10-7 cm2 s-1 and (8.33±0.072×104 dm3 mol-1 s-1, respectively.

  17. Phthalimide containing donor-acceptor polymers for effective dispersion of single-walled carbon nanotubes

    Directory of Open Access Journals (Sweden)

    Baris Yilmaz

    2015-08-01

    Full Text Available Single-walled carbon nanotubes have been dispersed by novel phthalimide containing donor-acceptor type copolymers in organic media. Brominated phthalimide comonomer has been copolymerized with several electron rich structures using Suzuki and Stille coupling reactions. Carbon nanotube dispersion capability of the resultant polymers has been assessed by exploiting the non-covalent interaction of nanotube surface with the pi-system of conjugated backbone of polymers. Four polymers have been found to be good candidates for individually dispersing nanotubes in solution. In order to identify the dispersed nanotube species, 2D excitation-emission map and Raman spectroscopy have been performed. Molecular dynamics modelling has been utilized to reveal the binding energies of dispersants with the nanotube surface and the simulation results have been compared with the experimental findings. Both experimental and theoretical results imply the presence of a complex mechanism that governs the extent of dispersion capacity and selectivity of each conjugated polymeric dispersant in solubilizing carbon nanotubes.

  18. Determination of multi-walled carbon nanotube bioaccumulation in earthworms measured by a microwave-based detection technique

    Science.gov (United States)

    Reliable quantification techniques for carbon nanotubes (CNTs) are limited. In this study, a new procedure was developed for quantifying multi-walled carbon nanotubes (MWNTs) in earthworms (Eisenia fetida) based on freeze drying and microwave-induced heating. Specifically, earthw...

  19. Hydrogen adsorption on N-decorated single wall carbon nanotubes

    Energy Technology Data Exchange (ETDEWEB)

    Rangel, Eduardo [Instituto de Fisica, Universidad Nacional Autonoma de Mexico, Apartado Postal 20-364, Codigo Postal 01000, Mexico D.F. (Mexico); Ruiz-Chavarria, Gregorio [Instituto de Fisica, Universidad Nacional Autonoma de Mexico, Apartado Postal 20-364, Codigo Postal 01000, Mexico D.F. (Mexico); Departamento de Fisica, Facultad de Ciencias, Universidad Nacional Autonoma de Mexico Ciudad Universitaria, Codigo Postal 04510, Mexico D.F. (Mexico); Magana, L.F., E-mail: fernando@fisica.unam.m [Instituto de Fisica, Universidad Nacional Autonoma de Mexico, Apartado Postal 20-364, Codigo Postal 01000, Mexico D.F. (Mexico); Arellano, J.S. [Departamento de Ciencias Basicas, Universidad Autonoma Metropolitana, Unidad Azcapotzalco. Avenida San Pablo No. 180, Col. Reynosa Tamaulipas Codigo Postal 02200, Mexico D.F. (Mexico)

    2009-07-06

    Using density functional theory and molecular dynamics we found that N-decorated single walled (8,0) carbon nanotubes are potential high capacity hydrogen storage media. This system could store up to 6.0 wt% hydrogen at 300 K and ambient pressure, with average adsorption energy of -80 meV/(H{sub 2}). Nitrogen coverage was C{sub 8}N.

  20. Hydrogen adsorption on N-decorated single wall carbon nanotubes

    International Nuclear Information System (INIS)

    Rangel, Eduardo; Ruiz-Chavarria, Gregorio; Magana, L.F.; Arellano, J.S.

    2009-01-01

    Using density functional theory and molecular dynamics we found that N-decorated single walled (8,0) carbon nanotubes are potential high capacity hydrogen storage media. This system could store up to 6.0 wt% hydrogen at 300 K and ambient pressure, with average adsorption energy of -80 meV/(H 2 ). Nitrogen coverage was C 8 N.

  1. Single-walled carbon nanotubes as stabilizing agents in red phosphorus Li-ion battery anodes

    KAUST Repository

    Smajic, Jasmin

    2017-08-16

    Phosphorus boasts extremely high gravimetric and volumetric capacities but suffers from poor electrochemical stability with significant capacity loss immediately after the first cycle. We propose to circumvent this issue by mixing amorphous red phosphorus with single-walled carbon nanotubes. Employing a non-destructive sublimation–deposition method, we have synthesized composites where the synergetic effect between red phosphorus and single-walled carbon nanotubes allows for a considerable improvement in the electrochemical stability of battery anodes. In contrast to the average 40% loss of capacity after 50 cycles for other phosphorus–carbon composites in the literature, our material shows losses of just 22% under analogous cycling conditions.

  2. ELECTROPHORETIC DEPOSITION OF TIO2-MULTI-WALLED CARBON NANOTUBE COMPOSITE COATINGS: MORPHOLOGICAL STUDY

    Directory of Open Access Journals (Sweden)

    M. S. MAHMOUDI JOZEE

    2016-09-01

    Full Text Available A homogenous TiO2 / multi-walled carbon nanotubes(MWCNTs composite film were prepared by electrophoretic co-deposition from organic suspension on a stainless steel substrate.  In this study, MWCNTs was incorporated to the coating because of their long structure and their capability to be functionalized by different inorganic groups on the surface. FTIR spectroscopy showed the existence of carboxylic groups on the modified carbon nanotubes surface. The effect of applied electrical fields, deposition time and concentration of nanoparticulates on coatings morphology were investigated by scanning electron microscopy. It was found that combination of MWCNTs within TiO2 matrix eliminating micro cracks presented on TiO2 coating. Also, by increasing the deposition voltages, micro cracks were increased. SEM observation of the coatings revealed that TiO2/multi-walled carbon nanotubes coatings produced from optimized electric field was uniform and had good adhesive to the substrate.

  3. Computational and experimental studies of the interaction between single-walled carbon nanotubes and folic acid

    DEFF Research Database (Denmark)

    Castillo, John J.; Rozo, Ciro E.; Castillo-León, Jaime

    2013-01-01

    Nlayered Integrated Molecular Orbital and Molecular Mechanics (B3LYP(6–31G(d):UFF)). The results confirmed that the interaction occurred via hydrogen bonding between protons of the glutamic moiety from folic acid and π electrons from the carbon nanotubes. The single-walled carbon nanotube-folic acid...

  4. Revealing properties of single-walled carbon nanotubes under high pressure

    CERN Document Server

    Tang Jie; Sasaki, T; Yudasaka, M; Matsushita, A; Iijima, S

    2002-01-01

    It was found by the x-ray diffraction experiment under hydrostatic pressure that the carbon nanotubes are compressed easily with a high volume compressibility of 0.024 GPa sup - sup 1. The single-walled carbon nanotubes are polygonized when they form bundles of hexagonal close-packed structure and the inter-tubular gap is smaller than the equilibrium spacing of graphite. Under high pressure, further polygonization occurs to accommodate the extra amount of volume reduction. The ratio of the short and the long diagonals in the hexagonalized cross section is found to have changed from 0.991 at zero pressure to 0.982 at 1.5 GPa pressure, when the Bragg reflection from the nanotube lattice diminished. Accompanying polygonization, a discontinuous change in electrical resistivity was observed at 1.5 GPa pressure, suggesting a phase transition had occurred.

  5. A triple quantum dot in a single-wall carbon nanotube

    DEFF Research Database (Denmark)

    Grove-Rasmussen, Kasper; Jørgensen, Henrik Ingerslev; Hayashi, T.

    2008-01-01

    A top-gated single-wall carbon nanotube is used to define three coupled quantum dots in series between two electrodes. The additional electron number on each quantum dot is controlled by top-gate voltages allowing for current measurements of single, double, and triple quantum dot stability diagrams...

  6. Synthesis of dark brown single-walled carbon nanotubes and their

    Indian Academy of Sciences (India)

    We report here a simple and effective approach to the covalent attachment of single-walled carbon nanotubes (SWCNTs) and azo compounds. The functionalized SWCNTs prepared (through a radical mechanism) have been used for a diazonium coupling reaction. The results showed that the chemical method used has ...

  7. Synthesis of dark brown single-walled carbon nanotubes and their ...

    Indian Academy of Sciences (India)

    Abstract. We report here a simple and effective approach to the covalent attachment of single-walled carbon nanotubes (SWCNTs) and azo compounds. The functionalized SWCNTs prepared (through a radical mecha- nism) have been used for a diazonium coupling reaction. The results showed that the chemical method ...

  8. The electronic fine structure of 4-nitrophenyl functionalized single-walled carbon nanotubes

    International Nuclear Information System (INIS)

    Chakraborty, Amit K; Coleman, Karl S; Dhanak, Vinod R

    2009-01-01

    Controlling the electronic structure of carbon nanotubes (CNTs) is of great importance to various CNT based applications. Herein the electronic fine structure of single-walled carbon nanotube films modified with 4-nitrophenyl groups, produced following reaction with 4-nitrobenzenediazonium tetrafluoroborate, was investigated for the first time. Various techniques such as x-ray and ultra-violet photoelectron spectroscopy, and near edge x-ray absorption fine structure studies were used to explore the electronic structure, and the results were compared with the measured electrical resistances. A reduction in number of the π electronic states in the valence band consistent with the increased resistance of the functionalized nanotube films was observed.

  9. Thermoplastic polyurethane and multi-walled carbon nanotubes nanocomposites for electrostatic dissipation

    International Nuclear Information System (INIS)

    Lavall, Rodrigo L.; Sales, Juliana A. de; Borges, Raquel S.; Calado, Hallen D. R.; Machado, Jose C.; Windmoeller, Dario; Silva, Glaura G.; Lacerda, Rodrigo G.; Ladeira, Luiz O.

    2010-01-01

    Polyurethane/multi-walled carbon nanotube (MWCNT) nanocomposites have been prepared with nanotube concentrations between 0.01 wt% and 1 wt%. MWCNT as-synthesized samples with ∼74 nm diameter and ∼7 mm length were introduced by solution processing in the polyurethane matrix. Scanning electron microscopy (SEM) images demonstrated good dispersion and adhesion of the CNTs to the polymeric matrix. The C=O stretching band showed evidence of perturbation of the hydrogen interaction between urethanic moieties in the nanocomposites as compared to pure TPU. Differential scanning calorimetry and positron annihilation lifetime spectroscopy measurements allowed the detection of glass transition displacement with carbon nanotube addition. Furthermore, the electrical conductivity of the nanocomposites was significantly increased with the addition of CNT. (author)

  10. Investigating interfacial contact configuration and behavior of single-walled carbon nanotube-based nanodevice with atomistic simulations

    Energy Technology Data Exchange (ETDEWEB)

    Cui, Jianlei, E-mail: cjlxjtu@mail.xjtu.edu.cn; Zhang, Jianwei [Xi’an Jiaotong University, State Key Laboratory for Manufacturing Systems Engineering (China); He, Xiaoqiao, E-mail: bcxqhe@cityu.edu.hk [City University of Hong Kong, Department of Architecture and Civil Engineering (Hong Kong); Mei, Xuesong; Wang, Wenjun [Xi’an Jiaotong University, State Key Laboratory for Manufacturing Systems Engineering (China); Yang, Xinju [Fudan University, State Key Laboratory of Surface Physics and Department of Physics (China); Xie, Hui; Yang, Lijun; Wang, Yang [Harbin Institute of Technology, State Key Laboratory of Robotics and Systems (China)

    2017-03-15

    Carbon nanotubes (CNTs), including single-walled carbon nanotubes (SWNTs) and multi-walled carbon nanotubes (MWNTs), are considered to be the promising candidates for next-generation interconnects with excellent physical and chemical properties ranging from ultrahigh mechanical strength, to electrical properties, to thermal conductivity, to optical properties, etc. To further study the interfacial contact configurations of SWNT-based nanodevice with a 13.56-Å diameter, the corresponding simulations are carried out with the molecular dynamic method. The nanotube collapses dramatically into the surface with the complete collapse on the Au/Ag/graphite electrode surface and slight distortion on the Si/SiO{sub 2} substrate surface, respectively. The related dominant mechanism is studied and explained. Meanwhile, the interfacial contact configuration and behavior, depended on other factors, are also analyzed in this article.

  11. Carbon nanotube junctions and devices

    NARCIS (Netherlands)

    Postma, H.W.Ch.

    2001-01-01

    In this thesis Postma presents transport experiments performed on individual single-wall carbon nanotubes. Carbon nanotubes are molecules entirely made of carbon atoms. The electronic properties are determined by the exact symmetry of the nanotube lattice, resulting in either metallic or

  12. Nanocomposites of nitrile (NBR) rubber with multi-walled carbon nanotubes

    Science.gov (United States)

    Warasitthinon, Nuthathai

    Nanotechnology offers the promise of creating new materials with enhanced performance. There are different kinds of fillers used in rubber nanocomposites, such as carbon black, silica, carbon fibers, and organoclays. Carbon nanotube reinforced elastomers have potential for improved rubber properties in aggressive environments. The first chapter is an introduction to the literature. The second chapter investigated the incorporation of multi-walled carbon nanotubes (MWCNTs) into rubber matrix for potential use in high temperature applications. The vulcanization kinetics of acrylonitrile butadiene rubber (NBR) reinforced with multi-walled carbon nanotubes was investigated. The vulcanized NBR rubber with different loading percentages of MWCNTs was also compared to NBR reinforced with carbon black N330. The optimum curing time at 170°C (T90) was found to decrease with increasing content of MWCNTs. Increased filler loading of both carbon black and MWCNTs gave higher modulus and strength. The MWCNTs filled materials gave better retention of modulus and tensile strength at high temperatures, but lower strength as compared to the carbon black filled samples. In the third chapter, carbon black (CB, 50phr) content in nitrile rubber (NBR) nanocomposites was partially replaced by multi-walled carbon nanotubes (MWCNTs). NBR/CB/CNTs nanocomposites with varying ratio of CB/CNTs (50/0 phr to 40/10 phr) were formulated via the melt-mixing method using an internal mixer. The reinforcing effect of single filler (CB) and mixture of fillers (CB and CNTs) on the properties of NBR nanocomposites was investigated. The cure kinetics and bound rubber content were analyzed using rheometry and solvent swelling method. In addition, mechanical behavior at both room temperature and high temperature (350°F/ 121°C) were examined. The scorch time and curing time values showed that there was no significant effect on the curing behavior of NBR nanocomposites after the partial replacement of CB with

  13. Uniform, dense arrays of vertically aligned, large-diameter single-walled carbon nanotubes.

    Science.gov (United States)

    Han, Zhao Jun; Ostrikov, Kostya

    2012-04-04

    Precisely controlled reactive chemical vapor synthesis of highly uniform, dense arrays of vertically aligned single-walled carbon nanotubes (SWCNTs) using tailored trilayered Fe/Al(2)O(3)/SiO(2) catalyst is demonstrated. More than 90% population of thick nanotubes (>3 nm in diameter) can be produced by tailoring the thickness and microstructure of the secondary catalyst supporting SiO(2) layer, which is commonly overlooked. The proposed model based on the atomic force microanalysis suggests that this tailoring leads to uniform and dense arrays of relatively large Fe catalyst nanoparticles on which the thick SWCNTs nucleate, while small nanotubes and amorphous carbon are effectively etched away. Our results resolve a persistent issue of selective (while avoiding multiwalled nanotubes and other carbon nanostructures) synthesis of thick vertically aligned SWCNTs whose easily switchable thickness-dependent electronic properties enable advanced applications in nanoelectronic, energy, drug delivery, and membrane technologies.

  14. Multi-walled Carbon Nanotubes/Graphite Nanosheets Modified Glassy Carbon Electrode for the Simultaneous Determination of Acetaminophen and Dopamine.

    Science.gov (United States)

    Zhang, Susu; He, Ping; Zhang, Guangli; Lei, Wen; He, Huichao

    2015-01-01

    Graphite nanosheets prepared by thermal expansion and successive sonication were utilized for the construction of a multi-walled carbon nanotubes/graphite nanosheets based amperometric sensing platform to simultaneously determine acetaminophen and dopamine in the presence of ascorbic acid in physiological conditions. The synergistic effect of multi-walled carbon nanotubes and graphite nanosheets catalyzed the electrooxidation of acetaminophen and dopamine, leading to a remarkable potential difference up to 200 mV. The as-prepared modified electrode exhibited linear responses to acetaminophen and dopamine in the concentration ranges of 2.0 × 10(-6) - 2.4 × 10(-4) M (R = 0.999) and 2.0 × 10(-6) - 2.0 × 10(-4) M (R = 0.998), respectively. The detection limits were down to 2.3 × 10(-7) M for acetaminophen and 3.5 × 10(-7) M for dopamine (S/N = 3). Based on the simple preparation and prominent electrochemical properties, the obtained multi-walled carbon nanotubes/graphite nanosheets modified electrode would be a good candidate for the determination of acetaminophen and dopamine without the interference of ascorbic acid.

  15. Increasing amperometric biosensor sensitivity by length fractionated single-walled carbon nanotubes

    DEFF Research Database (Denmark)

    Tasca, Federico; Gorton, Lo; Wagner, Jakob Birkedal

    2008-01-01

    In this work the sensitivity-increasing effect of single-walled carbon nanotubes (SWCNTs) in amperometric biosensors, depending on their average length distribution, was studied. For this purpose the SWCNTs were oxidatively shortened and subsequently length separated by size exclusion...

  16. Effects of nitrogen-doped multi-walled carbon nanotubes compared to pristine multi-walled carbon nanotubes on human small airway epithelial cells.

    Science.gov (United States)

    Mihalchik, Amy L; Ding, Weiqiang; Porter, Dale W; McLoughlin, Colleen; Schwegler-Berry, Diane; Sisler, Jennifer D; Stefaniak, Aleksandr B; Snyder-Talkington, Brandi N; Cruz-Silva, Rodolfo; Terrones, Mauricio; Tsuruoka, Shuji; Endo, Morinobu; Castranova, Vincent; Qian, Yong

    2015-07-03

    Nitrogen-doped multi-walled carbon nanotubes (ND-MWCNTs) are modified multi-walled carbon nanotubes (MWCNTs) with enhanced electrical properties that are used in a variety of applications, including fuel cells and sensors; however, the mode of toxic action of ND-MWCNT has yet to be fully elucidated. In the present study, we compared the interaction of ND-MWCNT or pristine MWCNT-7 with human small airway epithelial cells (SAEC) and evaluated their subsequent bioactive effects. Transmission electron microscopy, X-ray photoelectron spectroscopy, Raman spectroscopy, and X-ray diffraction suggested the presence of N-containing defects in the lattice of the nanotube. The ND-MWCNTs were determined to be 93.3% carbon, 3.8% oxygen, and 2.9% nitrogen. A dose-response cell proliferation assay showed that low doses of ND-MWCNT (1.2μg/ml) or MWCNT-7 (0.12μg/ml) increased cellular proliferation, while the highest dose of 120μg/ml of either material decreased proliferation. ND-MWCNT and MWCNT-7 appeared to interact with SAEC at 6h and were internalized by 24h. ROS were elevated at 6 and 24h in ND-MWCNT exposed cells, but only at 6h in MWCNT-7 exposed cells. Significant alterations to the cell cycle were observed in SAEC exposed to either 1.2μg/ml of ND-MWCNT or MWCNT-7 in a time and material-dependent manner, possibly suggesting potential damage or alterations to cell cycle machinery. Our results indicate that ND-MWCNT induce effects in SAEC over a time and dose-related manner which differ from MWCNT-7. Therefore, the physicochemical characteristics of the materials appear to alter their biological effects. Published by Elsevier Ireland Ltd.

  17. Carbon nanotubes significance in Darcy-Forchheimer flow

    Science.gov (United States)

    Hayat, Tasawar; Rafique, Kiran; Muhammad, Taseer; Alsaedi, Ahmed; Ayub, Muhammad

    2018-03-01

    The present article examines Darcy-Forchheimer flow of water-based carbon nanotubes. Flow is induced due to a curved stretchable surface. Heat transfer mechanism is analyzed in presence of convective heating process. Xue model of nanofluid is employed to study the characteristics of both single-walled carbon nanotubes (SWCNTs) and multi-walled carbon nanotubes (MWCNTs). Results for both single-walled carbon nanotubes (SWCNTs) and multi-walled carbon nanotubes (MWCNTs) are achieved and compared. Appropriate transformations correspond to strong nonlinear ordinary differential system. Optimal homotopy analysis method (OHAM) is used for the solution development of the resulting system. The contributions of different sundry variables on the velocity and temperature are studied. Further the skin friction coefficient and local Nusselt number are analyzed graphically for both SWCNTs and MWCNTs cases.

  18. Electrochemical Charging of Individual Single-Walled Carbon Nanotubes

    Czech Academy of Sciences Publication Activity Database

    Kalbáč, Martin; Farhat, H.; Kavan, Ladislav; Kong, J.; Sasaki, K.; Saito, R.; Dresselhaus, M. S.

    2009-01-01

    Roč. 3, č. 8 (2009), s. 2320-2328 ISSN 1936-0851 R&D Projects: GA ČR GC203/07/J067; GA AV ČR IAA400400804; GA AV ČR IAA400400911; GA AV ČR KAN200100801; GA MŠk ME09060 Institutional research plan: CEZ:AV0Z40400503 Keywords : single-walled carbon nanotubes * Raman spectroscopy * electrochemical gating * spectroelectrochemistry Subject RIV: CG - Electrochemistry Impact factor: 7.493, year: 2009

  19. Visible and near-infrared radiative properties of vertically aligned multi-walled carbon nanotubes

    International Nuclear Information System (INIS)

    Wang, X J; Zhang, Z M; Flicker, J D; Ready, W J; Lee, B J

    2009-01-01

    This work investigates the reflection and scattering from vertically aligned carbon nanotubes, fabricated on silicon substrate using thermally enhanced chemical vapor deposition with both tip-growth and base-growth mechanisms. The directional-hemispherical reflectance in the visible and near-infrared wavelengths was measured with an integrating sphere. The polarization-dependent bidirectional reflectance distribution function was characterized with a laser scatterometer at the wavelength of 635 nm. The effective medium theory was used to elucidate the mechanism of high absorptance (greater than 0.97 in the spectral region from 400 to 1800 nm) of the multi-walled carbon nanotube samples. It is observed that scattering by impurities on the top of the nanotubes, by the nanotube tips, and by defects and misalignment can significantly increase the reflectance and introduce retroreflection. This study may facilitate application of carbon nanotubes in pyroelectric detectors as well as thermophotovoltaic emitters and absorbers.

  20. Optically and biologically active mussel protein-coated double-walled carbon nanotubes.

    Science.gov (United States)

    Jung, Yong Chae; Muramatsu, Hiroyuki; Fujisawa, Kazunori; Kim, Jin Hee; Hayashi, Takuya; Kim, Yoong Ahm; Endo, Morinobu; Terrones, Mauricio; Dresselhaus, Mildred S

    2011-12-02

    A method of dispersing strongly bundled double-walled carbon nanotubes (DWNTs) via a homogeneous coating of mussel protein in an aqueous solution is presented. Optical activity, mechanical strength, as well as electrical conductivity coming from the nanotubes and the versatile biological activity from the mussel protein make mussel-coated DWNTs promising as a multifunctional scaffold and for anti-fouling materials. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Interaction between fullerene halves C{sub n} (n ≤ 40) and single wall carbon nanotube

    Energy Technology Data Exchange (ETDEWEB)

    Sharma, Amrish, E-mail: amrish99@gmail.com; Kaur, Sandeep, E-mail: sipusukhn@gmail.com [Department of Physics, Punjabi University, Patiala (India); Mudahar, Isha, E-mail: isha@pbi.ac.in [Department of Basic and Applied Sciences, Punjabi University, Patiala (India)

    2016-05-06

    We have investigated the structural and electronic properties of carbon nanotube with small fullerene halves C{sub n} (n ≤ 40) which are covalently bonded to the side wall of an armchair single wall carbon nanotube (SWCNT) using first principle method based on density functional theory. The fullerene size results in weak bonding between fullerene halves and carbon nanotube (CNT). Further, it was found that the C-C bond distance that attaches the fullerene half and CNT is of the order of 1.60 Å. The calculated binding energies indicate the stability of the complexes formed. The HOMO-LUMO gaps and electron density of state plots points towards the metallicity of the complex formed. Our calculations on charge transfer reveal that very small amount of charge is transferred from CNT to fullerene halves.

  2. Economic assessment of single-walled carbon nanotube processes

    Science.gov (United States)

    Isaacs, J. A.; Tanwani, A.; Healy, M. L.; Dahlben, L. J.

    2010-02-01

    The carbon nanotube market is steadily growing and projected to reach 1.9 billion by 2010. This study examines the economics of manufacturing single-walled carbon nanotubes (SWNT) using process-based cost models developed for arc, CVD, and HiPco processes. Using assumed input parameters, manufacturing costs are calculated for 1 g SWNT for arc, CVD, and HiPco, totaling 1,906, 1,706, and 485, respectively. For each SWNT process, the synthesis and filtration steps showed the highest costs, with direct labor as a primary cost driver. Reductions in production costs are calculated for increased working hours per day and for increased synthesis reaction yield (SRY) in each process. The process-based cost models offer a means for exploring opportunities for cost reductions, and provide a structured system for comparisons among alternative SWNT manufacturing processes. Further, the models can be used to comprehensively evaluate additional scenarios on the economics of environmental, health, and safety best manufacturing practices.

  3. Supercapacitance of Single-Walled Carbon Nanotubes-Polypyrrole Composites

    Directory of Open Access Journals (Sweden)

    Matei Raicopol

    2013-01-01

    Full Text Available The composites based on carbon nanotubes (CNTs and conducting polymers (CPs are promising materials for supercapacitor devices due to their unique nanostructure that combines the large pseudocapacitance of the CPs with the fast charging/discharging double-layer capacitance and excellent mechanical properties of the CNTs. Here, we report a new electrochemical method to obtain polypyrrole (PPY/single-walled carbon nanotube (SWCNT composites. In the first step, the SWCNTs are covalently functionalized with monomeric units of pyrrole by esterification of acyl chloride functionalized SWCNTs and N-(6-hydroxyhexylpyrrole. In the second step, the PPY/SWCNTs composites are obtained by copolymerizing the pyrrole monomer with the pyrrole units grafted on SWCNTs surface using controlled potential electrolysis. The composites were further characterized by cyclic voltammetry and electrochemical impedance spectroscopy. The results showed good electrochemical charge storage properties for the synthesized composites based on PPY and SWCNTs covalently functionalized with pyrrole units making them promising electrode materials for high power supercapacitors.

  4. Economic assessment of single-walled carbon nanotube processes

    Energy Technology Data Exchange (ETDEWEB)

    Isaacs, J. A., E-mail: jaisaacs@coe.neu.ed [Northeastern University, NSF Center for High-rate Nanomanufacturing (United States); Tanwani, A. [Infojini Solutions Inc. (United States); Healy, M. L. [Babcock Power Inc. (United States); Dahlben, L. J. [Northeastern University, NSF Center for High-rate Nanomanufacturing (United States)

    2010-02-15

    The carbon nanotube market is steadily growing and projected to reach $1.9 billion by 2010. This study examines the economics of manufacturing single-walled carbon nanotubes (SWNT) using process-based cost models developed for arc, CVD, and HiPco processes. Using assumed input parameters, manufacturing costs are calculated for 1 g SWNT for arc, CVD, and HiPco, totaling $1,906, $1,706, and $485, respectively. For each SWNT process, the synthesis and filtration steps showed the highest costs, with direct labor as a primary cost driver. Reductions in production costs are calculated for increased working hours per day and for increased synthesis reaction yield (SRY) in each process. The process-based cost models offer a means for exploring opportunities for cost reductions, and provide a structured system for comparisons among alternative SWNT manufacturing processes. Further, the models can be used to comprehensively evaluate additional scenarios on the economics of environmental, health, and safety best manufacturing practices.

  5. DNA-templated synthesis of Pt nanoparticles on single-walled carbon nanotubes.

    Science.gov (United States)

    Dong, Lifeng

    2009-11-18

    A series of electron microscopy characterizations demonstrate that single-stranded deoxyribonucleic acid (ssDNA) can bind to nanotube surfaces and disperse bundled single-walled carbon nanotubes (SWCNTs) into individual tubes. The ssDNA molecules on the nanotube surfaces demonstrate various morphologies, such as aggregated clusters and spiral wrapping around a nanotube with different pitches and spaces, indicating that the morphology of the SWCNT/DNA hybrids is not related solely to the base sequence of the ssDNA or the chirality or the diameter of the nanotubes. In addition to serving as a non-covalent dispersion agent, the ssDNA molecules bonded to the nanotube surface can provide addresses for localizing Pt(II) complexes along the nanotubes. The Pt nanoparticles obtained by a reduction of the Pt2+-DNA adducts are crystals with a size of direct ethanol/methanol fuel cells and nanoscale electronics.

  6. Developing Xenopus Embryos Recover by Compacting and Expelling Single-Wall Carbon Nanotubes

    Science.gov (United States)

    Holt, Brian D.; Shawky, Joseph H.; Dahl, Kris Noel; Davidson, Lance A.; Islam, Mohammad F.

    2015-01-01

    Single-wall carbon nanotubes are high aspect ratio nanomaterials that are being developed for use in materials, technological and biological applications due to their high mechanical stiffness, optical properties, and chemical inertness. Because of their prevalence, it is inevitable that biological systems will be exposed to nanotubes, yet studies of the effects of nanotubes on developing embryos have been inconclusive and are lacking for single-wall carbon nanotubes exposed to the widely studied model organism Xenopus laevis (African clawed frog). Microinjection of experimental substances into the Xenopus embryo is a standard technique for toxicology studies and cellular lineage tracing. Here we report the surprising finding that superficial (12.5 ± 7.5 μm below the membrane) microinjection of nanotubes dispersed with Pluronic F127 into one-to-two cell Xenopus embryos resulted in the formation and expulsion of compacted, nanotube-filled, punctate masses, at the blastula to mid-gastrula developmental stages, which we call “boluses”. Such expulsion of microinjected materials by Xenopus embryos has not been reported before and is dramatically different from the typical distribution of the materials throughout the progeny of the microinjected cells. Previous studies of microinjections of nanomaterials such as nanodiamonds, quantum dots or spherical nanoparticles report that nanomaterials often induce toxicity and remain localized within the embryos. In contrast, our results demonstrate an active recovery pathway for embryos after exposure to Pluronic F127-coated nanotubes, which we speculate is due to a combined effect of the membrane activity of the dispersing agent, Pluronic F127, and the large aspect ratio of nanotubes. PMID:26153061

  7. Developing Xenopus embryos recover by compacting and expelling single wall carbon nanotubes.

    Science.gov (United States)

    Holt, Brian D; Shawky, Joseph H; Dahl, Kris Noel; Davidson, Lance A; Islam, Mohammad F

    2016-04-01

    Single wall carbon nanotubes are high aspect ratio nanomaterials being developed for use in materials, technological and biological applications due to their high mechanical stiffness, optical properties and chemical inertness. Because of their prevalence, it is inevitable that biological systems will be exposed to nanotubes, yet studies of the effects of nanotubes on developing embryos have been inconclusive and are lacking for single wall carbon nanotubes exposed to the widely studied model organism Xenopus laevis (African clawed frog). Microinjection of experimental substances into the Xenopus embryo is a standard technique for toxicology studies and cellular lineage tracing. Here we report the surprising finding that superficial (12.5 ± 7.5 µm below the membrane) microinjection of nanotubes dispersed with Pluronic F127 into one- to two-cell Xenopus embryos resulted in the formation and expulsion of compacted, nanotube-filled, punctate masses, at the blastula to mid-gastrula developmental stages, which we call "boluses." Such expulsion of microinjected materials by Xenopus embryos has not been reported before and is dramatically different from the typical distribution of the materials throughout the progeny of the microinjected cells. Previous studies of microinjections of nanomaterials such as nanodiamonds, quantum dots or spherical nanoparticles report that nanomaterials often induce toxicity and remain localized within the embryos. In contrast, our results demonstrate an active recovery pathway for embryos after exposure to Pluronic F127-coated nanotubes, which we speculate is due to a combined effect of the membrane activity of the dispersing agent, Pluronic F127, and the large aspect ratio of nanotubes. Copyright © 2015 John Wiley & Sons, Ltd.

  8. Hydrogen storage in single-wall carbon nano-tubes by means of laser excitation

    International Nuclear Information System (INIS)

    Oksengorn, B.

    2010-01-01

    A new mode for hydrogen adsorption and storage in single-wall carbon nano-tubes is used, on the basis of laser excitation. Remember that this method has been useful to obtain, in the case of the fullerene C 60 , many complex C 60 -atoms or C 60 -molecules, where atoms or molecular particles are trapped inside the C 60 -molecules. We think this method might be important to store many hydrogen molecules inside carbon nano-tubes. (author)

  9. Light-harvesting dendrimer zinc-phthalocyanines chromophores labeled single-wall carbon nanotube nanoensembles: Synthesis and photoinduced electron transfer

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Hongqin [Key Laboratory of Optoelectronic Science and Technology for Medicine, Ministry of Education and Fujian Provincial Key Laboratory for Photonics Technology, Fujian Normal University, Fuzhou 350007 (China); Pan, Sujuan; Ma, Dongdong; He, Dandan; Wang, Yuhua [College of Chemistry & Engineering, Fujian Provincial Key Laboratory of Polymer Materials, Fujian Normal University, Fuzhou 350007 (China); Xie, Shusen [Key Laboratory of Optoelectronic Science and Technology for Medicine, Ministry of Education and Fujian Provincial Key Laboratory for Photonics Technology, Fujian Normal University, Fuzhou 350007 (China); Peng, Yiru, E-mail: yirupeng@fjnu.edu.cn [College of Chemistry & Engineering, Fujian Provincial Key Laboratory of Polymer Materials, Fujian Normal University, Fuzhou 350007 (China)

    2016-11-15

    A novel series of light-harvesting dendrimer zinc-phthalocyanines chromophores labeled-single-wall carbon nanotubes (SWNTs) nanoparticles, in which 0–2 generations dendrimer zinc phthalocyanines covalently linked with SWNTs using either ethylenediamine or hexamethylenediamine as the space linkers were prepared. The structures and morphologies of these nanoconjugates were comprehensively characterized by Raman spectroscopy, transmission electron microscopy and thermal gravimetric analysis methods. Their photophysical properties were investigated by fluorescence and time-resolved spectroscopic methods. The photoinduced intramolecular electron transfer occurred from phthalocyanines (donors) to SWNTs (acceptors). Besides, the electron transfer exchange rates and exchange efficacies between the dendritic phthalocyanines and single-wall carbon nanotubes increased as the length of spacer linker decreased, or as the dendritic generation increased. Cyclic voltammetry (CV) method further confirmed thermodynamics possibility of the electron transfer from phthalocyanines to single-wall carbon nanotubes. These new nanoconjugates are fundamentally important due to the synergy effects of both carbon nanotubes and dendrimer phthalocyanines, which may find potential applications in the fields of drug delivery, biological labeling, or others.

  10. Microwave-induced electrophilic addition of single-walled carbon nanotubes with alkylhalides

    Energy Technology Data Exchange (ETDEWEB)

    Xu Yang [Faculty of Materials Science and Engineering, Hubei University, Wuhan 430062 (China); Wang Xianbao [Faculty of Materials Science and Engineering, Hubei University, Wuhan 430062 (China); Ministry-of-Education, Key Laboratory for the Synthesis and Application of Organic Functional Molecules, Hubei University, Wuhan 430062 (China)], E-mail: wxb@hubu.edu.cn; Tian Rong; Li Shaoqing; Wan Li; Li Mingjian; You Haijun; Li Qin [Faculty of Materials Science and Engineering, Hubei University, Wuhan 430062 (China); Wang Shimin [Faculty of Materials Science and Engineering, Hubei University, Wuhan 430062 (China); Ministry-of-Education, Key Laboratory for the Synthesis and Application of Organic Functional Molecules, Hubei University, Wuhan 430062 (China)

    2008-02-15

    We report the microwave-induced electrophilic addition of single-walled carbon nanotubes (SWNTs) with alkylhalides using Lewis acid as a catalyst followed by hydrolysis. The reaction results in the attachment of alkyl and hydroxyl groups to the surface of the nanotubes. This rapid and high-energy microwave radiation is found to be highly efficient for this reaction, which only needs as low as several minutes. The resulting nanotubes were characterized with FTIR, UV-vis-NIR, Raman, TGA, TEM and AFM. It demonstrates that iodo-alkanes show higher reaction activity with SWNTs than chloro- and bromo-alkanes.

  11. Review on properties, dispersion and toxicology of carbon nanotubes

    International Nuclear Information System (INIS)

    Saeed, K.

    2010-01-01

    Carbon nanotubes (CNTs) have the most intensely studied nano structures because of their unique properties. There are two types of carbon nanotubes CNTs, single-walled carbon nanotubes (SWNTs) and multi-walled carbon nanotubes (MWNTs), prepared by chemical-vapour deposition (CVD), plasma enhanced chemical-vapour deposition, thermal chemical vapour deposition, Vapour phase growth, Arc discharge and Lasser ablation. Both single-walled carbon nanotubes (SWNTs) and multi-walled carbon nanotubes (MWNTs) possess high mechanical and electrical conductivity, ultra-light weight, high aspect ratio and have excellent chemical and thermal stabilities. They also possess semi- and metallic-conductive properties depending upon their chirality. This review focuses on progress toward functionalization (not only dispersed nano tube but also dramatically improve their solubility), preparation and purification, composites and the toxicity of the carbon nanotubes (CNTs). The functional groups attached to carbon nanotubes (CNTs) should react with polymers and improve the mechanical properties of the nano composites. Carbon nanotubes (CNTs) has significant application in pharmaceutical field such as drug delivery and nano medicine, but the available literature also suggests that carbon nanotubes (CNTs) may have unusual toxicity and have more adverse effects than the same mass of nano size carbon and quartz. (author)

  12. Mechanical properties of carbon nanotubes

    Science.gov (United States)

    Salvetat, J.-P.; Bonard, J.-M.; Thomson, N. H.; Kulik, A. J.; Forró, L.; Benoit, W.; Zuppiroli, L.

    A variety of outstanding experimental results on the elucidation of the elastic properties of carbon nanotubes are fast appearing. These are based mainly on the techniques of high-resolution transmission electron microscopy (HRTEM) and atomic force microscopy (AFM) to determine the Young's moduli of single-wall nanotube bundles and multi-walled nanotubes, prepared by a number of methods. These results are confirming the theoretical predictions that carbon nanotubes have high strength plus extraordinary flexibility and resilience. As well as summarising the most notable achievements of theory and experiment in the last few years, this paper explains the properties of nanotubes in the wider context of materials science and highlights the contribution of our research group in this rapidly expanding field. A deeper understanding of the relationship between the structural order of the nanotubes and their mechanical properties will be necessary for the development of carbon-nanotube-based composites. Our research to date illustrates a qualitative relationship between the Young's modulus of a nanotube and the amount of disorder in the atomic structure of the walls. Other exciting results indicate that composites will benefit from the exceptional mechanical properties of carbon nanotubes, but that the major outstanding problem of load transfer efficiency must be overcome before suitable engineering materials can be produced.

  13. Activated carbon and single-walled carbon nanotube based electrochemical capacitor in 1 M LiPF6 electrolyte

    International Nuclear Information System (INIS)

    Azam, M.A.; Jantan, N.H.; Dorah, N.; Seman, R.N.A.R.; Manaf, N.S.A.; Kudin, T.I.T.; Yahya, M.Z.A.

    2015-01-01

    Highlights: • Activated carbon and single-walled CNT based electrochemical capacitor. • Electrochemical analysis by means of CV, charge/discharge and impedance. • 1 M LiPF 6 non-aqueous solution as an electrolyte. • AC/SWCNT electrode exhibits a maximum capacitance of 60.97 F g −1 . - Abstract: Carbon nanotubes have been extensively studied because of their wide range of potential application such as in nanoscale electric circuits, textiles, transportation, health, and the environment. Carbon nanotubes feature extraordinary properties, such as electrical conductivities higher than those of copper, hardness and thermal conductivity higher than those of diamond, and strength surpassing that of steel, among others. This research focuses on the fabrication of an energy storage device, namely, an electrochemical capacitor, by using carbon materials, i.e., activated carbon and single-walled carbon nanotubes, of a specific weight ratio as electrode materials. The electrolyte functioning as an ion carrier is 1 M lithium hexafluorophosphate. Variations in the electrochemical performance of the device, including its capacitance, charge/discharge characteristics, and impedance, are reported in this paper. The electrode proposed in this work exhibits a maximum capacitance of 60.97 F g −1 at a scan rate of 1 mV s −1

  14. Antimicrobial Activity of Single-Walled Carbon Nanotubes Suspended in Different Surfactants

    Directory of Open Access Journals (Sweden)

    Lifeng Dong

    2012-01-01

    Full Text Available We investigated the antibacterial activity of single-walled carbon nanotubes (SWCNTs dispersed in surfactant solutions of sodium cholate, sodium dodecylbenzene sulfonate, and sodium dodecyl sulfate. Among the three surfactants, sodium cholate demonstrated the weakest antibacterial activity against Salmonella enterica, Escherichia coli, and Enterococcus faecium and thereby was used to disperse bundled SWCNTs in order to study nanotube antibiotic activity. SWCNTs exhibited antibacterial characteristics for both S. enterica and E. coli. With the increase of nanotube concentrations from 0.3 mg/mL to 1.5 mg/mL, the growth curves had plateaus at lower absorbance values whereas the absorbance value was not obviously affected by the incubation ranging from 5 min to 2 h. Our findings indicate that carbon nanotubes could become an effective alternative to antibiotics in dealing with drug-resistant and multidrug-resistant bacterial strains because of the physical mode of bactericidal action that SWCNTs display.

  15. An efficient method for the carboxylation of few-wall carbon nanotubes with little damage to their sidewalls

    Energy Technology Data Exchange (ETDEWEB)

    Martín, Olga [Department of Materials Science and Engineering and Chemical Engineering, Universidad Carlos III de Madrid, Av. Universidad 30, 28911 Leganés-Madrid (Spain); Gutierrez, Humberto R. [Department of Physics and Astronomy, 102 Natural Science Building, University of Louisville, Louisville, KY 40292 (United States); Maroto-Valiente, Angel [Departamento de Química Inorgánica y Química Técnica, Facultad de Ciencias, UNED, C/ Senda del Rey 9, 28040 Madrid (Spain); Terrones, Mauricio [Research Center for Exotic Nanocarbons (JST), Shinshu University, Wakasato 4-17-1, Nagano 380-8553 (Japan); Department of Physics, Department of Materials Science and Engineering and Materials Research Institute, The Pennsylvania State University, 104 Davey Lab., University Park, PA 16802-6300 (United States); Blanco, Tamara [Materials and Processes Department, Airbus Operations S.L., Paseo John Lennon s/n, 28906 Getafe-Madrid (Spain); Baselga, Juan, E-mail: jbaselga@ing.uc3m.es [Department of Materials Science and Engineering and Chemical Engineering, Universidad Carlos III de Madrid, Av. Universidad 30, 28911 Leganés-Madrid (Spain)

    2013-07-15

    We report a novel method that is able to efficiently functionalize carbon nanotubes (few-walled: from 1 to 6 layers and multiwalled) with a high yield of carboxyl groups, based on treatments with H{sub 2}O{sub 2} in the presence of UV light. The amount of carboxylic groups was quantified by X-ray photoelectron spectroscopy and back-titration, showing both measurements reasonable agreement. According to the zeta potential values and to the amount of suspended nanotubes, we demonstrate that the method is able to produce uniform and stable suspensions of carbon nanotubes in water. With the aid of scanning and transmission electron microscopy, thermogravimetric analysis, and Raman spectroscopy, we show that the surfaces of the tubes are not damaged by the treatment and that the functionalized tubes have an enhanced reactivity toward oxygen. This route is efficient and could now be used to fabricate polymer composites using few-walled and multiwalled carbon nanotubes. - Highlights: • We report an efficient method for acid functionalization of carbon nanotubes. • The method produces uniform and stable suspensions of carbon nanotubes in water. • The surfaces of the tubes are not damaged by the treatment.

  16. Diameter grouping in bulk samples of single-walled carbon nanotubes from optical absorption spectroscopy

    NARCIS (Netherlands)

    Golden, M.S.; Fink, J.; Dunsch, L.; Bauer, H.-D.; Reibold, M.; Knupfer, M.; Friedlein, R.; Pichler, T.; Jost, O.

    1999-01-01

    The influence of the synthesis parameters on the mean characteristics of single-wall carbon nanotubes in soot produced by the laser vaporization of graphite has been analyzed using optical absorption spectroscopy. The abundance and mean diameter of the nanotubes were found to be most influenced by

  17. Multi-walled carbon nano-tubes for energy storage and production applications

    International Nuclear Information System (INIS)

    Andrews, R.; Jacques, D.; Likpa, S.; Qian, D.; Rantell, T.; Anthony, J.

    2005-01-01

    Full text of publication follows: Since their discovery, carbon nano-tubes have been proposed as candidate materials for a broad range of applications, including high strength composites, molecular electronics, and energy storage. In many cases, nano-tubes have been proposed to replace traditional carbon materials, such as activated carbons in energy storage devices. In other cases, novel applications have been proposed, such as the use of carbon nano-tube arrays in photovoltaic devices. The use of multi-walled carbon nano-tubes in energy storage devices has generated great interest due to their high inherent conductivity, layered structure, and high surface area per volume compared to traditional graphitic materials. However as produced nano-tubes do not possess ideal properties, and exhibit only modest charge storage. We have explored the charge storage abilities of nano-tubes with varying morphologies (fullerenic versus stacked cones), nano-tubes containing N or B dopants, as well as various post-treatments of the nano-tubes. The use of nano-tubes in charge storage devices will be described, as well as modification of the nano-tube surfaces or morphology to improve this performance. The synthesis of nano-tubes with several differing hetero-atom dopants will also be described, as well as the effect of heat treatment on these structures. One of the most significant problems in organic photovoltaics is the typically low charge-carrier mobility in organic thin films which, coupled with short exciton diffusion lengths, means that photo-generated charge-carrier pairs are more likely to re-combine than reach an electrode to generate current. Two organic systems with high charge-carrier mobilities are carbon nano-tubes (here, MWNTs) and acene-based organic semiconductors. We believe that blended devices based on MWNTs and organic semiconductors could lead to the next class of efficient, flexible and inexpensive organic photovoltaic systems. We have developed methods to

  18. Growth Mechanism of Single-Walled Carbon Nanotubes on Iron–Copper Catalyst and Chirality Studies by Electron Diffraction

    DEFF Research Database (Denmark)

    He, Maoshuai; Liu, Bilu; Chernov, Alexander I.

    2012-01-01

    Chiralities of single-walled carbon nanotubes grown on an atomic layer deposition prepared bimetallic FeCu/MgO catalyst were evaluated quantitatively using nanobeam electron diffraction. The results reveal that the growth yields nearly 90% semiconducting tubes, 45% of which are of the (6,5) type...... by impregnation, showing similar catalytic performance as the atomic layer deposition-prepared catalyst, yielding single-walled carbon nanotubes with a similar narrow chirality distribution....

  19. Unraveling the growth of vertically aligned multi-walled carbon nanotubes by chemical vapor deposition

    International Nuclear Information System (INIS)

    Ramirez, A; Royo, C; Latorre, N; Mallada, R; Monzón, A; Tiggelaar, R M

    2014-01-01

    The interaction between the main operational variables during the growth of vertically aligned multiwalled carbon nanotubes (VA-MWCNTs) by catalytic chemical vapor deposition is studied. In this contribution, we report the influence of the carbon source (i.e. acetylene, ethylene and propylene), the reaction/activation temperature, the rate of heating, the reaction time, the metal loading, and the metallic nanoparticle size and distribution on the growth and alignment of carbon nanotubes. Fe/Al thin films deposited onto silicon samples by electron-beam evaporation are used as catalyst. A phenomenological growth mechanism is proposed to explain the interaction between these multiple factors. Three different outcomes of the synthesis process are found: i) formation of forests of non-aligned, randomly oriented multi-walled carbon nanotubes, ii) growth of vertically aligned tubes with a thin and homogeneous carbonaceous layer on the top, and iii) formation of vertically aligned carbon nanotubes. This carbonaceous layer (ii) has not been reported before. The main requirements to promote vertically aligned carbon nanotube growth are determined. (paper)

  20. The effect of functionalization on structure and electrical conductivity of multi-walled carbon nanotubes

    International Nuclear Information System (INIS)

    Lau, Cher Hon; Cervini, Raoul; Clarke, Stephen R.; Markovic, Milena Ginic; Matisons, Janis G.; Hawkins, Stephen C.; Huynh, Chi P.; Simon, George P.

    2008-01-01

    Carbon nanotubes (CNTs) are of interest in many areas of nanotechnology and used in a number of novel applications. However effective dispersion remains a problem and one solution is to functionalize the nanotubes. Any functionalization that is undertaken must preferably not influence other key properties such as strength and electrical conductivity. In this work, multi-walled CNTs are functionalized for comparison, using a range of oxidative techniques, including thermal treatment, acid reflux, and dry UV-ozonolysis. The effects of these treatments on the multi-walled carbon nanotubes (MWCNTs) and their electrical properties were characterized using a range of surface and compositional techniques. The electrical conductivity of MWCNTs was found to increase with functionalization in all cases, and dry UV-ozonolysis was shown to be the treatment technique which best increased conductivity, whilst at the same time maintaining the structural integrity of the nanotubes, even though the level of modification was less than by the other treatment methods.

  1. Molecular Dynamics Simulation of a Multi-Walled Carbon Nanotube Based Gear

    Science.gov (United States)

    Han, Jie; Globus, Al; Srivastava, Deepak; Chancellor, Marisa K. (Technical Monitor)

    1997-01-01

    We used molecular dynamics to investigate the properties of a multi-walled carbon nanotube based gear. Previous work computationally suggested that molecular gears fashioned from (14,0) single-walled carbon nanotubes operate well at 50-100 gigahertz. The gears were formed from nanotubes with teeth added via a benzyne reaction known to occur with C60. A modified, parallelized version of Brenner's potential was used to model interatomic forces within each molecule. A Leonard-Jones 6-12 potential was used for forces between molecules. The gear in this study was based on the smallest multi-walled nanotube supported by some experimental evidence. Each gear was a (52,0) nanotube surrounding a (37,10) nanotube with approximate 20.4 and 16,8 A radii respectively. These sizes were chosen to be consistent with inter-tube spacing observed by and were slightly larger than graphite inter-layer spacings. The benzyne teeth were attached via 2+4 cycloaddition to exterior of the (52,0) tube. 2+4 bonds were used rather than the 2+2 bonds observed by Hoke since 2+4 bonds are preferred by naphthalene and quantum calculations by Jaffe suggest that 2+4 bonds are preferred on carbon nanotubes of sufficient diameter. One gear was 'powered' by forcing the atoms near the end of the outside buckytube to rotate to simulate a motor. A second gear was allowed to rotate by keeping the atoms near the end of its outside buckytube on a cylinder. The ends of both gears were constrained to stay in an approximately constant position relative to each other, simulating a casing, to insure that the gear teeth meshed. The stiff meshing aromatic gear teeth transferred angular momentum from the powered gear to the driven gear. The simulation was performed in a vacuum and with a software thermostat. Preliminary results suggest that the powered gear had trouble turning the driven gear without slip. The larger radius and greater mass of these gears relative to the (14,0) gears previously studied requires a

  2. Single Nucleotide Polymorphism Detection Using Au-Decorated Single-Walled Carbon Nanotube Field Effect Transistors

    Directory of Open Access Journals (Sweden)

    Keum-Ju Lee

    2011-01-01

    Full Text Available We demonstrate that Au-cluster-decorated single-walled carbon nanotubes (SWNTs may be used to discriminate single nucleotide polymorphism (SNP. Nanoscale Au clusters were formed on the side walls of carbon nanotubes in a transistor geometry using electrochemical deposition. The effect of Au cluster decoration appeared as hole doping when electrical transport characteristics were examined. Thiolated single-stranded probe peptide nucleic acid (PNA was successfully immobilized on Au clusters decorating single-walled carbon nanotube field-effect transistors (SWNT-FETs, resulting in a conductance decrease that could be explained by a decrease in Au work function upon adsorption of thiolated PNA. Although a target single-stranded DNA (ssDNA with a single mismatch did not cause any change in electrical conductance, a clear decrease in conductance was observed with matched ssDNA, thereby showing the possibility of SNP (single nucleotide polymorphism detection using Au-cluster-decorated SWNT-FETs. However, a power to discriminate SNP target is lost in high ionic environment. We can conclude that observed SNP discrimination in low ionic environment is due to the hampered binding of SNP target on nanoscale surfaces in low ionic conditions.

  3. Optical transmission of nematic liquid crystal 5CB doped by single-walled and multi-walled carbon nanotubes.

    Science.gov (United States)

    Lisetski, L N; Fedoryako, A P; Samoilov, A N; Minenko, S S; Soskin, M S; Lebovka, N I

    2014-08-01

    Comparative studies of optical transmission of single-walled carbon nanotubes (SWCNTs) and multi-walled carbon nanotubes (MWCNTs), dispersed in nematic liquid crystal matrix 5CB, were carried out. The data evidence violations of Beer-Lambert-Bouguer (BLB) law both in cell thickness and concentration dependencies. The most striking is the fact that optical transmission dependencies for SWCNTs and MWCNTs were quite different in the nematic phase, but they were practically indistinguishable in the isotropic phase. Monte Carlo simulations of the impact of aggregation on direct transmission and violation of BLB law were also done. The results were discussed accounting for the tortuous shape of CNTs, their physical properties and aggregation, as well as strong impact of perturbations of the nematic 5CB structure inside coils and in the vicinity of CNT aggregates.

  4. Stable single helical C- and I-chains inside single-walled carbon nanotubes

    International Nuclear Information System (INIS)

    Yao Z; Li Y; Jing X D; Meng F S; Zhao X; Li J H; Qiu Z Y; Yuan Q; Wang W X; Bi L; Liu H; Zhang Y P; Liu C J; Zheng S P; Liu B B

    2016-01-01

    The helicity of stable single helical carbon chains and iodine chains inside single-walled carbon nanotubes (SWCNTs) is studied by calculating the systematic van der Waals interaction energy. The results show that the optimal helical radius increases linearly with increasing tube radius, which produces a constant separation between the chain structure and the tube wall. The helical angle exhibits a ladder-like decrease with increasing tube radius, indicating that a large tube can produce a small helicity in the helical structures. (paper)

  5. Immunosensors Based on Single-Walled Carbon Nanotubes (SWCNT for the Detection of Deep Venous Thrombosis

    Directory of Open Access Journals (Sweden)

    Sondes BOURIGUA

    2014-05-01

    Full Text Available Thanks to their properties, Single-Walled carbon nanotubes (SWNT open a new way to the fabrication of Immunosensors with the particularity to amplify the response signal from antibody–antigen interaction and to improve the Immunosensors characteristics. In this context, two new impedimetric immunosensors were developed by immobilizing antibody on Single-Walled carbon, the later was immobilized following two ways the first consist of immobilizing the carbon nanotubes on a polypyrrole layer by adsorption and the second consist of functionalized gold with amino thiol and then immobilizing the carbon nanotubes with covalent binding. The electrical properties and the morphology of the immunosensors have been characterized respectively by Electrochemical Impedance Spectroscopy, cyclic voltammetry and Atomic Force Spectroscopy. A low detection limit for both immunosensors was determined as 1 pg/ml and linear ranges up to 10 ng/ml with polypyrrole and up to 100 ng/ml with amino thiol were obtained. Moreover, the studied Immunosensors exhibited high sensitivity, stability and reproducibility.

  6. Photo-induced thermoelectric response in suspended single-walled carbon nanotube films

    Science.gov (United States)

    St-Antoine, Benoit; Menard, David; Martel, Richard

    2010-03-01

    A study was carried out on the position dependent photovoltage of suspended single-walled carbon nanotube films in vacuum. The photoresponse of such films was found to be driven by a thermal mechanism, rather than by direct photoexcitation of carriers. [1] A model was developed which establishes a relation between the photoresponse profile and the local Seebeck coefficient of the film, thus opening up new perspectives for material characterization. The technique was demonstrated by monitoring the doping changes in the nanotube films obtained by successive current conditioning steps. Since the Seebeck coefficient of carbon nanotubes spans a considerable range depending on their doping state, the photovoltage amplitude can be tuned and large responses have been measured (up to 0.75mV for 1.2mW). [4pt] [1] B. St-Antoine et al. Nano Lett. 9, 3503 (2009)

  7. Novel Catalyst for the Chirality Selective Synthesis of Single Walled Carbon Nanotubes

    Science.gov (United States)

    2015-05-12

    Final 3. DATES COVERED (From - To) 03-April-2013 to 02-April-2015 4. TITLE AND SUBTITLE Novel Catalyst for the Chirality Selective...Distribution is unlimited. 13. SUPPLEMENTARY NOTES 14. ABSTRACT Chiral single walled carbon nanotubes (SWCNTs) are known to possess unique... chirality control in SWCNT synthesis. A model catalyst based on CoSO4/SiO2 was developed that showed good selectivity to (9,8) nanotubes. Remote plasma

  8. Nanotechnology And Examination Of Multi Walled Carbon Nanotubes

    OpenAIRE

    Kutucu, Burcu

    2010-01-01

    The main subject of this study is the definition of nanotechnology, benefits of nanotechnology, nanotechnology applications in Turkey and world and the history of nanotechnology. Also single and multi walled carbon nanotubes and Van der Waals bands are examined in this study. At first a fixed end frame loaded with a load P is studied and governing equations solved in MATHEMATICA. Secontly the same procedure is repeated for a fixed and frame loaded with moment M is studied and governing equati...

  9. Evaluation of Cardiopulmonary Toxicity Following Oral Administration of Multi-walled Carbon Nanotubes in Wistar Rats

    Directory of Open Access Journals (Sweden)

    Ehsan Zayerzadeh

    2016-07-01

    Full Text Available Objective(s: Carbon nanotubes have unique mechanical, electrical, and thermal properties, with potential different applications in nanomedicine, electronics, and other industries. These new applications of carbon nanotubes in different industries lead to the increased exposure risk of nanomaterials to human. Up to now, all aspects of carbon nanotubes toxicity are not completely clear following human and animal exposures with these novel compounds. The aim of this study was to assess cardiopulmonary toxicity of multi-walled carbon nanotubes following oral administration in rats with respect to the histopathological and biochemical evaluation. Methods: In the present investigation, we studied cardiorespiratory toxicity of multi-wall carbon nanotubes (MWCNT with regard to histopathological changes and some biomarkers including TnT, CK-MB and LDH in experimental rats following oral administration. One dose per 24 h of MWCNT suspension was administered orally (gavage technique to animals at the doses of 500, 1000 and 2000 mg/kg/day BW for 5 days. Results: The results of these study showed oral administration of MWCNT induces histopathological complications such as severe alveolar edema and hemorrhage in lungs and myocytolysis in heart of all experimental groups of animals. In all of the groups, troponin T level showed no changes when compared to baseline. Lactate dehydrogenase and CK-MB activity showed significant increment in all of animal groups following oral administration of carbon nanotubes. Conclusions: It can be concluded that oral exposure of MWCNT may be toxic for cardiovascular and respiratory systems, because MWCNT induced biochemical alterations and histopathological abnormalities in these vital systems.

  10. Effect of Novel Quercetin Titanium Dioxide-Decorated Multi-Walled Carbon Nanotubes Nanocomposite on Bacillus subtilis Biofilm Development

    DEFF Research Database (Denmark)

    Raie, Diana S; Mhatre, Eisha; El-Desouki, Doaa S

    2018-01-01

    The present work was targeted to design a surface against cell seeding and adhering of bacteria, Bacillus subtilis. A multi-walled carbon nanotube/titanium dioxide nano-power was produced via simple mixing of carbon nanotube and titanium dioxide nanoparticles during the sol-gel process followed...

  11. Extraction of ochratoxin A in red wine with dopamine-coated magnetic multi-walled carbon nanotubes.

    Science.gov (United States)

    Wan, Hong; Zhang, Bo; Bai, Xiao-Lin; Zhao, Yan; Xiao, Meng-Wei; Liao, Xun

    2017-10-01

    A new, rapid, green, and cost-effective magnetic solid-phase extraction of ochratoxin A from red wine samples was developed using polydopamine-coated magnetic multi-walled carbon nanotubes as the absorbent. The polydopamine-coated magnetic multi-walled carbon nanotubes were fabricated with magnetic multi-walled carbon nanotubes and dopamine by an in situ oxidative self-polymerization approach. Transmission electron microscopy, dynamic light scattering, X-ray photoelectron spectroscopy and vibrating sample magnetometry were used to characterize the absorbents. Ochratoxin A was quantified with high-performance liquid chromatography coupled with fluorescence detection, with excitation and emission wavelengths of 338 and 455 nm, respectively. The conditions affecting the magnetic solid-phase extraction procedure, such as pH, extraction solution, extraction time, absorbent amount, desorption solution and desorption time were investigated to obtain the optimal extraction conditions. Under the optimized conditions, the extraction recovery was 91.8-104.5% for ochratoxin A. A linear calibration curve was obtained in the range of 0.1-2.0 ng/mL. The limit of detection was 0.07 ng/mL, and the limit of quantitation was 0.21 ng/mL. The recoveries of ochratoxin A for spiked red wine sample ranged from 95.65 to 100.65% with relative standard deviation less than 8%. The polydopamine-coated magnetic multi-walled carbon nanotubes showed a high affinity toward ochratoxin A, allowing selective extraction and quantification of ochratoxin A from complex sample matrixes. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Control of neuronal network organization by chemical surface functionalization of multi-walled carbon nanotube arrays

    International Nuclear Information System (INIS)

    Liu Jie; Bibari, Olivier; Marchand, Gilles; Benabid, Alim-Louis; Sauter-Starace, Fabien; Appaix, Florence; De Waard, Michel

    2011-01-01

    Carbon nanotube substrates are promising candidates for biological applications and devices. Interfacing of these carbon nanotubes with neurons can be controlled by chemical modifications. In this study, we investigated how chemical surface functionalization of multi-walled carbon nanotube arrays (MWNT-A) influences neuronal adhesion and network organization. Functionalization of MWNT-A dramatically modifies the length of neurite fascicles, cluster inter-connection success rate, and the percentage of neurites that escape from the clusters. We propose that chemical functionalization represents a method of choice for developing applications in which neuronal patterning on MWNT-A substrates is required.

  13. Control of neuronal network organization by chemical surface functionalization of multi-walled carbon nanotube arrays

    Energy Technology Data Exchange (ETDEWEB)

    Liu Jie; Bibari, Olivier; Marchand, Gilles; Benabid, Alim-Louis; Sauter-Starace, Fabien [CEA, LETI-Minatec, 17 Rue des Martyrs, 38054 Grenoble Cedex 9 (France); Appaix, Florence; De Waard, Michel, E-mail: fabien.sauter@cea.fr, E-mail: michel.dewaard@ujf-grenoble.fr [Inserm U836, Grenoble Institute of Neuroscience, Site Sante la Tronche, Batiment Edmond J Safra, Chemin Fortune Ferrini, BP170, 38042 Grenoble Cedex 09 (France)

    2011-05-13

    Carbon nanotube substrates are promising candidates for biological applications and devices. Interfacing of these carbon nanotubes with neurons can be controlled by chemical modifications. In this study, we investigated how chemical surface functionalization of multi-walled carbon nanotube arrays (MWNT-A) influences neuronal adhesion and network organization. Functionalization of MWNT-A dramatically modifies the length of neurite fascicles, cluster inter-connection success rate, and the percentage of neurites that escape from the clusters. We propose that chemical functionalization represents a method of choice for developing applications in which neuronal patterning on MWNT-A substrates is required.

  14. Single-walled carbon nanotube electromechanical switching behavior with shoulder slip

    Science.gov (United States)

    Ryan, Peter; Wu, Yu-Chiao; Somu, Sivasubramanian; Adams, George; McGruer, Nicol

    2011-04-01

    Several electromechanical devices, each consisting of a small bundle of single-walled carbon nanotubes suspended over an actuation electrode, have been fabricated and operated electrically. The nanotubes are assembled on the electrodes using dielectrophoresis, a potential high-rate nanomanufacturing process. A large decrease in the threshold voltage was seen after the first actuation. This is a result of the nanotubes sliding inward on their supports as they are pulled down toward the actuation electrode, leaving slack in the nanotube bundle for subsequent actuations. The electrical measurements agree well with an electromechanical model that uses a literature-reported value of the shear stress between the nanotubes and the SiO2 shoulders. Electrical measurements were performed in dry nitrogen as a large build-up of contamination was seen when the measurements were performed in lab air. We present measurements as well as a detailed mechanics model that support the interpretation of the data.

  15. Single-walled carbon nanotube electromechanical switching behavior with shoulder slip

    International Nuclear Information System (INIS)

    Ryan, Peter; Wu, Yu-Chiao; Somu, Sivasubramanian; Adams, George; McGruer, Nicol

    2011-01-01

    Several electromechanical devices, each consisting of a small bundle of single-walled carbon nanotubes suspended over an actuation electrode, have been fabricated and operated electrically. The nanotubes are assembled on the electrodes using dielectrophoresis, a potential high-rate nanomanufacturing process. A large decrease in the threshold voltage was seen after the first actuation. This is a result of the nanotubes sliding inward on their supports as they are pulled down toward the actuation electrode, leaving slack in the nanotube bundle for subsequent actuations. The electrical measurements agree well with an electromechanical model that uses a literature-reported value of the shear stress between the nanotubes and the SiO 2 shoulders. Electrical measurements were performed in dry nitrogen as a large build-up of contamination was seen when the measurements were performed in lab air. We present measurements as well as a detailed mechanics model that support the interpretation of the data.

  16. Amorphous molecular junctions produced by ion irradiation on carbon nanotubes

    International Nuclear Information System (INIS)

    Wang Zhenxia; Yu Liping; Zhang Wei; Ding Yinfeng; Li Yulan; Han Jiaguang; Zhu Zhiyuan; Xu Hongjie; He Guowei; Chen Yi; Hu Gang

    2004-01-01

    Experiments and molecular dynamics have demonstrated that electron irradiation could create molecular junctions between crossed single-wall carbon nanotubes. Recently molecular dynamics computation predicted that ion irradiation could also join single-walled carbon nanotubes. Employing carbon ion irradiation on multi-walled carbon nanotubes, we find that these nanotubes evolve into amorphous carbon nanowires, more importantly, during the process of which various molecular junctions of amorphous nanowires are formed by welding from crossed carbon nanotubes. It demonstrates that ion-beam irradiation could be an effective way not only for the welding of nanotubes but also for the formation of nanowire junctions

  17. Cellular cytotoxic response induced by highly purified multi-wall carbon nanotube in human lung cells.

    Science.gov (United States)

    Tsukahara, Tamotsu; Haniu, Hisao

    2011-06-01

    Carbon nanotubes, a promising nanomaterial with unique characteristics, have applications in a variety of fields. The cytotoxic effects of carbon nanotubes are partially due to the induction of oxidative stress; however, the detailed mechanisms of nanotube cytotoxicity and their interaction with cells remain unclear. In this study, the authors focus on the acute toxicity of vapor-grown carbon fiber, HTT2800, which is one of the most highly purified multi-wall carbon nanotubes (MWCNT) by high-temperature thermal treatment. The authors exposed human bronchial epithelial cells (BEAS-2B) to HTT2800 and measured the cellular uptake, mitochondrial function, cellular LDH release, apoptotic signaling, reactive oxygen species (ROS) generation and pro-inflammatory cytokine release. The HTT2800-exposed cells showed cellular uptake of the carbon nanotube, increased cell death, enhanced DNA damage, and induced cytokine release. However, the exposed cells showed no obvious intracellular ROS generation. These cellular and molecular findings suggest that HTT2800 could cause a potentially adverse inflammatory response in BEAS-2B cells.

  18. The mechanism of hydrogen storage in single-walled carbon nanotube

    International Nuclear Information System (INIS)

    Yan Shiying; Yang Ziqin

    2012-01-01

    The C-H bong energy, 1.88 eV, and the bond length, 0.113 nm, are obtained from the calculation with Gaussian03 program. It is known that the H-H bong energy is 4.748 eV and the bond length is 0.074 nm. Obviously, H-H bond energy is greater than the C-H bond energy. So the hydrogen storage of carbon nanotube is due mainly to the physisorption and the chemisorption almost doesn't happen at moderate temperatures and pressures. In addition, LJ potential has been used to calculate the potential between a H 2 molecule and the carbon nanotube. The H 2 molecule is placed in three radial distributions: (a) above the center of a hexagon surrounded by 6 C atoms, (b) above the center of a C-C bond, (c) above the center of a C atom. The result shows that whether the H 2 molecule is adsorbed into and outside the nanotube or to the center and the end of the nanotube, there is the lowest potential when the H 2 molecule is above the center of a hexagon surrounded by 6 C atoms. When the H 2 molecule is absorbed to the center of nanotube, the equilibrium distances between it and the nanotube wall for H2 adsorbed into and outside the nanotube are 0.320 nm and 0. 309 nm, respectively. While in the case that it is adsorbed to the end of the nanotube, the two corresponding distances are 0.324 nm and 0.314 nm, respectively. (authors)

  19. Fabrication of spintronics device by direct synthesis of single-walled carbon nanotubes from ferromagnetic electrodes

    Directory of Open Access Journals (Sweden)

    Mohd Ambri Mohamed, Nobuhito Inami, Eiji Shikoh, Yoshiyuki Yamamoto, Hidenobu Hori and Akihiko Fujiwara

    2008-01-01

    Full Text Available We describe an alternative method for realizing a carbon nanotube spin field-effect transistor device by the direct synthesis of single-walled carbon nanotubes (SWNTs on substrates by alcohol catalytic chemical vapor deposition. We observed hysteretic magnetoresistance (MR at low temperatures due to spin-dependent transport. In these devices, the maximum ratio in resistance variation of MR was found to be 1.8%.

  20. Four- and eight-membered rings carbon nanotubes: A new class of carbon nanomaterials

    Directory of Open Access Journals (Sweden)

    Fangfang Li

    2018-06-01

    Full Text Available A new class of carbon nanomaterials composed of alternating four- and eight-membered rings is studied by density functional theory (DFT, including single-walled carbon nanotubes (SWCNTs double-walled carbon nanotubes (DWCNTs and triple-walled CNTs (TWCNTs. The analysis of geometrical structure shows that carbon atoms’ hybridization in novel carbon tubular clusters (CTCs and the corresponding carbon nanotubes (CNTs are both sp2 hybridization; The thermal properties exhibit the high stability of these new CTCs. The results of energy band and density of state (DOS indicate that the electronic properties of CNTs are independent of their diameter, number of walls and chirality, exhibit obvious metal properties. Keywords: Four- and eight-membered rings, Carbon nanotubes, Stability, Electronic properties

  1. Effects of single-walled carbon nanotubes on the bioavailability of PCBs in field-contaminated sediments

    Science.gov (United States)

    Adsorption of hydrophobic organic contaminants (HOCs) to black carbon is a well studied phenomenon. One emerging class of engineered black carbon materials are single-walled carbon nanotubes (SWNT). Little research has investigated the potential of SWNT to adsorb and sequester HO...

  2. Immobilization of redox mediators on functionalized carbon nanotube

    Indian Academy of Sciences (India)

    Chemical functionalization of single-walled carbon nanotubes with redox mediators, namely, toluidine blue and thionin have been carried out and the performance of graphite electrode modified with functionalized carbon nanotubes is described. Mechanical immobilization of functionalized single-walled nanotube (SWNT) ...

  3. Activated carbon and single-walled carbon nanotube based electrochemical capacitor in 1 M LiPF{sub 6} electrolyte

    Energy Technology Data Exchange (ETDEWEB)

    Azam, M.A., E-mail: asyadi@utem.edu.my [Carbon Research Technology Research Group, Faculty of Manufacturing Engineering, Universiti Teknikal Malaysia Melaka, Hang Tuah Jaya, 76100 Durian Tunggal, Melaka (Malaysia); Jantan, N.H.; Dorah, N.; Seman, R.N.A.R.; Manaf, N.S.A. [Carbon Research Technology Research Group, Faculty of Manufacturing Engineering, Universiti Teknikal Malaysia Melaka, Hang Tuah Jaya, 76100 Durian Tunggal, Melaka (Malaysia); Kudin, T.I.T. [Ionics Materials & Devices Research Laboratory, Faculty of Applied Sciences, Universiti Teknologi MARA, Shah Alam, Selangor (Malaysia); Yahya, M.Z.A. [Ionics Materials & Devices Research Laboratory, Faculty of Applied Sciences, Universiti Teknologi MARA, Shah Alam, Selangor (Malaysia); National Defence University of Malaysia, Kem Sungai Besi, 57000 Kuala Lumpur (Malaysia)

    2015-09-15

    Highlights: • Activated carbon and single-walled CNT based electrochemical capacitor. • Electrochemical analysis by means of CV, charge/discharge and impedance. • 1 M LiPF{sub 6} non-aqueous solution as an electrolyte. • AC/SWCNT electrode exhibits a maximum capacitance of 60.97 F g{sup −1}. - Abstract: Carbon nanotubes have been extensively studied because of their wide range of potential application such as in nanoscale electric circuits, textiles, transportation, health, and the environment. Carbon nanotubes feature extraordinary properties, such as electrical conductivities higher than those of copper, hardness and thermal conductivity higher than those of diamond, and strength surpassing that of steel, among others. This research focuses on the fabrication of an energy storage device, namely, an electrochemical capacitor, by using carbon materials, i.e., activated carbon and single-walled carbon nanotubes, of a specific weight ratio as electrode materials. The electrolyte functioning as an ion carrier is 1 M lithium hexafluorophosphate. Variations in the electrochemical performance of the device, including its capacitance, charge/discharge characteristics, and impedance, are reported in this paper. The electrode proposed in this work exhibits a maximum capacitance of 60.97 F g{sup −1} at a scan rate of 1 mV s{sup −1}.

  4. Functionalized single walled carbon nanotubes as template for water storage device

    Energy Technology Data Exchange (ETDEWEB)

    Paul, Sanjib; Taraphder, Srabani, E-mail: srabani@chem.iitkgp.ernet.in

    2016-11-10

    Single walled carbon nanotubes, endohedrally functionalized with a protonated/unprotonated carboxylic acid group, are examined as potential templates for water storage using classical molecular dynamics simulation studies. Following a spontaneous entry of water molecules into the core of model functionalized carbon nanotubes (FCNTs), a large fraction of water molecules are found to be trapped inside FCNTs of lengths 50 and 100 Å. Only water molecules near the two open ends of the nanotube are exchanged with the bulk solvent. The residence times of water molecules inside FCNTs are investigated by varying the length of the tube, the length of suspended functional group and the protonation state of the carboxylic acid group. Favorable energetic interactions between the functional group and water, assisted by a substantial gain in rotational entropy, are found to compensate for the entropy loss resulting from restricted translational diffusion of trapped water molecules.

  5. Statistical Characterization of Dispersed Single-Wall Carbon Nanotube Quantum Dots

    International Nuclear Information System (INIS)

    Shimizu, M; Moriyama, S; Suzuki, M; Fuse, T; Homma, Y; Ishibashi, K

    2006-01-01

    Quantum dots have been fabricated in single-wall carbon nanotubes (SWCNTs) simply by depositing metallic contacts on top of them. The fabricated quantum dots show different characteristics from sample to sample, which are even different in samples fabricated in the same chip. In this report, we study the statistical variations of the quantum dots fabricated with our method, and suggest their possible origin

  6. Bonding titanium on multi-walled carbon nanotubes for hydrogen storage: An electrochemical approach

    Energy Technology Data Exchange (ETDEWEB)

    Brieno-Enriquez, K.M.; Ledesma-Garcia, J. [Centro de Investigacion y Desarrollo Tecnologico en Electroquimica, S.C., Parque Tecnologico Queretaro-Sanfandila, Pedro Escobedo, Qro, C.P. 76703 (Mexico); Perez-Bueno, J.J., E-mail: jperez@cideteq.mx [Centro de Investigacion y Desarrollo Tecnologico en Electroquimica, S.C., Parque Tecnologico Queretaro-Sanfandila, Pedro Escobedo, Qro, C.P. 76703 (Mexico); Godinez, Luis A. [Centro de Investigacion y Desarrollo Tecnologico en Electroquimica, S.C., Parque Tecnologico Queretaro-Sanfandila, Pedro Escobedo, Qro, C.P. 76703 (Mexico); Terrones, H. [Instituto Potosino de Investigacion Cientifica y Tecnologica, Division de Materiales Avanzados, Camino a la Presa San Jose 2055, Col. Lomas 4o Seccion C.P. 78216, San Luis Potosi (Mexico); Angeles-Chavez, C. [Instituto Mexicano del Petroleo, Programa de Ingenieria Molecular, Eje Central Lazaro Cardenas 152, A.P. 14-805, 07730 Mexico D.F. (Mexico)

    2009-06-15

    This work explores the use of some procedures, involving electrochemistry, in order to bond atomic Ti on the outer surface of multi-walled carbon nanotubes (MWNTs). It is assumed that each titanium atom has the potential of host up to four hydrogen molecules and relinquish them by heated. As a way to spread and stick nanotubes on an electrode, a tested route was drying a solution with nanotubes on a glassy carbon flat electrode. The MWNTs were treated by anodic polarization in organic media. Dichloromethane was selected as the medium and titanium tetrachloride as the precursor for attaching atomic Ti onto the nanotubes. The hydrogen adsorption, estimated from voltamperometry was five times higher on Ti-MWNTs that on bare nanotubes. The use of anodic polarization during the preparation of Ti-MWNTs may represent great significance in procedure, which was manifest during the voltamperometric evaluation of samples.

  7. EDITORIAL: Focus on Carbon Nanotubes

    Science.gov (United States)

    2003-09-01

    The study of carbon nanotubes, since their discovery by Iijima in 1991, has become a full research field with significant contributions from all areas of research in solid-state and molecular physics and also from chemistry. This Focus Issue in New Journal of Physics reflects this active research, and presents articles detailing significant advances in the production of carbon nanotubes, the study of their mechanical and vibrational properties, electronic properties and optical transitions, and electrical and transport properties. Fundamental research, both theoretical and experimental, represents part of this progress. The potential applications of nanotubes will rely on the progress made in understanding their fundamental physics and chemistry, as presented here. We believe this Focus Issue will be an excellent guide for both beginners and experts in the research field of carbon nanotubes. It has been a great pleasure to edit the many excellent contributions from Europe, Japan, and the US, as well from a number of other countries, and to witness the remarkable effort put into the manuscripts by the contributors. We thank all the authors and referees involved in the process. In particular, we would like to express our gratitude to Alexander Bradshaw, who invited us put together this Focus Issue, and to Tim Smith and the New Journal of Physics staff for their extremely efficient handling of the manuscripts. Focus on Carbon Nanotubes Contents Transport theory of carbon nanotube Y junctions R Egger, B Trauzettel, S Chen and F Siano The tubular conical helix of graphitic boron nitride F F Xu, Y Bando and D Golberg Formation pathways for single-wall carbon nanotube multiterminal junctions Inna Ponomareva, Leonid A Chernozatonskii, Antonis N Andriotis and Madhu Menon Synthesis and manipulation of carbon nanotubes J W Seo, E Couteau, P Umek, K Hernadi, P Marcoux, B Lukic, Cs Mikó, M Milas, R Gaál and L Forró Transitional behaviour in the transformation from active end

  8. In-situ nanomechanical study on bending characteristics of individual multi-walled carbon nanotubes

    Energy Technology Data Exchange (ETDEWEB)

    Tsai, Ping-Chi, E-mail: pctjbenchen@yahoo.com.tw [Department of Mechanical Engineering, National Chung Cheng University, Chia-Yi 621, Taiwan (China); Advanced Institute of Manufacturing with High-Tech Innovations, National Chung Cheng University, Chia-Yi 621, Taiwan (China); Jeng, Yeau-Ren, E-mail: imeyrj@ccu.edu.tw [Department of Mechanical Engineering, National Chung Cheng University, Chia-Yi 621, Taiwan (China); Advanced Institute of Manufacturing with High-Tech Innovations, National Chung Cheng University, Chia-Yi 621, Taiwan (China)

    2016-03-21

    Bending characteristics of individual thin-walled carbon nanotubes (CNTs) are investigated through a novel in-situ nanoindentation in transmission electron microscopy. Unlike thick-walled CNTs, the graphitic layers of thin ones buckle into V-shaped kinks rather than Yoshimura ripples. These kinks are found to be entirely reversible without residual plastic deformation following unloading.

  9. Determination of the displacement cross section in single-walled carbon nanotubes under gamma irradiation

    International Nuclear Information System (INIS)

    Leyva, A.; Pinnera, I.; Cruz, C.; Abreu, Y.; Leyva, D.

    2009-01-01

    Using the threshold energy value reported in literature for C atoms in single-walled carbon nanotube and taking into account the McKinley-Feshbach approach, the effective atomic displacement cross-section in nanotubes exposed to the gamma rays was estimated. In this calculation the Kinchin-Pease approximation for the damage function was considered. (Author)

  10. Effect of hydrogen on the growth and morphology of single wall carbon nanotubes synthesized on a Fe-Mo/MgO catalytic system

    Energy Technology Data Exchange (ETDEWEB)

    Biris, Alexandru R. [National Institute for Research and Development of Isotopic and Molecular Technologies, Cluj Napoca, RO-3400 (Romania)], E-mail: biris@oc1.itim-cj.ro; Li Zhongrui; Dervishi, Enkeleda [Applied Science Department, University of Arkansas at Little Rock, 2801 S. University Ave, Little Rock, AR 72204 (United States); Nanotechnology Center, University of Arkansas at Little Rock, 2801 S. University Ave, Little Rock, AR 72204 (United States); Lupu, Dan [National Institute for Research and Development of Isotopic and Molecular Technologies, Cluj Napoca, RO-3400 (Romania); Xu Yang; Saini, Viney [Applied Science Department, University of Arkansas at Little Rock, 2801 S. University Ave, Little Rock, AR 72204 (United States); Nanotechnology Center, University of Arkansas at Little Rock, 2801 S. University Ave, Little Rock, AR 72204 (United States); Watanabe, Fumiya [Nanotechnology Center, University of Arkansas at Little Rock, 2801 S. University Ave, Little Rock, AR 72204 (United States); Biris, Alexandru S. [Applied Science Department, University of Arkansas at Little Rock, 2801 S. University Ave, Little Rock, AR 72204 (United States); Nanotechnology Center, University of Arkansas at Little Rock, 2801 S. University Ave, Little Rock, AR 72204 (United States)], E-mail: asbiris@ualr.edu

    2008-04-21

    Single wall carbon nanotubes were synthesized from thermal pyrolysis of methane on a Fe-Mo/MgO catalyst by radio frequency catalytic chemical vapor deposition (RF-CVD) using argon as a carrier gas. Controlled amounts of hydrogen (H{sub 2}/CH{sub 4}=0-1 v/v) were introduced in separate experiments along with the carbon source. The properties and morphology of the synthesized single wall carbon nanotubes were monitored by transmission electron microscopy, Raman scattering, and thermogravimetric analysis. The nanotubes with the highest crystallinity were obtained with H{sub 2}/CH{sub 4}=0.6. By monitoring the Radial Breathing Modes present in the Raman spectra of the single-wall carbon nanotube samples, the variation of the structural and morphological properties of the carbon nanotubes with the flow level of hydrogen, reflect changes of the catalyst systems induced by the presence of hydrogen.

  11. Efficient organometallic spin filter between single-wall carbon nanotube or graphene electrodes

    DEFF Research Database (Denmark)

    Koleini, Mohammad; Paulsson, Magnus; Brandbyge, Mads

    2007-01-01

    We present a theoretical study of spin transport in a class of molecular systems consisting of an organometallic benzene-vanadium cluster placed in between graphene or single-wall carbon-nanotube-model contacts. Ab initio modeling is performed by combining spin density functional theory...

  12. Functional materials based on carbon nanotubes: Carbon nanotube actuators and noncovalent carbon nanotube modification

    Science.gov (United States)

    Fifield, Leonard S.

    Carbon nanotubes have attractive inherent properties that encourage the development of new functional materials and devices based on them. The use of single wall carbon nanotubes as electromechanical actuators takes advantage of the high mechanical strength, surface area and electrical conductivity intrinsic to these molecules. The work presented here investigates the mechanisms that have been discovered for actuation of carbon nanotube paper: electrostatic, quantum chemical charge injection, pneumatic and viscoelastic. A home-built apparatus for the measurement of actuation strain is developed and utilized in the investigation. An optical fiber switch, the first demonstrated macro-scale device based on the actuation of carbon nanotubes, is described and its performance evaluated. Also presented here is a new general process designed to modify the surface of carbon nanotubes in a non-covalent, non-destructive way. This method can be used to impart new functionalities to carbon nanotube samples for a variety of applications including sensing, solar energy conversion and chemical separation. The process described involves the achievement of large degrees of graphitic surface coverage with polycyclic aromatic hydrocarbons through the use of supercritical fluids. These molecules are bifunctional agents that anchor a desired chemical group to the aromatic surface of the carbon nanotubes without adversely disrupting the conjugated backbone that gives rise the attractive electronic and physical properties of the nanotubes. Both the nanotube functionalization work and the actuator work presented here emphasize how an understanding and control of nanoscale structure and phenomena can be of vital importance in achieving desired performance for active materials. Opportunities for new devices with improved function over current state-of-the-art can be envisioned and anticipated based on this understanding and control.

  13. Transient reflectivity on vertically aligned single-wall carbon nanotubes

    Energy Technology Data Exchange (ETDEWEB)

    Galimberti, Gianluca; Ponzoni, Stefano; Ferrini, Gabriele [Interdisciplinary Laboratory for Advanced Materials Physics (i-LAMP) and Dipartimento di Matematica e Fisica, Università Cattolica del Sacro Cuore, I-25121 Brescia (Italy); Hofmann, Stephan [Department of Engineering, University of Cambridge, Cambridge CB3 0FA (United Kingdom); Arshad, Muhammad [Zernike Institute for Advanced Materials, University of Groningen (Netherlands); ICTP, Strada Costiera 11, I-34151 Trieste (Italy); National Centre for Physics Quaid-i-Azam University Islamabad (Pakistan); Cepek, Cinzia [Istituto Officina dei Materiali — CNR, Laboratorio TASC, Area Science Park, Basovizza, I-34149 Trieste (Italy); Pagliara, Stefania, E-mail: pagliara@dmf.unicatt.it [Interdisciplinary Laboratory for Advanced Materials Physics (i-LAMP) and Dipartimento di Matematica e Fisica, Università Cattolica del Sacro Cuore, I-25121 Brescia (Italy)

    2013-09-30

    One-color transient reflectivity measurements are carried out on two different samples of vertically aligned single-wall carbon nanotube bundles and compared with the response recently published on unaligned bundles. The negative sign of the optical response for both samples indicates that the free electron character revealed on unaligned bundles is only due to the intertube interactions favored by the tube bending. Neither the presence of bundles nor the existence of structural defects in aligned bundles is able to induce a free-electron like behavior of the photoexcited carriers. This result is also confirmed by the presence of non-linear excitonic effects in the transient response of the aligned bundles. - Highlights: • Transient reflectivity measurements on two aligned carbon nanotube samples • Relationship between unalignment and/or bundling and intertube interaction • The bundling is not able to modify the intertube interactions • The presence of structural defects does not affect the intertube interactions • A localized exciton-like behavior has been revealed in these samples.

  14. Single-wall carbon nanotube chemical attachment at platinum electrodes

    International Nuclear Information System (INIS)

    Rosario-Castro, Belinda I.; Contes-de-Jesus, Enid J.; Lebron-Colon, Marisabel; Meador, Michael A.; Scibioh, M. Aulice; Cabrera, Carlos R.

    2010-01-01

    Self-assembled monolayer (SAM) techniques were used to adsorb 4-aminothiophenol (4-ATP) on platinum electrodes in order to obtain an amino-terminated SAM as the base for the chemical attachment of single-wall carbon nanotubes (SWCNTs). A physico-chemical, morphological and electrochemical characterizations of SWCNTs attached onto the modified Pt electrodes was done by using reflection-absorption infrared spectroscopy (RAIR), X-ray photoelectron spectroscopy (XPS), Raman spectroscopy, scanning electron microscopy (SEM), atomic force microscopy (AFM), and cyclic voltammetry (CV) techniques. The SWNTs/4-ATP/Pt surface had regions of small, medium, and large thickness of carbon nanotubes with heights of 100-200 nm, 700 nm to 1.5 μm, and 1.0-3.0 μm, respectively. Cyclic voltammetries (CVs) in sulfuric acid demonstrated that attachment of SWNTs on 4-ATP/Pt is markedly stable, even after 30 potential cycles. CV in ruthenium hexamine was similar to bare Pt electrodes, suggesting that SWNTs assembly is similar to a closely packed microelectrode array.

  15. Visualizing the growth dynamics of individual single-wall carbon nanotubes

    DEFF Research Database (Denmark)

    Wagner, Jakob Birkedal; Zhang, Lili; He, Maoshuai

    In order to meet the increasing demand of faster and more flexible electronics and optical devices and at the same time decrease the use of the critical metals, carbon based devices are in fast development. Single walled carbon nanotube (SWCNT) based electronics is a way of addressing...... around the studied sample at elevated temperature gives a unique way of monitoring gas-solid interactions such as CNT growth. Here we show the direct experimental evidence on the growth dynamics of SW-CNTs from Co/MgO catalysts using CO as carbon source inside the environmental TEM. The evolution...

  16. Multi-walled carbon nanotubes (MWCNTs) functionalized with amino groups by reacting with supercritical ammonia fluids

    International Nuclear Information System (INIS)

    Shao Lu; Bai Yongping; Huang Xu; Gao Zhangfei; Meng Linghui; Huang Yudong; Ma Jun

    2009-01-01

    For the first time, supercritical ammonia fluid was utilized to simply functionalize multi-walled carbon nanotube (MWCNT) with amino groups. The successful amino functionalization of MWCNTs was proven and the physicochemical properties of MWCNTs before and after supercritical ammonia fluids modifications were characterized using X-ray photoelectron spectroscopy (XPS), scanning electron microscope (SEM), atomic force microscope (AFM) and Raman spectroscopy. The results also indicated that the supercritical ammonia fluids had the visible effects on the nanostructure of carbon nanotubes. Our novel modification approach provides an easy way to modify MWCNTs with amino groups, which is very useful for realizing 'carbon nanotube economy' in the near future.

  17. Electrical and Raman spectroscopic studies of vertically aligned multi-walled carbon nanotubes.

    Science.gov (United States)

    Mathur, Ashish; Tweedie, Mark; Roy, Susanta Sinha; Maguire, P D; McLaughlin, James A

    2009-07-01

    Microwave plasma enhanced chemical vapour deposition (MPECVD) was used for the production of carbon nanotubes. Vertically aligned multi-walled carbon nanotubes (MWCNTs) were grown on silicon substrates coated with cobalt thin films of thickness ranging from 0.5 nm to 3 nm. Prior to the nanotube growth the catalyst were treated with N2 plasma for 5-10 minutes that break the films into small nanoparticles which favour the growth of nanotubes. The CNTs were grown at a substrate temperature of 700 degrees C for 5, 10 and 15 minutes. The height of the CNT films ranging from 10 microm-30 microm indicating that the initial growth rate of the CNTs are very high at a rate of approximately 100 nm/sec. Electrical resistivity of the above samples was evaluated from I-V measurements. The activation energy (E(a)) was also calculated from the temperature dependent studies and it was found that the E(a) lies in the range of 15-35 meV. Raman spectroscopy was used to identify the quality of the nanotubes.

  18. Monitoring the functionalization of single-walled carbon nanotubes with chitosan and folic acid by two-dimensional diffusion-ordered nmr spectroscopy

    DEFF Research Database (Denmark)

    Castillo, John J.; Torres, Mary H.; Molina, Daniel R.

    2012-01-01

    A conjugate between single-walled carbon nanotubes, chitosan and folic acid has been prepared. It was characterized by diffusion ordered two-dimensional hydrogen-1 nuclear magnetic resonance and hydrogen-1 nuclear magnetic resonance spectroscopy which revealed the presence of a conjugate that was......A conjugate between single-walled carbon nanotubes, chitosan and folic acid has been prepared. It was characterized by diffusion ordered two-dimensional hydrogen-1 nuclear magnetic resonance and hydrogen-1 nuclear magnetic resonance spectroscopy which revealed the presence of a conjugate...... that was generated by the linkage between the carboxyl moiety of the folic acid and the amino group of the chitosan, which in turn was non-covalently bound to the single-walled carbon nanotubes. The obtained diffusion coefficient values demonstrated that free folic acid diffused more rapidly than the folic acid...... conjugated to single-walled carbon nanotubes-chitosan. The values of the proton signal of hydrogen-1 nuclear magnetic resonance spectroscopy and two-dimensional hydrogen-1 nuclear magnetic resonance spectroscopy further confirmed that the folic acid was conjugated to the chitosan, wrapping the single...

  19. Resonant ablation of single-wall carbon nanotubes by femtosecond laser pulses

    International Nuclear Information System (INIS)

    Arutyunyan, N R; Komlenok, M S; Kononenko, V V; Pashinin, V P; Pozharov, A S; Konov, V I; Obraztsova, E D

    2015-01-01

    The thin 50 nm film of bundled arc-discharge single-wall carbon nanotubes was irradiated by femtosecond laser pulses with wavelengths 675, 1350 and 1745 nm corresponding to the absorption band of metallic nanotubes E 11 M , to the background absorption and to the absorption band of semiconducting nanotubes E 11 S , respectively. The aim was to induce a selective removal of nanotubes of specific type from the bundled material. Similar to conducted thermal heating experiments, the effect of laser irradiation results in suppression of all radial breathing modes in the Raman spectra, with preferential destruction of the metallic nanotubes with diameters less than 1.26 nm and of the semiconducting nanotubes with diameters 1.36 nm. However, the etching rate of different nanotubes depends on the wavelength of the laser irradiation. It is demonstrated that the relative content of nanotubes of different chiralities can be tuned by a resonant laser ablation of undesired nanotube fraction. The preferential etching of the resonant nanotubes has been shown for laser wavelengths 675 nm (E 11 M ) and 1745 nm (E 11 S ). (paper)

  20. Fiber Optic Chemical Nanosensors Based on Engineered Single-Walled Carbon Nanotubes

    Directory of Open Access Journals (Sweden)

    M. Consales

    2008-01-01

    Full Text Available In this contribution, a review of the development of high-performance optochemical nanosensors based on the integration of carbon nanotubes with the optical fiber technology is presented. The paper first provide an overview of the amazing features of carbon nanotubes and their exploitation as highly adsorbent nanoscale materials for gas sensing applications. Successively, the attention is focused on the operating principle, fabrication, and characterization of fiber optic chemosensors in the Fabry-Perot type reflectometric configuration, realized by means of the deposition of a thin layer of single-walled carbon nanotubes (SWCNTs upon the distal end of standard silica optical fibers. This is followed by an extensive review of the excellent sensing capabilities of the realized SWCNTs-based chemical nanosensors against volatile organic compounds and other pollutants in different environments (air and water and operating conditions (room temperature and cryogenic temperatures. The experimental results reported here reveal that ppm and sub-ppm chemical detection limits, low response times, as well as fast and complete recovery of the sensor responses have been obtained in most of the investigated cases. This evidences the great potentialities of the proposed photonic nanosensors based on SWCNTs to be successfully employed for practical environmental monitoring applications both in liquid and vapor phase as well as for space. Furthermore, the use of novel SWCNTs-based composites as sensitive fiber coatings is proposed to enhance the sensing performance and to improve the adhesion of carbon nanotubes to the fiber surface. Finally, new advanced sensing configurations based on the use of hollow-core optical fibers coated and partially filled by carbon nanotubes are also presented.

  1. Nanotube bundle oscillators: Carbon and boron nitride nanostructures

    International Nuclear Information System (INIS)

    Thamwattana, Ngamta; Hill, James M.

    2009-01-01

    In this paper, we investigate the oscillation of a fullerene that is moving within the centre of a bundle of nanotubes. In particular, certain fullerene-nanotube bundle oscillators, namely C 60 -carbon nanotube bundle, C 60 -boron nitride nanotube bundle, B 36 N 36 -carbon nanotube bundle and B 36 N 36 -boron nitride nanotube bundle are studied using the Lennard-Jones potential and the continuum approach which assumes a uniform distribution of atoms on the surface of each molecule. We address issues regarding the maximal suction energies of the fullerenes which lead to the generation of the maximum oscillation frequency. Since bundles are also found to comprise double-walled nanotubes, this paper also examines the oscillation of a fullerene inside a double-walled nanotube bundle. Our results show that the frequencies obtained for the oscillation within double-walled nanotube bundles are slightly higher compared to those of single-walled nanotube bundle oscillators. Our primary purpose here is to extend a number of established results for carbon to the boron nitride nanostructures.

  2. Microstructural investigations of zirconium oxide—on core–shell structure of carbon nanotubes

    International Nuclear Information System (INIS)

    Pal, Kaushik; Kang, Dong Jin; Kim, Jin Kuk

    2011-01-01

    Single-walled carbon nanotubes and multi-walled carbon nanotubes/ZrO 2 nanocomposites were obtained by isothermal hydrolyzing and chemical precipitation method for both the carbon nanotubes. The coating was taken place by dispersion of both the carbon nanotubes in ZrOCl 2 ·8H 2 O aqueous solution. However, a highly conformal and uniform monoclinic zirconia coating was deposited on multi-walled carbon nanotubes rather than single-walled carbon nanotubes by this new and simple method. Also, it has been observed that the thickness of the individual carbon nanotube after zirconia coating was increased by isothermal hydrolyzing process rather than traditional chemical precipitation method and it has been confirmed by high-resolution transmission electron microscopy study.

  3. Synthesis and characterization of carbon nanotubes

    Science.gov (United States)

    Ritschel, Manfred; Bartsch, Karl; Leonhardt, Albrecht; Graff, Andreas; Täschner, Christine; Fink, Jörg

    2001-11-01

    The catalytic chemical vapor deposition (CCVD) is a very promising process with respect to large scale production of different kinds of carbon nanostructures. By modifying the deposition temperature, the catalyst material and the hydrocarbon nanofibers with herringbone structure, multi-walled nanotubes with tubular structure and single-walled nanotubes were deposited. Furthermore, layers of aligned multi-walled nanotubes could be obtained on oxidized silicon substrates coated with thin sputtered metal layers (Co, permalloy) as well as onto WC-Co hardmetals by using the microwave assisted plasma CVD process (MWCVD). The obtained carbon modifications were characterized by scanning (SEM) and transmission (TEM) electron microscopy. The hydrogen storage capability of the nanofibers and nanotubes and the electron field emission of the nanotube layers was investigated.

  4. Four- and eight-membered rings carbon nanotubes: A new class of carbon nanomaterials

    Science.gov (United States)

    Li, Fangfang; Lu, Junzhe; Zhu, Hengjiang; Lin, Xiang

    2018-06-01

    A new class of carbon nanomaterials composed of alternating four- and eight-membered rings is studied by density functional theory (DFT), including single-walled carbon nanotubes (SWCNTs) double-walled carbon nanotubes (DWCNTs) and triple-walled CNTs (TWCNTs). The analysis of geometrical structure shows that carbon atoms' hybridization in novel carbon tubular clusters (CTCs) and the corresponding carbon nanotubes (CNTs) are both sp2 hybridization; The thermal properties exhibit the high stability of these new CTCs. The results of energy band and density of state (DOS) indicate that the electronic properties of CNTs are independent of their diameter, number of walls and chirality, exhibit obvious metal properties.

  5. Industrial-Graded Epoxy Nanocomposites with Mechanically Dispersed Multi-Walled Carbon Nanotubes: Static and Damping Properties

    Directory of Open Access Journals (Sweden)

    Andrea Giovannelli

    2017-10-01

    Full Text Available The majority of currently published dispersion protocols of carbon nanotubes rely on techniques that are not scalable to an industrial level. This work shows how to obtain polymer nanocomposites with good mechanical characteristics using multi-walled carbon nanotubes epoxy resins obtained by mechanical mixing only. The mechanical dispersion method illustrated in this work is easily scalable to industrial level. The high shearing force due to the complex field of motion produces a good and reproducible carbon nanotube dispersion. We have tested an industrial epoxy matrix with good baseline mechanical characteristics at different carbon nanotube weight loads. ASTM-derived tensile and compressive tests show an increment in both Young’s modulus and compressive strength compared with the pristine resin from a starting low wt %. Comparative vibration tests show improvement in the damping capacity. The new carbon nanotube enhanced epoxy resin has superior mechanical proprieties compared to the market average competitor, and is among the top products in the bi-components epoxy resins market. The new dispersion method shows significant potential for the industrial use of CNTs in epoxy matrices.

  6. Industrial-Graded Epoxy Nanocomposites with Mechanically Dispersed Multi-Walled Carbon Nanotubes: Static and Damping Properties.

    Science.gov (United States)

    Giovannelli, Andrea; Di Maio, Dario; Scarpa, Fabrizio

    2017-10-24

    The majority of currently published dispersion protocols of carbon nanotubes rely on techniques that are not scalable to an industrial level. This work shows how to obtain polymer nanocomposites with good mechanical characteristics using multi-walled carbon nanotubes epoxy resins obtained by mechanical mixing only. The mechanical dispersion method illustrated in this work is easily scalable to industrial level. The high shearing force due to the complex field of motion produces a good and reproducible carbon nanotube dispersion. We have tested an industrial epoxy matrix with good baseline mechanical characteristics at different carbon nanotube weight loads. ASTM-derived tensile and compressive tests show an increment in both Young's modulus and compressive strength compared with the pristine resin from a starting low wt %. Comparative vibration tests show improvement in the damping capacity. The new carbon nanotube enhanced epoxy resin has superior mechanical proprieties compared to the market average competitor, and is among the top products in the bi-components epoxy resins market. The new dispersion method shows significant potential for the industrial use of CNTs in epoxy matrices.

  7. SYNTHESIS AND STUDY OF CORROSION PERFORMANCE OF EPOXY COATING CONTAINING MULTI-WALLED CARBON NANOTUBE/ POLY ORTHO AMINOPHENOL NANOCOMPOSITE

    Directory of Open Access Journals (Sweden)

    N. Bahrami Panah

    2016-03-01

    Full Text Available The epoxy coatings containing multi-walled carbon nanotube/ poly ortho aminophenol nanocomposite were prepared and used as anticorrosive coatings. The nanocomposites with different contents of carbon nanotube were synthesized in a solution of sodium dodecyl sulfate and ammonium peroxy disulfate as a surfactant and an oxidant, respectively. The morphology and structural properties were confirmed by Fourier transform infrared spectroscopy and scanning electron microscopy methods. The mean size of nanocomposite particles was 20-35 nm determined by scanning electron microscopy. The epoxy coatings containing the nanocomposites were applied over mild steel panels and their corrosion performance was investigated using electrochemical impedance spectroscopy and potentiodynamic polarization measurements in a 3.5 % sodium chloride solution. The results showed that epoxy coatings consisting of nanocomposite with 1 wt.% multi-walled carbon nanotube exhibited higher anticorrosive properties than other prepared coatings of different carbon nanotube contents, which could be due to the strong interaction between the mild steel surface and the conjugated nanocomposite.

  8. Toxicology Study of Single-walled Carbon Nanotubes and Reduced Graphene Oxide in Human Sperm.

    Science.gov (United States)

    Asghar, Waseem; Shafiee, Hadi; Velasco, Vanessa; Sah, Vasu R; Guo, Shirui; El Assal, Rami; Inci, Fatih; Rajagopalan, Adhithi; Jahangir, Muntasir; Anchan, Raymond M; Mutter, George L; Ozkan, Mihrimah; Ozkan, Cengiz S; Demirci, Utkan

    2016-08-19

    Carbon-based nanomaterials such as single-walled carbon nanotubes and reduced graphene oxide are currently being evaluated for biomedical applications including in vivo drug delivery and tumor imaging. Several reports have studied the toxicity of carbon nanomaterials, but their effects on human male reproduction have not been fully examined. Additionally, it is not clear whether the nanomaterial exposure has any effect on sperm sorting procedures used in clinical settings. Here, we show that the presence of functionalized single walled carbon nanotubes (SWCNT-COOH) and reduced graphene oxide at concentrations of 1-25 μg/mL do not affect sperm viability. However, SWCNT-COOH generate significant reactive superoxide species at a higher concentration (25 μg/mL), while reduced graphene oxide does not initiate reactive species in human sperm. Further, we demonstrate that exposure to these nanomaterials does not hinder the sperm sorting process, and microfluidic sorting systems can select the sperm that show low oxidative stress post-exposure.

  9. Toxicology Study of Single-walled Carbon Nanotubes and Reduced Graphene Oxide in Human Sperm

    Science.gov (United States)

    Asghar, Waseem; Shafiee, Hadi; Velasco, Vanessa; Sah, Vasu R.; Guo, Shirui; El Assal, Rami; Inci, Fatih; Rajagopalan, Adhithi; Jahangir, Muntasir; Anchan, Raymond M.; Mutter, George L.; Ozkan, Mihrimah; Ozkan, Cengiz S.; Demirci, Utkan

    2016-08-01

    Carbon-based nanomaterials such as single-walled carbon nanotubes and reduced graphene oxide are currently being evaluated for biomedical applications including in vivo drug delivery and tumor imaging. Several reports have studied the toxicity of carbon nanomaterials, but their effects on human male reproduction have not been fully examined. Additionally, it is not clear whether the nanomaterial exposure has any effect on sperm sorting procedures used in clinical settings. Here, we show that the presence of functionalized single walled carbon nanotubes (SWCNT-COOH) and reduced graphene oxide at concentrations of 1-25 μg/mL do not affect sperm viability. However, SWCNT-COOH generate significant reactive superoxide species at a higher concentration (25 μg/mL), while reduced graphene oxide does not initiate reactive species in human sperm. Further, we demonstrate that exposure to these nanomaterials does not hinder the sperm sorting process, and microfluidic sorting systems can select the sperm that show low oxidative stress post-exposure.

  10. Lifshitz-type formulas for graphene and single-wall carbon nanotubes: van der Waals and Casimir interactions

    International Nuclear Information System (INIS)

    Bordag, M.; Geyer, B.; Klimchitskaya, G. L.; Mostepanenko, V. M.

    2006-01-01

    Lifshitz-type formulas are obtained for the van der Waals and Casimir interaction between graphene and a material plate, graphene and an atom or a molecule, and between a single-wall carbon nanotube and a plate. The reflection properties of electromagnetic oscillations on graphene are governed by the specific boundary conditions imposed on the infinitely thin positively charged plasma sheet, carrying a continuous fluid with some mass and charge density. The obtained formulas are applied to graphene interacting with Au and Si plates, to hydrogen atoms and molecules interacting with graphene, and to single-wall carbon nanotubes interacting with Au and Si plates. The generalizations to more complicated carbon nanostructures are discussed

  11. Vertical Alignment of Single-Walled Carbon Nanotubes on Nanostructure Fabricated by Atomic Force Microscope

    National Research Council Canada - National Science Library

    Lee, Haiwon

    2007-01-01

    This project focused on the behavior of single-wall carbon nanotubes (SWCNTs) in the electrophoresis cells and aligned growth of SWCNTs by thermal chemical vapor deposition on selectively deposited metallic nanoparticle...

  12. Computational study of the shift of the G band of double-walled carbon nanotubes due to interlayer interactions

    Science.gov (United States)

    Popov, Valentin N.; Levshov, Dmitry I.; Sauvajol, Jean-Louis; Paillet, Matthieu

    2018-04-01

    The interactions between the layers of double-walled carbon nanotubes induce a measurable shift of the G bands relative to the isolated layers. While experimental data on this shift in freestanding double-walled carbon nanotubes has been reported in the past several years, a comprehensive theoretical description of the observed shift is still lacking. The prediction of this shift is important for supporting the assignment of the measured double-walled nanotubes to particular nanotube types. Here, we report a computational study of the G-band shift as a function of the semiconducting inner layer radius and interlayer separation. We find that with increasing interlayer separation, the G band shift decreases, passes through zero and becomes negative, and further increases in absolute value for the wide range of considered inner layer radii. The theoretical predictions are shown to agree with the available experimental data within the experimental uncertainty.

  13. Composite of TiN nanoparticles and few-walled carbon nanotubes and its application to the electrocatalytic oxygen reduction reaction

    KAUST Repository

    Isogai, Shunsuke; Ohnishi, Ryohji; Katayama, Masao; Kubota, Jun; Kim, Dongyoung; Noda, Suguru; Cha, Dong Kyu; Takanabe, Kazuhiro; Domen, Kazunari

    2011-01-01

    Nanoparticles meet nanotubes! Direct synthesis of TiN nanoparticles in a three-dimensional network of few-walled carbon nanotubes (FWCNTs) was achieved by using mesoporous graphitic carbon nitride (C 3N 4) as both a hard template and a nitrogen

  14. Enhancement of heat transfer for thermal energy storage application using stearic acid nanocomposite with multi-walled carbon nanotubes

    International Nuclear Information System (INIS)

    Li, TingXian; Lee, Ju-Hyuk; Wang, RuZhu; Kang, Yong Tae

    2013-01-01

    A latent heat storage nanocomposite made of stearic acid (SA) and multi-walled carbon nanotube (MWCNT) is prepared for thermal energy storage application. The thermal properties of the SA/MWCNT nanocomposite are characterized by SEM (scanning electron microscopy) and DSC (differential scanning calorimeter) analysis techniques, and the effects of different volume fractions of MWCNT on the heat transfer enhancement and thermal performance of stearic acid are investigated during the charging and discharging phases. The SEM analysis shows that the additive of MWCNT is uniformly distributed in the phase change material of stearic acid, and the DSC analysis reveals that the melting point of SA/MWCNT nanocomposite shifts to a lower temperature during the charging phase and the freezing point shifts to a higher temperature during the discharging phase when compared with the pure stearic acid. The experimental results show that the addition of MWCNT can improve the thermal conductivity of stearic acid effectively, but it also weakens the natural convection of stearic acid in liquid state. In comparison with the pure stearic acid, the charging rate can be decreased by about 50% while the discharging rate can be improved by about 91% respectively by using the SA/5.0% MWCNT nanocomposite. It appears that the MWCNT is a promising candidate for enhancing the heat transfer performance of latent heat thermal energy storage system. - Highlights: • A nanocomposite made of stearic acid and multi-walled carbon nanotube is prepared for thermal energy storage application. • Effects of multi-walled carbon nanotube on the thermal performance of the nanocomposite are investigated. • Multi-walled carbon nanotube enhances the thermal conductivity but weakens the natural convection of stearic acid. • Discharging/charging rates of stearic acid are increased/decreased by using multi-walled carbon nanotube

  15. In vitro evaluation of osteoblastic cells on bacterial cellulose modified with multi-walled carbon nanotubes as scaffold for bone regeneration

    Energy Technology Data Exchange (ETDEWEB)

    Gutiérrez-Hernández, José Manuel [Coordination for Innovation and Application of Science and Technology, Autonomous University San Luis Potosi, 78000 San Luis Potosi (Mexico); Department of Wood, Cellulose and Paper Research, University Guadalajara, 45110 Guadalajara (Mexico); Escobar-García, Diana María [Laboratory of Basic Sciences, Faculty of Dentistry, Autonomous University San Luis Potosi, 78000 San Luis Potosi (Mexico); Escalante, Alfredo [Department of Wood, Cellulose and Paper Research, University Guadalajara, 45110 Guadalajara (Mexico); Flores, Hector [Laboratory of Basic Sciences, Faculty of Dentistry, Autonomous University San Luis Potosi, 78000 San Luis Potosi (Mexico); González, Francisco Javier [Coordination for Innovation and Application of Science and Technology, Autonomous University San Luis Potosi, 78000 San Luis Potosi (Mexico); Gatenholm, Paul [Chalmers University of Technology, Department of Chemistry and Chemical Engineering, Biopolymer Technology, SE-412 96 Göteborg (Sweden); Toriz, Guillermo, E-mail: gtoriz@dmcyp.cucei.udg.mx [Department of Wood, Cellulose and Paper Research, University Guadalajara, 45110 Guadalajara (Mexico); Chalmers University of Technology, Department of Chemistry and Chemical Engineering, Biopolymer Technology, SE-412 96 Göteborg (Sweden)

    2017-06-01

    In this paper we explore the use of native bacterial cellulose (BC) in combination with functionalized multi-walled carbon nanotubes (MWNTs) as an original biomaterial, suitable three-dimensional (3D) scaffold for osteoblastic cell culture. Functionalized MWNTs were mixed with native BC (secreted by Gluconacetobacter xylinus) with the aim of reinforcing the mechanical properties of BC. The results indicate that BC-MWNTs scaffolds support osteoblast viability, adhesion and proliferation at higher levels as compared to traditional culture substrates. Chemically functionalized MWNTs are also an excellent material to be used as scaffold because these did not affect cell viability and showed an enhanced osteoblast adhesion. These results suggest the potential for this combination of biomaterials, i.e. BC and carbon nanomaterials, as scaffolds for bone regeneration. - Highlights: • Functionalization of multiwalled carbon nanotubes with carboxyl groups for reduces their toxicity against osteoblastic cells. • Use of native bacterial cellulose with functionalized multi-walled carbon nanotubes as scaffolds for tissue engineering. • Bacterial cellulose with multi-walled carbon nanotubes as scaffolds give an excellent option to be used in bone regeneration.

  16. In vitro evaluation of osteoblastic cells on bacterial cellulose modified with multi-walled carbon nanotubes as scaffold for bone regeneration

    International Nuclear Information System (INIS)

    Gutiérrez-Hernández, José Manuel; Escobar-García, Diana María; Escalante, Alfredo; Flores, Hector; González, Francisco Javier; Gatenholm, Paul; Toriz, Guillermo

    2017-01-01

    In this paper we explore the use of native bacterial cellulose (BC) in combination with functionalized multi-walled carbon nanotubes (MWNTs) as an original biomaterial, suitable three-dimensional (3D) scaffold for osteoblastic cell culture. Functionalized MWNTs were mixed with native BC (secreted by Gluconacetobacter xylinus) with the aim of reinforcing the mechanical properties of BC. The results indicate that BC-MWNTs scaffolds support osteoblast viability, adhesion and proliferation at higher levels as compared to traditional culture substrates. Chemically functionalized MWNTs are also an excellent material to be used as scaffold because these did not affect cell viability and showed an enhanced osteoblast adhesion. These results suggest the potential for this combination of biomaterials, i.e. BC and carbon nanomaterials, as scaffolds for bone regeneration. - Highlights: • Functionalization of multiwalled carbon nanotubes with carboxyl groups for reduces their toxicity against osteoblastic cells. • Use of native bacterial cellulose with functionalized multi-walled carbon nanotubes as scaffolds for tissue engineering. • Bacterial cellulose with multi-walled carbon nanotubes as scaffolds give an excellent option to be used in bone regeneration.

  17. Elemental Characterization of Single-Wall Carbon Nanotube Certified Reference Material by Neutron and Prompt gamma Activation Analysis

    Czech Academy of Sciences Publication Activity Database

    Kučera, Jan; Bennett, J. W.; Oflaz, R.; Paul, R. L.; De Nadai Fernandes, E. A.; Kubešová, Marie; Bacchi, M. A.; Stopic, A. J.; Sturgeon, R. E.; Grinberg, P.

    2015-01-01

    Roč. 87, č. 7 (2015), s. 3699-3705 ISSN 0003-2700 R&D Projects: GA ČR(CZ) GBP108/12/G108; GA MŠk LM2011019 Institutional support: RVO:61389005 Keywords : Neutron Activation Analyses * nanotechnology * Carbon nanotubes * Chemical activation * Single-walled carbon nanotubes (SWCN) Subject RIV: CB - Analytical Chemistry, Separation Impact factor: 5.886, year: 2015

  18. Electrochemical impedance-based DNA sensor using a modified single walled carbon nanotube electrode

    Energy Technology Data Exchange (ETDEWEB)

    Weber, Jessica E. [Department of Mechanical Engineering, University of South Florida, Tampa, FL (United States); Nanomaterials and Nanomanufacturing Research Center, University of South Florida, Tampa, FL (United States); Pillai, Shreekumar [Center for NanoBiotechnology Research, Alabama State University, Montgomery, AL (United States); Ram, Manoj Kumar, E-mail: mkram@usf.edu [Department of Mechanical Engineering, University of South Florida, Tampa, FL (United States); Nanomaterials and Nanomanufacturing Research Center, University of South Florida, Tampa, FL (United States); Kumar, Ashok [Department of Mechanical Engineering, University of South Florida, Tampa, FL (United States); Nanomaterials and Nanomanufacturing Research Center, University of South Florida, Tampa, FL (United States); Singh, Shree R. [Center for NanoBiotechnology Research, Alabama State University, Montgomery, AL (United States)

    2011-07-20

    Carbon nanotubes have become promising functional materials for the development of advanced electrochemical biosensors with novel features which could promote electron-transfer with various redox active biomolecules. This paper presents the detection of Salmonella enterica serovar Typhimurium using chemically modified single walled carbon nanotubes (SWNTs) with single stranded DNA (ssDNA) on a polished glassy carbon electrode. Hybridization with the corresponding complementary ssDNA has shown a shift in the impedance studies due to a higher charge transfer in ssDNA. The developed biosensor has revealed an excellent specificity for the appropriate targeted DNA strand. The methodologies to prepare and functionalize the electrode could be adopted in the development of DNA hybridization biosensor.

  19. Chitosan-folate decorated carbon nanotubes for site specific lung cancer delivery.

    Science.gov (United States)

    Singh, Rahul Pratap; Sharma, Gunjan; Sonali; Singh, Sanjay; Bharti, Shreekant; Pandey, Bajarangprasad L; Koch, Biplob; Muthu, Madaswamy S

    2017-08-01

    The aim of this work was to formulate chitosan-folate conjugated multi-walled carbon nanotubes for the lung cancer targeted delivery of docetaxel. The chitosan-folate conjugate was synthesized and the conjugation was confirmed by Fourier transform infrared spectroscopy. The multi-walled carbon nanotubes were characterized for their particle size, polydispersity, zeta potential, surface morphology, drug encapsulation efficiency and in vitro release study. The in vitro cellular uptake, cytotoxicity, and cell cycle analysis of the docetaxel/coumarin-6 loaded multi-walled carbon nanotubes were carried out to compare the effectiveness of the formulations. The biocompatibility and safety of chitosan-folate conjugated multi-walled carbon nanotubes was analyzed by lung histopathology in comparison with marketed docetaxel formulation (Docel™) and acylated multi-walled carbon nanotubes. The cellular internalization study shown that the chitosan-folate conjugated multi-walled carbon nanotubes could be easily internalized into the lung cancer cells through a folate receptor-mediated endocytic pathway. The IC 50 values exhibited that chitosan-folate conjugated multi-walled carbon nanotubes could be 89-fold more effective than Docel™ in human lung cancer cells (A549 cells). Copyright © 2017 Elsevier B.V. All rights reserved.

  20. Flame Synthesis of Single- and Multi-Walled Carbon Nanotubes and Nanofibers

    Science.gov (United States)

    VanderWal, R. L.; Ticich, Thomas M.

    2001-01-01

    Metal-catalyzed carbon nanotubes are highly sought for a diverse range of applications that include nanoelectronics, battery electrode material, catalysis, hydrogen storage media and reinforcing agents in polymer composites. These latter applications will require vast quantities of nanotubes at competitive prices to be economically feasible. Moreover, reinforcing applications may not require ultrahigh purity nanotubes. Indeed, functionalization of nanotubes to facilitate interfacial bonding within composites will naturally introduce defects into the tube walls, lessening their tensile strength. Current methods of aerosol synthesis of carbon nanotubes include laser ablation of composite targets of carbon and catalyst metal within high temperature furnaces and decomposition of a organometallics in hydrocarbons mixtures within a tube furnace. Common to each approach is the generation of particles in the presence of the reactive hydrocarbon species at elevated temperatures. In the laser-ablation approach, the situation is even more dynamic in that particles and nanotubes are borne during the transient cooling phase of the laser-induced plasma for which the temperature far exceeds that of the surrounding hot gases within the furnace process tube. A shared limitation is that more efficient methods of nanoparticle synthesis are not readily incorporated into these approaches. In contrast, combustion can quite naturally create nanomaterials such as carbon black. Flame synthesis is well known for its commercial scalability and energy efficiency. However, flames do present a complex chemical environment with steep gradients in temperature and species concentrations. Moreover, reaction times are limited within buoyant driven flows to tens of milliseconds. Therein microgravity can greatly lessen temperature and spatial gradients while allowing independent control of flame residence times. In preparation for defining the microgravity experiments, the work presented here focuses

  1. Adhesion energy of single wall carbon nanotube loops on various substrates

    Energy Technology Data Exchange (ETDEWEB)

    Li, Tianjun [Université de Lyon, Laboratoire de Physique, ENS de Lyon, CNRS-46, Allée d' Italie, Lyon 69364 (France); Department of Physics, Shaoxing University, 508 Huancheng West Rd., Shaoxing 312000 (China); Ayari, Anthony [Institut Lumière Matière, UMR5306 Université Lyon 1-CNRS, Université de Lyon, 69622 Villeurbanne Cedex (France); Bellon, Ludovic, E-mail: ludovic.bellon@ens-lyon.fr [Université de Lyon, Laboratoire de Physique, ENS de Lyon, CNRS-46, Allée d' Italie, Lyon 69364 (France)

    2015-04-28

    The physics of adhesion of one-dimensional nano structures such as nanotubes, nano wires, and biopolymers on different substrates is of great interest for the study of biological adhesion and the development of nano electronics and nano mechanics. In this paper, we present force spectroscopy experiments of individual single wall carbon nanotube loops using a home-made interferometric atomic force microscope. Characteristic force plateaus during the peeling process allow the quantitative measurement of the adhesion energy per unit length on various substrates: graphite, mica, platinum, gold, and silicon. Moreover, using a time-frequency analysis of the deflection of the cantilever, we estimate the dynamic stiffness of the contact, providing more information on the nanotube configurations and its intrinsic mechanical properties.

  2. Induced Magnetic Moment in Defected Single-Walled Carbon Nanotubes

    International Nuclear Information System (INIS)

    Liu Hong

    2006-01-01

    The existence of a large induced magnetic moment in defect single-walled carbon nanotube(SWNT) is predicted using the Green's function method. Specific to this magnetic moment of defect SWNT is its magnitude which is several orders of magnitude larger than that of perfect SWNT. The induced magnetic moment also shows certain remarkable features. Therefore, we suggest that two pair-defect orientations in SWNT can be distinguished in experiment through the direction of the induced magnetic moment at some Specific energy points

  3. Electronic properties of pristine and modified single-walled carbon nanotubes

    International Nuclear Information System (INIS)

    Kharlamova, M V

    2013-01-01

    The current status of research on the electronic properties of filled single-walled carbon nanotubes (SWCNTs) is reviewed. SWCNT atomic structure and electronic properties are described, and their correlation is discussed. Methods for modifying the electronic properties of SWCNTs are considered. SWCNT filling materials are systematized. Experimental and theoretical data on the electronic properties of filled SWCNTs are analyzed. Possible application areas for filled SWCNTs are explored. (reviews of topical problems)

  4. On-Chip Chemical Self-Assembly of Semiconducting Single-Walled Carbon Nanotubes (SWNTs) : Toward Robust and Scale Invariant SWNTs Transistors

    NARCIS (Netherlands)

    Derenskyi, Vladimir; Gomulya, Widianta; Talsma, Wytse; Salazar-Rios, Jorge Mario; Fritsch, Martin; Nirmalraj, Peter; Riel, Heike; Allard, Sybille; Scherf, Ullrich; Loi, Maria A.

    2017-01-01

    In this paper, the fabrication of carbon nanotubes field effect transistors by chemical self-assembly of semiconducting single walled carbon nanotubes (s-SWNTs) on prepatterned substrates is demonstrated. Polyfluorenes derivatives have been demonstrated to be effective in selecting s-SWNTs from raw

  5. Extremely high thermal conductivity anisotropy of double-walled carbon nanotubes

    Directory of Open Access Journals (Sweden)

    Zhaoji Ma

    2017-06-01

    Full Text Available Based on molecular dynamics simulations, we reveal that double-walled carbon nanotubes can possess an extremely high anisotropy ratio of radial to axial thermal conductivities. The mechanism is basically the same as that for the high thermal conductivity anisotropy of graphene layers - the in-plane strong sp2 bonds lead to a very high intralayer thermal conductivity while the weak van der Waals interactions to a very low interlayer thermal conductivity. However, different from flat graphene layers, the tubular structures of carbon nanotubes result in a diameter dependent thermal conductivity. The smaller the diameter, the larger the axial thermal conductivity but the smaller the radial thermal conductivity. As a result, a DWCNT with a small diameter may have an anisotropy ratio of thermal conductivity significantly higher than that for graphene layers. The extremely high thermal conductivity anisotropy allows DWCNTs to be a promising candidate for thermal management materials.

  6. Multiple functionalization of multi-walled carbon nanotubes with carboxyl and amino groups

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Zhiyuan [College of Chemistry and Chemical Engineering, Central South University, Changsha 410083 (China); Yang, Zhanhong, E-mail: zhongnan320@gmail.com [College of Chemistry and Chemical Engineering, Central South University, Changsha 410083 (China); Key Laboratory of Resource Chemistry of Nonferrous Metals, Ministry of Education, Central South University, Changsha 410083 (China); Hu, Youwang; Li, Jianping [College of Mechanical and Electrical Engineering, Central South University, Changsha 410083 (China); Fan, Xinming [College of Chemistry and Chemical Engineering, Central South University, Changsha 410083 (China)

    2013-07-01

    In this paper, carboxyl and amino groups have been introduced onto the surface of the multi-walled carbon nanotubes (MWCNTs) by the mixed acid treatment and the diazonium reaction, respectively. The presence of multifunctionality groups on the MWCNTs has been characterized by Fourier transform infrared (FT-IR) spectroscopy, thermogravimetric (TGA) analysis, Raman spectra, scanning electron microscopy (SEM) and energy dispersive X-ray spectrum (EDS). The multifunctionalized carbon nanotubes were further utilized to react with acetyl chloride and ethylenediamine (EDA). The formation of the amide bond in the grafting reaction has been confirmed by FT-IR spectroscopy. The result indicates that the further grafting is successful. The multifunctionalized MWCNTs can be a new versatile platform for many interesting applications.

  7. Systematic study on synthesis and purification of double-walled carbon nanotubes synthesized via CVD

    Science.gov (United States)

    Jedrzejewska, A.; Kalenczuk, R. J.; Mijowska, E.

    2011-12-01

    Carbon nanotubes have unique properties, such as thermal and electrical conductance, which could be useful in the fields of aerospace, microelectronics and biotechnology. However, these properties may vary widely depending on the dimensions, uniformity and purity of the nanotube. Nanotube samples typically contain a significant percentage of more allotropes forms of carbon as well as metal particles left over from catalysts used in manufacturing. Purity characterization of double-walled carbon nanotubes (DWCNTs) is an increasingly popular topic in the field of carbon nanotechnology. In this study, DWCNTs were synthesized in a catalytic reaction, using Fe:MgO as catalyst and methane or methane/ethanol as carbon feedstock for chemical vapor deposition (CVD). The addition of ethanol as carbon feedstock allowed to investigate the influence of oxygen on the sample quality. The purification of the as-produced material from the metallic particles and the catalyst support was performed by sonication in an acid solution. The influence of the duration of the acid treatment using ultrasound on the sample purity was investigated, and the optimal value of this parameter was found. Transmission electron microscopy (TEM) images confirmed the removal of impurities and served to elucidate the morphology of the samples. The purity of carbon nanotubes was analyzed using thermal gravimetric analysis (TGA). The Raman spectra of the samples, as a measure of the concentration of defects, were also reported.

  8. Gold nanoparticle/multi-walled carbon nanotube modified glassy carbon electrode as a sensitive voltammetric sensor for the determination of diclofenac sodium.

    Science.gov (United States)

    Afkhami, Abbas; Bahiraei, Atousa; Madrakian, Tayyebeh

    2016-02-01

    A simple and highly sensitive sensor for the determination of diclofenac sodium based on gold nanoparticle/multi-walled carbon nanotube modified glassy carbon electrode is reported. Scanning electron microscopy along with energy dispersive X-ray spectroscopy, electrochemical impedance spectroscopy, cyclic voltammetry and square wave voltammetry was used to characterize the nanostructure and performance of the sensor and the results were compared with those obtained at the multi-walled carbon nanotube modified glassy carbon electrode and bare glassy carbon electrode. Under the optimized experimental conditions diclofenac sodium gave linear response over the range of 0.03-200μmolL(-1). The lower detection limits were found to be 0.02μmolL(-1). The effect of common interferences on the current response of DS was investigated. The practical application of the modified electrode was demonstrated by measuring the concentration of diclofenac sodium in urine and pharmaceutical samples. This revealed that the gold nanoparticle/multiwalled carbon nanotube modified glassy carbon electrode shows excellent analytical performance for the determination of diclofenac sodium in terms of a very low detection limit, high sensitivity, very good accuracy, repeatability and reproducibility. Copyright © 2015 Elsevier B.V. All rights reserved.

  9. Extinction properties of single-walled carbon nanotubes: Two-fluid model

    Energy Technology Data Exchange (ETDEWEB)

    Moradi, Afshin, E-mail: a.moradi@kut.ac.ir [Department of Basic Sciences, Kermanshah University of Technology, Kermanshah, Iran and Department of Nano Science, Institute for Studies in Theoretical Physics and Mathematics (IPM), Tehran (Iran, Islamic Republic of)

    2014-03-15

    The extinction spectra of a single-walled carbon nanotube are investigated, within the framework of the vector wave function method in conjunction with the hydrodynamic model. Both polarizations of the incident plane wave (TE and TM with respect to the x-z plane) are treated. Electronic excitations on the nanotube surface are modeled by an infinitesimally thin layer of a two-dimensional electron gas represented by two interacting fluids, which takes into account the different nature of the σ and π electrons. Numerical results show that strong interaction between the fluids gives rise to the splitting of the extinction spectra into two peaks in quantitative agreement with the π and σ + π plasmon energies.

  10. Carbon nanotube: the inside story.

    Science.gov (United States)

    Ando, Yoshinori

    2010-06-01

    Carbon nanotubes (CNTs) were serendipitously discovered as a byproduct of fullerenes by direct current (DC) arc discharge; and today this is the most-wanted material in the nanotechnology research. In this brief review, I begin with the history of the discovery of CNTs and focus on CNTs produced by arc discharge in hydrogen atmosphere, which is little explored outside my laboratory. DC arc discharge evaporation of pure graphite rod in pure hydrogen gas results in multi-walled carbon nanotubes (MWCNTs) of high crystallinity in the cathode deposit. As-grown MWCNTs have very narrow inner diameter. Raman spectra of these MWCNTs show high-intensity G-band, unusual high-frequency radial breathing mode at 570 cm(-1), and a new characteristic peak near 1850 cm(-1). Exciting carbon nanowires (CNWs), consisting of a linear carbon chain in the center of MWCNTs are also produced. Arc evaporation of graphite rod containing metal catalysts results in single-wall carbon nanotubes (SWCNTs) in the whole chamber like macroscopic webs. Two kinds of arc method have been developed to produce SWCNTs: Arc plasma jet (APJ) and Ferrum-Hydrogen (FH) arc methods. Some new purification methods for as-produced SWCNTs are reviewed. Finally, double-walled carbon nanotubes (DWCNTs) are also described.

  11. Formation of transition metal cluster adducts on the surface of single-walled carbon nanotubes: HRTEM studies

    KAUST Repository

    Kalinina, Irina V.; Bekyarova, Elena B.; Wang, Qingxiao; Al-Hadeethi, Yas Fadel; Zhang, Xixiang; Al-Agel, Faisel; Al-Marzouki, Fahad M.; Yaghmour, Saud Jamil; Haddon, Robert C.

    2014-01-01

    We report the formation of chromium clusters on the outer walls of single-walled carbon nanotubes (SWNTs). The clusters were obtained by reacting purified SWNTs with chromium hexacarbonyl in dibutyl ether at 100°C. The functionalized SWNTs were

  12. Non-covalent conjugates of single-walled carbon nanotubes and folic acid for interaction with cells overexpressing folate receptors

    DEFF Research Database (Denmark)

    Castillo, John J.; Rindzevicius, Tomas; Novoa, Leidy V.

    2013-01-01

    We here present amethod to form a noncovalent conjugate of single-walled carbon nanotubes and folic acid aimed to interact with cells over-expressing folate receptors. The bonding was obtained without covalent chemical functionalization using a simple, rapid “one pot” synthesis method. The zeta...... a low toxicity of the conjugates in the THP-1 cells. The low toxicity and the cellular uptake of single-walled carbon nanotube–folic acid by cancer cells suggest their potential use in carbon nanotube-based drug delivery systems and in the diagnosis of cancer or tropical diseases such as leishmaniasis....

  13. Predicting the elastic properties of double-walled carbon nanotubes by molecular dynamics simulation

    International Nuclear Information System (INIS)

    Zhang Chenli; Shen Huishen

    2008-01-01

    Molecular dynamics simulation is performed on a double-walled carbon nanotube (DWCNT) to predict its elastic properties based on a double-walled shear deformable shell model. By direct buckling measurement, we present here a method for uniquely determining the effective wall thickness for the shell model. Accounting for two different kinds of DWCNTs by adding an inner or outer tube to a fiducial tube, the mechanical properties of DWCNTs are carefully investigated as compared with those of the fiducial tube. It is found that the predicted values of Young's and shear moduli depend strongly on the construction and helicity of DWCNTs, while the dependence on nanotube length is relatively small. The results also confirm that the temperature variation has a significant effect on the elastic properties of DWCNTs

  14. Mass production of multi-wall carbon nanotubes by metal dusting process with high yield

    Energy Technology Data Exchange (ETDEWEB)

    Ghorbani, H. [School of Metallurgy and Materials Engineering, Iran University of Science and Technology, Narmak, Tehran (Iran, Islamic Republic of); Rashidi, A.M., E-mail: Rashidiam@ripi.ir [Nanotechnology Research Center, Research Institute of Petroleum Industry (RIPI), West Blvd. Azadi Sport Complex, P.O. Box 14665-1998, Tehran (Iran, Islamic Republic of); Rastegari, S.; Mirdamadi, S. [School of Metallurgy and Materials Engineering, Iran University of Science and Technology, Narmak, Tehran (Iran, Islamic Republic of); Alaei, M. [Nanotechnology Research Center, Research Institute of Petroleum Industry (RIPI), West Blvd. Azadi Sport Complex, P.O. Box 14665-1998, Tehran (Iran, Islamic Republic of)

    2011-05-15

    Research highlights: {yields} Synthesis of carbon nanotubes over Fe-Ni nanoparticles supported alloy 304L. {yields} Production of carbon nanotubes with high yield (700-1000%) and low cost catalyst. {yields} Optimum growth condition is CO/H{sub 2} = 1/1, 100 cm{sup 3}/min, at 620 {sup o}C under long term repetitive thermal cycling. {yields} Possibility of the mass production by metal dusting process with low cost. -- Abstract: Carbon nanotube materials were synthesized over Fe-Ni nanoparticles generated during disintegration of the surface of alloy 304L under metal dusting environment. The metal dusting condition was simulated and optimized through exposing stainless steel samples during long term repetitive thermal cycling in CO/H{sub 2} = 1/1, total gas flow rate 100 cm{sup 3}/min, at 620 {sup o}C for 300 h. After reaction, surface morphology of the samples and also carbonaceous deposition which had grown on sample surfaces were examined by stereoscopy, scanning electron microscopy (SEM) and transmission electron microscopy (TEM). Results revealed that multi-wall carbon nanotubes could be formed over nanocatalyst generated on the alloy surface by exploiting metal dusting process. By optimization of reaction parameters the yields of carbon nanotube materials obtained were 700-1000%. Also it has been shown herein that the amount of carbon nanotube materials remarkably increases when the reaction time is extended up to 300 h, indicating a possibility of the mass production by this easy method.

  15. Mass production of multi-wall carbon nanotubes by metal dusting process with high yield

    International Nuclear Information System (INIS)

    Ghorbani, H.; Rashidi, A.M.; Rastegari, S.; Mirdamadi, S.; Alaei, M.

    2011-01-01

    Research highlights: → Synthesis of carbon nanotubes over Fe-Ni nanoparticles supported alloy 304L. → Production of carbon nanotubes with high yield (700-1000%) and low cost catalyst. → Optimum growth condition is CO/H 2 = 1/1, 100 cm 3 /min, at 620 o C under long term repetitive thermal cycling. → Possibility of the mass production by metal dusting process with low cost. -- Abstract: Carbon nanotube materials were synthesized over Fe-Ni nanoparticles generated during disintegration of the surface of alloy 304L under metal dusting environment. The metal dusting condition was simulated and optimized through exposing stainless steel samples during long term repetitive thermal cycling in CO/H 2 = 1/1, total gas flow rate 100 cm 3 /min, at 620 o C for 300 h. After reaction, surface morphology of the samples and also carbonaceous deposition which had grown on sample surfaces were examined by stereoscopy, scanning electron microscopy (SEM) and transmission electron microscopy (TEM). Results revealed that multi-wall carbon nanotubes could be formed over nanocatalyst generated on the alloy surface by exploiting metal dusting process. By optimization of reaction parameters the yields of carbon nanotube materials obtained were 700-1000%. Also it has been shown herein that the amount of carbon nanotube materials remarkably increases when the reaction time is extended up to 300 h, indicating a possibility of the mass production by this easy method.

  16. Broadband Spectroscopic Thermoacoustic Characterization of Single-Walled Carbon Nanotubes

    Directory of Open Access Journals (Sweden)

    Daniel R. Bauer

    2015-01-01

    Full Text Available Carbon nanotubes have attracted interest as contrast agents for biomedical imaging because they strongly absorb electromagnetic radiation in the optical and microwave regions. This study applies thermoacoustic (TA imaging and spectroscopy to measure the frequency-dependent absorption profile of single-walled carbon nanotubes (SWNT in the ranges of 2.7–3.1 GHz and 7–9 GHz using two tunable microwave sources. Between 7 and 9 GHz, the peak TA signal for solutions containing semiconducting and metallic SWNTs increased monotonically with a slope of 1.75 AU/GHz (R2=0.95 and 2.8 AU/GHz (R2=0.93, respectively, relative to a water baseline. However, after compensating for the background signal from water, it was revealed that the TA signal from metallic SWNTs increased exponentially within this frequency band. Results suggest that TA imaging and spectroscopy could be a powerful tool for quantifying the absorption properties of SWNTs and optimizing their performance as contrast agents for imaging or heat sources for thermal therapy.

  17. Glassy carbon electrode modified with multi-walled carbon nanotubes sensor for the quantification of antihistamine drug pheniramine in solubilized systems

    Directory of Open Access Journals (Sweden)

    Rajeev Jain

    2012-02-01

    Full Text Available A sensitive electroanalytical method for quantification of pheniramine in pharmaceutical formulation has been investigated on the basis of the enhanced electrochemical response at glassy carbon electrode modified with multi-walled carbon nanotubes in the presence of sodium lauryl sulfate. The experimental results suggest that the pheniramine in anionic surfactant solution exhibits electrocatalytic effect resulting in a marked enhancement of the peak current response. Peak current response is linearly dependent on the concentration of pheniramine in the range 200–1500 μg/mL with correlation coefficient 0.9987. The limit of detection is 58.31 μg/mL. The modified electrode shows good sensitivity and repeatability. Keywords: Pheniramine, Sodium lauryl sulfate (SLS, Glassy carbon electrode modified with multi-walled carbon nanotubes (GCE-MWCNTs, Solubilized systems, Voltammetric quantification

  18. Highly Stable and Flexible Pressure Sensors with Modified Multi-Walled Carbon Nanotube/Polymer Composites for Human Monitoring.

    Science.gov (United States)

    He, Yin; Ming, Yue; Li, Wei; Li, Yafang; Wu, Maoqi; Song, Jinzhong; Li, Xiaojiu; Liu, Hao

    2018-04-26

    A facile method for preparing an easy processing, repeatable and flexible pressure sensor was presented via the synthesis of modified multi-walled carbon nanotubes (m-MWNTs) and polyurethane (PU) films. The surface modification of multi-walled carbon nanotubes (MWNTs) simultaneously used a silane coupling agent (KH550) and sodium dodecyl benzene sulfonate (SDBS) to improve the dispersibility and compatibility of the MWNTs in a polymer matrix. The electrical property and piezoresistive behavior of the m-MWNT/PU composites were compared with raw multi-walled carbon nanotube (raw MWNT)/PU composites. Under linear uniaxial pressure, the m-MWNT/PU composite exhibited 4.282%kPa −1 sensitivity within the pressure of 1 kPa. The nonlinear error, hysteresis error and repeatability error of the piezoresistivity of m-MWNT/PU decreased 9%, 16.72% and 54.95% relative to raw MWNT/PU respectively. Therefore, the piezoresistive response of m-MWNT/PU had better stability than that of raw MWNT/PU composites. The m-MWNT/PU sensors could be utilized in wearable devices for body movement detection, monitoring of respiration and pressure detection in garments.

  19. Liquid surface model for carbon nanotube energetics

    DEFF Research Database (Denmark)

    Solov'yov, Ilia; Mathew, Maneesh; Solov'yov, Andrey V.

    2008-01-01

    an important insight in the energetics and stability of nanotubes of different chirality and might be important for the understanding of nanotube growth process. For the computations we use empirical Brenner and Tersoff potentials and discuss their applicability to the study of carbon nanotubes. From......In the present paper we developed a model for calculating the energy of single-wall carbon nanotubes of arbitrary chirality. This model, which we call as the liquid surface model, predicts the energy of a nanotube with relative error less than 1% once its chirality and the total number of atoms...... the calculated energies we determine the elastic properties of the single-wall carbon nanotubes (Young modulus, curvature constant) and perform a comparison with available experimental measurements and earlier theoretical predictions....

  20. High pressure Raman spectroscopy of single-walled carbon nanotubes: Effect of chemical environment on individual nanotubes and the nanotube bundle

    Science.gov (United States)

    Proctor, John E.; Halsall, Matthew P.; Ghandour, Ahmad; Dunstan, David J.

    2006-12-01

    The pressure-induced tangential mode Raman peak shifts for single-walled carbon nanotubes (SWNTs) have been studied using a variety of different solvents as hydrostatic pressure-transmitting media. The variation in the nanotube response to hydrostatic pressure with different pressure transmitting media is evidence that the common solvents used are able to penetrate the interstitial spaces in the nanotube bundle. With hexane, we find the surprising result that the individual nanotubes appear unaffected by hydrostatic pressures (i.e. a flat Raman response) up to 0.7 GPa. Qualitatively similar results have been obtained with butanol. Following the approach of Amer et al. [J. Chem. Phys. 121 (2004) 2752], we speculate that this is due to the inability of SWNTs to adsorb some solvents onto their surface at lower pressures. We also find that the role of cohesive energy density in the solvent nanotube interaction is more complex than previously thought.

  1. Tuning of Sorted Double-Walled Carbon Nanotubes by Electrochemical Charging

    Czech Academy of Sciences Publication Activity Database

    Kalbáč, Martin; Green, A. A.; Hersam, M. C.; Kavan, Ladislav

    2010-01-01

    Roč. 4, č. 1 (2010), s. 459-469 ISSN 1936-0851 R&D Projects: GA AV ČR IAA400400911; GA AV ČR IAA400400804; GA AV ČR KAN200100801; GA ČR GC203/07/J067; GA MŠk LC510 Institutional research plan: CEZ:AV0Z40400503 Keywords : double-walled carbon nanotubes * electrochemical gating * spectroelectrochemistry Subject RIV: CG - Electrochemistry Impact factor: 9.855, year: 2010

  2. Flexible, transparent single-walled carbon nanotube transistors with graphene electrodes

    International Nuclear Information System (INIS)

    Jang, Sukjae; Jang, Houk; Lee, Youngbin; Suh, Daewoo; Baik, Seunghyun; Hong, Byung Hee; Ahn, Jong-Hyun

    2010-01-01

    This paper reports a mechanically flexible, transparent thin film transistor that uses graphene as a conducting electrode and single-walled carbon nanotubes (SWNTs) as a semiconducting channel. These SWNTs and graphene films were printed on flexible plastic substrates using a printing method. The resulting devices exhibited a mobility of ∼ 2 cm 2 V -1 s -1 , On/Off ratio of ∼ 10 2 , transmittance of ∼ 81% and excellent mechanical bendability.

  3. Solid-contact pH-selective electrode using multi-walled carbon nanotubes.

    Science.gov (United States)

    Crespo, Gastón A; Gugsa, Derese; Macho, Santiago; Rius, F Xavier

    2009-12-01

    Multi-walled carbon nanotubes (MWCNT) are shown to be efficient transducers of the ionic-to-electronic current. This enables the development of a new solid-contact pH-selective electrode that is based on the deposition of a 35-microm thick layer of MWCNT between the acrylic ion-selective membrane and the glassy carbon rod used as the electrical conductor. The ion-selective membrane was prepared by incorporating tridodecylamine as the ionophore, potassium tetrakis[3,5-bis(trifluoromethyl)phenyl]borate as the lipophilic additive in a polymerized methylmethacrylate and an n-butyl acrylate matrix. The potentiometric response shows Nernstian behaviour and a linear dynamic range between 2.89 and 9.90 pH values. The response time for this electrode was less than 10 s throughout the whole working range. The electrode shows a high selectivity towards interfering ions. Electrochemical impedance spectroscopy and chronopotentiometry techniques were used to characterise the electrochemical behaviour and the stability of the carbon-nanotube-based ion-selective electrodes.

  4. Silicon spectral response extension through single wall carbon nanotubes in hybrid solar cells

    KAUST Repository

    Del Gobbo, Silvano; Castrucci, P.; Fedele, S.; Riele, L.; Convertino, A.; Morbidoni, M.; De Nicola, F.; Scarselli, M.; Camilli, L.; De Crescenzi, M.

    2013-01-01

    Photovoltaic devices based on single wall carbon nanotubes (SWCNTs) and n-silicon multiple heterojunctions have been fabricated by a SWCNT film transferring process. We report on the ability of the carbon nanotubes to extend the Si spectral range towards the near ultraviolet (UV) and the near infrared regions. Semiconducting and about metallic SWCNT networks have been studied as a function of the film sheet resistance, Rsh. Optical absorbance and Raman spectroscopy have been used to assign nanotube chirality and electronic character. This gave us hints of evidence of the participation of the metal nanotubes in the photocurrent generation. Moreover, we provide evidence that the external quantum efficiency spectral range can be modulated as a function of the SWCNT network sheet resistance in a hybrid SWCNT/Si solar cell. This result will be very useful to further design/optimize devices with improved performance in spectral regions generally not covered by conventional Si p-n devices. © 2013 The Royal Society of Chemistry.

  5. XPS Protocol for the Characterization of Pristine and Functionalized Single Wall Carbon Nanotubes

    Science.gov (United States)

    Sosa, E. D.; Allada, R.; Huffman, C. B.; Arepalli, S.

    2009-01-01

    Recent interest in developing new applications for carbon nanotubes (CNT) has fueled the need to use accurate macroscopic and nanoscopic techniques to characterize and understand their chemistry. X-ray photoelectron spectroscopy (XPS) has proved to be a useful analytical tool for nanoscale surface characterization of materials including carbon nanotubes. Recent nanotechnology research at NASA Johnson Space Center (NASA-JSC) helped to establish a characterization protocol for quality assessment for single wall carbon nanotubes (SWCNTs). Here, a review of some of the major factors of the XPS technique that can influence the quality of analytical data, suggestions for methods to maximize the quality of data obtained by XPS, and the development of a protocol for XPS characterization as a complementary technique for analyzing the purity and surface characteristics of SWCNTs is presented. The XPS protocol is then applied to a number of experiments including impurity analysis and the study of chemical modifications for SWCNTs.

  6. Effects of residual aberrations explored on single-walled carbon nanotubes

    International Nuclear Information System (INIS)

    Biskupek, Johannes; Hartel, Peter; Haider, Maximilian; Kaiser, Ute

    2012-01-01

    The effects of geometric residual aberrations such as coma B 2 and two-fold astigmatism A 1 on the contrast in aberration corrected high resolution transmission electron microscopy (HRTEM) images are investigated on single-walled carbon nanotubes (SWNT). The individual aberrations are adjusted and set up manually using an imaging C S -corrector. We demonstrate how coma B 2 can be recognized by an experienced user directly in the image and how it blurs the contrast. Even with uncorrected (resolution limiting) spherical aberration C S the coma B 2 has to be considered and must be minimized. Limits for a tolerable coma are given. The experiments are confirmed by image simulations. -- Highlights: ► Individual effects of residual aberrations such as B 2 , A 1 , and C S are demonstrated. ► Experimental HRTEM and simulated images of carbon nanotubes are compared. ► A detection limit of 50 nm B 2 in a single HRTEM image is determined.

  7. Modification of single wall carbon nanotubes (SWNT) for hydrogen storage

    Energy Technology Data Exchange (ETDEWEB)

    Rashidi, A.M.; Nouralishahi, A.; Karimi, A.; Kashefi, K. [Nanotechnology Research Center, Research Institute of petroleum industry (RIPI), Tehran (Iran); Khodadadi, A.A.; Mortazavi, Y. [Chemical engineering Department, University of Tehran, Tehran (Iran)

    2010-09-15

    Due to unique structural, mechanical and electrical properties of single wall carbon nanotubes, SWNTs, they have been proposed as promising hydrogen storage materials especially in automotive industries. This research deals with investing of CNT's and some activated carbons hydrogen storage capacity. The CNT's were prepared through natural gas decomposition at a temperature of 900 C over cobalt-molybdenum nanoparticles supported by nanoporous magnesium oxide (Co-Mo/MgO) during a chemical vapor deposition (CVD) process. The effects of purity of CNT (80-95%wt.) on hydrogen storage were investigated here. The results showed an improvement in the hydrogen adsorption capacity with increasing the purity of CNT's. Maximum adsorption capacity was 0.8%wt. in case of CNT's with 95% purity and it may be raised up with some purification to 1%wt. which was far less than the target specified by DOE (6.5%wt.). Also some activated carbons were manufactured and the results compared to CNTs. There were no considerable H{sub 2}-storage for carbon nanotubes and activated carbons at room-temperature due to insufficient binding between H{sub 2} molecules carbon nanostructures. Therefore, hydrogen must be adsorbed via interaction of atomic hydrogen with the storage environment in order to achieve DOE target, because the H atoms have a very stronger interaction with carbon nanostructures. (author)

  8. Thermo-sensitive liposomes loaded with doxorubicin and lysine modified single-walled carbon nanotubes as tumor-targeting drug delivery system.

    Science.gov (United States)

    Zhu, Xiali; Xie, Yingxia; Zhang, Yingjie; Huang, Heqing; Huang, Shengnan; Hou, Lin; Zhang, Huijuan; Li, Zhi; Shi, Jinjin; Zhang, Zhenzhong

    2014-11-01

    This report focuses on the thermo-sensitive liposomes loaded with doxorubicin and lysine-modified single-walled carbon nanotube drug delivery system, which was designed to enhance the anti-tumor effect and reduce the side effects of doxorubicin. Doxorubicin-lysine/single-walled carbon nanotube-thermo-sensitive liposomes was prepared by reverse-phase evaporation method, the mean particle size was 232.0 ± 5.6 nm, and drug entrapment efficiency was 86.5 ± 3.7%. The drug release test showed that doxorubicin released more quickly at 42℃ than at 37℃. Compared with free doxorubicin, doxorubicin-lysine/single-walled carbon nanotube-thermo-sensitive liposomes could efficiently cross the cell membranes and afford higher anti-tumor efficacy on the human hepatic carcinoma cell line (SMMC-7721) cells in vitro. For in vivo experiments, the relative tumor volumes of the sarcomaia 180-bearing mice in thermo-sensitive liposomes group and doxorubicin group were significantly smaller than those of N.S. group. Meanwhile, the combination of near-infrared laser irradiation at 808 nm significantly enhanced the tumor growth inhibition both on SMMC-7721 cells and the sarcomaia 180-bearing mice. The quality of life such as body weight, mental state, food and water intake of sarcomaia 180 tumor-bearing mice treated with doxorubicin-lysine/single-walled carbon nanotube-thermo-sensitive liposomes were much higher than those treated with doxorubicin. In conclusion, doxorubicin-lysine/single-walled carbon nanotube-thermo-sensitive liposomes combined with near-infrared laser irradiation at 808 nm may potentially provide viable clinical strategies for targeting delivery of anti-cancer drugs. © The Author(s) 2014 Reprints and permissions: sagepub.co.uk/journalsPermissions.nav.

  9. Chlorophenols Sorption on Multi-Walled Carbon Nanotubes: DFT Modeling and Structure-Property Relationship Analysis

    OpenAIRE

    Watkins, Marquita; Sizochenko, Natalia; Moore, Quentarius; Golebiowski, Marek; Leszczynska, Danuta; Leszczynski, Jerzy

    2017-01-01

    Presence of chlorophenols in drinking water could be hazardous to human health. Optimization and computational modeling of experimental conditions of adsorption lead to understanding the mechanisms of this process and to creating the efficient experimental equipment. In the current study, we investigated multi-walled carbon nanotubes by means of density functional theory (DFT) approach. This is applied to study selected types of interactions between six solvents, five types of nanotubes, and ...

  10. Band Gap Changes Of Single Walled Carbon Nanotubes Under Uniaxial Strain

    International Nuclear Information System (INIS)

    Dereli, G.

    2010-01-01

    The study of the band gap variation with mechanical deformation is important in manipulations of Single Walled Carbon Nanotubes (SWCNT). In this study we investigated the electronic band structure and the mechanical properties of (12,0) and (13,0) SWCNTs under the effect of uniaxial strain. Electronic and mechanical properties are studied using a parallel, order N, tight-binding molecular dynamics (O(N) TBMD) simulation code designed by G. Dereli et. al. We showed the effect of uniaxial strain on the variations of band gaps and the total energy per atom of (12,0) and (13,0) SWCNTs. We calculated Young's modulus and the Poisson ratio of these SWCNTs. The research reported here was supported through the Yildiz Technical University Research Found Project No: 24-01-01-04. Simulations are performed in parallel environment at Carbon Nanotube Simulation Laboratory of Yildiz Technical University.

  11. Double-walled silicon nanotubes: an ab initio investigation

    Science.gov (United States)

    Lima, Matheus P.

    2018-02-01

    The synthesis of silicon nanotubes realized in the last decade demonstrates multi-walled tubular structures consisting of Si atoms in {{sp}}2 and the {{sp}}3 hybridizations. However, most of the theoretical models were elaborated taking as the starting point {{sp}}2 structures analogous to carbon nanotubes. These structures are unfavorable due to the natural tendency of the Si atoms to undergo {{sp}}3. In this work, through ab initio simulations based on density functional theory, we investigated double-walled silicon nanotubes proposing layered tubes possessing most of the Si atoms in an {{sp}}3 hybridization, and with few {{sp}}2 atoms localized at the outer wall. The lowest-energy structures have metallic behavior. Furthermore, the possibility to tune the band structure with the application of a strain was demonstrated, inducing a metal-semiconductor transition. Thus, the behavior of silicon nanotubes differs significantly from carbon nanotubes, and the main source of the differences is the distortions in the lattice associated with the tendency of Si to make four chemical bonds.

  12. Diameter modulation of vertically aligned single-walled carbon nanotubes.

    Science.gov (United States)

    Xiang, Rong; Einarsson, Erik; Murakami, Yoichi; Shiomi, Junichiro; Chiashi, Shohei; Tang, Zikang; Maruyama, Shigeo

    2012-08-28

    We demonstrate wide-range diameter modulation of vertically aligned single-walled carbon nanotubes (SWNTs) using a wet chemistry prepared catalyst. In order to ensure compatibility to electronic applications, the current minimum mean diameter of 2 nm for vertically aligned SWNTs is challenged. The mean diameter is decreased to about 1.4 nm by reducing Co catalyst concentrations to 1/100 or by increasing Mo catalyst concentrations by five times. We also propose a novel spectral analysis method that allows one to distinguish absorbance contributions from the upper, middle, and lower parts of a nanotube array. We use this method to quantitatively characterize the slight diameter change observed along the array height. On the basis of further investigation of the array and catalyst particles, we conclude that catalyst aggregation-rather than Ostwald ripening-dominates the growth of metal particles.

  13. Surfactive stabilization of multi-walled carbon nanotube dispersions with dissolved humic substances

    Energy Technology Data Exchange (ETDEWEB)

    Chappell, Mark A. [Environmental Laboratory, Engineering Research and Development Center, US Army Corps of Engineers, 3909 Halls Ferry Road, Vicksburg, MS 39180 (United States)], E-mail: mark.a.chappell@usace.army.mil; George, Aaron J.; Dontsova, Katerina M.; Porter, Beth E. [SpecPro, Inc., 4815 Bradford Drive, Suite 201, Huntsville, AL 35805 (United States); Price, Cynthia L. [Environmental Laboratory, Engineering Research and Development Center, US Army Corps of Engineers, 3909 Halls Ferry Road, Vicksburg, MS 39180 (United States); Zhou Pingheng; Morikawa, Eizi [J. Bennett Johnston Sr. Center for Advanced Microstructures and Devices, Louisiana State University, 6980 Jefferson Highway, Baton Rouge, LA 70806 (United States); Kennedy, Alan J.; Steevens, Jeffery A. [Environmental Laboratory, Engineering Research and Development Center, US Army Corps of Engineers, 3909 Halls Ferry Road, Vicksburg, MS 39180 (United States)

    2009-04-15

    Soil humic substances (HS) stabilize carbon nanotube (CNT) dispersions, a mechanism we hypothesized arose from the surfactive nature of HS. Experiments dispersing multi-walled CNT in solutions of dissolved Aldrich humic acid (HA) or water-extractable Catlin soil HS demonstrated enhanced stability at 150 and 300 mg L{sup -1} added Aldrich HA and Catlin HS, respectively, corresponding with decreased CNT mean particle diameter (MPD) and polydispersivity (PD) of 250 nm and 0.3 for Aldrich HA and 450 nm and 0.35 for Catlin HS. Analogous trends in MPD and PD were observed with addition of the surfactants Brij 35, Triton X-405, and SDS, corresponding to surfactant sorption maximum. NEXAFS characterization showed that Aldrich HA contained highly surfactive domains while Catlin soil possessed a mostly carbohydrate-based structure. This work demonstrates that the chemical structure of humic materials in natural waters is directly linked to their surfactive ability to disperse CNT released into the environment. - Suspensions of multi-walled carbon nanotubes are stabilized by relatively low concentrations of dissolved humic substances in solution through surfactive mechanisms.

  14. Surfactive stabilization of multi-walled carbon nanotube dispersions with dissolved humic substances

    International Nuclear Information System (INIS)

    Chappell, Mark A.; George, Aaron J.; Dontsova, Katerina M.; Porter, Beth E.; Price, Cynthia L.; Zhou Pingheng; Morikawa, Eizi; Kennedy, Alan J.; Steevens, Jeffery A.

    2009-01-01

    Soil humic substances (HS) stabilize carbon nanotube (CNT) dispersions, a mechanism we hypothesized arose from the surfactive nature of HS. Experiments dispersing multi-walled CNT in solutions of dissolved Aldrich humic acid (HA) or water-extractable Catlin soil HS demonstrated enhanced stability at 150 and 300 mg L -1 added Aldrich HA and Catlin HS, respectively, corresponding with decreased CNT mean particle diameter (MPD) and polydispersivity (PD) of 250 nm and 0.3 for Aldrich HA and 450 nm and 0.35 for Catlin HS. Analogous trends in MPD and PD were observed with addition of the surfactants Brij 35, Triton X-405, and SDS, corresponding to surfactant sorption maximum. NEXAFS characterization showed that Aldrich HA contained highly surfactive domains while Catlin soil possessed a mostly carbohydrate-based structure. This work demonstrates that the chemical structure of humic materials in natural waters is directly linked to their surfactive ability to disperse CNT released into the environment. - Suspensions of multi-walled carbon nanotubes are stabilized by relatively low concentrations of dissolved humic substances in solution through surfactive mechanisms

  15. Crystallization and melting behavior of multi-walled carbon nanotube-reinforced nylon-6 composites

    NARCIS (Netherlands)

    Phang, In Yee; Ma, Jianhua; Shen, Lu; Liu, Tianxi; Zhang, Wei-De

    2006-01-01

    The crystallization and melting behavior of neat nylon-6 (PA6) and multi-walled carbon nanotubes (MWNTs)/PA6 composites prepared by simple melt-compounding was comparatively studied. Differential scanning calorimetry (DSC) results show two crystallization exotherms (TCC, 1 and TCC, 2) for PA6/MWNTs

  16. Microwave absorbing properties of polyaniline/multi-walled carbon nanotube composites with various polyaniline contents

    International Nuclear Information System (INIS)

    Ting, T.H.; Jau, Y.N.; Yu, R.P.

    2012-01-01

    Polyaniline/multi-walled carbon nanotube (PANI/MWNT) composites were synthesized using in situ polymerization at different aniline/multi-walled carbon nanotube weight ratios (Ani/MWNT = 1/2, 1/1, 2/1 and 3/1) and introduced into an epoxy resin to act as a microwave absorber. The spectroscopic characterization of the process of formation of PANI/MWNT composites were studied using Fourier transform infrared spectroscopy, an ultraviolet-visible spectrophotometer, X-ray diffraction, scanning electron microscopy, transmission electron microscopy and electron spin resonance. The microwave absorbing properties were investigated by measuring complex permittivity, complex permeability and reflection loss in the 2-18 and 18-40 GHz microwave frequency range, using the free space method. The results showed that the addition of PANI was useful for achieving a large absorption over a wide frequency range, especially for higher frequency values.

  17. Simultaneous synthesis of single-walled carbon nanotubes and graphene in a magnetically-enhanced arc plasma.

    Science.gov (United States)

    Li, Jian; Shashurin, Alexey; Kundrapu, Madhusudhan; Keidar, Michael

    2012-02-02

    Carbon nanostructures such as single-walled carbon nanotubes (SWCNT) and graphene attract a deluge of interest of scholars nowadays due to their very promising application for molecular sensors, field effect transistor and super thin and flexible electronic devices(1-4). Anodic arc discharge supported by the erosion of the anode material is one of the most practical and efficient methods, which can provide specific non-equilibrium processes and a high influx of carbon material to the developing structures at relatively higher temperature, and consequently the as-synthesized products have few structural defects and better crystallinity. To further improve the controllability and flexibility of the synthesis of carbon nanostructures in arc discharge, magnetic fields can be applied during the synthesis process according to the strong magnetic responses of arc plasmas. It was demonstrated that the magnetically-enhanced arc discharge can increase the average length of SWCNT (5), narrow the diameter distribution of metallic catalyst particles and carbon nanotubes (6), and change the ratio of metallic and semiconducting carbon nanotubes (7), as well as lead to graphene synthesis (8). Furthermore, it is worthwhile to remark that when we introduce a non-uniform magnetic field with the component normal to the current in arc, the Lorentz force along the J×B direction can generate the plasmas jet and make effective delivery of carbon ion particles and heat flux to samples. As a result, large-scale graphene flakes and high-purity single-walled carbon nanotubes were simultaneously generated by such new magnetically-enhanced anodic arc method. Arc imaging, scanning electron microscope (SEM), transmission electron microscope (TEM) and Raman spectroscopy were employed to analyze the characterization of carbon nanostructures. These findings indicate a wide spectrum of opportunities to manipulate with the properties of nanostructures produced in plasmas by means of controlling the

  18. Toxicological effects of multi-wall carbon nanotubes in rats

    International Nuclear Information System (INIS)

    Liu Aihong; Sun Kangning; Yang, Jiafeng; Zhao Dongmei

    2008-01-01

    The aim of this study was to evaluate the lung toxicity of multi-wall carbon nanotubes (MWCNTs). The present work exposed MWCNTs into the rats in intratracheal instillation administration modes. We systematically studied the distribution of nanoparticles in vivo, target organs and time-effects of nanotoxicity, dose-effects of nanotoxicity, etc. These results indicate that under the conditions of this test, pulmonary exposures to MWCNTs in rats by intratracheal instillation produced a series of multiple lesions in a dose-dependent and time-dependent manner, evidence of a foreign tissue body reaction.

  19. Toxicological effects of multi-wall carbon nanotubes in rats

    Energy Technology Data Exchange (ETDEWEB)

    Liu Aihong; Sun Kangning, E-mail: Sunkangning@sdu.edu.cn; Yang, Jiafeng [Engineering Ceramics Key Laboratory of Shandong Province, Material Science and Engineering Institute, Shandong University, Key Laboratory of Liquid Structure and Heredity of Materials ministry of Education (China); Zhao Dongmei [The Second Hospital of Shandong University (China)

    2008-12-15

    The aim of this study was to evaluate the lung toxicity of multi-wall carbon nanotubes (MWCNTs). The present work exposed MWCNTs into the rats in intratracheal instillation administration modes. We systematically studied the distribution of nanoparticles in vivo, target organs and time-effects of nanotoxicity, dose-effects of nanotoxicity, etc. These results indicate that under the conditions of this test, pulmonary exposures to MWCNTs in rats by intratracheal instillation produced a series of multiple lesions in a dose-dependent and time-dependent manner, evidence of a foreign tissue body reaction.

  20. Flexible, transparent single-walled carbon nanotube transistors with graphene electrodes

    Energy Technology Data Exchange (ETDEWEB)

    Jang, Sukjae; Jang, Houk; Lee, Youngbin; Suh, Daewoo; Baik, Seunghyun; Hong, Byung Hee; Ahn, Jong-Hyun, E-mail: ahnj@skku.edu, E-mail: byunghee@skku.edu [SKKU Advanced Institute of Nanotechnology (SAINT) and Center for Human Interface Nano Technology (HINT), Sungkyunkwan University, Suwon 440-746 (Korea, Republic of)

    2010-10-22

    This paper reports a mechanically flexible, transparent thin film transistor that uses graphene as a conducting electrode and single-walled carbon nanotubes (SWNTs) as a semiconducting channel. These SWNTs and graphene films were printed on flexible plastic substrates using a printing method. The resulting devices exhibited a mobility of {approx} 2 cm{sup 2} V{sup -1} s{sup -1}, On/Off ratio of {approx} 10{sup 2}, transmittance of {approx} 81% and excellent mechanical bendability.

  1. Alignment characterization of single-wall carbon nanotubes by Raman scattering

    International Nuclear Information System (INIS)

    Liu Pijun; Liu Liyue; Zhang Yafei

    2003-01-01

    A novel method for identifying the Raman modes of single-wall carbon nanotubes (SWNT) based on the symmetry of the vibration modes has been studied. The Raman intensity of each vibration mode varies with polarization direction, and the relationship can be expressed as analytical functions. This method avoids troublesome numerical calculation and easily gives clear relations between Raman intensity and polarization direction. In this way, one can distinguish each Raman-active mode of SWNT through the polarized Raman spectrum

  2. Method for producing carbon nanotubes

    Science.gov (United States)

    Phillips, Jonathan [Santa Fe, NM; Perry, William L [Jemez Springs, NM; Chen, Chun-Ku [Albuquerque, NM

    2006-02-14

    Method for producing carbon nanotubes. Carbon nanotubes were prepared using a low power, atmospheric pressure, microwave-generated plasma torch system. After generating carbon monoxide microwave plasma, a flow of carbon monoxide was directed first through a bed of metal particles/glass beads and then along the outer surface of a ceramic tube located in the plasma. As a flow of argon was introduced into the plasma through the ceramic tube, ropes of entangled carbon nanotubes, attached to the surface of the tube, were produced. Of these, longer ropes formed on the surface portion of the tube located in the center of the plasma. Transmission electron micrographs of individual nanotubes revealed that many were single-walled.

  3. Fabrication of Antibacterial Poly(Vinyl Alcohol Nanocomposite Films Containing Dendritic Polymer Functionalized Multi-Walled Carbon Nanotubes

    Directory of Open Access Journals (Sweden)

    Andreas Sapalidis

    2018-03-01

    Full Text Available A series of poly(vinyl alcohol (PVA nanocomposite films containing quaternized hyperbranched polyethyleneimine (PEI functionalized multi-walled carbon nanotubes (ox-CNTs@QPEI are prepared by solvent casting technique. The modified carbon-based material exhibits high aqueous solubility, due to the hydrophilic character of the functionalized hyperbranched dendritic polymer. The quaternized PEI successfully wraps around nanotube walls as polycations provide electrostatic repulsion. Various contents of ox-CNTs@QPEI ranging from 0.05 to 1.0% w/w were employed to prepare functionalized PVA nanocomposites. The developed films exhibit adequate optical transparency, improved mechanical properties and extremely high antibacterial behavior due to the excellent dispersion of the functionalized CNTs into the PVA matrix.

  4. Carbon Nanotubes and Modern Nanoagriculture

    KAUST Repository

    Serag, Maged F.

    2015-01-27

    Since their discovery, carbon nanotubes have been prominent members of the nanomaterial family. Owing to their extraordinary physical, chemical, and mechanical properties, carbon nanotubes have been proven to be a useful tool in the field of plant science. They were frequently perceived to bring about valuable biotechnological and agricultural applications that still remain beyond experimental realization. An increasing number of studies have demonstrated the ability of carbon nanotubes to traverse different plant cell barriers. These studies, also, assessed the toxicity and environmental impacts of these nanomaterials. The knowledge provided by these studies is of practical and fundamental importance for diverse applications including intracellular labeling and imaging, genetic transformation, and for enhancing our knowledge of plant cell biology. Although different types of nanoparticles have been found to activate physiological processes in plants, carbon nanotubes received particular interest. Following addition to germination medium, carbon nanotubes enhanced root growth and elongation of some plants such as onion, cucumber and rye-grass. They, also, modulated the expression of some genes that are essential for cell division and plant development. In addition, multi-walled carbon nanotubes were evidenced to penetrate thick seed coats, stimulate germination, and to enhance growth of young tomato seedlings. Multi-walled carbon nanotubes can penetrate deeply into the root system and further distribute into the leaves and the fruits. In recent studies, carbon nanotubes were reported to be chemically entrapped into the structure of plant tracheary elements. This should activate studies in the fields of plant defense and wood engineering. Although, all of these effects on plant physiology and plant developmental biology have not been fully understood, the valuable findings promises more research activity in the near future toward complete scientific understanding of

  5. Buckling of ZnS-filled single-walled carbon nanotubes – The influence of aspect ratio

    KAUST Repository

    Monteiro, André O.; Da Costa, Pedro M. F. J.; Cachim, Paulo B.; Holec, David

    2014-01-01

    The mechanical response of single-walled carbon nanotubes (SWCNT) filled with crystalline zinc sulphide (ZnS) nanowires under uniaxial compression is studied using classical molecular dynamics. These simulations were used to analyse the behaviour

  6. Gold nanoparticle/multi-walled carbon nanotube modified glassy carbon electrode as a sensitive voltammetric sensor for the determination of diclofenac sodium

    International Nuclear Information System (INIS)

    Afkhami, Abbas; Bahiraei, Atousa; Madrakian, Tayyebeh

    2016-01-01

    A simple and highly sensitive sensor for the determination of diclofenac sodium based on gold nanoparticle/multi-walled carbon nanotube modified glassy carbon electrode is reported. Scanning electron microscopy along with energy dispersive X-ray spectroscopy, electrochemical impedance spectroscopy, cyclic voltammetry and square wave voltammetry was used to characterize the nanostructure and performance of the sensor and the results were compared with those obtained at the multi-walled carbon nanotube modified glassy carbon electrode and bare glassy carbon electrode. Under the optimized experimental conditions diclofenac sodium gave linear response over the range of 0.03–200 μmol L −1 . The lower detection limits were found to be 0.02 μmol L −1 . The effect of common interferences on the current response of DS was investigated. The practical application of the modified electrode was demonstrated by measuring the concentration of diclofenac sodium in urine and pharmaceutical samples. This revealed that the gold nanoparticle/multiwalled carbon nanotube modified glassy carbon electrode shows excellent analytical performance for the determination of diclofenac sodium in terms of a very low detection limit, high sensitivity, very good accuracy, repeatability and reproducibility. - Highlights: • GCE was modified with multiwalled carbon nanotube and gold nanoparticles. • AuNP/MWCNT/GCE was used for the determination of diclofenac sodium. • Modified electrode was characterized by SEM, EDS and EIS. • The proposed method showed excellent analytical figures of merit. • This sensor was used for the determination of diclofenac sodium in real samples.

  7. Gold nanoparticle/multi-walled carbon nanotube modified glassy carbon electrode as a sensitive voltammetric sensor for the determination of diclofenac sodium

    Energy Technology Data Exchange (ETDEWEB)

    Afkhami, Abbas, E-mail: afkhami@basu.ac.ir; Bahiraei, Atousa; Madrakian, Tayyebeh

    2016-02-01

    A simple and highly sensitive sensor for the determination of diclofenac sodium based on gold nanoparticle/multi-walled carbon nanotube modified glassy carbon electrode is reported. Scanning electron microscopy along with energy dispersive X-ray spectroscopy, electrochemical impedance spectroscopy, cyclic voltammetry and square wave voltammetry was used to characterize the nanostructure and performance of the sensor and the results were compared with those obtained at the multi-walled carbon nanotube modified glassy carbon electrode and bare glassy carbon electrode. Under the optimized experimental conditions diclofenac sodium gave linear response over the range of 0.03–200 μmol L{sup −1}. The lower detection limits were found to be 0.02 μmol L{sup −1}. The effect of common interferences on the current response of DS was investigated. The practical application of the modified electrode was demonstrated by measuring the concentration of diclofenac sodium in urine and pharmaceutical samples. This revealed that the gold nanoparticle/multiwalled carbon nanotube modified glassy carbon electrode shows excellent analytical performance for the determination of diclofenac sodium in terms of a very low detection limit, high sensitivity, very good accuracy, repeatability and reproducibility. - Highlights: • GCE was modified with multiwalled carbon nanotube and gold nanoparticles. • AuNP/MWCNT/GCE was used for the determination of diclofenac sodium. • Modified electrode was characterized by SEM, EDS and EIS. • The proposed method showed excellent analytical figures of merit. • This sensor was used for the determination of diclofenac sodium in real samples.

  8. Electrochemical parameters of ethamsylate at multi-walled carbon nanotube modified glassy carbon electrodes.

    Science.gov (United States)

    Wang, Sheng-Fu; Xu, Qiao

    2007-05-01

    In this paper, some electrochemical parameters of ethamsylate at a multi-walled carbon nanotube modified glassy carbon electrode, such as the charge number, exchange current density, standard heterogeneous rate constant and diffusion coefficient, were measured by cyclic voltammetry, chronoamperometry and chronocoulometry. The modified electrode exhibits good promotion of the electrochemical reaction of ethamsylate and increases the standard heterogeneous rate constant of ethamsylate greatly. The differential pulse voltammetry responses of ethamsylate were linearly dependent on its concentrations in a range from 2.0 x 10(-6) to 6.0 x 10(-5) mol L(-1), with a detection limit of 4.0 x 10(-7) mol L(-1).

  9. Application of electron energy loss spectroscopy for single wall carbon nanotubes (review)

    International Nuclear Information System (INIS)

    Mittal, N.; Jain, S.; Mittal, J.

    2015-01-01

    Electron energy loss spectroscopy (EELS) is among the few techniques that are available for the characterization of modified single wall carbon nanotubes (SWCNTs) having nanometer dimensions (~1-3 nm). CNTs can be modified either by surface functionalization or coating, between bundles of nanotubes by doping, intercalation and fully or partially filling the central core. EELS is an exclusive technique for the identification, composition analysis, and crystallization studies of the chemicals and materials used for the modification of SWCNTs. The present paper serves as a compendium of research work on the application of EELS for the characterization of modified SWCNTs. (authors)

  10. Motion control in double-walled carbon nanotube systems using a Stone-Thrower-Wales defect cluster

    International Nuclear Information System (INIS)

    Liu Ping; Zhang Yongwei

    2010-01-01

    The ability to control the motion of a single molecule will have an important impact in nano-mechanical systems. Multi-walled carbon nanotube systems, which have extremely low intertube friction and strong motion confinement, can form the basis for mechanically based motion control. We devise two molecular motion control units based on double-walled carbon nanotubes embedded with a Stone-Thrower-Wales defect cluster, and perform molecular dynamics simulations to determine the characteristics of these two control units. We show that one of the molecular control units is able to perform a logic operation on one logic input and produce three logic outputs, while the other is able to produce two logic outputs. Potential applications of the motion control units include molecular switches, shuttles and mechanically based logic devices.

  11. Rotational actuator of motor based on carbon nanotubes

    Science.gov (United States)

    Zettl, Alexander K.; Fennimore, Adam M.; Yuzvinsky, Thomas D.

    2008-11-18

    A rotational actuator/motor based on rotation of a carbon nanotube is disclosed. The carbon nanotube is provided with a rotor plate attached to an outer wall, which moves relative to an inner wall of the nanotube. After deposit of a nanotube on a silicon chip substrate, the entire structure may be fabricated by lithography using selected techniques adapted from silicon manufacturing technology. The structures to be fabricated may comprise a multiwall carbon nanotube (MWNT), two in plane stators S1, S2 and a gate stator S3 buried beneath the substrate surface. The MWNT is suspended between two anchor pads and comprises a rotator attached to an outer wall and arranged to move in response to electromagnetic inputs. The substrate is etched away to allow the rotor to freely rotate. Rotation may be either in a reciprocal or fully rotatable manner.

  12. A Multi-Walled Carbon Nanotube-based Biosensor for Monitoring Microcystin-LR in Sources of Drinking Water Supplies

    Science.gov (United States)

    A multi-walled carbon nanotube-based electrochemical biosensor is developed for monitoring microcystin-LR (MC-LR), a toxic cyanobacterial toxin, in sources of drinking water supplies. The biosensor electrodes are fabricated using dense, mm-long multi-walled CNT (MWCNT) arrays gro...

  13. Structure and Characterization of Vertically Aligned Single-Walled Carbon Nanotube Bundles

    International Nuclear Information System (INIS)

    Marquez, F.; Morant, C.; Elizalde, E.; Roque-Malherbe, R.; Lopez, V.; Zamora, F.; Domingo, C.

    2010-01-01

    Arrays of vertically aligned single-walled carbon nanotube bundles, SWCNTs, have been synthesized by simple alcohol catalytic chemical vapor deposition process, carried out at 800 degree C. The formed SWCNTs are organized in small groups perpendicularly aligned and attached to the substrate. These small bundles show a constant diameter of ca. 30 nm and are formed by the adhesion of no more than twenty individual SWCNTs perfectly aligned along their length.

  14. Dispersion of multi-walled carbon nanotubes in biocompatible dispersants

    International Nuclear Information System (INIS)

    Piret, J.-P.; Detriche, S.; Vigneron, R.; Vankoningsloo, S.; Rolin, S.; Mejia Mendoza, J. H.; Masereel, B.; Lucas, S.; Delhalle, J.; Luizi, F.; Saout, C.; Toussaint, O.

    2010-01-01

    Owing to their phenomenal electrical and mechanical properties, carbon nanotubes (CNT) have been an area of intense research since their discovery in 1991. Different applications for these nanoparticles have been proposed, among others, in electronics and optics but also in the medical field. In parallel, emerging studies have suggested potential toxic effects of CNT while others did not, generating some conflicting outcomes. These discrepancies could be, in part, due to different suspension approaches used and to the agglomeration state of CNT in solution. In this study, we described a standardized protocol to obtain stable CNT suspensions, using two biocompatible dispersants (Pluronic F108 and hydroxypropylcellulose) and to estimate the concentration of CNT in solution. CNT appear to be greatly individualized in these two dispersants with no detection of remaining bundles or agglomerates after sonication and centrifugation. Moreover, CNT remained perfectly dispersed when added to culture medium used for in vitro cell experiments. We also showed that Pluronic F108 is a better dispersant than hydroxypropylcellulose. In conclusion, we have developed a standardized protocol using biocompatible surfactants to obtain reproducible and stable multi-walled carbon nanotubes suspensions which can be used for in vitro or in vivo toxicological studies.

  15. Zipping, entanglement, and the elastic modulus of aligned single-walled carbon nanotube films

    Science.gov (United States)

    Won, Yoonjin; Gao, Yuan; Panzer, Matthew A.; Xiang, Rong; Maruyama, Shigeo; Kenny, Thomas W.; Cai, Wei; Goodson, Kenneth E.

    2013-01-01

    Reliably routing heat to and from conversion materials is a daunting challenge for a variety of innovative energy technologies––from thermal solar to automotive waste heat recovery systems––whose efficiencies degrade due to massive thermomechanical stresses at interfaces. This problem may soon be addressed by adhesives based on vertically aligned carbon nanotubes, which promise the revolutionary combination of high through-plane thermal conductivity and vanishing in-plane mechanical stiffness. Here, we report the data for the in-plane modulus of aligned single-walled carbon nanotube films using a microfabricated resonator method. Molecular simulations and electron microscopy identify the nanoscale mechanisms responsible for this property. The zipping and unzipping of adjacent nanotubes and the degree of alignment and entanglement are shown to govern the spatially varying local modulus, thereby providing the route to engineered materials with outstanding combinations of mechanical and thermal properties. PMID:24309375

  16. Role of adsorbed surfactant in the reaction of aryl diazonium salts with single-walled carbon nanotubes.

    Science.gov (United States)

    Hilmer, Andrew J; McNicholas, Thomas P; Lin, Shangchao; Zhang, Jingqing; Wang, Qing Hua; Mendenhall, Jonathan D; Song, Changsik; Heller, Daniel A; Barone, Paul W; Blankschtein, Daniel; Strano, Michael S

    2012-01-17

    Because covalent chemistry can diminish the optical and electronic properties of single-walled carbon nanotubes (SWCNTs), there is significant interest in developing methods of controllably functionalizing the nanotube sidewall. To date, most attempts at obtaining such control have focused on reaction stoichiometry or strength of oxidative treatment. Here, we examine the role of surfactants in the chemical modification of single-walled carbon nanotubes with aryl diazonium salts. The adsorbed surfactant layer is shown to affect the diazonium derivatization of carbon nanotubes in several ways, including electrostatic attraction or repulsion, steric exclusion, and direct chemical modification of the diazonium reactant. Electrostatic effects are most pronounced in the cases of anionic sodium dodecyl sulfate and cationic cetyltrimethylammonium bromide, where differences in surfactant charge can significantly affect the ability of the diazonium ion to access the SWCNT surface. For bile salt surfactants, with the exception of sodium cholate, we find that the surfactant wraps tightly enough such that exclusion effects are dominant. Here, sodium taurocholate exhibits almost no reactivity under the explored reaction conditions, while for sodium deoxycholate and sodium taurodeoxycholate, we show that the greatest extent of reaction is observed among a small population of nanotube species, with diameters between 0.88 and 0.92 nm. The anomalous reaction of nanotubes in this diameter range seems to imply that the surfactant is less effective at coating these species, resulting in a reduced surface coverage on the nanotube. Contrary to the other bile salts studied, sodium cholate enables high selectivity toward metallic species and small band gap semiconductors, which is attributed to surfactant-diazonium coupling to form highly reactive diazoesters. Further, it is found that the rigidity of anionic surfactants can significantly influence the ability of the surfactant layer to

  17. Non-radiative Exciton Decay in Single-walled Carbon Nanotubes

    Science.gov (United States)

    Harrah, Mark; Swan, Anna

    2010-03-01

    Experiments have shown step-wise changes in the fluorescence intensity from single-walled carbon nanotubes [1,2]. It has been proposed that the underlying mechanism for the step-wise changes is diffusion-limited quenching of excitons at defects [1]. This property has been used to demonstrate single-molecule detection for biological applications [3]. We perform a Monte-Carlo simulation of nanotube fluorescence with a diffusion-limited quenching model. The fluorescence intensity is seen to depend on the mean-square distance between defects, implying a nonlinear dependence on the number of defects. The intensity for consecutive defect counts can overlap depending on the positions of the defects. [4pt] [1] Cognet, L. et al. Science 316, 1465-1468 (2007).[0pt] [2] Jin, H. et al. Nano Lett. 8, 4299-4304 (2008).[0pt] [3] Heller, D. A. et al. Nature Nanotech. 4, 114-120 (2009).

  18. Electrostatically actuated oscillator of bundle and double-walled carbon nanotubes

    Energy Technology Data Exchange (ETDEWEB)

    Kang, Jeong Won; Song, Ki Oh; Hwang, Ho Jung [Chung-Ang University, Seoul (Korea, Republic of); Lee, Jun Ha; Lee, Hoong Joo [Sangmyung University, Chonan (Korea, Republic of); Kwon, Oh Keun [Semyung University, Jecheon (Korea, Republic of); Yoon, Young Sik; Song, Young Jin [Konyang University, Nonsan (Korea, Republic of)

    2006-03-15

    Schematics of capacitively driven carbon nanotube (CNT) oscillators were presented and investigated by using classical molecular dynamics simulations. While the capacitive force acting on a CNT oscillator extruded it, the force exerted by the excess van der Waals energy sucked the CNT oscillator into the bundle or outer shell. The CNT oscillator could be oscillated by using both the Coulomb and the van der Waals interactions. The van der Waals force of the bundle-type CNT oscillator was less than the van der Waals force of the double-walled CNT oscillator. Molecular dynamics simulation results showed that double-walled CNT oscillators were better than bundle-type CNT oscillators in the aspects of both energy dissipation and stable operation.

  19. THERMAL DECOMPOSITION AND FLAMMABILITY OF ACRYLONITRILE-BUTADIENE-STYRENE/MULTI-WALLED CARBON NANOTUBES COMPOSITES

    Institute of Scientific and Technical Information of China (English)

    Li-fang Tong; Hai-yun Ma; Zheng-ping Fang

    2008-01-01

    Thermal and flammability properties of acrylonitrile-butadiene-styrene copolymer (ABS) with the addition of multi-walled carbon nanotubes (MWNTs) were studied. ABS/MWNTs composites were prepared via melt blending with the MWNTs content varied from 0.2% to 4.0% by mass. Thermogravimetry results showed that the addition of MWNTs accelerated the degradation of ABS during the whole process under air atmosphere, and both onset and maximum degradation temperature were lower than those of pure ABS. The destabilization effect of MWNTs on the thermal stability of the composites became unobvious under nitrogen, and the addition of MWNTs could improve the maximum degradation temperature. The heat release rate and time of ignition (tign) for the composites reduced greatly with the addition of MWNTs especially when the concentration of nanotubes was higher than 1.0%. The accumulation of carbon nanotubes with a network structure was observed and the char layer became thicker with increasing nanotubes concentration. Results from Raman spectra showed a higher degree of graphitization for the residues of ABS/MWNTs composites.

  20. Soft purification of N-doped and undoped multi-wall carbon nanotubes

    International Nuclear Information System (INIS)

    Alvizo-Paez, Edgar Rogelio; Ruiz-Garcia, Jaime; Hernandez-Lopez, Jose Luis; Romo-Herrera, Jose Manuel; Terrones, Humberto; Terrones, Mauricio

    2008-01-01

    A soft method for purifying multi-wall carbon nanotubes (N-doped and undoped) is presented. The technique includes a hydrothermal/ultrasonic treatment of the material in conjunction with other subsequent treatments, including the extraction of polyaromatic compounds, dissolution of metal particles, bundle exfoliation, and uniform dispersion. This method avoids harsh oxidation protocols that burn (via thermal treatments) or functionalize (by introducing chemical groups) the nanotubes. We show a careful analysis of each purification step and demonstrate that the technique is extremely efficient when characterizing the materials using scanning electron microscopy (SEM), energy dispersive x-ray analysis (EDAX), scanning tuneling electron microscopy (STEM), x-ray powder diffraction (XRD), diffuse reflectance Fourier transform infrared (DRFTIR) spectroscopy and thermogravimetric analysis (TGA)

  1. Process for derivatizing carbon nanotubes with diazonium species

    Science.gov (United States)

    Tour, James M. (Inventor); Bahr, Jeffrey L. (Inventor); Yang, Jiping (Inventor)

    2007-01-01

    The invention incorporates new processes for the chemical modification of carbon nanotubes. Such processes involve the derivatization of multi- and single-wall carbon nanotubes, including small diameter (ca. 0.7 nm) single-wall carbon nanotubes, with diazonium species. The method allows the chemical attachment of a variety of organic compounds to the side and ends of carbon nanotubes. These chemically modified nanotubes have applications in polymer composite materials, molecular electronic applications and sensor devices. The methods of derivatization include electrochemical induced reactions thermally induced reactions (via in-situ generation of diazonium compounds or pre-formed diazonium compounds), and photochemically induced reactions. The derivatization causes significant changes in the spectroscopic properties of the nanotubes. The estimated degree of functionality is ca. 1 out of every 20 to 30 carbons in a nanotube bearing a functionality moiety. Such electrochemical reduction processes can be adapted to apply site-selective chemical functionalization of nanotubes. Moreover, when modified with suitable chemical groups, the derivatized nanotubes are chemically compatible with a polymer matrix, allowing transfer of the properties of the nanotubes (such as, mechanical strength or electrical conductivity) to the properties of the composite material as a whole. Furthermore, when modified with suitable chemical groups, the groups can be polymerized to form a polymer that includes carbon nanotubes ##STR00001##.

  2. Chirality-Controlled Synthesis and Applications of Single-Wall Carbon Nanotubes.

    Science.gov (United States)

    Liu, Bilu; Wu, Fanqi; Gui, Hui; Zheng, Ming; Zhou, Chongwu

    2017-01-24

    Preparation of chirality-defined single-wall carbon nanotubes (SWCNTs) is the top challenge in the nanotube field. In recent years, great progress has been made toward preparing single-chirality SWCNTs through both direct controlled synthesis and postsynthesis separation approaches. Accordingly, the uses of single-chirality-dominated SWCNTs for various applications have emerged as a new front in nanotube research. In this Review, we review recent progress made in the chirality-controlled synthesis of SWCNTs, including metal-catalyst-free SWCNT cloning by vapor-phase epitaxy elongation of purified single-chirality nanotube seeds, chirality-specific growth of SWCNTs on bimetallic solid alloy catalysts, chirality-controlled synthesis of SWCNTs using bottom-up synthetic strategy from carbonaceous molecular end-cap precursors, etc. Recent major progresses in postsynthesis separation of single-chirality SWCNT species, as well as methods for chirality characterization of SWCNTs, are also highlighted. Moreover, we discuss some examples where single-chirality SWCNTs have shown clear advantages over SWCNTs with broad chirality distributions. We hope this review could inspire more research on the chirality-controlled preparation of SWCNTs and equally important inspire the use of single-chirality SWCNT samples for more fundamental studies and practical applications.

  3. Synthesis of carbon nanotubes bridging metal electrodes

    International Nuclear Information System (INIS)

    Kotlar, M.; Vojs, M.; Marton, M.; Vesel, M.; Redhammer, R.

    2012-01-01

    In our work we demonstrate growth of carbon nanotubes that can conductively bridge the metal electrodes. The role of different catalysts was examined. Interdigitated metal electrodes are made from copper and we are using bimetal Al/Ni as catalyst for growth of carbon nanotubes. We are using this catalyst composition for growth of the single-walled carbon nanotube network. (authors)

  4. Effects of temperature and torsion speed on torsional properties of single-walled carbon nanotubes

    International Nuclear Information System (INIS)

    Khoei, A.R.; Ban, E.; Banihashemi, P.; Abdolhosseini Qomi, M.J.

    2011-01-01

    Carbon nanotubes (CNTs) are excellent candidates for torsional elements used in nanoelectro-mechanical systems (NEMS). Simulations show that after being twisted to a certain angle, they buckle and lose their mechanical strength. In this paper, classical molecular dynamics simulations are performed on single-walled carbon nanotubes (CNTs) to investigate the effects of torsion speed and temperature on CNT torsional properties. The AIREBO potential is employed to describe the bonded interactions between carbon atoms. The MD simulations clearly show that the buckling of CNTs in torsion is a reversible process, in which by unloading the buckled CNT in opposite direction, it returns to its original configuration. In addition, the numerical results reveal that the torsional shear modulus of CNTs increases by increasing the temperature and decreasing the torsion speed. Furthermore, the buckling torsion angle of CNTs increases by increasing the torsion speed and decreasing the temperature. Finally, it is observed that torsional properties of CNTs are highly affected by speed of twist and temperature of the nanotubes.

  5. 1/f noise in carbon nanotubes

    International Nuclear Information System (INIS)

    Collins, Philip G.; Fuhrer, M. S.; Zettl, A.

    2000-01-01

    The electrical noise characteristics of single-walled carbon nanotubes have been investigated. For all three cases of individual isolated nanotubes, thin films of interconnected nanotubes, and bulk nanotube mats, anomalously large bias-dependent 1/f noise is found. The noise magnitude greatly exceeds that commonly observed in metal films, carbon resistors, or even carbon fibers with comparable resistances. A single empirical expression describes the noise for all nanotube samples, suggesting a common noise-generating mechanism proportional only to the number of nanotubes in the conductor. We consider likely sources of the fluctuations, and consequences for electronic applications of nanotubes if the excessive noise cannot be suppressed. (c) 2000 American Institute of Physics

  6. Spin-orbit coupling and the static polarizability of single-wall carbon nanotubes

    International Nuclear Information System (INIS)

    Diniz, Ginetom S.; Ulloa, Sergio E.

    2014-01-01

    We calculate the static longitudinal polarizability of single-wall carbon tubes in the long wavelength limit taking into account spin-orbit effects. We use a four-orbital orthogonal tight-binding formalism to describe the electronic states and the random phase approximation to calculate the dielectric function. We study the role of both the Rashba as well as the intrinsic spin-orbit interactions on the longitudinal dielectric response, i.e., when the probing electric field is parallel to the nanotube axis. The spin-orbit interaction modifies the nanotube electronic band dispersions, which may especially result in a small gap opening in otherwise metallic tubes. The bandgap size and state features, the result of competition between Rashba and intrinsic spin-orbit interactions, result in drastic changes in the longitudinal static polarizability of the system. We discuss results for different nanotube types and the dependence on nanotube radius and spin-orbit couplings.

  7. Spin-orbit coupling and the static polarizability of single-wall carbon nanotubes

    Energy Technology Data Exchange (ETDEWEB)

    Diniz, Ginetom S., E-mail: ginetom@gmail.com; Ulloa, Sergio E. [Department of Physics and Astronomy and Nanoscale and Quantum Phenomena Institute, Ohio University, Athens, Ohio 45701-2979 (United States)

    2014-07-14

    We calculate the static longitudinal polarizability of single-wall carbon tubes in the long wavelength limit taking into account spin-orbit effects. We use a four-orbital orthogonal tight-binding formalism to describe the electronic states and the random phase approximation to calculate the dielectric function. We study the role of both the Rashba as well as the intrinsic spin-orbit interactions on the longitudinal dielectric response, i.e., when the probing electric field is parallel to the nanotube axis. The spin-orbit interaction modifies the nanotube electronic band dispersions, which may especially result in a small gap opening in otherwise metallic tubes. The bandgap size and state features, the result of competition between Rashba and intrinsic spin-orbit interactions, result in drastic changes in the longitudinal static polarizability of the system. We discuss results for different nanotube types and the dependence on nanotube radius and spin-orbit couplings.

  8. Fluorescently labeled bionanotransporters of nucleic acid based on carbon nanotubes

    International Nuclear Information System (INIS)

    Novopashina, D.S.; Apartsin, E.K.; Venyaminova, A.G.

    2012-01-01

    We propose an approach to the design of a new type of hybrids of oligonucleotides with fluorescein-functionalized single-walled carbon nanotubes. The approach is based on stacking interactions of functionalized nanotubes with pyrene residues in conjugates of oligonucleotides. The amino- and fluorescein-modified single walled carbon nanotubes are obtained, and their physico-chemical properties are investigated. The effect of the functionalization type of carbon nanotubes on the efficacy of the sorption of pyrene conjugates of oligonucleotides was examined. The proposed noncovalent hybrids of fluorescein-labeled carbon nanotubes with oligonucleotides may be used for the intracellular transport of functional nucleic acids.

  9. Industrial-scale separation of high-purity single-chirality single-wall carbon nanotubes for biological imaging

    Science.gov (United States)

    Yomogida, Yohei; Tanaka, Takeshi; Zhang, Minfang; Yudasaka, Masako; Wei, Xiaojun; Kataura, Hiromichi

    2016-01-01

    Single-chirality, single-wall carbon nanotubes are desired due to their inherent physical properties and performance characteristics. Here, we demonstrate a chromatographic separation method based on a newly discovered chirality-selective affinity between carbon nanotubes and a gel containing a mixture of the surfactants. In this system, two different selectivities are found: chiral-angle selectivity and diameter selectivity. Since the chirality of nanotubes is determined by the chiral angle and diameter, combining these independent selectivities leads to high-resolution single-chirality separation with milligram-scale throughput and high purity. Furthermore, we present efficient vascular imaging of mice using separated single-chirality (9,4) nanotubes. Due to efficient absorption and emission, blood vessels can be recognized even with the use of ∼100-fold lower injected dose than the reported value for pristine nanotubes. Thus, 1 day of separation provides material for up to 15,000 imaging experiments, which is acceptable for industrial use. PMID:27350127

  10. Exchange of Surfactant by Natural Organic Matter on the Surfaces of Multi-Walled Carbon Nanotubes

    Science.gov (United States)

    The increasing production and applications of multi-walled carbon nanotubes (MWCNTs) have elicited concerns regarding their release and potential adverse effects in the environment. To form stable aqueous MWCNTs suspensions, surfactants are often employed to facilitate dispersion...

  11. Effect of doping of multi-walled carbon nanotubes on phenolic based carbon fiber reinforced nanocomposites

    International Nuclear Information System (INIS)

    Saeed, Sadaf; Hakeem, Saira; Faheem, Muhammad; Alvi, Rashid Ahmed; Farooq, Khawar; Hussain, Syed Tajammul; Ahmad, Shahid Nisar

    2013-01-01

    We report on the effect of multi-walled carbon nanotubes (MWCNTs) on different properties of phenolic resin. A low content of MWCNTs (∼ 0.05 wt%) was mixed in phenolic resin and a stable dispersion was achieved by ultrasonication, followed by melt mixing. After curing the characterization of these composites was done by using scanning electron microscopy (SEM), thermogravimetric analysis (TGA), and Fourier transform infra-red spectroscopy (FTIR). The thermal and ablative properties of carbon fiber reinforced MWCNTs-phenolic nanocomposites were also studied. The addition of MWCNTs showed improvement in thermal stability and ablation properties.

  12. Multi-walled carbon nanotube physicochemical properties predict pulmonary inflammation and genotoxicity

    DEFF Research Database (Denmark)

    Poulsen, Sarah S.; Jackson, Petra; Kling, Kirsten

    2016-01-01

    Lung deposition of multi-walled carbon nanotubes (MWCNT) induces pulmonary toxicity. Commercial MWCNT vary greatly in physicochemical properties and consequently in biological effects. To identify determinants of MWCNT-induced toxicity, we analyzed the effects of pulmonary exposure to 10 commerci...... diameter was associated with increased genotoxicity. This study provides information on possible toxicity-driving physicochemical properties of MWCNT. The results may contribute to safe-by-design manufacturing of MWCNT, thereby minimizing adverse effects....

  13. Channeling potential in single-walled carbon nanotubes: The effect of radial deformation

    International Nuclear Information System (INIS)

    Abu-Assy, M.K.; Soliman, M.S.

    2016-01-01

    We study the effect of radial deformation in single-walled carbon nanotubes (SWCNTs), due to one external factor, on the channeling potential. The calculations covered the channeling potential for positrons of 100 MeV move along the z-axis, which is the axis of the radially deformed SWCNTs (6, 0), (8, 0) under external mechanical stress at different values for the induced strain and also for radially deformed SWCNT (5, 5) under external transverse electric field of 1.8 and 2.6 V/Å. The calculations executed according to the continuum model approximation given by Lindhard for the case of an axial channeling in single crystals. The results of the calculations in this work agreed well with previous calculations depending on the equilibrium electron density in perfect carbon nanotubes. It has been found that, for perfect nanotubes, the channeling potential, i.e., the potential at any point (x, y) in a plane normal to the nanotube axis (xy-plane), is a function of the distance from the nanotube center whatever the (x, y) coordinate and hence, it could be expressed in terms of one independent variable. On the other hand, in radially deformed SWCNTs, the channeling potential was found to be a function of two independent variables (x, y) and could be given here by a general formula in terms of fitting parameters for each nanotube with chiral index (n, m). The obtained formula has been used in plotting the contour plot for the channeling potential.

  14. Channeling potential in single-walled carbon nanotubes: The effect of radial deformation

    Energy Technology Data Exchange (ETDEWEB)

    Abu-Assy, M.K. [Physics Department, Faculty of Science, Suez-Canal University, Ismailia 41522 (Egypt); Soliman, M.S., E-mail: Mahmoud_einstien2@yahoo.com [Physics Department, Faculty of Science, Suez-Canal University, El-Arish (Egypt)

    2016-10-01

    We study the effect of radial deformation in single-walled carbon nanotubes (SWCNTs), due to one external factor, on the channeling potential. The calculations covered the channeling potential for positrons of 100 MeV move along the z-axis, which is the axis of the radially deformed SWCNTs (6, 0), (8, 0) under external mechanical stress at different values for the induced strain and also for radially deformed SWCNT (5, 5) under external transverse electric field of 1.8 and 2.6 V/Å. The calculations executed according to the continuum model approximation given by Lindhard for the case of an axial channeling in single crystals. The results of the calculations in this work agreed well with previous calculations depending on the equilibrium electron density in perfect carbon nanotubes. It has been found that, for perfect nanotubes, the channeling potential, i.e., the potential at any point (x, y) in a plane normal to the nanotube axis (xy-plane), is a function of the distance from the nanotube center whatever the (x, y) coordinate and hence, it could be expressed in terms of one independent variable. On the other hand, in radially deformed SWCNTs, the channeling potential was found to be a function of two independent variables (x, y) and could be given here by a general formula in terms of fitting parameters for each nanotube with chiral index (n, m). The obtained formula has been used in plotting the contour plot for the channeling potential.

  15. Interlaminar Fracture Toughness of CFRP Laminates Incorporating Multi-Walled Carbon Nanotubes

    Directory of Open Access Journals (Sweden)

    Elisa Borowski

    2015-06-01

    Full Text Available Carbon fiber reinforced polymer (CFRP laminates exhibit limited fracture toughness due to characteristic interlaminar fiber-matrix cracking and delamination. In this article, we demonstrate that the fracture toughness of CFRP laminates can be improved by the addition of multi-walled carbon nanotubes (MWCNTs. Experimental investigations and numerical modeling were performed to determine the effects of using MWCNTs in CFRP laminates. The CFRP specimens were produced using an epoxy nanocomposite matrix reinforced with carboxyl functionalized multi-walled carbon nanotubes (COOH–MWCNTs. Four MWCNTs contents of 0.0%, 0.5%, 1.0%, and 1.5% per weight of the epoxy resin/hardener mixture were examined. Double cantilever beam (DCB tests were performed to determine the mode I interlaminar fracture toughness of the unidirectional CFRP composites. This composite material property was quantified using the critical energy release rate, GIC. The experimental results show a 25%, 20%, and 17% increase in the maximum interlaminar fracture toughness of the CFRP composites with the addition of 0.5, 1.0, and 1.5 wt% MWCNTs, respectively. Microstructural investigations using Fourier transform infrared (FTIR spectroscopy and X-ray photoelectron spectroscopy (XPS verify that chemical reactions took place between the COOH–MWCNTs and the epoxy resin, supporting the improvements experimentally observed in the interlaminar fracture toughness of the CFRP specimens containing MWCNTs. Finite element (FE simulations show good agreement with the experimental results and confirm the significant effect of MWCNTs on the interlaminar fracture toughness of CFRP.

  16. Altering F-Actin Structure of C17.2 Cells using Single-Walled Carbon Nanotubes

    Science.gov (United States)

    Magers, Jay; Gillette, Nathan L. D.; Rotkin, Slava V.; Jedlicka, Sabrina; Pirbhai, Massooma; Lehigh Univesity Collaboration; Susquehanna University Collaboration

    Advancements in nanotechnology have become fundamental to the delivery of drugs to treat various diseases. One such advancement is that of carbon nanotubes and their possible implications on drug delivery. Single-walled carbon nanotubes (SWCNTs) have great potential in the biomedical field as a means to deliver materials such as drugs and genes into the human body due to their size and chemistry. However, the effects of the nanotubes on cells they interact with are still unknown. Previous studies have shown that a low dosage of SWCNTs can affect differentiation of C17.2 neural stem cells. In this experiment, we investigate how the tubes affect the structure of the cells. Specifically, we determined the impact on the cell by examining the actin filament length, protrusions along the edge of the cells, and actin distribution. Presenter/Author 1.

  17. Electrical resistivity and thermal properties of compatibilized multi-walled carbon nanotube/polypropylene composites

    Directory of Open Access Journals (Sweden)

    A. Szentes

    2012-06-01

    Full Text Available The electrical resistivity and thermal properties of multi-walled carbon nanotube/polypropylene (MWCNT/PP composites have been investigated in the presence of coupling agents applied for improving the compatibility between the nanotubes and the polymer. A novel olefin-maleic-anhydride copolymer and an olefin-maleic-anhydride copolymer based derivative have been used as compatibilizers to achieve better dispersion of MWCNTs in the polymer matrix. The composites have been produced by extrusion followed by injection moulding. They contained different amounts of MWCNTs (0.5, 2, 3 and 5 wt% and coupling agent to enhance the interactions between the carbon nanotubes and the polymer. The electrical resistivity of the composites has been investigated by impedance spectroscopy, whereas their thermal properties have been determined using a thermal analyzer operating on the basis of the periodic thermal perturbation method. Rheological properties, BET-area and adsorption-desorption isotherms have been determined. Dispersion of MWCNTs in the polymer has been studied by scanning electron microscopy (SEM.

  18. Sharp burnout failure observed in high current-carrying double-walled carbon nanotube fibers

    Science.gov (United States)

    Song, Li; Toth, Geza; Wei, Jinquan; Liu, Zheng; Gao, Wei; Ci, Lijie; Vajtai, Robert; Endo, Morinobu; Ajayan, Pulickel M.

    2012-01-01

    We report on the current-carrying capability and the high-current-induced thermal burnout failure modes of 5-20 µm diameter double-walled carbon nanotube (DWNT) fibers made by an improved dry-spinning method. It is found that the electrical conductivity and maximum current-carrying capability for these DWNT fibers can reach up to 5.9 × 105 S m - 1 and over 1 × 105 A cm - 2 in air. In comparison, we observed that standard carbon fiber tended to be oxidized and burnt out into cheese-like morphology when the maximum current was reached, while DWNT fiber showed a much slower breakdown behavior due to the gradual burnout in individual nanotubes. The electron microscopy observations further confirmed that the failure process of DWNT fibers occurs at localized positions, and while the individual nanotubes burn they also get aligned due to local high temperature and electrostatic field. In addition a finite element model was constructed to gain better understanding of the failure behavior of DWNT fibers.

  19. On the Wrapping of Polyglycolide, Poly(Ethylene Oxide), and Polyketone Polymer Chains Around Single-Walled Carbon Nanotubes Using Molecular Dynamics Simulations

    Science.gov (United States)

    Rouhi, S.; Alizadeh, Y.; Ansari, R.

    2015-02-01

    By using molecular dynamics simulations, the interaction between a single-walled carbon nanotube and three different polymers has been studied in this work. The effects of various parameters such as the nanotube geometry and temperature on the interaction energy and radius of gyration of polymers have been explored. By studying the snapshots of polymers along the single-walled carbon nanotube, it has been shown that 50 ps can be considered as a suitable time after which the shape of polymer chains around the nanotube remains almost unchanged. It is revealed that the effect of temperature on the interaction energy and radius of gyration of polymers in the range of 250 to 500 K is not significant Also, it is shown that the interaction energy depends on the nanotube diameter.

  20. Empirical Equation Based Chirality (n, m Assignment of Semiconducting Single Wall Carbon Nanotubes from Resonant Raman Scattering Data

    Directory of Open Access Journals (Sweden)

    Md Shamsul Arefin

    2012-12-01

    Full Text Available This work presents a technique for the chirality (n, m assignment of semiconducting single wall carbon nanotubes by solving a set of empirical equations of the tight binding model parameters. The empirical equations of the nearest neighbor hopping parameters, relating the term (2n, m with the first and second optical transition energies of the semiconducting single wall carbon nanotubes, are also proposed. They provide almost the same level of accuracy for lower and higher diameter nanotubes. An algorithm is presented to determine the chiral index (n, m of any unknown semiconducting tube by solving these empirical equations using values of radial breathing mode frequency and the first or second optical transition energy from resonant Raman spectroscopy. In this paper, the chirality of 55 semiconducting nanotubes is assigned using the first and second optical transition energies. Unlike the existing methods of chirality assignment, this technique does not require graphical comparison or pattern recognition between existing experimental and theoretical Kataura plot.

  1. Empirical Equation Based Chirality (n, m) Assignment of Semiconducting Single Wall Carbon Nanotubes from Resonant Raman Scattering Data

    Science.gov (United States)

    Arefin, Md Shamsul

    2012-01-01

    This work presents a technique for the chirality (n, m) assignment of semiconducting single wall carbon nanotubes by solving a set of empirical equations of the tight binding model parameters. The empirical equations of the nearest neighbor hopping parameters, relating the term (2n− m) with the first and second optical transition energies of the semiconducting single wall carbon nanotubes, are also proposed. They provide almost the same level of accuracy for lower and higher diameter nanotubes. An algorithm is presented to determine the chiral index (n, m) of any unknown semiconducting tube by solving these empirical equations using values of radial breathing mode frequency and the first or second optical transition energy from resonant Raman spectroscopy. In this paper, the chirality of 55 semiconducting nanotubes is assigned using the first and second optical transition energies. Unlike the existing methods of chirality assignment, this technique does not require graphical comparison or pattern recognition between existing experimental and theoretical Kataura plot. PMID:28348319

  2. Use of Functionalized Carbon Nanotubes for Covalent Attachment of Nanotubes to Silicon

    Science.gov (United States)

    Tour, James M.; Dyke, Christopher A.; Maya, Francisco; Stewart, Michael P.; Chen, Bo; Flatt, Austen K.

    2012-01-01

    The purpose of the invention is to covalently attach functionalized carbon nanotubes to silicon. This step allows for the introduction of carbon nanotubes onto all manner of silicon surfaces, and thereby introduction of carbon nano - tubes covalently into silicon-based devices, onto silicon particles, and onto silicon surfaces. Single-walled carbon nanotubes (SWNTs) dispersed as individuals in surfactant were functionalized. The nano - tube was first treated with 4-t-butylbenzenediazonium tetrafluoroborate to give increased solubility to the carbon nanotube; the second group attached to the sidewall of the nanotube has a silyl-protected terminal alkyne that is de-protected in situ. This gives a soluble carbon nanotube that has functional groups appended to the sidewall that can be attached covalently to silicon. This reaction was monitored by UV/vis/NJR to assure direct covalent functionalization.

  3. Photoresponse of hybrids made of carbon nanotubes and CdTe nanocrystals

    Energy Technology Data Exchange (ETDEWEB)

    Zebli, Bernd; Vieyra, Hugo A.; Kotthaus, Joerg P. [Department fuer Physik and Center for NanoScience (CeNS), Ludwig-Maximilians-Universitaet Muenchen, Geschwister-Scholl-Platz 1, 80539 Munich (Germany); Carmeli, Itai [Department of Chemistry and Biochemistry, Tel-Aviv University, Tel-Aviv 69978 (Israel); Hartschuh, Achim [Department fuer Chemie, Physikalische Chemie, Butenandtstr. 5-13 E, 81377 Munich (Germany); Holleitner, Alexander W. [Walter-Schottky Institut, Technische Universitaet Muenchen, Am Coulombwall 3, 85748 Garching (Germany)

    2008-07-01

    We observe that the photoresponse of single-walled carbon nanotubes can be adjusted by the absorption characteristics of colloidal CdTe nanocrystals, which are bound to the side-walls of the carbon nanotubes via molecular recognition. To this end, the hybrid systems are characterized using charge transport measurements under resonant optical excitation of the carbon nanotubes and nanocrystals, respectively. We investigate the photoresponse of both ensembles of hybrid systems and single carbon-nanotube-nanocrystal-hybrids. The data suggest a bolometrically induced increase of the current in the carbon nanotubes, which is due to photon absorption in the nanocrystals.

  4. Microchip electrophoresis-single wall carbon nanotube press-transferred electrodes for fast and reliable electrochemical sensing of melatonin and its precursors.

    Science.gov (United States)

    Gomez, Federico José Vicente; Martín, Aída; Silva, María Fernanda; Escarpa, Alberto

    2015-08-01

    In the current work, single-wall carbon nanotube press-transferred electrodes (SW-PTEs) were used for detection of melatonin (MT) and its precursors tryptophan (Trp) and serotonin (5-HT) on microchip electrophoresis (ME). SW-PTEs were simply fabricated by press transferring a filtered dispersion of single-wall carbon nanotubes on a nonconductive PMMA substrate, where single-wall carbon nanotubes act as exclusive transducers. The coupling of ME-SW-PTEs allowed the fast detection of MT, Trp, and 5-HT in less than 150 s with excellent analytical features. It exhibited an impressive antifouling performance with RSD values of ≤2 and ≤4% for migration times and peak heights, respectively (n = 12). In addition, sample analysis was also investigated by analysis of 5-HT, MT, and Trp in commercial samples obtaining excellent quantitative and reproducible recoveries with values of 96.2 ± 1.8%, 101.3 ± 0.2%, and 95.6 ± 1.2% for 5-HT, MT, and Trp, respectively. The current novel application reveals the analytical power of the press-transfer technology where the fast and reliable determination of MT and its precursors were performed directly on the nanoscale carbon nanotube detectors without the help of any other electrochemical transducer. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Chirality Characterization of Dispersed Single Wall Carbon Nanotubes

    Science.gov (United States)

    Namkung, Min; Williams, Phillip A.; Mayweather, Candis D.; Wincheski, Buzz; Park, Cheol; Namkung, Juock S.

    2005-01-01

    Raman scattering and optical absorption spectroscopy are used for the chirality characterization of HiPco single wall carbon nanotubes (SWNTs) dispersed in aqueous solution with the surfactant sodium dodecylbenzene sulfonate. Radial breathing mode (RBM) Raman peaks for semiconducting and metallic SWNTs are identified by directly comparing the Raman spectra with the Kataura plot. The SWNT diameters are calculated from these resonant peak positions. Next, a list of (n, m) pairs, yielding the SWNT diameters within a few percent of that obtained from each resonant peak position, is established. The interband transition energies for the list of SWNT (n, m) pairs are calculated based on the tight binding energy expression for each list of the (n, m) pairs, and the pairs yielding the closest values to the corresponding experimental optical absorption peaks are selected. The results reveal that (1, 11), (4, 11), and (0, 11) as the most probable chiralities of the semiconducting nanotubes. The results also reveal that (4, 16), (6, 12) and (8, 8) are the most probable chiralities for the metallic nanotubes. Directly relating the Raman scattering data to the optical absorption spectra, the present method is considered the simplest technique currently available. Another advantage of this technique is the use of the E(sup 8)(sub 11) peaks in the optical absorption spectrum in the analysis to enhance the accuracy in the results.

  6. The effect of different temperature profiles upon the length and crystallinity of vertically-aligned multi-walled carbon nanotubes.

    Science.gov (United States)

    Yun, Jongju; Lee, Cheesung; Zheng, Qing; Baik, Seunghyun

    2012-08-01

    We synthesized vertically-aligned multi-walled carbon nanotubes with an inner diameter of 1.6-7.5 nm and stack height of 80-28600 microm by chemical vapor deposition. The effects of synthesis conditions such as substrate position in the tube furnace, maximum temperature, temperature increasing rate and synthesis duration on the structure of nanotubes were investigated. It was found that slightly faster temperature increase rate resulted in significantly longer length, larger diameter and more defects of nanotubes. Structural parameters such as inner, outer diameters, wall thickness and defects were investigated using transmission electron microscopy and Raman spectroscopy.

  7. Synthesis of high quality single-walled carbon nanotubes via a catalytic layer reinforced by self-assembled monolayers

    International Nuclear Information System (INIS)

    Adhikari, Prashanta Dhoj; Song, Wooseok; Cha, Myoung-Jun; Park, Chong-Yun

    2013-01-01

    This work reports the synthesis of high quality single-walled carbon nanotubes (SWCNT) using a catalytic layer reinforced by self-assembled monolayers (SAM). Amine-SAM was introduced on a SiO 2 /Si substrate and then an iron nanoparticles solution was dropped on the substrate by spin-coating. This catalytic template was used to grow carbon nanotubes by chemical vapor deposition and the synthesized SWCNT were observed to be prominent, based on the size distribution. Highly dense SWCNT with a diameter of about 1.1-1.2 nm were produced at 800-850 °C. Moreover, the diameter distribution of the SWCNT was more selective at a growth temperature of 900 °C. These findings provide important insights for a SAM support layer that can play the role as a restriction for the agglomeration of iron catalyst and is promising for the synthesis of high quality SWCNT. - Highlights: • Fe nanoparticles on self-assembled monolayers (SAM) containing template is underlined. • Its catalytic behavior to synthesis single-walled carbon nanotubes is studied. • The role of SAM on catalytic template is explored

  8. Multifractal characterization of single wall carbon nanotube thin films surface upon exposure to optical parametric oscillator laser irradiation

    International Nuclear Information System (INIS)

    Ţălu, Ştefan; Marković, Zoran; Stach, Sebastian; Todorović Marković, B.; Ţălu, Mihai

    2014-01-01

    This study presents a multifractal approach, obtained with atomic force microscopy analysis, to characterize the structural evolution of single wall carbon nanotube thin films upon exposure to optical parametric oscillator laser irradiation at wavelength of 430 nm. Microstructure and morphological changes of carbon nanotube films deposited on different substrates (mica and TGX grating) were recorded by atomic force microscope. A detailed methodology for surface multifractal characterization, which may be applied for atomic force microscopy data, was presented. Multifractal analysis of surface roughness revealed that carbon nanotube films surface has a multifractal geometry at various magnifications. The generalized dimension D q and the singularity spectrum f(α) provided quantitative values that characterize the local scale properties of carbon nanotube films surface morphology at nanometer scale. Multifractal analysis provides different yet complementary information to that offered by traditional surface statistical parameters.

  9. Electronic properties of prismatic modifications of single-wall carbon nanotubes

    Science.gov (United States)

    Tomilin, O. B.; Muryumin, E. E.; Rodionova, E. V.; Ryskina, N. P.

    2018-01-01

    The article shows the possibility of target modifying the prismatic single-walled carbon nanotubes (SWCNTs) by regular chemisorption of fluorine atoms in the graphene surface. It is shown that the electronic properties of prismatic SWCNT modifications are determined by the interaction of π- and ρ(in-plane)-electron conjugation in the carbon-conjugated subsystems (tracks) formed in the faces. The contributions of π- and ρ(in-plane)-electron conjugation depend on the structural characteristics of the tracks. It was found that the minimum of degree deviation of the track from the plane of the prism face and the maximum of the track width ensure the maximum contribution of the π-electron conjugation, and the band gap of the prismatic modifications of the SWCNT tends to the band gap of the hydrocarbon analog of the carbon track. It is established that the maximum of degree deviation of the track from the plane of the prism face and the maximum of track width ensure the maximum contribution of the ρ(in-plane) electron interface, and the band gap of the prismatic modifications of the SWCNT tends to the band gap of the unmodified carbon nanotube. The calculation of the model systems has been carried out using an ab initio Hartree-Fock method in the 3-21G basis.

  10. Transport properties of a potassium-doped single-wall carbon nanotube rope

    International Nuclear Information System (INIS)

    Lee, R. S.; Kim, H. J.; Fischer, J. E.; Lefebvre, J.; Radosavljevic, M.; Hone, J.; Johnson, A. T.

    2000-01-01

    Four-probe resistance vs temperature and gate voltage are reported for an individual single-wall carbon nanotube rope before and after doping in situ with potassium. All the features in R(T) from unoriented bulk material, before and after doping, are qualitatively reproduced by the rope data. The 5.3 K conductance of the pristine rope decreases with positive gate voltage, while G vs V g becomes featureless after K doping. (c) 2000 The American Physical Society

  11. Inkjet printing of aligned single-walled carbon-nanotube thin films

    Science.gov (United States)

    Takagi, Yuki; Nobusa, Yuki; Gocho, Shota; Kudou, Hikaru; Yanagi, Kazuhiro; Kataura, Hiromichi; Takenobu, Taishi

    2013-04-01

    We report a method for the inkjet printing of aligned single-walled carbon-nanotube (SWCNT) films by combining inkjet technology with the strong wettability contrast between hydrophobic and hydrophilic areas based on the patterning of self-assembled monolayers. Both the drying process control using the strong wettability boundary and the coffee-stain effect strongly promote the aggregation of SWCNTs along the contact line of a SWCNT ink droplet, thereby demonstrating our achievement of inkjet-printed aligned SWCNT films. This method could open routes for developing high-performance and environmentally friendly SWCNT printed electronics.

  12. Transverse electric field–induced deformation of armchair single-walled carbon nanotube

    Directory of Open Access Journals (Sweden)

    Yuan Ningyi

    2010-01-01

    Full Text Available Abstract The deformation of armchair single-walled carbon nanotube under transverse electric field has been investigated using density functional theory. The results show that the circular cross-sections of the nanotubes are deformed to elliptic ones, in which the tube diameter along the field direction is increased, whereas the diameter perpendicular to the field direction is reduced. The electronic structures of the deformed nanotubes were also studied. The ratio of the major diameter to the minor diameter of the elliptic cross-section was used to estimate the degree of the deformation. It is found that this ratio depends on the field strength and the tube diameter. However, the field direction has little role in the deformation. (See supplementary material 1 Electronic supplementary material The online version of this article (doi:10.1007/s11671-010-9617-y contains supplementary material, which is available to authorized users. Click here for file

  13. Plasma-synthesized single-walled carbon nanotubes and their applications

    International Nuclear Information System (INIS)

    Hatakeyama, R; Kaneko, T; Kato, T; Li, Y F

    2011-01-01

    Plasma-based nanotechnology is a rapidly developing area of research ranging from physics of gaseous and liquid plasmas to material science, surface science and nanofabrication. In our case, nanoscopic plasma processing is performed to grow single-walled carbon nanotubes (SWNTs) with controlled chirality distribution and to further develop SWNT-based materials with new functions corresponding to electronic and biomedical applications. Since SWNTs are furnished with hollow inner spaces, it is very interesting to inject various kinds of atoms and molecules into their nanospaces based on plasma nanotechnology. The encapsulation of alkali-metal atoms, halogen atoms, fullerene or azafullerene molecules inside the carbon nanotubes is realized using ionic plasmas of positive and negative ions such as alkali-fullerene, alkali-halogen, and pair or quasipair ion plasmas. Furthermore, an electrolyte solution plasma with DNA negative ions is prepared in order to encapsulate DNA molecules into the nanotubes. It is found that the electronic and optical properties of various encapsulated SWNTs are significantly changed compared with those of pristine ones. As a result, a number of interesting transport phenomena such as air-stable n- and p-type behaviour, p-n junction characteristic, and photoinduced electron transfer are observed. Finally, the creation of an emerging SWNTs-based nanobioelectronics system is challenged. Specifically, the bottom-up electric-field-assisted reactive ion etching is proposed to control the chirality of SWNTs, unexplored SWNT properties of magnetism and superconductivity are aimed at being pioneered, and innovative biomedical-nanoengineering with encapsulated SWNTs of higher-order structure are expected to be developed by applying advanced gas-liquid interfacial plasmas.

  14. Controlled nanostructure and high loading of single-walled carbon nanotubes reinforced polycarbonate composite

    International Nuclear Information System (INIS)

    Wang Shiren; Liang Zhiyong; Pham, Giang; Park, Young-Bin; Wang, Ben; Zhang, Chuck; Kramer, Leslie; Funchess, Percy

    2007-01-01

    This paper presents an effective technique to fabricate thermoplastic nanocomposites with high loading of well-dispersed single-walled carbon nanotubes (SWNTs). SWNT membranes were made from a multi-step dispersion and filtration method, and then impregnated with polycarbonate solution to make thermoplastic nanocomposites. High loading of nanotubes was achieved by controlling the viscosity of polycarbonate solution. SEM and AFM characterization results revealed the controlled nanostructure in the resultant nanocomposites. Dynamic mechanical property tests indicated that the storage modulus of the resulting nanocomposites at 20 wt% nanotubes loading was improved by a factor of 3.4 compared with neat polycarbonate material. These results suggest the developed approach is an effective way to fabricate thermoplastic nanocomposites with good dispersion and high SWNT loading

  15. Spontaneous Ag-Nanoparticle Growth at Single-Walled Carbon Nanotube Defect Sites: A Tool for In Situ Generation of SERS Substrate

    Directory of Open Access Journals (Sweden)

    Jason Maley

    2011-01-01

    Full Text Available Silver nanoparticles were spontaneously formed on pristine and oxidized single-wall nanotubes. Nanoparticles were observed on carbon nanotubes with AFM, and the presence of Ag nanoparticles were confirmed by ESR experiments. Raman spectroscopy of the Ag-treated carbon nanotubes had a 4–10X enhancement of intensity compared to untreated carbon nanotubes. Ag nanoparticles formed at defect sites on the CNT surface, where free electrons located at the defect sites reduced Ag+ to Ag. A mechanism for the propagation of the nanoparticles is through a continual negative charge generation on the nanoparticle by electron transfer from doublet oxygen (O2−.

  16. Subcutaneous injection of water-soluble multi-walled carbon nanotubes in tumor-bearing mice boosts the host immune activity

    International Nuclear Information System (INIS)

    Meng Jie; Yang Man; Jia Fumin; Kong Hua; Zhang Weiqi; Xu Haiyan; Wang Chaoying; Xie Sishen; Xing Jianmin

    2010-01-01

    The immunological responses induced by oxidized water-soluble multi-walled carbon nanotubes on a hepatocarcinoma tumor-bearing mice model via a local administration of subcutaneous injection were investigated. Experimental results show that the subcutaneously injected carbon nanotubes induced significant activation of the complement system, promoted inflammatory cytokines' production and stimulated macrophages' phagocytosis and activation. All of these responses increased the general activity of the host immune system and inhibited the progression of tumor growth.

  17. Subcutaneous injection of water-soluble multi-walled carbon nanotubes in tumor-bearing mice boosts the host immune activity

    Science.gov (United States)

    Meng, Jie; Yang, Man; Jia, Fumin; Kong, Hua; Zhang, Weiqi; Wang, Chaoying; Xing, Jianmin; Xie, Sishen; Xu, Haiyan

    2010-04-01

    The immunological responses induced by oxidized water-soluble multi-walled carbon nanotubes on a hepatocarcinoma tumor-bearing mice model via a local administration of subcutaneous injection were investigated. Experimental results show that the subcutaneously injected carbon nanotubes induced significant activation of the complement system, promoted inflammatory cytokines' production and stimulated macrophages' phagocytosis and activation. All of these responses increased the general activity of the host immune system and inhibited the progression of tumor growth.

  18. Subcutaneous injection of water-soluble multi-walled carbon nanotubes in tumor-bearing mice boosts the host immune activity

    Energy Technology Data Exchange (ETDEWEB)

    Jie, Meng; Man, Yang; Fumin, Jia; Hua, Kong; Weiqi, Zhang; Haiyan, Xu [Department of Biomedical Engineering, Institute of Basic Medical Sciences and School of Basic Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, 5 Dong Dan San Tiao, Beijing 100005 (China); Chaoying, Wang; Sishen, Xie [Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, 8 Nan San Jie, Zhongguancun, Beijing100080 (China); Xing Jianmin, E-mail: xuhy@pumc.edu.cn [Centre for Evidence-Based Chinese Medicine, Beijing University of Chinese Medicine, 11 Bei San Huan Dong Lu, Beijing 100029 (China)

    2010-04-09

    The immunological responses induced by oxidized water-soluble multi-walled carbon nanotubes on a hepatocarcinoma tumor-bearing mice model via a local administration of subcutaneous injection were investigated. Experimental results show that the subcutaneously injected carbon nanotubes induced significant activation of the complement system, promoted inflammatory cytokines' production and stimulated macrophages' phagocytosis and activation. All of these responses increased the general activity of the host immune system and inhibited the progression of tumor growth.

  19. Effects of ion beam heating on Raman spectra of single-walled carbon nanotubes

    International Nuclear Information System (INIS)

    Hulman, Martin; Skakalova, Viera; Krasheninnikov, A. V.; Roth, S.

    2009-01-01

    Free standing films of single-wall carbon nanotubes were irradiated with energetic N + and C 4+ ions. The observed changes in the Raman line shape of the radial breathing mode and the G band of the C 4+ irradiated samples were similar to those found for a thermally annealed sample. We ascribe these changes to thermal desorption of volatile dopants from the initially doped nanotubes. A simple geometry of the experiment allows us to estimate the temperature rise by one-dimensional heat conductance equation. The calculation indicates that irradiation-mediated increase in temperature may account for the observed Raman spectra changes

  20. Hydrogen adsorption on metal-organic frameworks (MOFs) and single-walled carbon nanotubes (SWNTs)

    Energy Technology Data Exchange (ETDEWEB)

    Poirier, E.; Chahine, R.; Benard, P.; Lafi, L.; Dorval-Douville, G.; Chandonia, P.-A. [Univ. du Quebec a Trois-Rivieres, Inst. de recherche sur l' hydrogene, Trois-Rivieres, Quebec (Canada)]. E-mail: Lyubov.Lafi@uqtr.ca

    2006-07-01

    'Full text:' In recent years, several novel carbon-based microporous materials such as single-walled carbon nanotubes (SWNTs) and metal-organic frameworks (MOFs) have been proposed as promising adsorbents for hydrogen. Hydrogen adsorption measurements on Al-, Cr- and Zn-based metal-organic frameworks (MOFs) and single-walled carbon nanotubes (SWNTs) are presented. The measurements were performed at temperatures ranging from 77 to 300K and pressures up to 50 atm using a volumetric approach. The maximum excess adsorption at 77K ranges from 2,8 to 3,9 wt % for the MOFs and from 1,5 to 2,5 wt % for the SWNTs. These values are reached at pressures below 40 atm. At room temperature and 40 atm, modest amounts of hydrogen are adsorbed (< 0,4 wt %). A Dubinin-Astakhov (DA) approach is used to investigate the measured adsorption isotherms and retrieve energetic and structural parameters. The adsorption enthalpy averaged over filling is found to be about 2,9 kJ/mol for the MOF-5 and about 3,6 - 4,2 kJ/mol for SWNTs. The uptake of hydrogen on SWNTs and MOF-5 appears to be due to physisorption and can be described, through the DA-model, by a traditional theory of micropore filling. (author)

  1. Long-term stability of superhydrophilic oxygen plasma-modified single-walled carbon nanotube network surfaces and the influence on ammonia gas detection

    Energy Technology Data Exchange (ETDEWEB)

    Min, Sungjoon [Department of Biomicrosystem Technology, Korea University, Seoul 136-713 (Korea, Republic of); Kim, Joonhyub [Department of Control and Instrumentation Engineering, Korea University, 2511 Sejong-ro, Sejong City 339-770 (Korea, Republic of); Park, Chanwon [Department of Electrical and Electronic Engineering, Kangwon National University, Chuncheon 200-701 (Korea, Republic of); Jin, Joon-Hyung, E-mail: jj1023@chol.com [Department of Chemical Engineering, Kyonggi University, 154-42 Gwanggyosan-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do 16227 (Korea, Republic of); Min, Nam Ki, E-mail: nkmin@korea.ac.kr [Department of Biomicrosystem Technology, Korea University, Seoul 136-713 (Korea, Republic of)

    2017-07-15

    Graphical abstract: Superhydrophilic single-walled carbon nanotube obtained by O{sub 2} plasma treatment voluntarily and non-reversibly reverts to a metastable state. This aerobic aging is an essential process to develop a stable carbon nanotube-based sensor. - Highlights: • Superhydrophilic single-walled carbon nanotube network can be obtained by O{sub 2} plasma-based surface modification. • The modified carbon nanotube surface invariably reverts to a metastable state in a non-reversible manner. • Aerobic aging is essential to stabilize the modified carbon nanotube and the carbon nanotube-based sensing device due to minimized sensor-to-sensor variation. - Abstract: Single-walled carbon nanotube (SWCNT) networks are subjected to a low-powered oxygen plasma for the surface modification. Changes in the surface chemical composition and the stability of the plasma-treated SWCNT (p-SWCNT) with aging in air for up to five weeks are studied using X-ray photoelectron spectroscopy (XPS) and contact angle analysis. The contact angle decreases from 120° of the untreated hydrophobic SWCNT to 0° for the superhydrophilic p-SWCNT. Similarly, the ratio of oxygen to carbon (O:C) based on the XPS spectra increases from 0.25 to 1.19, indicating an increase in surface energy of the p-SWCNT. The enhanced surface energy is gradually dissipated and the p-SWCNT network loses the superhydrophilic surface property. However, it never revert to the original hydrophobic surface state but to a metastable hydrophilic state. The aging effect on sensitivity of the p-SWCNT network-based ammonia sensor is investigated to show the importance of the aging process for the stabilization of the p-SWCNT. The best sensitivity for monitoring NH{sub 3} gas is observed with the as-prepared p-SWCNT, and the sensitivity decreases as similar as the p-SWCNT loses its hydrophilicity with time goes by. After a large performance degradation during the aging time for about two weeks, the response

  2. The Role of Multi-wall Carbon Nanotubes on Fracture Mechanism of Epoxy Nanocomposite

    Directory of Open Access Journals (Sweden)

    M. Hooshiar Sadegian

    2008-12-01

    Full Text Available In order to investigate the role of multi-wall carbon nanotubes (MWCNTs on fracture mechanism of epoxy nanocomposites, a series of tensile standard specimens reinforced with different carbon nanotube contents (0, 0.3, 0.6 and 1 wt% were produced. The fracture surfaces of the produced nanocomposites were evaluated using scanning electron microscope (SEM. The results show that the surface fracture of epoxy nanocomposites comprised of three regions, i.e. mirror, transition and final propagation zones. The extension of all zones depends strongly on curing agent as well asMWCNTs content. The mirror zone is disappeared as curing agent and MWCNTs content increases, while the transition zone depends on the nucleation rate of secondary microcrack. The pattern of final propagation zone becomes coarser as MWCNTs are added to epoxy system.

  3. Laser-induced forward transfer of single-walled carbon nanotubes

    Science.gov (United States)

    Palla-Papavlu, A.; Dinescu, M.; Wokaun, A.; Lippert, T.

    2014-10-01

    The objective of this work is the application of laser-induced forward transfer (LIFT) for the fabrication of chemiresistor sensors. The receiver substrate is an array with metal electrodes and the active materials placed by LIFT are single-walled carbon nanotubes (SWCNT). The functionality of such sensors depends on the geometry of the active material onto the metallic electrodes. First the best geometry for the sensing materials and electrodes was determined, including the optimization of the process parameters for printing uniform pixels of SWCNT onto the sensor electrodes. The sensors were characterized in terms of their sensing characteristics, i.e., upon exposure to ammonia, proving the feasibility of LIFT.

  4. Fabrication and electrochemical behavior of single-walled carbon nanotube/graphite-based electrode

    International Nuclear Information System (INIS)

    Moghaddam, Abdolmajid Bayandori; Ganjali, Mohammad Reza; Dinarvand, Rassoul; Razavi, Taherehsadat; Riahi, Siavash; Rezaei-Zarchi, Saeed; Norouzi, Parviz

    2009-01-01

    An electrochemical method for determining the dihydroxybenzene derivatives on glassy carbon (GC) has been developed. In this method, the performance of a single-walled carbon nanotube (SWCNT)/graphite-based electrode, prepared by mixing SWCNTs and graphite powder, was described. The resulting electrode shows an excellent behavior for redox of 3,4-dihydroxybenzoic acid (DBA). SWCNT/graphite-based electrode presents a significant decrease in the overvoltage for DBA oxidation as well as a dramatic improvement in the reversibility of DBA redox behavior in comparison with graphite-based and glassy carbon (GC) electrodes. In addition, scanning electron microscopy (SEM) and atomic force microscopy (AFM) procedures performed for used SWCNTs

  5. Ferromagnetic behaviour of polyaniline-coated multi-wall carbon nanotubes containing nickel nanoparticles

    Czech Academy of Sciences Publication Activity Database

    Konyushenko, Elena; Kazantseva, N. E.; Stejskal, Jaroslav; Trchová, Miroslava; Kovářová, Jana; Sapurina, I.; Tomishko, M. M.

    2008-01-01

    Roč. 320, 3-4 (2008), s. 231-240 ISSN 0304-8853 R&D Projects: GA AV ČR IAA4050313; GA AV ČR IAA400500504; GA MŠk ME 847; GA ČR GA202/06/0419 Institutional research plan: CEZ:AV0Z40500505 Keywords : multi-wall carbon nanotube * conducting polymer * polyaniline coating Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 1.283, year: 2008

  6. Equilibrium and Thermodynamic Studies of Methane Adsorption on Multi-Walled Carbon Nanotube

    OpenAIRE

    Sanaz. Monemtabary; Mojtaba Shariati Niasar; Mohsen Jahanshahi; Ali Asghar Ghoreyshi

    2013-01-01

    In this work, The adsorption of methane onto multi-walled carbon nanotubes (MWCNTs) was studied, in which the influences of temperatureand pressure were investigated. The physical properties of the MWCNT were systematically characterised by Scanning Electron Microscopy (SEM) and Brunauere-Emmette-Teller (BET) surface area measurements. The equilibrium adsorption data were analyzed using threecommon adsorption models: Langmuir, Freundlich and Sips. All of the models fit the experimental result...

  7. Membranes with functionalized carbon nanotube pores for selective transport

    Science.gov (United States)

    Bakajin, Olgica; Noy, Aleksandr; Fornasiero, Francesco; Park, Hyung Gyu; Holt, Jason K; Kim, Sangil

    2015-01-27

    Provided herein composition and methods for nanoporous membranes comprising single walled, double walled, or multi-walled carbon nanotubes embedded in a matrix material. Average pore size of the carbon nanotube can be 6 nm or less. These membranes are a robust platform for the study of confined molecular transport, with applications in liquid and gas separations and chemical sensing including desalination, dialysis, and fabric formation.

  8. Carbon Nanotube Conditioning: Ab Initio Simulations of the Effect of Interwall Interaction, Defects And Doping on the Electronic Properties of Carbon Nanotubes

    Science.gov (United States)

    Castillo, Matias Soto

    Using carbon nanotubes for electrical conduction applications at the macroscale has been shown to be a difficult task for some time now, mainly, due to defects and impurities present, and lack of uniform electronic properties in synthesized carbon nanotube bundles. Some researchers have suggested that growing only metallic armchair nanotubes and arranging them with an ideal contact length could lead to the ultimate electrical conductivity; however, such recipe presents too high of a cost to pay. A different route is to learn to manage the defects, impurities, and the electronic properties of carbon nanotubes present in bundles grown by current state-of-the-art reactors, so that the electrical conduction of a bundle or even wire may be enhanced. In our work, we have used first-principles density functional theory calculations to study the effect of interwall interaction, defects and doping on the electronic structure of metallic, semi-metal and semiconducting single- and double-walled carbon nanotubes in order to gain a clear picture of their properties. The electronic band gap for a range of zigzag single-walled carbon nanotubes with chiral indices (5,0) - (30,0) was obtained. Their properties were used as a stepping stone in the study of the interwall interaction in double-walled carbon nanotubes, from which it was found that the electronic band gap depends on the type of inner and outer tubes, average diameter, and interwall distance. The effect of vacancy defects was also studied for a range of single-walled carbon nanotubes. It was found that the electronic band gap is reduced for the entire range of zigzag carbon nanotubes, even at vacancy defects concentrations of less than 1%. Finally, interaction potentials obtained via first-principles calculations were generalized by developing mathematical models for the purpose of running simulations at a larger length scale using molecular dynamics of the adsorption doping of diatomic iodine. An ideal adsorption site

  9. Electron diffraction from carbon nanotubes

    International Nuclear Information System (INIS)

    Qin, L-C

    2006-01-01

    The properties of a carbon nanotube are dependent on its atomic structure. The atomic structure of a carbon nanotube can be defined by specifying its chiral indices (u, v), that specify its perimeter vector (chiral vector), with which the diameter and helicity are also determined. The fine electron beam available in a modern transmission electron microscope (TEM) offers a unique probe to reveal the atomic structure of individual nanotubes. This review covers two aspects related to the use of the electron probe in the TEM for the study of carbon nanotubes: (a) to understand the electron diffraction phenomena for inter-pretation of the electron diffraction patterns of carbon nanotubes and (b) to obtain the chiral indices (u, v), of the carbon nanotubes from the electron diffraction patterns. For a nanotube of a given structure, the electron scattering amplitude from the carbon nanotube is first described analytically in closed form using the helical diffraction theory. From a known structure as given by the chiral indices (u, v), its electron diffraction pattern can be calculated and understood. The reverse problem, i.e. assignment of the chiral indices from an electron diffraction pattern of a carbon nanotube, is approached from the relationship between the electron scattering intensity distribution and the chiral indices (u, v). We show that electron diffraction patterns can provide an accurate and unambiguous assignment of the chiral indices of carbon nanotubes. The chiral indices (u, v) can be read indiscriminately with a high accuracy from the intensity distribution on the principal layer lines in an electron diffraction pattern. The symmetry properties of electron diffraction from carbon nanotubes and the electron diffraction from deformed carbon nanotubes are also discussed in detail. It is shown that 2mm symmetry is always preserved for single-walled carbon nanotubes, but it can break down for multiwalled carbon nanotubes under some special circumstances

  10. Density functional theory prediction of pKa for carboxylated single-wall carbon nanotubes and graphene

    Science.gov (United States)

    Li, Hao; Fu, Aiping; Xue, Xuyan; Guo, Fengna; Huai, Wenbo; Chu, Tianshu; Wang, Zonghua

    2017-06-01

    Density functional calculations have been performed to investigate the acidities for the carboxylated single-wall carbon nanotubes and graphene. The pKa values for different COOH-functionalized models with varying lengths, diameters and chirality of nanotubes and with different edges of graphene were predicted using the SMD/M05-2X/6-31G* method combined with two universal thermodynamic cycles. The effects of following factors, such as, the functionalized position of carboxyl group, the Stone-Wales and single vacancy defects, on the acidity of the functionalized nanotube and graphene have also been evaluated. The deprotonated species have undergone decarboxylation when the hybridization mode of the carbon atom at the functionalization site changed from sp2 to sp3 both for the tube and graphene. The knowledge of the pKa values of the carboxylated nanotube and graphene could be of great help for the understanding of the nanocarbon materials in many diverse areas, including environmental protection, catalysis, electrochemistry and biochemistry.

  11. Relevance of octanol-water distribution measurements to the potential ecological uptake of multi-walled carbon nanotubes.

    Science.gov (United States)

    Petersen, Elijah J; Huang, Qingguo; Weber, Walter J

    2010-05-01

    Many potential applications of carbon nanotubes (CNTs) require various physicochemical modifications prior to use, suggesting that nanotubes having varied properties may pose risks in ecosystems. A means for estimating bioaccumulation potentials of variously modified CNTs for incorporation in predictive fate models would be highly valuable. An approach commonly used for sparingly soluble organic contaminants, and previously suggested for use as well with carbonaceous nanomaterials, involves measurement of their octanol-water partitioning coefficient (KOW) values. To test the applicability of this approach, a methodology was developed to measure apparent octanol-water distribution behaviors for purified multi-walled carbon nanotubes and those acid treated. Substantial differences in apparent distribution coefficients between the two types of CNTs were observed, but these differences did not influence accumulation by either earthworms (Eisenia foetida) or oligochaetes (Lumbriculus variegatus), both of which showed minimal nanotube uptake for both types of nanotubes. The results suggest that traditional distribution behavior-based KOW approaches are likely not appropriate for predicting CNT bioaccumulation. Copyright (c) 2010 SETAC.

  12. Hydrogen spillover in Pt-single-walled carbon nanotube composites: formation of stable C-H bonds.

    Science.gov (United States)

    Bhowmick, Ranadeep; Rajasekaran, Srivats; Friebel, Daniel; Beasley, Cara; Jiao, Liying; Ogasawara, Hirohito; Dai, Hongjie; Clemens, Bruce; Nilsson, Anders

    2011-04-13

    Using in situ electrical conductivity and ex situ X-ray photoelectron spectroscopy (XPS) measurements, we have examined how the hydrogen uptake of single-walled carbon nanotubes (SWNTs) is influenced by the addition of Pt nanoparticles. The conductivity of platinum-sputtered single-walled carbon nanotubes (Pt-SWNTs) during molecular hydrogen exposure decreased more rapidly than that of the corresponding pure SWNTs, which supports a hydrogenation mechanism facilitated by "spillover" of dissociated hydrogen from the Pt nanoparticles. C 1s XPS spectra indicate that the Pt-SWNTs store hydrogen by means of chemisorption, that is, covalent C-H bond formation: molecular hydrogen charging at elevated pressure (8.27 bar) and room temperature yielded Pt-SWNTs with up to 16 ± 1.5 at. % sp(3)-hybridized carbon atoms, which corresponds to a hydrogen-storage capacity of 1.2 wt % (excluding the weight of Pt nanoparticles). Pt-SWNTs prepared by the Langmuir-Blodgett (LB) technique exhibited the highest Pt/SWNT ratio and also the best hydrogen uptake. © 2011 American Chemical Society

  13. Nitrotyrosine adsorption on carbon nanotube: a density functional theory study

    Science.gov (United States)

    Majidi, R.; Karami, A. R.

    2014-05-01

    We have studied the effect of nitrotyrosine on electronic properties of different single-wall carbon nanotubes by density functional theory. Optimal adsorption configurations of nitrotyrosine adsorbed on carbon nanotube have been determined by calculation of adsorption energy. Adsorption energies indicate that nitrotyrosine is chemisorbed on carbon nanotubes. It is found that the nitrotyrosine adsorption modifies the electronic properties of the semiconducting carbon nanotubes significantly and these nanotubes become n-type semiconductors, while the effect of nitrotyrosine on metallic carbon nanotubes is not considerable and these nanotubes remain metallic. Results clarify sensitivity of carbon nanotubes to nitrotyrosine adsorption and suggest the possibility of using carbon nanotubes as biosensor for nitrotyrosine detection.

  14. Removal of heavy metal ions from wastewaters using dendrimer-functionalized multi-walled carbon nanotubes.

    Science.gov (United States)

    Iannazzo, Daniela; Pistone, Alessandro; Ziccarelli, Ida; Espro, Claudia; Galvagno, Signorino; Giofré, Salvatore V; Romeo, Roberto; Cicero, Nicola; Bua, Giuseppe D; Lanza, Giuseppe; Legnani, Laura; Chiacchio, Maria A

    2017-06-01

    Dendrimer-functionalized multi-walled carbon nanotubes (MWCNT) for heavy metal ion removal from wastewaters were developed. Triazole dendrimers (TD) were built directly onto the carbon nanotube surface by successive click chemistry reactions affording the zero- and first-generation dendrimer-functionalized MWCNT (MWCNT-TD1 and MWCNT-TD2). The Moedritzer-Irani reaction carried out on the amino groups present on the MWCNT-TD2 sample gave the corresponding α-aminophosphonate nanosystem MWCNT-TD2P. Both MWCNT-TD2 and MWCNT-TD2P nanosystems have been characterized by physical, chemical, and morphological analyses. Their chelating abilities towards the toxic metal ions Pb 2+ , Hg 2+ , and Ni 2+ and the harmless Ca 2+ ion have been experimentally evaluated in the two different sets of experiments and at the salt concentrations of 1 mg/mL or 1 μg/mL by inductively coupled plasma mass spectrometry (ICP-MS). The results of these studies pointed out the interesting chelating behavior for the phosphonated nanosystem towards the Hg 2+ ion. The complexation mode of the best chelating system MWCNT-TD2P with mercury was investigated through density functional theory (DFT) calculations, suggesting a chelation mechanism involving the two oxygen atoms of the phosphate group. The synthesized dendrimers, supported on the multi-walled carbon nanotubes, have shown the potential to be used for the selective toxic metal ion removal and recovery.

  15. On the charge transfer between single-walled carbon nanotubes and graphene

    International Nuclear Information System (INIS)

    Rao, Rahul; Pierce, Neal; Dasgupta, Archi

    2014-01-01

    It is important to understand the electronic interaction between single-walled carbon nanotubes (SWNTs) and graphene in order to use them efficiently in multifunctional hybrid devices. Here, we deposited SWNT bundles on graphene-covered copper and SiO 2 substrates by chemical vapor deposition and investigated the charge transfer between them by Raman spectroscopy. Our results revealed that, on both copper and SiO 2 substrates, graphene donates electrons to the SWNTs, resulting in p-type doped graphene and n-type doped SWNTs.

  16. Plasmon excitation in single wall carbon nanotubes by penetrating charged particles

    International Nuclear Information System (INIS)

    Segui, Silvina; Gervasoni, Juana L; Arista, Néstor R; Mowbray, Duncan J; Mišković, Zoran L

    2012-01-01

    In this work we study the excitation of plasmons due to the incidence of a charged particle passing through a single wall carbon nanotube. We use a quantized hydrodynamic, in which the σ and π electrons characteristic of these carbonaceous structures are depicted as two interacting 2-dimensional fluids, to calculate the average number of plasmons excited. We analyze the contribution of the different plasmon modes in a variety of configurations, and study the energy lost by the incident particle.

  17. Controlling Structural Characteristics of Single-Walled Carbon Nanotubes (SWNT) by Tailoring Catalyst Composition and Synthesis Conditions

    International Nuclear Information System (INIS)

    Resasco, Daniel E.

    2010-01-01

    This report shows the extensive research on the mechanism responsible for the formation of single walled carbon nanotubes in order to get control over their structural parameters (diameter and chirality). Catalyst formulations, pre-treatment conditions, and reaction conditions are described in detail as well as mechanisms to produce nanotubes structures of specific arrays (vertical forest, nanotube pillars). Applications of SWNT in different fields are also described in this report. In relation to this project five students have graduated (3 PhD and 2 MS) and 35 papers have been published.

  18. Catalyst Design Using Nanoporous Iron for the Chemical Vapor Deposition Synthesis of Single-Walled Carbon Nanotubes

    Directory of Open Access Journals (Sweden)

    Tarek M. Abdel-Fattah

    2013-01-01

    Full Text Available Single-walled carbon nanotubes (SWNTs have been synthesized via a novel chemical vapor deposition (CVD approach utilizing nanoporous, iron-supported catalysts. Stable aqueous dispersions of the CVD-grown nanotubes using an anionic surfactant were also obtained. The properties of the as-produced SWNTs were characterized through atomic force microscopy and Raman spectroscopy and compared with purified SWNTs produced via the high-pressure CO (HiPCO method as a reference, and the nanotubes were observed with greater lengths than those of similarly processed HiPCO SWNTs.

  19. Using Photosensitive Dye To Improve Multi Walled Carbon Nanotubes Dispersion

    Energy Technology Data Exchange (ETDEWEB)

    Diaz Costanzo, Guadalupe; Goyanes, Silvia [Laboratorio de PolImeros y Materiales Compuestos, Dpto. de Fisica, FCEyN, Universidad de Buenos Aires (Argentina) (Argentina); Ledesma, Silvia, E-mail: ledesma@df.uba.ar [Laboratorio de Procesado de Imagenes, Dpto. de Fisica, FCEyN, Universidad de Buenos Aires (Argentina) (Argentina)

    2011-01-01

    As already well-known, the outstanding mechanical and electrical properties of carbon nanotubes (CNT) are partially lost when CNT aggregate. The fact that CNT tend to aggregate makes difficult to put them into a host matrix, for example. Until now, achieving stable dispersions of CNT is still a challenge. In the present work, we show that the addition of an azobenzene derivative, Disperse Orange 3 (DO3) to dispersions of multi walled carbon nanotubes (MWCNT) in the organic solvent tetrahydrofuran (THF) efficiently helps debundling MWCNT and makes dispersions stable for days. We report UV-Vis optical absorption experiments that suggest an interaction between MWCNT and DO3 molecules following the behavior qualitatively observed. Dispersions with MWCNT and DO3 in THF were observed qualitatively over time. Successful suspensions (for the higher DO3 concentrations studied) were stable for several days. Also, we prepared polymeric films doped with MWCNT non-covalent functionalized with DO3 in one of the proper DO3/MWCNT weight relation where stable supensions were obtained. In this study we show preliminary results where the optical response of these samples was also measured.

  20. Limited transport of functionalized multi-walled carbon nanotubes in two natural soils

    International Nuclear Information System (INIS)

    Kasel, Daniela; Bradford, Scott A.; Šimůnek, Jiří; Pütz, Thomas; Vereecken, Harry; Klumpp, Erwin

    2013-01-01

    Column experiments were conducted in undisturbed and in repacked soil columns at water contents close to saturation (85–96%) to investigate the transport and retention of functionalized 14 C-labeled multi-walled carbon nanotubes (MWCNT) in two natural soils. Additionally, a field lysimeter experiment was performed to provide long-term information at a larger scale. In all experiments, no breakthrough of MWCNTs was detectable and more than 85% of the applied radioactivity was recovered in the soil profiles. The retention profiles exhibited a hyper-exponential shape with greater retention near the column or lysimeter inlet and were successfully simulated using a numerical model that accounted for depth-dependent retention. In conclusion, results indicated that the soils acted as a strong sink for MWCNTs. Little transport of MWCNTs is therefore likely to occur in the vadose zone, and this implies limited potential for groundwater contamination in the investigated soils. -- Highlights: •Investigation of undisturbed soil columns and lysimeter. •Transport experiments under water-unsaturated conditions. •Retention profiles were measured and numerically modeled. •Complete retention of MWCNT in undisturbed and repacked soil columns. -- In undisturbed columns and a lysimeter study, complete retention of functionalized multi-walled carbon nanotubes was found in two soils at environmentally relevant conditions

  1. Composite of TiN nanoparticles and few-walled carbon nanotubes and its application to the electrocatalytic oxygen reduction reaction

    KAUST Repository

    Isogai, Shunsuke

    2011-11-30

    Nanoparticles meet nanotubes! Direct synthesis of TiN nanoparticles in a three-dimensional network of few-walled carbon nanotubes (FWCNTs) was achieved by using mesoporous graphitic carbon nitride (C 3N 4) as both a hard template and a nitrogen source. The TiN/FWCNT composite showed high performance for the oxygen reduction reaction in acidic media. © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Probing Charge Transfer between Shells of Double-Walled Carbon Nanotubes Sorted by Outer-Wall Electronic Type

    Czech Academy of Sciences Publication Activity Database

    Kalbáč, Martin; Green, A. A.; Hersam, M. C.; Kavan, Ladislav

    2011-01-01

    Roč. 17, č. 35 (2011), s. 9806-9815 ISSN 0947-6539 R&D Projects: GA AV ČR IAA400400911; GA AV ČR IAA400400804; GA AV ČR KAN200100801; GA ČR GAP204/10/1677; GA MŠk LC510; GA MŠk ME09060 Institutional research plan: CEZ:AV0Z40400503 Keywords : density-gradient ultracentrifugation * double-walled carbon nanotubes * electrochemistry Subject RIV: CG - Electrochemistry Impact factor: 5.925, year: 2011

  3. Optical properties of graphene nanoribbons encapsulated in single-walled carbon nanotubes.

    Science.gov (United States)

    Chernov, Alexander I; Fedotov, Pavel V; Talyzin, Alexandr V; Suarez Lopez, Inma; Anoshkin, Ilya V; Nasibulin, Albert G; Kauppinen, Esko I; Obraztsova, Elena D

    2013-07-23

    We report the photoluminescence (PL) from graphene nanoribbons (GNRs) encapsulated in single-walled carbon nanotubes (SWCNTs). New PL spectral features originating from GNRs have been detected in the visible spectral range. PL peaks from GNRs have resonant character, and their positions depend on the ribbon geometrical structure in accordance with the theoretical predictions. GNRs were synthesized using confined polymerization and fusion of coronene molecules. GNR@SWCNTs material demonstrates a bright photoluminescence both in infrared (IR) and visible regions. The photoluminescence excitation mapping in the near-IR spectral range has revealed the geometry-dependent shifts of the SWCNT peaks (up to 11 meV in excitation and emission) after the process of polymerization of coronene molecules inside the nanotubes. This behavior has been attributed to the strain of SWCNTs induced by insertion of the coronene molecules.

  4. Microwave and Millimeter Wave Properties of Vertically-Aligned Single Wall Carbon Nanotubes Films

    Science.gov (United States)

    Haddadi, K.; Tripon-Canseliet, C.; Hivin, Q.; Ducournau, G.; Teo, E.; Coquet, P.; Tay, B. K.; Lepilliet, S.; Avramovic, V.; Chazelas, J.; Decoster, D.

    2016-05-01

    We present the experimental determination of the complex permittivity of vertically aligned single wall carbon nanotubes (SWCNTs) films grown on quartz substrates in the microwave regime from 10 MHz up to 67 GHz, with the electrical field perpendicular to the main axis of the carbon nanotubes (CNTs), based on coplanar waveguide transmission line approach together with the measurement of the microwave impedance of top metalized vertically—aligned SWCNTs grown on conductive silicon substrates up to 26 GHz. From coplanar waveguide measurements, we obtain a real part of the permittivity almost equal to unity, which is interpreted in terms of low carbon atom density (3 × 1019 at/cm3) associated with a very low imaginary part of permittivity (vertically aligned CNTs bundle equivalent to a low resistance reveals a good conductivity (3 S/cm) parallel to the CNTs axis. From these two kinds of data, we experimentally demonstrate the tensor nature of the vertically grown CNTs bundles.

  5. The impact of different multi-walled carbon nanotubes on the X-band microwave absorption of their epoxy nanocomposites.

    Science.gov (United States)

    Che, Bien Dong; Nguyen, Bao Quoc; Nguyen, Le-Thu T; Nguyen, Ha Tran; Nguyen, Viet Quoc; Van Le, Thang; Nguyen, Nieu Huu

    2015-01-01

    Carbon nanotube (CNT) characteristics, besides the processing conditions, can change significantly the microwave absorption behavior of CNT/polymer composites. In this study, we investigated the influence of three commercial multi-walled CNT materials with various diameters and length-to-diameter aspect ratios on the X-band microwave absorption of epoxy nanocomposites with CNT contents from 0.125 to 2 wt%, prepared by two dispersion methods, i.e. in solution with surfactant-aiding and via ball-milling. The laser diffraction particle size and TEM analysis showed that both methods produced good dispersions at the microscopic level of CNTs. Both a high aspect ratio resulting in nanotube alignment trend and good infiltration of the matrix in the individual nanotubes, which was indicated by high Brookfield viscosities at low CNT contents of CNT/epoxy dispersions, are important factors to achieve composites with high microwave absorption characteristics. The multi-walled carbon nanotube (MWCNT) with the largest aspect ratio resulted in composites with the best X-band microwave absorption performance, which is considerably better than that of reported pristine CNT/polymer composites with similar or lower thicknesses and CNT loadings below 4 wt%. A high aspect ratio of CNTs resulting in microscopic alignment trend of nanotubes as well as a good level of micro-scale CNT dispersion resulting from good CNT-matrix interactions are crucial to obtain effective microwave absorption performance. This study demonstrated that effective radar absorbing MWCNT/epoxy nanocomposites having small matching thicknesses of 2-3 mm and very low filler contents of 0.25-0.5 wt%, with microwave energy absorption in the X-band region above 90% and maximum absorption peak values above 97%, could be obtained via simple processing methods, which is promising for mass production in industrial applications. Graphical AbstractComparison of the X-band microwave reflection loss of epoxy composites of

  6. A Review: Carbon Nanotube-Based Piezoresistive Strain Sensors

    Directory of Open Access Journals (Sweden)

    Waris Obitayo

    2012-01-01

    Full Text Available The use of carbon nanotubes for piezoresistive strain sensors has acquired significant attention due to its unique electromechanical properties. In this comprehensive review paper, we discussed some important aspects of carbon nanotubes for strain sensing at both the nanoscale and macroscale. Carbon nanotubes undergo changes in their band structures when subjected to mechanical deformations. This phenomenon makes them applicable for strain sensing applications. This paper signifies the type of carbon nanotubes best suitable for piezoresistive strain sensors. The electrical resistivities of carbon nanotube thin film increase linearly with strain, making it an ideal material for a piezoresistive strain sensor. Carbon nanotube composite films, which are usually fabricated by mixing small amounts of single-walled or multiwalled carbon nanotubes with selected polymers, have shown promising characteristics of piezoresistive strain sensors. Studies also show that carbon nanotubes display a stable and predictable voltage response as a function of temperature.

  7. Large-area fluidic assembly of single-walled carbon nanotubes through dip-coating and directional evaporation

    Science.gov (United States)

    Kim, Pilnam; Kang, Tae June

    2017-12-01

    We present a simple and scalable fluidic-assembly approach, in which bundles of single-walled carbon nanotubes (SWCNTs) are selectively aligned and deposited by directionally controlled dip-coating and solvent evaporation processes. The patterned surface with alternating regions of hydrophobic polydimethyl siloxane (PDMS) (height 100 nm) strips and hydrophilic SiO2 substrate was withdrawn vertically at a constant speed ( 3 mm/min) from a solution bath containing SWCNTs ( 0.1 mg/ml), allowing for directional evaporation and subsequent selective deposition of nanotube bundles along the edges of horizontally aligned PDMS strips. In addition, the fluidic assembly was applied to fabricate a field effect transistor (FET) with highly oriented SWCNTs, which demonstrate significantly higher current density as well as high turn-off ratio (T/O ratio 100) as compared to that with randomly distributed carbon nanotube bundles (T/O ratio <10).

  8. Decoration of Multi-walled Carbon Nanotubes by Metal ...

    African Journals Online (AJOL)

    NICO

    tures inside the nanotubes to increase the available surface for catalysis6 or in ... most common method to decorate CNTs by metal nanoparticles and metal oxides due .... 2.6 Characterization of Carbon Nanotubes, Metal Nano- particles and ...

  9. Release characteristics of selected carbon nanotube polymer composites

    Science.gov (United States)

    Multi-walled carbon nanotubes (MWCNTs) are commonly used in polymer formulations to improve strength, conductivity, and other attributes. A developing concern is the potential for carbon nanotube polymer nanocomposites to release nanoparticles into the environment as the polymer ...

  10. The Kinetics of Chirality Assignment in Catalytic Single Walled Carbon Nanotube Growth

    OpenAIRE

    Xu, Ziwei; Yan, Tianying; Ding, Feng

    2014-01-01

    Chirality-selected single-walled carbon nanotubes (SWCNTs) ensure a great potential of building ~1 nm sized electronics. However, the reliable method for chirality-selected SWCNT is still pending. Here we present a theoretical study on the SWCNT's chirality assignment and control during the catalytic growth. This study reveals that the chirality of a SWCNT is determined by the kinetic incorporation of the pentagon formation during SWCNT nucleation. Therefore, chirality is randomly assigned on...

  11. Control of the Diameter and Chiral Angle Distributions during Production of Single-Wall Carbon Nanotubes

    Science.gov (United States)

    Nikolaev, Pavel

    2009-01-01

    Many applications of single wall carbon nanotubes (SWCNT), especially in microelectronics, will benefit from use of certain (n,m) nanotube types (metallic, small gap semiconductor, etc.) Especially fascinating is the possibility of quantum conductors that require metallic armchair nanotubes. However, as produced SWCNT samples are polydisperse, with many (n,m) types present and typical approx.1:2 metal/semiconductor ratio. Nanotube nucleation models predict that armchair nuclei are energetically preferential due to formation of partial triple bonds along the armchair edge. However, nuclei can not reach any meaningful thermal equilibrium in a rapidly expanding and cooling plume of carbon clusters, leading to polydispersity. In the present work, SWCNTs were produced by a pulsed laser vaporization (PLV) technique. The carbon vapor plume cooling rate was either increased by change in the oven temperature (expansion into colder gas), or decreased via "warm-up" with a laser pulse at the moment of nucleation. The effect of oven temperature and "warm-up" on nanotube type population was studied via photoluminescence, UV-Vis-NIR absorption and Raman spectroscopy. It was found that reduced temperatures leads to smaller average diameters, progressively narrower diameter distributions, and some preference toward armchair structures. "Warm-up" shifts nanotube population towards arm-chair structures as well, but the effect is small. Possible improvement of the "warm-up" approach to produce armchair SWCNTs will be discussed. These results demonstrate that PLV production technique can provide at least partial control over the nanotube (n,m) population. In addition, these results have implications for the understanding the nanotube nucleation mechanism in the laser oven.

  12. Selective Deposition and Alignment of Single-Walled Carbon Nanotubes Assisted by Dielectrophoresis: From Thin Films to Individual Nanotubes

    Science.gov (United States)

    Li, Pengfei; Xue, Wei

    2010-06-01

    Dielectrophoresis has been used in the controlled deposition of single-walled carbon nanotubes (SWNTs) with the focus on the alignment of nanotube thin films and their applications in the last decade. In this paper, we extend the research from the selective deposition of SWNT thin films to the alignment of small nanotube bundles and individual nanotubes. Electrodes with “teeth”-like patterns are fabricated to study the influence of the electrode width on the deposition and alignment of SWNTs. The entire fabrication process is compatible with optical lithography-based techniques. Therefore, the fabrication cost is low, and the resulting devices are inexpensive. A series of SWNT solutions is prepared with concentrations ranging from 0.0125 to 0.2 mg/ml. The alignment of SWNT thin films, small bundles, and individual nanotubes is achieved under the optimized experimental conditions. The electrical properties of these samples are characterized; the linear current-voltage plots prove that the aligned SWNTs are mainly metallic nanotubes. The microscopy inspection of the samples demonstrates that the alignment of small nanotube bundles and individual nanotubes can only be achieved using narrow electrodes and low-concentration solutions. Our investigation shows that it is possible to deposit a controlled amount of SWNTs in desirable locations using dielectrophoresis.

  13. Selective Deposition and Alignment of Single-Walled Carbon Nanotubes Assisted by Dielectrophoresis: From Thin Films to Individual Nanotubes

    Directory of Open Access Journals (Sweden)

    Li Pengfei

    2010-01-01

    Full Text Available Abstract Dielectrophoresis has been used in the controlled deposition of single-walled carbon nanotubes (SWNTs with the focus on the alignment of nanotube thin films and their applications in the last decade. In this paper, we extend the research from the selective deposition of SWNT thin films to the alignment of small nanotube bundles and individual nanotubes. Electrodes with “teeth”-like patterns are fabricated to study the influence of the electrode width on the deposition and alignment of SWNTs. The entire fabrication process is compatible with optical lithography-based techniques. Therefore, the fabrication cost is low, and the resulting devices are inexpensive. A series of SWNT solutions is prepared with concentrations ranging from 0.0125 to 0.2 mg/ml. The alignment of SWNT thin films, small bundles, and individual nanotubes is achieved under the optimized experimental conditions. The electrical properties of these samples are characterized; the linear current–voltage plots prove that the aligned SWNTs are mainly metallic nanotubes. The microscopy inspection of the samples demonstrates that the alignment of small nanotube bundles and individual nanotubes can only be achieved using narrow electrodes and low-concentration solutions. Our investigation shows that it is possible to deposit a controlled amount of SWNTs in desirable locations using dielectrophoresis.

  14. Silica-coated multi-walled carbon nanotubes impregnated with polyethyleneimine for carbon dioxide capture under the flue gas condition

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Min-Sang; Park, Soo-Jin, E-mail: sjpark@inha.ac.kr

    2015-03-15

    In this study, silica-coated multi-walled carbon nanotubes impregnated with polyethyleneimine (PEI) were prepared via a two-step process: (i) hydrolysis of tetraethylorthosilicate onto multi-walled carbon nanotubes, and (ii) impregnation of PEI. The adsorption properties of CO{sub 2} were investigated using CO{sub 2} adsorption–desorption isotherms at 298 K and thermogravimetric analysis under the flue gas condition (15% CO{sub 2}/85% N{sub 2}). The results obtained in this study indicate that CO{sub 2} adsorption increases after impregnation of PEI. The increase in CO{sub 2} capture was attributed to the affinity between CO{sub 2} and the amine groups. CO{sub 2} adsorption–desorption experiments, which were repeated five times, also showed that the prepared adsorbents have excellent regeneration properties. - Graphical abstract: Fabrication and CO{sub 2} adsorption process of the S-MWCNTs impregnated with PEI. - Highlights: • Silica coated-MWCNT impregnated with PEI was synthesized. • Amine groups of PEI gave CO{sub 2} affinity sites on MWCNT surfaces. • The S-MWCNT/PEI(50) exhibited the highest CO{sub 2} adsorption capacity.

  15. Atomic scale mass delivery driven by bend kink in single walled carbon nanotube

    International Nuclear Information System (INIS)

    Kan Biao; Ding Jianning; Ling Zhiyong; Yuan Ningyi; Cheng Guanggui

    2010-01-01

    The possibility of atomic scale mass delivery by bend kink in single walled carbon nanotube was investigated with the aid of molecular dynamics simulation. By keeping the bending angle while moving the tube end, the encapsulated atomic scale mass such as atom, molecule and atom group were successfully delivered through the nanotube. The van der Waals interaction between the encapsulated mass and the tube wall provided the driving force for the delivery. There were no dramatic changes in the van der Waals interaction, and a smooth and steady delivery was achieved when constant loading rate was applied. The influence of temperature on the atom group delivery was also analyzed. It is found raising temperature is harmful to the smooth movement of the atom group. However, the delivery rate can be promoted under higher temperature when the atom group is situated before the kink during the delivery.

  16. Multi Objective Optimization of Multi Wall Carbon Nanotube Based Nanogrinding Wheel Using Grey Relational and Regression Analysis

    Science.gov (United States)

    Sethuramalingam, Prabhu; Vinayagam, Babu Kupusamy

    2016-07-01

    Carbon nanotube mixed grinding wheel is used in the grinding process to analyze the surface characteristics of AISI D2 tool steel material. Till now no work has been carried out using carbon nanotube based grinding wheel. Carbon nanotube based grinding wheel has excellent thermal conductivity and good mechanical properties which are used to improve the surface finish of the workpiece. In the present study, the multi response optimization of process parameters like surface roughness and metal removal rate of grinding process of single wall carbon nanotube (CNT) in mixed cutting fluids is undertaken using orthogonal array with grey relational analysis. Experiments are performed with designated grinding conditions obtained using the L9 orthogonal array. Based on the results of the grey relational analysis, a set of optimum grinding parameters is obtained. Using the analysis of variance approach the significant machining parameters are found. Empirical model for the prediction of output parameters has been developed using regression analysis and the results are compared empirically, for conditions of with and without CNT grinding wheel in grinding process.

  17. Fabrication of carbon nanotube/epoxy nanocomposite and characterization of its mechanical properties

    Energy Technology Data Exchange (ETDEWEB)

    Mubin, Muhammad Shamsul Huda

    2007-02-15

    In this study, carbon nanotube polymer nanocomposites have been fabricated incorporating single walled carbon nantubes (SWNTs) or multiwalled carbon nanotubes (MWNTs) in a thermosetting polymer matrix, epoxy resin. Nanoindentation measurements showed that elastic modulus of epoxy polymer matrix has changed from 3.5 GPa to 4.0 GPa (∼ 15 % increase) only for 0.005 wt% single walled carbon nanotubes loading. The hardness of the single walled carbon nanotube incorporated epoxy nanocomposites remained nearly unchanged for 0.005 wt % nanotube loading. Multiwalled carbon nanotube incorporated epoxy nanocomposites showed deterioration of both the hardness, from 0.2 GPa to 0.08 GPa (∼factor 2.5), and elastic modulus, from 3.5 GPa to 2.1 GPa (∼ factor 1.6), for 0.02 wt % nanotube loading. Homogeneity study using continuous stiffness measurement (CSM) mode of indentation techniques revealed the lack in homogeneity of the fabricated nancomposite may be responsible for deteriorating mechanical properties. High resolution scanning electronic microscopic (SEM) images taken from cross section of carbon nanotubes incorporated epoxy nanocomposites showed several poorly attached thin layers of nanocomposites staked on each other which may be another cause of property deterioration.

  18. Fabrication of carbon nanotube/epoxy nanocomposite and characterization of its mechanical properties

    International Nuclear Information System (INIS)

    Mubin, Muhammad Shamsul Huda

    2007-02-01

    In this study, carbon nanotube polymer nanocomposites have been fabricated incorporating single walled carbon nantubes (SWNTs) or multiwalled carbon nanotubes (MWNTs) in a thermosetting polymer matrix, epoxy resin. Nanoindentation measurements showed that elastic modulus of epoxy polymer matrix has changed from 3.5 GPa to 4.0 GPa (∼ 15 % increase) only for 0.005 wt% single walled carbon nanotubes loading. The hardness of the single walled carbon nanotube incorporated epoxy nanocomposites remained nearly unchanged for 0.005 wt % nanotube loading. Multiwalled carbon nanotube incorporated epoxy nanocomposites showed deterioration of both the hardness, from 0.2 GPa to 0.08 GPa (∼factor 2.5), and elastic modulus, from 3.5 GPa to 2.1 GPa (∼ factor 1.6), for 0.02 wt % nanotube loading. Homogeneity study using continuous stiffness measurement (CSM) mode of indentation techniques revealed the lack in homogeneity of the fabricated nancomposite may be responsible for deteriorating mechanical properties. High resolution scanning electronic microscopic (SEM) images taken from cross section of carbon nanotubes incorporated epoxy nanocomposites showed several poorly attached thin layers of nanocomposites staked on each other which may be another cause of property deterioration

  19. Process for derivatizing carbon nanotubes with diazonium species and compositions thereof

    Science.gov (United States)

    Tour, James M. (Inventor); Bahr, Jeffrey L. (Inventor); Yang, Jiping (Inventor)

    2011-01-01

    Methods for the chemical modification of carbon nanotubes involve the derivatization of multi- and single-wall carbon nanotubes, including small diameter (ca. 0.7 nm) single-wall carbon nanotubes, with diazonium species. The method allows the chemical attachment of a variety of organic compounds to the side and ends of carbon nanotubes. These chemically modified nanotubes have applications in polymer composite materials, molecular electronic applications, and sensor devices. The methods of derivatization include electrochemical induced reactions, thermally induced reactions, and photochemically induced reactions. Moreover, when modified with suitable chemical groups, the derivatized nanotubes are chemically compatible with a polymer matrix, allowing transfer of the properties of the nanotubes (such as, mechanical strength or electrical conductivity) to the properties of the composite material as a whole. Furthermore, when modified with suitable chemical groups, the groups can be polymerized to form a polymer that includes carbon nanotubes.

  20. The Effects of Single-Wall Carbon Nanotubes on the Shear Piezoelectricity of Biopolymers

    Science.gov (United States)

    Lovell, Conrad; Fitz-Gerald, James M.; Harrison, Joycelyn S.; Park, Cheol

    2008-01-01

    Shear piezoelectricity was investigated in a series of composites consisting of increased loadings of single-wall carbon nanotubes (SWCNTs) in poly (gamma-benzyl-L-glutamate), or PBLG. The effects of the SWCNTs on this material property in PBLG will be discussed. Their influence on the morphology of the polymer (degree of orientation and crystallinity), and electrical and dielectric properties of the composite will be reported

  1. Pressure effects on single wall carbon nanotube bundles

    International Nuclear Information System (INIS)

    Teredesai, P.V.; Sharma, S.M.; Karmakar, S.; Sikka, S.K.; Govindaraj, A.; Rao, C.N.R.

    2001-01-01

    We report high pressure Raman studies on single wall carbon nanotube bundles under hydrostatic conditions using two different pressure transmitting media, alcohol mixture and pure water. The radial and tangential modes show a blue shift when SWNT bundle is immersed in the liquids at ambient pressures. The pressure dependence of the radial modes is the same in both liquids. However, the pressure derivatives dω/dP of the tangential modes are slightly higher for the water medium. Raman results are compared with studies under non-hydrostatic conditions and with recent high-pressure X-ray studies. It is seen that the mode frequencies of the recovered sample after pressure cycling from 26 GPa are downshifted by ∝7-10 cm -1 as compared to the starting sample. (orig.)

  2. Progress Toward Sequestering Carbon Nanotubes in PmPV

    Science.gov (United States)

    Bley, Richard A.

    2009-01-01

    Sequestration of single-walled carbon nanotubes (SWNTs) in molecules of poly(m-phenylenevinylene-co-2,5-diocty-loxy-p-phenylenevinylene) [PmPV] is a candidate means of promoting dissolution of single-walled carbon nanotubes (SWNTs) into epoxies for making strong, lightweight epoxy-matrix/carbon-fiber composite materials. Bare SWNTs cannot be incorporated because they are not soluble in epoxies. In the present approach, one exploits the tendency of PmPV molecules to wrap themselves around SWNTs without chemically bonding to them.

  3. Curvature dependence of single-walled carbon nanotubes for SO2 adsorption and oxidation

    Science.gov (United States)

    Chen, Yanqiu; Yin, Shi; Li, Yueli; Cen, Wanglai; Li, Jianjun; Yin, Huaqiang

    2017-05-01

    Porous carbon-based catalysts showing high catalytic activity for SO2 oxidation to SO3 is often used in flue gas desulfurization. Their catalytic activity has been ascribed in many publications to the microporous structure and the effect of its spatial confinement. First principles method was used to investigate the adsorption and oxidation of SO2 on the inner and outer surface of single-walled carbon nanotubes (SWCNTs) with different diameters. It is interesting to found that there is a direct correlation: the barrier for the oxidation O_SWCNT + SO2 → SO3 + SWCNT monotonically decreases with the increase of SWCNTs' curvature. The oxygen functional located at the inner wall of SWCNTs with small radius is of higher activity for SO2 oxidation, which is extra enhanced by the spatial confinement effects of SWCNTs. These findings can be useful for the development of carbon-based catalysts and provide clues for the optimization and design of porous carbon catalysts.

  4. Large work function difference driven electron transfer from electrides to single-walled carbon nanotubes

    KAUST Repository

    Menamparambath, Mini Mol; Park, Jong Ho; Yoo, Ho Sung; Patole, Shashikant P.; Yoo, Ji Beom; Kim, Sung Wng; Baik, Seunghyun

    2014-01-01

    V. Here we investigated charge transfer between two different types of electrides, [Ca2N]+·e- and [Ca 24Al28O64]4+·4e-, and single-walled carbon nanotubes (SWNTs) with a work function of 4.73-5.05 eV. [Ca2N]+·e- with open 2-dimensional electron layers

  5. Spin-curvature interaction from curved Dirac equation: Application to single-wall carbon nanotubes

    Science.gov (United States)

    Zhang, Kai; Zhang, Erhu; Chen, Huawei; Zhang, Shengli

    2017-06-01

    The spin-curvature interaction (SCI) and its effects are investigated based on curved Dirac equation. Through the low-energy approximation of curved Dirac equation, the Hamiltonian of SCI is obtained and depends on the geometry and spinor structure of manifold. We find that the curvature can be considered as field strength and couples with spin through Zeeman-like term. Then, we use dimension reduction to derive the local Hamiltonian of SCI for cylinder surface, which implies that the effective Hamiltonian of single-wall carbon nanotubes results from the geometry and spinor structure of lattice and includes two types of interactions: one does not break any symmetries of the lattice and only shifts the Dirac points for all nanotubes, while the other one does and opens the gaps except for armchair nanotubes. At last, analytical expressions of the band gaps and the shifts of their positions induced by curvature are given for metallic nanotubes. These results agree well with experiments and can be verified experimentally.

  6. Network single-walled carbon nanotube biosensors for fast and highly sensitive detection of proteins

    International Nuclear Information System (INIS)

    Hu Pingan; Zhang Jia; Wen Zhenzhong; Zhang Can

    2011-01-01

    Detection of proteins is powerfully assayed in the diagnosis of diseases. A strategy for the development of an ultrahigh sensitivity biosensor based on a network single-walled carbon nanotube (SWNT) field-effect transistor (FET) has been demonstrated. Metallic SWNTs (m-SWNTs) in the network nanotube FET were selectively removed or cut via a carefully controlled procedure of electrical break-down (BD), and left non-conducting m-SWNTs which magnified the Schottky barrier (SB) area. This nanotube FET exhibited ultrahigh sensitivity and fast response to biomolecules. The lowest detection limit of 0.5 pM was achieved by exploiting streptavidin (SA) or a biotin/SA pair as the research model, and BD-treated nanotube biosensors had a 2 x 10 4 -fold lower minimum detectable concentration than the device without BD treatment. The response time is in the range of 0.3-3 min.

  7. Interaction of multiwalled carbon nanotube produces structural ...

    African Journals Online (AJOL)

    Abstract. Multiwalled carbon nanotube (MWCNT) has been found to produce structural changes in Calf Thymus-DNA (CT-DNA). The interaction or binding of the multi-walled carbon nanotubes (MWCNT) was investigated in order to discover if it brings about any significant changes of the DNA double helix using CD spectra ...

  8. Carbon paste electrode incorporating multi-walled carbon nanotube ...

    Indian Academy of Sciences (India)

    The preparation and electrochemical performance of the carbon nanotube paste electrode modified with ferrocene (FCMCNPE) was investigated for electrocatalytic behaviour toward oxidation of -acetyl--cysteine (NAC) in the presence of tryptophan (Trp) using cyclic voltammetry (CV) and differential pulse voltammetry ...

  9. Coupled Cluster Studies of Ionization Potentials and Electron Affinities of Single-Walled Carbon Nanotubes

    Energy Technology Data Exchange (ETDEWEB)

    Peng, Bo; Govind, Niranjan; Apra, Edoardo; Klemm, Michael; Hammond, Jeff R.; Kowalski, Karol

    2017-02-03

    In this paper we apply equation-of-motion coupled cluster (EOMCC) methods in studies of vertical ionization potentials (IP) and electron affinities (EA) for sin- gled walled carbon nanotubes. EOMCC formulations for ionization potentials and electron affinities employing excitation manifolds spanned by single and double ex- citations (IP/EA-EOMCCSD) are used to study IPs and EAs of nanotubes as a function of nanotube length. Several armchair nanotubes corresponding to C20nH20 models with n = 2 - 6 have been used in benchmark calculations. In agreement with previous studies, we demonstrate that the electronegativity of C20nH20 systems remains, to a large extent, independent of nanotube length. We also compare IP/EA- EOMCCSD results with those obtained with the coupled cluster models with single and double excitations corrected by perturbative triples, CCSD(T), and density func- tional theory (DFT) using global and range-separated hybrid exchange-correlation functionals.

  10. Indium tin oxide-rod/single walled carbon nanotube based transparent electrodes for ultraviolet light-emitting diodes

    International Nuclear Information System (INIS)

    Yun, Min Ju; Kim, Hee-Dong; Kim, Kyeong Heon; Sung, Hwan Jun; Park, Sang Young; An, Ho-Myoung; Kim, Tae Geun

    2013-01-01

    In this paper, we report a transparent conductive oxide electrode scheme working for ultraviolet light-emitting diodes based on indium tin oxide (ITO)-rod and a single walled carbon nanotube (SWCNT) layer. We prepared four samples with ITO-rod, SWCNT/ITO-rod, ITO-rod/SWCNT, and SWCNT/ITO-rod/SWCNT structures for comparison. As a result, the sample with SWCNT/ITO-rod/SWCNT structures showed the highest transmittance over 90% at 280 nm and the highest Ohmic behavior (with sheet resistance of 5.33 kΩ/□) in the current–voltage characteristic curves. - Highlights: • Transparent conductive oxide (TCO) electrodes are proposed for UV light-emitting diodes. • These TCO electrodes are based on evaporated indium tin oxide (ITO)-rods. • Single walled carbon nanotube (SWCNT) layers are used as a current spreading layer. • The proposed TCO electrode structures show more than 90% transmittance at 280 nm

  11. Enrichment Mechanism of Semiconducting Single-walled Carbon Nanotubes by Surfactant Amines

    Science.gov (United States)

    Ju, Sang-Yong; Utz, Marcel; Papadimitrakopoulos, Fotios

    2009-01-01

    Utilization of single-walled carbon nanotubes (SWNTs) in high-end applications hinges on separating metallic (met-) from semiconducting (sem-) SWNTs. Surfactant amines, like octadecylamine (ODA) have proven instrumental for the selective extraction of sem-SWNTs from tetrahydrofuran (THF) nanotube suspensions. The chemical shift differences along the tail of an asymmetric, diacetylenic surfactant amine were used to probe the molecular dynamics in the presence and absence of nanotubes via NMR. The results suggest that the surfactant amine head is firmly immobilized onto the nanotube surface together with acidic water, while the aliphatic tail progressively gains larger mobility as it gets farther from the SWNT. X-ray and high-resolution TEM studies indicate that the sem-enriched sample is populated mainly by small nanotube bundles containing ca. three SWNTs. Molecular simulations in conjunction with previously determined HNO3/H2SO4 oxidation depths for met- and sem-SWNTs indicate that the strong pinning of the amine surfactants on the sem-enriched SWNTs bundles is a result of a well-ordered arrangement of nitrate/amine salts separated with a monomolecular layer of H2O. Such continuous 2D arrangement of nitrate/amine salts shields the local environment adjacent to sem-enriched SWNTs bundles and maintains an acidic pH that preserves nanotube oxidation (i.e. SWNTn+). This, in turn, results in strong interactions with charge-balancing NO3- counter ions that through their association with neutralized surfactant amines provide effective THF dispersion and consequent sem-enrichment. PMID:19397291

  12. Phosphatidylserine targeted single-walled carbon nanotubes for photothermal ablation of bladder cancer

    Science.gov (United States)

    Virani, Needa A.; Davis, Carole; McKernan, Patrick; Hauser, Paul; Hurst, Robert E.; Slaton, Joel; Silvy, Ricardo P.; Resasco, Daniel E.; Harrison, Roger G.

    2018-01-01

    Bladder cancer has a 60%-70% recurrence rate most likely due to any residual tumour left behind after a transurethral resection (TUR). Failure to completely resect the cancer can lead to recurrence and progression into higher grade tumours with metastatic potential. We present here a novel therapy to treat superficial tumours with the potential to decrease recurrence. The therapy is a heat-based approach in which bladder tumour specific single-walled carbon nanotubes (SWCNTs) are delivered intravesically at a very low dose (0.1 mg SWCNT per kg body weight) followed 24 h later by a short 30 s treatment with a 360° near-infrared light that heats only the bound nanotubes. The energy density of the treatment was 50 J cm-2, and the power density that this treatment corresponds to is 1.7 W cm-2, which is relatively low. Nanotubes are specifically targeted to the tumour via the interaction of annexin V (AV) and phosphatidylserine, which is normally internalised on healthy tissue but externalised on tumours and the tumour vasculature. SWCNTs are conjugated to AV, which binds specifically to bladder cancer cells as confirmed in vitro and in vivo. Due to this specific localisation, NIR light can be used to heat the tumour while conserving the healthy bladder wall. In a short-term efficacy study in mice with orthotopic MB49 murine bladder tumours treated with the SWCNT-AV conjugate and NIR light, no tumours were visible on the bladder wall 24 h after NIR light treatment, and there was no damage to the bladder. In a separate survival study in mice with the same type of orthotopic tumours, there was a 50% cure rate at 116 days when the study was ended. At 116 days, no treatment toxicity was observed, and no nanotubes were detected in the clearance organs or bladder.

  13. Hydrogen adsorption in microporous alkali-doped carbons (single-wall carbon nano-tubes and activated carbons)

    International Nuclear Information System (INIS)

    Laurent Duclaux; Szymon Los; Michel Letellier; Philippe Azais; Roland Pellenq; Thomas Roussel; Xavier Fuhr

    2006-01-01

    Doping of microporous carbon by Li or K leads to an increase in the energy of adsorption of H 2 or D 2 molecules. Thus, the room temperature sorption capacities (at P≤3 MPa) can be higher than the ones of the raw materials after slight doping. However, the maximum H 2 (or D 2 ) storage uptake measured at T≤ 77 K is lower than the one of pristine materials as the sites of adsorption are occupied by alkali ions inserted in the micropores. The microporous adsorption sites of doped single-walled carbon nano-tubes, identified by neutron diffraction, are both the interstitial voids (in electric-arc or HiPCO tubes) in between the tubes and the central canals of the tubes (only in HiPCO tubes). (authors)

  14. Dynamic Behavior of Nanocomposites Reinforced with Multi-Walled Carbon Nanotubes (MWCNTs

    Directory of Open Access Journals (Sweden)

    Chun-Yu Lai

    2013-06-01

    Full Text Available The influence of multi-walled carbon nanotubes (MWCNT on the structural dynamic behavior of MWCNT/epoxy nanocomposites was investigated. Two different types of MWCNTs, pristine MWCNT and functionalized MWCNT, were used in this study. Carboxylic acid-functionalized MWCNTs (MWCNT-COOH were obtained by oxidation pristine MWCNTs via sonication in sulfuric-nitric acid and characterized by Fourier transform infrared spectroscopy (FTIR. Dynamic behaviors of the MWCNT reinforced nanocomposite including the natural frequency and damping ratio were determined using free vibration test. Experimental results showed that the damping ratio of the nanocomposite decreases with the increase of the MWCNT addition, while the natural frequency is increasing with the increase of the MWCNT addition. Functionalized MWCNTs improved the interfacial bonding between the nanotubes and epoxy resin resulting in the reduction of the interfacial energy dissipation ability and enhancement of the stiffness.

  15. Plasma-activated multi-walled carbon nanotube-polystyrene composite substrates for biosensing

    International Nuclear Information System (INIS)

    Fernandez-Sanchez, Cesar; Orozco, Jahir; Jimenez-Jorquera, Cecilia; Pellicer, Eva; Lechuga, Laura M; Mendoza, Ernest

    2009-01-01

    Carbon nanotube-polymer composites have shown to be suitable materials for the fabrication of electrochemical transducers. The exposed surface of these materials is commonly passivated by a very thin layer of the polymer component that buries the conductive carbon particles. Working with multi-walled carbon nanotube-polystyrene (MWCNT-PS) composite structures, it was previously described how a simple low power oxygen plasma process produced an effective etching of the composite surface, thereby exposing the conductive surface of CNTs. This work shows how this plasma process not only gave rise to a suitable composite conductive surface for electrochemical sensing but simultaneously exposed and created a high density of oxygen-containing functional groups at both the CNT and the PS components, without affecting the material's mechanical stability. These chemical groups could be effectively modified for the stable immobilization of biological receptors. A detailed chemical characterization of the plasma-activated composite surface was possible using x-ray photoelectron spectroscopy. The material reactivity towards the tethering of a protein was studied and protein-protein interactions were then evaluated on the modified composite transducers by scanning electron microscopy. Finally, an amperometric immunosensor approach for the detection of rabbit Immunoglobulin G target analyte was described and a minimum concentration of 3 ng ml -1 was easily measured.

  16. Plasma-activated multi-walled carbon nanotube-polystyrene composite substrates for biosensing

    Energy Technology Data Exchange (ETDEWEB)

    Fernandez-Sanchez, Cesar; Orozco, Jahir; Jimenez-Jorquera, Cecilia [Instituto de Microelectronica de Barcelona, IMB-CNM (CSIC), Campus UAB, E-08193 Bellaterra, Barcelona (Spain); Pellicer, Eva; Lechuga, Laura M; Mendoza, Ernest, E-mail: cesar.fernandez@imb-cnm.csic.e [Nanobiosensors and Molecular Nanobiophysics Group, Research Center on Nanoscience and Nanotechnology (CIN2) CSIC-ICN, ETSE, Campus UAB-Edificio Q, E-08193 Bellaterra, Barcelona (Spain)

    2009-08-19

    Carbon nanotube-polymer composites have shown to be suitable materials for the fabrication of electrochemical transducers. The exposed surface of these materials is commonly passivated by a very thin layer of the polymer component that buries the conductive carbon particles. Working with multi-walled carbon nanotube-polystyrene (MWCNT-PS) composite structures, it was previously described how a simple low power oxygen plasma process produced an effective etching of the composite surface, thereby exposing the conductive surface of CNTs. This work shows how this plasma process not only gave rise to a suitable composite conductive surface for electrochemical sensing but simultaneously exposed and created a high density of oxygen-containing functional groups at both the CNT and the PS components, without affecting the material's mechanical stability. These chemical groups could be effectively modified for the stable immobilization of biological receptors. A detailed chemical characterization of the plasma-activated composite surface was possible using x-ray photoelectron spectroscopy. The material reactivity towards the tethering of a protein was studied and protein-protein interactions were then evaluated on the modified composite transducers by scanning electron microscopy. Finally, an amperometric immunosensor approach for the detection of rabbit Immunoglobulin G target analyte was described and a minimum concentration of 3 ng ml{sup -1} was easily measured.

  17. Improved field emission properties of thiolated multi-wall carbon nanotubes on a flexible carbon cloth substrate

    International Nuclear Information System (INIS)

    Chuang, F T; Chen, P Y; Cheng, T C; Chien, C H; Li, B J

    2007-01-01

    In this paper we report the observation of enhanced field emission properties from thiolated multi-wall carbon nanotubes (MWCNTs) produced by a simple and effective two-step chemical surface modification technique. This technique implements carboxylation and thiolation on the MWCNTs synthesized by microwave plasma chemical vapor deposition (MPCVD) on the flexible carbon cloth substrate. The resulting thiolated MWCNTs were found to have a very low threshold field value of 1.25 V μm -1 and a rather high field enhancement factor of 1.93 x 10 4 , which are crucial for applications in versatile vacuum microelectronics

  18. Multi-walled carbon nanotubes: A cytotoxicity study in relation to functionalization, dose and dispersion.

    Science.gov (United States)

    Zhou, Lulu; Forman, Henry Jay; Ge, Yi; Lunec, Joseph

    2017-08-01

    Chemical functionalization broadens carbon nanotube (CNT) applications, conferring new functions, but at the same time potentially altering toxicity. Although considerable experimental data related to CNT toxicity, at the molecular and cellular levels, have been reported, there is very limited information available for the corresponding mechanism involved (e.g. cell apoptosis and genotoxicity). The threshold dose for safe medical application in relation to both pristine and functionalized carbon nanotubes remains ambiguous. In this study, we evaluated the in vitro cytotoxicity of pristine and functionalized (OH, COOH) multi-walled carbon nanotubes (MWCNTs) for cell viability, oxidant detection, apoptosis and DNA mutations, to determine the non-toxic dose and influence of functional group in a human lung-cancer cell line exposed to 1-1000μg/ml MWCNTs for 24, 48 and 72h. The findings suggest that pristine MWCNTs induced more cell death than functionalized MWCNTs while functionalized MWCNTs are more genotoxic compared to their pristine form. The level of both dose and dispersion in the matrix used should be taken into consideration before applying further clinical applications of MWCNTs. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Interactions of phospholipid monolayer with single-walled carbon nanotube wrapped by lysophospholipid

    Energy Technology Data Exchange (ETDEWEB)

    Lim, Siwool; Kim, Hyungsu, E-mail: hkim@dku.edu

    2012-10-01

    In this study, we prepared single-walled carbon nanotubes (SWNTs) wrapped by 1-stearoyl-2-hydroxy-sn-glycero-3-phospho-(1 Prime -rac-glycerol) (LPG), leading to a complex of SWNT-LPG. In an attempt to investigate the interactions of SWNT-LPG with a mimicked cell surface, SWNT-LPG solution was injected into the sub-phase of Langmuir trough to form a mixed monolayer with dipalmitoylphosphatidylcholine (DPPC) and dipalmitoylphosphatidylglycerol (DPPG), respectively. In addition to the measurement of typical surface pressure-area isotherms under compression mode, area changes occurring during insertion of SWNT-LPG into the monolayer were recorded at various surface pressures. Changes in surface potential were also measured for evident tracing of the degree of interactions between sub-phase and monolayer. A systematic comparison of relaxation patterns and insertion behavior along with surface potential data provided a rational basis to distinguish the degree of interactions between SWNT-LPG and the designated monolayer. The observed tendencies were found to be in accordance with the surface topography as revealed by the tapping mode atomic force microscopy. It was consistently observed that SWNT-LPG interacted with DPPC to a greater extent than with DPPG, when the sufficient coverage of nanotube surface by LPG molecules was assured. - Highlights: Black-Right-Pointing-Pointer Complex of single-walled carbon nanotubes and lysophospholipid (SWNT-LPG) is formed. Black-Right-Pointing-Pointer Composite monolayer is formed by inserting SWNT-LPG into the phospholipid monolayer. Black-Right-Pointing-Pointer We measure area-pressure responses and dipole potentials during the insertion process. Black-Right-Pointing-Pointer Properties of composite monolayer depend on the kind of phospholipid and LPG content.

  20. A biosensor for hydrogen peroxide detection based on electronic properties of carbon nanotubes

    Science.gov (United States)

    Majidi, Roya

    2013-01-01

    Density functional theory has been used to study the effect of hydrogen peroxide on the electronic properties of single walled carbon nanotubes. The metallic and semiconducting carbon nanotubes have been considered in the presence of different number of hydrogen peroxide. The results indicate that hydrogen peroxide has no significant effect on the metallic nanotube and these nanotubes remain to be metallic. In contrast, the electronic properties of the semiconducting nanotubes are so sensitive to hydrogen peroxide. The energy band gap of these nanotubes is decreased by increasing the number of hydrogen peroxide. The electronic sensivity of the carbon nanotubes to hydrogen peroxide opens new insights into developing biosensors based on the single walled carbon nanotubes.

  1. Disposable screen-printed bismuth electrode modified with multi-walled carbon nanotubes for electrochemical stripping measurements.

    Science.gov (United States)

    Niu, Xiangheng; Zhao, Hongli; Lan, Minbo

    2011-01-01

    Integrating the advantages of screen printing technology with the encouraging electroanalytical characteristic of metallic bismuth, we developed an ultrasensitive and disposable screen-printed bismuth electrode (SPBE) modified with multi-walled carbon nanotubes (MWCNTs) for electrochemical stripping measurements. Metallic bismuth powders and MWCNTs were homogeneously mixed with graphite-carbon ink to mass-prepare screen-printed bismuth electrode doped with multi-walled carbon nanotubes (SPBE/MWCNT). The electroanalytical performance of the prepared SPBE/MWCNT was intensively evaluated by measuring trace Hg(II) with square-wave anodic stripping voltammetry (SWASV). The results indicated that the SPBE modified with 2 wt% MWCNTs could offer a more sensitive response to trace Hg(II) than the bare SPBE. The stripping current obtained at SPBE/MWCNT was linear with Hg(II) concentration in the range from 0.2 to 40 µg/L (R(2) = 0.9976), with a detection limit of 0.09 µg/L (S/N = 3) under 180 s accumulation. The proposed "mercury-free" electrode, with extremely simple preparation and ultrahigh sensitivity, holds wide application prospects in both environmental and industrial monitoring. 2011 © The Japan Society for Analytical Chemistry

  2. Conducting polymer‐coated, palladium‐functionalized multi‐walled carbon nanotubes for the electrochemical sensing of hydroxylamine

    International Nuclear Information System (INIS)

    Lee, Eunhee; Ahmed, Mohammad Shamsuddin; You, Jung-Min; Kim, Seul Ki; Jeon, Seungwon

    2012-01-01

    Electrochemical sensors of hydroxylamine were fabricated on glassy carbon electrodes (GCEs) by the electropolymerization of 3,4‐ethylenedioxypyrrole (EDOP) and 3,4‐ethylenedioxythiophene (EDOT) on palladium (Pd) nanoparticles attached to thiolated multi‐walled carbon nanotubes (MWCNTs), denoted as PEDOP/MWCNT‐Pd/GCE and PEDOT/MWCNT‐Pd/GCE. The sensors were characterized by field emission scanning electron microscopy and electrochemical impedance spectroscopy. They showed strong catalytic activity toward the oxidation of hydroxylamine. Cyclic voltammetry and amperometry were used to characterize the sensors' performances. The detection limits of hydroxylamine by PEDOP/MWCNT‐Pd/GCE and PEDOT/MWCNT‐Pd/GCE were 0.22 and 0.24 μM (S/N = 3), respectively. The sensors' sensitivity, selectivity, and stability were also investigated. - Highlights: ► Multi-wall carbon nanotubes-Pd nanoparticles (MWCNT-Pd) based electrodes. ► Electropolymerized electrodes by poly3,4-ethylenedioxythiophene(PEDOT). ► PEDOT/MWCNT-Pd has a low detection limit of 0.24 µM for hydroxylamine. ► PEDOT/MWCNT-Pd exhibits a wide linear range from 1 µM to 6 mM hydroxylamine. ► The resulting sensor shows fast response and good stability.

  3. Properties of Cs-intercalated single wall carbon nanotubes investigated by 133Cs Nuclear Magnetic resonance

    KAUST Repository

    Schmid, Marc R.

    2012-11-01

    In the present study, we investigated Cs-intercalated single wall carbon nanotubes (SWCNTs) using 133Cs Nuclear Magnetic resonance. We show that there are two types of Cs cations depending on the insertion level. Indeed, at low concentrations, Static spectra analysis shows that the Cs (α)+ species are fully ionized, i.e. α equal ca.1, while at higher concentrations a second paramagnetically shifted line appears, indicating the formation of Cs (β)+ ions with β < α ∼ +1. At low concentrations and low temperatures the Cs (α)+ ions exhibit a weak hyperfine coupling to the SWCNT conduction electrons, whereas, at higher temperatures, a thermally activated slow-motion diffusion process of the Cs (α)+ ions occurs along the interstitial channels present within the carbon nanotube bundles. At high concentrations, the Cs (β)+ ions seem to occupy well defined positions relative to the carbon lattice. As a matter of fact, the Korringa relaxation behavior suggests a strong hyperfine coupling between Cs nuclei and conduction electrons in the carbon nanotubes and a partial charge transfer, which suggest a plausible Cs(6s)-C(2p) hybridization. © 2012 Elsevier Ltd. All rights reserved.

  4. Large-scale single-chirality separation of single-wall carbon nanotubes by simple gel chromatography

    Science.gov (United States)

    Liu, Huaping; Nishide, Daisuke; Tanaka, Takeshi; Kataura, Hiromichi

    2011-01-01

    Monostructured single-wall carbon nanotubes (SWCNTs) are important in both scientific research and electronic and biomedical applications; however, the bulk separation of SWCNTs into populations of single-chirality nanotubes remains challenging. Here we report a simple and effective method for the large-scale chirality separation of SWCNTs using a single-surfactant multicolumn gel chromatography method utilizing one surfactant and a series of vertically connected gel columns. This method is based on the structure-dependent interaction strength of SWCNTs with an allyl dextran-based gel. Overloading an SWCNT dispersion on the top column results in the adsorption sites of the column becoming fully occupied by the nanotubes that exhibit the strongest interaction with the gel. The unbound nanotubes flow through to the next column, and the nanotubes with the second strongest interaction with the gel are adsorbed in this stage. In this manner, 13 different (n, m) species were separated. Metallic SWCNTs were finally collected as unbound nanotubes because they exhibited the lowest interaction with the gel. PMID:21556063

  5. Dielectrophoretic assembly of carbon nanotube devices

    DEFF Research Database (Denmark)

    Dimaki, Maria

    The purpose of this project has been to assemble single-walled carbon nanotubes on electrodes at the tip of a biocompatible cantilever and use these for chemical species sensing in air and liquid, for example in order to measure the local activity from ion channels in the cell membrane....... The electrical resistance of carbon nanotubes has been shown to be extremely sensitive to gas molecules. Dielectrophoresis is a method capable of quickly attracting nanotubes on microelectrodes by using an electric field, thus enabling nanotube integration in microsystems. Dielectrophoresis offers also....... A model for the dielectrophoretic assembly of carbon nanotubes on microelectrodes was developed and several simulations were conducted using values from the available literature for the various key parameters. The model can give qualitative results regarding the parameters dominating the dielectrophoretic...

  6. Preparing hydroxyapatite-silicon composite suspensions with homogeneous distribution of multi-walled carbon nano-tubes for electrophoretic coating of NiTi bone implant and their effect on the surface morphology

    International Nuclear Information System (INIS)

    Khalili, Vida; Khalil-Allafi, Jafar; Xia, Wei; Parsa, Alireza B.; Frenzel, Jan; Somsen, Christoph; Eggeler, Gunther

    2016-01-01

    Graphical abstract: - Highlights: • The stable composite suspensions of hydroxyapatite, silicon and multi-walled carbon nano-tubes was prepared using functionalization of and multi-walled carbon nano-tubes in HNO_3 vapor and triethanolamine as dispersing agent. • The zeta potential of composite suspensions is less than that of hydroxyapatite suspension. • The silicon particles presence in suspension causes to decrease the charge carrier in suspension and current density during electrophoretic deposition. • The orientation of multi-walled carbon nano-tubes to parallel direction of the applied electric field during electrophoretic deposition can facilitate their moving towards the cathode and increase current density. • The more zeta potential of suspension, the lower roughness of coatings during electrophoretic deposition. - Abstract: Preparing a stable suspension is a main step towards the electrophoretically depositing of homogeneous and dense composite coatings on NiTi for its biomedical application. In the present study, different composite suspensions of hydroxyapatite, silicon and multi-walled carbon nano-tubes were prepared using n-butanol and triethanolamine as media and dispersing agent, respectively. Multi-walled carbon nanotubes were first functionalized in the nitric acid vapor for 15 h at 175 °C, and then mixed into suspensions. Thermal desorption spectroscopy profiles indicate the formation of functional groups on multi-walled carbon nano-tubes. An excellent suspension stability can be achieved for different amounts of triethanolamine. The amount of triethanolamine can be increased by adding a second component to a stable hydroxyapatite suspension due to an electrostatic interaction between components in suspension. The stability of composite suspension is less than that of the hydroxyapatite suspension, due to density differences, which under the gravitational force promote the demixing. The scanning electron microscopy images of the

  7. Nanotubes on Display: How Carbon Nanotubes Can Be Integrated into Electronic Displays

    KAUST Repository

    Opatkiewicz, Justin; LeMieux, Melburne C.; Bao, Zhenan

    2010-01-01

    Random networks of single-walled carbon nanotubes show promise for use in the field of flexible electronics. Nanotube networks have been difficult to utilize because of the mixture of electronic types synthesized when grown. A variety of separation

  8. Implication of multi-walled carbon nanotubes on polymer/graphene composites

    International Nuclear Information System (INIS)

    Araby, Sherif; Saber, Nasser; Ma, Xing; Kawashima, Nobuyuki; Kang, Hailan; Shen, Heng; Zhang, Liqun; Xu, Jian; Majewski, Peter; Ma, Jun

    2015-01-01

    Highlights: • Influence of adding carbon nanotubes (CNTs) into elastomer/graphene composites. • Multi-walled CNTs work supplementally to GnPs by forming conductive networks. • The findings illuminate marked synergistic effect between MWCNTs and graphene sheets. - Abstract: Graphene sheets stack in polymer matrices while multi-walled carbon nanotubes (MWCNTs) entangle themselves, forming two daunting challenges in the design and fabrication of polymer composites. Both challenges have been simultaneously addressed in this study by hybridizing the two nanomaterials through melt compounding to develop elastomer/graphene platelet/MWCNT (3-phase) composites, where MWCNTs were fixed at 2.8 vol% (5 wt%) for all fractions. We investigated the composites’ structure and properties, and compared the 3-phase composites with elastomer/graphene platelet (2-phase) composites. MWCNTs may bridge graphene platelets (GnPs) and promote their dispersion in the matrix, which would provide more interface area between the matrix and the fillers. MWCNTs worked supplementally to GnPs by forming conductive networks, where MWCNTs acted as long nanocables to transport electrons and stress while GnPs served as interconnection sites between the tubes forming local conductive paths. This produced a percolation threshold of electrical conductivity at 2.3 vol% for 3-phase composites, 88% lower than that of 2-phase composites. At 26.7 vol% of total filler content (MWCNTs + GnPs), tensile strength, Young’s modulus and tear strength showed respectively 303%, 115%, 155% further improvements over those of 2-phase composites. These improvements are originated from the synergistic effect between GnPs and MWCNTs. The conducting elastomeric composites developed would potentially open the door for applications in automotive and aerospace industries

  9. Functional multi-walled carbon nanotube/polysiloxane composite films as supports of PtNi alloy nanoparticles for methanol electro-oxidation

    International Nuclear Information System (INIS)

    Wang Zhicai; Ma Zhengming; Li Hulin

    2008-01-01

    We demonstrate the use of molecular monolayers to enhance the nucleation of electrocatalytically active PtNi alloy nanoparticles onto the multi-walled carbon nanotubes (MWCNTs). After the siloxane was polymerized on the nanotube surfaces, the carbon nanotubes were embedded within the polysiloxane shell with a hydrophilic amino group situated outside. Subsequent deposition of PtNi nanoparticles led to high density of 3-10 nm diameter PtNi alloy nanoparticles uniformly deposited along the length of the carbon nanotubes. The presence of MWCNTs and PtNi in the composite films was confirmed by transmission electron microscopy (TEM), X-ray diffraction (XRD) and energy dispersion X-ray spectra analysis (EDS). The electrocatalytic activity of the PtNi-modified MWCNT/polysiloxane (PtNi/Si-MWCNT) composite electrode for electro-oxidation of methanol was investigated by cyclic voltammetry (CV), and excellent electrocatalytic activity can be observed

  10. New approach to synthesis of carbon nanotubes

    International Nuclear Information System (INIS)

    Ha, Jong Keun; Choi, Kyo Hong; Cho, Kwon Koo; Kim, Ki Won; Nam, Tae Hyun; Ahn, Hyo Jun; Ahn, Jou Hyun; Cho, Gyu Bong

    2007-01-01

    Carbon nanotubes (CNTs) have been synthesized through chemical vapor deposition in argon gas atmosphere using Fe-2.5%Mo alloyed nanoparticles as a catalyst and H 2 /CH 4 gas mixture as a reaction gas. Fe-2.5 wt.%Mo alloyed nanoparticles with average diameter of 7, 20, 45 and 85 nm are prepared by the chemical vapor condensation process using the pyrolysis of iron pentacarbonyl (Fe(CO) 5 ) and molybdenum hexacarbonyl (Mo(CO) 6 ). The morphologies of the CNTs are controlled by adjusting the nanoparticle size, reaction gas ratio and reaction temperature. With decreasing nanoparticle size under the same experimental conditions, the degree of crystalline perfection increases gradually and the morphologies of the carbon nanotubes vary from multi wall carbon nanotubes to single wall carbon nanotubes. Also, the ratio of reaction gas has an effect on the morphology and the degree of crystallinity of CNTs. In this work, it is suggested that morphology, diameter and degree of crystallinity of CNTs could be controlled by adjusting the reaction gas ratio, reaction temperature and catalyst size

  11. Influence of amine-grafted multi-walled carbon nanotubes on physical and rheological properties of PMMA-based nanocomposites

    International Nuclear Information System (INIS)

    Kim, Ki-Seok; Park, Soo-Jin

    2011-01-01

    In this work, poly(methyl methacrylate) (PMMA) was grafted onto amine treated multi-walled carbon nanotubes (NH-MWNTs) and the physical and rheological properties of the NH-MWNTs-g-PMMA nanocomposites were investigated. The graft reaction of NH-MWNTs and the PMMA matrix was confirmed from the change of the N 1S peaks, including those of amine oxygen and amide oxygen, by X-ray photoelectron spectroscopy (XPS). The thermal and mechanical properties of the NH-MWNT-g-PMMA nanocomposites were enhanced by the graft reaction between NH-MWNTs and PMMA matrix. In addition, the viscosity of the nanocomposites was increased with the addition of NH-MWNTs. Storage (G') and loss modulus (G'') were significantly increased by increase in the NH-MWNT content compared to acid-treated MWNTs/PMMA nanocomposites. This increase was attributed to the strong interaction by the grafting reaction between NH-MWNTs and the PMMA matrix. - Graphical abstract: This describes the increase of mechanical properties in NH-MWNTs-g-PMMA hybrid composites with different NH-MWNT contents. Highlights: → Aminized carbon nanotubes are used as reinforcement for poly(methylmethacrylate). → Poly(methylmethacrylate) is grafted on aminized carbon nanotubes by thermal reaction. → Grafting of carbon nanotubes and polymer provide enhanced physical properties. → It was due to the strong interaction between carbon nanotubes and polymer matrix.

  12. Molecular Dynamics Simulation of Damage to Coiled Carbon Nanotubes under C Ion Irradiation

    International Nuclear Information System (INIS)

    Zhou Bin; Zhang Wei; Gong Wen-Bin; Wang Song; Ren Cui-Lan; Wang Cheng-Bin; Zhu Zhi-Yuan; Huai Ping

    2013-01-01

    The stability of coiled carbon nanotubes under C ion irradiation is investigated by molecular dynamics simulations. The defect statistics shows that small curvature coiled carbon nanotubes have better radiation tolerance than normal straight carbon nanotubes. To understand the effect of the curvature on defect production, the threshold displacement energies for the upper and lower walls, as well as those for the side parts, are calculated. The results show that the lower wall has better radiation tolerance than the upper wall. For the upper wall, a small increase in the curvature of nanotube axis gives rise to an increase in the radiation tolerance and then a decrease with the curvature becomes larger. However, for the lower wall, as the curvature of the nanotube axis increases, the radiation tolerance increases as the bonds compressed slightly in our simulation

  13. Mo-Co catalyst nanoparticles: Comparative study between TiN and Si surfaces for single-walled carbon nanotube growth

    Energy Technology Data Exchange (ETDEWEB)

    Morant, C., E-mail: c.morant@uam.es [Departamento de Fisica Aplicada, C-XII, Universidad Autonoma de Madrid, Cantoblanco, 28049 Madrid (Spain); Campo, T. [Departamento de Fisica Aplicada, C-XII, Universidad Autonoma de Madrid, Cantoblanco, 28049 Madrid (Spain); Marquez, F. [School of Science and Technology, University of Turabo, 00778-PR (United States); Domingo, C. [Instituto de Estructura de la Materia, CSIC, Serrano 123, 28006 Madrid (Spain); Sanz, J.M.; Elizalde, E. [Departamento de Fisica Aplicada, C-XII, Universidad Autonoma de Madrid, Cantoblanco, 28049 Madrid (Spain)

    2012-06-01

    Highly pure single-walled carbon nanotubes (SWNT) were synthesized by alcohol catalytic chemical vapor deposition on silicon substrates partially covered by a thin layer of TiN. The TiN coating selectively prevented the growth of carbon nanotubes. Field emission scanning electron microscopy and Raman spectroscopy revealed the formation of high purity vertically aligned SWNT in the Si region. X-ray Photoelectron Spectroscopy and Atomic Force Microscopy indicated that Co nanoparticles are present on the Si regions, and not on the TiN regions. This clearly explains the obtained experimental results: the SWNT only grow where the Co is presented as nanoparticles, i.e. on the Si regions. - Highlights: Black-Right-Pointing-Pointer Single-wall carbon nanotubes (SWNT) ontained by catalytic chemical vapor-deposition. Black-Right-Pointing-Pointer Substrate/Co-Mo catalyst behaviour plays a key role in the SWNT growth. Black-Right-Pointing-Pointer Co nanoparticles (the effective catalyst) have been only observed on the Si region. Black-Right-Pointing-Pointer High purity SWNT were spatially confined in specific locations (Si regions). Black-Right-Pointing-Pointer TiN-coated surfaces, adjacent to a Si oxide region, prevent the growth of SWNT.

  14. Contacts, non-linear transport effects and failure in multi-walled carbon nanotubes

    International Nuclear Information System (INIS)

    Berger, C; Yi, Y; Gezo, J; Poncharal, P; Heer, W A de

    2003-01-01

    Pristine arc-produced multi-walled carbon nanotubes are contacted to liquid mercury in situ in a transmission electron microscope. The conductance G(V) for all tubes increases with increasing bias voltage V. This is related to the electronic density of the nanotubes. Similar G(V) behaviour is observed for HOPG-graphite contacted in air with Hg, with dG(V)/dV∼0.3G 0 . Variations observed in the conductance are related to nanotube-Hg contact effects. For tubes barely touching the Hg surface, the conductance is low (typically G(V=0)∼0.1-0.5G 0 ); G(V) may maximize around V=1.5-2 V or continue to increase linearly depending on the MWNT-Hg contact. For good contacts the maximum low-bias conductance is 1G 0 . Non-conducting tubes are observed having a low-bias conductance smaller than 10 -3 G 0 . High-voltage tube failure usually occurs at the contact with Hg for clean tubes, or at tube defects. An important phenomenon is the formation of a Hg bubble near the contact nanotube-Hg surface when the nanotube is negatively biased, under high bias current conditions, indicating the heating effect of hot electrons injected into the mercury

  15. Magnetoexcitons and Faraday rotation in single-walled carbon nanotubes and graphene nanoribbons

    Science.gov (United States)

    Have, Jonas; Pedersen, Thomas G.

    2018-03-01

    The magneto-optical response of single-walled carbon nanotubes (CNTs) and graphene nanoribbons (GNRs) is studied theoretically, including excitonic effects. Both diagonal and nondiagonal response functions are obtained and employed to compute Faraday rotation spectra. For single-walled CNTs in a parallel field, the results show field-dependent splitting of the exciton absorption peaks caused by brightening a dark exciton state. Similarly, for GNRs in a perpendicular magnetic field, we observe a field-dependent shift of the exciton peaks and the emergence of an absorption peak above the energy gap. Results show that excitonic effects play a significant role in the optical response of both materials, particularly for the off-diagonal tensor elements.

  16. High frequency electromechanical memory cells based on telescoping carbon nanotubes.

    Science.gov (United States)

    Popov, A M; Lozovik, Y E; Kulish, A S; Bichoutskaia, E

    2010-07-01

    A new method to increase the operational frequency of electromechanical memory cells based on the telescoping motion of multi-walled carbon nanotubes through the selection of the form of the switching voltage pulse is proposed. The relative motion of the walls of carbon nanotubes can be controlled through the shape of the interwall interaction energy surface. This allows the use of the memory cells in nonvolatile or volatile regime, depending on the structure of carbon nanotube. Simulations based on ab initio and semi-empirical calculations of the interwall interaction energies are used to estimate the switching voltage and the operational frequency of volatile cells with the electrodes made of carbon nanotubes. The lifetime of nonvolatile memory cells is also predicted.

  17. Symmetry Properties of Single-Walled BC2N Nanotubes

    Directory of Open Access Journals (Sweden)

    Lin Jianyi

    2009-01-01

    Full Text Available Abstract The symmetry properties of the single-walled BC2N nanotubes were investigated. All the BC2N nanotubes possess nonsymmorphic line groups. In contrast with the carbon and boron nitride nanotubes, armchair and zigzag BC2N nanotubes belong to different line groups, depending on the index n (even or odd and the vector chosen. The number of Raman- active phonon modes is almost twice that of the infrared-active phonon modes for all kinds of BC2N nanotubes.

  18. Solvent-free covalent functionalization of multi-walled carbon nanotubes and nanodiamond with diamines: Looking for cross-linking effects

    International Nuclear Information System (INIS)

    Basiuk, Elena V.; Basiuk, Vladimir A.; Meza-Laguna, Víctor; Contreras-Torres, Flavio F.; Martínez, Melchor; Rojas-Aguilar, Aarón; Salerno, Marco

    2012-01-01

    Highlights: ► Diamines were used for one-step functionalization of nanotubes and nanodiamond. ► We found experimental evidences of cross-linking effects in these nanomaterials. ► We found a strong orientation effect in the functionalized carbon nanotubes. - Abstract: The covalent functionalization of carbon nanomaterials with diamines is a way to enhance the mechanical strength of nanocomposites due to cross-linking effects, to form complex networks for nanotube-based electronic circuits, as well as is important for a number of biomedical applications. The main goal of the present work was to covalently functionalize pristine multi-walled carbon nanotubes and nanodiamond with three aliphatic diamines (1,8-diaminooctane, 1,10-diaminodecane and 1,12-diaminododecane) and one aromatic diamine (1,5-diaminonaphthalene), by employing a simple one-step solvent-free methodology, which is based on thermal instead of chemical activation. We looked for experimental evidences of cross-linking effects in the carbon nanomaterials synthesized by using solubility/dispersibility tests, atomic force microscopy, scanning and transmission electron microscopy, as well as Fourier-transform infrared spectroscopy and thermogravimetric analysis for additional characterization.

  19. Batch-processed carbon nanotube wall as pressure and flow sensor

    International Nuclear Information System (INIS)

    Choi, Jungwook; Kim, Jongbaeg

    2010-01-01

    A pressure and flow sensor based on the electrothermal-thermistor effect of a batch-processed carbon nanotube wall (CNT wall) is presented. The negative temperature coefficient of resistance (TCR) of CNTs and the temperature dependent tunneling rate through the CNT/silicon junction enable vacuum pressure and flow velocity sensing because the heat transfer rate between CNTs and the surrounding gas molecules differs depending on pressure and flow rate. The CNT walls are synthesized by thermal chemical vapor deposition (CVD) on an array of microelectrodes fabricated on a silicon-on-insulator (SOI) wafer. The CNTs are self-assembled between the microelectrodes and substrate across the thickness of a buried oxide layer during the synthesis process, and the simple batch fabrication results in high throughput and yield. A wide pressure range, down to 3 x 10 -3 from 10 5 Pa, and a nitrogen flow velocity range between 1 and 52.4 mm s -1 , are sensed. Further experimental characterizations of the bias voltage dependent response of the sensor as a vacuum pressure gauge are presented.

  20. Carbon-nanotube-based liquids: a new class of nanomaterials and their applications

    International Nuclear Information System (INIS)

    Phan, Ngoc Minh; Nguyen, Manh Hong; Phan, Hong Khoi; Bui, Hung Thang

    2014-01-01

    Carbon-nanotube-based liquids—a new class of nanomaterials—have shown many interesting properties and distinctive features offering unprecedented potential for many applications. This paper summarizes the recent progress on the study of the preparation, characterization and properties of carbon-nanotube-based liquids including so-called nanofluids, nanolubricants and different kinds of nanosolutions containing multi-walled carbon nanotubes/single-walled carbon nanotubes/graphene. A broad range of current and future applications of these nanomaterials in the fields of energy saving, power electronic and optoelectronic devices, biotechnology and agriculture are presented. The paper also identifies challenges and opportunities for future research. (paper)

  1. Reactive bonding mediated high mass loading of individualized single-walled carbon nanotubes in an elastomeric polymer

    Science.gov (United States)

    Zhao, Liping; Li, Yongjin; Qiu, Jishan; You, Jichun; Dong, Wenyong; Cao, Xiaojun

    2012-09-01

    A reactive chemical bonding strategy was developed for the incorporation of a high mass loading of individual single-wall carbon nanotubes (SWCNTs) into an elastomeric matrix using a reactive ionic liquid as a linker. This method simultaneously prevented the agglomeration of SWCNTs and caused strong interfacial bonding, while the electronic properties of the SWCNTs remained intact. As a result, the high conductivity of the carbon nanotubes (CNTs) and the flexibility of the elastomeric matrix were retained, producing optimum electrical and mechanical properties. A composite material with a loading of 20 wt% SWCNTs was fabricated with excellent mechanical properties and a high conductivity (9500 S m-1). The method could be used to form transparent thin conductive films that could tolerate over 800 bend cycles at a bending angle of 180° while maintaining a constant sheet resistance.A reactive chemical bonding strategy was developed for the incorporation of a high mass loading of individual single-wall carbon nanotubes (SWCNTs) into an elastomeric matrix using a reactive ionic liquid as a linker. This method simultaneously prevented the agglomeration of SWCNTs and caused strong interfacial bonding, while the electronic properties of the SWCNTs remained intact. As a result, the high conductivity of the carbon nanotubes (CNTs) and the flexibility of the elastomeric matrix were retained, producing optimum electrical and mechanical properties. A composite material with a loading of 20 wt% SWCNTs was fabricated with excellent mechanical properties and a high conductivity (9500 S m-1). The method could be used to form transparent thin conductive films that could tolerate over 800 bend cycles at a bending angle of 180° while maintaining a constant sheet resistance. Electronic supplementary information (ESI) available: Conductivity test of the SEBS-SWCNTs film, transmission spectra and sheet resistance for the spin-coated SEBS-SWCNTs thin films on PET slides. See DOI: 10

  2. Synthesis and characteristics of Fe-filled multi-walled carbon nanotubes for biomedical application

    Energy Technology Data Exchange (ETDEWEB)

    Moench, I [Leibniz Institute of Solid State and Materials Research Dresden, IFW-Dresden, Helmholtzstr. 20, D-01069 Dresden (Germany); Leonhardt, A [Leibniz Institute of Solid State and Materials Research Dresden, IFW-Dresden, Helmholtzstr. 20, D-01069 Dresden (Germany); Meye, A [Department of Urology, Technical University Dresden, Fetscherstrasse 74, D-01062 Dresden (Germany); Hampel, S [Leibniz Institute of Solid State and Materials Research Dresden, IFW-Dresden, Helmholtzstr. 20, D-01069 Dresden (Germany); Kozhuharova-Koseva, R [Leibniz Institute of Solid State and Materials Research Dresden, IFW-Dresden, Helmholtzstr. 20, D-01069 Dresden (Germany); Elefant, D [Leibniz Institute of Solid State and Materials Research Dresden, IFW-Dresden, Helmholtzstr. 20, D-01069 Dresden (Germany); Wirth, M P [Department of Urology, Technical University Dresden, Fetscherstrasse 74, D-01062 Dresden (Germany); Buechner, B [Leibniz Institute of Solid State and Materials Research Dresden, IFW-Dresden, Helmholtzstr. 20, D-01069 Dresden (Germany)

    2007-04-15

    Multifunctional nanocontainers can be produced based on partially filled Fe-multi walled carbon nanotubes (MWCNTs). Using thermal decomposition ferrocene filled nanotubes can be grown aligned on substrates. The encapsulated metal nanowires have diameters of 5-30 nm and a length up to few microns. They consist of single-crystalline of {alpha} and {gamma}-Fe- phases. Using heat treatment, it is possible to transform {gamma}-Fe into {alpha}-Fe. With the aid of wet chemical methods the nanotubes can be opened and additionally filled with an agent, e.g., therapeutic agents (carboplatin) or other metals (copper). Initial studies do not show a high toxicity over a period of 440 days. These materials can be used for drug delivery and hyperthermia. The specific absorption rate (SAR) is greater than 100W/(g-{alpha}-Fe) in a magnetic field of 18kA/m (f = 250kHz)

  3. Multi-Walled Carbon Nanotube Coating on Alkali Treated TiO2 Nanotubes Surface for Improvement of Biocompatibility

    Directory of Open Access Journals (Sweden)

    Jung-Eun Park

    2018-04-01

    Full Text Available The aim of this study is to enhance the bioactivity of pure titanium using multiple surface treatments for the application of the implant. To form the biofunctional multilayer coating on pure titanium, anodization was conducted to make titanium dioxide nanotubes, then multi-walled carbon nanotubes were coated using a dipping method after an alkali treatment. The surface characteristics at each step were analyzed using a field emission scanning electron microscope and X-ray diffractometer. The effect of the multilayer coating on the biocompatibility was identified using immersion and cytotoxicity tests. Better hydroxyapatite formation was observed on the surface of multilayer-coated pure titanium compared to non-treated pure titanium after immersion in the simulated body fluid. Improvement of biocompatibility by multiple surface treatments was identified through various cytotoxicity tests using osteoblast cells.

  4. A new approach combining analytical methods for workplace exposure assessment of inhalable multi-walled carbon nanotubes

    NARCIS (Netherlands)

    Tromp, P.C.; Kuijpers, E.; Bekker, C.; Godderis, L.; Lan, Q.; Jedynska, A.D.; Vermeulen, R.; Pronk, A.

    2017-01-01

    To date there is no consensus about the most appropriate analytical method for measuring carbon nanotubes (CNTs), hampering the assessment and limiting the comparison of data. The goal of this study is to develop an approach for the assessment of the level and nature of inhalable multi-wall CNTs

  5. Co-transport of chlordecone and sulfadiazine in the presence of functionalized multi-walled carbon nanotubes in soils

    Science.gov (United States)

    Batch and saturated soil column experiments were conducted to investigate sorption and mobility of two 14C-labeled contaminants, the hydrophobic chlordecone (CLD) and the readily water-soluble sulfadiazine (SDZ), in the absence or presence of functionalized multi-walled carbon nanotubes (MWCNTs). Th...

  6. Surprising synthesis of nanodiamond from single-walled carbon nanotubes by the spark plasma sintering process

    Science.gov (United States)

    Mirzaei, Ali; Ham, Heon; Na, Han Gil; Kwon, Yong Jung; Kang, Sung Yong; Choi, Myung Sik; Bang, Jae Hoon; Park, No-Hyung; Kang, Inpil; Kim, Hyoun Woo

    2016-10-01

    Nanodiamond (ND) was successfully synthesized using single-walled carbon nanotubes (SWCNTs) as a pure solid carbon source by means of a spark plasma sintering process. Raman spectra and X-ray diffraction patterns revealed the generation of the cubic diamond phase by means of the SPS process. Lattice-resolved TEM images confirmed that diamond nanoparticles with a diameter of about ˜10 nm existed in the products. The NDs were generated mainly through the gas-phase nucleation of carbon atoms evaporated from the SWCNTs. [Figure not available: see fulltext.

  7. A photovoltaic self-powered gas sensor based on a single-walled carbon nanotube/Si heterojunction.

    Science.gov (United States)

    Liu, L; Li, G H; Wang, Y; Wang, Y Y; Li, T; Zhang, T; Qin, S J

    2017-12-07

    We present a novel photovoltaic self-powered gas sensor based on a p-type single-walled carbon nanotube (SWNT) and n-type silicon (n-Si) heterojunction. The energy from visible light suffices to drive the device owing to a built-in electric field (BEF) induced by the differences between the Fermi levels of SWNTs and n-Si.

  8. Functionalization of carbon nanotubes with silver clusters

    International Nuclear Information System (INIS)

    Cveticanin, Jelena; Krkljes, Aleksandra; Kacarevic-Popovic, Zorica; Mitric, Miodrag; Rakocevic, Zlatko; Trpkov, Djordje; Neskovic, Olivera

    2010-01-01

    In this paper, an advanced method of one-step functionalization of single and multi walled carbon nanotubes (SWCNTs and MWCNTs) using γ-irradiation was described. Two synthesis procedures, related with different reduction species, were employed. For the first time, poly(vinyl alcohol) PVA is successfully utilized as a source to reduce silver (Ag) metal ions without having any additional reducing agents to obtain Ag nanoparticles on CNTs. The decoration of carbon nanotubes with Ag nanoparticles takes place through anchoring of (PVA) on nanotube's surface. Optical properties of as-prepared samples and mechanism responsible for the functionalization of carbon nanotubes were investigated using UV-vis and FTIR spectroscopy, respectively. Decorated carbon nanotubes were visualized using microscopic techniques: transmission electron microscopy and scanning tunneling microscopy. Also, the presence of Ag on the nanotubes was confirmed using energy dispersive X-ray spectroscopy. This simple and effective method of making a carbon nanotube type of composites is of interest not only for an application in various areas of technology and biology, but for investigation of the potential of radiation technology for nanoengineering of materials.

  9. Mild hydrothermal treatment to prepare highly dispersed multi-walled carbon nanotubes

    International Nuclear Information System (INIS)

    Zhang Li; Hashimoto, Yoshio; Taishi, Toshinori; Ni Qingqing

    2011-01-01

    Multi-walled carbon nanotubes (MWCNTs) with improved dispersion property have been prepared by a mild and fast hydrothermal treatment. The hydrothermal process avoids using harsh oxidants and organic solvents, which is environmental friendly and greatly decreases the damage to intrinsic structure of MWCNTs. The modified MWCNTs were highly soluble in polar solvents such as water, ethanol and dimethylformamide. Morphological observation by TEM indicated that the diameter and inherent structure were well reserved in modified MWCNTs. X-ray photoelectron spectroscopy and Raman spectroscopy were used to quantify functional groups created on the MWCNT surface, and to determine rational parameters of hydrothermal process.

  10. Feasibility of multi-walled carbon nanotube probes in AFM anodization lithography

    International Nuclear Information System (INIS)

    Choi, Ji Sun; Bae, Sukjong; Ahn, Sang Jung; Kim, Dal Hyun; Jung, Ki Young; Han, Cheolsu; Chung, Chung Choo; Lee, Haiwon

    2007-01-01

    Multi-walled carbon nanotube (CNT) tips were used in atomic force microscope (AFM) anodization lithography to investigate their advantages over conventional tips. The CNT tip required a larger threshold voltage than the mother silicon tip due to the Schottky barrier at the CNT-Si interface. Current-to-voltage curves distinguished the junction property between CNTs and mother tips. The CNT-platinum tip, which is more conductive than the CNT-silicon tip, showed promising results for AFM anodization lithography. Finally, the nanostructures with high aspect ratio were fabricated using a pulsed bias voltage technique as well as the CNT tip

  11. Electrical Transport and Magnetoresistance in Single-Wall Carbon Nanotubes Films

    Directory of Open Access Journals (Sweden)

    Vitaly KSENEVICH

    2014-06-01

    Full Text Available Electrical transport properties and magnetoresistance of single-wall carbon nanotubes (SWCNT films were investigated within temperature range (2 – 300 K and in magnetic fields up to 8 T. A crossover between metallic (dR/dT > 0 and non-metallic (dR/dT < 0 temperature dependence of the resistance as well as low-temperature saturation of the resistance in high bias regime indicated on the diminishing of role of the contact barriers between individual nanotubes essential for the charge transport in SWCNT arrays. The magnetoresistance (MR data demonstrated influence of weak localization and electron-electron interactions on charge transport properties in SWCNT films. The low-field negative MR with positive upturn was observed at low temperatures. At T > 10 K only negative MR was observed in the whole range of available magnetic fields. The negative MR can be approximated using 1D weak localization (WL model. The low temperature positive MR is induced by contribution from electron-electron interactions. DOI: http://dx.doi.org/10.5755/j01.ms.20.2.6311

  12. Radiation Protection Using Single-Wall Carbon Nanotube Derivatives

    Science.gov (United States)

    Tour, James M.; Lu, Meng; Lucente-Schultz, Rebecca; Leonard, Ashley; Doyle, Condell Dewayne; Kosynkin, Dimitry V.; Price, Brandi Katherine

    2011-01-01

    This invention is a means of radiation protection, or cellular oxidative stress mitigation, via a sequence of quenching radical species using nano-engineered scaffolds, specifically single-wall carbon nanotubes (SWNTs) and their derivatives. The material can be used as a means of radiation protection by reducing the number of free radicals within, or nearby, organelles, cells, tissue, organs, or living organisms, thereby reducing the risk of damage to DNA and other cellular components (i.e., RNA, mitochondria, membranes, etc.) that can lead to chronic and/or acute pathologies, including but not limited to cancer, cardiovascular disease, immuno-suppression, and disorders of the central nervous system. In addition, this innovation could be used as a prophylactic or antidote for accidental radiation exposure, during high-altitude or space travel where exposure to radiation is anticipated, or to protect from exposure from deliberate terrorist or wartime use of radiation- containing weapons.

  13. Analytical solutions to the free vibration of a double-walled carbon nanotube carrying a bacterium at its tip

    Energy Technology Data Exchange (ETDEWEB)

    Storch, Joel A. [Department of Mechanical Engineering, California State University, Northridge, CA 91330-8348 (United States); Elishakoff, Isaac [Department of Ocean and Mechanical Engineering, Florida Atlantic University, Boca Raton, FL 33431-0991 (United States)

    2013-11-07

    We calculate the natural frequencies and mode shapes of a cantilevered double-walled carbon nanotube carrying a rigid body—representative of a bacterium or virus—at the tip of the outer nanotube. By idealizing the nanotubes as Bernoulli-Euler beams, we are able to obtain exact expressions for both the mode shapes and characteristic frequency equation. Separate analyses are performed for the special case of a concentrated tip mass and the more complicated situation where the tip body also exhibits inertia and mass center offset from the beam tip.

  14. Breakdown voltage reduction by field emission in multi-walled carbon nanotubes based ionization gas sensor

    Energy Technology Data Exchange (ETDEWEB)

    Saheed, M. Shuaib M.; Muti Mohamed, Norani; Arif Burhanudin, Zainal, E-mail: zainabh@petronas.com.my [Centre of Innovative Nanostructures and Nanodevices, Universiti Teknologi PETRONAS, Bandar Seri Iskandar, 31750 Tronoh, Perak (Malaysia)

    2014-03-24

    Ionization gas sensors using vertically aligned multi-wall carbon nanotubes (MWCNT) are demonstrated. The sharp tips of the nanotubes generate large non-uniform electric fields at relatively low applied voltage. The enhancement of the electric field results in field emission of electrons that dominates the breakdown mechanism in gas sensor with gap spacing below 14 μm. More than 90% reduction in breakdown voltage is observed for sensors with MWCNT and 7 μm gap spacing. Transition of breakdown mechanism, dominated by avalanche electrons to field emission electrons, as decreasing gap spacing is also observed and discussed.

  15. Conducting polymer-coated, palladium-functionalized multi-walled carbon nanotubes for the electrochemical sensing of hydroxylamine

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Eunhee; Ahmed, Mohammad Shamsuddin; You, Jung-Min; Kim, Seul Ki; Jeon, Seungwon, E-mail: swjeon@chonnam.ac.kr

    2012-08-31

    Electrochemical sensors of hydroxylamine were fabricated on glassy carbon electrodes (GCEs) by the electropolymerization of 3,4-ethylenedioxypyrrole (EDOP) and 3,4-ethylenedioxythiophene (EDOT) on palladium (Pd) nanoparticles attached to thiolated multi-walled carbon nanotubes (MWCNTs), denoted as PEDOP/MWCNT-Pd/GCE and PEDOT/MWCNT-Pd/GCE. The sensors were characterized by field emission scanning electron microscopy and electrochemical impedance spectroscopy. They showed strong catalytic activity toward the oxidation of hydroxylamine. Cyclic voltammetry and amperometry were used to characterize the sensors' performances. The detection limits of hydroxylamine by PEDOP/MWCNT-Pd/GCE and PEDOT/MWCNT-Pd/GCE were 0.22 and 0.24 {mu}M (S/N = 3), respectively. The sensors' sensitivity, selectivity, and stability were also investigated. - Highlights: Black-Right-Pointing-Pointer Multi-wall carbon nanotubes-Pd nanoparticles (MWCNT-Pd) based electrodes. Black-Right-Pointing-Pointer Electropolymerized electrodes by poly3,4-ethylenedioxythiophene(PEDOT). Black-Right-Pointing-Pointer PEDOT/MWCNT-Pd has a low detection limit of 0.24 Micro-Sign M for hydroxylamine. Black-Right-Pointing-Pointer PEDOT/MWCNT-Pd exhibits a wide linear range from 1 Micro-Sign M to 6 mM hydroxylamine. Black-Right-Pointing-Pointer The resulting sensor shows fast response and good stability.

  16. Spectroscopic study of the diameter distribution of B-doped single-walled carbon nanotubes

    Energy Technology Data Exchange (ETDEWEB)

    Ruiz-Soria, G.; Pichler, T.; Ayala, P. [University of Vienna, Faculty of Physics, 1090 Vienna (Austria); Daothong, S. [Chiang Mai University, Faculty of Science, 50200 Chiang Mai (Thailand)

    2012-12-15

    In this paper, we report on the diameter distribution of boron-doped single-walled carbon nanotubes grown from triethyl borate with high vacuum chemical vapor deposition, using multi-frequency Raman resonance spectroscopy. The nanotube yield is higher than in previously reported material produced with the same method. Our results suggest that the amount of as-grown material and the range of diameters are directly correlated with feedstock used in the synthesis. The I{sub D}/I{sub G} ratio shows that the morphology of the samples is critically affected by the temperature. The population of diameters in the optimal conditions shows a Poisson distribution with a mean value at {proportional_to}1.15 nm. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  17. Vertical single- and double-walled carbon nanotubes grown from modified porous anodic alumina templates

    International Nuclear Information System (INIS)

    Maschmann, Matthew R; Franklin, Aaron D; Amama, Placidus B; Zakharov, Dmitri N; Stach, Eric A; Sands, Timothy D; Fisher, Timothy S

    2006-01-01

    Vertical single-walled and double-walled carbon nanotube (SWNT and DWNT) arrays have been grown using a catalyst embedded within the pore walls of a porous anodic alumina (PAA) template. The initial film structure consisted of a SiO x adhesion layer, a Ti layer, a bottom Al layer, a Fe layer, and a top Al layer deposited on a Si wafer. The Al and Fe layers were subsequently anodized to create a vertically oriented pore structure through the film stack. CNTs were synthesized from the catalyst layer by plasma-enhanced chemical vapour deposition (PECVD). The resulting structure is expected to form the basis for development of vertically oriented CNT-based electronics and sensors

  18. A Novel of Multi-wall Carbon Nanotubes/Chitosan Electrochemical Sensor for Determination of Cupric ion

    Science.gov (United States)

    Tan, Funeng; Li, Lei

    2018-03-01

    A multi-wall carbon nanotubes/Chitosan electrochemical sensor had been fabricated by dropping CHS/MWNT solution directly onto the GC surface. The sensor was charactered by cyclic voltammetry and AC impedance with K3Fe(CN)6 as a electrochemical probe; Cyclic voltammograms(CV) and electrochemical impedance spectroscopy(EIS) indicated that the active area and electrochemical behavior of the sensor increased and improved significantly after the electrode was modified by carbon nanotubes dispersed by the chitosan. The sensor showed good electrocatalytic activity of K3Fe(CN)6. Also, from the cyclic voltammograms, we can see the process was diffusion controlled on the bare electrode and kinetics and diffusion controlled on the modified electrode. Finally Cu2+ responsed sensitively at the sensor which supplied a new method for the detection of Cu2+.

  19. Hydrogen storage in single-walled carbon nanotubes: methods and results

    International Nuclear Information System (INIS)

    Poirier, E.; Chahine, R.; Tessier, A.; Cossement, D.; Lafi, L.; Bose, T.K.

    2004-01-01

    We present high sensitivity gravimetric and volumetric hydrogen sorption measurement systems adapted for in situ conditioning under high temperature and high vacuum. These systems, which allow for precise measurements on small samples and thorough degassing, are used for sorption measurements on carbon nanostructures. We developed one volumetric system for the pressure range 0-1 bar, and two gravimetric systems for 0-1 bar and 0-100 bars. The use of both gravimetric and volumetric methods allows for the cross-checking of the results. The accuracy of the systems has been determined from hydrogen absorption measurements on palladium. The accuracies of the 0-1 bar volumetric and gravimetric systems are about 10 μg and 20 μg respectively. The accuracy of the 0-100 bars gravimetric system is about 20 μg. Hydrogen sorption measurements on single-walled carbon nanotubes (SWNTs) and metal-incorporated- SWNTs are presented. (author)

  20. Multifunctional Poly(2,5-benzimidazole)/Carbon Nanotube Composite Films

    Science.gov (United States)

    2010-01-01

    Multifunctional Poly(2,5- benzimidazole )/Carbon Nanotube Composite Films JI-YE KANG,1 SOO-MI EO,1 IN-YUP JEON,1 YEONG SUK CHOI,2 LOON-SENG TAN,3 JONG...molecular-weight poly(2,5- benzimidazole ) (ABPBI). ABPBI/carbon nanotube (CNT) compo- sites were prepared via in situ polymerization of the AB-monomer in the...polymerization; multiwalled carbon nanotube (MWCNT); nano- composites; poly(2,5- benzimidazole ); (ABPBI); polycondensa- tion; poly(phosphoric acid); single-walled

  1. A study on AFM manipulation of single-wall carbon nanotube

    Energy Technology Data Exchange (ETDEWEB)

    Tian Xiaojun; Dong Zaili; Yu Peng; Liu Zhu [State Key Lab. of Robotics, Shenyang Institute of Automation, Chinese Academy of Sciences, Shenyang 110016 (China)], E-mail: xjtian@sia.cn

    2009-09-01

    As single-wall carbon nanotube (SWCNT) has special electrical and physical property, it can be used as excellent material to construct various nano electronic device. However, in the fabrication process, the modification of size, shape and even the electronic property, especially to the metallic SWCNT, is a key problem to be overcome. Here a modified nanomanipulation technology based on atomic force microscope (AFM) is utilized to perform various kinds of SWCNT manipulation, such as SWCNT separation, catalyst remove, continual nano buckles fabrication and even stretch to break, thus to modify the size, shape and eventually the electrical property of the SWCNT. In addition, the manipulation results are analyzed based on the mechanical mechanism.

  2. Optical properties of armchair (7, 7) single walled carbon nanotubes

    International Nuclear Information System (INIS)

    Gharbavi, K.; Badehian, H.

    2015-01-01

    Full potential linearized augmented plane waves method with the generalized gradient approximation for the exchange-correlation potential was applied to calculate the optical properties of (7, 7) single walled carbon nanotubes. The both x and z directions of the incident photons were applied to estimate optical gaps, dielectric function, electron energy loss spectroscopies, optical conductivity, optical extinction, optical refractive index and optical absorption coefficient. The results predict that dielectric function, ε (ω), is anisotropic since it has higher peaks along z-direction than x-direction. The static optical refractive constant were calculated about 1.4 (z-direction) and 1.1 (x- direction). Moreover, the electron energy loss spectroscopy showed a sharp π electron plasmon peaks at about 6 eV and 5 eV for z and x-directions respectively. The calculated reflection spectra show that directions perpendicular to the tube axis have further optical reflection. Moreover, z-direction indicates higher peaks at absorption spectra in low range energies. Totally, increasing the diameter of armchair carbon nanotubes cause the optical band gap, static optical refractive constant and optical reflectivity to decrease. On the other hand, increasing the diameter cause the optical absorption and the optical conductivity to increase. Moreover, the sharp peaks being illustrated at optical spectrum are related to the 1D structure of CNTs which confirm the accuracy of the calculations

  3. Charge transport in transparent single-wall carbon nanotube networks

    International Nuclear Information System (INIS)

    Jaiswal, Manu; Wang, Wei; Fernando, K A Shiral; Sun Yaping; Menon, Reghu

    2007-01-01

    We report the electric-field effects and magnetotransport in transparent networks of single-wall carbon nanotubes (SWNT). The temperature dependence of conductance of the network indicates a 2D Mott variable-range hopping (VRH) transport mechanism. Electric field and temperature are shown to have similar effects on the carrier hops and identical exponents for the conductance of the network are obtained from the high electric field and temperature dependences. A power-law temperature dependence with an exponent 3/2 for the threshold field is obtained and explained as a result of the competing contributions from electric field and phonons to the carrier hop. A negative magnetoresistance (MR) is observed at low temperatures, which arises from a forward interference scattering mechanism in the weak scattering limit, consistent with the VRH transport

  4. Growth of small diameter multi-walled carbon nanotubes by arc discharge process

    International Nuclear Information System (INIS)

    Chaudhary, K. T.; Ali, J.; Yupapin, P. P.

    2014-01-01

    Multi-walled carbon nanotubes (MWCNTs) are grown by arc discharge method in a controlled methane environment. The arc discharge is produced between two graphite electrodes at the ambient pressures of 100 torr, 300 torr, and 500 torr. Arc plasma parameters such as temperature and density are estimated to investigate the influences of the ambient pressure and the contributions of the ambient pressure to the growth and the structure of the nanotubes. The plasma temperature and density are observed to increase with the increase in the methane ambient pressure. The samples of MWCNT synthesized at different ambient pressures are analyzed using transmission electron microscopy, scanning electron microscopy, Raman spectroscopy, Fourier transform infrared spectroscopy, and X-ray diffraction. An increase in the growth of MWCNT and a decrease in the inner tube diameter are observed with the increase in the methane ambient pressure

  5. Strong adhesion of Saos-2 cells to multi-walled carbon nanotubes

    International Nuclear Information System (INIS)

    Matsuoka, Makoto; Akasaka, Tsukasa; Totsuka, Yasunori; Watari, Fumio

    2010-01-01

    In recent years, carbon nanotubes (CNTs) have been considered potential biomedical materials because of their unique character. The aim of this study was to investigate the response of a human osteoblast-like cell line - Saos-2 - on single-walled CNTs (SWCNTs) and multi-walled CNTs (MWCNTs). The surface of a culture dish was coated with CNTs, and Saos-2 cells were cultured for three days. Cell morphology, viability, alkaline phosphatase (ALP) activity, adhesion, and vinculin expression were evaluated. The result showed high cell viability and strong adhesion to MWCNTs. Saos-2 cultured on MWCNTs exhibited vinculin expression throughout the cell body, while the cells attached to SWCNTs and glass were mostly limited to their periphery. Our results suggest that CNT coatings promote cell activity and adhesiveness. These findings indicate that MWCNTs could be used as surface coating materials to promote cell adhesion.

  6. Electro-optical memory of a nematic liquid crystal doped by multi-walled carbon nanotubes

    Directory of Open Access Journals (Sweden)

    L. Dolgov

    2012-10-01

    Full Text Available A pronounced irreversible electro-optical response (memory effect has been recently observed for nematic liquid crystal (LC EBBA doped by multi-walled carbon nanotubes (MWCNTs near the percolation threshold of the MWCNTs (0.02÷0.05 wt. %. It is caused by irreversible homeotropic-to-planar reorientation of LC in an electric field. This feature is explained by electro-hydrodynamically stimulated dispergation of MWCNTs in LC and by the formation of a percolation MWCNT network which acts as a spatially distributed surface stabilizing the planar state of the LC. This mechanism is confirmed by the absence of memory in the EBBA/MWCNT composites, whose original structure is fixed by a polymer. The observed effect suggests new operation modes for the memory type and bistable LC devices, as well as a method for in situ dispergation of carbon nanotubes in LC cells.

  7. Fabrication of mesoporous and high specific surface area lanthanum carbide-carbon nanotube composites

    International Nuclear Information System (INIS)

    Biasetto, L.; Carturan, S.; Maggioni, G.; Zanonato, P.; Bernardo, P. Di; Colombo, P.; Andrighetto, A.; Prete, G.

    2009-01-01

    Mesoporous lanthanum carbide-carbon nanotube composites were produced by means of carbothermal reaction of lanthanum oxide, graphite and multi-walled carbon nanotube mixtures under high vacuum. Residual gas analysis revealed the higher reactivity of lanthanum oxide towards carbon nanotubes compared to graphite. After sintering, the composites revealed a specific surface area increasing with the amount of carbon nanotubes introduced. The meso-porosity of carbon nanotubes was maintained after thermal treatment.

  8. Defect complexes in carbon and boron nitride nanotubes

    CSIR Research Space (South Africa)

    Mashapa, MG

    2012-05-01

    Full Text Available The effect of defect complexes on the stability, structural and electronic properties of single-walled carbon nanotubes and boron nitride nanotubes is investigated using the ab initio pseudopotential density functional method implemented...

  9. Solvent-free covalent functionalization of multi-walled carbon nanotubes and nanodiamond with diamines: Looking for cross-linking effects

    Energy Technology Data Exchange (ETDEWEB)

    Basiuk, Elena V., E-mail: elenagd@unam.mx [Centro de Ciencias Aplicadas y Desarrollo Tecnologico, Universidad Nacional Autonoma de Mexico, Circuito Exterior, Ciudad Universitaria, 04510 Mexico, D.F. (Mexico); Nanophysics Department, Italian Institute of Technology, via Morego 30, 16163 Genova, Liguria (Italy); Basiuk, Vladimir A. [Nanophysics Department, Italian Institute of Technology, via Morego 30, 16163 Genova, Liguria (Italy); Instituto de Ciencias Nucleares, Universidad Nacional Autonoma de Mexico, Circuito Exterior, Ciudad Universitaria, 04510 Mexico, D.F. (Mexico); Facultad de Ciencias, Universidad Autonoma del Estado de Morelos, Av. Universidad 1001, Col. Chamilpa, 62209 Cuernavaca, Morelos (Mexico); Meza-Laguna, Victor; Contreras-Torres, Flavio F.; Martinez, Melchor [Centro de Ciencias Aplicadas y Desarrollo Tecnologico, Universidad Nacional Autonoma de Mexico, Circuito Exterior, Ciudad Universitaria, 04510 Mexico, D.F. (Mexico); Rojas-Aguilar, Aaron [Centro de Investigacion y de Estudios Avanzados, Instituto Politecnico Nacional, Av. Instituto Politecnico Nacional 2508, Col. San Pedro Zacatenco, 07360 Mexico, D.F. (Mexico); Salerno, Marco [Nanophysics Department, Italian Institute of Technology, via Morego 30, 16163 Genova, Liguria (Italy); and others

    2012-10-15

    Highlights: Black-Right-Pointing-Pointer Diamines were used for one-step functionalization of nanotubes and nanodiamond. Black-Right-Pointing-Pointer We found experimental evidences of cross-linking effects in these nanomaterials. Black-Right-Pointing-Pointer We found a strong orientation effect in the functionalized carbon nanotubes. - Abstract: The covalent functionalization of carbon nanomaterials with diamines is a way to enhance the mechanical strength of nanocomposites due to cross-linking effects, to form complex networks for nanotube-based electronic circuits, as well as is important for a number of biomedical applications. The main goal of the present work was to covalently functionalize pristine multi-walled carbon nanotubes and nanodiamond with three aliphatic diamines (1,8-diaminooctane, 1,10-diaminodecane and 1,12-diaminododecane) and one aromatic diamine (1,5-diaminonaphthalene), by employing a simple one-step solvent-free methodology, which is based on thermal instead of chemical activation. We looked for experimental evidences of cross-linking effects in the carbon nanomaterials synthesized by using solubility/dispersibility tests, atomic force microscopy, scanning and transmission electron microscopy, as well as Fourier-transform infrared spectroscopy and thermogravimetric analysis for additional characterization.

  10. Investigation of Chirality Selection Mechanism of Single-Walled Carbon Nanotube

    Science.gov (United States)

    2015-07-17

    Final 3. DATES COVERED (From - To) 01-June-2014 to 31-May-2015 4. TITLE AND SUBTITLE Investigation of Chirality Selection Mechanism of...of two significant mechanistic aspects of carbon nanotube (CNT) array growth under chemical vapor deposition conditions: chirality selectivity and...affected by the morphological evolution of catalyst particles. 15. SUBJECT TERMS Carbon Nanotubes, Chirality , Processing, Catalysis

  11. Towards self-assembled devices, a carbon nanotube approach

    OpenAIRE

    Del Rio Castillo, Antonio Esau

    2012-01-01

    2010/2011 In the last decade the nanostructured carbon materials, especially single walled carbon nanotubes (SWNTs), had emerged as probable substitutes for Silicon in the next generation of electronic devices. This is due to their unique physic and chemical properties. Likewise, scientists all around the world have made a huge effort to introduce carbon materials into the market. Despite this effort, commercial application for carbon nanotubes in electronic devices has not yet been achiev...

  12. Carbon nanotubes : from molecular to macroscopic sensors

    NARCIS (Netherlands)

    Wood, J.R.; Zhao, Qing; Frogley, M.D.; Meurs, E.R.; Prins, A.D.; Peijs, A.A.J.M.; Dunstan, D.J.; Wagner, H.D.

    2000-01-01

    The components that contribute to Raman spectral shifts of single-wall carbon nanotubes (SWNT’s) embedded in polymer systems have been identified. The temperature dependence of the Raman shift can be separated into the temperature dependence of the nanotubes, the cohesive energy density of the

  13. Self-grafting carbon nanotubes on polymers for stretchable electronics

    Science.gov (United States)

    Morales, Piero; Moyanova, Slavianka; Pavone, Luigi; Fazi, Laura; Mirabile Gattia, Daniele; Rapone, Bruno; Gaglione, Anderson; Senesi, Roberto

    2018-06-01

    Elementary bidimensional circuitry made of single-wall carbon-nanotube-based conductors, self-grafted on different polymer films, is accomplished in an attempt to develop a simple technology for flexible and stretchable electronic devices. Unlike in other studies of polymer-carbon nanotube composites, no chemical functionalization of single-wall carbon nanotubes is necessary for stable grafting onto several polymeric surfaces, suggesting viable and cheap fabrication technologies for stretchable microdevices. Electrical characterization of both unstretched and strongly stretched conductors is provided, while an insight on the mechanisms of strong adhesion to the polymer is obtained by scanning electron microscopy of the surface composite. As a first example of technological application, the electrical functionality of a carbon-nanotube-based 6-sensor (electrode) grid was demonstrated by recording of subdural electrocorticograms in freely moving rats over approximately three months. The results are very promising and may serve as a basis for future work targeting clinical applications.

  14. AFM imaging of functionalized carbon nanotubes on biological membranes

    International Nuclear Information System (INIS)

    Lamprecht, C; Danzberger, J; Rangl, M; Gruber, H J; Hinterdorfer, P; Kienberger, F; Ebner, A; Liashkovich, I; Neves, V; Heister, E; Coley, H M; McFadden, J; Flahaut, E

    2009-01-01

    Multifunctional carbon nanotubes are promising for biomedical applications as their nano-size, together with their physical stability, gives access into the cell and various cellular compartments including the nucleus. However, the direct and label-free detection of carbon nanotube uptake into cells is a challenging task. The atomic force microscope (AFM) is capable of resolving details of cellular surfaces at the nanometer scale and thus allows following of the docking of carbon nanotubes to biological membranes. Here we present topographical AFM images of non-covalently functionalized single walled (SWNT) and double walled carbon nanotubes (DWNT) immobilized on different biological membranes, such as plasma membranes and nuclear envelopes, as well as on a monolayer of avidin molecules. We were able to visualize DWNT on the nuclear membrane while at the same time resolving individual nuclear pore complexes. Furthermore, we succeeded in localizing individual SWNT at the border of incubated cells and in identifying bundles of DWNT on cell surfaces by AFM imaging.

  15. Feeding Single-Walled Carbon Nanotubes or Graphene to Silkworms for Reinforced Silk Fibers.

    Science.gov (United States)

    Wang, Qi; Wang, Chunya; Zhang, Mingchao; Jian, Muqiang; Zhang, Yingying

    2016-10-12

    Silkworm silk is gaining significant attention from both the textile industry and research society because of its outstanding mechanical properties and lustrous appearance. The possibility of creating tougher silks attracts particular research interest. Carbon nanotubes and graphene are widely studied for their use as reinforcement. In this work, we report mechanically enhanced silk directly collected by feeding Bombyx mori larval silkworms with single-walled carbon nanotubes (SWNTs) and graphene. We found that parts of the fed carbon nanomaterials were incorporated into the as-spun silk fibers, whereas the others went into the excrement of silkworms. Spectroscopy study indicated that nanocarbon additions hindered the conformation transition of silk fibroin from random coil and α-helix to β-sheet, which may contribute to increased elongation at break and toughness modules. We further investigated the pyrolysis of modified silk, and a highly developed graphitic structure with obviously enhanced electrical conductivity was obtained through the introduction of SWNTs and graphene. The successful generation of these SWNT- or graphene-embedded silks by in vivo feeding is expected to open up possibilities for the large-scale production of high-strength silk fibers.

  16. Performance of dye-sensitized solar cells with various carbon nanotube counter electrodes

    International Nuclear Information System (INIS)

    Zhang, D.; Li, X.; Chen, S.; Sun, Z.; Huang, S.; Yin, X.J.

    2011-01-01

    Double-wall carbon nanotubes (DWCNTs), single-wall carbon nanotubes (SWCNTs), and multi-wall carbon nanotubes (MWCNTs) were investigated as an alternative for platinum in counter-electrodes for dye-sensitized solar cells. The counter-electrodes were prepared on fluorine-doped tin oxide glass substrates by the screen printing technique from pastes of carbon nanotubes and organic binder. The solar cells were assembled from carbon nanotubes counter-electrodes and screen printed anodes made from titanium dioxide. The cells produced with DWCNTs, SWCNTs or MWCNTs have overall conversion efficiencies of 8.0%, 7.6% and 7.1%, respectively. Electrochemical impedance spectroscopy measurements revealed that DWCNTs displayed the highest catalytic activity for the reduction of tri-iodide ions. The large surface area and superior chemical stability of the DWCNTs facilitated the electron-transfer kinetics at the interface between counter-electrode and electrolyte and yielded the lowest transfer resistance, thereby improving the photovoltaic activity. A short-term stability test at moderate conditions confirmed the robustness of solar cells based on the use of DWCNTs, SWCNTs or MWCNTs. (author)

  17. Mechanisms of tryptophan adsorption onto single-walled carbon nanotubes

    International Nuclear Information System (INIS)

    Zhou Jieping; Tan Jun; Xu Pengshou; Sheng Liusi; Pan Guoqiang

    2011-01-01

    Near edge X-ray absorption fine structure spectroscopy (NEXAFS) and synchrotron radiation photoelectron spectroscopy (SRPES) were employed to investigate the adsorption mechanism of tryptophan (Trp) onto single-walled carbon nanotubes (SWCNTs). The difference of the carbon K-edge NEXAFS spectra between Trp molecules and Trp-adsorbed SWCNTs shows that a significant interaction occurs among the SWCNTs and Trp molecules adsorbed. However, negligible changes in the peak profiles and energy positions of nitrogen K-edge imply that neither of the two nitrogen atoms in Trp molecule is involved in the interface interaction. A change of the shape of the main absorption peak at the oxygen K-edge reveals that O atoms of the C=O or C-O or both are likely involved in the interface interaction. The fact that the peak at about 529 eV at the O K-edge become sharper and stronger demonstrates that the O atom in the C=O participates in the interface interaction, which was confirmed by O1s SRPES spectrum. (authors)

  18. Application of Nanoparticles/Nanowires and Carbon Nanotubes for Breast Cancer Research

    National Research Council Canada - National Science Library

    Panchapakesan, Balaji

    2005-01-01

    .... Variety of techniques such as fabrication of single wall carbon nanotubes, functionalization of nanotubes with antibodies, interaction of cells with antibodies on nanotube surfaces, and finally cell...

  19. Optical excitation of carbon nanotubes drives stoichiometric reaction with diazonium salts

    Science.gov (United States)

    Powell, Lyndsey; Piao, Yanmei; Wang, Yuhuang; YuHuang Wang Research Group Team

    Covalent chemistry is known to lack the precision required to tailor the physical properties of carbon nanostructures. Here we show that, for the first time, light can be used to drive a typically inefficient reaction with single-walled carbon nanotubes in a more stoichiometric fashion. Specifically, our experimental results suggest that light can enhance the reaction rate of diazonium salt with carbon nanotubes by as much as 35-fold, making possible stoichiometric control of the covalent bonding of a functional group to the sp2 carbon lattice. This light-controlled reaction paves the way for the possibility of highly selective and precise chemistry on single-walled carbon nanotubes and other graphitic nanostructures.

  20. Nanomaterial release characteristics in a single-walled carbon nanotube manufacturing workplace

    International Nuclear Information System (INIS)

    Ji, Jun Ho; Kim, Jong Bum; Lee, Gwangjae; Bae, Gwi-Nam

    2015-01-01

    As carbon nanotubes (CNTs) are widely used in various applications, exposure assessment also increases in importance with other various toxicity tests for CNTs. We conducted 24-h continuous nanoaerosol measurements to identify possible nanomaterial release in a single-walled carbon nanotube (SWCNT) manufacturing workplace. Four real-time aerosol instruments were used to determine the nanosized and microsized particle numbers, particle surface area, and carbonaceous species. Task-based exposure assessment was carried out for SWCNT synthesis using the arc plasma and thermal decomposition processes to remove amorphous carbon components as impurities. During the SWCNT synthesis, the black carbon (BC) concentration was 2–12 μg/m 3 . The maximum BC mass concentrations occurred when the synthesis chamber was opened for harvesting the SWCNTs. The number concentrations of particles with sizes 10–420 nm were 10,000–40,000 particles/cm 3 during the tasks. The maximum number concentration existed when a vacuum pump was operated to remove exhaust air from the SWCNT synthesis chamber due to the penetration of highly concentrated oil mists through the window opened. We analyzed the particle mass size distribution and particle number size distribution for each peak episode. Using real-time aerosol detectors, we distinguished the SWCNT releases from background nanoaerosols such as oil mist and atmospheric photochemical smog particles. SWCNT aggregates with sizes of 1–10 μm were mainly released from the arc plasma synthesis. The harvesting process was the main release route of SWCNTs in the workplace

  1. Nanomaterial release characteristics in a single-walled carbon nanotube manufacturing workplace

    Energy Technology Data Exchange (ETDEWEB)

    Ji, Jun Ho [EcoPictures Co., Ltd (Korea, Republic of); Kim, Jong Bum; Lee, Gwangjae; Bae, Gwi-Nam, E-mail: gnbae@kist.re.kr [Korea Institute of Science and Technology, Center for Environment, Health and Welfare Research (Korea, Republic of)

    2015-02-15

    As carbon nanotubes (CNTs) are widely used in various applications, exposure assessment also increases in importance with other various toxicity tests for CNTs. We conducted 24-h continuous nanoaerosol measurements to identify possible nanomaterial release in a single-walled carbon nanotube (SWCNT) manufacturing workplace. Four real-time aerosol instruments were used to determine the nanosized and microsized particle numbers, particle surface area, and carbonaceous species. Task-based exposure assessment was carried out for SWCNT synthesis using the arc plasma and thermal decomposition processes to remove amorphous carbon components as impurities. During the SWCNT synthesis, the black carbon (BC) concentration was 2–12 μg/m{sup 3}. The maximum BC mass concentrations occurred when the synthesis chamber was opened for harvesting the SWCNTs. The number concentrations of particles with sizes 10–420 nm were 10,000–40,000 particles/cm{sup 3} during the tasks. The maximum number concentration existed when a vacuum pump was operated to remove exhaust air from the SWCNT synthesis chamber due to the penetration of highly concentrated oil mists through the window opened. We analyzed the particle mass size distribution and particle number size distribution for each peak episode. Using real-time aerosol detectors, we distinguished the SWCNT releases from background nanoaerosols such as oil mist and atmospheric photochemical smog particles. SWCNT aggregates with sizes of 1–10 μm were mainly released from the arc plasma synthesis. The harvesting process was the main release route of SWCNTs in the workplace.

  2. Improved L-cysteine electrocatalysis through a sequential drop dry technique using multi-walled carbon nanotubes and cobalt tetraaminophthalocyanine conjugates

    International Nuclear Information System (INIS)

    Nyoni, Stephen; Mugadza, Tawanda; Nyokong, Tebello

    2014-01-01

    Graphical abstract: A sequential drop dry modification of a glassy carbon electrode where by multiwalled carbon nanotubes are first placed on to the electrode followed by cobalt tetraaminophthalocyanine gave a better catalytic response towards the oxidation of L-cysteine than when the two components were mixed, due to the higher catalytic activity of the former as judged by scanning electrochemical microscopy. - Highlights: • A glassy carbon electrode modified with multi-walled carbon nanotubes and cobalt tetraaminophthalocyanine by a sequential drop dry method. • The modified surface gave a better catalytic response towards the oxidation of L-cysteine than when the individual components were mixed. • Scanning electrochemical microscopy was employed for surface characterization. - Abstract: Voltammetry, chronoamperometry, scanning electrochemical microscopy and electrochemical impedance spectroscopy methods are used for characterization of a glassy carbon electrode modified with multi-walled carbon nanotubes (MWCNTs)–cobalt tetraaminophthalocyanine (CoTAPc) mixture or sequential drop dry modification technique whereby the MWCNTs are first placed on to the electrode followed by CoTAPc. The sequential drop dry CoTAPc–MWCNTs modified surface gave better catalytic responses with a catalytic rate constant of 2.2 × 10 5 M −1 s −1 , apparent electron transfer rate constant of 0.073 cm s −1 , and a limit of detection of 2.8 × 10 −7 M. Scanning electrochemical microscopy (SECM) surface characterization (topography and reactivity) further gave proof the better catalytic perfomance of the sequential drop dry CoTAPc–MWCNTs modified surface

  3. Shortened carbon nanotubes and their influence on the electrical properties of polymer nanocomposites

    NARCIS (Netherlands)

    Inam, F.; Reece, M.J.; Peijs, A.A.J.M.

    2012-01-01

    Multi-wall carbon nanotubes of medium length (mCNTs) were aggressively tip-ultrasonicated to produce shortened and damaged carbon nanotubes (xCNTs). High-resolution electron microscopic analysis was performed to measure the dimensions of carbon nanotubes (CNTs). Thermo-gravimetric analysis and Raman

  4. Chemically immobilised carbon nanotubes on silicon: Stable surfaces for aqueous electrochemistry

    Energy Technology Data Exchange (ETDEWEB)

    Flavel, Benjamin S., E-mail: ben.flavel@flinders.edu.a [Department of Chemistry, University of Canterbury, Private Bag 4800, Christchurch 8140 (New Zealand); School of Chemistry, Physics and Earth Sciences, Flinders University, Sturt Road, Bedford Park, Adelaide, South Australia 5001 (Australia); Garrett, David J.; Lehr, Joshua [Department of Chemistry, University of Canterbury, Private Bag 4800, Christchurch 8140 (New Zealand); MacDiarmid Institute for Advanced Materials and Nanotechnology, Private Bag 4800, Christchurch 8140 (New Zealand); Shapter, Joseph G. [School of Chemistry, Physics and Earth Sciences, Flinders University, Sturt Road, Bedford Park, Adelaide, South Australia 5001 (Australia); Downard, Alison J., E-mail: alison.downard@canterbury.ac.n [Department of Chemistry, University of Canterbury, Private Bag 4800, Christchurch 8140 (New Zealand); MacDiarmid Institute for Advanced Materials and Nanotechnology, Private Bag 4800, Christchurch 8140 (New Zealand)

    2010-04-30

    Diazonium ion chemistry has been used to electrochemically graft aminophenyl layers onto p-type silicon (1 0 0) substrates. A condensation reaction was used to immobilise single-walled carbon nanotubes with high carboxylic acid functionality directly to this layer. Electrochemical monitoring of the aminophenyl groups confirmed the formation of an amide linkage between the single-walled carbon nanotubes and the aminophenyl layer. The carbon nanotube electrode showed high stability and good electrochemical performance in aqueous solution. At moderate scan rates the Ru(NH{sub 3}){sub 6}{sup +3/+2} couple exhibited quasi-reversible electron transfer kinetics with a standard heterogenous rate constant of 1.2 x 10{sup -3} cm s{sup -1} at the covalently-linked carbon nanotube surface. The electrode thus combines the advantages of a silicon substrate for easy integration into sophisticated electrical and electronic devices, carbon nanotubes for desirable electrochemical properties, and stability in aqueous medium for future applications in environmental sensing.

  5. Chemically immobilised carbon nanotubes on silicon: Stable surfaces for aqueous electrochemistry

    International Nuclear Information System (INIS)

    Flavel, Benjamin S.; Garrett, David J.; Lehr, Joshua; Shapter, Joseph G.; Downard, Alison J.

    2010-01-01

    Diazonium ion chemistry has been used to electrochemically graft aminophenyl layers onto p-type silicon (1 0 0) substrates. A condensation reaction was used to immobilise single-walled carbon nanotubes with high carboxylic acid functionality directly to this layer. Electrochemical monitoring of the aminophenyl groups confirmed the formation of an amide linkage between the single-walled carbon nanotubes and the aminophenyl layer. The carbon nanotube electrode showed high stability and good electrochemical performance in aqueous solution. At moderate scan rates the Ru(NH 3 ) 6 +3/+2 couple exhibited quasi-reversible electron transfer kinetics with a standard heterogenous rate constant of 1.2 x 10 -3 cm s -1 at the covalently-linked carbon nanotube surface. The electrode thus combines the advantages of a silicon substrate for easy integration into sophisticated electrical and electronic devices, carbon nanotubes for desirable electrochemical properties, and stability in aqueous medium for future applications in environmental sensing.

  6. Helium Adsorption on Carbon Nanotube Bundles with Different Diameters:. Molecular Dynamics Simulation

    Science.gov (United States)

    Majidi, R.; Karami, A. R.

    2013-05-01

    We have used molecular dynamics simulation to study helium adsorption capacity of carbon nanotube bundles with different diameters. Homogeneous carbon nanotube bundles of (8,8), (9,9), (10,10), (11,11), and (12,12) single walled carbon nanotubes have been considered. The results indicate that the exohedral adsorption coverage does not depend on the diameter of carbon nanotubes, while the endohedral adsorption coverage is increased by increasing the diameter.

  7. Fluorescent single walled nanotube/silica composite materials

    Science.gov (United States)

    Dattelbaum, Andrew M.; Gupta, Gautam; Duque, Juan G.; Doorn, Stephen K.; Hamilton, Christopher E.; DeFriend Obrey, Kimberly A.

    2013-03-12

    Fluorescent composites of surfactant-wrapped single-walled carbon nanotubes (SWNTs) were prepared by exposing suspensions of surfactant-wrapped carbon nanotubes to tetramethylorthosilicate (TMOS) vapor. Sodium deoxycholate (DOC) and sodium dodecylsulphate (SDS) were the surfactants. No loss in emission intensity was observed when the suspension of DOC-wrapped SWNTs were exposed to the TMOS vapors, but about a 50% decrease in the emission signal was observed from the SDS-wrapped SWNTs nanotubes. The decrease in emission was minimal by buffering the SDS/SWNT suspension prior to forming the composite. Fluorescent xerogels were prepared by adding glycerol to the SWNT suspensions prior to TMOS vapor exposure, followed by drying the gels. Fluorescent aerogels were prepared by replacing water in the gels with methanol and then exposing them to supercritical fluid drying conditions. The aerogels can be used for gas sensing.

  8. Spectroscopic investigations on oxidized multi-walled carbon nanotubes

    Energy Technology Data Exchange (ETDEWEB)

    Anandhi, C. M. S.; Premkumar, S.; Asath, R. Mohamed; Mathavan, T.; Benial, A. Milton Franklin, E-mail: miltonfranklin@yahoo.com [Department of Physics, N.M.S.S.V.N. College, Madurai-625 019, Tamil Nadu (India)

    2016-05-06

    The pristine multi-walled carbon nanotubes (MWCNTs) were oxidized by the ultrasonication process. The oxidized MWCNTs were characterized by the X-ray diffraction (XRD), ultraviolet–visible (UV-Vis) and Fourier transform -Raman (FT-Raman) spectroscopic techniques. The XRD analysis confirms that the oxidized MWCNTs exist in a hexagonal structure and the sharp XRD peak corresponds to the (002) Bragg’s reflection plane, which indicates that the MWCNTs have higher crystalline nature. The UV-Vis analysis confirms that the MWCNTs functionalized with the carboxylic acid. The red shift was observed corresponds to the D band in the Raman spectrum, which reveals that the reduced disordered graphitic structure of oxidized MWCNTs. The strong Raman peak was observed at 2563 cm{sup -1} corresponds to the overtone of the D band, which is the characteristic vibrational mode of oxidized MWCNTs. The carboxylic acid functionalization of MWCNTs enhances the dispersibility, which paves the way for potential applications in the field of biosensors and targeted drug delivery.

  9. Superconductivity in bundles of double-wall carbon nanotubes.

    Science.gov (United States)

    Shi, Wu; Wang, Zhe; Zhang, Qiucen; Zheng, Yuan; Ieong, Chao; He, Mingquan; Lortz, Rolf; Cai, Yuan; Wang, Ning; Zhang, Ting; Zhang, Haijing; Tang, Zikang; Sheng, Ping; Muramatsu, Hiroyuki; Kim, Yoong Ahm; Endo, Morinobu; Araujo, Paulo T; Dresselhaus, Mildred S

    2012-01-01

    We present electrical and thermal specific heat measurements that show superconductivity in double-wall carbon nanotube (DWCNT) bundles. Clear evidence, comprising a resistance drop as a function of temperature, magnetoresistance and differential resistance signature of the supercurrent, suggest an intrinsic superconducting transition below 6.8 K for one particular sample. Additional electrical data not only confirm the existence of superconductivity, but also indicate the T(c) distribution that can arise from the diversity in the diameter and chirality of the DWCNTs. A broad superconducting anomaly is observed in the specific heat of a bulk DWCNT sample, which yields a T(c) distribution that correlates well with the range of the distribution obtained from the electrical data. As quasi one dimensionality of the DWCNTs dictates the existence of electronic density of state peaks, confirmation of superconductivity in this material system opens the exciting possibility of tuning the T(c) through the application of a gate voltage.

  10. Electrocatalytic behahiour of cobalt tetraamino-phthalocyanine in the presence of a composite of reduced graphene nanosheets and of multi-walled carbon nanotubes

    International Nuclear Information System (INIS)

    Nyoni, Stephen; Nyokong, Tebello

    2014-01-01

    Graphical abstract: A composite of multi-walled carbon nanotubes, reduced graphene nanosheets and cobalt tetraamino phthalocyanine was used for electrode modification, resulting in a rough surface as judged by scanning electrochemical microscopy. - Highlights: • Conjugates of multi-walled carbon nanotubes and reduced graphene nanosheets were used to modify glassy carbon electrode. • The electrode was further modified with cobalt tetraamino phthalocyanine. • The modified electrode was employed for the detection of paraquat. • A mechanism for paraquat detection using the composite electrodes is proposed. - Abstract: A composite of multi-walled carbon nanotubes (MWCNT) with reduced graphene nanosheets (rGNS-2) was developed in order to minimize the restacking of the latter. The composite was used to modify a glassy carbon electrode (GCE). GCE was further modified with cobalt tetraamino phthalocyanine (CoTAPc). The modified electrode is represented as rGNS-2-MWCNT-CoTAPc-GCE. X-ray photoelectron spectroscopy, transmission electron microscopy, scanning electrochemical microscopy and Raman spectroscopy were used to explore into surface functionalities, morphology and topography of the nanocomposite. The rGNS-2-MWCNT-CoTAPc-GCE had a low limit of detection of 3.32 × 10 −8 M towards the detection of paraguat as a test analyte. A mechanism for paraquat detection using an rGNS-2-MWCNT-CoTAPc-GCE is also proposed in this work

  11. Hardness of high-pressure high-temperature treated single-walled carbon nanotubes

    International Nuclear Information System (INIS)

    Kawasaki, S.; Nojima, Y.; Yokomae, T.; Okino, F.; Touhara, H.

    2007-01-01

    We have performed high-pressure high-temperature (HPHT) treatments of high quality single-walled carbon nanotubes (SWCNTs) over a wide pressure-temperature range up to 13 GPa-873 K and have investigated the hardness of the HPHT-treated SWCNTs using a nanoindentation technique. It was found that the hardness of the SWCNTs treated at pressures greater than 11 GPa and at temperatures higher than 773 K is about 10 times greater than that of the SWCNTs treated at low temperature. It was also found that the hardness change of the SWCNTs is related to the structural change by the HPHT treatments which was based on synchrotron X-ray diffraction measurements

  12. Structural interpretations of deformation and fracture behavior of polypropylene/multi-walled carbon nanotube composites

    International Nuclear Information System (INIS)

    Ganss, Martin; Satapathy, Bhabani K.; Thunga, Mahendra; Weidisch, Roland; Poetschke, Petra; Jehnichen, Dieter

    2008-01-01

    The deformation and crack resistance behavior of polypropylene (PP) multi-walled carbon nanotube (MWNT) composites have been studied and their interrelation to the structural attributes studied by transmission electron microscopy (TEM), atomic force microscopy (AFM), scanning electron microscopy (SEM), wide-angle X-ray diffraction (WAXD), differential scanning calorimetry (DSC) and polarization light microscopy has been discussed. The composites were produced from industrial available MWNT by extrusion melt-mixing and injection-molding. In stress-strain measurements a strong increase in the yield stress and the Young's modulus at low MWNT contents has been observed, which was attributed to an efficient load transfer between the carbon nanotubes and polypropylene matrix through a good polymer-nanotube adhesion as indicated by SEM. The extent of enhancement in mechanical properties above 1.5 wt.% of MWNT decreased due to an apparently increased tendency of clustering of carbon nanotubes. Several theoretical models have been taken into account to explain the mechanical properties and to demonstrate the applicability of such models to the system under investigation. The crack resistance behavior has been studied with the essential work of fracture (EWF) approach based on post-yield fracture mechanics (PYFM) concept. A maximum in the non-essential work of fracture was observed at 0.5 wt.% MWNT demonstrating enhanced toughness compared to pure PP, followed by a sharp decline as the MWNT content was increased to 1.5 wt.% reveals a ductile-to-semi-ductile transition. Studies on the kinetics of crack propagation aspects have revealed a qualitative picture of the nature of such a transition in the fracture modes

  13. Highly selective and sensitive detection of neurotransmitters using receptor-modified single-walled carbon nanotube sensors

    Science.gov (United States)

    Kim, Byeongju; Song, Hyun Seok; Jin, Hye Jun; Park, Eun Jin; Lee, Sang Hun; Lee, Byung Yang; Park, Tai Hyun; Hong, Seunghun

    2013-07-01

    We present receptor-modified carbon nanotube sensors for the highly selective and sensitive detection of acetylcholine (ACh), one kind of neurotransmitter. Here, we successfully expressed the M1 muscarinic acetylcholine receptor (M1 mAChR), a family of G protein-coupled receptors (GPCRs), in E. coli and coated single-walled carbon nanotube (swCNT)-field effect transistors (FETs) with lipid membrane including the receptor, enabling highly selective and sensitive ACh detection. Using this sensor, we could detect ACh at 100 pM concentration. Moreover, we showed that this sensor could selectively detect ACh among other neurotransmitters. This is the first demonstration of the real-time detection of ACh using specific binding between ACh and M1 mAChR, and it may lead to breakthroughs for various applications such as disease diagnosis and drug screening.

  14. Highly selective and sensitive detection of neurotransmitters using receptor-modified single-walled carbon nanotube sensors

    International Nuclear Information System (INIS)

    Kim, Byeongju; Jin, Hye Jun; Park, Eun Jin; Hong, Seunghun; Song, Hyun Seok; Lee, Sang Hun; Park, Tai Hyun; Lee, Byung Yang

    2013-01-01

    We present receptor-modified carbon nanotube sensors for the highly selective and sensitive detection of acetylcholine (ACh), one kind of neurotransmitter. Here, we successfully expressed the M1 muscarinic acetylcholine receptor (M1 mAChR), a family of G protein-coupled receptors (GPCRs), in E. coli and coated single-walled carbon nanotube (swCNT)-field effect transistors (FETs) with lipid membrane including the receptor, enabling highly selective and sensitive ACh detection. Using this sensor, we could detect ACh at 100 pM concentration. Moreover, we showed that this sensor could selectively detect ACh among other neurotransmitters. This is the first demonstration of the real-time detection of ACh using specific binding between ACh and M1 mAChR, and it may lead to breakthroughs for various applications such as disease diagnosis and drug screening. (paper)

  15. CVD-grown horizontally aligned single-walled carbon nanotubes: synthesis routes and growth mechanisms.

    Science.gov (United States)

    Ibrahim, Imad; Bachmatiuk, Alicja; Warner, Jamie H; Büchner, Bernd; Cuniberti, Gianaurelio; Rümmeli, Mark H

    2012-07-09

    Single-walled carbon nanotubes (SWCNTs) have attractive electrical and physical properties, which make them very promising for use in various applications. For some applications however, in particular those involving electronics, SWCNTs need to be synthesized with a high degree of control with respect to yield, length, alignment, diameter, and chirality. With this in mind, a great deal of effort is being directed to the precision control of vertically and horizontally aligned nanotubes. In this review the focus is on the latter, horizontally aligned tubes grown by chemical vapor deposition (CVD). The reader is provided with an in-depth review of the established vapor deposition orientation techniques. Detailed discussions on the characterization routes, growth parameters, and growth mechanisms are also provided. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. The reaction of lithium metal vapor with single walled carbon nanotubes of large diameters

    Czech Academy of Sciences Publication Activity Database

    Kalbáč, Martin; Kavan, Ladislav; Dunsch, L.

    2009-01-01

    Roč. 246, 11-12 (2009), s. 2428-2431 ISSN 0370-1972 R&D Projects: GA AV ČR IAA400400911; GA AV ČR KAN200100801; GA AV ČR IAA400400804; GA ČR GC203/07/J067; GA MŠk LC510 Institutional research plan: CEZ:AV0Z40400503 Keywords : lithium * single walled carbon nanotubes * Raman spectroscopy Subject RIV: CG - Electrochemistry Impact factor: 1.150, year: 2009

  17. Carbon Nanotubes as Optical Sensors in Biomedicine.

    Science.gov (United States)

    Farrera, Consol; Torres Andón, Fernando; Feliu, Neus

    2017-11-28

    Single-walled carbon nanotubes (SWCNTs) have become potential candidates for a wide range of medical applications including sensing, imaging, and drug delivery. Their photophysical properties (i.e., the capacity to emit in the near-infrared), excellent photostability, and fluorescence, which is highly sensitive to the local environment, make SWCNTs promising optical probes in biomedicine. In this Perspective, we discuss the existing strategies for and challenges of using carbon nanotubes for medical diagnosis based on intracellular sensing as well as discuss also their biocompatibility and degradability. Finally, we highlight the potential improvements of this nanotechnology and future directions in the field of carbon nanotubes for biomedical applications.

  18. Heat transfer nanofluid based on curly ultra-long multi-wall carbon nanotubes

    Science.gov (United States)

    Boncel, Sławomir; Zniszczoł, Aurelia; Pawlyta, Mirosława; Labisz, Krzysztof; Dzido, Grzegorz

    2018-02-01

    The main challenge in the use of multi-wall carbon nanotube (MWCNT) as key components of nanofluids is to transfer excellent thermal properties from individual nanotubes into the bulk systems. We present studies on the performance of heat transfer nanofluids based on ultra-long ( 2 mm), curly MWCNTs - in the background of various other nanoC-sp2, i.e. oxidized MWCNTs, commercially available Nanocyl™ MWCNTs and spherical carbon nanoparticles (SCNs). The nanofluids prepared via ultrasonication from water and propylene glycol were studied in terms of heat conductivity and heat transfer in a scaled up thermal circuit containing a copper helical heat exchanger. Ultra-long curly MWCNT (1 wt.%) nanofluids (stabilized with Gum Arabic in water) emerged as the most thermally conducting ones with a 23-30%- and 39%-enhancement as compared to the base-fluids for water and propylene glycol, respectively. For turbulent flows ( Re = 8000-11,000), the increase of heat transfer coefficient for the over-months stable 1 wt.% ultra-long MWCNT nanofluid was found as high as >100%. The findings allow to confirm that longer MWCNTs are promising solid components in nanofluids and hence to predict their broader application in heat transfer media.

  19. Double Walled Carbon Nanotube/TiO2 Nanocomposites for Photocatalytic Dye Degradation

    Directory of Open Access Journals (Sweden)

    Alex T. Kuvarega

    2016-01-01

    Full Text Available Double walled carbon nanotube (DWCNT/N,Pd codoped TiO2 nanocomposites were prepared by a modified sol-gel method and characterised using FTIR, Raman spectroscopy, TGA, DRUV-Vis, XRD, SEM, and TEM analyses. TEM images showed unique pearl-bead-necklace structured morphologies at higher DWCNT ratios. The nanocomposite materials showed characteristic anatase TiO2 Raman bands in addition to the carbon nanotube D and G bands. Red shifts in the UV-Vis absorption edge were observed at low DWCNT percentages. The photocatalytic activity of DWCNT/N,Pd TiO2 nanocomposite was evaluated by the photocatalytic degradation of eosin yellow under simulated solar light irradiation and the 2% DWCNT/N,Pd TiO2 nanocomposite showed the highest photoactivity while the 20% DWCNT/N,Pd TiO2 hybrid was the least efficient. The photocatalytic enhancement was attributed to the synergistic effects of the supporting and electron channeling role of the DWCNTs as well as the electron trapping effects of the platinum group metal. These phenomena favour the separation of the photogenerated electron-hole pairs, reducing their recombination rate, which consequently lead to significantly enhanced photoactivity.

  20. Structural properties of carbon nanotubes derived from 13C NMR

    KAUST Repository

    Abou-Hamad, E.

    2011-10-10

    We present a detailed experimental and theoretical study on how structural properties of carbon nanotubes can be derived from 13C NMR investigations. Magic angle spinning solid state NMR experiments have been performed on single- and multiwalled carbon nanotubes with diameters in the range from 0.7 to 100 nm and with number of walls from 1 to 90. We provide models on how diameter and the number of nanotube walls influence NMR linewidth and line position. Both models are supported by theoretical calculations. Increasing the diameter D, from the smallest investigated nanotube, which in our study corresponds to the inner nanotube of a double-walled tube to the largest studied diameter, corresponding to large multiwalled nanotubes, leads to a 23.5 ppm diamagnetic shift of the isotropic NMR line position δ. We show that the isotropic line follows the relation δ = 18.3/D + 102.5 ppm, where D is the diameter of the tube and NMR line position δ is relative to tetramethylsilane. The relation asymptotically tends to approach the line position expected in graphene. A characteristic broadening of the line shape is observed with the increasing number of walls. This feature can be rationalized by an isotropic shift distribution originating from different diamagnetic shielding of the encapsulated nanotubes together with a heterogeneity of the samples. Based on our results, NMR is shown to be a nondestructive spectroscopic method that can be used as a complementary method to, for example, transmission electron microscopy to obtain structural information for carbon nanotubes, especially bulk samples.

  1. Fabrication of Carbon Nanotube/SiO2and Carbon Nanotube/SiO2/Ag Nanoparticles Hybrids by Using Plasma Treatment

    Directory of Open Access Journals (Sweden)

    Li Haiqing

    2009-01-01

    Full Text Available Abstract Based on plasma-treated single wall carbon nanotubes (SWCNTs, SWCNT/SiO2and thiol groups-functionalized SWCNT/SiO2hybrids have been fabricated through a sol–gel process. By means of thiol groups, Ag nanoparticles have been in situ synthesized and bonded onto the SiO2shell of SWCNT/SiO2in the absence of external reducing agent, resulting in the stable carbon nanotube/SiO2/Ag nanoparticles hybrids. This strategy provides a facile, low–cost, and green methodology for the creation of carbon nanotube/inorganic oxides-metal nanoparticles hybrids.

  2. Selective and Scalable Chemical Removal of Thin Single-Walled Carbon Nanotubes from their Mixtures with Double-Walled Carbon Nanotubes

    Czech Academy of Sciences Publication Activity Database

    Komínková, Zuzana; Valeš, Václav; Kalbáč, Martin

    2015-01-01

    Roč. 21, č. 45 (2015), s. 16147 ISSN 1521-3765 R&D Projects: GA ČR GBP208/12/G016 Institutional support: RVO:61388955 Keywords : carbon nanotubes * electrochemical doping * in-situ Raman spectroelectrochemistry Subject RIV: CG - Electrochemistry

  3. Langmuir hydrogen dissociation approach in radiolabeling carbon nanotubes and graphene oxide

    International Nuclear Information System (INIS)

    Badun, Gennadii A.; Chernysheva, Maria G.; Eremina, Elena A.; Egorov, Alexander V.; Grigorieva, Anastasia V.

    2016-01-01

    Carbon-based nanomaterials have piqued the interest of several researchers. At the same time, radioactive labeling is a powerful tool for studying processes in different systems, including biological and organic; however, the introduction of radioactive isotopes into carbon-based nanomaterial remains a great challenge. We have used the Langmuir hydrogen dissociation method to introduce tritium in single-walled carbon nanotubes and graphene oxide. The technique allows us to achieve a specific radioactivity of 107 and 27 Ci/g for single-layer graphene oxide and single-walled carbon nanotubes, respectively. Based on the analysis of characteristic Raman modes at 1350 and 1580 cm -1 , a minimal amount of structural changes to the nanomaterials due to radiolabeling was observed. The availability of a simple, nondestructive, and economic technique for the introduction of radiolabels to single-walled carbon nanotubes and graphene oxide will ultimately expand the applicability of these materials.

  4. Langmuir hydrogen dissociation approach in radiolabeling carbon nanotubes and graphene oxide

    Energy Technology Data Exchange (ETDEWEB)

    Badun, Gennadii A.; Chernysheva, Maria G.; Eremina, Elena A.; Egorov, Alexander V. [Lomonosov Moscow State Univ. (Russian Federation). Dept. of Chemistry; Grigorieva, Anastasia V. [Lomonosov Moscow State Univ., Moscow (Russian Federation). Dept. of Materials Science

    2016-11-01

    Carbon-based nanomaterials have piqued the interest of several researchers. At the same time, radioactive labeling is a powerful tool for studying processes in different systems, including biological and organic; however, the introduction of radioactive isotopes into carbon-based nanomaterial remains a great challenge. We have used the Langmuir hydrogen dissociation method to introduce tritium in single-walled carbon nanotubes and graphene oxide. The technique allows us to achieve a specific radioactivity of 107 and 27 Ci/g for single-layer graphene oxide and single-walled carbon nanotubes, respectively. Based on the analysis of characteristic Raman modes at 1350 and 1580 cm{sup -1}, a minimal amount of structural changes to the nanomaterials due to radiolabeling was observed. The availability of a simple, nondestructive, and economic technique for the introduction of radiolabels to single-walled carbon nanotubes and graphene oxide will ultimately expand the applicability of these materials.

  5. Thermodynamics on Soluble Carbon Nanotubes: How Do DNA Molecules Replace Surfactants on Carbon Nanotubes?

    Science.gov (United States)

    Kato, Yuichi; Inoue, Ayaka; Niidome, Yasuro; Nakashima, Naotoshi

    2012-01-01

    Here we represent thermodynamics on soluble carbon nanotubes that enables deep understanding the interactions between single-walled carbon nanotubes (SWNTs) and molecules. We selected sodium cholate and single-stranded cytosine oligo-DNAs (dCn (n = 4, 5, 6, 7, 8, 10, 15, and 20)), both of which are typical SWNT solubilizers, and successfully determined thermodynamic properties (ΔG, ΔH and ΔS values) for the exchange reactions of sodium cholate on four different chiralities of SWNTs ((n,m) = (6,5), (7,5), (10,2), and (8,6)) for the DNAs. Typical results contain i) the dC5 exhibited an exothermic exchange, whereas the dC6, 8, 10, 15, and 20 materials exhibited endothermic exchanges, and ii) the energetics of the dC4 and dC7 exchanges depended on the associated chiral indices and could be endothermic or exothermic. The presented method is general and is applicable to any molecule that interacts with nanotubes. The study opens a way for science of carbon nanotube thermodynamics. PMID:23066502

  6. Excitons in Single-Walled Carbon Nanotubes and Their Dynamics

    Science.gov (United States)

    Amori, Amanda R.; Hou, Zhentao; Krauss, Todd D.

    2018-04-01

    Understanding exciton dynamics in single-walled carbon nanotubes (SWCNTs) is essential to unlocking the many potential applications of these materials. This review summarizes recent progress in understanding exciton photophysics and, in particular, exciton dynamics in SWCNTs. We outline the basic physical and electronic properties of SWCNTs, as well as bright and dark transitions within the framework of a strongly bound one-dimensional excitonic model. We discuss the many facets of ultrafast carrier dynamics in SWCNTs, including both single-exciton states (bright and dark) and multiple-exciton states. Photophysical properties that directly relate to excitons and their dynamics, including exciton diffusion lengths, chemical and structural defects, environmental effects, and photoluminescence photon statistics as observed through photon antibunching measurements, are also discussed. Finally, we identify a few key areas for advancing further research in the field of SWCNT excitons and photonics.

  7. Electrode property of single-walled carbon nanotubes in all-solid-state lithium ion battery using polymer electrolyte

    International Nuclear Information System (INIS)

    Sakamoto, Y.; Ishii, Y.; Kawasaki, S.

    2016-01-01

    Electrode properties of single-walled carbon nanotubes (SWCNTs) in an all-solid-state lithium ion battery were investigated using poly-ethylene oxide (PEO) solid electrolyte. Charge-discharge curves of SWCNTs in the solid electrolyte cell were successfully observed. It was found that PEO electrolyte decomposes on the surface of SWCNTs.

  8. Electrode property of single-walled carbon nanotubes in all-solid-state lithium ion battery using polymer electrolyte

    Energy Technology Data Exchange (ETDEWEB)

    Sakamoto, Y.; Ishii, Y.; Kawasaki, S., E-mail: kawasaki.shinji@nitech.ac.jp [Nagoya Institute of Technology, Gokiso, Showa, Nagoya, Aichi (Japan)

    2016-07-06

    Electrode properties of single-walled carbon nanotubes (SWCNTs) in an all-solid-state lithium ion battery were investigated using poly-ethylene oxide (PEO) solid electrolyte. Charge-discharge curves of SWCNTs in the solid electrolyte cell were successfully observed. It was found that PEO electrolyte decomposes on the surface of SWCNTs.

  9. Dependence of the cytotoxicity of multi-walled carbon nanotubes on the culture medium

    International Nuclear Information System (INIS)

    Zhu Ying; Ran Tiecheng; Li Yuguo; Guo Jinxue; Li Wenxin

    2006-01-01

    This study examined the influence of multi-walled carbon nanotubes (MWNTs) on the growth of the unicellular protozoan Tetrahymena pyriformis. Contrary to the findings from most other investigations, our experiment indicated that MWNTs stimulated growth of the cells cultured in proteose peptone yeast extract medium (PPY). Atomic force microscopy images and thermogravimetric analysis showed the spontaneous formation of peptone-MWNT conjugates in the medium by noncovalent binding. Uptake of large amounts of the conjugates by Tetrahymena pyriformis was responsible for growth stimulation, evidenced by images with fluorescently labelled peptone. After the PPY medium was replaced by a filtrated pond water medium (FPW), however, inhibition of the growth of cells exposed to MWNTs occurred. Measurements of the level of malondialdehyde and superoxide dismutase activity demonstrated further that MWNTs might be either toxic or nontoxic, depending on the medium used to cultivate Tetrahymena pyriformis. The biological effects of the interaction of MWNTs with some composites in culture media would be helpful for understanding the mechanisms of the toxicity of carbon nanotubes to living systems

  10. Structural anisotropy of magnetically aligned single wall carbon nanotube films

    International Nuclear Information System (INIS)

    Smith, B. W.; Benes, Z.; Luzzi, D. E.; Fischer, J. E.; Walters, D. A.; Casavant, M. J.; Schmidt, J.; Smalley, R. E.

    2000-01-01

    Thick films of aligned single wall carbon nanotubes and ropes have been produced by filtration/deposition from suspension in strong magnetic fields. We measured mosaic distributions of rope orientations in the film plane, for samples of different thicknesses. For an ∼1 μm film the full width at half maximum (FWHM) derived from electron diffraction is 25 degree sign -28 degree sign . The FWHM of a thicker film (∼7 μm) measured by x-ray diffraction is slightly broader, 35±3 degree sign . Aligned films are denser than ordinary filter-deposited ones, and much denser than as-grown material. Optimization of the process is expected to yield smaller FWHMs and higher densities. (c) 2000 American Institute of Physics

  11. Multi-Stable Conductance States in Metallic Double-Walled Carbon Nanotubes

    Directory of Open Access Journals (Sweden)

    Ci Lijie

    2009-01-01

    Full Text Available Abstract Electrical transport properties of individual metallic double-walled carbon nanotubes (DWCNTs were measured down to liquid helium temperature, and multi-stable conductance states were found in DWCNTs. At a certain temperature, DWCNTs can switch continuously between two or more electronic states, but below certain temperature, DWCNTs are stable only at one of them. The temperature for switching is always different from tube to tube, and even different from thermal cycle to cycle for the same tube. In addition to thermal activation, gate voltage scanning can also realize such switching among different electronic states. The multi-stable conductance states in metallic DWCNTs can be attributed to different Fermi level or occasional scattering centers induced by different configurations between their inner and outer tubes.

  12. Ultraclean individual suspended single-walled carbon nanotube field effect transistor

    Science.gov (United States)

    Liu, Siyu; Zhang, Jian; Nshimiyimana, Jean Pierre; Chi, Xiannian; Hu, Xiao; Wu, Pei; Liu, Jia; Wang, Gongtang; Sun, Lianfeng

    2018-04-01

    In this work, we report an effective technique of fabricating ultraclean individual suspended single-walled carbon nanotube (SWNT) transistors. The surface tension of molten silver is utilized to suspend an individual SWNT between a pair of Pd electrodes during annealing treatment. This approach avoids the usage and the residues of organic resist attached to SWNTs, resulting ultraclean SWNT devices. And the resistance per micrometer of suspended SWNTs is found to be smaller than that of non-suspended SWNTs, indicating the effect of the substrate on the electrical properties of SWNTs. The ON-state resistance (˜50 kΩ), mobility of 8600 cm2 V-1 s-1 and large on/off ratio (˜105) of semiconducting suspended SWNT devices indicate its advantages and potential applications.

  13. Thermodynamic model for growth mechanisms of multiwall carbon nanotubes

    Science.gov (United States)

    Kaatz, F. H.; Siegal, M. P.; Overmyer, D. L.; Provencio, P. P.; Tallant, D. R.

    2006-12-01

    Multiwall carbon nanotubes are grown via thermal chemical vapor deposition between temperatures of 630 and 830°C using acetylene in nitrogen as the carbon source. This process is modeled using classical thermodynamics to explain the total carbon deposition as a function of time and temperature. An activation energy of 1.60eV is inferred for nanotube growth after considering the carbon solubility term. Scanning electron microscopy shows growth with diameters increasing linearly with time. Transmission electron microscopy and Raman spectroscopy show multiwall nanotubes surrounded by a glassy-carbon sheath, which grows with increasing wall thickness as growth temperatures and times rise.

  14. Coaxial silicon/multi-walled carbon nanotube nanocomposite anodes for long cycle life lithium-ion batteries

    Energy Technology Data Exchange (ETDEWEB)

    Tocoglu, Ubeyd, E-mail: utocoglu@sakarya.edu.tr; Cevher, Ozgur; Guler, M. Oguz; Akbulut, Hatem

    2014-06-01

    Abstract: In this work silicon/multi walled carbon nanotube (MWCNT) composite anodes were produced via direct current (DC) magnetron sputtering of silicon onto carbon nanotube papers (buckypapers). The amount of silicon in the composite anodes was varied by using different sputtering powers of 150 W, 175 W, 200 W and the effect on the cell performance was studied. Phase analysis was conducted with X-ray diffraction (XRD) technique and Raman spectroscopy. Field emission scanning electron microscopy (FESEM) and transmission electron microscopy (TEM) analyses were employed for morphological characterization of anodes. Energy dispersive spectroscopy (EDS) mapping was used to observe silicon distribution on the buckypapers. Cyclic voltammetry (CV) tests were carried out to reveal reversible reactions between silicon and lithium. Galvanostatic charge/discharge technique was employed to determine the cyclic performance of anodes. Electrochemical impedance spectroscopy technique was used to understand the relation between cyclic performance and internal resistance of cells. The results showed capacity retention of silicon anodes was improved with composite structure and higher capacity values were achieved than graphite anodes. The silicon/carbon nanotube composite produced with 150 W showed the best cycle stability after 100 cycles of galvanostatic charge/discharge tests with capacity value of 620 mAh g{sup −1}.

  15. On Young's modulus of multi-walled carbon nanotubes

    Indian Academy of Sciences (India)

    WINTEC

    load transfer in nanocomposites. In the present work, CNT/Al ... calculations. The theoretical modulus of the graphene sheet is supposed to be 1060 GPa (Harris 2004). The reason why multi-walled nanotubes have a modulus > 1060 GPa (that of graphene sheet) is currently not understood. However, in the present paper, ...

  16. The conversion of polyaniline nanotubes to nitrogen-containing carbon nanotubes and their comparison with multi-walled carbon nanotubes

    Czech Academy of Sciences Publication Activity Database

    Trchová, Miroslava; Konyushenko, Elena; Stejskal, Jaroslav; Kovářová, Jana; Ciric-Marjanovic, G.

    2009-01-01

    Roč. 94, č. 6 (2009), s. 929-938 ISSN 0141-3910 R&D Projects: GA ČR GA203/08/0686; GA AV ČR IAA400500905 Institutional research plan: CEZ:AV0Z40500505 Keywords : carbon nanotubes * carbonization * FTIR spectroscopy Subject RIV: CD - Macromolecular Chemistry Impact factor: 2.154, year: 2009

  17. Formation of transition metal cluster adducts on the surface of single-walled carbon nanotubes: HRTEM studies

    KAUST Repository

    Kalinina, Irina V.

    2014-01-01

    We report the formation of chromium clusters on the outer walls of single-walled carbon nanotubes (SWNTs). The clusters were obtained by reacting purified SWNTs with chromium hexacarbonyl in dibutyl ether at 100°C. The functionalized SWNTs were characterized by thermogravimetic analysis, XPS, and high-resolution TEM. The curvature of the SWNTs and the high mobility of the chromium moieties on graphitic surfaces allow the growth of the metal clusters and we propose a mechanism for their formation. © 2014 Taylor and Francis Group, LLC.

  18. Functionalization of multi-walled carbon nanotubes with iron phthalocyanine via a liquid chemical reaction for oxygen reduction in alkaline media

    Science.gov (United States)

    Yan, Xiaomei; Xu, Xiao; Liu, Qin; Guo, Jia; Kang, Longtian; Yao, Jiannian

    2018-06-01

    Iron single-atom catalyst in form of iron-nitrogen-carbon structure possesses the excellent catalytic activity in various chemical reactions. However, exploring a sustainable and stable single-atom metal catalyst still faces a great challenge due to low yield and complicated synthesis. Here, we report a functional multi-wall carbon nanotubes modified with iron phthalocyanine molecules via a liquid chemical reaction and realize the performance of similar single-atom catalysis for oxygen reduction reaction. A serial of characterizations strongly imply the structure change of iron phthalocyanine molecule and its close recombination with multi-wall carbon nanotubes, which are in favor of ORR catalysis. Compared to commercial platinum-carbon catalyst, composites exhibit superior activity for oxygen reduction reaction with higher half-wave potential (0.86 V), lower Tafel slope (38 mV dec-1), higher limiting current density and excellent electrochemical stability. The corresponding Zinc-air battery also presents higher maximum power density and discharge stability. Therefore, these findings provide a facile route to synthesize a highly efficient non-precious metal carbon-based catalyst.

  19. Synthesis of multi-walled carbon nanotubes and their application in resin based nanocomposites

    International Nuclear Information System (INIS)

    Ahmad, Shahid Nisar; Hakeem, Saira; Alvi, Rashid Ahmed; Farooq, Khawar; Farooq, Naveed; Yasmin, Farida; Saeed, Sadaf

    2013-01-01

    Multi-walled carbon nanotubes (MWCNTs) were synthesized by catalytic decomposition of hydrocarbon gas using chemical vapor deposition method. Synthesis was done at different growth temperatures and catalyst ratios. These MWCNTs were dispersed in epoxy resin (E-51) and their effect on mechanical strength of epoxy nanocomposites was studied. Increase in the mechanical strength of epoxy was observed with the addition of CNTs. The surface characterization was done by using optical microscope and scanning electron microscope (SEM). Mechanical properties were determined by the general tensile strength testing method.

  20. Homogeneous CdTe quantum dots-carbon nanotubes heterostructures

    Energy Technology Data Exchange (ETDEWEB)

    Vieira, Kayo Oliveira [Grupo de Pesquisa em Química de Materiais – (GPQM), Departamento de Ciências Naturais, Universidade Federal de São João del-Rei, Campus Dom Bosco, Praça Dom Helvécio, 74, CEP 36301-160, São João del-Rei, MG (Brazil); Bettini, Jefferson [Laboratório Nacional de Nanotecnologia, Centro Nacional de Pesquisa em Energia e Materiais, CEP 13083-970, Campinas, SP (Brazil); Ferrari, Jefferson Luis [Grupo de Pesquisa em Química de Materiais – (GPQM), Departamento de Ciências Naturais, Universidade Federal de São João del-Rei, Campus Dom Bosco, Praça Dom Helvécio, 74, CEP 36301-160, São João del-Rei, MG (Brazil); Schiavon, Marco Antonio, E-mail: schiavon@ufsj.edu.br [Grupo de Pesquisa em Química de Materiais – (GPQM), Departamento de Ciências Naturais, Universidade Federal de São João del-Rei, Campus Dom Bosco, Praça Dom Helvécio, 74, CEP 36301-160, São João del-Rei, MG (Brazil)

    2015-01-15

    The development of homogeneous CdTe quantum dots-carbon nanotubes heterostructures based on electrostatic interactions has been investigated. We report a simple and reproducible non-covalent functionalization route that can be accomplished at room temperature, to prepare colloidal composites consisting of CdTe nanocrystals deposited onto multi-walled carbon nanotubes (MWCNTs) functionalized with a thin layer of polyelectrolytes by layer-by-layer technique. Specifically, physical adsorption of polyelectrolytes such as poly (4-styrene sulfonate) and poly (diallyldimethylammonium chloride) was used to deagglomerate and disperse MWCNTs, onto which we deposited CdTe quantum dots coated with mercaptopropionic acid (MPA), as surface ligand, via electrostatic interactions. Confirmation of the CdTe quantum dots/carbon nanotubes heterostructures was done by transmission and scanning electron microscopies (TEM and SEM), dynamic-light scattering (DLS) together with absorption, emission, Raman and infrared spectroscopies (UV–vis, PL, Raman and FT-IR). Almost complete quenching of the PL band of the CdTe quantum dots was observed after adsorption on the MWCNTs, presumably through efficient energy transfer process from photoexcited CdTe to MWCNTs. - Highlights: • Highly homogeneous CdTe-carbon nanotubes heterostructures were prepared. • Simple and reproducible non-covalent functionalization route. • CdTe nanocrystals homogeneously deposited onto multi-walled carbon nanotubes. • Efficient energy transfer process from photoexcited CdTe to MWCNTs.