On Turbulent Contribution to Frictional Drag in Wall-Bounded Turbulent Flow
Institute of Scientific and Technical Information of China (English)
LI Feng-Chen; KAWAGUCHI Yasuo; HISHIDA Koichi; OSHIMA Marie
2006-01-01
@@ We propose a simple model for turbulent contribution to the frictional drag in a wall-bounded turbulent flow based on the characteristic parameters of turbulent bursting events. It is verified on water and drag-reducing surfactant solution flows investigated by particle image velocimetry in experiments. It is obtained that the turbulent contribution to the skin friction factor is linearly proportional to the product of the spatial frequency and strength of turbulent bursts originated from the wall.
Numerical simulation of wall-bounded turbulent shear flows
Moin, P.
1982-01-01
Developments in three dimensional, time dependent numerical simulation of turbulent flows bounded by a wall are reviewed. Both direct and large eddy simulation techniques are considered within the same computational framework. The computational spatial grid requirements as dictated by the known structure of turbulent boundary layers are presented. The numerical methods currently in use are reviewed and some of the features of these algorithms, including spatial differencing and accuracy, time advancement, and data management are discussed. A selection of the results of the recent calculations of turbulent channel flow, including the effects of system rotation and transpiration on the flow are included.
Near-wall behavior of turbulent wall-bounded flows
Energy Technology Data Exchange (ETDEWEB)
Buschmann, Matthias H. [Institut fuer Luft- und Kaeltetechnik Dresden, Bertolt-Brecht-Allee 20, 01309 Dresden (Germany)], E-mail: Matthias.Buschmann@ilkdresden.de; Indinger, Thomas [Technische Universitaet Muenchen, Institute of Aerodynamics, Boltzmannstr., 15, 85748 Garching (Germany); Gad-el-Hak, Mohamed [Virginia Commonwealth University, Richmond, VA 23284-3015 (United States)
2009-10-15
A data base compiling a large number of results from direct numerical simulations and physical experiments is used to explore the properties of shear and normal Reynolds stresses very close to the wall of turbulent channel/pipe flows and boundary layers. Three types of scaling are mainly investigated, classical inner, standard mixed, and pure outer scaling. The study focuses on the wall behavior, the location and the value of the peak Reynolds shear stress and the three normal stresses. A primary observation is that all of these parameters show a significant Karman number dependence. None of the scalings investigated works in an equal manner for all parameters. It is found that the respective first-order Taylor series expansion satisfactorily represents each stress only in a surprisingly thin layer very close to the wall. In some cases, a newly introduced scaling based on u{sub {tau}}{sup 3/2}u{sub e}{sup 1/2} offers a remedy.
Turbulent patterns in wall-bounded flows: a Turing instability?
Manneville, Paul
2012-01-01
In their way to/from turbulence, plane wall-bounded flows display an interesting transitional regime where laminar and turbulent oblique bands alternate, the origin of which is still mysterious. In line with Barkley's recent work about the pipe flow transition involving reaction-diffusion concepts, we consider plane Couette flow in the same perspective and transform Waleffe's classical four-variable model of self-sustaining process into a reaction-diffusion model. We show that, upon fulfillment of a condition on the relative diffusivities of its variables, the featureless turbulent regime becomes unstable against patterning as the result of a Turing instability. A reduced two-variable model helps us to delineate the appropriate region of parameter space. An {\\it intrinsic} status is therefore given to the pattern's wavelength for the first time. Virtues and limitations of the model are discussed, calling for a microscopic support of the phenomenological approach.
DNS of turbulent wall bounded flows with a passive scalar
Araya, Juan Guillermo
In this thesis, Direct Numerical Simulations (DNS) of the velocity and temperature fields are performed for incompressible turbulent flows in plane channels and spatially-developing boundary layers. The main goal is to numerically analyze the behavior of the momentum and thermal boundary layers subjected to different external and upstream conditions, the main focus is given to: (i) local flow perturbations, (ii) different Reynolds numbers, and, (iii) external pressure gradient. Two types of turbulent wall-bounded flows are examined in this investigation. One of them consists of the fully developed turbulent channel. Furthermore, after the developing section, the boundary layers generated by the lower and upper walls collapse. From this point to downstream, periodic boundary conditions are applicable due to the existent homogeneity. The second type of wall bounded flow explored possesses no restriction in the upper zone; consequently, the boundary layer may grow infinitely downstream. This streamwise non-homogeneous state does not allow to prescribe periodic boundary conditions along the direction of the flow. Therefore, time-dependent turbulent information must be assigned at the domain inlet, turning the numerical problem into a very challenging one. The spatially-developing turbulent boundary layer in a flat plate is a typical example of non-homogeneous flow. In the first part of this thesis, the influence of local forcing on an incompressible turbulent channel flow is numerically investigated. The extensive information provided by the DNS enable us to have a better understanding of the physical mechanism responsible for local heat transfer enhancement and drag reduction. Time-periodic blowing/suction is applied by means of thin spanwise slots located at the lower and upper walls of the channel at several forcing frequencies. It was found in Araya et al. (2008-a) the existence of a characteristic frequency, i.e. of f = 0.64 or f* = 0.044, at which maximum local
Lee, J. H.; Kevin; Monty, J. P.; Hutchins, N.
2016-08-01
The discrepancy between measured turbulence intensity obtained from experiments in wall-bounded turbulence and the fully resolved reference results (usually from DNS datasets) are often attributed to spatial resolution issues, especially in PIV measurements due to the presence of spatial averaging within the interrogation region/volume. In many cases, in particular at high Reynolds numbers (where there is a lack of DNS data), there is no attempt to verify that this is the case. There is a risk that attributing unexpected PIV statistics to spatial resolution, without careful checks, could mask wider problems with the experimental setup or test facility. Here, we propose a robust technique to validate the under-resolved PIV obtained turbulence intensity profiles for canonical wall-bounded turbulence. This validation scheme is independent of Reynolds number and does not rely on empirical functions. It is based on arguments that (1) the viscous-scaled small-scale turbulence energy is invariant with Reynolds number and that (2) the spatially under-resolved measurement is sufficient to capture the large-scale energy. This then suggests that we can estimate the missing energy from volume-filtered DNS data at much lower Reynolds numbers. Good agreement is found between the experimental results and estimation profiles for all three velocity components, demonstrating that the estimation tool successfully computes the missing energy for given spatial resolutions over a wide range of Reynolds numbers. A database for a canonical turbulent boundary layer and associated MATLAB function are provided that enable this missing energy to be calculated across a range of interrogation volume sizes, so that users do not require access to raw DNS data. This methodology and tool will provide PIV practitioners, investigating canonical wall-bounded turbulent flow with a convenient check of the effects of spatial resolution on a given experiment.
Low-drag events in transitional wall-bounded turbulence
Whalley, Richard D.; Park, Jae Sung; Kushwaha, Anubhav; Dennis, David J. C.; Graham, Michael D.; Poole, Robert J.
2017-03-01
Intermittency of low-drag pointwise wall shear stress measurements within Newtonian turbulent channel flow at transitional Reynolds numbers (friction Reynolds numbers 70 - 130) is characterized using experiments and simulations. Conditional mean velocity profiles during low-drag events closely approach that of a recently discovered nonlinear traveling wave solution; both profiles are near the so-called maximum drag reduction profile, a general feature of turbulent flow of liquids containing polymer additives (despite the fact that all results presented are for Newtonian fluids only). Similarities between temporal intermittency in small domains and spatiotemporal intermittency in large domains is thereby found.
Yoon, Min; Ahn, Junsun; Hwang, Jinyul; Sung, Hyung Jin
2016-08-01
The relationship between the frictional drag and the velocity-vorticity correlations in wall-bounded turbulent flows is derived from the mean vorticity equation. A formula for the skin friction coefficient is proposed and evaluated with regards to three canonical wall-bounded flows: turbulent boundary layer, turbulent channel flow, and turbulent pipe flow. The frictional drag encompasses four terms: advective vorticity transport, vortex stretching, viscous, and inhomogeneous terms. Drag-reduced channel flow with the slip condition is used to test the reliability of the formula. The advective vorticity transport and vortex stretching terms are found to dominate the contributions to the frictional drag.
Distance-from-the-wall scaling of turbulent motions in wall-bounded flows
Baidya, R.; Philip, J.; Hutchins, N.; Monty, J. P.; Marusic, I.
2017-02-01
An assessment of self-similarity in the inertial sublayer is presented by considering the wall-normal velocity, in addition to the streamwise velocity component. The novelty of the current work lies in the inclusion of the second velocity component, made possible by carefully conducted subminiature ×-probe experiments to minimise the errors in measuring the wall-normal velocity. We show that not all turbulent stress quantities approach the self-similar asymptotic state at an equal rate as the Reynolds number is increased, with the Reynolds shear stress approaching faster than the streamwise normal stress. These trends are explained by the contributions from attached eddies. Furthermore, the Reynolds shear stress cospectra, through its scaling with the distance from the wall, are used to assess the wall-normal limits where self-similarity applies within the wall-bounded flow. The results are found to be consistent with the recent prediction from the work of Wei et al. ["Properties of the mean momentum balance in turbulent boundary layer, pipe and channel flows," J. Fluid Mech. 522, 303-327 (2005)], Klewicki ["Reynolds number dependence, scaling, and dynamics of turbulent boundary layers," J. Fluids Eng. 132, 094001 (2010)], and others that the self-similar region starts and ends at z+˜O (√{δ+}) and O (δ+) , respectively. Below the self-similar region, empirical evidence suggests that eddies responsible for turbulent stresses begin to exhibit distance-from-the-wall scaling at a fixed z+ location; however, they are distorted by viscous forces, which remain a leading order contribution in the mean momentum balance in the region z+≲O (√{δ+}) , and thus result in a departure from self-similarity.
Particles in wall-bounded turbulent flows deposition, re-suspension and agglomeration
Pozorski, Jacek
2017-01-01
The book presents an up-to-date review of turbulent two-phase flows with the dispersed phase, with an emphasis on the dynamics in the near-wall region. New insights to the flow physics are provided by direct numerical simuation and by fine experimental techniques. Also included are models of particle dynamics in wall-bounded turbulent flows, and a description of particle surface interactions including muti-layer deposition and re-suspension.
New scenario of turbulence theory and wall-bounded turbulence: Theoretical significance
Kambe, Tsutomu
2016-01-01
New general scenario of turbulence theory is proposed and applied to wall-bounded turbulence. Significance of the theory rests on a mathematical theorem closely related to the fundamental conservation law of current flux of fluid flow, expressed in a form of 4d physical space-time representation, which predicts a system of Maxwell-type equation and supports transverse waves traveling with a phase speed c_t. In streaky wall flows it is remarkable that there exist both dynamical mechanism exciting transverse waves and an energy channel of exchange between flow field and transverse wave field. In developed state of the wave field, energy is supplied from the flow field to the transverse wave field if wavelengths are sufficiently large. The waves are accompanied with a new mechanism of energy dissipation, i.e. an internal friction analogous to the Joule effect. Energy is supplied from the main flow to the wave field, and some part of the energy is dissipated into heat. Thus, there exists a sustaining mechanism, w...
Inflectional instabilities in the wall region of bounded turbulent shear flows
Swearingen, Jerry D.; Blackwelder, Ron F.; Spalart, Philippe R.
1987-01-01
The primary thrust of this research was to identify one or more mechanisms responsible for strong turbulence production events in the wall region of bounded turbulent shear flows. Based upon previous work in a transitional boundary layer, it seemed highly probable that the production events were preceded by an inflectional velocity profile which formed on the interface between the low-speed streak and the surrounding fluid. In bounded transitional flows, this unstable profile developed velocity fluctuations in the streamwise direction and in the direction perpendicular to the sheared surface. The rapid growth of these instabilities leads to a breakdown and production of turbulence. Since bounded turbulent flows have many of the same characteristics, they may also experience a similar type of breakdown and turbulence production mechanism.
A general Reynolds analogy theory for the compressible wall-bounded turbulence
Zhang, You-sheng; Husain, Fazle; Li, Xin-liang; She, Zhen-su
2012-01-01
A general Reynolds analogy (GRA) theory is proposed for the mean and fluctuating velocity and temperature in compressible wall-bounded turbulent flows. In particular, an exact analogy solution is derived for compressible turbulent pipe and channel flows and an approximate analogy solution is derived for compressible turbulent boundary layers (CTBL), both of which are independent of fluid Prandtl number and wall temperature condition. The analogy solutions are in excellent agreement with direct numerical simulation data, able to reproduce empirical relations, and can be viewed as extensions of existing theories. In contrast to Walz's equation for adiabatic CTBL, the mean temperature-velocity relation derived by GRA can be applied to different wall-bounded flows in non-adiabatic wall condition, which is achieved by extending Walz's adiabatic recovery factor to a heat flux dependent one. The fluctuation temperature-velocity relations derived by GRA are slightly different from the modified strong Reynolds analogy...
On turbulent energy production in wall bounded flows
Gurka, R.; Hetsroni, G.; Liberzon, A.; Nikitin, N.; Tsinober, A.
2004-07-01
The main point of this Brief Communication is that the turbulent energy production is due to the compressing of material elements rather than stretching. This is understood in the sense that the positiveness of the turbulent energy production is due to the contribution of the term associated with the compressive (negative) eigenvalue/eigenvector of the mean strain.
Universality and scaling phenomenology of small-scale turbulence in wall-bounded flows
Wei, L.; Elsinga, G.E.; Brethouwer, G.; Schlatter, P.; Johansson, A.V.
2014-01-01
The Reynolds number scaling of flow topology in the eigenframe of the strain-rate tensor is investigated for wall-bounded flows, which is motivated by earlier works showing that such topologies appear to be qualitatively universal across turbulent flows. The databases used in the current study are
The influence of temperature fluctuations on hot-wire measurements in wall-bounded turbulence
Örlü, Ramis; Malizia, Fabio; Cimarelli, Andrea; Schlatter, Philipp; Talamelli, Alessandro
2014-07-01
There are no measurement techniques for turbulent flows capable of reaching the versatility of hot-wire probes and their frequency response. Nevertheless, the issue of their spatial resolution is still a matter of debate when it comes to high Reynolds number near-wall turbulence. Another, so far unattended, issue is the effect of temperature fluctuations—as they are, e.g. encountered in non-isothermal flows—on the low and higher-order moments in wall-bounded turbulent flows obtained through hot-wire anemometry. The present investigation is dedicated to document, understand, and ultimately correct these effects. For this purpose, the response of a hot-wire is simulated through the use of velocity and temperature data from a turbulent channel flow generated by means of direct numerical simulations. Results show that ignoring the effect of temperature fluctuations, caused by temperature gradients along the wall-normal direction, introduces—despite a local mean temperature compensation of the velocity reading—significant errors. The results serve as a note of caution for hot-wire measurements in wall-bounded turbulence, and also where temperature gradients are more prevalent, such as heat transfer measurements or high Mach number flows. A simple correction scheme involving only mean temperature quantities (besides the streamwise velocity information) is finally proposed that leads to a substantial bias error reduction.
A relation between velocity-vorticity correlations and skin friction in wall-bounded turbulent flows
Yoon, Min; Ahn, Junsun; Hwang, Jinyul; Sung, Hyung Jin
2016-11-01
The relationship between the skin friction and the velocity-vorticity correlations in wall-bounded turbulent flows is derived from the mean vorticity equation. A formula for the skin friction coefficient (Cf) is proposed and evaluated with regards to three canonical wall-bounded flows: turbulent boundary layer, turbulent channel flow, and turbulent pipe flow. The skin friction coefficient can be derived from the mean spanwise vorticity at the wall. Double integration with respect to the wall-normal direction (from 0 to y) is needed to derive Cf from the second derivative of the mean spanwise vorticity in the mean spanwise vorticity equation. One more integration is needed to find the contribution of each component to Cf from the wall to the boundary layer edge (from 0 to δ) . The present formula encompasses four terms: advective vorticity transport, vortex stretching, viscous, and inhomogeneous terms. Drag-reduced channel flow with the slip condition is used to test the reliability of the formula. The advective vorticity transport and vortex stretching terms are found to dominate the contributions to the frictional drag. This work was supported by the Creative Research Initiatives (No. 2016-004749) program of the National Research Foundation of Korea (MSIP).
Transition to turbulence in wall-bounded flows: Where do we stand?
Manneville, Paul
2016-01-01
In this essay, we recall the specificities of the transition to turbulence in wall-bounded flows and present recent achievements in the understanding of this problem. The transition is abrupt with laminar-turbulent coexistence over a finite range of Reynolds numbers, the transitional range. The archetypical cases of Poiseuille pipe flow and plane Couette flow are first reviewed at the phenomenological level, together with a few other flow configurations. Theoretical approaches are then examined with particular emphasis on the existence of special nontrivial solutions to the Navier-Stokes equations at finite distance from laminar flow. Dynamical systems theory is most appropriate to analyze their role, in particular with respect to the transient character of turbulence in the lower transitional range. The extensions needed to deal with the prominent spatiotemporal features of the transition are then discussed. Turbulence growth/decay in terms of statistical physics of many-body systems and the relevance of dir...
Improvements on digital inline holographic PTV for 3D wall-bounded turbulent flow measurements
Toloui, Mostafa; Mallery, Kevin; Hong, Jiarong
2017-04-01
Three-dimensional (3D) particle image velocimetry (PIV) and particle tracking velocimetry (PTV) provide the most comprehensive flow information for unraveling the physical phenomena in a wide range of fluid problems, from microfluidics to wall-bounded turbulent flows. Compared with other 3D PIV techniques, such as tomographic PIV and defocusing PIV, the digital inline holographic PTV (DIH-PTV) provides 3D flow measurement solution with high spatial resolution, low cost optical setup, and easy alignment and calibration. Despite these advantages, DIH-PTV suffers from major limitations including poor longitudinal resolution, human intervention (i.e. requirement for manually determined tuning parameters during tracer field reconstruction and extraction), limited tracer concentration, small sampling volume and expensive computations, limiting its broad use for 3D flow measurements. In this study, we present our latest developments on minimizing these challenges, which enables high-fidelity DIH-PTV implementation to larger sampling volumes with significantly higher particle seeding densities suitable for wall-bounded turbulent flow measurements. The improvements include: (1) adjustable window thresholding; (2) multi-pass 3D tracking; (3) automatic wall localization; and (4) continuity-based out-of-plane velocity component computation. The accuracy of the proposed DIH-PTV method is validated with conventional 2D PIV and double-view holographic PTV measurements in smooth-wall turbulent channel flow experiments. The capability of the technique in characterization of wall-bounded turbulence is further demonstrated through its application to flow measurements for smooth- and rough-wall turbulent channel flows. In these experiments, 3D velocity fields are measured within sampling volumes of 14.7 × 50.0 × 14.4 mm3 (covering the entire depth of the channel) with a velocity resolution of presented DIH-PTV method and measurements highlight the
Uncertainty Quantification of Turbulence Model Closure Coefficients for Transonic Wall-Bounded Flows
Schaefer, John; West, Thomas; Hosder, Serhat; Rumsey, Christopher; Carlson, Jan-Renee; Kleb, William
2015-01-01
The goal of this work was to quantify the uncertainty and sensitivity of commonly used turbulence models in Reynolds-Averaged Navier-Stokes codes due to uncertainty in the values of closure coefficients for transonic, wall-bounded flows and to rank the contribution of each coefficient to uncertainty in various output flow quantities of interest. Specifically, uncertainty quantification of turbulence model closure coefficients was performed for transonic flow over an axisymmetric bump at zero degrees angle of attack and the RAE 2822 transonic airfoil at a lift coefficient of 0.744. Three turbulence models were considered: the Spalart-Allmaras Model, Wilcox (2006) k-w Model, and the Menter Shear-Stress Trans- port Model. The FUN3D code developed by NASA Langley Research Center was used as the flow solver. The uncertainty quantification analysis employed stochastic expansions based on non-intrusive polynomial chaos as an efficient means of uncertainty propagation. Several integrated and point-quantities are considered as uncertain outputs for both CFD problems. All closure coefficients were treated as epistemic uncertain variables represented with intervals. Sobol indices were used to rank the relative contributions of each closure coefficient to the total uncertainty in the output quantities of interest. This study identified a number of closure coefficients for each turbulence model for which more information will reduce the amount of uncertainty in the output significantly for transonic, wall-bounded flows.
PRESSURE-VELOCITY JOINT MEASUREMENTS OF A WALL-BOUNDED TURBULENT SHEAR FLOW
Institute of Scientific and Technical Information of China (English)
LIU Ying-zheng; KE Feng; WANG Wei-zhe; CAO Zhao-min
2006-01-01
The unsteady behavior of the large-scale vortical structures buried in a wall-bounded turbulent shear layer flow was extensively investigated using pressure-velocity joint measurements. The wall pressure fluctuations and flow field velocity fluctuations were measured simultaneously by using a microphone and an X-type hotwire, respectively. The spatially and temporally strong coupling between the convecting flow structures and the wall pressure fluctuations were meticulously investigated in terms of the continuous wavelet transform, cross-correlation and coherence of the wall pressure and flow field. The characteristics of the large-scale vortical structures, e.g., the shedding frequency, averaged convection velocity, convective motion, and structure pattern were revealed.
Structural ensemble dynamics based closure model for wall-bounded turbulent flow
Institute of Scientific and Technical Information of China (English)
Zhen-Su She; Ning Hu; You Wu
2009-01-01
Wall-bounded turbulent flow involves the development of multi-scale turbulent eddies, as well as a sharply varying boundary layer. Its theoretical descriptions are yet phenomenological. We present here a new framework called structural ensemble dynamics (SED), which aims at using systematically all relevant statistical properties of turbulent structures for a quantitative description of ensemble means. A new set of closure equations based on the SED approach for a turbulent channel flow is presented. SED order functions are defined, and numerically determined from data of direct numerical simulations (DNS). Computational results show that the new closure model reproduces accurately the solution of the original Navier-Stokes simulation, including the mean velocity profile, the kinetic energy of the stream-wise velocity component, and every term in the energy budget equation. It is suggested that the SED-based studies of turbulent structure builds a bridge between the studies of physical mechanisms of turbulence and the development of accurate model equations for engineering predictions.
Predictions of canonical wall bounded turbulent flows via a modified $k-\\omega$ equation
Chen, Xi; She, Zhen-Su
2016-01-01
A major challenge in computation of engineering flows is to derive and improve turbulence models built on turbulence physics. Here, we present a physics-based modified $k-\\omega$ equation for canonical wall bounded turbulent flows (boundary layer, channel and pipe), predicting both mean velocity profile (MVP) and streamwise mean kinetic energy profile (SMKP) with high accuracy over a wide range of Reynolds number ($Re$). The result builds on a multi-layer quantification of wall flows, which allows a significant modification of the $k-\\omega$ equation. Three innovations are introduced: First, an adjustment of the Karman constant to 0.45 is set for the overlap region with a logarithmic MVP. Second, a wake parameter models the turbulent transport near the centerline. Third, an anomalous dissipation factor represents the effect of a meso layer in the overlap region. Then, a highly accurate (above 99\\%) prediction of MVPs is obtained in Princeton pipes, improving the original model prediction by up to 10\\%. Moreov...
Helical structure of longitudinal vortices embedded in turbulent wall-bounded flow
DEFF Research Database (Denmark)
Velte, Clara Marika; Hansen, Martin Otto Laver; Okulov, Valery
2009-01-01
Embedded vortices in turbulent wall-bounded flow over a flat plate, generated by a passive rectangular vane-type vortex generator with variable angle \\beta to the incoming flow in a low-Reynolds number flow (Re = 2600 based on the inlet grid mesh size L = 0:039 m and free stream velocity U......_{\\infty} = 1.0 ms^{-1}) have been studied with respect to helical symmetry. The studies were carried out in a low-speed closed-circuit wind tunnel utilizing Stereoscopic Particle Image Velocimetry (SPIV). The vortices have been shown to possess helical symmetry, allowing the flow to be described in a simple...
Hanratty, Thomas J.
1980-01-01
This paper gives an account of research on the structure of turbulence close to a solid boundary. Included is a method to study the flow close to the wall of a pipe without interferring with it. (Author/JN)
A Zonal Similarity Analysis of Velocity Profiles in Wall-Bounded Turbulent Shear Flows
Tuoc, Trinh Khanh
2010-01-01
It is argued that there are three distinct zones in a wall bounded turbulent flow field dominated by three completely different mechanisms: - An outer region where the velocity profile is determined by the pressure distribution - A highly active wall layer dominated by a sequence of inrush-sweep and ejections, and - An intermediate region well described by the traditional logarithmic law proposed by independently Millikan and Prandtl. The log-law and the wall layer are sometimes referred to as the inner region. Under these conditions, a unique set of normalisation parameters cannot possibly apply to all three zones. The inner region can be more successfully represented by normalising the distance and velocity with the values of these scales at the edge of the wall layer since they are shared by both the wall layer and the log-law region. The application of this similarity analysis has successfully collapsed extensive published data for the inner region covering a range of Reynolds numbers from 3000 to 1,000,0...
Properties of the kinetic energy budgets in wall-bounded turbulent flows
Zhou, Ang; Klewicki, Joseph
2016-08-01
Available high-quality numerical simulation data are used to investigate and characterize the kinetic energy budgets for fully developed turbulent flow in pipes and channels, and in the zero-pressure gradient turbulent boundary layer. The mean kinetic energy equation in these flows is empirically and analytically shown to respectively exhibit the same four-layer leading-order balance structure as the mean momentum equation. This property of the mean kinetic energy budget provides guidance on how to group terms in the more complicated turbulence and total kinetic energy budgets. Under the suggested grouping, the turbulence budget shows either a two- or three-layer structure (depending on channel or pipe versus boundary layer flow), while the total kinetic energy budget exhibits a clear four-layer structure. These layers, however, differ in position and size and exhibit variations with friction Reynolds number (δ+) that are distinct from the layer structure associated with the mean dynamics. The present analyses indicate that each of the four layers is characterized by a predominance of a reduced set of the grouped terms in the governing equation. The width of the third layer is mathematically reasoned to scale like δ+-√{δ+} at finite Reynolds numbers. In the boundary layer the upper bounds of both the second and third layers convincingly merge under this normalization, as does the width of the third layer. This normalization also seems to be valid for the width of the third layer in pipes and channels, but only for δ+>1000 . The leading-order balances in the total kinetic energy budget are shown to arise from a nontrivial interweaving of the mean and turbulence budget contributions with distance from the wall.
Large-eddy simulation of heavy particle dispersion in wall-bounded turbulent flows
Salvetti, M. V.
2015-03-01
Capabilities and accuracy issues in Lagrangian tracking of heavy particles in velocity fields obtained from large-eddy simulations (LES) of wall-bounded turbulent flows are reviewed. In particular, it is shown that, if no subgrid scale (SGS) model is added to the particle motion equations, particle preferential concentration and near-wall accumulation are significantly underestimated. Results obtained with SGS modeling for the particle motion equations based on approximate deconvolution are briefly recalled. Then, the error purely due to filtering in particle tracking in LES flow fields is singled out and analyzed. The statistical properties of filtering errors are characterized in turbulent channel flow both from an Eulerian and a Lagrangian viewpoint. Implications for stochastic SGS modeling in particle motion equations are briefly outlined. The author is retracting this article due to a significant overlap in content from three previously published papers [Phys. Fluids 20, 040603 (2008); Phys. Fluids 24, 045103 (2012); Acta Mech. 201(1-4), 277 (2008)], which constitutes dual publication. The author would like to apologize for any inconvenience this has caused. The article is retracted from the scientific record with effect from 12 January 2017.
Leonard, A.
1980-01-01
Three recent simulations of tubulent shear flow bounded by a wall using the Illiac computer are reported. These are: (1) vibrating-ribbon experiments; (2) study of the evolution of a spot-like disturbance in a laminar boundary layer; and (3) investigation of turbulent channel flow. A number of persistent flow structures were observed, including streamwise and vertical vorticity distributions near the wall, low-speed and high-speed streaks, and local regions of intense vertical velocity. The role of these structures in, for example, the growth or maintenance of turbulence is discussed. The problem of representing the large range of turbulent scales in a computer simulation is also discussed.
Self-sustaining processes at all scales in wall-bounded turbulent shear flows
Cossu, Carlo; Hwang, Yongyun
2017-03-01
We collect and discuss the results of our recent studies which show evidence of the existence of a whole family of self-sustaining motions in wall-bounded turbulent shear flows with scales ranging from those of buffer-layer streaks to those of large-scale and very-large-scale motions in the outer layer. The statistical and dynamical features of this family of self-sustaining motions, which are associated with streaks and quasi-streamwise vortices, are consistent with those of Townsend's attached eddies. Motions at each relevant scale are able to sustain themselves in the absence of forcing from larger- or smaller-scale motions by extracting energy from the mean flow via a coherent lift-up effect. The coherent self-sustaining process is embedded in a set of invariant solutions of the filtered Navier-Stokes equations which take into full account the Reynolds stresses associated with the residual smaller-scale motions.
A New Eddy-Based Model for Wall-Bounded Turbulent Flows
2010-02-11
results show it to work effectively as a correction scheme for spatial resolution effects in hot - wire anemometry measurements in wall-turbulence. 15...results show it to work effectively as a correction scheme for spatial resolution effects in hot - wire anemometry measurements in wall-turbulence. The...Carry out hot - wire anemometry experiments covering a large Reynolds number range. This involves the use of the High Reynolds Number Boundary Layer
Assessment of tomographic PIV in wall-bounded turbulence using direct numerical simulation data
Energy Technology Data Exchange (ETDEWEB)
Silva, C.M. de; Baidya, R.; Khashehchi, M.; Marusic, I. [University of Melbourne, Department of Mechanical Engineering, Melbourne, VIC (Australia)
2012-02-15
Simulations of tomographic particle image velocimetry (Tomo-PIV) are performed using direct numerical simulation data of a channel flow at Reynolds number of Re{sub {tau}} = 934, to investigate the influence of experimental parameters such as camera position, seeding density, interrogation volume size and spatial resolution. The simulations employ camera modelling, a Mie scattering illumination model, lens distortion effects and calibration to realistically model a tomographic experiment. Results are presented for camera position and orientation in three-dimensional space, to obtain an optimal reconstruction quality. Furthermore, a quantitative analysis is performed on the accuracy of first and second order flow statistics, at various voxel sizes normalised using the viscous inner length scale. This enables the result to be used as a general reference for wall-bounded turbulent experiments. In addition, a ratio relating seeding density and the interrogation volume size is proposed to obtain an optimal reference value that remains constant. This can be used to determine the required seeding density concentration for a certain interrogation volume size. (orig.)
Universal Scaling Laws for Dense Particle Suspensions in Turbulent Wall-Bounded Flows
Costa, Pedro; Brandt, Luca; Breugem, Wim-Paul
2016-01-01
The macroscopic behavior of dense suspensions of neutrally-buoyant spheres in turbulent plane channel flow is examined. We show that particles larger than the smallest turbulence scales cause the suspension to deviate from the continuum limit in which its dynamics is well described by an effective suspension viscosity. This deviation is caused by the formation of a particle layer close to the wall with significant slip velocity. By assuming two distinct transport mechanisms in the near-wall layer and the turbulence in the bulk, we define an effective wall location such that the flow in the bulk can still be accurately described by an effective suspension viscosity. We thus propose scaling laws for the mean velocity profile of the suspension flow, together with a master equation able to predict the increase in drag as function of the particle size and volume fraction.
Atkinson, C.; Hackl, J.; Stegeman, P.; Borrell, G.; Soria, J.
2014-04-01
The determination of the local Lagrangian evolution of the flow topology in wall-bounded turbulence, and of the Lagrangian evolution associated with entrainment across the turbulent / non-turbulent interface into a turbulent boundary layer, require accurate tracking of a fluid particle and its local velocity gradients. This paper addresses the implementation of fluid-particle tracking in both a turbulent boundary layer direct numerical simulation and in a fully developed channel flow simulation. Determination of the sub-grid particle velocity is performed using both cubic B-spline, four-point Hermite spline and higher-order Hermite spline interpolation. Both wall-bounded flows show similar oscillations in the Lagrangian tracers of both velocity and velocity gradients, corresponding to the movement of particles across the boundaries of computational cells. While these oscillation in the particle velocity are relatively small and have negligible effect on the particle trajectories for time-steps of the order of CFL = 0.1, they appear to be the cause of significant oscillations in the evolution of the invariants of the velocity gradient tensor.
Laminar-turbulent patterning in wall-bounded shear flows: a Galerkin model
Seshasayanan, K
2015-01-01
On its way to turbulence, plane Couette flow - the flow between counter-translating parallel plates - displays a puzzling steady oblique laminar-turbulent pattern. We approach this problem via Galerkin modelling of the Navier-Stokes equations. The wall-normal dependence of the hydrodynamic field is treated by means of expansions on functional bases fitting the boundary conditions exactly. This yields a set of partial differential equations for the spatiotemporal dynamics in the plane of the flow. Truncating this set beyond lowest nontrivial order is numerically shown to produce the expected pattern, therefore improving over what was obtained at cruder effective wall-normal resolution. Perspectives opened by the approach are discussed.
Laminar-turbulent patterning in wall-bounded shear flows: a Galerkin model
Energy Technology Data Exchange (ETDEWEB)
Seshasayanan, K [Laboratoire de Physique Statistique, CNRS UMR 8550, École Normale Supérieure, F-75005 Paris (France); Manneville, P, E-mail: paul.manneville@polytechnique.edu [Laboratoire d’Hydrodynamique, CNRS UMR7646, École Polytechnique, F-91128, Palaiseau (France)
2015-06-15
On its way to turbulence, plane Couette flow–the flow between counter-translating parallel plates–displays a puzzling steady oblique laminar-turbulent pattern. We approach this problem via Galerkin modelling of the Navier–Stokes equations. The wall-normal dependence of the hydrodynamic field is treated by means of expansions on functional bases fitting the boundary conditions exactly. This yields a set of partial differential equations for spatiotemporal dynamics in the plane of the flow. Truncating this set beyond the lowest nontrivial order is numerically shown to produce the expected pattern, therefore improving over what was obtained at the cruder effective wall-normal resolution. Perspectives opened by this approach are discussed. (paper)
Investigation of wall-bounded turbulent flow using Dynamic mode decomposition
Energy Technology Data Exchange (ETDEWEB)
Mizuno, Yoshinori; Duke, Daniel; Atkinson, Callum; Soria, Julio, E-mail: yoshinori.mizuno@monash.edu [Laboratory for Turbulence Research in Aerospace and Combustion, Department of Mechanical and Aerospace Engineering, Monash University (Australia)
2011-12-22
Dynamics mode decomposition (DMD) which is a method to construct a linear mapping describing the dynamics of a given time-series of any quantities is applied to the analysis of a turbulent channel flow. The flow fields are generated by direct numerical simulations for the friction Reynolds number Re{sub {tau}} = 190. The time-series of the flow fields in a short time-interval in the order of the wall-unit time-scale and in a small spatial domain that encloses a single near-wall structure are used as the inputs to DMD. In some datasets, linearly growing modes that seem to contribute to the well-known self-sustained cycle of the flow structures near the wall are detected.
Identification and tracking of hairpin vortex auto-generation in turbulent wall-bounded flow
Huang, Yangzi; Green, Melissa
2016-11-01
Hairpin vortices have been widely accepted as component structures of turbulent boundary layers. Their properties (size, vorticity, energy) and dynamic phenomena (origin, growth, breakdown) have been shown to correlate to the complex, multi-scaled turbulent motions observed in both experiments and simulations. As established in the literature, the passage of a hairpin vortex creates a wall-normal ejection of fluid, which encounters the high-speed freestream resulting in near-wall shear and increased drag. A previously generated simulation of an isolated hairpin vortex is used to study the auto-generation of a secondary vortex structure. Eulerian methods such as the Q criterion and Γ2 function, as well as Lagrangian methods are used to visualize the three-dimensional hairpin vortices and the auto-generation process. The circulation development and wall-normal location of both primary and secondary hairpin heads are studied to determine if there is a correlation between the strength and height of the primary hairpin vortex with the secondary hairpin vortex auto-generation.
Power-law versus log-law in wall-bounded turbulence: A large-eddy simulation perspective
Cheng, W.
2014-01-29
The debate whether the mean streamwise velocity in wall-bounded turbulent flows obeys a log-law or a power-law scaling originated over two decades ago, and continues to ferment in recent years. As experiments and direct numerical simulation can not provide sufficient clues, in this study we present an insight into this debate from a large-eddy simulation (LES) viewpoint. The LES organically combines state-of-the-art models (the stretched-vortex model and inflow rescaling method) with a virtual-wall model derived under different scaling law assumptions (the log-law or the power-law by George and Castillo [“Zero-pressure-gradient turbulent boundary layer,” Appl. Mech. Rev.50, 689 (1997)]). Comparison of LES results for Re θ ranging from 105 to 1011 for zero-pressure-gradient turbulent boundary layer flows are carried out for the mean streamwise velocity, its gradient and its scaled gradient. Our results provide strong evidence that for both sets of modeling assumption (log law or power law), the turbulence gravitates naturally towards the log-law scaling at extremely large Reynolds numbers.
Hong, Jiarong; Toloui, Mostafa; Mallery, Kevin
2016-11-01
Three-dimensional PIV and PTV provides the most comprehensive flow information for unraveling the physical phenomena in a wide range of fluid problems, from microfluidics to wall-bounded turbulent flows. Compared with other commercialized 3D PIV techniques, such as tomographic PIV and defocusing PIV, the digital inline holographic PTV (namely DIH-PTV) provides 3D flow measurement solution with high spatial resolution, low cost optical setup, and easy alignment and calibration. Despite these advantages, DIH-PTV suffers from major limitations including poor longitudinal resolution, human intervention (i.e. requirement for manually determined tuning parameters during tracer field reconstruction and extraction), limited tracer concentration, small sampling volume and expensive computations, limiting its broad use for 3D flow measurements. Here we will report our latest work on improving DIH-PTV method through an integration of deconvolution algorithm, iterative removal method and GPU computation to overcome some of abovementioned limitations. We will also present the application of our DIH-PTV for measurements in the following sample cases: (i) flows in bio-filmed microchannel with 50-60 μm vector spacing within sampling volumes of 1 mm (streamwise) x 1 mm (wall-normal) x 1 mm (spanwise); (ii) turbulent flows over smooth and rough surfaces (1.1 mm vector spacing within 15 mm x 50 mm x 15 mm); (iii) 3D distribution and kinematics of inertial particles in turbulent air duct flow.
A study of the turbulence structures of wall-bounded shear flows
Chong, M. S.; Soria, J.; Perry, A. E.; Chacin, J.; Na, Y.; Cantwell, B. J.
1996-01-01
This project extends the study of the structure of wall-bounded flows using the topological properties of eddying motions as developed by Chong et al. (1990), Soria et al. (1992, 1994), and as recently extended by Blackburn et al. (1996) and Chacin et al. (1996). In these works, regions of flow which are focal in nature are identified by being enclosed by an isosurface of a positive small value of the discriminant of the velocity gradient tensor. These regions resemble the attached vortex loops suggested first by Theodorsen (1955). Such loops are incorporated in the attached eddy model versions of Perry & Chong (1982), Perry et al. (1986), and Perry & Marusic (1995), which are extensions of a model first formulated by Townsend (1976). The DNS data of wall bounded flows studied here are from the zero pressure gradient flow of Spalart (1988) and the boundary layer with separation and reattachment of Na & Moin (1996). The flow structures are examined from the viewpoint of the attached eddy hypothesis.
Modelling and simulation of turbulence and heat transfer in wall-bounded flows
Popovac, M.
2006-01-01
At present it is widely accepted that there is no universal turbulence model, i.e. no turbulence model can give acceptably good predictions for all turbulent flows that are found in nature or engineering. Every turbulence model is based on certain assumptions, and hence it is aimed at certain type o
Yang, X. I. A.; Baidya, R.; Johnson, P.; Marusic, I.; Meneveau, C.
2017-06-01
We investigate the scaling of the velocity structure function tensor Di j(r ,z ) in high Reynolds number wall-bounded turbulent flows, within the framework provided by the Townsend attached eddy hypothesis. Here i ,j =1 ,2 ,3 denote velocity components in the three Cartesian directions, and r is a general spatial displacement vector. We consider spatial homogeneous conditions in wall-parallel planes and dependence on wall-normal distance is denoted by z . At small scales (r =|r |≪z ) where turbulence approaches local isotropy, Di j(r ,z ) can be fully characterized as a function of r and the height-dependent dissipation rate ɛ (z ) , using the classical Kolmogorov scalings. At larger distances in the logarithmic range, existing previous studies have focused mostly on the scaling of Di j for r in the streamwise direction and for the streamwise velocity component (i =j =1 ) only. No complete description is available for Di j(r ,z ) for all i ,j , and r directions. In this paper we show that the hierarchical random additive process model for turbulent fluctuations in the logarithmic range (a model based on the Townsend's attached eddy hypothesis) may be used to make new predictions on the scaling of Di j(r ,z ) for all velocity components and in all two-point displacement directions. Some of the generalized scaling relations of Di j(r ,z ) in the logarithmic region are then compared to available data. Nevertheless, a number of predictions cannot yet be tested in detail, due to a lack of simultaneous two-point measurements with arbitrary cross-plane displacements, calling for further experiments to be conducted at high Reynolds numbers.
Manneville, Paul
2014-01-01
The main part of this contribution to the special issue of EJM-B/Fluids dedicated to Patrick Huerre outlines the problem of the subcritical transition to turbulence in wall-bounded flows in its historical perspective with emphasis on plane Couette flow, the flow generated between counter-translating parallel planes. Subcritical here means discontinuous and direct, with strong hysteresis. This is due to the existence of nontrivial flow regimes between the global stability threshold Re_g, the upper bound for unconditional return to the base flow, and the linear instability threshold Re_c characterized by unconditional departure from the base flow. The transitional range around Re_g is first discussed from an empirical viewpoint ({\\S}1). The recent determination of Re_g for pipe flow by Avila et al. (2011) is recalled. Plane Couette flow is next examined. In laboratory conditions, its transitional range displays an oblique pattern made of alternately laminar and turbulent bands, up to a third threshold Re_t beyo...
Yang, Xiang I A; Marusic, Ivan; Biferale, Luca
2016-01-01
In wall-bounded turbulence, the moment generating functions (MGFs) of the streamwise velocity fluctuations $\\left$ develop power-law scaling as a function of the wall normal distance $z/\\delta$. Here $u$ is the streamwise velocity fluctuation, $+$ indicates normalization in wall units (averaged friction velocity), $z$ is the distance from the wall, $q$ is an independent variable and $\\delta$ is the boundary layer thickness. Previous work has shown that this power-law scaling exists in the log-region {\\small $3Re_\\tau^{0.5}\\lesssim z^+$, $z\\lesssim 0.15\\delta$}, where $Re_\\tau$ is the friction velocity-based Reynolds numbers. Here we present empirical evidence that this self-similar scaling can be extended, including bulk and viscosity-affected regions $30
Yang, X. I. A.; Meneveau, C.; Marusic, I.; Biferale, L.
2016-08-01
In wall-bounded turbulence, the moment generating functions (MGFs) of the streamwise velocity fluctuations develop power-law scaling as a function of the wall normal distance z /δ . Here u is the streamwise velocity fluctuation, + indicates normalization in wall units (averaged friction velocity), z is the distance from the wall, q is an independent variable, and δ is the boundary layer thickness. Previous work has shown that this power-law scaling exists in the log-region 3 Reτ0.5≲z+,z ≲0.15 δ where Reτ is the friction velocity-based Reynolds number. Here we present empirical evidence that this self-similar scaling can be extended, including bulk and viscosity-affected regions 30 reference value, qo. ESS also improves the scaling properties, leading to more precise measurements of the scaling exponents. The analysis is based on hot-wire measurements from boundary layers at Reτ ranging from 2700 to 13 000 from the Melbourne High-Reynolds-Number-Turbulent-Boundary-Layer-Wind-Tunnel. Furthermore, we investigate the scalings of the filtered, large-scale velocity fluctuations uzL and of the remaining small-scale component, uzS=uz-uzL . The scaling of uzL falls within the conventionally defined log region and depends on a scale that is proportional to l+˜Reτ1/2 ; the scaling of uzS extends over a much wider range from z+≈30 to z ≈0.5 δ . Last, we present a theoretical construction of two multiplicative processes for uzL and uzS that reproduce the empirical findings concerning the scalings properties as functions of z+ and in the ESS sense.
Computation and Modeling of Heat Transfer in Wall-Bounded Turbulent Flows
2010-05-31
Dissimilarity in a Turbulent Channel Flow, Mecánica Computacional , Vol. XXVI, pp. 3644-3663, Ed. by Elaskar, S.A., E.A. Pilotta, and G.A. Torres. (http...Natural Dissimilarity in a Turbulent Plane Couette Flow, In Mecánica Computacional Vol. XXVII, Ed. by A. Cardona, M. Storti, and C. Zuppa, pp.1619-1636...Past a Circular Cylinder , In Mecánica Computacional Vol. XXVII, Ed. by A. Cardona, M. Storti, and C. Zuppa, pp.249-264, 2008. http://venus.ceride.gov.ar/twiki/bin/view/AMCA/ListadoDePublicaciones). xii
The Prevalence of Similarity of the Turbulent Wall-bounded Velocity Profile
Weyburne, David
2014-01-01
In a now very influential paper, Luciano Castillo and William George used a flow governing equation approach for the outer boundary layer region to seek similarity solutions for the mean velocity and Reynolds shear stress profiles. The development led to a less-constrained version of Clauser's pressure gradient constraint parameter. Using their new pressure gradient constraint parameter equal to a constant as a search criterion, Castillo and George claim to have found many turbulent boundary layer experimental datasets that exhibited velocity profile similarity. In fact Castillo, George, and coworkers examined an extensive set of experimental datasets and claim that most turbulent boundary layers appear to be equilibrium similarity boundary layers. This is in direct contradiction to the classical belief that equilibrium similarity flows are special flows and are difficult to achieve in experiments, a contradiction that Castillo and George themselves acknowledge. The importance of this observation cannot be ov...
Transport and coherent structures in wall turbulence
Tardu, Sedat
2014-01-01
Wall bounded turbulent flows are of major importance in industrial and environmental fluid mechanics. The structure of the wall turbulence is intrinsically related to the coherent structures that play a fundamental role in the transport process. The comprehension of their regeneration mechanism is indispensable for the development of efficient strategies in terms of drag control and near wall turbulence management. This book provides an up-to-date overview on the progress made in this specific area in recent years.
Stevens, Richard J A M; Meneveau, Charles
2014-01-01
The logarithmic law for the mean velocity in turbulent boundary layers has long provided a valuable and robust reference for comparison with theories, models, and large-eddy simulations (LES) of wall-bounded turbulence. More recently, analysis of high-Reynolds number experimental boundary layer data has shown that also the variance and higher-order moments of the streamwise velocity fluctuations $u^\\prime$ display logarithmic laws. Such experimental observations motivate the question whether LES can accurately reproduce the variance and the higher-order moments, in particular their logarithmic dependency on distance to the wall. In this study we perform LES of very high Reynolds number wall-modeled channel flow and focus on profiles of variance and higher-order moments of streamwise velocity fluctuations. In agreement with the experimental data, we observe an approximately logarithmic law for the variance in the LES, with a `Townsend-Perry' constant of $A_1\\approx 1.25$. The LES also yields approximate logari...
Directory of Open Access Journals (Sweden)
Xian Wang
2014-01-01
Full Text Available Direct numerical simulation (DNS and large eddy simulation (LES were performed on the wall-bounded flow at Reτ=180 using lattice Boltzmann method (LBM and multiple GPUs (Graphic Processing Units. In the DNS, 8 K20M GPUs were adopted. The maximum number of meshes is 6.7×107, which results in the nondimensional mesh size of Δ+=1.41 for the whole solution domain. It took 24 hours for GPU-LBM solver to simulate 3×106 LBM steps. The aspect ratio of resolution domain was tested to obtain accurate results for DNS. As a result, both the mean velocity and turbulent variables, such as Reynolds stress and velocity fluctuations, perfectly agree with the results of Kim et al. (1987 when the aspect ratios in streamwise and spanwise directions are 8 and 2, respectively. As for the LES, the local grid refinement technique was tested and then used. Using 1.76×106 grids and Smagorinsky constant (Cs=0.13, good results were obtained. The ability and validity of LBM on simulating turbulent flow were verified.
Simulation of a Wall-Bounded Flow using a Hybrid LES/RAS Approach with Turbulence Recycling
Quinlan, Jesse R.; Mcdaniel, James; Baurle, Robert A.
2012-01-01
Simulations of a supersonic recessed-cavity flow are performed using a hybrid large-eddy/ Reynolds-averaged simulation approach utilizing an inflow turbulence recycling procedure and hybridized inviscid flux scheme. Calorically perfect air enters the three-dimensional domain at a free stream Mach number of 2.92. Simulations are performed to assess grid sensitivity of the solution, efficacy of the turbulence recycling, and effect of the shock sensor used with the hybridized inviscid flux scheme. Analysis of the turbulent boundary layer upstream of the rearward-facing step for each case indicates excellent agreement with theoretical predictions. Mean velocity and pressure results are compared to Reynolds-averaged simulations and experimental data for each case, and these comparisons indicate good agreement on the finest grid. Simulations are repeated on a coarsened grid, and results indicate strong grid density sensitivity. The effect of turbulence recycling on the solution is illustrated by performing coarse grid simulations with and without inflow turbulence recycling. Two shock sensors, one of Ducros and one of Larsson, are assessed for use with the hybridized inviscid flux reconstruction scheme.
Monkewitz, Peter A.
2017-09-01
The trinity of so-called "canonical" wall-bounded turbulent flows, comprising the zero pressure gradient turbulent boundary layer, abbreviated ZPG TBL, turbulent pipe flow, and channel/duct flows has continued to receive intense attention as new and more reliable experimental data have become available. Nevertheless, the debate on whether the logarithmic part of the mean velocity profile, in particular the Kármán constant κ , is identical for these three canonical flows or flow-dependent is still ongoing. In this paper, the asymptotic matching requirement of equal κ in the logarithmic overlap layer, which links the inner and outer flow regions, and in the expression for the centerline/free-stream velocity is reiterated and shown to preclude a universal logarithmic overlap layer in the three canonical flows. However, the majority of pipe and channel flow studies at friction Reynolds numbers Reτ below ≈104 extract from near-wall profiles the same κ of 0.38-0.39 as in the ZPG TBL. This apparent contradiction is resolved by a careful reanalysis of high-quality mean velocity profiles in the Princeton "Superpipe" and other pipes, channels, and ducts, which shows that the mean velocity in a near-wall region extending to around 700 "+" units in channels and ducts and 500 "+" units in pipes is the same as in the ZPG TBL. In other words, all the "canonical" flow profiles contain the lower end of the ZPG TBL log-region, which starts at a wall distance of 150 -200 "+" units with a universal κ of κZPG≈0.384 . This interior log-region is followed by a second logarithmic region with a flow specific κ >κZPG , which increases monotonically with pressure gradient. This second, exterior log-layer is the actual overlap layer matching up to the outer expansion, which implies equality of the exterior κ and κCL obtained from the evolution of the respective centerline velocity with Reynolds number. The location of the switch-over point implies furthermore that this second
2008-04-22
While the aforementioned studies regarding VLSM’s employed hot - wire anemometry to study very large spatial scales from single-point velocity measurements...temporal hot - wire data. In addition, Flack et al. (2005) indicated that the rough-wall flow of Krogstad & Antonia (1994) may not satisfy the criteria...and in some cases multiple (10) points simultaneously with multiple hot - wire probes), time-resolved PIV allows one to measure velocities at many
Turbulent bands in a planar shear flow without walls
Chantry, Matthew; Barkley, Dwight
2015-01-01
Turbulent bands are a ubiquitous feature of transition in wall-bounded shear flows. We show that these are also a robust feature of Waleffe flow -- a shear flow driven by a sinusoidal body force between stress-free boundaries -- thus demonstrating that rigid walls are not a prerequisite for band formation. Exploiting the Fourier dependence of Waleffe forcing, we construct a model flow that uses only four wavenumbers in the shear direction and yet captures uniform turbulence, turbulent bands, and spot expansion. The model is simultaneously a reduction of the full Navier-Stokes equations and an extension of minimal models of the self-sustaining process of shear turbulence.
Mean velocity scaling for compressible wall turbulence with heat transfer
Trettel, Andrew; Larsson, Johan
2016-02-01
The current state-of-the-art in accounting for mean property variations in compressible turbulent wall-bounded flows is the Van Driest transformation, which is inaccurate for non-adiabatic walls. An alternative transformation is derived, based on arguments about log-layer scaling and near-wall momentum conservation. The transformation is tested on supersonic turbulent channel flows and boundary layers, and it is found to produce an excellent collapse of the mean velocity profile at different Reynolds numbers, Mach numbers, and rates of wall heat transfer. In addition, the proposed transformation mathematically derives the semi-local scaling of the wall-normal coordinate and unifies the scaling of the velocity, the Reynolds stresses, and the wall-normal coordinate.
Contaminant dispersal in bounded turbulent shear flow
Energy Technology Data Exchange (ETDEWEB)
Wallace, J.M.; Bernard, P.S.; Chiang, K.F.; Ong, L. [Univ. of Maryland, College Park, MD (United States)
1995-12-31
The dispersion of smoke downstream of a line source at the wall and at y{sup +} = 30 in a turbulent boundary layer has been predicted with a non-local model of the scalar fluxes {bar u}c and {bar v}c. The predicted plume from the wall source has been compared to high Schmidt number experimental measurements using a combination of hot-wire anemometry to obtain velocity component data synchronously with concentration data obtained optically. The predicted plumes from the source at y{sup +} = 30 and at the wall also have been compared to a low Schmidt number direct numerical simulation. Near the source, the non-local flux models give considerably better predictions than models which account solely for mean gradient transport. At a sufficient distance downstream the gradient models gives reasonably good predictions.
A unified theory for wall turbulence via a symmetry approach
She, Zhen-Su; Chen, Xi; Hussain, Fazle
2014-11-01
First principle based prediction of mean flow quantities of wall-bounded turbulent flows (channel, pipe, and turbulent boundary layer - TBL) remains a great challenge from both physics and engineering standpoints. Physically, a non-equilibrium physical principle governing mean properties in turbulent flows is yet unknown. Here, we outline a recently developed symmetry-based approach which derives analytic expressions governing the mean velocity profile (MVP) from an innovative Lie-group analysis. In analogy to the order parameter in Landau's (1937) mean-field theory, we develop a concept of order functions which are assumed to satisfy a dilation group invariance - representing the effects of the wall on fluctuations - allowing us to construct a set of new invariant solutions of the (unclosed) mean momentum equation (MME). The theory is validated by recent experimental and numerical data, and identifies a universal bulk flow constant 0.45 for all three canonical wall-bounded flows, which asymptotes to the true Karman constant at large Reynolds numbers. The theory equally applies to the quantification of the effects of roughness (She et al. 2012), pressure gradient, compressibility, and buoyancy, and to the study of Reynolds-averaged Navier-Stokes (RANS) models, such as k- ωmodel, with significant improvement of the prediction accuracy. These results affirm that a simple and unified theory of wall-bounded turbulence is viable with appropriate symmetry considerations.
A statistical state dynamics approach to wall turbulence.
Farrell, B F; Gayme, D F; Ioannou, P J
2017-03-13
This paper reviews results obtained using statistical state dynamics (SSD) that demonstrate the benefits of adopting this perspective for understanding turbulence in wall-bounded shear flows. The SSD approach used in this work employs a second-order closure that retains only the interaction between the streamwise mean flow and the streamwise mean perturbation covariance. This closure restricts nonlinearity in the SSD to that explicitly retained in the streamwise constant mean flow together with nonlinear interactions between the mean flow and the perturbation covariance. This dynamical restriction, in which explicit perturbation-perturbation nonlinearity is removed from the perturbation equation, results in a simplified dynamics referred to as the restricted nonlinear (RNL) dynamics. RNL systems, in which a finite ensemble of realizations of the perturbation equation share the same mean flow, provide tractable approximations to the SSD, which is equivalent to an infinite ensemble RNL system. This infinite ensemble system, referred to as the stochastic structural stability theory system, introduces new analysis tools for studying turbulence. RNL systems provide computationally efficient means to approximate the SSD and produce self-sustaining turbulence exhibiting qualitative features similar to those observed in direct numerical simulations despite greatly simplified dynamics. The results presented show that RNL turbulence can be supported by as few as a single streamwise varying component interacting with the streamwise constant mean flow and that judicious selection of this truncated support or 'band-limiting' can be used to improve quantitative accuracy of RNL turbulence. These results suggest that the SSD approach provides new analytical and computational tools that allow new insights into wall turbulence.This article is part of the themed issue 'Toward the development of high-fidelity models of wall turbulence at large Reynolds number'.
Near Wall Turbulence: an experimental view
Stanislas, Michel
2016-11-01
The aim of this presentation is to summarize the understanding of the near wall turbulence phenomena obtained at Laboratoire de Mécanique de Lille using both hot wire anemometry and PIV. A wind tunnel was built in 1993 specifically designed for these two measurement techniques and aimed at large Reynolds numbers. Several experiments were performed since then in the frame of different PhDs and European projects, all aimed at evidencing turbulence organization in this region. These have fully benefited of the extraordinary development of PIV in that time frame, which has allowed entering visually and quantitatively inside the complex spatial and temporal structure of near wall turbulence. The presentation will try to emphasize the benefit of this approach in terms of understanding and modelling, illustrated by some representative results obtained. M. Stanislas particularly acknowledges the financial support of Region Nord Pas de Calais, unmissing during 25 years.
Institute of Scientific and Technical Information of China (English)
王瑞; 李昌烽; 吴桂芬; 胡自成; 王迎慧
2011-01-01
In recent studies of drag reduction in wall turbulence it was proposed that the streching polymer produces a self-consistent effective viscosity that increases with the distance from the wall. This linear effective viscosity theory for drag reduction in the wall-bounded turbulent flow was examined by introducing such linear viscosity profile to Navier-Stokes equation, and computing with Reynolds stress model. It shows that the linear effective viscosity model demonstrates drag reducing properties, and the percentage of the drag reduction increases up to the drag reduction saturation with the slope of viscosity profile increasing. The level of drag reduction up to about 75% , approaching the maximum drag reduction extent was obtained. The turbulence important characteristics including mean velocity profile, root-mean-square velocity fluctuations, Reynolds stress and viscous stress profiles are in agreement with the direct numerical simulation results and experimental data. It is universal and reasonable in some content for the linear viscosity profile model to explain drag reduction mechanism.%近来在壁面湍流高分子减阻研究中，一种拉伸的高分子产生自相一致的等效粘度的理论提了出来，这个等效粘度随离开壁面的距离而增长。本文将此线性分布等效粘度置入Navier-Stokes方程，运用雷诺应力模型计算在壁面湍流中的减阻情况，检验这种等效粘度的可行性。可以发现，此模型可以得到湍流减阻的效果，所得到的减阻率随着等效粘度线性分布斜率的增加增大到一个饱和值。本文得到了接近最大减阻极限的减阻率(75％)。且由此模型计算得到的减阻湍流特征值包括平均速度分布、速度脉动均方根、雷诺应力及粘性应力分布都与实验数据和直接数值模拟结果相符。该线性分布等效粘度减阻模型大致上把握了高分子湍流减阻特性，给出了在一定程度上对湍流减阻机理普适和合理的解释。
On coherent structure in wall turbulence
Sharma, A S
2013-01-01
A new theory of coherent structure in wall turbulence is presented. The theory is the first to predict packets of hairpin vortices and other structure in turbulence, and their dynamics, based on an analysis of the Navier-Stokes equations, under an assumption of a turbulent mean profile. The assumption of the turbulent mean acts as a restriction on the class of possible structures. It is shown that the coherent structure is a manifestation of essentially low-dimensional flow dynamics, arising from a critical layer mechanism. Using the decomposition presented in McKeon & Sharma (J. Fluid Mech, 658, 2010), complex coherent structure is recreated from minimal superpositions of response modes predicted by the analysis, which take the form of radially-varying travelling waves. By way of example, simple combinations of these modes are offered that predicts hairpins and modulated hairpin packets. The phase interaction also predicts important skewness and correlation results known in the literature. It is also sho...
High Reynolds number rough-wall turbulent boundary layers
Squire, Dougal; Morrill-Winter, Caleb; Schultz, Michael; Hutchins, Nicholas; Klewicki, Joseph; Marusic, Ivan
2015-11-01
In his review of turbulent flows over rough-walls, Jimenez (2004) concludes that there are gaps in the current database of relevant experiments. The author calls for measurements in which δ / k and k+ are both large--low blockage, fully-rough flow--and where δ / k is large and k+ is small--low blockage, transitionally-rough flow--to help clarify ongoing questions regarding the physics of rough-wall-bounded flows. The present contribution details results from a large set of measurements carried out above sandpaper in the Melbourne Wind Tunnel. The campaign spans 45 rough-wall measurements using single and multiple-wire hot-wire anemometry sensors and particle image velocimetry. A floating element drag balance is employed to obtain the rough-wall skin friction force. The data span 20
Scaling analysis on filtered near wall turbulence
Mohan, Prakash; Moser, Robert
2016-11-01
Large Eddy Simulations (LES) directly represent larger scale turbulent motions and model the effects of small scale motions. However in the near wall region the large dynamically important eddies scale in viscous wall units, which makes resolving them in a high Reynolds number LES very expensive. This motivates the use of wall-modeled LES, in which these near-wall eddies are modeled. To aid in the development of new wall models, we pursue an asymptotic analysis of the filtered Navier-Stokes equations, in the limit in which the horizontal filter scale is large compared to the thickness of the wall layer. It will be shown that in this limit the filtered velocities u and subgrid stresses τ in the near-wall layer are determined to zeroth order by filtered velocities at the boundary of the wall layer. Further the asymptotics suggest that there is a scaled universal velocity profile f and subgrid stress profile g in the near-wall region. The validity of this result will be tested and the profiles f and g will be evaluated through analysis of DNS data from channel flow at Reτ = 5200 .
Towards a model of large scale dynamics in transitional wall-bounded flows
Manneville, Paul
2015-01-01
A system of simplified equations is proposed to govern the feedback interactions of large-scale flows present in laminar-turbulent patterns of transitional wall-bounded flows, with small-scale Reynolds stresses generated by the self-sustainment process of turbulence itself modeled using an extension of Waleffe's approach (Phys. Fluids 9 (1997) 883-900), the detailed expression of which is displayed as an annex to the main text.
Bailly, Christophe
2015-01-01
This book covers the major problems of turbulence and turbulent processes, including physical phenomena, their modeling and their simulation. After a general introduction in Chapter 1 illustrating many aspects dealing with turbulent flows, averaged equations and kinetic energy budgets are provided in Chapter 2. The concept of turbulent viscosity as a closure of the Reynolds stress is also introduced. Wall-bounded flows are presented in Chapter 3, and aspects specific to boundary layers and channel or pipe flows are also pointed out. Free shear flows, namely free jets and wakes, are considered in Chapter 4. Chapter 5 deals with vortex dynamics. Homogeneous turbulence, isotropy, and dynamics of isotropic turbulence are presented in Chapters 6 and 7. Turbulence is then described both in the physical space and in the wave number space. Time dependent numerical simulations are presented in Chapter 8, where an introduction to large eddy simulation is offered. The last three chapters of the book summarize remarka...
Entropic-Skins Geometry to Describe Wall Turbulence Intermittency
Directory of Open Access Journals (Sweden)
Diogo Queiros-Conde
2015-04-01
Full Text Available In order to describe the phenomenon of intermittency in wall turbulence and, more particularly, the behaviour of moments and and intermittency exponents ζP with the order p and distance to the wall, we developed a new geometrical framework called “entropic-skins geometry” based on the notion of scale-entropy which is here applied to an experimental database of boundary layer flows. Each moment has its own spatial multi-scale support Ωp (“skin”. The model assumes the existence of a hierarchy of multi-scale sets Ωp ranged from the “bulk” to the “crest”. The crest noted characterizes the geometrical support where the most intermittent (the highest fluctuations in energy dissipation occur; the bulk is the geometrical support for the whole range of fluctuations. The model assumes then the existence of a dynamical flux through the hierarchy of skins. The specific case where skins display a fractal structure is investigated. Bulk fractal dimension and crest dimension are linked by a scale-entropy flux defining a reversibility efficiency (d is the embedding dimension. The model, initially developed for homogeneous and isotropic turbulent flows, is applied here to wall bounded turbulence where intermittency exponents are measured by extended self-similarity. We obtained for intermittency exponents the analytical expression with γ ≈ 0.36 in agreement with experimental results.
A statistical state dynamics approach to wall turbulence
Farrell, B. F.; Gayme, D. F.; Ioannou, P. J.
2017-03-01
This paper reviews results obtained using statistical state dynamics (SSD) that demonstrate the benefits of adopting this perspective for understanding turbulence in wall-bounded shear flows. The SSD approach used in this work employs a second-order closure that retains only the interaction between the streamwise mean flow and the streamwise mean perturbation covariance. This closure restricts nonlinearity in the SSD to that explicitly retained in the streamwise constant mean flow together with nonlinear interactions between the mean flow and the perturbation covariance. This dynamical restriction, in which explicit perturbation-perturbation nonlinearity is removed from the perturbation equation, results in a simplified dynamics referred to as the restricted nonlinear (RNL) dynamics. RNL systems, in which a finite ensemble of realizations of the perturbation equation share the same mean flow, provide tractable approximations to the SSD, which is equivalent to an infinite ensemble RNL system. This infinite ensemble system, referred to as the stochastic structural stability theory system, introduces new analysis tools for studying turbulence. RNL systems provide computationally efficient means to approximate the SSD and produce self-sustaining turbulence exhibiting qualitative features similar to those observed in direct numerical simulations despite greatly simplified dynamics. The results presented show that RNL turbulence can be supported by as few as a single streamwise varying component interacting with the streamwise constant mean flow and that judicious selection of this truncated support or `band-limiting' can be used to improve quantitative accuracy of RNL turbulence. These results suggest that the SSD approach provides new analytical and computational tools that allow new insights into wall turbulence.
Elastically bound particle in a turbulent flow
Gudmundsson, Kristjan; Prosperetti, Andrea
2011-11-01
The results of a direct numerical simulation of the behavior of a finite-size spherical particle subject to a linear elastic force in a turbulent flow are described. The turbulence is obtained by a physical space linear forcing due to Lundgren (see also Rosales and Meneveau, PoF 2005). The fluid-particle interaction is simulated by means of the Physalis method which permits the accurate calculation of hydrodynamic forces and couples acting on the particle using a fixed Cartesian grid. We vary the particle size with respect to the integral length scale along with the spring constant and therefore the natural frequency of the oscillator. Some results of a similar calculation with torsional springs and a fixed particle center will also be described. Funding provided by the IMPACT institute, the Netherlands.
Measurements of turbulent flow overlying impermeable and permeable walls
Kim, Taehoon; Blois, Gianluca; Best, James; Christensen, Kenneth
2016-11-01
There exist an array of natural and industrial flow systems wherein the flow is bounded by a surface that is both permeable and rough (e.g. river beds, bed reactors). In such scenarios, the wall boundary condition is complex as it involves both slip and penetration which together significantly modify the statistical and structural modifications the overlying flow owing to momentum exchange across the wall. The current investigation explores the individual roles of topography and permeability in such flows by systematically decoupling one from the other with a number of wall models having the same porous structure (i.e. cubically arranged spheres; two and five layers, respectively, to highlight the effect of turbulence penetration depth) but with different surface topography (smooth versus cubically arranged hemispheres). High resolution particle-image velocimetry measurements were conducted in the streamwise-wall-normal (x - y) plane and refractive-index matching was employed to optically access the flow within the permeable wall. First- and second-order velocity statistics are used to assess the flow modifications associated with the different wall models and thus ascertain the individual impacts of permeability and topography. NSF.
Lattice Boltzmann simulations of turbulent shear flow between parallel porous walls
Institute of Scientific and Technical Information of China (English)
唐政; 刘难生; 董宇红
2014-01-01
The effects of two parallel porous walls are investigated, consisting of the Darcy number and the porosity of a porous medium, on the behavior of turbulent shear flows as well as skin-friction drag. The turbulent channel flow with a porous surface is directly simulated by the lattice Boltzmann method (LBM). The Darcy-Brinkman-Forcheimer (DBF) acting force term is added in the lattice Boltzmann equation to simu-late the turbulent flow bounded by porous walls. It is found that there are two opposite trends (enhancement or reduction) for the porous medium to modify the intensities of the velocity fluctuations and the Reynolds stresses in the near wall region. The parametric study shows that flow modification depends on the Darcy number and the porosity of the porous medium. The results show that, with respect to the conventional impermeable wall, the degree of turbulence modification does not depend on any simple set of param-eters obviously. Moreover, the drag in porous wall-bounded turbulent flow decreases if the Darcy number is smaller than the order of O(10−4) and the porosity of porous walls is up to 0.4.
Understanding the sub-critical transition to turbulence in wall flows
Manneville, Paul
2008-01-01
Contrasting with free shear flows presenting velocity profiles with inflection points which cascade to turbulence in a relatively mild way, wall bounded flows are deprived of (inertial) instability modes at low Reynolds numbers and become turbulent in a much wilder way, most often marked by the coexistence of laminar and turbulent domains at intermediate Reynolds numbers, well below the range where (viscous) instabilities can show up. There can even be no unstable mode at all, as for plane Couette flow (pCf) or for Poiseuille pipe flow (Ppf) that currently are the subject of intense research. Though the mechanisms involved in the transition to turbulence in wall flows are now better understood, statistical properties of the transition itself are yet unsatisfactorily assessed. A review of the situation is given. An alternative to the temporal theory of the transition to turbulence in terms of chaotic transients in such globally subcritical flows is proposed, which invokes spatio-temporal intermittence and the ...
Sid, Samir; Terrapon, Vincent; Dubief, Yves
2015-11-01
Results of direct numerical simulation of turbulent channel flows under unstable stratification are reported. Two Reynolds number are considered: Reτ = 180 , 395 and the Rayleigh number ranges between Ra = [106 -109 ] . The Prandtl number is set to 1. The channel is periodic in both streamwise and spanwise directions and non-slip/isothermal boundary conditions are imposed at the walls. The temperature difference between the walls is set so that the stratification is unstable and the coupling between temperature and momentum is achieved using the Boussinesq approximation. The dependency of the typical large scale convective structures on both Reynolds and Rayleigh numbers are investigated through cross flow sectional statistics and instantaneous flow field visualizations. Moreover, the effects of the natural convection on the coherent structures associated to the cycle of wall-bounded turbulence (Jimenez, et al. JFM 1999), namely velocity streaks and streamwise vortices, are examined. Finally, macroscopic quantities such as friction coefficient and Nusselt number are reported as a function of the Rayleigh number and are compared for both Reynolds numbers. The Belgian Team acknowledges computational resources from CÉCI (F.R.S.-FNRS grant No.2.5020.11) and the PRACE infrastructure. YD acknowledges the support of NSF and DOE under grant NSF/DOE 1258697.
Testing a random phase approximation for bounded turbulent flow
Ulitsky, Mark; Clark, Tim; Turner, Leaf
1999-05-01
Tractable implementation of a spectral closure requires that the modal representation of the energy satisfy a restricted random phase approximation (RRPA). This condition is exactly satisfied when the statistical system is homogeneous and the basis functions are Fourier modes. In this case, the ensemble average of the spectral covariance diagonalizes, i.e., =δ(k1+k2), where c(k,t) is a Fourier coefficient in a Galerkin representation of the velocity field. However, for inhomogeneous statistical systems in which the Fourier system is inappropriate, the RRPA requires validation. We use direct numerical simulations (DNSs) of the Navier-Stokes and truncated Euler equations to test the degree to which the RRPA is satisfied when applied to a recent representation due to Turner (LANL Unclassified Report No. LA-UR-96-3257) of a bounded turbulent rectangular channel flow with free slip, stress free walls. It is shown that a complete test of the RRPA for a fully inhomogeneous DNS with N3 grid points actually requires N3+1 members in the ensemble. The ``randomness'' of the phase can be characterized by a probability density function (PDF) of the modulus of the normalized spectral covariance. Results reveal that for both the Navier-Stokes and Euler systems the PDF does not change in time as the turbulence decays, and that the PDF for the Euler system is virtually identical to the one produced from an ensemble of random fields. This result is consistent with the equipartition of energy for the Euler system, in which the RRPA becomes an exact result rather than an approximation as the number of realizations approaches N3+1. The slight differences observed between the PDF produced from the random fields and the one from the Navier-Stokes system are thus shown to be entirely a result of the presence of a finite viscosity. It is also shown that there is great variation between statistics computed over the ensemble and those for a single realization.
A Lower Bound on Adiabatic Heating of Compressed Turbulence for Simulation and Model Validation
Davidovits, Seth; Fisch, Nathaniel J.
2017-04-01
The energy in turbulent flow can be amplified by compression, when the compression occurs on a timescale shorter than the turbulent dissipation time. This mechanism may play a part in sustaining turbulence in various astrophysical systems, including molecular clouds. The amount of turbulent amplification depends on the net effect of the compressive forcing and turbulent dissipation. By giving an argument for a bound on this dissipation, we give a lower bound for the scaling of the turbulent velocity with the compression ratio in compressed turbulence. That is, turbulence undergoing compression will be enhanced at least as much as the bound given here, subject to a set of caveats that will be outlined. Used as a validation check, this lower bound suggests that some models of compressing astrophysical turbulence are too dissipative. The technique used highlights the relationship between compressed turbulence and decaying turbulence.
A lower bound on adiabatic heating of compressed turbulence for simulation and model validation
Davidovits, Seth
2016-01-01
The energy in turbulent flow can be amplified by compression, when the compression occurs on a timescale shorter than the turbulent dissipation time. This mechanism may play a part in sustaining turbulence in various astrophysical systems, including molecular clouds. The amount of turbulent amplification depends on the net effect of the compressive forcing and turbulent dissipation. By giving an argument for a bound on this dissipation, we give a lower bound for the scaling of the turbulent velocity with compression ratio in compressed turbulence. That is, turbulence undergoing compression will be enhanced at least as much as the bound given here, subject to a set of caveats that will be outlined. Used as a validation check, this lower bound suggests that some simulations and models of compressing astrophysical turbulence are too dissipative. The technique used highlights the relationship between compressed turbulence and decaying turbulence.
A statistical state dynamics approach to wall-turbulence
Farrell, Brian F; Ioannou, Petros J
2016-01-01
This paper reviews results demonstrating the benefits of studying wall-bounded shear flows using dynamics for the evolution of the statistical state of the turbulent system. The statistical state dynamics (SSD) approach used in this work employs a second order closure which isolates the interaction between the streamwise mean and the equivalent of the perturbation covariance. This closure restricts nonlinearity in the SSD to that explicitly retained in the streamwise constant mean together with nonlinear interactions between the mean and the perturbation covariance. This dynamical restriction, in which explicit perturbation-perturbation nonlinearity is removed from the perturbation equation, results in a simplified dynamics referred to as the restricted nonlinear (RNL) dynamics. RNL systems in which an ensemble of a finite number of realizations of the perturbation equation share the same mean flow provide tractable approximations to the equivalently infinite ensemble RNL system. The infinite ensemble system,...
Kolmogorov Behavior of Near-Wall Turbulence and Its Application in Turbulence Modeling
Shih, Tsan-Hsing; Lumley, John L.
1992-01-01
The near-wall behavior of turbulence is re-examined in a way different from that proposed by Hanjalic and Launder and followers. It is shown that at a certain distance from the wall, all energetic large eddies will reduce to Kolmogorov eddies (the smallest eddies in turbulence). All the important wall parameters, such as friction velocity, viscous length scale, and mean strain rate at the wall, are characterized by Kolmogorov microscales. According to this Kolmogorov behavior of near-wall turbulence, the turbulence quantities, such as turbulent kinetic energy, dissipation rate, etc. at the location where the large eddies become Kolmogorov eddies, can be estimated by using both direct numerical simulation (DNS) data and asymptotic analysis of near-wall turbulence. This information will provide useful boundary conditions for the turbulent transport equations. As an example, the concept is incorporated in the standard k-epsilon model which is then applied to channel and boundary flows. Using appropriate boundary conditions (based on Kolmogorov behavior of near-wall turbulence), there is no need for any wall-modification to the k-epsilon equations (including model constants). Results compare very well with the DNS and experimental data.
Progress in wall turbulence 2 understanding and modelling
Jimenez, Javier; Marusic, Ivan
2016-01-01
This is the proceedings of the ERCOFTAC Workshop on Progress in Wall Turbulence: Understanding and Modelling, that was held in Lille, France from June 18 to 20, 2014. The workshop brought together world specialists of near wall turbulence and stimulated exchanges between them around up-to-date theories, experiments, simulations and numerical models. This book contains a coherent collection of recent results on near wall turbulence including theory, new experiments, DNS, and modeling with RANS, LES.The fact that both physical understanding and modeling by different approaches are addressed by the best specialists in a single workshop is original.
Relaminarization of wall turbulence by high-pressure ramps at low Reynolds numbers
Directory of Open Access Journals (Sweden)
Song Kwonyul
2016-01-01
Full Text Available Reverse transition from the turbulent towards the laminar flow regime was investigated experimentally by progressively increasing the pressure up to 400 MPa in a fully developed pipe flow operated with silicone oil as the working fluid. Using hot-wire anemometry, it is shown indirectly that at low Reynolds numbers a rapid increase in pressure modifies the turbulence dynamics owing to the processes which induce the effects caused by fluid compressibility in the region very close to the wall. The experimental results confirm that under such circumstances, the traditional mechanism responsible for self-maintenance of turbulence in wall-bounded flows is altered in such a way as to lead towards a state in which turbulence cannot persist any longer.
Energy Technology Data Exchange (ETDEWEB)
Jayaraju, S.T., E-mail: jayaraju@nrg.eu [Nuclear Research and Consultancy Group (NRG), 1755ZG Petten (Netherlands); Sathiah, P.; Roelofs, F. [Nuclear Research and Consultancy Group (NRG), 1755ZG Petten (Netherlands); Dehbi, A. [Paul Scherrer Institute (PSI), 5232 Villigen PSI (Switzerland)
2015-08-15
Highlights: • Near-wall modeling uncertainties in the RANS particle transport and deposition are addressed in a turbulent duct flow. • Discrete Random Walk (DRW) model and Continuous Random Walk (CRW) model performances are tested. • Several near-wall anisotropic model accuracy is assessed. • Numerous sensitivity studies are performed to recommend a robust, well-validated near-wall model for accurate particle deposition predictions. - Abstract: Dust accumulation in the primary system of a (V)HTR is identified as one of the foremost concerns during a potential accident. Several numerical efforts have focused on the use of RANS methodology to better understand the complex phenomena of fluid–particle interaction at various flow conditions. In the present work, several uncertainties relating to the near-wall modeling of particle transport and deposition are addressed for the RANS approach. The validation analyses are performed in a fully developed turbulent duct flow setup. A standard k − ε turbulence model with enhanced wall treatment is used for modeling the turbulence. For the Lagrangian phase, the performance of a continuous random walk (CRW) model and a discrete random walk (DRW) model for the particle transport and deposition are assessed. For wall bounded flows, it is generally seen that accounting for near wall anisotropy is important to accurately predict particle deposition. The various near-wall correlations available in the literature are either derived from the DNS data or from the experimental data. A thorough investigation into various near-wall correlations and their applicability for accurate particle deposition predictions are assessed. The main outcome of the present work is a well validated turbulence model with optimal near-wall modeling which provides realistic particle deposition predictions.
A refinement of scaling laws in wall turbulence
Institute of Scientific and Technical Information of China (English)
ZHANG Ke; LI Wan-ping
2009-01-01
As a universal conclusion of turbulent scale, scaling laws are important to the research on statistic turbulence. We measured two-dimensional instantaneous velocity field in turbulent boundary layers of flat plate with the momentum thickness Reynolds number Reθ=2 167. Scaling laws have different forms in different wall distance and scale. We proposed an expected scaling law and compared it with the She-Leveque (SL) scaling law based on the wavelet analysis and traditional statistical methods. Results show that the closer to the wall, the more the expected scaling law approached to the SL scaling law.
Nonlinear interactions isolated through scale synthesis in experimental wall turbulence
Duvvuri, Subrahmanyam; McKeon, Beverley
2016-07-01
An experimental investigation of nonlinear scale interactions in a forced turbulent boundary layer is presented here. A dynamic wall perturbation mechanism was used to externally force two distinct large-scale synthetic modes with well-defined spatial and temporal wave numbers in a fully turbulent flow. The focus is on characterizing the nonlinear flow response at triadically consistent wave numbers that arises from the direct interactions of the two synthetic modes. These experimental results isolate triadic scale interactions in wall turbulence in a unique fashion, and provide the ability to explore the dynamics of scale coupling in a systematic and detailed manner. The ideas advanced here are intended to contribute towards modeling efforts of high-Reynolds-number wall turbulence.
Second order closure modeling of turbulent buoyant wall plumes
Zhu, Gang; Lai, Ming-Chia; Shih, Tsan-Hsing
1992-01-01
Non-intrusive measurements of scalar and momentum transport in turbulent wall plumes, using a combined technique of laser Doppler anemometry and laser-induced fluorescence, has shown some interesting features not present in the free jet or plumes. First, buoyancy-generation of turbulence is shown to be important throughout the flow field. Combined with low-Reynolds-number turbulence and near-wall effect, this may raise the anisotropic turbulence structure beyond the prediction of eddy-viscosity models. Second, the transverse scalar fluxes do not correspond only to the mean scalar gradients, as would be expected from gradient-diffusion modeling. Third, higher-order velocity-scalar correlations which describe turbulent transport phenomena could not be predicted using simple turbulence models. A second-order closure simulation of turbulent adiabatic wall plumes, taking into account the recent progress in scalar transport, near-wall effect and buoyancy, is reported in the current study to compare with the non-intrusive measurements. In spite of the small velocity scale of the wall plumes, the results showed that low-Reynolds-number correction is not critically important to predict the adiabatic cases tested and cannot be applied beyond the maximum velocity location. The mean and turbulent velocity profiles are very closely predicted by the second-order closure models. but the scalar field is less satisfactory, with the scalar fluctuation level underpredicted. Strong intermittency of the low-Reynolds-number flow field is suspected of these discrepancies. The trends in second- and third-order velocity-scalar correlations, which describe turbulent transport phenomena, are also predicted in general, with the cross-streamwise correlations better than the streamwise one. Buoyancy terms modeling the pressure-correlation are shown to improve the prediction slightly. The effects of equilibrium time-scale ratio and boundary condition are also discussed.
Cell wall bound anionic peroxidases from asparagus byproducts.
Jaramillo-Carmona, Sara; López, Sergio; Vazquez-Castilla, Sara; Jimenez-Araujo, Ana; Rodriguez-Arcos, Rocio; Guillen-Bejarano, Rafael
2014-10-08
Asparagus byproducts are a good source of cationic soluble peroxidases (CAP) useful for the bioremediation of phenol-contaminated wastewaters. In this study, cell wall bound peroxidases (POD) from the same byproducts have been purified and characterized. The covalent forms of POD represent >90% of the total cell wall bound POD. Isoelectric focusing showed that whereas the covalent fraction is constituted primarily by anionic isoenzymes, the ionic fraction is a mixture of anionic, neutral, and cationic isoenzymes. Covalently bound peroxidases were purified by means of ion exchange chromatography and affinity chromatography. In vitro detoxification studies showed that although CAP are more effective for the removal of 4-CP and 2,4-DCP, anionic asparagus peroxidase (AAP) is a better option for the removal of hydroxytyrosol (HT), the main phenol present in olive mill wastewaters.
Experimental study of turbulence induced wall temperature fluctuations
Garai, Anirban; Kleissl, Jan; Boundary Layer Late Afternoon and Sunset Turbulence Collaboration
2012-11-01
Turbulent heat transport is critical in engineering applications and atmospheric flows. The relative strength of background shear and buoyancy near the wall influences coherent structures responsible for much of the heat transport. Previous studies show that shear dominated flow causes streaky-like structures; whereas buoyancy dominated flow causes cell-like structures. In this work, we investigated the influence of flow structures on the wall temperature and heat flux in a convective atmospheric boundary layer. Turbulence data at different heights and high frequency wall temperature were obtained during the Boundary Layer Late Afternoon and Sunset Turbulence field campaign at Lannemezan, France from 7 June - 8 July, 2011. Conditional averaging confirms that the warm wall causes warm ejection events, and cold sweep events cause cooling of the wall. The wall temperature structures move along the wind and their advection speed is close to the wind speed of the upper logarithmic layer and mixed layer, have a size of about 0.2 times the boundary layer depth, become streakier with stability and its standard deviation follows a -1/3 power law with stability parameter, Obukhov length. We are thankful to all Boundary Layer Late Afternoon and Sunset Turbulence field campaign participants for data sharing and funding from a NASA New Investigator Program award.
Heat transfer and wall temperature effects in shock wave turbulent boundary layer interactions
Bernardini, M.; Asproulias, I.; Larsson, J.; Pirozzoli, S.; Grasso, F.
2016-12-01
Direct numerical simulations are carried out to investigate the effect of the wall temperature on the behavior of oblique shock wave turbulent boundary layer interactions at free-stream Mach number 2.28 and shock angle of the wedge generator φ =8∘ . Five values of the wall-to-recovery-temperature ratio (Tw/Tr ) are considered, corresponding to cold, adiabatic, and hot wall thermal conditions. We show that the main effect of cooling is to decrease the characteristic scales of the interaction in terms of upstream influence and extent of the separation bubble. The opposite behavior is observed in the case of heating, which produces a marked dilatation of the interaction region. The distribution of the Stanton number shows that a strong amplification of the heat transfer occurs across the interaction, with the maximum thermal and dynamic loads found for the case of the cold wall. The analysis reveals that the fluctuating heat flux exhibits a strong intermittent behavior, characterized by scattered spots with extremely high values compared to the mean. Furthermore, the analogy between momentum and heat transfer, typical of compressible, wall-bounded, equilibrium turbulent flows, does not apply for most of the interaction domain. The premultiplied spectra of the wall heat flux do not show any evidence of the influence of the low-frequency shock motion, and the primary mechanism for the generation of peak heating is found to be linked with the turbulence amplification in the interaction region.
Turbulent separation in a channel with a curved wall
Mollicone, Jean-Paul; Gualtieri, Paolo; Casciola, Carlo Massimo
2015-01-01
Flow separation, in both external and internal flows, is the main source of turbulent fluctuations which ultimately results in drag and inefficiency in applications. The basic issue of turbulence self sustainment is still not exhaustively investigated for even mildly complex geometries able to induce separation. In order to provide insightful information on the origin of form drag and related turbulent kinetic energy production and dissipation mechanisms, Direct Numerical Simulations (DNS) of turbulent channel flows with a bump at one of the walls are discussed. The shape of the bump is modified to address the effect of the bluffness on the dynamics of the separation bubble behind the bump. Global quantities reveal that most of the drag is due to the form contribution, whilst the friction contribution does not change appreciably with respect to an equivalent planar channel flow. Beside turbulent kinetic energy, the geometrical complexity of the flow requires the explicit analysis of the energy budget for the ...
Turbulent Chemical Diffusion in Convectively Bounded Carbon Flames
Lecoanet, Daniel; Quataert, Eliot; Bildsten, Lars; Timmes, F X; Burns, Keaton J; Vasil, Geoffrey M; Oishi, Jeffrey S; Brown, Benjamin P
2016-01-01
It has been proposed that mixing induced by convective overshoot can disrupt the inward propagation of carbon deflagrations in super-asymptotic giant branch stars. To test this theory, we study an idealized model of convectively bounded carbon flames with 3D hydrodynamic simulations of the Boussinesq equations using the pseudospectral code Dedalus. Because the flame propagation timescale is $\\sim 10^5$ times longer than the convection timescale, we approximate the flame as fixed in space, and only consider its effects on the buoyancy of the fluid. By evolving a passive scalar field, we derive a turbulent chemical diffusivity produced by the convection as a function of height, $D_t(z)$. Convection can stall a flame if the chemical mixing timescale, set by the turbulent chemical diffusivity, $D_t$, is shorter than the flame propagation timescale, set by the thermal diffusivity, $\\kappa$, i.e., when $D_t>\\kappa$. However, we find $D_t<\\kappa$ for most of the flame because convective plumes are not dense enoug...
Shear-layer structures in near-wall turbulence
Johansson, A. V.; Alfredsson, P. H.; Kim, J.
1987-01-01
The structure of internal shear layer observed in the near-wall region of turbulent flows is investigated by analyzing flow fields obtained from numerical simulations of channel and boundary-layer flows. It is found that the shear layer is an important contributor to the turbulence production. The conditionally averaged production at the center of the structure was almost twice as large as the long-time mean value. The shear-layer structure is also found to retain its coherence over streamwise distances on the order of a thousand viscous length units, and propagates with a constant velocity of about 10.6 u sub rho throughout the near wall region.
Impact of turbulence anisotropy near walls in room airflow
DEFF Research Database (Denmark)
Schälin, A.; Nielsen, Peter Vilhelm
2004-01-01
for the work. The growth rate parallel to the wall in a three-dimensional wall jet is large compared with the growth rate perpendicular to the wall, and it is large compared with the growth rate in a free circular jet. It is shown that it is not possible to predict the high growth rate parallel with a surface......The inﬂuence of diﬀerent turbulence models used in computational ﬂuid dynamics predictions is studied in connection with room air movement. The turbulence models used are the high Re-number k–e model and the high Re- number Reynolds stress model (RSM). The three-dimensional wall jet is selected...... in a three- dimensional wall jet by the k–e turbulence model. Furthermore, it is shown that the growth rate can be predicted to a certain extent by the RSM with wall reﬂection terms. The ﬂow in a deep room can be strongly inﬂuenced by details as the growth rate of a three-dimensional wall jet. Predictions...
Temporal slow-growth formulation for direct numerical simulation of compressible wall-bounded flows
Topalian, Victor; Oliver, Todd A.; Ulerich, Rhys; Moser, Robert D.
2017-08-01
A slow-growth formulation for DNS of wall-bounded turbulent flow is developed and demonstrated to enable extension of slow-growth modeling concepts to wall-bounded flows with complex physics. As in previous slow-growth approaches, the formulation assumes scale separation between the fast scales of turbulence and the slow evolution of statistics such as the mean flow. This separation enables the development of approaches where the fast scales of turbulence are directly simulated while the forcing provided by the slow evolution is modeled. The resulting model admits periodic boundary conditions in the streamwise direction, which avoids the need for extremely long domains and complex inflow conditions that typically accompany spatially developing simulations. Further, it enables the use of efficient Fourier numerics. Unlike previous approaches [Guarini, Moser, Shariff, and Wray, J. Fluid Mech. 414, 1 (2000), 10.1017/S0022112000008466; Maeder, Adams, and Kleiser, J. Fluid Mech. 429, 187 (2001), 10.1017/S0022112000002718; Spalart, J. Fluid Mech. 187, 61 (1988), 10.1017/S0022112088000345], the present approach is based on a temporally evolving boundary layer and is specifically tailored to give results for calibration and validation of Reynolds-averaged Navier-Stokes (RANS) turbulence models. The use of a temporal homogenization simplifies the modeling, enabling straightforward extension to flows with complicating features, including cold and blowing walls. To generate data useful for calibration and validation of RANS models, special care is taken to ensure that the mean slow-growth forcing is closed in terms of the mean and other quantities that appear in standard RANS models, ensuring that there is no confounding between typical RANS closures and additional closures required for the slow-growth problem. The performance of the method is demonstrated on two problems: an essentially incompressible, zero-pressure-gradient boundary layer and a transonic boundary layer over
On the design of optimal compliant walls for turbulence control
Luhar, M; McKeon, B J
2016-01-01
This paper employs the theoretical framework developed by Luhar et al. (J. Fluid Mech., 768, 415-441) to consider the design of compliant walls for turbulent skin friction reduction. Specifically, the effects of simple spring-damper walls are contrasted with the effects of more complex walls incorporating tension, stiffness and anisotropy. In addition, varying mass ratios are tested to provide insight into differences between aerodynamic and hydrodynamic applications. Despite the differing physical responses, all the walls tested exhibit some important common features. First, the effect of the walls (positive or negative) is greatest at conditions close to resonance, with sharp transitions in performance across the resonant frequency or phase speed. Second, compliant walls are predicted to have a more pronounced effect on slower-moving structures because such structures generally have larger wall-pressure signatures. Third, two-dimensional (spanwise constant) structures are particularly susceptible to further...
Near-wall modelling of compressible turbulent flows
So, Ronald M. C.
1990-01-01
Work was carried out to formulate near-wall models for the equations governing the transport of the temperature-variance and its dissipation rate. With these equations properly modeled, a foundation is laid for their extension together with the heat-flux equations to compressible flows. This extension is carried out in a manner similar to that used to extend the incompressible near-wall Reynolds-stress models to compressible flows. The methodology used to accomplish the extension of the near-wall Reynolds-stress models is examined and the actual extension of the models for the Reynolds-stress equations and the near-wall dissipation-rate equation to compressible flows is given. Then the formulation of the near-wall models for the equations governing the transport of the temperature variance and its dissipation rate is discussed. Finally, a sample calculation of a flat plate compressible turbulent boundary-layer flow with adiabatic wall boundary condition and a free-stream Mach number of 2.5 using a two-equation near-wall closure is presented. The results show that the near-wall two-equation closure formulated for compressible flows is quite valid and the calculated properties are in good agreement with measurements. Furthermore, the near-wall behavior of the turbulence statistics and structure parameters is consistent with that found in incompressible flows.
Modeling of Wall-Bounded Complex Flows and Free Shear Flows
Shih, Tsan-Hsing; Zhu, Jiang; Lumley, John L.
1994-01-01
Various wall-bounded flows with complex geometries and free shear flows have been studied with a newly developed realizable Reynolds stress algebraic equation model. The model development is based on the invariant theory in continuum mechanics. This theory enables us to formulate a general constitutive relation for the Reynolds stresses. Pope was the first to introduce this kind of constitutive relation to turbulence modeling. In our study, realizability is imposed on the truncated constitutive relation to determine the coefficients so that, unlike the standard k-E eddy viscosity model, the present model will not produce negative normal stresses in any situations of rapid distortion. The calculations based on the present model have shown an encouraging success in modeling complex turbulent flows.
The wall shear rate in non-Newtonian turbulent pipe flow
Trinh, K T
2010-01-01
This paper presents a method for calculating the wall shear rate in pipe turbulent flow. It collapses adequately the data measured in laminar flow and turbulent flow into a single flow curve and gives the basis for the design of turbulent flow viscometers. Key words: non-Newtonian, wall shear rate, turbulent, rheometer
Compressible Turbulent Boundary Layers on a Strongly Heated Wall
Institute of Scientific and Technical Information of China (English)
无
1993-01-01
This paper concerns the theoretical and experimental modelling of the flat wall,highly heated,compressible turbulent boundary layer.Its final objective is to develop a numerical Navier-Stokes solver and to conclude on its capability to correctly represent complex aerothermic viscous flows near the wall.The paper presents a constructed numerical method with particular attention given to the turbulence modelling at low Reynolds number and comparisons with supersonic and transonic experimental data.For the transonic experiment,very high wall temperature(Tw=1100K)is realized.The method of this difficult experimental set up is discussed.The comparison between experimental and computational data conducts to the first conclusion and gives some indications for the future work.
Large Eddy Simulations of Turbulent Flow Over a Wavy Wall
Sundaram, Shivshankar; Avva, Ram
1997-11-01
Turbulent, separated flow over a wavy wall was simulated using CFD-ACE, a general purpose Navier-Stokes code. The code employs finite-volume formulation and body-fitted curvilinear (BFC) grids. The flow channel consists of a flat upper wall at a mean distance, H, from a sinusoidally varying lower wall (amplitude of 0.05H and a wavelength of 1H). The Reynolds number in terms of bulk velocity and H was 6760. Computations used both a coarse grid (40x40x20;4waves) and a fine grid (60x40x40;2 waves). The spanwise extent was 2H. Periodic boundary conditions were enforced in the streamwise and spanwise directions. Both Smagorinsky (with van Driest damping) and Dynamic models were employed. The Dynamic model yielded better overall results. Present separation and reattachment lengths of 0.13 and 0.64 are in excellent agreement with prior DNS and experiment. Pressure, friction velocity over the wavy wall and mean cross-channel profiles were indistinguishable from prior data. A turbulent mixing layer and a growing boundary layer downstream of reattachment were identified using peaks in turbulence intensities. The level and location of these peaks were in good agreement with DNS.
Experimental investigation of turbulent flow over a permeable rough wall
Kim, T.; Blois, G.; Best, J.; Christensen, K. T.
2015-12-01
Permeable walls are encountered in a variety of geophysical flows, including alluvial river beds, canopies and urban environments. Permeable walls possess very different boundary conditions as compared to classic impermeable walls (i.e. the slip condition and penetration of flow into the bed). Permeability allows flow interactions across the wall interface, resulting in notable mass, momentum and energy exchange. Such exchange takes place in the so-called transition layer and often occurs through turbulent flow mechanisms. It is increasingly recognized that turbulence plays a key role in a number of important natural functions, including biogeochemical as well as geomorphological processes. However, the flow physics of the transition layer are still poorly understood due to a lack of quantitative investigation of these permeable systems within which physical and optical access are severely compromised. This is particularly true for state-of-the-art flow measurement techniques such as particle image velocimetry (PIV) that require unaberrated optical access to the measurement locations. To overcome optical limitations, a refractive index matching (RIM) technique was employed herein to gain full optical access to the transition layer. Sodium Iodide aqueous solution (63% by weight and RI ~ 1.496 at 20°C) served as a working fluid, and an acrylic resin (RI ~ 1.499) was chosen for fabricating wall models. Measurements were performed using high-resolution planar PIV in different configurations to characterize the turbulent boundary layer and the transition layer. The wall models comprised uniform spheres packed in a cubic arrangement, and two cases were modeled - impermeable and permeable walls that were both rough. To eliminate the effect of roughness, and thus isolate the effect of permeability, the surface roughness of the two wall models was kept identical. This allowed us to obtain a more meaningful comparison and highlight the impact of wall permeability in natural
Velocity and turbulence at a wing-wall abutment
Indian Academy of Sciences (India)
Abdul Karim Barbhuiya; Subhasish Dey
2004-02-01
Experimental investigation of the 3D turbulent ﬂow ﬁeld around a 45° wing-wall abutment, resting on a rough rigid bed, is reported. The experiment was conducted in a laboratory ﬂume using the Acoustic Doppler Velocimeter (ADV). Proﬁles of time-averaged velocity components, turbulent intensity components, turbulent kinetic energy and Reynolds stresses at different azimuthal planes are presented. Vector plots of ﬂow ﬁelds at azimuthal and horizontal planes show the presence of a primary vortex associated with the downﬂow in the upstream side of the abutment and a wake vortex on the downstream side. The shear stresses acting on the bed around the abutment are estimated from the Reynolds stresses and velocity gradients. The data presented in this study would be useful to researchers for future development and comparison of theoretical models of ﬂow ﬁelds around bridge abutments.
Xu, Jinglei; Li, Meng; Zhang, Yang; Chen, Longfei
2016-12-01
The von Karman length scale is able to reflect the size of the local turbulence structure. However, it is not suitable for the near wall region of wall-bounded flows, for its value is almost infinite there. In the present study, a simple and novel length scale combining the wall distance and the von Karman length scale is proposed by introducing a structural function. The new length scale becomes the von Karman length scale once local unsteady structures are detected. The proposed method is adopted in a series of turbulent channel flows at different Reynolds numbers. The results show that the proposed length scale with the structural function can precisely simulate turbulence at high Reynolds numbers, even with a coarse grid resolution.
Pressure Fluctuations in Turbulent Wall Layers
Panton, Ronald; Lee, Myoungkyu; Moser, Robert
2016-11-01
Pressure fluctuation profile data from the channel flow DNS of Lee and Moser extend to Reτ 5200 . In the outer region, with Y = y / h , the overlap layer pressure correlates very well by a log law; limY -> 0 + (1 / η) lnY +Do . The constant η = - 0 . 380 is remarkable like the von Kármán value. In the inner region, the defect variable P (y+) ≡ + - + |y=0 absorbs the Reτ dependence. The inner overlap equation is; limy + -> ∞ P (1 / η) lny+ +Di . Together, the overlap laws imply that the wall pressure relation is +|y=0 (- 1 / η) lnReτ +Di -Do . A completely equivalent expression, which is finite as Reτ -> ∞ , is obtained by rescaling the pressure variable; #|y=0 ≡ (uτ /Uo) + | y = 0 =C1 +C2 (uτ /Uo) . Here, the constants are related to η ,D0 , and Di . Additionally, it was found that the wavenumber spectrum Epp {kx / h } does not have a k-1 region. However, the trends do not rule out this at higher Re. This work was supported by NSF (OCI-0749223 and PRAC Grant 0832634), and computation resources were provided by the Argonne Leadership Computing Facility through the Early Science, INCITE 2013 and Directors Discretionary Programs.
BURST EVENT DETECTION IN WALL TURBULENCE BY WVITA METHOD
Institute of Scientific and Technical Information of China (English)
Jiang Nan; Shu Wei; Wang Zhendong
2000-01-01
Wavelet Variable Interval Time Average(WVITA)is introduced as a method incorporating burst event detection in wall turbulence.Wavelet transform is performed to unfold the longitudinal fluctuating velocity time series measured in the near wall region of a turbulent boundary layer using hot-film anemometer.This unfolding is both in time and in space simultaneously.The splitted kinetic of the longitudinal fluctuating velocity time series among different scales is obtained by integrating the square of wavelet coefficient modulus over temporal space.The time scale that related to burst events in wall turbulence passing through the fixed probe is ascertained by maximum criterion of the kinetic energy evolution across scales.Wavelet transformed localized variance of the fluctuating velocity time series at the maximum kinetic scale is put forward instead of localized short time average variance in Variable Interval Time Average(VITA)scheme.The burst event detection result shows that WVITA scheme can avoid erroneous judgement and solve the grouping problem more effectively which is caused by VITA scheme itself and can not be avoided by adjusting the threshold level or changing the short time average interval.
Mayrhofer, Arno; Violeau, Damien; Ferrand, Martin
2013-01-01
The semi-analytical wall boundary conditions present a mathematically rigorous framework to prescribe the influence of solid walls in SPH for fluid flows. In this paper they are investigated with respect to the skew-adjoint property which implies exact energy conservation. It will be shown that this property holds only in the limit of the continuous SPH approximation, whereas in the discrete SPH formulation it is only approximately true, leading to numerical noise. This noise, interpreted as form of "turbulence", is treated using an additional volume diffusion term in the continuity equation which we show is equivalent to an approximate Riemann solver. Subsequently two extensions to the boundary conditions are presented. The first dealing with a variable driving force when imposing a volume flux in a periodic flow and the second showing a generalization of the wall boundary condition to Robin type and arbitrary-order interpolation. Two modifications for free-surface flows are presented for the volume diffusio...
Siegel, R.; Sparrow, E. M.
1960-01-01
The purpose of this note is to examine in a more precise way how the Nusselt numbers for turbulent heat transfer in both the fully developed and thermal entrance regions of a circular tube are affected by two different wall boundary conditions. The comparisons are made for: (a) Uniform wall temperature (UWT); and (b) uniform wall heat flux (UHF). Several papers which have been concerned with the turbulent thermal entrance region problem are given. 1 Although these analyses have all utilized an eigenvalue formulation for the thermal entrance region there were differences in the choices of eddy diffusivity expressions, velocity distributions, and methods for carrying out the numerical solutions. These differences were also found in the fully developed analyses. Hence when making a comparison of the analytical results for uniform wall temperature and uniform wall heat flux, it was not known if differences in the Nusselt numbers could be wholly attributed to the difference in wall boundary conditions, since all the analytical results were not obtained in a consistent way. To have results which could be directly compared, computations were carried out for the uniform wall temperature case, using the same eddy diffusivity, velocity distribution, and digital computer program employed for uniform wall heat flux. In addition, the previous work was extended to a lower Reynolds number range so that comparisons could be made over a wide range of both Reynolds and Prandtl numbers.
Three measuring techniques for assessing the mean wall skin friction in wall-bounded flows
Zanoun, E.-S.; Jehring, L.; Egbers, C.
2014-04-01
The present paper aims at evaluating the mean wall skin friction data in laminar and turbulent boundary layer flows obtained from two optical and one thermal measuring techniques, namely, laser-Doppler anemometry (LDA), oil-film interferometry (OFI), and surface hot-film anemometry (SHFA), respectively. A comparison among the three techniques is presented, indicating close agreement in the mean wall skin friction data obtained, directly, from both the OFI and the LDA near-wall mean velocity profiles. On the other hand, the SHFA, markedly, over estimates the mean wall skin friction by 3.5-11.7% when compared with both the LDA and the OFI data, depending on the thermal conductivity of the substrate and glue material, probe calibration, probe contamination, temperature drift and Reynolds number. Satisfactory agreement, however, is observed among all three measuring techniques at higher Reynolds numbers, Re x >106, and within ±5% with empirical relations extracted from the literature. In addition, accurate velocity data within the inertial sublayer obtained using the LDA supports the applicability of the Clauser method to evaluate the wall skin friction when appropriate values for the constants of the logarithmic line are utilized.
Secondary instability of wall-bounded shear flows
Orszag, S. A.; Patera, A. T.
1983-01-01
The present analysis of a secondary instability in a wide class of wall-bounded parallel shear flows indicates that two-dimensional, finite amplitude waves are exponentially unstable to infinitessimal three-dimensional disturbances. The instability appears to be the prototype of transitional instability in such flows as Poiseuille flow, Couette flow, and flat plate boundary layers, in that it has the convective time scales observed in the typical transitions. The energetics and vorticity dynamics of the instability are discussed, and it is shown that the two-dimensional perturbation without directly providing energy to the disturbance. The three-dimensional instability requires that a threshold two-dimensional amplitude be achieved. It is found possible to identify experimental features of transitional spot structure with aspects of the nonlinear two-dimensional/linear three-dimensional instability.
On the development of turbulent boundary layer with wall transpiration
Ferro, Marco; Downs, Robert S., III; Fallenius, Bengt E. G.; Fransson, Jens H. M.
2015-11-01
An experimental study of the development of the transpired boundary layer in zero pressure gradient is carried out on a 6.4 m long hydrodynamically smooth and perforated plate. The relatively longer development length of the present perforated plate compared to the ones used in previous studies allows us to investigate whether an asymptotic suction boundary layer with constant thickness is achieved for the turbulent state, analogously to what happens in the laminar state. Velocity profiles are obtained via hot-wire anemometry while the wall shear stress is measured at several streamwise locations with hot-film and wall-wire probes as well as with oil-film interferometry. The threshold suction coefficient above which relaminarization starts to occur is examined. The scaling of the mean velocity and of higher order velocity moments is discussed in light of the measured wall shear stress data. Support from the European Research Council of the Advanced Fluid Research On Drag reduction in Turbulence Experiments (AFRODITE) is acknowledged.
The dissipation tensor $\\varepsilon_{ij}$ in wall turbulence
Gerolymos, G A
2016-01-01
The paper investigates the dissipation tensor $\\varepsilon_{ij}$ in wall turbulence. Available \\tsn{DNS} data are examined to illustrate the differences in the anisotropy of the dissipation tensor $\\varepsilon_{ij}$ with respect to the anisotropy of the Reynolds-stresses $r_{ij}$. The budgets of the transport equations of the dissipation tensor $\\varepsilon_{ij}$ are studied using novel \\tsn{DNS} data of low-Reynolds-number turbulent plane channel flow with spatial resolution sufficiently fine to accurately determine the correlations of products of 2-derivatives of fluctuating velocities $u_i'$ and pressure $p'$ which appear in various terms. Examination of the anisotropy of the destruction-of-dissipation tensor $\\varepsilon_{\\varepsilon_{ij}}$ reveals a very different behaviour, never approaching the 2-component (2-C) state at the solid-wall. The wall-asymptotics of different terms in the transport equations are studied in detail. The dissipation tensor $\\varepsilon_{ij}$ is also studied in terms of 2-point ...
Understanding the sub-critical transition to turbulence in wall flows
Indian Academy of Sciences (India)
Paul Manneville
2008-06-01
In contrast with free shear flows presenting velocity profiles with injection points which cascade to turbulence in a relatively mild way, wall bounded flows are deprived of (inertial) instability modes at low Reynolds numbers and become turbulent in a much wilder way, most often marked by the coexistence of laminar and turbulent domains at intermediate Reynolds numbers, well below the range where (viscous) instabilities can show up. There can even be no unstable mode at all, as for plane Couette flow (pCf) or for Poiseuille pipe flow (Ppf) that are currently the subject of intense research. Though the mechanisms involved in the transition to turbulence in wall flows are now better understood, statistical properties of the transition itself are yet unsatisfactorily assessed. A widely accepted interpretation rests on non-trivial solutions of the Navier-Stokes equations in the form of unstable travelling waves and on transient chaotic states associated to chaotic repellors. Whether these concepts typical of the theory of temporal chaos are really appropriate is yet unclear owing to the fact that, strictly speaking, they apply when confinement in physical space is effective while the physical systems considered are rather extended in at least one space direction, so that spatiotemporal behaviour cannot be ruled out in the transitional regime. The case of pCf will be examined in this perspective through numerical simulations of a model with reduced cross-stream () dependence, focusing on the in-plane (, ) space dependence of a few velocity amplitudes. In the large aspect-ratio limit, the transition to turbulence takes place via spatiotemporal intermittency and we shall attempt to make a connection with the theory of first-order (thermodynamic) phase transitions, as suggested long ago by Pomeau.
Pipe Flow and Wall Turbulence Using a Modified Navier-Stokes Equation
Institute of Scientific and Technical Information of China (English)
L. Jirkovsky; A. Muriel
2012-01-01
We use a derived incompressible modified Navier-Stokes equation to model pipe flow and wall turbulence. We reproduce the observed flattened paraboloid velocity profiles of turbulence that cannot be obtained directly using standard incompressible Navier-Stokes equation. The solutions found are in harmony with multi-valued velocity fields as a definition of turbulence. Repeating the procedure for the flow of turbulent fluid between two parallel flat plates we find similar flattened velocity profiles. We extend the analysis to the turbulent flow along a single wall and compare the results with experimental data and the established controversial yon Karman logarithmic law of the wall.
Direct Numerical Simulation and Theories of Wall Turbulence with a Range of Pressure Gradients
Coleman, G. N.; Garbaruk, A.; Spalart, P. R.
2014-01-01
A new Direct Numerical Simulation (DNS) of Couette-Poiseuille flow at a higher Reynolds number is presented and compared with DNS of other wall-bounded flows. It is analyzed in terms of testing semi-theoretical proposals for universal behavior of the velocity, mixing length, or eddy viscosity in pressure gradients, and in terms of assessing the accuracy of two turbulence models. These models are used in two modes, the traditional one with only a dependence on the wall-normal coordinate y, and a newer one in which a lateral dependence on z is added. For pure Couette flow and the Couette-Poiseuille case considered here, this z-dependence allows some models to generate steady streamwise vortices, which generally improves the agreement with DNS and experiment. On the other hand, it complicates the comparison between DNS and models.
Reynolds number effects on near-wall turbulence
Metzger, Meredith; Klewicki, Joseph
2001-11-01
Reynolds number effects in the zero pressure gradient turbulent boundary layer are presented in the context of near-wall axial velocity data. Complementary experiments were conducted in a boundary layer wind tunnel and in the atmospheric surface layer over Utah's western desert yielding a total Reynolds number range over three orders of magnitude (2 × 10^3 hot-wires spanning 1 convection velocities. Event detection analyses are used to examine Reynolds number differences in the nature of sweeps related to these observations.
Measurement of Turbulence Energy Balance in a Two-Dimensional Wall Jet along a Plane Surface
藤沢, 延行; 白井, 紘行
1987-01-01
The sructure of turbulence in a wall jet along a plane surface is investigated by measuring the balance of turbulence energy. With the aid of a hot-wire anemometer system, convection velocities of small-scale turbulent motion are measured as well as other time-averaged flow properties and turbulence characteristics. It is found that the convection velocity of small-scale turbulence deviates significantly from the mean flow velocity, that is, Taylor's hypothesis is not valid for the present wa...
DNS of turbulent flow over longitudinally ridged walls.
Castagna, Jony; Yao, Yufeng
2007-11-01
An in-house DNS code has been developed over the years and validations have been carried out on various flow problems, including boundary-layer, plain channel, bump flow, and many other cases. This finite difference code solves full three-dimensional compressible Navier-Stokes equations using high-order (4th-order) for spatial derivatives and multi-stage Runge-Kutta explicit scheme for time advancement. The code parallelization has also been carried out using the latest MPI library and is portable for various HPC platforms. The unique feature of the code is that it applies the entropy splitting concept for improve the numerical stability, which is one of common problem for DNS code requiring extremely longer run time to get the statistically converged results. In this study, the code has been further extended to include the capability of treating the geometry variation in the spanwise direction by using full 3D grid transformation, similar that done by other researchers. As demonstration, we follow an existing DNS study of turbulent flow over longitudinally ridged walls at the Reynolds number (Reτ) 140, based on the friction velocity, as the first step to validate the new capability of the code. Results from present study have been compared fairly well with available DNS data. In the full version of the paper, detailed analysis will be provided, focusing on three parts: mean propriety, turbulence intensity and turbulent coherent structures.
Similarity between turbulent kinetic energy and temperature spectra in the near-wall region
Antonia, R. A.; Kim, J.
1991-01-01
The similarity between turbulent kinetic energy and temperature spectra, previously confirmed using experimental data in various turbulent shear flows, is validated in the near-wall region using direct numerical simulation data in a fully developed turbulent channel flow. The dependence of this similarity on the molecular Prandtl number is also examined.
Spinning out of control: wall turbulence over rotating discs
Wise, Daniel J; Ricco, Pierre
2014-01-01
The friction drag reduction in a turbulent channel flow generated by surface-mounted rotating disc actuators is investigated numerically. The wall arrangement of the discs has a complex and unexpected effect on the flow. For low disc-tip velocities, the drag reduction scales linearly with the percentage of the actuated area, whereas for higher disc-tip velocity the drag reduction can be larger than the prediction found through the linear scaling with actuated area. For medium disc-tip velocities, all the cases which display this additional drag reduction exhibit stationary-wall regions between discs along the streamwise direction. This effect is caused by the viscous boundary layer which develops over the portions of stationary wall due to the radial flow produced by the discs. For the highest disc-tip velocity, the drag reduction even increases by halving the number of discs. The power spent to activate the discs is instead independent of the disc arrangement and scales linearly with the actuated area for al...
The Small-Scale Structure of Acceleration in Wall Turbulence
Christensen, Kenneth T.; Adrian, Ronald J.
2001-11-01
Temporal and convective derivatives of velocity are measured in the streamwise--wall-normal plane of turbulent channel flow at Re_τ=547, 1133, and 1734 using a new technique called particle-image accelerometry. Pairs of temporally-resolved instantaneous velocity fields are acquired in rapid succession using a two-CCD-camera arrangement, and the associated instantaneous temporal and convective derivatives of velocity are computed numerically from this data. Advection of the small-scale vortices embedded within the flow dominates the small-scale behavior of the velocity time-derivative as noted in both the instantaneous rate-of-change fields as well as in the statistics of the temporal derivative. However, in a reference frame traveling with the vortices, a marked deceleration is present and represents the evolution of the flow. This large-scale deceleration is conjectured to be the dynamic influence of larger-scale vortices present further away from the wall on the smaller scale vortices present closer to the wall.
Direct Numerical Simulation of Supersonic Turbulent Boundary Layer with Spanwise Wall Oscillation
Directory of Open Access Journals (Sweden)
Weidan Ni
2016-03-01
Full Text Available Direct numerical simulations (DNS of Mach = 2.9 supersonic turbulent boundary layers with spanwise wall oscillation (SWO are conducted to investigate the turbulent heat transport mechanism and its relation with the turbulent momentum transport. The turbulent coherent structures are suppressed by SWO and the drag is reduced. Although the velocity and temperature statistics are disturbed by SWO differently, the turbulence transports of momentum and heat are simultaneously suppressed. The Reynolds analogy and the strong Reynolds analogy are also preserved in all the controlled flows, proving the consistent mechanisms of momentum transport and heat transport in the turbulent boundary layer with SWO. Despite the extra dissipation and heat induced by SWO, a net wall heat flux reduction can be achieved with the proper selected SWO parameters. The consistent mechanism of momentum and heat transports supports the application of turbulent drag reduction technologies to wall heat flux controls in high-speed vehicles.
Transitions to different kinds of turbulence in a channel with soft walls
Kumaran, Viswanathan; Srinivas, Sagar
2016-11-01
The flow in a soft-walled channel undergoes a transition to turbulence at a Reynolds number which is a fraction of the transition Reynolds number of 1200 for a rigid channel, due to a dynamical instability caused by a fluid-wall coupling. The turbulent flow after transition in a channel with walls made of polyacrylamide gel is experimentally characterised. There are two other types of turbulence observed in sequence as the Reynolds number is increased. The first is the soft-wall turbulence, which involves wall oscillations primarily tangential to the surface, coupled with large fluid velocity fluctuations. The fluid velocity fluctuations share many of the characteristics of those in the flow past a rigid surface, but there are significant differences; the velocity fluctuations do not seem to decay to zero at the wall, and the mechanism of turbulence production seems to be different. As the Reynolds number is increased, there is a second wall-flutter transition which involves solid displacement perpendicular to the wall, and takes place only if the wall is unrestrained. The two transitions take place in sequence from a laminar flow when the soft-wall transition Reynolds number is less than 1200, and from a turbulent flow if the soft-wall transition Reynolds number exceeds 1200. Science and Engineering Research Board, Government of India.
PROBABILITY DISTRIBUTION FUNCTION OF NEAR-WALL TURBULENT VELOCITY FLUCTUATIONS
Institute of Scientific and Technical Information of China (English)
无
2005-01-01
By large eddy simulation (LES), turbulent databases of channel flows at different Reynolds numbers were established. Then, the probability distribution functions of the streamwise and wall-normal velocity fluctuations were obtained and compared with the corresponding normal distributions. By hypothesis test, the deviation from the normal distribution was analyzed quantitatively. The skewness and flatness factors were also calculated. And the variations of these two factors in the viscous sublayer, buffer layer and log-law layer were discussed. Still illustrated were the relations between the probability distribution functions and the burst events-sweep of high-speed fluids and ejection of low-speed fluids-in the viscous sub-layer, buffer layer and loglaw layer. Finally the variations of the probability distribution functions with Reynolds number were examined.
Dominant length scale of the ``pure'' turbulent fluctuations in the outer region of wall turbulence
Kwon, Yong Seok; Monty, Jason; Hutchins, Nick
2014-11-01
A new method of decomposing the total velocity in boundary layers, which removes the influence of instantaneous boundary layer thickness variations to the fluctuating velocity component, is proposed. The recent proposition of the quiescent core of turbulent channel flow by Kwon et al. (J. Fluid Mech., 751, 228 (2014)) permits us to apply the same decomposition to channel flows where the quiescent core is analogous to the free-stream. Using this decomposition, it is observed that the majority of the large-scale streamwise velocity fluctuation within the intermittent region is attributed to the oscillation of the turbulent/non-turbulent interface or the quiescent core. It suggests that the quiescent core and the free-stream play a similar role and the flow nearer to the wall in both flows is more similar than previously thought while the different characteristics of the free-stream and the quiescent core account for the differences in the outer region of two flows. These findings re-affirm the analogy between the quiescent core and the free-stream, which could potentially lead to the unified conceptual model between internal and external flows. This work is financially supported by the Australian Research Council and the Defence Science and Technology Organisation.
Rough-wall turbulent boundary layers with constant skin friction
Sridhar, A.
2017-03-28
A semi-empirical model is presented that describes the development of a fully developed turbulent boundary layer in the presence of surface roughness with length scale ks that varies with streamwise distance x . Interest is centred on flows for which all terms of the von Kármán integral relation, including the ratio of outer velocity to friction velocity U+∞≡U∞/uτ , are streamwise constant. For Rex assumed large, use is made of a simple log-wake model of the local turbulent mean-velocity profile that contains a standard mean-velocity correction for the asymptotic fully rough regime and with assumed constant parameter values. It is then shown that, for a general power-law external velocity variation U∞∼xm , all measures of the boundary-layer thickness must be proportional to x and that the surface sand-grain roughness scale variation must be the linear form ks(x)=αx , where x is the distance from the boundary layer of zero thickness and α is a dimensionless constant. This is shown to give a two-parameter (m,α) family of solutions, for which U+∞ (or equivalently Cf ) and boundary-layer thicknesses can be simply calculated. These correspond to perfectly self-similar boundary-layer growth in the streamwise direction with similarity variable z/(αx) , where z is the wall-normal coordinate. Results from this model over a range of α are discussed for several cases, including the zero-pressure-gradient ( m=0 ) and sink-flow ( m=−1 ) boundary layers. Trends observed in the model are supported by wall-modelled large-eddy simulation of the zero-pressure-gradient case for Rex in the range 108−1010 and for four values of α . Linear streamwise growth of the displacement, momentum and nominal boundary-layer thicknesses is confirmed, while, for each α , the mean-velocity profiles and streamwise turbulent variances are found to collapse reasonably well onto z/(αx) . For given α , calculations of U+∞ obtained from large-eddy simulations are streamwise
On the topology of wall turbulence in physical space
Tardu, Sedat
2017-02-01
The topological features dominating the different sublayers of the near wall turbulence are revisited through direct numerical simulations performed in large computational domains up to the Karman number of 1100. The averages of the invariants of the velocity gradient tensor, conditioned by fixed magnitudes of the velocity components, are adequately performed. In the physical space, the dominating topology in the viscous sublayer is the stable focus stretching cohabiting with the unstable node/saddle/saddle points. The stable and unstable focuses mostly populate the inner layer with equal importance, while the former become predominant in the meso and outer layers. Eddies within the low speed streaks with intense streamwise negative velocity of very high shear stress are located near the zero-discriminant facets. The enstrophy and straining prevails the stable focus stretching and the unstable compressing, respectively. The Eulerian velocity field conditioned by a given topology seen by an observer moving with the local velocity is also considered. It is found that the wall normal velocity marks the stretching line of the unstable saddles and the compressing line of the stable nodes/saddles/saddles. The conditional velocity fields linked to the unstable focuses compressing and stable focuses stretching are closely similar.
Large Scale Organization of a Near Wall Turbulent Boundary Layer
Stanislas, Michel; Dekou Tiomajou, Raoul Florent; Foucaut, Jean Marc
2016-11-01
This study lies in the context of large scale coherent structures investigation in a near wall turbulent boundary layer. An experimental database at high Reynolds numbers (Re θ = 9830 and Re θ = 19660) was obtained in the LML wind tunnel with stereo-PIV at 4 Hz and hot wire anemometry at 30 kHz. A Linear Stochastic Estimation procedure, is used to reconstruct a 3 component field resolved in space and time. Algorithms were developed to extract coherent structures from the reconstructed field. A sample of 3D view of the structures is depicted in Figure 1. Uniform momentum regions are characterized with their mean hydraulic diameter in the YZ plane, their life time and their contribution to Reynolds stresses. The vortical motions are characterized by their position, radius, circulation and vorticity in addition to their life time and their number computed at a fixed position from the wall. The spatial organization of the structures was investigated through a correlation of their respective indicative functions in the spanwise direction. The simplified large scale model that arise is compared to the ones available in the literature. Streamwise low (green) and high (yellow) uniform momentum regions with positive (red) and negative (blue) vortical motions. This work was supported by Campus International pour la Sécurité et l'Intermodalité des Transports.
On the accuracy of analytical methods for turbulent flows near smooth walls
Absi, Rafik; Di Nucci, Carmine
2012-09-01
This Note presents two methods for mean streamwise velocity profiles of fully-developed turbulent pipe and channel flows near smooth walls. The first is the classical approach where the mean streamwise velocity is obtained by solving the momentum equation with an eddy viscosity formulation [R. Absi, A simple eddy viscosity formulation for turbulent boundary layers near smooth walls, C. R. Mecanique 337 (2009) 158-165]. The second approach presents a formulation of the velocity profile based on an analogy with an electric field distribution [C. Di Nucci, E. Fiorucci, Mean velocity profiles of fully-developed turbulent flows near smooth walls, C. R. Mecanique 339 (2011) 388-395] and a formulation for the turbulent shear stress. However, this formulation for the turbulent shear stress shows a weakness. A corrected formulation is presented. Comparisons with DNS data show that the classical approach with the eddy viscosity formulation provides more accurate profiles for both turbulent shear stress and velocity gradient.
Numerical simulation of transition in wall-bounded shear flows
Kleiser, Leonhard; Zang, Thomas A.
1991-01-01
The current status of numerical simulation techniques for the transition to turbulence in incompressible channel and boundary-layer flows is surveyed, and typical results are presented graphically. The focus is on direct numerical simulations based on the full nonlinear time-dependent Navier-Stokes equations without empirical closure assumptions for prescribed initial and boundary conditions. Topics addressed include the vibrating ribbon problem, space and time discretization, initial and boundary conditions, alternative methods based on the triple-deck approximation, two-dimensional channel and boundary-layer flows, three-dimensional boundary layers, wave packets and turbulent spots, compressible flows, transition control, and transition modeling.
Dogan, Eda; Hearst, R. Jason; Ganapathisubramani, Bharathram
2017-03-01
A turbulent boundary layer subjected to free-stream turbulence is investigated in order to ascertain the scale interactions that dominate the near-wall region. The results are discussed in relation to a canonical high Reynolds number turbulent boundary layer because previous studies have reported considerable similarities between these two flows. Measurements were acquired simultaneously from four hot wires mounted to a rake which was traversed through the boundary layer. Particular focus is given to two main features of both canonical high Reynolds number boundary layers and boundary layers subjected to free-stream turbulence: (i) the footprint of the large scales in the logarithmic region on the near-wall small scales, specifically the modulating interaction between these scales, and (ii) the phase difference in amplitude modulation. The potential for a turbulent boundary layer subjected to free-stream turbulence to `simulate' high Reynolds number wall-turbulence interactions is discussed. The results of this study have encouraging implications for future investigations of the fundamental scale interactions that take place in high Reynolds number flows as it demonstrates that these can be achieved at typical laboratory scales.
LES and Hybrid LES/RANS Study of Flow and Heat Transfer around a Wall-Bounded Short Cylinder
Borello, D.; Delibra, G.; Hanjalić, K.; Rispoli, F.
The flow in plate-fin-and-tube heat exchangers is featured by interesting dynamics of vortical structures, which, due to close proximity of bounding walls that suppress instabilities, differs significantly from the better-known patterns around long cylinders. Typically, several distinct vortex systems can be identified both in front and behind the pin. Their signature on the pin and end-walls reflects directly in the local heat transfer. The Reynolds numbers is usually moderate and the incoming flow is non-turbulent, transiting to turbulence on or just behind the first or few subsequent pin/tube rows. Upstream from the first pin a sequence of several horseshoe vortices attached to the boundingwall is created, while the unsteady wake contains also multiple vortical systems which control the entrainment of fresh fluid and its mixing with the hot fluid that was in contact with the heated surfaces [1]. The conventional CFD using standard turbulence models, as practiced by heat exchangers industries, falls short in capturing the subtle details of the complex vortex systems. A fine-grid LES can provide accurate solutions, but for more complex configurations and higher Re numbers a hybrid RANS/LES using a coarser grid seems a more rational option, provided it can capture all important flow and vortical features.
Reynolds number effects on the fluctuating velocity distribution in wall-bounded shear layers
Li, Wenfeng; Roggenkamp, Dorothee; Jessen, Wilhelm; Klaas, Michael; Schröder, Wolfgang
2017-01-01
The streamwise turbulence intensity and wall-shear stress fluctuations of zero pressure gradient (ZPG) turbulent boundary layers are investigated for seven Reynolds numbers based on the momentum thickness in the range of 1009 ⩽ Re θ ⩽ 4070 by particle-image velocimetry (PIV) and micro-particle tracking velocimetry (µ-PTV) at a spatial resolution up to 0.06-0.23 wall units such that the viscous sublayer is well resolved. The statistics evidence good agreement with direct numerical simulations (DNS) and experimental results from the literature. The experimental results show the streamwise turbulence intensity and wall-shear stress fluctuation to grow at increasing Reynolds numbers.
Comments on Reynolds number effects in wall-bounded shear layers
Bandyopadhyay, Promode R.
1991-01-01
The effect of Reynolds number on the structure of turbulent boundary layers and channel flows is discussed. Published data are reexamined in light of the following questions: (1) does the boundary layer turbulence structure change after the well known Reynolds number limit viz, when Re(theta) is greater than 6000?; (2) is it possible to disturb a high Reynolds number flat plate turbulent boundary layer near the wall such that the recovery length is O(100 delta)?; and (3) how close is the numerically simulated low Reynolds number flat plate turbulence structure to that observed experimentally? The turbulence structure appears to change continuously with Reynolds number virtually throughout the bounday layer and sometimes in unexpected manners at high Reynolds numbers.
Direct numerical simulation of turbulent channel flow over porous walls
Rosti, Marco E; Cortelezzi, Luca
2014-01-01
We perform direct numerical simulations (DNS) of a turbulent channel flow over porous walls. In the fluid region the flow is governed by the incompressible Navier-Stokes equations, while in the porous layers the Volume-Averaged Navier-Stokes (VANS) equations are used, which are obtained by volume-averaging the microscopic flow field over a small volume that is larger than the typical dimensions of the pores. In this way the porous medium has a continuum description, and can be specified via global properties like permeability and porosity, without the need of a detailed knowledge of the pore microstructure. At the interface between the porous material and the fluid region, following literature momentum-transfer conditions are applied, in which an available coefficient related to the unknown structure of the interface can be used as an error estimate. To formulate the numerical problem, the velocity-vorticity formulation of the coupled Navier--Stokes and VANS equations is derived and implement into a pseudo-sp...
Characteristics of turbulent velocity and temperature in a wall channel of a heated rod bundle
Energy Technology Data Exchange (ETDEWEB)
Krauss, T.; Meyer, L. [Forschungszentrum Karlsruhe (Germany)
1995-09-01
Turbulent air flow in a wall sub-channel of a heated 37-rod bundle (P/D = 1.12, W/D = 1.06) was investigated. measurements were performed with hot-wire probe with X-wires and a temperature wire. The mean velocity, the mean fluid temperature, the wall shear stress and wall temperature, the turbulent quantities such as the turbulent kinetic energy, the Reynolds-stresses and the turbulent heat fluxes were measured and are discussed with respect to data from isothermal flow in a wall channel and heated flow in a central channel of the same rod bundle. Also, data on the power spectral densities of the velocity and temperature fluctuations are presented. These data show the existence of large scale periodic fluctuations are responsible for the high intersubchannel heat and momentum exchange.
Lower bound on the electroweak wall velocity from hydrodynamic instability
Energy Technology Data Exchange (ETDEWEB)
Mégevand, Ariel; Membiela, Federico Agustín; Sánchez, Alejandro D. [IFIMAR (CONICET-UNMdP), Departamento de Física, Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Mar del Plata, Deán Funes (7600) 3350 Mar del Plata (Argentina)
2015-03-27
The subsonic expansion of bubbles in a strongly first-order electroweak phase transition is a convenient scenario for electroweak baryogenesis. For most extensions of the Standard Model, stationary subsonic solutions (i.e., deflagrations) exist for the propagation of phase transition fronts. However, deflagrations are known to be hydrodynamically unstable for wall velocities below a certain critical value. We calculate this critical velocity for several extensions of the Standard Model and compare with an estimation of the wall velocity. In general, we find a region in parameter space which gives stable deflagrations as well as favorable conditions for electroweak baryogenesis.
A One-Dimensional Global-Scaling Erosive Burning Model Informed by Blowing Wall Turbulence
Kibbey, Timothy P.
2014-01-01
A derivation of turbulent flow parameters, combined with data from erosive burning test motors and blowing wall tests results in erosive burning model candidates useful in one-dimensional internal ballistics analysis capable of scaling across wide ranges of motor size. The real-time burn rate data comes from three test campaigns of subscale segmented solid rocket motors tested at two facilities. The flow theory admits the important effect of the blowing wall on the turbulent friction coefficient by using blowing wall data to determine the blowing wall friction coefficient. The erosive burning behavior of full-scale motors is now predicted more closely than with other recent models.
Hua, Dan; Suzuki, Hiroki; Mochizuki, Shinsuke
2017-09-01
A local wall shear stress measurement technique has been developed using a thin plate, referred to as a sublayer plate which is attached to the wall in the sublayer of a near-wall turbulent flow. The pressure difference between the leading and trailing edges of the plate is correlated to the known wall shear stress obtained in the fully developed turbulent channel flow. The universal calibration curve can be well represented in dimensionless form, and the sensitivity of the proposed method is as high as that of the sublayer fence, even if the sublayer fence is enveloped by the linear sublayer. The results of additional experiments prove that the sublayer plate has fairly good angular resolution in detecting the direction of the local wall shear stress vector.
岡本, 正芳; 永江, 聡美; Masayoshi, OKAMOTO; Satomi, NAGAE; 静岡大工; 東北大流体研; Dept. of Mech. Eng., Shizuoka Univ.; Institute of Fluid Science, Tohoku Univ.
2007-01-01
Transient phenomena in turbulent concentric annular pipe flow with sudden outer-wall rotation were investigated by means of the direct numerical simulation (DNS). Due to the sudden rotation, the wall friction becomes small and the flow is stabilized. In the transient state, the axial mean velocity profile changes drastically and the Reynolds stresses vanish near the outer wall. When the wall friction increases suddenly, the vortex structures are invigorated.
Mixed Convection in a Composite System Bounded by Vertical Walls
Directory of Open Access Journals (Sweden)
N. Srivastava
2010-01-01
Full Text Available A combined convection process between two parallel vertical infinite walls, containing an incompressible viscous fluid layer and a fluid saturated porous layer has been presented analytically. There is a vertical axial variation of temperature in the upward direction along the walls. The Brinkman extended Darcy model is applied to describe the momentum transfer in the porous region. The viscosity of the fluid layer and the effective viscosity of the porous layer are assumed to be different. Also the thermal conductivities of both fluid and porous layers are assumed to be different. The graphs and tables have been used to distinguish the influence of distinct parameters on the velocity and skin-friction. It is determined that the velocity is intensified on making greater the temperature difference between the walls while increment in the viscosity ratio (porous/fluid parameter diminishes the velocity of the fluid. It has been observed that the numerical values of the skin-frictions have an increasing tendency with the increment in the values of temperature difference between the walls while decreasing tendency with the increment in the viscosity ratio parameter (porous/fluid.
The Turbulent/Non-Turbulent Interface Bounding a Far-Wake
Bisset, David K.; Hunt, Julian C. R.; Rogers, Michael M.; Kwak, Dochan (Technical Monitor)
2000-01-01
The velocity fields of a turbulent wake behind a flat plate obtained from the direct numerical simulations of Moser et al. are used to study the structure of the flow in the intermittent zone where there are, alternately, regions of fully turbulent flow and non-turbulent velocity fluctuations either side of a thin randomly moving interface. Comparisons are made with a wake that is 'forced' by amplifying initial velocity fluctuations. There is also a random temperature field T in the flow; T varies between constant values of 0.0 and 1.0 on the sides of the wake. The value of the Reynolds number based on the centreplane mean velocity defect and halfwidth b of the wake is Re approx. = 2000. It is found that the thickness of the continuous interface is about equal to 0.07b, whereas the amplitude of fluctuations of the instantaneous interface displacement y(sub I)(t) is an order of magnitude larger, being about 0.5b. This explains why the mean statistics of vorticity in the intermittent zone can be calculated in terms of the probability distribution of y(sub I) and the instantaneous discontinuity in vorticity across the interface. When plotted as functions of y - y(sub I), the conditional mean velocity (U) and temperature (T) profiles show sharp jumps Delta(U) and Delta(T) at the interface adjacent to a thick zone where (U) and (T) vary much more slowly. Statistics for the vorticity and velocity variances, available in such detail only from DNS data, show how streamwise and spanwise components of vorticity are generated by vortex stretching in the bulges of the interface. Flow fields around the interface, analyzed in terms of the local streamline pattern, confirm previous results that the advancement of the vortical interface into the irrotational flow is driven by large-scale eddy motion. It is argued that because this is an inviscid mechanism the entrainment process is not sensitive to the value of Re, and that small-scale nibbling only plays a subsidiary role. While
Changes in turbulent dissipation in a channel flow with oscillating walls
Ricco, Pierre; Hasegawa, Yosuke; Quadrio, Maurizio
2012-01-01
Harmonic oscillations of the walls of a turbulent plane channel flow are studied by direct numerical simulations to improve our understanding of the physical mechanism for skin-friction drag reduction. The simulations are carried out at constant pressure gradient in order to define an unambiguous inner scaling: in this case, drag reduction manifests itself as an increase of mass flow rate. Energy and enstrophy balances, carried out to emphasize the role of the oscillating spanwise shear layer, show that the viscous dissipations of the mean flow and of the turbulent fluctuations increase with the mass flow rate, and the relative importance of the latter decreases. We then focus on the turbulent enstrophy: through an analysis of the temporal evolution from the beginning of the wall motion, the dominant, oscillation-related term in the turbulent enstrophy is shown to cause the turbulent dissipation to be enhanced in absolute terms, before the slow drift towards the new quasi-equilibrium condition. This mechanism...
Large eddy simulation of compressible turbulent channel flow with spanwise wall oscillation
Institute of Scientific and Technical Information of China (English)
FANG Jian; LU LiPeng; SHAO Liang
2009-01-01
The influences of the modification of turbulent coherent structures on temperature field and heat transfer in turbulent channel flow are studied using large eddy simulation (LES) of compressible tur-bulent channel flows with spanwise wall oscillation (SWO). The reliability of the LES on such problems is proved by the comparisons of the drag reduction data with those of other researches. The high con-sistency of coherent velocity structures and temperature structures is found based on the analyses of the turbulent flow field. When the coherent velocity structures are suppressed, the transportations of momentum and heat are reduced simultaneously, demonstrating the same trend. This shows that the turbulent coherent structures have the same effects on the transportations of momentum and heat. The averaged wall heat flux can be reduced with appropriate oscillating parameters.
Large eddy simulation of compressible turbulent channel flow with spanwise wall oscillation
Institute of Scientific and Technical Information of China (English)
无
2009-01-01
The influences of the modification of turbulent coherent structures on temperature field and heat transfer in turbulent channel flow are studied using large eddy simulation(LES) of compressible turbulent channel flows with spanwise wall oscillation(SWO).The reliability of the LES on such problems is proved by the comparisons of the drag reduction data with those of other researches.The high consistency of coherent velocity structures and temperature structures is found based on the analyses of the turbulent flow field.When the coherent velocity structures are suppressed,the transportations of momentum and heat are reduced simultaneously,demonstrating the same trend.This shows that the turbulent coherent structures have the same effects on the transportations of momentum and heat.The averaged wall heat flux can be reduced with appropriate oscillating parameters.
Study on near-wall turbulence structures with local Reynolds stress
Institute of Scientific and Technical Information of China (English)
LiLI; ChunxiaoXU; GuixiangCUI; ZhaoshunZHANG
2000-01-01
The direct-numerical-simulated channel turbulence is analyzed with twodimensional wavelet transform. Considering the relation between turbulence coherent structure and Reynolds stress in near wall region, the local Reynolds stress (LRS) is defined.A new method for extracting coherent signals from turbulence based on the LRS is developed. Velocity fluctuations are decomposed to coherent signals and background signals. It is found that the scaling exponents of coherent signals have a considerable deviation from the Kolmogorov scaling law q/3 (K41 theory), while that, of background signals is very close to q/3. It is confirmed that coherent signals are mainly responsible for the anomalous scalings.Locally characterized by the positive peaks of LRS, the typical structures in near wall regionare obtained by conditional statistical averaging. It is shown that the local character of near-wall turbulence structures can be effectively described with LRS.
Organised structures in wall turbulence as deduced from stability theory-based methods
Indian Academy of Sciences (India)
P K Sen; S V Veeravalli; P W Carpenter; G Joshi; P S Josan
2007-02-01
In earlier work, we have explored the relevance of hydrodynamic stability theory to fully developed turbulent wall ﬂows. Using an extended Orr-Summerfeld Equation, based on an anisotropic eddy-viscosity model, it was shown that there exists a wide range of unstable wave numbers (wall modes), which mimic some of the key features of turbulent wall ﬂows. Here we present experimental conﬁrmation for the same. There is good qualitative and quantitative agreement between theory and experiment. Once the dominant coherent structure is obtained from stability theory, control of turbulence would be the next logical step. As shown, the use of a compliant wall shows considerable promise. We also present some theoretical work for bypass transition (Klebanoff/K-modes), wherein the receptivity of a laminar boundary layer to a vortex sheet in the freestream has been studied. Further, it is shown that triadic interaction between K-modes, 2D TS waves and 3D TS waves can lead to rapid algebraic growth. A similar mechanism seems to carry over to inner wall structures in wall turbulence and perhaps this is the “root cause” for sustenance of turbulence.
A law of the wall for turbulent boundary layers with suction: Stevenson's formula revisited
Vigdorovich, Igor
2016-08-01
The turbulent velocity field in the viscous sublayer of the boundary layer with suction to a first approximation is homogeneous in any direction parallel to the wall and is determined by only three constant quantities — the wall shear stress, the suction velocity, and the fluid viscosity. This means that there exists a finite algebraic relation between the turbulent shear stress and the longitudinal mean-velocity gradient, using which as a closure condition for the equations of motion, we establish an exact asymptotic behavior of the velocity profile at the outer edge of the viscous sublayer. The obtained relationship provides a generalization of the logarithmic law to the case of wall suction.
Model-based design of transverse wall oscillations for turbulent drag reduction
Moarref, Rashad
2012-01-01
Over the last two decades, both experiments and simulations have demonstrated that transverse wall oscillations with properly selected amplitude and frequency can reduce turbulent drag by as much as 40%. In this paper, we develop a model-based approach for designing oscillations that suppress turbulence in a channel flow. We utilize eddy-viscosity-enhanced linearization of the turbulent flow with control in conjunction with turbulence modeling to determine skin-friction drag in a simulation-free manner. The Boussinesq eddy viscosity hypothesis is used to quantify the effect of fluctuations on the mean velocity in the flow subject to control. In contrast to the traditional approach that relies on numerical simulations, we determine the turbulent viscosity from the second order statistics of the linearized model driven by white-in-time stochastic forcing. The spatial power spectrum of the forcing is selected to ensure that the linearized model for the uncontrolled flow reproduces the turbulent energy spectrum. ...
Approximate Augmentation of Turbulent Law-of-the-Wall by Periodic Free-Stream Disturbances
Energy Technology Data Exchange (ETDEWEB)
Dechant, Lawrence J. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)
2015-12-01
We examine the role of periodic sinusoidal free-stream disturbances on the inner law law-of-the-wall (log-law) for turbulent boundary layers. This model serves a surrogate for the interaction of flight vehicles with atmospheric disturbances. The approximate skin friction expression that is derived suggests that free-stream disturbances can cause enhancement of the mean skin friction. Considering the influence of grid generated free stream turbulence in the laminar sublayer/log law region (small scale/high frequency) the model recovers the well-known shear layer enhancement suggesting an overall validity for the approach. The effect on the wall shear associated with the lower frequency due to the passage of the vehicle through large (vehicle scale) atmospheric disturbances is likely small i.e. on the order 1% increase for turbulence intensities on the order of 2%. The increase in wall pressure fluctuation which is directly proportional to the wall shear stress is correspondingly small.
Energy Technology Data Exchange (ETDEWEB)
Lee, Myoung-Jae [Department of Physics and Research Institute for Natural Sciences, Hanyang University, Seoul 04763 (Korea, Republic of); Jung, Young-Dae, E-mail: ydjung@hanyang.ac.kr [Department of Physics, Applied Physics, and Astronomy, Rensselaer Polytechnic Institute, 110 8th Street, Troy, New York 12180-3590 (United States); Department of Applied Physics and Department of Bionanotechnology, Hanyang University, Ansan, Kyunggi-Do 15588 (Korea, Republic of)
2016-07-15
The dispersion relation and the dissipation process of the space-charge wave propagating in a bounded plasma such as a cylindrical waveguide are investigated by employing the longitudinal dielectric permittivity that contains the diffusivity based on the Dupree theory of turbulent plasma. We derived the dispersion relation for space-charge wave in terms of the radius of cylindrical waveguide and the roots of the Bessel function of the first kind which appears as the boundary condition. We find that the wave frequency for a lower-order root of the Bessel function is higher than that of a higher-order root. We also find that the dissipation is greatest for the lowest-order root, but it is suppressed significantly as the order of the root increases. The wave frequency and the dissipation process are enhanced as the radius of cylindrical waveguide increases. However, they are always smaller than the case of bulk plasma. We find that the diffusivity of turbulent plasma would enhance the damping of space-charge waves, especially, in the range of small wave number. For a large wave number, the diffusivity has little effect on the damping.
Direct force wall shear measurements in pressure-driven three-dimensional turbulent boundary layers
Mcallister, J. E.; Tennant, M. H.; Pierce, F. J.
1982-01-01
Unique, simultaneous direct measurements of the magnitude and direction of the local wall shear stress in a pressure-driven three-dimensional turbulent boundary layer are presented. The flow is also described with an oil streak wall flow pattern, a map of the wall shear stress-wall pressure gradient orientations, a comparison of the wall shear stress directions relative to the directions of the nearest wall velocity as measured with a typical, small boundary layer directionally sensitive claw probe, as well as limiting wall streamline directions from the oil streak patterns, and a comparison of the freestream streamlines and the wall flow streamlines. A review of corrections for direct force sensing shear meters for two-dimensional flows is presented with a brief discussion of their applicability to three-dimensional devices.
Three-dimensional structures and turbulence closure of the wake developing in a wall shear layer
Hah, C.
1981-01-01
The turbulent wake interacting with the rotating wall shear layer is investigated analytically and numerically. The turbulent wakes of the rotating blades in a compressor which are interacting with the rotating hub-wall boundary layer are analyzed. A modified version of the closure model of the pressure-strain correlation term in the Reynolds stress transport equation is developed to predict the effect of rotation, which is appreciable for the present flow because the thick hub-wall boundary layer is interacting with the rotor wake. It is noted that the Poisson type equation for the pressure-strain correlation has an extra rotation term when the entire flow field is rotating. This extra rotation term is modeled to accommodate the effect of rotation. In addition, the standard correction for the wall effect is incorporated for the utilized Reynolds stress closure model. The rotation-modified Reynolds stress closure model is used to predict the present flow, and the predictions are compared with the experimental data. The experimental data reveal that the characteristics of the three-dimensional turbulent wake interacting with the wall shear layer are considerably altered by the effects of the wall and the rotation. These features are predicted with good accuracy by the turbulence closure model developed.
Shear localization and effective wall friction in a wall bounded granular flow
Directory of Open Access Journals (Sweden)
Artoni Riccardo
2017-01-01
Full Text Available In this work, granular flow rheology is investigated by means of discrete numerical simulations of a torsional, cylindrical shear cell. Firstly, we focus on azimuthal velocity profiles and study the effect of (i the confining pressure, (ii the particle-wall friction coefficient, (iii the rotating velocity of the bottom wall and (iv the cell diameter. For small cell diameters, azimuthal velocity profiles are nearly auto-similar, i.e. they are almost linear with the radial coordinate. Different strain localization regimes are observed : shear can be localized at the bottom, at the top of the shear cell, or it can be even quite distributed. This behavior originates from the competition between dissipation at the sidewalls and dissipation in the bulk of the system. Then we study the effective friction at the cylindrical wall, and point out the strong link between wall friction, slip and fluctuations of forces and velocities. Even if the system is globally below the sliding threshold, force fluctuations trigger slip events, leading to a nonzero wall slip velocity and an effective wall friction coefficient different from the particle-wall one. A scaling law was found linking slip velocity, granular temperature in the main flow direction and effective friction. Our results suggest that fluctuations are an important ingredient for theories aiming to capture the interface rheology of granular materials.
Wall pressure signatures of turbulent flow over longitudinal
Directory of Open Access Journals (Sweden)
Abdulbari Hayder A.
2016-01-01
Full Text Available Five triangular riblets longitudinal in the streamwise direction have been studied experimentally. The riblets have pick to pick spaced (s equal to 1000 μm and with groove height to space ratio (h/s 0.4, 0.6, 0.8 and 1. The tests were conducted in a full turbulence water channel on a flat plate for Reynolds numbers 13000 to 53000 based on channel hydraulic diameter. Pressure drop was measured using pressure transmitter gauge with pressure tap points of 12.7 mm in diameter were provided at the bottom of the channel. The main purpose of the present study is to investigate the response of turbulent flow to longitudinal grooves of triangular shaped riblets and compare the effect of the turbulence structure over smoothed and grooved surfaces with pressure drop measurements. 10.20 was the maximum drag reduction appear at h/s equal to (1.
Multiscale modeling of turbulent channel flow over porous walls
Yogaraj, Sudhakar; Lacis, Ugis; Bagheri, Shervin
2016-11-01
We perform direct numerical simulations of fully developed turbulent flow through a channel coated with a porous material. The Navier-stokes equations governing the fluid domain and the Darcy equations of the porous medium are coupled using an iterative partitioned scheme. At the interface between the two media, boundary conditions derived using a multiscale homogenization approach are enforced. The main feature of this approach is that the anisotropic micro-structural pore features are directly taken into consideration to derive the constitutive coefficients of the porous media as well as of the interface. The focus of the present work is to study the influence of micro-structure pore geometry on the dynamics of turbulent flows. Detailed turbulence statistics and instantaneous flow field are presented. For comparison, flow through impermeable channel flows are included. Supported by the European Union's Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie Grant agreement No 708281.
Estimation of turbulent channel flow based on the wall measurement with a statistical approach
Hasegawa, Yosuke; Suzuki, Takao
2016-11-01
A turbulent channel flow at Ret au = 100 with periodic boundary conditions is estimated with linear stochastic estimation only based on the wall measurement, i.e. the shear-stress in the streamwise and spanwise directions as well as the pressure over the entire wavenumbers. The results reveal that instantaneous measurement on the wall governs the success of the estimation in y+ feed the velocity components from the linear stochastic estimation via the body-force term into the Navier-Stokes system; however, the estimation slightly improves in the log layer, indicating some benefit of involving a dynamical system but over-suppression of turbulent kinetic energy beyond the viscous sublayer by the linear stochastic estimation. Motions inaccurately estimated in the buffer layer prevent from further reconstruction toward the centerline even if we relax the feedback forcing and let the flow evolve nonlinearly through the estimator. We also argue the inherent limitation of turbulent flow estimation based on the wall measurement.
Scaling and interaction of self-similar modes in models of high Reynolds number wall turbulence
Sharma, A. S.; Moarref, R.; McKeon, B. J.
2017-03-01
Previous work has established the usefulness of the resolvent operator that maps the terms nonlinear in the turbulent fluctuations to the fluctuations themselves. Further work has described the self-similarity of the resolvent arising from that of the mean velocity profile. The orthogonal modes provided by the resolvent analysis describe the wall-normal coherence of the motions and inherit that self-similarity. In this contribution, we present the implications of this similarity for the nonlinear interaction between modes with different scales and wall-normal locations. By considering the nonlinear interactions between modes, it is shown that much of the turbulence scaling behaviour in the logarithmic region can be determined from a single arbitrarily chosen reference plane. Thus, the geometric scaling of the modes is impressed upon the nonlinear interaction between modes. Implications of these observations on the self-sustaining mechanisms of wall turbulence, modelling and simulation are outlined.
Influence of large-eddy breakup device on near-wall turbulent structures in turbulent boundary layer
Kim, Joon-Seok; Hwang, Jinyul; Yoon, Min; Ahn, Junsun; Sung, Hyung Jin; Flow Control Lab Team
2016-11-01
Direct numerical simulation of a large-eddy breakup (LEBU) device in a spatially developing turbulent boundary layer was performed to investigate the influence of outer structures on the near-wall turbulence. The thin and rectangular shaped LEBU device was placed on y / δ = 0 . 8 and the device reduced the skin-friction coefficient (Cf) up to 17%. Decomposition of Cf showed that the contribution of the Reynolds shear stress decreased along the wall-normal direction. The reduction of the Reynolds shear stress was associated with the decrease of the ejection and sweep events, and in particular the latter was significantly reduced compared to the former in the near-wall region. The spanwise length scale of high-speed structures was more shortened than that of low-speed very near the wall (y+ = 20). As a result, the dispersive motions induced by the outer sweeps were weakened leading to the reduction of Cf even the LEBU device located far from the wall. This work was supported by the Creative Research Initiatives (No. 2016-004749) program of the National Research Foundation of Korea (MSIP).
Evolution and dynamics of shear-layer structures in near-wall turbulence
Johansson, Arne V.; Alfredsson, P. H.; Kim, John
1991-01-01
Near-wall flow structures in turbulent shear flows are analyzed, with particular emphasis on the study of their space-time evolution and connection to turbulence production. The results are obtained from investigation of a database generated from direct numerical simulation of turbulent channel flow at a Reynolds number of 180 based on half-channel width and friction velocity. New light is shed on problems associated with conditional sampling techniques, together with methods to improve these techniques, for use both in physical and numerical experiments. The results clearly indicate that earlier conceptual models of the processes associated with near-wall turbulence production, based on flow visualization and probe measurements need to be modified. For instance, the development of asymmetry in the spanwise direction seems to be an important element in the evolution of near-wall structures in general, and for shear layers in particular. The inhibition of spanwise motion of the near-wall streaky pattern may be the primary reason for the ability of small longitudinal riblets to reduce turbulent skin friction below the value for a flat surface.
Institute of Scientific and Technical Information of China (English)
刘杰; 黄达; 杨超; 孙莎
2015-01-01
Stability analysis of gravity retaining wall was currently based on the assumption that the wall had no embedment depth. The effect of earth berm was usually neglected. The present work highlighted the importance of embedment depth when assessing the seismic stability of gravity retaining walls with the pattern of pure rotation. In the framework of upper bound theorem of limit analysis, pseudo-static method was applied into two groups of parallel rigid soil slices methods in order to account for the effect of embedment depth on evaluating the critical acceleration of wall-soil system. The present analytical solution is identical to the results obtained from using limit equilibrium method, and the two methods are based on different theory backgrounds. Parameter analysis indicates that the critical acceleration increases slowly when the ratio of the embedment depth to the total height of the wall is from 0 to 0.15 and increases drastically when the ratio exceeds 0.15.
Investigation of Wall Pressure Fluctuations in a Turbulent Boundary Layer by Large Eddy Simulation
Institute of Scientific and Technical Information of China (English)
无
2007-01-01
Large eddy simulation (LES) was used to investigate the space-time field of the low Mach number, fully developed turbulent boundary layer on a smooth, rigid flat plate. The wall-pressure field simulated by LES was analyzed to obtain the pressure statistics , including the wall-pressure root-mean square, skewness and flatness factors, which show the wall pressure distribution was not Gaussian. The profile of the auto-power spectral density and the contour of the streamwise wavenumber-frequency spectral density of wall-pressure were plotted. The "convection ridge" can be observed clearly and the convection velocity can be calculated from the location of the convection peak.
Direct simulation and modeling of flame-wall interaction for premixed turbulent combustion
Energy Technology Data Exchange (ETDEWEB)
Poinsot, T.J.; Haworth, D.C.; Bruneaux, G. (CNRS, Toulouse (France). Inst. de Mecanique des Fluides de Toulouse General Motors Research, Warren, MI (United States) Inst. Francais du Petrole, Rueil Malmaison (France))
1993-10-01
The interaction between turbulent premixed flames and walls is studied using a two-dimensional full Navier-Stokes solver with simple chemistry. The effects of wall distance on the local and global flame structure are investigated. Quenching distances and maximum wall heat fluxes during quenching are computed in laminar cases and are found to be comparable to experimental and analytical results. For turbulent cases, it is shown that quenching distances and maximum heat fluxes remain of the same order as for laminar flames. Based on simulation results, a law-of-the-wall'' model is derived to describe the interaction between a turbulent premixed flame and a wall. This model is constructed to provide reasonable behavior of flame surface density near a wall under the assumption that flame -- wall interaction takes place at scales smaller than the computational mesh. It can be implemented in conjunction with any of several recent flamelet models based on a modeled surface density equation, with no additional constraints on mesh size or time step. Preliminary tests of this model are presented for the case of a spark-ignited piston engine.
DNS and modeling of the interaction between turbulent premixed flames and walls
Poinsot, T. J.; Haworth, D. C.
1992-01-01
The interaction between turbulent premixed flames and walls is studied using a two-dimensional full Navier-Stokes solver with simple chemistry. The effects of wall distance on the local and global flame structure are investigated. Quenching distances and maximum wall heat fluxes during quenching are computed in laminar cases and are found to be comparable to experimental and analytical results. For turbulent cases, it is shown that quenching distances and maximum heat fluxes remain of the same order as for laminar flames. Based on simulation results, a 'law-of-the-wall' model is derived to describe the interaction between a turbulent premixed flame and a wall. This model is constructed to provide reasonable behavior of flame surface density near a wall under the assumption that flame-wall interaction takes place at scales smaller than the computational mesh. It can be implemented in conjunction with any of several recent flamelet models based on a modeled surface density equation, with no additional constraints on mesh size or time step.
A near-wall two-equation model for compressible turbulent flows
Zhang, H. S.; So, R. M. C.; Speziale, C. G.; Lai, Y. G.
1992-01-01
A near-wall two-equation turbulence model of the k-epsilon type is developed for the description of high-speed compressible flows. The Favre-averaged equations of motion are solved in conjunction with modeled transport equations for the turbulent kinetic energy and solenoidal dissipation wherein a variable density extension of the asymptotically consistent near-wall model of So and co-workers is supplemented with new dilatational models. The resulting compressible two-equation model is tested in the supersonic flat plate boundary layer - with an adiabatic wall and with wall cooling - for Mach numbers as large as 10. Direct comparisons of the predictions of the new model with raw experimental data and with results from the K-omega model indicate that it performs well for a wide range of Mach numbers. The surprising finding is that the Morkovin hypothesis, where turbulent dilatational terms are neglected, works well at high Mach numbers, provided that the near wall model is asymptotically consistent. Instances where the model predictions deviate from the experiments appear to be attributable to the assumption of constant turbulent Prandtl number - a deficiency that will be addressed in a future paper.
Quasilaminar regime in the linear response of a turbulent flow to wall waviness
Luchini, Paolo; Charru, François
2017-01-01
The linear response of the wall-shear stress of a turbulent flow to wall waviness is analyzed in the context of a comparison between existing experiments, direct numerical simulations, and analytical approximations. The spectral region where the response is largest is found to be amenable to a simplified quasilaminar analysis. The end result is a parameterless description of this phenomenon that completely captures its physics in a single analytical formula, a Padé approximation of the response function.
Near-Wall Turbulence Modelling of Rotating and Curved Shear Flows
Energy Technology Data Exchange (ETDEWEB)
Pettersson, Bjoern Anders
1997-12-31
This thesis deals with verification and refinement of turbulence models within the framework of the Reynolds-averaged approach. It pays special attention to modelling the near-wall region, where the turbulence is strongly non-homogeneous and anisotropic. It also studies in detail the effects associated with an imposed rotation of the reference frame or streamline curvature. The objective with near-wall turbulence closure modelling is to formulate a set of equations governing single point turbulence statistics, which can be solved in the region of the flow which extends to the wall. This is in contrast to the commonly adopted wall-function approach in which the wall-boundary conditions are replaced by matching conditions in the logarithmic region. The near-wall models allow more flexibility by not requiring any such universal behaviour. Assessment of the novel elliptic relaxation approach to model the proximity of a solid boundary reveals an encouraging potential used in conjunction with second-moment and eddy-viscosity closures. The most natural level of closure modelling to predict flows affected by streamline curvatures or an imposed rotation of the reference frame is at the second-moment closure (SMC) level. Although SMCs naturally accounts for the effects of system rotation, the usual application of a scalar dissipation rate equation is shown to require ad hoc corrections in some cases in order to give good results. The elliptic relaxation approach is also used in conjunction with non-linear pressure-strain models and very encouraging results are obtained for rotating flows. Rotational induced secondary motions are vital to predicting the effects of system rotation. Some severe weaknesses of non-linear pressure-strain models are also indicated. Finally, a modelling methodology for anisotropic dissipation in nearly homogeneous turbulence are proposed. 84 refs., 56 figs., 16 tabs.
Equilibrium turbulent boundary layers with wall suction/blowing and pressure gradients
Patwardhan, Saurabh; Ramesh, O. N.
2012-11-01
Conditions for the equilibrium conditions in turbulent boundary layers with suction or blowing across a no slip wall and pressure gradients are derived from the governing equations. It is also shown that under these conditions the governing equations show self similarity in the conventional inner co-ordinates as well as ``laminar-like'' co-ordinates. The only turbulent boundary layer in ``perfect equilibrium'' known as sink flow turbulent boundary layer forms a subset of this more general equilibrium concept. Direct numerical simulations were carried out to investigate this hypothesis for the case of favourable pressure gradient with small blowing at the wall. Reynolds number invariance and complete self similarity of mean velocity profile and second order turbulence statistics is observed along the flow direction similar to the sink flow boundary layer. A comparison between the case with wall blowing and imposed favourable pressure gradient and the sink flow case for same value of pressure gradient parameter reveals a shift in log law in mean velocity profile and increase in peak turbulence intensities.
Near-wall variable-Prandtl-number turbulence model for compressible flows
Sommer, T. P.; So, R. M. C.; Zhang, H. S.
1993-01-01
A near-wall four-equation turbulence model is developed for the calculation of high-speed compressible turbulent boundary layers. The four equations used are the k-epsilon equations and the theta(exp 2)-epsilon (sub theta) equations. These equations are used to define the turbulent diffusivities for momentum and heat fluxes, thus allowing the assumption of dynamic similarity between momentum and heat transport to be relaxed. The Favre-averaged equations of motion are solved in conjunction with the four transport equations. Calculations are compared with measurements and with another model's predictions where the assumption of the constant turbulent Prandtl number is invoked. Compressible flat plate turbulent boundary layers with both adiabatic and constant temperature wall boundary conditions are considered. Results for the range of low Mach numbers and temperature ratios investigated are essentially the same as those obtained using an identical near-wall k-epsilon model. In general, there are significant improvements in the predictions of mean flow properties at high Mach numbers.
A near-wall four-equation turbulence model for compressible boundary layers
Sommer, T. P.; So, R. M. C.; Zhang, H. S.
1992-01-01
A near-wall four-equation turbulence model is developed for the calculation of high-speed compressible turbulent boundary layers. The four equations used are the k-epsilon equations and the theta(exp 2)-epsilon(sub theta) equations. These equations are used to define the turbulent diffusivities for momentum and heat fluxes, thus allowing the assumption of dynamic similarity between momentum and heat transport to be relaxed. The Favre-averaged equations of motion are solved in conjunction with the four transport equations. Calculations are compared with measurements and with another model's predictions where the assumption of the constant turbulent Prandtl number is invoked. Compressible flat plate turbulent boundary layers with both adiabatic and constant temperature wall boundary conditions are considered. Results for the range of low Mach numbers and temperature ratios investigated are essentially the same as those obtained using an identical near-wall k-epsilon model. In general, the numerical predictions are in very good agreement with measurements and there are significant improvements in the predictions of mean flow properties at high Mach numbers.
A study of transient flow turbulence generation during flame/wall interactions in explosions
Hargrave, G. K.; Jarvis, S.; Williams, T. C.
2002-07-01
Experimental data are presented for the turbulent velocity field generated during flame/solid wall interactions in explosions. The presence of turbulence in a flammable gas mixture can wrinkle a flame front, increasing the flame surface area and enhancing the burning rate. In congested process plant, any flame propagating through an accidental release of flammable mixture will encounter obstructions in the form of walls, pipe-work or storage vessels. The interaction between the gas movement and the obstacle creates turbulence by vortex shedding and local wake/recirculation, whereby the flame can be wrapped in on itself, increasing the surface area available for combustion. Particle image velocimetry (PIV) was used to characterize the turbulent flow field in the wake of the obstacles placed in the path of propagating flames. This allowed the quantification of the interaction of the propagating flame and the generated turbulent flow field. Due to the accelerating nature of the explosion flow field, the wake flows develop `transient' turbulent fields and PIV provided data to define the spatial and temporal variation of the velocity field ahead of the propagating flame, providing an understanding of the direct interaction between flow and flame.
A multi-layer description of Reynolds stresses in canonical wall bounded flows
Chen, Xi; Hussain, Fazle; She, Zhen-Su
2015-11-01
A complete description of the Reynolds stress tensor is obtained for all three canonical wall turbulence (channel, pipe and turbulent boundary layer - TBL). The result builds on a multi-layer description of length (order) functions and their ratios, including viscous sublayer, buffer layer, meso-layer for the near wall (inner) region, and bulk flow or a central core (absent in TBL) for the outer region. It is shown that the streamwise mean kinetic-energy profile is quantified with high accuracy over the entire flow domain. The model contains only three Re-dependent parameters for Reynolds number (Re) covering nearly three decades. Furthermore, the inner peak location is predicted to be invariant at y+ = 15, while its magnitude shows notable Re and geometry effects, predicted to be .9.2 for high Re's pipe flows. A mechanism is proposed for the emergence of outer peak in pipes, whose magnitude is predicted to scale as .Reτ0. 05 beyond a critical Reτ about 104(). The recently reported logarithmic dependence in the bulk is recovered, but with an alternative explanation. The result is successfully extended to TBL flows by a fractional total stress and an absence of core. Equally accurate descriptions of vertical and spanwise kinetic-energy are also presented for the three flows. The result has been used to modify turbulent engineering models (i.e. k- ω model) with significant improvement.
The nature of near-wall convection velocity in turbulent channel flow
Institute of Scientific and Technical Information of China (English)
Yuhui Cao; Jun Chen; Zhensu She
2008-01-01
A novel notion of turbulent structure-the local cascade structure-is introduced to study the convection phenomenon in a turbulent channel flow. A space-time cross-correlation method is used to calculate the convection velo-city. It is found that there are two characteristic convection speeds near the wall, one associated with small-scale streaks of a lower speed and another with streamwise vortices and hairpin vortices of a higher speed. The new concept of tur-bulent structure is powerful to illustrate the dominant role of coherent structures in the near-wall convection, and to reveal also the nature of the convection-the propagation of patterns of velocity fluctuations-which is scale-dependent.
Spatial resolution correction for hot-wire anemometry in wall turbulence
Energy Technology Data Exchange (ETDEWEB)
Chin, C.; Hutchins, N.; Ooi, A.; Marusic, I. [University of Melbourne, Department of Mechanical Engineering, Melbourne, VIC (Australia)
2011-05-15
We investigate spatial resolution issues in hot-wire anemometry measurements of turbulence intensity and energy spectra. Single normal hot-wire measurements are simulated by means of filtering direct numerical simulation (DNS) of turbulent channel flow at Re{sub {tau}} = 934. Through analysis of the two-dimensional energy spectra from the DNS, the attenuation of the small-scale energy levels is documented, especially in the near-wall region. The missing energy displays anisotropic characteristics, and an attempt is made to model this using an empirical equation, thus providing a correction scheme for all wall normal locations. The empirical model is assessed using experimental boundary layer data and shown to effectively correct both the streamwise one-dimensional energy spectra and turbulence intensity at a Reynolds number significantly above that of the DNS. (orig.)
Regeneration cycle and the covariant Lyapunov vectors in a minimal wall turbulence.
Inubushi, Masanobu; Takehiro, Shin-ichi; Yamada, Michio
2015-08-01
Considering a wall turbulence as a chaotic dynamical system, we study regeneration cycles in a minimal wall turbulence from the viewpoint of orbital instability by employing the covariant Lyapunov analysis developed by [F. Ginelli et al. Phys. Rev. Lett. 99, 130601 (2007)]. We divide the regeneration cycle into two phases and characterize them with the local Lyapunov exponents and the covariant Lyapunov vectors of the Navier-Stokes turbulence. In particular, we show numerically that phase (i) is dominated by instabilities related to the sinuous mode and the streamwise vorticity, and there is no instability in phase (ii). Furthermore, we discuss a mechanism of the regeneration cycle, making use of an energy budget analysis.
Wavelet spectrum analysis on energy transfer of multi-scale structures in wall turbulence
Institute of Scientific and Technical Information of China (English)
Zhen-yan XIA; Yan TIAN; Nan JIANG
2009-01-01
The streamwise velocity components at different vertical heights in wall turbulence were measured. Wavelet transform was used to study the turbulent energy spectra, indicating that the global spectrum results from the weighted average of Fourier spectrum based on wavelet scales. Wavelet transform with more vanishing moments can express the declining of turbulent spectrum. The local wavelet spectrum shows that the physical phenomena such as deformation or breakup of eddies are related to the vertical position in the boundary layer, and the energy-containing eddies exist in a multi-scale form. Moreover, the size of these eddies increases with the measured points moving out of the wall. In the buffer region, the small scale energy-containing eddies with higher frequency are excited. In the outer region, the maximal energy is concentrated in the low-frequency large-scale eddies, and the frequency domain of energy-containing eddies becomes narrower.
Modeling of individual coherent structures in wall region of a turbulent boundary layer
Institute of Scientific and Technical Information of China (English)
周恒; 陆昌根; 罗纪生
1999-01-01
Models for individual coherent structures in the wall region of a turbulent boundary layer are proposed. Method of numerical simulations is used to follow the evolution of the structures. It is found that the proposed model does bear many features of coherent structures found in experiments.
Computational Models of the Viscous Sublayer and Limiting Behavior of Turbulence Near a Wall.
1984-12-01
S132. Fulachier, L. (1972): Contribution a L’Etude des Analogies des Champs Dynamique et Thermique dans une Couche Limite Turbulent. Effect de...transfer in fluids with high Prandtl number, or diffusion in fluids with high Schmidt number, the near-wall values of uv are of central importance. The
EXPERIMENTAL STUDY OF MEASUREMENT FOR DISSIPATION RATE SCALING EXPONENT IN HEATED WALL TURBULENCE
Institute of Scientific and Technical Information of China (English)
姜楠; 王玉春; 舒玮; 王振东
2002-01-01
Experimental investigations have been devoted to the study of scaling law of coarse-grained dissipation rate structure function for velocity and temperature fluctuation of non-isotropic and inhomogeneous turbulent flows at moderate Reynolds number. Much attention has been paid to the case of turbulent boundary layer, which is typically the nonistropic and inhomogeneous trubulence because of the dynamically important existence of organized coherent structure burst process in the near wall region. Longitudinal velocity and temperature have been measured at different vertical positions in turbulent boundary layer over a heated and unheated flat plate in a wind tunnel using hot wire anemometer. The influence of non-isotropy and inhomogeneity and heating the wall on the scaling law of the dissipation rate structure function is studied because of the existence of organized coherent structure burst process in the near wall region. The scaling law of coarse-grained dissipation rate structure function is found to be independent of the mean velocity shear strain and the heating wall boundary condition. The scaling law of the dissipation rate structure function is verified to be in agreement with the hierarchical structure model that has been verified valid for isotropic and homogeneous turbulence.
The influence of near-wall density and viscosity gradients on turbulence in channel flows
Patel, Ashish; Pecnik, Rene
2016-01-01
The influence of near-wall density and viscosity gradients on near-wall turbulence in a channel are studied by means of Direct Numerical Simulation (DNS) of the low-Mach number approximation of the Navier--Stokes equations. Different constitutive relations for density and viscosity as a function of temperature are used in order to mimic a wide range of fluid behaviours and to develop a generalised framework for studying turbulence modulations in variable property flows. Instead of scaling the velocity solely based on local density, as done for the van Driest transformation, we derive an extension of the scaling that is based on gradients of the semi-local Reynolds number $Re_\\tau^*$. This extension of the van Driest transformation is able to collapse velocity profiles for flows with near-wall property gradients as a function of the semi-local wall coordinate. However, flow quantities like mixing length, turbulence anisotropy and turbulent vorticity fluctuations do not show a universal scaling very close to th...
PECASE - Multi-Scale Experiments and Modeling in Wall Turbulence
2014-12-23
stream, respec- tively) cross-stream planes and stereo-PIV in a vertical cross-stream plane of the turbulent boundary layer over a range Reθ = 7500–19000...energy is concentrated around a thin “ spine ” in (k,n,ω, l) space, where l is the singular value index, which essentially describes a low-dimensional...find the complexity of coherent structure arising from even the idealized arrangement of only three modes to be striking. This assembly of modes was
Duggleby, A; Paul, M R
2006-01-01
The results of a comparative analysis between turbulent pipe flow and drag reduced turbulent pipe flow by spanwise wall oscillation based upon a Karhunen-Loeve expansion are presented. The turbulent flow is generated by a direct numerical simulation at a Reynolds number Re_\\tau = 150. The spanwise wall oscillation is imposed as a velocity boundary condition with an amplitude of A^+ = 20 and a period of T^+ = 50. The flow is driven by a constant pressure gradient, resulting in a 27% mean velocity increase with wall oscillation. The peaks of the Reynolds stress and root-mean-squared velocities shift away from the wall and the Karhunen-Loeve dimension of the turbulent attractor is reduced from 2453 to 102. The coherent vorticity structures are pushed away from the wall into higher speed flow, causing an increase of their advection speed of 34% as determined by a normal speed locus. The mechanism of drag reduction by spanwise wall oscillation is discussed.
Interaction of a decaying vortex ring with a rotational background flow bounded by a solid wall
Ishii, K.; Liu, C. H.
1987-01-01
The interaction between a vortex ring of finite strength and an axisymmetric rotational background flow bounded by a solid wall is studied by a singular perturbation method. The analysis is carried out by combining a composite solution of a vortex ring and an unsteady Navier-Stokes solution for the background rotational flow. Using the method of averaging, numerical scheme is developed to obtain a Navier-Stokes solution in which the grid and time-step sizes depend solely on the length and velocity scales of the background flow. Numerical results are presented to illustrate the separation of the boundary layer on a solid wall and its interaction with the vortex ring.
A compressible near-wall turbulence model for boundary layer calculations
So, R. M. C.; Zhang, H. S.; Lai, Y. G.
1992-01-01
A compressible near-wall two-equation model is derived by relaxing the assumption of dynamical field similarity between compressible and incompressible flows. This requires justifications for extending the incompressible models to compressible flows and the formulation of the turbulent kinetic energy equation in a form similar to its incompressible counterpart. As a result, the compressible dissipation function has to be split into a solenoidal part, which is not sensitive to changes of compressibility indicators, and a dilational part, which is directly affected by these changes. This approach isolates terms with explicit dependence on compressibility so that they can be modeled accordingly. An equation that governs the transport of the solenoidal dissipation rate with additional terms that are explicitly dependent on the compressibility effects is derived similarly. A model with an explicit dependence on the turbulent Mach number is proposed for the dilational dissipation rate. Thus formulated, all near-wall incompressible flow models could be expressed in terms of the solenoidal dissipation rate and straight-forwardly extended to compressible flows. Therefore, the incompressible equations are recovered correctly in the limit of constant density. The two-equation model and the assumption of constant turbulent Prandtl number are used to calculate compressible boundary layers on a flat plate with different wall thermal boundary conditions and free-stream Mach numbers. The calculated results, including the near-wall distributions of turbulence statistics and their limiting behavior, are in good agreement with measurements. In particular, the near-wall asymptotic properties are found to be consistent with incompressible behavior; thus suggesting that turbulent flows in the viscous sublayer are not much affected by compressibility effects.
Effective slip for flow in a rotating channel bounded by stick-slip walls
Ng, Chiu-On
2016-12-01
This paper aims to look into how system rotation may modify the role played by boundary slip in controlling flow through a rotating channel bounded by stick-slip walls. A semianalytical model is developed for pressure-driven flow in a slit channel that rotates about an axis perpendicular to its walls, which are superhydrophobic surfaces patterned with periodic alternating no-shear and no-slip stripes. The cases where the flow is driven by a pressure gradient parallel or normal to the stripes are considered. The effects of the no-shear area fraction on the velocities and effective slip lengths for the primary and secondary flows are investigated as functions of the rotation rate and the channel height. It is mathematically proved that the secondary flow rate is exactly the same in the two cases, irrespective of whether the primary flow is parallel or normal to the wall stripes. For any rotation speed, there is an optimal value of the no-shear area fraction at which the primary flow rate is maximum. This is a consequence of two competing effects: the no-shear part of the wall may serve to reduce the wall resistance, thereby enhancing the flow especially at low rotation, but it also weakens the formation of the near-wall Ekman layer, which is responsible for pumping the flow especially at high rotation. Wall slip in a rotating environment is to affect flow in the Ekman layer, but not flow in the geostrophic core.
Kunkel, Gary J.; Marusic, Ivan
2006-02-01
Data from the near-wall-turbulent region of the high-Reynolds-number atmospheric surface layer are used to analyse the attached-eddy model of wall turbulence. All data were acquired during near-neutral conditions at the Surface Layer Turbulence and Environmental Science Test (SLTEST) facility located in the western Utah Great Salt Lake Desert. Instantaneous streamwise and wall-normal components of velocity were collected with a wall-normal array of two-component hot wires within the first 2 m above the surface of the salt flats. Streamwise and wall-normal turbulence intensities and spectra are directly compared to corresponding laboratory data and similarity formulations hypothesized from the attached-eddy model of wall turbulence. This affords the opportunity to compare results with Reynolds numbers varying over three orders of magnitude. The wall-normal turbulence-intensity similarity formulation is extended. The results show good support for the similarity arguments forwarded by the attached-eddy model as well as Townsend's (1956) Reynolds-number similarity hypothesis and lack of the ‘inactive’ motion influence on the wall-normal velocity component. The effects of wall roughness and the spread in the convection velocity due to this roughness are also discussed.
Extending the restricted nonlinear model for wall-turbulence to high Reynolds numbers
Bretheim, Joel; Meneveau, Charles; Gayme, Dennice
2016-11-01
The restricted nonlinear (RNL) model for wall-turbulence is motivated by the long-observed streamwise-coherent structures that play an important role in these flows. The RNL equations, derived by restricting the convective term in the Navier-Stokes equations, provide a computationally efficient approach due to fewer degrees of freedom in the underlying dynamics. Recent simulations of the RNL system have been conducted for turbulent channel flows at low Reynolds numbers (Re), yielding insights into the dynamical mechanisms and statistics of wall-turbulence. Despite the computational advantages of the RNL system, simulations at high Re remain out-of-reach. We present a new Large Eddy Simulation (LES) framework for the RNL system, enabling its use in engineering applications at high Re such as turbulent flows through wind farms. Initial results demonstrate that, as observed at moderate Re, restricting the range of streamwise varying structures present in the simulation (i.e., limiting the band of x Fourier components or kx modes) significantly affects the accuracy of the statistics. Our results show that only a few well-chosen kx modes lead to RNL turbulence with accurate statistics, including the mean profile and the well-known inner and outer peaks in energy spectra. This work is supported by NSF (WindInspire OISE-1243482).
Numerical Model of Turbulence, Sediment Transport, and Sediment Cover in a Large Canyon-Bound River
Alvarez, L. V.; Schmeeckle, M. W.
2013-12-01
The Colorado River in Grand Canyon is confined by bedrock and coarse-grained sediments. Finer grain sizes are supply limited, and sandbars primarily occur in lateral separation eddies downstream of coarse-grained tributary debris fans. These sandbars are important resources for native fish, recreational boaters, and as a source of aeolian transport preventing the erosion of archaeological resources by gully extension. Relatively accurate prediction of deposition and, especially, erosion of these sandbar beaches has proven difficult using two- and three-dimensional, time-averaged morphodynamic models. We present a parallelized, three-dimensional, turbulence-resolving model using the Detached-Eddy Simulation (DES) technique. DES is a hybrid large eddy simulation (LES) and Reynolds-averaged Navier Stokes (RANS). RANS is applied to the near-bed grid cells, where grid resolution is not sufficient to fully resolve wall turbulence. LES is applied further from the bed and banks. We utilize the Spalart-Allmaras one equation turbulence closure with a rough wall extension. The model resolves large-scale turbulence using DES and simultaneously integrates the suspended sediment advection-diffusion equation. The Smith and McLean suspended sediment boundary condition is used to calculate the upward and downward settling of sediment fluxes in the grid cells attached to the bed. The model calculates the entrainment of five grain sizes at every time step using a mixing layer model. Where the mixing layer depth becomes zero, the net entrainment is zero or negative. As such, the model is able to predict the exposure and burial of bedrock and coarse-grained surfaces by fine-grained sediments. A separate program was written to automatically construct the computational domain between the water surface and a triangulated surface of a digital elevation model of the given river reach. Model results compare favorably with ADCP measurements of flow taken on the Colorado River in Grand Canyon
Particle dynamics in wall-bounded thermal counterflow of superfluid helium
La Mantia, M.
2017-06-01
The motions of relatively small particles in wall-bounded thermal counterflow of superfluid helium are experimentally investigated, above 1 K, by using the particle tracking velocimetry technique. The effect of a solid boundary on this quantum flow has received little attention to date, and the focus here is on the corresponding flow-induced particle dynamics. The velocity and velocity difference statistical distributions of the particles are computed at length scales straddling two orders of magnitude across the mean distance between quantized vortices, the quantum length scale of the flow. The imposed counterflow velocity ranges between about 2 and 7 mm/s, resulting in suitably defined Reynolds numbers up to 20 000. The distributions are found to be wider in the bulk than close to the solid boundary, at small enough scales, and this suggests that the mean distance between the vortices increases with the distance from the wall. The outcome reinforces the view, supported to date solely by numerical simulations, that in thermal counterflow quantized vortices are not homogenously distributed in the channel and that they preferentially concentrate close to its walls. Boundary layers might therefore also exist in quantum flows, although some of their features appear to be significantly different from those attributed to wall-bounded flows of viscous fluids, due to the presence of quantized vortices.
Guo, Zhouchao; Lu, Tao; Liu, Bo
2017-04-01
Turbulent penetration can occur when hot and cold fluids mix in a horizontal T-junction pipe at nuclear plants. Caused by the unstable turbulent penetration, temperature fluctuations with large amplitude and high frequency can lead to time-varying wall thermal stress and even thermal fatigue on the inner wall. Numerous cases, however, exist where inner wall temperatures cannot be measured and only outer wall temperature measurements are feasible. Therefore, it is one of the popular research areas in nuclear science and engineering to estimate temperature fluctuations on the inner wall from measurements of outer wall temperatures without damaging the structure of the pipe. In this study, both the one-dimensional (1D) and the two-dimensional (2D) inverse heat conduction problem (IHCP) were solved to estimate the temperature fluctuations on the inner wall. First, numerical models of both the 1D and the 2D direct heat conduction problem (DHCP) were structured in MATLAB, based on the finite difference method with an implicit scheme. Second, both the 1D IHCP and the 2D IHCP were solved by the steepest descent method (SDM), and the DHCP results of temperatures on the outer wall were used to estimate the temperature fluctuations on the inner wall. Third, we compared the temperature fluctuations on the inner wall estimated by the 1D IHCP with those estimated by the 2D IHCP in four cases: (1) when the maximum disturbance of temperature of fluid inside the pipe was 3°C, (2) when the maximum disturbance of temperature of fluid inside the pipe was 30°C, (3) when the maximum disturbance of temperature of fluid inside the pipe was 160°C, and (4) when the fluid temperatures inside the pipe were random from 50°C to 210°C.
Sudden relaminarisation and lifetimes in forced isotropic turbulence
Linkmann, Moritz
2015-01-01
We demonstrate an unexpected connection between isotropic turbulence and wall-bounded shear flows. We perform direct numerical simulations of isotropic turbulence forced at large scales at moderate Reynolds numbers and observe sudden transitions from chaotic dynamics to a spatially simple flow, analogous to the laminar state in wall-bounded shear flows. We find that the survival probabilities of turbulence are exponential and the typical lifetimes increase super-exponentially with the Reynolds number. Our results suggest that both isotropic turbulence and wall-bounded shear flows share the same phase-space dynamics.
Wall mode instability driven transition to turbulence in a soft microchannel
Srinivas, Sagar; v, Kumaran
Transition to turbulence has been triggered due to structure fluid interaction at Reynolds number (Re) much lower than hard wall transition Re, in a soft walled micro channel of dimensions 40mm*1.5mm*0.16mm. Mixing index analysis indicates high degree of mixing accompanied by lower pressure drop as the channel deforms. Flow after transition velocity statistics has been extensively studied using Particle Imaging Velocimetry (PIV) along streamwise-wallnormal direction. The reduced plots of streamwise mean velocity are shown with the absence of viscous sublayer and presence of logarithmic layer with von Karman constants different from rigid wall channel. The one-point cross correlation between velocity fluctuations is non-zero at the soft surface which is in contrast to flow in hard walled channel. This indicates that the additional fluid stress exerted on the soft surface by the fluid velocity fluctuations result in net energy transfer due to shear work done at the interface. The structure fluid interface acts as a source of energy for the mean turbulent kinetic energy which is typically zero at the interface for hard walled channel. We also detect the onset of wall-oscillations primarily tangential to the surface at the transition Re. Department of Science and Technology (DST), Govt. of India.
Computation of turbulent boundary layers employing the defect wall-function method. M.S. Thesis
Brown, Douglas L.
1994-01-01
In order to decrease overall computational time requirements of spatially-marching parabolized Navier-Stokes finite-difference computer code when applied to turbulent fluid flow, a wall-function methodology, originally proposed by R. Barnwell, was implemented. This numerical effort increases computational speed and calculates reasonably accurate wall shear stress spatial distributions and boundary-layer profiles. Since the wall shear stress is analytically determined from the wall-function model, the computational grid near the wall is not required to spatially resolve the laminar-viscous sublayer. Consequently, a substantially increased computational integration step size is achieved resulting in a considerable decrease in net computational time. This wall-function technique is demonstrated for adiabatic flat plate test cases from Mach 2 to Mach 8. These test cases are analytically verified employing: (1) Eckert reference method solutions, (2) experimental turbulent boundary-layer data of Mabey, and (3) finite-difference computational code solutions with fully resolved laminar-viscous sublayers. Additionally, results have been obtained for two pressure-gradient cases: (1) an adiabatic expansion corner and (2) an adiabatic compression corner.
Drag of a turbulent boundary layer with transverse 2D circular rods on the wall
Kamruzzaman, Md; Djenidi, L.; Antonia, R. A.; Talluru, K. M.
2015-06-01
In this paper, we present the results of a turbulent boundary layer developing over a rod-roughened wall with a spacing of ( is the spacing between two adjacent roughness elements, and is the rod diameter). Static pressure measurements are taken around a single roughness element to accurately determine the friction velocity, and the error in the origin, , which are the two prominent issues that surround rough-wall boundary layers. In addition, velocity measurements are taken at several streamwise locations using hot-wire anemometry to obtain from the momentum integral equation. Results showed that both methods give consistent values for , indicating that the contribution of the viscous drag over this rough wall is negligible. This supports the results of Perry et al. (J Fluid Mech 177:437-466, 1969) and Antonia and Luxton (J Fluid Mech 48(04):721-761, 1971) in a boundary layer and of Leonardi et al. (2003) in a channel flow but does not agree with those of Furuya et al. (J Fluids Eng 98(4):635-643, 1976). The results show that both and can be unambiguously measured on this particular rough wall. This paves the way for a proper comparison between the boundary layer developing over this wall and the smooth-wall turbulent boundary layer.
Statistical analysis of the velocity and scalar fields in reacting turbulent wall-jets
Pouransari, Z; Johansson, A V
2015-01-01
The concept of local isotropy in a chemically reacting turbulent wall-jet flow is addressed using direct numerical simulation (DNS) data. Different DNS databases with isothermal and exothermic reactions are examined. The chemical reaction and heat release effects on the turbulent velocity, passive scalar and reactive species fields are studied using their probability density functions (PDF) and higher order moments for velocities and scalar fields, as well as their gradients. With the aid of the anisotropy invariant maps for the Reynolds stress tensor the heat release effects on the anisotropy level at different wall-normal locations are evaluated and found to be most accentuated in the near-wall region. It is observed that the small-scale anisotropies are persistent both in the near-wall region and inside the jet flame. Two exothermic cases with different Damkohler number are examined and the comparison revealed that the Damkohler number effects are most dominant in the near-wall region, where the wall cooli...
Analysis of the coherent and turbulent stresses of a numerically simulated rough wall pipe
Chan, L.; MacDonald, M.; Chung, D.; Hutchins, N.; Ooi, A.
2017-04-01
A turbulent rough wall flow in a pipe is simulated using direct numerical simulation (DNS) where the roughness elements consist of explicitly gridded three-dimensional sinusoids. Two groups of simulations were conducted where the roughness semi-amplitude h+ and the roughness wavelength λ+ are systematically varied. The triple decomposition is applied to the velocity to separate the coherent and turbulent components. The coherent or dispersive component arises due to the roughness and depends on the topological features of the surface. The turbulent stress on the other hand, scales with the friction Reynolds number. For the case with the largest roughness wavelength, large secondary flows are observed which are similar to that of duct flows. The occurrence of these large secondary flows is due to the spanwise heterogeneity of the roughness which has a spacing approximately equal to the boundary layer thickness δ.
On Developments of k-τ and k-ω Models for Near-Wall Turbulence of Engineering Duct Flows
DEFF Research Database (Denmark)
Rokni, Masoud; Sundén, Bengt
2009-01-01
The performance of a modified k-tau model is assessed in predicting the turbulent flow and forced convective heat transfer in ducts with arbitrary cross-sections, under fully developed conditions. The presented model is based on more physical grounds using bounded time-scale, local turbulent...
Reynolds number invariance of the structure inclination angle in wall turbulence.
Marusic, Ivan; Heuer, Weston D C
2007-09-14
Cross correlations of the fluctuating wall-shear stress and the streamwise velocity in the logarithmic region of turbulent boundary layers are reported over 3 orders of magnitude change in Reynolds number. These results are obtained using hot-film and hot-wire anemometry in a wind tunnel facility, and sonic anemometers and a purpose-built wall-shear stress sensor in the near-neutral atmospheric surface layer on the salt flats of Utah's western desert. The direct measurement of fluctuating wall-shear stress in the atmospheric surface layer has not been available before. Structure inclination angles are inferred from the cross correlation results and are found to be invariant over the large range of Reynolds number. The findings justify the prior use of low Reynolds number experiments for obtaining structure angles for near-wall models in the large-eddy simulation of atmospheric surface layer flows.
Shape effects on dynamics of inertia-free spheroids in wall turbulence
Energy Technology Data Exchange (ETDEWEB)
Challabotla, Niranjan Reddy; Zhao, Lihao; Andersson, Helge I. [Department of Energy and Process Engineering, Norwegian University of Science and Technology (NTNU), 7491 Trondheim (Norway)
2015-06-15
The rotational motion of inertia-free spheroids has been studied in a numerically simulated turbulent channel flow. Although inertia-free spheroids were translated as tracers with the flow, neither the disk-like nor the rod-like particles adapted to the fluid rotation. The flattest disks preferentially aligned their symmetry axes normal to the wall, whereas the longest rods were parallel with the wall. The shape-dependence of the particle orientations carried over to the particle rotation such that the mean spin was reduced with increasing departure from sphericity. The streamwise spin fluctuations were enhanced due to asphericity, but substantially more for prolate than for oblate spheroids.
A statistical model to predict streamwise turbulent dispersion from the wall at small times
Nguyen, Quoc; Papavassiliou, Dimitrios V.
2016-12-01
Data from simulations are used to develop a statistical model that can provide the streamwise dispersion distribution of passive particles released from the wall of a turbulent flow channel. It is found that a three-point gamma probability density function is the statistical distribution that can describe the dispersion of particles with Schmidt numbers ranging from 6 to 2400 at relatively short times after the release of the particles. Scaling arguments are used to physically justify and predict the parameters of the gamma three-point distribution. The model is used to predict particle separation that can occur in turbulent flow under special conditions. Close to the channel wall, turbulent convection is not the dominant transport mechanism, but molecular diffusion can dominate transport depending on the Schmidt number of the particles. This leads to turbulence-induced separation rather than mixing, and the currently proposed model can be used to predict the level of separation. Practically, these results can be applied for separating very small particles or even macromolecules in dilute suspensions.
DIRECT NUMERICAL SIMULATION OF TURBULENT HEAT TRANSFER IN A WALL-NORMAL ROTATING CHANNEL FLOW
Institute of Scientific and Technical Information of China (English)
无
2006-01-01
Direct Nmerical Simulation (DNS) of turbulent heat transfer in a wall-normal rotating channel flow has been carried out for the rotation number Nτ from 0 to 0.1, the Reynolds number 194 based on the friction velocity of non-rotating case and the half-height of the channel, and the Prandtl number 1. The objective of this study is to reveal the effects of rotation on the characteristics of turbulent flow and heat transfer. Based on the present calculated results, two typical rotation regimes are identified. When 0＜Nτ＜0.06, turbulence and thermal statistics correlated with the spanwise velocity fluctuation are enhanced since the shear rate of spanwise mean flow induced by Coriolis force increases; however, the other statistics are suppressed. When Nτ＞0.06, turbulence and thermal statistics are suppressed significantly because the Coriolis force effect plays as a dominated role in the rotating flow. Remarkable change of the direction of near-wall streak structures based on the velocity and temperature fluctuations is identified.
Wall-Resolved Large-Eddy Simulation of Turbulent Flow Past a NACA0012 Airfoil
Gao, Wei; Zhang, Wei; Samtaney, Ravi
2014-11-01
Large-eddy simulation (LES) of turbulent flow past a NACA0012 airfoil is performed at angle of attack (AoA) 3o and Rec = 2 . 3 ×104 . The filtered incompressible Navier-Stokes equations are spatially discretized using an energy conservative fourth-order scheme developed by Morinishi et al. (J. of Comput. Phys., 1998), and the subgrid-scale (SGS) tensor is modeled by the stretched-vortex SGS model developed by Pullin and co-workers (Phys. of Fluids, 2000, J. of Fluid Mech., 2009). An extension of the original stretched-vortex SGS model is utilized to resolve the streak-like structures in the near-wall flow regions. The mean velocity and turbulence intensity profiles on airfoil surface and in wake are validated against experimental data reported in Dong-Ha Kim et al. (AIAA, 2009). To further verify our LES capacity, some high-order turbulence quantities are also compared with the DNS results produced by our in-house DNS code. The effect of grid-refinement on the wall-resolved LES approach is also discussed. Supported by KAUST OCRF funded CRG project on simulation of turbulent flows over bluff bodies and airfoils.
Foucaut, J. M.; Coudert, S.; Stanislas, M.
2009-07-01
This study is part of a project that is aimed at building dynamic boundary conditions near a solid wall, in order to reduce the large eddy simulation spatial resolution that is necessary in this region. The objective is to build a low-order dynamical system in a plane parallel to the wall, which will mimic the unsteady behaviour of turbulence. This dynamical system should be derived from a POD decomposition of the velocity field. The POD decomposition is to be applied on an experimental database of time-resolved velocity fields. In order to obtain the experimental database, a specific experiment of high-speed stereoscopic particle image velocimetry (PIV) has been performed. This experiment was carried out in the turbulent boundary layer of the LML wind tunnel. The plane under study was parallel to the wall located at 100 wall units. This database is validated via comparison with hot-wire anemometry (HWA). Despite some peak locking observed on the streamwise velocity component, the PDF and the power spectra are in very good agreement with the HWA results. The two-point spatial correlations are also in good agreement with the results from the literature. As the flow is time-resolved, space-time correlations are also computed. The convection of the flow structure is observed to be the most important effect at this wall distance. The next step is to compute the dynamical system and to couple it to a large eddy simulation.
National Research Council Canada - National Science Library
Bandyopadhyay, Promode R; Hellum, Aren M
2014-01-01
... by underlying autonomous reaction-diffusion (RD) mechanisms. In contrast, sharks and dolphins contend with wall turbulence, are fast swimmers, and have more organized skin patterns that are proud and sometimes vibrate...
Institute of Scientific and Technical Information of China (English)
无
2002-01-01
A theoretical model for identical coherent structures in the wall region of a turbulent boundary layer was proposed, using the idea of general resonant triad of the hydrodynamic stability. The evolution of the structures in the wall region of a turbulent boundary layer was studied by combining the compact finite differences of high numerical accuracy and the Fourier spectral hybrid method for solving the three dimensional Navier-Stokes equations. In this method, the third order mixed explicit-implicit scheme was applied for the time integration. The fifth-order upwind compact finite difference schemes for the nonlinear convection terms in the physical space, and the sixth-order center compact schemes for the derivatives in spectral space were introduced, respectively. The fourth-order compact schemes satisfied by the velocities and pressure in spectral space was derived. As an application, the method was implemented to the wall region of a turbulent boundary to study the evolution of identical coherent structures. It is found that the numerical results are satisfactory.
PIV experiments in rough-wall, laminar-to-turbulent, oscillatory boundary-layer flows
Mujal-Colilles, Anna; Mier, Jose M.; Christensen, Kenneth T.; Bateman, Allen; Garcia, Marcelo H.
2014-01-01
Exploratory measurements of oscillatory boundary layers were conducted over a smooth and two different rough beds spanning the laminar, transitional and turbulent flow regimes using a multi-camera 2D-PIV system in a small oscillatory-flow tunnel (Admiraal et al. in J Hydraul Res 44(4):437-450, 2006). Results show how the phase lag between bed shear stress and free-stream velocity is better defined when the integral of the momentum equation is used to estimate the bed shear stress. Observed differences in bed shear stress and phase lag between bed shear stress and free-stream velocity are highly sensitive to the definition of the bed position ( y = b). The underestimation of turbulent stresses close to the wall is found to explain such differences when using the addition of Reynolds and viscous stresses to define both the bed shear stress and the phase lag. Regardless of the flow regime, in all experiments, boundary-layer thickness reached its maximum value at a phase near the flow reversal at the wall. Friction factors in smooth walls are better estimated using a theoretical equation first proposed by Batchelor (An introduction to fluid dynamics. Cambridge University Press, Cambridge, 1967) while the more recent empirical predictor of Pedocchi and Garcia (J Hydraul Res 47(4):438-444, 2009a) was found to be appropriate for estimating friction coefficients in the laminar-to-turbulent transition regime.
Klewicki, J. C.; Chini, G. P.; Gibson, J. F.
2017-01-01
Recent and on-going advances in mathematical methods and analysis techniques, coupled with the experimental and computational capacity to capture detailed flow structure at increasingly large Reynolds numbers, afford an unprecedented opportunity to develop realistic models of high Reynolds number turbulent wall-flow dynamics. A distinctive attribute of this new generation of models is their grounding in the Navier–Stokes equations. By adhering to this challenging constraint, high-fidelity models ultimately can be developed that not only predict flow properties at high Reynolds numbers, but that possess a mathematical structure that faithfully captures the underlying flow physics. These first-principles models are needed, for example, to reliably manipulate flow behaviours at extreme Reynolds numbers. This theme issue of Philosophical Transactions of the Royal Society A provides a selection of contributions from the community of researchers who are working towards the development of such models. Broadly speaking, the research topics represented herein report on dynamical structure, mechanisms and transport; scale interactions and self-similarity; model reductions that restrict nonlinear interactions; and modern asymptotic theories. In this prospectus, the challenges associated with modelling turbulent wall-flows at large Reynolds numbers are briefly outlined, and the connections between the contributing papers are highlighted. This article is part of the themed issue ‘Toward the development of high-fidelity models of wall turbulence at large Reynolds number’. PMID:28167585
Directory of Open Access Journals (Sweden)
Saeid Mokhtarian
2014-01-01
Full Text Available Despite extensive area of applications, simulation of complex wall bounded problems or any deformable boundary is still a challenge in a Dissipative Particle Dynamics simulation. This limitation is rooted in the soft force nature of DPD and the fact that we need to use an antipenetration model for escaped particles. In the present paper, we propose a new model of antipenetration which preserves the conservation of linear momentum on the boundaries and enables us to simulate complex and flexible boundaries. Finally by performing numerical simulations, we demonstrate the validity of our new model.
Exponential attractors for a Cahn-Hilliard model in bounded domains with permeable walls
Directory of Open Access Journals (Sweden)
Ciprian G. Gal
2006-11-01
Full Text Available In a previous article [7], we proposed a model of phase separation in a binary mixture confined to a bounded region which may be contained within porous walls. The boundary conditions were derived from a mass conservation law and variational methods. In the present paper, we study the problem further. Using a Faedo-Galerkin method, we obtain the existence and uniqueness of a global solution to our problem, under more general assumptions than those in [7]. We then study its asymptotic behavior and prove the existence of an exponential attractor (and thus of a global attractor with finite dimension.
Amano, R. S.
1982-01-01
Progress in implementing and refining two near-wall turbulence models in which the near-wall region is divided into either two or three zones is outlined. These models were successfully applied to the computation of recirculating flows. The research was further extended to obtaining experimental results of two different recirculating flow conditions in order to check the validity of the present models. Two different experimental apparatuses were set up: axisymmetric turbulent impinging jets on a flat plate, and turbulent flows in a circular pipe with a abrupt pipe expansion. It is shown that generally better results are obtained by using the present near-wall models, and among the models the three-zone model is superior to the two-zone model.
Structure Functions in Wall-bounded Flows at High Reynolds Number
Yang, Xiang; Marusic, Ivan; Johnson, Perry; Meneveau, Charles
2016-11-01
The scaling of the structure function Dij = (where i = 1,2,3 and r is the two-point displacement, ui is the velocity fluctuation in the xi direction), is studied in wall-bounded flows at high Reynolds number within the framework of the Townsend attached eddy model. While the scaling of Dij has been the subject of several studies, previous work focused on the scaling of D11 for r = (Δx ,0,0) (for streamwise velocity component and displacements only in the streamwise direction). Using the Hierarchical-Random-Additive formalism, a recently developed attached-eddy formalism, we propose closed-form formulae for the structure functionDij with two-point displacements in arbitrary directions, focusing on the log region . The work highlights new scalings that have received little attention, e.g. the scaling of Dij for r =(0, Δy, Δz) and for i ≠ j . As the knowledge on Dij leads directly to that of the Reynolds stress, statistics of the filtered flow field, etc., an analytical formula of Dij for arbitrary r can be quite useful for developing physics-based models for wall-bounded flows and validating existing LES and reduced order models.
Directory of Open Access Journals (Sweden)
K Rahmani
2013-01-01
Full Text Available This work concerns the study of heat transfer by means of natural convection with fluids circulating in enclosures. These topics are largely studied both experimentally and numerically due to their wide industrial application in various fields such as nuclear energy, the heating and cooling of buildings, solar collectors, etc. A great deal of relevant research work consists in numerical simulations of natural convection mechanisms with laminar flows in closed cavities. In this context, the present study comes as a contribution in numerical form investigating the turbulent natural convection in vertical enclosure which presents sinusoidal protuberances on one of its vertical walls. Both the top and bottom of the enclosure are open to allow the fluid flow. The horizontal walls are supposed adiabatic. We are interested in determining for various amplitudes and periods. The influence of geometry on several factors such as: temperature, the number of local Nusselt, the turbulent kinetic energy k and its dissipationï¥. Based on the Navier-Stokes equations and Boussinesq approximation, the equations were solved by the CFD technique using the Finite Volume Method In the case of enclosures having the form ratio equal to 0.6 (A=0.6. Given the steady conditions of heat flow on the vertical walls and the pressures at the entry and exit of the cavity, the results show that when we gradually increase the amplitudes of the protuberance wall (say a=0.005 m, a=0.010, a=0.015, a= 0.02, and a=0.025, the maximal temperature increases with the increase of amplitude. This is due to the rise of the heat transfer surface of the modified wall. Regarding heat transfer parameters, the results show that the number of local Nusselt varies relatively with the amplitudes. This explains that the modified wall is affected locally by a pure conduction. The results obtained in this study are in agreement with recent works of several authors.
Disentangling the origins of torque enhancement through wall roughness in Taylor-Couette turbulence
Zhu, Xiaojue; Lohse, Detlef
2016-01-01
Direct numerical simulations (DNSs) are performed to analyze the global transport properties of turbulent Taylor-Couette flow with inner rough wall up to Taylor number $Ta=10^{10}$. The dimensionless torque $Nu_\\omega$ shows an effective scaling of $Nu_\\omega \\propto Ta^{0.42\\pm0.01}$, which is steeper than the ultimate regime effective scaling $Nu_\\omega \\propto Ta^{0.38}$ seen for smooth walls. It is found that at the inner wall, the dominant contribution to the torque comes from the pressure forces on the radial faces of the rough elements; while viscous shear stresses on the rough surfaces contribute little to $Nu_\\omega$. Thus, the log layer close to the rough wall depends on the roughness length scale, rather than on the viscous length scale. The energy dissipation rate at the wall of inner rough cylinder decreases significantly as a consequence of the wall shear stress reduction caused by the flow separation at the rough elements. On the other hand, the latter shed vortices in the bulk that are transpo...
Negative streamwise velocities and other rare events near the wall in turbulent flows
Energy Technology Data Exchange (ETDEWEB)
Lenaers, Peter; Li Qiang; Brethouwer, Geert; Schlatter, Philipp; Oerlue, Ramis, E-mail: Lenaers@mech.kth.se [Linne FLOW Centre, KTH Mechanics, SE-100 44 Stockholm (Sweden)
2011-12-22
Negative streamwise velocities, extreme wall-normal velocites and high flatness values for the wall-normal fluctuations near the wall are investigated for turbulent channel flow simulations at a series of Reynolds numbers up to Re{sub {tau}} = 1000 in this paper. Probability density functions of the wall-shear stress and velocity components are presented, as well as joint probability density functions of the velocity components and the pressure. Backflow occurs more often (0.06% at Re{sub {tau}} = 1000) and further away from the wall into the buffer layer for rising Reynolds number. An oblique vortex outside the viscous sublayer is found to cause this backflow. Extreme v events occur also more often for rising Reynolds number. Positive and negative velocity spikes appear in pairs, located on the two edges of a strong streamwise vortex: the negative spike occurring in a high speed streak indicating a sweeping motion, while the positive spike is located between a high and low speed streak. These extreme v events cause high flatness values near the wall (F(v) = 43 at Re{sub {tau}} = 1000).
A comparison of the turbulent entrainment process in line plumes and wall plumes
Parker, David; Burridge, Henry; Partridge, Jamie; Linden, Paul
2016-11-01
Flows driven by sources of buoyancy appear in a large number of geophysical and industrial applications. The process of turbulent entrainment in these flows is key to understanding how they evolve and how one might model them. It has been observed that the entrainment is reduced when a line source of buoyancy is positioned immediately adjacent to a wall. To gain insight into the effect of the wall on the entrainment process we perform simultaneous PIV and LIF on both line plumes, in the absence of any boundary, and when the source is adjacent to a vertical boundary forming a wall plume. The experiments are designed to isolate the effect of the wall by using the same experimental setup and parameters for both flows with the addition of the wall and half the buoyancy flux used in the wall plume case. Of particular interest is the effect the large scale eddies, forming at the edge of the plume and engulfing ambient fluid, have on the entrainment process. By using velocity statistics in a coordinate system based on the instantaneous scalar edge of the plume, a technique we have recently used to analyse similar effects in an axisymmetric plume, the significance of this large scale engulfment will be quantified.
Effect of Fluid Viscoelasticity on Turbulence and Large-Scale Vortices behind Wall-Mounted Plates
Directory of Open Access Journals (Sweden)
Takahiro Tsukahara
2014-03-01
Full Text Available Direct numerical simulations of turbulent viscoelastic fluid flows in a channel with wall-mounted plates were performed to investigate the influence of viscoelasticity on turbulent structures and the mean flow around the plate. The constitutive equation follows the Giesekus model, valid for polymer or surfactant solutions, which are generally capable of reducing the turbulent frictional drag in a smooth channel. We found that turbulent eddies just behind the plates in viscoelastic fluid decreased in number and in magnitude, but their size increased. Three pairs of organized longitudinal vortices were observed downstream of the plates in both Newtonian and viscoelastic fluids: two vortex pairs were behind the plates and the other one with the longest length was in a plate-free area. In the viscoelastic fluid, the latter vortex pair in the plate-free area was maintained and reached the downstream rib, but its swirling strength was weakened and the local skin-friction drag near the vortex was much weaker than those in the Newtonian flow. The mean flow and small spanwise eddies were influenced by the additional fluid force due to the viscoelasticity and, moreover, the spanwise component of the fluid elastic force may also play a role in the suppression of fluid vortical motions behind the plates.
Modification of particle-laden near-wall turbulence: effect of Stokes number
Lee, Junghoon
2014-01-01
Turbulent channel flows laden with particles are investigated using direct numerical simulation with a point-force approximation for small, heavy particles with a diameter smaller than the Kolmogorov length scale of the fluid. The Stokes numbers based on the wall units considered in our study are $St^+=0.5, 5, 35$ and 125. The main purpose of this study is to examine the effect of Stokes number on turbulence modification in a channel. We found that particles with $St^+=0.5$ enhance turbulence by increasing the occurrence of quasistreamwise vortices, while larger-Stokes-number particles attenuate turbulence. When $St^+=0.5$, kinetic energy is transferred from the particles to streamwise fluid velocity fluctuations in the high-speed regions and low-speed streaks, which may increase the instability of the low-speed streaks responsible for the birth of new quasistreamwise vortices. On the other hand, the preferential concentration of larger-Stokes-number particles in low-speed streaks is responsible for turbulenc...
Blow-off characteristics of turbulent premixed flames in curved-wall Jet Burner
Mansour, Morkous S.
2015-08-02
This study concerns the flame dynamics of a curved-wall jet (CWJ) stabilized turbulent premixed flame as it approaches blow-off conditions. Time resolved OH planar laser-induced fluorescence (PLIF) delineated reaction zone contours and simultaneously stereoscopic particle image velocimetry (SPIV) quantified the turbulent flow field features. Ethylene/air flames were stabilized in CWJ burner to determine the sequence of events leading to blowoff. For stably burning flames far from blowoff, flames are characterized with a recirculation zone (RZ) upstream for flame stabilization followed by an intense turbulent interaction jet (IJ) and merged-jet regions downstream; the flame front counterparts the shear layer vortices. Near blowoff, as the velocity of reactants increases, high local stretch rates exceed the extinction stretch rates instantaneously resulting in localized flame extinction along the IJ region. As Reynolds number (Re) increases, flames become shorter and are entrained by larger amounts of cold reactants. The increased strain rates together with heat loss effects result in further fragmentation of the flame, eventually leading to the complete quenching of the flame. This is explained in terms of local turbulent Karlovitz stretch factor (K) and principal flow strain rates associated with C contours. Hydrogen addition and increasing the RZ size lessen the tendency of flames to be locally extinguished.
Breugem, W.P.; Boersma, B.J.
2005-01-01
A direct numerical simulation (DNS) has been performed of turbulent channel flow over a three-dimensional Cartesian grid of 30×20×9 cubes in, respectively, the streamwise, spanwise, and wall-normal direction. The grid of cubes mimics a permeable wall with a porosity of 0.875. The flow field is resol
The dynamics of a capsule in a wall-bounded oscillating shear flow
Zhu, LaiLai; Brandt, Luca
2015-01-01
The motion of an initially spherical capsule in a wall-bounded oscillating shear flow is investigated via an accelerated boundary integral implementation. The neo-Hookean model is used as the constitutive law of the capsule membrane. The maximum wall-normal migration is observed when the oscillation period of the imposed shear is of the order of the relaxation time of the elastic membrane; hence, the optimal capillary number scales with the inverse of the oscillation frequency and the ratio agrees well with the theoretical prediction in the limit of high-frequency oscillation. The migration velocity decreases monotonically with the frequency of the applied shear and the capsule-wall distance. We report a significant correlation between the capsule lateral migration and the normal stress difference induced in the flow. The periodic variation of the capsule deformation is roughly in phase with that of the migration velocity and normal stress difference, with twice the frequency of the imposed shear. The maximum...
Critical conditions for the buoyancy-driven detachment of a wall-bound pendant drop
Lamorgese, A.; Mauri, R.
2016-03-01
We investigate numerically the critical conditions for detachment of an isolated, wall-bound emulsion droplet acted upon by surface tension and wall-normal buoyancy forces alone. To that end, we present a simple extension of a diffuse-interface model for partially miscible binary mixtures that was previously employed for simulating several two-phase flow phenomena far and near the critical point [A. G. Lamorgese et al. "Phase-field approach to multiphase flow modeling," Milan J. Math. 79(2), 597-642 (2011)] to allow for static contact angles other than 90°. We use the same formulation of the Cahn boundary condition as first proposed by Jacqmin ["Contact-line dynamics of a diffuse fluid interface," J. Fluid Mech. 402, 57-88 (2000)], which accommodates a cubic (Hermite) interpolation of surface tensions between the wall and each phase at equilibrium. We show that this model can be successfully employed for simulating three-phase contact line problems in stable emulsions with nearly immiscible components. We also show a numerical determination of critical Bond numbers as a function of static contact angle by phase-field simulation.
Convection-driven melting in an n-octane pool fire bounded by an ice wall
DEFF Research Database (Denmark)
Farahani, Hamed Farmahini; Alva, Wilson Ulises Rojas; Rangwala, Ali S.
2017-01-01
An experimental study on an n-octane pool fire bound on one side by an ice wall was carried out to investigate the effects on ice melting by convection within the liquid part of the fuel. Experiments were conducted in a square glass tray (9.6cm ×9.6cm ×5cm) with a 3cm thick ice wall (9.6cm ×6.5cm...... ×3cm) placed on one side of the tray. The melting front velocity, as an indicator of the melting rate of the ice, increased from 0.04cm/min to 1cm/min. The measurement of the burning rates and flame heights showed two distinctive behaviors; an induction period from the initial self-sustained flame...... separating from a primary horizontal flow on the top driven by Marangoni convection. As the burning rate/flame height increased the velocity and evolving flow patterns enhanced the melting rate of the ice wall. Experimentally determined temperature contours, using an array of finely spaced thermocouples...
Response of mean turbulent energy dissipation rate and spectra to concentrated wall suction
Oyewola, O.; Djenidi, L.; Antonia, R. A.
2008-01-01
The response of mean turbulent energy dissipation rate and spectra to concentrated suction applied through a porous wall strip has been quantified. Both suction and no suction data of the spectra collapsed reasonably well for Kolmogorov normalised wavenumber k {1/*} > 0.2. Similar results were also observed for second-order structure functions (not shown) for Kolmogorov normalised radius r* suction results shows a significant departure from the no suction case of the Kolmogorov normalised spectra and second-order structure functions for k {1/*} 20, respectively. The departure at the larger scales with collapse at the small scales suggests that suction induce a change in the small-scale motion. This is also reflected in the alteration of mean turbulent energy dissipation rate and Taylor microscale Reynolds number. This change is a result of the weakening of the large-scale structures. The effect is increased as the suction rate is increased.
Wakabayashi, K.; Hoson, T.; Kamisaka, S.
1997-01-01
The relationship between the mechanical properties of cell walls and the levels of wall-bound ferulic (FA) and diferulic (DFA) acids was investigated in wheat (Triticum aestivum L.) coleoptiles grown under osmotic stress (60 mM polyethylene glycol [PEG] 4000) conditions. The cell walls of stressed coleoptiles remained extensible compared with those of the unstressed ones. The contents of wall-bound FA and DFA increased under unstressed conditions, but the increase was substantially reduced by osmotic stress. In response to PEG removal, these contents increased and reached almost the same levels as those of the unstressed coleoptiles. A close correlation was observed between the contents of FA and DFA and the mechanical properties of cell walls. The activities of phenylalanine ammonia-lyase and tyrosine ammonia-lyase increased rapidly under unstressed conditions. Osmotic stress substantially reduced the increases in enzyme activities. When PEG was removed, however, the enzyme activities increased rapidly. There was a close correlation between the FA levels and enzyme activities. These results suggest that in osmotically stressed wheat coleoptiles, reduced rates of increase in phenylalanine ammonia-lyase and tyrosine ammonia-lyase activities suppress phenylpropanoid biosynthesis, resulting in the reduced level of wall-bound FA that, in turn, probably causes the reduced level of DFA and thereby maintains cell wall extensibility. PMID:12223657
Linear modeling of turbulent skin-friction reduction due to spanwise wall motion
Duque-Daza, Carlos; Baig, Mirza; Lockerby, Duncan; Chernyshenko, Sergei; Davies, Christopher; University of Warwick Team; Imperial College Team; Cardiff University Team
2012-11-01
We present a study on the effect of streamwise-travelling waves of spanwise wall velocity on the growth of near-wall turbulent streaks using a linearized formulation of the Navier-Stokes equations. The changes in streak amplification due to the travelling waves induced by the wall velocity are compared to published results of direct numerical simulation (DNS) predictions of the turbulent skin-friction reduction over a range of parameters; a clear correlation between these two sets of results is observed. Additional linearized simulations but at a much higher Reynolds numbers, more relevant to aerospace applications, produce results that show no marked differences to those obtained at low Reynolds number. It is also observed that a close correlation exists between DNS data of drag reduction and a very simple characteristic of the ``generalized'' Stokes layer generated by the streamwise-travelling waves. Carlos.Duque-Daza@warwick.ac.uk - School of Engineering, University of Warwick, Coventry CV4 7AL, UK caduqued@unal.edu.co - Department of Mechanical and Mechatronics Engineering, Universidad Nacional de Colombia.
Confinement effects in shock/turbulent-boundary-layer interaction through wall-modeled LES
Bermejo-Moreno, Ivan; Campo, Laura; Larsson, Johan; Bodart, Julien; Helmer, David; Eaton, John
2016-11-01
Wall-modeled large-eddy simulations (WMLES) are used to investigate three-dimensional effects imposed by lateral confinement on the interaction of oblique shock waves impinging on turbulent boundary layers (TBLs) developed along the walls of a nearly-square duct. A constant Mach number, M = 2 . 05 , of the incoming air stream is considered, with a Reynolds number based on the incoming turbulent boundary layer momentum thickness Reθ 14 , 000 . The strength of the impinging shock is varied by increasing the height of a compression wedge located at a constant streamwise location that spans the top wall of the duct at a 20° angle. Simulation results are first validated with particle image velocimetry (PIV) experimental data obtained at several vertical planes. Emphasis is placed on the study of the instantaneous and time-averaged structure of the flow for the stronger-interaction case, which shows mean flow reversal. By performing additional spanwise-periodic simulations, it is found that the structure and location of the shock system and separation bubble are significantly modified by the lateral confinement. Low-frequency unsteadiness and downstream evolution of corner flows are also investigated. Financial support from the United States Department of Energy under the PSAAP program is gratefully acknowledged.
Baldwin, B. S.; Maccormack, R. W.
1976-01-01
Various modifications of the conventional algebraic eddy viscosity turbulence model are investigated for application to separated flows. Friction velocity is defined in a way that avoids singular behavior at separation and reattachment but reverts to the conventional definition for flows with small pressure gradients. This leads to a modified law of the wall for separated flows. The effect on the calculated flow field of changes in the model that affect the eddy viscosity at various distances from the wall are determined by (1) switching from Prandtl's form to an inner layer formula due to Clauser at various distances from the wall, (2) varying the constant in the Van Driest damping factor, (3) using Clauser's inner layer formula all the way to the wall, and (4) applying a relaxation procedure in the evaluation of the constant in Clauser's inner layer formula. Numerical solutions of the compressible Navier-Stokes equations are used to determine the effects of the modifications. Experimental results from shock-induced separated flows at Mach numbers 2.93 and 8.45 are used for comparison. For these cases improved predictions of wall pressure distribution and positions of separation and reattachment are obtained from the relaxation version of the Clauser inner layer eddy viscosity formula.
Spiral plume structures in turbulent natural convection between two vertical walls
Institute of Scientific and Technical Information of China (English)
无
2002-01-01
By means of direct numerical simulation, coherent structures are investigated in turbulent natural convection between two vertical differentially heated walls. It is observed that large-scale spanwise vortices and spiral plume structures exist together in the flow. Spiral plume structures appear at the positions with relatively large helicity, large normal vorticity and high fluctuating temperature. In this note, the shape, the characteristics and formation of the spiral structures are studied and compared with those in Rayleigh-Bénard convection. The conditional sampling analysis indicates the main properties of the spiral structures.
Heat transfer enhancement induced by wall inclination in turbulent thermal convection.
Kenjereš, Saša
2015-11-01
We present a series of numerical simulations of turbulent thermal convection of air in an intermediate range or Rayleigh numbers (10(6)≤Ra≤10(9)) with different configurations of a thermally active lower surface. The geometry of the lower surface is designed in such a way that it represents a simplified version of a mountain slope with different inclinations (i.e., "Λ"- and "V"-shaped geometry). We find that different wall inclinations significantly affect the local heat transfer by imposing local clustering of instantaneous thermal plumes along the inclination peaks. The present results reveal that significant enhancement of the integral heat transfer can be obtained (up to 32%) when compared to a standard Rayleigh-Bénard configuration with flat horizontal walls. This is achieved through combined effects of the enlargement of the heated surface and reorganization of the large-scale flow structures.
Review of literature on local scour under plane turbulent wall jets
Aamir, Mohammad; Ahmad, Zulfequar
2016-10-01
Stability of hydraulic structures is threatened by persistent scour downstream of the apron, which renders their foundations exposed. Jets issuing under the sluice gate are turbulent enough to cause significant scour. Extensive study of the jets is, therefore, necessary in order to understand the underlying hydraulics and provide remedial measures. In this paper, a comprehensive review of the investigations on local scour caused by wall jets is presented, including both the classical as well as the prevalent approach. Various aspects of the scour under wall jets have been explained, including the process of scouring, different parameters affecting the maximum scour depth, analysis of flow characteristics within the scour hole and on the apron, time variation of scour depth, rate of sediment removal, and scour depth estimation formulae.
A methodology for including wall roughness effects in k-ε low-Reynolds turbulence models
Energy Technology Data Exchange (ETDEWEB)
Ambrosini, W., E-mail: walter.ambrosini@ing.unipi.it; Pucciarelli, A.; Borroni, I.
2015-05-15
Highlights: • A model for taking into account wall roughness in low-Reynolds k-ε models is presented. • The model is subjected to a first validation to show its potential in general applications. • The application of the model in predicting heat transfer to supercritical fluids is also discussed. - Abstract: A model accounting for wall roughness effects in k-ε low-Reynolds turbulence models is described in the present paper. In particular, the introduction in the transport equations of k and ε of additional source terms related to roughness, based on simple assumptions and dimensional relationships, is proposed. An objective of the present paper, in addition to obtaining more realistic predictions of wall friction, is the application of the proposed model to the study of heat transfer to supercritical fluids. A first validation of the model is reported. The model shows the capability of predicting, at least qualitatively, some of the most important trends observed when dealing with rough pipes in very different flow conditions. Qualitative comparisons with some DNS data available in literature are also performed. Further analyses provided promising results concerning the ability of the model in reproducing the trend of friction factor when varying the flow conditions, though improvements are necessary for achieving better quantitative accuracy. First applications of the model in simulating heat transfer to supercritical fluids are also described, showing the capability of the model to affect the predictions of these heat transfer phenomena, in particular in the vicinity of the pseudo-critical conditions. A more extended application of the model to relevant deteriorated heat transfer conditions will clarify the usefulness of this modelling methodology in improving predictions of these difficult phenomena. Whatever the possible success in this particular application that motivated its development, this approach suggests a general methodology for accounting
Effects of roughness on density-weighted particle statistics in turbulent channel flows
Energy Technology Data Exchange (ETDEWEB)
Milici, Barbara [Faculty of Engineering and Architecture, Cittadella Universitaria - 94100 - Enna (Italy)
2015-12-31
The distribution of inertial particles in turbulent flows is strongly influenced by the characteristics of the coherent turbulent structures which develop in the carrier flow field. In wall-bounded flows, these turbulent structures, which control the turbulent regeneration cycles, are strongly affected by the roughness of the wall, nevertheless its effects on the particle transport in two-phase turbulent flows has been still poorly investigated. The issue is discussed here by addressing DNS combined with LPT to obtain statistics of velocity and preferential accumulation of a dilute dispersion of heavy particles in a turbulent channel flow, bounded by irregular two-dimensional rough surfaces, in the one-way coupling regime.
Turbulent flow structure response to a varying wall-roughness arrangement: a modelling study
Jakirlic, Suad; Krumbein, Benjamin; Fooroghi, Pourya; Magagnato, Franco; Frohnapfel, Bettina; Darmstadt Collaboration; Karlsruhe Collaboration
2016-11-01
Presently adopted approach to the modelling of rough surfaces relies on introducing an additional drag term in the appropriately 'filtered' Navier-Stokes equations, accounting for the form drag and blockage effects, the roughness elements exert on the flow. A non-dimensional drag function D(y) accounting for the shape of roughness elements is introduced. It is evaluated by applying a reference DNS of an open channel flow over a wall characterized by varying arrangement (aligned/staggered) of differently-shaped/sized roughness elements at a bulk Reynolds number Re =6500 by Fooroghi et al.. The prime objective of the present work is to assess the roughness model capability to predict mean velocities and turbulent intensities in conjunction with a recently formulated hybrid LES/RANS (Reynolds-Averaged Navier-Stokes) model, based on the Very Large Eddy Simulation (VLES) concept of Speziale. A seamless transition from RANS to LES is enabled depending on the ratio of the turbulent viscosities associated with the unresolved scales corresponding to the LES cut-off and those related to the turbulent properties of the VLES residual motion.
Turbulent boundary layer control through spanwise wall oscillation using Kagome lattice structures
Bird, James; Santer, Matthew; Morrison, Jonathan
2015-11-01
It is well established that a reduction in skin-friction and turbulence intensity can be achieved by applying in-plane spanwise forcing to a surface beneath a turbulent boundary layer. It has also been shown in DNS (M. Quadrio, P. Ricco, & C. Viotti; J. Fluid Mech; 627, 161, 2009), that this phenomenon is significantly enhanced when the forcing takes the form of a streamwise travelling wave of spanwise perturbation. In the present work, this type of forcing is generated by an active surface comprising a compliant structure, based on a Kagome lattice geometry, supporting a membrane skin. The structural design ensures negligible wall normal displacement while facilitating large in-plane velocities. The surface is driven pneumatically, achieving displacements of 3 mm approximately, at frequencies in excess of 70 Hz for a turbulent boundary layer at Reτ ~ 1000 . As the influence of this forcing on boundary layer is highly dependent on the wavenumber and frequency of the travelling wave, a flat surface was designed and optimised to allow these forcing parameters to be varied, without reconfiguration of the experiment. Simultaneous measurements of the fluid and surface motion are presented, and notable skin-friction drag reduction is demonstrated. Airbus support agreement IW202838 is gratefully acknowledged.
Heat transfer and wall temperature effects in shock wave turbulent boundary layer interactions
Bernardini, Matteo; Pirozzoli, Sergio; Grasso, Francesco
2016-01-01
Direct numerical simulations are carried out to investigate the effect of the wall temperature on the behavior of oblique shock-wave/turbulent boundary layer interactions at freestream Mach number $2.28$ and shock angle of the wedge generator $\\varphi = 8^{\\circ}$. Five values of the wall-to-recovery-temperature ratio ($T_w/T_r$) are considered, corresponding to cold, adiabatic and hot wall thermal conditions. We show that the main effect of cooling is to decrease the characteristic scales of the interaction in terms of upstream influence and extent of the separation bubble. The opposite behavior is observed in the case of heating, that produces a marked dilatation of the interaction region. The distribution of the Stanton number shows that a strong amplification of the heat transfer occurs across the interaction, and the maximum values of thermal and dynamic loads are found in the case of cold wall. The analysis reveals that the fluctuating heat flux exhibits a strong intermittent behavior, characterized by ...
Ranjan, Pritanshu; Dewan, Anupam
2015-11-01
The effect of wall proximity on flow and heat transfer around a square cylinder placed inside a channel is numerically investigated. This flow configuration is a fundamental problem and is widely encountered in several engineering applications. The presence of wall close to the cylinder can alter the shedding process and this in turn can affect the thermal transport in the wake region. Many researchers have studied this phenomenon experimentally but the heat transfer characteristics around a square cylinder placed inside a channel still remain an open question. We present here an insight into this problem. The simulations were carried out for a Reynolds number of 37,000 (based on cylinder diameter, D) and as a function of gap height, G/D, at different blockage ratios. A variable resolution modelling approach (PANS SST k- ω model) was used to study turbulence structures. The results are presented in terms of pressure coefficient, drag coefficient, thermal fluctuations and local and average Nusselt number (Nu). The results obtained showed that, for G / D < 0 . 5 very weak shedding process at random time intervals occurs suggesting the suppression of vortex shedding due to wall. Thus, the local and average Nu decrease as the cylinder is moved towards wall at all blockage ratios.
Simon, T. W.; Moffat, R. J.
1981-01-01
Surface heat transfer rates have been measured for several different flows on an isothermal, convexly curved surface. The freestream velocity, boundary layer thickness, acceleration parameter, and unheated starting length were varied systematically, and both turbulent and transitional boundary layers were studied. The effect of convex curvature on heat transfer rates is significant with Stanton numbers reduced 20-25% below flat wall values for the same enthalpy thickness Reynolds number. Heat transfer rates recovered slowly on a flat wall downstream of the curved wall, and after 60 cm, the Stanton numbers were still 15-20% below flat wall values. The behavior of the boundary layer suggests the existence of an asymptotic condition. Boundary layer thickness, freestream velocity, and boundary layer maturity affect the initial response to the introduction of curvature and the rate at which the asymptotic state is approached. Convex curvature appears to increase the boundary layer's sensitivity to acceleration; it also delays and retards transition. Near-laminar or early-transitional boundary layers recover from curvature rapidly, whereas late-transitional and mature boundary layers recover slowly.
Experimental investigation of compliant wall surface deformation in a turbulent channel flow
Zhang, Cao; Wang, Jin; Katz, Joseph
2016-11-01
The dynamic response of a compliant wall under a turbulent channel flow is investigated by simultaneously measuring the time-resolved, 3D flow field (using tomographic PIV) and the 2D surface deformation (using interferometry). The pressure distributions are calculated by spatially integrating the material acceleration field. The Reynolds number is Reτ = 2300, and the centerline velocity (U0) is 15% of the material shear speed. The wavenumber-frequency spectra of the wall deformation contain a non-advected low-frequency component and advected modes, some traveling downstream at U0 and others at 0.72U0. Trends in the wall dynamics are elucidated by correlating the deformation with flow variables. The spatial pressure-deformation correlations peak at y/ h 0.12 (h is half channel height), the elevation of Reynolds shear stress maximum in the log-layer. Streamwise lagging of the deformation behind the pressure is caused in part by phase-lag of the pressure with decreasing distance from the wall, and in part by material damping. Positive deformations (bumps) are preferentially associated with ejections, which involve spanwise vortices located downstream and quasi-streamwise vortices with spanwise offset, consistent with hairpin-like structures. The negative deformations (dents) are preferentially associated with pressure maxima at the transition between an upstream sweep to a downstream ejection. Sponsored by ONR.
High Reynolds number rough wall turbulent boundary layer experiments using Braille surfaces
Harris, Michael; Monty, Jason; Nova, Todd; Allen, James; Chong, Min
2007-11-01
This paper details smooth, transitional and fully rough turbulent boundary layer experiments in the New Mexico State high Reynolds number rough wall wind tunnel. The initial surface tested was generated with a Braille printer and consisted of an uniform array of Braille points. The average point height being 0.5mm, the spacing between the points in the span was 0.5mm and the surface consisted of span wise rows separated by 4mm. The wavelength to peak ratio was 8:1. The boundary layer thickness at the measurement location was 190mm giving a large separation of roughness height to layer thickness. The maximum friction velocity was uτ=1.5m/s at Rex=3.8 x10^7. Results for the skin friction co-efficient show that this surface follows a Nikuradse type inflectional curve and that Townsends outer layer similarity hypothesis is valid for rough wall flows with a large separation of scales. Mean flow and turbulence statistics will be presented.
Time resolved measurements of particle lift off from the wall in a turbulent water channel flow
van Hout, Rene; Rabencov, Boris; Arca, Javier
2011-11-01
Time-Resolved Particle Image Velocimetry (TR-PIV) and digital holography measurements were carried out in a dilute particle-laden flow tracking both Polystyrene Spheres (PS, ~0.583 mm, d+ ~ 10) as well as resolving the instantaneous velocity field of the turbulent flow. Measurements were performed in a closed loop, transparent, square channel facility (50x50 mm2) at 127.5cm from the inlet with bulk water velocity 0.3 m/s (Reh = 7353) and friction velocity 0.0174 m/s. Data were captured at 1 kHz, corresponding to a time scale 5x smaller than the flow's viscous scale. Single view digital holographic cinematography was used to track the 3D PS motion inside the VOI (17x17x50 mm3) including the wall bottom. TR-PIV in a vertical plane (29.3x29.3 mm2) oriented along the channel's centerline imaged PS together with flow tracers. Discrimination was based on their size difference. Instantaneous sequences of PS plotted on the spatial velocity, vorticity and swirling strength maps showed the effect of turbulent flow structures and resulting particle movement. Results are presented for particles that lift off from the bottom wall as a result of complex interaction with ejection and sweep motions.
Time resolved, near wall PIV measurements in a high Reynolds number turbulent pipe flow
Willert, C.; Soria, J.; Stanislas, M.; Amili, O.; Bellani, G.; Cuvier, C.; Eisfelder, M.; Fiorini, T.; Graf, N.; Klinner, J.
2016-11-01
We report on near wall measurements of a turbulent pipe flow at shear Reynolds numbers up to Reτ = 40000 acquired in the CICLoPE facility near Bologna, Italy. With 900 mm diameter and 110 m length the facility offers a well-established turbulent flow with viscous length scales ranging from y+ = 85 μ m at Reτ = 5000 to y+ = 11 μ m at Reτ = 40000 . These length scales can be resolved with a high-speed PIV camera at image magnification near unity. For the measurement the light of a high-speed, double-pulse laser is focused into a 300 μ m thin light sheet that is introduced radially into the pipe. The light scattered by 1 μ m water-glycerol droplet seeding is observed from the side by the camera via a thin high-aspect ratio mirror with a field of view covering 20mm in wall-normal and 5mm in stream-wise direction. Statistically converged velocity profiles could be achieved using 70000 samples per sequence acquired at low laser repetition rates (100Hz). Higher sampling rates of 10 kHz provide temporally coherent data from which frequency spectra can be derived. Preliminary analysis of the data shows a well resolved inner peak that grows with increasing Reynolds number. (Project funding through EuHIT - www.euhit.org)
Klewicki, J. C.; Chini, G. P.; Gibson, J. F.
2017-03-01
Recent and on-going advances in mathematical methods and analysis techniques, coupled with the experimental and computational capacity to capture detailed flow structure at increasingly large Reynolds numbers, afford an unprecedented opportunity to develop realistic models of high Reynolds number turbulent wall-flow dynamics. A distinctive attribute of this new generation of models is their grounding in the Navier-Stokes equations. By adhering to this challenging constraint, high-fidelity models ultimately can be developed that not only predict flow properties at high Reynolds numbers, but that possess a mathematical structure that faithfully captures the underlying flow physics. These first-principles models are needed, for example, to reliably manipulate flow behaviours at extreme Reynolds numbers. This theme issue of Philosophical Transactions of the Royal Society A provides a selection of contributions from the community of researchers who are working towards the development of such models. Broadly speaking, the research topics represented herein report on dynamical structure, mechanisms and transport; scale interactions and self-similarity; model reductions that restrict nonlinear interactions; and modern asymptotic theories. In this prospectus, the challenges associated with modelling turbulent wall-flows at large Reynolds numbers are briefly outlined, and the connections between the contributing papers are highlighted.
Institute of Scientific and Technical Information of China (English)
DONG Yu-hong; LU Xi-yun; ZHUANG Li-xian
2004-01-01
Thermally-stratified shear turbulent channel flow with temperature oscillation on the bottom wall of the channel was investigated with the Large Eddy Simulation (LES) approach coupled with dynamic Sub-Grid-Scale (SGS) models. The effect of temperature oscillation on the turbulent channel flow behavior was examined. The phase-averaged velocities and temperature, and flow structures at different Richardson numbers and periods of the oscillation was analyzed.
Scaling and interaction of self-similar modes in models of high-Reynolds number wall turbulence
Sharma, A S; McKeon, B J
2016-01-01
Previous work has established the usefulness of the resolvent operator that maps the terms nonlinear in the turbulent fluctuations to the fluctuations themselves. Further work has described the self-similarity of the resolvent arising from that of the mean velocity profile. The orthogonal modes provided by the resolvent analysis describe the wall-normal coherence of the motions and inherit that self-similarity. In this contribution, we present the implications of this similarity for the nonlinear interaction between modes with different scales and wall-normal locations. By considering the nonlinear interactions between modes, it is shown that much of the turbulence scaling behaviour in the logarithmic region can be determined from a single arbitrarily chosen reference plane. Thus, the geometric scaling of the modes is impressed upon the nonlinear interaction between modes. Implications of these observations on the self-sustaining mechanisms of wall turbulence, modelling and simulation are outlined.
Kukavica, Biljana; Mojovic, Milos; Vuccinic, Zeljko; Maksimovic, Vuk; Takahama, Umeo; Jovanovic, Sonja Veljovic
2009-02-01
The hydroxyl radical produced in the apoplast has been demonstrated to facilitate cell wall loosening during cell elongation. Cell wall-bound peroxidases (PODs) have been implicated in hydroxyl radical formation. For this mechanism, the apoplast or cell walls should contain the electron donors for (i) H(2)O(2) formation from dioxygen; and (ii) the POD-catalyzed reduction of H(2)O(2) to the hydroxyl radical. The aim of the work was to identify the electron donors in these reactions. In this report, hydroxyl radical (.OH) generation in the cell wall isolated from pea roots was detected in the absence of any exogenous reductants, suggesting that the plant cell wall possesses the capacity to generate .OH in situ. Distinct POD and Mn-superoxide dismutase (Mn-SOD) isoforms different from other cellular isoforms were shown by native gel electropho-resis to be preferably bound to the cell walls. Electron paramagnetic resonance (EPR) spectroscopy of cell wall isolates containing the spin-trapping reagent, 5-diethoxyphosphoryl-5-methyl-1-pyrroline-N-oxide (DEPMPO), was used for detection of and differentiation between .OH and the superoxide radical (O(2)(-).). The data obtained using POD inhibitors confirmed that tightly bound cell wall PODs are involved in DEPMPO/OH adduct formation. A decrease in DEPMPO/OH adduct formation in the presence of H(2)O(2) scavengers demonstrated that this hydroxyl radical was derived from H(2)O(2). During the generation of .OH, the concentration of quinhydrone structures (as detected by EPR spectroscopy) increased, suggesting that the H(2)O(2) required for the formation of .OH in isolated cell walls is produced during the reduction of O(2) by hydroxycinnamic acids. Cell wall isolates in which the proteins have been denaturated (including the endogenous POD and SOD) did not produce .OH. Addition of exogenous H(2)O(2) again induced the production of .OH, and these were shown to originate from the Fenton reaction with tightly bound metal ions
Pozarlik, Artur Krzysztof; Kok, Jacobus B.W.
2012-01-01
An accurate prediction of the flow and the thermal boundary layer is required to properly simulate gas to wall heat transfer in a turbulent flow. This is studied with a view to application to gas turbine combustors. A typical gas turbine combustion chamber flow presents similarities with the
Pozarlik, Artur Krzysztof; Kok, Jacobus B.W.
2012-01-01
An accurate prediction of the flow and the thermal boundary layer is required to properly simulate gas to wall heat transfer in a turbulent flow. This is studied with a view to application to gas turbine combustors. A typical gas turbine combustion chamber flow presents similarities with the well-st
Bandyopadhyay, Promode R.; Hellum, Aren M.
2014-10-01
Many slow-moving biological systems like seashells and zebrafish that do not contend with wall turbulence have somewhat organized pigmentation patterns flush with their outer surfaces that are formed by underlying autonomous reaction-diffusion (RD) mechanisms. In contrast, sharks and dolphins contend with wall turbulence, are fast swimmers, and have more organized skin patterns that are proud and sometimes vibrate. A nonlinear spatiotemporal analytical model is not available that explains the mechanism underlying control of flow with such proud patterns, despite the fact that shark and dolphin skins are major targets of reverse engineering mechanisms of drag and noise reduction. Comparable to RD, a minimal self-regulation model is given for wall turbulence regeneration in the transitional regime--laterally coupled, diffusively--which, although restricted to pre-breakdown durations and to a plane close and parallel to the wall, correctly reproduces many experimentally observed spatiotemporal organizations of vorticity in both laminar-to-turbulence transitioning and very low Reynolds number but turbulent regions. We further show that the onset of vorticity disorganization is delayed if the skin organization is treated as a spatiotemporal template of olivo-cerebellar phase reset mechanism. The model shows that the adaptation mechanisms of sharks and dolphins to their fluid environment have much in common.
Reinink, Shawn K.; Yaras, Metin I.
2015-06-01
Forced-convection heat transfer in a heated working fluid at a thermodynamic state near its pseudocritical point is poorly predicted by correlations calibrated with data at subcritical temperatures and pressures. This is suggested to be primarily due to the influence of large wall-normal thermophysical property gradients that develop in proximity of the pseudocritical point on the concentration of coherent turbulence structures near the wall. The physical mechanisms dominating this influence remain poorly understood. In the present study, direct numerical simulation is used to study the development of coherent vortical structures within a turbulent spot under the influence of large wall-normal property gradients. A turbulent spot rather than a fully turbulent boundary layer is used for the study, for the coherent structures of turbulence in a spot tend to be in a more organized state which may allow for more effective identification of cause-and-effect relationships. Large wall-normal gradients in thermophysical properties are created by heating the working fluid which is near the pseudocritical thermodynamic state. It is found that during improved heat transfer, wall-normal gradients in density accelerate the growth of the Kelvin-Helmholtz instability mechanism in the shear layer enveloping low-speed streaks, causing it to roll up into hairpin vortices at a faster rate. It is suggested that this occurs by the baroclinic vorticity generation mechanism which accelerates the streamwise grouping of vorticity during shear layer roll-up. The increased roll-up frequency leads to reduced streamwise spacing between hairpin vortices in wave packets. The density gradients also promote the sinuous instability mode in low-speed streaks. The resulting oscillations in the streaks in the streamwise-spanwise plane lead to locally reduced spanwise spacing between hairpin vortices forming over adjacent low-speed streaks. The reduction in streamwise and spanwise spacing between
Tran, Chuong V; Yu, Xinwei
2012-06-01
We study incompressible magnetohydrodynamic turbulence in both two and three dimensions, with an emphasis on the number of degrees of freedom N. This number is estimated in terms of the magnetic Prandtl number Pr, kinetic Reynolds number Re, and magnetic Reynolds number Rm. Here Re and Rm are dynamic in nature, defined in terms of the kinetic and magnetic energy dissipation rates (or averages of the velocity and magnetic field gradients), viscosity and magnetic diffusivity, and the system size. It is found that for the two-dimensional case, N satisfies N≤PrRe(3/2)+Rm(3/2) for Pr>1 and N≤Re(3/2)+Pr(-1)Rm(3/2) for Pr≤1. In three dimensions, on the other hand, N satisfies N≤(PrRe(3/2)+Rm(3/2))(3/2) for Pr>1 and N≤(Re(3/2)+Pr(-1)Rm(3/2))(3/2) for Pr≤1. In the limit Pr→0, Re(3/2) dominates Pr(-1)Rm(3/2), and the present estimate for N appropriately reduces to Re(9/4) as in the case of usual Navier-Stokes turbulence. For Pr≈1, our results imply the classical spectral scaling of the energy inertial range and dissipation wave number (in the form of upper bounds). These bounds are consistent with the existing predictions in the literature for turbulence with or without Alfvén wave effects. We discuss the possibility of solution regularity, with an emphasis on the two-dimensional case in the absence of either one or both of the dissipation terms.
Hadži-Tašković Šukalović, Vesna; Vuletić, Mirjana; Marković, Ksenija; Cvetić Antić, Tijana; Vučinić, Željko
2015-01-01
Comparative biochemical characterization of class III peroxidase activity tightly bound to the cell walls of maize roots was performed. Ionically bound proteins were solubilized from isolated walls by salt washing, and the remaining covalently bound peroxidases were released, either by enzymatic digestion or by a novel alkaline extraction procedure that released covalently bound alkali-resistant peroxidase enzyme. Solubilized fractions, as well as the salt-washed cell wall fragments containing covalently bound proteins, were analyzed for peroxidase activity. Peroxidative and oxidative activities indicated that peroxidase enzymes were predominately associated with walls by ionic interactions, and this fraction differs from the covalently bound one according to molecular weight, isozyme patterns, and biochemical parameters. The effect of covalent binding was evaluated by comparison of the catalytic properties of the enzyme bound to the salt-washed cell wall fragments with the corresponding solubilized and released enzyme. Higher thermal stability, improved resistance to KCN, increased susceptibility to H2O2, stimulated capacity of wall-bound enzyme to oxidize indole-3-acetic acid (IAA) as well as the difference in kinetic parameters between free and bound enzymes point to conformational changes due to covalent binding. Differences in biochemical properties of ionically and covalently bound peroxidases, as well as the modulation of the enzyme properties as a result of covalent binding to the walls, indicate that these two fractions of apoplastic peroxidases play different roles.
One-way spatial integration of Navier-Stokes equations: stability of wall-bounded flows
Rigas, Georgios; Colonius, Tim; Towne, Aaron; Beyar, Michael
2016-11-01
For three-dimensional flows, questions of stability, receptivity, secondary flows, and coherent structures require the solution of large partial-derivative eigenvalue problems. Reduced-order approximations are thus required for engineering prediction since these problems are often computationally intractable or prohibitively expensive. For spatially slowly evolving flows, such as jets and boundary layers, a regularization of the equations of motion sometimes permits a fast spatial marching procedure that results in a huge reduction in computational cost. Recently, a novel one-way spatial marching algorithm has been developed by Towne & Colonius. The new method overcomes the principle flaw observed in Parabolized Stability Equations (PSE), namely the ad hoc regularization that removes upstream propagating modes. The one-way method correctly parabolizes the flow equations based on estimating, in a computationally efficient way, the local spectrum in each cross-stream plane and an efficient spectral filter eliminates modes with upstream group velocity. Results from the application of the method to wall-bounded flows will be presented and compared with predictions from the full linearized compressible Navier-Stokes equations and PSE.
Law of the wall in an unstably stratified turbulent channel flow
Scagliarini, Andrea; Gylfason, Ármann; Toschi, Federico
2015-01-01
We perform direct numerical simulations of an unstably stratified turbulent channel flow to address the effects of buoyancy on the boundary layer dynamics and mean field quantities. We systematically span a range of parameters in the space of friction Reynolds number ($Re_{\\tau}$) and Rayleigh number ($Ra$). Our focus is on deviations from the logarithmic law of the wall due to buoyant motion. The effects of convection in the relevant ranges are discussed providing measurements of mean profiles of velocity, temperature and Reynolds stresses as well as of the friction coefficient. A phenomenological model is proposed and shown to capture the observed deviations of the velocity profile in the log-law region from the non-convective case.
Feasible domain of Walker's unsteady wall-layer model for the velocity profile in turbulent flows
Directory of Open Access Journals (Sweden)
MIKHAIL D. MIKHAILOV
2014-12-01
Full Text Available The present work studies, in detail, the unsteady wall-layer model of Walker et al. (1989, AIAA J., 27, 140 – 149 for the velocity profile in turbulent flows. Two new terms are included in the transcendental non-linear system of equations that is used to determine the three main model parameters. The mathematical and physical feasible domains of the model are determined as a function of the non-dimensional pressure gradient parameter (p+. An explicit parameterization is presented for the average period between bursts (, the origin of time ( and the integration constant of the time dependent equation (A0 in terms of p+. In the present procedure, all working systems of differential equations are transformed, resulting in a very fast computational procedure that can be used to develop real-time flow simulators.
Feasible domain of Walker's unsteady wall-layer model for the velocity profile in turbulent flows.
Mikhailov, Mikhail D; Freire, Atila P Silva
2014-12-01
The present work studies, in detail, the unsteady wall-layer model of Walker et al. (1989, AIAA J., 27, 140 – 149) for the velocity profile in turbulent flows. Two new terms are included in the transcendental nonlinear system of equations that is used to determine the three main model parameters. The mathematical and physical feasible domains of the model are determined as a function of the non-dimensional pressure gradient parameter (p+). An explicit parameterization is presented for the average period between bursts (T+B), the origin of time (t+0 ) and the integration constant of the time dependent equation (A0) in terms of p+. In the present procedure, all working systems of differential equations are transformed, resulting in a very fast computational procedure that can be used to develop real-time flow simulators.
Ji, Yong; She, Zhen-Su
2016-11-01
The streamwise turbulent intensity in wall turbulence (pipe and boundary layer) presents non-uniform distribution in both physical and wave number space. The well-known Townsend-Perry attached eddy hypothesis divides the energy spectrum into three distinct ranges: a constant range at small wavenumbers klayer experiment indicates that a more precise spectral model is needed. We present here a unified analytical expression, based on a generalized dilation-invariant ansatz. It will be shown that analytic description of a stress length ell giving rise to accurate description of the mean velocity profile yields equally accurate prediction of the integral scale wavenumber ki, and the predicted dissipation gives rise of good prediction of the Kolmorogov dissipation wavenumber kd. Finally, the large-scale characteristic wavenumber kc follows a simple scaling law in terms of the stress length ell. Furthermore, we find that the Princeton data reveals possible anomalous scaling in the k-1 and k-5/3 range. The spectral curves based on our generalized dilation-invariant ansatz agree very well with the experimental spectrum, and the kinetic energy profile is also accurately reproduced. We have thus achieved, for the first time, a unified description of spatial and spectral distribution of fluctuation intensity from a recently developed symmetry approach.
Turbulence Modeling for the Simulation of Transition in Wall Shear Flows
Crawford, Michael E.
2007-01-01
Our research involves study of the behavior of k-epsilon turbulence models for simulation of bypass-level transition over flat surfaces and turbine blades. One facet of the research has been to assess the performance of a multitude of k-epsilon models in what we call "natural transition", i.e. no modifications to the k-e models. The study has been to ascertain what features in the dynamics of the model affect the start and end of the transition. Some of the findings are in keeping with those reported by others (e.g. ERCOFTAC). A second facet of the research has been to develop and benchmark a new multi-time scale k-epsilon model (MTS) for use in simulating bypass-level transition. This model has certain features of the published MTS models by Hanjalic, Launder, and Schiestel, and by Kim and his coworkers. The major new feature of our MTS model is that it can be used to compute wall shear flows as a low-turbulence Reynolds number type of model, i.e. there is no required partition with patching a one-equation k model in the near-wall region to a two-equation k-epsilon model in the outer part of the flow. Our MTS model has been studied extensively to understand its dynamics in predicting the onset of transition and the end-stage of the transition. Results to date indicate that it far superior to the standard unmodified k-epsilon models. The effects of protracted pressure gradients on the model behavior are currently being investigated.
Rehme, K.
1987-03-01
The velocity, turbulence, and temperature distributions in nuclear fuel element bundles of nuclear reactors were investigated. The mean velocity, the wall shear stresses, and the turbulence were measured in two wall subchannels of a rod bundle of four parallel rods, arranged in a rectangular channel, for three axial planes. A spacer grid was inserted in the rod bundle, for ratios between the distance spacer grid/measuring plane and the hydraulic diameter (LIDh) of 40.4, 32.8 and 16.9. The Reynolds number was 145,000. The results show that the distributions of the velocity and the turbulence are affected by the spacer grid, already for LIDh = 40.4. The effects of the spacer grid increase with decreasing distance to the spacer grid.
Adeniji-Fashola, A. A.
1989-01-01
The effect of the turbulence intensity level and its cross-stream distribution at the inlet on the numerical prediction of the heat transfer in a two-dimensional turbulent-wall jet was investigated. The investigation was carried out within the framework of the standard kappa-epsilon turbulence model. The predicted Nusselt number showed the influence of the turbulence intensity level and its cross-stream distribution at the inlet to be significant but restricted to the first 15 slot widths from the inlet slot. Beyond this location, all the predictions were observed to collapse onto a single curve which exhibited a maximum over-prediction of about 30 percent when compared with the available experimental data.
DEFF Research Database (Denmark)
Nakhaei, Mohammadhadi; Lessani, B.
2016-01-01
The effect of solid inertial particles on the velocity and temperature statistics of a non-isothermal turbulentchannel flow is studied using direct numerical simulation. The particles inertia is varied by changingthe particles diameter. The density of particles is kept constant. A two-way coupled...
Near-Surface Boundary Layer Turbulence Along a Horizontally-Moving, Surface-Piercing Vertical Wall
Washuta, Nathan; Duncan, James H
2016-01-01
The complex interaction between turbulence and the free surface in boundary layer shear flow created by a vertical surface-piercing wall is considered. A laboratory-scale device was built that utilizes a surface-piercing stainless steel belt that travels in a loop around two vertical rollers, with one length of the belt between the rollers acting as a horizontally-moving flat wall. The belt is accelerated suddenly from rest until reaching constant speed in order to create a temporally-evolving boundary layer analogous to the spatially-evolving boundary layer that would exist along a surface-piercing towed flat plate. Surface profiles are measured with a cinematic laser-induced fluorescence system and sub-surface velocity fields are recorded using a high-speed planar particle image velocimetry system. It is found that the belt initially travels through the water without creating any significant waves, before the free surface bursts with activity close to the belt surface. These free surface ripples travel away...
In situ calibrated defocusing PTV for wall-bounded measurement volumes
Fuchs, T.; Hain, R.; Kähler, C. J.
2016-08-01
In many situations, 3D velocity measurements in thin (∼1 mm) but wide (∼100 × 100 mm2) flow channels is an important task. To resolve the in-plane and out-of-plane velocity gradients properly, a precise calibration is required, since 3D measurement approaches rely strongly on the accuracy of the calibration procedure. It is likely that calibration targets do not fit domains with small depths, due to their size. Furthermore, in fields where such measurements are of interest, the accessibility of the measurement volume is often limited or even impossible. To overcome these drawbacks, this paper introduces an in situ calibrated defocusing particle tracking velocimetry approach for wall-bounded measurement domains with depths in the low millimeter range. The calibration function for the particle depth location is directly derived from the particle image geometries and their displacements between two frames. Employing only a single camera, this defocusing approach is capable of measuring the air flow between two parallel glass plates at a distance of 1 mm with an average uncertainty of 2.43% for each track, relative to the maximum velocity. A tomographic particle tracking velocimetry measurement, serving as a benchmark for the single camera technique, reaches an average uncertainty of 1.59%. Altogether, with its straightforward set-up and without requiring a calibration target, this in situ calibrated defocusing approach opens new areas of application for optical flow velocimetry. In particular, for measurement domains with small optical windows and a lack of accessibility.
Wakabayashi, Kazuyuki; Nakano, Saho; Soga, Kouichi; Hoson, Takayuki
2009-06-01
The effects of accelerated gravity stimuli on the cell wall-bound peroxidase activity and the lignin content were investigated along epicotyls of azuki bean (Vigna angularis) seedlings. The endogenous growth occurred primarily in the upper regions of the epicotyl, but no growth was detected in the middle or basal regions. Hypergravity treatment at 300g for 6h suppressed elongation growth and stimulated lateral expansion of the upper regions. The content of acetyl bromide-soluble lignin increased gradually from the apical to the basal regions of epicotyls. Hypergravity treatment stimulated the increase in the lignin content in epicotyls, particularly in the middle and basal regions. The peroxidase activity in the protein fraction extracted with a high ionic strength buffer from the cell wall preparation also increased gradually toward the basal region, and hypergravity treatment increased the activity in all epicotyl regions. There was a close correlation between the lignin content and the enzyme activity. These results suggest that hypergravity increases the activity of cell wall-bound peroxidase followed by increases of the lignin formation in epicotyl cell walls, which may contribute to increasing the rigidity of cell walls against the gravitational force.
Energy Technology Data Exchange (ETDEWEB)
Zamansky, Remi; Vinkovic, Ivana; Gorokhovski, Mikhael, E-mail: ivana.vinkovic@univ-lyonl.fr [Laboratoire de Mecanique des Fluides et d' Acoustique CNRS UMR 5509 Ecole Centrale de Lyon, 36, av. Guy de Collongue, 69134 Ecully Cedex (France)
2011-12-22
Inertial particle acceleration statistics are analyzed using DNS for turbulent channel flow. Along with effects recognized in homogeneous isotropic turbulence, an additional effect is observed due to high and low speed vortical structures aligned with the channel wall. In response to those structures, particles with moderate inertia experience strong longitudinal acceleration variations. DNS is also used in order to assess LES-SSAM (Subgrid Stochastic Acceleration Model), in which an approximation to the instantaneous non-filtered velocity field is given by simulation of both, filtered and residual, accelerations. This approach allow to have access to the intermittency of the flow at subgrid scale. Advantages of LES-SSAM in predicting particle dynamics in the channel flow at a high Reynolds number are shown.
Sudden relaminarisation and lifetimes in forced isotropic turbulence
Linkmann, Moritz; Morozov, Alexander
2015-11-01
We demonstrate an unexpected connection between isotropic turbulence and wall-bounded shear flows. We perform direct numerical simulations of isotropic turbulence forced at large scales at moderate Reynolds numbers and observe sudden transitions from chaotic dynamics to a spatially simple flow, analogous to the laminar state in wall bounded shear flows. We find that the survival probabilities of turbulence are exponential and the typical lifetimes increase super-exponentially with the Reynolds number, similar to results on relaminarisation of localised turbulence in pipe and plane Couette flow. Results from simulations subjecting the observed large-scale flow to random perturbations of variable amplitude demonstrate that it is a linearly stable simple exact solution that can be destabilised by a finite-amplitude perturbation, like the Hagen-Poiseuille profile in pipe flow. Our results suggest that both isotropic turbulence and wall-bounded shear flows qualitatively share the same phase-space dynamics.
Institute of Scientific and Technical Information of China (English)
Z. Lin; R.E. Waltz
2007-01-01
@@ Turbulent transport driven by plasma pressure gradients [Tangl978] is one of the most important scientific challenges in burning plasma experiments since the balance between turbulent transport and the self-heating by the fusion products (a-particles) determines the performance of a fusion reactor like ITER.
Zhang, Wei; Markfort, Corey; Porté-Agel, Fernando
2014-05-01
Turbulent boundary-layer flows over complex topography have been extensively studied in the atmospheric sciences and wind engineering communities. The upwind turbulence level, the atmospheric thermal stability and the shape of the topography as well as surface characteristics play important roles in turbulent transport of momentum and scalar fluxes. However, to the best of our knowledge, atmospheric thermal stability has rarely been taken into account in laboratory simulations, particularly in wind-tunnel experiments. Extension of such studies in thermally-stratified wind tunnels will substantially advance our understanding of thermal stability effects on the physics of flow over complex topography. Additionally, high-resolution experimental data can be used for development of new parameterization of surface fluxes and validation of numerical models such as Large-Eddy Simulation (LES). A series of experiments of neutral and thermally-stratified boundary-layer flows over a wall-mounted 2-D block were conducted at the Saint Anthony Falls Laboratory boundary-layer wind tunnel. The 2-D block, with a width to height ratio of 2:1, occupied the lowest 25% of the turbulent boundary layer. Stable and convective boundary layers were simulated by independently controlling the temperature of air flow, the test section floor, and the wall-mounted block surfaces. Measurements using high-resolution Particle Image Velocimetry (PIV), x-wire/cold-wire anemometry, thermal-couples and surface heat flux sensors were made to quantify the turbulent properties and surface fluxes in distinct macroscopic flow regions, including the separation/recirculation zones, evolving shear layer and the asymptotic far wake. Emphasis will be put on addressing thermal stability effects on the spatial distribution of turbulent kinetic energy (TKE) and turbulent fluxes of momentum and scalar from the near to far wake region. Terms of the TKE budget equation are also inferred from measurements and
A comparative study of near-wall turbulence in high and low Reynolds number boundary layers
Metzger, M. M.; Klewicki, J. C.
2001-03-01
The present study explores the effects of Reynolds number, over three orders of magnitude, in the viscous wall region of a turbulent boundary layer. Complementary experiments were conducted both in the boundary layer wind tunnel at the University of Utah and in the atmospheric surface layer which flows over the salt flats of the Great Salt Lake Desert in western Utah. The Reynolds numbers, based on momentum deficit thickness, of the two flows were Rθ=2×103 and Rθ≈5×106, respectively. High-resolution velocity measurements were obtained from a five-element vertical rake of hot-wires spanning the buffer region. In both the low and high Rθ flows, the length of the hot-wires measured less than 6 viscous units. To facilitate reliable comparisons, both the laboratory and field experiments employed the same instrumentation and procedures. Data indicate that, even in the immediate vicinity of the surface, strong influences from low-frequency motions at high Rθ produce noticeable Reynolds number differences in the streamwise velocity and velocity gradient statistics. In particular, the peak value in the root mean square streamwise velocity profile, when normalized by viscous scales, was found to exhibit a logarithmic dependence on Reynolds number. The mean streamwise velocity profile, on the other hand, appears to be essentially independent of Reynolds number. Spectra and spatial correlation data suggest that low-frequency motions at high Reynolds number engender intensified local convection velocities which affect the structure of both the velocity and velocity gradient fields. Implications for turbulent production mechanisms and coherent motions in the buffer layer are discussed.
Energy Technology Data Exchange (ETDEWEB)
Monty, J.P.; Lien, K.; Chong, M.S. [University of Melbourne, Department of Mechanical Engineering, Parkville, VIC (Australia); Allen, J.J. [New Mexico State University, Department of Mechanical Engineering, Las Cruces, NM (United States)
2011-12-15
A high Reynolds number boundary-layer wind-tunnel facility at New Mexico State University was fitted with a regularly distributed braille surface. The surface was such that braille dots were closely packed in the streamwise direction and sparsely spaced in the spanwise direction. This novel surface had an unexpected influence on the flow: the energy of the very large-scale features of wall turbulence (approximately six-times the boundary-layer thickness in length) became significantly attenuated, even into the logarithmic region. To the author's knowledge, this is the first experimental study to report a modification of 'superstructures' in a rough-wall turbulent boundary layer. The result gives rise to the possibility that flow control through very small, passive surface roughness may be possible at high Reynolds numbers, without the prohibitive drag penalty anticipated heretofore. Evidence was also found for the uninhibited existence of the near-wall cycle, well known to smooth-wall-turbulence researchers, in the spanwise space between roughness elements. (orig.)
Halpern, F. D.; Ricci, P.
2017-03-01
The narrow power decay-length ({λq} ), recently found in the scrape-off layer (SOL) of inner-wall limited (IWL) discharges in tokamaks, is studied using 3D, flux-driven, global two-fluid turbulence simulations. The formation of the steep plasma profiles is found to arise due to radially sheared \\mathbf{E}× \\mathbf{B} poloidal flows. A complex interaction between sheared flows and parallel plasma currents outflowing into the sheath regulates the turbulent saturation, determining the transport levels. We quantify the effects of sheared flows, obtaining theoretical estimates in agreement with our non-linear simulations. Analytical calculations suggest that the IWL {λq} is roughly equal to the turbulent correlation length.
Halpern, Federico D
2016-01-01
The narrow power decay-length ($\\lambda_q$), recently found in the scrape-off layer (SOL) of inner-wall limited (IWL) discharges in tokamaks, is studied using 3D, flux-driven, global two-fluid turbulence simulations. The formation of the steep plasma profiles measured is found to arise due to radially sheared $\\vec{E}\\times\\vec{B}$ poloidal flows. A complex interaction between sheared flows and outflowing plasma currents regulates the turbulent saturation, determining the transport levels. We quantify the effects of sheared flows, obtaining theoretical estimates in agreement with our non-linear simulations. Analytical calculations suggest that the IWL $\\lambda_q$ is roughly equal to the turbulent correlation length.
Institute of Scientific and Technical Information of China (English)
JIANG Nan; LIU Wei; LIU JianHua; TIAN Yan
2008-01-01
The time sequence signals of instantaneous longitudinal and normal velocity components at different vertical locations in the turbulent boundary layer over a smooth flat plate have been finely measured by constant temperature anemometry of model IFA-300 and X-shaped hot-wire sensor probe in a wind tunnel. The longitudinal and normal velocity components have been decomposed into multi-scales by wavelet transform. The upward eject and downward sweep motions in a burst process of coherent structure have been detected by the maximum energy criterion of identifying burst event in wall turbulence through wavelet analysis. The relationships of phase-averaged waveforms among longitudinal velocity component, normal velocity component and Reynolds stress component have been studied through a correlation function method. The dynamics course of coherent structures and their effects on statistical characteristics of turbulent flows are analyzed.
Directory of Open Access Journals (Sweden)
Piscaglia F.
2013-11-01
Full Text Available The implementation and the combination of advanced boundary conditions and subgrid scale models for Large Eddy Simulations are presented. The goal is to perform reliable cold flow LES simulations in complex geometries, such as in the cylinders of internal combustion engines. The implementation of an inlet boundary condition for synthetic turbulence generation and of two subgrid scale models, the local Dynamic Smagorinsky and the Wall-Adapting Local Eddy-viscosity SGS model ( WALE is described. The WALE model is based on the square of the velocity gradient tensor and it accounts for the effects of both the strain and the rotation rate of the smallest resolved turbulent fluctuations and it recovers the proper y3 near-wall scaling for the eddy viscosity without requiring dynamic pressure; hence, it is supposed to be a very reliable model for ICE simulation. Model validation has been performed separately on two steady state flow benches: a backward facing step geometry and a simple IC engine geometry with one axed central valve. A discussion on the completeness of the LES simulation (i.e. LES simulation quality is given.
Directory of Open Access Journals (Sweden)
Ahmed Rechia
2007-09-01
Full Text Available The aim of this work is to predict numerically the turbulent flow through a straight square duct using Reynolds Average Navier-Stokes equations (RANS by the widely used k – ε and a near wall turbulence k – ε − fμ models. To handle wall proximity and no-equilibrium effects, the first model is modified by incorporating damping functions fμ via the eddy viscosity relation. The predicted results for the streamwise, spanwise velocities and the Reynolds stress components are compared to those given by the k – ε model and by the direct numerical simulation (DNS data of Gavrilakis (J. Fluid Mech., 1992. In light of these results, the proposed k – ε − fμ model is found to be generally satisfactory for predicting the considered flow.
Washuta, Nathan; Duncan, James H
2016-01-01
The complex interactions between turbulence and the free surface, including air entrainment processes, in boundary layer shear flows created by vertical surface-piercing plates are considered. A laboratory-scale device was built that utilizes a surface-piercing stainless steel belt that travels in a loop around two vertical rollers, with one length of the belt between the rollers acting as a horizontally-moving flat wall. The belt is operated both as a suddenly-started plate to reproduce boundary layer flow or at steady state in the presence of a stationary flat plate positioned parallel to the belt to create a Couette flow with a free surface. Surface profiles are measured with a cinematic laser-induced fluorescence system in both experiments and air entrainment events and bubble motions are observed with stereo underwater white-light movies in the suddenly started belt experiment. It is found that the RMS surface height fluctuations, $\\eta$, peak near the boundaries of the flows and increase approximately l...
Quantifying turbulent wall shear stress in a stenosed pipe using large eddy simulation.
Gårdhagen, Roland; Lantz, Jonas; Carlsson, Fredrik; Karlsson, Matts
2010-06-01
Large eddy simulation was applied for flow of Re=2000 in a stenosed pipe in order to undertake a thorough investigation of the wall shear stress (WSS) in turbulent flow. A decomposition of the WSS into time averaged and fluctuating components is proposed. It was concluded that a scale resolving technique is required to completely describe the WSS pattern in a subject specific vessel model, since the poststenotic region was dominated by large axial and circumferential fluctuations. Three poststenotic regions of different WSS characteristics were identified. The recirculation zone was subject to a time averaged WSS in the retrograde direction and large fluctuations. After reattachment there was an antegrade shear and smaller fluctuations than in the recirculation zone. At the reattachment the fluctuations were the largest, but no direction dominated over time. Due to symmetry the circumferential time average was always zero. Thus, in a blood vessel, the axial fluctuations would affect endothelial cells in a stretched state, whereas the circumferential fluctuations would act in a relaxed direction.
Liou, M. S.; Adamson, T. C., Jr.
1980-01-01
Asymptotic methods are used to calculate the shear stress at the wall for the interaction between a normal shock wave and a turbulent boundary layer on a flat plate. A mixing length model is used for the eddy viscosity. The shock wave is taken to be strong enough that the sonic line is deep in the boundary layer and the upstream influence is thus very small. It is shown that unlike the result found for laminar flow an asymptotic criterion for separation is not found; however, conditions for incipient separation are computed numerically using the derived solution for the shear stress at the wall. Results are compared with available experimental measurements.
Institute of Scientific and Technical Information of China (English)
KE Feng; LIU Ying-zheng; WANG Wei-zhe; CHEN Han-ping
2006-01-01
Wall pressure fluctuations in turbulent boundary layer flow over backward-facing step with and without entrainment were investigated. Digital array pressure sensors and multi-arrayed microphones were employed to acquire the time-averaged static pressure and fluctuating pressure, respectively. The differences of two flows were scrutinized in terms of static pressure characteristics, pressure fluctuations, cross-correlation and coherence of wall pressure. Introduction of the entrainment increased scale of large-scale vortical structure and reduced its convection velocity. However, shedding frequency of large-scale vortical structures was found to be the same for both flows.
Institute of Scientific and Technical Information of China (English)
Ling Li; Ming-Shun Yuan
2011-01-01
In this paper the effects of hydrophobic wall on skin-friction drag in the channel flow are investigated through large eddy simulation on the basis of weaklycompressible flow equations with the MacCormack's scheme on collocated mesh in the FVM framework. The slip length model is adopted to describe the behavior of the slip velocities in the streamwise and spanwise directions at the interface between the hydrophobic wall and turbulent channel flow. Simulation results are presented by analyzing flow behaviors over hydrophobic wall with the Smagorinky subgrid-scale model and a dynamic model on computational meshes of different resolutions. Comparison and analysis are made on the distributions of timeaveraged velocity, velocity fluctuations, Reynolds stress as well as the skin-friction drag. Excellent agreement between the present study and previous results demonstrates the accuracy of the simple classical second-order scheme in representing turbulent vertox near hydrophobic wall. In addition, the relation of drag reduction efficiency versus time-averaged slip velocity is established. It is also found that the decrease of velocity gradient in the close wall region is responsible for the drag reduction. Considering its advantages of high calculation precision and efficiency, the present method has good prospect in its application to practical projects.
Midya, Samaresh; Duong, Alan; Thomas, Flint; Corke, Thomas
2016-11-01
Schoppa and Hussain (1998, 2002) demonstrated streak transient growth (STG) as the dominant streamwise coherent structure generation mechanism required for wall turbulence production. A novel, flush surface-mounted pulsed-DC plasma actuator was recently developed at the University of Notre Dame to actively intervene in STG. In recent high Reynolds number, zero pressure gradient turbulent boundary layer experiments, drag reduction of up to 68% was achieved. This is due to a plasma-induced near-wall, spanwise mean flow sufficient in magnitude to prevent the lift-up of low-speed streaks. This limits their flanking wall-normal component vorticity-a critical parameter in STG. Experiments also show that sufficiently large plasma-induced spanwise flow can exacerbate STG and increase drag by 80%. The ability to significantly increase or decrease drag by near-wall actuation provides an unprecedented new tool for clarifying the open questions regarding the interaction between near-wall coherent structures and those in the logarithmic region. In the reported experiments this interaction is experimentally characterized by a second-order Volterra nonlinear system model under both active suppression and enhancement of STG. Supported by NASA Langley under NNX16CL27C.
Brücker, C.
2015-01-01
© 2015 AIP Publishing LLC. The recent discovery of rare backflow events in turbulent boundary layer flows based on the analysis of simulation data has again raised the need of experimental visualizations of wall-shear stress fields in unsteady flows. The localization of critical points, which are thought to strongly correlate with large-scale events in the log-layer, is of importance. Up to now, there is no experimental proof of these rare events and their topological patterns. Their existenc...
Directory of Open Access Journals (Sweden)
Somnath Bhattacharjee
2016-01-01
Full Text Available Turbulent fluid flow and heat transfer in an asymmetric diffuser are important in the context of the power plant engineering such as gas turbine, aircraft propulsion systems, hydraulic turbine equipment etc. In the present study, an experimental investigation on the forced convective heat transfer considering turbulent air flow in an asymmetric rectangular diffuser duct has been done. The experimental setup considered for the analysis consists of a diffuser at different bottom wall temperatures and inlet conditions. The air enters into the diffuser at a room temperature and flows steadily under turbulent conditions undergoing thermal boundary layer development within the diffuser. Efforts have been focused to determine the effects of bottom wall heating on the recirculation bubble strength, thermal boundary layer, velocity fields, temperature profiles etc. The distribution of the local average Nusselt number and skin friction factor in the whole flow fields have been critically examined to identify the significance of bottom wall heating effects on the overall heat transfer rates.
In-medium bound-state formation and inhomogeneous condensation in Fermi gases in a hard-wall box
Roscher, Dietrich
2016-01-01
The formation of bosonic bound states underlies the formation of a superfluid ground state in the many-body phase diagram of ultracold Fermi gases. We study bound-state formation in a spin- and mass-imbalanced ultracold Fermi gas confined in a box with hard-wall boundary conditions. Because of the presence of finite Fermi spheres, the center-of-mass momentum of the potentially formed bound states can be finite, depending on the parameters controlling mass and spin imbalance as well as the coupling strength. We exploit this observation to estimate the potential location of inhomogeneous phases in the many-body phase diagram as a function of spin- and mass imbalance as well as the box size. Our results suggest that a hard-wall box does not alter substantially the many-body phase diagram calculated in the thermodynamic limit. Therefore, such a box may serve as an ideal trap potential to bring experiment and theory closely together and facilitate the search for exotic inhomogeneous ground states.
Karuppiah, N.; Vadlamudi, B.; Kaufman, P. B.
1989-01-01
Three different isoforms of invertases have been detected in the developing internodes of barley (Hordeum vulgare). Based on substrate specificities, the isoforms have been identified to be invertases (beta-fructosidases EC 3.2.1.26). The soluble (cytosolic) invertase isoform can be purified to apparent homogeneity by diethylaminoethyl cellulose, Concanavalin-A Sepharose, organo-mercurial Sepharose, and Sephacryl S-300 chromatography. A bound (cell wall) invertase isoform can be released by 1 molar salt and purified further by the same procedures as above except omitting the organo-mercurial Sepharose affinity chromatography step. A third isoform of invertase, which is apparently tightly associated with the cell wall, cannot be isolated yet. The soluble and bound invertase isoforms were purified by factors of 60- and 7-fold, respectively. The native enzymes have an apparent molecular weight of 120 kilodaltons as estimated by gel filtration. They have been identified to be dimers under denaturing and nondenaturing conditions. The soluble enzyme has a pH optimum of 5.5, Km of 12 millimolar, and a Vmax of 80 micromole per minute per milligram of protein compared with cell wall isozyme which has a pH optimum of 4.5, Km of millimolar, and a Vmax of 9 micromole per minute per milligram of protein.
An analysis of curvature effects for the control of wall-bounded shear flows
Gatski, T. B.; Savill, A. M.
1989-01-01
The Reynolds stress transport equations are used to predict the effects of simultaneous and sequential combinations of distortions on turbulent boundary layers. The equations are written in general orthogonal curvilinear coordinates, with the curvature terms expressed in terms of the principal radii of curvature of the respective coordinate surfaces. Results are obtained for the cases of two-dimensional and three-dimensional flows in the limit where production and pressure-strain redistribution dominate over diffusion effects.
A Split Forcing Technique to Reduce Log-layer Mismatch in Wall-modeled Turbulent Channel Flows
Deleon, Rey; Senocak, Inanc
2016-11-01
The conventional approach to sustain a flow field in a periodic channel flow seems to be the culprit behind the log-law mismatch problem that has been reported in many studies hybridizing Reynolds-averaged Navier-Stokes (RANS) and large-eddy simulation (LES) techniques, commonly referred to as hybrid RANS-LES. To address this issue, we propose a split-forcing approach that relies only on the conservation of mass principle. We adopt a basic hybrid RANS-LES technique on a coarse mesh with wall-stress boundary conditions to simulate turbulent channel flows at friction Reynolds numbers of 2000 and 5200 and demonstrate good agreement with benchmark data. We also report a duality in velocity scale that is a specific consequence of the split forcing framework applied to hybrid RANS-LES. The first scale is the friction velocity derived from the wall shear stress. The second scale arises in the core LES region, a value different than at the wall. Second-order turbulence statistics agree well with the benchmark data when normalized by the core friction velocity, whereas the friction velocity at the wall remains the appropriate scale for the mean velocity profile. Based on our findings, we suggest reevaluating more sophisticated hybrid RANS-LES approaches within the split-forcing framework. Work funded by National Science Foundation under Grant No. 1056110 and 1229709. First author acknowledges the University of Idaho President's Doctoral Scholars Award.
Dong, S
2016-01-01
We present an effective method for simulating wall-bounded multiphase flows consisting of $N$ ($N\\geqslant 2$) immiscible incompressible fluids with different densities, viscosities and pairwise surface tensions. The N-phase physical formulation is based on a modified thermodynamically consistent phase field model that is more general than in a previous work, and it is developed by considering the reduction consistency if some of the fluid components were absent from the system. We propose an N-phase contact-angle boundary condition that is reduction consistent between $N$ phases and $M$ phases ($2\\leqslant M\\leqslant N-1$). We also present a numerical algorithm for solving the N-phase governing equations together with the contact-angle boundary conditions developed herein. Extensive numerical experiments are presented for several flow problems involving multiple fluid components and solid-wall boundaries to investigate the wettability effects with multiple types of contact angles. In particular, we compare s...
Photonic realization of topologically protected bound states in domain-wall waveguide arrays
Lee-Thorp, James P; Xu, Xinan; Yang, Jinghui; Fefferman, Charles L; Wong, Chee Wei; Weinstein, Michael I
2016-01-01
We present an analytical theory of topologically protected photonic states for the two-dimensional Maxwell equations for a class of continuous periodic dielectric structures, modulated by a domain wall. We further numerically confirm the applicability of this theory for three-dimensional structures.
Timmers, J.F.P.; Vernhettes, S.; Desprez, T.; Vincken, J.P.; Visser, R.G.F.; Trindade, L.M.
2009-01-01
It has not yet been reported how the secondary CESA (cellulose synthase) proteins are organized in the rosette structure. A membrane-based yeast two-hybrid (MbYTH) approach was used to analyze the interactions between the CESA proteins involved in secondary cell wall synthesis of Arabidopsis and the
Inertia-driven particle migration and mixing in a wall-bounded laminar suspension flow
Energy Technology Data Exchange (ETDEWEB)
Loisel, V.; Abbas, M., E-mail: micheline.abbas@ensiacet.fr; Masbernat, O. [Université de Toulouse INPT-UPS: Laboratoire de Génie Chimique and CNRS, Fédération de Recherche FERMaT, Toulouse (France); Climent, E. [Université de Toulouse INPT-UPS: Institut de Mécanique des Fluides de Toulouse and CNRS, Fédération de Recherche FERMaT, Toulouse (France)
2015-12-15
Laminar pressure-driven suspension flows are studied in the situation of neutrally buoyant particles at finite Reynolds number. The numerical method is validated for homogeneous particle distribution (no lateral migration across the channel): the increase of particle slip velocities and particle stress with inertia and concentration is in agreement with former works in the literature. In the case of a two-phase channel flow with freely moving particles, migration towards the channel walls due to the Segré-Silberberg effect is observed, leading to the development of a non-uniform concentration profile in the wall-normal direction (the concentration peaks in the wall region and tends towards zero in the channel core). The particle accumulation in the region of highest shear favors the shear-induced particle interactions and agitation, the profile of which appears to be correlated to the concentration profile. A 1D model predicting particle agitation, based on the kinetic theory of granular flows in the quenched state regime when Stokes number St = O(1) and from numerical simulations when St < 1, fails to reproduce the agitation profile in the wall normal direction. Instead, the existence of secondary flows is clearly evidenced by long time simulations. These are composed of a succession of contra-rotating structures, correlated with the development of concentration waves in the transverse direction. The mechanism proposed to explain the onset of this transverse instability is based on the development of a lift force induced by spanwise gradient of the axial velocity fluctuations. The establishment of the concentration profile in the wall-normal direction therefore results from the combination of the mean flow Segré-Silberberg induced migration, which tends to stratify the suspension and secondary flows which tend to mix the particles over the channel cross section.
Institute of Scientific and Technical Information of China (English)
Wu Hailing; Chen Tingkuan; Luo Yushan; Wang Haijun
2001-01-01
The present work is to investigate the transient three-dimensional heated turbulent jet into crossflow in a thick wall T-junction pipe using CFD package. Two cases with the jet-to-crossflow velocity ratio of 0.05 and 0.5 are computed, with a finite-volume method utilizing k-ε turbulent model. Comparison of the steady-state computations with measured data shows good qualitative agreement. Transient process of injection is simulated to examine the thermal shock on the T-junction component. Temporal temperature of the component is acquired by thermal coupling with the fluid. Via analysis of the flow and thermal characteristics, factors causing the thermal shock are studied. Optimal flow rates are discussed to reduce the thermal shock.
Institute of Scientific and Technical Information of China (English)
2007-01-01
Through temporal mode direct numerical simulation, flow field database of a fully developed turbulent boundary layer on a flat plate with Mach number 4.5 and Reynolds number Reθ =1094 has been obtained. Commonly used detection meth- ods in experiments are applied to detecting coherent structures in the flow field, and it is found that coherent structures do exist in the wall region of a supersonic turbulent boundary layer. The detected results show that a low-speed streak is de- tected by using the Mu-level method, the rising parts of this streak are detected by using the second quadrant method, and the crossing regions from a low-speed streak to the high-speed one are detected by using the VITA method respectively. Notwithstanding that different regions are detected by different methods, they are all accompanied by quasi-stream-wise vortex structures.
Institute of Scientific and Technical Information of China (English)
HUANG ZhangFeng; ZHOU Heng; LUO JiSheng
2007-01-01
Through temporal mode direct numerical simulation, flow field database of a fully developed turbulent boundary layer on a flat plate with Mach number 4.5 and Reynolds number Reθ=1094 has been obtained. Commonly used detection methods in experiments are applied to detecting coherent structures in the flow field,and it is found that coherent structures do exist in the wall region of a supersonic turbulent boundary layer. The detected results show that a low-speed streak is detected by using the Mu-level method, the rising parts of this streak are detected by using the second quadrant method, and the crossing regions from a low-speed streak to the high-speed one are detected by using the VITA method respectively.Notwithstanding that different regions are detected by different methods, they are all accompanied by quasi-stream-wise vortex structures.
Bound Eigenstate dynamics under a sudden shift of the well's wall
Granot, Er'el; 10.1103/PhysRevA.81.032125
2010-01-01
We investigate the dynamics of the eigenstate of an infinite well under an abrupt shift of the well's wall. It is shown that when the shift is small compared to the initial well's dimensions, the short time behavior changes from the well known t^(3/2) behavior to t^(1/2) . It is also shown that the complete dynamical picture converges to a universal function, which has fractal structure with dimensionality D=1.25.
Chang, Kyungsik
2012-09-01
We report on the isogeometric residual-based variational multiscale (VMS) large eddy simulation of a fully developed turbulent flow over a wavy wall. To assess the predictive capability of the VMS modeling framework, we compare its predictions against the results from direct numerical simulation (DNS) and large eddy simulation (LES) and, when available, against experimental measurements. We use C 1 quadratic B-spline basis functions to represent the smooth geometry of the sinusoidal lower wall and the solution variables. The Reynolds numbers of the flows considered are 6760 and 30,000 based on the bulk velocity and average channel height. The ratio of amplitude to wavelength (α/λ) of the sinusoidal wavy surface is set to 0.05. The computational domain is 2λ×1.05λ×λ in the streamwise, wall-normal and spanwise directions, respectively. For the Re=6760 case, mean averaged quantities, including velocity and pressure profiles, and the separation/reattachment points in the recirculation region, are compared with DNS and experimental data. The turbulent kinetic energy and Reynolds stress are in good agreement with benchmark data. Coherent structures over the wavy wall are observed in isosurfaces of the Q-criterion and show similar features to those previously reported in the literature. Comparable accuracy to DNS solutions is obtained with at least one order of magnitude fewer degrees of freedom. For the Re=30,000 case, good agreement was obtained for mean wall shear stress and velocity profiles compared with available LES results reported in the literature. © 2012 Elsevier Ltd.
Bell, James H.; Heineck, James T.; Zilliac, Gregory; Mehta, Rabindra D.; Long, Kurtis R.
2016-01-01
An important goal for modern fluid mechanics experiments is to provide datasets which present a challenge for Computational Fluid Dynamics simulations to reproduce. Such "CFD validation experiments" should be well-characterized and well-documented, and should investigate flows which are difficult for CFD to calculate. It is also often convenient for the experiment to be challenging for CFD in some aspects while simple in others. This report is part of the continuing documentation of a series of experiments conducted to characterize the flow around an axisymmetric, modified-cosine-shaped, wall-mounted hill named "FAITH" (Fundamental Aero Investigates The Hill). Computation of this flow is easy in some ways - subsonic flow over a simple shape - while being complex in others - separated flow and boundary layer interactions. The primary set of experiments were performed on a 15.2 cm high, 45.7 cm base diameter machined aluminum model that was tested at mean speeds of 50 m/s (Reynolds Number based on height = 500,000). The ratio of model height to boundary later height was approximately 3. The flow was characterized using surface oil flow visualization, Cobra probe to determine point-wise steady and unsteady 3D velocities, Particle Image Velocimetry (PIV) to determine 3D velocities and turbulence statistics along specified planes, Pressure Sensitive Paint (PSP) to determine mean surface pressures, and Fringe Imaging Skin Friction (FISF) to determine surface skin friction magnitude and direction. A set of pathfinder experiments were also performed in a water channel on a smaller scale (5.1 cm high, 15.2 cm base diameter) sintered nylon model. The water channel test was conducted at a mean test section speed of 3 cm/s (Reynolds Number of 1500), but at the same ratio of model height to boundary layer thickness. Dye injection from both the model and an upstream rake was used to visualize the flow. This report summarizes the experimental set-up, techniques used, and data
Pabon, Rommel; Barnard, Casey; Ukeiley, Lawrence; Sheplak, Mark
2016-11-01
Particle image velocimetry (PIV) and fluctuating wall shear stress experiments were performed on a flat plate turbulent boundary layer (TBL) under zero pressure gradient conditions. The fluctuating wall shear stress was measured using a microelectromechanical 1mm × 1mm floating element capacitive shear stress sensor (CSSS) developed at the University of Florida. The experiments elucidated the imprint of the organized motions in a TBL on the wall shear stress through its direct measurement. Spatial autocorrelation of the streamwise velocity from the PIV snapshots revealed large scale motions that scale on the order of boundary layer thickness. However, the captured inclination angle was lower than that determined using the classic method by means of wall shear stress and hot-wire anemometry (HWA) temporal cross-correlations and a frozen field hypothesis using a convection velocity. The current study suggests the large size of these motions begins to degrade the applicability of the frozen field hypothesis for the time resolved HWA experiments. The simultaneous PIV and CSSS measurements are also used for spatial reconstruction of the velocity field during conditionally sampled intense wall shear stress events. This material is based upon work supported by the National Science Foundation Graduate Research Fellowship under Grant No. DGE-1315138.
Institute of Scientific and Technical Information of China (English)
周恒; 熊忠民
1995-01-01
By using the idea of resonant triad of the theory of hydrodynamic stability, a theoretical model was proposed for the generation of the coherent structures in the wall region of a turbulent boundary layer. The obtained structural configuration, the spanwise length scale and the convective speed of the coherent structures are in agreement with those obtained by numerical simulations. To further characterize these structures, the probability density distribution of the non-dimensional circulation difference of the largely unsymmetric streamwise vortex pairs has been calculated. Its comparison with those obtained by the numerical simulations is in general satisfactory.
Directory of Open Access Journals (Sweden)
K.V. Sharma
2011-12-01
Full Text Available A mathematical model was developed for the study of external turbulent film condensation of pure vapours flowing downward and normal to the axis of the condenser tube with constant heat flux conditions maintained at the tube wall. The magnitude of interfacial shear was estimated for a given external flow condition of the vapour with the help of Colburn’s analogy. The average condensation heat transfer coefficients for different system conditions were evaluated. The present theory was compared with the available experimental and theoretical data in the literature and was found to be satisfactory.
Münch, Daniela; Müller, Anna; Schneider, Tanja; Kohl, Bastian; Wenzel, Michaela; Bandow, Julia Elisabeth; Maffioli, Sonia; Sosio, Margherita; Donadio, Stefano; Wimmer, Reinhard; Sahl, Hans-Georg
2014-04-25
The lantibiotic NAI-107 is active against Gram-positive bacteria including vancomycin-resistant enterococci and methicillin-resistant Staphylococcus aureus. To identify the molecular basis of its potency, we studied the mode of action in a series of whole cell and in vitro assays and analyzed structural features by nuclear magnetic resonance (NMR). The lantibiotic efficiently interfered with late stages of cell wall biosynthesis and induced accumulation of the soluble peptidoglycan precursor UDP-N-acetylmuramic acid-pentapeptide (UDP-MurNAc-pentapeptide) in the cytoplasm. Using membrane preparations and a complete cascade of purified, recombinant late stage peptidoglycan biosynthetic enzymes (MraY, MurG, FemX, PBP2) and their respective purified substrates, we showed that NAI-107 forms complexes with bactoprenol-pyrophosphate-coupled precursors of the bacterial cell wall. Titration experiments indicate that first a 1:1 stoichiometric complex occurs, which then transforms into a 2:1 (peptide: lipid II) complex, when excess peptide is added. Furthermore, lipid II and related molecules obviously could not serve as anchor molecules for the formation of defined and stable nisin-like pores, however, slow membrane depolarization was observed after NAI-107 treatment, which could contribute to killing of the bacterial cell.
Koivikko, Riitta; Loponen, Jyrki; Honkanen, Tuija; Jormalainen, Veijo
2005-01-01
Phlorotannins are ubiquitous secondary metabolites in brown algae that are phenotypically plastic and suggested to have multiple ecological roles. Traditionally, phlorotannins have been quantified as total soluble phlorotannins. Here, we modify a quantification procedure to measure, for the first time, the amount of cell-wall-bound phlorotannins. We also optimize the quantification of soluble phlorotannins. We use these methods to study the responses of soluble and cell-wall-bound phlorotannin to nutrient enrichment in growing and nongrowing parts of the brown alga Fucus vesiculosus. We also examine the effects of nutrient shortage and herbivory on the rate of phlorotannin exudation. Concentrations of cell-wall-bound phlorotannins were much lower than concentrations of soluble phlorotannins; we also found that nutrient treatment over a period of 41 days affected only soluble phlorotannins. Concentrations of each phlorotannin type correlated positively between growing and nongrowing parts of individual seaweeds. However, within nongrowing thalli, soluble and cell-wall-bound phlorotannins were negatively correlated, whereas within growing thalli there was no correlation. Phlorotannins were exuded from the thallus in all treatments. Herbivory increased exudation, while a lack of nutrients had no effect on exudation. Because the amount of cell-wall-bound phlorotannins is much smaller than the amount of soluble phlorotannins, the major function of phlorotannins appears to be a secondary one.
Numerical Study of Laminar-Turbulent Transition on a Plate in a Low-Speen Tunnel with Contoured Wall
Institute of Scientific and Technical Information of China (English)
无
1999-01-01
Laminar-turbulent transition flow phenomena on a flat plate in a low-speed wind tunnel at different Reynolds numbers were studied numerically.The flow calculation is based on an inviscid/boundary layer interaction method with modified Abu-Ghannam/Shaw(AGS) transition criterion.The test section has non-symmetrical contoured walls,and the plate is located biased the bottom side with a height ratio of 26:14.Intest case of steady flow,a laminar-turbulent transition takes place and a small separation bubble occurs on the upper side of the plate,when the inlet Reynolds number is as small as 0.631×10-6,.The predicted transition location agrees well with that of the test results,but the separation bubble is hardly to see from the calculated velocity profiles though the printed data of velocity in this region do show the negative values.The further numerical predictions with different Reynolds numbers corresponding to the incoming flow velocities show that when the Reynolds number is greater than 1.379×10-6,the separation bubble does not occur,which is coincident with the experimental results.The influence of the side wall geometry on the transition on the plate is also studied.
Directory of Open Access Journals (Sweden)
Selvam S.
2012-01-01
Full Text Available This paper presents the effect of bonding and without bonding of wire coiled coil matrix turbulator on the heat transfer for a fully developed turbulent flow. Experiments are conducted by maintaining constant wall temperature. Tests are performed on 3 different wire coiled coil matrix turbulators of different pitches of 5, 10 and 15 mm without bonding of the turbulator. Three similar types of heat exchangers are fabricated and the wire coiled coil matrix turbulators with different pitches of 5, 10 and 15mm are inserted in the heat exchangers and bonding is done on the surface of the tube section. Results have indicated that the heat transfer rate enhances inversely with the pitch of the wire coiled coil matrix turbulator with bonding. With a pitch of 5 mm, the turbulators without bonding have resulted in almost 25.4% enhancement when compared with plain tube. On the other hand, for pitches of 10 mm and 15 mm the enhancement were 20.7% and 16.8%, respectively. The empirical correlations developed for turbulators with and without bonding results in ±6% deviation for Nusselt number and ±3% for friction factor. Similarly with a pitch of 5 mm, the turbulators with bonding have resulted in almost 42% enhancement. For pitches of 10mm and 15mm the enhancements were 34.7% and 25%, respectively.
Protein-bound uremic toxins stimulate crosstalk between leukocytes and vessel wall.
Pletinck, Anneleen; Glorieux, Griet; Schepers, Eva; Cohen, Gerald; Gondouin, Bertrand; Van Landschoot, Maria; Eloot, Sunny; Rops, Angelique; Van de Voorde, Johan; De Vriese, An; van der Vlag, Johan; Brunet, Philippe; Van Biesen, Wim; Vanholder, Raymond
2013-12-01
Leukocyte activation and endothelial damage both contribute to cardiovascular disease, a major cause of morbidity and mortality in CKD. Experimental in vitro data link several protein-bound uremic retention solutes to the modulation of inflammatory stimuli, including endothelium and leukocyte responses and cardiovascular damage, corroborating observational in vivo data. However, the impact of these uremic toxins on the crosstalk between endothelium and leukocytes has not been assessed. This study evaluated the effects of acute and continuous exposure to uremic levels of indoxylsulfate (IS), p-cresylsulfate (pCS), and p-cresylglucuronide (pCG) on the recruitment of circulating leukocytes in the rat peritoneal vascular bed using intravital microscopy. Superfusion with IS induced strong leukocyte adhesion, enhanced extravasation, and interrupted blood flow, whereas pCS caused a rapid increase in leukocyte rolling. Superfusion with pCS and pCG combined caused impaired blood flow and vascular leakage but did not further enhance leukocyte rolling over pCS alone. Intravenous infusion with IS confirmed the superfusion results and caused shedding of heparan sulfate, pointing to disruption of the glycocalyx as the mechanism likely mediating IS-induced flow stagnation. These results provide the first clear in vivo evidence that IS, pCS, and pCG exert proinflammatory effects that contribute to vascular damage by stimulating crosstalk between leukocytes and vessels.
Lamorgese, A.; Mauri, R.
2015-09-01
We present numerical results from phase-field simulations of the buoyancy-driven detachment of an isolated, wall-bound pendant emulsion droplet acted upon by surface tension and wall-normal buoyancy forces alone. Our theoretical approach follows a diffuse-interface model for partially miscible binary mixtures which has been extended to include the influence of static contact angles other than 90∘, based on a Hermite interpolation formulation of the Cahn boundary condition as first proposed by Jacqmin [J. Fluid Mech. 402, 57 (2000), 10.1017/S0022112099006874]. In a previous work, this model has been successfully employed for simulating triphase contact line problems in stable emulsions with nearly immiscible components, and, in particular, applied to the determination of critical Bond numbers for buoyancy-driven detachment as a function of static contact angle. Herein, the shapes of interfaces at pinchoff are investigated as a function of static contact angle and distance to the critical condition. Furthermore, we show numerical results on the nonequilibrium surface tension that help to explain the discrepancy between our numerically determined static contact angle dependence of the critical Bond number and its sharp-interface counterpart based on a static stability analysis of equilibrium shapes after numerical integration of the Young-Laplace equation. Finally, we show the influence of static contact angle and distance to the critical condition on the temporal evolution of the minimum neck radius in the necking regime of drop detachment.
Lamorgese, A; Mauri, R
2015-09-01
We present numerical results from phase-field simulations of the buoyancy-driven detachment of an isolated, wall-bound pendant emulsion droplet acted upon by surface tension and wall-normal buoyancy forces alone. Our theoretical approach follows a diffuse-interface model for partially miscible binary mixtures which has been extended to include the influence of static contact angles other than 90^{∘}, based on a Hermite interpolation formulation of the Cahn boundary condition as first proposed by Jacqmin [J. Fluid Mech. 402, 57 (2000)JFLSA70022-112010.1017/S0022112099006874]. In a previous work, this model has been successfully employed for simulating triphase contact line problems in stable emulsions with nearly immiscible components, and, in particular, applied to the determination of critical Bond numbers for buoyancy-driven detachment as a function of static contact angle. Herein, the shapes of interfaces at pinchoff are investigated as a function of static contact angle and distance to the critical condition. Furthermore, we show numerical results on the nonequilibrium surface tension that help to explain the discrepancy between our numerically determined static contact angle dependence of the critical Bond number and its sharp-interface counterpart based on a static stability analysis of equilibrium shapes after numerical integration of the Young-Laplace equation. Finally, we show the influence of static contact angle and distance to the critical condition on the temporal evolution of the minimum neck radius in the necking regime of drop detachment.
Oliver, Todd; Ulerich, Rhys; Topalian, Victor; Malaya, Nick; Moser, Robert
2013-11-01
A discretization of the Navier-Stokes equations appropriate for efficient DNS of compressible, reacting, wall-bounded flows is developed and applied. The spatial discretization uses a Fourier-Galerkin/B-spline collocation approach. Because of the algebraic complexity of the constitutive models involved, a flux-based approach is used where the viscous terms are evaluated using repeated application of the first derivative operator. In such an approach, a filter is required to achieve appropriate dissipation at high wavenumbers. We formulate a new filter source operator based on the viscous operator. Temporal discretization is achieved using the SMR91 hybrid implicit/explicit scheme. The linear implicit operator is chosen to eliminate wall-normal acoustics from the CFL constraint while also decoupling the species equations from the remaining flow equations, which minimizes the cost of the required linear algebra. Results will be shown for a mildly supersonic, multispecies boundary layer case inspired by the flow over the ablating surface of a space capsule entering Earth's atmosphere. This work is supported by the Department of Energy [National Nuclear Security Administration] under Award Number [DE-FC52-08NA28615].
Physically-consistent wall boundary conditions for the k-ω turbulence model
DEFF Research Database (Denmark)
Fuhrman, David R.; Dixen, Martin; Jacobsen, Niels Gjøl
2010-01-01
A model solving Reynolds-averaged Navier–Stokes equations, coupled with k-v turbulence closure, is used to simulate steady channel flow on both hydraulically smooth and rough beds. Novel experimental data are used as model validation, with k measured directly from all three components of the fluc......A model solving Reynolds-averaged Navier–Stokes equations, coupled with k-v turbulence closure, is used to simulate steady channel flow on both hydraulically smooth and rough beds. Novel experimental data are used as model validation, with k measured directly from all three components...
Mansour, Morkous S.
2015-06-30
A novel double-slit curved wall-jet (CWJ) burner was proposed and employed, which utilizes the Coanda effect by supplying fuel and air as annular-inward jets over a curved surface. We investigated the stabilization characteristics and structure of methane/air, and propane/air turbulent premixed and non-premixed flames with varying global equivalence ratio, , and Reynolds number, Re. Simultaneous time-resolved measurements of particle image velocimetry and planar laser-induced fluorescence of OH radicals were conducted. The burner showed potential for stable operation for methane flames with relatively large fuel loading and overall rich conditions. These have a non-sooting nature. However, propane flames exhibit stable mode for a wider range of equivalence ratio and Re. Mixing characteristics in the cold flow of non-premixed cases were first examined using acetone fluorescence technique, indicating substantial transport between the fuel and air by exhibiting appreciable premixing conditions.PIV measurements revealed that velocity gradients in the shear layers at the boundaries of the annularjets generate the turbulence, enhanced with the collisions in the interaction jet, IJ,region. Turbulent mean and rms velocities were influenced significantly by Re and high rms turbulent velocities are generated within the recirculation zone improving the flame stabilization in this burner.Premixed and non-premixed flames with high equivalence ratio were found to be more resistant to local extinction and exhibited a more corrugated and folded nature, particularly at high Re. For flames with low equivalence ratio, the processes of local quenching at IJ region and of re-ignition within merged jet region maintained these flames further downstream particularly for non-premixed methane flame, revealing a strong intermittency.
Energy Technology Data Exchange (ETDEWEB)
Yamamoto, Yoshinobu, E-mail: yamamotoy@yamanashi.ac.jp [Division of Mechanical Engineering, University of Yamanashi, 4-3-11 Takeda, Kofu 400-8511 (Japan); Kunugi, Tomoaki, E-mail: kunugi@nucleng.kyoto-u.ac.jp [Department of Nuclear Engineering, Kyoto University, C3-d2S06, Kyoto-Daigaku Katsura, Nishikyo-Ku 615-8540, Kyoto (Japan)
2016-11-01
Highlights: • We show the applicability to predict the heat transfer imposed on a uniform wall-normal magnetic field by means of the zero-equation heat transfer model. • Quasi-theoretical turbulent Prandtl numbers with various molecular Prandtl number fluids were obtained. • Improvements of the prediction accuracy in turbulent kinetic energy and turbulent dissipation rate under the magnetic fields were accomplished. - Abstract: Zero-equation heat transfer models based on the constant turbulent Prandtl number are evaluated using direct numerical simulation (DNS) data for fully developed channel flows imposed on a uniform wall-normal magnetic field. Quasi-theoretical turbulent Prandtl numbers are estimated by DNS data of various molecular Prandtl number fluids. From the viewpoint of highly-accurate magneto-hydrodynamic (MHD) heat transfer prediction, the parameters of the turbulent eddy viscosity of the k–É› model are optimized under the magnetic fields. Consequently, we use the zero-equation model based on a constant turbulent Prandtl number to demonstrate MHD heat transfer, and show the applicability of using this model to predict the heat transfer.
The influence of wall permeability on laminar and turbulent flows: Theory and simulations
Breugem, W.P.
2005-01-01
The study of flows over permeable walls is relevant to many applications. Examples are flows over and through porous river beds, vegetation, snow, heat exchangers of foam metal, and oil wells. The main objectives of this thesis are to gain insight in the influence of wall permeability on both lamina
Interphasial energy transfer and particle dissipation in particle-laden wall turbulence
Zhao, L.; Andersson, H.I.; Gillissen, J.J.J.
2013-01-01
Transfer of mechanical energy between solid spherical particles and a Newtonian carrier fluid has been explored in two-way coupled direct numerical simulations of turbulent channel flow. The inertial particles have been treated as individual point particles in a Lagrangian framework and their
Interphasial energy transfer and particle dissipation in particle-laden wall turbulence
Zhao, L.; Andersson, H.I.; Gillissen, J.J.J.
2013-01-01
Transfer of mechanical energy between solid spherical particles and a Newtonian carrier fluid has been explored in two-way coupled direct numerical simulations of turbulent channel flow. The inertial particles have been treated as individual point particles in a Lagrangian framework and their feedba
TURBULENT NEAR-WALL FLOW CONTROL BASED ON MICRO-ELECTRO-MECHANICAL-SYSTEMS
2012-01-01
During a crisis, special attention is paid to efficiency and minimization of costs in fly realization. There are several principal ways to reduce the consumption of aviation fuel by engines. One of the most actual is reducing the turbulent friction drag of streamlined surface.
2016-02-26
The mean Reynolds stress has a wave component (<Ũ1Ũ2>) and a turbulent component (<U1” U2 ”>). In the absence of forcing, the contribution of the wave...and sent back to the SMOD/DMOD board. Band -pass filtering reduces low-frequency noise and high-frequency carrier harmonics, before the signal is
Directory of Open Access Journals (Sweden)
Martin Skote
2015-01-01
Full Text Available Spanwise oscillation applied on the wall under a spatially developing turbulent boundary layer flow is investigated using direct numerical simulation. The temporal wall forcing produces a considerable drag reduction over the region where oscillation occurs. Downstream development of drag reduction is investigated from Reynolds number dependency perspective. An alternative to the previously suggested power-law relation between Reynolds number and peak drag reduction values, which is valid for channel flow as well, is proposed. Considerable deviation in the variation of drag reduction with Reynolds number between different previous investigations of channel flow is found. The shift in velocity profile, which has been used in the past for explaining the diminishing drag reduction at higher Reynolds number for riblets, is investigated. A new predictive formula is derived, replacing the ones found in the literature. Furthermore, unlike for the case of riblets, the shift is varying downstream in the case of wall oscillations, which is a manifestation of the fact that the boundary layer has not reached a new equilibrium over the limited downstream distance in the simulations. Taking this into account, the predictive model agrees well with DNS data. On the other hand, the growth of the boundary layer does not influence the drag reduction prediction.
Khoo, B. C.; Chew, Y. T.; Teo, C. J.
This work continues the studies of Khoo et al. (Exp. Fluids 29: 448-460, 2001), where experiments were performed in turbulent-channel and flat-plate boundary-layer flows using near-wall hot-wire probes. The probability density function (pdf) of the wall-shear stress and streamwise velocity fluctuations in the viscous sublayer, buffer region and beyond were compared and analyzed. The convective velocity Uc of the streamwise velocity fluctuations in the very near-wall region was obtained using a two-point correlation technique. It was found that in the viscous sublayer, Uc is approximately constant at 13uτ and 15uτ, respectively, for the channel and boundary-layer flows. Spectra data for the viscous sublayer are presented for the first time, and the normalized spectral plots for different flow conditions collapse at high frequencies or wavenumbers, thus indicating the possible presence of small-scale universality at different Reynolds numbers. The integral time scale corresponding to the streamwise velocity fluctuations in the viscous sublayer is also presented.
Boiko, Andrey V; Grek, Genrih R; Kozlov, Victor V
2012-01-01
Starting from fundamentals of classical stability theory, an overview is given of the transition phenomena in subsonic, wall-bounded shear flows. At first, the consideration focuses on elementary small-amplitude velocity perturbations of laminar shear layers, i.e. instability waves, in the simplest canonical configurations of a plane channel flow and a flat-plate boundary layer. Then the linear stability problem is expanded to include the effects of pressure gradients, flow curvature, boundary-layer separation, wall compliance, etc. related to applications. Beyond the amplification of instability waves is the non-modal growth of local stationary and non-stationary shear flow perturbations which are discussed as well. The volume continues with the key aspect of the transition process, that is, receptivity of convectively unstable shear layers to external perturbations, summarizing main paths of the excitation of laminar flow disturbances. The remainder of the book addresses the instability phenomena found at l...
2007-11-02
the pressure side were studied. The same case, at the higher Reynolds number of 148,000, was also studied by Xiaohua and Durbin (2001). They used a...with the Boussinesq- assumption or the explicit algebraic Reynolds stress model (EASM) by Gatski (Gatski and Sepziale 1993, Gatski and Jongen 2000...approximation is employed for computing the Reynolds stresses. When the Explicit Algebraic Stress Model (EASM) is used, the turbulence equations are
Energy Technology Data Exchange (ETDEWEB)
Belletre, J.; Bataille, F.; Lallemaned, A. [Institut National des Sciences Appliquees (INSA), 69 - Villeurbanne (France)
1997-12-31
The effusion of a cold gas through a porous wall submitted to a hot turbulent parietal flow is studied in order to reduce the convective heat fluxes between the wall and the hot fluid. A modeling of the turbulent dynamical and thermal boundary layer is obtained using a RNG k-{epsilon} model. The cold gas injection through the porous plate and the fluid-wall friction are taken into account using a discrete succession of pores and solid elements. For a 1% injection rate, the modeling results agree with experiments performed in a test-duct. On the other hand, convective heat fluxes on the porous plate are calculated using semi-empirical correlations and different injection rates and temperatures of the hot flow. (J.S.) 23 refs.
Energy Technology Data Exchange (ETDEWEB)
Graham, Elizabeth G.; MacNeill, Christopher M.; Levi-Polyachenko, Nicole H., E-mail: nlevi@wakehealth.edu [Wake Forest University School of Medicine, Department of Plastic and Reconstructive Surgery (United States)
2013-05-15
Peritoneal metastases of colorectal cancer are a significant challenge in the field of medicine today due to poor results of systemic chemotherapy caused by the poor diffusion of drugs across the blood-peritoneal barrier. Multi-walled carbon nanotubes (MWNTs) are a biocompatible nanomaterial that strongly absorb near-infrared light to locally heat the surrounding area. Colorectal cancer is known to overexpress folate receptor; therefore, folic acid (FA) was covalently attached to MWNTs to target colorectal cancer cells. Results from real-time polymerase chain reaction found differing expression of folate receptor-{alpha} in two colorectal cancer cell lines, RKO and HCT116, as well as a healthy epithelial cell line, HEPM. A spectrophotometric method was developed to quantify the mass of MWNTs bound to cells, and it was determined that FA-targeted MWNTs resulted in a 400-500 % greater affinity for colorectal cancer cells than untargeted MWNTs. The non-cancerous cell line, HEPM, had higher non-specific MWNT interaction and similar MWNT-FA affinity. Stimulated by 1,064 nm light, FA-functionalized MWNTs caused a 50-60 % decrease in colorectal cancer cell viability compared to a 4-10 % decrease caused by untargeted MWNTs. Our results indicate that FA-targeted MWNTs may increase the therapeutic index of MWNT-induced photothermal therapy.
Wang, X. Y.; Yang, Q. Y.; Lu, W. Z.; Wang, X. K.
2012-01-01
This experimental study investigated the mean velocity profiles, skin friction and turbulent characteristics of a gravel bed over a wide range of roughness using an acoustic Doppler velocimeter (ADV). The median diameter of bed material ranged from 2 to 40 mm, and the normalized roughness heights ranged from 47 to 4,881 mm. The flow regime was fully developed turbulence with a Reynolds number in the range of 4.2 × 104-9.86 × 104. All velocity curves exhibited logarithmic distributions, and the log-law region was influenced greatly by both the roughness and the Reynolds number. Moreover, the roughness of the gravel bed exerted a strong effect on Reynolds stress, and the turbulence tended towards isotropic with increasing roughness. Using statistical analyses, the third-order turbulence moments, sweep, and ejection motions were also examined. The results of this experimental analysis present a contrast to the classical wall similarity hypothesis.
Analysis of wall-function approaches using two-equation turbulence models
Energy Technology Data Exchange (ETDEWEB)
Albets-Chico, X.; Perez-Segarra, C.D.; Oliva, A. [Centre Tecnologic de Transferencia de Calor, Universitat Politecnica de Catalunya (UPC), ETSEIAT, C/ Colom, 11, 08222 Terrassa (Barcelona) (Spain); Bredberg, J. [Multi-physics/CFD Epsilon, HighTech AB Lindholmspiren 9, SE-41756 Gothenburg (Sweden)
2008-09-15
This paper focuses the attention on the drawbacks and abilities of wall-function techniques through an analysis of well-known wall-functions from literature. Besides this, some deeper analysis of these tools by means of physical and numerical considerations are carried out in order to improve their limitations when they are applied to predict heat transfer and fluid flow. Accuracy, grid-sensitivity, numerical behaviour and verification of numerical simulations are key aspects in this paper. The main purpose is to obtain tools which are able to predict both fluid flow and heat transfer with low CPU time consumption, reduced grid-sensitivity and a relatively good accuracy. (author)
Institute of Scientific and Technical Information of China (English)
KE Feng; LIU Ying-zheng; CHEN Han-ping; HIDE S. Koyama
2007-01-01
Unsteady behaviors of the large-scale vortical structure superimposed in the turbulent separated and reattaching flow over a backward-facing step were convincingly delineated by performing simultaneous measurements of the wall pressure fluctuations and visualizations of the flow. Toward this end, a synchronized instrumentation system integrated with the microphone array and the high-speed camera was established. The smoke-wire technique was employed to visualize the unsteady events. A thorough analysis based on the wall pressure fluctuations disclosed that the large-scale vortical structure shedding at the frequency of = 0.064 gave a primary contribution to the wall pressure fluctuations, and consequently dominated unsteady behaviors of the turbulent shear layer. The convection velocity of the large-scale vortical structure was determined as =0.55. The instantaneous flow visualizations and wall pressure were compared in a straightforward manner. Below the separation bubble and the reattachment zone, the negative peak of the time-varying wall pressure was in phase with passage of the local large-scale vortical structure. In the redeveloping turbulent boundary layer, the decaying large-scale vortical structure was clearly revealed.
Morgan, Jonathan; McKeon, Beverley
2016-11-01
A 3D printed surface which is singly periodic in the streamwise and spanwise directions was placed in a turbulent boundary layer facility. The zero-pressure gradient boundary layer which developed over this singly periodic roughness was characterized with hot-wire anemometry. Compared to a canonical smooth-wall flow, the periodic roughness introduces through its boundary condition a static, singly-periodic fluctuation in mean velocity. From this linear introduction of a single-mode perturbation into the flow, the nonlinear effects of the perturbation on travelling modes can be tracked through statistics, spectra, and mean flow quantities to establish a link between roughness geometry and flow physics. Variation of the velocity power spectrum within the rough boundary layer as well as variation between smooth- and rough-wall boundary layers show the effect of the roughness to be concentrated at wavenumbers which correspond to the roughness wavelength. The effects of the roughness ultimately manifest nonlinearly as an altered Reynolds-stress field which changes the mean velocity profile of the boundary layer. Implications for more general roughness are discussed. The authors gratefully acknowledge the support of the Office of Naval Research, Grant N000141310739.
Energy Technology Data Exchange (ETDEWEB)
Pamies, Mathieu [ONERA Applied Aerodynamic Department, 8, rue des Vertugadins, F-92200 Meudon (France); Garnier, Eric, E-mail: eric.garnier@onera.fr [ONERA Applied Aerodynamic Department, 8, rue des Vertugadins, F-92200 Meudon (France); Merlen, Alain [Institut d' electronique, microelectronique et nanotechnologie, CNRS, Universite Lille 1 (France); Sagaut, Pierre [IJLRA/UPMC, 4 place Jussieu, 75252 Paris cedex 5 (France)
2011-06-15
Opposition control is known as an efficient mean to reduce drag in numerical simulations. However, even if the actuation principle follows simple spatio-temporal scales of turbulent motion, practical implementation of this concept results in very heavy technological constraints. Before going further in technological developments, it seems reasonable to assess numerically the efficiency of possible control devices by improving significantly the realism of simulations. In this study, the performance of an array of wall deforming actuators is investigated. The realistic wall deformations are allowed for by means of an Arbitrary Lagrangian-Eulerian (ALE) technique. The Direct Numerical Simulation (DNS) has been performed at friction Reynolds number of 368 on a spatially developing boundary layer configuration. The result analysis including averaging conditioned to actuator location and position shows that even if the actuator functioning in opposition control is validated, the drag reduction is not significant. The gains associated with an ideal opposition control are completely annihilated when a realistic actuator description is included in the simulation.
Marandet, Y.; Nace, N.; Valentinuzzi, M.; Tamain, P.; Bufferand, H.; Ciraolo, G.; Genesio, P.; Mellet, N.
2016-11-01
Plasma material interactions on the first wall of future tokamaks such as ITER and DEMO are likely to play an important role, because of turbulent radial transport. The latter results to a large extent from the radial propagation of plasma filaments through a tenuous background. In such a situation, mean field descriptions (on which transport codes rely) become questionable. First wall sputtering is of particular interest, especially in a full W machine, since it has been shown experimentally that first wall sources control core contamination. In ITER, beryllium sources will be one of the important actors in determining the fuel retention level through codeposition. In this work, we study the effect of turbulent fluctuations on mean sputtering yields and fluxes, relying on a new version of the TOKAM-2D code which includes ion temperature fluctuations. We show that fluctuations enhance sputtering at sub-threshold impact energies, by more than an order of magnitude when fluctuation levels are of order unity.
Lakehal, D.; Métrailler, D.; Reboux, S.
2017-06-01
This paper presents Direct Numerical Simulation (DNS) results of a turbulent water flow in a channel at Reτ = 400 laden with 0.25 mm diameter air bubbles clustered near the wall (maximum void fraction of α = 8% at y+ ˜ 20). The bubbles were fully resolved using the level set approach built within the CFD/CMFD code TransAT. The fluid properties (air and water) were kept real, including density, viscosity, and surface tension coefficient. The aim of this work is to understand the effects of the bubbles on near-wall turbulence, paving the way towards convective wall-boiling flow studies. The interactions between the gas bubbles and the water stream were studied through an in-depth analysis of the turbulence statistics. The near-wall flow is overall affected by the bubbles, which act like roughness elements during the early phase, prior to their departure from the wall. The average profiles are clearly altered by the bubbles dynamics near the wall, which somewhat contrasts with the findings from similar studies [J. Lu and G. Tryggvason, "Dynamics of nearly spherical bubbles in a turbulent channel upflow," J. Fluid Mech. 732, 166 (2013)], most probably because the bubbles were introduced uniformly in the flow and not concentrated at the wall. The shape of the bubbles measured as the apparent to initial diameter ratio is found to change by a factor of at least two, in particular at the later stages when the bubbles burst out from the boundary layer. The clustering of the bubbles seems to be primarily localized in the zone populated by high-speed streaks and independent of their size. More importantly, the bubbly flow seems to differ from the single-phase flow in terms of turbulent stress distribution and energy exchange, in which all the stress components seem to be increased in the region very close to the wall, by up to 40%. The decay in the energy spectra near the wall was found to be significantly slower for the bubbly flow than for a single-phase flow, which
Llinas’ Phase Reset Mechanism Delays the Onset of Chaos in Shark and Dolphin Wall Turbulence
2014-02-10
has potential application to tornado path management. Shark and dolphin skins are major targets of reverse engineering mechanisms of drag and noise...slightly tilted, near- wall (mushroom) vortex pairs (4d) as a nonlinear pendulum , where the saddle "s", a point of neutral equilibrium, oscillates. The...slanted, e: Schematic of nonlinear pendulum behavior ofvorticity diffusion; phase: (s: saddle, unstable 180°) and foci (f: stable, 0°). f (Upper
Lantz, Jonas; Gårdhagen, Roland; Karlsson, Matts
2012-10-01
In this study, large-eddy simulation (LES) is employed to calculate the disturbed flow field and the wall shear stress (WSS) in a subject specific human aorta. Velocity and geometry measurements using magnetic resonance imaging (MRI) are taken as input to the model to provide accurate boundary conditions and to assure the physiological relevance. In total, 50 consecutive cardiac cycles were simulated from which a phase average was computed to get a statistically reliable result. A decomposition similar to Reynolds decomposition is introduced, where the WSS signal is divided into a pulsating part (due to the mass flow rate) and a fluctuating part (originating from the disturbed flow). Oscillatory shear index (OSI) is plotted against time-averaged WSS in a novel way, and locations on the aortic wall where elevated values existed could easily be found. In general, high and oscillating WSS values were found in the vicinity of the branches in the aortic arch, while low and oscillating WSS were present in the inner curvature of the descending aorta. The decomposition of WSS into a pulsating and a fluctuating part increases the understanding of how WSS affects the aortic wall, which enables both qualitative and quantitative comparisons.
Blackman, Karin; Perret, Laurent; Calmet, Isabelle; Rivet, Cédric
2017-08-01
In the present work, a boundary layer developing over a rough-wall consisting of staggered cubes with a plan area packing density λp = 25% is studied within the wind tunnel using Particle Image Velocimetry (PIV) to investigate the Turbulent Kinetic Energy (TKE) budget. To access the full TKE budget, an estimation of the dissipation (ɛ) using both the transport equation of the resolved-scale kinetic energy and Large-Eddy (LE) PIV models based on the use of a subgrid-scale model following the methodology used in large-eddy simulations is employed. A low-pass filter, larger than the Taylor microscale, is applied to the data prior to the computation of the velocity gradients ensuring a clear cutoff in the inertial range where the models are valid. The presence of the cube roughness elements has a significant influence on the TKE budget due to the region of strong shear that develops over the cubes. The shear layer is shown to produce and dissipate energy, as well as transport energy through advection, turbulent transport, and pressure transport. The recirculation region that forms through the interaction of the shear layer and the canopy layer, which is the region below the height of the cube roughness, creates rapid longitudinal evolution of the mean flow thereby inducing weak production. Finally, through stochastic estimation of the conditional average, it is shown that localized regions of backscatter (energy transfer from unresolved to resolved scales) and forward scatter (energy transfer from resolved to unresolved scales) occur as a result of coherent vortical structures.
Energy Technology Data Exchange (ETDEWEB)
Struminskii, V.V. (Sektor Mekhaniki Neodnorodnykh Sred, Moscow (USSR))
1989-01-01
Two essentially different forms of turbulence are identified in liquids and gases: (1) turbulent flow in the vicinity of solid or liquid boundaries and (2) turbulent flows evolving far from the walls. The generation mechanisms and principal characteristics of the two types of turbulent flows are discussed. It is emphasized that the two types of turbulent flows are caused by different physical mechanisms and should be considered separately in turbulence studies. 14 refs.
Santi, L. Michael
1986-01-01
Computational predictions of turbulent flow in sharply curved 180 degree turn around ducts are presented. The CNS2D computer code is used to solve the equations of motion for two-dimensional incompressible flows transformed to a nonorthogonal body-fitted coordinate system. This procedure incorporates the pressure velocity correction algorithm SIMPLE-C to iteratively solve a discretized form of the transformed equations. A multiple scale turbulence model based on simplified spectral partitioning is employed to obtain closure. Flow field predictions utilizing the multiple scale model are compared to features predicted by the traditional single scale k-epsilon model. Tuning parameter sensitivities of the multiple scale model applied to turn around duct flows are also determined. In addition, a wall function approach based on a wall law suitable for incompressible turbulent boundary layers under strong adverse pressure gradients is tested. Turn around duct flow characteristics utilizing this modified wall law are presented and compared to results based on a standard wall treatment.
Breaking the boundary layer symmetry in turbulent convection using wall geometry
Toppaladoddi, Srikanth; Wettlaufer, John S
2014-01-01
We systematically probe the interaction of the boundary layer with the core flow during two-dimensional turbulent Rayleigh-B\\'{e}nard convection using numerical simulations and scaling theory. The boundary layer/core flow interaction is manipulated by configuring the top plate with a sinusoidal geometry and breaking the symmetry between the top and bottom thermal boundary layers. At long wavelength the planar results are recovered. However, at intermediate wavelengths, and for Rayleigh numbers ($Ra$) such that the amplitude of the roughness elements is larger than the boundary layer thickness, there is enhanced cold plume production at the tips of the elements. It is found that, while the interior of the flow is well mixed as in the classical theory of Malkus, the mean temperature is lower than that in the planar case. For a Prandtl number of unity and $Ra = 10^6$ to $2.5 \\times 10^9$ we find a Nusselt number ($Nu$) scaling law of $Nu = 0.052 \\times Ra^{0.34}$, in good agreement with recent experiments. The c...
Wilczek, Michael; Meneveau, Charles
2016-01-01
Wavenumber-frequency spectra of the streamwise velocity component obtained from large-eddy simulations are presented. Following a recent paper [Wilczek et al., J. Fluid. Mech., 769:R1, 2015] we show that the main features, a Doppler shift and a Doppler broadening of frequencies, are captured by an advection model based on the Tennekes-Kraichnan random-sweeping hypothesis with additional mean flow. In this paper, we focus on the height-dependence of the spectra within the logarithmic layer of the flow. We furthermore benchmark an analytical model spectrum that takes the predictions of the random-sweeping model as a starting point and find good agreement with the LES data. We also quantify the influence of LES grid resolution on the wavenumber-frequency spectra.
Coherence in Turbulence: New Perspective
Levich, Eugene
2009-07-01
It is claimed that turbulence in fluids is inherently coherent phenomenon. The coherence shows up clearly as strongly correlated helicity fluctuations of opposite sign. The helicity fluctuations have cellular structure forming clusters that are actually observed as vorticity bands and coherent structures in laboratory turbulence, direct numerical simulations and most obviously in atmospheric turbulence. The clusters are named BCC - Beltrami Cellular Clusters - because of the observed nearly total alignment of the velocity and vorticity fields in each particular cell, and hence nearly maximal possible helicity in each cell; although when averaged over all the cells the residual mean helicity in general is small and does not play active dynamical role. The Beltrami like fluctuations are short-lived and stabilize only in small and generally contiguous sub-domains that are tending to a (multi)fractal in the asymptotic limit of large Reynolds numbers, Re → ∞. For the model of homogeneous isotropic turbulence the theory predicts the leading fractal dimension of BCC to be: DF = 2.5. This particular BCC is responsible for generating the Kolmogorov -5/3 power law energy spectrum. The most obvious role that BCC play dynamically is that the nonlinear interactions in them are relatively reduced, due to strong spatial alignment between the velocity field v(r, t) and the vorticity field ω(r, t) = curlv(r, t), while the physical quantities typically best characterizing turbulence intermittency, such as entrophy, vorticity stretching and generation, and energy dissipation are maximized in and near them. The theory quantitatively relates the reduction of nonlinear inter-actions to the BCC fractal dimension DF and subsequent turbulence intermittency. It is further asserted that BCC is a fundamental feature of all turbulent flows, e.g., wall bounded turbulent flows, atmospheric and oceanic flows, and their leading fractal dimension remains invariant and universal in these flows
Wall mass transfer and pressure gradient effects on turbulent skin friction
Watson, R. D.; Balasubramanian, R.
1984-01-01
The effects of mass injection and pressure gradients on the drag of surfaces were studied theoretically with the aid of boundary-layer and Navier-Stokes codes. The present investigation is concerned with the effects of spatially varying the injection in the case of flat-plate drag. Effects of suction and injection on wavy wall surfaces are also explored. Calculations were performed for 1.2 m long surfaces, one flat and the other sinusoidal with a wavelength of 30.5 cm. Attention is given to the study of the effect of various spatial blowing variations on flat-plate skin friction reduction, local skin friction coefficient calculated by finite difference boundary-layer code and Navier-Stokes code, and the effect of phase-shifting sinusoidal mass transfer on the drag of a sinusoidal surface.
Jones, Adam; Utyuzhnikov, Sergey
2017-08-01
Turbulent flow in a ribbed channel is studied using an efficient near-wall domain decomposition (NDD) method. The NDD approach is formulated by splitting the computational domain into an inner and outer region, with an interface boundary between the two. The computational mesh covers the outer region, and the flow in this region is solved using the open-source CFD code Code_Saturne with special boundary conditions on the interface boundary, called interface boundary conditions (IBCs). The IBCs are of Robin type and incorporate the effect of the inner region on the flow in the outer region. IBCs are formulated in terms of the distance from the interface boundary to the wall in the inner region. It is demonstrated that up to 90% of the region between the ribs in the ribbed passage can be removed from the computational mesh with an error on the friction factor within 2.5%. In addition, computations with NDD are faster than computations based on low Reynolds number (LRN) models by a factor of five. Different rib heights can be studied with the same mesh in the outer region without affecting the accuracy of the friction factor. This is tested with six different rib heights in an example of a design optimisation study. It is found that the friction factors computed with NDD are almost identical to the fully-resolved results. When used for inverse problems, NDD is considerably more efficient than LRN computations because only one computation needs to be performed and only one mesh needs to be generated.
Directory of Open Access Journals (Sweden)
Sophia Sonnewald
Full Text Available Xanthomonas campestris pv. vesicatoria (Xcv possess a type 3 secretion system (T3SS to deliver effector proteins into its Solanaceous host plants. These proteins are involved in suppression of plant defense and in reprogramming of plant metabolism to favour bacterial propagation. There is increasing evidence that hexoses contribute to defense responses. They act as substrates for metabolic processes and as metabolic semaphores to regulate gene expression. Especially an increase in the apoplastic hexose-to-sucrose ratio has been suggested to strengthen plant defense. This shift is brought about by the activity of cell wall-bound invertase (cw-Inv. We examined the possibility that Xcv may employ type 3 effector (T3E proteins to suppress cw-Inv activity during infection. Indeed, pepper leaves infected with a T3SS-deficient Xcv strain showed a higher level of cw-Inv mRNA and enzyme activity relative to Xcv wild type infected leaves. Higher cw-Inv activity was paralleled by an increase in hexoses and mRNA abundance for the pathogenesis-related gene PRQ. These results suggest that Xcv suppresses cw-Inv activity in a T3SS-dependent manner, most likely to prevent sugar-mediated defense signals. To identify Xcv T3Es that regulate cw-Inv activity, a screen was performed with eighteen Xcv strains, each deficient in an individual T3E. Seven Xcv T3E deletion strains caused a significant change in cw-Inv activity compared to Xcv wild type. Among them, Xcv lacking the xopB gene (Xcv ΔxopB caused the most prominent increase in cw-Inv activity. Deletion of xopB increased the mRNA abundance of PRQ in Xcv ΔxopB-infected pepper leaves, but not of Pti5 and Acre31, two PAMP-triggered immunity markers. Inducible expression of XopB in transgenic tobacco inhibited Xcv-mediated induction of cw-Inv activity observed in wild type plants and resulted in severe developmental phenotypes. Together, these data suggest that XopB interferes with cw-Inv activity in planta to
Narsimhan, Vivek; Zhao, Hong; Shaqfeh, Eric S. G.
2013-06-01
We develop a coarse-grained theory to predict the concentration distribution of a suspension of vesicles or red blood cells in a wall-bound Couette flow. This model balances the wall-induced hydrodynamic lift on deformable particles with the flux due to binary collisions, which we represent via a second-order kinetic master equation. Our theory predicts a depletion of particles near the channel wall (i.e., the Fahraeus-Lindqvist effect), followed by a near-wall formation of particle layers. We quantify the effect of channel height, viscosity ratio, and shear-rate on the cell-free layer thickness (i.e., the Fahraeus-Lindqvist effect). The results agree with in vitro experiments as well as boundary integral simulations of suspension flows. Lastly, we examine a new type of collective particle motion for red blood cells induced by hydrodynamic interactions near the wall. These "swapping trajectories," coined by Zurita-Gotor et al. [J. Fluid Mech. 592, 447-469 (2007), 10.1017/S0022112007008701], could explain the origin of particle layering near the wall. The theory we describe represents a significant improvement in terms of time savings and predictive power over current large-scale numerical simulations of suspension flows.
Revisiting the Lie-group symmetry method for turbulent channel flow with wall transpiration
Khujadze, George
2016-01-01
The Lie-group-based symmetry analysis, as first proposed in Avsarkisov et al. (2014) and then later modified in Oberlack et al. (2015), to generate invariant solutions in order to predict the scaling behavior of a channel flow with uniform wall transpiration, is revisited. By focusing first on the results obtained in Avsarkisov et al. (2014), we failed to reproduce two key results: (i) For different transpiration rates at a constant Reynolds number, the mean velocity profiles (in deficit form) do not universally collapse onto a single curve as claimed. (ii) The universally proposed logarithmic scaling law in the center of the channel does not match the direct numerical simulation (DNS) data for the presented parameter values. In fact, no universal scaling behavior in the center of the channel can be detected from their DNS data, as it is misleadingly claimed in Avsarkisov et al. (2014). Moreover, we will demonstrate that the assumption of a Reynolds-number independent symmetry analysis is not justified for th...
Mohammadi-Ghaleni, Mahdi; Asle Zaeem, Mohsen; Smith, Jeffrey D.; O'Malley, Ronald
2016-10-01
Melt flow patterns and turbulence inside a slide-gate throttled submerged entry nozzle (SEN) were studied using Detached-Eddy Simulation (DES) model, which is a combination of Reynolds-Averaged Navier-Stokes (RANS) and Large-Eddy Simulation (LES) models. The DES switching criterion between RANS and LES was investigated to closely reproduce the flow structures of low and high turbulence regions similar to RANS and LES simulations, respectively. The melt flow patterns inside the nozzle were determined by k- ɛ (a RANS model), LES, and DES turbulent models, and convergence studies were performed to ensure reliability of the results. Results showed that the DES model has significant advantages over the standard k- ɛ model in transient simulations and in regions containing flow separation from the nozzle surface. Moreover, due to applying a hybrid approach, DES uses a RANS model at wall boundaries which resolves the extremely fine mesh requirement of LES simulations, and therefore it is computationally more efficient. Investigation of particle distribution inside the nozzle and particle adhesion to the nozzle wall also reveals that the DES model simulations predict more particle-wall interactions compared to LES model.
Rued, Klaus
1987-01-01
The requirements for fundamental experimental studies of the influence of free stream turbulence, pressure gradients and wall cooling are discussed. Under turbine-like free stream conditions, comprehensive tests of transitional boundary layers with laminar, reversing and turbulent flow increments were performed to decouple the effects of the parameters and to determine the effects during mutual interaction.
Oblique Laminar-Turbulent Interfaces in Plane Shear Flows
Duguet, Yohann; Schlatter, Philipp
2013-01-01
Localized structures such as turbulent stripes and turbulent spots are typical features of transitional wall-bounded flows in the subcritical regime. Based on an assumption for scale separation between large and small scales, we show analytically that the corresponding laminar-turbulent interfaces are always oblique with respect to the mean direction of the flow. In the case of plane Couette flow, the mismatch between the streamwise flow rates near the boundaries of the turbulence patch generates a large-scale flow with a nonzero spanwise component. Advection of the small-scale turbulent fluctuations (streaks) by the corresponding large-scale flow distorts the shape of the turbulence patch and is responsible for its oblique growth. This mechanism can be easily extended to other subcritical flows such as plane Poiseuille flow or Taylor-Couette flow.
Hura, Tomasz; Tyrka, Mirosław; Hura, Katarzyna; Ostrowska, Agnieszka; Dziurka, Kinga
2017-04-01
The present study aimed at identifying the regions of triticale genome responsible for cell wall saturation with phenolic compounds under drought stress during vegetative and generative growth. Moreover, the loci determining the activity of the photosynthetic apparatus, leaf water content (LWC) and osmotic potential (Ψ o) were identified, as leaf hydration and functioning of the photosynthetic apparatus under drought are associated with the content of cell wall-bound phenolics (CWPh). Compared with LWC and Ψ o, CWPh fluctuations were more strongly associated with changes in chlorophyll fluorescence. At the vegetative stage, CWPh fluctuations were due to the activity of three loci, of which only QCWPh.4B was also related to changes in F v/F m and ABS/CSm. In the other QTLs (QCWPh.6R.2 and QCWPh.6R.3), the genes of these loci determined also the changes in majority of chlorophyll fluorescence parameters. At the generative stage, the changes in CWPh in loci QCWPh.4B, QCWPh.3R and QCWPh.6R.1 corresponded to those in DIo/CSm. The locus QCWPh.6R.3, active at V stage, controlled majority of chlorophyll fluorescence parameters. This is the first study on mapping quantitative traits in triticale plants exposed to drought at different stages of development, and the first to present the loci for cell wall-bound phenolics.
Dispersed phase effects on boundary layer turbulence
Richter, David; Helgans, Brian
2016-11-01
In natural and environmental settings, turbulence is often seeded with some sort of dispersed phase: dust, rain, snow, sediment, etc. Depending on the circumstances, elements of the dispersed phase can participate in both dynamic and thermodynamic coupling, thereby altering the turbulent transfer of heat, moisture, and momentum through several complex avenues. In this study, evaporating droplets are two-way coupled to turbulent wall-bounded flow via direct numerical simulation (DNS) and Lagrangian point particle tracking, and we are specifically interested in the wall-normal transport of momentum, heat, and moisture. Our studies show that particles can carry significant portions of all three, and that this is a strong function of the particle Stokes number. These findings are interpreted in the context of environmental flows and the practical implications will be discussed. The authors acknowledge the National Science Foundation for funding under Grant #AGS-1429921.
Sydorenko, D; Kaganovich, I; Raitses, Y; Smolyakov, A
2009-10-02
A new regime of plasma-wall interaction is identified in particle-in-cell simulations of a hot plasma bounded by walls with secondary electron emission. Such a plasma has a strongly non-Maxwellian electron velocity distribution function and consists of bulk plasma electrons and beams of secondary electrons. In the new regime, the plasma sheath is not in a steady space charge limited state even though the secondary electron emission produced by the plasma bulk electrons is so intense that the corresponding partial emission coefficient exceeds unity. Instead, the plasma-sheath system performs relaxation oscillations by switching quasiperiodically between the space charge limited and non-space-charge limited states.
Dynamical-systems approach to localised turbulence in pipe flow
Ritter, Paul; Avila, Marc
2015-01-01
Turbulent-laminar patterns are ubiquitous near transition in wall-bounded shear flows. Despite recent progress in describing their dynamics in analogy to nonequilibrium phase transitions, there is no theory explaining their emergence. Dynamical-system approaches suggest that invariant solutions to the Navier-Stokes equations, such as traveling waves and relative periodic orbits in pipe flow, act as building blocks of the disordered dynamics. While recent studies have shown how transient chaos arises from such solutions, the ensuing dynamics lacks the strong fluctuations in size, shape and speed of the turbulent spots observed in experiments. We here show that chaotic spots with distinct dynamical and kinematic properties merge in phase space and give rise to the enhanced spatiotemporal patterns observed in pipe flow. This paves the way for a dynamical-system foundation to the phenomenogloy of turbulent-laminar patterns in wall-bounded extended shear flows.
Nedukha, E. M.
The pyroantimonate method was used to study the localization of free and weakly bound calcium in cells of moss protonema of Funaria hygrometrica Hedw. cultivated on a clinostat (2 rev/min). Electroncytochemical study of control cells cultivated at 1 g revealed that granular precipitate marked chloroplasts, mitochondria, Golgi apparatus, lipid drops, nucleoplasma, nucleolus, nucleus membranes, cell walls and endoplasmic reticulum. In mitochondria the precipitate was revealed in stroma, in chloroplast it was found on thylakoids and envelope membranes. The cultivation of protonema on clinostat led to the intensification in cytochemical reaction product deposit. A considerable intensification of the reaction was noted in endomembranes, vacuoles, periplasmic space and cell walls. At the same time analysis of pectinase localization was made using the electroncytochemical method. A high reaction intensity in walls in comparison to that in control was found out to be a distinctive pecularity of the cells cultivated on clinostat. It testifies to the fact that increasing of freee calcium concentrations under conditions of clinostation is connected with pectinic substances hydrolysis and breaking of methoxy groups of pectins. Data obtained are discussed in relation to problems of possible mechanisms of disturbance in calcium balance of plant cells and the role of cell walls in gomeostasis of cell grown under conditions of simulated weighlessness.
Institute of Scientific and Technical Information of China (English)
BELCAID Aicha; LE PALEC Georges; DRAOUI Abdeslam
2015-01-01
This paper investigates a numerical and experimental study about buoyant wall turbulent jet in a static homogeneous environment. A light fluid of fresh water is injected horizontally and tangentially to a plane wall into homogenous salt water ambient. This later is given with different values of salinity and the initial fractional density is small, so the applicability of the Boussinesq approximation is valid. Since the domain temperature is assumed to be constant, the density of the mixture is a function of the salt concentration only. Mathematical model is based on the finite volume method and reports on an application of standardk-ε turbulence model for steady flow with densimetric Froude numbers of 1-75 and Reynolds numbers of 2 000-6 000. The basic features of the model are the conservation of mass, momentum and concentration. The boundaries of jet body, the radius and cling length are determined. It is found that the jet spreading and behavior depend on the ratio between initial buoyancy flux and momentum, i.e., initial Froude number, and on the influence of wall boundary which corresponds to Coanda effect. Laboratory experiments were conducted with photographic observations of jet trajectories and numerical results are described and compared with the experiments. A good agreement with numerical and experimental results has been achieved.
Institute of Scientific and Technical Information of China (English)
Qiu-Hong Pan; Xiang-Chun Yu; Na Zhang; Xun Zou; Chang-Cao Peng; Xiu-Ling Wang; Ke-Qin Zou; Da-Peng Zhang
2006-01-01
The present experiment, involving both the in vivo injection of abscisic acid (ABA) into apple (Malus domestica Brohk.) fruits and the in vivo incubation of fruit tissues in ABA-containing medium, revealed that ABA activates both soluble and cell wall-bound acid invertases. Immunoblotting and enzyme-linked immunosorbent assays showed that this ABA-induced acid invertase activation is independent of the amount of enzyme present. The acid invertase activation induced by ABA is dependent on medium pH, time course, ABA dose, living tissue and developmental stage. Two isomers of cis-(+)-ABA, (-)-ABA and transABA, had no effect on acid invertases, showing that ABA-induced acid invertase activation is specific to physiologically active cis-(+)ABA. Protein kinase inhibitors K252a and H7 as well as acid phosphatase increased the ABA-induced effects. These data indicate that ABA specifically activates both soluble and cell wall-bound acid invertases by a posttranslational mechanism probably involving reversible protein phosphorylation, and this may be one of the mechanisms by which ABA is involved in regulating fruit development.
Energy Technology Data Exchange (ETDEWEB)
Miwa, M.; Sakai, Y.; Nakamura, I. [Nagoya University, Nagoya (Japan)
1997-05-25
In this report. we extend the similarity argument previously used to the mean square concentration fluctuation equation on the symmetrical plane of the wall point source plume in a turbulent pipe flow to find the similar solution for the mean square concentration fluctuation distribution. The main assumptions are the Lagrangean similar hypothesis and an appropriate eddy diffusivity distribution to the triple correlation term and the mixing length theory. It is found that the distribution of the similar solution shows good agreement with experimental data in a pipe flow. In the case of a wall point source in a turbulent boundary layer on a flat plate, the same argument is appliciable, and the similar solution obtained shows good agreement with the experimental data. And the budget of the fluctuating concentration intensity is investigated on the basis of the similar solution and the mean square concentration fluctuation equation. 16 refs., 8 figs.
Bibhab Kumar Lodh; Ajoy K Das
2015-01-01
This paper will present the large eddy simulation of turbulence modeling for wind flow over a wall mounted 3D cubical model. The LES Smagorinsky scheme is employed for the numerical simulation. The domain for this study is of the size of 60 cm x 30 cm x 30 cm. The 3D cube model is taken of the size of 6 cm x 6 cm x 4 cm. The Reynolds number for the flow in respect of the height of the cube i.e, 4 cm is 5.3x104 . The hexahedral grids are used for the meshing of the flow domain. ...
Energy Technology Data Exchange (ETDEWEB)
Clercx, H.J.H.; Van Heijst, G.J.F. [Eindhoven University of Technology, Eindhoven (Netherlands). J.M. Burges Centre for Fluid Dynamics, Dept. of Physics
1999-12-01
Direct numerical simulations of decaying two-dimensional (2D) turbulence inside a square container with no-slip boundaries have been carried out for Reynolds numbers up to 2000. The role of the boundary layers during the decay process has been illustrated with ensemble-averaged results for the power law behaviour of several characteristic properties of the coherent vortices which emerge during the decay of 2D turbulence. The evolution of the vortex density, the average vortex radius, the enstrophy and the vorticity extrema have been computed. An algebraic decay regime has been observed during the initial turbulent decay stage. The computed decay exponents disagree, however, with the exponents from the classical scaling theory for 2D decaying turbulence on an unbounded domain.
Chernysheva, Maria; Bednyakova, Anastasia; Al Araimi, Mohammed; Howe, Richard C. T.; Hu, Guohua; Hasan, Tawfique; Gambetta, Alessio; Galzerano, Gianluca; Rümmeli, Mark; Rozhin, Aleksey
2017-03-01
The complex nonlinear dynamics of mode-locked fibre lasers, including a broad variety of dissipative structures and self-organization effects, have drawn significant research interest. Around the 2 μm band, conventional saturable absorbers (SAs) possess small modulation depth and slow relaxation time and, therefore, are incapable of ensuring complex inter-pulse dynamics and bound-state soliton generation. We present observation of multi-soliton complex generation in mode-locked thulium (Tm)-doped fibre laser, using double-wall carbon nanotubes (DWNT-SA) and nonlinear polarisation evolution (NPE). The rigid structure of DWNTs ensures high modulation depth (64%), fast relaxation (1.25 ps) and high thermal damage threshold. This enables formation of 560-fs soliton pulses; two-soliton bound-state with 560 fs pulse duration and 1.37 ps separation; and singlet+doublet soliton structures with 1.8 ps duration and 6 ps separation. Numerical simulations based on the vectorial nonlinear Schr¨odinger equation demonstrate a transition from single-pulse to two-soliton bound-states generation. The results imply that DWNTs are an excellent SA for the formation of steady single- and multi-soliton structures around 2 μm region, which could not be supported by single-wall carbon nanotubes (SWNTs). The combination of the potential bandwidth resource around 2 μm with the soliton molecule concept for encoding two bits of data per clock period opens exciting opportunities for data-carrying capacity enhancement.
Chernysheva, Maria; Bednyakova, Anastasia; Al Araimi, Mohammed; Howe, Richard C. T.; Hu, Guohua; Hasan, Tawfique; Gambetta, Alessio; Galzerano, Gianluca; Rümmeli, Mark; Rozhin, Aleksey
2017-01-01
The complex nonlinear dynamics of mode-locked fibre lasers, including a broad variety of dissipative structures and self-organization effects, have drawn significant research interest. Around the 2 μm band, conventional saturable absorbers (SAs) possess small modulation depth and slow relaxation time and, therefore, are incapable of ensuring complex inter-pulse dynamics and bound-state soliton generation. We present observation of multi-soliton complex generation in mode-locked thulium (Tm)-doped fibre laser, using double-wall carbon nanotubes (DWNT-SA) and nonlinear polarisation evolution (NPE). The rigid structure of DWNTs ensures high modulation depth (64%), fast relaxation (1.25 ps) and high thermal damage threshold. This enables formation of 560-fs soliton pulses; two-soliton bound-state with 560 fs pulse duration and 1.37 ps separation; and singlet+doublet soliton structures with 1.8 ps duration and 6 ps separation. Numerical simulations based on the vectorial nonlinear Schr¨odinger equation demonstrate a transition from single-pulse to two-soliton bound-states generation. The results imply that DWNTs are an excellent SA for the formation of steady single- and multi-soliton structures around 2 μm region, which could not be supported by single-wall carbon nanotubes (SWNTs). The combination of the potential bandwidth resource around 2 μm with the soliton molecule concept for encoding two bits of data per clock period opens exciting opportunities for data-carrying capacity enhancement. PMID:28287159
2014-09-26
fit to the turbulence data discussed in Section B .2 and the analytical expression for the mean shear discussed in Section B .2. A cubic spline fit to the...functions) interpolation schemes. The inner integral in Eqs. 16 and 17 is evaluated using Simpson’s rule. B . Turbulent Boundary Layer Data 1. Data Sources...the data points. Once such a curve has been defined, the data can be interpolated at any location between measurement points. Spline interpolation is
Directory of Open Access Journals (Sweden)
Hui eWEI
2015-05-01
Full Text Available Identifying the cell wall-ionically bound glycoside hydrolases (GHs in Arabidopsis stems is important for understanding the regulation of cell wall integrity. For cell wall proteomics studies, the preparation of clean cell wall fractions is a challenge since cell walls constitute an open compartment, which is more likely to contain a mixture of intracellular and extracellular proteins due to cell leakage at the late growth stage. Here, we utilize a CaCl2-extraction procedure to isolate non-structural proteins from Arabidopsis whole stems, followed by the in-solution and in-gel digestion methods coupled with Nano-LC-MS/MS, bioinformatics and literature analyses. This has led to the identification of 75 proteins identified using the in-solution method and 236 proteins identified by the in-gel method, among which about 10% of proteins predicted to be secreted. Together, eight cell wall proteins, namely AT1G75040, AT5G26000, AT3G57260, AT4G21650, AT3G52960, AT3G49120, AT5G49360 and AT3G14067, were identified by the in-solution method; among them, three were the GHs (AT5G26000, myrosinase 1, GH1; AT3G57260, β-1,3-glucanase 2, GH17; AT5G49360, bifunctional XYL 1/α-L-arabinofuranosidase, GH3. Moreover, four more GHs: AT4G30270 (xyloglucan endotransferase, GH16, AT1G68560 (bifunctional α-l-arabinofuranosidase/XYL, GH31, AT1G12240 (invertase, GH32 and AT2G28470 (β-galactosidase 8, GH35, were identified by the in-gel solution method only. Notably, more than half of above identified GHs are xylan- or hemicellulose-modifying enzymes, and will likely have an impact on cellulose accessibility, which is a critical factor for downstream enzymatic hydrolysis of plant tissues for biofuels production. The implications of these cell wall proteins identified at the late growth stage for the genetic engineering of bioenergy crops are discussed.
Energy Technology Data Exchange (ETDEWEB)
Bruneaux, G.
1996-05-20
Premixed turbulent flame-wall interaction is studied using theoretical and numerical analysis. Laminar interactions are first investigated through a literature review. This gives a characterization of the different configurations of interaction and justifies the use of simplified kinetic schemes to study the interaction. Calculations are then performed using Direct Numerical Simulation with a one-step chemistry model, and are compared with good agreements to asymptotic analysis. Flame-wall distances and wall heat fluxes obtained are compared successfully with those of the literature. Heat losses decrease the consumption rate, leading to extinction at the maximum of wall heat flux. It is followed by a flame retreat, when the fuel diffuses into the reaction zone, resulting in low unburnt hydrocarbon levels. Then, turbulent regime is investigated, using two types of Direct Numerical Simulations: 2D variable density and 3D constant density. Similar results are obtained: the local turbulent flame behavior is identical to a laminar interaction, and tongues of fresh gases are expelled from the wall region, near zones of quenching. In the 2D simulations, minimal flame-wall distances and maximum wall heat fluxes are similar to laminar values. However, the structure of the turbulence in the 3D calculations induces smaller flame-wall distances and higher wall heat fluxes. Finally, a flame-wall interaction model is built and validated. It uses the flamelet approach, where the flame is described in terms of consumption speed and flame surface density. This model is simplified to produce a law of the wall, which is then included in a averaged CFD code (Kiva2-MB). It is validated in an engine calculation. (author) 36 refs.
Directory of Open Access Journals (Sweden)
Irshad Kashif
2016-01-01
Full Text Available Maintaining indoor climatic conditions of buildings compatible with the occupant comfort by consuming minimum energy, especially in a tropical climate becomes a challenging problem for researchers. This paper aims to investigate this problem by evaluating the effect of different kind of Photovoltaic Trombe wall system (PV-TW on thermal comfort, energy consumption and CO2 emission. A detailed simulation model of a single room building integrated with PV-TW was modelled using TRNSYS software. Results show that 14-35% PMV index and 26-38% PPD index reduces as system shifted from SPV-TW to DGPV-TW as compared to normal buildings. Thermal comfort indexes (PMV and PPD lie in the recommended range of ASHARE for both DPV-TW and DGPV-TW except for the few months when RH%, solar radiation intensity and ambient temperature were high. Moreover PVTW system significantly reduces energy consumption and CO2 emission of the building and also 2-4.8 °C of temperature differences between indoor and outdoor climate of building was examined.
Turbulence generation by waves
Energy Technology Data Exchange (ETDEWEB)
Kaftori, D.; Nan, X.S.; Banerjee, S. [Univ. of California, Santa Barbara, CA (United States)
1995-12-31
The interaction between two-dimensional mechanically generated waves, and a turbulent stream was investigated experimentally in a horizontal channel, using a 3-D LDA synchronized with a surface position measuring device and a micro-bubble tracers flow visualization with high speed video. Results show that although the wave induced orbital motion reached all the way to the wall, the characteristics of the turbulence wall structures and the turbulence intensity close to the wall were not altered. Nor was the streaky nature of the wall layer. On the other hand, the mean velocity profile became more uniform and the mean friction velocity was increased. Close to the free surface, the turbulence intensity was substantially increased as well. Even in predominantly laminar flows, the introduction of 2-D waves causes three dimensional turbulence. The turbulence enhancement is found to be proportional to the wave strength.
Energy Technology Data Exchange (ETDEWEB)
Burnage, H
1962-07-01
A theoretical study has been made of a fully developed turbulent flow in cylindrical tubing of circular cross-section subjected to a uniform suction through the walls. This study has made it possible to find a relationship giving the friction coefficient at the wall in terms of the amount of local suction and of the longitudinal static pressure gradient. A method for calculating the Reynolds tensions from the pressure measurements has been devised. An experimental system has been developed. Pressure measurements have been made. By using experimental results it has been possible to obtain a semi empirical expression for the friction coefficient at the wall, in terms of the amount of suction of the inlet Reynolds number, and of the abscissa. (author) [French] Une etude theorique de refoulement turbulent pleinement developpe dans une conduite cylindrique de section circulaire soumise a une aspiration parietale uniforme a ete entreprise. Elle a permis de trouver une relation donnant le coefficient de frottement a la paroi en fonction du taux d'aspiration local et du gradient de pression statique longitudinal. Une methode de calcul des tensions de Reynolds a partir des mesures de pression a ete etablie. Un dispositif experimental a ete realise et mis au point. Des mesures de pression ont ete effectuees. L'utilisation des resultats experimentaux a permis d'obtenir une expression semi-empirique du coefficient de frottement a la paroi en fonction du taux d'aspiration, du nombre de Reynolds d'entree et de l'abscisse. (auteur)
Pierce, F. J.; Mcallister, J. E.
1982-01-01
Ten of eleven proposed three-dimensional similarity models identified in the literature are evaluated with direct wall shear, velocity field, and pressure gradient data from a three-dimensional shear-driven boundary layer flow. Results define an upper limit on velocity vector skewing for each model's predictive ability. When combined with earlier results for pressure-driven flows, each model's predictive ability with and without pressure gradients is summarized. The utility of some two-dimensional type indirect wall shear measurement methods and wall shear inference methods from near-wall velocity measurements for three-dimensional flows is also discussed.
Mandal, Sudhamoy; Mitra, Adinpunya
2008-07-01
Alkaline hydrolysis of cell wall material of tomato hairy roots yielded ferulic acid as the major phenolic compound. Other phenolics were 4-hydroxybenzoic acid, vanillic acid, 4-hydroxybenzaldehyde, vanillin and 4-coumaric acid. The content of phenolics was much higher at the early stage of hairy root growth. The ferulic acid content decreased up to 30 days and then sharply increased to 360 microg/g at 60 days of growth. Elicitation of hairy root cultures with Fusarium mat extract (FME) increased ferulic acid content 4-fold after 24 h. As the pathogen-derived elicitors have specific receptors in plants, FME may thus be used for inducing resistance against Fusarium oxysporum f. sp. lycopersici.
Wan, Xiaoliang; Yu, Haijun; Weinan, E.
2015-05-01
In this work, we study the nonlinear instability of two-dimensional (2D) wall-bounded shear flows from the large deviation point of view. The main idea is to consider the Navier-Stokes equations perturbed by small noise in force and then examine the noise-induced transitions between the two coexisting stable solutions due to the subcritical bifurcation. When the amplitude of the noise goes to zero, the Freidlin-Wentzell (F-W) theory of large deviations defines the most probable transition path in the phase space, which is the minimizer of the F-W action functional and characterizes the development of the nonlinear instability subject to small random perturbations. Based on such a transition path we can define a critical Reynolds number for the nonlinear instability in the probabilistic sense. Then the action-based stability theory is applied to study the 2D Poiseuille flow in a short channel.
Liou, M. S.; Adamson, T. C., Jr.
1979-01-01
An analysis is presented of the flow in the two inner layers, the Reynolds stress sublayer and the wall layer. Included is the calculation of the shear stress at the wall in the interaction region. The limit processes considered are those used for an inviscid flow.
Energy Technology Data Exchange (ETDEWEB)
Hassan, Yassin A., E-mail: y-hassan@tamu.edu
2016-04-01
Highlights: • Near wall full-field velocity components under subcooled boiling were measured. • Simultaneous shadowgraphy, infrared thermometry wall temperature and particle-tracking velocimetry techniques were combined. • Near wall velocity modifications under subcooling boiling were observed. - Abstract: Multi-phase flows are one of the challenges on which the CFD simulation community has been working extensively with a relatively low success. The phenomena associated behind the momentum and heat transfer mechanisms associated to multi-phase flows are highly complex requiring resolving simultaneously for multiple scales on time and space. Part of the reasons behind the low predictive capability of CFD when studying multi-phase flows, is the scarcity of CFD-grade experimental data for validation. The complexity of the phenomena and its sensitivity to small sources of perturbations makes its measurements a difficult task. Non-intrusive and innovative measuring techniques are required to accurately measure multi-phase flow parameters while at the same time satisfying the high resolution required to validate CFD simulations. In this context, this work explores the feasible implementation of innovative measuring techniques that can provide whole-field and multi-scale measurements of two-phase flow turbulence, heat transfer, and boiling parameters. To this end, three visualization techniques are simultaneously implemented to study subcooled boiling flow through a vertical rectangular channel with a single heated wall. These techniques are listed next and are used as follow: (1) High-speed infrared thermometry (IR-T) is used to study the impact of the boiling level on the heat transfer coefficients at the heated wall, (2) Particle Tracking Velocimetry (PTV) is used to analyze the influence that boiling parameters have on the liquid phase turbulence statistics, (3) High-speed shadowgraphy with LED illumination is used to obtain the gas phase dynamics. To account
Energy Technology Data Exchange (ETDEWEB)
Lin, Chien-Yuan; Li, Quanzi; Tunlaya-Anukit, Sermsawat; Shi, Rui; Sun, Ying-Hsuan; Wang, Jack P.; Liu, Jie; Loziuk, Philip; Edmunds, Charles W.; Miller, Zachary D.; Peszlen, Ilona; Muddiman, David C.; Sederoff, Ronald R.; Chiang, Vincent L.
2016-03-11
Class III peroxidases are members of a large plant-specific sequence-heterogeneous protein family. Several sequence-conserved homologs have been associated with lignin polymerization in Arabidopsis thaliana, Oryza sativa, Nicotiana tabacum, Zinnia elegans, Picea abies, and Pinus sylvestris. In Populus trichocarpa, a model species for studies of wood formation, the peroxidases involved in lignin biosynthesis have not yet been identified. To do this, we retrieved sequences of all PtrPOs from Peroxibase and conducted RNA-seq to identify candidates. Transcripts from 42 PtrPOs were detected in stem differentiating xylem (SDX) and four of them are the most xylem-abundant (PtrPO12, PtrPO21, PtrPO42, and PtrPO64). PtrPO21 shows xylem-specific expression similar to that of genes encoding the monolignol biosynthetic enzymes. Using protein cleavage-isotope dilution mass spectrometry, PtrPO21 is detected only in the cell wall fraction and not in the soluble fraction. Downregulated transgenics of PtrPO21 have a lignin reduction of ~20% with subunit composition (S/G ratio) similar to wild type. The transgenics show a growth reduction and reddish color of stem wood. The modulus of elasticity (MOE) of the stems of the downregulated PtrPO21-line 8 can be reduced to ~60% of wild type. Differentially expressed gene (DEG) analysis of PtrPO21 downregulated transgenics identified a significant overexpression of PtPrx35, suggesting a compensatory effect within the peroxidase family. No significant changes in the expression of the 49 P. trichocarpa laccases (PtrLACs) were observed.
近壁区理论耗散率k-ε模型的研究%A THEORETICAL k-ε MODEL IN NEAR-WALL REGION OF A TURBULENT BOUNDARY LAYER
Institute of Scientific and Technical Information of China (English)
陆利蓬; 陈矛章
2000-01-01
A 3-D resonant-triad theoretical model is proposed for the turbulent coherent structures in near-wall region of a turbulent boundary layer. In accordance with the theoretical model, the dissipation-rate of turbulent kinetic energy is calculated. On the base of conventional k-ε model, the mean velocity profile is computed by using the theoretical in stead of computing the transport equation of ε. The theoretical results are in good agreement with those found from DNS. It shows that the theoretical method proposed can correctly embody the physical mechanism of near wall region turbulence and highlights a possibility of opening a new way for near-wall turbulence modeling.%提出在湍流边界层近壁区采用共振三波的理论模型描述湍流相干结构，根据理论模型计算了ε的分布。并且在传统k-ε模式基础上依照理论ε值计算了平均速度分布。在粘性作用层理论值与直接数值模拟符合很好。表明该理论方法不仅有益于对湍流机制的了解，而且可能为湍流的近壁模型化开辟一条新的途径。
Brocchini, M
2006-01-01
This book contains a collection of 11 research and review papers devoted to the topic of fluid-structure interaction.The subject matter is divided into chapters covering a wide spectrum of recognized areas of research, such as: wall bounded turbulence; quasi 2-D turbulence; canopy turbulence; large eddy simulation; lake hydrodynamics; hydraulic hysteresis; liquid impacts; flow induced vibrations; sloshing flows; transient pipe flow and air entrainment in dropshaft.The purpose of each chapter is to summarize the main results obtained by the individual research unit through a year-long activity
5th iTi Conference in Turbulence 2012
Oberlack, Martin; Peinke, Joachim
2014-01-01
This volume collects the edited and reviewed contributions presented in the 5th iTi Conference in Bertinoro. covering fundamental aspects in turbulent flows. In the spirit of the iTi initiative, the volume is produced after the conference so that the authors had the possibility to incorporate comments and discussions raised during the meeting. Turbulence presents a large number of aspects and problems, which are still unsolved and which challenge research communities in engineering and physical sciences both in basic and applied research. The book presents recent advances in theory related to new statistical approaches, effect of non-linearities and presence of symmetries. This edition presents new contributions related to the physics and control of laminar-turbulent transition in wall-bounded flows, which may have a significant impact on drag reduction applications. Turbulent boundary layers, at increasing Reynolds number, are the main subject of both computational and experimental long research programs ...
Energy Technology Data Exchange (ETDEWEB)
Browne, L. E.; Noey, J. L.; Kerr, Pat C.; Haber, A. H.
1967-01-01
A new, simple, and relatively inexpensive method is described for smoothly introducing into plant growth chambers the large volumes of preconditioned air necessary to maintain great uniformity of temperature and humidity. Preconditioned air from a plenum is introduced into the chamber through diffuser-walls containing numerous evenly spaced holes.
Directory of Open Access Journals (Sweden)
Bibhab Kumar Lodh
2015-02-01
Full Text Available This paper will present the large eddy simulation of turbulence modeling for wind flow over a wall mounted 3D cubical model. The LES Smagorinsky scheme is employed for the numerical simulation. The domain for this study is of the size of 60 cm x 30 cm x 30 cm. The 3D cube model is taken of the size of 6 cm x 6 cm x 4 cm. The Reynolds number for the flow in respect of the height of the cube i.e, 4 cm is 5.3x104 . The hexahedral grids are used for the meshing of the flow domain. The results are discussed in terms of various parameters such as velocity profile around the cube and the computational domain, the pressure distribution over the cube, near wall velocity profile and the shear stress distribution and also the result of drag coefficient is verified by neural network time series analysis using MATLAB. In this present study we have used the OpenFoam platform for the computational and numerical analysis. The numerical scheme employed is the combination of the steady state incompressible Newtonian flow model using SIMPLE algorithm followed by the transient model of incompressible Newtonian flow using PISO algorithm. We have observed that there is a constant positive drag coefficient in case of steady state simulation where as there is a negative lift coefficient in the initial run and a very low lift coefficient at the end of the steady state simulation.
Chini, G. P.; Montemuro, B.; White, C. M.; Klewicki, J.
2017-03-01
Field observations and laboratory experiments suggest that at high Reynolds numbers Re the outer region of turbulent boundary layers self-organizes into quasi-uniform momentum zones (UMZs) separated by internal shear layers termed `vortical fissures' (VFs). Motivated by this emergent structure, a conceptual model is proposed with dynamical components that collectively have the potential to generate a self-sustaining interaction between a single VF and adjacent UMZs. A large-Re asymptotic analysis of the governing incompressible Navier-Stokes equation is performed to derive reduced equation sets for the streamwise-averaged and streamwise-fluctuating flow within the VF and UMZs. The simplified equations reveal the dominant physics within-and isolate possible coupling mechanisms among-these different regions of the flow.
壁湍流标度律的实验研究%Experimental research of scaling law in wall turbulence
Institute of Scientific and Technical Information of China (English)
姜楠; 王玉春; 黄章峰
2001-01-01
A turbulent boundary layer along a flat plate with zero pressure gradients has been explored in a wind tunnel. Longitudinal velocity measurement at different vertical location has been carried out using hot wire anemometer. The scaling law of the nth order structure function of the velocity increment has been analyzed.%对风洞中零压力梯度平板湍流边界层进行了实验研究，用热线风速仪测量了不同法向位置的脉动速度，研究了平板湍流边界层不同法向位置速度结构函数的标度律。
Willert, Christian E
2015-01-01
This study reports on experimentally observed near-wall reverse flow events in a fully developed flat plate boundary layer at zero pressure gradient with Reynolds numbers between $Re_\\tau = 1000$ and $Re_\\tau = 2700$. The reverse flow events are captured using high magnification particle image velocimetry sequences with record lengths varying from 50,000 to 126,000 samples. Time resolved particle image sequences allow singular reverse flow events to be followed over several time steps whereas long records of nearly statistically independent samples provide a variety of single snapshots at a higher spatial resolution. The probability of occurrence lies in the range of 0.01% to 0.1% which matches predictions made with direct numerical simulations (DNS). The self-similar size of the reverse flow bubble is about 30-50 wall units in length and 5 wall units in height which also agrees well to DNS data provided by Lenaers et al. (ETC13, Journal of Physics: Conference Series 318 (2011) 022013).
Macroscopic effects of the spectral structure in turbulent flows
Tran, T.; Chakraborty, P.; Guttenberg, N.; Prescott, A.; Kellay, H.; Goldburg, W.; Goldenfeld, N.; Gioia, G.
2010-11-01
There is a missing link between macroscopic properties of turbulent flows, such as the frictional drag of a wall-bounded flow, and the turbulent spectrum. To seek the missing link we carry out unprecedented experimental measurements of the frictional drag in turbulent soap-film flows over smooth walls. These flows are effectively two-dimensional, and we are able to create soap-film flows with the two types of turbulent spectrum that are theoretically possible in two dimensions: the "enstrophy cascade," for which the spectral exponent α= 3, and the "inverse energy cascade," for which the spectral exponent α= 5/3. We find that the functional relation between the frictional drag f and the Reynolds number Re depends on the spectral exponent: where α= 3, f ˜Re-1/2; where α= 5/3, f ˜Re-1/4. Each of these scalings may be predicted from the attendant value of α by using a recently proposed spectral theory of the frictional drag. In this theory the frictional drag of turbulent flows on smooth walls is predicted to be f ˜Re^(1-α)/(1+α).
Satish, G.; Vashista, G. A.; Majumdar, Sekhar
2017-04-01
Most of the widely used popular mathematical models of turbulence use a judicious combination of intuition, empiricism and the governing equations of instantaneous and mean motion-valid strictly for fully developed turbulence without any laminar region. In reality however, any wall bounded or free shear flow may consist of some laminar flow patches which eventually undergo transition over a finite length to grow into fully turbulent flows. Most of the turbulence models used in commercial CFD codes, are unable to predict the dynamics of turbulent flows with laminar patches. However, accurate prediction of transitional flows is often essential to estimate the pressure losses and/or heat transfer in industrial applications. The present paper implements two different transition models in an existing finite volume URANS-based code RANS3D, developed in house and validated against reliable measurement data for flow past flat plates with different free stream turbulence levels and flow past SD7003 aerofoil at a chord-based Reynolds number of 60,000.
1993-08-12
position sensing technique was employed that utilized one sensing device for the near-wall region (y < 0.18 in, y/8 < 0.191, y+ < 169) and a second...0.0005 in. that mounted on an external optical stand. The sensing device for the outer portions of the ’noundary layer was an Enco vernier caliper that...represern ±0. I 0 S S 6 0 S 0 0 0 4, 187 X), U00 3/8-in. -Diamneter Cylindrical ModelO .022-in.-O.D. ~ Stainless Steel Tube Brass 3/8 in. 0-Ring Half-Ring
Stability of optimal streaks in the buffer layer of a turbulent channel flow with variable viscosity
Patel, Ashish; Rinaldi, Enrico; Pecnik, Rene; Schlatter, Philipp; Bagheri, Shervin
2016-11-01
Direct Numerical Simulations (DNS) of turbulent channel flows with variable viscosity (Patel et al., 2015, PoF) show that low speed streaks in the buffer layer strengthen and are stabilized for increasing viscosity away from the wall, as they do not lift and tilt as intensely as in a constant property flow. The opposite holds for cases where viscosity decreases away from the wall. In this work, we investigate the above observation by studying the linear stability of the mean turbulent velocity profile obtained from DNS of variable viscosity flows. Examples of such studies for constant property turbulent flows include work of del Alamo & Jiménez, 2006, JFM and Pujals et al., 2009, PoF. The calculated optimal buffer layer streaks show larger transient energy growth for a case where the viscosity increases away from the wall. We further study the stability of the saturated optimal streaks by imposing a secondary sinuous perturbation and by following the nonlinear evolution of the structures in time. The present investigation will improve the understanding of the near-wall turbulence cycle for wall-bounded turbulent flows with viscosity gradients.
Structures and scaling laws of turbulent Couette flow
Oberlack, Martin; Avsarkisov, Victor; Hoyas, Sergio; Rosteck, Andreas; Garcia-Galache, Jose P.; Frank, Andy
2014-11-01
We conducted a set of large scale DNS of turbulent Couette flow with the two key objectives: (i) to better understand large scale coherent structures and (ii) to validate new Lie symmetry based turbulent scaling laws for the mean velocity and higher order moments. Though frequently reported in the literature large scale structures pose a serious constraint on our ability to conduct DNS of turbulent Couette flow as the largest structures grow with increasing Re#, while at the same time Kolmogorov scale decreases. Other than for the turbulent Poiseuille flow a too small box is immediately visible in low order statistics such as the mean and limited our DNS to Reτ = 550 . At the same time we observed that scaling of the mean is peculiar as it involves a certain statistical symmetry which has never been observed for any other parallel wall-bounded turbulent shear flow. Symmetries such as Galilean group lie at the heart of fluid dynamics, while for turbulence statistics due to the multi-point correlation equations (MPCE) additional statistical symmetries are admitted. Most important, symmetries are the essential to construct exact solutions to the MPCE, which with the new above-mentioned special statistical symmetry led to a new turbulent scaling law for the Couette flow. DFG Grant No; KH 257/2-1.
Kühnen, Jakob; Hof, Björn
2015-11-01
We show that a simple modification of the velocity profile in a pipe can lead to a complete collapse of turbulence and the flow fully relaminarises. The annihilation of turbulence is achieved by a steady manipulation of the streamwise velocity component alone, greatly reducing control efforts. Several different control techniques are presented: one with a local modification of the flow profile by means of a stationary obstacle, one employing a nozzle injecting fluid through a small gap at the pipe wall and one with a moving wall, where a part of the pipe is shifted in the streamwise direction. All control techniques act on the flow such that the streamwise velocity profile becomes more flat and turbulence gradually grows faint and disappears. In a smooth straight pipe the flow remains laminar downstream of the control. Hence a reduction in skin friction by a factor of 8 and more can be accomplished. Stereoscopic PIV-measurements and movies of the development of the flow during relaminarisation are presented.
Energy Technology Data Exchange (ETDEWEB)
Caughey, David
2010-10-08
A Symposium on Turbulence and Combustion was held at Cornell University on August 3-4, 2009. The overall goal of the Symposium was to promote future advances in the study of turbulence and combustion, through an unique forum intended to foster interactions between leading members of these two research communities. The Symposium program consisted of twelve invited lectures given by world-class experts in these fields, two poster sessions consisting of nearly 50 presentations, an open forum, and other informal activities designed to foster discussion. Topics covered in the lectures included turbulent dispersion, wall-bounded flows, mixing, finite-rate chemistry, and others, using experiment, modeling, and computations, and included perspectives from an international community of leading researchers from academia, national laboratories, and industry.
Adamson, T. C., Jr.; Liou, M. S.; Messiter, A. F.
1980-01-01
An asymptotic description is derived for the interaction between a shock wave and a turbulent boundary layer in transonic flow, for a particular limiting case. The dimensionless difference between the external flow velocity and critical sound speed is taken to be much smaller than one, but large in comparison with the dimensionless friction velocity. The basic results are derived for a flat plate, and corrections for longitudinal wall curvature and for flow in a circular pipe are also shown. Solutions are given for the wall pressure distribution and the shape of the shock wave. Solutions for the wall shear stress are obtained, and a criterion for incipient separation is derived. Simplified solutions for both the wall pressure and skin friction distributions in the interaction region are given. These results are presented in a form suitable for use in computer programs.
Guala, M.
2013-12-01
Reproducing the different thermal stability regimes of the atmospheric boundary layer (ABL) in wind tunnel experiments requires accurate control of the free stream air and wall temperatures and a test section long enough to ensure the establishment of fully developed conditions. Such requirements are met in the SAFL atmospheric wind tunnel, with some limitations on the achievable range of z/L, confined between the weakly stratified and weakly convective boundary layers. A number of statistical checks based on Reynolds, Monin-Obukhov similarities, Kolmogorov small scale universality, temperature and velocity variance balance equations, are available to assess the quality of the measurements, flow and estimate of the scaling parameters. However, limited work has been devoted to the comparison of the spatio-temporal structure of turbulent flows from the laboratory to the field scale. Specifically, the vertical extent, scaling and statistical relevance of different structural types pose some scalability issues and deserve further investigation. PIV and triple wire measurements from the SAFL Wind Tunnel will be presented and compared with measurements in the atmospheric surface layer. Particular care is devoted to the contributions of large and very-large scale motions to the momentum and heat fluxes, and to their role in near-surface processes and wind energy.
Universal decay of high Reynolds number Taylor-Couette turbulence
Verschoof, Ruben A; van der Veen, Roeland C A; Sun, Chao; Lohse, Detlef
2015-01-01
We study the decay of high-Reynolds number Taylor-Couette turbulence, i.e. the turbulent flow between two coaxial rotating cylinders. To do so, the rotation of the inner cylinder ($Re_i = 2 \\cdot 10^6$, the outer cylinder is at rest) was suddenly stopped. Using a combination of laser Doppler anemometry and particle image velocimetry measurements, six decay decades of the kinetic energy could be captured. First, in the absence of cylinder rotation, the flow-velocity during the decay does not develop any height dependence in contrast to the well-known Taylor vortex state. Next, the radial profile of the azimuthal velocity is found to be self-similar, i.e. when normalizing it with the mean velocity, it is universal. Nonetheless, the decay of this wall-bounded inhomogeneous turbulent flow does not follow a strict power law as for decaying turbulent homogeneous isotropic flows, but it is faster, due to the strong viscous drag applied by the bounding walls. We theoretically describe the decay in a quantitative way ...
The Local Variational Multiscale Method for Turbulence Simulation.
Energy Technology Data Exchange (ETDEWEB)
Collis, Samuel Scott; Ramakrishnan, Srinivas
2005-05-01
Accurate and efficient turbulence simulation in complex geometries is a formidable chal-lenge. Traditional methods are often limited by low accuracy and/or restrictions to simplegeometries. We explore the merger of Discontinuous Galerkin (DG) spatial discretizationswith Variational Multi-Scale (VMS) modeling, termed Local VMS (LVMS), to overcomethese limitations. DG spatial discretizations support arbitrarily high-order accuracy on un-structured grids amenable for complex geometries. Furthermore, high-order, hierarchicalrepresentation within DG provides a natural framework fora prioriscale separation crucialfor VMS implementation. We show that the combined benefits of DG and VMS within theLVMS method leads to promising new approach to LES for use in complex geometries.The efficacy of LVMS for turbulence simulation is assessed by application to fully-developed turbulent channelflow. First, a detailed spatial resolution study is undertakento record the effects of the DG discretization on turbulence statistics. Here, the localhp[?]refinement capabilites of DG are exploited to obtain reliable low-order statistics effi-ciently. Likewise, resolution guidelines for simulating wall-bounded turbulence using DGare established. We also explore the influence of enforcing Dirichlet boundary conditionsindirectly through numericalfluxes in DG which allows the solution to jump (slip) at thechannel walls. These jumps are effective in simulating the influence of the wall commen-surate with the local resolution and this feature of DG is effective in mitigating near-wallresolution requirements. In particular, we show that by locally modifying the numericalviscousflux used at the wall, we are able to regulate the near-wall slip through a penaltythat leads to improved shear-stress predictions. This work, demonstrates the potential ofthe numerical viscousflux to act as a numerically consistent wall-model and this successwarrents future research.As in any high-order numerical method some
El Khoury, George K.; Schlatter, Philipp; Brethouwer, Geert; Johansson, Arne V.
2014-04-01
Direct numerical simulation data of fully developed turbulent pipe flow are extensively compared with those of turbulent channel flow and zero-pressure-gradient boundary layer flow for Reτ up to 1000. In the near-wall region, a high degree of similarity is observed in the three flow cases in terms of one-point statistics, probability density functions of the wall-shear stress and pressure, spectra, Reynolds stress budgets and advection velocity of the turbulent structures. This supports the notion that the near-wall region is universal for pipe and channel flow. Probability density functions of the wall shear stress, streamwise turbulence intensities, one-dimensional spanwise/azimuthal spectra of the streamwise velocity and Reynolds-stress budgets are very similar near the wall in the three flow cases, suggesting that the three canonical wall-bounded flows share many features. In the wake region, the mean streamwise velocity and Reynolds stress budgets show some expected differences.
Energy Technology Data Exchange (ETDEWEB)
Osaka, H.; Mochizuki, S. [Yamaguchi University, Yamaguchi (Japan). Faculty of Engineering; Sugihara, M. [Mitsubishi Heavy Industries, Ltd., Tokyo (Japan)
1995-09-25
In this study the plane wall jet under the self-preserving pressure gradient was measured to investigate the effect of the ratio of the maximum velocity Um to the external stream velocity Ue on the turbulent quantities. Velocity ratio Um/Ue was set at three values within the range of 2.0 to 4.0. Under such conditions, three components of turbulent intensity and Reynolds shear stress were measured by using two linearized hot wire anemometers. The turbulent flow is closely self-preserving in the range of 57
A study on turbulence modulation via an analysis of turbulence anisotropy-invariants
Institute of Scientific and Technical Information of China (English)
Michael; MANHART
2010-01-01
We investigate the turbulence modulation by particles in a turbulent two-phase channel flow via an analysis of turbulence anisotropy-invariants. The fluid turbulence is calculated by a large eddy simulation with a point-force two-way coupling model and particles are tracked by the Lagrangian trajectory method. The channel turbulence follows the two-component turbulence state within the viscous sub-layer region and outside the region the turbulence tends to follow the right curve of the anisotropy-invariant. The channel turbulence, interacting with heavy particles, is modulated to the two-component turbulence limit state near the wall and is separate from the axisymmetric turbulence state in the turbulence anisotropy-invariants map. The fluctuations of streamwise component are transferred to the other two components and hence the anisotropy decreases due to particle modulation. The study has deepened the understanding of the turbulence modulation mechanism in two-phase turbulent flows.
Passivity-Based Output-Feedback Control of Turbulent Channel Flow
Heins, Peter H; Sharma, Ati S
2016-01-01
This paper describes a robust linear time-invariant output-feedback control strategy to reduce turbulent fluctuations, and therefore skin-friction drag, in wall-bounded turbulent fluid flows, that nonetheless gives performance guarantees in the nonlinear turbulent regime. The novel strategy is effective in reducing the supply of available energy to feed the turbulent fluctuations, expressed as reducing a bound on the supply rate to a quadratic storage function. The nonlinearity present in the equations that govern the dynamics of the flow is known to be passive and can be considered as a feedback forcing to the linearised dynamics (a Lur'e decomposition). Therefore, one is only required to control the linear dynamics in order to make the system close to passive. The ten most energy-producing spatial modes of a turbulent channel flow were identified. Passivity-based controllers were then generated to control these modes. The controllers require measurements of streamwise and spanwise wall-shear stress, and the...
DEFF Research Database (Denmark)
Wang, H.Q.; Xu, G.S.; Guo, H.Y.;
2012-01-01
-frequency oscillation, termed a limit-cycle state, appears at the edge during the quiescent phase with good energy and particle confinement. Detailed measurements by edge Langmuir probes show modulation interaction and strong three-wave coupling between the low-frequency oscillations and high-frequency-broadband (80......The first high confinement H-mode plasma has been obtained in the Experimental Advanced Superconducting Tokamak (EAST) with about 1 MW lower hybrid current drive after wall conditioning by lithium evaporation and real-time injection of Li powder. Following the L–H transition, a small-amplitude, low....... And the measurements demonstrate that the energy gain of zonal flows is of the same order as the energy loss of turbulence. This strongly suggests the interactions between zonal flows and high-frequency turbulences at the pedestal during the limit-cycle state....
Multilayer scaling of mean velocity and thermal fields of compressible turbulent boundary layer
Bi, Weitao; Wu, Bin; Zhang, Yousheng; Hussain, Fazle; She, Zhen-Su
2014-11-01
Recently, a symmetry based structural ensemble dynamics (SED) theory was proposed by She et al. for canonical wall bounded turbulent flows, yielding prediction of the mean velocity profile at an unprecedented accuracy (99%). Here, we extend the theory to compressible turbulent boundary layers (TBL) at supersonic and hypersonic Mach numbers. The flows are acquired by spatially evolving direct numerical simulations (DNS). A momentum mixing length displays a four layer structure and quantitatively obeys the dilation group invariance as for the incompressible TBL. In addition, a temperature mixing length behaves very similarly to the momentum mixing length when the wall is adiabatic, with a small difference in the scaling exponents in the buffer layer - consistent with the strong Reynolds analogy. The Lie group based formulization of the two mixing lengths yields a multilayer model for the turbulent Prandtl number, along with predictions to the mean thermal and velocity profiles, both in good agreement with the DNS. Thus, we assert that the compressible TBLs are governed by the same symmetry principle as that in the canonical wall bounded turbulent flows, and its mean fields can be accurately described by the SED theory.
Directory of Open Access Journals (Sweden)
Denisa Leonte
2015-12-01
Full Text Available In this paper we describe the chemoenzymatic synthesis of enantiopure l-2-arylthiazol-4-yl alanines starting from their racemic N-acetyl derivatives; by combining the lipase-catalysed dynamic kinetic resolution of oxazol-5(4H-ones with a chemical and an enzymatic enantioselective hydrolytic step affording the desired products in good yields (74%–78% and high enantiopurities (ee > 99%. The developed procedure exploits the utility of the single-walled carbon nanotubes-bound diethylaminoethanol as mild and efficient racemisation agent for the dynamic kinetic resolution of the corresponding oxazolones.
Sharma, Ati S; Moarref, Rashad; McKeon, Beverley J; Park, Jae Sung; Graham, Michael D; Willis, Ashley P
2016-02-01
We report that many exact invariant solutions of the Navier-Stokes equations for both pipe and channel flows are well represented by just a few modes of the model of McKeon and Sharma [J. Fluid Mech. 658, 336 (2010)]. This model provides modes that act as a basis to decompose the velocity field, ordered by their amplitude of response to forcing arising from the interaction between scales. The model was originally derived from the Navier-Stokes equations to represent turbulent flows and has been used to explain coherent structure and to predict turbulent statistics. This establishes a surprising new link between the two distinct approaches to understanding turbulence.
Rajabalinejad, M.; Gelder, van P.H.A.J.M.; Demirbilek, Zeki; Mahdi, Tew-Fik; Vrijling, J.K.
2010-01-01
In this paper we provide a computational framework for evaluation of reliability and safety assessment of infrastructures. It is based on the combined application of the dynamic bounds (DB) method and a probabilistic finite element model (FEM). The DB improves the computational efficiency of the FEM
Self-similarity of the large-scale motions in turbulent pipe flow
Hellström, Leo; Marusic, Ivan; Smits, Alexander
2016-11-01
Townsend's attached eddy hypothesis assumes the existence of a set of energetic and geometrically self-similar eddies in the logarithmic layer in wall-bounded turbulent flows. These eddies can be completely scaled with the distance from their center to the wall. We performed stereo PIV measurements together with a proper orthogonal decomposition (POD) analysis, to address the self-similarity of the energetic motions, or eddies, in fully-developed turbulent pipe flow. The resulting modes/eddies, extracted at Reτ = 2460 , show a self-similar behavior for eddies with wall-normal length scales spanning a decade. This single length scale provides a complete description of the cross-sectional shape of the self-similar eddies. ONR Grant N00014-15-1-2402 and the Australian Research Council.
Institute of Scientific and Technical Information of China (English)
汪攀; 吴鹏飞; 马祥庆; 陈奶莲; 张云鹏
2015-01-01
[Objective]Aims: The insoluble iron bound phosphate in red soil of southern China was used to study the capacity of cell wall of Chinese fir roots in mobilizing insoluble iron bound phosphate and the impact factors,including forest age,root diameter and tissue structure of Chinese fir root cell wall. This study aims at providing a theoretical basis for fully using potentially available phosphorus content in the forest red soil of southern China.[Method]Methods: In Xinkou Forest Station of Sanming in Fujian,we chose 3 average trees from different aged forests,the 10-year-old as the young forest,22-year-old as middle-aged forest and 34-year-old as old forest of Chinese fir plantations,and classified the roots into 6 classes according to the root diameter,less than 2 mm,2-5 mm,5-10 mm,10-20 mm,20-30 mm,and more than 30 mm. The cell wall was extracted from xylem and phloem of different root classes,respectively. The phosphorus content mobilized by cell-wall from insoluble iron bound phosphate was determined by using the molybdenum antimony colorimetric method,to analyze and compare the ability of cell wall of Chinese fir root in mobilization of insoluble iron bound phosphate,and the influence factors,such as root diameter,tissue structures and forest age.[Result]The mobilizing phosphorus content by Chinese fir root cell wall from insoluble iron bound phosphate was from 17 . 67 mg kg-1 to 497 . 50 mg kg-1 . The xylem and phloem cell wall of less than 10 mm diameter roots had greater ability of activating insoluble iron bound phosphate than that of the more than 10 mm diameter roots. Compared with xylem in each forest age, the phloem cell wall of the same diameter root activated more insoluble iron bound phosphate. There was difference in activating ability of insoluble iron bound phosphate among the different forest ages with the same root diameter,and the ability of cell wall in activating insoluble iron bound phosphate was as follows: old forest > middle-aged forest
DNSLab: A gateway to turbulent flow simulation in Matlab
Vuorinen, V.; Keskinen, K.
2016-06-01
Computational fluid dynamics (CFD) research is increasingly much focused towards computationally intensive, eddy resolving simulation techniques of turbulent flows such as large-eddy simulation (LES) and direct numerical simulation (DNS). Here, we present a compact educational software package called DNSLab, tailored for learning partial differential equations of turbulence from the perspective of DNS in Matlab environment. Based on educational experiences and course feedback from tens of engineering post-graduate students and industrial engineers, DNSLab can offer a major gateway to turbulence simulation with minimal prerequisites. Matlab implementation of two common fractional step projection methods is considered: the 2d Fourier pseudo-spectral method, and the 3d finite difference method with 2nd order spatial accuracy. Both methods are based on vectorization in Matlab and the slow for-loops are thus avoided. DNSLab is tested on two basic problems which we have noted to be of high educational value: 2d periodic array of decaying vortices, and 3d turbulent channel flow at Reτ = 180. To the best of our knowledge, the present study is possibly the first to investigate efficiency of a 3d turbulent, wall bounded flow in Matlab. The accuracy and efficiency of DNSLab is compared with a customized OpenFOAM solver called rk4projectionFoam. Based on our experiences and course feedback, the main contribution of DNSLab consists of the following features. (i) The very compact Matlab implementation of present Navier-Stokes solvers provides a gateway to efficient learning of both, physics of turbulent flows, and simulation of turbulence. (ii) Only relatively minor prerequisites on fluid dynamics and numerical methods are required for using DNSLab. (iii) In 2d, interactive results for turbulent flow cases can be obtained. Even for a 3d channel flow, the solver is fast enough for nearly interactive educational use. (iv) DNSLab is made openly available and thus contributing to
A study of synthetic large scales in turbulent boundary layers
Duvvuri, Subrahmanyam; Luhar, Mitul; Barnard, Casey; Sheplak, Mark; McKeon, Beverley
2013-11-01
Synthetic spanwise-constant spatio-temporal disturbances are excited in a turbulent boundary layer through a spatially impulsive patch of dynamic wall-roughness. The downstream flow response is studied through hot wire anemometry, pressure measurements at the wall and direct measurements of wall-shear-stress made using a novel micro-machined capacitive floating element sensor. These measurements are phase-locked to the input perturbation to recover the synthetic large-scale motion and characterize its structure and wall signature. The phase relationship between the synthetic large scale and small scale activity provides further insights into the apparent amplitude modulation effect between them, and the dynamics of wall-bounded turbulent flows in general. Results from these experiments will be discussed in the context of the critical-layer behavior revealed by the resolvent analysis of McKeon & Sharma (J Fluid Mech, 2010), and compared with similar earlier work by Jacobi & McKeon (J Fluid Mech, 2011). Model predictions are shown to be in broad agreement with experiments. The support of AFOSR grant #FA 9550-12-1-0469, Resnick Institute Graduate Research Fellowship (S.D.) and Sandia Graduate Fellowship (C.B.) are gratefully acknowledged.
On the origin of streaks in turbulent shear flows
Waleffe, Fabian; Kim, John
1991-01-01
The paper substantiates the notion that selective amplification and direct resonance, based on linear theory, does not provide a selection mechanism for the well-defined streak spacing of about 100 wall units observed in wall-bounded turbulent shear flows. For the direct resonance theory, it is shown that the streaks are created by the nonlinear self-interaction of the vertical velocity rather than that of the directly forced vertical vorticity. It is proposed that the selection mechanism must be inherently nonlinear and correspond to a self-sustaining process. For the case of plane Poiseuille flow the 100-wall-unit criterion corresponds to a critical Reynolds number of 1250, based on the centerline velocity and the channel half-width, which is close to the usually quoted value of about 1000. In plane Couette flow, it corresponds to a critical Reynolds number of 625, based on the half-velocity difference and the half-width.
Yu, Bingwu; Vengadesan, G; Wang, Hsin; Jashi, Liana; Yefremov, Tatiana; Tian, Shiying; Gaba, Victor; Shomer, Ilan; Stark, Ruth E
2006-03-01
Intercellular adhesion strengthening, a phenomenon that compromises the texture and the edible quality of potatoes (Solanum tuberosum L.), has been induced reproducibly by exposure to low-pH acetic acid solutions under tissue culture conditions. The resulting parenchyma tissues have been examined by solid-state nuclear magnetic resonance (NMR) in order to characterize the biopolymer(s) thought to be associated with this syndrome. Cross polarization-magic angle spinning (CPMAS) (13)C NMR has been used to establish the presence of a polyphenol-suberin-like aromatic-aliphatic polyester within an abundant cell wall polysaccharide matrix in potato tubers that exhibit hardening due to strengthened intercellular adhesion. Dipolar dephasing and CP chemical shift anisotropy experiments suggest that the aromatic domain is composed primarily of guaiacyl and sinapyl groups. Two-dimensional wide-line separation experiments show that the biopolymer associated with parenchyma hardening contains rigid polysaccharide cell walls and mobile aliphatic long-chain fatty acids; (1)H spin diffusion experiments show that these flexible aliphatic chains are proximal to both the phenolics and a subpopulation of the cell wall polysaccharides. Finally, high-resolution MAS NMR of parenchyma samples swelled in DMSO in conjunction with two-dimensional through-bond and through-space NMR spectroscopy provides evidence for covalent linkages among the polysaccharide, phenolic, and aliphatic domains of the intercellular adhesion-strengthening biopolymer in potato parenchyma tissue.
Bound entanglement and entanglement bounds
Energy Technology Data Exchange (ETDEWEB)
Sauer, Simeon [Physikalisch-Astronomische Fakultaet, Friedrich-Schiller-Univesitaet Jena (Germany)]|[Physikalisches Institut, Albert-Ludwigs-Universitaet Freiburg, Hermann-Herder-Strasse 3, D-79104 Freiburg (Germany); Melo, Fernando de; Mintert, Florian; Buchleitner, Andreas [Physikalisches Institut, Albert-Ludwigs-Universitaet Freiburg, Hermann-Herder-Strasse 3, D-79104 Freiburg (Germany)]|[Max-Planck-Institut fuer Physik komplexer Systeme, Noethnitzer Str.38, D-01187 Dresden (Germany); Bae, Joonwoo [School of Computational Sciences, Korea Institute for Advanced Study, Seoul 130-012 (Korea); Hiesmayr, Beatrix [Faculty of Physics, University of Vienna, Boltzmanngasse 5, A-1090 Vienna (Austria)
2008-07-01
We investigate the separability of Bell-diagonal states of two qutrits. By using lower bounds to algebraically estimate concurrence, we find convex regions of bound entangled states. Some of these regions exactly coincide with the obtained results when employing optimal entanglement witnesses, what shows that the lower bound can serve as a precise detector of entanglement. Some hitherto unknown regions of bound entangled states were discovered with this approach, and delimited efficiently.
7th iTi Conference in Turbulence
Talamelli, Alessandro; Oberlack, Martin; Peinke, Joachim
2017-01-01
This volume collects the edited and reviewed contribution presented in the 7th iTi Conference in Bertinoro, covering fundamental and applied aspects in turbulence. In the spirit of the iTi conference, the volume is produced after the conference so that the authors had the opportunity to incorporate comments and discussions raised during the meeting. In the present book, the contributions have been structured according to the topics: I Theory II Wall bounded flows III Pipe flow IV Modelling V Experiments VII Miscellaneous topics.
Bulk flow scaling for turbulent channel and pipe flows
Chen, Xi; She, Zhen-Su
2016-01-01
We report a theory deriving bulk flow scaling for canonical wall-bounded flows. The theory accounts for the symmetries of boundary geometry (flat plate channel versus circular pipe) by a variational calculation for a large-scale energy length, which characterizes its bulk flow scaling by a simple exponent, i.e. $m=4$ for channel and 5 for pipe. The predicted mean velocity shows excellent agreement with several dozen sets of quality empirical data for a wide range of the Reynolds number (Re), with a universal bulk flow constant $\\kappa\\approx0.45$. Predictions for dissipation and turbulent transport in the bulk flow are also given, awaiting data verification.
Rough-Wall Channel Analysis Using Suboptimal Control Theory
Flores, O.; Jimenez, J.; Tenpleton, J.
2003-01-01
The original aim of this work was to shed some light on the physics of turbulence over rough walls using large-eddy simulations and the suboptimal-control wall boundary conditions introduced by Nicoud et al. It was hoped that, if that algorithm was used to fit the mean velocity profile of the simulations to that of a rough-walled channel, instead of to a smooth one, the wall stresses introduced by the control algorithm would give some indication of what aspects of rough walls are most responsible for the modification of the flow in real turbulence. It was similarly expected that the structure of the resulting velocity fluctuations would share some of the characteristics of rough-walled flows, thus again suggesting what is intrinsic and what is accidental in the effect of geometric wall roughness. A secondary goal was to study the effect of 'unphysical' boundary conditions on the outside flow by observing how a relatively major change of the target velocity profile, and therefore presumably of the applied wall stresses, modifies properties such as the dominant length scales of the velocity fluctuations away from the wall. As will be seen below, this secondary goal grew more important during the course of the study, which was carried out during a short summer visit of the first two authors to the CTR. It became clear that there are open questions about the way in which the control algorithm models the boundary conditions, even for smooth walls, and that these questions make the physical interpretation of the results difficult. Considerable more work in that area seems to be needed before even relatively advanced large-eddy simulations, such as these, can be used to draw conclusions about the physics of wall-bounded turbulent flows. The numerical method is the same as in Nicoud et al. The modifications introduced in the original code are briefly described in section 2, but the original paper should be consulted for a full description of the algorithm. The results are
Lattice Boltzmann equation calculation of internal, pressure-driven turbulent flow
Hammond, L A; Care, C M; Stevens, A
2002-01-01
We describe a mixing-length extension of the lattice Boltzmann approach to the simulation of an incompressible liquid in turbulent flow. The method uses a simple, adaptable, closure algorithm to bound the lattice Boltzmann fluid incorporating a law-of-the-wall. The test application, of an internal, pressure-driven and smooth duct flow, recovers correct velocity profiles for Reynolds number to 1.25 x 10 sup 5. In addition, the Reynolds number dependence of the friction factor in the smooth-wall branch of the Moody chart is correctly recovered. The method promises a straightforward extension to other curves of the Moody chart and to cylindrical pipe flow.
Mansour, Morkous S.
2015-04-29
A double-slit curved wall-jet (CWJ) burner utilizing a Coanda effect by supplying fuel and air as annular-inward jets over a curved surface was employed to investigate the stabilization characteristics and structure of propane/air turbulent non-premixed flames with varying global equivalence ratio and Reynolds number. Simultaneous time-resolved measurements of particle image velocimetry (PIV) and planar laser-induced fluorescence (PLIF) of OH radicals were conducted. The burner showed a potential of stable and non-sooting operation for relatively large fuel loading and overall rich conditions. Mixing characteristics in cold flow were first examined using an acetone fluorescence technique, indicating substantial transport between the fuel and air by exhibiting appreciable premixing conditions. PIV measurements revealed that the flow field consisted of a wall-jet region leading to a recirculation zone through flow separation, an interaction jet region resulting from the collision of annular-inward jets, followed by a merged-jet region. The flames were stabilized in the recirculation zone and, in extreme cases, only a small flame seed remained in the recirculation zone. Together with the collision of the slit jets in the interaction jet region, the velocity gradients in the shear layers at the boundaries of the annular jets generate the turbulence. Turbulent mean and rms velocities were influenced by the presence of the flame, particularly in the recirculation zone. Flames with a high equivalence ratio were found to be more resistant to local extinction and exhibited a more corrugated and folded nature, particularly at high Reynolds numbers. For flames with a low equivalence ratio, local quenching and re-ignition processes maintained flames in the merged jet region, revealing a strong intermittency, which was substantiated by the increased principal strain rates for these flames. © 2015 Taylor & Francis Group, LLC.
Ameri, A. A.; Rigby, D. L.; Steinthorsson, E.; Gaugler, Raymond (Technical Monitor)
2002-01-01
The Low Reynolds number version of the Stress-omega model and the two equation k-omega model of Wilcox were used for the calculation of turbulent heat transfer in a 180 degree turn simulating an internal coolant passage. The Stress-omega model was chosen for its robustness. The turbulent thermal fluxes were calculated by modifying and using the Generalized Gradient Diffusion Hypothesis. The results showed that using this Reynolds Stress model allowed better prediction of heat transfer compared to the k-omega two equation model. This improvement however required a finer grid and commensurately more CPU time.
Nedospasov, A. V.
1992-12-01
Edge turbulence is of decisive importance for the distribution of particle and energy fluxes to the walls of tokamaks. Despite the availability of extensive experimental data on the turbulence properties, its nature still remains a subject for discussion. This paper contains a review of the most recent theoretical and experimental studies in the field, including mainly the studies to which Wootton (A.J. Wooton, J. Nucl. Mater. 176 & 177 (1990) 77) referred to most in his review at PSI-9 and those published later. The available theoretical models of edge turbulence with volume dissipation due to collisions fail to fully interpret the entire combination of experimental facts. In the scrape-off layer of a tokamak the dissipation prevails due to the flow of current through potential shifts near the surface of limiters of divertor plates. The different origins of turbulence at the edge and in the core plasma due to such dissipation are discussed in this paper. Recent data on the electron temperature fluctuations enabled one to evaluate the electric probe measurements of turbulent flows of particles and heat critically. The latest data on the suppression of turbulence in the case of L-H transitions are given. In doing so, the possibility of exciting current instabilities in biasing experiments (rather than only to the suppression of existing turbulence) is given some attention. Possible objectives of further studies are also discussed.
Turbulence measurements in high Reynolds number boundary layers
Vallikivi, Margit; Smits, Alexander
2013-11-01
Measurements are conducted in zero pressure gradient turbulent boundary layers for Reynolds numbers from Reθ = 9,000 to 225,000. The experiments were performed in the High Reynolds number Test Facility (HRTF) at Princeton University, which uses compressed air as the working fluid. Nano-Scale Thermal Anemometry Probes (NSTAPs) are used to acquire data with very high spatial and temporal precision. These new data are used to study the scaling behavior of the streamwise velocity fluctuations in the boundary layer and make comparisons with the scaling of other wall-bounded turbulent flows. Supported under ONR Grant N00014-09-1-0263 (program manager Ron Joslin) and NSF Grant CBET-1064257 (program manager Henning Winter).
Draper, Martin; Usera, Gabriel
2015-04-01
The Scale Dependent Dynamic Model (SDDM) has been widely validated in large-eddy simulations using pseudo-spectral codes [1][2][3]. The scale dependency, particularly the potential law, has been proved also in a priori studies [4][5]. To the authors' knowledge there have been only few attempts to use the SDDM in finite difference (FD) and finite volume (FV) codes [6][7], finding some improvements with the dynamic procedures (scale independent or scale dependent approach), but not showing the behavior of the scale-dependence parameter when using the SDDM. The aim of the present paper is to evaluate the SDDM in the open source code caffa3d.MBRi, an updated version of the code presented in [8]. caffa3d.MBRi is a FV code, second-order accurate, parallelized with MPI, in which the domain is divided in unstructured blocks of structured grids. To accomplish this, 2 cases are considered: flow between flat plates and flow over a rough surface with the presence of a model wind turbine, taking for this case the experimental data presented in [9]. In both cases the standard Smagorinsky Model (SM), the Scale Independent Dynamic Model (SIDM) and the SDDM are tested. As presented in [6][7] slight improvements are obtained with the SDDM. Nevertheless, the behavior of the scale-dependence parameter supports the generalization of the dynamic procedure proposed in the SDDM, particularly taking into account that no explicit filter is used (the implicit filter is unknown). [1] F. Porté-Agel, C. Meneveau, M.B. Parlange. "A scale-dependent dynamic model for large-eddy simulation: application to a neutral atmospheric boundary layer". Journal of Fluid Mechanics, 2000, 415, 261-284. [2] E. Bou-Zeid, C. Meneveau, M. Parlante. "A scale-dependent Lagrangian dynamic model for large eddy simulation of complex turbulent flows". Physics of Fluids, 2005, 17, 025105 (18p). [3] R. Stoll, F. Porté-Agel. "Dynamic subgrid-scale models for momentum and scalar fluxes in large-eddy simulations of
The role of periodic orbits and bubbles of chaos during the transition to turbulence
Altmeyer, S; Hof, B
2015-01-01
Starting with turbulence that explores a wide region in phase space, we discover several relative periodic orbits (RPOs) embedded within a subregion of the chaotic turbulent saddle. We also extract directly from simulation, several travelling waves (TWs). These TWs together with the RPOs are unstable states and are believed to provide the skeleton of the chaotic saddle. Earlier studies have shown that such invariant solutions can help to explain wall bounded shear flows, and a finite subset of them are expected to dominate the dynamics (Faisst & Eckhardt 2003; Pringle & Kerswell 2007; Hof et al. 2004). The introduction of symmetries is typically necessary to facilitate this approach. Applying only the shift-reflect symmetry, the geometry is less constrained than previous studies in pipe flow. A 'long-period' RPO is identified that is only very weakly repelling. Turbulent trajectories are found to frequently approach and frequently shadow this orbit. In addition the orbit characterises a resulting 'bub...
Self-sustaining turbulence in a restricted nonlinear model of plane Couette flow
Energy Technology Data Exchange (ETDEWEB)
Thomas, Vaughan L.; Gayme, Dennice F. [Department of Mechanical Engineering, Johns Hopkins University, Baltimore, Maryland, 21218 (United States); Lieu, Binh K.; Jovanović, Mihailo R. [Department of Electrical and Computer Engineering, University of Minnesota, Minneapolis, Minnesota, 55455 (United States); Farrell, Brian F. [School of Engineering and Applied Science, Harvard University, Cambridge, Massachusetts, 02138 (United States); Ioannou, Petros J. [Department of Physics, National and Kapodistrian University of Athens, Panepistimiopolis, Zografos, Athens, 15784 (Greece)
2014-10-15
This paper demonstrates the maintenance of self-sustaining turbulence in a restricted nonlinear (RNL) model of plane Couette flow. The RNL system is derived directly from the Navier-Stokes equations and permits higher resolution studies of the dynamical system associated with the stochastic structural stability theory (S3T) model, which is a second order approximation of the statistical state dynamics of the flow. The RNL model shares the dynamical restrictions of the S3T model but can be easily implemented by reducing a DNS code so that it retains only the RNL dynamics. Comparisons of turbulence arising from DNS and RNL simulations demonstrate that the RNL system supports self-sustaining turbulence with a mean flow as well as structural and dynamical features that are consistent with DNS. These results demonstrate that the simplified RNL system captures fundamental aspects of fully developed turbulence in wall-bounded shear flows and motivate use of the RNL/S3T framework for further study of wall-turbulence.
Sørum, Marit; Sangvik, Maria; Stegger, Marc; Olsen, Renate S; Johannessen, Mona; Skov, Robert; Sollid, Johanna U E
2013-02-01
Staphylococcus aureus is a major human pathogen and a multitude of virulence factors enables it to cause infections, from superficial lesions to life-threatening systemic conditions. Staphylococcal protein A (SpA) is a surface protein contributing to S. aureus pathogenesis by interfering with immune responses and activating inflammation. Seven isolates with frameshift mutations in the spa repeat region were investigated to determine whether these mutations lead to truncation and secretion of SpA into the extracellular environment. Five isolates originated from blood cultures, one from an MRSA infection and one from a persistent nasal carrier. Full-length spa genes from the seven isolates were sequenced, and Western blot experiments were performed to localize SpA. Three isolates had identical deviating 25-bp spa repeats, but all isolates displayed different repeat successions. The DNA sequence revealed that the frameshift mutations created premature stop codons in all seven isolates, resulting in truncated SpA of different lengths, however, all lacking the XC region with the C-terminal sorting signal. SpA was detected by Western blot in six of the seven isolates, mainly extracellularly. Our findings demonstrate that S. aureus isolates with truncated SpA, not anchored to the cell wall, can still be found in bacteraemia, infection and among carriers.
2010-01-25
transverse velocity and density fluctuations ( /v uρ ρ′ ′ ), directly measured by combining the response from hot - wire anemometry with laser Doppler...R., “Combined Laser Doppler Velocimetry and Cross- Wire Anemometry Analysis for Supersonic Turbulent Flow,” AIAA Journal, Vol. 34, 1996, pp. 2269...Mechanics Reviews, Vol. 44, Jan. 1991, pp. 1-25. Robinson, S., Seegmiller, H., and Kussoy, M., “ Hot - Wire and Laser Doppler Anemometer Measurements
Directory of Open Access Journals (Sweden)
Marta Bober
Full Text Available Streptococcus pyogenes is an important human pathogen and surface structures allow it to adhere to, colonize and invade the human host. Proteins containing leucine rich repeats (LRR have been identified in mammals, viruses, archaea and several bacterial species. The LRRs are often involved in protein-protein interaction, are typically 20-30 amino acids long and the defining feature of the LRR motif is an 11-residue sequence LxxLxLxxNxL (x being any amino acid. The streptococcal leucine rich (Slr protein is a hypothetical lipoprotein that has been shown to be involved in virulence, but at present no ligands for Slr have been identified. We could establish that Slr is a membrane attached horseshoe shaped lipoprotein by homology modeling, signal peptidase II inhibition, electron microscopy (of bacteria and purified protein and immunoblotting. Based on our previous knowledge of LRR proteins we hypothesized that Slr could mediate binding to collagen. We could show by surface plasmon resonance that recombinant Slr and purified M1 protein bind with high affinity to collagen I. Isogenic slr mutant strain (MB1 and emm1 mutant strain (MC25 had reduced binding to collagen type I as shown by slot blot and surface plasmon resonance. Electron microscopy using gold labeled Slr showed multiple binding sites to collagen I, both to the monomeric and the fibrillar structure, and most binding occurred in the overlap region of the collagen I fibril. In conclusion, we show that Slr is an abundant membrane bound lipoprotein that is co-expressed on the surface with M1, and that both these proteins are involved in recruiting collagen type I to the bacterial surface. This underlines the importance of S. pyogenes interaction with extracellular matrix molecules, especially since both Slr and M1 have been shown to be virulence factors.
Hamilton, Nicholas; Tutkun, Murat; Cal, Raúl Bayoán
2017-01-01
Proper orthogonal decomposition (POD) is applied to distinct data sets in order to characterize the propagation of error arising from basis truncation in the description of turbulence. Experimental data from stereo particle image velocimetry measurements in a wind turbine array and direct numerical simulation data from a fully developed channel flow are used to illustrate dependence of the anisotropy tensor invariants as a function of POD modes used in low-order descriptions. In all cases, ensembles of snapshots illuminate a variety of anisotropic states of turbulence. In the near wake of a model wind turbine, the turbulence field reflects the periodic interaction between the incoming flow and rotor blade. The far wake of the wind turbine is more homogenous, confirmed by the increased magnitude of the anisotropy factor. By contrast, the channel flow exhibits many anisotropic states of turbulence. In the inner layer of the wall-bounded region, one observes one-component turbulence at the wall; immediately above, the turbulence is dominated by two components, with the outer layer showing fully three-dimensional turbulence, conforming to theory for wall-bounded turbulence. The complexity of flow descriptions resulting from truncated POD bases can be greatly mitigated by severe basis truncations. However, the current work demonstrates that such simplification necessarily exaggerates the anisotropy of the modeled flow and, in extreme cases, can lead to the loss of three-dimensionality. Application of simple corrections to the low-order descriptions of the Reynolds stress tensor significantly reduces the residual root-mean-square error. Similar error reduction is seen in the anisotropy tensor invariants. Corrections of this form reintroduce three-dimensionality to severe truncations of POD bases. A threshold for truncating the POD basis based on the equivalent anisotropy factor for each measurement set required many more modes than a threshold based on energy. The mode
On the evolution of laminar to turbulent transition and breakdown to turbulence
Directory of Open Access Journals (Sweden)
Jovanović Jovan
2003-01-01
Full Text Available Starting from the basic conservation laws of fluid flow, we investigated transition and breakdown to turbulence of a laminar flat plate boundary layer exposed to small, statistically stationary, two-component, three-dimensional disturbances. The derived equations for the statistical properties of the disturbances are closed using the two-point correlation technique and invariant theory. By considering the equilibrium solutions of the modeled equations, the transition criterion is formulated in terms of a Reynolds number based on the intensity and the length scale of the disturbances. The deduced transition criterion determines conditions that guarantee maintenance of the local equilibrium between the production and the viscous dissipation of the disturbances and therefore the laminar flow regime in the flat plate boundary layer. The experimental and numerical databases for fully developed turbulent channel and pipe flows at different Reynolds numbers were utilized to demonstrate the validity of the derived transition criterion for the estimation of the onset of turbulence in wall-bounded flows.
Phase relations of triadic scale interactions in turbulent flows
Duvvuri, Subrahmanyam; McKeon, Beverley
2014-11-01
The quadratic nature of non-linearity in the Navier-Stokes (NS) equations dictates the coupling between scales in a turbulent flow to be of triadic form. An understanding of the triadic coupling affords good insights into the dynamics of turbulence, as demonstrated by Sharma & McKeon (J. Fluid Mech., 2013) through analysis of the NS resolvent operator; a set of three triadically consistent spatio-temporal modes was shown to produce complex structures such as modulating packets of hairpin vortices observed in wall-bounded turbulent flows. Here we interpret Skewness (Sk) of velocity fluctuations and the Amplitude Modulation coefficient (Ram), proposed by Mathis, Hutchins & Marusic (J. Fluid Mech., 2009), to be a measure of the large- and small-scale phase relationship. Through a simple decomposition of scales, both Sk and Ram are shown to be amplitude weighted (and normalized) measures of phase between scales that have direct triadic coupling. An analytical relationship is established between the two quantities and the result is demonstrated using experimental data from canonical and dynamically forced turbulent boundary layers presented in Duvvuri and McKeon (AIAA 2014-2883). The support of AFOSR (Grant No. FA 9550-12-1-0469) and Resnick Institute Graduate Research Fellowship (S.D.) is gratefully acknowledged.
Structure and dynamics of turbulent boundary layer flow over healthy and algae-covered corals
Stocking, Jonathan B.; Rippe, John P.; Reidenbach, Matthew A.
2016-09-01
Fine-scale velocity measurements over healthy and algae-covered corals were collected in situ to characterize combined wave-current boundary layer flow and the effects of algal canopies on turbulence hydrodynamics. Data were collected using acoustic Doppler velocimetry and particle image velocimetry. Flow over healthy corals is well described by traditional wall-bounded shear layers, distinguished by a logarithmic velocity profile, a local balance of turbulence production and dissipation, and high levels of bed shear stress. Healthy corals exhibit significant spatial heterogeneity in boundary layer flow structure resulting from variations in large-scale coral topography. By contrast, the turbulence structure of algae-covered corals is best represented by a plane mixing layer, with a sharp inflection point in mean velocity at the canopy top, a large imbalance of turbulence production and dissipation, and strongly damped flow and shear stresses within the canopy. The presence of an algal canopy increases turbulent kinetic energy within the roughness sublayer by ~2.5 times compared to healthy corals while simultaneously reducing bed shear stress by nearly an order of magnitude. Reduced bed shear at the coral surface and within-canopy turbulent stresses imply reduced mass transfer of necessary metabolites (e.g., oxygen, nutrients), leading to negative impacts on coral health.
无壁面参数低雷诺数非线性涡黏性模式研究%STUDY OF WALL-PARAMETER FREE LOW-REYNOLDS NUMBER NONLINEAR EDDY- VISCOSITY MODEL
Institute of Scientific and Technical Information of China (English)
符松; 郭阳
2001-01-01
建立了一个低雷诺数的非线性涡黏性湍流模式.该模式的一个显著特征是它不包含壁面参数(如y+,n等)，因而特别适用于复杂几何流场的计算.本模式在几种包括回流、分离、激波等典型流动中进行了验证，结果令人满意.%In complex wall-bounded turbulent flows, the "universal" behavior of the law of wall is often not observed and the application of the wall-law in conjunction with linear two-equation turbulence models fail to give accurate predictions. For these flow calculations low-Reynoldsnumber high-order models are required, for instance, full Reynolds-stress transport model and explicit algebraic stress model. In most of these models, wall-distance or normal unit vector to the wall appears in damping functions or wall-reflection term. These wall parameters are difficult to define when the flow geometry is complex. A wall-parameter-free low-Reynolds-number high-order turbulence model is thus of great benefit to the prediction of complex wall-bounded turbulent flows. Based on the turbulence near-wall asymptotic behavior, this article presents a low-Reynoldsnumber nonlinear eddy-viscosity model. A particular feature of the model is that it contains no wall parameters like y+, n which are difficult to define in complex flow geometry. The turbulence time scale in the model is modified to adapt to Kolmogorov time scale very close to the wall while remaining the eddy-turnover time scale away from the wall. To validate the performance of these models, a number of test cases have been calculated and results are compared with DNS or experiment data which include fully-developed channel flow, sink channel flow, flow through an asymmetric plane diffuser, ONERA A-Airfoil flow, shock/boundary-layer interaction. The results are very satisfactory as compared with experiments or DNS data which shows the present model can be applied to the calculations of a wide range of complex flows with practical significance
Low, R; Pothérat, A
2015-05-01
We investigate aspects of low-magnetic-Reynolds-number flow between two parallel, perfectly insulating walls in the presence of an imposed magnetic field parallel to the bounding walls. We find a functional basis to describe the flow, well adapted to the problem of finding the attractor dimension and which is also used in subsequent direct numerical simulation of these flows. For given Reynolds and Hartmann numbers, we obtain an upper bound for the dimension of the attractor by means of known bounds on the nonlinear inertial term and this functional basis for the flow. Three distinct flow regimes emerge: a quasi-isotropic three-dimensional (3D) flow, a nonisotropic 3D flow, and a 2D flow. We find the transition curves between these regimes in the space parametrized by Hartmann number Ha and attractor dimension d(att). We find how the attractor dimension scales as a function of Reynolds and Hartmann numbers (Re and Ha) in each regime. We also investigate the thickness of the boundary layer along the bounding wall and find that in all regimes this scales as 1/Re, independently of the value of Ha, unlike Hartmann boundary layers found when the field is normal to the channel. The structure of the set of least dissipative modes is indeed quite different between these two cases but the properties of turbulence far from the walls (smallest scales and number of degrees of freedom) are found to be very similar.
Nagata, Kouji; Sakai, Yasuhiko; Komori, Satoru
2011-01-01
Effects of weak, small-scale freestream turbulence on turbulent boundary layers with and without thermal convection are experimentally investigated using a wind tunnel. Two experiments are carried out: the first is isothermal boundary layers with and without grid turbulence, and the second is non-isothermal boundary layers with and without grid turbulence. Both boundary layers develop under a small favorable pressure gradient. For the latter case, the bottom wall of the test section is heated...
Fully-developed Turbulent Pipe Flow Using a Zero-Equation Model
Directory of Open Access Journals (Sweden)
Khalid Alammar
2013-06-01
Full Text Available Aim of this study is to evaluate a zero-equation turbulence model. A fully-developed turbulent pipe flow was simulated. Uncertainty was approximated through grid-independence and model validation. Results for mean axial velocity, u+ and Reynolds stress had maximum error of 5%, while results for the friction factor had negligible error. The mean axial velocity was shown to increase and extend farther in the outer layer with increasing Reynolds number, up to 106. There was no effect of Reynolds number on u+ below wall distance, Y+, of 100. Similar to the friction velocity, peak of the Reynolds stress was shown to increase and extend farther in the outer layer with increasing Reynolds number. There was no effect of Reynolds number on Reynolds stress below wall distance of 20. The new turbulence model is equally applicable to developing and external flows using the same constant. For wall-bounded flows, the constant is a function of wall roughness.
A symmetry based approach to quantifying the compressible turbulent boundary layer
Wu, Bin; Bi, Wei-Tao; She, Zhen-Su; Hussain, Fazle
2015-11-01
Developing analytical description of the compressible turbulent boundary layer (CTBL) is of great importance to many technological applications and to the understanding and modeling of compressible turbulence. Here a symmetry-based approach is applied to analyze the CTBL data acquired from DNS, covering a wide range of Reynolds number (Re), Mach number (Ma) and wall temperature. The Reynolds stress length scale displays a four-layer structure in the direction normal to the wall and obeys the dilation group invariance as in the incompressible TBL. A newly-identified turbulent heat flux length scale behaves similarly, which is the classical temperature mixing length weighted by the mean temperature. A significant result is the identification of three physical parameters for each length function to characterize the adiabatic flow: a bulk flow constant, a buffer layer thickness and a boundary layer edge, which vary with Re and Ma. For the diabatic flow, the sublayer thickness and the inner layer scaling exponents vary additionally with the wall temperature. These parameters are modeled empirically, leading to a highly accurate prediction of the mean fields of the CTBL. Thus we reveal that the symmetry principle found in canonical wall-bounded flows holds also for the CTBL, and a quantitative mean field theory is viable with appropriate symmetry considerations.
Compressibility Effects in Turbulent Boundary Layers
Institute of Scientific and Technical Information of China (English)
CAO Yu-Hui; PEI Jie; CHEN Jun; SHE Zhen-Su
2008-01-01
Local cascade (LC) scheme and space-time correlations are used to study turbulent structures and their convection behaviour in the near-wall region of compressible boundary layers at Ma = 0.8 and 1.3. The convection velocities of fluctuating velocity components u (streamwise) and v (vertical) are investigated by statistically analysing scale-dependent ensembles of LC structures. The results suggest that u is convected with entropy perturbations while v with an isentropic process. An abnormal thin layer distinct from the conventional viscous sub-layer is discovered in the immediate vicinity of the wall (y+≤1) in supersonic flows. While in the region 1 ＜ y+ ＜ 30,streamwise streaks dominate velocity, density and temperature fluctuations, the abnormal thin layer is dominated by spanwise streaks in vertical velocity and density fluctuations, where pressure and density fluctuations are strongly correlated. The LC scheme is proven to be effective in studying the nature of supersonic flows and compressibility effects on wall-bounded motions.
A Hybrid Numerical Method for Turbulent Mixing Layers. Degree awarded by Case Western Reserve Univ.
Georgiadis, Nicholas J.
2001-01-01
A hybrid method has been developed for simulations of compressible turbulent mixing layers. Such mixing layers dominate the flows in exhaust systems of modern day aircraft and also those of hypersonic vehicles currently under development. The method configurations in which a dominant structural feature provides an unsteady mechanism to drive the turbulent development in the mixing layer. The hybrid method uses a Reynolds-averaged Navier-Stokes (RANS) procedure to calculate wall bounded regions entering a mixing section, and a Large Eddy Simulation (LES) procedure to calculate the mixing dominated regions. A numerical technique was developed to enable the use of the hybrid RANS-LES method on stretched, non-Cartesian grids. Closure for the RANS equations was obtained using the Cebeci-Smith algebraic turbulence model in conjunction with the wall-function approach of Ota and Goldberg. The wall-function approach enabled a continuous computational grid from the RANS regions to the LES region. The LES equations were closed using the Smagorinsky subgrid scale model. The hybrid RANS-LES method is applied to a benchmark compressible mixing layer experiment. Preliminary two dimensional calculations are used to investigate the effects of axial grid density and boundary conditions. Vortex shedding from the base region of a splitter plate separating the upstream flows was observed to eventually transition to turbulence. The location of the transition, however, was much further downstream than indicated by experiments. Actual LES calculations, performed in three spatial directions, also indicated vortex shedding, but the transition to turbulence was found to occur much closer to the beginning of the mixing section. which is in agreement with experimental observations. These calculations demonstrated that LES simulations must be performed in three dimensions. Comparisons of time-averaged axial velocities and turbulence intensities indicated reasonable agreement with experimental
Farrell, Brian F
2016-01-01
This paper describes a study of the self-sustaining process (SSP) that maintains turbulence in wall-bounded shear flow. The study uses Couette flow and is based on a statistical state dynamics (SSD) model closed at second order with state variables the streamwise mean (first cumulant) and the covariance of perturbations (second cumulant). The SSD is closed by either neglecting or stochastically parameterizing the perturbation--perturbation nonlinearity in the perturbation covariance equation. This class of quasi-linear SSD models, which are referred to as RNL models, are a second order SSD systems that includes the stochastic structural stability theory (S3T or equivalently RNL$_\\infty$) model which is used in this study. Comparisons of turbulence maintained in DNS and RNL simulations have demonstrated that RNL systems self-sustain turbulence with a mean flow and perturbation structure consistent with DNS. The current results isolate the dynamical components sustaining turbulence in the S3T system concentrati...
Institute of Scientific and Technical Information of China (English)
高鑫; 庄寿增
2015-01-01
1H spin-spin relaxation time (T2) of water in 5 species of wood was measured by nuclear magnetic resonance (NMR) spectroscopy at room temperature and-3℃, which is thought to be related to the anatomical structure of the wood. The bound water content within swollen cell wall was determined by comparison of the inversion peak area before and after frozen treatment:Pinus sylvestris 38.3%,Cunninghamia lanceolata 38.5%, Populus sp. 36.0%,Fraxinus excelsior L. 35.6% andOchroma pyramidale 47.6%. The bound water contents determined by NMR spectroscopy were apparently higher than those obtained by the conventional extrapolation methods, but similar to the results obtained by the solute exclusion method, porous plate method, centrifugal dewatering method. It is concluded that NMR may provide a rapid and non-destructive way to determine bound water content in wood.%利用核磁共振(NMR)技术研究了室温与-3℃条件下5种树种木材内水分质子的自旋-自旋弛豫时间(T2)特性，室温下各树种木材试样T2弛豫时间特性的不同是由木材微观构造导致的．通过对比冷冻前后各树种试样的信号反演峰面积，确定了其吸着水饱和含量，樟子松38.3%，杉木38.5%，杨木36.0%，白蜡木35.6%，轻木47.6%，均高于通过吸湿外推法估算数值，与溶剂排出法、多孔板法、离心法等实测法获得的吸着水饱和含量的结果相近，核磁共振技术可作为木材内吸着水含量快速测定的实验方法．
Investigation of pressure gradient aware wall modeling in LES
Thiry, Olivier; Winckelmans, Gregoire; Duponcheel, Matthieu
2015-11-01
This work focuses on the investigation of various wall modeling strategies for the simulation of high Reynolds number wall-bounded turbulent flows with acceleration and/or deceleration. Our code is based on fourth order finite differences, is momentum conserving, and is energy conserving up to fourth order. We here use a ``channel flow'' set-up, with no slip and wall modeling at the bottom, with slip at the top, and with blowing and/or suction at the top in order to generate the desired acceleration-deceleration profile. Two strategies are investigated and compared. Pressure gradient corrected algebraic models are first considered, and we investigate various local averaging techniques so as to avoid imposing mean profile laws pointwise. RANS sub-layer models are then also considered, where the turbulent viscosity is corrected to account for pressure gradient effects and for resolved LES fluctuations effects. A wall-resolved LES was also performed to provide a reference solution. Research fellow (Ph.D. student) at the F.R.S. - FNRS (Belgium).
Hesse, Reinhard; Fong, Christopher
2014-03-01
pebble conglomerate occurs now more than 2 m laterally into the exposed channel wall. Channel-wall stoping tracks turbulence development in hyper-concentrated gravity flows.
Directory of Open Access Journals (Sweden)
Fethi Aloui
2016-01-01
Full Text Available This article is mainly motivated by the growing needs for highly resolved measurements for wall-bounded turbulent flows and aims to proposes a spatial correction coefficient in order to increase the wall-shear stress sensors accuracy. As it well known for the hot wire anemometry, the fluctuating streamwise velocity measurement attenuation is mainly due to the spatial resolution and the frequency response of the sensing element. The present work agrees well with this conclusion and expands it to the wall-shear stress fluctuations measurements using electrochemical sensors and suggested a correction method based on the spanwise correlation coefficient to take into account the spatial filtering effects on unresolved wall-shear stress measurements due to too large sensor spanwise size.
Turbulence and diffusion fossil turbulence
Gibson, C H
2000-01-01
Fossil turbulence processes are central to turbulence, turbulent mixing, and turbulent diffusion in the ocean and atmosphere, in astrophysics and cosmology, and in most other natural flows. George Gamov suggested in 1954 that galaxies might be fossils of primordial turbulence produced by the Big Bang. John Woods showed that breaking internal waves on horizontal dye sheets in the interior of the stratified ocean form highly persistent remnants of these turbulent events, which he called fossil turbulence. The dark mixing paradox of the ocean refers to undetected mixing that must exist somewhere to explain why oceanic scalar fields like temperature and salinity are so well mixed, just as the dark matter paradox of galaxies refers to undetected matter that must exist to explain why rotating galaxies don't fly apart by centrifugal forces. Both paradoxes result from sampling techniques that fail to account for the extreme intermittency of random variables involved in self-similar, nonlinear, cascades over a wide ra...
Farrell, Brian F; Nikolaidis, Marios-Andreas
2016-01-01
Although the roll/streak structure is ubiquitous in pre-transitional wall-bounded shear flow, this structure is linearly stable if the idealization of laminar flow is made. Lacking an instability, the large transient growth of the roll/streak structure has been invoked to explain its appearance as resulting from chance occurrence in the free-stream turbulence (FST) of perturbations configured to optimally excite it. However, there is an alternative interpretation which is that FST interacts with the roll/streak structure to destabilize it. Statistical state dynamics (SSD) provides analysis methods for studying instabilities of this type which arise from interaction between the coherent and incoherent components of turbulence. Stochastic structural stability theory (S3T), which implements SSD in the form of a closure at second order, is used to analyze the SSD modes arising from interaction between the coherent streamwise invariant component and the incoherent FST component of turbulence. The least stable S3T ...
Jung, Eunbum; Lee, Wook; Kang, Seongwon; Iaccarino, Gianluca
2015-11-01
The turbulent Prandtl number (Prt) is an important parameter in turbulent flows used in many engineering models for heat transfer. In the present study, spatial variation of Prt in a wall-bounded turbulent flow is investigated using DNS. We derived a form of Prt applicable to a general flow configuration, using the least-square method in a manner consistent with the turbulent viscosity model in LES. For a flow subject to local acceleration and deceleration induced by the wall geometry, we performed a parametric study for the Reynolds number, Prandtl number and a geometric factor using DNS. A comparison of the data from DNS and RANS with a constant Prt indicates the potential of improved RANS predictions using the present variable Prt subject to the local flow field. Also, it is observed that the local pressure gradient has an important effect on the Prt field. From the flow statistics, a few flow variables showing higher correlations with Prt are identified. An elementary model for Prt is devised, and used for RANS prediction producing a more accurate prediction of the heat transfer rate. Corresponding author
PREFACE: Turbulent Mixing and Beyond Turbulent Mixing and Beyond
Abarzhi, Snezhana I.; Gauthier, Serge; Rosner, Robert
2008-10-01
presentations were published in the Book of Abstracts, International Conference `Turbulent Mixing and Beyond', August 18-26, 2007, Copyright 2007 Abdus Salam International Centre for Theoretical Physics, Trieste, Italy, ISBN 92-95003-36-5. This Topical Issue consists of nearly 60 articles accepted for publication in the Conference Proceedings and reflects a substantial part of the Conference contributions. The articles cover a broad variety of TMB-2007 themes and are sorted alphabetically by the last name of the first author within each of the following topics: Canonical Turbulence and Turbulent Mixing (invariant, scaling, spectral properties, scalar transports) Wall-bounded Flows (structure and fundamentals, unsteady boundary layers, super-sonic flows, shock - boundary layer interaction) Interfacial Dynamics (Rayleigh-Taylor, Richtmyer-Meshkov and Kelvin-Helmholtz instabilities) Unsteady Turbulent Processes (turbulence and turbulent mixing in unsteady, multiphase and anisotropic flows) High Energy Density Physics (laser-material interaction, Z-pinches, laser-driven, heavy-ion and magnetic fusion) Astrophysics (supernovae, interstellar medium, star formation, stellar interiors, early Universe, cosmic micro-wave background) Magneto-hydrodynamics (magneto-convection, magneto-rotational instability, accretion disks, dynamo) Plasmas in Ionosphere (coupled plasmas, anomalous resistance, ionosphere) Physics of Atmosphere (environmental fluid dynamics, forecasting, data analysis, error estimate) Geophysics (turbulent convection in stratified, rotating and active flows) Combustion (dynamics of flames, fires, blast waves and explosions) Mathematical Aspects of Multi-Scale Dynamics (vortex dynamics, singularities, discontinuities, asymptotic dynamics, weak solutions, well- and ill-posedness) Statistical Approaches, Stochastic Processes and Probabilistic Description (uncertainty quantification, anomalous diffusion, long-tail distributions, wavelets) Advanced Numerical Simulations
Lumley decomposition of turbulent boundary layer at high Reynolds numbers
Tutkun, Murat; George, William K.
2017-02-01
The decomposition proposed by Lumley in 1966 is applied to a high Reynolds number turbulent boundary layer. The experimental database was created by a hot-wire rake of 143 probes in the Laboratoire de Mécanique de Lille wind tunnel. The Reynolds numbers based on momentum thickness (Reθ) are 9800 and 19 100. Three-dimensional decomposition is performed, namely, proper orthogonal decomposition (POD) in the inhomogeneous and bounded wall-normal direction, Fourier decomposition in the homogeneous spanwise direction, and Fourier decomposition in time. The first POD modes in both cases carry nearly 50% of turbulence kinetic energy when the energy is integrated over Fourier dimensions. The eigenspectra always peak near zero frequency and most of the large scale, energy carrying features are found at the low end of the spectra. The spanwise Fourier mode which has the largest amount of energy is the first spanwise mode and its symmetrical pair. Pre-multiplied eigenspectra have only one distinct peak and it matches the secondary peak observed in the log-layer of pre-multiplied velocity spectra. Energy carrying modes obtained from the POD scale with outer scaling parameters. Full or partial reconstruction of turbulent velocity signal based only on energetic modes or non-energetic modes revealed the behaviour of urms in distinct regions across the boundary layer. When urms is based on energetic reconstruction, there exists (a) an exponential decay from near wall to log-layer, (b) a constant layer through the log-layer, and (c) another exponential decay in the outer region. The non-energetic reconstruction reveals that urms has (a) an exponential decay from the near-wall to the end of log-layer and (b) a constant layer in the outer region. Scaling of urms using the outer parameters is best when both energetic and non-energetic profiles are combined.
Large-eddy simulation of separation and reattachment of a flat plate turbulent boundary layer
Cheng, W.
2015-11-11
© 2015 Cambridge University Press. We present large-eddy simulations (LES) of separation and reattachment of a flat-plate turbulent boundary-layer flow. Instead of resolving the near wall region, we develop a two-dimensional virtual wall model which can calculate the time- and space-dependent skin-friction vector field at the wall, at the resolved scale. By combining the virtual-wall model with the stretched-vortex subgrid-scale (SGS) model, we construct a self-consistent framework for the LES of separating and reattaching turbulent wall-bounded flows at large Reynolds numbers. The present LES methodology is applied to two different experimental flows designed to produce separation/reattachment of a flat-plate turbulent boundary layer at medium Reynolds number Reθ based on the momentum boundary-layer thickness θ. Comparison with data from the first case at demonstrates the present capability for accurate calculation of the variation, with the streamwise co-ordinate up to separation, of the skin friction coefficient, Reθ, the boundary-layer shape factor and a non-dimensional pressure-gradient parameter. Additionally the main large-scale features of the separation bubble, including the mean streamwise velocity profiles, show good agreement with experiment. At the larger Reθ = 11000 of the second case, the LES provides good postdiction of the measured skin-friction variation along the whole streamwise extent of the experiment, consisting of a very strong adverse pressure gradient leading to separation within the separation bubble itself, and in the recovering or reattachment region of strongly-favourable pressure gradient. Overall, the present two-dimensional wall model used in LES appears to be capable of capturing the quantitative features of a separation-reattachment turbulent boundary-layer flow at low to moderately large Reynolds numbers.
Turbulent Boundary Layer at Large Re
Directory of Open Access Journals (Sweden)
Horia DUMITRESCU
2016-03-01
Full Text Available The fluids as deformable bodies without own shape, when starting from rest, experience interactions between the flowing fluid and the physical surfaces marking the bounds of flow. These interactions are a kind of impact process where there is a momentum exchange between two colliding bodies, i.e. the flow and its boundary surfaces. Within a short time of contact a post-impact shear flow occurs where two main effects are triggered off by the flow-induced collision: dramatic redistribution of the momentum and the boundary vorticity followed by the shear stress/viscosity change in the microstructure of the fluid which at the beginning behaves as linear reactive medium and latter as nonlinear dispersive medium. The disturbance of the starting flow induces the entanglement of the wall-bounded flow in the form of point-vortices or concentrated vorticity balls whence waves are emitted and propagated through flow field. The paper develops a wave mechanism for the transport of the concentrated boundary vorticity, directly related to the fascinating turbulence phenomenon, using the torsion concept of vorticity filaments associated with the hypothesis of thixotropic/nonlinear viscous fluid.
On turbulent kinetic energy production and dissipation in dilute polymer solutions
Liberzon, A.; Guala, M.; Kinzelbach, W.; Tsinober, A.
2006-12-01
Drag reduction by dilute polymer solutions is the most recognized phenomenon in wall-bounded turbulent flows, which is associated with large scales (e.g., velocity scales) in spite of a consensus that polymers act mainly on much smaller scales of velocity derivatives. We demonstrate that drag reduction is only one sort of polymers' effect on a turbulent flow and show how turbulent velocity and velocity derivatives are altered in the presence of dilute polymers, irrespective of drag reduction phenomena. This is an experimental study on the interaction of dilute polymers with a complex three-dimensional turbulent flow with small mean velocity gradients. Lagrangian data (e.g., velocities and velocity gradients) of flow tracers were obtained by using three-dimensional particle tracking velocimetry in an observational volume in the turbulent bulk region, far from the boundaries. The focus is on aspects related to the turbulent kinetic energy (TKE) production, -⟨uiuj⟩Sij (ui is the fluctuating velocity, ⟨uiuj⟩ is the Reynolds stress tensor, and Sij is the mean rate-of-strain tensor), such as an anisotropy of Reynolds stresses and the alignment of the velocity vector field with respect to the eigenframe of Sij, among others. We base our study on the comparison of turbulent quantities in flows of water and of dilute polymer solution, forced in two distinct ways: frictional forcing by smooth rotating disks and inertial forcing by disks with baffles. The comparison of the results from the water and from the dilute polymer solution flows allows a critical examination of the influence of polymers on the TKE production, viscous dissipation, and the related turbulent properties. We conclude with (i) quantification of the direct effect of polymers on the small scales of velocity derivatives, (ii) evidence of an additional dissipation mechanism by the polymers, which is the main reason for the strong inhibition of the viscous dissipation, 2νs2, in a turbulent bulk, (iii
Energy Technology Data Exchange (ETDEWEB)
Horton, W. [Univ. of Texas, Austin, TX (United States). Inst. for Fusion Studies; Hu, G. [Globalstar LP, San Jose, CA (United States)
1998-07-01
The origin of plasma turbulence from currents and spatial gradients in plasmas is described and shown to lead to the dominant transport mechanism in many plasma regimes. A wide variety of turbulent transport mechanism exists in plasmas. In this survey the authors summarize some of the universally observed plasma transport rates.
EuHIT, Collaboration
2015-01-01
As a member of the EuHIT (European High-Performance Infrastructures in Turbulence - see here) consortium, CERN is participating in fundamental research on turbulence phenomena. To this end, the Laboratory provides European researchers with a cryogenic research infrastructure (see here), where the first tests have just been performed.
Optical Rogue Waves in Vortex Turbulence
Gibson, Christopher J; Oppo, Gian-Luca
2015-01-01
We present a spatio-temporal mechanism for producing 2D optical rogue waves in the presence of a turbulent state with creation, interaction and annihilation of optical vortices. Spatially periodic structures with bound phase lose stability to phase unbound turbulent states in complex Ginzburg- Landau and Swift-Hohenberg models with external driving. When the pumping is high and the external driving is low, synchronized oscillations are unstable and lead to spatio-temporal turbulence with high excursions in amplitude. Nonlinear amplification leads to rogue waves close to turbulent optical vortices, where the amplitude tends to zero, and to probability distribution functions with long tails typical of extreme optical events.
Nagata, Kouji; Sakai, Yasuhiko; Komori, Satoru
2011-06-01
Effects of weak, small-scale freestream turbulence on turbulent boundary layers with and without thermal convection are experimentally investigated using a wind tunnel. Two experiments are carried out: the first is isothermal boundary layers with and without grid turbulence, and the second is non-isothermal boundary layers with and without grid turbulence. Both boundary layers develop under a small favorable pressure gradient. For the latter case, the bottom wall of the test section is heated at a constant wall temperature to investigate the effects of thermal convection under the effects of freestream turbulence. For both cases, the turbulence intensity in the freestream is Tu = 1.3% ˜ 2.4%, and the integral length scale of freestream turbulence, L∞, is much smaller than the boundary layer thickness δ, i.e., L∞/δ ≪1. The Reynolds numbers Reθ based on the momentum thickness and freestream speed U∞ are Reθ = 560, 1100, 1310, and 2330 in isothermal boundary layers without grid turbulence. Instantaneous velocities, U and V, and instantaneous temperature T are simultaneously measured using a hot-wire anemometry and a constant-current resistance thermometer. The results show that the rms velocities and Reynolds shear stress normalized by the friction velocity are strongly suppressed by the freestream turbulence throughout the boundary layer in both isothermal and non-isothermal boundary layers. In the non-isothermal boundary layers, the normalized rms temperature and vertical turbulent heat flux are also strongly suppressed by the freestream turbulence. Turbulent momentum and heat transfer at the wall are enhanced by the freestream turbulence and the enhancement is notable in unstable stratification. The power spectra of u, v, and θ and their cospectra show that motions of almost all scales are suppressed by the freestream turbulence in both the isothermal and non-isothermal boundary layers.
Effects of large-scale free stream turbulence on a turbulent boundary layer
Sharp, N. S.; Neuscamman, S.; Warhaft, Z.
2009-09-01
Results of a wind tunnel experiment in which there are systematic variations of free stream turbulence above a flat-plate boundary layer are presented. Upstream of the plate, an active grid generates free stream turbulence varying in intensity from 0.25% to 10.5%. The momentum thickness Reynolds number of the boundary layer varies from 550 to nearly 3000. In all cases, the ratio of the free stream turbulence length scale to the boundary layer depth is greater than unity. Hotwire measurements show that, at high turbulence intensities, the effects of the free stream turbulence extend deep into the boundary layer, affecting the wall stress as well as the small-scale (derivative) statistics. Premultiplied energy spectra show a double peak. At very low free stream turbulence intensities these peaks are associated with the inner and outer scales of the turbulent boundary layer, but at high turbulence intensities the free stream energy peak dominates over the boundary layer's outer scale. The implications of the effect of the large free stream turbulence scales on the small, near-wall scales is discussed with reference to recent high Reynolds number experiments in a turbulent boundary layer without free stream turbulence [Hutchins and Marusic, Philos. Trans. R. Soc. London, Ser. A 365, 647 (2007)].
Positive Root Bounds and Root Separation Bounds
Herman, Aaron Paul
In this thesis, we study two classes of bounds on the roots of a polynomial (or polynomial system). A positive root bound of a polynomial is an upper bound on the largest positive root. A root separation bound of a polynomial is a lower bound on the distance between the roots. Both classes of bounds are fundamental tools in computer algebra and computational real algebraic geometry, with numerous applications. In the first part of the thesis, we study the quality of positive root bounds. Higher quality means that the relative over-estimation (the ratio of the bound and the largest positive root) is smaller. We find that all known positive root bounds can be arbitrarily bad. We then show that a particular positive root bound is tight for certain important classes of polynomials. In the remainder of the thesis, we turn to root separation bounds. We observe that known root separation bounds are usually very pessimistic. To our surprise, we also find that known root separation bounds are not compatible with the geometry of the roots (unlike positive root bounds). This motivates us to derive new root separation bounds. In the second part of this thesis, we derive a new root separation for univariate polynomials by transforming a known bound into a new improved bound. In the third part of this thesis, we use a similar strategy to derive a new improved root separation bound for polynomial systems.
Field measurement and analysis of turbulence coherence for Typhoon Nuri at Macao Friendship Bridge
Institute of Scientific and Technical Information of China (English)
无
2010-01-01
For the purpose of investigating the turbulent and spatial coherent characteristics of strong wind during typhoon landing period,two 3-dimensional ultrasonic anemometer stations were set up 30 m horizontally apart on the Macao Friendship Bridge to caputure the turbulent wind velocities of Typhoon Nuri. Based on the reliable and representative field measured data,the mean wind speed and direction,turbulence intensity,turbulence integral scale,turbulence power spectra,spatial correlation coefficient and coherence function were statistically evaluated. The field measurement analysis have presented the following results: 1) Two anemometer stations provided consistent results. The mean wind speed variation in time domain presented typical M-shape curves. The strong wind (10-minute mean wind speed higher than 8th grade in Beaufort wind scale) direction changed in a big range up to 122-degrees-angle,indicating the field measurements scoped over the typhoon landing period. 2) The ratio of the longitudinal,lateral and vertical turbulence intensities of the strong wind in the typhoon eye wall region was 1:0.96:0.36. Compared with the code defined ratio 1:0.88:0.5,the lateral component was larger and the vertical component was smaller. 3) The value of integral scale increased when the eye wall of Typhoon Nuri passed over the field measurement site. Before the center of Typhoon Nuri arrived,the integral scale of the strong typhoon wind was about twice compared with that for the non-typhoon wind. 4) The spatial correlation of the turbulent wind,coherence function curve and the decay factor had significant differences at different times during the typhoon process. In the eye wall of the typhoon,the horizontal spatial correlation was relatively strong and horizontally spatial correlation spectrum decayed slower with frequency increase. The minimum regressed coefficient C in coherence function model was 4.67,which is lower than the code defined low limit. The maximum decay factor
Turbulent deflagrations, autoignitions, and detonations
Bradley, Derek
2012-09-01
Measurements of turbulent burning velocities in fan-stirred explosion bombs show an initial linear increase with the fan speed and RMS turbulent velocity. The line then bends over to form a plateau of high values around the maximum attainable burning velocity. A further increase in fan speed leads to the eventual complete quenching of the flame due to increasing localised extinctions because of the flame stretch rate. The greater the Markstein number, the more readily does flame quenching occur. Flame propagation along a duct closed at one end, with and without baffles to increase the turbulence, is subjected to a one-dimensional analysis. The flame, initiated at the closed end of the long duct, accelerates by the turbulent feedback mechanism, creating a shock wave ahead of it, until the maximum turbulent burning velocity for the mixture is attained. With the confining walls, the mixture is compressed between the flame and the shock plane up to the point where it might autoignite. This can be followed by a deflagration to detonation transition. The maximum shock intensity occurs with the maximum attainable turbulent burning velocity, and this defines the limit for autoignition of the mixture. For more reactive mixtures, autoignition can occur at turbulent burning velocities that are less than the maximum attainable one. Autoignition can be followed by quasi-detonation or fully developed detonation. The stability of ensuing detonations is discussed, along with the conditions that may lead to their extinction. © 2012 by Pleiades Publishing, Ltd.
Dynamics of Nonlinear Waves on Bounded Domains
Maliborski, Maciej
2016-01-01
This thesis is concerned with dynamics of conservative nonlinear waves on bounded domains. In general, there are two scenarios of evolution. Either the solution behaves in an oscillatory, quasiperiodic manner or the nonlinear effects cause the energy to concentrate on smaller scales leading to a turbulent behaviour. Which of these two possibilities occurs depends on a model and the initial conditions. In the quasiperiodic scenario there exist very special time-periodic solutions. They result for a delicate balance between dispersion and nonlinear interaction. The main body of this dissertation is concerned with construction (by means of perturbative and numerical methods) of time-periodic solutions for various nonlinear wave equations on bounded domains. While turbulence is mainly associated with hydrodynamics, recent research in General Relativity has also revealed turbulent phenomena. Numerical studies of a self-gravitating massless scalar field in spherical symmetry gave evidence that anti-de Sitter space ...
The Large Scale Organization of Turbulent Channels
del Alamo, Juan C
2013-01-01
We have investigated the organization and dynamics of the large turbulent structures that develop in the logarithmic and outer layers of high-Reynolds-number wall flows. These structures have sizes comparable to the flow thickness and contain most of the turbulent kinetic energy. They produce a substantial fraction of the skin friction and play a key role in turbulent transport. In spite of their significance, there is much less information about the large structures far from the wall than about the small ones of the near-wall region. The main reason for this is the joint requirements of large measurement records and high Reynolds numbers for their experimental analysis. Their theoretical analysis has been hampered by the lack of succesful models for their interaction with the background small-scale turbulence.
Directory of Open Access Journals (Sweden)
Ballester Pla, Coralio
2012-03-01
Full Text Available The observation of the actual behavior by economic decision makers in the lab and in the field justifies that bounded rationality has been a generally accepted assumption in many socio-economic models. The goal of this paper is to illustrate the difficulties involved in providing a correct definition of what a rational (or irrational agent is. In this paper we describe two frameworks that employ different approaches for analyzing bounded rationality. The first is a spatial segregation set-up that encompasses two optimization methodologies: backward induction and forward induction. The main result is that, even under the same state of knowledge, rational and non-rational agents may match their actions. The second framework elaborates on the relationship between irrationality and informational restrictions. We use the beauty contest (Nagel, 1995 as a device to explain this relationship.
La observación del comportamiento de los agentes económicos tanto en el laboratorio como en la vida real justifica que la racionalidad acotada sea un supuesto aceptado en numerosos modelos socio-económicos. El objetivo de este artículo es ilustrar las dificultades que conlleva una correcta definición de qué es un agente racional (irracional. En este artículo se describen dos marcos que emplean diferentes metodologías para analizar la racionalidad acotada. El primero es un modelo de segregación espacial donde se contrastan dos metodologías de optimización: inducción hacia atrás y hacia adelante. El resultado principal es que, incluso con el mismo nivel de conocimiento, tanto agentes racionales como irracionales podrían coincidir en sus acciones. El segundo marco trabaja sobre la relación entre irracionalidad y restricción de información. Se utiliza el juego llamado “beauty contest” (Nagel 1995 como mecanismo para explicar dicha relación.
Relativistic Accretion Mediated by Turbulent Comptonization
Socrates, Aristotle
2008-01-01
Black hole and neutron star accretion flows display unusually high levels of hard coronal emission in comparison to all other optically thick, gravitationally bound, turbulent astrophysical systems. Since these flows sit in deep relativistic gravitational potentials, their random bulk motions approach the speed of light, therefore allowing turbulent Comptonization to be an important effect. We show that the inevitable production of hard X-ray photons results from turbulent Comptonization in the limit where the turbulence is trans-sonic and the accretion power approaches the Eddington Limit. In this regime, the turbulent Compton y-parameter approaches unity and the turbulent Compton temperature is a significant fraction of the electron rest mass energy, in agreement with the observed phenomena.
Directory of Open Access Journals (Sweden)
D. Falceta-Gonçalves
2011-01-01
Full Text Available The Interstellar Medium (ISM is a complex, multi-phase system, where the history of the stars occurs. The processes of birth and death of stars are strongly coupled to the dynamics of the ISM. The observed chaotic and diffusive motions of the gas characterize its turbulent nature. Understanding turbulence is crucial for understanding the star-formation process and the energy-mass feedback from evolved stars. Magnetic fields, threading the ISM, are also observed, making this effort even more difficult. In this work, I briefly review the main observations and the characterization of turbulence from these observable quantities. Following on, I provide a review of the physics of magnetized turbulence. Finally, I will show the main results from theoretical and numerical simulations, which can be used to reconstruct observable quantities, and compare these predictions to the observations.
Energy Technology Data Exchange (ETDEWEB)
Hori, M.; Yata, J. [Kyoto Inst. of Technology, Kyoto (Japan); Minamiyama, T. [Fukuyama University, Hiroshima (Japan)
1996-04-25
The effects of free stream turbulence on turbulent boundary layer were calculated using a {kappa}-{epsilon} two-equation model. The calculations were performed with respect to velocity profiles on a flat plate wall shear stress turbulence energy integral length scales of turbulence and decay of free stream turbulence and the results were compared with experimental results. The energy of free stream turbulence and the dissipation values at the leading edge of flat plate were used, as the initial conditions for calculation. These initial values of dissipation were determined from the integral length scales of free stream turbulence at the leading edge. The calculated wall shear stress increased with the free stream turbulence and integral length scales of turbulence. The velocity profiles and turbulence energy agreed well with the experimental results and the effects of free stream turbulence on the wall shear stress agreed fairly well with those observed in experiments. 15 refs., 10 figs.
Directory of Open Access Journals (Sweden)
Trunev A. P.
2014-05-01
Full Text Available In this article we have investigated the solutions of Maxwell's equations, Navier-Stokes equations and the Schrödinger associated with the solutions of Einstein's equations for empty space. It is shown that in some cases the geometric instability leading to turbulence on the mechanism of alternating viscosity, which offered by N.N. Yanenko. The mechanism of generation of matter from dark energy due to the geometric turbulence in the Big Bang has been discussed
Nonlinear turbulence models for predicting strong curvature effects
Institute of Scientific and Technical Information of China (English)
XU Jing-lei; MA Hui-yang; HUANG Yu-ning
2008-01-01
Prediction of the characteristics of turbulent flows with strong streamline curvature, such as flows in turbomachines, curved channel flows, flows around airfoils and buildings, is of great importance in engineering applicatious and poses a very practical challenge for turbulence modeling. In this paper, we analyze qualitatively the curvature effects on the structure of turbulence and conduct numerical simulations of a turbulent U- duct flow with a number of turbulence models in order to assess their overall performance. The models evaluated in this work are some typical linear eddy viscosity turbulence models, nonlinear eddy viscosity turbulence models (NLEVM) (quadratic and cubic), a quadratic explicit algebraic stress model (EASM) and a Reynolds stress model (RSM) developed based on the second-moment closure. Our numerical results show that a cubic NLEVM that performs considerably well in other benchmark turbulent flows, such as the Craft, Launder and Suga model and the Huang and Ma model, is able to capture the major features of the highly curved turbulent U-duct flow, including the damping of turbulence near the convex wall, the enhancement of turbulence near the concave wall, and the subsequent turbulent flow separation. The predictions of the cubic models are quite close to that of the RSM, in relatively good agreement with the experimental data, which suggests that these inodels may be employed to simulate the turbulent curved flows in engineering applications.
Shear turbulence, Langmuir circulation and scalar transfer at an air-water interface
Hafsi, Amine; Tejada-Martinez, Andres; Veron, Fabrice
2016-11-01
DNS of an initially quiescent coupled air-water interface driven by an air-flow with free stream speed of 5 m/s generates gravity-capillary waves and small-scale (centimeter-scale) Langmuir circulation (LC) beneath the interface. In addition to LC, the waterside turbulence is characterized by shear turbulence with structures similar to classical "wall streaks" in wall-bounded flow. These streaks, denoted here as "shear streaks", consist of downwind-elongated vortices alternating in sign in the crosswind direction. The presence of interfacial waves causes interaction between these vortices giving rise to bigger vortices, namely LC. LES with momentum equation augmented with the Craik-Leibovich (C-L) vortex force is used to understand the roles of the shear streaks (i.e. the shear turbulence) and the LC in determining scalar flux from the airside to the waterside and vertical scalar transport beneath. The C-L force consists of the cross product between the Stokes drift velocity (induced by the interface waves) and the flow vorticity. It is observed that Stokes drift shear intensifies the shear streaks (with respect to flow without wave effects) leading to enhanced scalar flux at the air-water interface. LC leads to increased vertical scalar transport at depths below the interface.
An alternative eddy-viscosity representation and its implication to turbulence modeling
Jakirlic, Suad; Jovanovic, Jovan; Basara, Branislav
2013-11-01
Large majority of turbulence models in the RANS framework (it holds also in the case of the LES method) is based on the eddy-viscosity rationale. The principle task of modeling the Reynolds stress tensor reduces to modeling the eddy-viscosity, representing, according to Boussinesq (1877), the ``coefficient of proportionality'' between the Reynolds stress and mean rate of strain tensors. In the present contribution an extended formulation based on the least square approach applied to the Boussinesq's correlation is presented. Furthermore, a Taylor-microscale-based formulation is derived originating from the equilibrium assumption related to the equality between the production and dissipation rates of kinetic energy of turbulence. Finally, an expression is proposed reflecting the Reynolds stress anisotropy influence on the eddy-viscosity damping by approaching the solid wall as well as including an appropriate length-scale switch accounting for the viscosity effects through inclusion of the Kolmogorov scales blended with those of the energy-containing eddies. The latter formulation is successfully applied in the framework of an instability-sensitive Reynolds stress model of turbulence. The afore-mentioned eddy-viscosity definitions are comparatively assessed in a series of wall-bounded flow configurations (including separation) in a Reynolds number range.
Turbulence and turbulent mixing in natural fluids
Gibson, Carl H
2010-01-01
Turbulence and turbulent mixing in natural fluids begins with big bang turbulence powered by spinning combustible combinations of Planck particles and Planck antiparticles. Particle prograde accretion on a spinning pair releases 42% of the particle rest mass energy to produce more fuel for turbulent combustion. Negative viscosity and negative turbulence stresses work against gravity, creating mass-energy and space-time from the vacuum. Turbulence mixes cooling temperatures until a quark-gluon strong-force SF freeze-out. Gluon-viscosity anti-gravity ({\\Lambda}SF) exponentially inflates the fireball to preserve big bang turbulence information at scales larger than ct as the first fossil turbulence. Cosmic microwave background CMB temperature anisotropies show big bang turbulence fossils along with fossils of weak plasma turbulence triggered (10^12 s) as plasma viscous forces permit gravitational fragmentation on supercluster to galaxy mass scales (10^13 s). Turbulent morphologies and viscous-turbulent lengths a...
Turbulence and turbulent mixing in natural fluids
2010-01-01
Turbulence and turbulent mixing in natural fluids begins with big bang turbulence powered by spinning combustible combinations of Planck particles and Planck antiparticles. Particle prograde accretions on a spinning pair releases 42% of the particle rest mass energy to produce more fuel for turbulent combustion. Negative viscous stresses and negative turbulence stresses work against gravity, extracting mass-energy and space-time from the vacuum. Turbulence mixes cooling temperatures until str...
Farrell, Brian F.; Ioannou, Petros J.; Nikolaidis, Marios-Andreas
2017-03-01
Although the roll-streak structure is ubiquitous in both observations and simulations of pretransitional wall-bounded shear flow, this structure is linearly stable if the idealization of laminar flow is made. Lacking an instability, the large transient growth of the roll-streak structure has been invoked to explain its appearance as resulting from chance occurrence in the background turbulence of perturbations configured to optimally excite it. However, there is an alternative interpretation for the role of free-stream turbulence in the genesis of the roll-streak structure, which is that the background turbulence interacts with the roll-streak structure to destabilize it. Statistical state dynamics (SSD) provides analysis methods for studying instabilities of this type that arise from interaction between the coherent and incoherent components of turbulence. SSD in the form of a closure at second order is used in this work to analyze the cooperative eigenmodes arising from interaction between the coherent streamwise invariant component and the incoherent background component of turbulence. In pretransitional Couette flow a manifold of stable modes with roll-streak form is found to exist in the presence of low-intensity background turbulence. The least stable mode of this manifold is destabilized at a critical value of a parameter controlling the background turbulence intensity and a finite-amplitude roll-streak structure arises from this instability through a bifurcation in this parameter. Although this bifurcation has analytical expression only in the infinite ensemble formulation of second order SSD, referred in this work as the S3T system, it is closely reflected in numerical simulations of both the dynamically similar quasilinear system, referred to as the restricted nonlinear (RNL) system, as well as in the full Navier-Stokes equations. This correspondence is verified using ensemble implementations of the RNL system and the Navier-Stokes equations. The S3T
On the self-sustained nature of large-scale motions in turbulent Couette flow
Rawat, Subhandu; Hwang, Yongyun; Rincon, François
2015-01-01
Large-scale motions in wall-bounded turbulent flows are frequently interpreted as resulting from an aggregation process of smaller-scale structures. Here, we explore the alternative possibility that such large-scale motions are themselves self-sustained and do not draw their energy from smaller-scale turbulent motions activated in buffer layers. To this end, it is first shown that large-scale motions in turbulent Couette flow at Re=2150 self-sustain even when active processes at smaller scales are artificially quenched by increasing the Smagorinsky constant Cs in large eddy simulations. These results are in agreement with earlier results on pressure driven turbulent channels. We further investigate the nature of the large-scale coherent motions by computing upper and lower-branch nonlinear steady solutions of the filtered (LES) equations with a Newton-Krylov solver,and find that they are connected by a saddle-node bifurcation at large values of Cs. Upper branch solutions for the filtered large scale motions a...
Turbulence in the highly restricted dynamics of a closure at second order: comparison with DNS
Constantinou, Navid C; Nikolaidis, Marios-Andreas; Farrell, Brian F; Ioannou, Petros J; Jiménez, Javier
2014-01-01
S3T (Stochastic Structural Stability Theory) employs a closure at second order to obtain the dynamics of the statistical mean turbulent state. When S3T is implemented as a coupled set of equations for the streamwise mean and perturbation states, nonlinearity in the dynamics is restricted to interaction between the mean and perturbations. The S3T statistical mean state dynamics can be approximately implemented by similarly restricting the dynamics used in a direct numerical simulation (DNS) of the full Navier-Stokes equations (referred to as the NS system). Although this restricted nonlinear system (referred to as the RNL system) is greatly simplified in its dynamics in comparison to the associated NS, it nevertheless self-sustains a turbulent state in wall-bounded shear flow with structures and dynamics comparable to that in observed turbulence. Moreover, RNL turbulence can be analyzed effectively using theoretical methods developed to study the closely related S3T system. In order to better understand RNL tu...
Investigation of turbulent Prandtl number subject to local acceleration and deceleration
Jung, Eunbeom; Lee, Wook; Kang, Seongwon; Iaccarino, Gianluca
2016-11-01
The main objective of the present study is to analyze the turbulent Prandtl number (Prt) varying over space in a wall-bounded turbulent flow under local acceleration and deceleration. The Prt shows the opposite trends for the conditions of acceleration and deceleration. In order to explain these phenomena, the convection velocity from the space-time correlation is investigated. It is shown that small-scale motions experience larger acceleration and deceleration compared to large-scale ones. Also, a discrepancy between the momentum and heat transfer at small scales results in the spatially varying Prt. The budgets of the turbulent kinetic energy and temperature variance show a hint for the variation of Prt. The results from DNS and RANS with a constant Prt are compared and show that RANS prediction can be improved by using a modeled Prt. From the turbulent statistics, a few flow variables showing higher correlations with Prt are identified. Based on this, simple phenomenological models are devised and the corresponding simulations show a more accurate prediction of the heat transfer rate. Corresponding author.
Milton, Kimball A
2011-01-01
In a continuing effort to understand divergences which occur when quantum fields are confined by bounding surfaces, we investigate local energy densities (and the local energy-momentum tensor) in the vicinity of a wall. In this paper, attention is largely confined to a scalar field. If the wall is an infinite Dirichlet plane, well known volume and surface divergences are found, which are regulated by a temporal point-splitting parameter. If the wall is represented by a linear potential in one coordinate $z$, the divergences are softened. The case of a general wall, described by a potential of the form $z^\\alpha$ for $z>0$ is considered. If $\\alpha>2$, there are no surface divergences, which in any case vanish if the conformal stress tensor is employed. Divergences within the wall are also considered.
Energy Technology Data Exchange (ETDEWEB)
Nakabayashi, K.; Kito, O.; Kato, Y. [Nagoya Institute of Technology, Nagoya (Japan)
1998-10-25
Turbulence intensities in Couette Poiseuille flow, developed between stationary and moving walls, have been measured by I- and X-type hot wires. The intensities in the wall region are affected by non-dimensional shear stress gradient parameter {mu} ({identical_to} u*{sup 3}/{alpha}{nu}), but not by Reynolds number Re* ({identical_to} hu*/{nu}). As |{mu}| decreases, distributions of streamwise and wall-normal turbulence intensities shift upward or downward from those of plane-Couette flow depending on the sign of {mu}. In the turbulent core region, turbulence intensities of Poiseuille-type flow distribute quite differently from that of Couette-type flow. The effective parameter in this region is 13, but the effect of 13 on the turbulence intensities is obscured by the low Reynolds number effect. 13 refs., 12 figs., 2 tabs.
1991-10-01
and complexity of thermochemistry . Accordingly a practical viewpoint is required to meet near-term work required for use in advanced CFD codes...teachers the opportunity to learn/explore/ teach turbulence issues. While such a product could be an invaluable eductaional tool (university), it also
Energy Technology Data Exchange (ETDEWEB)
Talbot, L.; Cheng, R.K. [Lawrence Berkeley Laboratory, CA (United States)
1993-12-01
Turbulent combustion is the dominant process in heat and power generating systems. Its most significant aspect is to enhance the burning rate and volumetric power density. Turbulent mixing, however, also influences the chemical rates and has a direct effect on the formation of pollutants, flame ignition and extinction. Therefore, research and development of modern combustion systems for power generation, waste incineration and material synthesis must rely on a fundamental understanding of the physical effect of turbulence on combustion to develop theoretical models that can be used as design tools. The overall objective of this program is to investigate, primarily experimentally, the interaction and coupling between turbulence and combustion. These processes are complex and are characterized by scalar and velocity fluctuations with time and length scales spanning several orders of magnitude. They are also influenced by the so-called {open_quotes}field{close_quotes} effects associated with the characteristics of the flow and burner geometries. The authors` approach is to gain a fundamental understanding by investigating idealized laboratory flames. Laboratory flames are amenable to detailed interrogation by laser diagnostics and their flow geometries are chosen to simplify numerical modeling and simulations and to facilitate comparison between experiments and theory.
Energy Technology Data Exchange (ETDEWEB)
Bec, Jeremie [Laboratoire Cassiopee UMR6202, CNRS, OCA, BP4229, 06304 Nice Cedex 4 (France)]. E-mail: jeremie.bec@obs-nice.fr; Khanin, Konstantin [Department of Mathematics, University of Toronto, Toronto, Ont., M5S 3G3 (Canada)]. E-mail: khanin@math.toronto.edu
2007-08-15
The last decades witnessed a renewal of interest in the Burgers equation. Much activities focused on extensions of the original one-dimensional pressureless model introduced in the thirties by the Dutch scientist J.M. Burgers, and more precisely on the problem of Burgers turbulence, that is the study of the solutions to the one- or multi-dimensional Burgers equation with random initial conditions or random forcing. Such work was frequently motivated by new emerging applications of Burgers model to statistical physics, cosmology, and fluid dynamics. Also Burgers turbulence appeared as one of the simplest instances of a nonlinear system out of equilibrium. The study of random Lagrangian systems, of stochastic partial differential equations and their invariant measures, the theory of dynamical systems, the applications of field theory to the understanding of dissipative anomalies and of multiscaling in hydrodynamic turbulence have benefited significantly from progress in Burgers turbulence. The aim of this review is to give a unified view of selected work stemming from these rather diverse disciplines.
Origin and turbulence spreading of plasma blobs
Energy Technology Data Exchange (ETDEWEB)
Manz, P.; Birkenmeier, G.; Stroth, U. [Physik-Department E28, Technische Universität München, James-Franck. Str. 1, Garching (Germany); Max-Planck-Institut für Plasmaphysik, Boltzmannstr. 2, Garching (Germany); Ribeiro, T. T.; Scott, B. D.; Carralero, D.; Müller, S. H.; Müller, H. W.; Wolfrum, E. [Max-Planck-Institut für Plasmaphysik, Boltzmannstr. 2, Garching (Germany); Fuchert, G. [IJL, Université de Lorraine, CNRS (UMR 7198), BP 40239, Vandoeuvre-lès-Nancy (France)
2015-02-15
The formation of plasma blobs is studied by analyzing their trajectories in a gyrofluid simulation in the vicinity of the separatrix. Most blobs arise at the maximum radial electric field outside the separatrix. In general, blob generation is not bound to one particular radial position or instability. A simple model of turbulence spreading for the scrape-off layer is derived. The simulations show that the blob dynamics can be represented by turbulence spreading, which constitutes a substantial energy drive for far scrape-off layer turbulence and is a more suitable quantity to study blob generation compared to the skewness.
Natrajan, V. K.; Christensen, K. T.
2007-07-01
The character of transitional capillary flow is investigated using pressure-drop measurements and instantaneous velocity fields acquired by microscopic PIV in the streamwise wall-normal plane of a 536 μm capillary over the Reynolds-number range 1,800 ≤ Re ≤ 3,400 in increments of 100. The pressure-drop measurements reveal a deviation from laminar behavior at Re = 1,900 with the differences between the measured and the predicted laminar-flow pressure drop increasing with increasing Re. These observations are consistent with the characteristics of the mean velocity profiles which begin to deviate from the parabolic laminar profile at Re = 1,900, interpreted as the onset of transition, by becoming increasingly flatter and fuller with increasing Re. A fully-turbulent state is attained at Re ≅ 3,400 where the mean velocity profile collapses onto the mean profile of fully-developed turbulent pipe flow from an existing direct numerical simulation at Re = 5,300. Examination of the instantaneous velocity fields acquired by micro-PIV in the range 1,900 ≤ Re flows at the microscale are composed of a subset of velocity fields illustrating a purely laminar behavior and a subset of fields that capture significant departure from laminar behavior. The fraction of velocity fields displaying non-laminar behavior increases with increasing Re, consistent with past observations of a growing number of intermittent turbulent spots bounded by nominally laminar flow in macroscale pipe flow with increasing Re. Instantaneous velocity fields that are non-laminar in character consistently contain multiple spanwise vortices that appear to streamwise-align to form larger-scale interfaces that incline slightly away from the wall. The characteristics of these “trains” of vortices are reminiscent of the spatial features of hairpin-like vortices and hairpin vortex packets often observed in fully-turbulent wall-bounded flow at both the macro- and micro-scales. Finally, single
Stochastic Simulation of Lagrangian Particle Transport in Turbulent Flows
Sun, Guangyuan
particle velocity and particle number distribution are illustrated. The simulation results indicate that the model qualitatively captures the turbulent modulation with the presence of difference particle classes with different solid loadings. The model is then extended to simulate temperature evolution of the particles in a nonisothermal hot jet, in which heat transfer between the particles and gas is considered. The flow is bounded by a wall on the one side of the domain. The simulations are performed over a range of particle inertia and thermal relaxation time scales and different initial particle locations. The present study investigates the post-blast-phase mixing between the particles, the environment that is intended to heat them up, and the ambient environment that dilutes the jet flow. The results indicate that the model can qualitatively predict the important particle statistics in jet flame.
Directory of Open Access Journals (Sweden)
Zhi-Feng Yao
2016-01-01
Full Text Available The turbulent flow in a centrifugal pump impeller is bounded by complex surfaces, including blades, a hub and a shroud. The primary challenge of the flow simulation arises from the generation of a boundary layer between the surface of the impeller and the moving fluid. The principal objective is to evaluate the near-wall solution approaches that are typically used to deal with the flow in the boundary layer for the large-eddy simulation (LES of a centrifugal pump impeller. Three near-wall solution approaches –the wall-function approach, the wall-resolved approach and the hybrid Reynolds averaged Navier–Stoke (RANS and LES approach – are tested. The simulation results are compared with experimental results conducted through particle imaging velocimetry (PIV and laser Doppler velocimetry (LDV. It is found that the wall-function approach is more sparing of computational resources, while the other two approaches have the important advantage of providing highly accurate boundary layer flow prediction. The hybrid RANS/LES approach is suitable for predicting steady-flow features, such as time-averaged velocities and hydraulic losses. Despite the fact that the wall-resolved approach is expensive in terms of computing resources, it exhibits a strong ability to capture a small-scale vortex and predict instantaneous velocity in the near-wall region in the impeller. The wall-resolved approach is thus recommended for the transient simulation of flows in centrifugal pump impellers.
Approximate Model for Turbulent Stagnation Point Flow.
Energy Technology Data Exchange (ETDEWEB)
Dechant, Lawrence [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)
2016-01-01
Here we derive an approximate turbulent self-similar model for a class of favorable pressure gradient wedge-like flows, focusing on the stagnation point limit. While the self-similar model provides a useful gross flow field estimate this approach must be combined with a near wall model is to determine skin friction and by Reynolds analogy the heat transfer coefficient. The combined approach is developed in detail for the stagnation point flow problem where turbulent skin friction and Nusselt number results are obtained. Comparison to the classical Van Driest (1958) result suggests overall reasonable agreement. Though the model is only valid near the stagnation region of cylinders and spheres it nonetheless provides a reasonable model for overall cylinder and sphere heat transfer. The enhancement effect of free stream turbulence upon the laminar flow is used to derive a similar expression which is valid for turbulent flow. Examination of free stream enhanced laminar flow suggests that the rather than enhancement of a laminar flow behavior free stream disturbance results in early transition to turbulent stagnation point behavior. Excellent agreement is shown between enhanced laminar flow and turbulent flow behavior for high levels, e.g. 5% of free stream turbulence. Finally the blunt body turbulent stagnation results are shown to provide realistic heat transfer results for turbulent jet impingement problems.
PREFACE Turbulent Mixing and Beyond
Abarzhi, Snezhana I.; Gauthier, Serge; Niemela, Joseph J.
2010-12-01
The goals of the International Conference 'Turbulent Mixing and Beyond', TMB-2009, are to expose the generic problem of non-equilibrium turbulent processes to a broad scientific community, to promote the development of new ideas in tackling the fundamental aspects of the problem, to assist in the application of novel approaches in a broad range of phenomena, where the turbulent processes occur, and to have a potential impact on technology. The Conference provides the opportunity to bring together researchers from different areas, which include but are not limited to fluid dynamics, plasmas, high energy density physics, astrophysics, material science, combustion, atmospheric and Earth sciences, nonlinear and statistical physics, applied mathematics, probability and statistics, data processing and computations, optics and telecommunications, and to have their attention focused on the long-standing formidable task of non-equilibrium processes. Non-equilibrium turbulent processes play a key role in a broad variety of phenomena spanning astrophysical to atomistic scales and high or low energy density regimes. Inertial confinement and magnetic fusion, light-matter interaction and non-equilibrium heat transfer, strong shocks and explosions, material transformation under high strain rate, supernovae and accretion disks, stellar non-Boussinesq and magneto-convection, planetary interiors and mantle-lithosphere tectonics, premixed and non-premixed combustion, non-canonical wall-bounded flows, hypersonic and supersonic boundary layers, dynamics of atmosphere and oceanography, are just a few examples. A grip on non-equilibrium turbulent processes is crucial for cutting-edge technology such as laser micro-machining, nano-electronics, free-space optical telecommunications, and for industrial applications in the areas of aeronautics and aerodynamics. Non-equilibrium turbulent processes are anisotropic, non-local, multi-scale and multi-phase, and often are driven by shocks or
Discontinuous Galerkin Methods for Turbulence Simulation
Collis, S. Scott
2002-01-01
A discontinuous Galerkin (DG) method is formulated, implemented, and tested for simulation of compressible turbulent flows. The method is applied to turbulent channel flow at low Reynolds number, where it is found to successfully predict low-order statistics with fewer degrees of freedom than traditional numerical methods. This reduction is achieved by utilizing local hp-refinement such that the computational grid is refined simultaneously in all three spatial coordinates with decreasing distance from the wall. Another advantage of DG is that Dirichlet boundary conditions can be enforced weakly through integrals of the numerical fluxes. Both for a model advection-diffusion problem and for turbulent channel flow, weak enforcement of wall boundaries is found to improve results at low resolution. Such weak boundary conditions may play a pivotal role in wall modeling for large-eddy simulation.
Controlling a Linear Process in Turbulent Channel Flow
Lim, Junwoo; Kim, John
1999-11-01
Recent studies have shown that controllers developed based on a linear system theory work surprisingly well in reducing the viscous drag in turbulent boundary layers, suggesting that the essential dynamics of near-wall turbulence may well be approximated by the linearized model. Of particular interest is the linear process due to the coupling term between the wall-normal velocity and wall-normal vorticity terms in the linearized Navier-Stokes (N-S) equations, which enhances non-normality of the linearized system. This linear process is investigated through numerical simulations of a turbulent channel flow. It is shown that the linear coupling term plays an important role in fully turbulent -- and hence, nonlinear -- flows. Near-wall turbulence is shown to decay in the absence of the linear coupling term. The fact that the coupling term plays an essential role in maintaining near-wall turbulence suggests that an effective control algorithm for the drag reduction in turbulent flows should be aimed at reducing the effect of the coupling term in the wall region. Designing a control algorithm that directly accounts for the coupling term in a cost to be minimized will be discussed.
Bound phenolics in foods, a review.
Acosta-Estrada, Beatriz A; Gutiérrez-Uribe, Janet A; Serna-Saldívar, Sergio O
2014-01-01
Among phytochemicals, phenolic compounds have been extensively researched due to their diverse health benefits. Phenolic compounds occur mostly as soluble conjugates and insoluble forms, covalently bound to sugar moieties or cell wall structural components. Absorption mechanisms for bound phenolic compounds in the gastrointestinal tract greatly depend on the liberation of sugar moieties. Food processes such as fermentation, malting, thermoplastic extrusion or enzymatic, alkaline and acid hydrolyses occasionally assisted with microwave or ultrasound have potential to release phenolics associated to cell walls. Different kinds of wet chemistry methodologies to release and detect bound phenolic have been developed. These include harsh heat treatments, chemical modifications or biocatalysis. New protocols for processing and determining phenolics in food matrices must be devised in order to release bound phenolics and for quality control in the growing functional food industry.
Linear Controllers for Turbulent Boundary Layers
Lim, Junwoo; Kim, John; Kang, Sung-Moon; Speyer, Jason
2000-11-01
Several recent studies have shown that controllers based on a linear system theory work surprisingly well in turbulent flows, suggesting that a linear mechanism may play an important role even in turbulent flows. It has been also shown that non-normality of the linearized Navier-Stokes equations is an essential characteristic in the regeneration of near-wall turbulence structures in turbulent boundary layers. A few controllers designed to reduce the role of different linear mechanisms, including that to minimize the non-normality of the linearized Navier-Stokes equations, have been developed and applied to a low Reynolds nubmer turbulent channel flow. A reduced-order model containing the most controllable and observables modes is derived for each system. Other existing control schemes, such as Choi et al's opposition control, have been examined from the point of a linear system control. Further discussion on controller design, such as choice of cost function and other control parameters, will be presented.
DEFF Research Database (Denmark)
Nielsen, Mogens Peter; Shui, Wan; Johansson, Jens
2011-01-01
In this report a new turbulence model is presented.In contrast to the bulk of modern work, the model is a classical continuum model with a relatively simple constitutive equation. The constitutive equation is, as usual in continuum mechanics, entirely empirical. It has the usual Newton or Stokes...... term with stresses depending linearly on the strain rates. This term takes into account the transfer of linear momentum from one part of the fluid to another. Besides there is another term, which takes into account the transfer of angular momentum. Thus the model implies a new definition of turbulence....... The model is in a virgin state, but a number of numerical tests have been carried out with good results. It is published to encourage other researchers to study the model in order to find its merits and possible limitations....
Morrison, Gerald L.; Winslow, Robert B.; Thames, H. Davis, III
1996-01-01
The mean and phase averaged pressure and wall shear stress distributions were measured on the stator wall of a 50% eccentric annular seal which was whirling in a circular orbit at the same speed as the shaft rotation. The shear stresses were measured using flush mounted hot-film probes. Four different operating conditions were considered consisting of Reynolds numbers of 12,000 and 24,000 and Taylor numbers of 3,300 and 6,600. At each of the operating conditions the axial distribution (from Z/L = -0.2 to 1.2) of the mean pressure, shear stress magnitude, and shear stress direction on the stator wall were measured. Also measured were the phase averaged pressure and shear stress. These data were combined to calculate the force distributions along the seal length. Integration of the force distributions result in the net forces and moments generated by the pressure and shear stresses. The flow field inside the seal operating at a Reynolds number of 24,000 and a Taylor number of 6,600 has been measured using a 3-D laser Doppler anemometer system. Phase averaged wall pressure and wall shear stress are presented along with phase averaged mean velocity and turbulence kinetic energy distributions located 0.16c from the stator wall where c is the seal clearance. The relationships between the velocity, turbulence, wall pressure and wall shear stress are very complex and do not follow simple bulk flow predictions.
4. Large-Eddy Simulation of Turbulent Channel Flow
Yasuaki, DOI; Tsukasa, KIMURA; Hiroshima University; Mitsubishi Precision
1989-01-01
Turbulent channel flow is studied numerically by using Large-Eddy Simulation (LES). Finite difference method is employed in the LES. The simulation is stably executed by using the 3rd order upwind difference scheme which dissipate numerical errors. Several pilot tests are performed in order to investigate the effect of numerical dissipation and the wall damping function on the calculated results. Time dependent feature and turbulent flow structures in a turbulent channel flow are numerically ...
High Resolution Simulation of Turbulent Flow in a Channel.
1987-09-25
chosen to maintain the original Poiseuille flow . The introduction of highly unstable disturbances causes transition to turbulence so that the wall...for Turbulent Channel Flow ," Phys. Rev. Lett, Vol. 47, 832-835 (1981). 2. S.A. Orszag and L.C. Kells, "Transition to turbulence in plane Poiseuille and...plane Couette Flow ," J. Fluid Mech., Vol. 96, pp. 159-205. 3. Kreplin, H.-P. and Eckelmann, H., "Behavior of the Three Fluctucting Velocity
Turbulent drag reduction through oscillating discs
Wise, Daniel J
2014-01-01
The changes of a turbulent channel flow subjected to oscillations of wall flush-mounted rigid discs are studied by means of direct numerical simulations. The Reynolds number is $R_\\tau$=$180$, based on the friction velocity of the stationary-wall case and the half channel height. The primary effect of the wall forcing is the sustained reduction of wall-shear stress, which reaches a maximum of 20%. A parametric study on the disc diameter, maximum tip velocity, and oscillation period is presented, with the aim to identify the optimal parameters which guarantee maximum drag reduction and maximum net energy saving, computed by taking into account the power spent to actuate the discs. This may be positive and reaches 6%. The Rosenblat viscous pump flow is used to predict the power spent for disc motion in the turbulent channel flow and to estimate localized and transient regions over the disc surface subjected to the turbulent regenerative braking effect, for which the wall turbulence exerts work on the discs. The...
J. Xamán; Álvarez, G; Chávez, Y.; J. O. Aguilar; Arce, J.
2012-01-01
In this paper a theoretical study on conjugated heat transfer (natural convection, radiation and conduction) in a squareroom (cavity) with turbulent flow is presented, taking into account variation on the opaque wall emissivity. The room isformed by an isothermal vertical wall, two adiabatic horizontal walls and a semitransparent wall with and without acontrol solar radiation film. The governing equations for turbulent flow in 2D were solved using a finite volumeformulation and k- turbulent ...
Optical turbulence in a spinning pipe gas lens
CSIR Research Space (South Africa)
Mafusire, C
2009-07-01
Full Text Available The researchers have managed to do quantitative analysis of ‘controlled’ turbulence. The researchers could control the degree of turbulence by controlling the rotation speed and wall temperature of the spinning pipe gas lens. The researchers also...
Vortex statistics for turbulence in a container with rigid boundaries
DEFF Research Database (Denmark)
Clercx, H.J.H.; Nielsen, A.H.
2000-01-01
The evolution of vortex statistics for decaying two-dimensional turbulence in a square container with rigid no-slip walls is compared with a few available experimental results and with the scaling theory of two-dimensional turbulent decay as proposed by Carnevale et al. Power-law exponents...
National Oceanic and Atmospheric Administration, Department of Commerce — Forecast turbulence hazards identified by the Graphical Turbulence Guidance algorithm. The Graphical Turbulence Guidance product depicts mid-level and upper-level...
Graphical Turbulence Guidance - Composite
National Oceanic and Atmospheric Administration, Department of Commerce — Forecast turbulence hazards identified by the Graphical Turbulence Guidance algorithm. The Graphical Turbulence Guidance product depicts mid-level and upper-level...
Explosive turbulent magnetic reconnection.
Higashimori, K; Yokoi, N; Hoshino, M
2013-06-21
We report simulation results for turbulent magnetic reconnection obtained using a newly developed Reynolds-averaged magnetohydrodynamics model. We find that the initial Harris current sheet develops in three ways, depending on the strength of turbulence: laminar reconnection, turbulent reconnection, and turbulent diffusion. The turbulent reconnection explosively converts the magnetic field energy into both kinetic and thermal energy of plasmas, and generates open fast reconnection jets. This fast turbulent reconnection is achieved by the localization of turbulent diffusion. Additionally, localized structure forms through the interaction of the mean field and turbulence.
On determining characteristic length scales in pressure-gradient turbulent boundary layers
Vinuesa, R.; Bobke, A.; Örlü, R.; Schlatter, P.
2016-05-01
In the present work, we analyze three commonly used methods to determine the edge of pressure gradient turbulent boundary layers: two based on composite profiles, the one by Chauhan et al. ["Criteria for assessing experiments in zero pressure gradient boundary layers," Fluid Dyn. Res. 41, 021404 (2009)] and the one by Nickels ["Inner scaling for wall-bounded flows subject to large pressure gradients," J. Fluid Mech. 521, 217-239 (2004)], and the other one based on the condition of vanishing mean velocity gradient. Additionally, a new method is introduced based on the diagnostic plot concept by Alfredsson et al. ["A new scaling for the streamwise turbulence intensity in wall-bounded turbulent flows and what it tells us about the `outer' peak," Phys. Fluids 23, 041702 (2011)]. The boundary layers developing over the suction and pressure sides of a NACA4412 wing section, extracted from a direct numerical simulation at chord Reynolds number Rec = 400 000, are used as the test case, besides other numerical and experimental data from favorable, zero, and adverse pressure-gradient flat-plate turbulent boundary layers. We find that all the methods produce robust results with mild or moderate pressure gradients, although the composite-profile techniques require data preparation, including initial estimations of fitting parameters and data truncation. Stronger pressure gradients (with a Rotta-Clauser pressure-gradient parameter β larger than around 7) lead to inconsistent results in all the techniques except the diagnostic plot. This method also has the advantage of providing an objective way of defining the point where the mean streamwise velocity is 99% of the edge velocity and shows consistent results in a wide range of pressure gradient conditions, as well as flow histories. Collapse of intermittency factors obtained from a wide range of pressure-gradient and Re conditions on the wing further highlights the robustness of the diagnostic plot method to determine the
EXPERIMENTAL STUDY OF 3-D TURBULENT BEND FLOWS IN OPEN CHANNEL
Institute of Scientific and Technical Information of China (English)
LIU Yue-qin; ZHENG Shao-wen; WU Qiang
2005-01-01
A generalized bend flow model, treating a 90° single bend and 60° continuous bends, was designed to quantitatively describe 3-D turbulence mechanism of circulating not-fully-developed flow in open channels with bends.The 3-D fluctuating velocities of turbulent flow were measured and analyzed with a 3-D acoustic-Doppler velocimeter.Formula for 3-D turbulent intensity was derived using the dimension analysis approach.Expressions of vertical turbulent-intensity distributions were obtained with the multivariant-regression theory, which agree with experiment data.Distributions of turbulent intensity and turbulent stress were characterized, and their relationships were concluded.In the bend-turbulent-flow core region, longitudinal and lateral turbulent-intensity distributions are coincident with linear distribution, but in near-wall region are coincident with the Gamma distribution.Vertical turbulent intensity distributions are coincident with the Rayleigh distribution.Herein, it is concluded that the bend turbulence is anisotropic.
Computation of a turbulent channel flow using PDF method
Energy Technology Data Exchange (ETDEWEB)
Minier, J.P. [Electricite de France (EDF), 78 - Chatou (France). Lab. National d`Hydraulique; Pozorski, J. [Polish Academy of Sciences, Gdansk (Poland). Inst. of Fluid-Flow Machinery
1997-05-01
The purpose of the present paper is to present an analysis of a PDF model (Probability Density Function) and an illustration of the possibilities offered by such a method for a high-Reynolds turbulent channel flow. The first part presents the principles of the PDF approach and the introduction of stochastic processes along with a Lagrangian point of view. The model retained is the one put forward by Pope (1991) and includes evolution equations for location, velocity and dissipation of a large number of particles. Wall boundary conditions are then developed for particles. These conditions allow statistical results of the logarithmic region to be correctly reproduced. Simulation of non-homogeneous flows require a pressure-gradient algorithm which is briefly described. Developments are validated by analysing numerical predictions with respect to Comte Bellot experimental data (1965) on a channel flow. This example illustrates the ability of the approach to simulate wall-bounded flows and to provide detailed information such as skewness and flatness factors. (author) 9 refs.
Viscosity bound versus the universal relaxation bound
Hod, Shahar
2017-10-01
For gauge theories with an Einstein gravity dual, the AdS/CFT correspondence predicts a universal value for the ratio of the shear viscosity to the entropy density, η / s = 1 / 4 π. The holographic calculations have motivated the formulation of the celebrated KSS conjecture, according to which all fluids conform to the lower bound η / s ≥ 1 / 4 π. The bound on η / s may be regarded as a lower bound on the relaxation properties of perturbed fluids and it has been the focus of much recent attention. In particular, it was argued that for a class of field theories with Gauss-Bonnet gravity dual, the shear viscosity to entropy density ratio, η / s, could violate the conjectured KSS bound. In the present paper we argue that the proposed violations of the KSS bound are strongly constrained by Bekenstein's generalized second law (GSL) of thermodynamics. In particular, it is shown that physical consistency of the Gauss-Bonnet theory with the GSL requires its coupling constant to be bounded by λGB ≲ 0 . 063. We further argue that the genuine physical bound on the relaxation properties of physically consistent fluids is ℑω(k > 2 πT) > πT, where ω and k are respectively the proper frequency and the wavenumber of a perturbation mode in the fluid.
Venaille, Antoine; Vallis, Geoffrey K
2014-01-01
We investigate the non-linear equilibration of a two-layer quasi-geostrophic flow in a channel forced by an imposed unstable zonal mean flow, paying particular attention to the role of bottom friction. In the limit of low bottom friction, classical theory of geostrophic turbulence predicts an inverse cascade of kinetic energy in the horizontal with condensation at the domain scale and barotropization on the vertical. By contrast, in the limit of large bottom friction, the flow is dominated by ribbons of high kinetic energy in the upper layer. These ribbons correspond to meandering jets separating regions of homogenized potential vorticity. We interpret these result by taking advantage of the peculiar conservation laws satisfied by this system: the dynamics can be recast in such a way that the imposed mean flow appears as an initial source of potential vorticity levels in the upper layer. The initial baroclinic instability leads to a turbulent flow that stirs this potential vorticity field while conserving the...
Multidimensional Potential Burgers Turbulence
Boritchev, Alexandre
2016-03-01
We consider the multidimensional generalised stochastic Burgers equation in the space-periodic setting: partial {u}/partial t+(nabla f({u}) \\cdot nabla) {u}-ν Δ {u}= nabla η, quad t ≥ 0, {x} in{T}^d=({R}/ {Z})^d, under the assumption that u is a gradient. Here f is strongly convex and satisfies a growth condition, ν is small and positive, while η is a random forcing term, smooth in space and white in time. For solutions u of this equation, we study Sobolev norms of u averaged in time and in ensemble: each of these norms behaves as a given negative power of ν. These results yield sharp upper and lower bounds for natural analogues of quantities characterising the hydrodynamical turbulence, namely the averages of the increments and of the energy spectrum. These quantities behave as a power of the norm of the relevant parameter, which is respectively the separation ℓ in the physical space and the wavenumber k in the Fourier space. Our bounds do not depend on the initial condition and hold uniformly in {ν}. We generalise the results obtained for the one-dimensional case in [10], confirming the physical predictions in [4, 30]. Note that the form of the estimates does not depend on the dimension: the powers of {ν, |{{k}}|, ℓ} are the same in the one- and the multi-dimensional setting.
Turbulence Modulation and Particle Segregation in a Turbulent Channel Flow
Fong, Kee Onn; Toloui, Mostafa; Amili, Omid; Hong, Jiarong; Coletti, Filippo
2016-11-01
Particle-laden flows are ubiquitous in biological, environmental, and engineering flows, but our understanding of the mechanism by which particles modulate turbulence is incomplete. Simulations involve a wide range of scales, and shall be corroborated by measurements that reconstruct the motion of both the continuous and dispersed phases. We present experimental observations on the interaction between inertial particles and turbulent flow through a vertical channel in two-way coupled regime. The working fluid is air laden with size-selected glass particles, which we investigate by planar particle image velocimetry and digital inline holography. Unlike most previous experiments, we focus on a regime in which particle segregation and turbulence modulation are both strong. PIV shows that turbulence modulation is especially pronounced near the wall, where particles accumulate by turbophoresis. The segregation, however, is much weaker than what suggested by one-way coupled simulations. Results from digital holography confirm the trends in particle concentration and velocities, and additionally provide information on the three-dimensional clustering. The findings are compared to previous investigations and discussed in the context of modeling strategies.
Comparison of the LBE and DUGKS methods for DNS of decaying homogeneous isotropic turbulence
Wang, Peng; Guo, Zhaoli
2016-01-01
The main objective of this work is to perform a detailed comparison of the lattice Boltzmann equation (LBE) and the recently developed discrete unified gas-kinetic scheme (DUGKS) methods for direct numerical simulation (DNS) of the decaying homogeneous isotropic turbulence (DHIT) in a periodic box. The flow fields and key statistical quantities computed by both methods are compared with those from pseudo-spectral (PS) method. The results show that the LBE and DUGKS have almost the same accuracy when the flow field is well-resolved, and that the LBE is less dissipative and is slightly more efficient than the DUGKS, but the latter has a superior numerical stability, particularly for high Reynolds number flows. Therefore, the DUGKS method can be viewed as a viable tool for DNS of turbulent flows. It should be emphasized that the main advantage of the DUGKS when compared with the LBE method is its feasibility in adopting nonuniform meshes, which is critical for wall-bounded turbulent flows. The present work provi...
Functions of bounded variation
Lind, Martin
2006-01-01
The paper begins with a short survey of monotone functions. The functions of bounded variation are introduced and some basic properties of these functions are given. Finally the jump function of a function of bounded variation is defined.
Felker, Susan B.
2005-01-01
Robert Cobb Jr., of Greensboro, N.C., a 1986-89 participant in the Virginia Tech Upward Bound program, was recently named Virginia's TRIO Achiever for 2004. Federal TRIO programs include Upward Bound and Educational Talent Search.
A Nonlinear k-ε Turbulence Model Applicable to High Pressure Gradient and Large Curvature Flow
Directory of Open Access Journals (Sweden)
Xiyao Gu
2014-01-01
Full Text Available Most of the RANS turbulence models solve the Reynolds stress by linear hypothesis with isotropic model. They can not capture all kinds of vortexes in the turbomachineries. In this paper, an improved nonlinear k-ε turbulence model is proposed, which is modified from the RNG k-ε turbulence model and Wilcox's k-ω turbulence model. The Reynolds stresses are solved by nonlinear methods. The nonlinear k-ε turbulence model can calculate the near wall region without the use of wall functions. The improved nonlinear k-ε turbulence model is used to simulate the flow field in a curved rectangular duct. The results based on the improved nonlinear k-ε turbulence model agree well with the experimental results. The calculation results prove that the nonlinear k-ε turbulence model is available for high pressure gradient flows and large curvature flows, and it can be used to capture complex vortexes in a turbomachinery.
Egelseer, Eva Maria; Leitner, Karl; Jarosch, Marina; Hotzy, Christoph; Zayni, Sonja; Sleytr, Uwe B.; Sára, Margit
1998-01-01
Two Bacillus stearothermophilus wild-type strains were investigated regarding a common recognition and binding mechanism between the S-layer protein and the underlying cell envelope layer. The S-layer protein from B. stearothermophilus PV72/p6 has a molecular weight of 130,000 and assembles into a hexagonally ordered lattice. The S-layer from B. stearothermophilus ATCC 12980 shows oblique lattice symmetry and is composed of subunits with a molecular weight of 122,000. Immunoblotting, peptide mapping, N-terminal sequencing of the whole S-layer protein from B. stearothermophilus ATCC 12980 and of proteolytic cleavage fragments, and comparison with the S-layer protein from B. stearothermophilus PV72/p6 revealed that the two S-layer proteins have identical N-terminal regions but no other extended structurally homologous domains. In contrast to the heterogeneity observed for the S-layer proteins, the secondary cell wall polymer isolated from peptidoglycan-containing sacculi of the different strains showed identical chemical compositions and comparable molecular weights. The S-layer proteins could bind and recrystallize into the appropriate lattice type on native peptidoglycan-containing sacculi from both organisms but not on those extracted with hydrofluoric acid, leading to peptidoglycan of the A1γ chemotype. Affinity studies showed that only proteolytic cleavage fragments possessing the complete N terminus of the mature S-layer proteins recognized native peptidoglycan-containing sacculi as binding sites or could associate with the isolated secondary cell wall polymer, while proteolytic cleavage fragments missing the N-terminal region remained unbound. From the results obtained in this study, it can be concluded that S-layer proteins from B. stearothermophilus wild-type strains possess an identical N-terminal region which is responsible for anchoring the S-layer subunits to a secondary cell wall polymer of identical chemical composition. PMID:9515918