WorldWideScience

Sample records for wall boundary layer

  1. Rough-wall turbulent boundary layers with constant skin friction

    KAUST Repository

    Sridhar, A.

    2017-03-28

    A semi-empirical model is presented that describes the development of a fully developed turbulent boundary layer in the presence of surface roughness with length scale ks that varies with streamwise distance x . Interest is centred on flows for which all terms of the von Kármán integral relation, including the ratio of outer velocity to friction velocity U+∞≡U∞/uτ , are streamwise constant. For Rex assumed large, use is made of a simple log-wake model of the local turbulent mean-velocity profile that contains a standard mean-velocity correction for the asymptotic fully rough regime and with assumed constant parameter values. It is then shown that, for a general power-law external velocity variation U∞∼xm , all measures of the boundary-layer thickness must be proportional to x and that the surface sand-grain roughness scale variation must be the linear form ks(x)=αx , where x is the distance from the boundary layer of zero thickness and α is a dimensionless constant. This is shown to give a two-parameter (m,α) family of solutions, for which U+∞ (or equivalently Cf ) and boundary-layer thicknesses can be simply calculated. These correspond to perfectly self-similar boundary-layer growth in the streamwise direction with similarity variable z/(αx) , where z is the wall-normal coordinate. Results from this model over a range of α are discussed for several cases, including the zero-pressure-gradient ( m=0 ) and sink-flow ( m=−1 ) boundary layers. Trends observed in the model are supported by wall-modelled large-eddy simulation of the zero-pressure-gradient case for Rex in the range 108−1010 and for four values of α . Linear streamwise growth of the displacement, momentum and nominal boundary-layer thicknesses is confirmed, while, for each α , the mean-velocity profiles and streamwise turbulent variances are found to collapse reasonably well onto z/(αx) . For given α , calculations of U+∞ obtained from large-eddy simulations are streamwise

  2. Modelling Unsteady Wall Pressures Beneath Turbulent Boundary Layers

    Science.gov (United States)

    Ahn, B-K.; Graham, W. R.; Rizzi, S. A.

    2004-01-01

    As a structural entity of turbulence, hairpin vortices are believed to play a major role in developing and sustaining the turbulence process in the near wall region of turbulent boundary layers and may be regarded as the simplest conceptual model that can account for the essential features of the wall pressure fluctuations. In this work we focus on fully developed typical hairpin vortices and estimate the associated surface pressure distributions and their corresponding spectra. On the basis of the attached eddy model, we develop a representation of the overall surface pressure spectra in terms of the eddy size distribution. Instantaneous wavenumber spectra and spatial correlations are readily derivable from this representation. The model is validated by comparison of predicted wavenumber spectra and cross-correlations with existing emperical models and experimental data.

  3. Modelling wall pressure fluctuations under a turbulent boundary layer

    Science.gov (United States)

    Doisy, Yves

    2017-07-01

    The derivation of the wave vector-frequency (w-f) spectrum of wall pressure fluctuations below a turbulent boundary layer developed over a rigid flat plate is re-considered. The Lighthill's equation for pressure fluctuations is derived in a frame of reference fix with respect to the plate, at low Mach numbers, and transformed into the convected frame moving with the flow. To model the source terms of the Lighthill equation, it is assumed that in the inertial range, the turbulence is locally isotropic in the convected frame. The w-f spectrum of isotropic turbulence is obtained from symmetry considerations by extending the isotropy to space time, based on the concept of sweeping velocity. The resulting solution for the pressure w-f spectrum contains a term (the mean shear-turbulence term) which does not fulfill the Kraichnan Philipps theorem, due to the form of the selected turbulent velocity spectrum. The viscous effects are accounted for by a cut-off depending on wall distance; this procedure allows extending the model beyond the inertial range contribution. The w-f pressure spectrum is derived and compared to the experimental low wavenumber data of Farabee and Geib (1991) [8] and Bonness et al. (2010) [5], for which a good agreement is obtained. The derived expression is also compared to Chase theoretical model Chase (1987) [6] and found to agree well in the vicinity of the convective ridge of the subsonic domain and to differ significantly both in supersonic and subsonic low wavenumber limits. The pressure spectrum derived from the model and its scaling are discussed and compared to experimental data and to the empirical model of Goody (2002) [23], which results from the compilation of a large set of experimental data. Very good agreement is obtained, except at vanishing frequencies where it is claimed that the experimental results lack of significance due to the limited size of the experimental facilities. This hypothesis supported by the results obtained from

  4. Streaming effect of wall oscillation to boundary layer separation

    Science.gov (United States)

    Wu, X. H.; Wu, J. Z.; Wu, J. M.

    1991-01-01

    This paper presents a preliminary theoretical result on the time averaged streaming effect of local forcing excitation to the boundary layer separation from smooth surface. The problem is formulated as a periodic disturbance to a basic steady breakaway separating flow, for which the data are taken from a numerical triple-deck solution. The ratio of Strouhal number St and Reynolds number Re plays an important role, both being assumed sufficiently high. The analytical and numerical results show that this streaming effect is quite strong at proper values of St/Re exp 1/4, which may delay or even suppress the separation.

  5. Towards grid-converged wall-modeled LES of atmospheric boundary layer flows

    Science.gov (United States)

    Yellapantula, Shashank; Vijayakumar, Ganesh; Henry de Frahan, Marc; Churchfield, Matthew; Sprague, Michael

    2017-11-01

    Accurate characterization of incoming atmospheric boundary layer (ABL) turbulence is a critical factor in improving accuracy and predictive nature of simulation of wind farm flows. Modern commercial wind turbines operate in the log layer of the ABL that are typically simulated using wall-modeled large-eddy simulation (WMLES). One of the long-standing issues associated with wall modeling for LES and hybrid RANS-LES for atmospheric boundary layers is the over-prediction of the mean-velocity gradient, commonly referred to as log-layer mismatch. Kawai and Larsson in 2012, identified under-resolution of the near-wall region and the incorrect information received by the wall model as potential causes for the log-layer mismatch in WMLES of smooth-wall boundary-layer flows. To solve the log layer mismatch issue, they proposed linking the wall model to the LES solution at a physical of height of ym, instead of the first grid point. In this study, we extend their wall modeling approach to LES of the rough-wall ABL to investigate issues of log-layer mismatch and grid convergence. This work was funded by the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, Wind Energy Technologies Office, under Contract No. DE-AC36-08-GO28308 with the National Renewable Energy Laboratory.

  6. Growth mechanisms of perturbations in boundary layers over a compliant wall

    Science.gov (United States)

    Malik, M.; Skote, Martin; Bouffanais, Roland

    2018-01-01

    The temporal modal and nonmodal growth of three-dimensional perturbations in the boundary layer flow over an infinite compliant flat wall is considered. Using a wall-normal velocity and wall-normal vorticity formalism, the dynamic boundary condition at the compliant wall admits a linear dependence on the eigenvalue parameter, as compared to a quadratic one in the canonical formulation of the problem. As a consequence, the continuous spectrum is accurately obtained. This enables us to effectively filter the pseudospectra, which is a prerequisite to the transient growth analysis. An energy-budget analysis for the least-decaying hydroelastic (static divergence, traveling wave flutter, and near-stationary transitional) and Tollmien-Schlichting modes in the parameter space reveals the primary routes of energy flow. Moreover, the maximum transient growth rate increases more slowly with the Reynolds number than for the solid wall case. The slowdown is due to a complex dependence of the wall-boundary condition with the Reynolds number, which translates into a transition of the fluid-solid interaction from a two-way to a one-way coupling. Unlike the solid-wall case, viscosity plays a pivotal role in the transient growth. The initial and optimal perturbations are compared with the boundary layer flow over a solid wall; differences and similarities are discussed.

  7. Comparing wall modeled LES and prescribed boundary layer approach in infinite wind farm simulations

    DEFF Research Database (Denmark)

    Sarlak, Hamid; Mikkelsen, Robert; Sørensen, Jens Nørkær

    2015-01-01

    , is based on imposing body forces over the whole domain to maintain a desired unsteady ow, where the ground is modeled as a slip-free boundary which in return hampers the need for grid refinement and/or wall modeling close to the solid walls. Another strength of this method besides being computationally......This paper aims at presenting a simple and computationally fast method for simulation of the Atmospheric Boundary Layer (ABL) and comparing the results with the commonly used wall-modelled Large Eddy Simulation (WMLES). The simple method, called Prescribed Mean Shear and Turbulence (PMST) hereafter...

  8. Analytic Approximate Solutions to the Boundary Layer Flow Equation over a Stretching Wall with Partial Slip at the Boundary.

    Science.gov (United States)

    Ene, Remus-Daniel; Marinca, Vasile; Marinca, Bogdan

    2016-01-01

    Analytic approximate solutions using Optimal Homotopy Perturbation Method (OHPM) are given for steady boundary layer flow over a nonlinearly stretching wall in presence of partial slip at the boundary. The governing equations are reduced to nonlinear ordinary differential equation by means of similarity transformations. Some examples are considered and the effects of different parameters are shown. OHPM is a very efficient procedure, ensuring a very rapid convergence of the solutions after only two iterations.

  9. Wall-attached structures of streamwise velocity fluctuations in turbulent boundary layer

    Science.gov (United States)

    Hwang, Jinyul; Sung, Hyung Jin

    2017-11-01

    The wall-attached structures of streamwise velocity fluctuations (u) are explored using direct numerical simulation data of turbulent boundary layer at Reτ = 1000 . We identify the structures of u, which are extended close to the wall. Their height (ly) ranges from the near-wall region to the edge of turbulent boundary layer. They are geometrically self-similar in a sense that the length and width of the structures are proportional to the distance from the wall. The population density of the attached structures shows that the tall attached structures (290 attached eddies addressed by Perry and coworkers. The streamwise turbulent intensity of these tall attached structures follows the logarithmic distribution with the distance from the wall. The wall-attached structures of u identified in the present work are a proper candidate for Townsend's attached eddy hypothesis and these structures exist in the low Reynolds number turbulent boundary layer. This work was supported by the Creative Research Initiatives (No. 2017-013369) program of the National Research Foundation of Korea (MSIP) and supported by the Supercomputing Center (KISTI).

  10. Direct Numerical Simulation of Supersonic Turbulent Boundary Layer with Spanwise Wall Oscillation

    Directory of Open Access Journals (Sweden)

    Weidan Ni

    2016-03-01

    Full Text Available Direct numerical simulations (DNS of Mach = 2.9 supersonic turbulent boundary layers with spanwise wall oscillation (SWO are conducted to investigate the turbulent heat transport mechanism and its relation with the turbulent momentum transport. The turbulent coherent structures are suppressed by SWO and the drag is reduced. Although the velocity and temperature statistics are disturbed by SWO differently, the turbulence transports of momentum and heat are simultaneously suppressed. The Reynolds analogy and the strong Reynolds analogy are also preserved in all the controlled flows, proving the consistent mechanisms of momentum transport and heat transport in the turbulent boundary layer with SWO. Despite the extra dissipation and heat induced by SWO, a net wall heat flux reduction can be achieved with the proper selected SWO parameters. The consistent mechanism of momentum and heat transports supports the application of turbulent drag reduction technologies to wall heat flux controls in high-speed vehicles.

  11. Fluctuating wall shear stress and velocity measurements in a turbulent boundary layer

    Science.gov (United States)

    Pabon, Rommel; Ukeiley, Lawrence; Barnard, Casey; Sheplak, Mark

    2014-11-01

    Knowledge of mean wall shear stress on a surface can shed light on important performance parameters, but the fluctuating shear, even in simple flows, has not been as easily measured, and can be of interest in fundamental boundary layer research. Experiments on a flat plate model were performed to investigate the relationship between the wall shear stress and large scale events in the turbulent boundary layer. A MEMS based differential capacitance shear stress system with 1 mm × 1 mm floating element which can measure the fluctuating and static components of shear simultaneously, coupled with a hot wire anemometer were used for characterizing the turbulent boundary layer. Velocity profiles and turbulence statistics approaching the wall characterized the two dimensionality of the flat plate, and a trailing edge flap was used to impose a zero pressure gradient. The mean streamwise velocity profile was scaled by the friction velocity using the measured shear stress and independently compared to classical fits. Correlations between the fluctuating shear and measured velocities were used to elucidate the large scale events and to compare with previous fluctuating shear measurements for validation.

  12. Contributions of the wall boundary layer to the formation of the counter-rotating vortex pair in transverse jets

    KAUST Repository

    SCHLEGEL, FABRICE

    2011-04-08

    Using high-resolution 3-D vortex simulations, this study seeks a mechanistic understanding of vorticity dynamics in transverse jets at a finite Reynolds number. A full no-slip boundary condition, rigorously formulated in terms of vorticity generation along the channel wall, captures unsteady interactions between the wall boundary layer and the jet - in particular, the separation of the wall boundary layer and its transport into the interior. For comparison, we also implement a reduced boundary condition that suppresses the separation of the wall boundary layer away from the jet nozzle. By contrasting results obtained with these two boundary conditions, we characterize near-field vortical structures formed as the wall boundary layer separates on the backside of the jet. Using various Eulerian and Lagrangian diagnostics, it is demonstrated that several near-wall vortical structures are formed as the wall boundary layer separates. The counter-rotating vortex pair, manifested by the presence of vortices aligned with the jet trajectory, is initiated closer to the jet exit. Moreover tornado-like wall-normal vortices originate from the separation of spanwise vorticity in the wall boundary layer at the side of the jet and from the entrainment of streamwise wall vortices in the recirculation zone on the lee side. These tornado-like vortices are absent in the case where separation is suppressed. Tornado-like vortices merge with counter-rotating vorticity originating in the jet shear layer, significantly increasing wall-normal circulation and causing deeper jet penetration into the crossflow stream. © 2011 Cambridge University Press.

  13. Near-Surface Boundary Layer Turbulence Along a Horizontally-Moving, Surface-Piercing Vertical Wall

    CERN Document Server

    Washuta, Nathan; Duncan, James H

    2016-01-01

    The complex interaction between turbulence and the free surface in boundary layer shear flow created by a vertical surface-piercing wall is considered. A laboratory-scale device was built that utilizes a surface-piercing stainless steel belt that travels in a loop around two vertical rollers, with one length of the belt between the rollers acting as a horizontally-moving flat wall. The belt is accelerated suddenly from rest until reaching constant speed in order to create a temporally-evolving boundary layer analogous to the spatially-evolving boundary layer that would exist along a surface-piercing towed flat plate. Surface profiles are measured with a cinematic laser-induced fluorescence system and sub-surface velocity fields are recorded using a high-speed planar particle image velocimetry system. It is found that the belt initially travels through the water without creating any significant waves, before the free surface bursts with activity close to the belt surface. These free surface ripples travel away...

  14. A TURBULENT BOUNDARY-LAYER CALCULATION METHOD BASED ON THE LAW OF THE WALL AND THE LAW OF THE WAKE

    Science.gov (United States)

    The report presents the theoretical development of a method for calculating the incompressible turbulent boundary layer based on the ’ law of the wall...8217 and the ’ law of the wake.’ This development was carried out to provide a more rigorous solution of the boundary-layer equations for turbulent flow

  15. Confinement effects in shock/turbulent-boundary-layer interaction through wall-modeled LES

    Science.gov (United States)

    Bermejo-Moreno, Ivan; Campo, Laura; Larsson, Johan; Bodart, Julien; Helmer, David; Eaton, John

    2016-11-01

    Wall-modeled large-eddy simulations (WMLES) are used to investigate three-dimensional effects imposed by lateral confinement on the interaction of oblique shock waves impinging on turbulent boundary layers (TBLs) developed along the walls of a nearly-square duct. A constant Mach number, M = 2 . 05 , of the incoming air stream is considered, with a Reynolds number based on the incoming turbulent boundary layer momentum thickness Reθ 14 , 000 . The strength of the impinging shock is varied by increasing the height of a compression wedge located at a constant streamwise location that spans the top wall of the duct at a 20° angle. Simulation results are first validated with particle image velocimetry (PIV) experimental data obtained at several vertical planes. Emphasis is placed on the study of the instantaneous and time-averaged structure of the flow for the stronger-interaction case, which shows mean flow reversal. By performing additional spanwise-periodic simulations, it is found that the structure and location of the shock system and separation bubble are significantly modified by the lateral confinement. Low-frequency unsteadiness and downstream evolution of corner flows are also investigated. Financial support from the United States Department of Energy under the PSAAP program is gratefully acknowledged.

  16. Convection of wall shear stress events in a turbulent boundary layer

    Science.gov (United States)

    Pabon, Rommel; Mills, David; Ukeiley, Lawrence; Sheplak, Mark

    2017-11-01

    The fluctuating wall shear stress is measured in a zero pressure gradient turbulent boundary layer of Reτ 1700 simultaneously with velocity measurements using either hot-wire anemometry or particle image velocimetry. These experiments elucidate the patterns of large scale structures in a single point measurement of the wall shear stress, as well as their convection velocity at the wall. The wall shear stress sensor is a CS-A05 one-dimensional capacitice floating element from Interdisciplinary Consulting Corp. It has a nominal bandwidth from DC to 5 kHz and a floating element size of 1 mm in the principal sensing direction (streamwise) and 0.2 mm in the cross direction (spanwise), allowing the large scales to be well resolved in the current experimental conditions. In addition, a two sensor array of CS-A05 aligned in the spanwise direction with streamwise separations O (δ) is utilized to capture the convection velocity of specific scales of the shear stress through a bandpass filter and peaks in the correlation. Thus, an average wall normal position for the corresponding convecting event can be inferred at least as high as the equivalent local streamwise velocity. This material is based upon work supported by the National Science Foundation Graduate Research Fellowship under Grant No. DGE-1315138.

  17. Thermophoretically augmented mass transfer rates to solid walls across laminar boundary layers

    Science.gov (United States)

    Gokoglu, S. A.; Rosner, D. E.

    1986-01-01

    Predictions of mass transfer (heavy vapor and small particle deposition) rates to solid walls, including the effects of thermal (Soret) diffusion ('thermophoresis' for small particles), are made by numerically solving the two-dimensional self-similar forced convection laminar boundary-layer equations with variable properties, covering the particle size range from vapor molecules up to the size threshold for inertial (dynamical nonequilibrium) effects. The effect of thermophoresis is predicted to be particularly important for submicron particle deposition on highly cooled solid surfaces, with corresponding enhancement factors at atmospheric conditions being over a thousand-fold at T(w)/T(e) equal to about 0.6. As a consequence of this mass transfer mechanism, the particle size dependence of the mass transfer coefficient to a cooled wall will be much weaker than for the corresponding case of isothermal capture by Brownian-convective diffusion.

  18. Wall Effect on the Convective-Absolute Boundary for the Compressible Shear Layer

    Science.gov (United States)

    Robinet, Jean-Christophe; Dussauge, Jean-Paul; Casalis, Grégoire

    The linear stability of inviscid compressible shear layers is studied. When the layer develops at the vicinity of a wall, the two parallel flows can have a velocity of the same sign or of opposite signs. This situation is examined in order to obtain first hints on the stability of separated flows in the compressible regime. The shear layer is described by a hyperbolic tangent profile for the velocity component and the Crocco relation for the temperature profile. Gravity effects and the superficial tension are neglected. By examining the temporal growth rate at the saddle point in the wave-number space, the flow is characterized as being either absolutely unstable or convectively unstable. This study principally shows the effect of the wall on the convective-absolute transition in compressible shear flow. Results are presented, showing the amount of the backflow necessary to have this type of transition for a range of primary flow Mach numbers M1 up to 3.0. The boundary of the convective-absolute transition is defined as a function of the velocity ratio, the temperature ratio and the Mach number. Unstable solutions are calculated for both streamwise and oblique disturbances in the shear layer.

  19. Codimension three bifurcation of streamline patterns close to a no-slip wall: A topological description of boundary layer eruption

    DEFF Research Database (Denmark)

    Balci, Adnan; Andersen, Morten; Thompson, M. C.

    2015-01-01

    A vortex close to a no-slip wall gives rise to the creation of new vorticity at the wall. This vorticity may organize itself into vortices that erupt from the separated boundary layer. We study how the eruption process in terms of the streamline topology is initiated and varies in dependence of t...

  20. Heat transfer and wall temperature effects in shock wave turbulent boundary layer interactions

    CERN Document Server

    Bernardini, Matteo; Pirozzoli, Sergio; Grasso, Francesco

    2016-01-01

    Direct numerical simulations are carried out to investigate the effect of the wall temperature on the behavior of oblique shock-wave/turbulent boundary layer interactions at freestream Mach number $2.28$ and shock angle of the wedge generator $\\varphi = 8^{\\circ}$. Five values of the wall-to-recovery-temperature ratio ($T_w/T_r$) are considered, corresponding to cold, adiabatic and hot wall thermal conditions. We show that the main effect of cooling is to decrease the characteristic scales of the interaction in terms of upstream influence and extent of the separation bubble. The opposite behavior is observed in the case of heating, that produces a marked dilatation of the interaction region. The distribution of the Stanton number shows that a strong amplification of the heat transfer occurs across the interaction, and the maximum values of thermal and dynamic loads are found in the case of cold wall. The analysis reveals that the fluctuating heat flux exhibits a strong intermittent behavior, characterized by ...

  1. Further insight into physics of rough-wall turbulent boundary layer

    Science.gov (United States)

    Bhaganagar, Kiran; Juttijudata, Vejapong; Sen, Mehmet

    2008-11-01

    To get a good understanding of the effect of surface-roughness in altering the flow in a turbulent boundary layer it is important to understand the alterations in the dynamical activity of the flow. For this purpose direct proper orthogonal decomposition (POD) has been used as a tool. The data used for the POD has been obtained from direct numerical simulation of flow in a channel with egg-carton roughness elements. In this talk the effects of surface-roughness on the temporal flow dynamics such as bursting frequency of the energetic structures in the flow will be discussed. VITA detection technique has been used to obtain the bursting frequency. It has confirmed that rough-wall has a shorter bursting period and a higher turbulence activity compared to the smooth-wall. The results have confirmed the existence of roll and propagating modes for flow over rough-wall. In addition to the turbulent kinetic energy, the concept of entropy that has been introduced in this study within the context of degree of distribution of energy over range of scales, is a useful metric to categorize the rough-wall flow dynamics.

  2. Effect of Immersed Wall-Bounded Cylinders on Turbulent Boundary Layer Structure

    Science.gov (United States)

    Zheng, Shaokai; Longmire, Ellen; Hallberg, Michael; Ryan, Mitchell

    2012-11-01

    Single spanwise arrays of wall-mounted cylinders with H/ δ <= 0.2, where H is the cylinder height and δ is the boundary layer thickness, were used to modify turbulent boundary layers (Reτ=2500) in an attempt to affect the organization of the coherent structures in the logarithmic and outer regions. Flow downstream of several array spacings was investigated and compared against an unperturbed case. Instantaneous and averaged velocity fields in streamwise-spanwise planes were obtained by stereo PIV. The PIV cameras and laser sheet optics could be traversed at the local mean flow speed in order to track the evolution of larger structures in the flow. The results are analyzed to determine the streamwise evolution of dominant spanwise modes. Different array spacings are shown to either inhibit or reinforce the organization of vortex packet structures over streamwise distances up to 8 δ. The flying stereo PIV measurements suggest also that dominant structures upstream of the arrays can strongly affect the organization and location of structures downstream. supported by NSF CBET-0933341.

  3. Effect of wall-mounted cylinders on a turbulent boundary layer: hot wire measurements

    Science.gov (United States)

    Ortiz-Dueñas, Cecilia; Ryan, Mitchell; Longmire, Ellen

    2010-11-01

    Wall-mounted cylinders with height-to-diameter ratio H/D = 2 and large enough to protrude into the logarithmic region, H^+= 200, are used to alter a turbulent boundary layer with Reτ=1150 in an attempt to affect the organization of the coherent vortical structures. Hot-wire measurements, including velocity profiles and frequency spectra, were acquired downstream of a single cylinder and spanwise arrays of cylinders. The single cylinder yielded a momentum deficit that extended from z^+=20 to 200, and a redistribution of the streamwise rms velocity towards the half cylinder height with a corresponding increase in the power spectral density over a broad frequency range. Cylinder arrays with 3D spanwise spacing yielded significant wake interactions. The largest mean streamwise velocity deficits and rms values occurred in the log region at mid-span between cylinders. More detail on the effect of cylinder spacing will be provided in the talk. The results suggest that turbulence within the boundary layer leads to broader spanwise interactions than those occurring in wakes of cylinder arrays in uniform cross flow.

  4. Wall parallel cross-correlations of volumetric PTV measurements in a perturbed turbulent boundary layer

    Science.gov (United States)

    Tan, Yan Ming; Longmire, Ellen

    2016-11-01

    A canonical turbulent boundary layer (Reτ = 2500) was perturbed by a narrowly spaced (0.2 δ) array of cylinders extending normal to the wall. Two array heights were considered, H = 0.2 δ and H = δ . Volumetric PTV measurements were acquired to understand 3-D variations in large scale structures within the log region of the unperturbed and perturbed flow. The recovery in the streamwise velocity coherence across the depth of the log region was analyzed using cross correlations between wall parallel planes. Conditional cross correlations are analyzed to examine the recovery in coherence specific to low momentum regions (LMRs), which can be signatures of vortex packets. The measurement volume was 0.70 δ (streamwise,x), 0.90 δ (spanwise,y), 0.12 δ (wall-normal,z). In the unperturbed flow, LMRs frequently extended through the entire depth (155 <=z+ <= 465). The cross correlations between planes at z+ = 155 and z+ = 465 exhibited strong skewness indicative of forward leaning structures. By comparison, downstream of the H = δ array, the wall normal extent of individual LMRs was frequently limited to the lower part of the measurement volume. The cross correlation magnitude and skewness remained suppressed relative to unperturbed flow up to 4.7 δ downstream. These observations suggest reduced coherence of LMRs and high momentum regions across the log region. This result was consistent with previous planar PIV measurements at z+ = 500 that showed hardly any long LMRs over distances up to 7 δ downstream of the H = δ array.

  5. Computer program to calculate three-dimensional boundary layer flows over wings with wall mass transfer

    Science.gov (United States)

    Mclean, J. D.; Randall, J. L.

    1979-01-01

    A system of computer programs for calculating three dimensional transonic flow over wings, including details of the three dimensional viscous boundary layer flow, was developed. The flow is calculated in two overlapping regions: an outer potential flow region, and a boundary layer region in which the first order, three dimensional boundary layer equations are numerically solved. A consistent matching of the two solutions is achieved iteratively, thus taking into account viscous-inviscid interaction. For the inviscid outer flow calculations, the Jameson-Caughey transonic wing program FLO 27 is used, and the boundary layer calculations are performed by a finite difference boundary layer prediction program. Interface programs provide communication between the two basic flow analysis programs. Computed results are presented for the NASA F8 research wing, both with and without distributed surface suction.

  6. Low dimensional models of the wall region in a turbulent boundary layer: New results

    Science.gov (United States)

    Berkooz, Gal; Holmes, Philip; Lumley, John L.

    1992-09-01

    Using an optimally convergent representation, a low dimensional model is constructed, which embodies in a streamwise-invariant form the effects of streamwise structure. Results of Stone show that the model is capable of mimicking the stability change due to favorable and unfavorable pressure gradients. Results of Aubry et al. suggest that polymer drag reduction is associated with stabilization of the secondary instabilities, as has been speculated. Results of Bloch and Marsden indicate that drag can be reduced by feedback, and that this is mathematically equivalent to polymer drag reduction. The authors showed that dynamical systems based on the Proper Orthogonal Decomposition have, on the average, the best short term tracking time (the time that a model tracks the true system accurately; essential for control) for a given number of modes. In recent work, the authors have shown that several assumptions made on an intuitive basis in the work of Aubry et al. may be justified formally. Berkooz has made rigorous estimates using the proper orthogonal decomposition showing that a structured turbulent flow, such as the wall layer, has a phase space representation that remains within a thin slab centered on the most energetic modes for most of the time. Campbell and Holmes have shown several results in connection with symmetry breaking in systems with structurally stable heteroclinic cycles. This work is relevant to our models of interacting coherent structures in boundary layers with discrete spanwise symmetry, such as that caused by riblets, which are known to produce drag reduction.

  7. Phase relations in a forced turbulent boundary layer: implications for modelling of high Reynolds number wall turbulence.

    Science.gov (United States)

    Duvvuri, Subrahmanyam; McKeon, Beverley

    2017-03-13

    Phase relations between specific scales in a turbulent boundary layer are studied here by highlighting the associated nonlinear scale interactions in the flow. This is achieved through an experimental technique that allows for targeted forcing of the flow through the use of a dynamic wall perturbation. Two distinct large-scale modes with well-defined spatial and temporal wavenumbers were simultaneously forced in the boundary layer, and the resulting nonlinear response from their direct interactions was isolated from the turbulence signal for the study. This approach advances the traditional studies of large- and small-scale interactions in wall turbulence by focusing on the direct interactions between scales with triadic wavenumber consistency. The results are discussed in the context of modelling high Reynolds number wall turbulence.This article is part of the themed issue 'Toward the development of high-fidelity models of wall turbulence at large Reynolds number'. © 2017 The Author(s).

  8. Experimental Investigation of Subsonic Turbulent Boundary Layer Flow Over a Wall-Mounted Axisymmetric Hill

    Science.gov (United States)

    Bell, James H.; Heineck, James T.; Zilliac, Gregory; Mehta, Rabindra D.; Long, Kurtis R.

    2016-01-01

    An important goal for modern fluid mechanics experiments is to provide datasets which present a challenge for Computational Fluid Dynamics simulations to reproduce. Such "CFD validation experiments" should be well-characterized and well-documented, and should investigate flows which are difficult for CFD to calculate. It is also often convenient for the experiment to be challenging for CFD in some aspects while simple in others. This report is part of the continuing documentation of a series of experiments conducted to characterize the flow around an axisymmetric, modified-cosine-shaped, wall-mounted hill named "FAITH" (Fundamental Aero Investigates The Hill). Computation of this flow is easy in some ways - subsonic flow over a simple shape - while being complex in others - separated flow and boundary layer interactions. The primary set of experiments were performed on a 15.2 cm high, 45.7 cm base diameter machined aluminum model that was tested at mean speeds of 50 m/s (Reynolds Number based on height = 500,000). The ratio of model height to boundary later height was approximately 3. The flow was characterized using surface oil flow visualization, Cobra probe to determine point-wise steady and unsteady 3D velocities, Particle Image Velocimetry (PIV) to determine 3D velocities and turbulence statistics along specified planes, Pressure Sensitive Paint (PSP) to determine mean surface pressures, and Fringe Imaging Skin Friction (FISF) to determine surface skin friction magnitude and direction. A set of pathfinder experiments were also performed in a water channel on a smaller scale (5.1 cm high, 15.2 cm base diameter) sintered nylon model. The water channel test was conducted at a mean test section speed of 3 cm/s (Reynolds Number of 1500), but at the same ratio of model height to boundary layer thickness. Dye injection from both the model and an upstream rake was used to visualize the flow. This report summarizes the experimental set-up, techniques used, and data

  9. Effect of wall-mounted cylinders on a turbulent boundary layer: V3V measurements

    Science.gov (United States)

    Ryan, Mitchell; Ortiz-Dueñas, Cecilia; Longmire, Ellen; Troolin, Dan

    2010-11-01

    Volumetric 3-Component Velocimetry (V3V) was used to examine the flow structure downstream of arrays of wall mounted-cylinders in a turbulent boundary layer with Reτ=2460. The cylinders, which had height-to-diameter ratio H/D = 4 and H^+= 455, extended through the logarithmic region. Measurements were acquired in fields that extended over a range 16 to 34 cylinder-diameters downstream of spanwise arrays of cylinders with a spacing of four and eight cylinder diameters (0.2δ and 0.4δ). The cylinder array with 4D spacing yielded significant wake interactions: the streamwise velocity deficit was greater at the mid-spacing than directly behind a cylinder; the distinction between the downwash regions (behind a cylinder) and the upwash regions (at the mid-spacing) diminishes with increasing downstream distance; and the rms velocity in all components is highest at the half-cylinder-height. These effects occur to a much lesser degree in the case of the array with 8D spacing. Details on parametric effects as well as the instantaneous three-dimensional structure will be provided in the talk.

  10. Numerical Investigation of Wall Cooling and Suction Effects on Supersonic Flat-Plate Boundary Layer Transition Using Large Eddy Simulation

    Directory of Open Access Journals (Sweden)

    Suozhu Wang

    2015-02-01

    Full Text Available Reducing friction resistance and aerodynamic heating has important engineering significance to improve the performances of super/hypersonic aircraft, so the purpose of transition control and turbulent drag reduction becomes one of the cutting edges in turbulence research. In order to investigate the influences of wall cooling and suction on the transition process and fully developed turbulence, the large eddy simulation of spatially evolving supersonic boundary layer transition over a flat-plate with freestream Mach number 4.5 at different wall temperature and suction intensity is performed in the present work. It is found that the wall cooling and suction are capable of changing the mean velocity profile within the boundary layer and improving the stability of the flow field, thus delaying the onset of the spatial transition process. The transition control will become more effective as the wall temperature decreases, while there is an optimal wall suction intensity under the given conditions. Moreover, the development of large-scale coherent structures can be suppressed effectively via wall cooling, but wall suction has no influence.

  11. Modifications of the law of the wall and algebraic turbulence modelling for separated boundary layers

    Science.gov (United States)

    Baldwin, B. S.; Maccormack, R. W.

    1976-01-01

    Various modifications of the conventional algebraic eddy viscosity turbulence model are investigated for application to separated flows. Friction velocity is defined in a way that avoids singular behavior at separation and reattachment but reverts to the conventional definition for flows with small pressure gradients. This leads to a modified law of the wall for separated flows. The effect on the calculated flow field of changes in the model that affect the eddy viscosity at various distances from the wall are determined by (1) switching from Prandtl's form to an inner layer formula due to Clauser at various distances from the wall, (2) varying the constant in the Van Driest damping factor, (3) using Clauser's inner layer formula all the way to the wall, and (4) applying a relaxation procedure in the evaluation of the constant in Clauser's inner layer formula. Numerical solutions of the compressible Navier-Stokes equations are used to determine the effects of the modifications. Experimental results from shock-induced separated flows at Mach numbers 2.93 and 8.45 are used for comparison. For these cases improved predictions of wall pressure distribution and positions of separation and reattachment are obtained from the relaxation version of the Clauser inner layer eddy viscosity formula.

  12. Statistical structure and scaling behaviors of spanwise vorticity in smooth-wall turbulent boundary layers

    Science.gov (United States)

    Klewicki, Joseph; Morrill-Winter, Caleb; Marusic, Ivan

    2014-11-01

    Within the canonical turbulent boundary layer the spanwise component of vorticity, ωz, is the only component that has a non-negligible mean value. For this and other reasons, the motions bearing ωz play a central role in boundary layer dynamics. A compact four element (`Foss-style') hotwire probe was used to acquire well-resolved ωz fluctuation time series over an unprecedented Reynolds number range, 1 , 500 behaviors of the statistical moments and frequency spectra of the ωz fluctuations, and further explores the self-similarity between the mean and rms profiles seen at low Reynolds number. The observed ωz behaviors are discussed relative to mean dynamical structure and the asymptotic properties of the boundary layer vorticity field. The support of the Australian Research Council and the National Science Foundation are gratefully acknowledged.

  13. Validation of the k- ω turbulence model for the thermal boundary layer profile of effusive cooled walls

    Science.gov (United States)

    Hink, R.

    2015-09-01

    The choice of materials for rocket chamber walls is limited by its thermal resistance. The thermal loads can be reduced substantially by the blowing out of gases through a porous surface. The k- ω-based turbulence models for computational fluid dynamic simulations are designed for smooth, non-permeable walls and have to be adjusted to account for the influence of injected fluids. Wilcox proposed therefore an extension for the k- ω turbulence model for the correct prediction of turbulent boundary layer velocity profiles. In this study, this extension is validated against experimental thermal boundary layer data from the Thermosciences Division of the Department of Mechanical Engineering from the Stanford University. All simulations are performed with a finite volume-based in-house code of the German Aerospace Center. Several simulations with different blowing settings were conducted and discussed in comparison to the results of the original model and in comparison to an additional roughness implementation. This study has permitted to understand that velocity profile corrections are necessary in contrast to additional roughness corrections to predict the correct thermal boundary layer profile of effusive cooled walls. Finally, this approach is applied to a two-dimensional simulation of an effusive cooled rocket chamber wall.

  14. Implementation of a correction factor for the Pohlhausen laminar boundary layer applied on the CEVA curved wall jet model

    Directory of Open Access Journals (Sweden)

    Valeriu DRAGAN

    2013-09-01

    Full Text Available Curved wall jets have many technical applications, ranging from aeronautical circulation controlled wings to micro-fluidics and cryogenics. This paper addresses the issue of correctly estimating the boundary layer separation for laminar curved wall jets. For this, the Pohlhausen model was used in conjunction with the CEVA wall jet model with a semi-empirical modification which increases the accuracy for very thin jets. The method is therefore a mix of analytical equations with curve fitted experimental data in order to produce a simple yet effective way of estimating the boundary layer velocity profile along the curved wall. In order to cross-check the results, Newman’s empirical equation – which only provides a separation location but no information regarding the velocity profile - for boundary layer separation was used with good results. The hereby model could be used as a pre-design tool for rapid assessment of aeronautical high-lift applications such as Upper Surface Blown (USB or entrainment wings.

  15. The Thermal And Hydrodynamic Behavior of Thick, Rough-Wall, Turbulent Boundary Layers,

    Science.gov (United States)

    1979-08-01

    34match point") and then extrap - olating to x = 0, the virtual origin of the hydrodynamic flow field. The values of L for the artificially thickened...boundary layers developing over rough sur- faces is important for the design of many engineering components, including reentry vehicles, nuclear reactors

  16. Drag Reduction of a Turbulent Boundary Layer over an Oscillating Wall and Its Variation with Reynolds Number

    Directory of Open Access Journals (Sweden)

    Martin Skote

    2015-01-01

    Full Text Available Spanwise oscillation applied on the wall under a spatially developing turbulent boundary layer flow is investigated using direct numerical simulation. The temporal wall forcing produces a considerable drag reduction over the region where oscillation occurs. Downstream development of drag reduction is investigated from Reynolds number dependency perspective. An alternative to the previously suggested power-law relation between Reynolds number and peak drag reduction values, which is valid for channel flow as well, is proposed. Considerable deviation in the variation of drag reduction with Reynolds number between different previous investigations of channel flow is found. The shift in velocity profile, which has been used in the past for explaining the diminishing drag reduction at higher Reynolds number for riblets, is investigated. A new predictive formula is derived, replacing the ones found in the literature. Furthermore, unlike for the case of riblets, the shift is varying downstream in the case of wall oscillations, which is a manifestation of the fact that the boundary layer has not reached a new equilibrium over the limited downstream distance in the simulations. Taking this into account, the predictive model agrees well with DNS data. On the other hand, the growth of the boundary layer does not influence the drag reduction prediction.

  17. Wall Layers

    Science.gov (United States)

    1992-01-14

    Sydney, Australia. December 6, 1990. Lumley, J. L. A dynamical-systems-theory approach to the wall region. Environmental Engineering Laboratory, CSIRO...Nonlinear Science. Holmes, P. Editor in Chief, Nonlinear Scinece Today. Holmes, P. Reviewer for Physica D, J. Sound Vib., J. Phys., Q. Appl. Math, Phys...Spring, 1994; Organizing committee member. Holmes, P. Editorial Board Member: Archive for Rational Mechanics and Analysis; Journal of Nonlinear Scinece

  18. Wall shear stress fluctuations: Mixed scaling and their effects on velocity fluctuations in a turbulent boundary layer

    Science.gov (United States)

    Diaz-Daniel, Carlos; Laizet, Sylvain; Vassilicos, J. Christos

    2017-05-01

    The present work investigates numerically the statistics of the wall shear stress fluctuations in a turbulent boundary layer (TBL) and their relation to the velocity fluctuations outside of the near-wall region. The flow data are obtained from a Direct Numerical Simulation (DNS) of a zero pressure-gradient TBL using the high-order flow solver Incompact3D [S. Laizet and E. Lamballais, "High-order compact schemes for incompressible flows: A simple and efficient method with quasi-spectral accuracy," J. Comput. Phys. 228(16), 5989 (2009)]. The maximum Reynolds number of the simulation is R e𝜃≈2000 , based on the free-stream velocity and the momentum thickness of the boundary layer. The simulation data suggest that the root-mean-squared fluctuations of the streamwise and spanwise wall shear-stress components τx and τz follow a logarithmic dependence on the Reynolds number, consistent with the empirical correlation of Örlü and Schlatter [R. Örlü and P. Schlatter, "On the fluctuating wall-shear stress in zero pressure-gradient turbulent boundary layer flows," Phys. Fluids 23, 021704 (2011)]. These functional dependencies can be used to estimate the Reynolds number dependence of the wall turbulence dissipation rate in good agreement with reference DNS data. Our results suggest that the rare negative events of τx can be associated with the extreme values of τz and are related to the presence of coherent structures in the buffer layer, mainly quasi-streamwise vortices. We also develop a theoretical model, based on a generalisation of the Townsend-Perry hypothesis of wall-attached eddies, to link the statistical moments of the filtered wall shear stress fluctuations and the second order structure function of fluctuating velocities at a distance y from the wall. This model suggests that the wall shear stress fluctuations may induce a higher slope in the turbulence energy spectra of streamwise velocities than the one predicted by the Townsend-Perry attached

  19. Computational Study of Surface Tension and Wall Adhesion Effects on an Oil Film Flow Underneath an Air Boundary Layer

    Science.gov (United States)

    Celic, Alan; Zilliac, Gregory G.

    1998-01-01

    The fringe-imaging skin friction (FISF) technique, which was originally developed by D. J. Monson and G. G. Mateer at Ames Research Center and recently extended to 3-D flows, is the most accurate skin friction measurement technique currently available. The principle of this technique is that the skin friction at a point on an aerodynamic surface can be determined by measuring the time-rate-of-change of the thickness of an oil drop placed on the surface under the influence of the external air boundary layer. Lubrication theory is used to relate the oil-patch thickness variation to shear stress. The uncertainty of FISF measurements is estimated to be as low as 4 percent, yet little is known about the effects of surface tension and wall adhesion forces on the measured results. A modified version of the free-surface Navier-Stokes solver RIPPLE, developed at Los Alamos National Laboratories, was used to compute the time development of an oil drop on a surface under a simulated air boundary layer. RIPPLE uses the volume of fluid method to track the surface and the continuum surface force approach to model surface tension and wall adhesion effects. The development of an oil drop, over a time period of approximately 4 seconds, was studied. Under the influence of shear imposed by an air boundary layer, the computed profile of the drop rapidly changes from its initial circular-arc shape to a wedge-like shape. Comparison of the time-varying oil-thickness distributions computed using RIPPLE and also computed using a greatly simplified numerical model of an oil drop equation which does not include surface tension and wall adhesion effects) was used to evaluate the effects of surface tension on FISF measurement results. The effects of surface tension were found to be small but not necessarily negligible in some cases.

  20. Thermophoretically enhanced mass transport rates to solid and transpiration-cooled walls across turbulent (law-of-the-wall) boundary layers

    Science.gov (United States)

    Gokoglu, Suleyman A.; Rosner, Daniel E.

    1985-01-01

    Convective-diffusion mass transfer rate predictions are made for both solid wall and transpiration-cooled 'law-of-the-wall' nonisothermal turbulent boundary layers (TBLs), including the mechanism of thermophoresis, i.e., small particle mass transport 'down a temperature gradient'. The present calculations are confined to low mass-loading situations but span the entire particle size range from vapor molecules to particles near the onset of inertial ('eddy') impaction. It is shown that, when Sc is much greater than 1, thermophoresis greatly increases particle deposition rates to internally cooled solid walls, but only partially offsets the appreciable reduction in deposition rates associated with dust-free gas-transpiration-cooled surfaces. Thus, efficient particle sampling from hot dusty gases can be carried out using transpiration 'shielded' probe surfaces.

  1. Mass transfer through laminar boundary layer in 2-d microchannels with nonuniform cross section: the effect of wall curvature

    Science.gov (United States)

    Pedacchia, Augusta; Adrover, Alessandra

    2012-11-01

    We provide an analytical solution for the combined diffusive and convective 2-d mass transport from a surface film (of arbitrary shape at a given uniform concentration) to a pure solvent flowing in creeping flow conditions into a microchannel, delimited by a flat no-slip surface and by the releasing film itself. Such a problem arises in the study of swelling and dissolution of polimeric thin films under the action of a solvent tangential flow simulating the oral thin film dissolution for drug relase towards the buccal mucosa or oral cavity. We present a similarity solution for laminar forced convection mass (or heat) transfer that generalizes the classical boundary layer solution of the Graetz-Nusselt problem (valid for straight channels or pipes) to a solvent flowing in creeping flow conditions into a 2-d channel with cross-section continuously varying along the axial coordinate x. Close to the releasing boundary, parametrized by a curvilinear abscissa s, both tangential and normal velocity components play a role and their scaling behavior, as a function of wall distance r, should be taken into account in order to have an accurate description of the concentration profile in the boundary layer and of the dependence of the Sherwood number on the curvilinear abscissa s.

  2. Drag Reduction for Turbulent Boundary Layer Flows Using an Oscillating Wall

    National Research Council Canada - National Science Library

    Bogard, David

    2000-01-01

    This research program used experimental measurements and computational simulations to study the drag reduction, and the resulting effects on turbulence structure, for a turbulent wall flow subjected...

  3. Stable Boundary Layer Issues

    OpenAIRE

    Steeneveld, G.J.

    2012-01-01

    Understanding and prediction of the stable atmospheric boundary layer is a challenging task. Many physical processes are relevant in the stable boundary layer, i.e. turbulence, radiation, land surface coupling, orographic turbulent and gravity wave drag, and land surface heterogeneity. The development of robust stable boundary layer parameterizations for use in NWP and climate models is hampered by the multiplicity of processes and their unknown interactions. As a result, these models suffer ...

  4. Characterization of Near Wall Surface Chemistry and Fluid Interaction in Hypersonic Boundary Layers

    Science.gov (United States)

    2009-03-01

    l5Nl60 and 5N’ O titration gases to isolate surface-produced NO from all other possible sources. These experiments independently confirm the surface...For O-atom LIF, a Lambda-Physik ENG 103 XeCl Excimer laser was used to pump a Lambda-Physik FL 3002 dye laser filled with Coumarin 47 laser dye...system once isolated from the pump did slowly rise either from out-gassing of the system walls or from some undiscovered leak. In a separate experiment

  5. Turbulent kinetic energy budget in the boundary layer developing over an urban-like rough wall using PIV

    Science.gov (United States)

    Blackman, Karin; Perret, Laurent; Calmet, Isabelle; Rivet, Cédric

    2017-08-01

    In the present work, a boundary layer developing over a rough-wall consisting of staggered cubes with a plan area packing density λp = 25% is studied within the wind tunnel using Particle Image Velocimetry (PIV) to investigate the Turbulent Kinetic Energy (TKE) budget. To access the full TKE budget, an estimation of the dissipation (ɛ) using both the transport equation of the resolved-scale kinetic energy and Large-Eddy (LE) PIV models based on the use of a subgrid-scale model following the methodology used in large-eddy simulations is employed. A low-pass filter, larger than the Taylor microscale, is applied to the data prior to the computation of the velocity gradients ensuring a clear cutoff in the inertial range where the models are valid. The presence of the cube roughness elements has a significant influence on the TKE budget due to the region of strong shear that develops over the cubes. The shear layer is shown to produce and dissipate energy, as well as transport energy through advection, turbulent transport, and pressure transport. The recirculation region that forms through the interaction of the shear layer and the canopy layer, which is the region below the height of the cube roughness, creates rapid longitudinal evolution of the mean flow thereby inducing weak production. Finally, through stochastic estimation of the conditional average, it is shown that localized regions of backscatter (energy transfer from unresolved to resolved scales) and forward scatter (energy transfer from resolved to unresolved scales) occur as a result of coherent vortical structures.

  6. Stable Boundary Layer Issues

    NARCIS (Netherlands)

    Steeneveld, G.J.

    2012-01-01

    Understanding and prediction of the stable atmospheric boundary layer is a challenging task. Many physical processes are relevant in the stable boundary layer, i.e. turbulence, radiation, land surface coupling, orographic turbulent and gravity wave drag, and land surface heterogeneity. The

  7. Low-wavenumber turbulent boundary layer wall-pressure measurements from vibration data over smooth and rough surfaces in pipe flow

    Science.gov (United States)

    Evans, Neal D.; Capone, Dean E.; Bonness, William K.

    2013-07-01

    The vibration response of a thin cylindrical shell excited by fully developed turbulent pipe flow is measured and used to extract the fluctuating pressure levels generated by the boundary layer. Parameters used to extract the turbulent fluctuating pressure levels are determined via experimental modal analyses of the water-filled pipe and measured vibration levels from flow through the pipe at 5.8 m/s. Measurements are reported for hydraulically smooth and fully rough surface conditions. Smooth wall-pressure levels are compared to the turbulent boundary layer pressure model of Chase [The character of the turbulent wall pressure at subconvective wavenumbers and a suggested comprehensive model. Journal of Sound and Vibration112 (1) (1987) 125-147] and the measurements of Bonness et al. [Low-wavenumber turbulent boundary layer wall-pressure measurements from vibration data on a cylinder in pipe flow. Journal of Sound and Vibration329 (2010) 4166-4180]. Results for the smooth pipe match the predicted smooth wall-pressure spectrum and correspond to a normalized low wavenumber-white level which is -41 dB below the maximum level at the convective peak. Pressure levels from the fully rough condition display a low-wavenumber-white level which is 28 dB below the convective peak level. This suggests an increase of 13 dB in low-wavenumber wall pressure for the uniformly distributed roughness elements in this study over a hydraulically smooth surface.

  8. Aqueous boundary layers related to oral absorption of a drug: from dissolution of a drug to carrier mediated transport and intestinal wall metabolism.

    Science.gov (United States)

    Sugano, Kiyohiko

    2010-10-04

    The aqueous boundary layer (ABL) affects various aspects of oral absorption of a drug, from dissolution of the drug to the apparent K(m) value of intestinal wall metabolism and carrier mediated transport. However, the importance of ABL has often been entirely ignored in oral absorption investigation. In this minireview, the effect of ABL on oral absorption of a drug is discussed in an easy-to-understand manner. This review starts with an introduction of the boundary layer theory with many illustrations (and links to public web movies visualizing the ABL), and then discusses some specific cases of interest in pharmaceutical science, such as dissolution of floating drug particles in the USP paddle apparatus. The effect of the boundary layer on the membrane permeation is also discussed from the viewpoint of structure permeability relationship, carrier mediated transport/metabolism and estimation of the fraction of a dose absorbed for poor solubility compounds.

  9. The Bottom Boundary Layer.

    Science.gov (United States)

    Trowbridge, John H; Lentz, Steven J

    2018-01-03

    The oceanic bottom boundary layer extracts energy and momentum from the overlying flow, mediates the fate of near-bottom substances, and generates bedforms that retard the flow and affect benthic processes. The bottom boundary layer is forced by winds, waves, tides, and buoyancy and is influenced by surface waves, internal waves, and stratification by heat, salt, and suspended sediments. This review focuses on the coastal ocean. The main points are that (a) classical turbulence concepts and modern turbulence parameterizations provide accurate representations of the structure and turbulent fluxes under conditions in which the underlying assumptions hold, (b) modern sensors and analyses enable high-quality direct or near-direct measurements of the turbulent fluxes and dissipation rates, and (c) the remaining challenges include the interaction of waves and currents with the erodible seabed, the impact of layer-scale two- and three-dimensional instabilities, and the role of the bottom boundary layer in shelf-slope exchange.

  10. Effects of Passive Porous Walls on the First Mode of Hypersonic Boundary Layers Over a Sharp Cone

    Science.gov (United States)

    2013-01-01

    Fedorov et al. [1, 2, 3] have shown that a porous coating greatly stabilizes the second mode of the hypersonic boundary layer on sharp slender cones. The...impedance and propagation constant of an iso- lated pore, respectively. Fedorov et al. [3] give the following expressions for the porous layer...performance with regards to both linear and nonlinear stability of first mode disturbances. References [1] A. V. Fedorov , N. D. Malmuth, A. Rasheed, and

  11. Boundary-layer theory

    CERN Document Server

    Schlichting (Deceased), Hermann

    2017-01-01

    This new edition of the near-legendary textbook by Schlichting and revised by Gersten presents a comprehensive overview of boundary-layer theory and its application to all areas of fluid mechanics, with particular emphasis on the flow past bodies (e.g. aircraft aerodynamics). The new edition features an updated reference list and over 100 additional changes throughout the book, reflecting the latest advances on the subject.

  12. Superfluid Boundary Layer.

    Science.gov (United States)

    Stagg, G W; Parker, N G; Barenghi, C F

    2017-03-31

    We model the superfluid flow of liquid helium over the rough surface of a wire (used to experimentally generate turbulence) profiled by atomic force microscopy. Numerical simulations of the Gross-Pitaevskii equation reveal that the sharpest features in the surface induce vortex nucleation both intrinsically (due to the raised local fluid velocity) and extrinsically (providing pinning sites to vortex lines aligned with the flow). Vortex interactions and reconnections contribute to form a dense turbulent layer of vortices with a nonclassical average velocity profile which continually sheds small vortex rings into the bulk. We characterize this layer for various imposed flows. As boundary layers conventionally arise from viscous forces, this result opens up new insight into the nature of superflows.

  13. MHD Effect on Unsteady Mixed Convection Boundary Layer Flow past a Circular Cylinder with Constant Wall Temperature

    Science.gov (United States)

    Ismail, M. A.; Mohamad, N. F.; Ilias, M. R.; Shafie, S.

    2017-09-01

    Magnetohydrodynamic (MHD) effect is a study on motion of electrical-conducting fluid under magnetic fields. This effect has great intention due to its applications such as design of heat exchanger and nuclear reactor. In the problem in fluid motion, flow of separation can reduced the effectiveness of the system as well as can increased the energy lost. This study will present the results on reducing the flow separation by considering magnetic effect. In this study, unsteady mixed convection boundary layer flow past a circular cylinder is given attention. Focus of study is on the separation times that affected by the magnetic fields. The mathematical models in the form of partial differential equations are transformed into nonlinear coupled ordinary differential equations and solved numerically using an implicit finite-difference scheme known as Keller-box method. The effect of magnetic parameter on velocity and temperature profiles as well as skin friction and Nusselt number are studied.

  14. Analysis of turbulent boundary layers

    CERN Document Server

    Cebeci, Tuncer

    1974-01-01

    Analysis of Turbulent Boundary Layers focuses on turbulent flows meeting the requirements for the boundary-layer or thin-shear-layer approximations. Its approach is devising relatively fundamental, and often subtle, empirical engineering correlations, which are then introduced into various forms of describing equations for final solution. After introducing the topic on turbulence, the book examines the conservation equations for compressible turbulent flows, boundary-layer equations, and general behavior of turbulent boundary layers. The latter chapters describe the CS method for calculati

  15. The Plasmasphere Boundary Layer

    Directory of Open Access Journals (Sweden)

    D. L. Carpenter

    2004-12-01

    Full Text Available As an inner magnetospheric phenomenon the plasmapause region is of interest for a number of reasons, one being the occurrence there of geophysically important interactions between the plasmas of the hot plasma sheet and of the cool plasmasphere. There is a need for a conceptual framework within which to examine and discuss these interactions and their consequences, and we therefore suggest that the plasmapause region be called the Plasmasphere Boundary Layer, or PBL. Such a term has been slow to emerge because of the complexity and variability of the plasma populations that can exist near the plasmapause and because of the variety of criteria used to identify the plasmapause in experimental data. Furthermore, and quite importantly in our view, a substantial obstacle to the consideration of the plasmapause region as a boundary layer has been the longstanding tendency of textbooks on space physics to limit introductory material on the plasmapause phenomenon to zeroth order descriptions in terms of ideal MHD theory, thus implying that the plasmasphere is relatively well understood. A textbook may introduce the concept of shielding of the inner magnetosphere from perturbing convection electric fields, but attention is not usually paid to the variety of physical processes reported to occur in the PBL, such as heating, instabilities, and fast longitudinal flows, processes which must play roles in plasmasphere dynamics in concert with the flow regimes associated with the major dynamo sources of electric fields. We believe that through the use of the PBL concept in future textbook discussions of the plasmasphere and in scientific communications, much progress can be made on longstanding questions about the physics involved in the formation of the plasmapause and in the cycles of erosion and recovery of the plasmasphere. Key words. Magnetospheric physics (plasmasphere; plasma convection; MHD waves and instabilities

  16. The Plasmasphere Boundary Layer

    Directory of Open Access Journals (Sweden)

    D. L. Carpenter

    2004-12-01

    Full Text Available As an inner magnetospheric phenomenon the plasmapause region is of interest for a number of reasons, one being the occurrence there of geophysically important interactions between the plasmas of the hot plasma sheet and of the cool plasmasphere. There is a need for a conceptual framework within which to examine and discuss these interactions and their consequences, and we therefore suggest that the plasmapause region be called the Plasmasphere Boundary Layer, or PBL. Such a term has been slow to emerge because of the complexity and variability of the plasma populations that can exist near the plasmapause and because of the variety of criteria used to identify the plasmapause in experimental data. Furthermore, and quite importantly in our view, a substantial obstacle to the consideration of the plasmapause region as a boundary layer has been the longstanding tendency of textbooks on space physics to limit introductory material on the plasmapause phenomenon to zeroth order descriptions in terms of ideal MHD theory, thus implying that the plasmasphere is relatively well understood. A textbook may introduce the concept of shielding of the inner magnetosphere from perturbing convection electric fields, but attention is not usually paid to the variety of physical processes reported to occur in the PBL, such as heating, instabilities, and fast longitudinal flows, processes which must play roles in plasmasphere dynamics in concert with the flow regimes associated with the major dynamo sources of electric fields. We believe that through the use of the PBL concept in future textbook discussions of the plasmasphere and in scientific communications, much progress can be made on longstanding questions about the physics involved in the formation of the plasmapause and in the cycles of erosion and recovery of the plasmasphere.

    Key words. Magnetospheric physics (plasmasphere; plasma convection; MHD waves and instabilities

  17. Large eddy simulation of atmospheric boundary layer over wind farms using a prescribed boundary layer approach

    Science.gov (United States)

    Sarlak, H.; Sørensen, J. N.; Mikkelsen, R.

    2012-09-01

    Large eddy simulation (LES) of flow in a wind farm is studied in neutral as well as thermally stratified atmospheric boundary layer (ABL). An approach has been practiced to simulate the flow in a fully developed wind farm boundary layer. The approach is based on the Immersed Boundary Method (IBM) and involves implementation of an arbitrary prescribed initial boundary layer (See [1]). A prescribed initial boundary layer profile is enforced through the computational domain using body forces to maintain a desired flow field. The body forces are then stored and applied on the domain through the simulation and the boundary layer shape will be modified due to the interaction of the turbine wakes and buoyancy contributions. The implemented method is capable of capturing the most important features of wakes of wind farms [1] while having the advantage of resolving the wall layer with a coarser grid than typically required for such problems.

  18. Large eddy simulation of atmospheric boundary layer over wind farms using a prescribed boundary layer approach

    DEFF Research Database (Denmark)

    Chivaee, Hamid Sarlak; Sørensen, Jens Nørkær; Mikkelsen, Robert Flemming

    2012-01-01

    Large eddy simulation (LES) of flow in a wind farm is studied in neutral as well as thermally stratified atmospheric boundary layer (ABL). An approach has been practiced to simulate the flow in a fully developed wind farm boundary layer. The approach is based on the Immersed Boundary Method (IBM......) and involves implementation of an arbitrary prescribed initial boundary layer (See [1]). A prescribed initial boundary layer profile is enforced through the computational domain using body forces to maintain a desired flow field. The body forces are then stored and applied on the domain through the simulation...... and the boundary layer shape will be modified due to the interaction of the turbine wakes and buoyancy contributions. The implemented method is capable of capturing the most important features of wakes of wind farms [1] while having the advantage of resolving the wall layer with a coarser grid than typically...

  19. Low-wavenumber turbulent boundary layer wall-pressure measurements from vibration data on a cylinder in pipe flow

    Science.gov (United States)

    Bonness, William K.; Capone, Dean E.; Hambric, Stephen A.

    2010-09-01

    The response of a structure to turbulent boundary layer (TBL) excitation has been an area of research for roughly 50 years, although uncertainties persist surrounding the low-wavenumber levels of the TBL surface pressure spectrum. In this experimental investigation, a cylindrical shell with a smooth internal surface is subjected to TBL excitation from water in fully developed pipe flow. The cylinder's vibration response to this excitation is used to determine low-wavenumber TBL surface pressure levels at lower streamwise wavenumbers than previously reported ( k1/ k cJournal of Sound and Vibration 112(1) (1987) 125-147] and is roughly 23 dB lower than an early TBL model by Corcos [ Journal of the Acoustical Society of America 35(2) (1963) 192-198]. The current data is a few decibels below the lower bound of related measurements in air by Farabee and Geib [ ICIASF '75 Record, 1975, pp. 311-319] and Martin and Leehey [ Journal of Sound and Vibration 52(1) (1977) 95-120]. A simple wavenumber white form for the TBL surface pressure spectrum at low-wavenumber is suggested.

  20. Boundary-Layer & health

    Science.gov (United States)

    Costigliola, V.

    2010-09-01

    It has long been known that specific atmospheric processes, such as weather and longer-term climatic fluctuations, affect human health. The biometeorological literature refers to this relationship as meteorotropism, defined as a change in an organism that is correlated with a change in atmospheric conditions. Plenty of (patho)physiological functions are affected by those conditions - like the respiratory diseases - and currently it is difficult to put any limits for pathologies developed in reply. Nowadays the importance of atmospheric boundary layer and health is increasingly recognised. A number of epidemiologic studies have reported associations between ambient concentrations of air pollution, specifically particulate pollution, and adverse health effects, even at the relatively low concentrations of pollution found. Since 1995 there have been over twenty-one studies from four continents that have explicitly examined the association between ambient air pollutant mixes and daily mortality. Statistically significant and positive associations have been reported in data from various locations around the world, all with varying air pollutant concentrations, weather conditions, population characteristics and public health policies. Particular role has been given to atmospheric boundary layer processes, the impact of which for specific patient-cohort is, however, not well understood till now. Assessing and monitoring air quality are thus fundamental to improve Europe's welfare. One of current projects run by the "European Medical Association" - PASODOBLE will develop and demonstrate user-driven downstream information services for the regional and local air quality sectors by combining space-based and in-situ data with models in 4 thematic service lines: - Health community support for hospitals, pharmacies, doctors and people at risk - Public information for regions, cities, tourist industry and sporting event organizers - Compliance monitoring support on particulate

  1. Viscous drag reduction in boundary layers

    Science.gov (United States)

    Bushnell, Dennis M. (Editor); Hefner, Jerry N. (Editor)

    1990-01-01

    The present volume discusses the development status of stability theory for laminar flow control design, applied aspects of laminar-flow technology, transition delays using compliant walls, the application of CFD to skin friction drag-reduction, active-wave control of boundary-layer transitions, and such passive turbulent-drag reduction methods as outer-layer manipulators and complex-curvature concepts. Also treated are such active turbulent drag-reduction technique applications as those pertinent to MHD flow drag reduction, as well as drag reduction in liquid boundary layers by gas injection, drag reduction by means of polymers and surfactants, drag reduction by particle addition, viscous drag reduction via surface mass injection, and interactive wall-turbulence control.

  2. Boundary Layer Control on Airfoils.

    Science.gov (United States)

    Gerhab, George; Eastlake, Charles

    1991-01-01

    A phenomena, boundary layer control (BLC), produced when visualizing the fluidlike flow of air is described. The use of BLC in modifying aerodynamic characteristics of airfoils, race cars, and boats is discussed. (KR)

  3. The laminar boundary layer equations

    CERN Document Server

    Curle, N

    2017-01-01

    Thorough introduction to boundary layer problems offers an ordered, logical presentation accessible to undergraduates. The text's careful expositions of the limitations and accuracy of various methods will also benefit professionals. 1962 edition.

  4. Turbulent Boundary Layer on a Cylinder in Axial Flow

    Science.gov (United States)

    1988-09-29

    wall- norma 6caling or Rao’s wall-normal scaling. Other measurements of the mean velocity in a cylindrical boundary layer should be mentioned for...located near the wall at three azimuthal locations that w𔃽re 900 apa ,-t and at several streamwise spacings for flow conditions resulting in 8/a=8

  5. High Reynolds number liquid layer flow with flexible walls

    Indian Academy of Sciences (India)

    Permanent link: http://www.ias.ac.in/article/fulltext/sadh/040/03/0961-0972. Keywords. Stability; triple-deck; separation; boundary-layer; compliant wall. Abstract. The stability of liquid layer flow over an inclined flexible wall is studied using asymptotic methods based on the assumption that the Reynolds number is large.

  6. Hundred years of the boundary layer – Some aspects

    Indian Academy of Sciences (India)

    2005-08-02

    Aug 2, 2005 ... at the Third International Congress of Mathematics held in Heidelberg and published in the. Proceedings of the Congress ..... Work on boundary layers is going on in many organizations in India. The above ... Rao G N V 1967 The law of the wall in thick axisymmetric turbulent boundary layers. J. Appl. Mech.

  7. Asymptotic analysis and boundary layers

    CERN Document Server

    Cousteix, Jean

    2007-01-01

    This book presents a new method of asymptotic analysis of boundary-layer problems, the Successive Complementary Expansion Method (SCEM). The first part is devoted to a general comprehensive presentation of the tools of asymptotic analysis. It gives the keys to understand a boundary-layer problem and explains the methods to construct an approximation. The second part is devoted to SCEM and its applications in fluid mechanics, including external and internal flows. The advantages of SCEM are discussed in comparison with the standard Method of Matched Asymptotic Expansions. In particular, for the first time, the theory of Interactive Boundary Layer is fully justified. With its chapter summaries, detailed derivations of results, discussed examples and fully worked out problems and solutions, the book is self-contained. It is written on a mathematical level accessible to graduate and post-graduate students of engineering and physics with a good knowledge in fluid mechanics. Researchers and practitioners will estee...

  8. Wind and boundary layers in Rayleigh-Bénard convection. II. Boundary layer character and scaling.

    Science.gov (United States)

    van Reeuwijk, Maarten; Jonker, Harm J J; Hanjalić, Kemo

    2008-03-01

    The scaling of the kinematic boundary layer thickness lambda(u) and the friction factor C(f) at the top and bottom walls of Rayleigh-Bénard convection is studied by direct numerical simulation (DNS). By a detailed analysis of the friction factor, a new parameterisation for C(f) and lambda(u) is proposed. The simulations were made of an L/H=4 aspect-ratio domain with periodic lateral boundary conditions at Ra=(10(5), 10(6), 10(7), 10(8)) and Pr=1. The continuous spectrum, as well as significant forcing due to Reynolds stresses, clearly indicates a turbulent character of the boundary layer, while viscous effects cannot be neglected, judging from the scaling of classical integral boundary layer parameters with Reynolds number. Using a conceptual wind model, we find that the friction factor C(f) should scale proportionally to the thermal boundary layer thickness as C(f) proportional variant lambda(Theta)/H, while the kinetic boundary layer thickness lambda(u) scales inversely proportionally to the thermal boundary layer thickness and wind Reynolds number lambda(u)/H proportional variant (lambda(Theta)/H)(-1)Re(-1). The predicted trends for C(f) and lambda(u) are in agreement with DNS results.

  9. Tropical cyclone boundary layer shocks

    OpenAIRE

    Slocum, Christopher J.; Williams, Gabriel J.; Taft, Richard K.; Wayne H. Schubert

    2014-01-01

    This paper presents numerical solutions and idealized analytical solutions of axisymmetric, $f$-plane models of the tropical cyclone boundary layer. In the numerical model, the boundary layer radial and tangential flow is forced by a specified pressure field, which can also be interpreted as a specified gradient balanced tangential wind field $v_{\\rm gr}(r)$ or vorticity field $\\zeta_{\\rm gr}(r)$. When the specified $\\zeta_{\\rm gr}(r)$ field is changed from one that is radially concentrated i...

  10. the Martian atmospheric boundary layer

    DEFF Research Database (Denmark)

    Petrosyan, A.; Galperin, B.; Larsen, Søren Ejling

    2011-01-01

    The planetary boundary layer (PBL) represents the part of the atmosphere that is strongly influenced by the presence of the underlying surface and mediates the key interactions between the atmosphere and the surface. On Mars, this represents the lowest 10 km of the atmosphere during the daytime...

  11. Simulation of Wind turbines in the atmospheric boundary layer

    DEFF Research Database (Denmark)

    Chivaee, Hamid Sarlak; Sørensen, Jens Nørkær; Mikkelsen, Robert Flemming

    Large eddy simulation of an arbitrary wind farm is studied in the neutral and thermally stratified atmospheric boundary Layer. Large eddy simulations of industrial flows usually requires full resolution of the flow near the wall and this is believed to be one of the main deficiencies of LES because...... layer. In the current study, another approach has been implemented to simulate the flow in a fully developed wind farm boundary layer. The approach is based on Immersed Boundary Method and involves implementation of an arbitrary prescribed initial boundary layer. An initial boundary layer is enforced...... through the whole domain, without wind turbines included, while the body forces that are required to maintain that flow field is calculated. The body forces are then stored and applied on the domain through the simulation of wind turbine and the boundary layer shape will be modified based on the turbine...

  12. A numerical simulation of longitudinal vortex in turbulent boundary layers

    Energy Technology Data Exchange (ETDEWEB)

    Yang, J.S.; Lee, K.B. [Pusan National University, Pusan (Korea)

    2000-06-01

    This paper represents numerical computations of the interaction between the longitudinal vortex and a flat plate 3-D turbulent boundary layer. In the present study, the main interest is in the behavior of longitudinal vortices introduced in turbulent boundary layers. The flow field behind vortex generator is modeled by the information that is available from studies on the delta winglet. Also, the Reynolds-averaged Navier-Stoke equations for three-dimensional turbulent flows, together with a two-layer turbulence model to resolve the near-wall flow, is solved by the method of pseudo compressibility. The present results show that the boundary layer is thinned in the regions where the secondary flow is directed toward the wall and thickened where it is directed away from the wall, and have a good agreement with the experimental data. (author). 12 refs., 12 figs.

  13. A barotropic planetary boundary layer

    Science.gov (United States)

    Yordanov, D.; Syrakov, D.; Djolov, G.

    1983-04-01

    The temperature and wind profiles in the planetary boundary layer (PBL) are investigated. Assuming stationary and homogeneous conditions, the turbulent state in the PBL is uniquely determined by the external Rossby number and the stratification parameters. In this study, a simple two-layer barotropic model is proposed. It consists of a surface (SL) and overlying Ekman-type layer. The system of dynamic and heat transfer equations is closed using K theory. In the SL, the turbulent exchange coefficient is consistent with the results of similarity theory while in the Ekman layer, it is constant. Analytical solutions for the wind and temperature profiles in the PBL are obtained. The SL and thermal PBL heights are properly chosen functions of the stratification so that from the solutions for wind and temperature, the PBL resistance laws can be easily deduced. The internal PBL characteristics necessary for the calculation (friction velocity, angle between surface and geostrophic winds and internal stratification parameter) are presented in terms of the external parameters. Favorable agreement with experimental data and model results is demonstrated. The simplicity of the model allows it to be incorporated in large-scale weather prediction models as well as in the solution of various other meteorological problems.

  14. Linear stability analysis of interactions between mixing layer and boundary layer flows

    Directory of Open Access Journals (Sweden)

    Fengjun LIU

    2017-08-01

    Full Text Available The linear instabilities of incompressible confluent mixing layer and boundary layer were analyzed. The mixing layers include wake, shear layer and their combination. The mean velocity profile of confluent flow is taken as a superposition of a hyperbolic and exponential function to model a mixing layer and the Blasius similarity solution for a flat plate boundary layer. The stability equation of confluent flow was solved by using the global numerical method. The unstable modes associated with both the mixing and boundary layers were identified. They are the boundary layer mode, mixing layer mode 1 (nearly symmetrical mode and mode 2 (nearly anti-symmetrical mode. The interactions between the mixing layer stability and the boundary layer stability were examined. As the mixing layer approaches the boundary layer, the neutral curves of the boundary layer mode move to the upper left, the resulting critical Reynolds number decreases, and the growth rate of the most unstable mode increases. The wall tends to stabilize the mixing layer modes at low frequency. In addition, the mode switching behavior of the relative level of the spatial growth rate between the mixing layer mode 1 and mode 2 with the velocity ratio is found to occur at low frequency.

  15. Turbulence structures in a strongly decelerated boundary layer

    Science.gov (United States)

    Gungor, Ayse G.; Maciel, Yvan; Simens, Mark P.

    2014-11-01

    The characteristics of three-dimensional intense Reynolds shear stress structures (Qs) are presented from a direct numerical simulation of an adverse pressure gradient boundary layer at Reθ = 1500 -2175. The intense Q2 (ejections) and Q4 (sweeps) structures separate into two groups: wall-attached and wall-detached structures. In the region where turbulent activity is maximal, between 0 . 2 δ and 0 . 6 δ , 94 % of the structures are detached structures. In comparison to canonical wall flows, the large velocity defect turbulent boundary layers are less efficient in extracting turbulent energy from the mean flow. There is, furthermore, much less turbulence activity and less velocity coherence near the wall. Additionally, the wall-detached structures are more frequent and carry a much larger amount of Reynolds shear stress. Funded in part by ITU, NSERC of Canada, and Multiflow program of the ERC.

  16. Vortex properties in turbulent boundary layers

    Science.gov (United States)

    Gao, Qi; Saikrishnan, Neelakantan; Ortiz-Duenas, Cecilia; Longmire, Ellen

    2008-11-01

    Swirl strength was used to identify vortices in turbulent boundary layers. Dual-plane PIV data at Reτ 1100 with coarser (Ganapathisubramani et al., 2006) and finer resolution (Saikrishnan et al., 2007) as well as DNS data at Reτ=590 (Moser et al., 1999) and Reτ=934 (del álamo et al., 2004) were analyzed. A new core-combination algorithm was developed to improve identification of in- and out-of-plane vortices. Core orientation was determined by the eigenvector of the velocity gradient tensor, and core radii were characterized. The effects of wall normal location, Reynolds number, and spatial resolution were studied. In general, the PDF of swirl magnitude is affected by both in- and out-of-plane spatial resolution as well as the wall normal location. Scaling of swirl will be discussed in the presentation. The results show that, in the logarithmic region, the mean angle between the eigenvector and the vorticity vector decreases and the mean core radius increases with wall normal distance. Joint PDFs show linear increases in circulation with core radius, as well as correlations between core inclination angle and circulation. Convection velocities of strong cores are typically smaller than the local mean velocity.

  17. Optimal Growth in Hypersonic Boundary Layers

    Science.gov (United States)

    Paredes, Pedro; Choudhari, Meelan M.; Li, Fei; Chang, Chau-Lyan

    2016-01-01

    The linear form of the parabolized linear stability equations is used in a variational approach to extend the previous body of results for the optimal, nonmodal disturbance growth in boundary-layer flows. This paper investigates the optimal growth characteristics in the hypersonic Mach number regime without any high-enthalpy effects. The influence of wall cooling is studied, with particular emphasis on the role of the initial disturbance location and the value of the spanwise wave number that leads to the maximum energy growth up to a specified location. Unlike previous predictions that used a basic state obtained from a self-similar solution to the boundary-layer equations, mean flow solutions based on the full Navier-Stokes equations are used in select cases to help account for the viscous- inviscid interaction near the leading edge of the plate and for the weak shock wave emanating from that region. Using the full Navier-Stokes mean flow is shown to result in further reduction with Mach number in the magnitude of optimal growth relative to the predictions based on the self-similar approximation to the base flow.

  18. Boundary layer thickness effect on boattail drag

    Science.gov (United States)

    Blaha, B. J.; Chamberlain, R.; Bober, L. J.

    1976-01-01

    A combined experimental and analytical program was conducted to investigate the effects of boundary layer changes on the flow over high angle boattail nozzles. The tests were run on an isolated axisymmetric sting mounted model. Various boattail geometries were investigated at high subsonic speeds over a range of boundary layer thicknesses. In general, boundary layer effects were small at speeds up to Mach 0.8. However, at higher speeds significant regions of separated flow were present on the boattail. When separation was present large reductions in boattail drag resulted with increasing boundary layer thickness. The analysis predicts both of these trends.

  19. Pressure Fluctuations Induced by a Hypersonic Turbulent Boundary Layer

    Science.gov (United States)

    Duan, Lian; Choudhari, Meelan M.; Zhang, Chao

    2016-01-01

    Direct numerical simulations (DNS) are used to examine the pressure fluctuations generated by a spatially-developed Mach 5.86 turbulent boundary layer. The unsteady pressure field is analyzed at multiple wall-normal locations, including those at the wall, within the boundary layer (including inner layer, the log layer, and the outer layer), and in the free stream. The statistical and structural variations of pressure fluctuations as a function of wall-normal distance are highlighted. Computational predictions for mean velocity pro les and surface pressure spectrum are in good agreement with experimental measurements, providing a first ever comparison of this type at hypersonic Mach numbers. The simulation shows that the dominant frequency of boundary-layer-induced pressure fluctuations shifts to lower frequencies as the location of interest moves away from the wall. The pressure wave propagates with a speed nearly equal to the local mean velocity within the boundary layer (except in the immediate vicinity of the wall) while the propagation speed deviates from the Taylor's hypothesis in the free stream. Compared with the surface pressure fluctuations, which are primarily vortical, the acoustic pressure fluctuations in the free stream exhibit a significantly lower dominant frequency, a greater spatial extent, and a smaller bulk propagation speed. The freestream pressure structures are found to have similar Lagrangian time and spatial scales as the acoustic sources near the wall. As the Mach number increases, the freestream acoustic fluctuations exhibit increased radiation intensity, enhanced energy content at high frequencies, shallower orientation of wave fronts with respect to the flow direction, and larger propagation velocity.

  20. Experimental investigation of wave boundary layer

    DEFF Research Database (Denmark)

    Sumer, B. Mutlu

    2003-01-01

    A review is presented of experimental investigation of wave boundary layer. The review is organized in six main sections. The first section describes the wave boundary layer in a real-life environment and its simulation in the laboratory in an oscillating water tunnel and in a water tank...... with an oscillating seabed. A brief account is given of measured quantities, measurement techniques (LDA, PIV, flow visualization) and limitations/constraints in the experimental investigation of the wave boundary layer in the laboratory. The second section concentrates on uniform oscillating boundary layers...... with a smooth bed. The boundary layer process is described over the entire range of the Reynolds number (Re from practically nil to Re = O(107)), from the laminar regime to the transitional regime and to the fully developed turbulent regime. The third section focuses on the effect of the boundary roughness...

  1. Flow Visualization in Supersonic Turbulent Boundary Layers.

    Science.gov (United States)

    Smith, Michael Wayne

    This thesis is a collection of novel flow visualizations of two different flat-plate, zero pressure gradient, supersonic, turbulent boundary layers (M = 2.8, Re _theta ~ 82,000, and M = 2.5, Re_ theta ~ 25,000, respectively). The physics of supersonic shear flows has recently drawn increasing attention with the renewed interest in flight at super and hypersonic speeds. This work was driven by the belief that the study of organized, Reynolds -stress producing turbulence structures will lead to improved techniques for the modelling and control of high-speed boundary layers. Although flow-visualization is often thought of as a tool for providing qualitative information about complex flow fields, in this thesis an emphasis is placed on deriving quantitative results from image data whenever possible. Three visualization techniques were applied--'selective cut-off' schlieren, droplet seeding, and Rayleigh scattering. Two experiments employed 'selective cut-off' schlieren. In the first, high-speed movies (40,000 fps) were made of strong density gradient fronts leaning downstream at between 30^circ and 60^ circ and travelling at about 0.9U _infty. In the second experiment, the same fronts were detected with hot-wires and imaged in real time, thus allowing the examination of the density gradient fronts and their associated single-point mass -flux signals. Two experiments employed droplet seeding. In both experiments, the boundary layer was seeded by injecting a stream of acetone through a single point in the wall. The acetone is atomized by the high shear at the wall into a 'fog' of tiny (~3.5mu m) droplets. In the first droplet experiment, the fog was illuminated with copper-vapor laser sheets of various orientations. The copper vapor laser pulses 'froze' the fog motion, revealing a variety of organized turbulence structures, some with characteristic downstream inclinations, others with large-scale roll-up on the scale of delta. In the second droplet experiment, high

  2. Analytical solution of the transpiration on the boundary layer flow ...

    African Journals Online (AJOL)

    An analysis is carried out to study the effects that blowing/injection and suction on the steady mixed convection or combined forced and free convection boundary layer flows over a vertical slender cylinder with a mainstream velocity and a wall surface temperature proportional to the axial distance along the surface of the ...

  3. Global instabilities and transient growth in Blasius boundary-layer ...

    Indian Academy of Sciences (India)

    We develop a hybrid of computational and theoretical approaches suited to study the fluid–structure interaction (FSI) of a compliant panel, flush between rigid upstream and downstream wall sections, with a Blasius boundary-layer flow. The ensuing linear-stability analysis is focused upon global instability and transient ...

  4. Modelling stable atmospheric boundary layers over snow

    NARCIS (Netherlands)

    Sterk, H.A.M.

    2015-01-01

    Thesis entitled: Modelling Stable Atmospheric Boundary Layers over Snow H.A.M. Sterk Wageningen, 29th of April, 2015 Summary The emphasis of this thesis is on the understanding and forecasting of the Stable Boundary Layer (SBL) over snow-covered surfaces. SBLs typically form at night and in polar

  5. BUBBLE - an urban boundary layer meteorology project

    DEFF Research Database (Denmark)

    Rotach, M.W.; Vogt, R.; Bernhofer, C.

    2005-01-01

    The Basel urban Boundary Layer Experiment (BUBBLE) was a year-long experimental effort to investigate in detail the boundary layer structure in the City of Basel, Switzerland. At several sites over different surface types (urban, sub-urban and rural reference) towers up to at least twice the main...

  6. Magnetohydrodynamic cross-field boundary layer flow

    Directory of Open Access Journals (Sweden)

    D. B. Ingham

    1982-01-01

    Full Text Available The Blasius boundary layer on a flat plate in the presence of a constant ambient magnetic field is examined. A numerical integration of the MHD boundary layer equations from the leading edge is presented showing how the asymptotic solution described by Sears is approached.

  7. Definition of Turbulent Boundary-Layer with Entropy Concept

    Directory of Open Access Journals (Sweden)

    Zhao Rui

    2016-01-01

    Full Text Available The relationship between the entropy increment and the viscosity dissipation in turbulent boundary-layer is systematically investigated. Through theoretical analysis and direct numerical simulation (DNS, an entropy function fs is proposed to distinguish the turbulent boundary-layer from the external flow. This approach is proved to be reliable after comparing its performance in the following complex flows, namely, low-speed airfoil flows with different wall temperature, supersonic cavity-ramp flow dominated by the combination of free-shear layer, larger recirculation and shocks, and the hypersonic flow past an aeroplane configuration. Moreover, fs is deduced from the point of energy, independent of any particular turbulent quantities. That is, this entropy concept could be utilized by other engineering applications related with turbulent boundary-layer, such as turbulence modelling transition prediction and engineering thermal protection.

  8. A global climatology of boundary layer ventilation

    Science.gov (United States)

    McNamara, David; Plant, Robert; Belcher, Stephen

    2013-04-01

    The general circulation pattern of the Earth's atmosphere is well known, however there has been relatively little effort to quantify the climatological effects of the buffer zone known as the atmospheric boundary layer. Turbulent motions in the atmospheric boundary layer act to mix the layer along with its constituent pollutants, below a temperature inversion which separates it from the free troposphere. Exchanges between the boundary layer and free troposphere can occur through the mechanisms of convection, isentropic uplift, and coastal and orographic venting. In particular the rate at which pollutants are removed from the atmosphere can be different depending on whether or not they are resident within the boundary layer or the free troposphere. Thus the limiting factor on the concentrations of, for example, certain eg NOx, pollutants in the free troposphere will be the rate at which they are vented from the boundary layer. A global climatology (spanning 10 years between 1995 and 2005) of boundary layer venting is presented here using the ERA-interim dataset which has a grid scale resolution of 0.7 degrees x 0.7 degrees. The boundary layer height is first calculated using a bulk Richardson number method and then an associated vertical velocity is found by linearly interpolating between the two model levels either side of the boundary layer height. This value along with the change in height of the boundary layer over a 3 hour period is used to give an estimate of the rate of venting. The climatology of this rate allows us to describe and quantify the areas of the globe that are responsible for boundary layer entrainment and boundary layer venting, which could be used as a basis for further comparisons with other suitable datasets. We will also present results for the climatology of the boundary layer height itself. [possibly? That could be attractive for a BL audience anyway] Furthermore we will present and discuss results from a method designed to isolate the

  9. On the modeling of electrical boundary layer (electrode layer) and ...

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Earth System Science; Volume 119; Issue 1. On the modeling of electrical boundary layer (electrode layer) and derivation of atmospheric electrical profiles, eddy diffusion coeffcient and scales of electrode layer. Madhuri N Kulkarni. Volume 119 Issue 1 February 2010 pp 75-86 ...

  10. Laminar boundary layers with uniform shear cross flow

    Science.gov (United States)

    Weidman, Patrick

    2017-03-01

    Laminar boundary layers with fully developed uniform shear cross flows are considered. The first streamwise laminar flow is a Blasius boundary layer flow, the second is uniform shear flow over a semi-infinite plate, and the third is the flow induced by a power-law stretching surface. In the first two cases, the effect of streamwise plate motion is taken into account by the parameter λ. In each case, the similarity solutions reduce the governing boundary layer equations to a primary ordinary differential equation for the streamwise flow and a secondary linear equation coupled to the primary solution for the cross flow. It is found that an infinity of solutions exist in each problem and the unique solution in each case is found by applying the Glauert criterion. In some instances, a simple exact solution for the cross flow is presented. Results for the wall shear stresses and velocity profiles are given in graphical form.

  11. DNS of Turbulent Boundary Layers under Highenthalpy Conditions

    Science.gov (United States)

    Duan, Lian; Martín, Pino

    2010-11-01

    To study real-gas effects and turbulence-chemistry interaction, direct numerical simulations (DNS) of hypersonic boundary layers are conducted under typical hypersonic conditions. We consider the boundary layer on a lifting-body consisting of a flat plate at an angle of attack, which flies at altitude 30km with a Mach number 21. Two different inclined angles, 35^o and 8^o, are considered,representing blunt and slender bodies. Both noncatalytic and supercatalytic wall conditions are considered. The DNS data are studied to assess the validity of Morkovin's hypothesis, the strong Reynolds analogy, as well as the behaviors of turbulence structures under high-enthalpy conditions.Relative to low-enthalpy conditions [1], significant differences in typical scalings are observed. [4pt] [1] L. Duan and I. Beekman and M. P. Mart'in, Direct numerical simulation of hypersonic turbulent boundary layers. Part 2: Effect of temperature, J. Fluid Mech. 655 (2010), 419-445.

  12. The Ocean Boundary Layer beneath Hurricane Frances

    Science.gov (United States)

    Dasaro, E. A.; Sanford, T. B.; Terrill, E.; Price, J.

    2006-12-01

    The upper ocean beneath the peak winds of Hurricane Frances (57 m/s) was measured using several varieties of air-deployed floats as part of CBLAST. A multilayer structure was observed as the boundary layer deepened from 20m to 120m in about 12 hours. Bubbles generated by breaking waves create a 10m thick surface layer with a density anomaly, due to the bubbles, of about 1 kg/m3. This acts to lubricate the near surface layer. A turbulent boundary layer extends beneath this to about 40 m depth. This is characterized by large turbulent eddies spanning the boundary layer. A stratified boundary layer grows beneath this reaching 120m depth. This is characterized by a gradient Richardson number of 1/4, which is maintained by strong inertial currents generated by the hurricane, and smaller turbulent eddies driven by the shear instead of the wind and waves. There is little evidence of mixing beneath this layer. Heat budgets reveal the boundary layer to be nearly one dimensional through much of the deepening, with horizontal and vertical heat advection becoming important only after the storm had passed. Turbulent kinetic energy measurements support the idea of reduced surface drag at high wind speeds. The PWP model correctly predicts the degree of mixed layer deepening if the surface drag is reduced at high wind speed. Overall, the greatest uncertainty in understanding the ocean boundary layer at these extreme wind speeds is a characterization of the near- surface processes which govern the air-sea fluxes and surface wave properties.

  13. On domain wall boundary conditions for the XXZ spin Hamiltonian

    DEFF Research Database (Denmark)

    Orlando, Domenico; Reffert, Susanne; Reshetikhin, Nicolai

    In this note, we derive the spectrum of the infinite quantum XXZ spin chain with domain wall boundary conditions. The eigenstates are constructed as limits of Bethe states for the finite XXZ spin chain with quantum sl(2) invariant boundary conditions.......In this note, we derive the spectrum of the infinite quantum XXZ spin chain with domain wall boundary conditions. The eigenstates are constructed as limits of Bethe states for the finite XXZ spin chain with quantum sl(2) invariant boundary conditions....

  14. Integral analysis of boundary layer flows with pressure gradient

    Science.gov (United States)

    Wei, Tie; Maciel, Yvan; Klewicki, Joseph

    2017-09-01

    This Rapid Communication investigates boundary layer flows with a pressure gradient using a similarity/integral analysis of the continuity equation and momentum equation in the streamwise direction. The analysis yields useful analytical relations for Ve, the mean wall-normal velocity at the edge of the boundary layer, and for the skin friction coefficient Cf in terms of the boundary layer parameters and in particular βRC, the Rotta-Clauser pressure gradient parameter. The analytical results are compared with experimental and numerical data and are found to be valid. One of the main findings is that for large positive βRC (an important effect of an adverse pressure gradient), the friction coefficient is closely related to βRC as Cf∝1 /βRC , because δ /δ1,δ1/δ2=H , and d δ /d x become approximately constant. Here, δ is the boundary layer thickness, δ1 is the displacement thickness, δ2 is the momentum thickness, and H is the shape factor. Another finding is that the mean wall-normal velocity at the edge of the boundary layer is related to other flow variables as UeVe/uτ2=H +(1 +δ /δ1+H ) βRC , where Ue is the streamwise velocity at the edge of the boundary layer. At zero pressure gradient, this relation reduces to U∞V∞/uτ2=H , as recently derived by Wei and Klewicki [Phys. Rev. Fluids 1, 082401 (2016), 10.1103/PhysRevFluids.1.082401].

  15. Modeling the summertime Arctic cloudy boundary layer

    Energy Technology Data Exchange (ETDEWEB)

    Curry, J.A.; Pinto, J.O. [Univ. of Colorado, Boulder, CO (United States); McInnes, K.L. [CSIRO Division of Atmospheric Research, Mordialloc (Australia)

    1996-04-01

    Global climate models have particular difficulty in simulating the low-level clouds during the Arctic summer. Model problems are exacerbated in the polar regions by the complicated vertical structure of the Arctic boundary layer. The presence of multiple cloud layers, a humidity inversion above cloud top, and vertical fluxes in the cloud that are decoupled from the surface fluxes, identified in Curry et al. (1988), suggest that models containing sophisticated physical parameterizations would be required to accurately model this region. Accurate modeling of the vertical structure of multiple cloud layers in climate models is important for determination of the surface radiative fluxes. This study focuses on the problem of modeling the layered structure of the Arctic summertime boundary-layer clouds and in particular, the representation of the more complex boundary layer type consisting of a stable foggy surface layer surmounted by a cloud-topped mixed layer. A hierarchical modeling/diagnosis approach is used. A case study from the summertime Arctic Stratus Experiment is examined. A high-resolution, one-dimensional model of turbulence and radiation is tested against the observations and is then used in sensitivity studies to infer the optimal conditions for maintaining two separate layers in the Arctic summertime boundary layer. A three-dimensional mesoscale atmospheric model is then used to simulate the interaction of this cloud deck with the large-scale atmospheric dynamics. An assessment of the improvements needed to the parameterizations of the boundary layer, cloud microphysics, and radiation in the 3-D model is made.

  16. Turbulent boundary layer under the control of different schemes

    Science.gov (United States)

    Qiao, Z. X.; Zhou, Y.; Wu, Z.

    2017-06-01

    This work explores experimentally the control of a turbulent boundary layer over a flat plate based on wall perturbation generated by piezo-ceramic actuators. Different schemes are investigated, including the feed-forward, the feedback, and the combined feed-forward and feedback strategies, with a view to suppressing the near-wall high-speed events and hence reducing skin friction drag. While the strategies may achieve a local maximum drag reduction slightly less than their counterpart of the open-loop control, the corresponding duty cycles are substantially reduced when compared with that of the open-loop control. The results suggest a good potential to cut down the input energy under these control strategies. The fluctuating velocity, spectra, Taylor microscale and mean energy dissipation are measured across the boundary layer with and without control and, based on the measurements, the flow mechanism behind the control is proposed.

  17. Turbulent boundary layer under the control of different schemes.

    Science.gov (United States)

    Qiao, Z X; Zhou, Y; Wu, Z

    2017-06-01

    This work explores experimentally the control of a turbulent boundary layer over a flat plate based on wall perturbation generated by piezo-ceramic actuators. Different schemes are investigated, including the feed-forward, the feedback, and the combined feed-forward and feedback strategies, with a view to suppressing the near-wall high-speed events and hence reducing skin friction drag. While the strategies may achieve a local maximum drag reduction slightly less than their counterpart of the open-loop control, the corresponding duty cycles are substantially reduced when compared with that of the open-loop control. The results suggest a good potential to cut down the input energy under these control strategies. The fluctuating velocity, spectra, Taylor microscale and mean energy dissipation are measured across the boundary layer with and without control and, based on the measurements, the flow mechanism behind the control is proposed.

  18. Injection-induced turbulence in stagnation-point boundary layers

    Science.gov (United States)

    Park, C.

    1984-01-01

    A theory is developed for the stagnation point boundary layer with injection under the hypothesis that turbulence is produced at the wall by injection. From the existing experimental heat transfer rate data obtained in wind tunnels, the wall mixing length is deduced to be a product of a time constant and an injection velocity. The theory reproduces the observed increase in heat transfer rates at high injection rates. For graphite and carbon-carbon composite, the time constant is determined to be 0.0002 sec from the existing ablation data taken in an arc-jet tunnel and a balistic range.

  19. Acoustic Radiation From a Mach 14 Turbulent Boundary Layer

    Science.gov (United States)

    Zhang, Chao; Duan, Lian; Choudhari, Meelan M.

    2016-01-01

    Direct numerical simulations (DNS) are used to examine the turbulence statistics and the radiation field generated by a high-speed turbulent boundary layer with a nominal freestream Mach number of 14 and wall temperature of 0:18 times the recovery temperature. The flow conditions fall within the range of nozzle exit conditions of the Arnold Engineering Development Center (AEDC) Hypervelocity Tunnel No. 9 facility. The streamwise domain size is approximately 200 times the boundary-layer thickness at the inlet, with a useful range of Reynolds number corresponding to Re 450 ?? 650. Consistent with previous studies of turbulent boundary layer at high Mach numbers, the weak compressibility hypothesis for turbulent boundary layers remains applicable under this flow condition and the computational results confirm the validity of both the van Driest transformation and Morkovin's scaling. The Reynolds analogy is valid at the surface; the RMS of fluctuations in the surface pressure, wall shear stress, and heat flux is 24%, 53%, and 67% of the surface mean, respectively. The magnitude and dominant frequency of pressure fluctuations are found to vary dramatically within the inner layer (z/delta 0.< or approx. 0.08 or z+ < or approx. 50). The peak of the pre-multiplied frequency spectrum of the pressure fluctuation is f(delta)/U(sub infinity) approx. 2.1 at the surface and shifts to a lower frequency of f(delta)/U(sub infinity) approx. 0.7 in the free stream where the pressure signal is predominantly acoustic. The dominant frequency of the pressure spectrum shows a significant dependence on the freestream Mach number both at the wall and in the free stream.

  20. Boundary layer heights derived from velocity spectra

    Energy Technology Data Exchange (ETDEWEB)

    Hoejstrup, J.; Barthelmie, R.J. [Risoe National Lab., Roskilde (Denmark); Kaellstrand, B. [Univ. of Uppsala, Uppsala (Sweden)

    1997-10-01

    It is a well-known fact that the height of the mixed layer determines the size of the largest and most energetic eddies that can be observed in the unstable boundary layer, and consequently a peak can be observed in the power spectra of the along-wind velocity component at scales comparable to the mixed layer depth. We will now show how the mixed layer depth can be derived from the u-specta and the results will be compared with direct measurements using pibal and tethersonde measurements. (au)

  1. Analysis of differential infrared thermography for boundary layer transition detection

    Science.gov (United States)

    Gardner, A. D.; Eder, C.; Wolf, C. C.; Raffel, M.

    2017-09-01

    This paper presents an analysis of the differential infrared thermography (DIT) technique, a contactless method of measuring the unsteady movement of the boundary layer transition position on an unprepared surface. DIT has been shown to measure boundary layer transition positions which correlate well with those from other measurement methods. In this paper unsteady aerodynamics from a 2D URANS solution are used and the resulting wall temperatures computed. It is shown that the peak of the temperature difference signal correlates well with the boundary layer transition position, but that the start and end of boundary layer transition cannot be extracted. A small systematic time-lag cannot be reduced by using different surface materials, but the signal strength can be improved by reducing the heat capacity and heat transfer of the surface layer, for example by using a thin plastic coating. Reducing the image time separation used to produce the difference images reduces the time-lag and also the signal level, thus the optimum is when the signal to noise ratio is at the minimum which can be evaluated.

  2. Boundary Wall Shear Measurement with an Automated LDV-Based System

    Science.gov (United States)

    Modarress, Darius; Jeon, David; Svitek, Pavel; Gharib, Morteza

    2014-11-01

    Wall shear stress is one of the most important measurements in boundary layer flows. Getting wall shear measurements is generally quite difficult due to the need to measure very close to the wall, where poor optical access, particle seeding, and wall effects can bias the results. To simplify that process, a novel system was developed by Measurement Science Enterprise (MSE). The microPro consists of a 12 mm diameter miniLDV attached to a micro-translation stage assembled inside a sealed housing. The microPro automatically locates the wall and measures the mean flow speed profile from a point as close as 50 microns from the window. Accurate estimate of the mean wall shear is obtained from the calculation of the wall velocity gradient obtained from the velocity profile data. We measured wall shear stress on a boundary layer plate mounted in a water tunnel across a range of Reynolds numbers and compared the results against skin friction coefficient models. We also introduced bubbles into the boundary layer to measure the change in wall shear stress with changing void fraction. The measurements show good agreement with established data. This work is supported by the Office of Naval Research (Grant ONR-N00014-11-1-0031) and MSE.

  3. Unsteady turbulent boundary layers in swimming rainbow trout.

    Science.gov (United States)

    Yanase, Kazutaka; Saarenrinne, Pentti

    2015-05-01

    The boundary layers of rainbow trout, Oncorhynchus mykiss, swimming at 1.02±0.09 L s(-1) (mean±s.d., N=4), were measured by the particle image velocimetry (PIV) technique at a Reynolds number of 4×10(5). The boundary layer profile showed unsteadiness, oscillating above and beneath the classical logarithmic law of the wall with body motion. Across the entire surface regions that were measured, local Reynolds numbers based on momentum thickness, which is the distance that is perpendicular to the fish surface through which the boundary layer momentum flows at free-stream velocity, were greater than the critical value of 320 for the laminar-to-turbulent transition. The skin friction was dampened on the convex surface while the surface was moving towards a free-stream flow and increased on the concave surface while retreating. These observations contradict the result of a previous study using different species swimming by different methods. Boundary layer compression accompanied by an increase in local skin friction was not observed. Thus, the overall results may not support absolutely the Bone-Lighthill boundary layer thinning hypothesis that the undulatory motions of swimming fish cause a large increase in their friction drag because of the compression of the boundary layer. In some cases, marginal flow separation occurred on the convex surface in the relatively anterior surface region, but the separated flow reattached to the fish surface immediately downstream. Therefore, we believe that a severe impact due to induced drag components (i.e. pressure drag) on the swimming performance, an inevitable consequence of flow separation, was avoided. © 2015. Published by The Company of Biologists Ltd.

  4. Orbiter Boundary Layer Transition Prediction Tool Enhancements

    Science.gov (United States)

    Berry, Scott A.; King, Rudolph A.; Kegerise, Michael A.; Wood, William A.; McGinley, Catherine B.; Berger, Karen T.; Anderson, Brian P.

    2010-01-01

    Updates to an analytic tool developed for Shuttle support to predict the onset of boundary layer transition resulting from thermal protection system damage or repair are presented. The boundary layer transition tool is part of a suite of tools that analyze the local aerothermodynamic environment to enable informed disposition of damage for making recommendations to fly as is or to repair. Using mission specific trajectory information and details of each d agmea site or repair, the expected time (and thus Mach number) of transition onset is predicted to help define proper environments for use in subsequent thermal and stress analysis of the thermal protection system and structure. The boundary layer transition criteria utilized within the tool were updated based on new local boundary layer properties obtained from high fidelity computational solutions. Also, new ground-based measurements were obtained to allow for a wider parametric variation with both protuberances and cavities and then the resulting correlations were calibrated against updated flight data. The end result is to provide correlations that allow increased confidence with the resulting transition predictions. Recently, a new approach was adopted to remove conservatism in terms of sustained turbulence along the wing leading edge. Finally, some of the newer flight data are also discussed in terms of how these results reflect back on the updated correlations.

  5. Measurements of a Separating Turbulent Boundary Layer.

    Science.gov (United States)

    1980-04-01

    the uncertainties of most of the dominant terms are less than 30% 40% at many points. In general, the terms involving derivatives with re spect to y...34 DISA Information, no. 13, pp. 29-33. Perry, A.E. and Schofield, W.H. 1973 "Mean Velocity and Shear Stress Distribu- tions in Turbulent Boundary Layers

  6. Nonlinear Transient Growth and Boundary Layer Transition

    Science.gov (United States)

    Paredes, Pedro; Choudhari, Meelan M.; Li, Fei

    2016-01-01

    Parabolized stability equations (PSE) are used in a variational approach to study the optimal, non-modal disturbance growth in a Mach 3 at plate boundary layer and a Mach 6 circular cone boundary layer. As noted in previous works, the optimal initial disturbances correspond to steady counter-rotating streamwise vortices, which subsequently lead to the formation of streamwise-elongated structures, i.e., streaks, via a lift-up effect. The nonlinear evolution of the linearly optimal stationary perturbations is computed using the nonlinear plane-marching PSE for stationary perturbations. A fully implicit marching technique is used to facilitate the computation of nonlinear streaks with large amplitudes. To assess the effect of the finite-amplitude streaks on transition, the linear form of plane- marching PSE is used to investigate the instability of the boundary layer flow modified by spanwise periodic streaks. The onset of bypass transition is estimated by using an N- factor criterion based on the amplification of the streak instabilities. Results show that, for both flow configurations of interest, streaks of sufficiently large amplitude can lead to significantly earlier onset of transition than that in an unperturbed boundary layer without any streaks.

  7. Diagnosis of boundary-layer circulations.

    Science.gov (United States)

    Beare, Robert J; Cullen, Michael J P

    2013-05-28

    Diagnoses of circulations in the vertical plane provide valuable insights into aspects of the dynamics of the climate system. Dynamical theories based on geostrophic balance have proved useful in deriving diagnostic equations for these circulations. For example, semi-geostrophic theory gives rise to the Sawyer-Eliassen equation (SEE) that predicts, among other things, circulations around mid-latitude fronts. A limitation of the SEE is the absence of a realistic boundary layer. However, the coupling provided by the boundary layer between the atmosphere and the surface is fundamental to the climate system. Here, we use a theory based on Ekman momentum balance to derive an SEE that includes a boundary layer (SEEBL). We consider a case study of a baroclinic low-level jet. The SEEBL solution shows significant benefits over Ekman pumping, including accommodating a boundary-layer depth that varies in space and structure, which accounts for buoyancy and momentum advection. The diagnosed low-level jet is stronger than that determined by Ekman balance. This is due to the inclusion of momentum advection. Momentum advection provides an additional mechanism for enhancement of the low-level jet that is distinct from inertial oscillations.

  8. Instabilities and transition in boundary layers

    Indian Academy of Sciences (India)

    Abstract. Some recent developments in boundary layer instabilities and transition are reviewed. Background disturbance levels determine the instability mechanism that ulti- mately leads to turbulence. At low noise levels, the traditional Tollmien–Schlichting route is followed, while at high levels, a 'by-pass' route is more ...

  9. Numerical methods for hypersonic boundary layer stability

    Science.gov (United States)

    Malik, M. R.

    1990-01-01

    Four different schemes for solving compressible boundary layer stability equations are developed and compared, considering both the temporal and spatial stability for a global eigenvalue spectrum and a local eigenvalue search. The discretizations considered encompass: (1) a second-order-staggered finite-difference scheme; (2) a fourth-order accurate, two-point compact scheme; (3) a single-domain Chebychev spectral collocation scheme; and (4) a multidomain spectral collocation scheme. As Mach number increases, the performance of the single-domain collocation scheme deteriorates due to the outward movement of the critical layer; a multidomain spectral method is accordingly designed to furnish superior resolution of the critical layer.

  10. Competing disturbance amplification mechanisms in two-fluid boundary layers

    Science.gov (United States)

    Saha, Sandeep; Page, Jacob; Zaki, Tamer

    2015-11-01

    The linear stability of boundary layers above a thin wall film of lower viscosity is analyzed. Appropriate choice of the film thickness and viscosity excludes the possibility of interfacial instabilities. Transient amplification of disturbances is therefore the relevant destabilizing influence, and can take place via three different mechanisms in the two-fluid configuration. Each is examined in detail by solving an initial value problem whose initial condition comprises a pair of appropriately chosen eigenmodes from the discrete, continuous and interface modes. Two regimes are driven by the lift-up mechanism: (i) The response to a streamwise vortex and (ii) the normal vorticity generated by a stable Tollmien-Schlichting wave. Both are damped due to the film. The third regime is associated with the wall-normal vorticity that is generated by the interface displacement. It can lead to appreciable streamwise velocity disturbances in the near-wall region at relatively low viscosity ratios. The results demonstrate that a wall film can stabilize the early linear stages of boundary-layer transition, and explain the observations from the recent nonlinear direct numerical simulations of this configuration by Jung & Zaki (J. Fluid Mech., vol 772, 2015, 330-360).

  11. Turbulent dispersion in cloud-topped boundary layers

    NARCIS (Netherlands)

    Verzijlbergh, R.A.; Jonker, H.J.J.; Heus, T.; Vilà-Guerau de Arellano, J.

    2009-01-01

    Compared to dry boundary layers, dispersion in cloud-topped boundary layers has received less attention. In this LES based numerical study we investigate the dispersion of a passive tracer in the form of Lagrangian particles for four kinds of atmospheric boundary layers: 1) a dry convective boundary

  12. 2007 Program of Study: Boundary Layers

    Science.gov (United States)

    2008-06-01

    zero. The stream function multiplied by the boundary layer thickness is negligible close to the right hand side. This gives, for we = we(y), 0 = xewe ...δsψx(0)− δ3mψ (0). (2) The first derivative of ψ is zero at the left boundary due to the no slip condition. This gives 0 = xewe + δ3mψ (0), (3...which means that the vorticity inserted by the Ekman pumping must be dissipated by the sublayer. We verify that (1.20) is a solution to Eq. 3 xewe

  13. Boundary layer receptivity phenomena in three-dimensional and high-speed boundary layers

    Science.gov (United States)

    Choudhari, Meelan; Streett, Craig L.

    1990-01-01

    The process by which the boundary layer internalizes the environmental disturbances in the form of instability waves is known as the boundary-layer receptivity. The paper discusses the importance of receptivity in transition research. The receptivity scenario for three-dimensional and high-speed boundary layers is examined. It is found that, while receptivity mechanisms present in the low-speed case are also operative in these complex flows, certain uniquely 'compressible' receptivity mechanisms may come into play as well. Both numerical, and where convenient, asymptotic procedures are utilized to develop quantitative predictions of the localized generation of a variety of instability types (Tollmien-Schlichting, inflectional, higher modes, crossflow vortices) in boundary layer flows relevant to the National Aero-Space Plane (NASP).

  14. Boundary-layer turbulence as a kangaroo process

    Science.gov (United States)

    Dekker, H.; de Leeuw, G.; Maassen van den Brink, A.

    1995-09-01

    A nonlocal mixing-length theory of turbulence transport by finite size eddies is developed by means of a novel evaluation of the Reynolds stress. The analysis involves the contruct of a sample path space and a stochastic closure hypothesis. The simplifying property of exhange (strong eddies) is satisfied by an analytical sampling rate model. A nonlinear scaling relation maps the path space onto the semi-infinite boundary layer. The underlying near-wall behavior of fluctuating velocities perfectly agrees with recent direct numerical simulations. The resulting integro-differential equation for the mixing of scalar densities represents fully developed boundary-layer turbulence as a nondiffusive (Kubo-Anderson or kangaroo) type of stochastic process. The model involves a scaling exponent ɛ (with ɛ-->∞ in the diffusion limit). For the (partly analytical) solution for the mean velocity profile, excellent agreement with the experimental data yields ɛ~=0.58.

  15. Motion of red blood cells near microvessel walls: effects of a porous wall layer

    Science.gov (United States)

    HARIPRASAD, DANIEL S.; SECOMB, TIMOTHY W.

    2013-01-01

    A two-dimensional model is used to simulate the motion and deformation of a single mammalian red blood cell (RBC) flowing close to the wall of a microvessel, taking into account the effects of a porous endothelial surface layer (ESL) lining the vessel wall. Migration of RBCs away from the wall leads to the formation of a cell-depleted layer near the wall, which has a large effect on the resistance to blood flow in microvessels. The objective is to examine the mechanical factors causing this migration, including the effects of the ESL. The vessel is represented as a straight parallel-sided channel. The RBC is represented as a set of interconnected viscoelastic elements, suspended in plasma, a Newtonian fluid. The ESL is represented as a porous medium, and plasma flow in the layer is computed using the Brinkman approximation. It is shown that an initially circular cell positioned close to the ESL in a shear flow is deformed into an asymmetric shape. This breaking of symmetry leads to migration away from the wall. With increasing hydraulic resistivity of the layer, the rate of lateral migration increases. It is concluded that mechanical interactions of RBCs flowing in microvessels with a porous wall layer may reduce the rate of lateral migration and hence reduce the width of the cell-depleted zone external to the ESL, relative to the cell-depleted zone that would be formed if the interface between the ESL and free-flowing plasma were replaced by an impermeable boundary. PMID:23493820

  16. Active control of ionized boundary layers

    CERN Document Server

    Mendes, R V

    1997-01-01

    The challenging problems, in the field of control of chaos or of transition to chaos, lie in the domain of infinite-dimensional systems. Access to all variables being impossible in this case and the controlling action being limited to a few collective variables, it will not in general be possible to drive the whole system to the desired behaviour. A paradigmatic problem of this type is the control of the transition to turbulence in the boundary layer of fluid motion. By analysing a boundary layer flow for an ionized fluid near an airfoil, one concludes that active control of the transition amounts to the resolution of an generalized integro-differential eigenvalue problem. To cope with the required response times and phase accuracy, electromagnetic control, whenever possible, seems more appropriate than mechanical control by microactuators.

  17. Experimental studies on transitional separated boundary layers

    OpenAIRE

    Serna Serrano, José

    2013-01-01

    Separated transitional boundary layers appear on key aeronautical processes such as the flow around wings or turbomachinery blades. The aim of this thesis is the study of these flows in representative scenarios of technological applications, gaining knowledge about phenomenology and physical processes that occur there and, developing a simple model for scaling them. To achieve this goal, experimental measurements have been carried out in a low speed facility, ensuring the flow homogeneity and...

  18. Boundary Layer Transition Results From STS-114

    Science.gov (United States)

    Berry, Scott A.; Horvath, Thomas J.; Cassady, Amy M.; Kirk, Benjamin S.; Wang, K. C.; Hyatt, Andrew J.

    2006-01-01

    The tool for predicting the onset of boundary layer transition from damage to and/or repair of the thermal protection system developed in support of Shuttle Return to Flight is compared to the STS-114 flight results. The Boundary Layer Transition (BLT) Tool is part of a suite of tools that analyze the aerothermodynamic environment of the local thermal protection system to allow informed disposition of damage for making recommendations to fly as is or to repair. Using mission specific trajectory information and details of each damage site or repair, the expected time of transition onset is predicted to help determine the proper aerothermodynamic environment to use in the subsequent thermal and stress analysis of the local structure. The boundary layer transition criteria utilized for the tool was developed from ground-based measurements to account for the effect of both protuberances and cavities and has been calibrated against flight data. Computed local boundary layer edge conditions provided the means to correlate the experimental results and then to extrapolate to flight. During STS-114, the BLT Tool was utilized and was part of the decision making process to perform an extravehicular activity to remove the large gap fillers. The role of the BLT Tool during this mission, along with the supporting information that was acquired for the on-orbit analysis, is reviewed. Once the large gap fillers were removed, all remaining damage sites were cleared for reentry as is. Post-flight analysis of the transition onset time revealed excellent agreement with BLT Tool predictions.

  19. Clidar Mountain Boundary Layer Case Studies

    Directory of Open Access Journals (Sweden)

    Sharma Nimmi C. P.

    2016-01-01

    Full Text Available A CCD Camera Lidar system called the CLidar system images a vertically pointing laser from the side with a spatially separated CCD camera and wide angle optics. The system has been used to investigate case studies of aerosols in mountain boundary layers in in the times following sunset. The aerosols detected by the system demonstrate the wide variation of near ground aerosol structure and capabilities of the CLidar system.

  20. Boundary-layer theory. 9. ed.

    Energy Technology Data Exchange (ETDEWEB)

    Schlichting, Hermann [Technische Univ. Braunschweig (Germany). Inst. fuer Stroemungsmechanik; Gersten, Klaus [Bochum Univ. (Germany). Lehrstuhl fuer Thermodynamik und Stroemungsmechanik

    2017-03-01

    This new edition of the near-legendary textbook by Schlichting and revised by Gersten presents a comprehensive overview of boundary-layer theory and its application to all areas of fluid mechanics, with particular emphasis on the flow past bodies (e.g. aircraft aerodynamics). The new edition features an updated reference list and over 100 additional changes throughout the book, reflecting the latest advances on the subject.

  1. Recovery of vortex packet organization in perturbed turbulent boundary layers

    Science.gov (United States)

    Tan, Yan Ming; Longmire, Ellen K.

    2017-10-01

    Turbulent boundary layers with R eτ=2500 were perturbed by an array of cylinders projecting outward from the wall, and the flow organization downstream was investigated at multiple measurement heights in the logarithmic region. Two array heights were considered: H =0.2 δ , extending through the log region and H =δ , extending to the top of the boundary layer. Results from instantaneous PIV in wall-parallel planes and a vortex packet identification algorithm clearly showed a bottom-up mechanism for packet recovery downstream of the H =δ array, even though streamwise velocity statistics remained strongly perturbed. In contrast, some indications of top-down recovery were observed for the flow perturbed by the shorter H =0.2 δ (H+=500 ) array. In this case, however, packet structures closer to the wall at z+=125 remained altered beyond the end of the measurement domain 7δ downstream of the cylinders even though streamwise velocity statistics relaxed nearly to the unperturbed values.

  2. Coupled wake boundary layer model of windfarms

    Science.gov (United States)

    Stevens, Richard; Gayme, Dennice; Meneveau, Charles

    2014-11-01

    We present a coupled wake boundary layer (CWBL) model that describes the distribution of the power output in a windfarm. The model couples the traditional, industry-standard wake expansion/superposition approach with a top-down model for the overall windfarm boundary layer structure. Wake models capture the effect of turbine positioning, while the top-down approach represents the interaction between the windturbine wakes and the atmospheric boundary layer. Each portion of the CWBL model requires specification of a parameter that is unknown a-priori. The wake model requires the wake expansion rate, whereas the top-down model requires the effective spanwise turbine spacing within which the model's momentum balance is relevant. The wake expansion rate is obtained by matching the mean velocity at the turbine from both approaches, while the effective spanwise turbine spacing is determined from the wake model. Coupling of the constitutive components of the CWBL model is achieved by iterating these parameters until convergence is reached. We show that the CWBL model predictions compare more favorably with large eddy simulation results than those made with either the wake or top-down model in isolation and that the model can be applied successfully to the Horns Rev and Nysted windfarms. The `Fellowships for Young Energy Scientists' (YES!) of the Foundation for Fundamental Research on Matter supported by NWO, and NSF Grant #1243482.

  3. Pressure measurements in a rapidly sheared turbulent wall layer

    Science.gov (United States)

    Diwan, Sourabh; Morrison, Jonathan

    2014-11-01

    The aim of the present work is to improve understanding of the role of pressure fluctuations in the generation of coherent structures in wall-bounded turbulent flows, with particular regard to the rapid and slow source terms. The work is in part motivated by the recent numerical simulations of Sharma et al. (Phy. Fluids, 23, 2011), which showed the importance of pressure fluctuations (and their spatial gradients) in the dynamics of large-scale turbulent motions. Our experimental design consists of first generating a shearless boundary layer in a wind tunnel by passing a grid-generated turbulent flow over a moving floor whose speed is matched to the freestream velocity, and then shearing it rapidly by passing it over a stationary floor further downstream. Close to the leading edge of the stationary floor, the resulting flow is expected to satisfy the approximations of the Rapid Distortion Theory and therefore would be an ideal candidate for studying linear processes in wall turbulence. We carry out pressure measurements on the wall as well as within the flow - the former using surface mounted pressure transducers and the latter using a static pressure probe similar in design to that used by Tsuji et al. (J. Fluid. Mech. 585, 2007). We also present a comparison between the rapidly sheared flow and a more conventional boundary layer subjected to a turbulent free stream. We acknowledge the financial support from EPSRC (Grant No. EP/I037938).

  4. Investigation of turbulent boundary layer flow over 2D bump using highly resolved large eddy simulation

    DEFF Research Database (Denmark)

    Cavar, Dalibor; Meyer, Knud Erik

    2011-01-01

    not provide a direct possibility for wall-damping of, e.g., the Smagorinsky constant in the near-wall region. The grid utilized in the main calculation consisted of approximately 9.4 × 106 grid points and the boundary layer flow results obtained, regarding both mean flow profiles and turbulence quantities...

  5. Traction reveals mechanisms of wall effects for microswimmers near boundaries

    Science.gov (United States)

    Shen, Xinhui; Marcos, Fu, Henry C.

    2017-03-01

    The influence of a plane boundary on low-Reynolds-number swimmers has frequently been studied using image systems for flow singularities. However, the boundary effect can also be expressed using a boundary integral representation over the traction on the boundary. We show that examining the traction pattern on the boundary caused by a swimmer can yield physical insights into determining when far-field multipole models are accurate. We investigate the swimming velocities and the traction of a three-sphere swimmer initially placed parallel to an infinite planar wall. In the far field, the instantaneous effect of the wall on the swimmer is well approximated by that of a multipole expansion consisting of a force dipole and a force quadrupole. On the other hand, the swimmer close to the wall must be described by a system of singularities reflecting its internal structure. We show that these limits and the transition between them can be independently identified by examining the traction pattern on the wall, either using a quantitative correlation coefficient or by visual inspection. Last, we find that for nonconstant propulsion, correlations between swimming stroke motions and internal positions are important and not captured by time-averaged traction on the wall, indicating that care must be taken when applying multipole expansions to study boundary effects in cases of nonconstant propulsion.

  6. Control of Boundary Layers for Aero-optical Applications

    Science.gov (United States)

    2015-06-23

    Tunnel ( TWT ) facility located in Hessert Laboratory for Aerospace Research at the University of 8 Notre Dame. The TWT is composed of an inlet...4.2 Results One set of measurements were conducted in the Hessert Transonic Wind Tunnel ( TWT ) at the University of Notre Dame. The total length...Boundary Layer Wall Heating Conditions Facility V∞ [m/s] M δ [cm] Reθ ΔT [K] fsamp [kHz] Caltech MWT 9.4 0.03 2.7 1,700 21 30 ND TWT 64.8 0.18 1.2

  7. Characteristics of vortex packets in a boundary layer

    Science.gov (United States)

    Ganapathisubramani, Bharathram; Longmire, Ellen; Marusic, Ivan

    2002-11-01

    Stereo PIV was used to measure all three velocity components in streamwise-spanwise (x-y) planes of a turbulent boundary layer at Re_τ = 1060. Datasets were obtained in the log layer and beyond. The vector fields in the log layer (z^+ = 92 and 150, z - wall normal direction) revealed signatures of vortex packets similar to those found by Adrian and co-workers in their PIV experiments. Groups of legs of hairpin vortices appeared to be coherently arranged along the x direction. These regions also generated substantial Reynolds shear stress (-uw), sometimes as high as 40U_τ^2. A feature extraction algorithm was developed to automate the identification and characterization of these packets of hairpin vortices. Identified patches contributed 28% to the total -uw while occupying less than 5% of the total area in the log layer. Beyond the log layer (z^+ = 198, 530), the spatial organization into packets breaks down. Instead, large individual vortex cores and spanwise strips of positive and negative wall-normal velocity were observed. Supported by NSF (ACI-9982774, CTS-9983933).

  8. CFD simulation of neutral ABL flows; Atmospheric Boundary Layer

    Energy Technology Data Exchange (ETDEWEB)

    Xiaodong Zhang

    2009-04-15

    This work is to evaluate the CFD prediction of Atmospheric Boundary Layer flow field over different terrains employing Fluent 6.3 software. How accurate the simulation could achieve depend on following aspects: viscous model, wall functions, agreement of CFD model with inlet wind velocity profile and top boundary condition. Fluent employ wall function roughness modifications based on data from experiments with sand grain roughened pipes and channels, describe wall adjacent zone with Roughness Height (Ks) instead of Roughness Length (z{sub 0}). In a CFD simulation of ABL flow, the mean wind velocity profile is generally described with either a logarithmic equation by the presence of aerodynamic roughness length z{sub 0} or an exponential equation by the presence of exponent. As indicated by some former researchers, the disagreement between wall function model and ABL velocity profile description will result in some undesirable gradient along flow direction. There are some methods to improve the simulation model in literatures, some of them are discussed in this report, but none of those remedial methods are perfect to eliminate the streamwise gradients in mean wind speed and turbulence, as EllipSys3D could do. In this paper, a new near wall treatment function is designed, which, in some degree, can correct the horizontal gradients problem. Based on the corrected model constants and near wall treatment function, a simulation of Askervein Hill is carried out. The wind condition is neutrally stratified ABL and the measurements are best documented until now. Comparison with measured data shows that the CFD model can well predict the velocity field and relative turbulence kinetic energy field. Furthermore, a series of artificial complex terrains are designed, and some of the main simulation results are reported. (au)

  9. A global boundary-layer height climatology

    Energy Technology Data Exchange (ETDEWEB)

    Dop, H. van; Krol, M.; Holtslag, B. [Inst. for Marine and Atmospheric Research Utrecht, IMAU, Utrecht (Netherlands)

    1997-10-01

    In principle the ABL (atmospheric boundary layer) height can be retrieved from atmospheric global circulation models since they contain algorithms which determine the intensity of the turbulence as a function of height. However, these data are not routinely available, or on a (vertical) resolution which is too crude in view of the application. This justifies the development of a separate algorithm in order to define the ABL. The algorithm should include the generation of turbulence by both shear and buoyancy and should be based on readily available atmospheric parameters. There is obviously a wide application for boundary heights in off-line global and regional chemistry and transport modelling. It is also a much used parameter in air pollution meteorology. In this article we shall present a theory which is based on current insights in ABL dynamics. The theory is applicable over land and sea surfaces in all seasons. The theory is (for various reasons) not valid in mountainous areas. In areas where boundary-layer clouds or deep cumulus convection are present the theory does not apply. However, the same global atmospheric circulation models contain parameterizations for shallow and deep convection from which separate estimates can be obtained for the extent of vertical mixing. (au)

  10. Turbulent Boundary Layer at Large Re

    Directory of Open Access Journals (Sweden)

    Horia DUMITRESCU

    2016-03-01

    Full Text Available The fluids as deformable bodies without own shape, when starting from rest, experience interactions between the flowing fluid and the physical surfaces marking the bounds of flow. These interactions are a kind of impact process where there is a momentum exchange between two colliding bodies, i.e. the flow and its boundary surfaces. Within a short time of contact a post-impact shear flow occurs where two main effects are triggered off by the flow-induced collision: dramatic redistribution of the momentum and the boundary vorticity followed by the shear stress/viscosity change in the microstructure of the fluid which at the beginning behaves as linear reactive medium and latter as nonlinear dispersive medium. The disturbance of the starting flow induces the entanglement of the wall-bounded flow in the form of point-vortices or concentrated vorticity balls whence waves are emitted and propagated through flow field. The paper develops a wave mechanism for the transport of the concentrated boundary vorticity, directly related to the fascinating turbulence phenomenon, using the torsion concept of vorticity filaments associated with the hypothesis of thixotropic/nonlinear viscous fluid.

  11. RANS Modeling of Benchmark Shockwave / Boundary Layer Interaction Experiments

    Science.gov (United States)

    Georgiadis, Nick; Vyas, Manan; Yoder, Dennis

    2010-01-01

    This presentation summarizes the computations of a set of shock wave / turbulent boundary layer interaction (SWTBLI) test cases using the Wind-US code, as part of the 2010 American Institute of Aeronautics and Astronautics (AIAA) shock / boundary layer interaction workshop. The experiments involve supersonic flows in wind tunnels with a shock generator that directs an oblique shock wave toward the boundary layer along one of the walls of the wind tunnel. The Wind-US calculations utilized structured grid computations performed in Reynolds-averaged Navier-Stokes mode. Three turbulence models were investigated: the Spalart-Allmaras one-equation model, the Menter Shear Stress Transport wavenumber-angular frequency two-equation model, and an explicit algebraic stress wavenumber-angular frequency formulation. Effects of grid resolution and upwinding scheme were also considered. The results from the CFD calculations are compared to particle image velocimetry (PIV) data from the experiments. As expected, turbulence model effects dominated the accuracy of the solutions with upwinding scheme selection indicating minimal effects.!

  12. A Coordinate Transformation for Unsteady Boundary Layer Equations

    Directory of Open Access Journals (Sweden)

    Paul G. A. CIZMAS

    2011-12-01

    Full Text Available This paper presents a new coordinate transformation for unsteady, incompressible boundary layer equations that applies to both laminar and turbulent flows. A generalization of this coordinate transformation is also proposed. The unsteady boundary layer equations are subsequently derived. In addition, the boundary layer equations are derived using a time linearization approach and assuming harmonically varying small disturbances.

  13. Mass and heat transfers in the parietal boundary layer and inside a flat porous wall submitted to effusion or transpiration; Transferts de masse et de chaleur dans la couche limite parietale et a l'interieur d'une paroi poreuse plane soumise a de l'effusion ou de la transpiration

    Energy Technology Data Exchange (ETDEWEB)

    Bellettre, J.

    1998-12-01

    The flows and the heat transfer near and inside a porous wall subjected to an internal flow are numerically and experimentally studied. Numerical simulations of the main flow are performed using a classical model of turbulence (RNG k-{xi} model). A discrete modeling of blowing through a porous plate is developed in order to predict interactions between the main flow and the injected fluid. Numerical results are in good agreement with experimental data obtained with a subsonic wind tunnel. The coupling between the heat transfer near and inside porous plates is studied for different injection rates, main flow temperatures and internal exchange surfaces of porous media. Surfaces temperatures are calculated using a nodal model of internal heat transfer, linked to the model of boundary layer submitted to injection. By comparing numerical and experimental temperatures of walls, the heat transfer coefficients inside porous media are calculated. In order to improve the thermal protection of walls, the transpiration with a liquid is studied. Experimental results, obtained with ethanol injection whereas the main flow is gaseous, show an important enhancement of the protection process. The coolant evaporation rate is calculated using measurement of mass fraction in the boundary layer and is used for the numerical study of mass transfer in the boundary layer. (author)

  14. The Stokes boundary layer for a thixotropic or antithixotropic fluid

    KAUST Repository

    McArdle, Catriona R.

    2012-10-01

    We present a mathematical investigation of the oscillatory boundary layer in a semi-infinite fluid bounded by an oscillating wall (the so-called \\'Stokes problem\\'), when the fluid has a thixotropic or antithixotropic rheology. We obtain asymptotic solutions in the limit of small-amplitude oscillations, and we use numerical integration to validate the asymptotic solutions and to explore the behaviour of the system for larger-amplitude oscillations. The solutions that we obtain differ significantly from the classical solution for a Newtonian fluid. In particular, for antithixotropic fluids the velocity reaches zero at a finite distance from the wall, in contrast to the exponential decay for a thixotropic or a Newtonian fluid.For small amplitudes of oscillation, three regimes of behaviour are possible: the structure parameter may take values defined instantaneously by the shear rate, or by a long-term average; or it may behave hysteretically. The regime boundaries depend on the precise specification of structure build-up and breakdown rates in the rheological model, illustrating the subtleties of complex fluid models in non-rheometric settings. For larger amplitudes of oscillation the dominant behaviour is hysteretic. We discuss in particular the relationship between the shear stress and the shear rate at the oscillating wall. © 2012 Elsevier B.V.

  15. Liquid-crystalline state of the wall-adjacent layers of some polar liquids

    National Research Council Canada - National Science Library

    Derjaguin, B.V; Popovskij, Yu.M; Altoiz, B.A

    1992-01-01

    ... of some polar liquids, of interfaces separating boundary layers with modified properties from the bulk liquid phase (1). The existence of such an interface was established, for example, in work (2) when studying the local values of viscosity in the wall-adjacent layers of sebacine-amyl ester. Figure 1 represents the dependence calculated according to data (2)...

  16. Modeling and computation of boundary-layer flows laminar, turbulent and transitional boundary layers in incompressible and compressible flows

    CERN Document Server

    Cebeci, Tuncer

    2005-01-01

    This second edition of our book extends the modeling and calculation of boundary-layer flows to include compressible flows. The subjects cover laminar, transitional and turbulent boundary layers for two- and three-dimensional incompressible and compressible flows. The viscous-inviscid coupling between the boundary layer and the inviscid flow is also addressed. The book has a large number of homework problems.

  17. Exploring Isothermal Layers in the Stable Atmospheric Boundary Layer

    Science.gov (United States)

    Wilkins, Joseph

    2011-03-01

    Simulating the stable atmospheric boundary-layer presents a significant challenge to numerical models due to the interactions of several processes with widely varying scales. The goal of this project is to more clearly define the cause of isothermal layers observed during the Meteorological Experiment in Arizona's Meteor Crater and to test the National Taiwan University/Purdue University (NTU/P) model in stable environments with complex terrain. The NTU/P model is able to utilize the actual terrain data with minimal smoothing for stability. We have found that isothermal profiles can be generated by the standing wave that develops due to weak wind flowing over the crater. However, the horizontal heterogeneity is greater than observed. Continued effort will explore enhancing horizontal mixing due to turbulence and radiative transfer. Louis Stokes Alliances for Minority Participation Program, Summer Research Opportunities Program.

  18. Analysis of Numerical Simulation Database for Pressure Fluctuations Induced by High-Speed Turbulent Boundary Layers

    Science.gov (United States)

    Duan, Lian; Choudhari, Meelan M.

    2014-01-01

    Direct numerical simulations (DNS) of Mach 6 turbulent boundary layer with nominal freestream Mach number of 6 and Reynolds number of Re(sub T) approximately 460 are conducted at two wall temperatures (Tw/Tr = 0.25, 0.76) to investigate the generated pressure fluctuations and their dependence on wall temperature. Simulations indicate that the influence of wall temperature on pressure fluctuations is largely limited to the near-wall region, with the characteristics of wall-pressure fluctuations showing a strong temperature dependence. Wall temperature has little influence on the propagation speed of the freestream pressure signal. The freestream radiation intensity compares well between wall-temperature cases when normalized by the local wall shear; the propagation speed of the freestream pressure signal and the orientation of the radiation wave front show little dependence on the wall temperature.

  19. HIFiRE-5 Boundary Layer Transition and HIFiRE-1 Shock Boundary Layer Interaction

    Science.gov (United States)

    2015-10-01

    ballistic trajectory , with no active attitude control. The elliptic cone test article remained attached to the second stage booster at all times...Page Figure 1 Rollup of Boundary-layer into Streamwise Vortex on 2:1 Sharp Elliptic Cone, Similar to HIFiRE-5 (from Ref...Bulge of 2:1 Elliptic Cone13 ..............6 Figure 4 Photograph of Model

  20. Investigation of large-scale structures in turbulent boundary layers using PIV in multiple planes

    Science.gov (United States)

    Marusic, Ivan; Hutchins, Nick; Ganapathisubramani, Bharathram; Hambleton, Will; Longmire, Ellen

    2004-11-01

    Stereo-PIV measurements were made on multiple planes in a turbulent boundary layer, including inclined cross-stream planes at ±45^rc to the streamwise direction, together with streamwise-wall-normal and streamwise-spanwise planes. The results show clear evidence of large-scale organization with long streamwise low-momentum zones consistent with the scenario of spatially coherent packets of hairpin vortices in the logarithmic region of the flow. Statistical correlation analysis across the boundary layer indicates the occurrence of a distinct two-regime behavior, in which streamwise-velocity-fluctuation correlation contours either appear to be coupled to the buffer region, or decoupled from it. The demarkation between these two regimes is found to scale well with outer variables. The results are consistent with a coherent structure that becomes increasingly uncoupled (or decorrelated) from the wall as it grows beyond the logarithmic region, providing additional support for a wall-wake description of turbulent boundary layers.

  1. Role of residual layer and large-scale phenomena on the evolution of the boundary layer

    NARCIS (Netherlands)

    Blay, E.; Pino, D.; Vilà-Guerau de Arellano, J.; Boer, van de A.; Coster, de O.; Faloona, I.; Garrouste, O.; Hartogensis, O.K.

    2012-01-01

    Mixed-layer theory and large-eddy simulations are used to analyze the dynamics of the boundary layer on two intensive operational periods during the Boundary Layer Late Afternoon and Sunset Turbulence (BLLAST) campaign: 1st and 2nd of July 2011, when convective boundary layers (CBLs) were observed.

  2. Thermographic analysis of turbulent non-isothermal water boundary layer

    CERN Document Server

    Znamenskaya, Irina A

    2015-01-01

    The paper is devoted to the investigation of the turbulent water boundary layer in the jet mixing flows using high-speed infrared (IR) thermography. Two turbulent mixing processes were studied: a submerged water jet impinging on a flat surface and two intersecting jets in a round disc-shaped vessel. An infrared camera (FLIR Systems SC7700) was focused on the window transparent for IR radiation; it provided high-speed recordings of heat fluxes from a thin water layer close to the window. Temperature versus time curves at different points of water boundary layer near the wall surface were acquired using the IR camera with the recording frequency of 100 Hz. The time of recording varied from 3 till 20 min. The power spectra for the temperature fluctuations at different points on the hot-cold water mixing zone were calculated using the Fast Fourier Transform algorithm. The obtained spectral behavior was compared to the Kolmogorov "-5/3 spectrum" (a direct energy cascade) and the dual-cascade scenario predicted for...

  3. Helicity in the atmospheric boundary layer

    Science.gov (United States)

    Kurgansky, Michael; Koprov, Boris; Koprov, Victor; Chkhetiani, Otto

    2017-04-01

    An overview is presented of recent direct field measurements at the Tsimlyansk Scientific Station of A.M. Obukhov Institute of Atmospheric Physics in Moscow of turbulent helicity (and potential vorticity) using four acoustic anemometers positioned, within the atmospheric surface-adjacent boundary layer, in the vertices of a rectangular tetrahedron, with an approximate 5 m distance between the anemometers and a 5.5 m elevation of the tetrahedron base above the ground surface (Koprov, Koprov, Kurgansky and Chkhetiani. Izvestiya, Atmospheric and Oceanic Physics, 2015, Vol.51, 565-575). The same ideology was applied in a later field experiment in Tsimlyansk with the tetrahedron's size of 0.7 m and variable elevation over the ground from 3.5 to 25 m. It is illustrated with examples of the statistical distribution of instantaneous (both positive and negative) turbulent helicity values. A theory is proposed that explains the measured mean turbulent helicity sign, including the sign of contribution to helicity from the horizontal and vertical velocity & vorticity components, respectively, and the sign of helicity buoyant production term. By considering a superposition of the classic Ekman spiral solution and a jet-like wind profile that mimics a shallow breeze circulation over a non-uniformly heated Earth surface, a possible explanation is provided, why the measured mean turbulent helicity sign is negative. The pronounced breeze circulation over the Tsimlyansk polygon which is located nearby the Tsimlyansk Reservoir was, indeed, observed during the measurements period. Whereas, essentially positive helicity is injected into the boundary layer from the free atmosphere in the Northern Hemisphere.

  4. Analytical solution for the convectively-mixed atmospheric boundary layer

    NARCIS (Netherlands)

    Ouwersloot, H.G.; Vilà-Guerau de Arellano, J.

    2013-01-01

    Based on the prognostic equations of mixed-layer theory assuming a zeroth order jump at the entrainment zone, analytical solutions for the boundary-layer height evolution are derived with different degrees of accuracy. First, an exact implicit expression for the boundary-layer height for a situation

  5. Direct Numerical Simulation of Hypersonic Turbulent Boundary Layer inside an Axisymmetric Nozzle

    Science.gov (United States)

    Huang, Junji; Zhang, Chao; Duan, Lian; Choudhari, Meelan M.

    2017-01-01

    As a first step toward a study of acoustic disturbance field within a conventional, hypersonic wind tunnel, direct numerical simulations (DNS) of a Mach 6 turbulent boundary layer on the inner wall of a straight axisymmetric nozzle are conducted and the results are compared with those for a flat plate. The DNS results for a nozzle radius to boundary-layer thickness ratio of 5:5 show that the turbulence statistics of the nozzle-wall boundary layer are nearly unaffected by the transverse curvature of the nozzle wall. Before the acoustic waves emanating from different parts of the nozzle surface can interfere with each other and undergo reflections from adjacent portions of the nozzle surface, the rms pressure fluctuation beyond the boundary layer edge increases toward the nozzle axis, apparently due to a focusing effect inside the axisymmetric configuration. Spectral analysis of pressure fluctuations at both the wall and the freestream indicates a similar distribution of energy content for both the nozzle and the flat plate, with the peak of the premultiplied frequency spectrum at a frequency of [(omega)(delta)]/U(sub infinity) approximately 6.0 inside the free stream and at [(omega)(delta)]/U(sub infinity) approximately 2.0 along the wall. The present results provide the basis for follow-on simulations involving reverberation effects inside the nozzle.

  6. Boundary-Layer Bypass Transition Over Large-Scale Bodies

    Science.gov (United States)

    2016-12-16

    AFRL-AFOSR-UK-TR-2017-0007 Boundary - layer bypass transition over large-scale bodies Pierre Ricco UNIVERSITY OF SHEFFIELD, DEPARTMENT OF PSYCHOLOGY...REPORT TYPE Final 3. DATES COVERED (From - To) 01 Sep 2013 to 31 Aug 2016 4. TITLE AND SUBTITLE Boundary - layer bypass transition over large-scale...shape of the streamwise velocity profile compared to the flat-plate boundary layer . The research showed that the streamwise wavenumber plays a key role

  7. Methods and results of boundary layer measurements on a glider

    Science.gov (United States)

    Nes, W. V.

    1978-01-01

    Boundary layer measurements were carried out on a glider under natural conditions. Two effects are investigated: the effect of inconstancy of the development of static pressure within the boundary layer and the effect of the negative pressure difference in a sublaminar boundary layer. The results obtained by means of an ion probe in parallel connection confirm those results obtained by means of a pressure probe. Additional effects which have occurred during these measurements are briefly dealt with.

  8. Study of turbulent boundary layer structures using Tomographic PIV

    Science.gov (United States)

    Gao, Qi; Longmire, Ellen; Ortiz-Duenas, Cecilia

    2009-11-01

    Tomographic-PIV was applied to investigate vortical structures in the logarithmic region of turbulent boundary layers. Measurements were performed in a water channel facility with δ 110 mm for Reτ 2400 and 2900. Laser sheets with thickness up to 7mm were aligned parallel to the bounding surface. Four cameras with 2k x 2k pixels were placed in a rectangular array facing the measurement volume with tilt angle ˜30 to the wall normal direction. Magnification was ˜0.05 mm/pixel. The resulting measurement volumes were 0.8δ x 0.8δ in the streamwise and spanwise directions and 0.065δ or 120 viscous units in the wall-normal direction. Correlations were performed on 64^3 voxel volumes with 75% overlap yielding a vector spacing of 25^3 viscous units. The data were probed using swirl strength and direction as well as convection velocity to identify and characterize relatively large scale eddies and structures within the volumes. The results will be discussed and compared with results at similar wall-normal locations in lower Reynolds number DNS channel (Reτ=590, 934 of Moser et al., 1999 and del 'Alamo et al., 2004) and wind tunnel (Reτ=1160) flows.

  9. Boundary layer and fundamental problems of hydrodynamics (compatibility of a logarithmic velocity profile in a turbulent boundary layer with the experience values)

    Science.gov (United States)

    Zaryankin, A. E.

    2017-11-01

    The compatibility of the semiempirical turbulence theory of L. Prandtl with the actual flow pattern in a turbulent boundary layer is considered in this article, and the final calculation results of the boundary layer is analyzed based on the mentioned theory. It shows that accepted additional conditions and relationships, which integrate the differential equation of L. Prandtl, associating the turbulent stresses in the boundary layer with the transverse velocity gradient, are fulfilled only in the near-wall region where the mentioned equation loses meaning and are inconsistent with the physical meaning on the main part of integration. It is noted that an introduced concept about the presence of a laminar sublayer between the wall and the turbulent boundary layer is the way of making of a physical meaning to the logarithmic velocity profile, and can be defined as adjustment of the actual flow to the formula that is inconsistent with the actual boundary conditions. It shows that coincidence of the experimental data with the actual logarithmic profile is obtained as a result of the use of not particular physical value, as an argument, but function of this value.

  10. Small particle transport across turbulent nonisothermal boundary layers

    Science.gov (United States)

    Rosner, D. E.; Fernandez De La Mora, J.

    1982-01-01

    The interaction between turbulent diffusion, Brownian diffusion, and particle thermophoresis in the limit of vanishing particle inertial effects is quantitatively modeled for applications in gas turbines. The model is initiated with consideration of the particle phase mass conservation equation for a two-dimensional boundary layer, including the thermophoretic flux term directed toward the cold wall. A formalism of a turbulent flow near a flat plate in a heat transfer problem is adopted, and variable property effects are neglected. Attention is given to the limit of very large Schmidt numbers and the particle concentration depletion outside of the Brownian sublayer. It is concluded that, in the parameter range of interest, thermophoresis augments the high Schmidt number mass-transfer coefficient by a factor equal to the product of the outer sink and the thermophoretic suction.

  11. The large Reynolds number - Asymptotic theory of turbulent boundary layers.

    Science.gov (United States)

    Mellor, G. L.

    1972-01-01

    A self-consistent, asymptotic expansion of the one-point, mean turbulent equations of motion is obtained. Results such as the velocity defect law and the law of the wall evolve in a relatively rigorous manner, and a systematic ordering of the mean velocity boundary layer equations and their interaction with the main stream flow are obtained. The analysis is extended to the turbulent energy equation and to a treatment of the small scale equilibrium range of Kolmogoroff; in velocity correlation space the two-thirds power law is obtained. Thus, the two well-known 'laws' of turbulent flow are imbedded in an analysis which provides a great deal of other information.

  12. Pre-LBA Rondonia Boundary Layer Experiment (RBLE) Data

    Data.gov (United States)

    National Aeronautics and Space Administration — The atmospheric boundary layer (ABL) is the layer of air closest to the ground which is directly influenced on a daily basis by the heating and cooling of the...

  13. Pre-LBA Rondonia Boundary Layer Experiment (RBLE) Data

    Data.gov (United States)

    National Aeronautics and Space Administration — ABSTRACT: The atmospheric boundary layer (ABL) is the layer of air closest to the ground which is directly influenced on a daily basis by the heating and cooling of...

  14. Extensive characterisation of a high Reynolds number decelerating boundary layer using advanced optical metrology

    Science.gov (United States)

    Cuvier, C.; Srinath, S.; Stanislas, M.; Foucaut, J. M.; Laval, J. P.; Kähler, C. J.; Hain, R.; Scharnowski, S.; Schröder, A.; Geisler, R.; Agocs, J.; Röse, A.; Willert, C.; Klinner, J.; Amili, O.; Atkinson, C.; Soria, J.

    2017-10-01

    An experiment conducted in the framework of the EUHIT project and designed to characterize large scale structures in an adverse pressure gradient boundary layer flow is presented. Up to 16 sCMOS cameras were used in order to perform large scale turbulent boundary layer PIV measurements with a large field of view and appropriate spatial resolution. To access the span-wise / wall-normal signature of the structures as well, stereoscopic PIV measurements in span-wise/wall-normal planes were performed at specific stream-wise locations. To complement these large field of view measurements, long-range micro-PIV, time resolved near wall velocity profiles and film-based measurements were performed in order to determine the wall-shear stress and its fluctuations at some specific locations along the model.

  15. Control Parameters for Boundary-Layer Instabilities in Unsteady Shock Interactions

    Directory of Open Access Journals (Sweden)

    LaVar King Isaacson

    2012-01-01

    Full Text Available This article presents the computation of a set of control parameters for the deterministic prediction of laminar boundary-layer instabilities induced by an imposed unsteady shock interaction. The objective of the study is exploratory in nature by computing a supersonic flight environment for flow over a blunt body and the deterministic prediction of the spectral entropy rates for the boundary layer subjected to an unsteady pressure disturbance. The deterministic values for the spectral entropy rate within the instabilities are determined for each control parameter. Computational results imply that the instabilities are of a span-wise vortex form, that the maximum vertical velocity wave vector components are produced in the region nearest the wall and that extended transient coherent structures are produced in the boundary layer at a vertical location slightly below the mid-point of the boundary layer.

  16. Boundary-layer effects in droplet splashing.

    Science.gov (United States)

    Riboux, Guillaume; Gordillo, José Manuel

    2017-07-01

    A drop falling onto a solid substrate will disintegrate into smaller parts when its impact velocity V exceeds the so-called critical velocity for splashing, i.e., when V>V^{*}. Under these circumstances, the very thin liquid sheet, which is ejected tangentially to the solid after the drop touches the substrate, lifts off as a consequence of the aerodynamic forces exerted on it. Subsequently, the growth of capillary instabilities breaks the toroidal rim bordering the ejecta into smaller droplets, violently ejected radially outward, provoking the splash [G. Riboux and J. M. Gordillo, Phys. Rev. Lett. 113, 024507 (2014)]PRLTAO0031-900710.1103/PhysRevLett.113.024507. In this contribution, the effect of the growth of the boundary layer is included in the splash model presented in Phys. Rev. Lett. 113, 024507 (2014)PRLTAO0031-900710.1103/PhysRevLett.113.024507, obtaining very good agreement between the measured and the predicted values of V^{*} for wide ranges of liquid and gas material properties, atmospheric pressures, and substrate wettabilities. Our description also modifies the way at when the liquid sheet is first ejected, which can now be determined in a much more straightforward manner than that proposed in Phys. Rev. Lett. 113, 024507 (2014)PRLTAO0031-900710.1103/PhysRevLett.113.024507.

  17. Boundary-layer turbulence modeling and vorticity dynamics: I. A kangaroo-process mixing model of boundary-layer turbulence

    Science.gov (United States)

    Dekker, H.; de Leeuw, G.; van den Brink, A. Maassen

    A nonlocal turbulence transport theory is presented by means of a novel analysis of the Reynolds stress, inter alia involving the construct of a sample path space and a stochastic hypothesis. An analytical sampling rate model (satisfying exchange) and a nonlinear scaling relation (mapping the path space onto the boundary layer) lead to an integro-differential equation for the mixing of scalar densities, which represents fully-developed boundary-layer turbulence as a nondiffusive (Kubo-Anderson or kangaroo) type stochastic process. The underlying near-wall behavior (i.e. for y +→0) of fluctuating velocities fully agrees with recent direct numerical simulations. The model involves a scaling exponent ɛ, with ɛ→∞ in the diffusion limit. For the (partly analytical) solution for the mean velocity profile, excellent agreement with the experimental data yields ɛ≈0.58. The significance of ɛ as a turbulence Cantor set dimension (in the logarithmic profile region, i.e. for y +→∞) is discussed.

  18. Stable Stratification Effects on Flow and Pollutant Dispersion in Boundary Layers Entering a Generic Urban Environment

    NARCIS (Netherlands)

    Tomas, J.M.; Pourquie, M.J.B.M.; Jonker, H.J.J.

    2016-01-01

    Large-eddy simulations (LES) are used to investigate the effect of stable stratification on rural-to-urban roughness transitions. Smooth-wall turbulent boundary layers are subjected to a generic urban roughness consisting of cubes in an in-line arrangement. Two line sources of pollutant are added to

  19. Motion of particles in a thermal boundary layer

    Energy Technology Data Exchange (ETDEWEB)

    Schefer, R.W.; Agrawal, Y.; Cheng, R.K.; Robben, F.; Talbot, L.

    1978-06-15

    In the course of using laser Doppler velocimetry to study combustion in a thermal boundary layer, the particle count rate was found to decrease abruptly to zero inside the boundary layer. Experimental and theoretical investigation of this phenomenon was carried out. The motion of the particles may be due to the combined effects of thermophoresis and radiative heating.

  20. Numerical Simulation of tsunami-scale wave boundary layers

    NARCIS (Netherlands)

    Williams, Isaac A.; Fuhrman, David R.

    2016-01-01

    This paper presents a numerical study of the boundary layer flow and properties induced by tsunami-scale waves. For this purpose, an existing one-dimensional vertical (1DV) boundary layer model, based on the horizontal component of the incompressible Reynolds-averaged Navier–Stokes (RANS) equations,

  1. Coherent structures in wave boundary layers. Part 2. Solitary motion

    DEFF Research Database (Denmark)

    Sumer, B. Mutlu; Jensen, Palle Martin; Sørensen, Lone B.

    2010-01-01

    This study continues the investigation of wave boundary layers reported by Carstensen, Sumer & Fredsøe (J. Fluid Mech., 2010, part 1 of this paper). The present paper summarizes the results of an experimental investigation of turbulent solitary wave boundary layers, simulated by solitary motion...

  2. Characterization of the atmospheric boundary layer from radiosonde ...

    Indian Academy of Sciences (India)

    moisture) or substances originating from the sur- face. It is usually flatter than the boundary layer, but fills the whole ABL in the deep convective boundary layers ..... Wea. Rev. 92 235–242. Holzworth G C 1967 Mixing depths, wind speeds and air pollution potential for selected locations in the United. States; J. Appl. Meteorol.

  3. Coupled wake boundary layer model of wind-farms

    NARCIS (Netherlands)

    Stevens, Richard Johannes Antonius Maria; Gayme, Dennice F.; Meneveau, Charles

    2015-01-01

    We present and test a coupled wake boundary layer (CWBL) model that describes the distribution of the power output in a wind-farm. This model couples the traditional, industry-standard wake model approach with a “top-down” model for the overall wind-farm boundary layer structure. The wake model

  4. The turning of the wind in the atmospheric boundary layer

    DEFF Research Database (Denmark)

    Pena Diaz, Alfredo; Gryning, Sven-Erik; Floors, Rogier Ralph

    2014-01-01

    Here we use accurate observations of the wind speed vector to analyze the behavior with height of the wind direction. The observations are a combination of tall meteorological mast and long-range wind lidar measurements covering the entire atmospheric boundary layer. The observations were performed...... winds underpredict the turning of the wind and the boundary-layer winds in general....

  5. Marine boundary layer simulation and verification during BOBMEX ...

    Indian Academy of Sciences (India)

    Abstract. A global spectral model (T80L18) that is operational at NCMRWF is utilized to study the structure of the marine boundary layer over the Bay of Bengal during the BOBMEX-Pilot period. The vertical profiles of various meteorological parameters within the boundary layer are studied and verified against the available ...

  6. Numerical simulation of the marine boundary layer characteristics ...

    Indian Academy of Sciences (India)

    A one-dimensional multi- level atmospheric boundary layer with TKE- closure scheme is employed to study the marine boundary layer characteristics. In this study two synoptic situations are chosen: one represents an active convection case and the other a suppressed convection. In the present article the marine ...

  7. Experimental study of boundary layer transition on an airfoil induced by periodically passing wake (II)

    Energy Technology Data Exchange (ETDEWEB)

    Park, T.C. [Seoul National University Graduate School, Seoul (Korea); Jeon, W.P.; Kang, S.H. [Seoul National University, Seoul (Korea)

    2001-06-01

    This paper describes the phenomena of wake-induced transition of the boundary layers on a NACA0012 airfoil using measured phase-averaged data. Especially, the phase-averaged wall shear stresses are reasonably evaluated using the principle of Computational Preston Tube Method. Due to the passing wake, the turbulent patch is generated in the laminar boundary layer on the airfoil and the boundary layer becomes temporarily transitional. The patches propagate downstream with less speed than free-stream velocity and merge with each other at further downstream station, and the boundary layer becomes more transitional. The generation of turbulent patch at the leading edge of the airfoil mainly depends on velocity defects and turbulent intensity profiles of passing wakes. However, the growth and merging of turbulent patches depend on local streamwise pressure gradients as well as characteristics of turbulent patches. In this transition process, the present experimental data show very similar features to the previous numerical and experimental studies. It is confirmed that the two phase-averaged mean velocity dips appear in the outer region of transitional boundary layer for each passing cycle. Relatively high values of the phase-averaged turbulent fluctuations in the outer region indicate the possibility that breakdown occurs in the outer layer not near the wall. (author). 21 refs., 12 figs.

  8. Diffusive boundary layers over varying topography

    KAUST Repository

    Dell, R. W.

    2015-03-25

    Diffusive bottom boundary layers can produce upslope flows in a stratified fluid. Accumulating observations suggest that these boundary layers may drive upwelling and mixing in mid-ocean ridge flank canyons. However, most studies of diffusive bottom boundary layers to date have concentrated on constant bottom slopes. We present a study of how diffusive boundary layers interact with various idealized topography, such as changes in bottom slope, slopes with corrugations and isolated sills. We use linear theory and numerical simulations in the regional ocean modeling system (ROMS) model to show changes in bottom slope can cause convergences and divergences within the boundary layer, in turn causing fluid exchanges that reach far into the overlying fluid and alter stratification far from the bottom. We also identify several different regimes of boundary-layer behaviour for topography with oceanographically relevant size and shape, including reversing flows and overflows, and we develop a simple theory that predicts the regime boundaries, including what topographies will generate overflows. As observations also suggest there may be overflows in deep canyons where the flow passes over isolated bumps and sills, this parameter range may be particularly significant for understanding the role of boundary layers in the deep ocean.

  9. Experimental investigation of vortex properties in a turbulent boundary layer

    Science.gov (United States)

    Ganapathisubramani, Bharathram; Longmire, Ellen K.; Marusic, Ivan

    2006-05-01

    Dual-plane particle image velocimetry experiments were performed in a turbulent boundary layer with Reτ=1160 to obtain all components of the velocity gradient tensor. Wall-normal locations in the logarithmic and wake region were examined. The availability of the complete gradient tensor facilitates improved identification of vortex cores and determination of their orientation and size. Inclination angles of vortex cores were computed using statistical tools such as two-point correlations and joint probability density functions. Also, a vortex identification technique was employed to identify individual cores and to compute inclination angles directly from instantaneous fields. The results reveal broad distributions of inclination angles at both locations. The results are consistent with the presence of many hairpin vortices which are most frequently inclined downstream at an angle of 45∘ with the wall. According to the probability density functions, a relatively small percentage of cores are inclined upstream. The number density of forward leaning cores decreases from the logarithmic to the outer region while the number density of backward-leaning cores remains relatively constant. These trends, together with the correlation statistics, suggest that the backward-leaning cores are part of smaller, weaker structures that have been distorted and convected by larger, predominantly forward-leaning eddies associated with the local shear.

  10. Large eddy simulation of zero-pressure-gradient turbulent boundary layer based on different scaling laws

    Science.gov (United States)

    Cheng, Wan; Samtaney, Ravi

    2013-11-01

    We present results of large eddy simulation (LES) for a smooth-wall, zero-pressure-gradient turbulent boundary layer. We employ the stretched vortex sub-grid-scale model in the simulations augmented by a wall model. Our wall model is based on the virtual-wall model introduced by Chung & Pullin (J. Fluid Mech 2009). An essential component of their wall model is an ODE governing the local wall-normal velocity gradient obtained using inner-scaling ansatz. We test two variants of the wall model based on different similarity laws: one is based on a log-law and the other on a power-law. The specific form of the power law scaling utilized is that proposed by George & Castillo (Appl. Mech. Rev. 1997), dubbed the ``GC Law''. Turbulent inflow conditions are generated by a recycling method, and applying scaling laws corresponding to the two variants of the wall model, and a uniform way to determine the inlet friction velocity. For Reynolds number based on momentum thickness, Reθ , ranging from 104 to 1012 it is found that the velocity profiles generally follow the log law form rather than the power law. For large Reynolds number asymptotic behavior, LES based on different scaling laws the boundary layer thickness and turbulent intensities do not show much difference. Supported by a KAUST funded project on large eddy simulation of turbulent flows. The IBM Blue Gene P Shaheen at KAUST was utilized for the simulations.

  11. LARGE-EDDY SIMULATIONS OF A SEPARATION/REATTACHMENT BUBBLE IN A TURBULENT-BOUNDARY-LAYER SUBJECTED TO A PRESCRIBED UPPER-BOUNDARY, VERTICAL-VELOCITY PROFILE

    KAUST Repository

    Cheng, Wan

    2015-06-30

    We describe large-eddy simulations of turbulent boundary-layer flow over a flat plate at high Reynolds number in the presence of an unsteady, three-dimensional flow separation/reattachment bubble. The stretched-vortex subgrid-scale model is used in the main flow domain combined with a wall-model that is a two-dimensional extension of that developed by Chung & Pullin (2009). Flow separation and re-attachment of the incoming boundary layer is induced by prescribing wall-normal velocity distribution on the upper boundary of the flow domain that produces an adverse-favorable stream-wise pressure distribution at the wall. The LES predicts the distribution of mean shear stress along the wall including the interior of the separation bubble. Several properties of the separation/reattachment flow are discussed.

  12. Investigation of turbulent boundary layer structures using Tomographic PIV

    Science.gov (United States)

    Saikrishnan, Neelakantan; Longmire, Ellen; Wieneke, Bernd

    2008-11-01

    Tomographic particle image velocimetry (TPIV) data were acquired in the logarithmic region of a zero pressure gradient turbulent boundary layer flow at friction Reynolds number Reτ = 1160. Experiments were conducted in a suction type wind tunnel seeded with olive oil particles of diameter ˜ 1μm. The volume of interest was illuminated by two Nd:YAG laser beams expanded with appropriate optics into sheets of 8mm thickness in the wall-normal direction (z). Images were acquired by four 2k x 2k pixel cameras, and correlation of reconstructed fields provided the full velocity gradient tensor in a volume of 0.7δ x 0.7δ x 0.07δ, which resolved the region z^+ = 70-150 in the log layer. Various vortex identification techniques, such as Galilean decomposition and iso-surfaces of two- and three-dimensional swirl, were utilized to visualize and analyze the eddy structures present in instantaneous fields. The results of the present study will be compared to results from earlier experimental studies that relied on planar PIV data only to identify vortices and vortex packets as well as from a direct numerical simulation of fully developed channel flow at comparable Reτ.

  13. Numerical simulation of fluid-structure interaction of turbulent boundary layer with an elastic plate

    Science.gov (United States)

    Anantharamu, Sreevatsa; Mahesh, Krishnan

    2017-11-01

    Understanding the influence of turbulent boundary layer wall-pressure fluctuations on elastic structures is essential to understand the acoustic radiation to far-field due to their vibration. A parallel unsteady structural solver is being developed to solve linear/nonlinear elasticity problems using Finite Element Method. Several wall-pressure cross-spectral density models have been proposed in literature for turbulent boundary layers. A methodology will be discussed to synthetically generate space-time wall-pressure fluctuations given its cross-spectral density. The cross-spectral density of plate displacement from Poisson-Kirchhoff theory will be compared to the results obtained numerically using the synthetically generated pressure fluctuations. Pressure fluctuations from a DNS of turbulent channel flow will then be used to excite the plate. Unsteady stresses inside the plate and the resulting deformation will be discussed. Supported by NSWCCD.

  14. Hydrodynamic structure of the boundary layers in a rotating cylindrical cavity with radial inflow

    Energy Technology Data Exchange (ETDEWEB)

    Herrmann-Priesnitz, Benjamín, E-mail: bherrman@ing.uchile.cl; Torres, Diego A. [Department of Mechanical Engineering, Universidad de Chile, Beauchef 851, Santiago (Chile); Advanced Mining Technology Center, Universidad de Chile, Av. Tupper 2007, Santiago (Chile); Calderón-Muñoz, Williams R. [Department of Mechanical Engineering, Universidad de Chile, Beauchef 851, Santiago (Chile); Energy Center, Universidad de Chile, Av. Tupper 2007, Santiago (Chile); Salas, Eduardo A. [CSIRO-Chile International Centre of Excellence, Apoquindo 2827, Floor 12, Santiago (Chile); Vargas-Uscategui, Alejandro [Department of Mechanical Engineering, Universidad de Chile, Beauchef 851, Santiago (Chile); CSIRO-Chile International Centre of Excellence, Apoquindo 2827, Floor 12, Santiago (Chile); Duarte-Mermoud, Manuel A. [Advanced Mining Technology Center, Universidad de Chile, Av. Tupper 2007, Santiago (Chile); Department of Electrical Engineering, Universidad de Chile, Av. Tupper 2007, Santiago (Chile)

    2016-03-15

    A flow model is formulated to investigate the hydrodynamic structure of the boundary layers of incompressible fluid in a rotating cylindrical cavity with steady radial inflow. The model considers mass and momentum transfer coupled between boundary layers and an inviscid core region. Dimensionless equations of motion are solved using integral methods and a space-marching technique. As the fluid moves radially inward, entraining boundary layers develop which can either meet or become non-entraining. Pressure and wall shear stress distributions, as well as velocity profiles predicted by the model, are compared to numerical simulations using the software OpenFOAM. Hydrodynamic structure of the boundary layers is governed by a Reynolds number, Re, a Rossby number, Ro, and the dimensionless radial velocity component at the periphery of the cavity, U{sub o}. Results show that boundary layers merge for Re < < 10 and Ro > > 0.1, and boundary layers become predominantly non-entraining for low Ro, low Re, and high U{sub o}. Results may contribute to improve the design of technology, such as heat exchange devices, and turbomachinery.

  15. Bristled shark skin: a microgeometry for boundary layer control?

    Energy Technology Data Exchange (ETDEWEB)

    Lang, A W; Hidalgo, P; Westcott, M [Aerospace Engineering and Mechanics Department, University of Alabama, Box 870280, Tuscaloosa, AL 35487 (United States); Motta, P [Biology Department, University of South Florida, 4202 East Fowler Avenue, Tampa, FL 33620 (United States)], E-mail: alang@eng.ua.edu

    2008-12-01

    There exists evidence that some fast-swimming shark species may have the ability to bristle their scales during fast swimming. Experimental work using a water tunnel facility has been performed to investigate the flow field over and within a bristled shark skin model submerged within a boundary layer to deduce the possible boundary layer control mechanisms being used by these fast-swimming sharks. Fluorescent dye flow visualization provides evidence of the formation of embedded cavity vortices within the scales. Digital particle image velocimetry (DPIV) data, used to evaluate the cavity vortex formation and boundary layer characteristics close to the surface, indicate increased momentum in the slip layer forming above the scales. This increase in flow velocity close to the shark's skin is indicative of boundary layer control mechanisms leading to separation control and possibly transition delay for the bristled shark skin microgeometry.

  16. Receptivity and Forced Response to Acoustic Disturbances in High-Speed Boundary Layers

    Science.gov (United States)

    Balakumar, P.; King, Rudolph A.; Chou, Amanda; Owens, Lewis R.; Kegerise, Michael A.

    2016-01-01

    Supersonic boundary-layer receptivity to freestream acoustic disturbances is investigated by solving the Navier-Stokes equations for Mach 3.5 flow over a sharp flat plate and a 7-deg half-angle cone. The freestream disturbances are generated from a wavy wall placed at the nozzle wall. The freestream acoustic disturbances radiated by the wavy wall are obtained by solving the linearized Euler equations. The results for the flat plate show that instability modes are generated at all the incident angles ranging from zero to highly oblique. However, the receptivity coefficient decreases by about 20 times when the incident angle increases from zero to a highly oblique angle of 68 degrees. The results for the cone show that no instability modes are generated when the acoustic disturbances impinge the cone obliquely. The results show that the perturbations generated inside the boundary layer by the acoustic disturbances are the response of the boundary layer to the external forcing. The amplitude of the forced disturbances inside the boundary layer are about 2.5 times larger than the incoming field for zero azimuthal wavenumber and they are about 1.5 times for large azimuthal wavenumbers.

  17. Change of Surface Roughness and Planetary Boundary Layer

    DEFF Research Database (Denmark)

    Jensen, Niels Otto

    1978-01-01

    The ratio between upstream and far downstream surface friction velocities relative to a change in surface roughness is given on the basis of results from surface Rossby number similarity theory. By simple theories for the internal boundary layer, which are found to compare quite well with recent...... numerical results from higher-order closure models, it is found that, even at a downwind distance such that the internal boundary layer has grown to the full height of the planetary boundary layers, the surface stress still considerably exceeds the equilibrium value...

  18. Large Eddy Simulation of the ventilated wave boundary layer

    DEFF Research Database (Denmark)

    Lohmann, Iris P.; Fredsøe, Jørgen; Sumer, B. Mutlu

    2006-01-01

    A Large Eddy Simulation (LES) of (1) a fully developed turbulent wave boundary layer and (2) case 1 subject to ventilation (i.e., suction and injection varying alternately in phase) has been performed, using the Smagorinsky subgrid-scale model to express the subgrid viscosity. The model was found...... slows down the flow in the full vertical extent of the boundary layer, destabilizes the flow and decreases the mean bed shear stress significantly; whereas suction generally speeds up the flow in the full vertical extent of the boundary layer, stabilizes the flow and increases the mean bed shear stress...

  19. Effect of externally generated turbulence on wave boundary layer

    DEFF Research Database (Denmark)

    Fredsøe, Jørgen; Sumer, B. Mutlu; Kozakiewicz, A.

    2003-01-01

    This experimental study deals with the effect of externally generated turbulence on the oscillatory boundary layer to simulate the turbulence in the wave boundary layer under broken waves in the swash zone. The subject has been investigated experimentally in a U-shaped, oscillating water tunnel...... results. The mean and turbulence quantities in the outer flow region are increased substantially with the introduction of the grids. It is shown that the externally generated turbulence is able to penetrate the bed boundary layer, resulting in an increase in the bed shear stress, and therefore...

  20. Stable Boundary Layer Education (STABLE) Final Campaign Summary

    Energy Technology Data Exchange (ETDEWEB)

    Turner, David D. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2016-03-01

    The properties of, and the processes that occur in, the nocturnal stable boundary layer are not well understood, making it difficult to represent adequately in numerical models. The nocturnal boundary layer often is characterized by a temperature inversion and, in the Southern Great Plains region, a low-level jet. To advance our understanding of the nocturnal stable boundary layer, high temporal and vertical resolution data on the temperature and wind properties are needed, along with both large-eddy simulation and cloud-resolving modeling.

  1. Size distributions of boundary-layer clouds

    Energy Technology Data Exchange (ETDEWEB)

    Stull, R.; Berg, L.; Modzelewski, H. [Univ. of Wisconsin, Madison, WI (United States)

    1996-04-01

    Scattered fair-weather clouds are triggered by thermals rising from the surface layer. Not all surface layer air is buoyant enough to rise. Also, each thermal has different humidities and temperatures, resulting in interthermal variability of their lifting condensation levels (LCL). For each air parcel in the surface layer, it`s virtual potential temperature and it`s LCL height can be computed.

  2. Influences on the Height of the Stable Boundary Layer as seen in LES

    Energy Technology Data Exchange (ETDEWEB)

    Kosovic, B; Lundquist, J

    2004-06-15

    Climate models, numerical weather prediction (NWP) models, and atmospheric dispersion models often rely on parameterizations of planetary boundary layer height. In the case of a stable boundary layer, errors in boundary layer height estimation can result in gross errors in boundary-layer evolution and in prediction of turbulent mixing within the boundary layer.

  3. Reactive boundary layers in metallic rolling contacts

    Energy Technology Data Exchange (ETDEWEB)

    Burbank, John

    2016-05-01

    more thorough investigation into the effects of residual austenite on the properties of this material. The high-performance alternative steels, 36NiCrMoV1-5-7 (hot working steel) and 45SiCrMo6 (spring steel), were heat treated as recommended by their respective manufacturers, and were not case-hardened. The selection of materials with and materials without case-hardening allows for an investigation into whether or not case-hardening is even necessary to deliver acceptable friction behaviour and wear performance. Elemental analyses were conducted by multiple methods to ensure accurate results. Residual austenite contents of the steels and the depth profiles of residual stresses were determined by X-Ray diffraction (XRD), for 20MnCr5 ranging from approximately 6 - 14 vol.%, and under 2 vol.% for the alternative alloys. Hardness profiles were taken from the testing surfaces into the material core. The carburization of 20MnCr5 led to higher hardness and the greater concentration of carbon in the carburization zone more representative of a hardened SAE E52100, or 100Cr6/102Cr6, than of a non-case-hardened 20MnCr5. Residual stresses from machining and case-hardening were measured directly at the sample surface. The high-performance steels fulfilled manufacturer expectations in terms of elemental content, with hardness values between 50 - 55 HRC and strongly martensitic microstructure character. With characterization of the chosen materials complete, the materials could then be subjected to pre-conditioning. The first pre-conditioning method involved targeted generation of cold work hardening as induced boundary layers to protect the contact zone against wear. Work hardening was identified both by variations in residual stress profiles, i.e. the introduction of beneficial compressive residual stresses, and hardness increases in the contact zone, providing enhanced wear resistance. Parameters for work hardening were further optimized to reduce damage to the surface substrates

  4. Viscous boundary layers in rotating fluids driven by periodic flows

    Science.gov (United States)

    Bergstrom, R. W.; Cogley, A. C.

    1976-01-01

    The paper analyzes the boundary layers formed in a rotating fluid by an oscillating flow over an infinite half plate, with particular attention paid to the effects of unsteadiness, the critical latitude effect and the structure of the solution to the boundary layer equations at resonance. The Navier-Stokes boundary layer equations are obtained through an asymptotic expansion with the incorporation of the Rossby and Ekman numbers and are analyzed as the sum of a nonlinear steady solution and a linearized unsteady solution. The solution is predominantly composed of two inertial wave vector components, one circularly polarized to the left and the other circularly polarized to the right. The problem considered here has relevance in oceanography and meteorology, with special reference to the unsteady atmospheric boundary layer.

  5. Coherent structures in wave boundary layers. Part 1. Oscillatory motion

    DEFF Research Database (Denmark)

    Carstensen, Stefan; Sumer, B. Mutlu; Fredsøe, Jørgen

    2010-01-01

    This work concerns oscillatory boundary layers over smooth beds. It comprises combined visual and quantitative techniques including bed shear stress measurements. The experiments were carried out in an oscillating water tunnel. The experiments reveal two significant coherent flow structures: (i) ...

  6. Resistance Laws For Stable Baroclinic Boundary Layers Revisited

    Science.gov (United States)

    Zilitinkevich, S.; Baklanov, A.; Djolov, G.; Esau, I.

    An advanced theoretical model is proposed including the effects of the free-flow sta- bility and baroclinicity in the resistance law for stable boundary layers. Theoretical predictions are verified against LES and experimental data. This new development ex- plains low accuracy of all earlier resistance law formulation and opens up fresh oppor- tunities for improved parameterisation of stable boundary layers in general circulation models.

  7. MPLNET V3 Cloud and Planetary Boundary Layer Detection

    Science.gov (United States)

    Lewis, Jasper R.; Welton, Ellsworth J.; Campbell, James R.; Haftings, Phillip C.

    2016-01-01

    The NASA Micropulse Lidar Network Version 3 algorithms for planetary boundary layer and cloud detection are described and differences relative to the previous Version 2 algorithms are highlighted. A year of data from the Goddard Space Flight Center site in Greenbelt, MD consisting of diurnal and seasonal trends is used to demonstrate the results. Both the planetary boundary layer and cloud algorithms show significant improvement of the previous version.

  8. GLAS/ICESat L2 Global Planetary Boundary Layer & Elevated Aerosol Layer Heights V033

    Data.gov (United States)

    National Aeronautics and Space Administration — The level 2 planetary boundary layer and elevated aerosol layer height data will be provided at a minimum of once per 4 seconds. Data granules will contain...

  9. GLAS/ICESat L2 Global Planetary Boundary Layer & Elevated Aerosol Layers (HDF5) V033

    Data.gov (United States)

    National Aeronautics and Space Administration — The level 2 planetary boundary layer and elevated aerosol layer height data will be provided at a minimum of once per 4 seconds. Data granules will contain...

  10. Turbulent boundary layer in high Rayleigh number convection in air.

    Science.gov (United States)

    du Puits, Ronald; Li, Ling; Resagk, Christian; Thess, André; Willert, Christian

    2014-03-28

    Flow visualizations and particle image velocimetry measurements in the boundary layer of a Rayleigh-Bénard experiment are presented for the Rayleigh number Ra=1.4×1010. Our visualizations indicate that the appearance of the flow structures is similar to ordinary (isothermal) turbulent boundary layers. Our particle image velocimetry measurements show that vorticity with both positive and negative sign is generated and that the smallest flow structures are 1 order of magnitude smaller than the boundary layer thickness. Additional local measurements using laser Doppler velocimetry yield turbulence intensities up to I=0.4 as in turbulent atmospheric boundary layers. From our observations, we conclude that the convective boundary layer becomes turbulent locally and temporarily although its Reynolds number Re≈200 is considerably smaller than the value 420 underlying existing phenomenological theories. We think that, in turbulent Rayleigh-Bénard convection, the transition of the boundary layer towards turbulence depends on subtle details of the flow field and is therefore not universal.

  11. Boundary-Layer Linear Stability Theory

    Science.gov (United States)

    1984-06-01

    tae vela &ity profile ia a ft feaaa-’z-v layer» «alia* a 2D baaadary layer, depends oa the dlreetlea, there la a different atablllty prablea te eel...ooaataat-phaae llama are given In Fig. 12.7. Vortex lo. 11 la tne one that ooaes Froa tbe point souroe, aad it la the only one with as amplitude

  12. Assessment of a transitional boundary layer theory at low hypersonic Mach numbers

    Science.gov (United States)

    Shamroth, S. J.; Mcdonald, H.

    1972-01-01

    An investigation was carried out to assess the accuracy of a transitional boundary layer theory in the low hypersonic Mach number regime. The theory is based upon the simultaneous numerical solution of the boundary layer partial differential equations for the mean motion and an integral form of the turbulence kinetic energy equation which controls the magnitude and development of the Reynolds stress. Comparisions with experimental data show the theory is capable of accurately predicting heat transfer and velocity profiles through the transitional regime and correctly predicts the effects of Mach number and wall cooling on transition Reynolds number. The procedure shows promise of predicting the initiation of transition for given free stream disturbance levels. The effects on transition predictions of the pressure dilitation term and of direct absorption of acoustic energy by the boundary layer were evaluated.

  13. Boundary-Layer Effects on Acoustic Transmission Through Narrow Slit Cavities.

    Science.gov (United States)

    Ward, G P; Lovelock, R K; Murray, A R J; Hibbins, A P; Sambles, J R; Smith, J D

    2015-07-24

    We explore the slit-width dependence of the resonant transmission of sound in air through both a slit array formed of aluminum slats and a single open-ended slit cavity in an aluminum plate. Our experimental results accord well with Lord Rayleigh's theory concerning how thin viscous and thermal boundary layers at a slit's walls affect the acoustic wave across the whole slit cavity. By measuring accurately the frequencies of the Fabry-Perot-like cavity resonances, we find a significant 5% reduction in the effective speed of sound through the slits when an individual viscous boundary layer occupies only 5% of the total slit width. Importantly, this effect is true for any airborne slit cavity, with the reduction being achieved despite the slit width being on a far larger scale than an individual boundary layer's thickness. This work demonstrates that the recent prevalent loss-free treatment of narrow slit cavities within acoustic metamaterials is unrealistic.

  14. Direct numerical simulation of turbulent boundary layer with fully resolved particles at low volume fraction.

    Science.gov (United States)

    Luo, Kun; Hu, Chenshu; Wu, Fan; Fan, Jianren

    2017-05-01

    In the present work, a direct numerical simulation (DNS) of dilute particulate flow in a turbulent boundary layer has been conducted, containing thousands of finite-sized solid rigid particles. The particle surfaces are resolved with the multi-direct forcing immersed-boundary method. This is, to the best of the authors' knowledge, the first DNS study of a turbulent boundary layer laden with finite-sized particles. The particles have a diameter of approximately 11.3 wall units, a density of 3.3 times that of the fluid, and a solid volume fraction of 1/1000. The simulation shows that the onset and the completion of the transition processes are shifted earlier with the inclusion of the solid phase and that the resulting streamwise mean velocity of the boundary layer in the particle-laden case is almost consistent with the results of the single-phase case. At the same time, relatively stronger particle movements are observed in the near-wall regions, due to the driving of the counterrotating streamwise vortexes. As a result, increased levels of dissipation occur on the particle surfaces, and the root mean square of the fluctuating velocities of the fluid in the near-wall regions is decreased. Under the present parameters, including the particle Stokes number St + = 24 and the particle Reynolds number Re p = 33 based on the maximum instantaneous fluid-solid velocity lag, no vortex shedding behind the particle is observed. Lastly, a trajectory analysis of the particles shows the influence of turbophoresis on particle wall-normal concentration, and the particles that originated between y + = 60 and 2/3 of the boundary-layer thickness are the most influenced.

  15. Shock-Wave Boundary Layer Interactions

    Science.gov (United States)

    1986-02-01

    presentees et discutees en profondeur. Gelles-ci comprennent: les methodes globales dont I’objectif est de calculer le changement brutal que les...presented. These last methods allow a more local description of the flow and the use of more sophisticated turbulence models, even though it be at the cost ...prescribed displacement thickness. However, it can be applied to the case of specified wall shear stress distribution at the cost of minor changes. Two

  16. Analysis and Modeling of Boundary Layer Separation Method (BLSM).

    Science.gov (United States)

    Pethő, Dóra; Horváth, Géza; Liszi, János; Tóth, Imre; Paor, Dávid

    2010-09-01

    Nowadays rules of environmental protection strictly regulate pollution material emission into environment. To keep the environmental protection laws recycling is one of the useful methods of waste material treatment. We have developed a new method for the treatment of industrial waste water and named it boundary layer separation method (BLSM). We apply the phenomena that ions can be enriched in the boundary layer of the electrically charged electrode surface compared to the bulk liquid phase. The main point of the method is that the boundary layer at correctly chosen movement velocity can be taken out of the waste water without being damaged, and the ion-enriched boundary layer can be recycled. Electrosorption is a surface phenomenon. It can be used with high efficiency in case of large electrochemically active surface of electrodes. During our research work two high surface area nickel electrodes have been prepared. The value of electrochemically active surface area of electrodes has been estimated. The existence of diffusion part of the double layer has been experimentally approved. The electrical double layer capacity has been determined. Ion transport by boundary layer separation has been introduced. Finally we have tried to estimate the relative significance of physical adsorption and electrosorption.

  17. Inner-outer interactions in a turbulent boundary layer overlying complex roughness

    Science.gov (United States)

    Pathikonda, Gokul; Christensen, Kenneth T.

    2017-04-01

    Hot-wire measurements were performed in a zero-pressure-gradient turbulent boundary layer overlying both a smooth and a rough wall for the purpose of investigating the details of inner-outer flow interactions. The roughness considered embodies a broad range of topographical scales arranged in an irregular manner and reflects the topographical complexity often encountered in practical flow systems. Single-probe point-wise measurements with a traversing probe were made at two different regions of the rough-wall flow, which was previously shown to be heterogeneous in the spanwise direction, to investigate the distribution of streamwise turbulent kinetic energy and large scale-small scale interactions. In addition, two-probe simultaneous measurements were conducted enabling investigation of inner-outer interactions, wherein the large scales were independently sampled in the outer layer. Roughness-induced changes to the near-wall behavior were investigated, particularly by contrasting the amplitude and frequency modulation effects of inner-outer interactions in the rough-wall flow with well-established smooth-wall flow phenomena. It was observed that the rough-wall flow exhibits both amplitude and frequency modulation features close to the wall in a manner very similar to smooth-wall flow, though the correlated nature of these effects was found to be more intense in the rough-wall flow. In particular, frequency modulation was found to illuminate these enhanced modulation effects in the rough-wall flow. The two-probe measurements helped in evaluating the suitability of the interaction-schematic recently proposed by Baars et al., Exp. Fluids 56, 1 (2015), 10.1007/s00348-014-1876-4 for rough-wall flows. This model was found to be suitable for the rough-wall flow considered herein, and it was found that frequency modulation is a "cleaner" measure of the inner-outer modulation interactions for this rough-wall flow.

  18. On the modeling of electrical boundary layer (electrode layer) and ...

    Indian Academy of Sciences (India)

    The profiles of atmospheric electric field and electrical conductivity are also derived and a new term named as electrode layer constant is ... electrical conductivity and thickness of electrode layer (Willett 1978). A new simple method ... variation of the coefficient of eddy diffusivity. In all his calculations he had assumed the ...

  19. Marine boundary-layer height estimated from the HIRLAM model

    DEFF Research Database (Denmark)

    Gryning, Sven-Erik; Batchvarova, E.

    2002-01-01

    -number estimates based on output from the operational numerical weather prediction model HIRLAM (a version of SMHI with a grid resolution of 22.5 km x 22.5 km). For southwesterly winds it was found that a relatively large island (Bornholm) lying 20 km upwind of the measuring site influences the boundary...... to the measuring site is about 100 km and the Richardson methods reproduce the height of the marine boundary layer. This suggests that the HIRLAM model adequately resolves a water fetch of 100 km with respect to predictions of the height of the marine boundary layer....

  20. Compressibility Considerations for kappa-omega Turbulence Models in Hypersonic Boundary Layer Applications

    Science.gov (United States)

    Rumsey, C. L.

    2009-01-01

    The ability of kappa-omega models to predict compressible turbulent skin friction in hypersonic boundary layers is investigated. Although uncorrected two-equation models can agree well with correlations for hot-wall cases, they tend to perform progressively worse - particularly for cold walls - as the Mach number is increased in the hypersonic regime. Simple algebraic models such as Baldwin-Lomax perform better compared to experiments and correlations in these circumstances. Many of the compressibility corrections described in the literature are summarized here. These include corrections that have only a small influence for kappa-omega models, or that apply only in specific circumstances. The most widely-used general corrections were designed for use with jet or mixing-layer free shear flows. A less well-known dilatation-dissipation correction intended for boundary layer flows is also tested, and is shown to agree reasonably well with the Baldwin-Lomax model at cold-wall conditions. It exhibits a less dramatic influence than the free shear type of correction. There is clearly a need for improved understanding and better overall physical modeling for turbulence models applied to hypersonic boundary layer flows.

  1. Receptivity of Hypersonic Boundary Layers to Acoustic and Vortical Disturbances (Invited)

    Science.gov (United States)

    Balakumar, P.

    2015-01-01

    Boundary-layer receptivity to two-dimensional acoustic and vortical disturbances for hypersonic flows over two-dimensional and axi-symmetric geometries were numerically investigated. The role of bluntness, wall cooling, and pressure gradients on the receptivity and stability were analyzed and compared with the sharp nose cases. It was found that for flows over sharp nose geometries in adiabatic wall conditions the instability waves are generated in the leading-edge region and that the boundary layer is much more receptive to slow acoustic waves as compared to the fast waves. The computations confirmed the stabilizing effect of nose bluntness and the role of the entropy layer in the delay of boundary layer transition. The receptivity coefficients in flows over blunt bodies are orders of magnitude smaller than that for the sharp cone cases. Wall cooling stabilizes the first mode strongly and destabilizes the second mode. However, the receptivity coefficients are also much smaller compared to the adiabatic case. The adverse pressure gradients increased the unstable second mode regions.

  2. Sun–Earth connection: Boundary layer waves and auroras

    Indian Academy of Sciences (India)

    G S Lakhina et al. Figure 1. Schematics of the Earth's magnetosphere with various boundary layers. The plasma mantle, the exterior cusp, the entry layer, the .... The univer- sal time (UT), radial distance from the center of the earth (R ), magnetic latitude (λЕ), magnetic local time (MLT), and approximate L-shell value, are ...

  3. Plasma boundary layer and magnetopause layer of the earth's magnetosphere

    Energy Technology Data Exchange (ETDEWEB)

    Eastman, T.E.

    1979-06-01

    IMP 6 observations of the plasma boundary layer (PBL) and magnetopause layer (MPL) of the earth's magnetosphere indicate that plasma in the low-latitude portion of the PBL is supplied primarily by direct transport of magnetosheath plasma across the MPL and that this transport process is relatively widespread over the entire sunward magnetospheric boundary.

  4. Derivation of Zagarola-Smits scaling in zero-pressure-gradient turbulent boundary layers

    Science.gov (United States)

    Wei, Tie; Maciel, Yvan

    2018-01-01

    This Rapid Communication derives the Zagarola-Smits scaling directly from the governing equations for zero-pressure-gradient turbulent boundary layers (ZPG TBLs). It has long been observed that the scaling of the mean streamwise velocity in turbulent boundary layer flows differs in the near surface region and in the outer layer. In the inner region of small-velocity-defect boundary layers, it is generally accepted that the proper velocity scale is the friction velocity, uτ, and the proper length scale is the viscous length scale, ν /uτ . In the outer region, the most generally used length scale is the boundary layer thickness, δ . However, there is no consensus on velocity scales in the outer layer. Zagarola and Smits [ASME Paper No. FEDSM98-4950 (1998)] proposed a velocity scale, U ZS=(δ1/δ ) U∞ , where δ1 is the displacement thickness and U∞ is the freestream velocity. However, there are some concerns about Zagarola-Smits scaling due to the lack of a theoretical base. In this paper, the Zagarola-Smits scaling is derived directly from a combination of integral, similarity, and order-of-magnitude analysis of the mean continuity equation. The analysis also reveals that V∞, the mean wall-normal velocity at the edge of the boundary layer, is a proper scale for the mean wall-normal velocity V . Extending the analysis to the streamwise mean momentum equation, we find that the Reynolds shear stress in ZPG TBLs scales as U∞V∞ in the outer region. This paper also provides a detailed analysis of the mass and mean momentum balance in the outer region of ZPG TBLs.

  5. Experimental study of boundary layer transition on an airfoil induced by periodically passing wake (I)

    Energy Technology Data Exchange (ETDEWEB)

    Park, T.C. [Seoul National University Graduate School, Seoul (Korea); Jeon, W.P.; Kang, S.H. [Seoul National University, Seoul (Korea)

    2001-06-01

    Hot-wire measurements are performed in boundary layers developing on a NACA0012 airfoil over which wakes pass periodically. The Reynolds number based on chord length of the airfoil is 2X10{sup 5} and the wakes are generated by circular cylinders rotating clockwise and counterclockwise around the airfoil. This paper and its companion Part II describe the phenomena of wake-induced transition of the boundary layers on the airfoil using measured data; phase- and time-averaged streamwise mean velocities, turbulent fluctuations, integral parameters and wall skin frictions. This paper describes the background and facility together with results of time-averaged quantities. Due to the passing wake with mean velocity defects and high turbulence intensities, the laminar boundary layer is periodically disturbed at the upstream station and becomes steady-state transitional boundary layer at the downstream station. The velocity defect in the passing wake changes the local pressure at the leading of the airfoil, significantly affects the time-mean pressure distribution on the airfoil and eventually, has influence on the transition process of the boundary layer. (author). 22 refs., 9 figs.

  6. Analysis of diabatic flow modification in the internal boundary layer

    DEFF Research Database (Denmark)

    Floors, Rogier; Gryning, Sven-Erik; Pena Diaz, Alfredo

    2011-01-01

    Measurements at two meteorological masts in Denmark, Horns Rev in the sea and Høvsøre near the coastline on land, are used to analyze the behaviour of the flow after a smooth-to-rough change in surface conditions. The study shows that the wind profile within the internal boundary layer...... is controlled by a combination of both downstream and upstream stability and surface roughness conditions. A model based on a diffusion analogy is able to predict the internal boundary layer height well. Modeling the neutral and long-term wind profile with a 3 layer linear interpolation scheme gives good...... results at Høvsøre. Based on a comparison with a numerical model and the measurements, the constants in the interpolation scheme are slightly adjusted, which yields an improvement for the description of the wind profile in the internal boundary layer....

  7. A high-resolution code for large eddy simulation of incompressible turbulent boundary layer flows

    KAUST Repository

    Cheng, Wan

    2014-03-01

    We describe a framework for large eddy simulation (LES) of incompressible turbulent boundary layers over a flat plate. This framework uses a fractional-step method with fourth-order finite difference on a staggered mesh. We present several laminar examples to establish the fourth-order accuracy and energy conservation property of the code. Furthermore, we implement a recycling method to generate turbulent inflow. We use the stretched spiral vortex subgrid-scale model and virtual wall model to simulate the turbulent boundary layer flow. We find that the case with Reθ ≈ 2.5 × 105 agrees well with available experimental measurements of wall friction, streamwise velocity profiles and turbulent intensities. We demonstrate that for cases with extremely large Reynolds numbers (Reθ = 1012), the present LES can reasonably predict the flow with a coarse mesh. The parallel implementation of the LES code demonstrates reasonable scaling on O(103) cores. © 2013 Elsevier Ltd.

  8. Magnetohydrodynamic Boundary Layer Flow of Nanofluid over an Exponentially Stretching Permeable Sheet

    Directory of Open Access Journals (Sweden)

    Krishnendu Bhattacharyya

    2014-01-01

    Full Text Available A mathematical model of the steady boundary layer flow of nanofluid due to an exponentially permeable stretching sheet with external magnetic field is presented. In the model, the effects of Brownian motion and thermophoresis on heat transfer and nanoparticle volume friction are considered. Using shooting technique with fourth-order Runge-Kutta method the transformed equations are solved. The study reveals that the governing parameters, namely, the magnetic parameter, the wall mass transfer parameter, the Prandtl number, the Lewis number, Brownian motion parameter, and thermophoresis parameter, have major effects on the flow field, the heat transfer, and the nanoparticle volume fraction. The magnetic field makes enhancement in temperature and nanoparticle volume fraction, whereas the wall mass transfer through the porous sheet causes reduction of both. For the Brownian motion, the temperature increases and the nanoparticle volume fraction decreases. Heat transfer rate becomes low with increase of Lewis number. For thermophoresis effect, the thermal boundary layer thickness becomes larger.

  9. Boundary Layer Flow and Heat Transfer of FMWCNT/Water Nanofluids over a Flat Plate

    Directory of Open Access Journals (Sweden)

    Mohammad Reza Safaei

    2016-09-01

    Full Text Available In the present study, the heat transfer and flow of water/FMWCNT (functionalized multi-walled carbon nanotube nanofluids over a flat plate was investigated using a finite volume method. Simulations were performed for velocity ranging from 0.17 mm/s to 1.7 mm/s under laminar regime and nanotube concentrations up to 0.2%. The 2-D governing equations were solved using an in-house FORTRAN code. For a specific free stream velocity, the presented results showed that increasing the weight percentage of nanotubes increased the Nusselt number. However, an increase in the solid weight percentage had a negligible effect on the wall shear stress. The results also indicated that increasing the free stream velocity for all cases leads to thinner boundary layer thickness, while increasing the FMWCNT concentration causes an increase in the boundary layer thickness.

  10. Nature, theory and modelling of geophysical convective planetary boundary layers

    Science.gov (United States)

    Zilitinkevich, Sergej

    2015-04-01

    Geophysical convective planetary boundary layers (CPBLs) are still poorly reproduced in oceanographic, hydrological and meteorological models. Besides the mean flow and usual shear-generated turbulence, CPBLs involve two types of motion disregarded in conventional theories: 'anarchy turbulence' comprised of the buoyancy-driven plumes, merging to form larger plumes instead of breaking down, as postulated in conventional theory (Zilitinkevich, 1973), large-scale organised structures fed by the potential energy of unstable stratification through inverse energy transfer in convective turbulence (and performing non-local transports irrespective of mean gradients of transporting properties). C-PBLs are strongly mixed and go on growing as long as the boundary layer remains unstable. Penetration of the mixed layer into the weakly turbulent, stably stratified free flow causes turbulent transports through the CPBL outer boundary. The proposed theory, taking into account the above listed features of CPBL, is based on the following recent developments: prognostic CPBL-depth equation in combination with diagnostic algorithm for turbulence fluxes at the CPBL inner and outer boundaries (Zilitinkevich, 1991, 2012, 2013; Zilitinkevich et al., 2006, 2012), deterministic model of self-organised convective structures combined with statistical turbulence-closure model of turbulence in the CPBL core (Zilitinkevich, 2013). It is demonstrated that the overall vertical transports are performed mostly by turbulence in the surface layer and entrainment layer (at the CPBL inner and outer boundaries) and mostly by organised structures in the CPBL core (Hellsten and Zilitinkevich, 2013). Principal difference between structural and turbulent mixing plays an important role in a number of practical problems: transport and dispersion of admixtures, microphysics of fogs and clouds, etc. The surface-layer turbulence in atmospheric and marine CPBLs is strongly enhanced by the velocity shears in

  11. Decomposition of multi-scale coherent structures in a turbulent boundary layer by variational mode decomposition

    Science.gov (United States)

    Wang, Wenkang; Pan, Chong; Wang, Jinjun

    2016-11-01

    Turbulent boundary layer (TBL) is believed to contain a wide spectrum of coherent structures, from near-wall low-speed streaks characterized by inner scale to log-layer large-scale coherent motions (LSM and VLSM) characterized by outer scale. Recent studies have evidenced the interaction between these multi-scale structures via either bottom-up or top-down mechanisms, which implies the possibility of identifying the coexistence of their footprints at medium flow layer. Here, we propose a Quasi-Bivariate Variational Mode Decomposition method (QB-VMD), which is an update of the traditional Empirical Mode Decomposition (EMD) with bandwidth limitation, for the decomposition of the PIV measured 2D flow fields with large ROI (Δx × Δz 4 δ × 1 . 5 δ) at specified wall-normal heights (y / δ = 0 . 05 0 . 2) of a turbulent boundary layer with Reτ = 3460 . The empirical modes identified by QB-VMD well capture the characteristics of log-layer LSMs as well as that of near-wall streak-like structures. The lateral scales of these structures are analyzed and their respective energy contribution are evaluated. Supported by both the National Natural Science Foundation of China (Grant Nos. 11372001 and 11490552) and the Fundamental Research Funds for the Central Universities of China (No. YWF-16-JCTD-A-05).

  12. Vortex Generators to Control Boundary Layer Interactions

    Science.gov (United States)

    Babinsky, Holger (Inventor); Loth, Eric (Inventor); Lee, Sang (Inventor)

    2014-01-01

    Devices for generating streamwise vorticity in a boundary includes various forms of vortex generators. One form of a split-ramp vortex generator includes a first ramp element and a second ramp element with front ends and back ends, ramp surfaces extending between the front ends and the back ends, and vertical surfaces extending between the front ends and the back ends adjacent the ramp surfaces. A flow channel is between the first ramp element and the second ramp element. The back ends of the ramp elements have a height greater than a height of the front ends, and the front ends of the ramp elements have a width greater than a width of the back ends.

  13. Transition within a Hypervelocity Boundary Layer on a 5-degree Half-Angle Cone in Freestream Air/CO2 Mixtures

    Science.gov (United States)

    2013-01-01

    boundary layer; see Fedorov et al. (2001) and Rasheed (2001) for work focused on absorbing acoustic energy using porous walls. Another approach to...II. Background By assuming that the boundary layer acts as an acoustic waveguide for disturbances (see Fedorov (2011) for a schematic illustration of...W.H. (1962) Viscous hypersonic flow: theory of reacting and hypersonic boundary layers. McGraw-Hill, pp. 134- 140. Fedorov A.V., Malmuth N.D., Rasheed

  14. Analysis of Windward Side Hypersonic Boundary Layer Transition on Blunted Cones at Angle of Attack

    Science.gov (United States)

    2017-01-09

    Maccoll) solution e condition at boundary layer edge w condition at wall, viscous ∞ condition in freestream Conventions LST Linear Stability Theory PSE...location XTS sharp cone transition location y non-dimensional distance to conical shock α angle of attack γ specific heat ratio ∗Research Engineer, Ohio ...complex changes in the transition behavior on cones. As a point of reference, consider the windward meridian of a cone at AoA. This is also a

  15. Separation length in high-enthalpy shock/boundary-layer interaction

    OpenAIRE

    Davis, Jean-Paul; Sturtevant, Bradford

    2000-01-01

    Experiments were performed in the T5 Hypervelocity Shock Tunnel to investigate nonequilibrium real-gas effects on separation length using a double-wedge geometry and nitrogen test gas. Local external flow conditions were estimated by computing the inviscid nonequilibrium flow field. A new scaling parameter was developed to approximately account for wall temperature effects on separation length for a laminar nonreacting boundary layer and arbitrary viscosity law. A classification was introduce...

  16. Transition Delay in Hypervelocity Boundary Layers by Means of Vibrational Relaxation and Acoustic Instability Interactions

    Science.gov (United States)

    2014-01-04

    9   Through an EOARD grant with Prof. Alexander Fedorov , from the Moscow Institute of Physics and Technology, he was able to study the growth of...acoustically absortive surface. PhD Thesis, California Institute of Technology, Pasadena, CA, 2001. See also Rasheed, A., Hornung, H.G., Fedorov , A.V., and...boundary layer; see Fedorov et al.7 and Rasheed8 for work focused on absorbing acoustic energy using porous walls. Another approach to suppression of the

  17. Structure of high and low shear-stress events in a turbulent boundary layer

    Science.gov (United States)

    Gomit, G.; de Kat, R.; Ganapathisubramani, B.

    2018-01-01

    Simultaneous particle image velocimetry (PIV) and wall-shear-stress sensor measurements were performed to study structures associated with shear-stress events in a flat plate turbulent boundary layer at a Reynolds number Reτ≈4000 . The PIV field of view covers 8 δ (where δ is the boundary layer thickness) along the streamwise direction and captures the entire boundary layer in the wall-normal direction. Simultaneously, wall-shear-stress measurements that capture the large-scale fluctuations were taken using a spanwise array of hot-film skin-friction sensors (spanning 2 δ ). Based on this combination of measurements, the organization of the conditional wall-normal and streamwise velocity fluctuations (u and v ) and of the Reynolds shear stress (-u v ) can be extracted. Conditional averages of the velocity field are computed by dividing the histogram of the large-scale wall-shear-stress fluctuations into four quartiles, each containing 25% of the occurrences. The conditional events corresponding to the extreme quartiles of the histogram (positive and negative) predominantly contribute to a change of velocity profile associated with the large structures and in the modulation of the small scales. A detailed examination of the Reynolds shear-stress contribution related to each of the four quartiles shows that the flow above a low wall-shear-stress event carries a larger amount of Reynolds shear stress than the other quartiles. The contribution of the small and large scales to this observation is discussed based on a scale decomposition of the velocity field.

  18. Coupled vs. decoupled boundary layers in VOCALS-REx

    Directory of Open Access Journals (Sweden)

    C. R. Jones

    2011-07-01

    Full Text Available We analyze the extent of subtropical stratocumulus-capped boundary layer decoupling and its relation to other boundary-layer characteristics and forcings using aircraft observations from VOCALS-REx along a swath of the subtropical southeast Pacific Ocean running west 1600 km from the coast of Northern Chile. We develop two complementary and consistent measures of decoupling. The first is based on boundary layer moisture and temperature stratification in flight profiles from near the surface to above the capping inversion, and the second is based the difference between the lifted condensation level (LCL and a mean lidar-derived cloud base measured on flight legs at 150 m altitude. Most flights took place during early-mid morning, well before the peak in insolation-induced decoupling.

    We find that the boundary layer is typically shallower, drier, and well mixed near the shore, and tends to deepen, decouple, and produce more drizzle further offshore to the west. Decoupling is strongly correlated to the "mixed layer cloud thickness", defined as the difference between the capping inversion height and the LCL; other factors such as wind speed, cloud droplet concentration, and inversion thermodynamic jumps have little additional explanatory power. The results are broadly consistent with the deepening-warming theory of decoupling.

    In the deeper boundary layers observed well offshore, there was frequently nearly 100 % boundary-layer cloud cover despite pronounced decoupling. The cloud cover was more strongly correlated to a κ parameter related to the inversion jumps of humidity and temperature, though the exact functional relation is slightly different than found in prior large-eddy simulation studies.

  19. A Critical Commentary on Mean Flow Data for Two-Dimensional Compressible Turbulent Boundary Layers,

    Science.gov (United States)

    1980-05-01

    a0205 6 a 0305 50 _ 0401 U;-u"CAT 5502 U;U * " 04054l : °U oo 3 -1 3CAT 6506 2 12 (adiabatic and isothermal wall, zero pressure gradient, deined...experiment ( TD 15 CAT 7304-A-3) showing that heat-transfer from the flow occurred in the nozzle region. As we have seen while discussing the ZPG cases of...Comparison of prediction methods and studies of relaxation in hypersonic turbulent nozzle-wall boundary layers. NASA Td D-5433. Bushnell L).M

  20. Skin friction measurements by laser interferometry in swept shock wave/turbulent boundary-layer interactions

    Science.gov (United States)

    Kim, Kwang-Soo; Settles, Gary S.

    1988-01-01

    The laser interferometric skin friction meter was used to measure wall shear stress distributions in two interactions of fin-generated swept shock waves with turbulent boundary layers. The basic research configuration was an unswept sharp-leading-edge fin of variable angle mounted on a flatplate. The results indicate that such measurements are practical in high-speed interacting flows, and that a repeatability of + or - 6 percent or better is possible. Marked increases in wall shear were observed in both swept interactions tested.

  1. The Atmospheric boundary layer over Arctic fjords

    Energy Technology Data Exchange (ETDEWEB)

    Kilpelaeinen, Tiina

    2011-07-01

    Arctic fjords represent one of the most challenging environments in the world for weather prediction and climate models. This is due to complex interactions between the large-scale weather conditions, land, sea, sea ice and surrounding topography consisting of mountains, valleys and glaciers. This thesis describes some special characteristics of the lowest part of the atmosphere over fjords in Svalbard. The main research topics are 1) the exchange of energy between the atmosphere and sea, 2) vertical structure of temperature, humidity and wind, 3) spatial variability of the meteorological variables and 4) identifying the main challenges for the weather prediction models. Kilpelaeinen has collected data using weather masts and tethered balloons at the coasts of fjords in Svalbard. In addition, she has made high-resolution simulations of the meteorological conditions over Svalbard fjords with a weather prediction model. Kilpelaeinens investigations show that the vertical profiles of temperature, humidity and wind over Arctic fjords are complex and therefore challenging for the weather prediction models to capture. Layers with a temperature and humidity increase with height are commonly found over Svalbard fjords, often even on multiple levels. A weather prediction model does not realistically capture these layers, which leads to fairly large errors in the modeled surface variables. Further, she found that a wind maximum at a low altitude is also a typical feature over Arctic fjords. The height of this wind maximum depends on the sea-ice conditions, being highest when sea ice is present. The thesis points out that due to the complex topography and the surface types (sea ice and water), spatial variability of meteorological variables within a fjord is very large and can reach levels comparable to the temporal variability. Hence, a high horizontal resolution in the order of 1 km is needed in the weather prediction models to realistically simulate all the significant

  2. Vortex packet recovery in a turbulent boundary layer perturbed by an array of cylinders

    Science.gov (United States)

    Tan, Yan Ming; Longmire, Ellen

    2015-11-01

    PIV measurements were acquired in a zero pressure gradient turbulent boundary layer (Reτ = 2500) perturbed by a narrowly spaced (0.2 δ) array of cylinders. Two array heights were considered with one extending to the top of the log region and the other to the top of the boundary layer. Wall-parallel measurements were obtained at three locations in the log region by fixed and flying PIV. The measurement system for flying PIV moves with the flow to track the evolution of structures upstream and downstream of the array. Initially, both arrays disrupt the packets such that none are apparent. Then, packets appear either to recover or re-initiate at some distance downstream. A packet signature was denoted by a low momentum region bounded by counter rotating swirling structures. A low momentum region identification algorithm was applied to both fixed and flying PIV data to quantify packet recovery downstream of the array. The results indicate that packets reappear sooner further from the wall and later closer to the wall for the shorter array supporting the top down notion of packet reorganization proposed by Zheng & Longmire (JFM, 2014). The opposite trend was observed for the taller array whereby packets recovered earlier closer to the wall and later further from the wall.

  3. Two-point velocity correlations in turbulent boundary layers and channel flow

    Science.gov (United States)

    Longmire, E. K.; Khalitov, D.; Ganapathisubramani, B.; Marusic, I.

    2002-11-01

    Fully developed channel flow and a turbulent boundary layer were investigated with planar and stereo PIV. Two point correlations were computed from vector fields in planes parallel to the wall. Near the wall, correlations (u, v and w are the streamwise, spanwise, and wall-normal components) are elongated in the streamwise direction and narrow in the spanwise direction in both flows due to the presence of dominant streamwise streaks. The correlation is stronger downstream than upstream. The streamwise asymmetry is caused by inward spanwise motion of fluid beneath hairpin legs and necks that feeds low speed zones upstream. In the boundary layer, shows dominant lobes indicating that inward spanwise motion is correlated also to upwash of fluid upstream. The lengths of the lobes are consistent with the existence of packets of hairpins inclined at an angle to and convecting fluid away from the wall. Further from the wall, the correlations become shorter and more symmetric in the streamwise direction in both flows. Details will be given in the presentation. Supported by NSF (ACI-9982774, CTS-9983933)

  4. Functional electronic inversion layers at ferroelectric domain walls.

    Science.gov (United States)

    Mundy, J A; Schaab, J; Kumagai, Y; Cano, A; Stengel, M; Krug, I P; Gottlob, D M; Dog Anay, H; Holtz, M E; Held, R; Yan, Z; Bourret, E; Schneider, C M; Schlom, D G; Muller, D A; Ramesh, R; Spaldin, N A; Meier, D

    2017-06-01

    Ferroelectric domain walls hold great promise as functional two-dimensional materials because of their unusual electronic properties. Particularly intriguing are the so-called charged walls where a polarity mismatch causes local, diverging electrostatic potentials requiring charge compensation and hence a change in the electronic structure. These walls can exhibit significantly enhanced conductivity and serve as a circuit path. The development of all-domain-wall devices, however, also requires walls with controllable output to emulate electronic nano-components such as diodes and transistors. Here we demonstrate electric-field control of the electronic transport at ferroelectric domain walls. We reversibly switch from resistive to conductive behaviour at charged walls in semiconducting ErMnO 3 . We relate the transition to the formation-and eventual activation-of an inversion layer that acts as the channel for the charge transport. The findings provide new insight into the domain-wall physics in ferroelectrics and foreshadow the possibility to design elementary digital devices for all-domain-wall circuitry.

  5. Boundary layer effects on particle impaction and capture

    Science.gov (United States)

    Rosner, D. E.; Fernandez De La Mora, J.

    1984-01-01

    The inertial impaction and deposition of small particles on larger bodies with viscous boundary layers are considered theoretically, in a detailed comment on a paper by Menguturk et al. (1983). Topics addressed include cushion effects, the dimensionless groups corresponding to the diameter range (3-6 microns) examined by Menguturk et al. in a numerical example, analogous effects of particle-gas energy and mass exchange in boundary layers, and the combined effects of particle inertia and diffusion. It is argued that the inertial effects can be characterized in terms of a body, boundary-layer, or sublayer Stokes number. In a reply by Menguturk et al., the focus is on the application of the theoretical model to the erosion of blade surfaces in large gas turbines; the Stokes number is found to be of limited practical value in these cases, because the particle motion is not primarily normal to the blade surfaces.

  6. Numerical simulation of tsunami-scale wave boundary layers

    DEFF Research Database (Denmark)

    Williams, Isaac A.; Fuhrman, David R.

    2016-01-01

    This paper presents a numerical study of the boundary layer flow and properties induced by tsunami-scalewaves. For this purpose, an existing one-dimensional vertical (1DV) boundary layer model, based on the horizontal component of the incompressible Reynolds-averaged Navier–Stokes (RANS) equations...... demonstrating the ability to reproduce accurate velocity profiles, turbulence, and bed shear stresses on both smooth and rough beds.The validated model is then employed for the study of transient wave boundary layers at full tsunami scales,covering a wide and realistic geophysical range in terms of the flow...... duration, bottom roughness, and associated Reynolds numbers. For this purpose, three different “synthetic” (idealised) tsunami wave descriptions are considered i.e., invoking: (1) single wave (solitary-like, but with independent period and wave height),(2) sinusoidal, and (3) N-wave descriptions. The flow...

  7. Vortex Generator Induced Flow in a High Re Boundary Layer

    DEFF Research Database (Denmark)

    Velte, Clara Marika; Braud, C.; Coudert, S.

    2012-01-01

    Stereoscopic Particle Image Velocimetry measurements have been conducted in cross-planes behind three different geometries of Vortex Generators (VGs) in a high Reynolds number boundary layer. The VGs have been mounted in a cascade producing counter-rotating vortices and the downstream flow...... development was examined. Three VG geometries were investigated: rectangular, triangular and cambered. The various VG geometries tested are seen to produce different impacts on the boundary layer flow. Helical symmetry of the generated vortices is confirmed for all investigated VG geometries in this high...... Reynolds number boundary layer. From the parameters resulting from this analysis, it is observed at the most upstream measurement position that the rectangular and triangular VGs produce vortices of similar size, strength and velocity induction whilst the cambered VGs produce smaller and weaker vortices...

  8. Boundary-layer temperatures in high accretion rate cataclysmic variables

    Energy Technology Data Exchange (ETDEWEB)

    Hoare, M.G.; Drew, J.E. (Oxford Univ. (UK). Dept. of Physics Oxford Univ. (UK). Dept. of Astrophysics)

    1991-04-01

    We use the Zanstra method to derive limits on boundary-layer temperatures in eclipsing dwarf novae during outburst and nova-like variables, using the observed He II {lambda}1640 and {lambda}4686 recombination lines. It is assumed that all the emission is produced in the wind rather than the accretion disc. This method constrains the boundary-layer temperatures to between 50 000 and 100 000 K depending on the degree of wind bipolarity. These estimates are lower than the T>or approx200 000 K predicted theoretically. Possible explanations include rapid rotation of the white dwarf and spreading of the boundary layer over the entire white-dwarf surface. (author).

  9. Entropy Generation in Steady Laminar Boundary Layers with Pressure Gradients

    Directory of Open Access Journals (Sweden)

    Donald M. McEligot

    2014-07-01

    Full Text Available In an earlier paper in Entropy [1] we hypothesized that the entropy generation rate is the driving force for boundary layer transition from laminar to turbulent flow. Subsequently, with our colleagues we have examined the prediction of entropy generation during such transitions [2,3]. We found that reasonable predictions for engineering purposes could be obtained for flows with negligible streamwise pressure gradients by adapting the linear combination model of Emmons [4]. A question then arises—will the Emmons approach be useful for boundary layer transition with significant streamwise pressure gradients as by Nolan and Zaki [5]. In our implementation the intermittency is calculated by comparison to skin friction correlations for laminar and turbulent boundary layers and is then applied with comparable correlations for the energy dissipation coefficient (i.e., non-dimensional integral entropy generation rate. In the case of negligible pressure gradients the Blasius theory provides the necessary laminar correlations.

  10. Carbon vaporization into a nonequilibrium, stagnation-point boundary layer

    Science.gov (United States)

    Suzuki, T.

    1978-01-01

    The heat transfer to the stagnation point of an ablating carbonaceous heat shield, where both the gas-phase boundary layer and the heterogeneous surface reactions are not in chemical equilibrium, is examined. Specifically, the nonequilibrium changes in the mass fraction profiles of carbon species calculated for frozen flow are studied. A set of equations describing the steady-state, nonequilibrium laminar boundary layer in the axisymmetric stagnation region, over an ablating graphite surface, is solved, with allowance for the effects of finite rate of carbon vaporization.

  11. Oscillations of the Boundary Layer and High-frequency QPOs

    Directory of Open Access Journals (Sweden)

    Blinova A. A.

    2014-01-01

    Full Text Available We observed persistent high-frequency oscillations of the boundary layer near an accreting, weakly-magnetized star in global 3D MHD simulations. The tilted dipole magnetic field is not strong enough to open a gap between the star and the disk. Instead, it forms a highly-wrapped azimuthal field near the surface of the star which slows down rotation of the disk matter, while a small tilt of the field excites oscillations of the boundary layer with a frequency below the Keplerian frequency. This mechanism may be responsible for the high-frequency oscillations in accreting neutron stars, white dwarfs and classical T Tauri stars.

  12. Lower Atmospheric Boundary Layer Experiment (LABLE) Final Campaign Report

    Energy Technology Data Exchange (ETDEWEB)

    Klein, P [University of Oklahoma - School of Meteorology; Bonin, TA; Newman, JF [National Renewable Energy Laboratory; Turner, DD [National Oceanic and Atmospheric Administration; Chilson, P [University of Oklahoma; Blumberg, WG [University of Oklahoma; Mishra, S; Wainwright, CE; Carney, M [University of Oklahoma - School of Meteorology; Jacobsen, EP [University of Oklahoma; Wharton, S [Lawrence Livermore National Laboratory

    2015-11-01

    The Lower Atmospheric Boundary Layer Experiment (LABLE) included two measurement campaigns conducted at the Atmospheric Radiation Measurement (ARM) Southern Great Plains site in Oklahoma during 2012 and 2013. LABLE was designed as a multi-phase, low-cost collaboration among the University of Oklahoma, the National Severe Storms Laboratory, Lawrence Livermore National Laboratory, and the ARM program. A unique aspect was the role of graduate students in LABLE. They served as principal investigators and took the lead in designing and conducting experiments using different sampling strategies to best resolve boundary-layer phenomena.

  13. Vertical pressure gradient and particle motions in wave boundary layers

    DEFF Research Database (Denmark)

    Jensen, Karsten Lindegård

    and its role in the fully turbulent boundary layer. The pressure in the flow is obtained from the flow fields of the oscillatory boundary layer. What differs, the vertical pressure gradient, from other turbulent quantities, like e.g. velocity fluctuations is that it can detect newly generated turbulence....... The experiment is conducted in a oscillating water tunnel, for both smooth bed and rough bed. The particle motion is determined by utilizing particle tracking base on a video recording of the particle motion in the flow. In the oscillatory flow, in contrast to steady current, the particle motion is a function...

  14. An interactive boundary layer modelling methodology for aerodynamic flows

    CSIR Research Space (South Africa)

    Smith, L

    2013-01-01

    Full Text Available is used. The artificial compressibility formulation allows for a finite value of c2 to be used for incompressible flows, calculated as per Malan et al. (2002). 3.2. Boundary layer solution 7 To ensure numerical stability, the Crank... � Similarity coordinate � Momentum thickness m � * Kinetic energy thickness � Dynamic viscosity kg.m-1.s-1 � Density kg.m-3 � Shear stress N.m-2 Kinematic viscosity m2.s-1 Coordinate parallel to the boundary layer m...

  15. Investigation of Materials for Boundary Layer Control in a Supersonic Wind Tunnel

    Science.gov (United States)

    Braafladt, Alexander; Lucero, John M.; Hirt, Stefanie M.

    2013-01-01

    During operation of the NASA Glenn Research Center 15- by 15-Centimeter Supersonic Wind Tunnel (SWT), a significant, undesirable corner flow separation is created by the three-dimensional interaction of the wall and floor boundary layers in the tunnel corners following an oblique-shock/ boundary-layer interaction. A method to minimize this effect was conceived by connecting the wall and floor boundary layers with a radius of curvature in the corners. The results and observations of a trade study to determine the effectiveness of candidate materials for creating the radius of curvature in the SWT are presented. The experiments in the study focus on the formation of corner fillets of four different radii of curvature, 6.35 mm (0.25 in.), 9.525 mm (0.375 in.), 12.7 mm (0.5 in.), and 15.875 mm (0.625 in.), based on the observed boundary layer thickness of 11.43 mm (0.45 in.). Tests were performed on ten candidate materials to determine shrinkage, surface roughness, cure time, ease of application and removal, adhesion, eccentricity, formability, and repeatability. Of the ten materials, the four materials which exhibited characteristics most promising for effective use were the heavy body and regular type dental impression materials, the basic sculpting epoxy, and the polyurethane sealant. Of these, the particular material which was most effective, the heavy body dental impression material, was tested in the SWT in Mach 2 flow, and was observed to satisfy all requirements for use in creating the corner fillets in the upcoming experiments on shock-wave/boundary-layer interaction.

  16. Interaction of Atmospheric Turbulence with Blade Boundary Layer Dynamics on a 5MW Wind Turbine using Blade-Boundary-Layer-Resolved CFD with hybrid URANS-LES.

    Energy Technology Data Exchange (ETDEWEB)

    Vijayakumar, Ganesh [National Renewable Energy Lab. (NREL), Golden, CO (United States); Pennsylvania State Univ., University Park, PA (United States); Brasseur, James [Pennsylvania State Univ., University Park, PA (United States); Univ. of Colorado, Boulder, CO (United States); Lavely, Adam; Jayaraman, Balaji; Craven, Brent

    2016-01-04

    We describe the response of the NREL 5 MW wind turbine blade boundary layer to the passage of atmospheric turbulence using blade-boundary-layer-resolved computational fluid dynamics with hybrid URANS-LES modeling.

  17. Boundary layer models for calving marine outlet glaciers

    Science.gov (United States)

    Schoof, Christian; Davis, Andrew D.; Popa, Tiberiu V.

    2017-10-01

    We consider the flow of marine-terminating outlet glaciers that are laterally confined in a channel of prescribed width. In that case, the drag exerted by the channel side walls on a floating ice shelf can reduce extensional stress at the grounding line. If ice flux through the grounding line increases with both ice thickness and extensional stress, then a longer shelf can reduce ice flux by decreasing extensional stress. Consequently, calving has an effect on flux through the grounding line by regulating the length of the shelf. In the absence of a shelf, it plays a similar role by controlling the above-flotation height of the calving cliff. Using two calving laws, one due to Nick et al. (2010) based on a model for crevasse propagation due to hydrofracture and the other simply asserting that calving occurs where the glacier ice becomes afloat, we pose and analyse a flowline model for a marine-terminating glacier by two methods: direct numerical solution and matched asymptotic expansions. The latter leads to a boundary layer formulation that predicts flux through the grounding line as a function of depth to bedrock, channel width, basal drag coefficient, and a calving parameter. By contrast with unbuttressed marine ice sheets, we find that flux can decrease with increasing depth to bedrock at the grounding line, reversing the usual stability criterion for steady grounding line location. Stable steady states can then have grounding lines located on retrograde slopes. We show how this anomalous behaviour relates to the strength of lateral versus basal drag on the grounded portion of the glacier and to the specifics of the calving law used.

  18. Boundary layer models for calving marine outlet glaciers

    Directory of Open Access Journals (Sweden)

    C. Schoof

    2017-10-01

    Full Text Available We consider the flow of marine-terminating outlet glaciers that are laterally confined in a channel of prescribed width. In that case, the drag exerted by the channel side walls on a floating ice shelf can reduce extensional stress at the grounding line. If ice flux through the grounding line increases with both ice thickness and extensional stress, then a longer shelf can reduce ice flux by decreasing extensional stress. Consequently, calving has an effect on flux through the grounding line by regulating the length of the shelf. In the absence of a shelf, it plays a similar role by controlling the above-flotation height of the calving cliff. Using two calving laws, one due to Nick et al. (2010 based on a model for crevasse propagation due to hydrofracture and the other simply asserting that calving occurs where the glacier ice becomes afloat, we pose and analyse a flowline model for a marine-terminating glacier by two methods: direct numerical solution and matched asymptotic expansions. The latter leads to a boundary layer formulation that predicts flux through the grounding line as a function of depth to bedrock, channel width, basal drag coefficient, and a calving parameter. By contrast with unbuttressed marine ice sheets, we find that flux can decrease with increasing depth to bedrock at the grounding line, reversing the usual stability criterion for steady grounding line location. Stable steady states can then have grounding lines located on retrograde slopes. We show how this anomalous behaviour relates to the strength of lateral versus basal drag on the grounded portion of the glacier and to the specifics of the calving law used.

  19. The turbulent plasmasphere boundary layer and the outer radiation belt boundary

    Science.gov (United States)

    Mishin, Evgeny; Sotnikov, Vladimir

    2017-12-01

    We report on observations of enhanced plasma turbulence and hot particle distributions in the plasmasphere boundary layer formed by reconnection-injected hot plasma jets entering the plasmasphere. The data confirm that the electron pressure peak is formed just outward of the plasmapause in the premidnight sector. Free energy for plasma wave excitation comes from diamagnetic ion currents near the inner edge of the boundary layer due to the ion pressure gradient, electron diamagnetic currents in the entry layer near the electron plasma sheet boundary, and anisotropic (sometimes ring-like) ion distributions revealed inside, and further inward of, the inner boundary. We also show that nonlinear parametric coupling between lower oblique resonance and fast magnetosonic waves significantly contributes to the VLF whistler wave spectrum in the plasmasphere boundary layer. These emissions represent a distinctive subset of substorm/storm-related VLF activity in the region devoid of substorm injected tens keV electrons and could be responsible for the alteration of the outer radiation belt boundary during (sub)storms.

  20. An ALE formulation of embedded boundary methods for tracking boundary layers in turbulent fluid-structure interaction problems

    Science.gov (United States)

    Farhat, Charbel; Lakshminarayan, Vinod K.

    2014-04-01

    Embedded Boundary Methods (EBMs) for Computational Fluid Dynamics (CFD) are usually constructed in the Eulerian setting. They are particularly attractive for complex Fluid-Structure Interaction (FSI) problems characterized by large structural motions and deformations. They are also critical for flow problems with topological changes and FSI problems with cracking. For all of these problems, the alternative Arbitrary Lagrangian-Eulerian (ALE) methods are often unfeasible because of the issue of mesh crossovers. However for viscous flows, Eulerian EBMs for CFD do not track the boundary layers around dynamic rigid or flexible bodies. Consequently, the application of these methods to viscous FSI problems requires either a high mesh resolution in a large part of the computational fluid domain, or adaptive mesh refinement. Unfortunately, the first option is computationally inefficient, and the second one is labor intensive. For these reasons, an alternative approach is proposed in this paper for maintaining all moving boundary layers resolved during the simulation of a turbulent FSI problem using an EBM for CFD. In this approach, which is simple and computationally reasonable, the underlying non-body-fitted mesh is rigidly translated and/or rotated in order to track the rigid component of the motion of the dynamic obstacle. Then, the flow computations away from the embedded surface are performed using the ALE framework, and the wall boundary conditions are treated by the chosen Eulerian EBM for CFD. Hence, the solution of the boundary layer tracking problem proposed in this paper can be described as an ALE implementation of a given EBM for CFD. Its basic features are illustrated with the Large Eddy Simulation using a non-body-fitted mesh of a turbulent flow past an airfoil in heaving motion. Its strong potential for the solution of challenging FSI problems at reasonable computational costs is also demonstrated with the simulation of turbulent flows past a family of

  1. The Temporal Behavior of the Atmospheric Boundary Layer in Israel.

    Science.gov (United States)

    Dayan, Uri; Rodnizki, Jacob

    1999-06-01

    Upper-air measurements collected for three consecutive years (1987-89) from the Israel Meteorological Service permanent sounding site, in Beit-Dagan, Israel, enabled the temporal behavior of the atmospheric boundary layer over Israel to be characterized. Data analyzed consisted of the layer depth, the thermal gradient within the layer, and occurrence frequency of radiative and elevated inversions. To adequately represent the multiyear seasonal and diurnal behavior, the 3-yr databases were merged based on the tested hypothesis that the month sample in each individual year comes from the same population. The analysis shows that the depth of the radiative ground-based inversion, its frequency, as well as its thermal profile are maximal during spring and early summer. The upper-inversion layer is well defined during the summer, its lowest base (0.5-1 km MSL) indicating a sharp interface layer formed between the marine turbulent boundary layer at the shallow layer of the atmosphere and the subsiding downward motion caused by the subtropical high pressure system. During the other three seasons a significant temporal variation of the upper-inversion base is observed as a result of the frequent larger-scale synoptic weather systems. The diurnal variation of the mixed-layer depth is most evident during the summer because it is mainly governed by heat fluxes and the daily sea-breeze cycle that are most intensive then. Henceforth, the layer minimal depth, along the coast, usually occurs during late afternoon hours when the wind speed of the cool sea breeze reaches its minimal rate and heat fluxes dissipate rapidly, leading to a decrease of the marine turbulent boundary layer.

  2. Studi Numerik Karakteristik Boundary Layer Turbulen pada Pelat Datar dengan Alur Melintang Tipe-D

    Directory of Open Access Journals (Sweden)

    Ardiansyah Arya Mahendra Whindracaya

    2017-01-01

    Full Text Available Boundary layer akan terbentuk apabila aliran viscous melewati suatu kontur permukaan. Hal ini menyebabkan terjadinya gaya drag di kontur permukaan, oleh karena itu boundary layer yang terbentuk perlu dikontrol. Salah satu cara untuk mengkontrol boundary layer yang terbentuk adalah dengan memberi alur permukaan yang dilalui aliran. Pada penelitian ini, aliran yang dikaji adalah aliran boundary layer turbulen yang melintasi suatu pelat datar dengan alur melintang tipe-D. Alur tipe-D adalah tipe alur berbentuk persegi dengan kedalaman dan jarak antar alur yang sama, diletakan normal terhadap arah aliran. Penelitian ini dilakukan secara simulasi numerik. Terdapat 4 model yang disimulasikan yaitu pelat datar (smooth-wall, pelat beralur tipe-D ukuran 4mm, 10mm, dan 30mm . Bilangan Reynolds berdasarkan panjang pelat yaitu Rel = 2.16 x 106 dan kecepatan freestream pada inlet sebesar 10 m/s. Pemodelan numerik dilakukan  menggunakan software Gambit 2.4.6 dan Fluent 6.3.26 dengan model 2ddp unsteady, viscous model standart k-epsilon. Berdasarkan hasil penelitian, penambahan alur tipe-D berbagai ukuran meningkatkan koefisien drag total dibanding pelat datar (smooth-wall. Pressure-gradient yang terbentuk didalam alur berkontribusi pada peningkatan ini walaupun nilai koefisien skin-friction mengalami penurunan. Tidak hanya koefisien drag total, tapi nilai intensitas turbulensi juga mengalami peningkatan dibanding pelat datar (smooth-wall. Didalam alur juga terbentuk vortex yang berkontribusi dalam penurunan koefisien skin-friction. Dari ketiga ukuran alur yang berbeda, ditemukan ukuran alur tipe-D ukuran 4mm memiliki nilai koefisien drag total yang lebih rendah daripada lainya.

  3. Three-dimensional instability analysis of boundary layers perturbed by streamwise vortices

    Science.gov (United States)

    Martín, Juan A.; Paredes, Pedro

    2017-12-01

    A parametric study is presented for the incompressible, zero-pressure-gradient flat-plate boundary layer perturbed by streamwise vortices. The vortices are placed near the leading edge and model the vortices induced by miniature vortex generators (MVGs), which consist in a spanwise-periodic array of small winglet pairs. The introduction of MVGs has been experimentally proved to be a successful passive flow control strategy for delaying laminar-turbulent transition caused by Tollmien-Schlichting (TS) waves. The counter-rotating vortex pairs induce non-modal, transient growth that leads to a streaky boundary layer flow. The initial intensity of the vortices and their wall-normal distances to the plate wall are varied with the aim of finding the most effective location for streak generation and the effect on the instability characteristics of the perturbed flow. The study includes the solution of the three-dimensional, stationary, streaky boundary layer flows by using the boundary region equations, and the three-dimensional instability analysis of the resulting basic flows by using the plane-marching parabolized stability equations. Depending on the initial circulation and positioning of the vortices, planar TS waves are stabilized by the presence of the streaks, resulting in a reduction in the region of instability and shrink of the neutral stability curve. For a fixed maximum streak amplitude below the threshold for secondary instability (SI), the most effective wall-normal distance for the formation of the streaks is found to also offer the most stabilization of TS waves. By setting a maximum streak amplitude above the threshold for SI, sinuous shear layer modes become unstable, as well as another instability mode that is amplified in a narrow region near the vortex inlet position.

  4. Effects of coastal forcing on turbulence and boundary- layer structure

    Science.gov (United States)

    Strom, Linda Maria Viktoria

    Coastal mountains of significant elevation impose constraints for the surrounding flow. The aim of this study is to describe the modifications of the marine atmospheric boundary layer that occur offshore of the west coast of the United States. Aircraft measurements, up to 1000 km off the coast from two experiments, are used. This boundary layer is capped by a subsidence inversion, which slopes down toward the coast and produces large thermal winds. Low-level wind maxima (i.e. jets) are typical for these conditions, commonly a 40-50% increase relative to the 30 m wind speed. The effects of coastal forcing on low-level winds cancel in average when no regard is taken for position relative a cape or point. The variability of the low-level wind speed increases nevertheless significantly toward the coast, the standard deviation is +/-40% of the offshore value. The scale of the adjustment downstream of a cape or point is specifically addressed. Some measurements support a formulation of the coastal extent based on an inviscid shallow-water concept; mean variables (i.e. 30 m wind speed and boundary-layer depth) and turbulent parameters (i.e. dissipation and shear production of turbulent kinetic energy) vary in a uniform, predicted manner. The effects of coastal forcing on winds result in cold sea surface temperatures at the coast, due to upwelling. Stability becomes a function of offshore distance. Surface-layer turbulence statistics and spectra (and cospectra) of turbulence variables are presented. Across- and along-wind sampled spectra (and cospectra) show that large wind shear and shallow boundary layer affect the scales of the turbulence eddies. The relation between the standard deviations of wind components are affected. The turbulence appears to be non-local in some aspects, entrainment fluxes are proposed to be important due to a shallow boundary layer with a sharp, sloping inversion and a low-level jet.

  5. Damping of double wall panels including a viscothermal air layer

    NARCIS (Netherlands)

    Basten, T.G.H.; Stainhaouer, G.; Bakamidis, S.; Charalabopoulou, F.

    2001-01-01

    This paper deals with the dynamic behaviour of double wall panels, with emphasis on damping and sound radiation. It will be shown that a narrow air layer separating the two plates of a panel significantly alters the mentioned quantities by its viscothermal properties. Numerical and experimental

  6. High Reynolds number liquid layer flow with flexible walls

    Indian Academy of Sciences (India)

    layer flows over flat plates have been extensively studied and it is well-known that wall flexibility greatly affects the growth of Tollmien-Schlichting waves, see Carpenter & Garrad (1985). The problem of a lami- nar separation bubble interacting with ...

  7. Understanding and prediction of stable atmospheric boundary layers over land

    NARCIS (Netherlands)

    Steeneveld, G.J.

    2007-01-01

    The main objective of this thesis is to contribute to further understanding of the stable boundary layer (SBL) over land, and its representation in atmospheric models. A SBL develops during night due to radiative surface cooling. Observations in the SBL are difficult since many different physical

  8. Page 1 Shock-wave-turbulent-boundary-layer interaction & its ...

    Indian Academy of Sciences (India)

    shock .. rehabilitation shock with a turbulent boundary phase asºn: phase layer: M., + 1.47 (from Seddon. p x / So 1960). al 1977). Figures 16 and 17 show some of the important features of the separated flow and the surface pressure distributions as observed by Seddon (1960). The strong normal shock wave bifurcates near ...

  9. On the marine atmospheric boundary layer characteristics over Bay ...

    Indian Academy of Sciences (India)

    Detailed measurements were carried out in the Marine Atmospheric Boundary Layer (MABL) during the Integrated Campaign for Aerosols, gases and Radiation Budget (ICARB) which covered both Arabian Sea and Bay of Bengal during March to May 2006. In this paper, we present the meteorological observations made ...

  10. Boundary Layer Flows in Porous Media with Lateral Mass Flux

    DEFF Research Database (Denmark)

    Nemati, H; H, Bararnia; Noori, F

    2015-01-01

    Solutions for free convection boundary layers on a heated vertical plate with lateral mass flux embedded in a saturated porous medium are presented using the Homotopy Analysis Method and Shooting Numerical Method. Homotopy Analysis Method yields an analytic solution in the form of a rapidly...

  11. Influences of the boundary layer evolution on surface ozone ...

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Earth System Science; Volume 121; Issue 4. Influences of the boundary layer evolution on surface ozone variations at a tropical rural site in India. K K Reddy M Naja N Ojha P Mahesh S Lal. Volume 121 Issue 4 August 2012 pp 911-922 ...

  12. Body surface adaptations to boundary-layer dynamics

    NARCIS (Netherlands)

    Videler, J.J.

    1995-01-01

    Evolutionary processes have adapted nektonic animals to interact efficiently with the water that surrounds them. Not all these adaptations serve the same purpose. This paper concentrates on reduction of drag due to friction in the boundary layer close to the body surface. Mucus, compliant skins,

  13. The collapse of turbulence in the atmospheric boundary layer

    Energy Technology Data Exchange (ETDEWEB)

    Van de Wiel, B J H; Clercx, H J H [Department of Physics, Eindhoven University of Technology (Netherlands); Moene, A F [Department of Meteorology and Air Quality, Wageningen University and Research Centre (Netherlands); Jonker, H J J, E-mail: b.j.h.v.d.wiel@tue.nl [Department of Multi-scale Pysics, Delft University of Technology (Netherlands)

    2011-12-22

    A well-known phenomenon in the atmospheric boundary layer is the fact that winds may become very weak in the evening after a clear sunny day. In these quiet conditions usually hardly any turbulence is present. Consequently this type of boundary layer is referred to as the quasi-laminar boundary layer. In spite of its relevance, the appearance of laminar boundary layers is poorly understood and forms a long standing problem in meteorological research. Here we investigate an analogue problem in the form of a stably stratified channel flow. The flow is studied with a simplified atmospheric model as well as with Direct Numerical Simulations. Both models show remarkably similar behaviour with respect to the mean variables such as temperature and wind speed. The similarity between both models opens new way for understanding and predicting the laminarization process. Mathematical analysis on the simplified model shows that relaminarization can be understood from the existence of a definite limit in the maximum sustainable heat flux under stably stratified conditions. This fascinating aspect will be elaborated in future work.

  14. Workshop on Coherent Structure of Turbulent Boundary Layers.

    Science.gov (United States)

    1978-11-01

    trying to investigate what you can visually determine within the boundary layer. In regard to the first of your questions, I am familiae with your work at...experiment like a nuclear physicist would do or you can do it in a more general fluid mechanical way. I just think I’ll leave it at that, interacting spots

  15. Response of neutral boundary-layers to changes of roughness

    DEFF Research Database (Denmark)

    Sempreviva, Anna Maria; Larsen, Søren Ejling; Mortensen, Niels Gylling

    1990-01-01

    When air blows across a change in surface roughness, an internal boundary layer (IBL) develops within which the wind adapts to the new surface. This process is well described for short fetches, > 1 km. However, few data exist for large fetches on how the IBL grows to become a new equilibrium boun...

  16. Thermal Internal Boundary Layer characteristics at a tropical coastal ...

    Indian Academy of Sciences (India)

    ... Prabha1 R Venkatesan2 Erich Mursch-Radlgruber3 G Rengarajan3 N Jayanthi4. Crop and Soil Sciences, University of Georgia, GA, USA. Health and Safety Division, SHINE Group, IGCAR, Kalpakkam, India 603 102. Boundary Layer Meteorology Division, Institut fuer Meteorologie und Physik (IMP-BOKU), Wien, Austria.

  17. Flow visualization of swept wing boundary layer transition

    NARCIS (Netherlands)

    Serpieri, J.; Kotsonis, M.

    2015-01-01

    In this work the flow visualization of the transition pattern occurring on a swept wing in a subsonic flow is presented. This is done by means of fluorescent oil flow technique and boundary layer hot-wire scans. The experiment was performed at Reynolds number of 2:15 . 106 and at angle of attack of

  18. Atmospheric boundary layer evening transitions over West Texas

    Science.gov (United States)

    A systemic analysis of the atmospheric boundary layer behavior during some evening transitions over West Texas was done using the data from an extensive array of instruments which included small and large aperture scintillometers, net radiometers, and meteorological stations. The analysis also comp...

  19. Effects of mussel filtering activity on boundary layer structure

    NARCIS (Netherlands)

    Van Duren, L.A.; Herman, P.M.J.; Sandee, A.J.J.; Heip, C.H.R.

    2006-01-01

    The structure of the benthic boundary layer over a bed of mussels (Mytilus edulis) was investigated in a large racetrack flume. Flow was observed to be modified both by the physical roughness of the mussel bed and by the momentum input of the exhalent jets of the mussels. Particularly when the

  20. Radio wave propagation in the marine boundary layer

    National Research Council Canada - National Science Library

    Kukushkin, Alexander

    2004-01-01

    ... boundary layer. Two basic mathematical methods have been used, depending on the ease of obtaining a closed analytical solution: 1. 2. Expansion of the quantum-mechanical amplitude of the transition into a complete and orthogonal set of eigen functions of the continuous spectrum. The Feynman path integral. It is not intended to provide a full ste...

  1. The use of a wave boundary layer model in SWAN

    DEFF Research Database (Denmark)

    Du, Jianting; Bolaños, Rodolfo; Larsén, Xiaoli Guo

    2017-01-01

    A Wave Boundary Layer Model (WBLM) is implemented in the third-generation ocean wave model SWAN to improve the wind-input source function under idealized, fetch-limited condition. Accordingly, the white capping dissipation parameters are re-calibrated to fit the new wind-input source function...

  2. The role of boundary layer momentum advection in the mean ...

    Indian Academy of Sciences (India)

    A simple three-way balance between the pressure gradients, Coriolis force and effective Rayleigh friction has been classically used to diagnose the location of maximum boundary layer convergence in the near equatorial ITCZ. If such a balance can capture the dynamics of off-equatorial convergence was not known.

  3. Influence of micrometeorological features on coastal boundary layer ...

    Indian Academy of Sciences (India)

    Characteristics of aerosols in the Atmospheric Boundary Layer (ABL) obtained from a bistatic CW lidar at Trivandrum for the last one decade are used to investigate the role of ABL micro- meteorological processes in controlling the altitude distribution and size spectrum. The altitude structure of number density shows three ...

  4. Characterization of the atmospheric boundary layer from radiosonde ...

    Indian Academy of Sciences (India)

    Abstract. In this paper, a comparison of two methods for the calculation of the height of atmospheric boundary layer (ABL), using balloon-borne GPS radiosonde data is presented. ABL has been characterized using vertical profiles of meteorological parameter. The gradient of virtual potential temperature (v) profile for the ...

  5. Thermal Internal Boundary Layer characteristics at a tropical coastal ...

    Indian Academy of Sciences (India)

    R. Narasimhan (Krishtel eMaging) 1461 1996 Oct 15 13:05:22

    examined with the help of measurements carried out with a mini-SODAR (SOund Detection And ..... moisture upwards and periodic intrusion of mar- ..... Ocean System 2. 351–362. Kunhikrishnan P K, Gupta K S, Ramachandran R, Prakash. J W, Nair K N 1993 Study on thermal internal boundary layer structure over Thumba, ...

  6. Temperature boundary layer profiles in turbulent Rayleigh-Benard convection

    Science.gov (United States)

    Ching, Emily S. C.; Emran, Mohammad S.; Horn, Susanne; Shishkina, Olga

    2017-11-01

    Classical boundary-layer theory for steady flows cannot adequately describe the boundary layer profiles in turbulent Rayleigh-Benard convection. We have developed a thermal boundary layer equation which takes into account fluctuations in terms of an eddy thermal diffusivity. Based on Prandtl's mixing length ideas, we relate the eddy thermal diffusivity to the stream function. With this proposed relation, we can solve the thermal boundary layer equation and obtain a closed-form expression for the dimensionless mean temperature profile in terms of two independent parameters: θ(ξ) =1/b∫0b ξ [ 1 +3a3/b3(η - arctan(η)) ] - c dη , where ξ is the similarity variable and the parameters a, b, and c are related by the condition θ(∞) = 1 . With a proper choice of the parameters, our predictions of the temperature profile are in excellent agreement with the results of our direct numerical simulations for a wide range of Prandtl numbers (Pr), from Pr=0.01 to Pr=2547.9. OS, ME and SH acknowledge the financial support by the Deutsche Forschungsgemeinschaft (DFG) under Grants Sh405/4-2 (Heisenberg fellowship), Sh405/3-2 and Ho 5890/1-1, respectively.

  7. Conserved variable analysis of the marine boundary layer and air ...

    Indian Academy of Sciences (India)

    The present study is based on the observed features of the MBL (Marine Boundary Layer) during the Bay of Bengal and Monsoon Experiment (BOBMEX) - Pilot phase. Conserved Variable Analysis (CVA) of the conserved variables such as potential temperature, virtual potential temperature, equivalent potential temperature ...

  8. Mechanisms of boundary layer transition induced by isolated roughnes

    NARCIS (Netherlands)

    Ye, Q.

    2017-01-01

    Boundary layer transition is a relevant phenomenon in many aerodynamic and aero-thermodynamic problems and has been extensively investigated from the past century till recent times. Among the factors affecting the transition process, surface roughness plays a key role. When a roughness element with

  9. Implicit Large-Eddy Simulations of Zero-Pressure Gradient, Turbulent Boundary Layer

    Science.gov (United States)

    Sekhar, Susheel; Mansour, Nagi N.

    2015-01-01

    A set of direct simulations of zero-pressure gradient, turbulent boundary layer flows are conducted using various span widths (62-630 wall units), to document their influence on the generated turbulence. The FDL3DI code that solves compressible Navier-Stokes equations using high-order compact-difference scheme and filter, with the standard recycling/rescaling method of turbulence generation, is used. Results are analyzed at two different Re values (500 and 1,400), and compared with spectral DNS data. They show that a minimum span width is required for the mere initiation of numerical turbulence. Narrower domains ((is) less than 100 w.u.) result in relaminarization. Wider spans ((is) greater than 600 w.u.) are required for the turbulent statistics to match reference DNS. The upper-wall boundary condition for this setup spawns marginal deviations in the mean velocity and Reynolds stress profiles, particularly in the buffer region.

  10. Large-eddy simulation of separation and reattachment of a flat plate turbulent boundary layer

    KAUST Repository

    Cheng, W.

    2015-11-11

    © 2015 Cambridge University Press. We present large-eddy simulations (LES) of separation and reattachment of a flat-plate turbulent boundary-layer flow. Instead of resolving the near wall region, we develop a two-dimensional virtual wall model which can calculate the time- and space-dependent skin-friction vector field at the wall, at the resolved scale. By combining the virtual-wall model with the stretched-vortex subgrid-scale (SGS) model, we construct a self-consistent framework for the LES of separating and reattaching turbulent wall-bounded flows at large Reynolds numbers. The present LES methodology is applied to two different experimental flows designed to produce separation/reattachment of a flat-plate turbulent boundary layer at medium Reynolds number Reθ based on the momentum boundary-layer thickness θ. Comparison with data from the first case at demonstrates the present capability for accurate calculation of the variation, with the streamwise co-ordinate up to separation, of the skin friction coefficient, Reθ, the boundary-layer shape factor and a non-dimensional pressure-gradient parameter. Additionally the main large-scale features of the separation bubble, including the mean streamwise velocity profiles, show good agreement with experiment. At the larger Reθ = 11000 of the second case, the LES provides good postdiction of the measured skin-friction variation along the whole streamwise extent of the experiment, consisting of a very strong adverse pressure gradient leading to separation within the separation bubble itself, and in the recovering or reattachment region of strongly-favourable pressure gradient. Overall, the present two-dimensional wall model used in LES appears to be capable of capturing the quantitative features of a separation-reattachment turbulent boundary-layer flow at low to moderately large Reynolds numbers.

  11. Linear segmentation algorithm for detecting layer boundary with lidar.

    Science.gov (United States)

    Mao, Feiyue; Gong, Wei; Logan, Timothy

    2013-11-04

    The automatic detection of aerosol- and cloud-layer boundary (base and top) is important in atmospheric lidar data processing, because the boundary information is not only useful for environment and climate studies, but can also be used as input for further data processing. Previous methods have demonstrated limitations in defining the base and top, window-size setting, and have neglected the in-layer attenuation. To overcome these limitations, we present a new layer detection scheme for up-looking lidars based on linear segmentation with a reasonable threshold setting, boundary selecting, and false positive removing strategies. Preliminary results from both real and simulated data show that this algorithm cannot only detect the layer-base as accurate as the simple multi-scale method, but can also detect the layer-top more accurately than that of the simple multi-scale method. Our algorithm can be directly applied to uncalibrated data without requiring any additional measurements or window size selections.

  12. Turbulence radiation coupling in boundary layers of heavy-duty diesel engines

    Energy Technology Data Exchange (ETDEWEB)

    Sircar, Arpan [Pennsylvania State Univ., University Park, PA (United States); Paul, Chandan [Pennsylvania State Univ., University Park, PA (United States); Ferreyro-Fernandez, Sebastian [Pennsylvania State Univ., University Park, PA (United States); Imren, Abdurrahman [Pennsylvania State Univ., University Park, PA (United States); Haworth, Daniel C [Pennsylvania State Univ., University Park, PA (United States); Roy, Somesh P [Marquette University (United States); Ge, Wenjun [University of California Merced (United States); Modest, Michael F [University of California Merced (United States)

    2017-04-05

    The lack of accurate submodels for in-cylinder radiation and heat transfer has been identified as a key shortcoming in developing truly predictive, physics-based computational fluid dynamics (CFD) models that can be used to develop combustion systems for advanced high-efficiency, low-emissions engines. Recent measurements of wall layers in engines show discrepancies of up to 100% with respect to standard CFD boundary-layer models. And recent analysis of in-cylinder radiation based on the most recent spectral property databases and high-fidelity radiative transfer equation (RTE) solvers has shown that at operating pressures and exhaust-gas recirculation levels typical of modern heavy-duty compression-ignition engines, radiative emission can be as high as 40% of the wall heat losses, that molecular gas radiation (mainly CO2 and H2O) can be more important than soot radiation, and that a significant fraction of the emitted radiation can be reabsorbed before reaching the walls. That is, radiation not only contributes to heat losses, but also changes the in-cylinder temperature distribution, which in turn affects combustion and emissions. The goal of this research is to develop models that explicitly account for the potentially strong coupling between radiative and turbulent boundary layer heat transfer. For example, for optically thick conditions, a simple diffusion model might be formulated in terms of an absorption-coefficient-dependent turbulent Prandtl number.

  13. Experimental investigation on aero-optics of supersonic turbulent boundary layers.

    Science.gov (United States)

    Ding, Haolin; Yi, Shihe; Zhu, Yangzhu; He, Lin

    2017-09-20

    Nanoparticle-based planar laser scattering was used to measure the density distribution of the supersonic (Ma=3.0) turbulent boundary layer and the optical path difference (OPD), which is quite crucial for aero-optics study. Results were obtained using ray tracing. The influences of different layers in the boundary layer, turbulence scales, and light incident angle on aero-optics were examined, and the underlying flow physics were analyzed. The inner layer plays a dominant role, followed by the outer layer. One hundred OPD rms of the outer layer at different times satisfy the normal distribution better than that of the inner layer. Aero-optics induced by the outer layer is sensitive to the filter scale. When induced by the inner layer, it is not sensitive to the filter scale. The vortices with scales less than the Kolmogorov scale (=46.0  μm) have little influence on the aero-optics and could be ignored; the validity of the smallest optically active scale (=88.1  μm) proposed by Mani is verified, and vortices with scales less than that are ignored, resulting in a 1.62% decay of aero-optics; the filter with a width of 16-grid spacing (=182.4  μm) decreases OPD rms by 7.04%. With the increase of the angle between the wall-normal direction and the light-incident direction, the aero-optics becomes more serious, and the difference between the distribution of the OPD rms and the normal distribution increases. The difficulty of aero-optics correction is increased. Light tilted toward downstream experiences more distortions than when tilted toward upstream at the same angle relative to the wall-normal direction.

  14. Spectral structure and linear mechanisms in a 'rapidly' distorted boundary layer

    Science.gov (United States)

    Diwan, Sourabh; Morrison, Jonathan

    2016-11-01

    A characteristic feature of a turbulent boundary layer (TBL) at high Reynolds numbers is the presence of coherent motions such as the 'large scale motions' and 'superstructures'. In this work we attempt to mimic such coherent motions and their spectral structure using a simplified experimental arrangement of a boundary layer flow over a flat plate subjected to grid-generated turbulence and/or localized patch of surface roughness. The velocity measurements done downstream of a grit roughness patch (in absence of grid turbulence) show that over a certain distance the energy spectrum of streamwise velocity fluctuations shows a bi-modal shape which resembles that found in a high-Re TBL. We also carry out experiments with both grid turbulence and grit roughness present and show that it is possible to 'synthesize' the structure of a TBL in the wall-normal direction, in the limited context of streamwise coherent motions, using the present experimental design. These results indicate that the predictions of the Rapid Distortion Theory (RDT) can be applied to the present case in a region close to the plate leading edge, and we examine the linearized effects of 'blocking' and 'shear' on turbulent fluctuations near the edge of the boundary layer and close to the wall in the framework of the RDT. We acknowledge financial support from EPSRC (Grant No. EP/1037938).

  15. Baroclinic Planetary Boundary Layer Model: Neutral and Stable Stratification Conditions

    Science.gov (United States)

    Yordanov, D.; Djolov, G.; Syrakov, D.

    1998-01-01

    The temperature and wind profiles in a baroclinic Planetary Boundary Layer (PBL) are investigated. Assuming stationarity, the turbulent state in the PBL at stable and neutral conditions is uniquely determined by the Rossby number, the external stratification parameter and two external baroclinic parameters. A simple two-layer baroclinic model is developed. It consists of a Surface Layer (SL) and overlying Ekman type layer. The system of dynamic and heat transfer equations is close using the K-theory. In SL the turbulent exchange coefficient is consistent with the results of similarity theory while in the Ekman layer it is constant. The universal functions in the resistance, heat and humidity transfer laws can be deduced from the model. The internal PBL characteristics, necessary for the model calculations, are presented in terms of the external parameters. Favourable agreement of model results with experimental data is demonstrated.

  16. A general integral form of the boundary-layer equation for incompressible flow with an application to the calculation of the separation point of turbulent boundary layers

    Science.gov (United States)

    Tetervin, Neal; Lin, Chia Chiao

    1951-01-01

    A general integral form of the boundary-layer equation, valid for either laminar or turbulent incompressible boundary-layer flow, is derived. By using the experimental finding that all velocity profiles of the turbulent boundary layer form essentially a single-parameter family, the general equation is changed to an equation for the space rate of change of the velocity-profile shape parameter. The lack of precise knowledge concerning the surface shear and the distribution of the shearing stress across turbulent boundary layers prevented the attainment of a reliable method for calculating the behavior of turbulent boundary layers.

  17. Boundary Layer Effect on Behavior of Discrete Models

    Directory of Open Access Journals (Sweden)

    Jan Eliáš

    2017-02-01

    Full Text Available The paper studies systems of rigid bodies with randomly generated geometry interconnected by normal and tangential bonds. The stiffness of these bonds determines the macroscopic elastic modulus while the macroscopic Poisson’s ratio of the system is determined solely by the normal/tangential stiffness ratio. Discrete models with no directional bias have the same probability of element orientation for any direction and therefore the same mechanical properties in a statistical sense at any point and direction. However, the layers of elements in the vicinity of the boundary exhibit biased orientation, preferring elements parallel with the boundary. As a consequence, when strain occurs in this direction, the boundary layer becomes stiffer than the interior for the normal/tangential stiffness ratio larger than one, and vice versa. Nonlinear constitutive laws are typically such that the straining of an element in shear results in higher strength and ductility than straining in tension. Since the boundary layer tends, due to the bias in the elemental orientation, to involve more tension than shear at the contacts, it also becomes weaker and less ductile. The paper documents these observations and compares them to the results of theoretical analysis.

  18. Boundary Layer Effect on Behavior of Discrete Models.

    Science.gov (United States)

    Eliáš, Jan

    2017-02-10

    The paper studies systems of rigid bodies with randomly generated geometry interconnected by normal and tangential bonds. The stiffness of these bonds determines the macroscopic elastic modulus while the macroscopic Poisson's ratio of the system is determined solely by the normal/tangential stiffness ratio. Discrete models with no directional bias have the same probability of element orientation for any direction and therefore the same mechanical properties in a statistical sense at any point and direction. However, the layers of elements in the vicinity of the boundary exhibit biased orientation, preferring elements parallel with the boundary. As a consequence, when strain occurs in this direction, the boundary layer becomes stiffer than the interior for the normal/tangential stiffness ratio larger than one, and vice versa. Nonlinear constitutive laws are typically such that the straining of an element in shear results in higher strength and ductility than straining in tension. Since the boundary layer tends, due to the bias in the elemental orientation, to involve more tension than shear at the contacts, it also becomes weaker and less ductile. The paper documents these observations and compares them to the results of theoretical analysis.

  19. Application of a transitional boundary-layer theory in the low hypersonic Mach number regime

    Science.gov (United States)

    Shamroth, S. J.; Mcdonald, H.

    1975-01-01

    An investigation is made to assess the capability of a finite-difference boundary-layer procedure to predict the mean profile development across a transition from laminar to turbulent flow in the low hypersonic Mach-number regime. The boundary-layer procedure uses an integral form of the turbulence kinetic-energy equation to govern the development of the Reynolds apparent shear stress. The present investigation shows the ability of this procedure to predict Stanton number, velocity profiles, and density profiles through the transition region and, in addition, to predict the effect of wall cooling and Mach number on transition Reynolds number. The contribution of the pressure-dilatation term to the energy balance is examined and it is suggested that transition can be initiated by the direct absorption of acoustic energy even if only a small amount (1 per cent) of the incident acoustic energy is absorbed.

  20. Oscillating viscous boundary layer at high Reynolds number: Experiments and numerical calculations

    Science.gov (United States)

    Reyt, I.; Bailliet, H.; Foucault, E.; Valière, J.-Ch.

    2015-10-01

    Transition to turbulence for an acoustically oscillating flow (without any mean motion) in a resonant wave guide is considered. Departure from the laminar behaviour of the Stokes boundary layer formed in the near wall region is studied both experimentally and numerically for increasing acoustic levels. Laser Doppler Velocimetry is used to measure velocity profiles at different phases along the acoustic period and the experimental profile distortion is interpreted as the consequence of the development of a turbulent boundary layer. On the other hand, the oscillating flow is investigated numerically with a high order resolution one dimensional scheme for comparison with experimental results. The effective viscosity that models transition to turbulence is included and the velocity profile is integrated along the radial coordinate. Results from experiments and from numerical calculation are in very good agreement.

  1. Effects of boundary layer and liquid viscosity and compressible air on sloshing characteristics

    Directory of Open Access Journals (Sweden)

    Chang-Fang Zou

    2015-07-01

    Full Text Available In this paper, numerical investigations for tank sloshing, based on commercial CFD package FLUENT, are performed to study effects of boundary layer grid, liquid viscosity and compressible air on sloshing pressure, wave height and rising time of impact pressure. Also, sloshing experiments for liquids of different viscosity are carried out to validate the numerical results. Through comparison of numerical and experimental results, a computational model in-cluding boundary layer grid can predict the sloshing pressure more accurately. Energy dissipation due to viscous friction leads to reduction of sloshing pressure and wave elevation. Sloshing pressure is also reduced because of cushion effect of compressible air. Due to high viscosity damping effect and compressible air effect, the rising time of impact pressure becomes longer. It is also found that liquid viscosity and compressible air influence distribution of dynamic pressure along the vertical tank wall.

  2. RESEARCH AND MATHEMATICAL MODELING OF TURBULENT BOUNDARY LAYER AT POSITIVE PRESSURE GRADIENT

    Directory of Open Access Journals (Sweden)

    Vitaliy Mamchuk

    2016-06-01

    Full Text Available Purpose: Mathematical modeling of complex turbulent near-wall flows, that occur during the flow of airfoils, is impossible without understanding the nature of the flow in boundary layer. From a mathematical point of view, the calculation of such flows, because in practical problems they regarded as turbulent, and the characteristics of turbulence are largely dependent on the geometry of the profile of the longitudinal component of the average velocity of the near-wall flow. Based on this, the purpose of this work is studying and mathematical modeling of turbulent near-wall flows in the interaction with the real streamlined surface, that has certain features, such as the curvature, roughness, etc., as well as the study and research of the influence of the pressure gradient on the empirical coefficients, parameters of the flow, velocity profiles and friction stress. Methods: We performed the calculations using numerical finite-difference marching method with algebraic model of turbulent viscosity coefficient. Results: In this paper we present some results of the numerical study of the effect of the positive pressure gradient on the empirical coefficients of the transition zone and the law of the near-wall and the outer-wall areas. Discussion: Comparison of the calculated results with the experimental data shows that the proposed approaches provide an opportunity to simulate the flow as close as possible to their physical properties. Presented mathematical model for the calculation of turbulent boundary layers and near-wall flows makes it possible to calculate such a complex and valuable from a practical point of view type of the flow as the aerodynamic trail behind the streamlined body.

  3. Simulation and optimal control of wind-farm boundary layers

    Science.gov (United States)

    Meyers, Johan; Goit, Jay

    2014-05-01

    In large wind farms, the effect of turbine wakes, and their interaction leads to a reduction in farm efficiency, with power generated by turbines in a farm being lower than that of a lone-standing turbine by up to 50%. In very large wind farms or `deep arrays', this efficiency loss is related to interaction of the wind farms with the planetary boundary layer, leading to lower wind speeds at turbine level. Moreover, for these cases it has been demonstrated both in simulations and wind-tunnel experiments that the wind-farm energy extraction is dominated by the vertical turbulent transport of kinetic energy from higher regions in the boundary layer towards the turbine level. In the current study, we investigate the use of optimal control techniques combined with Large-Eddy Simulations (LES) of wind-farm boundary layer interaction for the increase of total energy extraction in very large `infinite' wind farms. We consider the individual wind turbines as flow actuators, whose energy extraction can be dynamically regulated in time so as to optimally influence the turbulent flow field, maximizing the wind farm power. For the simulation of wind-farm boundary layers we use large-eddy simulations in combination with actuator-disk and actuator-line representations of wind turbines. Simulations are performed in our in-house pseudo-spectral code SP-Wind that combines Fourier-spectral discretization in horizontal directions with a fourth-order finite-volume approach in the vertical direction. For the optimal control study, we consider the dynamic control of turbine-thrust coefficients in an actuator-disk model. They represent the effect of turbine blades that can actively pitch in time, changing the lift- and drag coefficients of the turbine blades. Optimal model-predictive control (or optimal receding horizon control) is used, where the model simply consists of the full LES equations, and the time horizon is approximately 280 seconds. The optimization is performed using a

  4. Physics of Transitional Shear Flows Instability and Laminar–Turbulent Transition in Incompressible Near-Wall Shear Layers

    CERN Document Server

    Boiko, Andrey V; Grek, Genrih R; Kozlov, Victor V

    2012-01-01

    Starting from fundamentals of classical stability theory, an overview is given of the transition phenomena in subsonic, wall-bounded shear flows. At first, the consideration focuses on elementary small-amplitude velocity perturbations of laminar shear layers, i.e. instability waves, in the simplest canonical configurations of a plane channel flow and a flat-plate boundary layer. Then the linear stability problem is expanded to include the effects of pressure gradients, flow curvature, boundary-layer separation, wall compliance, etc. related to applications. Beyond the amplification of instability waves is the non-modal growth of local stationary and non-stationary shear flow perturbations which are discussed as well. The volume continues with the key aspect of the transition process, that is, receptivity of convectively unstable shear layers to external perturbations, summarizing main paths of the excitation of laminar flow disturbances. The remainder of the book addresses the instability phenomena found at l...

  5. Transient Growth Analysis of Compressible Boundary Layers with Parabolized Stability Equations

    Science.gov (United States)

    Paredes, Pedro; Choudhari, Meelan M.; Li, Fei; Chang, Chau-Lyan

    2016-01-01

    The linear form of parabolized linear stability equations (PSE) is used in a variational approach to extend the previous body of results for the optimal, non-modal disturbance growth in boundary layer flows. This methodology includes the non-parallel effects associated with the spatial development of boundary layer flows. As noted in literature, the optimal initial disturbances correspond to steady counter-rotating stream-wise vortices, which subsequently lead to the formation of stream-wise-elongated structures, i.e., streaks, via a lift-up effect. The parameter space for optimal growth is extended to the hypersonic Mach number regime without any high enthalpy effects, and the effect of wall cooling is studied with particular emphasis on the role of the initial disturbance location and the value of the span-wise wavenumber that leads to the maximum energy growth up to a specified location. Unlike previous predictions that used a basic state obtained from a self-similar solution to the boundary layer equations, mean flow solutions based on the full Navier-Stokes (NS) equations are used in select cases to help account for the viscous-inviscid interaction near the leading edge of the plate and also for the weak shock wave emanating from that region. These differences in the base flow lead to an increasing reduction with Mach number in the magnitude of optimal growth relative to the predictions based on self-similar mean-flow approximation. Finally, the maximum optimal energy gain for the favorable pressure gradient boundary layer near a planar stagnation point is found to be substantially weaker than that in a zero pressure gradient Blasius boundary layer.

  6. A Thermal Plume Model for the Martian Convective Boundary Layer

    CERN Document Server

    Colaïtis, Arnaud; Hourdin, Frédéric; Rio, Catherine; Forget, François; Millour, Ehouarn

    2013-01-01

    The Martian Planetary Boundary Layer [PBL] is a crucial component of the Martian climate system. Global Climate Models [GCMs] and Mesoscale Models [MMs] lack the resolution to predict PBL mixing which is therefore parameterized. Here we propose to adapt the "thermal plume" model, recently developed for Earth climate modeling, to Martian GCMs, MMs, and single-column models. The aim of this physically-based parameterization is to represent the effect of organized turbulent structures (updrafts and downdrafts) on the daytime PBL transport, as it is resolved in Large-Eddy Simulations [LESs]. We find that the terrestrial thermal plume model needs to be modified to satisfyingly account for deep turbulent plumes found in the Martian convective PBL. Our Martian thermal plume model qualitatively and quantitatively reproduces the thermal structure of the daytime PBL on Mars: superadiabatic near-surface layer, mixing layer, and overshoot region at PBL top. This model is coupled to surface layer parameterizations taking ...

  7. Conference on Boundary and Interior Layers : Computational and Asymptotic Methods

    CERN Document Server

    Stynes, Martin; Zhang, Zhimin

    2017-01-01

    This volume collects papers associated with lectures that were presented at the BAIL 2016 conference, which was held from 14 to 19 August 2016 at Beijing Computational Science Research Center and Tsinghua University in Beijing, China. It showcases the variety and quality of current research into numerical and asymptotic methods for theoretical and practical problems whose solutions involve layer phenomena. The BAIL (Boundary And Interior Layers) conferences, held usually in even-numbered years, bring together mathematicians and engineers/physicists whose research involves layer phenomena, with the aim of promoting interaction between these often-separate disciplines. These layers appear as solutions of singularly perturbed differential equations of various types, and are common in physical problems, most notably in fluid dynamics. This book is of interest for current researchers from mathematics, engineering and physics whose work involves the accurate app roximation of solutions of singularly perturbed diffe...

  8. Amendment to "Analytical Solution for the Convectively-Mixed Atmospheric Boundary Layer": Inclusion of Subsidence

    NARCIS (Netherlands)

    Ouwersloot, H.G.; Arellano, de J.V.G.

    2013-01-01

    In Ouwersloot and Vila-Guerau de Arellano (Boundary-Layer Meteorol. doi: 10. 1007/s10546-013-9816-z, 2013, this issue), the analytical solutions for the boundary-layer height and scalar evolutions are derived for the convective boundary layer, based on the prognostic equations of mixed-layer slab

  9. Initializing a Mesoscale Boundary-Layer Model with Radiosonde Observations

    Science.gov (United States)

    Berri, Guillermo J.; Bertossa, Germán

    2018-01-01

    A mesoscale boundary-layer model is used to simulate low-level regional wind fields over the La Plata River of South America, a region characterized by a strong daily cycle of land-river surface-temperature contrast and low-level circulations of sea-land breeze type. The initial and boundary conditions are defined from a limited number of local observations and the upper boundary condition is taken from the only radiosonde observations available in the region. The study considers 14 different upper boundary conditions defined from the radiosonde data at standard levels, significant levels, level of the inversion base and interpolated levels at fixed heights, all of them within the first 1500 m. The period of analysis is 1994-2008 during which eight daily observations from 13 weather stations of the region are used to validate the 24-h surface-wind forecast. The model errors are defined as the root-mean-square of relative error in wind-direction frequency distribution and mean wind speed per wind sector. Wind-direction errors are greater than wind-speed errors and show significant dispersion among the different upper boundary conditions, not present in wind speed, revealing a sensitivity to the initialization method. The wind-direction errors show a well-defined daily cycle, not evident in wind speed, with the minimum at noon and the maximum at dusk, but no systematic deterioration with time. The errors grow with the height of the upper boundary condition level, in particular wind direction, and double the errors obtained when the upper boundary condition is defined from the lower levels. The conclusion is that defining the model upper boundary condition from radiosonde data closer to the ground minimizes the low-level wind-field errors throughout the region.

  10. Initializing a Mesoscale Boundary-Layer Model with Radiosonde Observations

    Science.gov (United States)

    Berri, Guillermo J.; Bertossa, Germán

    2017-08-01

    A mesoscale boundary-layer model is used to simulate low-level regional wind fields over the La Plata River of South America, a region characterized by a strong daily cycle of land-river surface-temperature contrast and low-level circulations of sea-land breeze type. The initial and boundary conditions are defined from a limited number of local observations and the upper boundary condition is taken from the only radiosonde observations available in the region. The study considers 14 different upper boundary conditions defined from the radiosonde data at standard levels, significant levels, level of the inversion base and interpolated levels at fixed heights, all of them within the first 1500 m. The period of analysis is 1994-2008 during which eight daily observations from 13 weather stations of the region are used to validate the 24-h surface-wind forecast. The model errors are defined as the root-mean-square of relative error in wind-direction frequency distribution and mean wind speed per wind sector. Wind-direction errors are greater than wind-speed errors and show significant dispersion among the different upper boundary conditions, not present in wind speed, revealing a sensitivity to the initialization method. The wind-direction errors show a well-defined daily cycle, not evident in wind speed, with the minimum at noon and the maximum at dusk, but no systematic deterioration with time. The errors grow with the height of the upper boundary condition level, in particular wind direction, and double the errors obtained when the upper boundary condition is defined from the lower levels. The conclusion is that defining the model upper boundary condition from radiosonde data closer to the ground minimizes the low-level wind-field errors throughout the region.

  11. Bandgap tunability at single-layer molybdenum disulphide grain boundaries

    KAUST Repository

    Huang, Yu Li

    2015-02-17

    Two-dimensional transition metal dichalcogenides have emerged as a new class of semiconductor materials with novel electronic and optical properties of interest to future nanoelectronics technology. Single-layer molybdenum disulphide, which represents a prototype two-dimensional transition metal dichalcogenide, has an electronic bandgap that increases with decreasing layer thickness. Using high-resolution scanning tunnelling microscopy and spectroscopy, we measure the apparent quasiparticle energy gap to be 2.40±0.05 eV for single-layer, 2.10±0.05 eV for bilayer and 1.75±0.05 eV for trilayer molybdenum disulphide, which were directly grown on a graphite substrate by chemical vapour deposition method. More interestingly, we report an unexpected bandgap tunability (as large as 0.85±0.05 eV) with distance from the grain boundary in single-layer molybdenum disulphide, which also depends on the grain misorientation angle. This work opens up new possibilities for flexible electronic and optoelectronic devices with tunable bandgaps that utilize both the control of two-dimensional layer thickness and the grain boundary engineering.

  12. Lidar Scanning of Momentum Flux in the Marine Boundary Layer

    DEFF Research Database (Denmark)

    Pena Diaz, Alfredo; Mann, Jakob; Courtney, Michael

    Momentum flux measurements are important for describing the wind profile in the atmospheric boundary layer, modeling the atmospheric flow over water, the accounting of exchange processes between air and sea, etc. It is also directly related to the friction velocity, which is a velocity scale...... required for wind engineering. Estimations of friction velocity over the sea can be performed by combining wind speed measurements, a sea roughness length formulation and the surface-layer wind profile, i.e. a bulk-derived method. This method was tested in Peña et al. (2008) by comparison with direct...

  13. Numerical simulation of tsunami-scale wave boundary layers

    DEFF Research Database (Denmark)

    Williams, Isaac A.; Fuhrman, David R.

    2016-01-01

    duration, bottom roughness, and associated Reynolds numbers. For this purpose, three different “synthetic” (idealised) tsunami wave descriptions are considered i.e., invoking: (1) single wave (solitary-like, but with independent period and wave height),(2) sinusoidal, and (3) N-wave descriptions. The flow......, is newly extended to incorporate a transitional variant of the standard two-equation k–ω turbulence closure. The developed numerical model is successfully validated against recent experimental measurements involving transient solitary wave boundary layers as well as for oscillatory flows, collectively...... demonstrating the ability to reproduce accurate velocity profiles, turbulence, and bed shear stresses on both smooth and rough beds.The validated model is then employed for the study of transient wave boundary layers at full tsunami scales,covering a wide and realistic geophysical range in terms of the flow...

  14. Optimal control of wind turbines in a turbulent boundary layer

    Science.gov (United States)

    Yilmaz, Ali Emre; Meyers, Johan

    2016-11-01

    In recent years, optimal control theory was combined with large-eddy simulations to study the optimal control of wind farms and their interaction with the atmospheric boundary layer. The individual turbine's induction factors were dynamically controlled in time with the aim of increasing overall power extraction. In these studies, wind turbines were represented using an actuator disk method. In the current work, we focus on optimal control on a much finer mesh (and a smaller computational domain), representing turbines with an actuator line method. Similar to Refs., optimization is performed using a gradient-based method, and gradients are obtained employing an adjoint formulation. Different cases are investigated, that include a single and a double turbine case both with uniform inflow, and with turbulent-boundary-layer inflow. The authors acknowledge support from the European Research Council (FP7-Ideas, Grant No. 306471).

  15. On Hydromagnetic Stresses in Accretion Disk Boundary Layers

    DEFF Research Database (Denmark)

    Pessah, Martin Elias; Chan, Chi-kwan

    2012-01-01

    Detailed calculations of the physical structure of accretion disk boundary layers, and thus their inferred observational properties, rely on the assumption that angular momentum transport is opposite to the radial angular frequency gradient of the disk. The standard model for turbulent shear...... viscosity satisfies this assumption by construction. However, this behavior is not supported by numerical simulations of turbulent magnetohydrodynamic (MHD) accretion disks, which show that angular momentum transport driven by the magnetorotational instability (MRI) is inefficient in disk regions where......, as expected in boundary layers, the angular frequency increases with radius. In order to shed light on physically viable mechanisms for angular momentum transport in this inner disk region, we examine the generation of hydromagnetic stresses and energy density in differentially rotating backgrounds...

  16. Flight Experiment Verification of Shuttle Boundary Layer Transition Prediction Tool

    Science.gov (United States)

    Berry, Scott A.; Berger, Karen T.; Horvath, Thomas J.; Wood, William A.

    2016-01-01

    Boundary layer transition at hypersonic conditions is critical to the design of future high-speed aircraft and spacecraft. Accurate methods to predict transition would directly impact the aerothermodynamic environments used to size a hypersonic vehicle's thermal protection system. A transition prediction tool, based on wind tunnel derived discrete roughness correlations, was developed and implemented for the Space Shuttle return-to-flight program. This tool was also used to design a boundary layer transition flight experiment in order to assess correlation uncertainties, particularly with regard to high Mach-number transition and tunnel-to-flight scaling. A review is provided of the results obtained from the flight experiment in order to evaluate the transition prediction tool implemented for the Shuttle program.

  17. Measurement Science of the Intermittent Atmospheric Boundary Layer

    Science.gov (United States)

    2014-01-01

    investigate intermittency fluxes of clear-air radar reflectivity inthe atmospheric boundary layer, 2013 IEEE International Symposium on Antennas and...meridionally by 40 m), eight ultrasonic anemometers, two low-response thermometers, two low-response hygrometers, three quartz-crystal barometers, and...vertically spaced sonics can be used for post-facto calibration (Muschinski and Ayvazian, 2014) of relative biases in a pair of ultrasonic

  18. Scaling laws and turbulence closures for stable boundary layers

    Science.gov (United States)

    Zilitinkevich, S.; Esau, I.; Baklanov, A.; Djolov, G.

    2003-04-01

    This paper presents a recently developed theory of non-local turbulence in the stably stratified planetary boundary layers (PBLs): basic theoretical results, new LES code specifically designed for LES of stably stratified flows, and comparison of theoretical predictions with LES and experimental data. The paper includes improved formulations for the PBL depth and resistance laws and outlines an advanced turbulence closure accounting for the transport properties of internal gravity waves.

  19. Turbulence Scales Simulations in Atmospheric Boundary Layer Wind Tunnels

    OpenAIRE

    Teleman, Elena-Carmen; Silion, Radu; Axinte, Elena; Pescaru, Radu

    2008-01-01

    The simulation of the air flow over models in atmospheric boundary layer tunnels is a research domain based on advanced scientific technologies imposed by the necessity of studying the turbulent fluid movements in the proximity of the Earth’s surface. The experiment presented herein is developed in the wind tunnel from the Laboratory of Structural Aerodynamics of the Faculty of Civil Engineering and Building Services in Iassy. Measurements necessary for the determination of the turbulence sca...

  20. Boundary Layer Study. Experimental Validation Test Plan. Phase 4

    Science.gov (United States)

    1990-11-01

    profile aceros the boundary layer. Also included are the measurement of surface properties including pressure, temperature, heat transfer rate, and...the sninplos charged either by fric~tion or byy exposure to passes. The. voimelor owWj is displayed As the turntabie rotates. the sample a corona . N...When the Corona -charginig arm inso.e arm. After about 150 seconlds aale ur rors introducec! by variationis among tost levied, 11 Is exiendead to the

  1. Partially exposed polymer dispersed liquid crystals for boundary layer investigations

    Science.gov (United States)

    Parmar, Devendra S.; Singh, Jag J.

    1992-01-01

    A new configuration termed partially exposed polymer dispersed liquid crystal in which the liquid crystal microdroplets dispersed in a rigid polymer matrix are partially entrapped on the free surface of the thin film deposited on a glass substrate is reported. Optical transmission characteristics of the partially exposed polymer dispersed liquid crystal thin film in response to an air flow induced shear stress field reveal its potential as a sensor for gas flow and boundary layer investigations.

  2. Ozone in the Atlantic Ocean marine boundary layer

    OpenAIRE

    Patrick Boylan; Detlev Helmig; Samuel Oltmans

    2015-01-01

    Abstract In situ atmospheric ozone measurements aboard the R/V Ronald H. Brown during the 2008 Gas-Ex and AMMA research cruises were compared with data from four island and coastal Global Atmospheric Watch stations in the Atlantic Ocean to examine ozone transport in the marine boundary layer (MBL). Ozone measurements made at Tudor Hill, Bermuda, were subjected to continental outflow from the east coast of the United States, which resulted in elevated ozone levels above 50 ppbv. Ozone measurem...

  3. Combined Wave and Current Bottom Boundary Layers: A Review

    Science.gov (United States)

    2016-03-01

    wave mechanics for engineers and scientists. New Jersey: World Scientific . Dingler, J. R., and D. L. Inman. 1976. Wave-formed ripples in nearshore...sediment transport. New York: World Scientific . Papanicolaou, A. N., M. Elhakeem, G. Krallis, S. Prakash, and J. Edinger. 2008. Sediment transport...Boundary layers, Models, Near-shore processes, Review article , Sediment transport, Wave and current interaction 16. SECURITY CLASSIFICATION OF

  4. The curved kinetic boundary layer of active matter.

    Science.gov (United States)

    Yan, Wen; Brady, John F

    2018-01-03

    A body submerged in active matter feels the swim pressure through a kinetic accumulation boundary layer on its surface. The boundary layer results from a balance between translational diffusion and advective swimming and occurs on the microscopic length scale . Here , D T is the Brownian translational diffusivity, τ R is the reorientation time and l = U 0 τ R is the swimmer's run length, with U 0 the swim speed [Yan and Brady, J. Fluid. Mech., 2015, 785, R1]. In this work we analyze the swim pressure on arbitrary shaped bodies by including the effect of local shape curvature in the kinetic boundary layer. When δ ≪ L and l ≪ L, where L is the body size, the leading order effects of curvature on the swim pressure are found analytically to scale as J S λδ 2 /L, where J S is twice the (non-dimensional) mean curvature. Particle-tracking simulations and direct solutions to the Smoluchowski equation governing the probability distribution of the active particles show that λδ 2 /L is a universal scaling parameter not limited to the regime δ, l ≪ L. The net force exerted on the body by the swimmers is found to scale as F net /(n ∞ k s T s L 2 ) = f(λδ 2 /L), where f(x) is a dimensionless function that is quadratic when x ≪ 1 and linear when x ∼ 1. Here, k s T s = ζU 0 2 τ R /6 defines the 'activity' of the swimmers, with ζ the drag coefficient, and n ∞ is the uniform number density of swimmers far from the body. We discuss the connection of this boundary layer to continuum mechanical descriptions of active matter and briefly present how to include hydrodynamics into this purely kinetic study.

  5. Numerical Simulation of Roughness Induced Boundary Layer Transition

    Science.gov (United States)

    2016-03-30

    901-918. 18. ZHENG Yun, LI Hongyang, LIU Daxiang. “Application and Analysis of γ-Reθ Transition Model in Hypersonic Flow”, Journal of Propulsion ...making the simulated result more accurate. Xiao [25] used a three-equation k-ω- γ transition model to study hypersonic flow around single roughness...point RANS Approach”, Journal of Turbomachinery, 2004, 126(1):193-202. 14. FU Song, WANG Liang. “Simulation of Hypersonic Boundary-Layer Transition

  6. The Influence of Boundary Layer Parameters on Interior Noise

    Science.gov (United States)

    Palumbo, Daniel L.; Rocha, Joana

    2012-01-01

    Predictions of the wall pressure in the turbulent boundary of an aerospace vehicle can differ substantially from measurement due to phenomena that are not well understood. Characterizing the phenomena will require additional testing at considerable cost. Before expending scarce resources, it is desired to quantify the effect of the uncertainty in wall pressure predictions and measurements on structural response and acoustic radiation. A sensitivity analysis is performed on four parameters of the Corcos cross spectrum model: power spectrum, streamwise and cross stream coherence lengths and Mach number. It is found that at lower frequencies where high power levels and long coherence lengths exist, the radiated sound power prediction has up to 7 dB of uncertainty in power spectrum levels with streamwise and cross stream coherence lengths contributing equally to the total.

  7. A mass-spring-damper model for unsteady Ekman boundary layers

    Science.gov (United States)

    Momen, Mostafa; Bou-Zeid, Elie

    2014-11-01

    The Ekman boundary layer is a central problem in geophysical fluid dynamics that emerges in atmospheric and oceanic boundary layers when pressure gradient forces, Coriolis forces, and molecular or turbulent friction forces interact in a flow. These boundary layers are dynamical systems; however, due to their inherent complexity most studies of these wall-bounded flows have focused on steady state conditions. The transient version of the problem, which occurs when these forces are not in equilibrium such as when the pressure gradients are changing in time, is solvable analytically only for a limited set of forcing variability modes, and the resulting solutions are intricate and difficult to interpret. In this study, we derive a simple physical model that reduces Navier-Stokes equations into a second-order ordinary differential equation that is very similar to the dynamical equation of a mass-spring-damper system. The validation of the proposed model is performed by comparing it to results from a suite of large-eddy simulations. The reduced model can be solved for a wider range of variable forcing conditions and serves to elucidate the physical origin of the inertia (mass), energy storage (spring), and energy dissipation (damper) attributes of the Ekman layer. The authors acknowledge support from the CICS of Princeton University and the NOAA's under Grant Number 344-6127, and the Physical and Dynamic Meteorology Program of the National Science Foundation under AGS-1026636.

  8. Review of Orbiter Flight Boundary Layer Transition Data

    Science.gov (United States)

    Mcginley, Catherine B.; Berry, Scott A.; Kinder, Gerald R.; Barnell, maria; Wang, Kuo C.; Kirk, Benjamin S.

    2006-01-01

    In support of the Shuttle Return to Flight program, a tool was developed to predict when boundary layer transition would occur on the lower surface of the orbiter during reentry due to the presence of protuberances and cavities in the thermal protection system. This predictive tool was developed based on extensive wind tunnel tests conducted after the loss of the Space Shuttle Columbia. Recognizing that wind tunnels cannot simulate the exact conditions an orbiter encounters as it re-enters the atmosphere, a preliminary attempt was made to use the documented flight related damage and the orbiter transition times, as deduced from flight instrumentation, to calibrate the predictive tool. After flight STS-114, the Boundary Layer Transition Team decided that a more in-depth analysis of the historical flight data was needed to better determine the root causes of the occasional early transition times of some of the past shuttle flights. In this paper we discuss our methodology for the analysis, the various sources of shuttle damage information, the analysis of the flight thermocouple data, and how the results compare to the Boundary Layer Transition prediction tool designed for Return to Flight.

  9. Dry intrusions: Lagrangian climatology and impact on the boundary layer

    Science.gov (United States)

    Raveh-Rubin, Shira; Wernli, Heini

    2017-04-01

    Dry air intrusions (DIs) are large-scale descending airstreams. A DI is typically referred to as a coherent airstream in the cold sector of an extratropical cyclone. Emerging evidence suggests that DIs are linked to severe surface wind gusts. However, there is yet no strict Lagrangian definition of DIs, and so their climatological frequency, dynamical characteristics as well as their seasonal and spatial distributions are unknown. Furthermore, the dynamical interaction between DIs and the planetary boundary layer is not fully understood. Here, we suggest a Lagrangian definition for DI air parcels, namely a minimum pressure increase along a trajectory of 400 hPa in 48 hours. Based on this criterion, the open questions are addressed by: (i) a novel global Lagrangian climatology for the ECMWF ERA-Interim reanalysis dataset for the years 1979-2014; (ii) a case study illustrating the interaction between DIs and the boundary layer. We find that DIs occur predominantly in winter. DIs coherently descend from the upper troposphere (their stratospheric origin is small), to the mid- and low levels, where they mix with their environment and diverge. Different physical characteristics typify DIs in the different regions and seasons. Finally, we demonstrate the different mechanisms by which DIs can destabilize the boundary layer and facilitate the formation of strong surface winds.

  10. Evidence for renoxification in the tropical marine boundary layer

    Science.gov (United States)

    Reed, Chris; Evans, Mathew J.; Crilley, Leigh R.; Bloss, William J.; Sherwen, Tomás; Read, Katie A.; Lee, James D.; Carpenter, Lucy J.

    2017-03-01

    We present 2 years of NOx observations from the Cape Verde Atmospheric Observatory located in the tropical Atlantic boundary layer. We find that NOx mixing ratios peak around solar noon (at 20-30 pptV depending on season), which is counter to box model simulations that show a midday minimum due to OH conversion of NO2 to HNO3. Production of NOx via decomposition of organic nitrogen species and the photolysis of HNO3 appear insufficient to provide the observed noontime maximum. A rapid photolysis of nitrate aerosol to produce HONO and NO2, however, is able to simulate the observed diurnal cycle. This would make it the dominant source of NOx at this remote marine boundary layer site, overturning the previous paradigm according to which the transport of organic nitrogen species, such as PAN, is the dominant source. We show that observed mixing ratios (November-December 2015) of HONO at Cape Verde (˜ 3.5 pptV peak at solar noon) are consistent with this route for NOx production. Reactions between the nitrate radical and halogen hydroxides which have been postulated in the literature appear to improve the box model simulation of NOx. This rapid conversion of aerosol phase nitrate to NOx changes our perspective of the NOx cycling chemistry in the tropical marine boundary layer, suggesting a more chemically complex environment than previously thought.

  11. Improving Wind-Ramp Forecasts in the Stable Boundary Layer

    Science.gov (United States)

    Jahn, David E.; Takle, Eugene S.; Gallus, William A.

    2017-06-01

    The viability of wind-energy generation is dependent on highly accurate numerical wind forecasts, which are impeded by inaccuracies in model representation of boundary-layer processes. This study revisits the basic theory of the Mellor, Yamada, Nakanishi, and Niino (MYNN) planetary boundary-layer parametrization scheme, focusing on the onset of wind-ramp events related to nocturnal low-level jets. Modifications to the MYNN scheme include: (1) calculation of new closure parameters that determine the relative effects of turbulent energy production, dissipation, and redistribution; (2) enhanced mixing in the stable boundary layer when the mean wind speed exceeds a specified threshold; (3) explicit accounting of turbulent potential energy in the energy budget. A mesoscale model is used to generate short-term (24 h) wind forecasts for a set of 15 cases from both the U.S.A. and Germany. Results show that the new set of closure parameters provides a marked forecast improvement only when used in conjunction with the new mixing length formulation and only for cases that are originally under- or over-forecast (10 of the 15 cases). For these cases, the mean absolute error (MAE) of wind forecasts at turbine-hub height is reduced on average by 17%. A reduction in MAE values on average by 26% is realized for these same cases when accounting for the turbulent potential energy together with the new mixing length. This last method results in an average reduction by at least 13% in MAE values across all 15 cases.

  12. Wave boundary layer over a stone-covered bed

    DEFF Research Database (Denmark)

    Dixen, Martin; Hatipoglu, Figen; Sumer, B. Mutlu

    2008-01-01

    This paper summarizes the results of an experimental investigation on wave boundary layers over a bed with large roughness, simulating stone/rock/armour block cover on the sea bottom. The roughness elements used in the experiments were stones the size of 1.4cm and 3.85cm in one group of experiments...... and regular ping-pong balls the size 3.6cm in the other. The orbital-motion-amplitude-to-roughness ratio at the bed was rather small, in the range a/ks=0.6-3. The mean and turbulence properties of the boundary-layer flow were measured. Various configurations of the roughness elements were used in the ping...... for small values of a/ks. The results further show that the phase lead of the bed friction velocity over the surface elevation does not seem to change radically with a/ks, and found to be in the range 12°-23°. Furthermore the results show that the boundary-layer turbulence also is not extremely sensitive...

  13. Studying boundary elements’ behaviour using masonry walls built with high-resistance bricks

    Directory of Open Access Journals (Sweden)

    Juan Carlos Restrepo Mejía

    2010-04-01

    Full Text Available This research was aimed at studying the behaviour of masonry walls built with and without boundary elements at both ends when sublected to monotonic and cyclic lateral loads. The walls were designed to have the greatest resistance, following NSR-98 recommendations (normas Colombianas de diseno y construcción sismo resistente, except for shear reinforcement. XTRACT software was used for finding axial load cf bending moment and curvature cf bending moment curves. One monotonic test and two cyclic tests were performed for each type of wall. Experimental results from the walls’ lateral load cf displacement curves were used for determining their ability to dissipate energy on an inelastic range (“R” force-reduction factor for seismic loads and displacement and curvature malleability. It was found that walls built without boundary elements suffered shear failure with cracks in a stepped configuration along the bricks’ edge. The type of failure for walls built with boundary elements was shear failure in the central panel with cracks in a stepped configuration, in addition to compression failure at the edge of the boundary elements with vertical cracks on the lower part of the wall and at the contact between the wall and the boundary element. Comparison with two other studies carried out at the Universidad Nacional showed similar cyclic behaviour, regardless of the clay brick’s strength. The “R” values obtained for both types of walls were lower than the recommended values given by NSR-98. It was determined that walls having boundary element have greater displacement malleability than walls without boundary elements.

  14. Studying boundary elements’ behaviour using masonry walls built with high-resistance bricks

    Directory of Open Access Journals (Sweden)

    Juan Carlos Restrepo Mejía

    2006-05-01

    Full Text Available This research was aimed at studying the behaviour of masonry walls built with and without boundary elements at both ends when sublected to monotonic and cyclic lateral loads. The walls were designed to have the greatest resistance, following NSR-98 recommendations (normas Colombianas de diseno y construcción sismo resistente, except for shear reinforcement. XTRACT software was used for finding axial load cf bending moment and curvature cf bending moment curves. One monotonic test and two cyclic tests were performed for each type of wall. Experimental results from the walls’ lateral load cf displacement curves were used for determining their ability to dissipate energy on an inelastic range (“R” force-reduction factor for seismic loads and displacement and curvature malleability. It was found that walls built without boundary elements suffered shear failure with cracks in a stepped configuration along the bricks’ edge. The type of failure for walls built with boundary elements was shear failure in the central panel with cracks in a stepped configuration, in addition to compression failure at the edge of the boundary elements with vertical cracks on the lower part of the wall and at the contact between the wall and the boundary element. Comparison with two other studies carried out at the Universidad Nacional showed similar cyclic behaviour, regardless of the clay brick’s strength. The “R” values obtained for both types of walls were lower than the recommended values given by NSR-98. It was determined that walls having boundary element have greater displacement malleability than walls without boundary elements.

  15. The turbulent boundary layer on a porous plate: An experimental study of the heat transfer behavior with adverse pressure gradients

    Science.gov (United States)

    Blackwell, B. F.; Kays, W. M.; Moffat, R. J.

    1972-01-01

    An experimental investigation of the heat transfer behavior of the near equilibrium transpired turbulent boundary layer with adverse pressure gradient has been carried out. Stanton numbers were measured by an energy balance on electrically heated plates that form the bottom wall of the wind tunnel. Two adverse pressure gradients were studied. Two types of transpiration boundary conditions were investigated. The concept of an equilibrium thermal boundary layer was introduced. It was found that Stanton number as a function of enthalpy thickness Reynolds number is essentially unaffected by adverse pressure gradient with no transpiration. Shear stress, heat flux, and turbulent Prandtl number profiles were computed from mean temperature and velocity profiles. It was concluded that the turbulent Prandtl number is greater than unity in near the wall and decreases continuously to approximately 0.5 at the free stream.

  16. Combustion characteristics of methane hydrate in a laminar boundary layer

    Energy Technology Data Exchange (ETDEWEB)

    Nakamura, Y.; Katsuki, R.; Yokomori, T.; Ohmura, R.; Ueda, T. [Keio Univ., Yokohama (Japan). Dept. of Mechanical Engineering; Takahashi, M.; Iwasaki, T.; Uchida, K. [Mitsui Engineering and Shipbuilding Co. Ltd., Tokyo (Japan)

    2008-07-01

    The combustion characteristics of methane hydrates in a laminar boundary layer were investigated in order to examine the flame propagation speed of methane hydrates. The experiments were performed under atmospheric pressure using methane hydrate crystals previously stored at a liquid-nitrogen temperature. A wind tunnel was used to form an air laminar boundary layer. The crystals were packed in an insulated rectangular cell to ensure that the hydrate layer was level with a horizontal flat plate. The surface of the dissociating hydrate crystals was ignited using a pilot flame at the downstream end of the hydrate crystals. Flame location was measured using a video camera. Results showed that after the flame was extinguished, the methane hydrate crystals were not completely dissociated. The flame was extinguished by an ice layer that had formed over the methane hydrate crystals. Propagation rates were measured in order to explore the relationship between the flame propagation rate and free-stream velocity. 8 refs., 2 tabs., 10 figs.

  17. Boundary layer flow adjacent to a permeable vertical plate with constant surface temperature

    Science.gov (United States)

    Najib, Najwa; Bachok, Norfifah; Md Arifin, Norihan

    2013-04-01

    The effects of suction/injection on the laminar boundary layer flow adjacent to a vertical wall with constant surface temperature are considered. The governing partial differential equations are first transformed into ordinary differential equations before being solved numerically by a finite difference method. Results for the skin friction coefficient, local Nusselt number, velocity profiles as well as temperature profiles are presented for different values of the governing parameters. It is found that the solution was unique for the assisting flow, while dual solutions exist for the opposing flow. The results indicate that the range of known dual solutions increases with suction and decreases with injection.

  18. β-distribution for Reynolds stress and turbulent heat flux in relaxation turbulent boundary layer of compression ramp

    Science.gov (United States)

    Hu, YanChao; Bi, WeiTao; Li, ShiYao; She, ZhenSu

    2017-12-01

    A challenge in the study of turbulent boundary layers (TBLs) is to understand the non-equilibrium relaxation process after sep-aration and reattachment due to shock-wave/boundary-layer interaction. The classical boundary layer theory cannot deal with the strong adverse pressure gradient, and hence, the computational modeling of this process remains inaccurate. Here, we report the direct numerical simulation results of the relaxation TBL behind a compression ramp, which reveal the presence of intense large-scale eddies, with significantly enhanced Reynolds stress and turbulent heat flux. A crucial finding is that the wall-normal profiles of the excess Reynolds stress and turbulent heat flux obey a β-distribution, which is a product of two power laws with respect to the wall-normal distances from the wall and from the boundary layer edge. In addition, the streamwise decays of the excess Reynolds stress and turbulent heat flux also exhibit power laws with respect to the streamwise distance from the corner of the compression ramp. These results suggest that the relaxation TBL obeys the dilation symmetry, which is a specific form of self-organization in this complex non-equilibrium flow. The β-distribution yields important hints for the development of a turbulence model.

  19. Numerical and experimental investigation of multiple shock wave/turbulent boundary layer interactions in a rectangular duct

    Science.gov (United States)

    Dutton, J. C.; Carroll, B. F.

    1988-01-01

    Multiple shock wave/turbulent boundary layer interactions in constant or nearly constant area supersonic duct flows occur in a variety of devices including scramjet inlets, gas ejectors, and supersonic wind tunnels. For sufficiently high duct exit pressures, a multiple shock wave/turbulent boundary layer interaction or shock train may form in the duct and cause a highly nonuniform, and possibly unsteady, flow at the duct exit. In this report, the mean flow characteristics of two shock train interactions, one with an initial Mach number of 2.5 the other at Mach 1.6, are investigated using spark Schlieren photography, surface oil flow visualization, and mean wall pressure measurements. The Mach 2.5 interaction was oblique and asymmetric in nature. A large separation occurs after the first oblique shock. The top and bottom wall boundary layer separation has been investigated, revealing that the shape of the reattachment lines and surface flow patterns for the two separation regions are quite different. This oblique shock flow pattern occurs in a neurally stable fashion with each type of opposing separation region alternately existing on either the top or bottom wall during the course of a run. A small scale unsteadiness in the shock train location, with movement on the order of a boundary layer thickness, is also observed.

  20. Boundary layer control by a fish: Unsteady laminar boundary layers of rainbow trout swimming in turbulent flows

    Directory of Open Access Journals (Sweden)

    Kazutaka Yanase

    2016-12-01

    Full Text Available The boundary layers of rainbow trout, Oncorhynchus mykiss [0.231±0.016 m total body length (L (mean±s.d.; N=6], swimming at 1.6±0.09 L s−1 (N=6 in an experimental flow channel (Reynolds number, Re=4×105 with medium turbulence (5.6% intensity were examined using the particle image velocimetry technique. The tangential flow velocity distributions in the pectoral and pelvic surface regions (arc length from the rostrum, lx=71±8 mm, N=3, and lx=110±13 mm, N=4, respectively were approximated by a laminar boundary layer model, the Falkner−Skan equation. The flow regime over the pectoral and pelvic surfaces was regarded as a laminar flow, which could create less skin-friction drag than would be the case with turbulent flow. Flow separation was postponed until vortex shedding occurred over the posterior surface (lx=163±22 mm, N=3. The ratio of the body-wave velocity to the swimming speed was in the order of 1.2. This was consistent with the condition of the boundary layer laminarization that had been confirmed earlier using a mechanical model. These findings suggest an energy-efficient swimming strategy for rainbow trout in a turbulent environment.

  1. Boundary layer control by a fish: Unsteady laminar boundary layers of rainbow trout swimming in turbulent flows.

    Science.gov (United States)

    Yanase, Kazutaka; Saarenrinne, Pentti

    2016-12-15

    The boundary layers of rainbow trout, Oncorhynchus mykiss [0.231±0.016 m total body length (L) (mean±s.d.); N=6], swimming at 1.6±0.09 L s -1 (N=6) in an experimental flow channel (Reynolds number, Re=4×10 5 ) with medium turbulence (5.6% intensity) were examined using the particle image velocimetry technique. The tangential flow velocity distributions in the pectoral and pelvic surface regions (arc length from the rostrum, l x =71±8 mm, N=3, and l x =110±13 mm, N=4, respectively) were approximated by a laminar boundary layer model, the Falkner-Skan equation. The flow regime over the pectoral and pelvic surfaces was regarded as a laminar flow, which could create less skin-friction drag than would be the case with turbulent flow. Flow separation was postponed until vortex shedding occurred over the posterior surface (l x =163±22 mm, N=3). The ratio of the body-wave velocity to the swimming speed was in the order of 1.2. This was consistent with the condition of the boundary layer laminarization that had been confirmed earlier using a mechanical model. These findings suggest an energy-efficient swimming strategy for rainbow trout in a turbulent environment. © 2016. Published by The Company of Biologists Ltd.

  2. Proceedings of the 17th and 18th NAL Workshops on Investigation and Control of Boundary-Layer Transition

    OpenAIRE

    National Aerospace Laboratory; 航空宇宙技術研究所

    1996-01-01

    The following topics were discussed: vortex shedding, laminar boundary layer measurement, vortex ring, turbulent flow measurement, high Reynolds number turbulence, pulsed flow, boundary layer instability, Ekman boundary layer, sound receptivity, Tollmien-Schlichting wave in supersonic boundary layer, flow field instability, turbulent flow pattern, vorticity distribution in shear flow, turbulence wedge, streamwise vortex mixing, thermal convection, oblique wave generation in boundary layer, in...

  3. RANS Modeling of Stably Stratified Turbulent Boundary Layer Flows in OpenFOAM®

    Directory of Open Access Journals (Sweden)

    Wilson Jordan M.

    2015-01-01

    Full Text Available Quantifying mixing processes relating to the transport of heat, momentum, and scalar quantities of stably stratified turbulent geophysical flows remains a substantial task. In a stably stratified flow, such as the stable atmospheric boundary layer (SABL, buoyancy forces have a significant impact on the flow characteristics. This study investigates constant and stability-dependent turbulent Prandtl number (Prt formulations linking the turbulent viscosity (νt and diffusivity (κt for modeling applications of boundary layer flows. Numerical simulations of plane Couette flow and pressure-driven channel flow are performed using the Reynolds-averaged Navier-Stokes (RANS framework with the standard k-ε turbulence model. Results are compared with DNS data to evaluate model efficacy for predicting mean velocity and density fields. In channel flow simulations, a Prandtl number formulation for wall-bounded flows is introduced to alleviate overmixing of the mean density field. This research reveals that appropriate specification of Prt can improve predictions of stably stratified turbulent boundary layer flows.

  4. DNS of transcritical turbulent boundary layers at supercritical pressures under abrupt variations in thermodynamic properties

    Science.gov (United States)

    Kawai, Soshi

    2014-11-01

    In this talk, we first propose a numerical strategy that is robust and high-order accurate for enabling to simulate transcritical flows at supercritical pressures under abrupt variations in thermodynamic properties due to the real fluid effects. The method is based on introducing artificial density diffusion in a physically-consistent manner in order to capture the steep variation of thermodynamic properties in transcritical conditions robustly, while solving a pressure evolution equation to achieve pressure equilibrium at the transcritical interfaces. We then discuss the direct numerical simulation (DNS) of transcritical heated turbulent boundary layers on a zero-pressure-gradient flat plate at supercritical pressures. To the best of my knowledge, the present DNS is the first DNS of zero-pressure-gradient flat-plate transcritical turbulent boundary layer. The turbulent kinetic budget indicates that the compressibility effects (especially, pressure-dilatation correlation) are not negligible at the transcritical conditions even if the flow is subsonic. The unique and interesting interactions between the real fluid effects and wall turbulence, and their turbulence statistics, which have never been seen in the ideal-fluid turbulent boundary layers, are also discussed. This work was supported in part by Japan Society for the Promotion of Science (JSPS) Grant-in-Aid for Young Scientists (A) KAKENHI 26709066 and the JAXA International Top Young Fellowship Program.

  5. Wind-US Code Contributions to the First AIAA Shock Boundary Layer Interaction Prediction Workshop

    Science.gov (United States)

    Georgiadis, Nicholas J.; Vyas, Manan A.; Yoder, Dennis A.

    2013-01-01

    This report discusses the computations of a set of shock wave/turbulent boundary layer interaction (SWTBLI) test cases using the Wind-US code, as part of the 2010 American Institute of Aeronautics and Astronautics (AIAA) shock/boundary layer interaction workshop. The experiments involve supersonic flows in wind tunnels with a shock generator that directs an oblique shock wave toward the boundary layer along one of the walls of the wind tunnel. The Wind-US calculations utilized structured grid computations performed in Reynolds-averaged Navier-Stokes mode. Four turbulence models were investigated: the Spalart-Allmaras one-equation model, the Menter Baseline and Shear Stress Transport k-omega two-equation models, and an explicit algebraic stress k-omega formulation. Effects of grid resolution and upwinding scheme were also considered. The results from the CFD calculations are compared to particle image velocimetry (PIV) data from the experiments. As expected, turbulence model effects dominated the accuracy of the solutions with upwinding scheme selection indicating minimal effects.

  6. Gullies and Layers in Crater Wall in Newton

    Science.gov (United States)

    2002-01-01

    This dramatic view of gullies emergent from layered outcrops occurs on the wall of a crater within the much larger impact basin, Newton. Newton Crater and its surrounding terrain exhibit many examples of gullies on the walls of craters and troughs. The gullies exhibit meandering channels with fan-shaped aprons of debris located downslope. The gullies are considered to have been formed by erosion--both from a fluid (such as water) running downslope, and by slumping and landsliding processes driven by the force of gravity. This picture was obtained by the Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) in March 2001; it is illuminated from the upper left and covers an area 3 km (1.9 mi) across.

  7. Modelling the Arctic Stable boundary layer and its coupling to the surface

    NARCIS (Netherlands)

    Steeneveld, G.J.; Wiel, van de B.J.H.; Holtslag, A.A.M.

    2006-01-01

    The impact of coupling the atmosphere to the surface energy balance is examined for the stable boundary layer, as an extension of the first GABLS (GEWEX Atmospheric Boundary-Layer Study) one-dimensional model intercomparison. This coupling is of major importance for the stable boundary-layer

  8. Surface Temperature and Surface-Layer Turbulence in a Convective Boundary Layer

    NARCIS (Netherlands)

    Garai, A.; Pardyjak, E.; Steeneveld, G.J.; Kleissl, J.

    2013-01-01

    Previous laboratory and atmospheric experiments have shown that turbulence influences the surface temperature in a convective boundary layer. The main objective of this study is to examine land-atmosphere coupled heat transport mechanism for different stability conditions. High frequency infrared

  9. Experimental Study of Boundary Layer Flow Control Using an Array of Ramp-Shaped Vortex Generators

    Science.gov (United States)

    Hirt, Stefanie M.; Zaman, Khairul B.M.Q.; Bencic, Tomothy J.

    2012-01-01

    The objective of this study was to obtain a database on the flowfield past an array of vortex generators (VGs) in a turbulent boundary layer. All testing was carried out in a low speed wind tunnel with a flow velocity of 29 ft/sec, giving a Reynolds number of 17,500 based on the width of the VG. The flowfield generated by an array of five ramp-shaped vortex generators was examined with hot wire anemometry and smoke flow visualization. The magnitude and extent of the velocity increase near the wall, the penetration of the velocity deficit into the core flow, and the peak streamwise vorticity are examined. Influence of various parameters on the effectiveness of the array is considered on the basis of the ability to pull high momentum fluid into the near wall region.

  10. Boundary layer polarization and voltage in the 14 MLT region

    Science.gov (United States)

    Lundin, R.; Yamauchi, M.; Woch, J.; Marklund, G.

    1995-05-01

    Viking midlatitude observations of ions and electrons in the postnoon auroral region show that field-aligned acceleration of electrons and ions with energies up to a few kiloelectron volts takes place. The characteristics of the upgoing ion beams and the local transverse electric field observed by Viking indicate that parallel ion acceleration is primarily due to a quasi-electrostatic field-aligned acceleration process below Viking altitudes, i.e., below 10,000-13,500 km. A good correlation is found between the maximum upgoing ion beam energy and the depth of the local potential well determined by the Viking electric field experiment within dayside 'ion inverted Vs.' The total transverse potential throughout the entire region near the ion inverted Vs. is generally much higher than the field-aligned potential and may reach well above 10 kV. However, the detailed mapping of the transverse potential out to the boundary layer, a fundamental issue which remains controversial, was not attempted here. An important finding in this study is the strong correlation between the maximum up going ion beam energy of dayside ion inverted Vs and the solar wind velocity. This suggests a direct coupling of the solar wind plasma dynamo/voltage generator to the region of field-aligned particle acceleration. The fact that the center of dayside ion inverted Vs coincide with convection reversals/flow stagnation and upward Birkeland currents on what appears to be closed field lines (Woch et al., 1993), suggests that field-aligned potential structures connect to the inner part of an MHD dyanmo in the low-latitude boundary layer. Thus the Viking observations substantiate the idea of a solar wind induced boundary layer polarization where negatively charged perturbations in the postnoon sector persistently develops along the magnetic field lines, establishing accelerating potential drops along the geomagnetic field lines in the 0.5-10 kV range.

  11. Modelling wave-boundary layer interaction for wind power applications

    Science.gov (United States)

    Jenkins, A. D.; Barstad, I.; Gupta, A.; Adakudlu, M.

    2012-04-01

    Marine wind power production facilities are subjected to direct and indirect effects of ocean waves. Direct effects include forces due to wave orbital motions and slamming of the water surface under breaking wave conditions, corrosion and icing due to sea spray, and the effects of wave-generated air bubbles. Indirect effects include include the influence of waves on the aerodynamic sea-surface roughness, air turbulence, the wind velocity profile, and air velocity oscillations, wave-induced currents and sediment transport. Field observations within the boundary layers from floating measurement may have to be corrected to account for biases induced as a result of wave-induced platform motions. To estimate the effect of waves on the atmospheric boundary layer we employ the WRF non-hydrostatic mesoscale atmosphere model, using the default YSU planetary boundary layer (PBL) scheme and the WAM spectral wave model, running simultaneously and coupled using the open-source coupler MCEL which can interpolate between different model grids and timesteps. The model is driven by the WRF wind velocity at 10 m above the surface. The WRF model receives from WAM updated air-sea stress fields computed from the wind input source term, and computes new fields for the Charnock parameter and marine surface aerodynamic roughness. Results from a North Atlantic and Nordic Seas simulation indicate that the two-way coupling scheme alters the 10 metre wind predicted by WRF by up to 10 per cent in comparison with a simulation using a constant Charnock parameter. The changes are greatest in developing situations with passages of fronts, moving depressions and squalls. This may be directly due to roughness length changes, or may be due to changes in the timing of front/depression/squall passages. Ongoing work includes investigating the effect of grid refinement/nesting, employing different PBL schemes, and allowing the wave field to change the direction of the total air-sea stress.

  12. Secondary flows in turbulent boundary layers over longitudinal surface roughness

    Science.gov (United States)

    Hwang, Hyeon Gyu; Lee, Jae Hwa

    2018-01-01

    Direct numerical simulations of turbulent boundary layers over longitudinal surface roughness are performed to investigate the impact of the surface roughness on the mean flow characteristics related to counter-rotating large-scale secondary flows. By systematically changing the two parameters of the pitch (P) and width (S) for roughness elements in the ranges of 0.57 ≤P /δ ≤2.39 and 0.15 ≤S /δ ≤1.12 , where δ is the boundary layer thickness, we find that the size of the secondary flow in each case is mostly determined by the value of P - S, i.e., the valley width, over the ridge-type roughness. However, the strength of the secondary flows on the cross-stream plane relative to the flow is increased when the value of P increases or when the value of S decreases. In addition to the secondary flows, additional tertiary and quaternary flows are observed both above the roughness crest and in the valley as the values of P and S increase further. Based on an analysis using the turbulent kinetic energy transport equation, it is shown that the secondary flow over the ridge-type roughness is both driven and sustained by the anisotropy of turbulence, consistent with previous observations of a turbulent boundary layer over strip-type roughness [Anderson et al., J. Fluid Mech. 768, 316 (2015), 10.1017/jfm.2015.91]. Careful inspection of the turbulent kinetic energy budget reveals that the opposite rotational sense of the secondary flow between the ridge- and strip-type roughness elements is primarily attributed to the local imbalance of energy budget created by the strong turbulent transport term over the ridge-type roughness. The active transport of the kinetic energy over the ridge-type roughness is closely associated with the upward deflection of spanwise motions in the valley, mostly due to the roughness edge.

  13. A Visualization Study of Wall Layer of Swirling Turbulent Pipe Flow

    Science.gov (United States)

    Malek, Meriam; Hager, Rachael; Savas, Omer

    2014-11-01

    The streaky vortical structure of the viscous sublayer of a turbulent boundary layer is well known. Turbulent flows in pipes also exhibit similar structures. The effect of swirl on that structure is the subject matter of this study. The experiments are conducted in water in a 5-cm diameter clear cast-acrylic pipe at Reynolds numbers up to 80,000. Initial geometric swirl angles up to 60° at the wall are generated by placing 3D printed inserts at the inlet of the pipe. Flows are visualized using reflective flakes of size distribution 10-80 μm under diffuse illumination. Flows are recorded at high framing rates. After preprocessing, the streaky structure is quantified by using autocorrelation of the images. Lateral spacing and longitudinal length scales are extracted. Also studied is the decay of the swirl angle and its influence of the wall structure. Undergraduate Researcher.

  14. Fluid Mechanics and Heat Transfer in Transitional Boundary Layers

    Science.gov (United States)

    Wang, Ting

    2007-01-01

    Experiments have been performed to investigate the effects of elevated free-stream turbulence and streamwise acceleration on flow and thermal structures in transitional boundary layers. The free-stream turbulence ranges from 0.5 to 6.4% and the streamwise acceleration ranges from K = 0 to 0.8 x 10(exp -6). The onset of transition, transition length and the turbulent spot formation rate are determined. The statistical results and conditionally sampled results of th streamwise and cross-stream velocity fluctuations, temperature fluctuations, Reynolds stress and Reynolds heat fluxes are presented.

  15. Earth's magnetosphere formed by the low-latitude boundary layer

    CERN Document Server

    Heikkila, W J

    2011-01-01

    The author argues that, after five decades of debate about the interactive of solar wind with the magnetosphere, it is time to get back to basics. Starting with Newton's law, this book also examines Maxwell's equations and subsidiary equations such as continuity, constitutive relations and the Lorentz transformation; Helmholtz' theorem, and Poynting's theorem, among other methods for understanding this interaction. Includes chapters on prompt particle acceleration to high energies, plasma transfer event, and the low latitude boundary layer More than 200 figures illustrate the text Includes a color insert.

  16. The Physics of Boundary-Layer Aero-Optic Effects

    Science.gov (United States)

    2012-09-01

    Mach-number-dependent function, )(1 ∞ MF for the modified model Eq. (23) and [ ] 2/3 222 2 )/(12 11)( − ∞∞∞∞       − − += UUrMMMF c γ for the...model Eq. (20). To calculate )(1 ∞ MF from (24), experimentally-measured velocity profiles for a M = 0.5 boundary layer were used; Figure 17 shows the...Optical Engineering: The Design of Optical Systems, McGraw- Hill, NY, 1966, Chap. 3, pp. 49-71. [16] S. Gordeyev, E. Jumper, T. Ng and A. Cain , "Aero

  17. Effects of compressibility on boundary-layer turbulence

    Science.gov (United States)

    Acharya, M.

    1976-01-01

    A series of turbulence measurements in a subsonic compressible turbulent boundary-layer flow in the Mach number range of 0.1 to 0.7 is described. Measurements include detailed surveys of the turbulence intensities and Reynolds shear stresses, and other quantities such as the turbulent kinetic energy. These data are examined to bring out the effects of compressibility and show that the stream-wise and transverse fluctuations and the turbulent shear stress follow a universal scaling law. A preliminary attempt is made to examine some of the assumptions made in turbulence models commonly used in numerical codes for the calculation of compressible flows.

  18. Numerical simulation of convective boundary layer above polynyas and leads.

    Science.gov (United States)

    Debolskiy, Andrey; Stepanenko, Victor

    2013-04-01

    Arctic region is very important as one of drivers for global atmosphere circulation. Meanwhile, results of modern global atmospheric models, both climatic and weather forecasting differs significantly from each other and observations in this region. One of the reasons for these uncertainties can be inaccurate simulation of ice and snow cover distribution, which accuracy depends in turn on variety of factors. Among others, appropriate parameterizations of atmospheric boundary layer over inhomogeneous surface, not explicitly resolved at the atmospheric model grid, can decrease these inaccuracies. The main objective of these parameterizations is to calculate surface heat and water vapor fluxes, averaged over the whole model cell. However, due to great differences in structure of boundary layers formed over cold ice and relatively warm open water, which cause nonlinear dependencies,the parameterizations suggested to the moment can hardly be regarded as applicable for "complete" set of synoptic scenarios . The present paper attempts to improve standard mosaic method of flux aggregation, which is still common in climate models [1]. The main idea is to derive heat fluxes using data from numerical experiments, explicitly reproducing most of sub grid (for global models) turbulence motions spectra, and compare with fluxes calculated using mosaic method implying the part of model domain to be a global model cell. The study is based on idealized high resolution (~10 m) experiments with typically observed surface parameters (temperature and roughness), ice-open water distribution, initial temperature and wind profiles distribution included in Large Eddy Simulation model of Insitute of Numerical Mathematics RAS [2],[3]. Analysis of other boundary layer characteristics such as its height, eddy diffusivity profiles, kinetic energy is presented. The modeling results are compared with field experiments' data gathered at White Sea. References: 1. V.M. Stepanenko, P.M. Miranda, V

  19. Hypersonic boundary layer stabilization by using a wavy surface

    Science.gov (United States)

    Kirilovskiy, S. V.; Poplavskaya, T. V.

    2017-10-01

    Numerical simulation of hypersonic (M∞=6) flow and evolution of disturbances on a smooth plate and a shallow grooved plate was performed by solving two-dimensional Navier– Stokes equations. Computational soft-ware verification was conducted by comparison with existing data of pressure pulsations on plates surface. It was showed that wavy surface significantly decrease pressure pulsations on plate surface and does not increase the value of mean heat fluxes. Data about effect of wavy surfaces with different form on the disturbances intensity in hypersonic boundary layer was obtained.

  20. Turbulent boundary layer measurements over flat surfaces coated by nanostructured marine antifoulings

    Science.gov (United States)

    Ünal, Uğur Oral; Ünal, Burcu; Atlar, Mehmet

    2012-06-01

    Whilst recent developments of nanotechnology are being exploited by chemists and marine biologists to understand how the completely environmentally friendly foul release coatings can control marine biofouling and how they can be developed further, the understanding of the hydrodynamic performances of these new generation coatings is being overlooked. This paper aims to investigate the relative boundary layer, roughness and drag characteristics of some novel nanostructured coatings, which were developed through a multi-European and multi-disciplined collaborative research project AMBIO (2010), within the framework of turbulent flows over rough surfaces. Zero-pressure-gradient, turbulent boundary layer flow measurements were conducted over flat surfaces coated with several newly developed nanostructured antifouling paints, along with some classic reference surfaces and a state-of-the-art commercial coating, in the Emerson Cavitation Tunnel (ECT) of Newcastle University. A large flat plane test bed that included interchangeable flat test sections was used for the experiments. The boundary layer data were collected with the aid of a two-dimensional DANTEC Laser Doppler Velocimetry (LDV) system. These measurements provided the main hydrodynamic properties of the newly developed nanostructured coatings including local skin friction coefficients, roughness functions and Reynolds stresses. The tests and subsequent analysis indicated the exceptionally good frictional properties of all coatings tested, in particular, the drag benefit of some new nanostructured coatings in the Reynolds number range investigated. The rapidly decreasing roughness function trends of AKZO19 and AKZO20 as the ks^{ + } increases were remarkable along with the dissimilar roughness function character of all tested coatings to the well-known correlation curves warranting further research at higher Reynolds numbers. The wall similarity concept for the Reynolds stresses was only validated for the

  1. Correlation and prediction of thermophoretic and inertial effects on particle deposition from non-isothermal turbulent boundary layers

    Science.gov (United States)

    Rosner, D. E.; Fernandez De La Mora, J.

    1982-01-01

    The problem of small particle deposition which can cause hot stage corrosion and/or fouling in combustion turbines operating on fuels containing ash or inorganic salts is investigated. Two boundary layer transport phenomena are shown to assume importance in these cases: particle thermophoresis (migration down a temperature gradient) and particle inertia. Thermophoretic and eddy transport across turbulent boundary layers without and with particle inertia effects are quantitatively analyzed. The effects of streamwise blade curvature on particle transport across turbulent boundary layers are determined. It is shown that these phenomena destroy the analogy between mass and heat transfer or mass and momentum transfer. Also studied are the effects on particle deposition of distributed or localized wall blowing, surface roughness, and mainstream turbulence.

  2. Boundary-layer development and transition due to free-stream exothermic reactions in shock-induced flows

    Science.gov (United States)

    Hall, J. L.

    1974-01-01

    A study of the effect of free-stream thermal-energy release from shock-induced exothermic reactions on boundary-layer development and transition is presented. The flow model is that of a boundary layer developing behind a moving shock wave in two-dimensional unsteady flow over a shock-tube wall. Matched sets of combustible hydrogen-oxygen-nitrogen mixtures and inert hydrogen-nitrogen mixtures were used to obtain transition data over a range of transition Reynolds numbers from 1,100,000 to 21,300,000. The heat-energy is shown to significantly stabilize the boundary layer without changing its development character. A method for application of this data to flat-plate steady flows is included.

  3. Nanodiamonds in the Younger Dryas boundary sediment layer.

    Science.gov (United States)

    Kennett, D J; Kennett, J P; West, A; Mercer, C; Hee, S S Que; Bement, L; Bunch, T E; Sellers, M; Wolbach, W S

    2009-01-02

    We report abundant nanodiamonds in sediments dating to 12.9 +/- 0.1 thousand calendar years before the present at multiple locations across North America. Selected area electron diffraction patterns reveal two diamond allotropes in this boundary layer but not above or below that interval. Cubic diamonds form under high temperature-pressure regimes, and n-diamonds also require extraordinary conditions, well outside the range of Earth's typical surficial processes but common to cosmic impacts. N-diamond concentrations range from approximately 10 to 3700 parts per billion by weight, comparable to amounts found in known impact layers. These diamonds provide strong evidence for Earth's collision with a rare swarm of carbonaceous chondrites or comets at the onset of the Younger Dryas cool interval, producing multiple airbursts and possible surface impacts, with severe repercussions for plants, animals, and humans in North America.

  4. Interactions between the thermal internal boundary layer and sea breezes

    Energy Technology Data Exchange (ETDEWEB)

    Steyn, D.G. [The Univ. of British Columbia, Dept. of Geography, Atmospheric Science Programme, Vancouver (Canada)

    1997-10-01

    In the absence of complex terrain, strongly curved coastline or strongly varying mean wind direction, the Thermal Internal Boundary Layer (TIBL) has well known square root behaviour with inland fetch. Existing slab modeling approaches to this phenomenon indicate no inland fetch limit at which this behaviour must cease. It is obvious however that the TIBL cannot continue to grow in depth with increasing fetch, since the typical continental Mixed Layer Depths (MLD) of 1500 to 2000 m must be reached between 100 and 200 km from the shoreline. The anticyclonic conditions with attendant strong convection and light winds which drive the TIBL, also drive daytime Sea Breeze Circulations (SBC) in the coastal zone. The onshore winds driving mesoscale advection of cool air are at the core of TIBL mechanisms, and are invariably part of a SBC. It is to be expected that TIBL and SBC be intimately linked through common mechanisms, as well as external conditions. (au)

  5. A multi-layer description of Reynolds stresses in canonical wall bounded flows

    Science.gov (United States)

    Chen, Xi; Hussain, Fazle; She, Zhen-Su

    2015-11-01

    A complete description of the Reynolds stress tensor is obtained for all three canonical wall turbulence (channel, pipe and turbulent boundary layer - TBL). The result builds on a multi-layer description of length (order) functions and their ratios, including viscous sublayer, buffer layer, meso-layer for the near wall (inner) region, and bulk flow or a central core (absent in TBL) for the outer region. It is shown that the streamwise mean kinetic-energy profile is quantified with high accuracy over the entire flow domain. The model contains only three Re-dependent parameters for Reynolds number (Re) covering nearly three decades. Furthermore, the inner peak location is predicted to be invariant at y+ = 15, while its magnitude shows notable Re and geometry effects, predicted to be .9.2 for high Re's pipe flows. A mechanism is proposed for the emergence of outer peak in pipes, whose magnitude is predicted to scale as .Reτ0. 05 beyond a critical Reτ about 104(). The recently reported logarithmic dependence in the bulk is recovered, but with an alternative explanation. The result is successfully extended to TBL flows by a fractional total stress and an absence of core. Equally accurate descriptions of vertical and spanwise kinetic-energy are also presented for the three flows. The result has been used to modify turbulent engineering models (i.e. k- ω model) with significant improvement.

  6. Validation of the simpleFoam (RANS solver for the atmospheric boundary layer in complex terrain

    Directory of Open Access Journals (Sweden)

    Peralta C.

    2014-01-01

    Full Text Available We validate the simpleFoam (RANS solver in OpenFOAM (version 2.1.1 for simulating neutral atmospheric boundary layer flows in complex terrain. Initial and boundary conditions are given using Richards and Hoxey proposal [1]. In order to obtain stable simulation of the ABL, modified wall functions are used to set the near-wall boundary conditions, following Blocken et al remedial measures [2]. A structured grid is generated with the new library terrainBlockMesher [3,4], based on OpenFOAM's blockMesh native mesher. The new tool is capable of adding orographic features and the forest canopy. Additionally, the mesh can be refined in regions with complex orography. We study both the classical benchmark case of Askervein hill [5] and the more recent Bolund island data set [6]. Our purpose is two-folded: to validate the performance of OpenFOAM steady state solvers, and the suitability of the new meshing tool to generate high quality structured meshes, which will be used in the future for performing more computationally intensive LES simulations in complex terrain.

  7. DNS of Laminar-Turbulent Transition in Swept-Wing Boundary Layers

    Science.gov (United States)

    Duan, L.; Choudhari, M.; Li, F.

    2014-01-01

    Direct numerical simulation (DNS) is performed to examine laminar to turbulent transition due to high-frequency secondary instability of stationary crossflow vortices in a subsonic swept-wing boundary layer for a realistic natural-laminar-flow airfoil configuration. The secondary instability is introduced via inflow forcing and the mode selected for forcing corresponds to the most amplified secondary instability mode that, in this case, derives a majority of its growth from energy production mechanisms associated with the wall-normal shear of the stationary basic state. An inlet boundary condition is carefully designed to allow for accurate injection of instability wave modes and minimize acoustic reflections at numerical boundaries. Nonlinear parabolized stability equation (PSE) predictions compare well with the DNS in terms of modal amplitudes and modal shape during the strongly nonlinear phase of the secondary instability mode. During the transition process, the skin friction coefficient rises rather rapidly and the wall-shear distribution shows a sawtooth pattern that is analogous to the previously documented surface flow visualizations of transition due to stationary crossflow instability. Fully turbulent features are observed in the downstream region of the flow.

  8. Micro-actuators for Turbulent Boundary Layer Control

    Science.gov (United States)

    Lee, Conrad; Colmenero, Gerardo; Goldstein, David; Wu, Kevin; Breuer, Kenneth

    2003-11-01

    We present direct numerical simulations and experiments on micro-jet control of a turbulent channel flow. The simulation code is pseudo-spectral and uses a virtual surface approach (immersed boundaries created with body forces) to model arrays of individually controlled rectangular slots in a doubly-periodic domain. Flush-mounted sensors are positioned either upstream (to detect gradients of streamwise vorticity) or directly over the actuators (to detect wall-normal velocity). The results emphasize the differences between earlier simulations using continuously variable blowing and suction and what is physically attainable using discrete actuators and sensors. Results show small drag reductions occur with the discrete actuators. Comparisons are made with physical experiments designed to closely match the simulations. Here, arrays of flush-mounted actuators force a low-Reynolds number turbulent channel flow in response to upstream-mounted shear sensors. The response of the flow is measured using PIV.

  9. Characteristics of vortex packets in turbulent boundary layers

    Science.gov (United States)

    Ganapathisubramani, Bharathram; Longmire, Ellen K.; Marusic, Ivan

    2003-03-01

    Stereoscopic particle image velocimetry (PIV) was used to measure all three instantaneous components of the velocity field in streamwise spanwise planes of a turbulent boundary layer at Re[tau]=1060 (Re[theta]=2500). Datasets were obtained in the logarithmic layer and beyond. The vector fields in the log layer (z+=92 and 150) revealed signatures of vortex packets similar to those proposed by Adrian and co-workers in their PIV experiments. Groups of legs of hairpin vortices appeared to be coherently arranged in the streamwise direction. These regions also generated substantial Reynolds shear stress, sometimes as high as 40 times [minus sign]uw. A feature extraction algorithm was developed to automate the identification and characterization of these packets of hairpin vortices. Identified patches contributed 28% to [minus sign]uw while occupying only 4% of the total area at z+=92. At z+=150, these patches occupied 4.5% of the total area while contributing 25% to [minus sign]uw. Beyond the log layer (z+=198 and 530), the spatial organization into packets is seen to break down.

  10. The turbulent boundary layer on a porous plate: An experimental study of the fluid mechanics for adverse free stream pressure gradients

    Science.gov (United States)

    Anderson, P. S.; Kays, W. M.; Moffat, R. J.

    1972-01-01

    An experimental investigation of transpired turbulent boundary layers in zero and adverse pressure gradients has been carried out. Profiles of: (1) the mean velocity, (2) the three intensities of the turbulent fluctuations, and (3) the Reynolds stress were obtained by hot-wire anemometry. The friction coefficients were measured by using an integrated form of the boundary layer equation to extrapolate the measured shear stress profiles to the wall.

  11. The Modelling of Particle Resuspension in a Turbulent Boundary Layer

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Fan

    2011-10-20

    uncorrelated curve-fitted model. In view of recent numerical data for lift and drag forces in turbulent boundary layers, the lift and drag we have con sidered and the impact of these data on predictions made by the non-Gaussian R'n'R model are compared with those based on O'Neill formula. The results indicate that, in terms of the long-term resuspension fraction, the difference is minor. It is concluded that as the particle size decreases the L and B method will lead to less-and-less long-term resuspension. Finally the ultimate model that has been developed in this work is a hybrid version of the R'n'R model adapted for application to multilayer deposits based on the Friess and Yadigaroglu multilayer approach. The deposit is modelled in several overlying layers where the coverage effect (masking) of the deposit layers has been studied; in the first instance a monodisperse deposit with a coverage ratio factor was modelled where this was subsequently replaced by the more general case of a polydisperse deposit with a particle size distribution.

  12. Orientation and circulation of vortices in a turbulent boundary layer

    Science.gov (United States)

    Gao, Qi; Ortiz-Dueñas, Cecilia; Longmire, Ellen

    2007-11-01

    The strengths of individual vortices are important in determining the generation and development of surrounding vortices in turbulent boundary layers. The dual-plane PIV data at z^+ = 110 and z/δ = 0.53 in a turbulent boundary layer at Reτ=1160 obtained by Ganapathisubramani et al. (2006) were investigated. 3D swirl strength was used to identify vortex cores. The eigenvector of the velocity gradient tensor was used to determine the orientation of each core, and the resulting eigenvector direction was compared with the average vorticity direction. Circulation of the cores was calculated using the vorticity vector only and using the vorticity vector projected onto the eigenvector. The probability distribution of the angle between the eigenvector and the vorticity vector indicated a peak at 15-20 degrees. The eigenvector angle distributions indicate that at z^+=110, more hairpin legs cross the measurement plane while at z/δ = 0.53, more heads are evident. Details of the orientation and circulation distributions will be discussed in the presentation.

  13. Characteristics of turbulent boundary layer flow over algal biofilm

    Science.gov (United States)

    Murphy, Elizabeth; Barros, Julio; Schultz, Michael; Steppe, Cecily; Flack, Karen; Reidenbach, Matthew

    2015-11-01

    Algal biofilms are an important fouling community on ship hulls, with severe economic consequences due to drag-induced increases in fuel use and cleaning costs. Here, we characterize the boundary layer flow structure in turbulent flow over diatomaceous slime, a type of biofilm. Diatomaceous slime composed of three species of diatoms commonly found on ship hulls was grown on acrylic test plates under shear stress. The slime averages 1.6 mm in thickness and has a high density of streamers, which are flexible elongated growths with a length on the order of 1- 2 mm located at the top of the biofilm that interact with the flow. Fouled acrylic plates were placed in a water tunnel facility specialized for detailed turbulent boundary layer measurements. High resolution Particle Image Velocimetry (PIV) data are analyzed for mean velocity profile as well as local turbulent stresses and turbulent kinetic energy (TKE) production, dissipation and transport. Quadrant analysis is used to characterize the impact of the instantaneous events of Reynolds shear stress (RSS) in the flow. To investigate the coherence of the large-scale motion in the flow two-point correlation analysis is employed. Funding provided by the Office of Naval Research and the National Science Foundation.

  14. Transition Delay in Hypersonic Boundary Layers via Optimal Perturbations

    Science.gov (United States)

    Paredes, Pedro; Choudhari, Meelan M.; Li, Fei

    2016-01-01

    The effect of nonlinear optimal streaks on disturbance growth in a Mach 6 axisymmetric flow over a 7deg half-angle cone is investigated in an e ort to expand the range of available techniques for transition control. Plane-marching parabolized stability equations are used to characterize the boundary layer instability in the presence of azimuthally periodic streaks. The streaks are observed to stabilize nominally planar Mack mode instabilities, although oblique Mack mode disturbances are destabilized. Experimentally measured transition onset in the absence of any streaks correlates with an amplification factor of N = 6 for the planar Mack modes. For high enough streak amplitudes, the transition threshold of N = 6 is not reached by the Mack mode instabilities within the length of the cone, but subharmonic first mode instabilities, which are destabilized by the presence of the streaks, reach N = 6 near the end of the cone. These results suggest a passive flow control strategy of using micro vortex generators to induce streaks that would delay transition in hypersonic boundary layers.

  15. Space Shuttle Boundary Layer Transition Flight Experiment Ground Testing Overview

    Science.gov (United States)

    Berger, Karen T.; Anderson, Brian P.; Campbell, Charles H.

    2014-01-01

    In support of the Boundary Layer Transition (BLT) Flight Experiment (FE) Project in which a manufactured protuberance tile was installed on the port wing of Space Shuttle Orbiter Discovery for STS-119, STS- 128, STS-131 and STS-133 as well as Space Shuttle Orbiter Endeavour for STS-134, a significant ground test campaign was completed. The primary goals of the test campaign were to provide ground test data to support the planning and safety certification efforts required to fly the flight experiment as well as validation for the collected flight data. These test included Arcjet testing of the tile protuberance, aerothermal testing to determine the boundary layer transition behavior and resultant surface heating and planar laser induced fluorescence (PLIF) testing in order to gain a better understanding of the flow field characteristics associated with the flight experiment. This paper provides an overview of the BLT FE Project ground testing. High-level overviews of the facilities, models, test techniques and data are presented, along with a summary of the insights gained from each test.

  16. Geostrophic convective turbulence: The effect of boundary layers

    CERN Document Server

    Ostilla-Mónico, Rodolfo; Kunnen, Rudie P J; Verzicco, Roberto; Lohse, Detlef

    2014-01-01

    This Letter presents results of the first direct numerical simulations of rotating Rayleigh--B\\'enard convection in the so-called geostrophic regime, (hence very small Ekman numbers $\\mathcal{O}(10^{-7})$ and high Rayleigh numbers~$Ra=10^{10}$ and~$5\\cdot 10^{10}$), employing the \\emph{full} Navier--Stokes equations. In the geostrophic regime the criteria of very strong rotation and large supercriticality are met simultaneously, which is true for many geophysical and astrophysical flows. Until now, numerical approaches of this regime have been based on \\emph{reduced} versions of the Navier--Stokes equations (cf. Sprague \\emph{et al.} J. Fluid Mech., \\textbf{551}, 141 (2006)), omitting the effect of the viscous (Ekman) boundary layers. By using different velocity boundary conditions at the plates, we study the effect of these Ekman layers. We find that the formation of large-scale structures (Rubio \\emph{et al.} (Phys. Rev. Lett. \\textbf{112} (2014)), which indicates the presence of an inverse energy cascade, ...

  17. Dynamics of Under Ice Boundary Layers Below Floating Ice Shelves

    Science.gov (United States)

    Shaw, W. J.; Stanton, T. P.

    2016-02-01

    Pine Island Glacier (PIG), a major outlet stream of the Western Antarctic Ice Sheet, has dramatically thinned and accelerated in recent decades. It is believed that a weakening of the floating portion of the glacier, known as the ice shelf, due to increased ocean thermal forcing is a primary cause of the observed increasing discharge of PIG. In order to better understand the controls on the exchange of heat between the PIG shelf and the underlying ocean cavity, a numerical model, MITgcm, has been configured to study the dynamics of the sloping, meltwater-forced, buoyant boundary layer below the ice shelf A 2-D approximation allows for high vertical resolution that resolves well the under shelf ocean boundary layer. We are particularly interested in the dynamical balance between buoyancy along the sloping ice shelf base, drag, and entrainment/detrainment and the associated feedback of basal melting of the ice shelf. Numerical results will be compared to in-situ observations obtained through a field campaign in 2013.

  18. Analytical investigation of boundary layer growth and swirl intensity decay rate in a pipe

    Energy Technology Data Exchange (ETDEWEB)

    Maddahian, Reza; Kebriaee, Azadeh; Farhanieh, Bijan; Firoozabadi, Bahar [Sharif University of Technology, School of Mechanical Engineering, Tehran (Iran, Islamic Republic of)

    2011-04-15

    In this research, the developing turbulent swirling flow in the entrance region of a pipe is investigated analytically by using the boundary layer integral method. The governing equations are integrated through the boundary layer and obtained differential equations are solved with forth-order Adams predictor-corrector method. The general tangential velocity is applied at the inlet region to consider both free and forced vortex velocity profiles. The comparison between present model and available experimental data demonstrates the capability of the model in predicting boundary layer parameters (e.g. boundary layer growth, shear rate and swirl intensity decay rate). Analytical results showed that the free vortex velocity profile can better predict the boundary layer parameters in the entrance region than in the forced one. Also, effects of pressure gradient inside the boundary layer is investigated and showed that if pressure gradient is ignored inside the boundary layer, results deviate greatly from the experimental data. (orig.)

  19. Comparison of spatial and temporal characteristics of a turbulent boundary layer in the presence of free-stream turbulence

    Science.gov (United States)

    Dogan, Eda; Hearst, R. Jason; Hanson, Ronald E.; Ganapathisubramani, Bharathram

    2016-11-01

    Free-stream turbulence (FST) has previously been shown to enhance the scale interactions occurring within a turbulent boundary layer (TBL). This is investigated further by generating FST with an active grid over a zero-pressure gradient TBL that developed on a smooth flat plate. Simultaneous measurements were performed using four hot-wires mounted to a rake that traversed the boundary layer height. Planar PIV measurements were also performed. Hot-wire measurements indicate that on average large-scale structures occurring in the free-stream penetrate the boundary layer and increase the streamwise velocity fluctuations throughout. Two-point correlations of the streamwise velocity fluctuations from the hot-wires enable determination of the inclination angle of the wall-structures in the boundary layer using Taylor's hypothesis. This angle is observed to be invariant around 11-15 degrees in the near-wall region in agreement with the literature for canonical TBLs. This presentation will compare the planar PIV data to these hot-wire measurements to determine if these phenomena that appear in the statistics using Taylor's hypothesis can be tracked to instantaneous spatial features in the TBL subjected to FST. We acknowledge the financial support from the European Research Council (ERC Grant Agreement No. 277472), EPSRC (Grant ref no: EP/I037717/1).

  20. Modeling and large-eddy simulation (LES) of a turbulent boundary layer over linearly-varying surface roughness

    Science.gov (United States)

    Sridhar, A.; Pullin, D. I.; Cheng, W.

    2016-11-01

    An empirical model is presented, after Rotta (1962), that describes the development of a fully-developed turbulent boundary layer in the presence of surface roughness with nominal roughness length-scale ks that varies with stream-wise distance x. For Rex =Ue (x) x / ν large, use is made of the log-wake model of the local turbulent mean-velocity profile that contains the Hama roughness correction ΔU+ (ks+) for the asymptotic, fully rough regime. It is shown that the skin friction coefficient Cf is constant in x only for ks = αx , where α is a dimensionless number. For Ue (x) = Axm , this then gives a two-parameter (α , m) family of solutions for boundary-layer flows that are self similar in the variable z / (α x) where z is the wall-normal co-ordinate. Trends observed in this model are supported by wall-modeled LES of the zero-pressure-gradient turbulent boundary layer (m = 0) at very large Rex . It is argued that the present results suggest that, in the sense that Cf is spatially constant and independent of Rex , this class of flows can be interpreted as providing the asymptotically-rough equivalent of Moody-like diagrams for boundary layers in the presence of small-scale roughness. Supported partially by KAUST OCRF Award No. URF/1/1394-01 and partially by NSF award CBET 1235605.

  1. CONVECTIVE HEAT AND MASS TRANSFER IN THE COMBUSTION OF CHEMICALLY ACTIVE SUBSTANCES IN THE BOUNDARY LAYER ON A POROUS SURFACE.

    Science.gov (United States)

    COOLING, *POROUS MATERIALS), (*HEAT TRANSFER, *COMBUSTION), (* MASS TRANSFER , COMBUSTION), CONVECTION(HEAT TRANSFER), GAS FLOW, INJECTION, CHEMICAL REACTIONS, LAMINAR BOUNDARY LAYER, TURBULENT BOUNDARY LAYER, THERMAL INSULATION, USSR

  2. Free-stream turbulence effects on the boundary layer of a high-lift low-pressure-turbine blade

    Science.gov (United States)

    Simoni, D.; Ubaldi, M.; Zunino, P.; Ampellio, E.

    2016-06-01

    The suction side boundary layer evolution of a high-lift low-pressure turbine cascade has been experimentally investigated at low and high free-stream turbulence intensity conditions. Measurements have been carried out in order to analyze the boundary layer transition and separation processes at a low Reynolds number, under both steady and unsteady inflows. Static pressure distributions along the blade surfaces as well as total pressure distributions in a downstream tangential plane have been measured to evaluate the overall aerodynamic efficiency of the blade for the different conditions. Particle Image Velocimetry has been adopted to analyze the time-mean and time-varying velocity fields. The flow field has been surveyed in two orthogonal planes (a blade-to-blade plane and a wall-parallel one). These measurements allow the identification of the Kelvin-Helmholtz large scale coherent structures shed as a consequence of the boundary layer laminar separation under steady inflow, as well as the investigation of the three-dimensional effects induced by the intermittent passage of low and high speed streaks. A close inspection of the time-mean velocity profiles as well as of the boundary layer integral parameters helps to characterize the suction side boundary layer state, thus justifying the influence of free-stream turbulence intensity on the blade aerodynamic losses measured under steady and unsteady inflows.

  3. Immersed Boundary Methods for High-Resolution Simulation of Atmospheric Boundary-Layer Flow Over Complex Terrain

    Energy Technology Data Exchange (ETDEWEB)

    Lundquist, K A [Univ. of California, Berkeley, CA (United States)

    2010-05-12

    use of flux (non-zero) boundary conditions. This anabatic flow set-up is further coupled to atmospheric physics parameterizations, which calculate surface fluxes, demonstrating that the IBM can be coupled to various land-surface parameterizations in atmospheric models. Additionally, the IB method is extended to three dimensions, using both trilinear and inverse distance weighted interpolations. Results are presented for geostrophic flow over a three-dimensional hill. It is found that while the IB method using trilinear interpolation works well for simple three-dimensional geometries, a more flexible and robust method is needed for extremely complex geometries, as found in three-dimensional urban environments. A second, more flexible, immersed boundary method is devised using inverse distance weighting, and results are compared to the first IBM approach. Additionally, the functionality to nest a domain with resolved complex geometry inside of a parent domain without resolved complex geometry is described. The new IBM approach is used to model urban terrain from Oklahoma City in a one-way nested configuration, where lateral boundary conditions are provided by the parent domain. Finally, the IB method is extended to include wall model parameterizations for rough surfaces. Two possible implementations are presented, one which uses the log law to reconstruct velocities exterior to the solid domain, and one which reconstructs shear stress at the immersed boundary, rather than velocity. These methods are tested on the three-dimensional canonical case of neutral atmospheric boundary layer flow over flat terrain.

  4. FOREWORD: International Conference on Planetary Boundary Layer and Climate Change

    Science.gov (United States)

    Djolov, G.; Esau, I.

    2010-05-01

    One of the greatest achievements of climate science has been the establisment of the concept of climate change on a multitude of time scales. The Earth's complex climate system does not allow a straightforward interpretation of dependences between the external parameter perturbation, internal stochastic system dynamics and the long-term system response. The latter is usually referred to as climate change in a narrow sense (IPCC, 2007). The focused international conference "Planetary Boundary Layers and Climate Change" has addressed only time scales and dynamical aspects of climate change with possible links to the turbulent processes in the Planetary Boundary Layer (PBL). Although limited, the conference topic is by no means singular. One should clearly understand that the PBL is the layer where 99% of biosphere and human activity are concentrated. The PBL is the layer where the energy fluxes, which are followed by changes in cryosphere and other known feedbacks, are maximized. At the same time, the PBL processes are of a naturally small scale. What is the averaged long-term effect of the small-scale processes on the long-term climate dynamics? Can this effect be recognized in existing long-term paleo-climate data records? Can it be modeled? What is the current status of our theoretical understanding of this effect? What is the sensitivity of the climate model projections to the representation of small-scale processes? Are there significant indirect effects, e.g. through transport of chemical components, of the PBL processes on climate? These and other linked questions have been addressed during the conference. The Earth's climate has changed many times during the planet's history, with events ranging from ice ages to long periods of warmth. Historically, natural factors such as the amount of energy released from the Sun, volcanic eruptions and changes in the Earth's orbit have affected the Earth's climate. Beginning late in the 18th century, human activities

  5. Effect of plate permeability on nonlinear stability of the asymptotic suction boundary layer.

    Science.gov (United States)

    Wedin, Håkan; Cherubini, Stefania; Bottaro, Alessandro

    2015-07-01

    The nonlinear stability of the asymptotic suction boundary layer is studied numerically, searching for finite-amplitude solutions that bifurcate from the laminar flow state. By changing the boundary conditions for disturbances at the plate from the classical no-slip condition to more physically sound ones, the stability characteristics of the flow may change radically, both for the linearized as well as the nonlinear problem. The wall boundary condition takes into account the permeability K̂ of the plate; for very low permeability, it is acceptable to impose the classical boundary condition (K̂=0). This leads to a Reynolds number of approximately Re(c)=54400 for the onset of linearly unstable waves, and close to Re(g)=3200 for the emergence of nonlinear solutions [F. A. Milinazzo and P. G. Saffman, J. Fluid Mech. 160, 281 (1985); J. H. M. Fransson, Ph.D. thesis, Royal Institute of Technology, KTH, Sweden, 2003]. However, for larger values of the plate's permeability, the lower limit for the existence of linear and nonlinear solutions shifts to significantly lower Reynolds numbers. For the largest permeability studied here, the limit values of the Reynolds numbers reduce down to Re(c)=796 and Re(g)=294. For all cases studied, the solutions bifurcate subcritically toward lower Re, and this leads to the conjecture that they may be involved in the very first stages of a transition scenario similar to the classical route of the Blasius boundary layer initiated by Tollmien-Schlichting (TS) waves. The stability of these nonlinear solutions is also investigated, showing a low-frequency main unstable mode whose growth rate decreases with increasing permeability and with the Reynolds number, following a power law Re(-ρ), where the value of ρ depends on the permeability coefficient K̂. The nonlinear dynamics of the flow in the vicinity of the computed finite-amplitude solutions is finally investigated by direct numerical simulations, providing a viable scenario for

  6. A Lagrangian Study of Southeast Pacific Boundary Layer Clouds

    Science.gov (United States)

    Painter, Gallia

    concentration which extend far offshore into regions of normally very clean cloud. We use Lagrangian trajectories to investigate the source of the high droplet concentrations of the mesoscale "hooks", and evaluate whether boundary layer transport of coastal pollutants alone can account for their extent. We find that boundary layer trajectories past 85 W do not pass sufficiently close to the coastline to explain high aerosol concentrations offshore.

  7. Investigation of large-scale coherence in a turbulent boundary layer using two-point correlations

    Science.gov (United States)

    Ganapathisubramani, B.; Hutchins, N.; Hambleton, W. T.; Longmire, E. K.; Marusic, I.

    2005-02-01

    Stereoscopic particle image velocimetry (PIV) measurements are made in streamwise-spanwise and inclined cross-stream planes (inclined at 45° and 135° to the principal flow direction) of a turbulent boundary layer at moderate Reynolds number (Reτ˜ 1100). Two-point spatial velocity correlations computed using the PIV data reveal results that are consistent with an earlier study in which packets of hairpin vortices were identified by a feature-detection algorithm in the log region, but not in the outer wake region. Both streamwise-streamwise (Ruu) and streamwise-wall-normal (R_{uw}) correlations are significant for streamwise displacements of more than 1500 wall units. Zero crossing data for the streamwise fluctuating component u reveal that streamwise strips between zero crossings of 1500 wall units or longer occur more frequently for negative u than positive u, suggesting that long streamwise correlations in Ruu are dominated by slower streamwise structures. Additional analysis of R_{ww} correlations suggests that the long streamwise slow-moving regions contain discrete zones of strong upwash over extended streamwise distances, as might occur within packets of angled hairpin vortices. At a wall-normal location outside of the log region (z/δ = 0.5), the correlations are shorter in the streamwise direction and broader in the spanwise direction. Correlations in the inclined cross-stream plane data reveal good agreement with the streamwise-spanwise plane. Ruu in the 45° plane is more elongated along the in-plane wall-normal direction than in the 135° plane, which is consistent with the presence of hairpin packets with a low-speed region lifting away from the wall.

  8. Entropy Stable Wall Boundary Conditions for the Three-Dimensional Compressible Navier-Stokes Equations

    Science.gov (United States)

    Parsani, Matteo; Carpenter, Mark H.; Nielsen, Eric J.

    2015-01-01

    Non-linear entropy stability and a summation-by-parts framework are used to derive entropy stable wall boundary conditions for the three-dimensional compressible Navier-Stokes equations. A semi-discrete entropy estimate for the entire domain is achieved when the new boundary conditions are coupled with an entropy stable discrete interior operator. The data at the boundary are weakly imposed using a penalty flux approach and a simultaneous-approximation-term penalty technique. Although discontinuous spectral collocation operators on unstructured grids are used herein for the purpose of demonstrating their robustness and efficacy, the new boundary conditions are compatible with any diagonal norm summation-by-parts spatial operator, including finite element, finite difference, finite volume, discontinuous Galerkin, and flux reconstruction/correction procedure via reconstruction schemes. The proposed boundary treatment is tested for three-dimensional subsonic and supersonic flows. The numerical computations corroborate the non-linear stability (entropy stability) and accuracy of the boundary conditions.

  9. Entropy Stable Wall Boundary Conditions for the Compressible Navier-Stokes Equations

    Science.gov (United States)

    Parsani, Matteo; Carpenter, Mark H.; Nielsen, Eric J.

    2014-01-01

    Non-linear entropy stability and a summation-by-parts framework are used to derive entropy stable wall boundary conditions for the compressible Navier-Stokes equations. A semi-discrete entropy estimate for the entire domain is achieved when the new boundary conditions are coupled with an entropy stable discrete interior operator. The data at the boundary are weakly imposed using a penalty flux approach and a simultaneous-approximation-term penalty technique. Although discontinuous spectral collocation operators are used herein for the purpose of demonstrating their robustness and efficacy, the new boundary conditions are compatible with any diagonal norm summation-by-parts spatial operator, including finite element, finite volume, finite difference, discontinuous Galerkin, and flux reconstruction schemes. The proposed boundary treatment is tested for three-dimensional subsonic and supersonic flows. The numerical computations corroborate the non-linear stability (entropy stability) and accuracy of the boundary conditions.

  10. Evaluating Langmuir turbulence parameterizations in the ocean surface boundary layer

    Science.gov (United States)

    Sutherland, G.; Christensen, K. H.; Ward, B.

    2014-03-01

    It is expected that surface gravity waves play an important role in the dynamics of the ocean surface boundary layer (OSBL), quantified with the turbulent Langmuir number (La=u*/us0, where u* and us0 are the friction velocity and surface Stokes drift, respectively). However, simultaneous measurements of the OSBL dynamics along with accurate measurements of the wave and atmospheric forcing are lacking. Measurements of the turbulent dissipation rate ɛ were collected using the Air-Sea Interaction Profiler (ASIP), a freely rising microstructure profiler. Two definitions for the OSBL depth are used: the mixed layer derived from measurements of density >(hρ>), and the mixing layer >(hɛ>) determined from direct measurements of ɛ. When surface buoyancy forces are relatively small, ɛ∝La-2 only near the surface with no dependency on La at mid-depths of the OSBL when using hρ as the turbulent length scale. However, if hɛ is used then the dependence of ɛ with La-2 is more uniform throughout the OSBL. For relatively high destabilizing surface buoyancy forces, ɛ is proportional to the ratio of the OSBL depth against the Langmuir stability length LL. During destabilizing conditions, the mixed and mixing layer depths are nearly identical, but we have relatively few measurements under these conditions, rather than any physical implications. Observations of epsilon are compared with the OSBL regime diagram of Belcher et al. (2012) and are generally within an order of magnitude, but there is an improved agreement if hɛ is used as the turbulent length scale rather than hρ.

  11. Radiative transfer in a polluted urban planetary boundary layer

    Science.gov (United States)

    Viskanta, R.; Johnson, R. O.; Bergstrom, R. W.

    1977-01-01

    Radiative transfer in a polluted urban atmosphere is studied using a dynamic model. The diurnal nature of radiative transfer for summer conditions is simulated for an urban area 40 km in extent and the effects of various parameters arising in the problem are investigated. The results of numerical computations show that air pollution has the potential of playing a major role in the radiative regime of the urban area. Absorption of solar energy by aerosols in realistic models of urban atmosphere are of the same order of magnitude as that due to water vapor. The predicted effect of the air pollution aerosol in the city is to warm the earth-atmosphere system, and the net effect of gaseous pollutant is to warm the surface and cool the planetary boundary layer, particularly near the top.

  12. Turbulence Scales Simulations in Atmospheric Boundary Layer Wind Tunnels

    Directory of Open Access Journals (Sweden)

    Elena-Carmen Teleman

    2008-01-01

    Full Text Available The simulation of the air flow over models in atmospheric boundary layer tunnels is a research domain based on advanced scientific technologies imposed by the necessity of studying the turbulent fluid movements in the proximity of the Earth’s surface. The experiment presented herein is developed in the wind tunnel from the Laboratory of Structural Aerodynamics of the Faculty of Civil Engineering and Building Services in Iassy. Measurements necessary for the determination of the turbulence scales of the wind action in urban environment were conducted. The data obtained were processed and analyzed and interpreted with specific software. The results are used for a synthesis regarding the scales of turbulence of the model of flow and the actual accuracy of measurements. The paper presents some of the important elements of this synthesis.

  13. Shock Wave Turbulent Boundary Layer Interaction in Hypersonic Flow

    Science.gov (United States)

    1975-06-01

    WORDS (Conllnum on rtvmf tldm II nocfmry Td Idmnllly by block number) Turbulent boundary layers Skin friction, heat transfer and pressure High... tD t{> • y rp < J -o ill ... |i| ;| ilh |I ti i llii ffPtffin i ini I ! til. ;■ ; ’ ! ’ : in •■•: \\1’. T ill j i i i...III [lii 5 ft" t H "H— im BJITT i’i 1 i Mt- B ianj ii ( !l!l Mi IF Ii ig| M»-H J , ■*« J J j 1JJ J 4^ Ul CD S D Z V) D -I O z > Ul QC

  14. Boundary layer height estimation by sodar and sonic anemometer measurements

    Energy Technology Data Exchange (ETDEWEB)

    Contini, D; Cava, D; Martano, P; Donateo, A; Grasso, F M [CNR - Istituto di Scienze dell' Atmosfera e del Clima, U. O. di Lecce Str. Prv. Lecce-Monteroni km 1.2, 73100, Lecce (Italy)], E-mail: d.contini@isac.cnr.it

    2008-05-01

    In this paper an analysis of different methods for the calculation of the boundary layer height (BLH) using sodar and ultrasonic anemometer measurements is presented. All the methods used are based on single point surface measurements. In particular the automatic spectral routine developed for Remtech sodar is compared with the results obtained with the parameterization of the vertical velocity variance, with the calculation of a prognostic model and with a parameterization based on horizontal velocity spectra. Results indicate that in unstable conditions the different methods provide similar pattern, with BLH relatively low, even if the parameterization of the vertical velocity variance is affected by a large scatter that limits its efficiency in evaluating the BLH. In stable nocturnal conditions the performances of the Remtech routine are lower with respect to the ones in unstable conditions. The spectral method, applied to sodar or sonic anemometer data, seems to be the most promising in order to develop an efficient routine for BLH determination.

  15. Hydromagnetic free convection currents effects on boundary layer thickness

    Energy Technology Data Exchange (ETDEWEB)

    Kwanza, J.K., E-mail: kwanzakioko@yahoo.co [Department of Pure and Applied Mathematics, Jomo Kenyatta University of Agriculture and Technology, P.O. Box 62000-00200, Nairobi (Kenya); Marigi, E.M.; Kinyanjui, M. [Department of Pure and Applied Mathematics, Jomo Kenyatta University of Agriculture and Technology, P.O. Box 62000-00200, Nairobi (Kenya)

    2010-06-15

    In this study we discuss an unsteady free convection MHD flow past semi-infinite vertical porous plate. We have considered the flow in the presence of a strong magnetic field and therefore the electromagnetic force is very large. This brings in the phenomenon of Hall and Ion-slip currents. The effects of these two parameters together with that of viscous dissipation and radiation absorption among others on velocity, temperature and concentration profiles are presented. The profiles are presented graphically. As the partial differential equations governing this problem are highly non-linear they are solved numerically by a finite difference method. It is found that in presence of heating of the plate by free convection current the velocity boundary layer thickness decreases.

  16. Human convective boundary layer and its impact on personal exposure

    DEFF Research Database (Denmark)

    Licina, Dusan

    in inaccurate exposure prediction. This highlights the importance of a detailed understanding of the complex air movements that take place in the vicinity of the human body and their impact on personal exposure. The two objectives of the present work are: (i) to examine the extent to which the room air...... temperature, ventilation flow, body posture, clothing insulation/design, table positioning and chair design affect the airflow characteristics (velocity, turbulence and temperature) around the human body; and (ii) to examine the pollution distribution within the human convective boundary layer (CBL....../s in front of the seated manikin. Dressing the nude manikin in a thin-tight clothing ensemble reduced the peak velocity in the breathing zone by 17%, and by 40% for a thick-loose ensemble. A lack of hair on the head increased the peak velocity from 0.17 to 0.187 m/s. Apart from their thermal insulation...

  17. Adaptive wall technology for minimization of wind tunnel boundary interferences - where are we now?

    Science.gov (United States)

    Wolf, Stephen W. D.

    1994-01-01

    The status of adaptive wall technology to improve wind tunnel simulations for 2- and 3-D testing is reviewed. This technology relies on the test section flow boundaries being adjustable, using a tunnel/computer system to control the boundary shapes without knowledge of the model under test. This paper briefly overviews the benefits and shortcomings of adaptive wall testing techniques. A historical perspective highlights the disjointed development of these testing techniques from 1938 to present. Currently operational transonic Adaptive Wall Test Sections (AWTSs) are detailed, showing a preference for the simplest AWTS design with two solid flexible walls. Research highlights show that quick wall adjustment procedures are available and AWTSs, with impervious or ventilated walls, can be used through the transonic range up to M(sub infinity) = 1.2. The requirements for production testing in AWTSs are discussed, and conclusions drawn as to the current status of adaptive wall technology. In 2-D testing, adaptive wall technology is mature enough for general use, even in cryogenic wind tunnels. In 3-D testing, this technology has not been pursued aggressively, because of the inertia against change in testing techniques, and preconceptions about the difficulties of using AWTSs.

  18. Evaluation of wall boundary condition parameters for gas-solids fluidized bed simulations

    Energy Technology Data Exchange (ETDEWEB)

    Li, Tingwen [URS Corporation; Morgantown, WV (United States); National Energy Technology Lab. (NETL), Morgantown, WV (United States); Benyahia, Sofiane [National Energy Technology Lab. (NETL), Morgantown, WV (United States)

    2013-10-01

    Wall boundary conditions for the solids phase have significant effects on numerical predictions of various gas-solids fluidized beds. Several models for the granular flow wall boundary condition are available in the open literature for numerical modeling of gas-solids flow. In this study, a model for specularity coefficient used in Johnson and Jackson boundary conditions by Li and Benyahia (AIChE Journal, 2012, 58, 2058-2068) is implemented in the open-source CFD code-MFIX. The variable specularity coefficient model provides a physical way to calculate the specularity coefficient needed by the partial-slip boundary conditions for the solids phase. Through a series of 2-D numerical simulations of bubbling fluidized bed and circulating fluidized bed riser, the model predicts qualitatively consistent trends to the previous studies. Furthermore, a quantitative comparison is conducted between numerical results of variable and constant specularity coefficients to investigate the effect of spatial and temporal variations in specularity coefficient.

  19. Spatially Developing Secondary Instabilities in Compressible Swept Airfoil Boundary Layers

    Science.gov (United States)

    Li, Fei; Choudhari, Meelan M.

    2011-01-01

    Two-dimensional eigenvalue analysis is used on a massive scale to study spatial instabilities of compressible shear flows with two inhomogeneous directions. The main focus of the study is crossflow dominated swept-wing boundary layers although the methodology can also be applied to study other type of flows, such as the attachment-line flow. Certain unique aspects of formulating a spatial, two-dimensional eigenvalue problem for the secondary instability of finite amplitude crossflow vortices are discussed, namely, fixing the spatial growth direction unambiguously through a non-orthogonal formulation of the linearized disturbance equations. A primary test case used for parameter study corresponds to the low-speed, NLF-0415(b) airfoil configuration as tested in the ASU Unsteady Wind Tunnel, wherein a spanwise periodic array of roughness elements was placed near the leading edge in order to excite stationary crossflow modes with a specified fundamental wavelength. The two classes of flow conditions selected for this analysis include those for which the roughness array spacing corresponds to either the naturally dominant crossflow wavelength, or a subcritical wavelength that serves to reduce the growth of the naturally excited dominant crossflow modes. Numerical predictions are compared with the measured database, both as indirect validation for the spatial instability analysis and to provide a basis for comparison with a higher Reynolds number, supersonic swept-wing configuration. Application of the eigenvalue analysis to the supersonic configuration reveals that a broad spectrum of stationary crossflow modes can sustain sufficiently strong secondary instabilities as to potentially cause transition over this configuration. Implications of this finding for transition control in swept wing boundary layers are examined.

  20. Rapid cycling of reactive nitrogen in the marine boundary layer.

    Science.gov (United States)

    Ye, Chunxiang; Zhou, Xianliang; Pu, Dennis; Stutz, Jochen; Festa, James; Spolaor, Max; Tsai, Catalina; Cantrell, Christopher; Mauldin, Roy L; Campos, Teresa; Weinheimer, Andrew; Hornbrook, Rebecca S; Apel, Eric C; Guenther, Alex; Kaser, Lisa; Yuan, Bin; Karl, Thomas; Haggerty, Julie; Hall, Samuel; Ullmann, Kirk; Smith, James N; Ortega, John; Knote, Christoph

    2016-04-28

    Nitrogen oxides are essential for the formation of secondary atmospheric aerosols and of atmospheric oxidants such as ozone and the hydroxyl radical, which controls the self-cleansing capacity of the atmosphere. Nitric acid, a major oxidation product of nitrogen oxides, has traditionally been considered to be a permanent sink of nitrogen oxides. However, model studies predict higher ratios of nitric acid to nitrogen oxides in the troposphere than are observed. A 'renoxification' process that recycles nitric acid into nitrogen oxides has been proposed to reconcile observations with model studies, but the mechanisms responsible for this process remain uncertain. Here we present data from an aircraft measurement campaign over the North Atlantic Ocean and find evidence for rapid recycling of nitric acid to nitrous acid and nitrogen oxides in the clean marine boundary layer via particulate nitrate photolysis. Laboratory experiments further demonstrate the photolysis of particulate nitrate collected on filters at a rate more than two orders of magnitude greater than that of gaseous nitric acid, with nitrous acid as the main product. Box model calculations based on the Master Chemical Mechanism suggest that particulate nitrate photolysis mainly sustains the observed levels of nitrous acid and nitrogen oxides at midday under typical marine boundary layer conditions. Given that oceans account for more than 70 per cent of Earth's surface, we propose that particulate nitrate photolysis could be a substantial tropospheric nitrogen oxide source. Recycling of nitrogen oxides in remote oceanic regions with minimal direct nitrogen oxide emissions could increase the formation of tropospheric oxidants and secondary atmospheric aerosols on a global scale.

  1. Coherence of simulated atmospheric boundary-layer turbulence

    Science.gov (United States)

    Jiadong, Zeng; Zhiguo, Li; Mingshui, Li

    2017-12-01

    The coherences in a plane perpendicular to incoming flow are measured in wind tunnel simulations of atmospheric turbulent flow. The measured coherences are compared with analytical expressions tailored to field measurements and with theoretical coherence models which assume homogeneous turbulence and the von Kármán’s spectrum. The comparison indicates that the simulated atmospheric boundary layer flow is approximately horizontally homogeneous turbulence. Based on the above assumption and the systematic analysis of lateral coherence, it can be concluded that the lateral coherences of simulated atmospheric boundary turbulence can be determined accurately using the von Kármán spectrum and the turbulence parameters measured by a few measurement points. The measured results also show that the spatial characteristics of vertical coherences are closely related to the dimensionless parameter {{Δ }}z/({\\bar{z}}0.3{L}ux 0.7). The vertical coherence at two heights can be roughly estimated by the ratio to {{Δ }}z/({\\bar{z}}0.3{L}ux 0.7). The relationship between the phase angles of u-, v- and w-components and the vertical separation distance and the height from the ground is further analyzed. Finally, the roles of the type of land surface roughness, the height from the ground, the turbulence intensity and the integral length scale in lateral and vertical coherences are also discussed in this study.

  2. Thermo-fluid-dynamics of turbulent boundary layer over a moving continuous flat sheet in a parallel free stream

    Science.gov (United States)

    Afzal, Bushra; Noor Afzal Team; Bushra Afzal Team

    2014-11-01

    The momentum and thermal turbulent boundary layers over a continuous moving sheet subjected to a free stream have been analyzed in two layers (inner wall and outer wake) theory at large Reynolds number. The present work is based on open Reynolds equations of momentum and heat transfer without any closure model say, like eddy viscosity or mixing length etc. The matching of inner and outer layers has been carried out by Izakson-Millikan-Kolmogorov hypothesis. The matching for velocity and temperature profiles yields the logarithmic laws and power laws in overlap region of inner and outer layers, along with friction factor and heat transfer laws. The uniformly valid solution for velocity, Reynolds shear stress, temperature and thermal Reynolds heat flux have been proposed by introducing the outer wake functions due to momentum and thermal boundary layers. The comparison with experimental data for velocity profile, temperature profile, skin friction and heat transfer are presented. In outer non-linear layers, the lowest order momentum and thermal boundary layer equations have also been analyses by using eddy viscosity closure model, and results are compared with experimental data. Retired Professor, Embassy Hotel, Rasal Ganj, Aligarh 202001 India.

  3. Uncertainties in the CO2 buget associated to boundary layer dynamics and CO2-advection

    NARCIS (Netherlands)

    Kaikkonen, J.P.; Pino, D.; Vilà-Guerau de Arellano, J.

    2012-01-01

    The relationship between boundary layer dynamics and carbon dioxide (CO2) budget in the convective boundary layer (CBL) is investigated by using mixed-layer theory. We derive a new set of analytical relations to quantify the uncertainties on the estimation of the bulk CO2 mixing ratio and the

  4. Studies of planetary boundary layer by infrared thermal imagery

    Energy Technology Data Exchange (ETDEWEB)

    Albina, Bogdan; Dimitriu, Dan Gheorghe, E-mail: dimitriu@uaic.ro; Gurlui, Silviu Octavian, E-mail: dimitriu@uaic.ro [Alexandru Ioan Cuza University of Iasi, Faculty of Physics, Atmosphere Optics, Spectroscopy and Lasers Laboratory, 11 Carol I Blvd., 700506 Iasi (Romania); Cazacu, Marius Mihai [Alexandru Ioan Cuza University of Iasi, Faculty of Physics, Atmosphere Optics, Spectroscopy and Lasers Laboratory, 11 Carol I Blvd., 700506 Iasi, Romania and Department of Physics, Gheorghe Asachi Technical University of Iasi, 59A Mangeron Blvd., 700 (Romania); Timofte, Adrian [Alexandru Ioan Cuza University of Iasi, Faculty of Physics, Atmosphere Optics, Spectroscopy and Lasers Laboratory, 11 Carol I Blvd., 700506 Iasi, Romania and National Meteorological Administration, Regional Forecast Center Bacau, 1 Cuza Voda Str., 60 (Romania)

    2014-11-24

    The IR camera is a relatively novel device for remote sensing of atmospheric thermal processes from the Planetary Boundary Layer (PBL) based on measurements of the infrared radiation. Infrared radiation is energy radiated by the motion of atoms and molecules on the surface of aerosols, when their temperature is more than absolute zero. The IR camera measures directly the intensity of radiation emitted by aerosols which is converted by an imaging sensor into an electric signal, resulting a thermal image. Every image pixel that corresponds to a specific radiance is pre-processed to identify the brightness temperature. The thermal infrared imaging radiometer used in this study, NicAir, is a precision radiometer developed by Prata et al. The device was calibrated for the temperature range of 270–320 K and using a calibration table along with image processing software, important information about variations in temperature can be extracted from acquired IR images. The PBL is the lowest layer of the troposphere where the atmosphere interacts with the ground surfaces. The importance of PBL lies in the fact that it provides a finite but varying volume in which pollutants can disperse. The aim of this paper is to analyze the PBL altitude and thickness variations over Iasi region using the IR imaging camera as well as its behavior from day to night and thermal processes occurring in PBL.

  5. Log-layer mismatch and modeling of the fluctuating wall stress in wall-modeled large-eddy simulations

    Science.gov (United States)

    Yang, Xiang I. A.; Park, George Ilhwan; Moin, Parviz

    2017-10-01

    Log-layer mismatch refers to a chronic problem found in wall-modeled large-eddy simulation (WMLES) or detached-eddy simulation, where the modeled wall-shear stress deviates from the true one by approximately 15 % . Many efforts have been made to resolve this mismatch. The often-used fixes, which are generally ad hoc, include modifying subgrid-scale stress models, adding a stochastic forcing, and moving the LES-wall-model matching location away from the wall. An analysis motivated by the integral wall-model formalism suggests that log-layer mismatch is resolved by the built-in physics-based temporal filtering. In this work we investigate in detail the effects of local filtering on log-layer mismatch. We show that both local temporal filtering and local wall-parallel filtering resolve log-layer mismatch without moving the LES-wall-model matching location away from the wall. Additionally, we look into the momentum balance in the near-wall region to provide an alternative explanation of how LLM occurs, which does not necessarily rely on the numerical-error argument. While filtering resolves log-layer mismatch, the quality of the wall-shear stress fluctuations predicted by WMLES does not improve with our remedy. The wall-shear stress fluctuations are highly underpredicted due to the implied use of LES filtering. However, good agreement can be found when the WMLES data are compared to the direct numerical simulation data filtered at the corresponding WMLES resolutions.

  6. Atmospheric boundary layers in storms: advanced theory and modelling applications

    Directory of Open Access Journals (Sweden)

    S. S. Zilitinkevich

    2005-01-01

    Full Text Available Turbulent planetary boundary layers (PBLs control the exchange processes between the atmosphere and the ocean/land. The key problems of PBL physics are to determine the PBL height, the momentum, energy and matter fluxes at the surface and the mean wind and scalar profiles throughout the layer in a range of regimes from stable and neutral to convective. Until present, the PBLs typical of stormy weather were always considered as neutrally stratified. Recent works have disclosed that such PBLs are in fact very strongly affected by the static stability of the free atmosphere and must be treated as factually stable (we call this type of the PBL "conventionally neutral" in contract to the "truly neutral" PBLs developed against the neutrally stratified free flow. It is common knowledge that basic features of PBLs exhibit a noticeable dependence on the free-flow static stability and baroclinicity. However, the concern of the traditional theory of neural and stable PBLs was almost without exception the barotropic nocturnal PBL, which develops at mid latitudes during a few hours in the night, on the background of a neutral or slightly stable residual layer. The latter separates this type of the PBL from the free atmosphere. It is not surprising that the nature of turbulence in such regimes is basically local and does not depend on the properties of the free atmosphere. Alternatively, long-lived neutral (in fact only conditionally neutral or stable PBLs, which have much more time to grow up, are placed immediately below the stably stratified free flow. Under these conditions, the turbulent transports of momentum and scalars even in the surface layer - far away from the PBL outer boundary - depend on the free-flow Brunt-Väisälä frequency, N. Furthermore, integral measures of the long-lived PBLs (their depths and the resistance law functions depend on N and also on the baroclinic shear, S. In the traditional PBL models both non-local parameters N and S

  7. A New Boundary Model for Simulating Complex and Flexible Wall Bounded Domain in Dissipative Particle Dynamics

    Directory of Open Access Journals (Sweden)

    Saeid Mokhtarian

    2014-01-01

    Full Text Available Despite extensive area of applications, simulation of complex wall bounded problems or any deformable boundary is still a challenge in a Dissipative Particle Dynamics simulation. This limitation is rooted in the soft force nature of DPD and the fact that we need to use an antipenetration model for escaped particles. In the present paper, we propose a new model of antipenetration which preserves the conservation of linear momentum on the boundaries and enables us to simulate complex and flexible boundaries. Finally by performing numerical simulations, we demonstrate the validity of our new model.

  8. Stability Analysis of High-Speed Boundary-Layer Flow with Gas Injection

    Science.gov (United States)

    2014-06-01

    boundary-layer flow with gas injection 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) 5d. PROJECT NUMBER Alexander V. Fedorov ...distribution unlimited Stability analysis of high-speed boundary-layer flow with gas injection Alexander V. Fedorov * and Vitaly G. Soudakov...Laminar Flow, AGARD Report Number 709, 1984. 2. Fedorov , A., “Transition and Stability of High-Speed Boundary Layers,” Annu. Rev. Fluid Mech., Vol

  9. Boundary layer friction of solvate ionic liquids as a function of potential.

    Science.gov (United States)

    Li, Hua; Rutland, Mark W; Watanabe, Masayoshi; Atkin, Rob

    2017-07-01

    Atomic force microscopy (AFM) has been used to investigate the potential dependent boundary layer friction at solvate ionic liquid (SIL)-highly ordered pyrolytic graphite (HOPG) and SIL-Au(111) interfaces. Friction trace and retrace loops of lithium tetraglyme bis(trifluoromethylsulfonyl)amide (Li(G4) TFSI) at HOPG present clearer stick-slip events at negative potentials than at positive potentials, indicating that a Li + cation layer adsorbed to the HOPG lattice at negative potentials which enhances stick-slip events. The boundary layer friction data for Li(G4) TFSI shows that at HOPG, friction forces at all potentials are low. The TFSI - anion rich boundary layer at positive potentials is more lubricating than the Li + cation rich boundary layer at negative potentials. These results suggest that boundary layers at all potentials are smooth and energy is predominantly dissipated via stick-slip events. In contrast, friction at Au(111) for Li(G4) TFSI is significantly higher at positive potentials than at negative potentials, which is comparable to that at HOPG at the same potential. The similarity of boundary layer friction at negatively charged HOPG and Au(111) surfaces indicates that the boundary layer compositions are similar and rich in Li + cations for both surfaces at negative potentials. However, at Au(111), the TFSI - rich boundary layer is less lubricating than the Li + rich boundary layer, which implies that anion reorientations rather than stick-slip events are the predominant energy dissipation pathways. This is confirmed by the boundary friction of Li(G4) NO 3 at Au(111), which shows similar friction to Li(G4) TFSI at negative potentials due to the same cation rich boundary layer composition, but even higher friction at positive potentials, due to higher energy dissipation in the NO 3 - rich boundary layer.

  10. HYPERSONIC BOUNDARY LAYER TRANSITION EXPERIMENTS- HYPERSONIC INTERNATIONAL FLIGHT RESEARCH EXPERIMENTATION 5 (HIFIRE-5) AND CIRCULAR CONE

    Science.gov (United States)

    2016-10-01

    AFRL-RQ-WP-TR-2017-0098 HYPERSONIC BOUNDARY LAYER TRANSITION EXPERIMENTS - HYPERSONIC INTERNATIONAL FLIGHT RESEARCH EXPERIMENTATION 5 (HiFIRE-5...DATES COVERED (From - To) October 2016 Interim 01 April 2015 – 13 June 2016 4. TITLE AND SUBTITLE HYPERSONIC BOUNDARY LAYER TRANSITION EXPERIMENTS...during fiscal year 2016. The objective of this task is to better understand boundary layer transition in hypersonic flowfields with spanwise

  11. On the application of mixed-layer theory to the stratocumulus-topped boundary layer

    Science.gov (United States)

    Zhang, Yunyan

    In this dissertation, we explore the applicability of mixed-layer theory to represent stratocumulus-topped boundary layer (STBL). Mixed-layer theory is used to study the STBL diurnal cycle. Our results show that the diurnal evolution of cloud thickness is sensitive to the entrainment efficiency. Specifically with low entrainment efficiencies, the cloud thickness evolution is in a better agreement with observations. We explain these effects through a consideration of the equilibrium state of cloud boundaries and their adjustment timescales. The susceptibility of cloud albedo to droplet number density dominates the entrainment effects. This suggests that estimates of aerosol indirect effects from stratocumulus clouds will not be particularly sensitive to the way entrainment is represented in large-scale models. The low-cloud amount (LCA) is diagnosed based on the equilibrium solutions of the mixed-layer model (MLM). ECMWF Reanalysis (ERA-40) data serve as large-scale boundary conditions. Results are compared to the International Satellite Cloud Climatology Project D2 data, especially in light of the relationship between the LCA and the lower-troposphere stability (LTS). Our results show that the synoptic variability in divergence contributes to LCA climatology. This climatology reproduced from MLM is more sensitive to processes that redistribute the mass field as compared to heat and moisture. Other large-scale conditions contribute to LCA depending on their correlation with the LTS and the strength of the LTS signal in individual regions. An autoregressive noise model is proposed to represent the synoptic variability in divergence based on analysis of ERA-40 data. Using this model, the equilibrium cloud fraction is shown as a function of the mean divergence value, the noise level, and the noise autocorrelation time scale. Mixed-layer model with such noise produces a reasonable comparison to observations in LCA climatology. An interaction rule is specified based on

  12. Multi-domain boundary element method for axi-symmetric layered linear acoustic systems

    Science.gov (United States)

    Reiter, Paul; Ziegelwanger, Harald

    2017-12-01

    Homogeneous porous materials like rock wool or synthetic foam are the main tool for acoustic absorption. The conventional absorbing structure for sound-proofing consists of one or multiple absorbers placed in front of a rigid wall, with or without air-gaps in between. Various models exist to describe these so called multi-layered acoustic systems mathematically for incoming plane waves. However, there is no efficient method to calculate the sound field in a half space above a multi layered acoustic system for an incoming spherical wave. In this work, an axi-symmetric multi-domain boundary element method (BEM) for absorbing multi layered acoustic systems and incoming spherical waves is introduced. In the proposed BEM formulation, a complex wave number is used to model absorbing materials as a fluid and a coordinate transformation is introduced which simplifies singular integrals of the conventional BEM to non-singular radial and angular integrals. The radial and angular part are integrated analytically and numerically, respectively. The output of the method can be interpreted as a numerical half space Green's function for grounds consisting of layered materials.

  13. High-Reynolds-number flat-plate turbulent boundary layer measurements

    Science.gov (United States)

    Winkel, Eric S.; Cutbirth, James M.; Perlin, Marc; Ceccio, Steven L.; Dowling, David R.

    2006-11-01

    A set of experiments was conducted in the U.S. Navy's Large Cavitation Channel (LCC) into the characteristics of a liquid turbulent boundary layer at nearly zero-pressure-gradient. The hydraulically smooth, k^+ centered in the LCC test section. Data was gathered at flow speeds up to 20 m/s to achieve downstream-distance-based Reynolds numbers up to 220 million. Static pressure, skin-friction, and laser-Doppler velocimetry (LDV) measurements are presented. Static pressure measurements along the plate surface show a mild favorable pressure gradient, less than 2.5% flow acceleration over the model. Skin-friction was measured at six stream-wise positions with 15-cm-diameter, flush-mounted drag-balances. Flow profiles of the mean and second-order turbulence statistics of stream-wise and wall-normal velocity components were measured using two-component LDV. When normalized with the measured skin-friction, mean velocity profiles agree with the accepted law-of-the-wall constants and the total near-wall shear stress approaches unity.

  14. Effects of local high-frequency perturbation on a turbulent boundary layer by synthetic jet injection

    Science.gov (United States)

    Guo, Hao; Huang, Qian-Min; Liu, Pei-qing; Qu, Qiu-Lin

    2015-08-01

    An experimental study is performed to investigate the local high-frequency perturbation effects of a synthetic jet injection on a flat-plate turbulent boundary layer. Parameters of the synthetic jet are designed to force a high-frequency perturbation from a thin spanwise slot in the wall. In the test locations downstream of the slot, it is found that skin-friction is reduced by the perturbation, which is languishingly evolved downstream of the slot with corresponding influence on the near-wall regeneration mechanism of turbulent structures. The downstream slot region is divided into two regions due to the influence strength of the movement of spanwise vortices generated by the high-frequency perturbation. Interestingly, the variable interval time average technique is found to be disturbed by the existence of the spanwise vortices’ motion, especially in the region close to the slot. Similar results are obtained from the analysis of the probability density functions of the velocity fluctuation time derivatives, which is another indirect technique for detecting the enhancement or attenuation of streamwise vortices. However, both methods have shown consistent results with the skin-friction reduction mechanism in the far-away slot region. The main purpose of this paper is to remind researchers to be aware of the probable influence of spanwise vortices’ motion in wall-bounded turbulence control.

  15. Universality of local dissipation scales in turbulent boundary layer flows with and without free-stream turbulence

    Science.gov (United States)

    Alhamdi, Sabah F. H.; Bailey, Sean C. C.

    2017-11-01

    Measurements of the small-scale dissipation statistics of turbulent boundary layer flows with and without free-stream turbulence are reported for Reτ ≈ 1000 (Reθ ≈ 2000). The scaling of the dissipation scale distribution is examined in these two boundary conditions. Results demonstrated that the local large-scale Reynolds number based on the measured longitudinal integral length scale fails to properly normalize the dissipation scale distribution near the wall in these two free-stream conditions due to the imperfect characterization of the upper bound of the inertial cascade by the integral length scale. A surrogate found from turbulent kinetic energy and mean dissipation rate only moderately improved the scaling of the dissipation scales, relative to the measured integral length scale. When a length scale based on the distance from the wall [as suggested by Bailey and Witte, "On the universality of local dissipation scales in turbulent channel flow," J. Fluid Mech. 786, 234-252 (2015)] was utilized to scale the dissipation scale distribution, in the region near the wall, there was a noticeable improvement in the collapse of the normalized distribution of dissipation scales. In addition, unlike in channel flows, in the outer layer of the turbulent boundary layer, the normalized distributions of the local dissipation scales were observed to be dependent on the wall-normal position. This was found to be attributable to the presence of external intermittency in the outer layer as the presence of free-stream turbulence was found to restore the scaling behavior by replacing the intermittent laminar flow with turbulent flow.

  16. A fast Linear Complementarity Problem (LCP) solver for separating fluid-solid wall boundary Conditions

    DEFF Research Database (Denmark)

    Andersen, Michael; Abel, Sarah Maria Niebe; Erleben, Kenny

    2017-01-01

    We address the task of computing solutions for a separating fluid-solid wall boundary condition model. We present an embarrassingly parallel, easy to implement, fluid LCP solver.We are able to use greater domain sizes than previous works have shown, due to our new solver. The solver exploits matrix...

  17. Unsteady compressible boundary layer flow over a circular cone near a plane of symmetry

    Science.gov (United States)

    Chamkha, A. J.; Takhar, H. S.; Nath, G.

    2005-05-01

    An analysis has been performed to study the unsteady laminar compressible boundary layer governing the hypersonic flow over a circular cone at an angle of attack near a plane of symmetry with either inflow or outflow in the presence of suction. The flow is assumed to be steady at time t=0 and at t>0 it becomes unsteady due to the time-dependent free stream velocity which varies arbitrarily with time. The nonlinear coupled parabolic partial differential equations under boundary layer approximations have been solved by using an implicit finite-difference method. It is found that suction plays an important role in stabilising the fluid motion and in obtaining unique solution of the problem. The effect of the cross flow parameter is found to be more pronounced on the cross flow surface shear stress than on the streamwise surface shear stress and surface heat transfer. Beyond a certain value of the cross flow parameter overshoot in the cross flow velocity occurs and the magnitude of this overshoot increases with the cross flow parameter. The time variation of the streamwise surface shear stress is more significant than that of the cross flow surface shear stress and surface heat transfer. The suction and the total enthalpy at the wall exert strong influence on the streamwise and cross flow surface shear stresses and the surface heat transfer except that the effect of suction on the cross flow surface shear stress is small.

  18. Temporal and Spatial Response of a Turbulent Boundary Layer to Forcing by Synthetic Jets

    Science.gov (United States)

    Hanson, Ronald; Ganapathisubramani, Bharathram; Lavoie, Philippe

    2016-11-01

    In this experimental study we examine the spatial and temporal response of a turbulent boundary layer affected by a single, and pair of, synthetic jet actuator(s). The spatial signature of the boundary layer mean-flow has been previously shown to result from large vortical motions caused by the interaction between the synthetic jets and the cross flow. By means of hot-wire measurements, phase-locked to the synthetic jet input, the propagation of the unsteady disturbance can be quantified over the actuation cycle of a synthetic jet. Using long samples both the phase-locked variation of the periodic (actuation cycle) and turbulent fluctuations are examined. It is shown that both the mean flow and turbulence characteristics are markedly different across the span, owing to the three dimensionality of the upstream input. Further, the disturbance shape and phase of the phase-locked disturbance varies significantly with forcing level, in part owing to the disruption of the mean velocity. Particular focus is given to the interaction occurring between the near-wall and outer region scales, which vary across the span, with respect to various forcing conditions. The financial support of Airbus is gratefully acknowledged.

  19. Cylinder array height effects on evolution of tracked vortex packets within a turbulent boundary layer

    Science.gov (United States)

    Tan, Yan Ming; Longmire, Ellen

    2014-11-01

    A zero pressure gradient turbulent boundary layer with Reτ = 2480 was perturbed by a spanwise array of cylinders. When a narrowly spaced array extended to the top of the log region, perturbed packets appeared to reorganize via a top-down mechanism, suggesting that packet organization can originate from above. We test this hypothesis by extending the array height to the edge of the boundary layer to completely disrupt the packet organization. On the other hand, previous measurements showed that the downstream packet organization was reinforced by an array spacing matching the dominant spanwise spacing of unperturbed packets. A shorter array with reduced blockage was tested to see whether the same effect is achievable. To compare the flow organization in the different cases, fixed and flying PIV measurements were obtained in streamwise-spanwise planes at multiple wall normal locations. The flying PIV system allows tracking and quantification of packet evolution through the array and over a distance of 7 δ downstream.

  20. Reynolds number effects on scale energy analysis of turbulent boundary layers

    Science.gov (United States)

    Saikrishnan, Neelakantan; Longmire, Ellen; Marusic, Ivan

    2009-11-01

    Scale energy analysis combines two approaches of studying wall- bounded turbulent flows - analysis in physical space and analysis in scale space. Previously, scale energy analysis has been performed on DNS channel flow data for a range of friction Reynolds numbers Reτ= 180-934 and dual plane PIV boundary layer data at Reτ= 1100. The dual plane technique allows determination of the full velocity gradient tensor in the measurement plane. Dual Plane PIV data were acquired in streamwise-spanwise planes in the logarithmic region of a water channel boundary layer at two higher Reynolds numbers - Reτ= 2400 and 3000. The results of this study will be described and compared with the lower Re data. It is observed that in general, the production and scale transfer terms of the turbulent kinetic energy increase with increasing Reynolds number. The cross-over scale, which divides the range of scales into a transfer-dominated region and a production- dominated region, increases with increasing Reynolds numbers, resulting in a larger range of transfer-dominated scales at higher Reynolds numbers.

  1. Large-eddy simulation of a solid-particles suspension in a turbulent boundary layer

    Science.gov (United States)

    Rahman, Mustafa; Samtaney, Ravi

    2014-11-01

    We decribe a framework for the large-eddy simulation of solid particles suspended and transported within an incompressible turbulent boundary layer. The underlying approach to simulate the solid-particle laden flow is Eulerian-Eulerian in which the particles are characterized by statistical descriptors. For the fluid phase, the large-eddy simulation (LES) of incompressible turbulent boundary layer employs stretched spiral vortex subgrid-scale model and a virtual wall model similar to the work of Inoue & Pullin (J. Fluid Mech. 2011). Furthermore, a recycling method to generate turbulent inflow is implemented. For the particle phase, the direct quadrature method of moments (DQMOM) is chosen in which the weights and abscissas of the quadrature approximation are tracked directly rather than the moments themselves. The numerical method in this framework is based on a fractional-step method with an energy-conservative fourth-order finite difference scheme on a staggered mesh. It is proposed to utilize this framework to examine transport of sand in desert sandstorms. Supported by KAUST OCRF funded CRG project on simulation of sandstorms.

  2. Resolving lubrication layers in immersed boundary method simulations of vesicular transport in dendritic spines

    Science.gov (United States)

    Fai, Thomas; Kusters, Remy; Rycroft, Chris

    2015-11-01

    Our understanding of how neuronal connections in the brain are maintained and reorganized is being revolutionized by new experimental and computational techniques. Existing high-resolution 3D images show that neuronal axons often terminate onto micron-sized structures known as dendritic spines, which are characterized by their thin necks and bulbous heads. Vesicles containing membrane receptors must deform significantly to squeeze into the bulbous heads of the spines, but more quantitative estimates of the force and energy required are still lacking. We have used three-dimensional immersed boundary method simulations to capture the fluid dynamics of vesicle transport into spines. We vary the applied force and neck geometry to identify the region in phase space in which the vesicle can squeeze into the spine. These results are compared to pass-stuck diagrams computed previously in the case of vesicles squeezing through open channels with rigid walls. The resulting force estimates are found to be consistent with the physiological density of motor proteins. Resolving the thin lubricating layers between the vesicles and spine poses significant numerical challenges, and we have used elements from lubrication theory to help resolve these boundary layers.

  3. Modeling and analysis of large-eddy simulations of particle-laden turbulent boundary layer flows

    KAUST Repository

    Rahman, Mustafa M.

    2017-01-05

    We describe a framework for the large-eddy simulation of solid particles suspended and transported within an incompressible turbulent boundary layer (TBL). For the fluid phase, the large-eddy simulation (LES) of incompressible turbulent boundary layer employs stretched spiral vortex subgrid-scale model and a virtual wall model similar to the work of Cheng, Pullin & Samtaney (J. Fluid Mech., 2015). This LES model is virtually parameter free and involves no active filtering of the computed velocity field. Furthermore, a recycling method to generate turbulent inflow is implemented. For the particle phase, the direct quadrature method of moments (DQMOM) is chosen in which the weights and abscissas of the quadrature approximation are tracked directly rather than the moments themselves. The numerical method in this framework is based on a fractional-step method with an energy-conservative fourth-order finite difference scheme on a staggered mesh. This code is parallelized based on standard message passing interface (MPI) protocol and is designed for distributed-memory machines. It is proposed to utilize this framework to examine transport of particles in very large-scale simulations. The solver is validated using the well know result of Taylor-Green vortex case. A large-scale sandstorm case is simulated and the altitude variations of number density along with its fluctuations are quantified.

  4. Transition Prediction in Hypersonic Boundary Layers Using Receptivity and Freestream Spectra

    Science.gov (United States)

    Balakumar, P.; Chou, Amanda

    2016-01-01

    Boundary-layer transition in hypersonic flows over a straight cone can be predicted using measured freestream spectra, receptivity, and threshold values for the wall pressure fluctuations at the transition onset points. Simulations are performed for hypersonic boundary-layer flows over a 7-degree half-angle straight cone with varying bluntness at a freestream Mach number of 10. The steady and the unsteady flow fields are obtained by solving the two-dimensional Navier-Stokes equations in axisymmetric coordinates using a 5th-order accurate weighted essentially non-oscillatory (WENO) scheme for space discretization and using a third-order total-variation-diminishing (TVD) Runge-Kutta scheme for time integration. The calculated N-factors at the transition onset location increase gradually with increasing unit Reynolds numbers for flow over a sharp cone and remain almost the same for flow over a blunt cone. The receptivity coefficient increases slightly with increasing unit Reynolds numbers. They are on the order of 4 for a sharp cone and are on the order of 1 for a blunt cone. The location of transition onset predicted from the simulation including the freestream spectrum, receptivity, and the linear and the weakly nonlinear evolutions yields a solution close to the measured onset location for the sharp cone. The simulations over-predict transition onset by about twenty percent for the blunt cone.

  5. Log-law and compressibility effects in transcritical turbulent boundary layers at supercritical pressure

    Science.gov (United States)

    Kawai, Soshi

    2015-11-01

    In this talk, we discuss the log-law and effects of compressibility in transcritical heated turbulent boundary layers on a zero-pressure-gradient flat plate at supercritical pressure conditions by solving the compressible Navier-Stokes equations using direct numerical simulation. In the supercritical fluids (especially at transcritical conditions), due to the strong real fluid effects thermodynamic properties vary abruptly within a narrow temperature range through the pseudo-critical temperature and significantly deviate from the ideal fluid. Peculiar interactions between the strongly non-linear real fluid effects and wall turbulence, and its resultant log-law and turbulence statistics are discussed, which have never been seen in the ideal-fluid turbulent boundary layers. We also show non-negligible compressibility effects in the flow even in the low-Mach number regime considered in this study. This work was supported by Japan Society for the Promotion of Science KAKENHI Grant Number 26709066. Computer time was provided by the K computer at the RIKEN Advanced Institute for Computational Science through the HPCI System Research project hp150035.

  6. Interaction of an Artificially Thickened Boundary Layer with a Vertically Mounted Pitching Airfoil

    Science.gov (United States)

    Hohman, Tristen; Smits, Alexander; Martinelli, Luigi

    2011-11-01

    Wind energy represents a large portion of the growing market in alternative energy technologies and the current landscape has been dominated by the more prevalent horizontal axis wind turbine. However, there are several advantages to the vertical axis wind turbine (VAWT) or Darrieus type design and yet there is much to be understood about how the atmospheric boundary layer (ABL) affects their performance. In this study the ABL was simulated in a wind tunnel through the use of elliptical shaped vortex generators, a castellated wall, and floor roughness elements as described in the method of Counihan (1967) and then verified its validity by hot wire measurement of the mean velocity profile as well as the turbulence intensity. The motion of an blade element around a vertical axis is approximated through the use of a pitching airfoil. The wake of the airfoil is investigated through hot wire anemometry in both uniform flow and in the simulated boundary layer both at Re = 1 . 37 ×105 based on the chord of the airfoil. Sponsored by Hopewell Wind Power (Hong Kong) Limited.

  7. Boundary layer thickness effect on boattail drag. [wind tunnel tests for drag reduction

    Science.gov (United States)

    Blaha, B. J.; Chamberlin, R.; Bober, L. J.

    1976-01-01

    A combined experimental and analytical program has been conducted at the NASA Lewis Research Center, to investigate the effects of boundary layer changes on the flow over high angle boattail nozzles. The tests were run on an isolated axisymmetric sting mounted model. Various boattail geometries were investigated at high subsonic speeds over a range of boundary layer thicknesses. In general, boundary layer effects were small at speeds up to Mach 0.8. However, at higher speeds significant regions of separated flow were present on the boattail. When separation was present large reductions in boattail drag resulted with increasing boundary layer thickness. The analysis predicts both of these trends.

  8. Bubble and boundary layer behaviour in subcooled flow boiling

    Energy Technology Data Exchange (ETDEWEB)

    Maurus, Reinhold; Sattelmayer, Thomas [Lehrstuhl fuer Thermodynamik, Technische Universitaet Muenchen, 85747 Garching (Germany)

    2006-03-15

    Subcooled flow boiling is a commonly applied technique for achieving efficient heat transfer. In the study, an experimental investigation in the nucleate boiling regime was performed for water circulating in a closed loop at atmospheric pressure. The horizontal orientated test-section consists of a rectangular channel with a one side heated copper strip and good optical access. Various optical observation techniques were applied to study the bubble behaviour and the characteristics of the fluid phase. The bubble behaviour was recorded by the high-speed cinematography and by a digital high resolution camera. Automated image processing and analysis algorithms developed by the authors were applied for a wide range of mass flow rates and heat fluxes in order to extract characteristic length and time scales of the bubbly layer during the boiling process. Using this methodology, the bubbles were automatically analysed and the bubble size, bubble lifetime, waiting time between two cycles were evaluated. Due to the huge number of observed bubbles a statistical analysis was performed and distribution functions were derived. Using a two-dimensional cross-correlation algorithm, the averaged axial phase boundary velocity profile could be extracted. In addition, the fluid phase velocity profile was characterised by means of the particle image velocimetry (PIV) for the single phase flow as well as under subcooled flow boiling conditions. The results indicate that the bubbles increase the flow resistance. The impact on the flow exceeds by far the bubbly region and it depends on the magnitude of the boiling activity. Finally, the ratio of the averaged phase boundary velocity and of the averaged fluid velocity was evaluated for the bubbly region. (authors)

  9. Heterogeneous evaporation across a turbulent internal boundary layer

    Science.gov (United States)

    Shahraeeni, Ebrahim; Vanderborght, Jan; Vereecken, Harry

    2014-05-01

    In local evaporation from sufficiently uniform and large surfaces, horizontal advection close to the changes in surface condition is not significant. Under natural condition, this assumption is often invalid and horizontal inhomogeneity is important. When partially saturated air flows from a uniform dry land surface over a wet surface, all lower boundary conditions of transport equations change abruptly. Also surface humidity and roughness are likely to be different from their upwind values. Due to these changes, the velocity profile and turbulence structure of the airflow must readjust. The vertical profiles are no longer in equilibrium and the horizontal gradients do not equal to zero. When there is more than one of these changes in the domain of interest, the interaction between different patches with a contrast in roughness, temperature or surface water content is also important. Rigorous experimental and numerical analysis of turbulent transfer of mass and momentum in the so-called internal boundary layer (the region affected by such step changes in surface condition) is the aim of this work. A combination of numerical simulations using in-house codes and commercial softwares and experimental measurements in the environmental wind tunnel is performed. We are specifically interested in correct depiction of roughness, in a more accurate representation of the turbulent velocity profile and in a better description of turbulent diffusion close to the interface. A series of simplifying assumptions in the classical representation of this problem are investigated and a sensitivity analysis is performed to identify the contribution of neglected terms. We are also interested in the parameterization of the heat and mass exchange processes for the case with different wet patches in a background of dry soil, which is of interest in several field scale applications.

  10. Identification and analysis of boundary layer structures in Tomographic PIV data

    Science.gov (United States)

    Ortiz-Duenas, Cecilia; Saikrishnan, Neelakantan; Longmire, Ellen

    2009-11-01

    Tomographic particle image velocimetry data were acquired in a turbulent boundary layer flow generated in a wind tunnel facility. The friction Reynolds number Reτ was 1160. Measurement volumes of streamwise and spanwise dimension 0.7δ and wall normal thickness 0.07δ, which resolved the range z^+ = 70-150, were analyzed using custom software. Various criteria, including streamwise velocity, two- and three-dimensional swirl, individual vorticity components, and Reynolds shear stress, in combination with region growing and coincidence algorithms, were employed to identify and characterize coherent structures present in instantaneous fields. The results of the present study will be described and also compared with results from earlier experiments by Ganapathisubramani et al., 2003, 2006, that relied on planar PIV data only.

  11. Structure Identification Within a Transitioning Swept-Wing Boundary Layer

    Science.gov (United States)

    Chapman, Keith; Glauser, Mark

    1996-01-01

    Extensive measurements are made in a transitioning swept-wing boundary layer using hot-film, hot-wire and cross-wire anemometry. The crossflow-dominated flow contains stationary vortices that breakdown near mid-chord. The most amplified vortex wavelength is forced by the use of artificial roughness elements near the leading edge. Two-component velocity and spanwise surface shear-stress correlation measurements are made at two constant chord locations, before and after transition. Streamwise surface shear stresses are also measured through the entire transition region. Correlation techniques are used to identify stationary structures in the laminar regime and coherent structures in the turbulent regime. Basic techniques include observation of the spatial correlations and the spatially distributed auto-spectra. The primary and secondary instability mechanisms are identified in the spectra in all measured fields. The primary mechanism is seen to grow, cause transition and produce large-scale turbulence. The secondary mechanism grows through the entire transition region and produces the small-scale turbulence. Advanced techniques use Linear Stochastic Estimation (LSE) and Proper Orthogonal Decomposition (POD) to identify the spatio-temporal evolutions of structures in the boundary layer. LSE is used to estimate the instantaneous velocity fields using temporal data from just two spatial locations and the spatial correlations. Reference locations are selected using maximum RMS values to provide the best available estimates. POD is used to objectively determine modes characteristic of the measured flow based on energy. The stationary vortices are identified in the first laminar modes of each velocity component and shear component. Experimental evidence suggests that neighboring vortices interact and produce large coherent structures with spanwise periodicity at double the stationary vortex wavelength. An objective transition region detection method is developed using

  12. Boundary-layer height detection with a ceilometer at a coastal site in western Denmark

    DEFF Research Database (Denmark)

    Hannesdóttir, Ásta; Hansen, Aksel Walle

    with those from turbulence measurements of a wind lidar and the two methods are in good agreement. It is found that detecting the boundary-layer height from turbulence kinetic energy considerations with the wind lidar is not recommendable for detecting the boundary layer height during the presence of clouds......One year of data from ceilometer measurements is used to estimate the atmospheric boundary-layer height at the coastal site Høvsøre in western Denmark. The atmospheric boundary-layer height is a fundamental parameter for the evaluation of the wind speed profile, and an essential parameter...... in atmospheric transport- and dispersion models. A new method of filtering clouds from the ceilometer data is presented. This allows for the inclusion of more than half of the data in the subsequent analysis, as the presence of clouds would otherwise complicate the boundary-layer height estimations. The boundary...

  13. The vertical structure of the boundary layer around compact objects

    Science.gov (United States)

    Hertfelder, Marius; Kley, Wilhelm

    2017-09-01

    Context. Mass transfer due to Roche lobe overflow leads to the formation of an accretion disk around a weakly magnetized white dwarf (WD) in cataclysmic variables. At the inner edge of the disk, the gas comes upon the surface of the WD and has to get rid of its excess kinetic energy in order to settle down on the more slowly rotating outer stellar layers. This region is known as the boundary layer (BL). Aims: In this work we investigate the vertical structure of the BL, which is still poorly understood. We shall provide details of the basic structure of the two-dimensional (2D) BL and how it depends on parameters such as stellar mass and rotation rate, as well as the mass-accretion rate. We further investigate the destination of the disk material and compare our results with previous one-dimensional (1D) simulations. Methods: We solve the 2D equations of radiation hydrodynamics in a spherical (r-ϑ) geometry using a parallel grid-based code that employs a Riemann solver. The radiation energy is considered in the two-temperature approach with a radiative flux given by the flux-limited diffusion approximation. Results: The BL around a non-rotating WD is characterized by a steep drop in angular velocity over a width of only 1% of the stellar radius, a heavy depletion of mass, and a high temperature ( 500 000 K) as a consequence of the strong shear. Variations in Ω∗,M∗, and Ṁ influence the extent of the changes of the variables in the BL but not the general structure. Depending on Ω∗, the disk material travels up to the poles or is halted at a certain latitude. The extent of mixing with the stellar material also depends on Ω∗. We find that the 1D approximation matches the 2D data well, apart from an underestimated temperature.

  14. Shallow marine cloud topped boundary layer in atmospheric models

    Science.gov (United States)

    Janjic, Zavisa

    2017-04-01

    A common problem in many atmospheric models is excessive expansion over cold water of shallow marine planetary boundary layer (PBL) topped by a thin cloud layer. This phenomenon is often accompanied by spurious light precipitation. The "Cloud Top Entrainment Instability" (CTEI) was proposed as an explanation of the mechanism controlling this process in reality thereby preventing spurious enlargement of the cloudy area and widely spread light precipitation observed in the models. A key element of this hypothesis is evaporative cooling at the PBL top. However, the CTEI hypothesis remains controversial. For example, a recent direct simulation experiment indicated that the evaporative cooling couldn't explain the break-up of the cloudiness as hypothesized by the CTEI. Here, it is shown that the cloud break-up can be achieved in numerical models by a further modification of the nonsingular implementation of the Mellor-Yamada Level 2.5 turbulence closure model (MYJ) developed at the National Centers for Environmental Prediction (NCEP) Washington. Namely, the impact of moist convective instability is included into the turbulent energy production/dissipation equation if (a) the stratification is stable, (b) the lifting condensation level (LCL) for a particle starting at a model level is below the next upper model level, and (c) there is enough turbulent kinetic energy so that, due to random vertical turbulent motions, a particle starting from a model level can reach its LCL. The criterion (c) should be sufficiently restrictive because otherwise the cloud cover can be completely removed. A real data example will be shown demonstrating the ability of the method to break the spurious cloud cover during the day, but also to allow its recovery over night.

  15. Direct displacement-based design of special composite RC shear walls with steel boundary elements

    Directory of Open Access Journals (Sweden)

    H. Kazemi

    2016-06-01

    Full Text Available Special composite RC shear wall (CRCSW with steel boundary elements is a kind of lateral force resisting structural system which is used in earthquake-prone regions. Due to their high ductility and energy dissipation, CRCSWs have been widely used in recent years by structural engineers. However, there are few studies in the literature on the seismic design of such walls. Although there are many studies in the literature on the Direct Displacement-Based Design (DDBD of RC structures, however, no study can be found on DDBD of CRCSWs. Therefore, the aim of present study is to evaluate the ability of DDBD method for designing CRCSWs. In this study, four special composite reinforced concrete shear walls with steel boundary elements of 4, 8, 12 and 16 story numbers were designed using the DDBD method for target drift of 2%. The seismic behavior of the four CRCSWs was studied using nonlinear time-history dynamic analyses. Dynamic analyses were performed for the mentioned walls using 7 selected earthquake records. The seismic design parameters considered in this study includes: lateral displacement profile, inelastic dynamic inter-story drift demand, failure pattern and the composite RC shear walls overstrength factor. For each shear wall, the overall overstrength factor was calculated by dividing the ultimate dynamic base shear demand (Vu by the base shear demand (Vd as per the Direct Displacement Based-Design (DDBD method. The results show that the DDBD method can be used to design CRCSWs safely in seismic regions with predicted behavior.

  16. Large-eddy simulation of shock-wave/turbulent boundary layer interaction with and without SparkJet control

    Directory of Open Access Journals (Sweden)

    Yang Guang

    2016-06-01

    Full Text Available The efficiency and mechanism of an active control device “SparkJet” and its application in shock-induced separation control are studied using large-eddy simulation in this paper. The base flow is the interaction of an oblique shock-wave generated by 8° wedge and a spatially-developing Ma = 2.3 turbulent boundary layer. The Reynolds number based on the incoming flow property and the boundary layer displacement thickness at the impinging point without shock-wave is 20000. The detailed numerical approaches were presented. The inflow turbulence was generated using the digital filter method to avoid artificial temporal or streamwise periodicity. The numerical results including velocity profile, Reynolds stress profile, skin friction, and wall pressure were systematically validated against the available wind tunnel particle image velocimetry (PIV measurements of the same flow condition. Further study on the control of flow separation due to the strong shock-viscous interaction using an active control actuator “SparkJet” was conducted. The single-pulsed characteristic of the device was obtained and compared with the experiment. Both instantaneous and time-averaged flow fields have shown that the jet flow issuing from the actuator cavity enhances the flow mixing inside the boundary layer, making the boundary layer more resistant to flow separation. Skin friction coefficient distribution shows that the separation bubble length is reduced by about 35% with control exerted.

  17. On the Unsteadiness of a Transitional Shock Wave-Boundary Layer Interaction Using Fast-Response Pressure-Sensitive Paint

    Science.gov (United States)

    Lash, E. Lara; Schmisseur, John

    2017-11-01

    Pressure-sensitive paint has been used to evaluate the unsteady dynamics of transitional and turbulent shock wave-boundary layer interactions generated by a vertical cylinder on a flat plate in a Mach 2 freestream. The resulting shock structure consists of an inviscid bow shock that bifurcates into a separation shock and trailing shock. The primary features of interest are the separation shock and an upstream influence shock that is intermittently present in transitional boundary layer interactions, but not observed in turbulent interactions. The power spectral densities, frequency peaks, and normalized wall pressures are analyzed as the incoming boundary layer state changes from transitional to fully turbulent, comparing both centerline and outboard regions of the interaction. The present study compares the scales and frequencies of the dynamics of the separation shock structure in different boundary layer regimes. Synchronized high-speed Schlieren imaging provides quantitative statistical analyses as well as qualitative comparisons to the fast-response pressure sensitive paint measurements. Materials based on research supported by the U.S. Office of Naval Research under Award Number N00014-15-1-2269.

  18. Axisymmetric flow in a cylindrical tank over a rotating bottom. Part I. Analysis of boundary layers and vertical circulation

    Science.gov (United States)

    Iga, Keita

    2017-12-01

    Axisymmetric flow in a cylindrical tank over a rotating bottom is investigated and its approximate solution with an analytic expression is obtained. The interior region, comprising the majority of the fluid, consists of two sub-regions. It is easily shown that a rigid-body rotational flow with the same rotation rate as that of the bottom is formed in the inner interior and that a potential flow with constant angular momentum occurs in the outer interior sub-region. However, the radius that divides these two sub-regions has not been determined. To determine this radius, the structures of the boundary layers are investigated in detail. These boundary layers surround the interior regions, and include the boundaries between the interior region and the side wall of the tank, between the interior and the bottom, and between the inner and outer interior sub-regions. By connecting the flows in the boundary layers, the vertical circulation as a whole is established, and consequently the radius dividing the two interior sub-regions is successfully determined as a function of the aspect ratio of the water layer region. This axisymmetric flow will be utilized as the basic state for investigating theoretically various non-axisymmetric phenomena observed in laboratory experiments.

  19. Investigation of Boundary Layer Structure by Dual-Plane PIV

    Science.gov (United States)

    Longmire, E. K.; Ganapathisubramani, B.; Marusic, I.

    2004-11-01

    Dual-plane PIV was employed in a turbulent boundary layer at Re_τ ˜ 1100 to study the nature of the vortical structures there. Laser sheets separated by 1 mm were aligned in streamwise-spanwise (x,y) planes, and the scattered light was captured by three cameras: two in a stereo configuration and one in a normal configuration. All velocity gradient components were determined for fields in the log (z^+ = 125) and outer (z/δ = 0.5) regions. Three-dimensional swirl strength was used to isolate vortex cores, and the vorticity direction of individual swirl centers was determined. Instantaneous fields in the log region reveal signatures of hairpin vortex packets consistent with previous results. The packets contain evidence of smaller hairpin heads embedded within the long low-speed regions surrounded by larger hairpins. The data set at z^+ = 125 yielded a most probable hairpin inclination angle of 32^rc and an average inclination angle of 57^rc. In the presentation, these results will be contrasted with those at z/δ = 0.5.

  20. Nonmethane hydrocarbon chemistry in the remote marine boundary layer

    Science.gov (United States)

    Donahue, Neil M.; Prinn, Ronald G.

    1990-01-01

    A photochemical model of the remote marine boundary layer (MBL) is presented, with focus placed on the role of reactive nonmethane hydrocarbons (NMHC). A wide range of NMHC air-sea fluxes with various relative distributions of NMHC regions are considered. In particular, the flux magnitude at which NMHC emissions become significant, and then dominant, players in MBL chemistry is identified. Emphasis is placed on diurnal variability, diurnal ozone variations and sensitivity to NMHC emission fluxes, to CO, O3, H2O, and UV light, and to kinetics and isometric composition. Model runs indicate that, in the range consistent with current observations, the NMHCs may either dominate MBL chemistry, or simply be contributors at the 10-percent level. These model runs also show that existing observations of NMHCs in ocean water find them to scarce for fluxes from bulk-flux air-sea gas exchange models to be consistent with the fluxes needed in the proposed model to maintain the lowest observed MBL NMHC.

  1. Numerical analysis and optimization of boundary layer suction on airfoils

    Directory of Open Access Journals (Sweden)

    Shi Yayun

    2015-04-01

    Full Text Available Numerical approach of hybrid laminar flow control (HLFC is investigated for the suction hole with a width between 0.5 mm and 7 mm. The accuracy of Menter and Langtry’s transition model applied for simulating the flow with boundary layer suction is validated. The experiment data are compared with the computational results. The solutions show that this transition model can predict the transition position with suction control accurately. A well designed laminar airfoil is selected in the present research. For suction control with a single hole, the physical mechanism of suction control, including the impact of suction coefficient and the width and position of the suction hole on control results, is analyzed. The single hole simulation results indicate that it is favorable for transition delay and drag reduction to increase the suction coefficient and set the hole position closer to the trailing edge properly. The modified radial basis function (RBF neural network and the modified differential evolution algorithm are used to optimize the design for suction control with three holes. The design variables are suction coefficient, hole width, hole position and hole spacing. The optimization target is to obtain the minimum drag coefficient. After optimization, the transition delay can be up to 17% and the aerodynamic drag coefficient can decrease by 12.1%.

  2. The decay of wake vortices in the convective boundary layer

    Energy Technology Data Exchange (ETDEWEB)

    Holzaepfel, F.; Gerz, T.; Frech, M.; Doernbrack, A.

    2000-03-01

    The decay of three wake vortex pairs of B-747 aircraft in a convectively driven atmospheric boundary layer is investigated by means of large-eddy simulations (LES). This situation is considered as being hazardous as the updraft velocities of a thermal may compensate the induced descent speed of the vortex pair resulting in vortices stalled in the flight path. The LES results, however, illustrate that (i) the primary rectilinear vortices are rapidly deformed on the scale of the alternating updraft and downdraft regions; (ii) parts of the vortices stay on flight level but are quickly eroded by the enhanced turbulence of an updraft; (iii) longest living sections of the vortices are found in regions of relatively calm downdraft flow which augments their descent. Strip theory calculations are used to illustrate the temporal and spatial development of lift and rolling moments experienced by a following medium weight class B-737 aircraft. Characteristics of the respective distributions are analysed. Initially, the maximum rolling moments slightly exceed the available roll control of the B-737. After 60 seconds the probability of rolling moments exceeding 50% of the roll control, a value which is considered as a threshold for acceptable rolling moments, has decreased to 1% of its initial probability. (orig.)

  3. Effect of free-stream turbulence on boundary layer transition.

    Science.gov (United States)

    Goldstein, M E

    2014-07-28

    This paper is concerned with the transition to turbulence in flat plate boundary layers due to moderately high levels of free-stream turbulence. The turbulence is assumed to be generated by an (idealized) grid and matched asymptotic expansions are used to analyse the resulting flow over a finite thickness flat plate located in the downstream region. The characteristic Reynolds number Rλ based on the mesh size λ and free-stream velocity is assumed to be large, and the turbulence intensity ε is assumed to be small. The asymptotic flow structure is discussed for the generic case where the turbulence Reynolds number εRλ and the plate thickness and are held fixed (at O(1) and O(λ), respectively) in the limit as [Formula: see text] and ε→0. But various limiting cases are considered in order to explain the relevant transition mechanisms. It is argued that there are two types of streak-like structures that can play a role in the transition process: (i) those that appear in the downstream region and are generated by streamwise vorticity in upstream flow and (ii) those that are concentrated near the leading edge and are generated by plate normal vorticity in upstream flow. The former are relatively unaffected by leading edge geometry and are usually referred to as Klebanoff modes while the latter are strongly affected by leading edge geometry and are more streamwise vortex-like in appearance. © 2014 The Author(s) Published by the Royal Society. All rights reserved.

  4. Boundary Layer Instabilities Generated by Freestream Laser Perturbations

    Science.gov (United States)

    Chou, Amanda; Schneider, Steven P.

    2015-01-01

    A controlled, laser-generated, freestream perturbation was created in the freestream of the Boeing/AFOSR Mach-6 Quiet Tunnel (BAM6QT). The freestream perturbation convected downstream in the Mach-6 wind tunnel to interact with a flared cone model. The geometry of the flared cone is a body of revolution bounded by a circular arc with a 3-meter radius. Fourteen PCB 132A31 pressure transducers were used to measure a wave packet generated in the cone boundary layer by the freestream perturbation. This wave packet grew large and became nonlinear before experiencing natural transition in quiet flow. Breakdown of this wave packet occurred when the amplitude of the pressure fluctuations was approximately 10% of the surface pressure for a nominally sharp nosetip. The initial amplitude of the second mode instability on the blunt flared cone is estimated to be on the order of 10 -6 times the freestream static pressure. The freestream laser-generated perturbation was positioned upstream of the model in three different configurations: on the centerline, offset from the centerline by 1.5 mm, and offset from the centerline by 3.0 mm. When the perturbation was offset from the centerline of a blunt flared cone, a larger wave packet was generated on the side toward which the perturbation was offset. The offset perturbation did not show as much of an effect on the wave packet on a sharp flared cone as it did on a blunt flared cone.

  5. Full-Scale Spectrum of Boundary-Layer Winds

    DEFF Research Database (Denmark)

    Larsén, Xiaoli Guo; Larsen, Søren Ejling; Lundtang Petersen, Erik

    2016-01-01

    Extensive mean meteorological data and high frequency sonic anemometer data from two sites in Denmark, one coastal onshore and one offshore, have been used to study the full-scale spectrum of boundary-layer winds, over frequencies f from about 1 yr−1 to10 Hz. 10-min cup anemometer data are used...... to estimate the spectrum from about 1 yr−1 to 0.05 min−1; in addition, using 20-Hz sonic anemometer data, an ensemble of 1-day spectra covering the range 1 day−1 to 10 Hz has been calculated. The overlapping region in these two measured spectra is in good agreement. Classical topics regarding the various...... spectral ranges,including the spectral gap, are revisited. Following the seasonal peak at 1 yr−1, the frequency spectrum f S( f ) increases with f +1 and gradually reaches a peak at about 0.2 day−1. From this peak to about 1 hr−1, the spectrum f S( f ) decreases with frequency with a −2 slope...

  6. Meteodrones - Meteorological Planetary Boundary Layer Measurements by Vertical Drone Soundings

    Science.gov (United States)

    Lauer, Jonas; Fengler, Martin

    2017-04-01

    As of today, there is a gap in the operational data collection of meteorological observations in the Planetary Boundary Layer (PBL). This lack of spatially and temporally reliable knowledge of PBL conditions and energy fluxes with the surface causes shortcomings in the prediction of micro- and mesoscale phenomena such as convection, temperature inversions, local wind systems or fog. The currently used remote sensing instruments share the drawback of only partially covering necessary variables. To fill this data gap, since 2012, Meteomatics has been developing a drone measurement system, the Meteodrone, to measure the parameters wind speed, wind direction, dewpoint, temperature and air pressure of the PBL up to 1.5 km above ground. Both the data quality and the assimilation into a regional numerical weather model could be determined in several pilot studies. Besides, a project in cooperation with the NSSL (National Severe Storms Laboratory) was launched in October 2016 with the goal of capturing pre-convective conditions for improved severe storm forecasts in Oklahoma. Also, related measurements, such as air pollution measurements in the Misox valley to determine LDSP values, were successfully conducted. The main goal of the project is the operational data collection of PBL measurements and the assimilation of this data into regional numerical weather forecast models. Considering the high data quality indicated in all conducted studies as well as the trouble-free execution, this goal is both worthwhile and realistic.

  7. Computational modeling of unsteady loads in tidal boundary layers

    Science.gov (United States)

    Alexander, Spencer R.

    As ocean current turbines move from the design stage into production and installation, a better understanding of oceanic turbulent flows and localized loading is required to more accurately predict turbine performance and durability. In the present study, large eddy simulations (LES) are used to measure the unsteady loads and bending moments that would be experienced by an ocean current turbine placed in a tidal channel. The LES model captures currents due to winds, waves, thermal convection, and tides, thereby providing a high degree of physical realism. Probability density functions, means, and variances of unsteady loads are calculated, and further statistical measures of the turbulent environment are also examined, including vertical profiles of Reynolds stresses, two-point correlations, and velocity structure functions. The simulations show that waves and tidal velocity had the largest impact on the strength of off-axis turbine loads. By contrast, boundary layer stability and wind speeds were shown to have minimal impact on the strength of off- axis turbine loads. It is shown both analytically and using simulation results that either transverse velocity structure functions or two-point transverse velocity spatial correlations are good predictors of unsteady loading in tidal channels.

  8. Subgrid-scale turbulence in shock-boundary layer flows

    Science.gov (United States)

    Jammalamadaka, Avinash; Jaberi, Farhad

    2015-04-01

    Data generated by direct numerical simulation (DNS) for a Mach 2.75 zero-pressure gradient turbulent boundary layer interacting with shocks of different intensities are used for a priori analysis of subgrid-scale (SGS) turbulence and various terms in the compressible filtered Navier-Stokes equations. The numerical method used for DNS is based on a hybrid scheme that uses a non-dissipative central scheme in the shock-free turbulent regions and a robust monotonicity-preserving scheme in the shock regions. The behavior of SGS stresses and their components, namely Leonard, Cross and Reynolds components, is examined in various regions of the flow for different shock intensities and filter widths. The backscatter in various regions of the flow is found to be significant only instantaneously, while the ensemble-averaged statistics indicate no significant backscatter. The budgets for the SGS kinetic energy equation are examined for a better understanding of shock-tubulence interactions at the subgrid level and also with the aim of providing useful information for one-equation LES models. A term-by-term analysis of SGS terms in the filtered total energy equation indicate that while each term in this equation is significant by itself, the net contribution by all of them is relatively small. This observation is consistent with our a posteriori analysis.

  9. Increased Jet Noise Due to a "Nominally Laminar" State of Nozzle Exit Boundary Layer

    Science.gov (United States)

    Zaman, K. B. M. Q.

    2017-01-01

    A set of 2-inch diameter nozzles is used to investigate the effect of varying exit boundary layer state on the radiated noise from high-subsonic jets. It is confirmed that nozzles involving turbulent boundary layers are the quietest while nozzles involving a nominally-laminar boundary layer are loud especially on the high-frequency side of the sound pressure level spectrum. The latter boundary layer state involves a Blasius-like mean velocity profile but higher turbulence intensities compared to those in the turbulent state. The higher turbulence in the initial region of the jet shear layer leads to increased high-frequency noise. The results strongly suggest that an anomaly noted with subsonic jet noise databases in the literature is due to a similar effect of differences in the initial boundary layer state.

  10. An Aircraft Investigation of a Convective Boundary Layer Over Lake Michigan

    Science.gov (United States)

    1989-05-01

    convective boundary layer and the capping inversion, as a result of the exchange of air parcels between the inversion and boundary layer. Figure 1.2...une nappe liquids transportant de la chaleur par convection en regime permanent. Ann. Chim. Phys., 23, 62-144. Braham, R.R., and R.D. Kelly, 1982

  11. Stochastic Theory of Turbulence Mixing by Finite Eddies in the Turbulent Boundary Layer

    NARCIS (Netherlands)

    Dekker, H.; Leeuw, G. de; Maassen van den Brink, A.

    1995-01-01

    Turbulence mixing is treated by means of a novel formulation of nonlocal K-theory, involving sample paths and a stochastic hypothesis. The theory simplifies for mixing by exchange (strong-eddies) and is then applied to the boundary layer (involving scaling). This maps boundary layer turbulence onto

  12. On the Nature, Theory, and Modeling of Atmospheric Planetary Boundary Layers

    DEFF Research Database (Denmark)

    Baklanov, Alexander A.; Grisogono, Branko; Bornstein, Robert

    2011-01-01

    The gap between our modern understanding of planetary boundary layer physics and its decades-old representations in current operational atmospheric models is widening, which has stimulated this review of the current state of the art and an analysis of the immediate needs in boundary layer theory......, measurements, and modeling....

  13. Quantum boundary layer: a non-uniform density distribution of an ideal gas in thermodynamic equilibrium

    Energy Technology Data Exchange (ETDEWEB)

    Sisman, A. [Energy Institute, Istanbul Technical University, 34469 Maslak, Istanbul (Turkey)]. E-mail: sismanal@itu.edu.tr; Ozturk, Z.F. [Energy Institute, Istanbul Technical University, 34469 Maslak, Istanbul (Turkey); Firat, C. [Energy Institute, Istanbul Technical University, 34469 Maslak, Istanbul (Turkey)

    2007-02-19

    Density distribution of an ideal Maxwellian gas confined in a finite domain is not uniform even in thermodynamic equilibrium. Near to the boundaries, there is a layer in which the density goes to zero. Existence of this boundary layer explains the shape and size dependence of the thermodynamic quantities in nano scale.

  14. Motion of a sphere in an oscillatory boundary layer: an optical ...

    Indian Academy of Sciences (India)

    Shankar Ghosh

    2006-11-12

    Introduction. Motion of a sphere in an oscillatory boundary layer: an optical tweezer based study. Shankar Ghosh. November 12, 2006. Tata Institute of Fundamental Research. Co-workers : S. Bhattacharya and Prerna Sharma. Shankar Ghosh. Motion of a sphere in an oscillatory boundary layer: an optical tweezer based ...

  15. Shooting method for solution of boundary-layer flows with massive blowing

    Science.gov (United States)

    Liu, T.-M.; Nachtsheim, P. R.

    1973-01-01

    A modified, bidirectional shooting method is presented for solving boundary-layer equations under conditions of massive blowing. Unlike the conventional shooting method, which is unstable when the blowing rate increases, the proposed method avoids the unstable direction and is capable of solving complex boundary-layer problems involving mass and energy balance on the surface.

  16. On boundary layer flow of a sisko fluid over a stretching sheet | Khan ...

    African Journals Online (AJOL)

    In this paper, the steady boundary layer flow of a non-Newtonian fluid over a nonlinear stretching sheet is investigated. The Sisko fluid model, which is combination of power-law and Newtonian fluids in which the fluid may exhibit shear thinning/thickening behaviors, is considered. The boundary layer equations are derived ...

  17. Early Warning Signals for Regime Transition in the Stable Boundary Layer : A Model Study

    NARCIS (Netherlands)

    van Hooijdonk, I.G.S.; Moene, A. F.; Scheffer, M.; Clercx, H. J H; van de Wiel, B.J.H.

    2017-01-01

    The evening transition is investigated in an idealized model for the nocturnal boundary layer. From earlier studies it is known that the nocturnal boundary layer may manifest itself in two distinct regimes, depending on the ambient synoptic conditions: strong-wind or overcast conditions typically

  18. Marine boundary layer investigations in the False Bay, supported by optical refraction and scintillation measurements

    NARCIS (Netherlands)

    Jong, A.N. de; Eijk, A.M.J. van; Benoist, K.W.; Gunter, W.H.; Vrahimis, G.; October, F.J.

    2011-01-01

    Knowledge on the marine boundary layer is of importance for the prediction of the optical image quality obtained from long range targets. One property of the boundary layer, that can be studied rather easily by means of optical refraction measurements, is the vertical temperature profile. This

  19. Efficient modelling of aerodynamic flows in the boundary layer for high performance computing

    CSIR Research Space (South Africa)

    Smith, L

    2011-01-01

    Full Text Available A unique technique to couple boundary-layer solutions with an inviscid solver is introduced. The boundary-layer solution is obtained using the two-integral method to solve displacement thickness with Newton’s method, at a fraction of the cost of a...

  20. Numerical experiments in the stability of leading edge boundary layer flow. A two-dimensional study

    NARCIS (Netherlands)

    Theofilis, Vassilios; Theofilis, V.

    1993-01-01

    A numerical study is performed in order to gain insight to the stability of the infinite swept attachment line boundary layer. The basic flow is taken to be of the Hiemenz class with an added cross-flow giving rise to a constant thickness boundary layer along the attachment line. The full

  1. Skin-friction measurements in a turbulent boundary layer under the influence of free-stream turbulence

    Science.gov (United States)

    Esteban, Luis Blay; Dogan, Eda; Rodríguez-López, Eduardo; Ganapathisubramani, Bharathram

    2017-09-01

    This experimental investigation deals with the influence of free-stream turbulence (FST) produced by an active grid on the skin friction of a zero-pressure-gradient turbulent boundary layer. Wall shear stress is obtained by oil-film interferometry. In addition, hot-wire anemometry was performed to obtain wall-normal profiles of streamwise velocity. This enables the skin friction to be deduced from the mean profile. Both methods show remarkable agreement for every test case. Although skin friction is shown to increase with FST, the trend with Reynolds number is found to be similar to cases without FST. Furthermore, once the change in the friction velocity is accounted for, the self-similarity of the logarithmic region and below (i.e. law of the wall) appears to hold for all FST cases investigated.

  2. The influence of manufacturing factors on the formation of layer connections in multilayer exterior walls

    Directory of Open Access Journals (Sweden)

    Korol' Elena Anatol'evna

    2014-03-01

    Full Text Available Multilayer exterior walls are wide-spread in modern civil construction. One type of such structures is a three-layer wall with insulation layer made of lightweight concrete and exterior layers made of structural concrete. It is necessary to provide durable monolithic connection of concrete layers in the process of manufacturing this structure in order to decrease the percentage of web reinforcement and increase thermal engineering homogeneity of multilayer exterior walls. Experimental research of three-layer samples with external layers made of claydite-concrete and internal layer made of polystyrene concrete were conducted in order to establish the strength of layer connections in the multilayer exterior wall. Different temporal parameters and concrete strength were assigned during manufacturing of the samples. The samples were tested under axial tension and shear in the layer contact zone. The nature of tensile rupture and shearing failure was checked after the tests. The relations between manufacturing parameters, strength of the concrete used in samples and layer connection strength were established as a result of experimental research. The climatic tests of three-layer exterior wall model made of claydite-concrete and polystyrene concrete were conducted in order to establish the reduction of the layers contact zone strength during the maintenance. The wall model was made of concrete samples of varying strength. The experimental model was exposed to 35 cycles of alternate freezing and thawing in climatic chamber. During freezing and thawing, the strength tests of external and internal layers contact zone by tearing the cylindrical samples were conducted. Consequently, the nature of contact zone strength reduction for the samples with different concrete strength of external and internal layers was established. As a result of the conducted research, the optimal temporal parameters of manufacturing and optimal concrete strength were established

  3. MHD mixed convective boundary layer flow of a nanofluid through a porous medium due to an exponentially stretching sheet

    KAUST Repository

    Ferdows, M.

    2012-01-01

    Magnetohydrodynamic (MHD) boundary layer flow of a nanofluid over an exponentially stretching sheet was studied. The governing boundary layer equations are reduced into ordinary differential equations by a similarity transformation. The transformed equations are solved numerically using the Nactsheim-Swigert shooting technique together with Runge-Kutta six-order iteration schemes. The effects of the governing parameters on the flow field and heat transfer characteristics were obtained and discussed. The numerical solutions for the wall skin friction coefficient, the heat and mass transfer coefficient, and the velocity, temperature, and concentration profiles are computed, analyzed, and discussed graphically. Comparison with previously published work is performed and excellent agreement is observed. 2012 M. Ferdows et al.

  4. MHD Mixed Convective Boundary Layer Flow of a Nanofluid through a Porous Medium due to an Exponentially Stretching Sheet

    Directory of Open Access Journals (Sweden)

    M. Ferdows

    2012-01-01

    Full Text Available Magnetohydrodynamic (MHD boundary layer flow of a nanofluid over an exponentially stretching sheet was studied. The governing boundary layer equations are reduced into ordinary differential equations by a similarity transformation. The transformed equations are solved numerically using the Nactsheim-Swigert shooting technique together with Runge-Kutta six-order iteration schemes. The effects of the governing parameters on the flow field and heat transfer characteristics were obtained and discussed. The numerical solutions for the wall skin friction coefficient, the heat and mass transfer coefficient, and the velocity, temperature, and concentration profiles are computed, analyzed, and discussed graphically. Comparison with previously published work is performed and excellent agreement is observed.

  5. Planetary boundary layer and circulation dynamics at Gale Crater, Mars

    Science.gov (United States)

    Fonseca, Ricardo M.; Zorzano-Mier, María-Paz; Martín-Torres, Javier

    2018-03-01

    The Mars implementation of the Planet Weather Research and Forecasting (PlanetWRF) model, MarsWRF, is used here to simulate the atmospheric conditions at Gale Crater for different seasons during a period coincident with the Curiosity rover operations. The model is first evaluated with the existing single-point observations from the Rover Environmental Monitoring Station (REMS), and is then used to provide a larger scale interpretation of these unique measurements as well as to give complementary information where there are gaps in the measurements. The variability of the planetary boundary layer depth may be a driver of the changes in the local dust and trace gas content within the crater. Our results show that the average time when the PBL height is deeper than the crater rim increases and decreases with the same rate and pattern as Curiosity's observations of the line-of-sight of dust within the crater and that the season when maximal (minimal) mixing is produced is Ls 225°-315° (Ls 90°-110°). Thus the diurnal and seasonal variability of the PBL depth seems to be the driver of the changes in the local dust content within the crater. A comparison with the available methane measurements suggests that changes in the PBL depth may also be one of the factors that accounts for the observed variability, with the model results pointing towards a local source to the north of the MSL site. The interaction between regional and local flows at Gale Crater is also investigated assuming that the meridional wind, the dynamically important component of the horizontal wind at Gale, anomalies with respect to the daily mean can be approximated by a sinusoidal function as they typically oscillate between positive (south to north) and negative (north to south) values that correspond to upslope/downslope or downslope/upslope regimes along the crater rim and Mount Sharp slopes and the dichotomy boundary. The smallest magnitudes are found in the northern crater floor in a region that

  6. Advances in Unsteady Boundary Layer Transition Research, Part II: Experimental Verification

    Directory of Open Access Journals (Sweden)

    M. T. Schobeiri

    2003-01-01

    Full Text Available This two-part article presents recent advances in boundary layer research into the unsteady boundary layer transition modeling and its validation. This, Part II, deals with the results of an inductive approach based on comprehensive experimental and theoretical studies of unsteady wake flow and unsteady boundary layer flow. The experiments were performed on a curved plate at a zero streamwise pressure gradient under periodic unsteady wake flow, in which the frequency of the periodic unsteady flow was varied. To validate the model, systematic experimental investigations were performed on the suction and pressure surfaces of turbine blades integrated into a high-subsonic cascade test facility, which was designed for unsteady boundary layer investigations. The analysis of the experiment's results and comparison with the model's prediction confirm the validity of the model and its ability to predict accurately the unsteady boundary layer transition.

  7. Current Challenges in Understanding and Forecasting Stable Boundary Layers over Land and Ice

    Directory of Open Access Journals (Sweden)

    Gert-Jan eSteeneveld

    2014-10-01

    Full Text Available Understanding and prediction of the stable atmospheric boundary layer is challenging. Many physical processes come into play in the stable boundary layer, i.e. turbulence, radiation, land surface coupling and heterogeneity, orographic turbulent and gravity wave drag. The development of robust stable boundary-layer parameterizations for weather and climate models is difficult because of the multiplicity of processes and their complex interactions. As a result, these models suffer from biases in key variables, such as the 2-m temperature, boundary-layer depth and wind speed. This short paper briefly summarizes the state-of-the-art of stable boundary layer research, and highlights physical processes that received only limited attention so far, in particular orographically-induced gravity wave drag, longwave radiation divergence, and the land-atmosphere coupling over a snow-covered surface. Finally, a conceptual framework with relevant processes and particularly their interactions is proposed.

  8. Picard iterations of boundary-layer equations. [in singular-perturbation analysis of flightpath optimization problems

    Science.gov (United States)

    Ardema, M. D.; Yang, L.

    1985-01-01

    A method of solving the boundary-layer equations that arise in singular-perturbation analysis of flightpath optimization problems is presented. The method is based on Picard iterations of the integrated form of the equations and does not require iteration to find unknown boundary conditions. As an example, the method is used to develop a solution algorithm for the zero-order boundary-layer equations of the aircraft minimum-time-to-climb problem.

  9. Analysis of vortex populations in turbulent boundary layers based on tomographic PIV

    Science.gov (United States)

    Gao, Qi; Ortiz-Duenas, Cecilia; Longmire, Ellen

    2010-11-01

    Vortex populations in the logarithmic region of turbulent boundary layers were investigated using results from tomographic PIV. The experiments were carried out in a water channel facility with δ 125 mm and Reτ 2500 (Reθ 6200). Measurement volumes were about 90 x 80 x 9mm^3 (1650 x 1470 x 130 viscous units) spanning a wall-normal range from z^+ = 150 to 280. Four 2K x 2K cameras were mounted above the channel and aimed at the measurement volume with tilt angle about 30 degrees to the wall normal direction. The magnification was 0.07 mm/pixel. Correlations were performed on 48 x 48 x 48 voxel volumes with 75% overlap yielding a vector spacing of 17 x 17 x 17 viscous units. Swirl strength and swirl direction were used to identify and characterize vortices in terms of orientation, circulation, size, and convection velocity. The results showed that swirl direction was a better indicator than vorticity of eddy orientation. Eddy circulation was found to increase approximately quadratically with eddy radius. The advantages and limitations of tomographic PIV vs. dual plane PIV will be discussed.

  10. Generalized higher order two-point moments in turbulent boundary layers.

    Science.gov (United States)

    Yang, Xiang; Marusic, Ivan; Meneveau, Charles

    2015-11-01

    Generalized higher order two-point moments such as uz'm (x) uz'n(x + r > 2 / (m + n) and uz'2 (x) -uz'2 (x + r) ] n > 1 / n (where z is the distance from the wall, r is the distance in the flow direction, and m and n are arbitrary integers) are examined using high Reynolds number experimental data in turbulent boundary layer flow. Logarithmic behaviors with respect to both s and z in such statistics are observed. Certain predictions for such generalized log laws can be made in the context of the attached eddy hypothesis. Particularly simple results can be obtained for the scaling if one considers the velocity fluctuations at some point x and height z being the outcome of a random additive process, e.g. uN' =∑i= 1 Nai , where Ndepends on the wall normal distance zas N ~log (δ / z) , and the ai's are identical independent random additives. Predictions can be made of the slopes in the generalized log laws and these can be compared to the experimental data. For instance, already for single point higher-order moments it was known that the model overpredicts some slopes, indicating a sub-Gaussian behavior in the statistics. Gaussian behavior is rooted in the assumption of independency in ai's. We discuss some variants that introduce correlations, and provide evidence that the generalized higher order two-point moments can help discriminate among various possible models.

  11. Forced convective heat transfer in boundary layer flow of Sisko fluid over a nonlinear stretching sheet.

    Science.gov (United States)

    Munir, Asif; Shahzad, Azeem; Khan, Masood

    2014-01-01

    The major focus of this article is to analyze the forced convective heat transfer in a steady boundary layer flow of Sisko fluid over a nonlinear stretching sheet. Two cases are studied, namely (i) the sheet with variable temperature (PST case) and (ii) the sheet with variable heat flux (PHF case). The heat transfer aspects are investigated for both integer and non-integer values of the power-law index. The governing partial differential equations are reduced to a system of nonlinear ordinary differential equations using appropriate similarity variables and solved numerically. The numerical results are obtained by the shooting method using adaptive Runge Kutta method with Broyden's method in the domain[Formula: see text]. The numerical results for the temperature field are found to be strongly dependent upon the power-law index, stretching parameter, wall temperature parameter, material parameter of the Sisko fluid and Prandtl number. In addition, the local Nusselt number versus wall temperature parameter is also graphed and tabulated for different values of pertaining parameters. Further, numerical results are validated by comparison with exact solutions as well as previously published results in the literature.

  12. Laser interferometer skin-friction measurements of crossing-shock-wave/turbulent-boundary-layer interactions

    Science.gov (United States)

    Garrison, T. J.; Settles, G. S.; Narayanswami, N.; Knight, D. D.

    1994-01-01

    Wall shear stress measurements beneath crossing-shock-wave/turbulent boundary-layer interactions have been made for three interactions of different strengths. The interactions are generated by two sharp fins at symetric angles of attack mounted on a flat plate. The shear stress measurements were made for fin angles of 7 and 11 deg at Mach 3 and 15 deg at Mach 3.85. The measurements were made using a laser interferometer skin-friction meter, a device that determines the wall shear by optically measuring the time rate of thinning of an oil film placed on the test model surface. Results of the measurements reveal high skin-friction coefficients in the vicinity of the fin/plate junction and the presence of quasi-two-dimensional flow separation on the interaction center line. Additionally, two Navier-Stokes computations, one using a Baldwin-Lomax turbulence model and one using a k-epsilon model, are compared with the experimental results for the Mach 3.85, 15-deg interaction case. Although the k-epsilon model did a reasonable job of predicting the overall trend in portions of the skin-friction distribution, neither computation fully captured the physics of the near-surface flow in this complex interaction.

  13. Turbulent boundary layer approaches to resistance coefficient in ...

    African Journals Online (AJOL)

    A logarithmic velocity profile has been used, in conjunction with a formulation for the origin of the profile, to study the nature of wall roughness and influence of roughness elements on turbulent flow through circular pipes with part smooth, part rough walls. Experimental data on velocity distribution and frictional head loss ...

  14. Direct numerical simulation of supersonic turbulent boundary layer subjected to a curved compression ramp

    Science.gov (United States)

    Tong, Fulin; Li, Xinliang; Duan, Yanhui; Yu, Changping

    2017-12-01

    Numerical investigations on a supersonic turbulent boundary layer over a longitudinal curved compression ramp are conducted using direct numerical simulation for a free stream Mach number M∞ = 2.9 and Reynolds number Reθ = 2300. The total turning angle is 24°, and the concave curvature radius is 15 times the thickness of the incoming turbulent boundary layer. Under the selected conditions, the shock foot is transferred to a fan of the compression wave because of the weaker adverse pressure gradient. The time-averaged flow-field in the curved ramp is statistically attached where the instantaneous flow-field is close to the intermittent transitory detachment state. Studies on coherent vortex structures have shown that large-scale vortex packets are enhanced significantly when the concave curvature is aligned in the spanwise direction. Consistent with findings of previous experiments, the effect of the concave curvature on the logarithmic region of the mean velocity profiles is found to be small. The intensity of the turbulent fluctuations is amplified across the curved ramp. Based on the analysis of the Reynolds stress anisotropy tensor, the evolutions of the turbulence state in the inner and outer layers of the boundary layer are considerably different. The curvature effect on the transport mechanism of the turbulent kinetic energy is studied using the balance analysis of the contributing terms in the transport equation. Furthermore, the Görtler instability in the curved ramp is quantitatively analyzed using a stability criterion. The instantaneous streamwise vorticity confirms the existence of the Görtler-like structures. These structures are characterized by an unsteady motion. In addition, the dynamic mode decomposition analysis of the instantaneous flow field at the spanwise/wall-normal plane reveals that four dynamical relevant modes with performance loss of 16% provide an optimal low-order representation of the essential characteristics of the numerical

  15. Catalyzed combustion in a flat plate boundary layer. II. Numerical calculations

    Energy Technology Data Exchange (ETDEWEB)

    Schefer, R.; Robben, F.

    1977-09-01

    A computer program has been developed to solve the boundary layer equations for laminar flow over a heated plate with H/sub 2//air combustion. The objectives are to investigate the importance of homogeneous as opposed to catalytic surface reactions during the combustion process, and to determine the roles of heat and mass transfer and their effect on combustion. Results are presented for combustion of H/sub 2//air at an equivalence ratio of 0.1 for flow over a noncatalytic plate at a surface temperature of 1100/sup 0/K. A detailed mechanism involving 8 chemical species and 13 reactions has been used to describe the kinetics. The reactions leading to the initiation of combustion and the effect of the large diffusivity of hydrogen are discussed. The boundary conditions for catalytic surface and a simplified model to account for catalytic wall reaction are formulated. Results are presented for combustion over a catalytic surface and compared with the non-catalytic case.

  16. A Note on the bottom shear stress in oscillatory planetary boundary layer flow

    Directory of Open Access Journals (Sweden)

    Dag Myrhaug

    1988-07-01

    Full Text Available A simple analytical theory is presented, which describes the motion in a turbulent oscillatory planetary boundary layer near a rough seabed using a two-layer, time-invariant eddy viscosity model. The bottom shear stress is outlined, and comparison is made with Pingree and Griffiths' (1974 measurements of turbulent tidal planetary boundary layer flow on the continental shelf south-west of Lands End, England.

  17. Computational fluid dynamics analysis of cyclist aerodynamics: performance of different turbulence-modelling and boundary-layer modelling approaches.

    Science.gov (United States)

    Defraeye, Thijs; Blocken, Bert; Koninckx, Erwin; Hespel, Peter; Carmeliet, Jan

    2010-08-26

    This study aims at assessing the accuracy of computational fluid dynamics (CFD) for applications in sports aerodynamics, for example for drag predictions of swimmers, cyclists or skiers, by evaluating the applied numerical modelling techniques by means of detailed validation experiments. In this study, a wind-tunnel experiment on a scale model of a cyclist (scale 1:2) is presented. Apart from three-component forces and moments, also high-resolution surface pressure measurements on the scale model's surface, i.e. at 115 locations, are performed to provide detailed information on the flow field. These data are used to compare the performance of different turbulence-modelling techniques, such as steady Reynolds-averaged Navier-Stokes (RANS), with several k-epsilon and k-omega turbulence models, and unsteady large-eddy simulation (LES), and also boundary-layer modelling techniques, namely wall functions and low-Reynolds number modelling (LRNM). The commercial CFD code Fluent 6.3 is used for the simulations. The RANS shear-stress transport (SST) k-omega model shows the best overall performance, followed by the more computationally expensive LES. Furthermore, LRNM is clearly preferred over wall functions to model the boundary layer. This study showed that there are more accurate alternatives for evaluating flow around bluff bodies with CFD than the standard k-epsilon model combined with wall functions, which is often used in CFD studies in sports. 2010 Elsevier Ltd. All rights reserved.

  18. Influence of inclined Lorentz forces on boundary layer flow of Casson fluid over an impermeable stretching sheet with heat transfer

    Energy Technology Data Exchange (ETDEWEB)

    Abdul Hakeem, A.K., E-mail: abdulhakeem6@gmail.com [Department of Mathematics, Sri Ramakrishna Mission Vidyalaya, College of Arts and Science, Coimbatore 641 020 (India); Renuka, P. [Department of Mathematics, Erode Sengunthar Engineering college, Erode 638 057 (India); Vishnu Ganesh, N.; Kalaivanan, R. [Department of Mathematics, Sri Ramakrishna Mission Vidyalaya, College of Arts and Science, Coimbatore 641 020 (India); Ganga, B. [Department of Mathematics, Providence College for Women, Coonoor 643 104 (India)

    2016-03-01

    The inclined magnetic field effect on the boundary layer flow of a Casson model non-Newtonian fluid over a stretching sheet in the existence of thermal radiation and velocity slip boundary condition is investigated for both prescribed surface temperature and power law of surface heat flux cases. It is assumed that the magnetic field is applied with an aligned angle which varied from 0° to 90°. Both analytical and numerical solutions are obtained for the transformed non-dimensional ODE's using confluent hypergeometric function and fourth order Runge–Kutta method with shooting technique respectively. The combined effects of inclined magnetic field with other pertinent parameters such as Casson parameter, velocity slip parameter, radiation parameter and Prandtl number on velocity profile, temperature profile, local skin friction coefficient, local Nusselt number and non-dimensional wall temperature are discussed through graphs. It is found that the aligned angle plays a vital role in controlling the magnetic field strength on the Casson fluid flow region and the increasing values of aligned angle of the magnetic field lead to decrease the skin friction coefficient and the Nusselt number and increase the non-dimensional wall temperature. - Highlights: • Casson fluid flow in the presence of inclined magnetic field is investigated for the first time. • Aligned angle controls the magnetic field strength on the boundary layer flow region. • The direction of Lorentz force changes according to aligned angle. • An excellent agreement is observed between present analytical and numerical results.

  19. Boundary layer photochemistry during a total solar eclipse

    Directory of Open Access Journals (Sweden)

    Peter Fabian

    2001-05-01

    Full Text Available Simultaneous measurements of radiation, photolysis frequencies, O3, CO, OH, PAN and NOx species were carried out in the boundary layer, along with pertinent meteorological parameters, under total solar eclipse conditions. This experiment performed at about 34 solar zenith angle and noontime conditions thus provided a case study about the interactions between radiation and photochemistry under fast ''day-night'' and ''night-day'' transitions, at high solar elevation. The results reveal a close correlation of photolysis frequencies jO(1D and jNO2with the UV radiation flux. All three parameters show, due to the decreasing fraction of direct radiation at shorter wavelengths, much weaker cloud shading effects than global solar radiation. NO and OH concentrations decrease to essentially zero during totality. Subsequently, NO and OH concentrations increased almost symmetrically to their decrease preceding totality. The NO/NO2 ratio was proportional to jNO2over 30 min before and after totality indicating that the partitioning of NOx species is determined by jNO2. Simple box model simulations show the effect of reduced solar radiation on the photochemical production of O3 and PAN. WÄhrend der totalen Sonnenfinsternis am 11. August 1999 wurden simultane und kontinuierliche Messungen von O3, CO, OH, PAN and NOx, Strahlung, Photolysefrequenzen und relevanten meteorologischen Parametern durchgefÜhrt. Dieses Experiment, durchgefÜhrt etwa am Mittag, bei 34 Zenithwinkel der Sonne, ermöglichte die Untersuchung der Interaktion von Strahlung und Photochemie fÜr schnelle Tag-Nacht und Nacht-Tag-ÜbergÄnge bei hohem Sonnenstand. Die Ergebnisse zeigen eine enge Korrelation der Photolysefrequenzen jO(1D und jNO2 mit dem UV-Strahlungsfluss. Alle drei Parameter zeigen, wegen des abnehmenden Anteils direkter Sonnenstrahlung bei kurzen WellenlÄngen, erheblich geringere AbschwÄchung durch Wolken als die Globalstrahlung. NO und OH gehen wÄhrend der

  20. Inviscid/Boundary-Layer Aeroheating Approach for Integrated Vehicle Design

    Science.gov (United States)

    Lee, Esther; Wurster, Kathryn E.

    2017-01-01

    A typical entry vehicle design depends on the synthesis of many essential subsystems, including thermal protection system (TPS), structures, payload, avionics, and propulsion, among others. The ability to incorporate aerothermodynamic considerations and TPS design into the early design phase is crucial, as both are closely coupled to the vehicle's aerodynamics, shape and mass. In the preliminary design stage, reasonably accurate results with rapid turn-representative entry envelope was explored. Initial results suggest that for Mach numbers ranging from 9-20, a few inviscid solutions could reasonably sup- port surface heating predictions at Mach numbers variation of +/-2, altitudes variation of +/-10 to 20 kft, and angle-of-attack variation of +/- 5. Agreement with Navier-Stokes solutions was generally found to be within 10-15% for Mach number and altitude, and 20% for angle of attack. A smaller angle-of-attack increment than the 5 deg around times for parametric studies and quickly evolving configurations are necessary to steer design decisions. This investigation considers the use of an unstructured 3D inviscid code in conjunction with an integral boundary-layer method; the former providing the flow field solution and the latter the surface heating. Sensitivity studies for Mach number, angle of attack, and altitude, examine the feasibility of using this approach to populate a representative entry flight envelope based on a limited set of inviscid solutions. Each inviscid solution is used to generate surface heating over the nearby trajectory space. A subset of a considered in this study is recommended. Results of the angle-of-attack sensitivity studies show that smaller increments may be needed for better heating predictions. The approach is well suited for application to conceptual multidisciplinary design and analysis studies where transient aeroheating environments are critical for vehicle TPS and thermal design. Concurrent prediction of aeroheating

  1. Application of Multi-Layered Polyurethane Foams for Flat-Walled Anechoic Linings

    DEFF Research Database (Denmark)

    Xu, J. F.; Buchholz, Jörg; Fricke, Fergus R.

    2006-01-01

    of the application of multi-layered polyurethane foams as the flat-walled anechoic lining. The investigation includes aspects such as the efficacy of a single layer of material, the minimum number of layers of linings to achieve the minimum overall thickness for low (100Hz), mid (250Hz) and high (500Hz) cut...

  2. Advances in Unsteady Boundary Layer Transition Research, Part I: Theory and Modeling

    Directory of Open Access Journals (Sweden)

    M. T. Schobeiri

    2003-01-01

    Full Text Available This two-part article presents recent advances in boundary layer research that deal with the unsteady boundary layer transition modeling and its validation. A new unsteady boundary layer transition model was developed based on a universal unsteady intermittency function. It accounts for the effects of periodic unsteady wake flow on the boundary layer transition. To establish the transition model, an inductive approach was implemented; the approach was based on the results of comprehensive experimental and theoretical studies of unsteady wake flow and unsteady boundary layer flow. The experiments were performed on a curved plate at a zero streamwise pressure gradient under a periodic unsteady wake flow, where the frequency of the periodic unsteady flow was varied. To validate the model, systematic experimental investigations were performed on the suction and pressure surfaces of turbine blades integrated into a high-subsonic cascade test facility, which was designed for unsteady boundary layer investigations. The analysis of the experiment's results and comparison with the model's prediction confirm the validity of the model and its ability to predict accurately the unsteady boundary layer transition.

  3. Physical modeling of the atmospheric boundary layer in the UNH Flow Physics Facility

    Science.gov (United States)

    Taylor-Power, Gregory; Gilooly, Stephanie; Wosnik, Martin; Klewicki, Joe; Turner, John

    2016-11-01

    The Flow Physics Facility (FPF) at UNH has test section dimensions W =6.0m, H =2.7m, L =72m. It can achieve high Reynolds number boundary layers, enabling turbulent boundary layer, wind energy and wind engineering research with exceptional spatial and temporal instrument resolution. We examined the FPF's ability to experimentally simulate different types of the atmospheric boundary layer (ABL) using upstream roughness arrays. The American Society for Civil Engineers defines standards for simulating ABLs for different terrain types, from open sea to dense city areas (ASCE 49-12). The standards require the boundary layer to match a power law shape, roughness height, and power spectral density criteria. Each boundary layer type has a corresponding power law exponent and roughness height. The exponent and roughness height both increase with increasing roughness. A suburban boundary layer was chosen for simulation and a roughness element fetch was created. Several fetch lengths were experimented with and the resulting boundary layers were measured and compared to standards in ASCE 49-12: Wind Tunnel Testing for Buildings and Other Structures. Pitot tube and hot wire anemometers were used to measure average and fluctuating flow characteristics. Velocity profiles, turbulence intensity and velocity spectra were found to compare favorably.

  4. Comparison of aerosol lidar retrieval methods for boundary layer height detection using ceilometer aerosol backscatter data

    Science.gov (United States)

    Caicedo, Vanessa; Rappenglück, Bernhard; Lefer, Barry; Morris, Gary; Toledo, Daniel; Delgado, Ruben

    2017-04-01

    Three algorithms for estimating the boundary layer heights are assessed: an aerosol gradient method, a cluster analysis method, and a Haar wavelet method. Over 40 daytime clear-sky radiosonde profiles are used to compare aerosol backscatter boundary layer heights retrieved by a Vaisala CL31 ceilometer. Overall good agreement between radiosonde- and aerosol-derived boundary layer heights was found for all methods. The cluster method was found to be particularly sensitive to noise in ceilometer signals and lofted aerosol layers (48.8 % of comparisons), while the gradient method showed limitations in low-aerosol-backscatter conditions. The Haar wavelet method was demonstrated to be the most robust, only showing limitations in 22.5 % of all observations. Occasional differences between thermodynamically and aerosol-derived boundary layer heights were observed.

  5. Geologic Basin Boundaries (Basins_GHGRP) GIS Layer

    Data.gov (United States)

    U.S. Environmental Protection Agency — This is a coverage shapefile of geologic basin boundaries which are used by EPA's Greenhouse Gas Reporting Program. For onshore production, the "facility" includes...

  6. Similar solutions of the boundary layer equations for continuously moving bodies; Aehnliche Loesungen der Grenzschichtgleichungen fuer kontinuierlich bewegte Koerper

    Energy Technology Data Exchange (ETDEWEB)

    Gampert, B.; Beyene, T. [Essen Univ. (Germany). Angewandte Mechanik

    2000-07-01

    the authors investigated heat transfer and wall shearing stress on a spinning thread from the boundary layer equations according to the similar solutions method for a wide range of technical parameters. Laminar incompressible flow with constant material characteristics is assumed, and the spinning thread is assumed to be a continuously moving circular cylinder. [German] In dieser Arbeit werden der Waermeuebergang und die Wandschubspannung am Spinnfaden aus den Grenzschichtgleichungen nach der Methode der aehnlichen Loesungen fuer einen weiten Bereich technischer Parameter bestimmt. Es wird eine laminare inkompressible Stroemung konstanter Stoffwerte vorausgesetzt und der Spinnfaden wird als kontinuierlich bewegter Kreiszylinder angenommen. (orig.)

  7. Investigation of Operating Pressure Ratio of a Supersonic Wind Tunnel Utilizing Distributed Boundary-layer Suction in Test Section

    Science.gov (United States)

    Cohen, C B; Valerino, A S

    1950-01-01

    Effect of distributed boundary-layer suction on operating pressure ratio of a supersonic wind tunnel was investigated. Investigation was made in 3.84- by 10-inch supersonic tunnel operating at Mach number 2.0 and suction was applied in neighborhood of the normal shock to two walls of a constant-area extension of test section. A reduction of 4 percent of operating pressure ratio was attributed to improved flow conditions at subsonic-diffuser inlet. The theoretical normal shock was, in practice, replaced by a multiple-branch shock configuration across which the flow parameters changed in approximate accordance with the Rankine-Hugoniot values.

  8. Decomposition Methods For a Piv Data Analysis with Application to a Boundary Layer Separation Dynamics

    Directory of Open Access Journals (Sweden)

    Václav URUBA

    2010-12-01

    Full Text Available Separation of the turbulent boundary layer (BL on a flat plate under adverse pressure gradient was studied experimentally using Time-Resolved PIV technique. The results of spatio-temporal analysis of flow-field in the separation zone are presented. For this purpose, the POD (Proper Orthogonal Decomposition and its extension BOD (Bi-Orthogonal Decomposition techniques are applied as well as dynamical approach based on POPs (Principal Oscillation Patterns method. The study contributes to understanding physical mechanisms of a boundary layer separation process. The acquired information could be used to improve strategies of a boundary layer separation control.

  9. Integral method for the calculation of three-dimensional, laminar and turbulent boundary layers

    Science.gov (United States)

    Stock, H. W.

    1978-01-01

    The method for turbulent flows is a further development of an existing method; profile families with two parameters and a lag entrainment method replace the simple entrainment method and power profiles with one parameter. The method for laminar flows is a new development. Moment of momentum equations were used for the solution of the problem, the profile families were derived from similar solutions of boundary layer equations. Laminar and turbulent flows at the wings were calculated. The influence of wing tapering on the boundary layer development was shown. The turbulent boundary layer for a revolution ellipsoid is calculated for 0 deg and 10 deg incidence angles.

  10. Development of a Flow Field for Testing a Boundary-Layer-Ingesting Propulsor

    Science.gov (United States)

    Hirt, Stefanie M.; Arend, David J.; Wolter, John D.

    2017-01-01

    The test section of the 8- by 6-Foot Supersonic Wind Tunnel at NASA Glenn Research Center was modified to produce the test conditions for a boundary-layer-ingesting propulsor. A test was conducted to measure the flow properties in the modified test section before the propulsor was installed. Measured boundary layer and freestream conditions were compared to results from computational fluid dynamics simulations of the external surface for the reference vehicle. Testing showed that the desired freestream conditions and boundary layer thickness could be achieved; however, some non-uniformity of the freestream conditions, particularly the total temperature, were observed.

  11. Marine boundary layer wind structure over the Bay of Bengal during MONEX79

    Energy Technology Data Exchange (ETDEWEB)

    SethuRaman, S.

    1981-01-01

    A marine boundary layer experiment was conducted at Digha, West Bengal, India, to determine the role of the atmospheric boundary layer on the Bay of Bengal cyclogenesis. The boundary layer experiment at Digha consisted of three main components: (1) a 10 m micrometeorological tower at the beach with instruments to observe turbulent fluxes of heat and momentum over the ocean; (2) a weather station that continuously recorded mean parameters; and (3) pilot balloon observations to a height of about 1000 m. The purpose of this paper is to discuss some of the preliminary results obtained through the analysis of the data.

  12. A numerical solution of a singular boundary value problem arising in boundary layer theory.

    Science.gov (United States)

    Hu, Jiancheng

    2016-01-01

    In this paper, a second-order nonlinear singular boundary value problem is presented, which is equivalent to the well-known Falkner-Skan equation. And the one-dimensional third-order boundary value problem on interval [Formula: see text] is equivalently transformed into a second-order boundary value problem on finite interval [Formula: see text]. The finite difference method is utilized to solve the singular boundary value problem, in which the amount of computational effort is significantly less than the other numerical methods. The numerical solutions obtained by the finite difference method are in agreement with those obtained by previous authors.

  13. Turbine airfoil with dual wall formed from inner and outer layers separated by a compliant structure

    Science.gov (United States)

    Campbell,; Christian X. , Morrison; Jay, A [Oviedo, FL

    2011-12-20

    A turbine airfoil usable in a turbine engine with a cooling system and a compliant dual wall configuration configured to enable thermal expansion between inner and outer layers while eliminating stress formation is disclosed. The compliant dual wall configuration may be formed a dual wall formed from inner and outer layers separated by a compliant structure. The compliant structure may be configured such that the outer layer may thermally expand without limitation by the inner layer. The compliant structure may be formed from a plurality of pedestals positioned generally parallel with each other. The pedestals may include a first foot attached to a first end of the pedestal and extending in a first direction aligned with the outer layer, and may include a second foot attached to a second end of the pedestal and extending in a second direction aligned with the inner layer.

  14. New-particle formation events in a continental boundary layer: first results from the SATURN experiment

    Directory of Open Access Journals (Sweden)

    F. Stratmann

    2003-01-01

    Full Text Available During the SATURN experiment, which took place from 27 May to 14 June 2002, new particle formation in the continental boundary layer was investigated. Simultaneous ground-based and tethered-balloon-borne measurements were performed, including meteorological parameters, particle number concentrations and size distributions, gaseous precursor concentrations and SODAR and LIDAR observations. Newly formed particles were observed inside the residual layer, before the break-up process of the nocturnal inversion, and inside the mixing layer throughout the break-up of the nocturnal inversion and during the evolution of the planetary boundary layer.

  15. Coastal Stratocumulus-Topped Boundary Layers and the Role of Cloud-Top Entrainment

    National Research Council Canada - National Science Library

    Eleuterio, Daniel

    2004-01-01

    ...) to accurately forecast the height and structure of the Marine Boundary Layer (MBL) in the coastal zone is analyzed and compared to surface and aircraft observations from the Dynamics and Evolution of Coastal Stratus (DECS...

  16. Turbulence Models: Data from Other Experiments: Shock Wave / Turbulent Boundary Layer Flows at High Mach Numbers

    Data.gov (United States)

    National Aeronautics and Space Administration — Shock Wave / Turbulent Boundary Layer Flows at High Mach Numbers. This web page provides data from experiments that may be useful for the validation of turbulence...

  17. Study of the blowing impact on a hot turbulent boundary layer using Thermal Large Eddy Simulation

    Energy Technology Data Exchange (ETDEWEB)

    Brillant, G. [CEA/Grenoble DEN/DER/SSTH/LMDL, 17 rue des Martyrs 38054, Grenoble Cedex 9 (France); INSA/Centre de Thermique de Lyon (UMR CNRS 5008), Bat. Sadi Carnot 69621, Villeurbanne Cedex (France); Husson, S. [INSA/Centre de Thermique de Lyon (UMR CNRS 5008), Bat. Sadi Carnot 69621, Villeurbanne Cedex (France); Bataille, F. [INSA/Centre de Thermique de Lyon (UMR CNRS 5008), Bat. Sadi Carnot 69621, Villeurbanne Cedex (France)], E-mail: Francoise.Daumas-Bataille@univ-perp.fr; Ducros, F. [CEA/Grenoble DEN/DER/SSTH/LMDL, 17 rue des Martyrs 38054, Grenoble Cedex 9 (France)

    2008-12-15

    We investigate Thermal Large Eddy Simulation in a complex case using Trio U. We develop a thermal turbulent inflow condition based on parallel flows in order to simulate a turbulent thermal boundary layer. This inflow condition is tested with a turbulent channel flow. We show that it produces fine profiles for velocity and temperature. Later, this inlet condition is used in the case of blowing through a porous plate. Two different blowing regimes are studied: the classical turbulent boundary layer and the blown off boundary layer. Comparisons show that we obtain similar experimental and numerical profiles (Brillant, G., Husson, S., Bataille, F., 2008. Experimental study of the blowing impact on a hot turbulent boundary layer. International Journal of Heat and Mass Transfer 51 (7-8), 1996-2005.). We finish with additional results obtained only through numerical simulations.

  18. Turbulence Models: Shock Boundary Layer Interaction at M=2.05

    Data.gov (United States)

    National Aeronautics and Space Administration — Exp: Shock Boundary Layer Interaction at M=2.05. This web page provides data from experiments that may be useful for the validation of turbulence models. This...

  19. Effect of riblets on the streaky structures excited by free stream tip vortices in boundary layer

    Energy Technology Data Exchange (ETDEWEB)

    Boiko, Andrey V. [Siberian Branch of the Russian Academy of Science, Novosibirsk (Russian Federation); Jung, Kwang Hyo; Chun, Ho Hwan; Lee, Inwon [Pusan National University, Busan (Korea, Republic of)

    2007-03-15

    In this study, experimental investigations were made regarding the effect of riblets on the streak instability in boundary layer. The streak instability is now regarded as a major source of the self-regeneration mechanism for the hairpin type coherent structures in turbulent boundary layer flow. Thus, it is important to control the instability to suppress the drag-inducing vortical structure in terms of drag reduction. Toward enhancing the measurement accuracy and spatial resolution, an enlarged version of riblets was applied to a streak which was artificially induced by a microwing in a laminar boundary layer. It is found that the riblets have attenuation effect on the streak instability, i.e., to reduce the spanwise velocity gradient of the quasi-streamwise streak in boundary layer.

  20. Effect of riblets on the streaky structures excited by free stream tip vortices in boundary layer

    Energy Technology Data Exchange (ETDEWEB)

    Boiko, Andrey V. [Siberian Branch of the Russian Academy of Science, Novosibirsk (Russian Federation); Jung, Kwang Hyo; Chun, Ho Hwan; Lee, In Won [Pusan National University, Busan (Korea, Republic of)

    2007-01-15

    In this study, experimental investigations were made regarding the effect of riblets on the streak instability in boundary layer. The streak instability is now regarded as a major source of the self-regeneration mechanism for the hairpin type coherent structures in turbulent boundary layer flow. Thus, it is important to control the instability to suppress the drag-inducing vortical structure in terms of drag reduction. Toward enhancing the measurement accuracy and spatial resolution, an enlarged version of riblets was applied to a streak which was artificially induced by a microwing in a laminar boundary layer. It is found that the riblets have attenuation effect on the streak instability, i.e., to reduce the spanwise velocity gradient of the quasi-streamwise streak in boundary layer

  1. A preliminary investigation of boundary-layer transition along a flat plate with adverse pressure gradient

    Science.gov (United States)

    Von Doenhoff, Albert E

    1938-01-01

    Boundary-layer surveys were made throughout the transition region along a smooth flat plate placed in an airstream of practically zero turbulence and with an adverse pressure gradient. The boundary-layer Reynolds number at the laminar separation point was varied from 1,800 to 2,600. The test data, when considered in the light of certain theoretical deductions, indicated that transition probably began with separation of the laminar boundary layer. The extent of the transition region, defined as the distance from a calculated laminar separation point to the position of the first fully developed turbulent boundary-layer profile, could be expressed as a constant Reynolds number run of approximately 70,000. Some speculations are presented concerning the application of the foregoing concepts, after certain assumptions have been made, to the problem of the connection between transition on the upper surface of an airfoil at high angles of attack and the maximum lift.

  2. Budget of Turbulent Kinetic Energy in a Shock Wave Boundary-Layer Interaction

    Science.gov (United States)

    Vyas, Manan A.; Waindim, Mbu; Gaitonde, Datta V.

    2016-01-01

    Implicit large-eddy simulation (ILES) of a shock wave/boundary-layer interaction (SBLI) was performed. Quantities present in the exact equation of the turbulent kinetic energy transport were accumulated and used to calculate terms like production, dissipation, molecular diffusion, and turbulent transport. The present results for a turbulent boundary layer were validated by comparison with direct numerical simulation data. It was found that a longer development domain was necessary for the boundary layer to reach an equilibrium state and a finer mesh resolution would improve the predictions. In spite of these findings, trends of the present budget match closely with that of the direct numerical simulation. Budgets for the SBLI region are presented at key axial stations. These budgets showed interesting dynamics as the incoming boundary layer transforms and the terms of the turbulent kinetic energy budget change behavior within the interaction region.

  3. Global Stability Analysis of a Roughness Wake in a Falkner–Skan–Cooke Boundary Layer

    National Research Council Canada - National Science Library

    Brynjell-Rahkola, Mattias; Schlatter, Philipp; Hanifi, Ardeshir; Henningson, Dan S

    2015-01-01

    ..., FOI, SE-164 90 Stockholm, SwedenAbstractA global stability analysis of a Falkner–Skan–Cooke boundary layer with distributed three-dimensional surface roughness is per-formed using hig...

  4. Clouds, Aerosols, and Precipitation in the Marine Boundary Layer: An Arm Mobile Facility Deployment

    National Research Council Canada - National Science Library

    Wood, Robert; Wyant, Matthew; Bretherton, Christopher S; Rémillard, Jasmine; Kollias, Pavlos; Fletcher, Jennifer; Stemmler, Jayson; de Szoeke, Simone; Yuter, Sandra; Miller, Matthew; Mechem, David; Tselioudis, George; Chiu, J. Christine; Mann, Julian A. L; O’Connor, Ewan J; Hogan, Robin J; Dong, Xiquan; Miller, Mark; Ghate, Virendra; Jefferson, Anne; Min, Qilong; Minnis, Patrick; Palikonda, Rabindra; Albrecht, Bruce; Luke, Ed; Hannay, Cecile; Lin, Yanluan

    2015-01-01

    .... The need for improved long-term but comprehensive measurements at a marine low-cloud site motivated the Clouds, Aerosol, and Precipitation in the Marine Boundary Layer (CAP-MBL; www.arm .gov/sites/amf/grw...

  5. Global instabilities and transient growth in Blasius boundary-layer ...

    Indian Academy of Sciences (India)

    Figure 4(a) and (b) respectively shows how the global eigenvalues depend upon structural damp- ing, with coefficient D, and stiffening the wall by increasing the value of the spring-foundation coefficient, K. The former shows that the inclusion of sufficient structural damping stabilises the TWF-branch. This might be expected ...

  6. The Azimuthally Averaged Boundary Layer Structure of a Numerically Simulated Major Hurricane

    Science.gov (United States)

    2015-08-14

    Williams et al., 2013; Williams, 2015; Slocum et al., 2014]. Other work argues that a quasi-linear generaliza- tion of Ekman theory suffices for obtaining...secondary eyewall formation and evolution [cf. Williams et al., 2013; Williams, 2015; Slocum et al., 2014]. 4.2. Boundary Layer Dynamics Figures 3–5...September, Mon. Weather Rev., 142, 3–28. Slocum , C. J., G. J. Williams, R. K. Taft, and W. H. Schubert (2014), Tropical cyclone boundary layer shocks

  7. Assessment of CFD Modeling Capability for Hypersonic Shock Wave Boundary Layer Interactions

    Science.gov (United States)

    2015-11-30

    RUTGERS UNIVERSITY Final Technical Report ONR Grant N00014-14-1-0827 Assessment of CFD Modeling Capability for Hypersonic Shock Wave Boundary...Layer Interactions 30 November 2015 Doyle Knight Dept Mechanical and Aerospace Engineering Rutgers, The State University of New Jersey 98 Brett...30 September 2015 4. TITLE AND SUBTITLE Assessment of CFD Modeling Capability for Hypersonic Shock Wave Boundary Layer Interactions 5a. CONTRACT

  8. Stability Analysis of High-Speed Boundary-Layer Flow with Gas Injection (Briefing Charts)

    Science.gov (United States)

    2014-06-01

    boundary-layer flow with gas injection 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) 5d. PROJECT NUMBER Alexander V. Fedorov ...Release; Distribution Unlimited Stability analysis of high-speed boundary-layer flow with gas injection Alexander Fedorov and Vitaly Soudakov Moscow...Dispersion relation from WKB analysis*,**: *Guschin, V.R., & Fedorov , A.V., Fluid Dynamics, Vol. 24, No.1, 1989 **Guschin, V.R., & Fedorov , A.V., NASA

  9. Study of stable atmospheric boundary layer characterization over highveld region of South Africa

    CSIR Research Space (South Africa)

    Luhunga, P

    2011-09-01

    Full Text Available ATMOSPHERIC BOUNDARY LAYER CHARACTERIZATION OVER HIGHVELD REGION OF SOUTH AFRICA Philbert Luhunga1, 2, 3, George Djolov1, Venkataraman Sivakumar1,4,5 1 University of Pretoria, Department of Geography Geoinformatics and Meterology, Lynnwood road, 0001.... INTRODUCTION The stable atmospheric boundary layer (SBL) study over the Highveld South Africa has a special relevance, since it has the majority of the electric power generating plants located in this region. SBL is characterized by a steady wind near...

  10. Numerical Experiments in Error Control for Sound Propagation Using a Damping Layer Boundary Treatment

    Science.gov (United States)

    Goodrich, John W.

    2017-01-01

    This paper presents results from numerical experiments for controlling the error caused by a damping layer boundary treatment when simulating the propagation of an acoustic signal from a continuous pressure source. The computations are with the 2D Linearized Euler Equations (LEE) for both a uniform mean flow and a steady parallel jet. The numerical experiments are with algorithms that are third, fifth, seventh and ninth order accurate in space and time. The numerical domain is enclosed in a damping layer boundary treatment. The damping is implemented in a time accurate manner, with simple polynomial damping profiles of second, fourth, sixth and eighth power. At the outer boundaries of the damping layer the propagating solution is uniformly set to zero. The complete boundary treatment is remarkably simple and intrinsically independant from the dimension of the spatial domain. The reported results show the relative effect on the error from the boundary treatment by varying the damping layer width, damping profile power, damping amplitude, propagtion time, grid resolution and algorithm order. The issue that is being addressed is not the accuracy of the numerical solution when compared to a mathematical solution, but the effect of the complete boundary treatment on the numerical solution, and to what degree the error in the numerical solution from the complete boundary treatment can be controlled. We report maximum relative absolute errors from just the boundary treatment that range from O[10-2] to O[10-7].

  11. Stable Atmospheric Boundary Layer Experiment in Spain (SABLES 98) : a report

    NARCIS (Netherlands)

    Cuxart, J.; Yague, C.; Morales, G.; Terradelles, E.; Orbe, J.; Calvo, J.; Vilu-Guerau, de J.; Soler, M.R.; Infante, C.; Buenestado, P.; Espinalt, A.; Jorgensem, H.E.

    2000-01-01

    This paper describes the Stable Atmospheric Boundary Layer Experiment in Spain (SABLES 98), which took place over the northern Spanish plateau comprising relatively flat grassland, in September 1998. The main objectives of the campaign were to study the properties of the mid-latitude stable boundary

  12. Long-Wave Instability of Advective Flows in Inclined Layer with Solid Heat Conductive Boundaries

    CERN Document Server

    Sagitov, R V

    2011-01-01

    We investigate the stability of the steady convective flow in a plane tilted layer with ideal thermal conductivity of solid boundaries in the presence of uniform longitudinal temperature gradient. Analytically found the stability boundary with respect to the long-wave perturbations, find the critical Grashof number for the most dangerous among them of even spiral perturbation.

  13. Numerical investigation of the boundary layer separation in chemical oxygen iodine laser

    Science.gov (United States)

    Huai, Ying; Jia, Shuqin; Wu, Kenan; Jin, Yuqi; Sang, Fengting

    2017-11-01

    Large eddy simulation is carried out to model the flow process in a supersonic chemical oxygen iodine laser. Unlike the common approaches relying on the tensor representation theory only, the model in the present work is an explicit anisotropy-resolving algebraic Subgrid-scale scalar flux formulation. With an accuracy in capturing the unsteady flow behaviours in the laser. Boundary layer separation initiated by the adverse pressure gradient is identified using Large Eddy Simulation. To quantify the influences of flow boundary layer on the laser performance, the fluid computations coupled with a physical optics loaded cavity model is developed. It has been found that boundary layer separation has a profound effect on the laser outputs due to the introduced shock waves. The F factor of the output beam decreases to 10% of the original one when the boundary transit into turbulence for the setup depicted in the paper. Because the pressure is always greater on the downstream of the boundary layer, there will always be a tendency of boundary separation in the laser. The results inspire designs of the laser to apply positive/passive control methods avoiding the boundary layer perturbation.

  14. Robust Controller for Turbulent and Convective Boundary Layers

    National Research Council Canada - National Science Library

    Speyer, Jason L; Kim, J. John

    2006-01-01

    Linear feedback controllers and estimators have been designed from the governing equations of a channel flow, linearized about the laminar mean flow, and a layer of heated fluid, linearized about the no-motion state...

  15. A boundary-layer cloud study using Southern Great Plains Cloud and radiation testbed (CART) data

    Energy Technology Data Exchange (ETDEWEB)

    Albrecht, B.; Mace, G.; Dong, X.; Syrett, W. [Pennsylvania State Univ., University Park, PA (United States)] [and others

    1996-04-01

    Boundary layer clouds-stratus and fairweather cumulus - are closely coupled involves the radiative impact of the clouds on the surface energy budget and the strong dependence of cloud formation and maintenance on the turbulent fluxes of heat and moisture in the boundary layer. The continuous data collection at the Southern Great Plains (SGP) Cloud and Radiation Testbed (CART) site provides a unique opportunity to study components of the coupling processes associated with boundary layer clouds and to provide descriptions of cloud and boundary layer structure that can be used to test parameterizations used in climate models. But before the CART data can be used for process studies and parameterization testing, it is necessary to evaluate and validate data and to develop techniques for effectively combining the data to provide meaningful descriptions of cloud and boundary layer characteristics. In this study we use measurements made during an intensive observing period we consider a case where low-level stratus were observed at the site for about 18 hours. This case is being used to examine the temporal evolution of cloud base, cloud top, cloud liquid water content, surface radiative fluxes, and boundary layer structure. A method for inferring cloud microphysics from these parameters is currently being evaluated.

  16. Early Warning Signals for Regime Transition in the Stable Boundary Layer: A Model Study

    Science.gov (United States)

    van Hooijdonk, I. G. S.; Moene, A. F.; Scheffer, M.; Clercx, H. J. H.; van de Wiel, B. J. H.

    2017-02-01

    The evening transition is investigated in an idealized model for the nocturnal boundary layer. From earlier studies it is known that the nocturnal boundary layer may manifest itself in two distinct regimes, depending on the ambient synoptic conditions: strong-wind or overcast conditions typically lead to weakly stable, turbulent nights; clear-sky and weak-wind conditions, on the other hand, lead to very stable, weakly turbulent conditions. Previously, the dynamical behaviour near the transition between these regimes was investigated in an idealized setting, relying on Monin-Obukhov (MO) similarity to describe turbulent transport. Here, we investigate a similar set-up, using direct numerical simulation; in contrast to MO-based models, this type of simulation does not need to rely on turbulence closure assumptions. We show that previous predictions are verified, but now independent of turbulence parametrizations. Also, it appears that a regime shift to the very stable state is signaled in advance by specific changes in the dynamics of the turbulent boundary layer. Here, we show how these changes may be used to infer a quantitative estimate of the transition point from the weakly stable boundary layer to the very stable boundary layer. In addition, it is shown that the idealized, nocturnal boundary-layer system shares important similarities with generic non-linear dynamical systems that exhibit critical transitions. Therefore, the presence of other, generic early warning signals is tested as well. Indeed, indications are found that such signals are present in stably stratified turbulent flows.

  17. Fuselage boundary-layer refraction of fan tones radiated from an installed turbofan aero-engine.

    Science.gov (United States)

    Gaffney, James; McAlpine, Alan; Kingan, Michael J

    2017-03-01

    A distributed source model to predict fan tone noise levels of an installed turbofan aero-engine is extended to include the refraction effects caused by the fuselage boundary layer. The model is a simple representation of an installed turbofan, where fan tones are represented in terms of spinning modes radiated from a semi-infinite circular duct, and the aircraft's fuselage is represented by an infinitely long, rigid cylinder. The distributed source is a disk, formed by integrating infinitesimal volume sources located on the intake duct termination. The cylinder is located adjacent to the disk. There is uniform axial flow, aligned with the axis of the cylinder, everywhere except close to the cylinder where there is a constant thickness boundary layer. The aim is to predict the near-field acoustic pressure, and in particular, to predict the pressure on the cylindrical fuselage which is relevant to assess cabin noise. Thus no far-field approximations are included in the modelling. The effect of the boundary layer is quantified by calculating the area-averaged mean square pressure over the cylinder's surface with and without the boundary layer included in the prediction model. The sound propagation through the boundary layer is calculated by solving the Pridmore-Brown equation. Results from the theoretical method show that the boundary layer has a significant effect on the predicted sound pressure levels on the cylindrical fuselage, owing to sound radiation of fan tones from an installed turbofan aero-engine.

  18. Response of a hypersonic boundary layer to freestream pulse acoustic disturbance.

    Science.gov (United States)

    Wang, Zhenqing; Tang, Xiaojun; Lv, Hongqing

    2014-01-01

    The response of hypersonic boundary layer over a blunt wedge to freestream pulse acoustic disturbance was investigated. The stability characteristics of boundary layer for freestream pulse wave and continuous wave were analyzed comparatively. Results show that freestream pulse disturbance changes the thermal conductivity characteristics of boundary layer. For pulse wave, the number of main disturbance clusters decreases and the frequency band narrows along streamwise. There are competition and disturbance energy transfer among different modes in boundary layer. The dominant mode of boundary layer has an inhibitory action on other modes. Under continuous wave, the disturbance modes are mainly distributed near fundamental and harmonic frequencies, while under pulse wave, the disturbance modes are widely distributed in different modes. For both pulse and continuous waves, most of disturbance modes slide into a lower-growth or decay state in downstream, which is tending towards stability. The amplitude of disturbance modes in boundary layer under continuous wave is considerably larger than pulse wave. The growth rate for the former is also considerably larger than the later the disturbance modes with higher growth are mainly distributed near fundamental and harmonic frequencies for the former, while the disturbance modes are widely distributed in different frequencies for the latter.

  19. Wind tunnel study of a vertical axis wind turbine in a turbulent boundary layer flow

    Science.gov (United States)

    Rolin, Vincent; Porté-Agel, Fernando

    2015-04-01

    Vertical axis wind turbines (VAWTs) are in a relatively infant state of development when compared to their cousins the horizontal axis wind turbines. Very few studies have been carried out to characterize the wake flow behind VAWTs, and virtually none to observe the influence of the atmospheric boundary layer. Here we present results from an experiment carried out at the EPFL-WIRE boundary-layer wind tunnel and designed to study the interaction between a turbulent boundary layer flow and a VAWT. Specifically we use stereoscopic particle image velocimetry to observe and quantify the influence of the boundary layer flow on the wake generated by a VAWT, as well as the effect the VAWT has on the boundary layer flow profile downstream. We find that the wake behind the VAWT is strongly asymmetric, due to the varying aerodynamic forces on the blades as they change their position around the rotor. We also find that the wake adds strong turbulence levels to the flow, particularly on the periphery of the wake where vortices and strong velocity gradients are present. The boundary layer is also shown to cause greater momentum to be entrained downwards rather than upwards into the wake.

  20. Validation of Martilli's urban boundary layer scheme with measurements from two mid-latitude European cities

    Directory of Open Access Journals (Sweden)

    R. Hamdi

    2007-08-01

    Full Text Available Martilli's urban parameterization scheme is improved and implemented in a mesoscale model in order to take into account the typical effects of a real city on the air temperature near the ground and on the surface exchange fluxes. The mesoscale model is run on a single column using atmospheric data and radiation recorded above roof level as forcing. Here, the authors validate Martilli's urban boundary layer scheme using measurements from two mid-latitude European cities: Basel, Switzerland and Marseilles, France. For Basel, the model performance is evaluated with observations of canyon temperature, surface radiation, and energy balance fluxes obtained during the Basel urban boundary layer experiment (BUBBLE. The results show that the urban parameterization scheme represents correctly most of the behavior of the fluxes typical of the city center of Basel, including the large heat uptake by the urban fabric and the positive sensible heat flux at night. For Marseilles, the model performance is evaluated with observations of surface temperature, canyon temperature, surface radiation, and energy balance fluxes collected during the field experiments to constrain models of atmospheric pollution and transport of emissions (ESCOMPTE and its urban boundary layer (UBL campaign. At both urban sites, vegetation cover is less than 20%, therefore, particular attention was directed to the ability of Martilli's urban boundary layer scheme to reproduce the observations for the Marseilles city center, where the urban parameters and the synoptic forcing are totally different from Basel. Evaluation of the model with wall, road, and roof surface temperatures gave good results. The model correctly simulates the net radiation, canyon temperature, and the partitioning between the turbulent and storage heat fluxes.