DEFF Research Database (Denmark)
2013-01-01
Based on studies of, among others, the Situationists and their theories regarding walks as an artistic method and expression nine master students from “Studio Constructing an Archive”, Aarhus School of Architecture, Denmark performed nine walks as part of the exhibition. These walks relate...... to the students’ individual mappings of Behind the Green Door, its structure and content. They highlight a number of motifs found in the exhibition which are of particular interest to the students. The walks represented reflections on the walk as an artistic method and expression. Each walk is an individual...
Hilário, M.; Hollander, den W.Th.F.; Sidoravicius, V.; Soares dos Santos, R.; Teixeira, A.
2014-01-01
In this paper we study a random walk in a one-dimensional dynamic random environment consisting of a collection of independent particles performing simple symmetric random walks in a Poisson equilibrium with density ¿¿(0,8). At each step the random walk performs a nearest-neighbour jump, moving to
Allegheny County / City of Pittsburgh / Western PA Regional Data Center — Walk Score measures the walkability of any address using a patented system developed by the Walk Score company. For each 2010 Census Tract centroid, Walk Score...
... prone to damage and weaken over time. This diagnosis might be more likely if your child initially walked normally before starting to toe walk. Autism. Toe walking has been linked to autism spectrum ...
Complementarity and quantum walks
International Nuclear Information System (INIS)
Kendon, Viv; Sanders, Barry C.
2005-01-01
We show that quantum walks interpolate between a coherent 'wave walk' and a random walk depending on how strongly the walker's coin state is measured; i.e., the quantum walk exhibits the quintessentially quantum property of complementarity, which is manifested as a tradeoff between knowledge of which path the walker takes vs the sharpness of the interference pattern. A physical implementation of a quantum walk (the quantum quincunx) should thus have an identifiable walker and the capacity to demonstrate the interpolation between wave walk and random walk depending on the strength of measurement
Willey, David
2010-01-01
This article gives a brief history of fire-walking and then deals with the physics behind fire-walking. The author has performed approximately 50 fire-walks, took the data for the world's hottest fire-walk and was, at one time, a world record holder for the longest fire-walk (www.dwilley.com/HDATLTW/Record_Making_Firewalks.html). He currently…
Randomized random walk on a random walk
International Nuclear Information System (INIS)
Lee, P.A.
1983-06-01
This paper discusses generalizations of the model introduced by Kehr and Kunter of the random walk of a particle on a one-dimensional chain which in turn has been constructed by a random walk procedure. The superimposed random walk is randomised in time according to the occurrences of a stochastic point process. The probability of finding the particle in a particular position at a certain instant is obtained explicitly in the transform domain. It is found that the asymptotic behaviour for large time of the mean-square displacement of the particle depends critically on the assumed structure of the basic random walk, giving a diffusion-like term for an asymmetric walk or a square root law if the walk is symmetric. Many results are obtained in closed form for the Poisson process case, and these agree with those given previously by Kehr and Kunter. (author)
Relation between random walks and quantum walks
Boettcher, Stefan; Falkner, Stefan; Portugal, Renato
2015-05-01
Based on studies of four specific networks, we conjecture a general relation between the walk dimensions dw of discrete-time random walks and quantum walks with the (self-inverse) Grover coin. In each case, we find that dw of the quantum walk takes on exactly half the value found for the classical random walk on the same geometry. Since walks on homogeneous lattices satisfy this relation trivially, our results for heterogeneous networks suggest that such a relation holds irrespective of whether translational invariance is maintained or not. To develop our results, we extend the renormalization-group analysis (RG) of the stochastic master equation to one with a unitary propagator. As in the classical case, the solution ρ (x ,t ) in space and time of this quantum-walk equation exhibits a scaling collapse for a variable xdw/t in the weak limit, which defines dw and illuminates fundamental aspects of the walk dynamics, e.g., its mean-square displacement. We confirm the collapse for ρ (x ,t ) in each case with extensive numerical simulation. The exact values for dw themselves demonstrate that RG is a powerful complementary approach to study the asymptotics of quantum walks that weak-limit theorems have not been able to access, such as for systems lacking translational symmetries beyond simple trees.
Centers for Disease Control (CDC) Podcasts
This podcast is based on the August 2012 CDC Vital Signs report. While more adults are walking, only half get the recommended amount of physical activity. Listen to learn how communities, employers, and individuals may help increase walking.
International Nuclear Information System (INIS)
Kendon, Viv
2014-01-01
Quantum versions of random walks have diverse applications that are motivating experimental implementations as well as theoretical studies. Recent results showing quantum walks are “universal for quantum computation” relate to algorithms, to be run on quantum computers. We consider whether an experimental implementation of a quantum walk could provide useful computation before we have a universal quantum computer
DEFF Research Database (Denmark)
Woythal, Bente Martinsen; Haahr, Anita; Dreyer, Pia
2018-01-01
a leg, and people who live with Parkinson’s disease. The analysis of the data is inspired by Paul Ricoeur’s philosophy of interpretation. Four themes were identified: (a) I feel high in two ways; (b) Walking has to be automatic; (c) Every Monday, I walk with the girls in the park; and (d) I dream...
Bell, Kathleen
2016-01-01
a poem in which James Watt, inventor of the separate condenser, walks through contemporary Leicester (his route is from Bonners Lane and alongside the canal, taking in the Statue of Liberty on its traffic island near Sage Road). It is derived from the exercise of taking a character for a walk,
Centers for Disease Control (CDC) Podcasts
2012-07-31
This podcast is based on the August 2012 CDC Vital Signs report. While more adults are walking, only half get the recommended amount of physical activity. Listen to learn how communities, employers, and individuals may help increase walking. Created: 7/31/2012 by Centers for Disease Control and Prevention (CDC). Date Released: 8/7/2012.
Zaburdaev, V.; Denisov, S.; Klafter, J.
2015-04-01
Random walk is a fundamental concept with applications ranging from quantum physics to econometrics. Remarkably, one specific model of random walks appears to be ubiquitous across many fields as a tool to analyze transport phenomena in which the dispersal process is faster than dictated by Brownian diffusion. The Lévy-walk model combines two key features, the ability to generate anomalously fast diffusion and a finite velocity of a random walker. Recent results in optics, Hamiltonian chaos, cold atom dynamics, biophysics, and behavioral science demonstrate that this particular type of random walk provides significant insight into complex transport phenomena. This review gives a self-consistent introduction to Lévy walks, surveys their existing applications, including latest advances, and outlines further perspectives.
Neuromorphic walking gait control.
Still, Susanne; Hepp, Klaus; Douglas, Rodney J
2006-03-01
We present a neuromorphic pattern generator for controlling the walking gaits of four-legged robots which is inspired by central pattern generators found in the nervous system and which is implemented as a very large scale integrated (VLSI) chip. The chip contains oscillator circuits that mimic the output of motor neurons in a strongly simplified way. We show that four coupled oscillators can produce rhythmic patterns with phase relationships that are appropriate to generate all four-legged animal walking gaits. These phase relationships together with frequency and duty cycle of the oscillators determine the walking behavior of a robot driven by the chip, and they depend on a small set of stationary bias voltages. We give analytic expressions for these dependencies. This chip reduces the complex, dynamic inter-leg control problem associated with walking gait generation to the problem of setting a few stationary parameters. It provides a compact and low power solution for walking gait control in robots.
Biomechanical analysis of rollator walking
DEFF Research Database (Denmark)
Alkjaer, T; Larsen, Peter K; Pedersen, Gitte
2006-01-01
The rollator is a very popular walking aid. However, knowledge about how a rollator affects the walking patterns is limited. Thus, the purpose of the study was to investigate the biomechanical effects of walking with and without a rollator on the walking pattern in healthy subjects.......The rollator is a very popular walking aid. However, knowledge about how a rollator affects the walking patterns is limited. Thus, the purpose of the study was to investigate the biomechanical effects of walking with and without a rollator on the walking pattern in healthy subjects....
Odagaki, Takashi; Kasuya, Keisuke
2017-09-01
Using the Monte Carlo simulation, we investigate a memory-impaired self-avoiding walk on a square lattice in which a random walker marks each of sites visited with a given probability p and makes a random walk avoiding the marked sites. Namely, p = 0 and p = 1 correspond to the simple random walk and the self-avoiding walk, respectively. When p> 0, there is a finite probability that the walker is trapped. We show that the trap time distribution can well be fitted by Stacy's Weibull distribution b(a/b){a+1}/{b}[Γ({a+1}/{b})]-1x^a\\exp(-a/bx^b)} where a and b are fitting parameters depending on p. We also find that the mean trap time diverges at p = 0 as p- α with α = 1.89. In order to produce sufficient number of long walks, we exploit the pivot algorithm and obtain the mean square displacement and its Flory exponent ν(p) as functions of p. We find that the exponent determined for 1000 step walks interpolates both limits ν(0) for the simple random walk and ν(1) for the self-avoiding walk as [ ν(p) - ν(0) ] / [ ν(1) - ν(0) ] = pβ with β = 0.388 when p ≪ 0.1 and β = 0.0822 when p ≫ 0.1. Contribution to the Topical Issue "Continuous Time Random Walk Still Trendy: Fifty-year History, Current State and Outlook", edited by Ryszard Kutner and Jaume Masoliver.
Morris, J N; Hardman, A E
1997-05-01
Walking is a rhythmic, dynamic, aerobic activity of large skeletal muscles that confers the multifarious benefits of this with minimal adverse effects. Walking, faster than customary, and regularly in sufficient quantity into the 'training zone' of over 70% of maximal heart rate, develops and sustains physical fitness: the cardiovascular capacity and endurance (stamina) for bodily work and movement in everyday life that also provides reserves for meeting exceptional demands. Muscles of the legs, limb girdle and lower trunk are strengthened and the flexibility of their cardinal joints preserved; posture and carriage may improve. Any amount of walking, and at any pace, expends energy. Hence the potential, long term, of walking for weight control. Dynamic aerobic exercise, as in walking, enhances a multitude of bodily processes that are inherent in skeletal muscle activity, including the metabolism of high density lipoproteins and insulin/glucose dynamics. Walking is also the most common weight-bearing activity, and there are indications at all ages of an increase in related bone strength. The pleasurable and therapeutic, psychological and social dimensions of walking, whilst evident, have been surprisingly little studied. Nor has an economic assessment of the benefits and costs of walking been attempted. Walking is beneficial through engendering improved fitness and/or greater physiological activity and energy turnover. Two main modes of such action are distinguished as: (i) acute, short term effects of the exercise; and (ii) chronic, cumulative adaptations depending on habitual activity over weeks and months. Walking is often included in studies of exercise in relation to disease but it has seldom been specifically tested. There is, nevertheless, growing evidence of gains in the prevention of heart attack and reduction of total death rates, in the treatment of hypertension, intermittent claudication and musculoskeletal disorders, and in rehabilitation after heart
DEFF Research Database (Denmark)
Vestergaard, Maria Quvang Harck; Olesen, Mette; Helmer, Pernille Falborg
2014-01-01
’ of mobility (Jensen 2013:111) such as the urban environment, and the infrastructures. Walking has indeed also a ‘software dimension’ as an embodied performance that trigger the human senses (Jensen 2013) and which is closely related to the habitus and identity of the individual (Halprin 1963). The individual......The ability to walk in an area is, in the existing literature, often explained by the physical structures like building density and the presence of facilities in an area, and it is often termed ‘walkability’ (Patton 2007; Forsyth and Southworth 2008; Krizek, Handy and Forsyth 2009; Johnson 2003......; Frumkin 2002). The term ‘walkability’ focuses on how the physical structures in the urban environment can promote walking, and how this potentially eases issues of public health and liveability in our cities (Krizek et al. 2009). However, the study of walking should not be reduced merely to the ‘hardware...
DEFF Research Database (Denmark)
Foadi, Roshan; Frandsen, Mads Toudal; A. Ryttov, T.
2007-01-01
Different theoretical and phenomenological aspects of the Minimal and Nonminimal Walking Technicolor theories have recently been studied. The goal here is to make the models ready for collider phenomenology. We do this by constructing the low energy effective theory containing scalars......, pseudoscalars, vector mesons and other fields predicted by the minimal walking theory. We construct their self-interactions and interactions with standard model fields. Using the Weinberg sum rules, opportunely modified to take into account the walking behavior of the underlying gauge theory, we find...... interesting relations for the spin-one spectrum. We derive the electroweak parameters using the newly constructed effective theory and compare the results with the underlying gauge theory. Our analysis is sufficiently general such that the resulting model can be used to represent a generic walking technicolor...
Walking - Sensing - Participation
DEFF Research Database (Denmark)
Bødker, Mads; Meinhardt, Nina Dam; Browning, David
2014-01-01
Building on ethnographic research and social theory in the field of ‘mobilities’, this workshop paper suggests that field work based on simply walking with people entails a form of embodied participation that informs technological interventions by creating a space within which to address a wider ...... set of experiential or ‘felt’ qualities of living with mobile technologies. Moving from reflections on the value of walking with people, the paper outlines some affordances of a smartphone application built to capture place experiences through walking.......Building on ethnographic research and social theory in the field of ‘mobilities’, this workshop paper suggests that field work based on simply walking with people entails a form of embodied participation that informs technological interventions by creating a space within which to address a wider...
... different from regular pneumonia? Answers from Eric J. Olson, M.D. Walking pneumonia is an informal term ... be treated with an antibiotic. With Eric J. Olson, M.D. Goldman L, et al., eds. Mycoplasma ...
Directory of Open Access Journals (Sweden)
Philippe Leroux
2005-01-01
walk over ℤ can be described from a coassociative coalgebra. Relationships between this coalgebra and the set of periodic orbits of the classical chaotic system x↦2x mod1, x∈[0,1], are also given.
Kraus, V.
2015-01-01
The aim of this work is to construct a two-legged wirelessly controlled walking robot. This paper describes the construction of the robot, its control electronics, and the solution of the wireless control. The article also includes a description of the application to control the robot. The control electronics of the walking robot are built using the development kit Arduino Mega, which is enhanced with WiFi module allowing the wireless control, a set of ultrasonic sensors for detecting obstacl...
Directory of Open Access Journals (Sweden)
Matthew Bissen
2014-11-01
Full Text Available Since 2010, @matthewalking (Bissen, 2013 has published real-time public texts of walks in the city. This text-based Twitter feed has developed a narrative of a particular everyday life and developed a space of interface with others that represents a centering of perspective within an urban landscape. Walking the city provides a spatial, tactile, social, and embodied knowledge of the environment as each of us emerges into a space, orients ourselves, and determines a path that is highly localized, but is in connection with distant spaces and cultures. According to Ben Jacks in “Walking the City: Manhattan Projects,” “for urban dwellers and designers, walking is a fundamental tool for laying claim to, understanding, and shaping a livable city. Walking yields bodily knowing, recovers place memory, creates narrative, prioritizes human scale, and reconnects people to places” (75. @matthewalking’s walks, at times for as long as 5 hours, attempt to center an experience of an urban existence in a spatial narrative of the city that at once prioritizes a connection to place, but also is projected outward into a mediated relationship with others. The project is a series of unbounded walks, or dérives (drift, through the city that are logged on Twitter and traced to create an archive map of a set of particular urban experiences. The dérive concept as outlined in “The Theory of the Dérive,” by Guy Debord is when “one or more persons during a certain period drop their relations, their work and leisure activities, and all their other usual motives for movement and action, and let themselves be drawn by the attractions of the terrain and the encounters they find there” (62.
Caceres, Alan Joseph J; Castillo, Juan; Lee, Jinnie; St John, Katherine
2013-01-01
A nearest-neighbor-interchange (NNI)-walk is a sequence of unrooted phylogenetic trees, T1, T2, . . . , T(k) where each consecutive pair of trees differs by a single NNI move. We give tight bounds on the length of the shortest NNI-walks that visit all trees in a subtree-prune-and-regraft (SPR) neighborhood of a given tree. For any unrooted, binary tree, T, on n leaves, the shortest walk takes Θ(n²) additional steps more than the number of trees in the SPR neighborhood. This answers Bryant’s Second Combinatorial Challenge from the Phylogenetics Challenges List, the Isaac Newton Institute, 2011, and the Penny Ante Problem List, 2009.
Fitness Club
2011-01-01
Nordic Walking at CERN Enrollments are open for Nordic Walking courses and outings at CERN. Classes will be on Tuesdays as of 20 September, and outings for the more experienced will be on Thursdays as of 15 September. We meet at the CERN Club barracks car park (near entrance A). • 18:00 to 19:00 on 20 & 27 September, as well as 4 & 11 October. Check out our schedule and rates and enroll at: http://cern.ch/club-fitness Hope to see you among us! CERN Fitness Club fitness.club@cern.ch
Physiological aspect walking and Nordic walking as adequate kinetic activities.
BENEŠ, Václav
2010-01-01
This bachelor thesis on the topic of The Physiological Aspect of Walking and Nordic Walking as an adequate physical activity focuses on chosen physiological changes of an organism during a five-month training cycle. In the theoretical part I describe the physiological changes of organism during a regularly repeated strain, and also the technique of walking, Nordic walking and health benefits of these activities are defined here. The research part of the thesis describes the measurement method...
2011-12-01
Using a real-life setting, WalkBostons project focused on developing and testing techniques to broaden the scope and range of public participation in transportation planning in a large neighborhood in Boston. The team explored methods of seeking o...
DEFF Research Database (Denmark)
Rasmussen, Mattias Borg
2014-01-01
Steep slopes, white peaks and deep valleys make up the Andes. As phenomenologists of landscape have told us, different people have different landscapes. By moving across the terrain, walking along, we might get a sense of how this has been carved out by the movement of wind and water, tectonics...
Walking and Sensing Mobile Lives
DEFF Research Database (Denmark)
Bødker, Mads; Meinhardt, Nina Dam
In this position paper, we discuss how mindful walking with people allow us to explore sensory aspects of mobile lives that are typically absent from research. We present an app that aids researchers collect impressions from a walk.......In this position paper, we discuss how mindful walking with people allow us to explore sensory aspects of mobile lives that are typically absent from research. We present an app that aids researchers collect impressions from a walk....
Kineziologická charakteristika Nordic Walking
Pospíšilová, Petra
2009-01-01
Title: Functional a physiological characteristics of Nordic Walking Purposes: The aim of the thesis is to describe and summarize current knowledge about Nordic Walking Methods: Literature analysis Key words: Nordic Walking, free bipedal walk, health benefits, functional indicator changes
[Walking abnormalities in children].
Segawa, Masaya
2010-11-01
Walking is a spontaneous movement termed locomotion that is promoted by activation of antigravity muscles by serotonergic (5HT) neurons. Development of antigravity activity follows 3 developmental epochs of the sleep-wake (S-W) cycle and is modulated by particular 5HT neurons in each epoch. Activation of antigravity activities occurs in the first epoch (around the age of 3 to 4 months) as restriction of atonia in rapid eye movement (REM) stage and development of circadian S-W cycle. These activities strengthen in the second epoch, with modulation of day-time sleep and induction of crawling around the age of 8 months and induction of walking by 1 year. Around the age of 1 year 6 months, absence of guarded walking and interlimb cordination is observed along with modulation of day-time sleep to once in the afternoon. Bipedal walking in upright position occurs in the third epoch, with development of a biphasic S-W cycle by the age of 4-5 years. Patients with infantile autism (IA), Rett syndrome (RTT), or Tourette syndrome (TS) show failure in the development of the first, second, or third epoch, respectively. Patients with IA fail to develop interlimb coordination; those with RTT, crawling and walking; and those with TS, walking in upright posture. Basic pathophysiology underlying these condition is failure in restricting atonia in REM stage; this induces dysfunction of the pedunculopontine nucleus and consequently dys- or hypofunction of the dopamine (DA) neurons. DA hypofunction in the developing brain, associated with compensatory upward regulation of the DA receptors causes psychobehavioral disorders in infancy (IA), failure in synaptogenesis in the frontal cortex and functional development of the motor and associate cortexes in late infancy through the basal ganglia (RTT), and failure in functional development of the prefrontal cortex through the basal ganglia (TS). Further, locomotion failure in early childhood causes failure in development of functional
Fitness Club
2015-01-01
Four classes of one hour each are held on Tuesdays. RDV barracks parking at Entrance A, 10 minutes before class time. Spring Course 2015: 05.05/12.05/19.05/26.05 Prices 40 CHF per session + 10 CHF club membership 5 CHF/hour pole rental Check out our schedule and enroll at: https://espace.cern.ch/club-fitness/Lists/Nordic%20Walking/NewForm.aspx? Hope to see you among us! fitness.club@cern.ch
DEFF Research Database (Denmark)
Eslambolchilar, Parisa; Bødker, Mads; Chamberlain, Alan
2016-01-01
It seems logical to argue that mobile computing technologies are intended for use "on-the-go." However, on closer inspection, the use of mobile technologies pose a number of challenges for users who are mobile, particularly moving around on foot. In engaging with such mobile technologies and thei......It seems logical to argue that mobile computing technologies are intended for use "on-the-go." However, on closer inspection, the use of mobile technologies pose a number of challenges for users who are mobile, particularly moving around on foot. In engaging with such mobile technologies...... and their envisaged development, we argue that interaction designers must increasingly consider a multitude of perspectives that relate to walking in order to frame design problems appropriately. In this paper, we consider a number of perspectives on walking, and we discuss how these may inspire the design of mobile...... technologies. Drawing on insights from non-representational theory, we develop a partial vocabulary with which to engage with qualities of pedestrian mobility, and we outline how taking more mindful approaches to walking may enrich and inform the design space of handheld technologies....
Larimer, Stanley J.; Lisec, Thomas R.; Spiessbach, Andrew J.
1990-01-01
Proposed walking-beam robot simpler and more rugged than articulated-leg walkers. Requires less data processing, and uses power more efficiently. Includes pair of tripods, one nested in other. Inner tripod holds power supplies, communication equipment, computers, instrumentation, sampling arms, and articulated sensor turrets. Outer tripod holds mast on which antennas for communication with remote control site and video cameras for viewing local and distant terrain mounted. Propels itself by raising, translating, and lowering tripods in alternation. Steers itself by rotating raised tripod on turntable.
Lawler, Gregory F.; Ferreras, José A. Trujillo
2004-01-01
The Brownian loop soup introduced in Lawler and Werner (2004) is a Poissonian realization from a sigma-finite measure on unrooted loops. This measure satisfies both conformal invariance and a restriction property. In this paper, we define a random walk loop soup and show that it converges to the Brownian loop soup. In fact, we give a strong approximation result making use of the strong approximation result of Koml\\'os, Major, and Tusn\\'ady. To make the paper self-contained, we include a proof...
Adam, John A
2009-01-01
How heavy is that cloud? Why can you see farther in rain than in fog? Why are the droplets on that spider web spaced apart so evenly? If you have ever asked questions like these while outdoors, and wondered how you might figure out the answers, this is a book for you. An entertaining and informative collection of fascinating puzzles from the natural world around us, A Mathematical Nature Walk will delight anyone who loves nature or math or both. John Adam presents ninety-six questions about many common natural phenomena--and a few uncommon ones--and then shows how to answer them using mostly b
Physical implementation of quantum walks
Manouchehri, Kia
2013-01-01
Given the extensive application of random walks in virtually every science related discipline, we may be at the threshold of yet another problem solving paradigm with the advent of quantum walks. Over the past decade, quantum walks have been explored for their non-intuitive dynamics, which may hold the key to radically new quantum algorithms. This growing interest has been paralleled by a flurry of research into how one can implement quantum walks in laboratories. This book presents numerous proposals as well as actual experiments for such a physical realization, underpinned by a wide range of
Quantum walks with entangled coins
International Nuclear Information System (INIS)
Venegas-Andraca, S E; Ball, J L; Burnett, K; Bose, S
2005-01-01
We present a mathematical formalism for the description of un- restricted quantum walks with entangled coins and one walker. The numerical behaviour of such walks is examined when using a Bell state as the initial coin state, with two different coin operators, two different shift operators, and one walker. We compare and contrast the performance of these quantum walks with that of a classical random walk consisting of one walker and two maximally correlated coins as well as quantum walks with coins sharing different degrees of entanglement. We illustrate that the behaviour of our walk with entangled coins can be very different in comparison to the usual quantum walk with a single coin. We also demonstrate that simply by changing the shift operator, we can generate widely different distributions. We also compare the behaviour of quantum walks with maximally entangled coins with that of quantum walks with non-entangled coins. Finally, we show that the use of different shift operators on two and three qubit coins leads to different position probability distributions in one- and two-dimensional graphs
Mak, Chi H.; Pham, Phuong; Afif, Samir A.; Goodman, Myron F.
2015-09-01
Enzymes that rely on random walk to search for substrate targets in a heterogeneously dispersed medium can leave behind complex spatial profiles of their catalyzed conversions. The catalytic signatures of these random-walk enzymes are the result of two coupled stochastic processes: scanning and catalysis. Here we develop analytical models to understand the conversion profiles produced by these enzymes, comparing an intrusive model, in which scanning and catalysis are tightly coupled, against a loosely coupled passive model. Diagrammatic theory and path-integral solutions of these models revealed clearly distinct predictions. Comparison to experimental data from catalyzed deaminations deposited on single-stranded DNA by the enzyme activation-induced deoxycytidine deaminase (AID) demonstrates that catalysis and diffusion are strongly intertwined, where the chemical conversions give rise to new stochastic trajectories that were absent if the substrate DNA was homogeneous. The C →U deamination profiles in both analytical predictions and experiments exhibit a strong contextual dependence, where the conversion rate of each target site is strongly contingent on the identities of other surrounding targets, with the intrusive model showing an excellent fit to the data. These methods can be applied to deduce sequence-dependent catalytic signatures of other DNA modification enzymes, with potential applications to cancer, gene regulation, and epigenetics.
International Nuclear Information System (INIS)
Caceres, Manuel O; Nizama, Marco
2010-01-01
We introduce the quantum Levy walk to study transport and decoherence in a quantum random model. We have derived from second-order perturbation theory the quantum master equation for a Levy-like particle that moves along a lattice through scale-free hopping while interacting with a thermal bath of oscillators. The general evolution of the quantum Levy particle has been solved for different preparations of the system. We examine the evolution of the quantum purity, the localized correlation and the probability to be in a lattice site, all of them leading to important conclusions concerning quantum irreversibility and decoherence features. We prove that the quantum thermal mean-square displacement is finite under a constraint that is different when compared to the classical Weierstrass random walk. We prove that when the mean-square displacement is infinite the density of state has a complex null-set inside the Brillouin zone. We show the existence of a critical behavior in the continuous eigenenergy which is related to its non-differentiability and self-affine characteristics. In general, our approach allows us to study analytically quantum fluctuations and decoherence in a long-range hopping model.
Lacquaniti, F; Ivanenko, Y P; Zago, M
2002-10-01
The planar law of inter-segmental co-ordination we described may emerge from the coupling of neural oscillators between each other and with limb mechanical oscillators. Muscle contraction intervenes at variable times to re-excite the intrinsic oscillations of the system when energy is lost. The hypothesis that a law of coordinative control results from a minimal active tuning of the passive inertial and viscoelastic coupling among limb segments is congruent with the idea that movement has evolved according to minimum energy criteria (1, 8). It is known that multi-segment motion of mammals locomotion is controlled by a network of coupled oscillators (CPGs, see 18, 33, 37). Flexible combination of unit oscillators gives rise to different forms of locomotion. Inter-oscillator coupling can be modified by changing the synaptic strength (or polarity) of the relative spinal connections. As a result, unit oscillators can be coupled in phase, out of phase, or with a variable phase, giving rise to different behaviors, such as speed increments or reversal of gait direction (from forward to backward). Supra-spinal centers may drive or modulate functional sets of coordinating interneurons to generate different walking modes (or gaits). Although it is often assumed that CPGs control patterns of muscle activity, an equally plausible hypothesis is that they control patterns of limb segment motion instead (22). According to this kinematic view, each unit oscillator would directly control a limb segment, alternately generating forward and backward oscillations of the segment. Inter-segmental coordination would be achieved by coupling unit oscillators with a variable phase. Inter-segmental kinematic phase plays the role of global control variable previously postulated for the network of central oscillators. In fact, inter-segmental phase shifts systematically with increasing speed both in man (4) and cat (38). Because this phase-shift is correlated with the net mechanical power
... you can continue your walking program. Don’t let a cane or walker stop you It’s OK to use your cane or walker if you already have one. These can improve your balance and help take the load off painful joints. Aim for the right pace Try to walk as fast as you ...
Quantum walks and search algorithms
Portugal, Renato
2013-01-01
This book addresses an interesting area of quantum computation called quantum walks, which play an important role in building quantum algorithms, in particular search algorithms. Quantum walks are the quantum analogue of classical random walks. It is known that quantum computers have great power for searching unsorted databases. This power extends to many kinds of searches, particularly to the problem of finding a specific location in a spatial layout, which can be modeled by a graph. The goal is to find a specific node knowing that the particle uses the edges to jump from one node to the next. This book is self-contained with main topics that include: Grover's algorithm, describing its geometrical interpretation and evolution by means of the spectral decomposition of the evolution operater Analytical solutions of quantum walks on important graphs like line, cycles, two-dimensional lattices, and hypercubes using Fourier transforms Quantum walks on generic graphs, describing methods to calculate the limiting d...
Directory of Open Access Journals (Sweden)
Elena Grigoryeva
2011-08-01
Full Text Available It is noteworthy that this country develops through two types of events: either through a jubilee or through a catastrophe.It seems that Irkutsk Airport will be built only after the next crash. At least the interest to this problem returns regularly after sad events, and this occurs almost half a century (a jubilee, too! – the Council of Ministers decided to relocate the Airport away from the city as long ago as 1962. The Airport does not relate to the topic of this issue, but an attentive reader understands that it is our Carthage, and that the Airport should be relocated. The Romans coped with it faster and more effectively.Back to Irkutsk’s jubilee, we should say that we will do without blare of trumpets. We will just make an unpretentious walk around the city in its summer 350. Each our route covers new (some of them have been completed by the jubilee and old buildings, some of them real monuments. All these buildings are integrated into public spaces of different quality and age.We will also touch on the problems, for old houses, especially the wooden ones often provoke a greedy developer to demolish or to burn them down. Thus a primitive thrift estimates an output of additional square meters. Not to mention how attractive it is to seize public spaces without demolition or without reallocation of the dwellers. Or, rather, the one who is to preserve, to cherish and to improve such houses for the good of the citizens never speaks about this sensitive issue. So we have to do it.Walking is a no-hurry genre, unlike the preparation for the celebration. Walking around the city you like is a pleasant and cognitive process. It will acquaint the architects with the works of their predecessors and colleagues. We hope that such a walk may be interesting for Irkutsk citizens and visitors, too. Isn’t it interesting to learn “at first hand” the intimate details of the restoration of the Trubetskoys’ estate
2005-01-01
The man who compared himself to a proton ! On 20 May, Gianni Motti went down into the LHC tunnel and walked around the 27 kilometres of the underground ring at an average, unaccelerated pace of 5 kph. This was an artistic rather than an athletic performance, aimed at drawing a parallel between the fantastic speed of the beams produced by the future accelerator and the leisurely stroll of a human. The artist, who hails from Lombardy, was accompanied by cameraman Ivo Zanetti, who filmed the event from start to finish, and physicist Jean-Pierre Merlo. The first part of the film can be seen at the Villa Bernasconi, 8 route du Grand-Lancy, Grand Lancy, until 26 June.
2005-01-01
The man who compared himself to a proton ! On 20 May, Gianni Motti went down into the LHC tunnel and walked around the 27 kilometres of the underground ring at an average, unaccelerated pace of 5 kph. This was an artistic rather than an athletic performance, aimed at drawing a parallel between the fantastic speed of the beams produced by the future accelerator and the leisurely stroll of a human. The artist, who hails from Lombardy, was accompanied by cameraman Ivo Zanetti, who filmed the event from start to finish, and physicist Jean-Pierre Merlo. The first part of the film can be seen at the Villa Bernasconi, 8 route du Grand-Lancy, Grand Lancy, until 26 June.
Human treadmill walking needs attention
Directory of Open Access Journals (Sweden)
Daniel Olivier
2006-08-01
Full Text Available Abstract Background The aim of the study was to assess the attentional requirements of steady state treadmill walking in human subjects using a dual task paradigm. The extent of decrement of a secondary (cognitive RT task provides a measure of the attentional resources required to maintain performance of the primary (locomotor task. Varying the level of difficulty of the reaction time (RT task is used to verify the priority of allocation of attentional resources. Methods 11 healthy adult subjects were required to walk while simultaneously performing a RT task. Participants were instructed to bite a pressure transducer placed in the mouth as quickly as possible in response to an unpredictable electrical stimulation applied on the back of the neck. Each subject was tested under five different experimental conditions: simple RT task alone and while walking, recognition RT task alone and while walking, walking alone. A foot switch system composed of a pressure sensitive sensor was placed under the heel and forefoot of each foot to determine the gait cycle duration. Results Gait cycle duration was unchanged (p > 0.05 by the addition of the RT task. Regardless of the level of difficulty of the RT task, the RTs were longer during treadmill walking than in sitting conditions (p 0.05 was found between the attentional demand of the walking task and the decrement of performance found in the RT task under varying levels of difficulty. This finding suggests that the healthy subjects prioritized the control of walking at the expense of cognitive performance. Conclusion We conclude that treadmill walking in young adults is not a purely automatic task. The methodology and outcome measures used in this study provide an assessment of the attentional resources required by walking on the treadmill at a steady state.
Quantum walks on quotient graphs
International Nuclear Information System (INIS)
Krovi, Hari; Brun, Todd A.
2007-01-01
A discrete-time quantum walk on a graph Γ is the repeated application of a unitary evolution operator to a Hilbert space corresponding to the graph. If this unitary evolution operator has an associated group of symmetries, then for certain initial states the walk will be confined to a subspace of the original Hilbert space. Symmetries of the original graph, given by its automorphism group, can be inherited by the evolution operator. We show that a quantum walk confined to the subspace corresponding to this symmetry group can be seen as a different quantum walk on a smaller quotient graph. We give an explicit construction of the quotient graph for any subgroup H of the automorphism group and illustrate it with examples. The automorphisms of the quotient graph which are inherited from the original graph are the original automorphism group modulo the subgroup H used to construct it. The quotient graph is constructed by removing the symmetries of the subgroup H from the original graph. We then analyze the behavior of hitting times on quotient graphs. Hitting time is the average time it takes a walk to reach a given final vertex from a given initial vertex. It has been shown in earlier work [Phys. Rev. A 74, 042334 (2006)] that the hitting time for certain initial states of a quantum walks can be infinite, in contrast to classical random walks. We give a condition which determines whether the quotient graph has infinite hitting times given that they exist in the original graph. We apply this condition for the examples discussed and determine which quotient graphs have infinite hitting times. All known examples of quantum walks with hitting times which are short compared to classical random walks correspond to systems with quotient graphs much smaller than the original graph; we conjecture that the existence of a small quotient graph with finite hitting times is necessary for a walk to exhibit a quantum speedup
Disorder and decoherence in coined quantum walks
International Nuclear Information System (INIS)
Zhang Rong; Qin Hao; Tang Bao; Xue Peng
2013-01-01
This article aims to provide a review on quantum walks. Starting form a basic idea of discrete-time quantum walks, we will review the impact of disorder and decoherence on the properties of quantum walks. The evolution of the standard quantum walks is deterministic and disorder introduces randomness to the whole system and change interference pattern leading to the localization effect. Whereas, decoherence plays the role of transmitting quantum walks to classical random walks. (topical review - quantum information)
Walking drawings and walking ability in children with cerebral palsy.
Chong, Jimmy; Mackey, Anna H; Stott, N Susan; Broadbent, Elizabeth
2013-06-01
To investigate whether drawings of the self walking by children with cerebral palsy (CP) were associated with walking ability and illness perceptions. This was an exploratory study in 52 children with CP (M:F = 28:24), mean age 11.1 years (range 5-18), who were attending tertiary level outpatient clinics. Children were asked to draw a picture of themselves walking. Drawing size and content was used to investigate associations with clinical walk tests and children's own perceptions of their CP assessed using a CP version of the Brief Illness Perception Questionnaire. Larger drawings of the self were associated with less distance traveled, higher emotional responses to CP, and lower perceptions of pain or discomfort, independent of age. A larger self-to-overall drawing height ratio was related to walking less distance. Drawings of the self confined within buildings and the absence of other figures were also associated with reduced walking ability. Drawing size and content can reflect walking ability, as well as symptom perceptions and distress. Drawings may be useful for clinicians to use with children with cerebral palsy to aid discussion about their condition. PsycINFO Database Record (c) 2013 APA, all rights reserved.
Illenberger, Patrin K.; Madawala, Udaya K.; Anderson, Iain A.
2016-04-01
Dielectric Elastomer Generators (DEG) offer an opportunity to capture the energy otherwise wasted from human motion. By integrating a DEG into the heel of standard footwear, it is possible to harness this energy to power portable devices. DEGs require substantial auxiliary systems which are commonly large, heavy and inefficient. A unique challenge for these low power generators is the combination of high voltage and low current. A void exists in the semiconductor market for devices that can meet these requirements. Until these become available, existing devices must be used in an innovative way to produce an effective DEG system. Existing systems such as the Bi-Directional Flyback (BDFB) and Self Priming Circuit (SPC) are an excellent example of this. The BDFB allows full charging and discharging of the DEG, improving power gained. The SPC allows fully passive voltage boosting, removing the priming source and simplifying the electronics. This paper outlines the drawbacks and benefits of active and passive electronic solutions for maximizing power from walking.
Directory of Open Access Journals (Sweden)
Bill Phillips
2014-02-01
Full Text Available Monsters have always enjoyed a significant presence in the human imagination, and religion was instrumental in replacing the physical horror they engendered with that of a moral threat. Zombies, however, are amoral – their motivation purely instinctive and arbitrary, yet they are, perhaps, the most loathed of all contemporary monsters. One explanation for this lies in the theory of the uncanny valley, proposed by robotics engineer Masahiro Mori. According to the theory, we reserve our greatest fears for those things which seem most human, yet are not – such as dead bodies. Such a reaction is most likely a survival mechanism to protect us from danger and disease – a mechanism even more essential when the dead rise up and walk. From their beginnings zombies have reflected western societies’ greatest fears – be they of revolutionary Haitians, women, or communists. In recent years the rise in the popularity of the zombie in films, books and television series reflects our fears for the planet, the economy, and of death itself
Walking around to grasp interaction
DEFF Research Database (Denmark)
Lykke, Marianne; Jantzen, Christian
2013-01-01
The paper presents experiences from a study using walk-alongs to provide insight into museum visitors’ experience with interactive features of sound art installations. The overall goal of the study was to learn about the participants’ opinions and feelings about the possibility of interaction...... with the sound installations. The aim was to gain an understanding of the role of the in-teraction, if interaction makes a difference for the understanding of the sound art. 30 walking interviews were carried out at ZKM, Karlsruhe with a total of 57 museum guests, individuals or groups. During the walk......-alongs the research-ers acted as facilitators and partners in the engagement with the sound installa-tions. The study provided good insight into advantages and challenges with the walk-along method, for instance the importance of shared, embodied sensing of space for the understanding of the experience. The common...
International Nuclear Information System (INIS)
Rosmanis, Ansis
2011-01-01
I introduce a continuous-time quantum walk on graphs called the quantum snake walk, the basis states of which are fixed-length paths (snakes) in the underlying graph. First, I analyze the quantum snake walk on the line, and I show that, even though most states stay localized throughout the evolution, there are specific states that most likely move on the line as wave packets with momentum inversely proportional to the length of the snake. Next, I discuss how an algorithm based on the quantum snake walk might potentially be able to solve an extended version of the glued trees problem, which asks to find a path connecting both roots of the glued trees graph. To the best of my knowledge, no efficient quantum algorithm solving this problem is known yet.
Analysis of absorbing times of quantum walks
International Nuclear Information System (INIS)
Yamasaki, Tomohiro; Kobayashi, Hirotada; Imai, Hiroshi
2003-01-01
Quantum walks are expected to provide useful algorithmic tools for quantum computation. This paper introduces absorbing probability and time of quantum walks and gives both numerical simulation results and theoretical analyses on Hadamard walks on the line and symmetric walks on the hypercube from the viewpoint of absorbing probability and time
Random walk through fractal environments
International Nuclear Information System (INIS)
Isliker, H.; Vlahos, L.
2003-01-01
We analyze random walk through fractal environments, embedded in three-dimensional, permeable space. Particles travel freely and are scattered off into random directions when they hit the fractal. The statistical distribution of the flight increments (i.e., of the displacements between two consecutive hittings) is analytically derived from a common, practical definition of fractal dimension, and it turns out to approximate quite well a power-law in the case where the dimension D F of the fractal is less than 2, there is though, always a finite rate of unaffected escape. Random walks through fractal sets with D F ≤2 can thus be considered as defective Levy walks. The distribution of jump increments for D F >2 is decaying exponentially. The diffusive behavior of the random walk is analyzed in the frame of continuous time random walk, which we generalize to include the case of defective distributions of walk increments. It is shown that the particles undergo anomalous, enhanced diffusion for D F F >2 is normal for large times, enhanced though for small and intermediate times. In particular, it follows that fractals generated by a particular class of self-organized criticality models give rise to enhanced diffusion. The analytical results are illustrated by Monte Carlo simulations
Pedestrian Walking Behavior Revealed through a Random Walk Model
Directory of Open Access Journals (Sweden)
Hui Xiong
2012-01-01
Full Text Available This paper applies method of continuous-time random walks for pedestrian flow simulation. In the model, pedestrians can walk forward or backward and turn left or right if there is no block. Velocities of pedestrian flow moving forward or diffusing are dominated by coefficients. The waiting time preceding each jump is assumed to follow an exponential distribution. To solve the model, a second-order two-dimensional partial differential equation, a high-order compact scheme with the alternating direction implicit method, is employed. In the numerical experiments, the walking domain of the first one is two-dimensional with two entrances and one exit, and that of the second one is two-dimensional with one entrance and one exit. The flows in both scenarios are one way. Numerical results show that the model can be used for pedestrian flow simulation.
Mechanical design of walking machines.
Arikawa, Keisuke; Hirose, Shigeo
2007-01-15
The performance of existing actuators, such as electric motors, is very limited, be it power-weight ratio or energy efficiency. In this paper, we discuss the method to design a practical walking machine under this severe constraint with focus on two concepts, the gravitationally decoupled actuation (GDA) and the coupled drive. The GDA decouples the driving system against the gravitational field to suppress generation of negative power and improve energy efficiency. On the other hand, the coupled drive couples the driving system to distribute the output power equally among actuators and maximize the utilization of installed actuator power. First, we depict the GDA and coupled drive in detail. Then, we present actual machines, TITAN-III and VIII, quadruped walking machines designed on the basis of the GDA, and NINJA-I and II, quadruped wall walking machines designed on the basis of the coupled drive. Finally, we discuss walking machines that travel on three-dimensional terrain (3D terrain), which includes the ground, walls and ceiling. Then, we demonstrate with computer simulation that we can selectively leverage GDA and coupled drive by walking posture control.
Quantum walks based on an interferometric analogy
International Nuclear Information System (INIS)
Hillery, Mark; Bergou, Janos; Feldman, Edgar
2003-01-01
There are presently two models for quantum walks on graphs. The ''coined'' walk uses discrete-time steps, and contains, besides the particle making the walk, a second quantum system, the coin, that determines the direction in which the particle will move. The continuous walk operates with continuous time. Here a third model for quantum walks is proposed, which is based on an analogy to optical interferometers. It is a discrete-time model, and the unitary operator that advances the walk one step depends only on the local structure of the graph on which the walk is taking place. This type of walk also allows us to introduce elements, such as phase shifters, that have no counterpart in classical random walks. Several examples are discussed
Simonsick, E M; Guralnik, J M; Fried, L P
1999-06-01
To determine how severity of walking difficulty and sociodemographic, psychosocial, and health-related factors influence walking behavior in disabled older women. Cross-sectional analyses of baseline data from the Women's Health and Aging Study (WHAS). An urban community encompassing 12 contiguous zip code areas in the eastern portion of Baltimore City and part of Baltimore County, Maryland. A total of 920 moderately to severely disabled community-resident women, aged 65 years and older, identified from an age-stratified random sample of Medicare beneficiaries. Walking behavior was defined as minutes walked for exercise and total blocks walked per week. Independent variables included self-reported walking difficulty, sociodemographic factors, psychological status (depression, mastery, anxiety, and cognition), and health-related factors (falls and fear of falling, fatigue, vision and balance problems, weight, smoking, and cane use). Walking at least 8 blocks per week was strongly negatively related to severity of walking difficulty. Independent of difficulty level, older age, black race, fatigue, obesity, and cane use were also negatively associated with walking; living alone and high mastery had a positive association with walking. Even among functionally limited women, sociocultural, psychological, and health-related factors were independently associated with walking behavior. Thus, programs aimed at improving walking ability need to address these factors in addition to walking difficulties to maximize participation and compliance.
Directory of Open Access Journals (Sweden)
Natalie de Bruin
2010-01-01
Full Text Available This study explored the viability and efficacy of integrating cadence-matched, salient music into a walking intervention for patients with Parkinson's disease (PD. Twenty-two people with PD were randomised to a control (CTRL, n=11 or experimental (MUSIC, n=11 group. MUSIC subjects walked with an individualised music playlist three times a week for the intervention period. Playlists were designed to meet subject's musical preferences. In addition, the tempo of the music closely matched (±10–15 bpm the subject's preferred cadence. CTRL subjects continued with their regular activities during the intervention. The effects of training accompanied by “walking songs” were evaluated using objective measures of gait score. The MUSIC group improved gait velocity, stride time, cadence, and motor symptom severity following the intervention. This is the first study to demonstrate that music listening can be safely implemented amongst PD patients during home exercise.
Walking the history of healthcare.
Black, Nick
2007-12-01
The history of healthcare is complex, confusing and contested. In Walking London's medical history the story of how health services developed from medieval times to the present day is told through seven walks. The book also aims to help preserve our legacy, as increasingly former healthcare buildings are converted to other uses, and to enhance understanding of the current challenges we face in trying to improve healthcare in the 21st century. Each walk has a theme, ranging from the way hospitals merge or move and the development of primary care to how key healthcare trades became professions and the competition between the church, Crown and City for control of healthcare. While recognising the contributions of the 'great men of medicine', the book takes as much interest in the six ambulance stations built by the London County Council (1915) as the grandest teaching hospitals.
Pedagogies of the Walking Dead
Directory of Open Access Journals (Sweden)
Michael A. Peters
2016-04-01
Full Text Available This paper investigates the trope of the zombie and the recent upsurge in popular culture surrounding the figure of the zombie described as the “walking dead”. We investigate this trope and figure as a means of analyzing the “pedagogy of the walking dead” with particular attention to the crisis of education in the era of neoliberal capitalism. In particular we examine the professionalization and responsibilization of teachers in the new regulative environment and ask whether there is any room left for the project of critical education.
Reserves Represented by Random Walks
International Nuclear Information System (INIS)
Filipe, J A; Ferreira, M A M; Andrade, M
2012-01-01
The reserves problem is studied through models based on Random Walks. Random walks are a classical particular case in the analysis of stochastic processes. They do not appear only to study reserves evolution models. They are also used to build more complex systems and as analysis instruments, in a theoretical feature, of other kind of systems. In this work by studying the reserves, the main objective is to see and guarantee that pensions funds get sustainable. Being the use of these models considering this goal a classical approach in the study of pensions funds, this work concluded about the problematic of reserves. A concrete example is presented.
Walk Score(TM), Perceived Neighborhood Walkability, and walking in the US.
Tuckel, Peter; Milczarski, William
2015-03-01
To investigate both the Walk Score(TM) and a self-reported measure of neighborhood walkability ("Perceived Neighborhood Walkability") as estimators of transport and recreational walking among Americans. The study is based upon a survey of a nationally-representative sample of 1224 American adults. The survey gauged walking for both transport and recreation and included a self-reported measure of neighborhood walkability and each respondent's Walk Score(TM). Binary logistic and linear regression analyses were performed on the data. The Walk Score(TM) is associated with walking for transport, but not recreational walking nor total walking. Perceived Neighborhood Walkability is associated with transport, recreational and total walking. Perceived Neighborhood Walkability captures the experiential nature of walking more than the Walk Score(TM).
Yang, Yong; Diez-Roux, Ana V
2017-09-01
Studies on how the interaction of psychological and environmental characteristics influences walking are limited, and the results are inconsistent. Our aim is to examine how the attitude toward walking and neighborhood environments interacts to influence walking. Cross-sectional phone and mail survey. Participants randomly sampled from 6 study sites including Los Angeles, Chicago, Baltimore, Minneapolis, Manhattan, and Bronx Counties in New York City, and Forsyth and Davidson Counties in North Carolina. The final sample consisted of 2621 persons from 2011 to 2012. Total minutes of walking for travel or leisure, attitude toward walking, and perceptions of the neighborhood environments were self-reported. Street Smart (SS) Walk Score (a measure of walkability derived from a variety of geographic data) was obtained for each residential location. Linear regression models adjusting for age, gender, race/ethnicity, education, and income. Attitude toward walking was positively associated with walking for both purposes. Walking for travel was significantly associated with SS Walk Score, whereas walking for leisure was not. The SS Walk Score and selected perceived environment characteristics were associated with walking in people with a very positive attitude toward walking but were not associated with walking in people with a less positive attitude. Attitudes toward walking and neighborhood environments interact to affect walking behavior.
Effects of Nordic walking and walking on spatiotemporal gait parameters and ground reaction force.
Park, Seung Kyu; Yang, Dae Jung; Kang, Yang Hun; Kim, Je Ho; Uhm, Yo Han; Lee, Yong Seon
2015-09-01
[Purpose] The purpose of this study was to investigate the effects of Nordic walking and walking on spatiotemporal gait parameters and ground reaction force. [Subjects] The subjects of this study were 30 young adult males, who were divided into a Nordic walking group of 15 subjects and a walking group of 15 subjects. [Methods] To analyze the spatiotemporal parameters and ground reaction force during walking in the two groups, the six-camera Vicon MX motion analysis system was used. The subjects were asked to walk 12 meters using the more comfortable walking method for them between Nordic walking and walking. After they walked 12 meters more than 10 times, their most natural walking patterns were chosen three times and analyzed. To determine the pole for Nordic walking, each subject's height was multiplied by 0.68. We then measured the spatiotemporal gait parameters and ground reaction force. [Results] Compared with the walking group, the Nordic walking group showed an increase in cadence, stride length, and step length, and a decrease in stride time, step time, and vertical ground reaction force. [Conclusion] The results of this study indicate that Nordic walking increases the stride and can be considered as helping patients with diseases affecting their gait. This demonstrates that Nordic walking is more effective in improving functional capabilities by promoting effective energy use and reducing the lower limb load, because the weight of the upper and lower limbs is dispersed during Nordic walking.
More Adults Are Walking PSA (:60)
Centers for Disease Control (CDC) Podcasts
This 60 second PSA is based on the August 2012 CDC Vital Signs report. While more adults are walking, only half get the recommended amount of physical activity. Listen to learn how communities, employers, and individuals may help increase walking.
Quantum walks, quantum gates, and quantum computers
International Nuclear Information System (INIS)
Hines, Andrew P.; Stamp, P. C. E.
2007-01-01
The physics of quantum walks on graphs is formulated in Hamiltonian language, both for simple quantum walks and for composite walks, where extra discrete degrees of freedom live at each node of the graph. It is shown how to map between quantum walk Hamiltonians and Hamiltonians for qubit systems and quantum circuits; this is done for both single-excitation and multiexcitation encodings. Specific examples of spin chains, as well as static and dynamic systems of qubits, are mapped to quantum walks, and walks on hyperlattices and hypercubes are mapped to various gate systems. We also show how to map a quantum circuit performing the quantum Fourier transform, the key element of Shor's algorithm, to a quantum walk system doing the same. The results herein are an essential preliminary to a Hamiltonian formulation of quantum walks in which coupling to a dynamic quantum environment is included
Minnesota Walk-In Access Sites
Minnesota Department of Natural Resources — The Minnesota Walk-In Access site (WIA) GIS data represents areas of private land that have been made open to the public for the purpose of walk-in (foot travel)...
Beam Walking in Special Education
Broadhead, Geoffrey D.
1974-01-01
An experimental test on beam walking (for balance), administered to 189 minimally brain injured and 226 educable mentally retarded (EMR) 8- to 13-year-old children, yielded results such as reliability estimates for the mean of three trials were high and there was greater performance reliability for EMR children. (MC)
Successful Statewide Walking Program Websites
Teran, Bianca Maria; Hongu, Nobuko
2012-01-01
Statewide Extension walking programs are making an effort to increase physical activity levels in America. An investigation of all 20 of these programs revealed that 14 use websites as marketing and educational tools, which could prove useful as the popularity of Internet communities continues to grow. Website usability information and an analysis…
Constraining walking and custodial technicolor
DEFF Research Database (Denmark)
Foadi, Roshan; Frandsen, Mads Toudal; Sannino, Francesco
2008-01-01
We show how to constrain the physical spectrum of walking technicolor models via precision measurements and modified Weinberg sum rules. We also study models possessing a custodial symmetry for the S parameter at the effective Lagrangian level-custodial technicolor-and argue that these models...
Thermophoresis as persistent random walk
International Nuclear Information System (INIS)
Plyukhin, A.V.
2009-01-01
In a simple model of a continuous random walk a particle moves in one dimension with the velocity fluctuating between +v and -v. If v is associated with the thermal velocity of a Brownian particle and allowed to be position dependent, the model accounts readily for the particle's drift along the temperature gradient and recovers basic results of the conventional thermophoresis theory.
Nine walks (photo series / web page)
Robinson, Andrew
2015-01-01
'Nine Walks' is a body of work resulting from my engagement with the Media Arts Research Walking Group at Sheffield Hallam University who are exploring the role of walking in as a social, developmental and production space for the creative arts. / My participation in the walking group is an extension of my investigation of the journey as a creative, conceptual and contemplative space for photography which in turn reflects an interest in the role of the accident, instinct and intuition and the...
Treadmill walking with body weight support
Aaslund, Mona Kristin
2012-01-01
Background: Rehabilitating walking in patients post-stroke with safe, task-specific, intensive training of sufficient duration, can be challenging. Body weight supported treadmill training (BWSTT) has been proposed as an effective method to meet these challenges and may therefore have benefits over training overground walking. However, walking characteristics should not be aggravated during BWSTT or require a long familiarisation time compared to overground walking. Objectives: To investi...
Wang, Jeen-Shing; Lin, Che-Wei; Yang, Ya-Ting C; Ho, Yu-Jen
2012-10-01
This paper presents a walking pattern classification and a walking distance estimation algorithm using gait phase information. A gait phase information retrieval algorithm was developed to analyze the duration of the phases in a gait cycle (i.e., stance, push-off, swing, and heel-strike phases). Based on the gait phase information, a decision tree based on the relations between gait phases was constructed for classifying three different walking patterns (level walking, walking upstairs, and walking downstairs). Gait phase information was also used for developing a walking distance estimation algorithm. The walking distance estimation algorithm consists of the processes of step count and step length estimation. The proposed walking pattern classification and walking distance estimation algorithm have been validated by a series of experiments. The accuracy of the proposed walking pattern classification was 98.87%, 95.45%, and 95.00% for level walking, walking upstairs, and walking downstairs, respectively. The accuracy of the proposed walking distance estimation algorithm was 96.42% over a walking distance.
KidsWalk-to-School: A Guide To Promote Walking to School.
Center for Chronic Disease Prevention and Health Promotion (DHHS/CDC), Atlanta, GA.
This guide encourages people to create safe walking and biking routes to school, promoting four issues: physically active travel, safe and walkable routes to school, crime prevention, and health environments. The chapters include: "KidsWalk-to-School: A Guide to Promote Walking to School" (Is there a solution? Why is walking to school important?…
Development of independent walking in toddlers
Ivanenko, Yuri P; Dominici, Nadia; Lacquaniti, Francesco
Surprisingly, despite millions of years of bipedal walking evolution, the gravity-related pendulum mechanism of walking does not seem to be implemented at the onset of independent walking, requiring each toddler to develop it. We discuss the precursor of the mature locomotor pattern in infants as an
Walking Beliefs in Women With Fibromyalgia: Clinical Profile and Impact on Walking Behavior.
Peñacoba, Cecilia; Pastor, María-Ángeles; López-Roig, Sofía; Velasco, Lilian; Lledo, Ana
2017-10-01
Although exercise is essential for the treatment of fibromyalgia, adherence is low. Walking, as a form of physical exercise, has significant advantages. The aim of this article is to describe, in 920 women with fibromyalgia, the prevalence of certain walking beliefs and analyze their effects both on the walking behavior itself and on the associated symptoms when patients walk according to a clinically recommended way. The results highlight the high prevalence of beliefs related to pain and fatigue as walking-inhibitors. In the whole sample, beliefs are associated with an increased perception that comorbidity prevents walking, and with higher levels of pain and fatigue. In patients who walk regularly, beliefs are only associated with the perception that comorbidity prevents them from walking. It is necessary to promote walking according to the established way (including breaks to prevent fatigue) and to implement interventions on the most prevalent beliefs that inhibit walking.
To Walk or Not to Walk?: The Hierarchy of Walking Needs
Alfonzo, Mariela
2005-01-01
The multitude of quality of life problems associated with declining walking rates has impelled researchers from various disciplines to identify factors related to this behavior change. Currently, this body of research is in need of a transdisciplinary, multilevel theoretical model that can help explain how individual, group, regional, and…
Equivalence of Szegedy's and coined quantum walks
Wong, Thomas G.
2017-09-01
Szegedy's quantum walk is a quantization of a classical random walk or Markov chain, where the walk occurs on the edges of the bipartite double cover of the original graph. To search, one can simply quantize a Markov chain with absorbing vertices. Recently, Santos proposed two alternative search algorithms that instead utilize the sign-flip oracle in Grover's algorithm rather than absorbing vertices. In this paper, we show that these two algorithms are exactly equivalent to two algorithms involving coined quantum walks, which are walks on the vertices of the original graph with an internal degree of freedom. The first scheme is equivalent to a coined quantum walk with one walk step per query of Grover's oracle, and the second is equivalent to a coined quantum walk with two walk steps per query of Grover's oracle. These equivalences lie outside the previously known equivalence of Szegedy's quantum walk with absorbing vertices and the coined quantum walk with the negative identity operator as the coin for marked vertices, whose precise relationships we also investigate.
Rhythmic walking interactions with auditory feedback
DEFF Research Database (Denmark)
Jylhä, Antti; Serafin, Stefania; Erkut, Cumhur
2012-01-01
of interactions based on varying the temporal characteristics of the output, using the sound of human walking as the input. The system either provides a direct synthesis of a walking sound based on the detected amplitude envelope of the user's footstep sounds, or provides a continuous synthetic walking sound...... as a stimulus for the walking human, either with a fixed tempo or a tempo adapting to the human gait. In a pilot experiment, the different interaction modes are studied with respect to their effect on the walking tempo and the experience of the subjects. The results tentatively outline different user profiles......Walking is a natural rhythmic activity that has become of interest as a means of interacting with software systems such as computer games. Therefore, designing multimodal walking interactions calls for further examination. This exploratory study presents a system capable of different kinds...
Nordic walking and chronic low back pain
DEFF Research Database (Denmark)
Morsø, Lars; Hartvigsen, Jan; Puggaard, Lis
2006-01-01
activity provide similar benefits. Nordic Walking is a popular and fast growing type of exercise in Northern Europe. Initial studies have demonstrated that persons performing Nordic Walking are able to exercise longer and harder compared to normal walking thereby increasing their cardiovascular metabolism....... Until now no studies have been performed to investigate whether Nordic Walking has beneficial effects in relation to low back pain. The primary aim of this study is to investigate whether supervised Nordic Walking can reduce pain and improve function in a population of chronic low back pain patients...... when compared to unsupervised Nordic Walking and advice to stay active. In addition we investigate whether there is an increase in the cardiovascular metabolism in persons performing supervised Nordic Walking compared to persons who are advised to stay active. Finally, we investigate whether...
City Walks and Tactile Experience
Directory of Open Access Journals (Sweden)
Mădălina Diaconu
2011-01-01
Full Text Available This paper is an attempt to develop categories of the pedestrian’s tactile and kinaesthetic experience of the city. The beginning emphasizes the haptic qualities of surfaces and textures, which can be “palpated” visually or experienced by walking. Also the lived city is three-dimensional; its corporeal depth is discussed here in relation to the invisible sewers, protuberant profiles, and the formal diversity of roofscapes. A central role is ascribed in the present analysis to the formal similarities between the representation of the city by walking through it and the representation of the tactile form of objects. Additional aspects of the “tactile” experience of the city in a broad sense concern the feeling of their rhythms and the exposure to weather conditions. Finally, several aspects of contingency converge in the visible age of architectural works, which record traces of individual and collective histories.
Groups, graphs and random walks
Salvatori, Maura; Sava-Huss, Ecaterina
2017-01-01
An accessible and panoramic account of the theory of random walks on groups and graphs, stressing the strong connections of the theory with other branches of mathematics, including geometric and combinatorial group theory, potential analysis, and theoretical computer science. This volume brings together original surveys and research-expository papers from renowned and leading experts, many of whom spoke at the workshop 'Groups, Graphs and Random Walks' celebrating the sixtieth birthday of Wolfgang Woess in Cortona, Italy. Topics include: growth and amenability of groups; Schrödinger operators and symbolic dynamics; ergodic theorems; Thompson's group F; Poisson boundaries; probability theory on buildings and groups of Lie type; structure trees for edge cuts in networks; and mathematical crystallography. In what is currently a fast-growing area of mathematics, this book provides an up-to-date and valuable reference for both researchers and graduate students, from which future research activities will undoubted...
Stable walking with asymmetric legs
International Nuclear Information System (INIS)
Merker, Andreas; Rummel, Juergen; Seyfarth, Andre
2011-01-01
Asymmetric leg function is often an undesired side-effect in artificial legged systems and may reflect functional deficits or variations in the mechanical construction. It can also be found in legged locomotion in humans and animals such as after an accident or in specific gait patterns. So far, it is not clear to what extent differences in the leg function of contralateral limbs can be tolerated during walking or running. Here, we address this issue using a bipedal spring-mass model for simulating walking with compliant legs. With the help of the model, we show that considerable differences between contralateral legs can be tolerated and may even provide advantages to the robustness of the system dynamics. A better understanding of the mechanisms and potential benefits of asymmetric leg operation may help to guide the development of artificial limbs or the design novel therapeutic concepts and rehabilitation strategies.
Random walk through fractal environments
Isliker, H.; Vlahos, L.
2002-01-01
We analyze random walk through fractal environments, embedded in 3-dimensional, permeable space. Particles travel freely and are scattered off into random directions when they hit the fractal. The statistical distribution of the flight increments (i.e. of the displacements between two consecutive hittings) is analytically derived from a common, practical definition of fractal dimension, and it turns out to approximate quite well a power-law in the case where the dimension D of the fractal is ...
Directory of Open Access Journals (Sweden)
Tone Huse
2017-03-01
Full Text Available I would like to take you for a walk, around the housing complex Blok P in the centre of Nuuk, Greenland. I encourage you to move and listen, to smell and touch. In the presence of your evoked senses, linger for a moment; turn your face towards the past. Let us explore urban nostalgia, not as an either/or reactionary, speculative, radical, or future-oriented but as the organizing narrative of our shared journey.
Spin lattices of walking droplets
Saenz, Pedro; Pucci, Giuseppe; Goujon, Alexis; Dunkel, Jorn; Bush, John
2017-11-01
We present the results of an experimental investigation of the spontaneous emergence of collective behavior in spin lattice of droplets walking on a vibrating fluid bath. The bottom topography consists of relatively deep circular wells that encourage the walking droplets to follow circular trajectories centered at the lattice sites, in one direction or the other. Wave-mediated interactions between neighboring drops are enabled through a thin fluid layer between the wells. The sense of rotation of the walking droplets may thus become globally coupled. When the coupling is sufficiently strong, interactions with neighboring droplets may result in switches in spin that lead to preferred global arrangements, including correlated (all drops rotating in the same direction) or anti-correlated (neighboring drops rotating in opposite directions) states. Analogies with ferromagnetism and anti-ferromagnetism are drawn. Different spatial arrangements are presented in 1D and 2D lattices to illustrate the effects of topological frustration. This work was supported by the US National Science Foundation through Grants CMMI-1333242 and DMS-1614043.
Shared and task-specific muscle synergies of Nordic walking and conventional walking.
Boccia, G; Zoppirolli, C; Bortolan, L; Schena, F; Pellegrini, B
2018-03-01
Nordic walking is a form of walking that includes a poling action, and therefore an additional subtask, with respect to conventional walking. The aim of this study was to assess whether Nordic walking required a task-specific muscle coordination with respect to conventional walking. We compared the electromyographic (EMG) activity of 15 upper- and lower-limb muscles of 9 Nordic walking instructors, while executing Nordic walking and conventional walking at 1.3 ms -1 on a treadmill. Non-negative matrix factorization method was applied to identify muscle synergies, representing the spatial and temporal organization of muscle coordination. The number of muscle synergies was not different between Nordic walking (5.2 ± 0.4) and conventional walking (5.0 ± 0.7, P = .423). Five muscle synergies accounted for 91.2 ± 1.1% and 92.9 ± 1.2% of total EMG variance in Nordic walking and conventional walking, respectively. Similarity and cross-reconstruction analyses showed that 4 muscle synergies, mainly involving lower-limb and trunk muscles, are shared between Nordic walking and conventional walking. One synergy acting during upper limb propulsion is specific to Nordic walking, modifying the spatial organization and the magnitude of activation of upper limb muscles compared to conventional walking. The inclusion of the poling action in Nordic walking does not increase the complexity of movement control and does not change the coordination of lower limb muscles. This makes Nordic walking a physical activity suitable also for people with low motor skill. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Random walks and diffusion on networks
Masuda, Naoki; Porter, Mason A.; Lambiotte, Renaud
2017-11-01
Random walks are ubiquitous in the sciences, and they are interesting from both theoretical and practical perspectives. They are one of the most fundamental types of stochastic processes; can be used to model numerous phenomena, including diffusion, interactions, and opinions among humans and animals; and can be used to extract information about important entities or dense groups of entities in a network. Random walks have been studied for many decades on both regular lattices and (especially in the last couple of decades) on networks with a variety of structures. In the present article, we survey the theory and applications of random walks on networks, restricting ourselves to simple cases of single and non-adaptive random walkers. We distinguish three main types of random walks: discrete-time random walks, node-centric continuous-time random walks, and edge-centric continuous-time random walks. We first briefly survey random walks on a line, and then we consider random walks on various types of networks. We extensively discuss applications of random walks, including ranking of nodes (e.g., PageRank), community detection, respondent-driven sampling, and opinion models such as voter models.
Quantum walks with infinite hitting times
International Nuclear Information System (INIS)
Krovi, Hari; Brun, Todd A.
2006-01-01
Hitting times are the average time it takes a walk to reach a given final vertex from a given starting vertex. The hitting time for a classical random walk on a connected graph will always be finite. We show that, by contrast, quantum walks can have infinite hitting times for some initial states. We seek criteria to determine if a given walk on a graph will have infinite hitting times, and find a sufficient condition, which for discrete time quantum walks is that the degeneracy of the evolution operator be greater than the degree of the graph. The set of initial states which give an infinite hitting time form a subspace. The phenomenon of infinite hitting times is in general a consequence of the symmetry of the graph and its automorphism group. Using the irreducible representations of the automorphism group, we derive conditions such that quantum walks defined on this graph must have infinite hitting times for some initial states. In the case of the discrete walk, if this condition is satisfied the walk will have infinite hitting times for any choice of a coin operator, and we give a class of graphs with infinite hitting times for any choice of coin. Hitting times are not very well defined for continuous time quantum walks, but we show that the idea of infinite hitting-time walks naturally extends to the continuous time case as well
Positive messaging promotes walking in older adults.
Notthoff, Nanna; Carstensen, Laura L
2014-06-01
Walking is among the most cost-effective and accessible means of exercise. Mounting evidence suggests that walking may help to maintain physical and cognitive independence in old age by preventing a variety of health problems. However, older Americans fall far short of meeting the daily recommendations for walking. In 2 studies, we examined whether considering older adults' preferential attention to positive information may effectively enhance interventions aimed at promoting walking. In Study 1, we compared the effectiveness of positive, negative, and neutral messages to encourage walking (as measured with pedometers). Older adults who were informed about the benefits of walking walked more than those who were informed about the negative consequences of failing to walk, whereas younger adults were unaffected by framing valence. In Study 2, we examined within-person change in walking in older adults in response to positively- or negatively-framed messages over a 28-day period. Once again, positively-framed messages more effectively promoted walking than negatively-framed messages, and the effect was sustained across the intervention period. Together, these studies suggest that consideration of age-related changes in preferences for positive and negative information may inform the design of effective interventions to promote healthy lifestyles. Future research is needed to examine the mechanisms underlying the greater effectiveness of positively- as opposed to negatively-framed messages and the generalizability of findings to other intervention targets and other subpopulations of older adults. PsycINFO Database Record (c) 2014 APA, all rights reserved.
Walk-Startup of a Two-Legged Walking Mechanism
Babković, Kalman; Nagy, László; Krklješ, Damir; Borovac, Branislav
There is a growing interest towards humanoid robots. One of their most important characteristic is the two-legged motion - walk. Starting and stopping of humanoid robots introduce substantial delays. In this paper, the goal is to explore the possibility of using a short unbalanced state of the biped robot to quickly gain speed and achieve the steady state velocity during a period shorter than half of the single support phase. The proposed method is verified by simulation. Maintainig a steady state, balanced gait is not considered in this paper.
Girold, Sébastien; Rousseau, Jérome; Le Gal, Magalie; Coudeyre, Emmanuel; Le Henaff, Jacqueline
2017-07-01
With Nordic walking, or walking with poles, one can travel a greater distance and at a higher rate than with walking without poles, but whether the activity is beneficial for patients with cardiovascular disease is unknown. This randomized controlled trial was undertaken to determine whether Nordic walking was more effective than walking without poles on walk distance to support rehabilitation training for patients with acute coronary syndrome (ACS) and peripheral arterial occlusive disease (PAOD). Patients were recruited in a private specialized rehabilitation centre for cardiovascular diseases. The entire protocol, including patient recruitment, took place over 2 months, from September to October 2013. We divided patients into 2 groups: Nordic Walking Group (NWG, n=21) and Walking Group without poles (WG, n=21). All patients followed the same program over 4 weeks, except for the walk performed with or without poles. The main outcome was walk distance on the 6-min walk test. Secondary outcomes were maximum heart rate during exercise and walk distance and power output on a treadmill stress test. We included 42 patients (35 men; mean age 57.2±11 years and BMI 26.5±4.5kg/m 2 ). At the end of the training period, both groups showed improved walk distance on the 6-min walk test and treatment stress test as well as power on the treadmill stress test (PNordic walking training appeared more efficient than training without poles for increasing walk distance on the 6-min walk test for patients with ACS and PAOD. Copyright © 2017. Published by Elsevier Masson SAS.
System overview and walking dynamics of a passive dynamic walking robot with flat feet
Directory of Open Access Journals (Sweden)
Xinyu Liu
2015-12-01
Full Text Available The concept of “passive dynamic walking robot” refers to the robot that can walk down a shallow slope stably without any actuation and control which shows a limit cycle during walking. By adding actuation at some joints, the passive dynamic walking robot can walk stably on level ground and exhibit more versatile gaits than fully passive robot, namely, the “limit cycle walker.” In this article, we present the mechanical structures and control system design for a passive dynamic walking robot with series elastic actuators at hip joint and ankle joints. We built a walking model that consisted of an upper body, knee joints, and flat feet and derived its walking dynamics that involve double stance phases in a walking cycle based on virtual power principle. The instant just before impact was chosen as the start of one step to reduce the number of independent state variables. A numerical simulation was implemented by using MATLAB, in which the proposed passive dynamic walking model could walk stably down a shallow slope, which proves that the derived walking dynamics are correct. A physical passive robot prototype was built finally, and the experiment results show that by only simple control scheme the passive dynamic robot could walk stably on level ground.
Quantum walk on a chimera graph
Xu, Shu; Sun, Xiangxiang; Wu, Jizhou; Zhang, Wei-Wei; Arshed, Nigum; Sanders, Barry C.
2018-05-01
We analyse a continuous-time quantum walk on a chimera graph, which is a graph of choice for designing quantum annealers, and we discover beautiful quantum walk features such as localization that starkly distinguishes classical from quantum behaviour. Motivated by technological thrusts, we study continuous-time quantum walk on enhanced variants of the chimera graph and on diminished chimera graph with a random removal of vertices. We explain the quantum walk by constructing a generating set for a suitable subgroup of graph isomorphisms and corresponding symmetry operators that commute with the quantum walk Hamiltonian; the Hamiltonian and these symmetry operators provide a complete set of labels for the spectrum and the stationary states. Our quantum walk characterization of the chimera graph and its variants yields valuable insights into graphs used for designing quantum-annealers.
Full revivals in 2D quantum walks
International Nuclear Information System (INIS)
Stefanak, M; Jex, I; Kollar, B; Kiss, T
2010-01-01
Recurrence of a random walk is described by the Polya number. For quantum walks, recurrence is understood as the return of the walker to the origin, rather than the full revival of its quantum state. Localization for two-dimensional quantum walks is known to exist in the sense of non-vanishing probability distribution in the asymptotic limit. We show, on the example of the 2D Grover walk, that one can exploit the effect of localization to construct stationary solutions. Moreover, we find full revivals of a quantum state with a period of two steps. We prove that there cannot be longer cycles for a four-state quantum walk. Stationary states and revivals result from interference, which has no counterpart in classical random walks.
Can psychology walk the walk of open science?
Hesse, Bradford W
2018-01-01
An "open science movement" is gaining traction across many disciplines within the research enterprise but is also precipitating consternation among those who worry that too much disruption may be hampering professional productivity. Despite this disruption, proponents of open data collaboration have argued that some of the biggest problems of the 21st century need to be solved with the help of many people and that data sharing will be the necessary engine to make that happen. In the United States, a national strategic plan for data sharing encouraged the federally funded scientific agencies to (a) publish open data for community use in discoverable, machine-readable, and useful ways; (b) work with public and civil society organizations to set priorities for data to be shared; (c) support innovation and feedback on open data solutions; and (d) continue efforts to release and enhance high-priority data sets funded by taxpayer dollars. One of the more visible open data projects in the psychological sciences is the presidentially announced "Brain Research Through Advancing Innovative Neurotechnologies" (BRAIN) initiative. Lessons learned from initiatives such as these are instructive both from the perspective of open science within psychology and from the perspective of understanding the psychology of open science. Recommendations for creating better pathways to "walk the walk" in open science include (a) nurturing innovation and agile learning, (b) thinking outside the paradigm, (c) creating simplicity from complexity, and (d) participating in continuous learning evidence platforms. (PsycINFO Database Record (c) 2018 APA, all rights reserved).
Quantum Walks for Computer Scientists
Venegas-Andraca, Salvador
2008-01-01
Quantum computation, one of the latest joint ventures between physics and the theory of computation, is a scientific field whose main goals include the development of hardware and algorithms based on the quantum mechanical properties of those physical systems used to implement such algorithms. Solving difficult tasks (for example, the Satisfiability Problem and other NP-complete problems) requires the development of sophisticated algorithms, many of which employ stochastic processes as their mathematical basis. Discrete random walks are a popular choice among those stochastic processes. Inspir
Lively quantum walks on cycles
International Nuclear Information System (INIS)
Sadowski, Przemysław; Miszczak, Jarosław Adam; Ostaszewski, Mateusz
2016-01-01
We introduce a family of quantum walks on cycles parametrized by their liveliness, defined by the ability to execute a long-range move. We investigate the behaviour of the probability distribution and time-averaged probability distribution. We show that the liveliness parameter, controlling the magnitude of the additional long-range move, has a direct impact on the periodicity of the limiting distribution. We also show that the introduced model provides a method for network exploration which is robust against trapping. (paper)
Effect of Body Composition on Walking Economy
Directory of Open Access Journals (Sweden)
Maciejczyk Marcin
2016-12-01
Full Text Available Purpose. The aim of the study was to evaluate walking economy and physiological responses at two walking speeds in males with similar absolute body mass but different body composition. Methods. The study involved 22 young men with similar absolute body mass, BMI, aerobic performance, calf and thigh circumference. The participants differed in body composition: body fat (HBF group and lean body mass (HLBM group. In the graded test, maximal oxygen uptake (VO2max and maximal heart rate were measured. Walking economy was evaluated during two walks performed at two different speeds (4.8 and 6.0 km ‧ h-1. Results. The VO2max was similar in both groups, as were the physiological responses during slow walking. The absolute oxygen uptake or oxygen uptake relative to body mass did not significantly differentiate the studied groups. The only indicator significantly differentiating the two groups was oxygen uptake relative to LBM. Conclusions. Body composition does not significantly affect walking economy at low speed, while during brisk walking, the economy is better in the HLBM vs. HBF group, provided that walking economy is presented as oxygen uptake relative to LBM. For this reason, we recommend this manner of oxygen uptake normalization in the evaluation of walking economy.
Thermodynamics and entanglements of walks under stress
International Nuclear Information System (INIS)
Janse van Rensburg, E J; Orlandini, E; Tesi, M C; Whittington, S G
2009-01-01
We use rigorous arguments and Monte Carlo simulations to study the thermodynamics and the topological properties of self-avoiding walks on the cubic lattice subjected to an external force f. The walks are anchored at one or both endpoints to an impenetrable plane at Z = 0 and the force is applied in the Z-direction. If a force is applied to the free endpoint of an anchored walk, then a model of pulled walks is obtained. If the walk is confined to a slab and a force is applied to the top bounding plane, then a model of stretched walks is obtained. For both models we prove the existence of the limiting free energy for any value of the force and we show that, for compressive forces, the thermodynamic properties of the two models differ substantially. For pulled walks we prove the existence of a phase transition that, by numerical simulation, we estimate to be second order and located at f = 0. By using a pattern theorem for large positive forces we show that almost all sufficiently long stretched walks are knotted. We examine the entanglement complexity of stretched and pulled walks; our numerical results show a sharp reduction with increasing pulling and stretching forces. Finally, we also examine models of pulled and stretched loops. We prove the existence of limiting free energies in these models and consider the knot probability numerically as a function of the applied pulling or stretching force
Motor modules in robot-aided walking
Directory of Open Access Journals (Sweden)
Gizzi Leonardo
2012-10-01
Full Text Available Abstract Background It is hypothesized that locomotion is achieved by means of rhythm generating networks (central pattern generators and muscle activation generating networks. This modular organization can be partly identified from the analysis of the muscular activity by means of factorization algorithms. The activity of rhythm generating networks is described by activation signals whilst the muscle intervention generating network is represented by motor modules (muscle synergies. In this study, we extend the analysis of modular organization of walking to the case of robot-aided locomotion, at varying speed and body weight support level. Methods Non Negative Matrix Factorization was applied on surface electromyographic signals of 8 lower limb muscles of healthy subjects walking in gait robotic trainer at different walking velocities (1 to 3km/h and levels of body weight support (0 to 30%. Results The muscular activity of volunteers could be described by low dimensionality (4 modules, as for overground walking. Moreover, the activation signals during robot-aided walking were bursts of activation timed at specific phases of the gait cycle, underlying an impulsive controller, as also observed in overground walking. This modular organization was consistent across the investigated speeds, body weight support level, and subjects. Conclusions These results indicate that walking in a Lokomat robotic trainer is achieved by similar motor modules and activation signals as overground walking and thus supports the use of robotic training for re-establishing natural walking patterns.
Locally Perturbed Random Walks with Unbounded Jumps
Paulin, Daniel; Szász, Domokos
2010-01-01
In \\cite{SzT}, D. Sz\\'asz and A. Telcs have shown that for the diffusively scaled, simple symmetric random walk, weak convergence to the Brownian motion holds even in the case of local impurities if $d \\ge 2$. The extension of their result to finite range random walks is straightforward. Here, however, we are interested in the situation when the random walk has unbounded range. Concretely we generalize the statement of \\cite{SzT} to unbounded random walks whose jump distribution belongs to th...
Efficient quantum circuit implementation of quantum walks
International Nuclear Information System (INIS)
Douglas, B. L.; Wang, J. B.
2009-01-01
Quantum walks, being the quantum analog of classical random walks, are expected to provide a fruitful source of quantum algorithms. A few such algorithms have already been developed, including the 'glued trees' algorithm, which provides an exponential speedup over classical methods, relative to a particular quantum oracle. Here, we discuss the possibility of a quantum walk algorithm yielding such an exponential speedup over possible classical algorithms, without the use of an oracle. We provide examples of some highly symmetric graphs on which efficient quantum circuits implementing quantum walks can be constructed and discuss potential applications to quantum search for marked vertices along these graphs.
Spatial search by quantum walk
International Nuclear Information System (INIS)
Childs, Andrew M.; Goldstone, Jeffrey
2004-01-01
Grover's quantum search algorithm provides a way to speed up combinatorial search, but is not directly applicable to searching a physical database. Nevertheless, Aaronson and Ambainis showed that a database of N items laid out in d spatial dimensions can be searched in time of order √(N) for d>2, and in time of order √(N) poly(log N) for d=2. We consider an alternative search algorithm based on a continuous-time quantum walk on a graph. The case of the complete graph gives the continuous-time search algorithm of Farhi and Gutmann, and other previously known results can be used to show that √(N) speedup can also be achieved on the hypercube. We show that full √(N) speedup can be achieved on a d-dimensional periodic lattice for d>4. In d=4, the quantum walk search algorithm takes time of order √(N) poly(log N), and in d<4, the algorithm does not provide substantial speedup
Meyns, P.; Molenaers, G.; Desloovere, K.; Duysens, J.E.J.
2014-01-01
OBJECTIVE: Limb kinematics in backward walking (BW) are essentially those of forward walking (FW) in reverse. It has been argued that subcortical mechanisms could underlie both walking modes. METHODS: Therefore, we tested whether participants with supraspinal/cortical deficits (i.e. cerebral palsy)
Walking, sustainability and health: findings from a study of a Walking for Health group.
Grant, Gordon; Machaczek, Kasia; Pollard, Nick; Allmark, Peter
2017-05-01
Not only is it tacitly understood that walking is good for health and well-being but there is also now robust evidence to support this link. There is also growing evidence that regular short walks can be a protective factor for a range of long-term health conditions. Walking in the countryside can bring additional benefits, but access to the countryside brings complexities, especially for people with poorer material resources and from different ethnic communities. Reasons for people taking up walking as a physical activity are reasonably well understood, but factors linked to sustained walking, and therefore sustained benefit, are not. Based on an ethnographic study of a Walking for Health group in Lincolnshire, UK, this paper considers the motivations and rewards of group walks for older people. Nineteen members of the walking group, almost all with long-term conditions, took part in tape-recorded interviews about the personal benefits of walking. The paper provides insights into the links between walking as a sustainable activity and health, and why a combination of personal adaptive capacities, design elements of the walks and relational achievements of the walking group are important to this understanding. The paper concludes with some observations about the need to reframe conventional thinking about adherence to physical activity programmes. © 2017 John Wiley & Sons Ltd.
Directory of Open Access Journals (Sweden)
Marco Franceschini
Full Text Available Walking ability, though important for quality of life and participation in social and economic activities, can be adversely affected by neurological disorders, such as Spinal Cord Injury, Stroke, Multiple Sclerosis or Traumatic Brain Injury. The aim of this study is to evaluate if the energy cost of walking (CW, in a mixed group of chronic patients with neurological diseases almost 6 months after discharge from rehabilitation wards, can predict the walking performance and any walking restriction on community activities, as indicated by Walking Handicap Scale categories (WHS. One hundred and seven subjects were included in the study, 31 suffering from Stroke, 26 from Spinal Cord Injury and 50 from Multiple Sclerosis. The multivariable binary logistical regression analysis has produced a statistical model with good characteristics of fit and good predictability. This model generated a cut-off value of.40, which enabled us to classify correctly the cases with a percentage of 85.0%. Our research reveal that, in our subjects, CW is the only predictor of the walking performance of in the community, to be compared with the score of WHS. We have been also identifying a cut-off value of CW cost, which makes a distinction between those who can walk in the community and those who cannot do it. In particular, these values could be used to predict the ability to walk in the community when discharged from the rehabilitation units, and to adjust the rehabilitative treatment to improve the performance.
Human-like Walking with Compliant Legs
Visser, L.C.; de Geus, Wouter; Stramigioli, Stefano; Carloni, Raffaella
2011-01-01
This work presents a novel approach to robotic bipedal walking. Based on the bipedal spring-mass model, which is known to closely describe human-like walking behavior, a robot has been designed that approaches the ideal model as closely as possible. The compliance of the springs is controllable by
Rhythmic walking interaction with auditory feedback
DEFF Research Database (Denmark)
Maculewicz, Justyna; Jylhä, Antti; Serafin, Stefania
2015-01-01
We present an interactive auditory display for walking with sinusoidal tones or ecological, physically-based synthetic walking sounds. The feedback is either step-based or rhythmic, with constant or adaptive tempo. In a tempo-following experiment, we investigate different interaction modes...
Chinese City Children and Youth's Walking Behavior
Quan, Minghui; Chen, Peijie; Zhuang, Jie; Wang, Chao
2013-01-01
Purpose: Although walking has been demonstrated as one of the best forms for promoting physical activity (PA), little is known about Chinese city children and youth's walking behavior. The purpose of this study was therefore to assess ambulatory PA behavior of Chinese city children and youth. Method: The daily steps of 2,751 children and youth…
Non-Markovian decoherent quantum walks
International Nuclear Information System (INIS)
Xue Peng; Zhang Yong-Sheng
2013-01-01
Quantum walks act in obviously different ways from their classical counterparts, but decoherence will lessen and close this gap between them. To understand this process, it is necessary to investigate the evolution of quantum walks under different decoherence situations. In this article, we study a non-Markovian decoherent quantum walk on a line. In a short time regime, the behavior of the walk deviates from both ideal quantum walks and classical random walks. The position variance as a measure of the quantum walk collapses and revives for a short time, and tends to have a linear relation with time. That is, the walker's behavior shows a diffusive spread over a long time limit, which is caused by non-Markovian dephasing affecting the quantum correlations between the quantum walker and his coin. We also study both quantum discord and measurement-induced disturbance as measures of the quantum correlations, and observe both collapse and revival in the short time regime, and the tendency to be zero in the long time limit. Therefore, quantum walks with non-Markovian decoherence tend to have diffusive spreading behavior over long time limits, while in the short time regime they oscillate between ballistic and diffusive spreading behavior, and the quantum correlation collapses and revives due to the memory effect
Cognitive Resource Demands of Redirected Walking.
Bruder, Gerd; Lubas, Paul; Steinicke, Frank
2015-04-01
Redirected walking allows users to walk through a large-scale immersive virtual environment (IVE) while physically remaining in a reasonably small workspace. Therefore, manipulations are applied to virtual camera motions so that the user's self-motion in the virtual world differs from movements in the real world. Previous work found that the human perceptual system tolerates a certain amount of inconsistency between proprioceptive, vestibular and visual sensation in IVEs, and even compensates for slight discrepancies with recalibrated motor commands. Experiments showed that users are not able to detect an inconsistency if their physical path is bent with a radius of at least 22 meters during virtual straightforward movements. If redirected walking is applied in a smaller workspace, manipulations become noticeable, but users are still able to move through a potentially infinitely large virtual world by walking. For this semi-natural form of locomotion, the question arises if such manipulations impose cognitive demands on the user, which may compete with other tasks in IVEs for finite cognitive resources. In this article we present an experiment in which we analyze the mutual influence between redirected walking and verbal as well as spatial working memory tasks using a dual-tasking method. The results show an influence of redirected walking on verbal as well as spatial working memory tasks, and we also found an effect of cognitive tasks on walking behavior. We discuss the implications and provide guidelines for using redirected walking in virtual reality laboratories.
Random Walks with Anti-Correlated Steps
Wagner, Dirk; Noga, John
2005-01-01
We conjecture the expected value of random walks with anti-correlated steps to be exactly 1. We support this conjecture with 2 plausibility arguments and experimental data. The experimental analysis includes the computation of the expected values of random walks for steps up to 22. The result shows the expected value asymptotically converging to 1.
Brownian Optimal Stopping and Random Walks
International Nuclear Information System (INIS)
Lamberton, D.
2002-01-01
One way to compute the value function of an optimal stopping problem along Brownian paths consists of approximating Brownian motion by a random walk. We derive error estimates for this type of approximation under various assumptions on the distribution of the approximating random walk
Hopeless love and other lattice walks
Verhoeff, T.; Verhoeff, Koos; Swart, David; Séquin, Carlo H.; Fenyvesi, Kristóf
The Hopeless Love theme arose from observations about chess bishops and their walks on the chessboard. In chess, there are two types of bishops: one confined to the white squares and the other to the black squares. If two bishops of opposite type fall in love, then they can walk around each other,
Identifying particular places through experimental walking
Directory of Open Access Journals (Sweden)
Henrik Schultz
2016-11-01
Full Text Available Experimental walking can be used to identify particular places, design strategies and spatial visions for urban landscapes. Walking designers can explore sites and, in particular, their temporal dynamics and atmospheric particularities – both essential elements in making particular places. This article illustrates the benefits of this method, using the changing German city of Freiburg as an example.
The environmental benefits of bicycling and walking.
1993-01-01
Bicycling and walking are the two major non-fuel-consuming, non-polluting : forms of transportation in the United States. Millions of Americans ride : bicycles and/or walk for a wide variety of purposes --- commuting to work, as : part of their job, ...
Walking in Place Through Virtual Worlds
DEFF Research Database (Denmark)
Nilsson, Niels Chr.; Serafin, Stefania; Nordahl, Rolf
2016-01-01
Immersive virtual reality (IVR) is seemingly on the verge of entering the homes of consumers. Enabling users to walk through virtual worlds in a limited physical space presents a challenge. With an outset in a taxonomy of virtual travel techniques, we argue that Walking-in-Place (WIP) techniques...... constitute a promising approach to virtual walking in relation to consumer IVR. Subsequently we review existing approaches to WIP locomotion and highlight the need for a more explicit focus on the perceived naturalness of WIP techniques; i.e., the degree to which WIP locomotion feels like real walking....... Finally, we summarize work we have performed in order to produce more natural WIP locomotion and present unexplored topics which need to be address if WIP techniques are to provide perceptually natural walking experiences....
Quantum walk with one variable absorbing boundary
International Nuclear Information System (INIS)
Wang, Feiran; Zhang, Pei; Wang, Yunlong; Liu, Ruifeng; Gao, Hong; Li, Fuli
2017-01-01
Quantum walks constitute a promising ingredient in the research on quantum algorithms; consequently, exploring different types of quantum walks is of great significance for quantum information and quantum computation. In this study, we investigate the progress of quantum walks with a variable absorbing boundary and provide an analytical solution for the escape probability (the probability of a walker that is not absorbed by the boundary). We simulate the behavior of escape probability under different conditions, including the reflection coefficient, boundary location, and initial state. Moreover, it is also meaningful to extend our research to the situation of continuous-time and high-dimensional quantum walks. - Highlights: • A novel scheme about quantum walk with variable boundary is proposed. • The analytical results of the survival probability from the absorbing boundary. • The behavior of survival probability under different boundary conditions. • The influence of different initial coin states on the survival probability.
Efficient quantum walk on a quantum processor
Qiang, Xiaogang; Loke, Thomas; Montanaro, Ashley; Aungskunsiri, Kanin; Zhou, Xiaoqi; O'Brien, Jeremy L.; Wang, Jingbo B.; Matthews, Jonathan C. F.
2016-01-01
The random walk formalism is used across a wide range of applications, from modelling share prices to predicting population genetics. Likewise, quantum walks have shown much potential as a framework for developing new quantum algorithms. Here we present explicit efficient quantum circuits for implementing continuous-time quantum walks on the circulant class of graphs. These circuits allow us to sample from the output probability distributions of quantum walks on circulant graphs efficiently. We also show that solving the same sampling problem for arbitrary circulant quantum circuits is intractable for a classical computer, assuming conjectures from computational complexity theory. This is a new link between continuous-time quantum walks and computational complexity theory and it indicates a family of tasks that could ultimately demonstrate quantum supremacy over classical computers. As a proof of principle, we experimentally implement the proposed quantum circuit on an example circulant graph using a two-qubit photonics quantum processor. PMID:27146471
Exploring topological phases with quantum walks
International Nuclear Information System (INIS)
Kitagawa, Takuya; Rudner, Mark S.; Berg, Erez; Demler, Eugene
2010-01-01
The quantum walk was originally proposed as a quantum-mechanical analog of the classical random walk, and has since become a powerful tool in quantum information science. In this paper, we show that discrete-time quantum walks provide a versatile platform for studying topological phases, which are currently the subject of intense theoretical and experimental investigations. In particular, we demonstrate that recent experimental realizations of quantum walks with cold atoms, photons, and ions simulate a nontrivial one-dimensional topological phase. With simple modifications, the quantum walk can be engineered to realize all of the topological phases, which have been classified in one and two dimensions. We further discuss the existence of robust edge modes at phase boundaries, which provide experimental signatures for the nontrivial topological character of the system.
Directory of Open Access Journals (Sweden)
Alessandra de Souza Miranda
2013-06-01
Full Text Available CONTEXT: Over the past few years, several clinical trials have been performed to analyze the effects of exercise training on walking ability in patients with intermittent claudication (IC. However, it remains unclear which type of physical exercise provides the maximum benefits in terms of walking ability. OBJECTIVE: To analyze, by means of a meta-analysis, the effects of walking and strength training on the walking capacity in patients with IC. METHODS: Papers analyzing the effects of walking and strength training programs in patients with IC were browsed on the Medline, Lilacs, and Cochrane databases. Randomized clinical trials scoring >4 on the Physiotherapy Evidence Database (PEDro scale and assessing claudication distance (CD and total walking distance (TWD were included in the review. RESULTS: Walking and strength training yielded increases in CD and TWD (P < 0.05. However, walking training yielded greater increases than strength training (P = 0.02. CONCLUSION: Walking and strength training improve walking capacity in patients with IC. However, greater improvements in TWD are obtained with walking training.
Dziuba, Alicja K; Żurek, Grzegorz; Garrard, Ian; Wierzbicka-Damska, Iwona
2015-01-01
Nordic Walking (NW) is a sport that has a number of benefits as a rehabilitation method. It is performed with specially designed poles and has been often recommended as a physical activity that helps reduce the load to limbs. However, some studies have suggested that these findings might be erroneous. The aim of this paper was to compare the kinematic, kinetic and dynamic parameters of lower limbs between Natural Walking (W) and Nordic Walking (NW) at both low and high walking speeds. The study used a registration system, BTS Smart software and Kistler platform. Eleven subjects walked along a 15-metre path at low (below 2 m⋅s-1) and high (over 2 m⋅s-1) walking speeds. The Davis model was employed for calculations of kinematic, kinetic and dynamic parameters of lower limbs. With constant speed, the support given by Nordic Walking poles does not make the stroke longer and there is no change in pelvic rotation either. The only change observed was much bigger pelvic anteversion in the sagittal plane during fast NW. There were no changes in forces, power and muscle torques in lower limbs. The study found no differences in kinematic, kinetic and dynamic parameters between Natural Walking (W) and Nordic Walking (NW). Higher speeds generate greater ground reaction forces and muscle torques in lower limbs. Gait parameters depend on walking speed rather than on walking style.
Walking on high heels changes muscle activity and the dynamics of human walking significantly
DEFF Research Database (Denmark)
Simonsen, Erik B; Svendsen, Morten Bo Søndergaard; Nørreslet, Andreas
2012-01-01
The aim of the study was to investigate the distribution of net joint moments in the lower extremities during walking on high-heeled shoes compared with barefooted walking at identical speed. Fourteen female subjects walked at 4 km/h across three force platforms while they were filmed by five...... digital video cameras operating at 50 frames/second. Both barefooted walking and walking on high-heeled shoes (heel height: 9 cm) were recorded. Net joint moments were calculated by 3D inverse dynamics. EMG was recorded from eight leg muscles. The knee extensor moment peak in the first half of the stance...... phase was doubled when walking on high heels. The knee joint angle showed that high-heeled walking caused the subjects to flex the knee joint significantly more in the first half of the stance phase. In the frontal plane a significant increase was observed in the knee joint abductor moment and the hip...
Random walks on reductive groups
Benoist, Yves
2016-01-01
The classical theory of Random Walks describes the asymptotic behavior of sums of independent identically distributed random real variables. This book explains the generalization of this theory to products of independent identically distributed random matrices with real coefficients. Under the assumption that the action of the matrices is semisimple – or, equivalently, that the Zariski closure of the group generated by these matrices is reductive - and under suitable moment assumptions, it is shown that the norm of the products of such random matrices satisfies a number of classical probabilistic laws. This book includes necessary background on the theory of reductive algebraic groups, probability theory and operator theory, thereby providing a modern introduction to the topic.
Chemical Continuous Time Random Walks
Aquino, T.; Dentz, M.
2017-12-01
Traditional methods for modeling solute transport through heterogeneous media employ Eulerian schemes to solve for solute concentration. More recently, Lagrangian methods have removed the need for spatial discretization through the use of Monte Carlo implementations of Langevin equations for solute particle motions. While there have been recent advances in modeling chemically reactive transport with recourse to Lagrangian methods, these remain less developed than their Eulerian counterparts, and many open problems such as efficient convergence and reconstruction of the concentration field remain. We explore a different avenue and consider the question: In heterogeneous chemically reactive systems, is it possible to describe the evolution of macroscopic reactant concentrations without explicitly resolving the spatial transport? Traditional Kinetic Monte Carlo methods, such as the Gillespie algorithm, model chemical reactions as random walks in particle number space, without the introduction of spatial coordinates. The inter-reaction times are exponentially distributed under the assumption that the system is well mixed. In real systems, transport limitations lead to incomplete mixing and decreased reaction efficiency. We introduce an arbitrary inter-reaction time distribution, which may account for the impact of incomplete mixing. This process defines an inhomogeneous continuous time random walk in particle number space, from which we derive a generalized chemical Master equation and formulate a generalized Gillespie algorithm. We then determine the modified chemical rate laws for different inter-reaction time distributions. We trace Michaelis-Menten-type kinetics back to finite-mean delay times, and predict time-nonlocal macroscopic reaction kinetics as a consequence of broadly distributed delays. Non-Markovian kinetics exhibit weak ergodicity breaking and show key features of reactions under local non-equilibrium.
Neighborhood preference, walkability and walking in overweight/obese men.
Norman, Gregory J; Carlson, Jordan A; O'Mara, Stephanie; Sallis, James F; Patrick, Kevin; Frank, Lawrence D; Godbole, Suneeta V
2013-03-01
To investigate whether self-selection moderated the effects of walkability on walking in overweight and obese men. 240 overweight and obese men completed measures on importance of walkability when choosing a neighborhood (selection) and preference for walkable features in general (preference). IPAQ measured walking. A walkbility index was derived from geographic information systems (GIS). Walkability was associated with walking for transportation (p = .027) and neighborhood selection was associated with walking for transportation (p = .002) and total walking (p = .001). Preference was associated with leisure walking (p = .045) and preference moderated the relationship between walkability and total walking (p = .059). Walkability and self-selection are both important to walking behavior.
Walking With Death, Walking With Science, Walking With Living: Philosophical Praxis and Happiness
Directory of Open Access Journals (Sweden)
Frances Gray
2006-01-01
Full Text Available This paper explores the consequences of acknowledging that we are the dead walking with the dead. I argue that if we take the view that life frames death, rather than the view that death frames life, then we must refigure our living as ethical creatures. Using Aristotle's notion that we become virtuous by practising virtue, I argue that happiness, thought of in terms of ethical living, should temper our attitude to death as the inevitable end we must all encounter. Acknowledgement of our dying and our death enhances the ethical imperative to live virtuously and to promote human flourishing. I adopt a Buddhist reading of death and dying to interpret the Aristotelian perspective.
Walking With Death, Walking With Science, Walking With Living: Philosophical Praxis and Happiness
Directory of Open Access Journals (Sweden)
Frances Gray
2005-01-01
Full Text Available This paper explores the consequences of acknowledging that we are the dead walking with the dead. I argue that if we take the view that life frames death, rather than the view that death frames life, then we must refigure our living as ethical creatures. Using Aristotle's notion that we become virtuous by practising virtue, I argue that happiness, thought of in terms of ethical living, should temper our attitude to death as the inevitable end we must all encounter. Acknowledgement of our dying and our death enhances the ethical imperative to live virtuously and to promote human flourishing. I adopt a Buddhist reading of death and dying to interpret the Aristotelian perspective.
Efficient quantum circuits for Szegedy quantum walks
International Nuclear Information System (INIS)
Loke, T.; Wang, J.B.
2017-01-01
A major advantage in using Szegedy’s formalism over discrete-time and continuous-time quantum walks lies in its ability to define a unitary quantum walk by quantizing a Markov chain on a directed or weighted graph. In this paper, we present a general scheme to construct efficient quantum circuits for Szegedy quantum walks that correspond to classical Markov chains possessing transformational symmetry in the columns of the transition matrix. In particular, the transformational symmetry criteria do not necessarily depend on the sparsity of the transition matrix, so this scheme can be applied to non-sparse Markov chains. Two classes of Markov chains that are amenable to this construction are cyclic permutations and complete bipartite graphs, for which we provide explicit efficient quantum circuit implementations. We also prove that our scheme can be applied to Markov chains formed by a tensor product. We also briefly discuss the implementation of Markov chains based on weighted interdependent networks. In addition, we apply this scheme to construct efficient quantum circuits simulating the Szegedy walks used in the quantum Pagerank algorithm for some classes of non-trivial graphs, providing a necessary tool for experimental demonstration of the quantum Pagerank algorithm. - Highlights: • A general theoretical framework for implementing Szegedy walks using quantum circuits. • Explicit efficient quantum circuit implementation of the Szegedy walk for several classes of graphs. • Efficient implementation of Szegedy walks for quantum page-ranking of a certain class of graphs.
Walking dreams in congenital and acquired paraplegia.
Saurat, Marie-Thérèse; Agbakou, Maité; Attigui, Patricia; Golmard, Jean-Louis; Arnulf, Isabelle
2011-12-01
To test if dreams contain remote or never-experienced motor skills, we collected during 6 weeks dream reports from 15 paraplegics and 15 healthy subjects. In 9/10 subjects with spinal cord injury and in 5/5 with congenital paraplegia, voluntary leg movements were reported during dream, including feelings of walking (46%), running (8.6%), dancing (8%), standing up (6.3%), bicycling (6.3%), and practicing sports (skiing, playing basketball, swimming). Paraplegia patients experienced walking dreams (38.2%) just as often as controls (28.7%). There was no correlation between the frequency of walking dreams and the duration of paraplegia. In contrast, patients were rarely paraplegic in dreams. Subjects who had never walked or stopped walking 4-64 years prior to this study still experience walking in their dreams, suggesting that a cerebral walking program, either genetic or more probably developed via mirror neurons (activated when observing others performing an action) is reactivated during sleep. Copyright © 2011 Elsevier Inc. All rights reserved.
Nascimento, Lucas R; de Oliveira, Camila Quel; Ada, Louise; Michaelsen, Stella M; Teixeira-Salmela, Luci F
2015-01-01
After stroke, is walking training with cueing of cadence superior to walking training alone in improving walking speed, stride length, cadence and symmetry? Systematic review with meta-analysis of randomised or controlled trials. Adults who have had a stroke. Walking training with cueing of cadence. Four walking outcomes were of interest: walking speed, stride length, cadence and symmetry. This review included seven trials involving 211 participants. Because one trial caused substantial statistical heterogeneity, meta-analyses were conducted with and without this trial. Walking training with cueing of cadence improved walking speed by 0.23 m/s (95% CI 0.18 to 0.27, I(2)=0%), stride length by 0.21 m (95% CI 0.14 to 0.28, I(2)=18%), cadence by 19 steps/minute (95% CI 14 to 23, I(2)=40%), and symmetry by 15% (95% CI 3 to 26, random effects) more than walking training alone. This review provides evidence that walking training with cueing of cadence improves walking speed and stride length more than walking training alone. It may also produce benefits in terms of cadence and symmetry of walking. The evidence appears strong enough to recommend the addition of 30 minutes of cueing of cadence to walking training, four times a week for 4 weeks, in order to improve walking in moderately disabled individuals with stroke. PROSPERO (CRD42013005873). Copyright © 2014 Australian Physiotherapy Association. Published by Elsevier B.V. All rights reserved.
Increasing Walking in the Hartsfield-Jackson Atlanta International Airport: The Walk to Fly Study.
Fulton, Janet E; Frederick, Ginny M; Paul, Prabasaj; Omura, John D; Carlson, Susan A; Dorn, Joan M
2017-07-01
To test the effectiveness of a point-of-decision intervention to prompt walking, versus motorized transport, in a large metropolitan airport. We installed point-of-decision prompt signage at 4 locations in the airport transportation mall at Hartsfield-Jackson Atlanta International Airport (Atlanta, GA) at the connecting corridor between airport concourses. Six ceiling-mounted infrared sensors counted travelers entering and exiting the study location. We collected traveler counts from June 2013 to May 2016 when construction was present and absent (preintervention period: June 2013-September 2014; postintervention period: September 2014-May 2016). We used a model that incorporated weekly walking variation to estimate the intervention effect on walking. There was an 11.0% to 16.7% relative increase in walking in the absence of airport construction where 580 to 810 more travelers per day chose to walk. Through May 2016, travelers completed 390 000 additional walking trips. The Walk to Fly study demonstrated a significant and sustained increase in the number of airport travelers choosing to walk. Providing signage about options to walk in busy locations where reasonable walking options are available may improve population levels of physical activity and therefore improve public health.
Walking modality, but not task difficulty, influences the control of dual-task walking.
Wrightson, J G; Smeeton, N J
2017-10-01
During dual-task gait, changes in the stride-to-stride variability of stride time (STV) are suggested to represent the allocation of cognitive control to walking [1]. However, contrasting effects have been reported for overground and treadmill walking, which may be due to differences in the relative difficulty of the dual task. Here we compared the effect of overground and treadmill dual-task walking on STV in 18 healthy adults. Participants walked overground and on a treadmill for 120s during single-task (walking only) and dual-task (walking whilst performing serial subtractions in sevens) conditions. Dual-task effects on STV, cognitive task (serial subtraction) performance and perceived task difficulty were compared between walking modalities. STV was increased during overground dual-task walking, but was unchanged during treadmill dual-task walking. There were no differences in cognitive task performance or perceived task difficulty. These results show that gait is controlled differently during overground and treadmill dual-task walking. However, these differences are not solely due to differences in task difficulty, and may instead represent modality dependent control strategies. Copyright © 2017 Elsevier B.V. All rights reserved.
Directory of Open Access Journals (Sweden)
Kenneth Joh
2015-07-01
Full Text Available Promoting walking travel is considered important for reducing automobile use and improving public health. Recent U.S. transportation policy has incentivized investments in alternative, more sustainable transportation modes such as walking, bicycling and transit in auto-oriented cities such as Los Angeles. Although many past studies have analyzed changes in walking travel across the U.S., there is little clarity on the drivers of change. We address this gap by conducting a longitudinal analysis of walking travel in the greater Los Angeles area from 2001 to 2009. We use travel diary and household data from regional and national surveys to analyze changes in walking trip shares and rates across our study area. Results show that walking has significantly increased across most of Los Angeles, and that increases in walking trips generally correspond with increases in population, employment, and transit service densities. Estimates from fixed-effects regression analysis generally suggest a positive association between population density and walking, and that higher increases in transit stop density are correlated with increased walking trips to and from transit stops. These findings illustrate how regional planning efforts to pursue a coordinated land use-transit planning strategy can help promote walking in auto-oriented or vehicle adopting cities.
Sawers, Andrew; Ting, Lena H
2015-02-01
The ability to quantify differences in walking balance proficiency is critical to curbing the rising health and financial costs of falls. Current laboratory-based approaches typically focus on successful recovery of balance while clinical instruments often pose little difficulty for all but the most impaired patients. Rarely do they test motor behaviors of sufficient difficulty to evoke failures in balance control limiting their ability to quantify balance proficiency. Our objective was to test whether a simple beam-walking task could quantify differences in walking balance proficiency across a range of sensorimotor abilities. Ten experts, ten novices, and five individuals with transtibial limb loss performed six walking trials across three different width beams. Walking balance proficiency was quantified as the ratio of distance walked to total possible distance. Balance proficiency was not significantly different between cohorts on the wide-beam, but clear differences between cohorts on the mid and narrow-beams were identified. Experts walked a greater distance than novices on the mid-beam (average of 3.63±0.04m verus 2.70±0.21m out of 3.66m; p=0.009), and novices walked further than amputees (1.52±0.20m; p=0.03). Amputees were unable to walk on the narrow-beam, while experts walked further (3.07±0.14m) than novices (1.55±0.26m; p=0.0005). A simple beam-walking task and an easily collected measure of distance traveled detected differences in walking balance proficiency across sensorimotor abilities. This approach provides a means to safely study and evaluate successes and failures in walking balance in the clinic or lab. It may prove useful in identifying mechanisms underlying falls versus fall recoveries. Copyright © 2015 Elsevier B.V. All rights reserved.
Cell phones change the way we walk.
Lamberg, Eric M; Muratori, Lisa M
2012-04-01
Cell phone use among pedestrians leads to increased cognitive distraction, reduced situation awareness and increases in unsafe behavior. Performing a dual-task, such as talking or texting with a cell phone while walking, may interfere with working memory and result in walking errors. At baseline, thirty-three participants visually located a target 8m ahead; then vision was occluded and they were instructed to walk to the remembered target. One week later participants were assigned to either walk, walk while talking on a cell phone, or walk while texting on a cell phone toward the target with vision occluded. Duration and final location of the heel were noted. Linear distance traveled, lateral angular deviation from the start line, and gait velocity were derived. Changes from baseline to testing were analyzed with paired t-tests. Participants engaged in cell phone use presented with significant reductions in gait velocity (texting: 33% reduction, p=0.01; talking: 16% reduction, p=0.02). Moreover, participants who were texting while walking demonstrated a 61% increase in lateral deviation (p=0.04) and 13% increase in linear distance traveled (p=0.03). These results suggest that the dual-task of walking while using a cell phone impacts executive function and working memory and influences gait to such a degree that it may compromise safety. Importantly, comparison of the two cell phone conditions demonstrates texting creates a significantly greater interference effect on walking than talking on a cell phone. Copyright © 2011 Elsevier B.V. All rights reserved.
Urban walking: Perspectives of locals and tourists
Directory of Open Access Journals (Sweden)
Farkić Jelena
2015-01-01
Full Text Available Urban planners and architects have done extensive research on walk ability: what it means and how it correlates with urban design and quality of life of the locals, however, it has been hitherto neglected from the aspect of tourism studies. Many cities worldwide are or tend to be walkable as this leads to more sustainable and prosperous communities. In addition, walking-friendly environments greatly cater for leisure and tourism, as in many cities, walking is an integral part of tourist experience. Therefore, tourism industry can be of tremendous help for the city authorities in understanding walkers' needs and experiences. Taking into account both the locals and tourists, this research sought to: (1 determine the most frequently utilized modes of transportation in Novi Sad in Serbia and Koper in Slovenia; (2 assess thier reasons for walking and perception of the quality of pedestrian infrastructure; and (3 evaluate the psychometric properties of the questionnaire designed for the purpose of this study. The results show that the great majority of respondents walk in these two cities. The locals walk primarily to achieve physical fitness, whereas tourists walk primarily to explore the urban spaces. This makes more space for tourism as it combines a competitive supply able to meet visitors' expectations with a positive contribution to the sustainable development of cities and well-being of their residents. Furthermore, this study contributes to emphasizing walking as a sustainable form of mobility in urban environment and can be the impetus for profiling Novi Sad and Koper as walking-friendly cities.
Elements of random walk and diffusion processes
Ibe, Oliver C
2013-01-01
Presents an important and unique introduction to random walk theory Random walk is a stochastic process that has proven to be a useful model in understanding discrete-state discrete-time processes across a wide spectrum of scientific disciplines. Elements of Random Walk and Diffusion Processes provides an interdisciplinary approach by including numerous practical examples and exercises with real-world applications in operations research, economics, engineering, and physics. Featuring an introduction to powerful and general techniques that are used in the application of physical and dynamic
Iterated random walks with shape prior
DEFF Research Database (Denmark)
Pujadas, Esmeralda Ruiz; Kjer, Hans Martin; Piella, Gemma
2016-01-01
the parametric probability density function. Then, random walks is performed iteratively aligning the prior with the current segmentation in every iteration. We tested the proposed approach with natural and medical images and compared it with the latest techniques with random walks and shape priors......We propose a new framework for image segmentation using random walks where a distance shape prior is combined with a region term. The shape prior is weighted by a confidence map to reduce the influence of the prior in high gradient areas and the region term is computed with k-means to estimate....... The experiments suggest that this method gives promising results for medical and natural images....
A Study of Effect of Walking Pole on the Walking Exercise
加藤, 麻樹; 下平, 佳江; 佐藤, 健
2010-01-01
So-called metabolic syndrome is one of the medical problems in our country, because many of people have difficulty at lack of exercises. Ministry of Health, Labor and Welfare suggest healthy life by exercise and moderate foods. Walking is one of the effective exercises to keep health in everyday life. Walking with poles, the exercise method of cross country skiing, is noticed as the effective exercise nowadays. Some studies show the effect of the pole walking exercise from view points of c...
Natural Walking in Virtual Reality: A Review
DEFF Research Database (Denmark)
Nilsson, Niels Chr.; Serafin, Stefania; Steinicke, Franke
2018-01-01
Recent technological developments have finally brought virtual reality (VR) out of the laboratory and into the hands of developers and consumers. However, a number of challenges remain. Virtual travel is one of the most common and universal tasks performed inside virtual environments, yet enabling...... users to navigate virtual environments is not a trivial challenge—especially if the user is walking. In this article, we initially provide an overview of the numerous virtual travel techniques that have been proposed prior to the commercialization of VR. Then we turn to the mode of travel...... that is the most difficult to facilitate, that is, walking. The challenge of providing users with natural walking experiences in VR can be divided into two separate, albeit related, challenges: (1) enabling unconstrained walking in virtual worlds that are larger than the tracked physical space and (2) providing...
The random walk model of intrafraction movement
International Nuclear Information System (INIS)
Ballhausen, H; Reiner, M; Kantz, S; Belka, C; Söhn, M
2013-01-01
The purpose of this paper is to understand intrafraction movement as a stochastic process driven by random external forces. The hypothetically proposed three-dimensional random walk model has significant impact on optimal PTV margins and offers a quantitatively correct explanation of experimental findings. Properties of the random walk are calculated from first principles, in particular fraction-average population density distributions for displacements along the principal axes. When substituted into the established optimal margin recipes these fraction-average distributions yield safety margins about 30% smaller as compared to the suggested values from end-of-fraction Gaussian fits. Stylized facts of a random walk are identified in clinical data, such as the increase of the standard deviation of displacements with the square root of time. Least squares errors in the comparison to experimental results are reduced by about 50% when accounting for non-Gaussian corrections from the random walk model. (paper)
The random walk model of intrafraction movement.
Ballhausen, H; Reiner, M; Kantz, S; Belka, C; Söhn, M
2013-04-07
The purpose of this paper is to understand intrafraction movement as a stochastic process driven by random external forces. The hypothetically proposed three-dimensional random walk model has significant impact on optimal PTV margins and offers a quantitatively correct explanation of experimental findings. Properties of the random walk are calculated from first principles, in particular fraction-average population density distributions for displacements along the principal axes. When substituted into the established optimal margin recipes these fraction-average distributions yield safety margins about 30% smaller as compared to the suggested values from end-of-fraction gaussian fits. Stylized facts of a random walk are identified in clinical data, such as the increase of the standard deviation of displacements with the square root of time. Least squares errors in the comparison to experimental results are reduced by about 50% when accounting for non-gaussian corrections from the random walk model.
Database of Standardized Questionnaires About Walking & Bicycling
This database contains questionnaire items and a list of validation studies for standardized items related to walking and biking. The items come from multiple national and international physical activity questionnaires.
Measuring Oscillating Walking Paths with a LIDAR
Directory of Open Access Journals (Sweden)
Jordi Palacín
2011-05-01
Full Text Available This work describes the analysis of different walking paths registered using a Light Detection And Ranging (LIDAR laser range sensor in order to measure oscillating trajectories during unsupervised walking. The estimate of the gait and trajectory parameters were obtained with a terrestrial LIDAR placed 100 mm above the ground with the scanning plane parallel to the floor to measure the trajectory of the legs without attaching any markers or modifying the floor. Three different large walking experiments were performed to test the proposed measurement system with straight and oscillating trajectories. The main advantages of the proposed system are the possibility to measure several steps and obtain average gait parameters and the minimum infrastructure required. This measurement system enables the development of new ambulatory applications based on the analysis of the gait and the trajectory during a walk.
Random walk with memory enhancement and decay
Tan, Zhi-Jie; Zou, Xian-Wu; Huang, Sheng-You; Zhang, Wei; Jin, Zhun-Zhi
2002-04-01
A model of random walk with memory enhancement and decay was presented on the basis of the characteristics of the biological intelligent walks. In this model, the movement of the walker is determined by the difference between the remaining information at the jumping-out site and jumping-in site. The amount of the memory information si(t) at a site i is enhanced with the increment of visiting times to that site, and decays with time t by the rate e-βt, where β is the memory decay exponent. When β=0, there exists a transition from Brownian motion (BM) to the compact growth of walking trajectory with the density of information energy u increasing. But for β>0, this transition does not appear and the walk with memory enhancement and decay can be considered as the BM of the mass center of the cluster composed of remembered sites in the late stage.
Does getting a dog increase recreational walking?
Directory of Open Access Journals (Sweden)
Knuiman Matthew W
2008-03-01
Full Text Available Abstract Background This study examines changes in socio-demographic, environmental and intrapersonal factors associated with dog acquisition in non-dog owners at baseline to 12-months follow-up and the effect of dog acquisition on minutes per week of recreational walking. Methods RESIDE study participants completed self-administered questionnaires (baseline and 12-months follow-up measuring physical activity, dog ownership, dog walking behavior as well as environmental, intrapersonal and socio-demographic factors. Analysis was restricted to 'Continuing non-owners' (i.e., non-owners at both baseline and follow-up; n = 681 and 'New dog owners' (i.e., non-owners who acquired a dog by follow-up; n = 92. Results Overall, 12% of baseline non-owners had acquired a dog at follow-up. Dog acquisition was associated with working and having children at home. Those who changed from single to couple marital status were also more likely to acquire a dog. The increase in minutes of walking for recreation within the neighborhood from baseline to follow-up was 48 minutes/week for new dog owners compared with 12 minutes/week for continuing non-owners (p p p > 0.05 after further adjustment for change in baseline to follow-up variables. Increase in intention to walk was the main factor contributing to attenuation of the effect of dog acquisition on recreational walking. Conclusion This study used a large representative sample of non-owners to examine the relationship between dog acquisition and recreational walking and provides evidence to suggest that dog acquisition leads to an increase in walking. The most likely mechanism through which dog acquisition facilitates increased physical activity is through behavioral intention via the dog's positive effect on owner's cognitive beliefs about walking, and through the provision of motivation and social support for walking. The results suggest that behavioral intention mediates the relationship between dog acquisition
Quantum random walks using quantum accelerator modes
International Nuclear Information System (INIS)
Ma, Z.-Y.; Burnett, K.; D'Arcy, M. B.; Gardiner, S. A.
2006-01-01
We discuss the use of high-order quantum accelerator modes to achieve an atom optical realization of a biased quantum random walk. We first discuss how one can create coexistent quantum accelerator modes, and hence how momentum transfer that depends on the atoms' internal state can be achieved. When combined with microwave driving of the transition between the states, a different type of atomic beam splitter results. This permits the realization of a biased quantum random walk through quantum accelerator modes
Walking solitons in quadratic nonlinear media
Torner Sabata, Lluís; Mazilu, D; Mihalache, Dumitru
1996-01-01
We study self-action of light in parametric wave interactions in nonlinear quadratic media. We show the existence of stationary solitons in the presence of Poynting vector beam walk-off or different group velocities between the waves. We discover that the new solitons constitute a two-parameter family, and they exist for different wave intensities and transverse velocities. We discuss the properties of the walking solitons and their experimental implications. Peer Reviewed
Go Naked: Diapers Affect Infant Walking
Cole, Whitney G.; Lingeman, Jesse M.; Adolph, Karen E.
2012-01-01
In light of cross-cultural and experimental research highlighting effects of childrearing practices on infant motor skill, we asked whether wearing diapers, a seemingly innocuous childrearing practice, affects infant walking. Diapers introduce bulk between the legs, potentially exacerbating infants’ poor balance and wide stance. We show that walking is adversely affected by old-fashioned cloth diapers, and that even modern disposable diapers—habitually worn by most infants in the sample—incur...
Simulation of random walks in field theory
International Nuclear Information System (INIS)
Rensburg, E.J.J. van
1988-01-01
The numerical simulation of random walks is considered using the Monte Carlo method previously proposed. The algorithm is tested and then generalised to generate Edwards random walks. The renormalised masses of the Edwards model are calculated and the results are compared with those obtained from a simple perturbation theory calculation for small values of the bare coupling constant. The efficiency of this algorithm is discussed and compared with an alternative approach. (author)
DEFF Research Database (Denmark)
Danvy, Olivier; Johannsen, Jacob; Zerny, Ian
2011-01-01
To celebrate the 20th anniversary of PEPM, we are inviting you to a walk in the semantic park and to inter-derive reduction-based and reduction-free negational normalization functions.......To celebrate the 20th anniversary of PEPM, we are inviting you to a walk in the semantic park and to inter-derive reduction-based and reduction-free negational normalization functions....
Many random walks are faster than one
Czech Academy of Sciences Publication Activity Database
Alon, N.; Avin, Ch.; Koucký, Michal; Kozma, G.; Lotker, Z.; Tuttle, M.R.
2011-01-01
Roč. 20, č. 4 (2011), s. 481-502 ISSN 0963-5483 R&D Projects: GA ČR GP201/07/P276; GA ČR GA201/05/0124 Institutional research plan: CEZ:AV0Z10190503 Keywords : multiple random walks * parallel random walks Subject RIV: BA - General Mathematics Impact factor: 0.778, year: 2011 http://journals.cambridge.org/ action /displayAbstract?fromPage=online&aid=8280727
Biomechanical implications of walking with indigenous footwear.
Willems, Catherine; Stassijns, Gaetane; Cornelis, Wim; D'Août, Kristiaan
2017-04-01
This study investigates biomechanical implications of walking with indigenous "Kolhapuri" footwear compared to barefoot walking among a population of South Indians. Ten healthy adults from South India walked barefoot and indigenously shod at voluntary speed on an artificial substrate. The experiment was repeated outside, on a natural substrate. Data were collected from (1) a heel-mounted 3D-accelerometer recording peak impact at heel contact, (2) an ankle-mounted 3D-goniometer (plantar/dorsiflexion and inversion/eversion), and (3) sEMG electrodes at the m. tibialis anterior and the m. gastrocnemius medialis. Data show that the effect of indigenous footwear on the measured variables, compared to barefoot walking, is relatively small and consistent between substrates (even though subjects walked faster on the natural substrate). Walking barefoot, compared to shod walking yields higher impact accelerations, but the differences are small and only significant for the artificial substrate. The main rotations of the ankle joint are mostly similar between conditions. Only the shod condition shows a faster ankle rotation over the rapid eversion motion on the natural substrate. Maximal dorsiflexion in late stance differs between the footwear conditions on an artificial substrate, with the shod condition involving a less dorsiflexed ankle, and the plantar flexion at toe-off is more extreme when shod. Overall the activity pattern of the external foot muscles is similar. The indigenous footwear studied (Kolhapuri) seems to alter foot biomechanics only in a subtle way. While offering some degree of protection, walking in this type of footwear resembles barefoot gait and this type of indigenous footwear might be considered "minimal". © 2017 The Authors American Journal of Physical Anthropology Published by Wiley Periodicals, Inc.
Tempered stable laws as random walk limits
Chakrabarty, Arijit; Meerschaert, Mark M.
2010-01-01
Stable laws can be tempered by modifying the L\\'evy measure to cool the probability of large jumps. Tempered stable laws retain their signature power law behavior at infinity, and infinite divisibility. This paper develops random walk models that converge to a tempered stable law under a triangular array scheme. Since tempered stable laws and processes are useful in statistical physics, these random walk models can provide a basic physical model for the underlying physical phenomena.
More Adults Are Walking PSA (:60)
Centers for Disease Control (CDC) Podcasts
2012-07-31
This 60 second PSA is based on the August 2012 CDC Vital Signs report. While more adults are walking, only half get the recommended amount of physical activity. Listen to learn how communities, employers, and individuals may help increase walking. Created: 7/31/2012 by Centers for Disease Control and Prevention (CDC). Date Released: 8/7/2012.
Nordic Walking Practice Might Improve Plantar Pressure Distribution
Perez-Soriano, Pedro; Llana-Belloch, Salvador; Martinez-Nova, Alfonso; Morey-Klapsing, G.; Encarnacion-Martinez, Alberto
2011-01-01
Nordic walking (NW), characterized by the use of two walking poles, is becoming increasingly popular (Morgulec-Adamowicz, Marszalek, & Jagustyn, 2011). We studied walking pressure patterns of 20 experienced and 30 beginner Nordic walkers. Plantar pressures from nine foot zones were measured during trials performed at two walking speeds (preferred…
Biomechanics of stair walking and jumping.
Loy, D J; Voloshin, A S
1991-01-01
Physical activities such as stair walking and jumping result in increased dynamic loading on the human musculoskeletal system. Use of light weight, externally attached accelerometers allows for in-vivo monitoring of the shock waves invading the human musculoskeletal system during those activities. Shock waves were measured in four subjects performing stair walking up and down, jumping in place and jumping off a fixed elevation. The results obtained show that walking down a staircase induced shock waves with amplitude of 130% of that observed in walking up stairs and 250% of the shock waves experienced in level gait. The jumping test revealed levels of the shock waves nearly eight times higher than that in level walking. It was also shown that the shock waves invading the human musculoskeletal system may be generated not only by the heel strike, but also by the metatarsal strike. To moderate the risk of degenerative joint disorders four types of viscoelastic insoles were utilized to reduce the impact generated shock waves. The insoles investigated were able to reduce the amplitude of the shock wave by between 9% and 41% depending on the insole type and particular physical activity. The insoles were more effective in the reduction of the heel strike impacts than in the reduction of the metatarsal strike impacts. In all instances, the shock attenuation capacities of the insoles tested were greater in the jumping trials than in the stair walking studies. The insoles were ranked in three groups on the basis of their shock absorbing capacity.
Design with the feet: walking methods and participatory design
DEFF Research Database (Denmark)
Kanstrup, Anne Marie; Bertelsen, Pernille; Madsen, Jacob Østergaard
2014-01-01
This paper presents an analysis of walking methods and their relation to participatory design (PD). The paper includes a study of walking methods found in the literature and an empirical study of transect walks in a PD project. From this analysis, we identify central attributes of, and challenges...... to, PD walks. Walking with people in the context of design is a natural activity for the participatory designer, who acknowledges the importance of immersion and relationships in design. However, the various intentions of walking approaches indicate an underacknowledged awareness of walking methods...
Directory of Open Access Journals (Sweden)
Eileen G. Collins
2012-01-01
Full Text Available This randomized trial proposed to determine if there were differences in calf muscle StO2 parameters in patients before and after 12 weeks of a traditional walking or walking-with-poles exercise program. Data were collected on 85 patients who were randomized to a traditional walking program ( or walking-with-poles program ( of exercise training. Patients walked for 3 times weekly for 12 weeks. Seventy-one patients completed both the baseline and the 12-week follow-up progressive treadmill tests ( traditional walking and walking-with-poles. Using the near-infrared spectroscopy measures, StO2 was measured prior to, during, and after exercise. At baseline, calf muscle oxygenation decreased from % prior to the treadmill test to % at peak exercise. The time elapsed prior to reaching nadir StO2 values increased more in the traditional walking group when compared to the walking-with-poles group. Likewise, absolute walking time increased more in the traditional walking group than in the walking-with-poles group. Tissue oxygenation decline during treadmill testing was less for patients assigned to a 12-week traditional walking program when compared to those assigned to a 12-week walking-with-poles program. In conclusion, the 12-week traditional walking program was superior to walking-with-poles in improving tissue deoxygenation in patients with PAD.
Eich, H-J; Mach, H; Werner, C; Hesse, S
2004-09-01
To evaluate the immediate and long-term effects of aerobic treadmill plus Bobath walking training in subacute stroke survivors compared with Bobath walking training alone. Randomized controlled trial. Rehabilitation unit. Fifty patients, first-time supratentorial stroke, stroke interval less than six weeks, Barthel Index (0-100) from 50 to 80, able to walk a minimum distance of 12 m with either intermittent help or stand-by while walking, cardiovascular stable, minimum 50 W in the bicycle ergometry, randomly allocated to two groups, A and B. Group A 30 min of treadmill training, harness secured and minimally supported according to patients' needs, and 30 min of physiotherapy, every workday for six weeks, speed and inclination of the treadmill were adjusted to achieve a heart rate of HR: (Hrmax-HRrest)*0.6+HRrest; in group B 60 min of daily physiotherapy for six weeks. Primary outcome variables were the absolute improvement of walking velocity (m/s) and capacity (m), secondary were gross motor function including walking ability (score out of 13) and walking quality (score out of 41), blindly assessed before and after the intervention, and at follow-up three months later. Patients tolerated the aerobic training well with no side-effects, significantly greater improvement of walking velocity and capacity both at study end (p =0.001 versus p =0.002) and at follow-up (p Bobath walking training in moderately affected stroke patients was better than Bobath walking training alone with respect to the improvement of walking velocity and capacity. The treatment approach is recommended in patients meeting the inclusion criteria. A multicentre trial should follow to strengthen the evidence.
Kinematic evaluation of virtual walking trajectories.
Cirio, Gabriel; Olivier, Anne-Hélène; Marchal, Maud; Pettré, Julien
2013-04-01
Virtual walking, a fundamental task in Virtual Reality (VR), is greatly influenced by the locomotion interface being used, by the specificities of input and output devices, and by the way the virtual environment is represented. No matter how virtual walking is controlled, the generation of realistic virtual trajectories is absolutely required for some applications, especially those dedicated to the study of walking behaviors in VR, navigation through virtual places for architecture, rehabilitation and training. Previous studies focused on evaluating the realism of locomotion trajectories have mostly considered the result of the locomotion task (efficiency, accuracy) and its subjective perception (presence, cybersickness). Few focused on the locomotion trajectory itself, but in situation of geometrically constrained task. In this paper, we study the realism of unconstrained trajectories produced during virtual walking by addressing the following question: did the user reach his destination by virtually walking along a trajectory he would have followed in similar real conditions? To this end, we propose a comprehensive evaluation framework consisting on a set of trajectographical criteria and a locomotion model to generate reference trajectories. We consider a simple locomotion task where users walk between two oriented points in space. The travel path is analyzed both geometrically and temporally in comparison to simulated reference trajectories. In addition, we demonstrate the framework over a user study which considered an initial set of common and frequent virtual walking conditions, namely different input devices, output display devices, control laws, and visualization modalities. The study provides insight into the relative contributions of each condition to the overall realism of the resulting virtual trajectories.
Analysis of coined quantum walks with renormalization
Boettcher, Stefan; Li, Shanshan
2018-01-01
We introduce a framework to analyze quantum algorithms with the renormalization group (RG). To this end, we present a detailed analysis of the real-space RG for discrete-time quantum walks on fractal networks and show how deep insights into the analytic structure as well as generic results about the long-time behavior can be extracted. The RG flow for such a walk on a dual Sierpinski gasket and a Migdal-Kadanoff hierarchical network is obtained explicitly from elementary algebraic manipulations, after transforming the unitary evolution equation into Laplace space. Unlike for classical random walks, we find that the long-time asymptotics for the quantum walk requires consideration of a diverging number of Laplace poles, which we demonstrate exactly for the closed-form solution available for the walk on a one-dimensional loop. In particular, we calculate the probability of the walk to overlap with its starting position, which oscillates with a period that scales as NdwQ/df with system size N . While the largest Jacobian eigenvalue λ1 of the RG flow merely reproduces the fractal dimension, df=log2λ1 , the asymptotic analysis shows that the second Jacobian eigenvalue λ2 becomes essential to determine the dimension of the quantum walk via dwQ=log2√{λ1λ2 } . We trace this fact to delicate cancellations caused by unitarity. We obtain identical relations for other networks, although the details of the RG analysis may exhibit surprisingly distinct features. Thus, our conclusions—which trivially reproduce those for regular lattices with translational invariance with df=d and dwQ=1 —appear to be quite general and likely apply to networks beyond those studied here.
Walking on fractals: diffusion and self-avoiding walks on percolation clusters
International Nuclear Information System (INIS)
Blavatska, V; Janke, W
2009-01-01
We consider random walks (RWs) and self-avoiding walks (SAWs) on disordered lattices directly at the percolation threshold. Applying numerical simulations, we study the scaling behavior of the models on the incipient percolation cluster in space dimensions d = 2, 3, 4. Our analysis yields estimates of universal exponents, governing the scaling laws for configurational properties of RWs and SAWs
Human H-reflexes are smaller in difficult beam walking than in normal treadmill walking.
Llewellyn, M; Yang, J F; Prochazka, A
1990-01-01
Hoffman (H) reflexes were elicited from the soleus (SOL) muscle while subjects walked on a treadmill and on a narrow beam (3.5 cm wide, raised 34 cm from the floor). The speed of walking on the treadmill was selected for each subject to match the background activation level of their SOL muscle during beam walking. The normal reciprocal activation pattern of the tibialis anterior and SOL muscles in treadmill walking was replaced by a pattern dominated by co-contraction on the beam. In addition, the step cycle duration was more variable and the time spent in the swing phase was reduced on the beam. The H-reflexes were highly modulated in both tasks, the amplitude being high in the stance phase and low in the swing phase. The H-reflex amplitude was on average 40% lower during beam walking than treadmill walking. The relationship between the H-reflex amplitude and the SOL EMG level was quantified by a regression line relating the two variables. The slope of this line was on average 41% lower in beam walking than treadmill walking. The lower H-reflex gain observed in this study and the high level of fusimotor drive observed in cats performing similar tasks suggest that the two mechanisms which control the excitability of this reflex pathway (i.e. fusimotor action and control of transmission at the muscle spindle to moto-neuron synapse) may be controlled independently.
Race walking gait and its influence on race walking economy in world-class race walkers.
Gomez-Ezeiza, Josu; Torres-Unda, Jon; Tam, Nicholas; Irazusta, Jon; Granados, Cristina; Santos-Concejero, Jordan
2018-03-06
The aim of this study was to determine the relationships between biomechanical parameters of the gait cycle and race walking economy in world-class Olympic race walkers. Twenty-One world-class race walkers possessing the Olympic qualifying standard participated in this study. Participants completed an incremental race walking test starting at 10 km·h -1 , where race walking economy (ml·kg -1 ·km -1 ) and spatiotemporal gait variables were analysed at different speeds. 20-km race walking performance was related to race walking economy, being the fastest race walkers those displaying reduced oxygen cost at a given speed (R = 0.760, p < 0.001). Longer ground contact times, shorter flight times, longer midstance sub-phase and shorter propulsive sub-phase during stance were related to a better race walking economy (moderate effect, p < 0.05). According to the results of this study, the fastest race walkers were more economi cal than the lesser performers. Similarly, shorter flight times are associated with a more efficient race walking economy. Coaches and race walkers should avoid modifying their race walking style by increasing flight times, as it may not only impair economy, but also lead to disqualification.
Rothman, Linda; Buliung, Ron; Macarthur, Colin; To, Teresa; Howard, Andrew
2014-02-01
The child active transportation literature has focused on walking, with little attention to risk associated with increased traffic exposure. This paper reviews the literature related to built environment correlates of walking and pedestrian injury in children together, to broaden the current conceptualization of walkability to include injury prevention. Two independent searches were conducted focused on walking in children and child pedestrian injury within nine electronic databases until March, 2012. Studies were included which: 1) were quantitative 2) set in motorized countries 3) were either urban or suburban 4) investigated specific built environment risk factors 5) had outcomes of either walking in children and/or child pedestrian roadway collisions (ages 0-12). Built environment features were categorized according to those related to density, land use diversity or roadway design. Results were cross-tabulated to identify how built environment features associate with walking and injury. Fifty walking and 35 child pedestrian injury studies were identified. Only traffic calming and presence of playgrounds/recreation areas were consistently associated with more walking and less pedestrian injury. Several built environment features were associated with more walking, but with increased injury. Many features had inconsistent results or had not been investigated for either outcome. The findings emphasise the importance of incorporating safety into the conversation about creating more walkable cities.
DEFF Research Database (Denmark)
Nilsson, Niels Christian; Serafin, Stefania; Nordahl, Rolf
2014-01-01
to virtual motion. This paper describes two within-subjects studies performed with the intention of establishing the range of perceptually natural walking speeds for WIP locomotion. In both studies, subjects performed a series of virtual walks while exposed to visual gains (optic flow multipliers) ranging...... from 1.0 to 3.0. Thus, the slowest speed was equal to an estimate of the subjects normal walking speed, while the highest speed was three times greater. The perceived naturalness of the visual speed was assessed using self-reports. The first study compared four different types of movement, namely...... proportional to the degree of underestimation of the virtual speeds for both treadmill-mediated virtual walking and WIP locomotion. Combined, the results constitute a first attempt at establishing a set of guidelines specifying what virtual walking speeds WIP gestures should produce in order to facilitate...
Gallo, Paul M; McIsaac, Tara L; Garber, Carol Ewing
2014-01-01
Gait impairments related to Parkinson's disease (PD) include variable step length and decreased walking velocity, which may result in poorer walking economy. Auditory cueing is a common method used to improve gait mechanics in PD that has been shown to worsen walking economy at set treadmill walking speeds. It is unknown if auditory cueing has the same effects on walking economy at self-selected treadmill walking speeds. To determine if auditory cueing will affect walking economy at self-selected treadmill walking speeds and at speeds slightly faster and slower than self-selected. Twenty-two participants with moderate PD performed three, 6-minute bouts of treadmill walking at three speeds (self-selected and ± 0.22 m·sec-1). One session used cueing and the other without cueing. Energy expenditure was measured and walking economy was calculated (energy expenditure/power). Poorer walking economy and higher energy expenditure occurred during cued walking at a self-selected and a slightly faster walking speed, but there was no apparent difference at the slightly slower speed. These results suggest that potential gait benefits of auditory cueing may come at an energy cost and poorer walking economy for persons with PD at least at some treadmill walking speeds.
Talk the Walk: Does Socio-Cognitive Resource Reallocation Facilitate the Development of Walking?
Geva, Ronny; Orr, Edna
2016-01-01
Walking is of interest to psychology, robotics, zoology, neuroscience and medicine. Human's ability to walk on two feet is considered to be one of the defining characteristics of hominoid evolution. Evolutionary science propses that it emerged in response to limited environmental resources; yet the processes supporting its emergence are not fully understood. Developmental psychology research suggests that walking elicits cognitive advancements. We postulate that the relationship between cognitive development and walking is a bi-directional one; and further suggest that the initiation of novel capacities, such as walking, is related to internal socio-cognitive resource reallocation. We shed light on these notions by exploring infants' cognitive and socio-communicative outputs prospectively from 6-18 months of age. Structured bi/tri weekly evaluations of symbolic and verbal development were employed in an urban cohort (N = 9) for 12 months, during the transition from crawling to walking. Results show links between preemptive cognitive changes in socio-communicative output, symbolic-cognitive tool-use processes, and the age of emergence of walking. Plots of use rates of lower symbolic play levels before and after emergence of new skills illustrate reductions in use of previously attained key behaviors prior to emergence of higher symbolic play, language and walking. Further, individual differences in age of walking initiation were strongly related to the degree of reductions in complexity of object-use (r = .832, p developments, form an integrated adaptable composite, which possibly enables proactive internal resource reallocation, designed to support the emergence of new developmental milestones, such as walking.
Liao, Yung; Huang, Pin-Hsuan; Chen, Yi-Ling; Hsueh, Ming-Chun; Chang, Shao-Hsi
2018-04-04
This study examined the prevalence of dog ownership and dog walking and its association with leisure-time walking among metropolitan and nonmetropolitan older adults. A telephone-based cross-sectional survey targeting Taiwanese older adults was conducted in November 2016. Data related to dog ownership, time spent dog walking (categorized as non-dog owner, non-dog walkers, and dog walkers), and sociodemographic variables were obtained from 1074 older adults. Adjusted binary logistic regression was then performed. In this sample, 12% of Taiwanese older adults owned a dog and 31% of them walked their dogs for an average of 232.13 min over 5.9 days/week (standard deviation = 2.03). Older adults living in nonmetropolitan areas were more likely to own a dog (14.7% vs. 9.1%) but less likely to walk their dog (25.9% vs. 39.6%) than were those living in metropolitan areas. Compared with non-dog owners, only older adults living in nonmetropolitan areas who were dog walkers achieved 150 min of leisure-time walking (odds ratio: 3.03, 95% confidence interval: 1.05-8.77), after adjustment for potential confounders. Older Taiwanese adults living in nonmetropolitan areas who owned and walked their dogs were more likely to achieve health-enhancing levels of leisure-time walking. Tailored physical activity interventions for promoting dog walking should be developed for older adults who are dog owners living in nonmetropolitan areas and who do not engage in dog walking.
Scaling Argument of Anisotropic Random Walk
International Nuclear Information System (INIS)
Xu Bingzhen; Jin Guojun; Wang Feifeng
2005-01-01
In this paper, we analytically discuss the scaling properties of the average square end-to-end distance (R 2 ) for anisotropic random walk in D-dimensional space (D≥2), and the returning probability P n (r 0 ) for the walker into a certain neighborhood of the origin. We will not only give the calculating formula for (R 2 ) and P n (r 0 ), but also point out that if there is a symmetric axis for the distribution of the probability density of a single step displacement, we always obtain (R p erpendicular n 2 )∼n, where perpendicular refers to the projections of the displacement perpendicular to each symmetric axes of the walk; in D-dimensional space with D symmetric axes perpendicular to each other, we always have (R n 2 )∼n and the random walk will be like a purely random motion; if the number of inter-perpendicular symmetric axis is smaller than the dimensions of the space, we must have (R n 2 )∼n 2 for very large n and the walk will be like a ballistic motion. It is worth while to point out that unlike the isotropic random walk in one and two dimensions, which is certain to return into the neighborhood of the origin, generally there is only a nonzero probability for the anisotropic random walker in two dimensions to return to the neighborhood.
Learning to walk changes infants' social interactions.
Clearfield, Melissa W
2011-02-01
The onset of crawling marks a motor, cognitive and social milestone. The present study investigated whether independent walking marks a second milestone for social behaviors. In Experiment 1, the social and exploratory behaviors of crawling infants were observed while crawling and in a baby-walker, resulting in no differences based on posture. In Experiment 2, the social behaviors of independently walking infants were compared to age-matched crawling infants in a baby-walker. Independently walking infants spent significantly more time interacting with the toys and with their mothers, and also made more vocalizations and more directed gestures compared to infants in the walker. Experiment 3 tracked infants' social behaviors longitudinally across the transition from crawling and walking. Even when controlled for age, the transition to independent walking marked increased interaction time with mothers, as well as more sophisticated interactions, including directing mothers' attention to particular objects. The results suggest a developmental progression linking social interactions with milestones in locomotor development. Copyright © 2010 Elsevier Inc. All rights reserved.
Modeling, simulation and optimization of bipedal walking
Berns, Karsten
2013-01-01
The model-based investigation of motions of anthropomorphic systems is an important interdisciplinary research topic involving specialists from many fields such as Robotics, Biomechanics, Physiology, Orthopedics, Psychology, Neurosciences, Sports, Computer Graphics and Applied Mathematics. This book presents a study of basic locomotion forms such as walking and running is of particular interest due to the high demand on dynamic coordination, actuator efficiency and balance control. Mathematical models and numerical simulation and optimization techniques are explained, in combination with experimental data, which can help to better understand the basic underlying mechanisms of these motions and to improve them. Example topics treated in this book are Modeling techniques for anthropomorphic bipedal walking systems Optimized walking motions for different objective functions Identification of objective functions from measurements Simulation and optimization approaches for humanoid robots Biologically inspired con...
The variability problem of normal human walking
DEFF Research Database (Denmark)
Simonsen, Erik B; Alkjær, Tine
2012-01-01
Previous investigations have suggested considerable inter-individual variability in the time course pattern of net joint moments during normal human walking, although the limited sample sizes precluded statistical analyses. The purpose of the present study was to obtain joint moment patterns from...... a group of normal subjects and to test whether or not the expected differences would prove to be statistically significant. Fifteen healthy male subjects were recorded on video while they walked across two force platforms. Ten kinematic and kinetic parameters were selected and input to a statistical...... cluster analysis to determine whether or not the 15 subjects could be divided into different 'families' (clusters) of walking strategy. The net joint moments showed a variability corroborating earlier reports. The cluster analysis showed that the 15 subjects could be grouped into two clusters of 5 and 10...
Universal quantum computation by discontinuous quantum walk
International Nuclear Information System (INIS)
Underwood, Michael S.; Feder, David L.
2010-01-01
Quantum walks are the quantum-mechanical analog of random walks, in which a quantum ''walker'' evolves between initial and final states by traversing the edges of a graph, either in discrete steps from node to node or via continuous evolution under the Hamiltonian furnished by the adjacency matrix of the graph. We present a hybrid scheme for universal quantum computation in which a quantum walker takes discrete steps of continuous evolution. This ''discontinuous'' quantum walk employs perfect quantum-state transfer between two nodes of specific subgraphs chosen to implement a universal gate set, thereby ensuring unitary evolution without requiring the introduction of an ancillary coin space. The run time is linear in the number of simulated qubits and gates. The scheme allows multiple runs of the algorithm to be executed almost simultaneously by starting walkers one time step apart.
Mesoscopic description of random walks on combs
Méndez, Vicenç; Iomin, Alexander; Campos, Daniel; Horsthemke, Werner
2015-12-01
Combs are a simple caricature of various types of natural branched structures, which belong to the category of loopless graphs and consist of a backbone and branches. We study continuous time random walks on combs and present a generic method to obtain their transport properties. The random walk along the branches may be biased, and we account for the effect of the branches by renormalizing the waiting time probability distribution function for the motion along the backbone. We analyze the overall diffusion properties along the backbone and find normal diffusion, anomalous diffusion, and stochastic localization (diffusion failure), respectively, depending on the characteristics of the continuous time random walk along the branches, and compare our analytical results with stochastic simulations.
Random walks and polygons in tight confinement
International Nuclear Information System (INIS)
Diao, Y; Ernst, C; Ziegler, U
2014-01-01
We discuss the effect of confinement on the topology and geometry of tightly confined random walks and polygons. Here the walks and polygons are confined in a sphere of radius R ≥ 1/2 and the polygons are equilateral with n edges of unit length. We illustrate numerically that for a fixed length of random polygons the knotting probability increases to one as the radius decreases to 1/2. We also demonstrate that for random polygons (walks) the curvature increases to πn (π(n – 1)) as the radius approaches 1/2 and that the torsion decreases to ≈ πn/3 (≈ π(n – 1)/3). In addition we show the effect of length and confinement on the average crossing number of a random polygon
Movement Behavior of High-Heeled Walking
DEFF Research Database (Denmark)
Alkjær, Tine; Raffalt, Peter Christian; Petersen, Nicolas Caesar
2012-01-01
The human locomotor system is flexible and enables humans to move without falling even under less than optimal conditions. Walking with high-heeled shoes constitutes an unstable condition and here we ask how the nervous system controls the ankle joint in this situation? We investigated the movement...... behavior of high-heeled and barefooted walking in eleven female subjects. The movement variability was quantified by calculation of approximate entropy (ApEn) in the ankle joint angle and the standard deviation (SD) of the stride time intervals. Electromyography (EMG) of the soleus (SO) and tibialis...... anterior (TA) muscles and the soleus Hoffmann (H-) reflex were measured at 4.0 km/h on a motor driven treadmill to reveal the underlying motor strategies in each walking condition. The ApEn of the ankle joint angle was significantly higher (p...
Random walks of oriented particles on fractals
International Nuclear Information System (INIS)
Haber, René; Prehl, Janett; Hoffmann, Karl Heinz; Herrmann, Heiko
2014-01-01
Random walks of point particles on fractals exhibit subdiffusive behavior, where the anomalous diffusion exponent is smaller than one, and the corresponding random walk dimension is larger than two. This is due to the limited space available in fractal structures. Here, we endow the particles with an orientation and analyze their dynamics on fractal structures. In particular, we focus on the dynamical consequences of the interactions between the local surrounding fractal structure and the particle orientation, which are modeled using an appropriate move class. These interactions can lead to particles becoming temporarily or permanently stuck in parts of the structure. A surprising finding is that the random walk dimension is not affected by the orientation while the diffusion constant shows a variety of interesting and surprising features. (paper)
Quantum random-walk search algorithm
International Nuclear Information System (INIS)
Shenvi, Neil; Whaley, K. Birgitta; Kempe, Julia
2003-01-01
Quantum random walks on graphs have been shown to display many interesting properties, including exponentially fast hitting times when compared with their classical counterparts. However, it is still unclear how to use these novel properties to gain an algorithmic speedup over classical algorithms. In this paper, we present a quantum search algorithm based on the quantum random-walk architecture that provides such a speedup. It will be shown that this algorithm performs an oracle search on a database of N items with O(√(N)) calls to the oracle, yielding a speedup similar to other quantum search algorithms. It appears that the quantum random-walk formulation has considerable flexibility, presenting interesting opportunities for development of other, possibly novel quantum algorithms
Bouchet, J Y; Franco, A; Morzol, B; Beani, J C
1980-01-01
Two methods are used to evaluate the walking distance: physiological walking along a standard path (0% - 6 mk/h) and walking on a tread mill (10% - 3 km/h). In both tests, four data are checked: -- initial trouble distance, -- cramp or walking-distance, -- localisation of pain, -- recovery time. These tests are dependable for the diagnosis of arterial claudication, reproducible and well tolerated. Their results have been compared: there is no correlation between the initial trouble distance and the cramp distance. However there is a correlation between the cramp distance by physiological walking and on treadmill. Recovery time, if long, is a criteria of gravity. Interests of both methods are discussed.
DEFF Research Database (Denmark)
Krummheuer, Antonia Lina; Raudaskoski, Pirkko Liisa
2016-01-01
that constitute the trial as a joint activity in which the impaired participant becomes a competent participant and independent walker. The analysis is based on video recordings from a case study in which a person with brain injury is trying out a new type of walking help. The trial is understood as a situated...... learning process in which the participants prepare, enact and assess the performance of the technology supported walking. The paper distinguishes two iterative phases in which the impaired person is constituted as an independent walker: the adjustment and assessment of a body-device relation and, further...
Path probabilities of continuous time random walks
International Nuclear Information System (INIS)
Eule, Stephan; Friedrich, Rudolf
2014-01-01
Employing the path integral formulation of a broad class of anomalous diffusion processes, we derive the exact relations for the path probability densities of these processes. In particular, we obtain a closed analytical solution for the path probability distribution of a Continuous Time Random Walk (CTRW) process. This solution is given in terms of its waiting time distribution and short time propagator of the corresponding random walk as a solution of a Dyson equation. Applying our analytical solution we derive generalized Feynman–Kac formulae. (paper)
Topics in random walks in random environment
International Nuclear Information System (INIS)
Sznitman, A.-S.
2004-01-01
Over the last twenty-five years random motions in random media have been intensively investigated and some new general methods and paradigms have by now emerged. Random walks in random environment constitute one of the canonical models of the field. However in dimension bigger than one they are still poorly understood and many of the basic issues remain to this day unresolved. The present series of lectures attempt to give an account of the progresses which have been made over the last few years, especially in the study of multi-dimensional random walks in random environment with ballistic behavior. (author)
Directory of Open Access Journals (Sweden)
Heechul Kim
2017-04-01
Full Text Available The purpose of this study was to analyze the relationship between people’s actual walking experience and their social capital levels in order to examine the possibility of restoring weakened social functions of streets and public spaces in a walking-friendly urban environment. Based on the survey data of 591 residents of Seoul, we empirically analyzed the relationship between walking experience for various purposes and individual perceptions of social capital using one-way ANOVA and OLS regression models. As a result of the analysis, we found that the levels of neighborly trust and networking of people who experienced leisure walking were higher than those of people who did not, while there was no difference in the level of social capital according to walking experiences for other purposes. This result is significant in that it shows the basis for the restoration of the social function of neighborhoods through social capital formation of people as an effect of walking. Hence, it is important to create a walking environment that supports leisure activities.
Walk Score® and Transit Score® and Walking in the Multi-Ethnic Study of Atherosclerosis
Hirsch, Jana A.; Moore, Kari A.; Evenson, Kelly R.; Rodriguez, Daniel A; Diez Roux, Ana V.
2013-01-01
Background Walk Score® and Transit Score® are open-source measures of the neighborhood built environment to support walking (“walkability”) and access to transportation. Purpose To investigate associations of Street Smart Walk Score and Transit Score with self-reported transport and leisure walking using data from a large multi-city and diverse population-based sample of adults. Methods Data from a sample of 4552 residents of Baltimore MD; Chicago IL; Forsyth County NC; Los Angeles CA; New York NY; and St. Paul MN from the Multi-Ethnic Study of Atherosclerosis (2010–2012) were linked to Walk Score and Transit Score (collected in 2012). Logistic and linear regression models estimated ORs of not walking and mean differences in minutes walked, respectively, associated with continuous and categoric Walk Score and Transit Score. All analyses were conducted in 2012. Results After adjustment for site, key sociodemographic, and health variables, a higher Walk Score was associated with lower odds of not walking for transport and more minutes/week of transport walking. Compared to those in a “walker’s paradise,” lower categories of Walk Score were associated with a linear increase in odds of not transport walking and a decline in minutes of leisure walking. An increase in Transit Score was associated with lower odds of not transport walking or leisure walking, and additional minutes/week of leisure walking. Conclusions Walk Score and Transit Score appear to be useful as measures of walkability in analyses of neighborhood effects. PMID:23867022
Patrick, M; Ditunno, P; Ditunno, J F; Marino, R J; Scivoletto, G; Lam, T; Loffree, J; Tamburella, F; Leiby, B
2011-12-01
Blinded rank ordering. To determine consumer preference in walking function utilizing the walking Index for spinal cord injury II (WISCI II) in individuals with spinal cord injury (SCI)from the Canada, the Italy and the United States of America. In all, 42 consumers with incomplete SCI (25 cervical, 12 thoracic, 5 lumbar) from Canada (12/42), Italy (14/42) and the United States of America (16/42) ranked the 20 levels of the WISCI II scale by their individual preference for walking. Subjects were blinded to the original ranking of the WISCI II scale by clinical scientists. Photographs of each WISCI II level used in a previous pilot study were randomly shuffled and rank ordered. Percentile, conjoint/cluster and graphic analyses were performed. All three analyses illustrated consumer ranking followed a bimodal distribution. Ranking for two levels with physical assistance and two levels with a walker were bimodal with a difference of five to six ranks between consumer subgroups (quartile analysis). The larger cluster (N=20) showed preference for walking with assistance over the smaller cluster (N=12), whose preference was walking without assistance and more devices. In all, 64% (27/42) of consumers ranked WISCI II level with no devices or braces and 1 person assistance higher than multiple levels of the WISCI II requiring no assistance. These results were unexpected, as the hypothesis was that consumers would rank independent walking higher than walking with assistance. Consumer preference for walking function should be considered in addition to objective measures in designing SCI trials that use significant improvement in walking function as an outcome measure.
Relationship between quantum walks and relativistic quantum mechanics
International Nuclear Information System (INIS)
Chandrashekar, C. M.; Banerjee, Subhashish; Srikanth, R.
2010-01-01
Quantum walk models have been used as an algorithmic tool for quantum computation and to describe various physical processes. This article revisits the relationship between relativistic quantum mechanics and the quantum walks. We show the similarities of the mathematical structure of the decoupled and coupled forms of the discrete-time quantum walk to that of the Klein-Gordon and Dirac equations, respectively. In the latter case, the coin emerges as an analog of the spinor degree of freedom. Discrete-time quantum walk as a coupled form of the continuous-time quantum walk is also shown by transforming the decoupled form of the discrete-time quantum walk to the Schroedinger form. By showing the coin to be a means to make the walk reversible and that the Dirac-like structure is a consequence of the coin use, our work suggests that the relativistic causal structure is a consequence of conservation of information. However, decoherence (modeled by projective measurements on position space) generates entropy that increases with time, making the walk irreversible and thereby producing an arrow of time. The Lieb-Robinson bound is used to highlight the causal structure of the quantum walk to put in perspective the relativistic structure of the quantum walk, the maximum speed of walk propagation, and earlier findings related to the finite spread of the walk probability distribution. We also present a two-dimensional quantum walk model on a two-state system to which the study can be extended.
Quantum Walks on the Line with Phase Parameters
Villagra, Marcos; Nakanishi, Masaki; Yamashita, Shigeru; Nakashima, Yasuhiko
In this paper, a study on discrete-time coined quantum walks on the line is presented. Clear mathematical foundations are still lacking for this quantum walk model. As a step toward this objective, the following question is being addressed: Given a graph, what is the probability that a quantum walk arrives at a given vertex after some number of steps? This is a very natural question, and for random walks it can be answered by several different combinatorial arguments. For quantum walks this is a highly non-trivial task. Furthermore, this was only achieved before for one specific coin operator (Hadamard operator) for walks on the line. Even considering only walks on lines, generalizing these computations to a general SU(2) coin operator is a complex task. The main contribution is a closed-form formula for the amplitudes of the state of the walk (which includes the question above) for a general symmetric SU(2) operator for walks on the line. To this end, a coin operator with parameters that alters the phase of the state of the walk is defined. Then, closed-form solutions are computed by means of Fourier analysis and asymptotic approximation methods. We also present some basic properties of the walk which can be deducted using weak convergence theorems for quantum walks. In particular, the support of the induced probability distribution of the walk is calculated. Then, it is shown how changing the parameters in the coin operator affects the resulting probability distribution.
Talk the Walk: Does Socio-Cognitive Resource Reallocation Facilitate the Development of Walking?
Directory of Open Access Journals (Sweden)
Ronny Geva
Full Text Available Walking is of interest to psychology, robotics, zoology, neuroscience and medicine. Human's ability to walk on two feet is considered to be one of the defining characteristics of hominoid evolution. Evolutionary science propses that it emerged in response to limited environmental resources; yet the processes supporting its emergence are not fully understood. Developmental psychology research suggests that walking elicits cognitive advancements. We postulate that the relationship between cognitive development and walking is a bi-directional one; and further suggest that the initiation of novel capacities, such as walking, is related to internal socio-cognitive resource reallocation. We shed light on these notions by exploring infants' cognitive and socio-communicative outputs prospectively from 6-18 months of age. Structured bi/tri weekly evaluations of symbolic and verbal development were employed in an urban cohort (N = 9 for 12 months, during the transition from crawling to walking. Results show links between preemptive cognitive changes in socio-communicative output, symbolic-cognitive tool-use processes, and the age of emergence of walking. Plots of use rates of lower symbolic play levels before and after emergence of new skills illustrate reductions in use of previously attained key behaviors prior to emergence of higher symbolic play, language and walking. Further, individual differences in age of walking initiation were strongly related to the degree of reductions in complexity of object-use (r = .832, p < .005, along with increases, counter to the general reduction trend, in skills that serve recruitment of external resources [socio-communication bids before speech (r = -.696, p < .01, and speech bids before walking; r = .729, p < .01]. Integration of these proactive changes using a computational approach yielded an even stronger link, underscoring internal resource reallocation as a facilitator of walking initiation (r = .901, p<0
A smartphone-based system for automated detection of walking.
2015-08-01
Walking is the most effective mode of travel to access transit: transit hubs with higher residential and employment densities have higher : ridership levels because they serve areas where a large population is within a short walk of transit service. ...
Take a Walk (A Cup of Health with CDC)
Centers for Disease Control (CDC) Podcasts
Regular physical activity is important for maintaining good health. One activity that's easy and readily available to most people is walking. In this podcast, Dr. Emily Ussery discusses the health benefits of walking.
Efficient quantum circuits for Szegedy quantum walks
Loke, T.; Wang, J. B.
2017-07-01
A major advantage in using Szegedy's formalism over discrete-time and continuous-time quantum walks lies in its ability to define a unitary quantum walk by quantizing a Markov chain on a directed or weighted graph. In this paper, we present a general scheme to construct efficient quantum circuits for Szegedy quantum walks that correspond to classical Markov chains possessing transformational symmetry in the columns of the transition matrix. In particular, the transformational symmetry criteria do not necessarily depend on the sparsity of the transition matrix, so this scheme can be applied to non-sparse Markov chains. Two classes of Markov chains that are amenable to this construction are cyclic permutations and complete bipartite graphs, for which we provide explicit efficient quantum circuit implementations. We also prove that our scheme can be applied to Markov chains formed by a tensor product. We also briefly discuss the implementation of Markov chains based on weighted interdependent networks. In addition, we apply this scheme to construct efficient quantum circuits simulating the Szegedy walks used in the quantum Pagerank algorithm for some classes of non-trivial graphs, providing a necessary tool for experimental demonstration of the quantum Pagerank algorithm.
Random walk centrality for temporal networks
International Nuclear Information System (INIS)
Rocha, Luis E C; Masuda, Naoki
2014-01-01
Nodes can be ranked according to their relative importance within a network. Ranking algorithms based on random walks are particularly useful because they connect topological and diffusive properties of the network. Previous methods based on random walks, for example the PageRank, have focused on static structures. However, several realistic networks are indeed dynamic, meaning that their structure changes in time. In this paper, we propose a centrality measure for temporal networks based on random walks under periodic boundary conditions that we call TempoRank. It is known that, in static networks, the stationary density of the random walk is proportional to the degree or the strength of a node. In contrast, we find that, in temporal networks, the stationary density is proportional to the in-strength of the so-called effective network, a weighted and directed network explicitly constructed from the original sequence of transition matrices. The stationary density also depends on the sojourn probability q, which regulates the tendency of the walker to stay in the node, and on the temporal resolution of the data. We apply our method to human interaction networks and show that although it is important for a node to be connected to another node with many random walkers (one of the principles of the PageRank) at the right moment, this effect is negligible in practice when the time order of link activation is included. (paper)
Random walk centrality for temporal networks
Rocha, Luis E. C.; Masuda, Naoki
2014-06-01
Nodes can be ranked according to their relative importance within a network. Ranking algorithms based on random walks are particularly useful because they connect topological and diffusive properties of the network. Previous methods based on random walks, for example the PageRank, have focused on static structures. However, several realistic networks are indeed dynamic, meaning that their structure changes in time. In this paper, we propose a centrality measure for temporal networks based on random walks under periodic boundary conditions that we call TempoRank. It is known that, in static networks, the stationary density of the random walk is proportional to the degree or the strength of a node. In contrast, we find that, in temporal networks, the stationary density is proportional to the in-strength of the so-called effective network, a weighted and directed network explicitly constructed from the original sequence of transition matrices. The stationary density also depends on the sojourn probability q, which regulates the tendency of the walker to stay in the node, and on the temporal resolution of the data. We apply our method to human interaction networks and show that although it is important for a node to be connected to another node with many random walkers (one of the principles of the PageRank) at the right moment, this effect is negligible in practice when the time order of link activation is included.
Garden walking for depression: a research report.
McCaffrey, Ruth; Hanson, Claire; McCaffrey, William
2010-01-01
This study was designed to determine the effect of garden walking and reflective journaling on adults who are 65 years old and older with depression. The Geriatric Depression Scale measured depression. Four themes emerged from the interview data collected from each participant.
Healthy Living Initiative: Running/Walking Club
Stylianou, Michalis; Kulinna, Pamela Hodges; Kloeppel, Tiffany
2014-01-01
This study was grounded in the public health literature and the call for schools to serve as physical activity intervention sites. Its purpose was twofold: (a) to examine the daily distance covered by students in a before-school running/walking club throughout 1 school year and (b) to gain insights on the teachers perspectives of the club.…
Walking-Beam Solar-Cell Conveyor
Feder, H.; Frasch, W.
1982-01-01
Microprocessor-controlled walking-beam conveyor moves cells between work stations in automated assembly line. Conveyor has arm at each work station. In unison arms pick up all solar cells and advance them one station; then beam retracks to be in position for next step. Microprocessor sets beam stroke, speed, and position.
Assessment of a Solar System Walk
LoPresto, Michael C.; Murrell, Steven R.; Kirchner, Brian
2010-01-01
The idea of sending students and the general public on a walk through a scale model of the solar system in an attempt to instill an appreciation of the relative scales of the sizes of the objects compared to the immense distances between them is certainly not new. A good number of such models exist, including one on the National Mall in…
Random walk term weighting for information retrieval
DEFF Research Database (Denmark)
Blanco, R.; Lioma, Christina
2007-01-01
We present a way of estimating term weights for Information Retrieval (IR), using term co-occurrence as a measure of dependency between terms.We use the random walk graph-based ranking algorithm on a graph that encodes terms and co-occurrence dependencies in text, from which we derive term weights...
Infrared dynamics of Minimal Walking Technicolor
DEFF Research Database (Denmark)
Del Debbio, Luigi; Lucini, Biagio; Patella, Agostino
2010-01-01
We study the gauge sector of Minimal Walking Technicolor, which is an SU(2) gauge theory with nf=2 flavors of Wilson fermions in the adjoint representation. Numerical simulations are performed on lattices Nt x Ns^3, with Ns ranging from 8 to 16 and Nt=2Ns, at fixed \\beta=2.25, and varying...
Mesonic spectroscopy of Minimal Walking Technicolor
DEFF Research Database (Denmark)
Del Debbio, Luigi; Lucini, Biagio; Patella, Agostino
2010-01-01
We investigate the structure and the novel emerging features of the mesonic non-singlet spectrum of the Minimal Walking Technicolor (MWT) theory. Precision measurements in the nonsinglet pseudoscalar and vector channels are compared to the expectations for an IR-conformal field theory and a QCD...
Analysis, Control and Design of Walking Robots
van Oort, Gijs
2011-01-01
In this thesis five research questions are discussed that are related to the development of two-legged (bipedal) walking robots. The research questions are categorized in three main topics: analysis, control and actuation and design. The research questions are: - How can we analyze the behavior of a
Go Naked: Diapers Affect Infant Walking
Cole, Whitney G.; Lingeman, Jesse M.; Adolph, Karen E.
2012-01-01
In light of cross-cultural and experimental research highlighting effects of childrearing practices on infant motor skill, we asked whether wearing diapers, a seemingly innocuous childrearing practice, affects infant walking. Diapers introduce bulk between the legs, potentially exacerbating infants' poor balance and wide stance. We show that…
Sound design and perception in walking interactions
DEFF Research Database (Denmark)
Visell, Yon; Fontana, Federico; Giordano, Bruno
2009-01-01
of walking, and the design, engineering, and evaluation of interfaces that utilize them. Much of this expertise has accumulated in recent years, although many questions remain to be explored. We highlight past work and current research directions in this multidisciplinary area of investigation, and point...
The Physics of a Walking Robot
Guemez, J.; Fiolhais, M.
2013-01-01
The physics of walking is explored, using a toy as a concrete example and a "toy model" applied to it. Besides using Newton's second law, the problem is also discussed from the thermodynamical perspective. Once the steady state (constant velocity) is achieved, we show that the internal energy of the toy is dissipated as heat in the…
Adaptive Nonlinear Tracking for Robotic Walking
Czech Academy of Sciences Publication Activity Database
Dolinský, Kamil; Čelikovský, Sergej
2012-01-01
Roč. 1, č. 1 (2012), s. 28-35 ISSN 2223-7038 Institutional research plan: CEZ:AV0Z10750506 Keywords : Adaptive control * Kalman filter * walking robots Subject RIV: BC - Control Systems Theory http://lib.physcon.ru/doc?id=9e51935aa5bc
Searching via walking: How to find a marked clique of a complete graph using quantum walks
International Nuclear Information System (INIS)
Hillery, Mark; Reitzner, Daniel; Buzek, Vladimir
2010-01-01
We show how a quantum walk can be used to find a marked edge or a marked complete subgraph of a complete graph. We employ a version of a quantum walk, the scattering walk, which lends itself to experimental implementation. The edges are marked by adding elements to them that impart a specific phase shift to the particle as it enters or leaves the edge. If the complete graph has N vertices and the subgraph has K vertices, the particle becomes localized on the subgraph in O(N/K) steps. This leads to a quantum search that is quadratically faster than a corresponding classical search. We show how to implement the quantum walk using a quantum circuit and a quantum oracle, which allows us to specify the resources needed for a quantitative comparison of the efficiency of classical and quantum searches--the number of oracle calls.
Continuous-time quantum walks on star graphs
International Nuclear Information System (INIS)
Salimi, S.
2009-01-01
In this paper, we investigate continuous-time quantum walk on star graphs. It is shown that quantum central limit theorem for a continuous-time quantum walk on star graphs for N-fold star power graph, which are invariant under the quantum component of adjacency matrix, converges to continuous-time quantum walk on K 2 graphs (complete graph with two vertices) and the probability of observing walk tends to the uniform distribution.
Dilemma Produced by Infinity of a Random Walk
International Nuclear Information System (INIS)
Li Jing-Hui
2015-01-01
We report a dilemma produced by the infinity of a random walk moving along a two-dimensional space sidestep. For this random walk, our investigation shows that using a different model can lead to a different diffusion coefficient of the random walk, which is produced by the infinity of the random walk. The result obtained by us in the present work can serve as a warning to us when we build the models to investigate the corresponding scientific problems. (paper)
Directory of Open Access Journals (Sweden)
Barbara Pellegrini
Full Text Available Nordic Walking (NW owes much of its popularity to the benefits of greater energy expenditure and upper body engagement than found in conventional walking (W. Muscle activation during NW is still understudied, however. The aim of the present study was to assess differences in muscle activation and physiological responses between NW and W in level and uphill walking conditions. Nine expert Nordic Walkers (mean age 36.8±11.9 years; BMI 24.2±1.8 kg/m2 performed 5-minute treadmill trials of W and NW at 4 km/h on inclines of 0% and 15%. The electromyographic activity of seven upper body and five leg muscles and oxygen consumption (VO2 were recorded and pole force during NW was measured. VO2 during NW was 22.3% higher at 0% and only 6.9% higher at 15% than during W, while upper body muscle activation was 2- to 15-fold higher under both conditions. Lower body muscle activation was similarly increased during NW and W in the uphill condition, whereas the increase in erector spinae muscle activity was lower during NW than W. The lack of a significant increase in pole force during uphill walking may explain the lower extra energy expenditure of NW, indicating less upper body muscle activation to lift the body against gravity. NW seemed to reduce lower back muscle contraction in the uphill condition, suggesting that walking with poles may reduce effort to control trunk oscillations and could contribute to work production during NW. Although the difference in extra energy expenditure between NW and W was smaller in the uphill walking condition, the increased upper body muscle involvement during exercising with NW may confer additional benefit compared to conventional walking also on uphill terrains. Furthermore, people with low back pain may gain benefit from pole use when walking uphill.
Pellegrini, Barbara; Peyré-Tartaruga, Leonardo Alexandre; Zoppirolli, Chiara; Bortolan, Lorenzo; Bacchi, Elisabetta; Figard-Fabre, Hélène; Schena, Federico
2015-01-01
Nordic Walking (NW) owes much of its popularity to the benefits of greater energy expenditure and upper body engagement than found in conventional walking (W). Muscle activation during NW is still understudied, however. The aim of the present study was to assess differences in muscle activation and physiological responses between NW and W in level and uphill walking conditions. Nine expert Nordic Walkers (mean age 36.8±11.9 years; BMI 24.2±1.8 kg/m2) performed 5-minute treadmill trials of W and NW at 4 km/h on inclines of 0% and 15%. The electromyographic activity of seven upper body and five leg muscles and oxygen consumption (VO2) were recorded and pole force during NW was measured. VO2 during NW was 22.3% higher at 0% and only 6.9% higher at 15% than during W, while upper body muscle activation was 2- to 15-fold higher under both conditions. Lower body muscle activation was similarly increased during NW and W in the uphill condition, whereas the increase in erector spinae muscle activity was lower during NW than W. The lack of a significant increase in pole force during uphill walking may explain the lower extra energy expenditure of NW, indicating less upper body muscle activation to lift the body against gravity. NW seemed to reduce lower back muscle contraction in the uphill condition, suggesting that walking with poles may reduce effort to control trunk oscillations and could contribute to work production during NW. Although the difference in extra energy expenditure between NW and W was smaller in the uphill walking condition, the increased upper body muscle involvement during exercising with NW may confer additional benefit compared to conventional walking also on uphill terrains. Furthermore, people with low back pain may gain benefit from pole use when walking uphill.
CDC Vital Signs: More People Walk to Better Health
... problems such as snow, rocks, trash, and fallen tree limbs. Promote walking paths with signs that are easy to read, and route maps that the public can easily find and use. Employers can Create and support walking programs for employees. Identify walking paths around or near the work place ...
Preferred step frequency minimizes veering during natural human walking
Uematsu, Azusa; Inoue, Koh; Hobara, Hiroaki; Kobayashi, Hirofumi; Iwamoto, Yuki; Hortobagyi, Tibor; Suzuki, Shuji
2011-01-01
In the absence of visual information, humans cannot maintain a straight walking path. We examined the hypothesis that step frequency during walking affects the magnitude of veering in healthy adults. Subject walked at a preferred (1.77 +/- 0.18 Hz), low (0.8 x preferred, 1.41 +/- 0.15 Hz), and high
Walking and the Preservation of Cognitive Function in Older Populations
Prohaska, Thomas R.; Eisenstein, Amy R.; Satariano, William A.; Hunter, Rebecca; Bayles, Constance M.; Kurtovich, Elaine; Kealey, Melissa; Ivey, Susan L.
2009-01-01
Purpose: This cross-sectional study takes a unique look at the association between patterns of walking and cognitive functioning by examining whether older adults with mild cognitive impairment differ in terms of the community settings where they walk and the frequency, intensity, or duration of walking. Design and Methods: The sample was based on…
Quantum random walks and their convergence to Evans–Hudson ...
Indian Academy of Sciences (India)
Quantum dynamical semigroup; Evans–Hudson flow; quantum random walk. 1. Introduction. The aim of this article is to investigate convergence of random walks on von Neumann algebra to Evans–Hudson flows. Here the random walks and Evans–Hudson flows are gene- ralizations of classical Markov chains and Markov ...
The use of relative coupling intervals in horses during walk
DEFF Research Database (Denmark)
Olsen, Emil; Pfau, Thilo
Walking speed varies between over-ground trials and a speed-independent gait-parameter does not exist for use in horses. We introduce relative (R) lateral (L) and diagonal (D) coupling intervals (CI) and hypothesize that both are independent of walking speed. Four horses were walked over 8 Kistler...
Modeling Framework and Software Tools for Walking Robots
Duindam, V.; Stramigioli, Stefano; Groen, F.N.J.
2005-01-01
In research on passive dynamic walking, the aim is to study and design robots that walk naturally, i.e., with little or no control effort. McGeer [1] and others (e.g. [2, 3]) have shown that, indeed, robots can walk down a shallow slope with no actuation, only powered by gravity. In this work, we
Walking with Students To Increase Satisfaction and Retention.
Steinhaus, Carol s.
1999-01-01
Describes "walking office hours," an activity in which students (n=64) in introductory health topics and human resources management classes each took a one-half hour walk with the professor around the campus. In both classes students unanimously reported higher "comfort levels" with the instructor following the walk. (DB)
Quantum walk on the line as an interference phenomenon
International Nuclear Information System (INIS)
Knight, Peter L.; Roldan, Eugenio; Sipe, J. E.
2003-01-01
We show that the coined quantum walk on a line can be understood as an interference phenomenon, can be classically implemented, and indeed already has been. The walk is essentially two independent walks associated with the different coin sides, coupled only at initiation. There is a simple analogy between the evolution of walker positions and the propagation of light in a dispersive optical fiber
The Walking Classroom: Active Learning Is Just Steps Away!
Becker, Kelly Mancini
2016-01-01
Walking is a viable and valuable form of exercise for young children that has both physical and mental health benefits. There is much evidence showing that school-age children are not getting the recommended 60 minutes of daily exercise. A school-wide walking program can be a great way to encourage walking in and out of school, can be aligned with…
Directory of Open Access Journals (Sweden)
Kang An
2013-10-01
Full Text Available This paper presents a passive dynamic walking model based on knee-bend behaviour, which is inspired by the way human beings walk. The length and mass parameters of human beings are used in the walking model. The knee-bend mechanism of the stance leg is designed in the phase between knee-strike and heel-strike. q* which is the angular difference of the stance leg between the two events, knee-strike and knee-bend, is adjusted in order to find a stable walking motion. The results show that the stable periodic walking motion on a slope of r <0.4 can be found by adjusting q*. Furthermore, with a particular q* in the range of 0.12walk down more steps before falling down on an arbitrary slope. The walking motion is more stable and adaptable than the conventional walking motion, especially for steep slopes.
Walking on four limbs: A systematic review of Nordic Walking in Parkinson disease.
Bombieri, Federica; Schena, Federico; Pellegrini, Barbara; Barone, Paolo; Tinazzi, Michele; Erro, Roberto
2017-05-01
Nordic Walking is a relatively high intensity activity that is becoming increasingly popular. It involves marching using poles adapted from cross-country skiing poles in order to activate upper body muscles that would not be used during normal walking. Several studies have been performed using this technique in Parkinson disease patients with contradictory results. Thus, we reviewed here all studies using this technique in Parkinson disease patients and further performed a meta-analysis of RCTs where Nordic Walking was evaluated against standard medical care or other types of physical exercise. Nine studies including four RCTs were reviewed for a total of 127 patients who were assigned to the Nordic Walking program. The majority of studies reported beneficial effects of Nordic Walking on either motor or non-motor variables, but many limitations were observed that hamper drawing definitive conclusions and it is largely unclear whether the benefits persist over time. It would appear that little baseline disability is the strongest predictor of response. The meta-analysis of the 4 RCTs yielded a statistically significant reduction of the UPDRS-3 score, but its value of less than 1 point does not appear to be clinically meaningful. Well-designed, large RCTs should be performed both against standard medical care and other types of physical exercise to definitively address whether Nordic Walking can be beneficial in PD. Copyright © 2017. Published by Elsevier Ltd.
Nagano, Katsuhito; Hori, Hideaki; Muramatsu, Ken
2015-02-01
[Purpose] The purpose of this study was to clarify the difference in gait parameters of at-home walking and the 10-meter walking test results of individuals with hemiparesis. [Subjects] A total of 14 hemiparetic stroke recovery patients participated in this study. Inclusion criteria were: living at home, the ability to walk independently, and demonstrated low extremity on recovery stages III-V on the Brunnstrom Approach. The average age of the subjects was 66 years. [Methods] We used video surveillance and the inked footprint technique to record usual walking speed and maximum speed patterns both in subjects' homes and during the 10-meter walking test. From these methods, walking speed, stride length, and step rate were calculated. [Results] While both usual and maximum walking speeds of the 10-meter walking test correlated with stride length and step rate, at-home walking speeds only significantly correlated with stride length. [Conclusion] Walking patterns of the 10-meter walking test are quantifiably distinct from those demonstrated in patients' homes, and this difference is mainly characterized by stride length. In order to enhance in-home walking ability, exercises that improve length of stride rather than step rate should be recommended.
Directory of Open Access Journals (Sweden)
Xizhe Zang
2016-03-01
Full Text Available To achieve high walking stability for a passive dynamic walking robot is not easy. In this article, we aim to investigate whether the walking performance for a passive dynamic walking robot can be improved by just simply changing the swing ankle angle before impact. To validate this idea, a passive bipedal walking model with two straight legs, two flat feet, a hip joint, and two ankle joints was built in this study. The walking dynamics that contains double stance phase was derived. By numerical simulation of the walking in MATLAB, we found that the walking performance can be adjusted effectively by only simply changing the swing ankle angle before impact. A bigger swing ankle angle in a reasonable range will lead to a higher walking stability and a lower initial walking speed of the next step. A bigger swing ankle angle before impact leads to a bigger amount of energy lost during impact for the quasi-passive dynamic walking robot which will influence the walking stability of the next step.
About the walking machine motion stability
Directory of Open Access Journals (Sweden)
V. V. Lapshin
2014-01-01
Full Text Available The use of legs as propulsive devices of the machine will increase its capability to cross rough and deformable terrain as compared with wheeled and trucked machines. Today it is already possible to speak about design of statically stable walking robots to be used in the certain areas of application. The most promising areas of their application are exploration and emergency-rescue operations in extremely complicated situations (e.g. in the zone of destruction after earthquakes, technogenic catastrophe, etc..In such dangerous situations there is a possibility for the walking machine to be overturned either because of loosing a support to one or several legs or due to significant displacement of the leg support points, which are caused by deformation or destruction of the terrain in the points of the legs support. Therefore, it is necessary to design motion control algorithms that enable teaching the motion control system of a walking robot: How to decrease the possibility of the robot overturning? How to stop the robot as quickly as possible keeping its static stability? What must be done if static stability is lost? Note that the loss of static stability does not inevitably result in the robot falling down. How to fall down better (with minimal robot destruction in inevitable case?This work investigates the first abovementioned problems, i.e. preventing a walking machine from overturning in dangerous situations. For this purpose it suggests to use a special cautious (safe gait, which allows the machine to remain statically stable if it suddenly looses support to its any leg. The natural price for the increased safety to prevent from overturning is the reduced capabilities of robot kinematics and, as a consequence, its capability to cross rough terrain. It is also suggested to reconsider the general definition of a walking machine static stability margin in order to obtain an adequate estimation of the robot overturning possibility
Fermionic entanglement via quantum walks in quantum dots
Melnikov, Alexey A.; Fedichkin, Leonid E.
2018-02-01
Quantum walks are fundamentally different from random walks due to the quantum superposition property of quantum objects. Quantum walk process was found to be very useful for quantum information and quantum computation applications. In this paper we demonstrate how to use quantum walks as a tool to generate high-dimensional two-particle fermionic entanglement. The generated entanglement can survive longer in the presence of depolorazing noise due to the periodicity of quantum walk dynamics. The possibility to create two distinguishable qudits in a system of tunnel-coupled semiconductor quantum dots is discussed.
Variability in energy cost and walking gait during race walking in competitive race walkers.
Brisswalter, J; Fougeron, B; Legros, P
1998-09-01
The aim of this study was to examine the variability of energy cost (Cw) and race walking gait after a 3-h walk at the competition pace in race walkers of the same performance level. Nine competitive race walkers were studied. In the same week, after a first test of VO2max determination, each subject completed two submaximal treadmill walks (6 min length, 0% grade, 12 km X h(-1) speed) before and after a 3-h overground test completed at the individual competition speed of the race walker. During the two submaximal tests, subjects were filmed between the 2nd and the 4th min, and physiological parameters were recorded between the 4th and the 6th min. Results showed two trends. On the one hand, we observed a significant and systematic increase in energy cost of walking (mean deltaCw = 8.4%), whereas no variation in the gait kinematics prescribed by the rules of race walking was recorded. On the other hand, this increase in metabolic energy demand was accompanied by variations of different magnitude and direction of stride length, of the excursion of the heel and of the maximal ankle flexion at toe-off among the race walkers. These results indicated that competitive race walkers are able to maintain their walking gait with exercise duration apart from a systematic increase in energy cost. Moreover, in this form of locomotion the effect of fatigue on the gait variability seems to be an individual function of the race walk constraints and the constraints of the performer.
Transit-Related Walking to Work in Promoting Physical Activity.
Yu, Chia-Yuan; Lin, Hsien-Chang
2015-04-01
Transit-related walking to work is a potential strategy for incorporating physical activity into daily life and promoting health benefits. This study estimated the transit-related walking time for work trips on the journey to and from work and examined the predictors of transit users who walked to/from transit and the workplace and those who walked 30 minutes or more per day. This study used the 2009 National Household Travel Survey and identified 772 subjects who took transit to/from work, 355 subjects who walked to/from transit and the workplace, and 145 subjects who walked 30 minutes or more per day among the 40,659 workers. Weighted logistic regressions were used for the analysis. Of the people who walked to/from transit and the workplace, 40.9% walked 30 minutes or more per day. The weighted logistic regressions revealed that low-income groups and workers living in high population density areas were more likely to walk to/from transit and the workplace. Workers living in high population density areas were more likely to walk 30 minutes or more per day. Transit-related walking to work provides an opportunity to increase physical activity levels and to meet the physical activity recommendations.
Distracted walking: Examining the extent to pedestrian safety problems
Directory of Open Access Journals (Sweden)
Judith Mwakalonge
2015-10-01
Full Text Available Pedestrians, much like drivers, have always been engaged in multi-tasking like using hand-held devices, listening to music, snacking, or reading while walking. The effects are similar to those experienced by distracted drivers. However, distracted walking has not received similar policies and effective interventions as distracted driving to improve pedestrian safety. This study reviewed the state-of-practice on policies, campaigns, available data, identified research needs, and opportunities pertaining to distracted walking. A comprehensive review of literature revealed that some of the agencies/organizations disseminate useful information about certain distracting activities that pedestrians should avoid while walking to improve their safety. Various walking safety rules/tips have been given, such as not wearing headphones or talking on a cell phone while crossing a street, keeping the volume down, hanging up the phone while walking, being aware of traffic, and avoiding distractions like walking with texting. The majority of the past observational-based and experimental-based studies reviewed in this study on distracted walking is in agreement that there is a positive correlation between distraction and unsafe walking behavior. However, limitations of the existing crash data suggest that distracted walking may not be a severe threat to the public health. Current pedestrian crash data provide insufficient information for researchers to examine the extent to which distracted walking causes and/or contributes to actual pedestrian safety problems.
Lower limb joint moment during walking in water.
Miyoshi, Tasuku; Shirota, Takashi; Yamamoto, Shin-Ichiro; Nakazawa, Kimitaka; Akai, Masami
2003-11-04
Walking in water is a widely used rehabilitation method for patients with orthopedic disorders or arthritis, based on the belief that the reduction of weight in water makes it a safer medium and prevents secondary injuries of the lower-limb joints. To our knowledge, however, no experimental data on lower-limb joint moment during walking in water is available. The aim of this study was to quantify the joint moments of the ankle, knee, and hip during walking in water in comparison with those on land. Eight healthy volunteers walked on land and in water at a speed comfortable for them. A video-motion analysis system and waterproof force platform were used to obtain kinematic data and to calculate the joint moments. The hip joint moment was shown to be an extension moment almost throughout the stance phase during walking in water, while it changed from an extension- to flexion-direction during walking on land. The knee joint moment had two extension peaks during walking on land, whereas it had only one extension peak, a late one, during walking in water. The ankle joint moment during walking in water was considerably reduced but in the same direction, plantarflexion, as that during walking on land. The joint moments of the hip, knee, and ankle were not merely reduced during walking in water; rather, inter-joint coordination was totally changed.
Cardiovascular Responses Associated with Daily Walking in Subacute Stroke
Directory of Open Access Journals (Sweden)
Sanjay K. Prajapati
2013-01-01
Full Text Available Despite the importance of regaining independent ambulation after stroke, the amount of daily walking completed during in-patient rehabilitation is low. The purpose of this study is to determine if (1 walking-related heart rate responses reached the minimum intensity necessary for therapeutic aerobic exercise (40%–60% heart rate reserve or (2 heart rate responses during bouts of walking revealed excessive workload that may limit walking (>80% heart rate reserve. Eight individuals with subacute stroke attending in-patient rehabilitation were recruited. Participants wore heart rate monitors and accelerometers during a typical rehabilitation day. Walking-related changes in heart rate and walking bout duration were determined. Patients did not meet the minimum cumulative requirements of walking intensity (>40% heart rate reserve and duration (>10 minutes continuously necessary for cardiorespiratory benefit. Only one patient exceeded 80% heart rate reserve. The absence of significant increases in heart rate associated with walking reveals that patients chose to walk at speeds well below a level that has meaningful cardiorespiratory health benefits. Additionally, cardiorespiratory workload is unlikely to limit participation in walking. Measurement of heart rate and walking during in-patient rehabilitation may be a useful approach to encourage patients to increase the overall physical activity and to help facilitate recovery.
Lindemann, Ulrich; Schwenk, Michael; Schmitt, Syn; Weyrich, Michael; Schlicht, Wolfgang; Becker, Clemens
2017-08-01
Wheeled walkers are recommended to improve walking performance in older persons and to encourage and assist participation in daily life. Nevertheless, using a wheeled walker can cause serious problems in the natural environment. This study aimed to compare uphill and downhill walking with walking level in geriatric patients using a wheeled walker. Furthermore, we investigated the effect of using a wheeled walker with respect to dual tasking when walking level. A total of 20 geriatric patients (median age 84.5 years) walked 10 m at their habitual pace along a level surface, uphill and downhill, with and without a standard wheeled walker. Gait speed, stride length and cadence were assessed by wearable sensors and the walk ratio was calculated. When using a wheeled walker while walking level the walk ratio improved (0.58 m/[steps/min] versus 0.57 m/[steps/min], p = 0.023) but gait speed decreased (1.07 m/s versus 1.12 m/s, p = 0.020) when compared to not using a wheeled walker. With respect to the walk ratio, uphill and downhill walking with a wheeled walker decreased walking performance when compared to level walking (0.54 m/[steps/min] versus 0.58 m/[steps/min], p = 0.023 and 0.55 m/[steps/min] versus 0.58 m/[steps/min], p = 0.001, respectively). At the same time, gait speed decreased (0.079 m/s versus 1.07 m/s, p walker improved the quality of level walking but the performance of uphill and downhill walking was worse compared to walking level when using a wheeled walker.
Stride rate and walking intensity in healthy older adults.
Peacock, Leslie; Hewitt, Allan; Rowe, David A; Sutherland, Rona
2014-04-01
The study investigated (a) walking intensity (stride rate and energy expenditure) under three speed instructions; (b) associations between stride rate, age, height, and walking intensity; and (c) synchronization between stride rate and music tempo during overground walking in a population of healthy older adults. Twenty-nine participants completed 3 treadmill-walking trials and 3 overground-walking trials at 3 self-selected speeds. Treadmill VO2 was measured using indirect calorimetry. Stride rate and music tempo were recorded during overground-walking trials. Mean stride rate exceeded minimum thresholds for moderate to vigorous physical activity (MVPA) under slow (111.41 ± 11.93), medium (118.17 ± 11.43), and fast (123.79 ± 11.61) instructions. A multilevel model showed that stride rate, age, and height have a significant effect (p Music can be a useful way to guide walking cadence.
Generalized atmospheric sampling of self-avoiding walks
International Nuclear Information System (INIS)
Van Rensburg, E J Janse; Rechnitzer, A
2009-01-01
In this paper, we introduce a new Monte Carlo method for sampling lattice self-avoiding walks. The method, which we call 'GAS' (generalized atmospheric sampling), samples walks along weighted sequences by implementing elementary moves generated by the positive, negative and neutral atmospheric statistics of the walks. A realized sequence is weighted such that the average weight of states of length n is proportional to the number of self-avoiding walks from the origin c n . In addition, the method also self-tunes to sample from uniform distributions over walks of lengths in an interval [0, n max ]. We show how to implement GAS using both generalized and endpoint atmospheres of walks and analyse our data to obtain estimates of the growth constant and entropic exponent of self-avoiding walks in the square and cubic lattices.
A random walk down Main Street
Directory of Open Access Journals (Sweden)
David Matthew Levinson
2016-08-01
Full Text Available US suburbs have often been characterized by their relatively low walk accessibility compared to more urban environments, and US urban environments have been char- acterized by low walk accessibility compared to cities in other countries. Lower overall density in the suburbs implies that activities, if spread out, would have a greater distance between them. But why should activities be spread out instead of developed contiguously? This brief research note builds a positive model for the emergence of contiguous development along “Main Street” to illustrate the trade-offs that result in the built environment we observe. It then suggests some policy interventions to place a “thumb on the scale” to choose which parcels will develop in which sequence to achieve socially preferred outcomes.
Walking beam pumping unit system efficiency measurements
International Nuclear Information System (INIS)
Kilgore, J.J.; Tripp, H.A.; Hunt, C.L. Jr.
1991-01-01
The cost of electricity used by walking beam pumping units is a major expense in producing crude oil. However, only very limited information is available on the efficiency of beam pumping systems and less is known about the efficiency of the various components of the pumping units. This paper presents and discusses measurements that have been made on wells at several Shell locations and on a specially designed walking beam pump test stand at Lufkin Industries. These measurements were made in order to determine the overall system efficiency and efficiency of individual components. The results of this work show that the overall beam pumping system efficiency is normally between 48 and 58 percent. This is primarily dependent on the motor size, motor type, gearbox size, system's age, production, pump size, tubing size, and rod sizes
Random walk and the heat equation
Lawler, Gregory F
2010-01-01
The heat equation can be derived by averaging over a very large number of particles. Traditionally, the resulting PDE is studied as a deterministic equation, an approach that has brought many significant results and a deep understanding of the equation and its solutions. By studying the heat equation by considering the individual random particles, however, one gains further intuition into the problem. While this is now standard for many researchers, this approach is generally not presented at the undergraduate level. In this book, Lawler introduces the heat equation and the closely related notion of harmonic functions from a probabilistic perspective. The theme of the first two chapters of the book is the relationship between random walks and the heat equation. The first chapter discusses the discrete case, random walk and the heat equation on the integer lattice; and the second chapter discusses the continuous case, Brownian motion and the usual heat equation. Relationships are shown between the two. For exa...
Locomotor sequence learning in visually guided walking
DEFF Research Database (Denmark)
Choi, Julia T; Jensen, Peter; Nielsen, Jens Bo
2016-01-01
walking. In addition, we determined how age (i.e., healthy young adults vs. children) and biomechanical factors (i.e., walking speed) affected the rate and magnitude of locomotor sequence learning. The results showed that healthy young adults (age 24 ± 5 years, N = 20) could learn a specific sequence...... of step lengths over 300 training steps. Younger children (age 6-10 years, N = 8) have lower baseline performance, but their magnitude and rate of sequence learning was the same compared to older children (11-16 years, N = 10) and healthy adults. In addition, learning capacity may be more limited...... to modify step length from one trial to the next. Our sequence learning paradigm is derived from the serial reaction-time (SRT) task that has been used in upper limb studies. Both random and ordered sequences of step lengths were used to measure sequence-specific and sequence non-specific learning during...
Random walks, random fields, and disordered systems
Černý, Jiří; Kotecký, Roman
2015-01-01
Focusing on the mathematics that lies at the intersection of probability theory, statistical physics, combinatorics and computer science, this volume collects together lecture notes on recent developments in the area. The common ground of these subjects is perhaps best described by the three terms in the title: Random Walks, Random Fields and Disordered Systems. The specific topics covered include a study of Branching Brownian Motion from the perspective of disordered (spin-glass) systems, a detailed analysis of weakly self-avoiding random walks in four spatial dimensions via methods of field theory and the renormalization group, a study of phase transitions in disordered discrete structures using a rigorous version of the cavity method, a survey of recent work on interacting polymers in the ballisticity regime and, finally, a treatise on two-dimensional loop-soup models and their connection to conformally invariant systems and the Gaussian Free Field. The notes are aimed at early graduate students with a mod...
Two-color walking Peregrine solitary waves.
Baronio, Fabio; Chen, Shihua; Mihalache, Dumitru
2017-09-15
We study the extreme localization of light, evolving upon a non-zero background, in two-color parametric wave interaction in nonlinear quadratic media. We report the existence of quadratic Peregrine solitary waves, in the presence of significant group-velocity mismatch between the waves (or Poynting vector beam walk-off), in the regime of cascading second-harmonic generation. This finding opens a novel path for the experimental demonstration of extreme rogue waves in ultrafast quadratic nonlinear optics.
Dynamic random walks theory and applications
Guillotin-Plantard, Nadine
2006-01-01
The aim of this book is to report on the progress realized in probability theory in the field of dynamic random walks and to present applications in computer science, mathematical physics and finance. Each chapter contains didactical material as well as more advanced technical sections. Few appendices will help refreshing memories (if necessary!).· New probabilistic model, new results in probability theory· Original applications in computer science· Applications in mathematical physics· Applications in finance
Weak limits for quantum random walks
International Nuclear Information System (INIS)
Grimmett, Geoffrey; Janson, Svante; Scudo, Petra F.
2004-01-01
We formulate and prove a general weak limit theorem for quantum random walks in one and more dimensions. With X n denoting position at time n, we show that X n /n converges weakly as n→∞ to a certain distribution which is absolutely continuous and of bounded support. The proof is rigorous and makes use of Fourier transform methods. This approach simplifies and extends certain preceding derivations valid in one dimension that make use of combinatorial and path integral methods
Neighborhood Design for Walking and Biking
Brown, Barbara B.; Smith, Ken R.; Hanson, Heidi; Fan, Jessie X.; Kowaleski-Jones, Lori; Zick, Cathleen D.
2013-01-01
Background Neighborhood designs often relate to physical activity and to BMI. Purpose Does neighborhood walkability/bikeability relate to BMI and obesity risk and does moderate-to-vigorous physical activity (MVPA) account for some of the relationship? Methods Census 2000 provided walkability/bikeability measures—block group proportions of workers who walk or bike to work, housing age, and population density—and National Health and Nutrition Examination Study (NHANES 2003–2006) provided MVPA accelerometer measures. Regression analyses (2011–2012) adjusted for geographic clustering and multiple control variables. Results Greater density and older housing were associated with lower male BMI in bivariate analyses, but there were no density and housing age effects in multivariate models. For women, greater proportions of neighborhood workers who walk to work (M=0.02) and more MVPA was associated with lower BMI and lower obesity risk. For men, greater proportions of workers who bike to work (M=0.004) and more MVPA was associated with lower BMI and obesity risk. For both effects, MVPA partially mediated the relationships between walkability/bikeability and BMI. If such associations are causal, doubling walk and bike-to-work proportions (to 0.04 and 0.008) would have –0.3 and –0.33 effects on the average BMIs of adult women and men living in the neighborhood. This equates to 1.5 lbs for a 64” woman and 2.3 lbs for a 69” man. Conclusions Although walking/biking to work is rare in the U.S., greater proportions of such workers in neighborhoods relate to lower weight and higher MVPA. Bikeability merits greater attention as a modifiable activity-friendliness factor, particularly for men. PMID:23415119
Conifer-Derived Monoterpenes and Forest Walking
Sumitomo, Kazuhiro; Akutsu, Hiroaki; Fukuyama, Syusei; Minoshima, Akiho; Kukita, Shin; Yamamura, Yuji; Sato, Yoshiaki; Hayasaka, Taiki; Osanai, Shinobu; Funakoshi, Hiroshi; Hasebe, Naoyuki; Nakamura, Masao
2015-01-01
Conifer and broadleaf trees emit volatile organic compounds in the summer. The major components of these emissions are volatile monoterpenes. Using solid phase microextraction fiber as the adsorbant, monoterpenes were successfully detected and identified in forest air samples. Gas chromatography/mass chromatogram of monoterpenes in the atmosphere of a conifer forest and that of serum from subjects who were walking in a forest were found to be similar each other. The amounts of α-pinene in the...
A Random Walk Picture of Basketball
Gabel, Alan; Redner, Sidney
2012-02-01
We analyze NBA basketball play-by-play data and found that scoring is well described by a weakly-biased, anti-persistent, continuous-time random walk. The time between successive scoring events follows an exponential distribution, with little memory between events. We account for a wide variety of statistical properties of scoring, such as the distribution of the score difference between opponents and the fraction of game time that one team is in the lead.
A Short Walk along the Gravimeters Path
Directory of Open Access Journals (Sweden)
Iginio Marson
2012-01-01
Full Text Available The history of gravity measurements begun in 1604 with Galileo Galilei experiments on the acceleration due to the gravity force of the earth, g, along inclined planes. In his memory, the most used unit to measure g is the gal (10−2 m/s2. The paper takes the interested reader through a walk along some of the most important achievements in gravity measurements and gives some perspectives for future developments in terrestrial gravity.
A correlated Walks' theory for DNA denaturation
International Nuclear Information System (INIS)
Mejdani, R.
1994-08-01
We have shown that by using a correlated Walks' theory for the lattice gas model on a one-dimensional lattice, we can study, beside the saturation curves obtained before for the enzyme kinetics, also the DNA denaturation process. In the limit of no interactions between sites the equation for melting curves of DNA reduces to the random model equation. Thus our leads naturally to this classical equation in the limiting case. (author). 22 refs, 3 figs
Compliant walking appears metabolically advantageous at extreme step lengths.
Kim, Jaehoon; Bertram, John E A
2018-05-19
Humans alter gait in response to unusual gait circumstances to accomplish the task of walking. For instance, subjects spontaneously increase leg compliance at a step length threshold as step length increases. Here we test the hypothesis that this transition occurs based on the level of energy expenditure, where compliant walking becomes less energetically demanding at long step lengths. To map and compare the metabolic cost of normal and compliant walking as step length increases. 10 healthy individuals walked on a treadmill using progressively increasing step lengths (100%, 120%, 140% and 160% of preferred step length), in both normal and compliant leg walking as energy expenditure was recorded via indirect calorimetry. Leg compliance was controlled by lowering the center-of-mass trajectory during stance, forcing the leg to flex and extend as the body moved over the foot contact. For normal step lengths, compliant leg walking was more costly than normal walking gait, but compliant leg walking energetic cost did not increase as rapidly for longer step lengths. This led to an intersection between normal and compliant walking cost curves at 114% relative step length (regression analysis; r 2 = 0.92 for normal walking; r 2 = 0.65 for compliant walking). Compliant leg walking is less energetically demanding at longer step lengths where a spontaneous shift to compliant walking has been observed, suggesting the human motor control system is sensitive to energetic requirements and will employ alternate movement patterns if advantageous strategies are available. The transition could be attributed to the interplay between (i) leg work controlling body travel during single stance and (ii) leg work to control energy loss in the step-to-step transition. Compliant leg walking requires more stance leg work at normal step lengths, but involves less energy loss at the step-to-step transition for very long steps. Copyright © 2018 Elsevier B.V. All rights reserved.
Random walks on generalized Koch networks
International Nuclear Information System (INIS)
Sun, Weigang
2013-01-01
For deterministically growing networks, it is a theoretical challenge to determine the topological properties and dynamical processes. In this paper, we study random walks on generalized Koch networks with features that include an initial state that is a globally connected network to r nodes. In each step, every existing node produces m complete graphs. We then obtain the analytical expressions for first passage time (FPT), average return time (ART), i.e. the average of FPTs for random walks from node i to return to the starting point i for the first time, and average sending time (AST), defined as the average of FPTs from a hub node to all other nodes, excluding the hub itself with regard to network parameters m and r. For this family of Koch networks, the ART of the new emerging nodes is identical and increases with the parameters m or r. In addition, the AST of our networks grows with network size N as N ln N and also increases with parameter m. The results obtained in this paper are the generalizations of random walks for the original Koch network. (paper)
The Walk-Man Robot Software Architecture
Directory of Open Access Journals (Sweden)
Mirko Ferrati
2016-05-01
Full Text Available A software and control architecture for a humanoid robot is a complex and large project, which involves a team of developers/researchers to be coordinated and requires many hard design choices. If such project has to be done in a very limited time, i.e., less than 1 year, more constraints are added and concepts, such as modular design, code reusability, and API definition, need to be used as much as possible. In this work, we describe the software architecture developed for Walk-Man, a robot participant at the Darpa Robotics Challenge. The challenge required the robot to execute many different tasks, such as walking, driving a car, and manipulating objects. These tasks need to be solved by robotics specialists in their corresponding research field, such as humanoid walking, motion planning, or object manipulation. The proposed architecture was developed in 10 months, provided boilerplate code for most of the functionalities required to control a humanoid robot and allowed robotics researchers to produce their control modules for DRC tasks in a short time. Additional capabilities of the architecture include firmware and hardware management, mixing of different middlewares, unreliable network management, and operator control station GUI. All the source code related to the architecture and some control modules have been released as open source projects.
Gait Recognition and Walking Exercise Intensity Estimation
Directory of Open Access Journals (Sweden)
Bor-Shing Lin
2014-04-01
Full Text Available Cardiovascular patients consult doctors for advice regarding regular exercise, whereas obese patients must self-manage their weight. Because a system for permanently monitoring and tracking patients’ exercise intensities and workouts is necessary, a system for recognizing gait and estimating walking exercise intensity was proposed. For gait recognition analysis, αβ filters were used to improve the recognition of athletic attitude. Furthermore, empirical mode decomposition (EMD was used to filter the noise of patients’ attitude to acquire the Fourier transform energy spectrum. Linear discriminant analysis was then applied to this energy spectrum for training and recognition. When the gait or motion was recognized, the walking exercise intensity was estimated. In addition, this study addressed the correlation between inertia and exercise intensity by using the residual function of the EMD and quadratic approximation to filter the effect of the baseline drift integral of the acceleration sensor. The increase in the determination coefficient of the regression equation from 0.55 to 0.81 proved that the accuracy of the method for estimating walking exercise intensity proposed by Kurihara was improved in this study.
Malicet, Dominique
2017-12-01
In this paper, we study random walks {g_n=f_{n-1}\\ldots f_0} on the group Homeo ( S 1) of the homeomorphisms of the circle, where the homeomorphisms f k are chosen randomly, independently, with respect to a same probability measure {ν}. We prove that under the only condition that there is no probability measure invariant by {ν}-almost every homeomorphism, the random walk almost surely contracts small intervals. It generalizes what has been known on this subject until now, since various conditions on {ν} were imposed in order to get the phenomenon of contractions. Moreover, we obtain the surprising fact that the rate of contraction is exponential, even in the lack of assumptions of smoothness on the f k 's. We deduce various dynamical consequences on the random walk ( g n ): finiteness of ergodic stationary measures, distribution of the trajectories, asymptotic law of the evaluations, etc. The proof of the main result is based on a modification of the Ávila-Viana's invariance principle, working for continuous cocycles on a space fibred in circles.
Random walk to a nonergodic equilibrium concept
Bel, G.; Barkai, E.
2006-01-01
Random walk models, such as the trap model, continuous time random walks, and comb models, exhibit weak ergodicity breaking, when the average waiting time is infinite. The open question is, what statistical mechanical theory replaces the canonical Boltzmann-Gibbs theory for such systems? In this paper a nonergodic equilibrium concept is investigated, for a continuous time random walk model in a potential field. In particular we show that in the nonergodic phase the distribution of the occupation time of the particle in a finite region of space approaches U- or W-shaped distributions related to the arcsine law. We show that when conditions of detailed balance are applied, these distributions depend on the partition function of the problem, thus establishing a relation between the nonergodic dynamics and canonical statistical mechanics. In the ergodic phase the distribution function of the occupation times approaches a δ function centered on the value predicted based on standard Boltzmann-Gibbs statistics. The relation of our work to single-molecule experiments is briefly discussed.
Visual evoked responses during standing and walking
Directory of Open Access Journals (Sweden)
Klaus Gramann
2010-10-01
Full Text Available Human cognition has been shaped both by our body structure and by its complex interactionswith its environment. Our cognition is thus inextricably linked to our own and others’ motorbehavior. To model brain activity associated with natural cognition, we propose recording theconcurrent brain dynamics and body movements of human subjects performing normal actions.Here we tested the feasibility of such a mobile brain/body (MoBI imaging approach byrecording high-density electroencephalographic (EEG activity and body movements of subjectsstanding or walking on a treadmill while performing a visual oddball response task. Independentcomponent analysis (ICA of the EEG data revealed visual event-related potentials (ERPs thatduring standing, slow walking, and fast walking did not differ across movement conditions,demonstrating the viability of recording brain activity accompanying cognitive processes duringwhole body movement. Non-invasive and relatively low-cost MoBI studies of normal, motivatedactions might improve understanding of interactions between brain and body dynamics leadingto more complete biological models of cognition.
Quantum simulation of a quantum stochastic walk
Govia, Luke C. G.; Taketani, Bruno G.; Schuhmacher, Peter K.; Wilhelm, Frank K.
2017-03-01
The study of quantum walks has been shown to have a wide range of applications in areas such as artificial intelligence, the study of biological processes, and quantum transport. The quantum stochastic walk (QSW), which allows for incoherent movement of the walker, and therefore, directionality, is a generalization on the fully coherent quantum walk. While a QSW can always be described in Lindblad formalism, this does not mean that it can be microscopically derived in the standard weak-coupling limit under the Born-Markov approximation. This restricts the class of QSWs that can be experimentally realized in a simple manner. To circumvent this restriction, we introduce a technique to simulate open system evolution on a fully coherent quantum computer, using a quantum trajectories style approach. We apply this technique to a broad class of QSWs, and show that they can be simulated with minimal experimental resources. Our work opens the path towards the experimental realization of QSWs on large graphs with existing quantum technologies.
Energy Expenditure in Vinyasa Yoga Versus Walking.
Sherman, Sally A; Rogers, Renee J; Davis, Kelliann K; Minster, Ryan L; Creasy, Seth A; Mullarkey, Nicole C; O'Dell, Matthew; Donahue, Patrick; Jakicic, John M
2017-08-01
Whether the energy cost of vinyasa yoga meets the criteria for moderate-to-vigorous physical activity has not been established. To compare energy expenditure during acute bouts of vinyasa yoga and 2 walking protocols. Participants (20 males, 18 females) performed 60-minute sessions of vinyasa yoga (YOGA), treadmill walking at a self-selected brisk pace (SELF), and treadmill walking at a pace that matched the heart rate of the YOGA session (HR-Match). Energy expenditure was assessed via indirect calorimetry. Energy expenditure was significantly lower in YOGA compared with HR-Match (difference = 79.5 ± 44.3 kcal; P YOGA = 3.6 ± 0.6; P YOGA, showed energy expenditure was significantly lower in YOGA compared with HR-Match (difference = 68.0 ± 40.1 kcal; P YOGA meets the criteria for moderate-intensity physical activity. Thus, YOGA may be a viable form of physical activity to achieve public health guidelines and to elicit health benefits.
Decoherence in two-dimensional quantum walks
International Nuclear Information System (INIS)
Oliveira, A. C.; Portugal, R.; Donangelo, R.
2006-01-01
We analyze the decoherence in quantum walks in two-dimensional lattices generated by broken-link-type noise. In this type of decoherence, the links of the lattice are randomly broken with some given constant probability. We obtain the evolution equation for a quantum walker moving on two-dimensional (2D) lattices subject to this noise, and we point out how to generalize for lattices in more dimensions. In the nonsymmetric case, when the probability of breaking links in one direction is different from the probability in the perpendicular direction, we have obtained a nontrivial result. If one fixes the link-breaking probability in one direction, and gradually increases the probability in the other direction from 0 to 1, the decoherence initially increases until it reaches a maximum value, and then it decreases. This means that, in some cases, one can increase the noise level and still obtain more coherence. Physically, this can be explained as a transition from a decoherent 2D walk to a coherent 1D walk
Spin, statistics, and geometry of random walks
International Nuclear Information System (INIS)
Jaroszewicz, T.; Kurzepa, P.S.
1991-01-01
The authors develop and unify two complementary descriptions of propagation of spinning particles: the directed random walk representation and the spin factor approach. Working in an arbitrary number of dimensions D, they first represent the Dirac propagator in terms of a directed random walk. They then derive the general and explicit form of the gauge connection describing parallel transport of spin and investigate the resulting quantum-mechanical problem of a particle moving on a sphere in the field of a nonabelian SO(D-1) monopole. This construction, generalizing Polyakov's results, enables them to prove the equivalence of the random walk and path-integral (spin factor) representation. As an alternative, they construct and discuss various Wess-Zumino-Witten forms of the spin factor. They clarify the role played by the coupling between the particle's spin and translational degrees of freedom in establishing the geometrical properties of particle's paths in spacetime. To this end, they carefully define and evaluate Hausdorff dimensions of bosonic and fermionic sample paths, in the covariant as well as nonrelativistic formulations. Finally, as an application of the developed formalism, they give an intuitive spacetime interpretation of chiral anomalies in terms of the geometry of fermion trajectories
Treadmill walking of the pneumatic biped Lucy: Walking at different speeds and step-lengths
Vanderborght, B.; Verrelst, B.; Van Ham, R.; Van Damme, M.; Versluys, R.; Lefeber, D.
2008-07-01
Actuators with adaptable compliance are gaining interest in the field of legged robotics due to their capability to store motion energy and to exploit the natural dynamics of the system to reduce energy consumption while walking and running. To perform research on compliant actuators we have built the planar biped Lucy. The robot has six actuated joints, the ankle, knee and hip of both legs with each joint powered by two pleated pneumatic artificial muscles in an antagonistic setup. This makes it possible to control both the torque and the stiffness of the joint. Such compliant actuators are used in passive walkers to overcome friction when walking over level ground and to improve stability. Typically, this kind of robots is only designed to walk with a constant walking speed and step-length, determined by the mechanical design of the mechanism and the properties of the ground. In this paper, we show that by an appropriate control, the robot Lucy is able to walk at different speeds and step-lengths and that adding and releasing weights does not affect the stability of the robot. To perform these experiments, an automated treadmill was built
'It was not just a walking experience': reflections on the role of care in dog-walking.
Degeling, Chris; Rock, Melanie
2013-09-01
Research into physical activity and human health has recently begun to attend to dog-walking. This study extends the literature on dog-walking as a health behaviour by conceptualizing dog-walking as a caring practice. It centres on qualitative interviews with 11 Canadian dog-owners. All participants resided in urban neighbourhoods identified through previous quantitative research as conducive to dog-walking. Canine characteristics, including breed and age, were found to influence people's physical activity. The health of the dog and its position in the life-course influenced patterns of dog-walking. Frequency, duration and spatial patterns of dog-walking all depended on relationships and people's capacity to tap into resources. In foregrounding networks of care, inclusive of pets and public spaces, a relational conceptualization of dog-walking as a practice of caring helps to make sense of heterogeneity in patterns of physical activity among dog-owners.
Karpatkin, Herb; Cohen, Evan T; Rzetelny, Adam; Parrott, J Scott; Breismeister, Breanne; Hartman, Ryan; Luu, Ronald; Napolione, Danielle
2015-07-01
Fatigue is a common, disabling symptom experienced by persons with multiple sclerosis (MS). Evidence shows that intermittent exercise is associated in improved performance and negligible fatigue. The purpose of this study was to examine whether subjects with MS walk greater distances with less fatigue under intermittent (INT) or continuous (CONT) walking condition. Twenty-seven subjects with MS (median Extended Disability Severity Scale 3.5, interquartile range 1.6) walked in the CONT (ie, 6 uninterrupted minutes) and INT (ie, three 2-minute walking bouts) conditions in a randomized crossover. Distance was measured for the entire 6-minute walking period and each 2-minute increment. Fatigue was measured as the difference in a visual analog scale of fatigue (ΔVAS-F) immediately preceding and following each trial. Participants walked greater distances in the INT condition compared to the CONT condition (P = 0.005). There was a significant interaction of walking condition and time (P walked in the INT condition changed across time. ΔVAS-F was significantly lower in the INT condition than in the CONT condition (P = 0.036). Subjects with MS walked farther, and with less fatigue, when walking intermittently rather than continuously. Persons with MS may be able to tolerate a greater dose of walking training if the walking bouts are intermittent. Further study to determine the benefits of a walking exercise program using intermittent walking is recommended.Video Abstract available for additional insights from the authors (Supplemental Digital Content 1, http://links.lww.com/JNPT/A103).
Neuromechanical adaptations during a robotic powered exoskeleton assisted walking session.
Ramanujam, Arvind; Cirnigliaro, Christopher M; Garbarini, Erica; Asselin, Pierre; Pilkar, Rakesh; Forrest, Gail F
2017-04-20
To evaluate gait parameters and neuromuscular profiles of exoskeleton-assisted walking under Max Assist condition during a single-session for; (i) able bodied (AB) individuals walking assisted with (EXO) and without (non-EXO) a powered exoskeleton, (ii) non-ambulatory SCI individuals walking assisted with a powered exoskeleton. Single-session. Motion analysis laboratory. Four AB individuals and four individuals with SCI. Powered lower extremity exoskeleton. Temporal-spatial parameters, kinematics, walking velocity and electromyography data. AB individuals in exoskeleton showed greater stance time and a significant reduction in walking velocity (P exoskeleton movements, they walked with an increased velocity and lowered stance time to resemble that of slow walking. For SCI individuals, mean percent stance time was higher and walking velocity was lower compared to all AB walking conditions (P exoskeleton and moreover with voluntary control there is a greater temporal-spatial response of the lower limbs. Also, there are neuromuscular phasic adaptions for both AB and SCI groups while walking in the exoskeleton that are inconsistent to non-EXO gait muscle activation.
Can environmental improvement change the population distribution of walking?
Panter, Jenna; Ogilvie, David
2017-06-01
Few studies have explored the impact of environmental change on walking using controlled comparisons. Even fewer have examined whose behaviour changes and how. In a natural experimental study of new walking and cycling infrastructure, we explored changes in walking, identified groups who changed in similar ways and assessed whether exposure to the infrastructure was associated with trajectories of walking. 1257 adults completed annual surveys assessing walking, sociodemographic and health characteristics and use of the infrastructure (2010-2012). Residential proximity to the new routes was assessed objectively. We used latent growth curve models to assess change in total walking, walking for recreation and for transport, used simple descriptive analysis and latent class analysis (LCA) to identify groups who changed in similar ways and examined factors associated with group membership using multinomial regression. LCA identified five trajectories, characterised by consistently low levels; consistently high levels; decreases; short-lived increases; and sustained increases. Those with lower levels of education and lower incomes were more likely to show both short-lived and sustained increases in walking for transport. However, those with lower levels of education were less likely to take up walking. Proximity to the intervention was associated with both uptake of and short-lived increases in walking for transport. Environmental improvement encouraged the less active to take up walking for transport, as well as encouraging those who were already active to walk more. Further research should disentangle the role of socioeconomic characteristics in determining use of new environments and changes in walking. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/.
Directory of Open Access Journals (Sweden)
Sara L. Warber
2013-10-01
Full Text Available The benefits of walking in natural environments for well-being are increasingly understood. However, less well known are the impacts different types of natural environments have on psychological and emotional well-being. This cross-sectional study investigated whether group walks in specific types of natural environments were associated with greater psychological and emotional well-being compared to group walks in urban environments. Individuals who frequently attended a walking group once a week or more (n = 708 were surveyed on mental well-being (Warwick Edinburgh Mental Well-being Scale, depression (Major Depressive Inventory, perceived stress (Perceived Stress Scale and emotional well-being (Positive and Negative Affect Schedule. Compared to group walks in urban environments, group walks in farmland were significantly associated with less perceived stress and negative affect, and greater mental well-being. Group walks in green corridors were significantly associated with less perceived stress and negative affect. There were no significant differences between the effect of any environment types on depression or positive affect. Outdoor walking group programs could be endorsed through “green prescriptions” to improve psychological and emotional well-being, as well as physical activity.
Directory of Open Access Journals (Sweden)
King Tania L
2012-09-01
Full Text Available Abstract Background Using two different measures of park area, at three buffer distances, we sought to investigate the ways in which park area and proximity to parks, are related to the frequency of walking (for all purposes in Australian adults. Little previous research has been conducted in this area, and results of existing research have been mixed. Methods Residents of 50 urban areas in metropolitan Melbourne, Australia completed a physical activity survey (n = 2305. Respondents reported how often they walked for ≥10 minutes in the previous month. Walking frequency was dichotomised to ‘less than weekly’ (less than 1/week and ‘at least weekly’ (1/week or more. Using Geographic Information Systems, Euclidean buffers were created around each respondent’s home at three distances: 400metres (m, 800 m and 1200 m. Total area of parkland in each person’s buffer was calculated for the three buffers. Additionally, total area of ‘larger parks’, (park space ≥ park with Australian Rules Football oval (17,862 m2, was calculated for each set of buffers. Area of park was categorised into tertiles for area of all parks, and area of larger parks (the lowest tertile was used as the reference category. Multilevel logistic regression, with individuals nested within areas, was used to estimate the effect of area of parkland on walking frequency. Results No statistically significant associations were found between walking frequency and park area (total and large parks within 400 m of respondent’s homes. For total park area within 800 m, the odds of walking at least weekly were lower for those in the mid (OR 0.65, 95% CI 0.46-0.91 and highest (OR 0.65, 95% CI 0.44-0.95 tertile of park area compared to those living in areas with the least amount of park area. Similar results were observed for total park area in the 1200 m buffers. When only larger parks were investigated, again more frequent walking was less likely when respondents had
Optimal speeds for walking and running, and walking on a moving walkway.
Srinivasan, Manoj
2009-06-01
Many aspects of steady human locomotion are thought to be constrained by a tendency to minimize the expenditure of metabolic cost. This paper has three parts related to the theme of energetic optimality: (1) a brief review of energetic optimality in legged locomotion, (2) an examination of the notion of optimal locomotion speed, and (3) an analysis of walking on moving walkways, such as those found in some airports. First, I describe two possible connotations of the term "optimal locomotion speed:" that which minimizes the total metabolic cost per unit distance and that which minimizes the net cost per unit distance (total minus resting cost). Minimizing the total cost per distance gives the maximum range speed and is a much better predictor of the speeds at which people and horses prefer to walk naturally. Minimizing the net cost per distance is equivalent to minimizing the total daily energy intake given an idealized modern lifestyle that requires one to walk a given distance every day--but it is not a good predictor of animals' walking speeds. Next, I critique the notion that there is no energy-optimal speed for running, making use of some recent experiments and a review of past literature. Finally, I consider the problem of predicting the speeds at which people walk on moving walkways--such as those found in some airports. I present two substantially different theories to make predictions. The first theory, minimizing total energy per distance, predicts that for a range of low walkway speeds, the optimal absolute speed of travel will be greater--but the speed relative to the walkway smaller--than the optimal walking speed on stationary ground. At higher walkway speeds, this theory predicts that the person will stand still. The second theory is based on the assumption that the human optimally reconciles the sensory conflict between the forward speed that the eye sees and the walking speed that the legs feel and tries to equate the best estimate of the forward
Daily intermittent hypoxia enhances walking after chronic spinal cord injury
Hayes, Heather B.; Jayaraman, Arun; Herrmann, Megan; Mitchell, Gordon S.; Rymer, William Z.
2014-01-01
Objectives: To test the hypothesis that daily acute intermittent hypoxia (dAIH) and dAIH combined with overground walking improve walking speed and endurance in persons with chronic incomplete spinal cord injury (iSCI). Methods: Nineteen subjects completed the randomized, double-blind, placebo-controlled, crossover study. Participants received 15, 90-second hypoxic exposures (dAIH, fraction of inspired oxygen [Fio2] = 0.09) or daily normoxia (dSHAM, Fio2 = 0.21) at 60-second normoxic intervals on 5 consecutive days; dAIH was given alone or combined with 30 minutes of overground walking 1 hour later. Walking speed and endurance were quantified using 10-Meter and 6-Minute Walk Tests. The trial is registered at ClinicalTrials.gov (NCT01272349). Results: dAIH improved walking speed and endurance. Ten-Meter Walk time improved with dAIH vs dSHAM after 1 day (mean difference [MD] 3.8 seconds, 95% confidence interval [CI] 1.1–6.5 seconds, p = 0.006) and 2 weeks (MD 3.8 seconds, 95% CI 0.9–6.7 seconds, p = 0.010). Six-Minute Walk distance increased with combined dAIH + walking vs dSHAM + walking after 5 days (MD 94.4 m, 95% CI 17.5–171.3 m, p = 0.017) and 1-week follow-up (MD 97.0 m, 95% CI 20.1–173.9 m, p = 0.014). dAIH + walking increased walking distance more than dAIH after 1 day (MD 67.7 m, 95% CI 1.3–134.1 m, p = 0.046), 5 days (MD 107.0 m, 95% CI 40.6–173.4 m, p = 0.002), and 1-week follow-up (MD 136.0 m, 95% CI 65.3–206.6 m, p walking improved walking speed and distance in persons with chronic iSCI. The impact of dAIH is enhanced by combination with walking, demonstrating that combinatorial therapies may promote greater functional benefits in persons with iSCI. Classification of evidence: This study provides Class I evidence that transient hypoxia (through measured breathing treatments), along with overground walking training, improves walking speed and endurance after iSCI. PMID:24285617
O'Donovan, Rhona; Kennedy, Norelee
2015-01-01
Nordic Walking (NW) is growing in popularity among people with arthritis. The aim of this study was to explore the perspectives of participants with arthritis on a NW-based walking programme including factors contributing to sustained participation in the programme. Three semi-structured focus groups were conducted with a total of 27 participants with various types of arthritis. The groups consisted of participants who completed a NW-based walking programme in the previous 4 years. Only participants who had sustained involvement in the walking group were included. Groups were audio-recorded, transcribed verbatim and thematic analysis was performed. Participants reported that the walking programme offered numerous benefits. Two distinct themes emerged: (1) "four legs instead of two legs" and (2) "a support group". Theme 1 incorporates the physical, psychological and educational benefits that stem from involvement in a walking group while Theme 2 incorporates the benefits of social support in group-based activity. Several benefits of a NW-based walking programme from the perspectives of individuals with arthritis who engage in group-based walking programmes were identified. The benefits may encourage sustained participation and justify the promotion of NW as an intervention for people with arthritis. Considering how to sustain exercise participation is important to ensure continued benefits from physical activity participation. A community-based Nordic walking-based walking programme for people with arthritis improved exercise knowledge and confidence to exercise. Group exercise is valuable in providing support and motivation to continue exercising.
On the physical realizability of quantum stochastic walks
Taketani, Bruno; Govia, Luke; Schuhmacher, Peter; Wilhelm, Frank
Quantum walks are a promising framework that can be used to both understand and implement quantum information processing tasks. The recently developed quantum stochastic walk combines the concepts of a quantum walk and a classical random walk through open system evolution of a quantum system, and have been shown to have applications in as far reaching fields as artificial intelligence. However, nature puts significant constraints on the kind of open system evolutions that can be realized in a physical experiment. In this work, we discuss the restrictions on the allowed open system evolution, and the physical assumptions underpinning them. We then introduce a way to circumvent some of these restrictions, and simulate a more general quantum stochastic walk on a quantum computer, using a technique we call quantum trajectories on a quantum computer. We finally describe a circuit QED approach to implement discrete time quantum stochastic walks.
Scaling of the atmosphere of self-avoiding walks
Energy Technology Data Exchange (ETDEWEB)
Owczarek, A L [Department of Mathematics and Statistics, The University of Melbourne, Victoria 3010 (Australia); Prellberg, T [School of Mathematical Sciences, Queen Mary, University of London, Mile End Road, London E1 4NS (United Kingdom)], E-mail: a.owczarek@ms.unimelb.edu.au, E-mail: t.prellberg@qmul.ac.uk
2008-09-19
The number of free sites next to the end of a self-avoiding walk is known as the atmosphere of the walk. The average atmosphere can be related to the number of configurations. Here we study the distribution of atmospheres as a function of length and how the number of walks of fixed atmosphere scale. Certain bounds on these numbers can be proved. We use Monte Carlo estimates to verify our conjectures in two dimensions. Of particular interest are walks that have zero atmosphere, which are known as trapped. We demonstrate that these walks scale in the same way as the full set of self-avoiding walks, barring an overall constant factor.
Probability of walking in children with cerebral palsy in Europe
DEFF Research Database (Denmark)
Beckung, E.; Hagberg, G.; Uldall, P.
2008-01-01
cerebral palsy, as well as to IQ level, active epilepsy, and severe visual and hearing impairment. Severe cerebral palsy, defined as both the inability to walk and an IQ of ...OBJECTIVES: The purpose of this work was to describe walking ability in children with cerebral palsy from the Surveillance of Cerebral Palsy in Europe common database through 21 years and to examine the association between walking ability and predicting factors. PATIENTS AND METHODS: Anonymous data...... on 10042 children with cerebral palsy born between 1976 and 1996 were gathered from 14 European centers; 9012 patients were eligible for the analyses. RESULTS: Unaided walking as the primary way of walking at 5 years of age was reported for 54%, walking with assistive devices was reported for 16...
HEAD MOVEMENT DURING WALKING IN THE CAT
ZUBAIR, HUMZA N.; BELOOZEROVA, IRINA N.; SUN, HAI; MARLINSKI, VLADIMIR
2016-01-01
Knowledge of how the head moves during locomotion is essential for understanding how locomotion is controlled by sensory systems of the head. We have analyzed head movements of the cat walking along a straight flat pathway in the darkness and light. We found that cats' head left-right translations, and roll and yaw rotations oscillated once per stride, while fore-aft and vertical translations, and pitch rotations oscillated twice. The head reached its highest vertical positions during second half of each forelimb swing, following maxima of the shoulder/trunk by 20–90°. Nose-up rotation followed head upward translation by another 40–90° delay. The peak-to-peak amplitude of vertical translation was ~1.5 cm and amplitude of pitch rotation was ~3°. Amplitudes of lateral translation and roll rotation were ~1 cm and 1.5–3°, respectively. Overall, cats' heads were neutral in roll and 10–30° nose-down, maintaining horizontal semicircular canals and utriculi within 10° of the earth horizontal. The head longitudinal velocity was 0.5–1 m/s, maximal upward and downward linear velocities were ~0.05 and ~0.1 m/s, respectively, and maximal lateral velocity was ~0.05 m/s. Maximal velocities of head pitch rotation were 20–50 °/s. During walking in light, cats stood 0.3–0.5 cm taller and held their head 0.5–2 cm higher than in darkness. Forward acceleration was 25–100% higher and peak-to-peak amplitude of head pitch oscillations was ~20 °/s larger. We concluded that, during walking, the head of the cat is held actively. Reflexes appear to play only a partial role in determining head movement, and vision might further diminish their role. PMID:27339731
Tempo and walking speed with music in the urban context.
Franěk, Marek; van Noorden, Leon; Režný, Lukáš
2014-01-01
The study explored the effect of music on the temporal aspects of walking behavior in a real outdoor urban setting. First, spontaneous synchronization between the beat of the music and step tempo was explored. The effect of motivational and non-motivational music (Karageorghis et al., 1999) on the walking speed was also studied. Finally, we investigated whether music can mask the effects of visual aspects of the walking route environment, which involve fluctuation of walking speed as a response to particular environmental settings. In two experiments, we asked participants to walk around an urban route that was 1.8 km in length through various environments in the downtown area of Hradec Králové. In Experiment 1, the participants listened to a musical track consisting of world pop music with a clear beat. In Experiment 2, participants were walking either with motivational music, which had a fast tempo and a strong rhythm, or with non-motivational music, which was slower, nice music, but with no strong implication to movement. Musical beat, as well as the sonic character of the music listened to while walking, influenced walking speed but did not lead to precise synchronization. It was found that many subjects did not spontaneously synchronize with the beat of the music at all, and some subjects synchronized only part of the time. The fast, energetic music increases the speed of the walking tempo, while slower, relaxing music makes the walking tempo slower. Further, it was found that listening to music with headphones while walking can mask the influence of the surrounding environment to some extent. Both motivational music and non-motivational music had a larger effect than the world pop music from Experiment 1. Individual differences in responses to the music listened to while walking that were linked to extraversion and neuroticism were also observed. The findings described here could be useful in rhythmic stimulation for enhancing or recovering the features of
Correlation between Body Composition and Walking Capacity in Severe Obesity
Correia de Faria Santar?m, G; de Cleva, R; Santo, Marco Aur?lio; Bernhard, Aline Biaseto; Gadducci, Alexandre Vieira; Greve, Julia Maria D?Andrea; Silva, Paulo Roberto Santos
2015-01-01
Background Obesity is associated with mobility reduction due to mechanical factors and excessive body fat. The six-minute walk test (6MWT) has been used to assess functional capacity in severe obesity. Objective To determine the association of BMI, total and segmental body composition with distance walked (6MWD) during the six-minute walk test (6MWT) according to gender and obesity grade. Setting University of S?o Paulo Medical School, Brazil; Public Practice. Methods Functional capacity was ...
Tempo and walking speed with music in the urban context
Franěk, Marek; van Noorden, Leon; Režný, Lukáš
2014-01-01
The study explored the effect of music on the temporal aspects of walking behavior in a real outdoor urban setting. First, spontaneous synchronization between the beat of the music and step tempo was explored. The effect of motivational and non-motivational music (Karageorghis et al., 1999) on the walking speed was also studied. Finally, we investigated whether music can mask the effects of visual aspects of the walking route environment, which involve fluctuation of walking speed as a response to particular environmental settings. In two experiments, we asked participants to walk around an urban route that was 1.8 km in length through various environments in the downtown area of Hradec Králové. In Experiment 1, the participants listened to a musical track consisting of world pop music with a clear beat. In Experiment 2, participants were walking either with motivational music, which had a fast tempo and a strong rhythm, or with non-motivational music, which was slower, nice music, but with no strong implication to movement. Musical beat, as well as the sonic character of the music listened to while walking, influenced walking speed but did not lead to precise synchronization. It was found that many subjects did not spontaneously synchronize with the beat of the music at all, and some subjects synchronized only part of the time. The fast, energetic music increases the speed of the walking tempo, while slower, relaxing music makes the walking tempo slower. Further, it was found that listening to music with headphones while walking can mask the influence of the surrounding environment to some extent. Both motivational music and non-motivational music had a larger effect than the world pop music from Experiment 1. Individual differences in responses to the music listened to while walking that were linked to extraversion and neuroticism were also observed. The findings described here could be useful in rhythmic stimulation for enhancing or recovering the features of
Tempo and walking speed with music in the urban context
Directory of Open Access Journals (Sweden)
Marek eFranek
2014-12-01
Full Text Available The study explored the effect of music on the temporal aspects of walking behavior in a real outdoor urban setting. First, spontaneous synchronization between the beat of the music and step tempo was explored. The effect of motivational and non-motivational music (Karageorghis et al. 1999 on the walking speed was also studied. Finally, we investigated whether music can mask the effects of visual aspects of the walking route environment, which involve fluctuation of walking speed as a response to particular environmental settings. In two experiments, we asked participants to walk around an urban route through various environments in the downtown area of Hradec Králové. In Experiment 1, the participants listened to a musical track consisting of world pop music with a clear beat. In Experiment 2, participants were walking either with motivational music, which had a fast tempo and a strong rhythm, or with non-motivational music, which was slower, nice music, but with no strong implication to movement. Musical beat, as well as the sonic character of the music listened to while walking, influenced walking speed but did not lead to precise synchronization. It was found that many subjects did not spontaneously synchronize with the beat of the music at all, and some subjects synchronized only part of the time. The fast, energetic music increases the speed of the walking tempo, while slower, relaxing music makes the walking tempo slower. Further, it was found that listening to music with headphones while walking can mask the influence of the surrounding environment to some extent. Both motivational music and non-motivational music had a larger effect than the music from Experiment 1. Individual differences in responses to the music listened to while walking that were linked to extraversion and neuroticism were also observed. The findings described here could be useful in rhythmic stimulation for enhancing or recovering the features of movement
Mall Walking Program Environments, Features, and Participants: A Scoping Review.
Farren, Laura; Belza, Basia; Allen, Peg; Brolliar, Sarah; Brown, David R; Cormier, Marc L; Janicek, Sarah; Jones, Dina L; King, Diane K; Marquez, David X; Rosenberg, Dori E
2015-08-13
Walking is a preferred and recommended physical activity for middle-aged and older adults, but many barriers exist, including concerns about safety (ie, personal security), falling, and inclement weather. Mall walking programs may overcome these barriers. The purpose of this study was to summarize the evidence on the health-related value of mall walking and mall walking programs. We conducted a scoping review of the literature to determine the features, environments, and benefits of mall walking programs using the RE-AIM framework (reach, effectiveness, adoption, implementation, and maintenance). The inclusion criteria were articles that involved adults aged 45 years or older who walked in indoor or outdoor shopping malls. Exclusion criteria were articles that used malls as laboratory settings or focused on the mechanics of walking. We included published research studies, dissertations, theses, conference abstracts, syntheses, nonresearch articles, theoretical papers, editorials, reports, policy briefs, standards and guidelines, and nonresearch conference abstracts and proposals. Websites and articles written in a language other than English were excluded. We located 254 articles on mall walking; 32 articles met our inclusion criteria. We found that malls provided safe, accessible, and affordable exercise environments for middle-aged and older adults. Programmatic features such as program leaders, blood pressure checks, and warm-up exercises facilitated participation. Individual benefits of mall walking programs included improvements in physical, social, and emotional well-being. Limited transportation to the mall was a barrier to participation. We found the potential for mall walking programs to be implemented in various communities as a health promotion measure. However, the research on mall walking programs is limited and has weak study designs. More rigorous research is needed to define best practices for mall walking programs' reach, effectiveness, adoption
The Six Minute Walk Test Revisited
Mazumder, M.
2017-12-01
Background and Purpose: Heart failure is the leading cause of death and often alters or severely restricts human mobility, an essential life function. Motion capture is an emerging tool for analyzing human movement and extremity articulation, providing quantitative information on gait and range of motion. This study uses BioStamp mechanosensors to identify differences in motion for the duration of the Six Minute Walk Test and signature patterns of muscle contraction and posture in patients with advanced heart failure compared to healthy subjects. Identification and close follow up of these patterns may allow enhanced diagnosis and the possibility for early intervention before disease worsening. Additionally, movement parameters represent a new family of potential biomarkers to track heart failure onset, progression and therapy. Methods: Prior to the Six Minute Walk Test, BioStamps (MC10) were applied to the chest, upper and lower extremities of heart failure and healthy patients and data were streamed and recorded revealing the pattern of movement in three separate axes. Conjointly, before and after the Six Minute Walk Test, the following vitals were measured per subject: heart rate, respiratory rate, blood pressure, oxygen saturation, dyspnea and leg fatigue (self-reported with Borg scale). During the test, patients were encouraged to walk as far as they can in 6 minutes on a 30m course, as we recorded the number of laps completed and oxygen saturation every minute. Results and Conclusions: The sensors captured and quantified whole body and regional motion parameters including: a. motion extent, position, acceleration and angle via incorporated accelerometers and gyroscopes; b. muscle contraction via incorporated electromyogram (EMG). Accelerometry and gyroscopic data for the last five steps of a healthy and heart failure patient are shown. While significant differences in motion for the duration of the test were not found, each category of patients had a distinct
Planning strategies for the Ambler walking robot
Wettergreen, David; Thomas, Hans; Thorpe, Chuck
1990-01-01
A hierarchy of planning strategies is proposed and explained for a walking robot called the Ambler. The hierarchy decomposes planning into levels of trajectory, gait, and footfall. An abstraction of feasible traversability allows the Ambler's trajectory planner to identify acceptable trajectories by finding paths that guarantee footfalls without specifying exactly which footfalls. Leg and body moves that achieve this trajectory can be generated by the Ambler's gait planner, which incorporates pattern constraints and measures of utility to search for the best next move. By combining constraints from the quality and details of the terrain, the Ambler's footfall planner can select footfalls that insure stability and remain within the tolerances of the gait.
The Walk-Man Robot Software Architecture
Mirko Ferrati; Alessandro Settimi; Alessandro Settimi; Luca Muratore; Alberto Cardellino; Alessio Rocchi; Enrico Mingo Hoffman; Corrado Pavan; Dimitrios Kanoulas; Nikos G. Tsagarakis; Lorenzo Natale; Lucia Pallottino
2016-01-01
A software and control architecture for a humanoid robot is a complex and large project, which involves a team of developers/researchers to be coordinated and requires many hard design choices. If such project has to be done in a very limited time, i.e., less than 1 year, more constraints are added and concepts, such as modular design, code reusability, and API definition, need to be used as much as possible. In this work, we describe the software architecture developed for Walk-Man, a robot ...
Exoskeleton Motion Control for Children Walking Rehabilitation
Directory of Open Access Journals (Sweden)
Cristina Ploscaru
2016-06-01
Full Text Available This paper introduces a quick method for motion control of an exoskeleton used on children walking rehabilitation with ages between four to seven years old. The exoskeleton used on this purpose has six servomotors which work independently and actuates each human lower limb joints (hips, knees and ankles. For obtaining the desired motion laws, a high-speed motion analysis equipment was used. The experimental rough data were mathematically modeled in order to obtain the proper motion equations for controlling the exoskeleton servomotors.
Walking wisely: Sapiential influence in Psalm 26
Directory of Open Access Journals (Sweden)
Annette Potgieter
2013-05-01
Full Text Available Psalm 26 is interpreted by the majority of scholars as a cultic psalm. This has limited research on Psalm 26. There are clear traces of sapiential influence in Psalm 26 concerning its intricately well-thought concentric structure as well as various wisdom connections. This study will however focus on the structure as well as on the core wisdom theme of walking the way of Yahweh. This opens up interpretation possibilities for Psalm 26 and it also indicates that Psalm 26 is a literary creation belonging to the Persian Period.
RANDOM WALK HYPOTHESIS IN FINANCIAL MARKETS
Directory of Open Access Journals (Sweden)
Nicolae-Marius JULA
2017-05-01
Full Text Available Random walk hypothesis states that the stock market prices do not follow a predictable trajectory, but are simply random. If you are trying to predict a random set of data, one should test for randomness, because, despite the power and complexity of the used models, the results cannot be trustworthy. There are several methods for testing these hypotheses and the use of computational power provided by the R environment makes the work of the researcher easier and with a cost-effective approach. The increasing power of computing and the continuous development of econometric tests should give the potential investors new tools in selecting commodities and investing in efficient markets.
Quantum chemistry by random walk: Higher accuracy
International Nuclear Information System (INIS)
Anderson, J.B.
1980-01-01
The random walk method of solving the Schroedinger equation is extended to allow the calculation of eigenvalues of atomic and molecular systems with higher accuracy. The combination of direct calculation of the difference delta between a true wave function psi and a trial wave function psi/sub o/ with importance sampling greatly reduces systematic and statistical error. The method is illustrated with calculations for ground-state hydrogen and helium atoms using trial wave functions from variational calculations. The energies obtained are 20 to 100 times more accurate than those of the corresponding variational calculations
DEFF Research Database (Denmark)
Jensen, Anders Nedergaard; Lauritzen, Niels; Fukuda, Komei
2005-01-01
perturbation of this line. This usually involves both time and space demanding arithmetic of integers much larger than the input numbers. In this paper we show how the explicit line may be replaced by a formal line using Robbiano's characterization of group orders on . This gives rise to the generic Gröbner...... walk involving only Gröbner basis conversion over facets and computations with marked polynomials. The infinite precision integer arithmetic is replaced by term order comparisons between (small) integral vectors. This makes it possible to compute with infinitesimal numbers and perturbations...
Does walking strategy in older people change as a function of walking distance?
Najafi, Bijan; Helbostad, Jorunn L; Moe-Nilssen, Rolf; Zijlstra, Wiebren; Aminian, Kamiar
2009-02-01
This study investigates whether the spatio-temporal parameters of gait in the elderly vary as a function of walking distance. The gait pattern of older subjects (n=27) over both short (SWDLWD>20 m) walking was evaluated using an ambulatory device consisting of body-worn sensors (Physilog). The stride velocity (SV), gait cycle time (GCT), and inter-cycle variability of each parameter (CV) were evaluated for each subject. Analysis was undertaken after evaluating the errors and the test-retest reliability of the Physilog device compared with an electronic walkway system (GaitRite) over the SWD with different walking speeds. While both systems were highly reliable with respect to the SV and GCT parameters (ICC>0.82), agreement for the gait variability was poor. Interestingly, our data revealed that the measured gait parameters over SWD and LWD were significantly different. LWD trials had a mean increase of 5.2% (pLWD trials decreased by an average of 1% relative to the SWD case, the drop was not significant. Moreover, reliability for gait variability measures was poor, irrespective of the instrument and despite a moderate improvement for LWD trials. Taken together, our findings indicate that for valid and reliable comparisons, test and retest should be performed under identical distance conditions. Furthermore, our findings suggest that the older subjects may choose different walking strategies for SWD and LWD conditions.
Walking on a Tightrope: Parents Shouldn't Have to Walk It Alone.
Griffel, Gail
1991-01-01
Maintains that parents of a handicapped child, for example, a child with cerebral palsy, are "walking a tightrope." Successful intervention with the disabled child in the classroom is possible only when there is strong teacher-parent communication. This position is illustrated by an account of a parent's personal experience. (BB)
Audio-haptic interaction in simulated walking experiences
DEFF Research Database (Denmark)
Serafin, Stefania
2011-01-01
and interchangeable use of the haptic and auditory modality in floor interfaces, and for the synergy of perception and action in capturing and guiding human walking. We describe the technology developed in the context of this project, together with some experiments performed to evaluate the role of auditory......In this paper an overview of the work conducted on audio-haptic physically based simulation and evaluation of walking is provided. This work has been performed in the context of the Natural Interactive Walking (NIW) project, whose goal is to investigate possibilities for the integrated...... and haptic feedback in walking tasks....
Robust and efficient walking with spring-like legs
Energy Technology Data Exchange (ETDEWEB)
Rummel, J; Blum, Y; Seyfarth, A, E-mail: juergen.rummel@uni-jena.d, E-mail: andre.seyfarth@uni-jena.d [Lauflabor Locomotion Laboratory, University of Jena, Dornburger Strasse 23, 07743 Jena (Germany)
2010-12-15
The development of bipedal walking robots is inspired by human walking. A way of implementing walking could be performed by mimicking human leg dynamics. A fundamental model, representing human leg dynamics during walking and running, is the bipedal spring-mass model which is the basis for this paper. The aim of this study is the identification of leg parameters leading to a compromise between robustness and energy efficiency in walking. It is found that, compared to asymmetric walking, symmetric walking with flatter angles of attack reveals such a compromise. With increasing leg stiffness, energy efficiency increases continuously. However, robustness is the maximum at moderate leg stiffness and decreases slightly with increasing stiffness. Hence, an adjustable leg compliance would be preferred, which is adaptable to the environment. If the ground is even, a high leg stiffness leads to energy efficient walking. However, if external perturbations are expected, e.g. when the robot walks on uneven terrain, the leg should be softer and the angle of attack flatter. In the case of underactuated robots with constant physical springs, the leg stiffness should be larger than k-tilde = 14 in order to use the most robust gait. Soft legs, however, lack in both robustness and efficiency.
Skyrmion burst and multiple quantum walk in thin ferromagnetic films
International Nuclear Information System (INIS)
Ezawa, Motohiko
2011-01-01
We propose a new type of quantum walk in thin ferromagnetic films. A giant Skyrmion collapses to a singular point in a thin ferromagnetic film, emitting spin waves, when external magnetic field is increased beyond the critical one. After the collapse the remnant is a quantum walker carrying spin S. We determine its time evolution and show the diffusion process is a continuous-time quantum walk. We also analyze an interference of two quantum walkers after two Skyrmion bursts. The system presents a new type of quantum walk for S>1/2, where a quantum walker breaks into 2S quantum walkers. -- Highlights: → A giant Skyrmion collapses to a singular point by applying strong magnetic field. → Quantum walk is realized in thin ferromagnetic films by Skyrmion collapsing. → Quantum walks for S=1/2 and 1 are exact solvable, where S represents the spin. → Quantum walks for >1/2 presents a new type of quantum walks, i.e., 'multiple quantum walks'. → Skyrmion bursts which occur simultaneously exhibit an interference as a manifestation of quantum walk.
Effects of Initial Stance of Quadruped Trotting on Walking Stability
Directory of Open Access Journals (Sweden)
Peisun Ma
2008-11-01
Full Text Available It is very important for quadruped walking machine to keep its stability in high speed walking. It has been indicated that moment around the supporting diagonal line of quadruped in trotting gait largely influences walking stability. In this paper, moment around the supporting diagonal line of quadruped in trotting gait is modeled and its effects on body attitude are analyzed. The degree of influence varies with different initial stances of quadruped and we get the optimal initial stance of quadruped in trotting gait with maximal walking stability. Simulation results are presented.
Fractional scaling of quantum walks on percolation lattices
International Nuclear Information System (INIS)
Kendon, Viv; Knott, Paul; Leung, Godfrey; Bailey, Joe
2011-01-01
Quantum walks can be used to model processes such as transport in spin chains and bio-molecules. The enhanced spreading and mixing properties of quantum walks compared with their classical counterparts have been well-studied on regular structures and also shown to be sensitive to defects and imperfections. Using numerical simulation, we study the spreading properties of quantum walks on percolation lattices for both bond and site percolation. The randomly missing edges or sites provide a controlled amount of disorder in the regular Cartesian lattice. In one dimension (the line) we introduce a simple model of quantum tunneling to allow the walk to proceed past the missing edges or sites. This allows the quantum walk to spread faster than a classical random walk for short times, but at longer times the disorder localises the quantum walk. In two dimensions, we observe fractional scaling of the spreading with the number of steps of the walk. For percolation above the 85% level, we obtain faster spreading than classical random walks on the full lattice.
Robust and efficient walking with spring-like legs
International Nuclear Information System (INIS)
Rummel, J; Blum, Y; Seyfarth, A
2010-01-01
The development of bipedal walking robots is inspired by human walking. A way of implementing walking could be performed by mimicking human leg dynamics. A fundamental model, representing human leg dynamics during walking and running, is the bipedal spring-mass model which is the basis for this paper. The aim of this study is the identification of leg parameters leading to a compromise between robustness and energy efficiency in walking. It is found that, compared to asymmetric walking, symmetric walking with flatter angles of attack reveals such a compromise. With increasing leg stiffness, energy efficiency increases continuously. However, robustness is the maximum at moderate leg stiffness and decreases slightly with increasing stiffness. Hence, an adjustable leg compliance would be preferred, which is adaptable to the environment. If the ground is even, a high leg stiffness leads to energy efficient walking. However, if external perturbations are expected, e.g. when the robot walks on uneven terrain, the leg should be softer and the angle of attack flatter. In the case of underactuated robots with constant physical springs, the leg stiffness should be larger than k-tilde = 14 in order to use the most robust gait. Soft legs, however, lack in both robustness and efficiency.
Analytic results for asymmetric random walk with exponential transition probabilities
International Nuclear Information System (INIS)
Gutkowicz-Krusin, D.; Procaccia, I.; Ross, J.
1978-01-01
We present here exact analytic results for a random walk on a one-dimensional lattice with asymmetric, exponentially distributed jump probabilities. We derive the generating functions of such a walk for a perfect lattice and for a lattice with absorbing boundaries. We obtain solutions for some interesting moment properties, such as mean first passage time, drift velocity, dispersion, and branching ratio for absorption. The symmetric exponential walk is solved as a special case. The scaling of the mean first passage time with the size of the system for the exponentially distributed walk is determined by the symmetry and is independent of the range
Probability distributions for Markov chain based quantum walks
Balu, Radhakrishnan; Liu, Chaobin; Venegas-Andraca, Salvador E.
2018-01-01
We analyze the probability distributions of the quantum walks induced from Markov chains by Szegedy (2004). The first part of this paper is devoted to the quantum walks induced from finite state Markov chains. It is shown that the probability distribution on the states of the underlying Markov chain is always convergent in the Cesaro sense. In particular, we deduce that the limiting distribution is uniform if the transition matrix is symmetric. In the case of a non-symmetric Markov chain, we exemplify that the limiting distribution of the quantum walk is not necessarily identical with the stationary distribution of the underlying irreducible Markov chain. The Szegedy scheme can be extended to infinite state Markov chains (random walks). In the second part, we formulate the quantum walk induced from a lazy random walk on the line. We then obtain the weak limit of the quantum walk. It is noted that the current quantum walk appears to spread faster than its counterpart-quantum walk on the line driven by the Grover coin discussed in literature. The paper closes with an outlook on possible future directions.
Does dynamic stability govern propulsive force generation in human walking?
Browne, Michael G; Franz, Jason R
2017-11-01
Before succumbing to slower speeds, older adults may walk with a diminished push-off to prioritize stability over mobility. However, direct evidence for trade-offs between push-off intensity and balance control in human walking, independent of changes in speed, has remained elusive. As a critical first step, we conducted two experiments to investigate: (i) the independent effects of walking speed and propulsive force ( F P ) generation on dynamic stability in young adults, and (ii) the extent to which young adults prioritize dynamic stability in selecting their preferred combination of walking speed and F P generation. Subjects walked on a force-measuring treadmill across a range of speeds as well as at constant speeds while modulating their F P according to a visual biofeedback paradigm based on real-time force measurements. In contrast to improvements when walking slower, walking with a diminished push-off worsened dynamic stability by up to 32%. Rather, we find that young adults adopt an F P at their preferred walking speed that maximizes dynamic stability. One implication of these findings is that the onset of a diminished push-off in old age may independently contribute to poorer balance control and precipitate slower walking speeds.
Walking: Paths of a political and artistic practice
Directory of Open Access Journals (Sweden)
Sergio Martínez Luna
2016-11-01
Full Text Available Walking is a practice that involves issues related to body, landscape, nature and city. The article provides a historical overview of some of these practices from English Romanticism to contemporary art. Within this historical framework walking is approached as a political and aesthetic practice that questions the logics of economic efficiency, as well as the parallel processes of privatization of public space. The different modalities of walking (alone, in group, around the city, through natural landscapes come together as different poetics and politics. Walking is to make a public discourse that stablishes a dialectic between traces and presences.
Generating random walks and polygons with stiffness in confinement
International Nuclear Information System (INIS)
Diao, Y; Ernst, C; Saarinen, S; Ziegler, U
2015-01-01
The purpose of this paper is to explore ways to generate random walks and polygons in confinement with a bias toward stiffness. Here the stiffness refers to the curvature angle between two consecutive edges along the random walk or polygon. The stiffer the walk (polygon), the smaller this angle on average. Thus random walks and polygons with an elevated stiffness have lower than expected curvatures. The authors introduced and studied several generation algorithms with a stiffness parameter s>0 that regulates the expected curvature angle at a given vertex in which the random walks and polygons are generated one edge at a time using conditional probability density functions. Our generating algorithms also allow the generation of unconfined random walks and polygons with any desired mean curvature angle. In the case of random walks and polygons confined in a sphere of fixed radius, we observe that, as expected, stiff random walks or polygons are more likely to be close to the confinement boundary. The methods developed here require that the random walks and random polygons be rooted at the center of the confinement sphere. (paper)
Walking Robots Dynamic Control Systems on an Uneven Terrain
Directory of Open Access Journals (Sweden)
MUNTEANU, M. S.
2010-05-01
Full Text Available The paper presents ZPM dynamic control of walking robots, developing an open architecture real time control multiprocessor system, in view of obtaining new capabilities for walking robots. The complexity of the movement mechanism of a walking robot was taken into account, being a repetitive tilting process with numerous instable movements and which can lead to its turnover on an uneven terrain. The control system architecture for the dynamic robot walking is presented in correlation with the control strategy which contains three main real time control loops: balance robot control using sensorial feedback, walking diagram control with periodic changes depending on the sensorial information during each walk cycle, predictable movement control based on a quick decision from the previous experimental data. The results obtained through simulation and experiments show an increase in mobility, stability in real conditions and obtaining of high performances related to the possibility of moving walking robots on terrains with a configuration as close as possible to real situations, respectively developing new technological capabilities of the walking robot control systems for slope movement and walking by overtaking or going around obstacles.
Changes in resting and walking energy expenditure and walking speed during pregnancy in obese women.
Byrne, Nuala M; Groves, Ainsley M; McIntyre, H David; Callaway, Leonie K
2011-09-01
Energy-conserving processes reported in undernourished women during pregnancy are a recognized strategy for providing the energy required to support fetal development. Women who are obese before conceiving arguably have sufficient fat stores to support the energy demands of pregnancy without the need to provoke energy-conserving mechanisms. We tested the hypothesis that obese women would show behavioral adaptation [ie, a decrease in self-selected walking (SSW) speed] but not metabolic compensation [ie, a decrease in resting metabolic rate (RMR) or the metabolic cost of walking] during gestation. RMR, SSW speed, metabolic cost of walking, and anthropometric variables were measured in 23 women aged 31 ± 4 y with a BMI (in kg/m(2)) of 33.6 ± 2.5 (mean ± SD) at ≈15 and 30 wk of gestation. RMR was also measured in 2 cohorts of nonpregnant control subjects matched for the age, weight, and height of the pregnant cohort at 15 (n = 23) and 30 (n = 23) wk. Gestational weight gain varied widely (11.3 ± 5.4 kg), and 52% of the women gained more weight than is recommended. RMR increased significantly by an average of 177 ± 176 kcal/d (11 ± 12%; P 80% of the cohort, the net oxygen cost of walking decreased in the same proportion of women. Although the increase in RMR was greater than that explained by weight gain, evidence of both behavioral and biological compensation in the metabolic cost of walking was observed in obese women during gestation. The trial is registered with the Australian Clinical Trials Registry as ACTRN012606000271505.
Roos, Paulien E.; Dingwell, Jonathan B.
2013-01-01
Older adults and those with increased fall risk tend to walk slower. They may do this voluntarily to reduce their fall risk. However, both slower and faster walking speeds can predict increased risk of different types of falls. The mechanisms that contribute to fall risk across speeds are not well known. Faster walking requires greater forward propulsion, generated by larger muscle forces. However, greater muscle activation induces increased signal-dependent neuromuscular noise. These speed-r...
Aaslund, Mona Kristin; Helbostad, Jorunn Lægdheim; Moe-Nilssen, Rolf
2013-05-01
Rehabilitating walking in ambulatory patients post-stroke, with training that is safe, task-specific, intensive, and of sufficient duration, can be challenging. Some challenges can be met by using body-weight-supported treadmill training (BWSTT). However, it is not known to what degree walking characteristics are similar during BWSTT and overground walking. In addition, important questions regarding the training protocol of BWSTT remain unanswered, such as how proportion of body-weight support (BWS) and walking speed affect walking characteristics during training. The objective was therefore to investigate if and how kinematic walking characteristics are different between overground walking and treadmill walking with BWS in ambulatory patients post-stroke, and the acute response of altering walking speed and percent BWS during treadmill walking with BWS. A cross-sectional repeated-measures design was used. Ambulating patients post-stroke walked in slow, preferred, and fast walking speed overground and at comparable speeds on the treadmill with 20% and 40% BWS. Kinematic walking characteristics were obtained using a kinematic sensor attached over the lower back. Forty-four patients completed the protocol. Kinematic walking characteristics were similar during treadmill walking with BWS, compared to walking overground. During treadmill walking, choice of walking speed had greater impact on kinematic walking characteristics than proportion of BWS. Faster walking speeds tended to affect the kinematic walking characteristics positively. This implies that in order to train safely and with sufficient intensity and duration, therapists may choose to include BWSTT in walking rehabilitation also for ambulatory patients post-stroke without aggravating gait pattern during training.
WHEN PROSE DANCES AND DANCE WALKS
Directory of Open Access Journals (Sweden)
Ana Marques Gastão
2011-04-01
Full Text Available To Paul Valéry, prose follows the less action path, as in marching in a straight line, and poetry, as in dancing – in as much as it is a «system of acts» – it not only intends to go nowhere but it remains in its own realisation, creating its own purpose. Why then does his prose contain this commanded impulse, led by desire, and his poetry does not, since they are so often one and the same? In this essay, looking at works by Rainer Marie Rilke, Fernando Pessoa, António Vieira and Yvette K. Centeno, I develop the idea that, very often, to establish a distinction between genres can be impractical and useless, if one considers concepts such as march/walk and dance from a choreographic perspective. Even if it be a possible question and since it has nevertheless been the object of study by scholars of all times, why is it undertaken? Why can’t prose be danced to, and poetry marched to? Can the walking essence unconsciously dance?
Walking Victorian Spitalfields with Israel Zangwill
Directory of Open Access Journals (Sweden)
Nadia Valman
2015-12-01
Full Text Available This article discusses Zangwill’s Spitalfields, a mobile app with content curated, written, and produced by Nadia Valman, Soda Ltd (developer and the Jewish Museum, London (archive collaborator. The app uses Israel Zangwill’s novel 'Children of the Ghetto' (1892 as a walking guide to the Jewish immigrant subculture of Victorian Spitalfields, east London, which the novel describes at a moment of critical change. Zangwill’s Spitalfields exploits the app’s potential for bringing together a range of digital sources including archive photographs, museum objects, and oral history recordings with the user’s observations of the physical environment, to produce an experience that is both immersive and multivocal. Mobile digital technology has provided a new interpretive context for the Jewish Museum’s collection, and animated previously unmarked monuments in Spitalfields. By drawing on the user’s experience of walking in present-day Spitalfields, the app also intervenes into a historiography increasingly shaped by nostalgia.
Improving the accuracy of walking piezo motors.
den Heijer, M; Fokkema, V; Saedi, A; Schakel, P; Rost, M J
2014-05-01
Many application areas require ultraprecise, stiff, and compact actuator systems with a high positioning resolution in combination with a large range as well as a high holding and pushing force. One promising solution to meet these conflicting requirements is a walking piezo motor that works with two pairs of piezo elements such that the movement is taken over by one pair, once the other pair reaches its maximum travel distance. A resolution in the pm-range can be achieved, if operating the motor within the travel range of one piezo pair. However, applying the typical walking drive signals, we measure jumps in the displacement up to 2.4 μm, when the movement is given over from one piezo pair to the other. We analyze the reason for these large jumps and propose improved drive signals. The implementation of our new drive signals reduces the jumps to less than 42 nm and makes the motor ideally suitable to operate as a coarse approach motor in an ultra-high vacuum scanning tunneling microscope. The rigidity of the motor is reflected in its high pushing force of 6.4 N.
Efficient search by optimized intermittent random walks
International Nuclear Information System (INIS)
Oshanin, Gleb; Lindenberg, Katja; Wio, Horacio S; Burlatsky, Sergei
2009-01-01
We study the kinetics for the search of an immobile target by randomly moving searchers that detect it only upon encounter. The searchers perform intermittent random walks on a one-dimensional lattice. Each searcher can step on a nearest neighbor site with probability α or go off lattice with probability 1 - α to move in a random direction until it lands back on the lattice at a fixed distance L away from the departure point. Considering α and L as optimization parameters, we seek to enhance the chances of successful detection by minimizing the probability P N that the target remains undetected up to the maximal search time N. We show that even in this simple model, a number of very efficient search strategies can lead to a decrease of P N by orders of magnitude upon appropriate choices of α and L. We demonstrate that, in general, such optimal intermittent strategies are much more efficient than Brownian searches and are as efficient as search algorithms based on random walks with heavy-tailed Cauchy jump-length distributions. In addition, such intermittent strategies appear to be more advantageous than Levy-based ones in that they lead to more thorough exploration of visited regions in space and thus lend themselves to parallelization of the search processes.
Optimizing itineraries in public transportation with walks between rides
de Jonge, Bram; Teunter, Ruud H.
We study the problem of finding an optimal itinerary to travel from a starting location to a destination location using public transport, where we allow travelers to alternate rides with (short) walks. The main difference with previous research is that we take all possible walks that a traveler can
Take a Walk (A Cup of Health with CDC)
Centers for Disease Control (CDC) Podcasts
2017-06-29
Regular physical activity is important for maintaining good health. One activity thatâs easy and readily available to most people is walking. In this podcast, Dr. Emily Ussery discusses the health benefits of walking. Created: 6/29/2017 by MMWR. Date Released: 6/29/2017.
An effective Hamiltonian approach to quantum random walk
Indian Academy of Sciences (India)
2017-02-09
Feb 9, 2017 ... Abstract. In this article we present an effective Hamiltonian approach for discrete time quantum random walk. A form of the Hamiltonian for one-dimensional quantum walk has been prescribed, utilizing the fact that Hamil- tonians are generators of time translations. Then an attempt has been made to ...
Asymptotic Properties of Multistate Random Walks. I. Theory
Roerdink, J.B.T.M.; Shuler, K.E.
1985-01-01
A calculation is presented of the long-time behavior of various random walk properties (moments, probability of return to the origin, expected number of distinct sites visited) for multistate random walks on periodic lattices. In particular, we consider inhomogeneous periodic lattices, consisting of
Infant Language Development Is Related to the Acquisition of Walking
Walle, Eric A.; Campos, Joseph J.
2014-01-01
The present investigation explored the question of whether walking onset is related to infant language development. Study 1 used a longitudinal design (N = 44) to assess infant locomotor and language development every 2 weeks from 10 to 13.5 months of age. The acquisition of walking was associated with a significant increase in both receptive and…
Steady and transient coordination structures of walking and running
Lamoth, C.J.C.; Daffertshofer, A.; Huys, R.; Beek, P.J.
2009-01-01
We studied multisegmental coordination and stride characteristics in nine participants while walking and running on a treadmill. The study's main aim was to evaluate the coordination patterns of walking and running and their variance as a function of locomotion speed, with a specific focus on gait
Validity of the Nike+ device during walking and running.
Kane, N A; Simmons, M C; John, D; Thompson, D L; Bassett, D R; Basset, D R
2010-02-01
We determined the validity of the Nike+ device for estimating speed, distance, and energy expenditure (EE) during walking and running. Twenty trained individuals performed a maximal oxygen uptake test and underwent anthropometric and body composition testing. Each participant was outfitted with a Nike+ sensor inserted into the shoe and an Apple iPod nano. They performed eight 6-min stages on the treadmill, including level walking at 55, 82, and 107 m x min(-1), inclined walking (82 m x min(-1)) at 5 and 10% grades, and level running at 134, 161, and 188 m x min(-1). Speed was measured using a tachometer and EE was measured by indirect calorimetry. Results showed that the Nike+ device overestimated the speed of level walking at 55 m x min(-1) by 20%, underestimated the speed of level walking at 107 m x min(-1) by 12%, but closely estimated the speed of level walking at 82 m x min(-1), and level running at all speeds (pNike+ device overestimated the EE of level walking by 18-37%, but closely estimated the EE of level running (pNike+ in-shoe device provided reasonable estimates of speed and distance during level running at the three speeds tested in this study. However, it overestimated EE during level walking and it did not detect the increased cost of inclined locomotion.
Steady and transient coordination structures of walking and running
Lamoth, C. J. C.; Daffertshofer, A.; Huys, R.; Beek, P. J.
We studied multisegmental coordination and stride characteristics in nine participants while walking and running on a treadmill. The study's main aim was to evaluate the coordination patterns of walking and running and their variance as a function of locomotion speed, with a specific focus on gait
Determining asymmetry of roll-over shapes in prosthetic walking
Curtze, C.; Otten, Bert; Hof, A.L.; Postema, K.
2011-01-01
How does the inherent asymmetry of the locomotor system in people with lower-limb amputation affect the ankle-foot roll-over shape of prosthetic walking? In a single-case design, we evaluated the walking patterns of six people with lower-limb amputation (3 transtibial and 3 transfemoral) and three
Recycling Energy to Restore Impaired Ankle Function during Human Walking
Collins, S.H.; Kuo, A.D.
2010-01-01
Background: Humans normally dissipate significant energy during walking, largely at the transitions between steps. The ankle then acts to restore energy during push-off, which may be the reason that ankle impairment nearly always leads to poorer walking economy. The replacement of lost energy is
Elastic coupling of limb joints enables faster bipedal walking
Dean, J.C.; Kuo, A.D.
2008-01-01
The passive dynamics of bipedal limbs alone are sufficient to produce a walking motion, without need for control. Humans augment these dynamics with muscles, actively coordinated to produce stable and economical walking. Present robots using passive dynamics walk much slower, perhaps because they lack elastic muscles that couple the joints. Elastic properties are well known to enhance running gaits, but their effect on walking has yet to be explored. Here we use a computational model of dynamic walking to show that elastic joint coupling can help to coordinate faster walking. In walking powered by trailing leg push-off, the model's speed is normally limited by a swing leg that moves too slowly to avoid stumbling. A uni-articular spring about the knee allows faster but uneconomical walking. A combination of uni-articular hip and knee springs can speed the legs for improved speed and economy, but not without the swing foot scuffing the ground. Bi-articular springs coupling the hips and knees can yield high economy and good ground clearance similar to humans. An important parameter is the knee-to-hip moment arm that greatly affects the existence and stability of gaits, and when selected appropriately can allow for a wide range of speeds. Elastic joint coupling may contribute to the economy and stability of human gait. PMID:18957360
A comparison of random walks in dependent random environments
Scheinhardt, Willem R.W.; Kroese, Dirk
We provide exact computations for the drift of random walks in dependent random environments, including $k$-dependent and moving average environments. We show how the drift can be characterized and evaluated using Perron–Frobenius theory. Comparing random walks in various dependent environments, we
Real, foley or synthetic? An evaluation of everyday walking sounds
DEFF Research Database (Denmark)
Götzen, Amalia De; Sikström, Erik; Grani, Francesco
2013-01-01
in using foley sounds for a film track. In particular this work focuses on walking sounds: five different scenes of a walking person were video recorded and each video was then mixed with the three different kind of sounds mentioned above. Subjects were asked to recognise and describe the action performed...
Ohm's Law, Kirchoff's Law and the Drunkard's Walk The Drunkard's ...
Indian Academy of Sciences (India)
Home; Journals; Resonance – Journal of Science Education; Volume 2; Issue 12. Ohm's Law, Kirchoff's Law and the Drunkard's Walk The Drunkard's Walk. Rahul Roy. General Article Volume 2 Issue 12 December 1997 pp 33-38. Fulltext. Click here to view fulltext PDF. Permanent link:
How edge-reinforced random walk arises naturally
Rolles, S.W.W.
2003-01-01
We give a characterization of a modified edge-reinforced random walk in terms of certain partially exchangeable sequences. In particular, we obtain a characterization of an edge-reinforced random walk (introduced by Coppersmith and Diaconis) on a 2-edge-connected graph. Modifying the notion of
Effects of attentional focus on walking stability in elderly
de Melker Worms, Jonathan L.A.; Stins, John F.; van Wegen, Erwin E.H.; Verschueren, Sabine M.P.; Beek, Peter J.; Loram, Ian D.
2017-01-01
Introduction Balance performance in the elderly is related to psychological factors such as attentional focus. We investigated the effects of internal vs. external focus of attention and fall history on walking stability in healthy older adults. Method Walking stability of twenty-eight healthy older
Implementing quantum walks using orbital angular momentum of classical light
CSIR Research Space (South Africa)
Goyal, SK
2013-06-01
Full Text Available –5]. This speed up gained in quantum walks promises ad- vantages when applied in quantum computation for cer- tain classes of quantum algorithms [6], for example, quan- tum search algorithms [7, 8]. Quantum walks have also been used to analyze energy transport...
Walking in Beauty: An American Indian Perspective on Social Justice
Eason, Evan Allen; Robbins, Rockey
2012-01-01
The purpose of this article is to introduce "walking in beauty," an American Indian spiritual perspective related to social justice that emphasizes beauty, harmony, connectedness/unity of experience, and imagination. Walking in beauty includes 3 processes: embodiment, creativity, and appreciation of the sublime. Recommendations are offered for…
Continuous-time quantum random walks require discrete space
International Nuclear Information System (INIS)
Manouchehri, K; Wang, J B
2007-01-01
Quantum random walks are shown to have non-intuitive dynamics which makes them an attractive area of study for devising quantum algorithms for long-standing open problems as well as those arising in the field of quantum computing. In the case of continuous-time quantum random walks, such peculiar dynamics can arise from simple evolution operators closely resembling the quantum free-wave propagator. We investigate the divergence of quantum walk dynamics from the free-wave evolution and show that, in order for continuous-time quantum walks to display their characteristic propagation, the state space must be discrete. This behavior rules out many continuous quantum systems as possible candidates for implementing continuous-time quantum random walks
Continuous-time quantum random walks require discrete space
Manouchehri, K.; Wang, J. B.
2007-11-01
Quantum random walks are shown to have non-intuitive dynamics which makes them an attractive area of study for devising quantum algorithms for long-standing open problems as well as those arising in the field of quantum computing. In the case of continuous-time quantum random walks, such peculiar dynamics can arise from simple evolution operators closely resembling the quantum free-wave propagator. We investigate the divergence of quantum walk dynamics from the free-wave evolution and show that, in order for continuous-time quantum walks to display their characteristic propagation, the state space must be discrete. This behavior rules out many continuous quantum systems as possible candidates for implementing continuous-time quantum random walks.
Random walk in dynamically disordered chains: Poisson white noise disorder
International Nuclear Information System (INIS)
Hernandez-Garcia, E.; Pesquera, L.; Rodriguez, M.A.; San Miguel, M.
1989-01-01
Exact solutions are given for a variety of models of random walks in a chain with time-dependent disorder. Dynamic disorder is modeled by white Poisson noise. Models with site-independent (global) and site-dependent (local) disorder are considered. Results are described in terms of an affective random walk in a nondisordered medium. In the cases of global disorder the effective random walk contains multistep transitions, so that the continuous limit is not a diffusion process. In the cases of local disorder the effective process is equivalent to usual random walk in the absence of disorder but with slower diffusion. Difficulties associated with the continuous-limit representation of random walk in a disordered chain are discussed. In particular, the authors consider explicit cases in which taking the continuous limit and averaging over disorder sources do not commute
Self-Trapping Self-Repelling Random Walks
Grassberger, Peter
2017-10-01
Although the title seems self-contradictory, it does not contain a misprint. The model we study is a seemingly minor modification of the "true self-avoiding walk" model of Amit, Parisi, and Peliti in two dimensions. The walks in it are self-repelling up to a characteristic time T* (which depends on various parameters), but spontaneously (i.e., without changing any control parameter) become self-trapping after that. For free walks, T* is astronomically large, but on finite lattices the transition is easily observable. In the self-trapped regime, walks are subdiffusive and intermittent, spending longer and longer times in small areas until they escape and move rapidly to a new area. In spite of this, these walks are extremely efficient in covering finite lattices, as measured by average cover times.
Velocity and Dispersion for a Two-Dimensional Random Walk
International Nuclear Information System (INIS)
Li Jinghui
2009-01-01
In the paper, we consider the transport of a two-dimensional random walk. The velocity and the dispersion of this two-dimensional random walk are derived. It mainly show that: (i) by controlling the values of the transition rates, the direction of the random walk can be reversed; (ii) for some suitably selected transition rates, our two-dimensional random walk can be efficient in comparison with the one-dimensional random walk. Our work is motivated in part by the challenge to explain the unidirectional transport of motor proteins. When the motor proteins move at the turn points of their tracks (i.e., the cytoskeleton filaments and the DNA molecular tubes), some of our results in this paper can be used to deal with the problem. (general)
Heterogeneous continuous-time random walks
Grebenkov, Denis S.; Tupikina, Liubov
2018-01-01
We introduce a heterogeneous continuous-time random walk (HCTRW) model as a versatile analytical formalism for studying and modeling diffusion processes in heterogeneous structures, such as porous or disordered media, multiscale or crowded environments, weighted graphs or networks. We derive the exact form of the propagator and investigate the effects of spatiotemporal heterogeneities onto the diffusive dynamics via the spectral properties of the generalized transition matrix. In particular, we show how the distribution of first-passage times changes due to local and global heterogeneities of the medium. The HCTRW formalism offers a unified mathematical language to address various diffusion-reaction problems, with numerous applications in material sciences, physics, chemistry, biology, and social sciences.
A random walk model to evaluate autism
Moura, T. R. S.; Fulco, U. L.; Albuquerque, E. L.
2018-02-01
A common test administered during neurological examination in children is the analysis of their social communication and interaction across multiple contexts, including repetitive patterns of behavior. Poor performance may be associated with neurological conditions characterized by impairments in executive function, such as the so-called pervasive developmental disorders (PDDs), a particular condition of the autism spectrum disorders (ASDs). Inspired in these diagnosis tools, mainly those related to repetitive movements and behaviors, we studied here how the diffusion regimes of two discrete-time random walkers, mimicking the lack of social interaction and restricted interests developed for children with PDDs, are affected. Our model, which is based on the so-called elephant random walk (ERW) approach, consider that one of the random walker can learn and imitate the microscopic behavior of the other with probability f (1 - f otherwise). The diffusion regimes, measured by the Hurst exponent (H), is then obtained, whose changes may indicate a different degree of autism.
Understanding deterministic diffusion by correlated random walks
International Nuclear Information System (INIS)
Klages, R.; Korabel, N.
2002-01-01
Low-dimensional periodic arrays of scatterers with a moving point particle are ideal models for studying deterministic diffusion. For such systems the diffusion coefficient is typically an irregular function under variation of a control parameter. Here we propose a systematic scheme of how to approximate deterministic diffusion coefficients of this kind in terms of correlated random walks. We apply this approach to two simple examples which are a one-dimensional map on the line and the periodic Lorentz gas. Starting from suitable Green-Kubo formulae we evaluate hierarchies of approximations for their parameter-dependent diffusion coefficients. These approximations converge exactly yielding a straightforward interpretation of the structure of these irregular diffusion coefficients in terms of dynamical correlations. (author)
Walking Ahead: The Headed Social Force Model.
Directory of Open Access Journals (Sweden)
Francesco Farina
Full Text Available Human motion models are finding an increasing number of novel applications in many different fields, such as building design, computer graphics and robot motion planning. The Social Force Model is one of the most popular alternatives to describe the motion of pedestrians. By resorting to a physical analogy, individuals are assimilated to point-wise particles subject to social forces which drive their dynamics. Such a model implicitly assumes that humans move isotropically. On the contrary, empirical evidence shows that people do have a preferred direction of motion, walking forward most of the time. Lateral motions are observed only in specific circumstances, such as when navigating in overcrowded environments or avoiding unexpected obstacles. In this paper, the Headed Social Force Model is introduced in order to improve the realism of the trajectories generated by the classical Social Force Model. The key feature of the proposed approach is the inclusion of the pedestrians' heading into the dynamic model used to describe the motion of each individual. The force and torque representing the model inputs are computed as suitable functions of the force terms resulting from the traditional Social Force Model. Moreover, a new force contribution is introduced in order to model the behavior of people walking together as a single group. The proposed model features high versatility, being able to reproduce both the unicycle-like trajectories typical of people moving in open spaces and the point-wise motion patterns occurring in high density scenarios. Extensive numerical simulations show an increased regularity of the resulting trajectories and confirm a general improvement of the model realism.
Predictive neuromechanical simulations indicate why walking performance declines with ageing.
Song, Seungmoon; Geyer, Hartmut
2018-04-01
Although the natural decline in walking performance with ageing affects the quality of life of a growing elderly population, its physiological origins remain unknown. By using predictive neuromechanical simulations of human walking with age-related neuro-musculo-skeletal changes, we find evidence that the loss of muscle strength and muscle contraction speed dominantly contribute to the reduced walking economy and speed. The findings imply that focusing on recovering these muscular changes may be the only effective way to improve performance in elderly walking. More generally, the work is of interest for investigating the physiological causes of altered gait due to age, injury and disorders. Healthy elderly people walk slower and energetically less efficiently than young adults. This decline in walking performance lowers the quality of life for a growing ageing population, and understanding its physiological origin is critical for devising interventions that can delay or revert it. However, the origin of the decline in walking performance remains unknown, as ageing produces a range of physiological changes whose individual effects on gait are difficult to separate in experiments with human subjects. Here we use a predictive neuromechanical model to separately address the effects of common age-related changes to the skeletal, muscular and nervous systems. We find in computer simulations of this model that the combined changes produce gait consistent with elderly walking and that mainly the loss of muscle strength and mass reduces energy efficiency. In addition, we find that the slower preferred walking speed of elderly people emerges in the simulations when adapting to muscle fatigue, again mainly caused by muscle-related changes. The results suggest that a focus on recovering these muscular changes may be the only effective way to improve performance in elderly walking. © 2018 The Authors. The Journal of Physiology © 2018 The Physiological Society.
ImWalkMF: Joint matrix factorization and implicit walk integrative learning for recommendation
Zhang, Chuxu
2018-01-15
Data sparsity and cold-start problems are prevalent in recommender systems. To address such problems, both the observable explicit social information (e.g., user-user trust connections) and the inferable implicit correlations (e.g., implicit neighbors computed by similarity measurement) have been introduced to complement user-item ratings data for improving the performances of traditional model-based recommendation algorithms such as matrix factorization. Although effective, (1) the utilization of the explicit user-user social relationships suffers from the weakness of unavailability in real systems such as Netflix or the issue of sparse observable content like 0.03% trust density in Epinions, thus there is no or little explicit social information that can be employed to improve baseline model in real applications; (2) the current similarity measurement approaches focus on inferring implicit correlations between a user (item) and their direct neighbors or top-k similar neighbors based on user-item ratings bipartite network, so that they fail to comprehensively unfold the indirect potential relationships among users and items. To solve these issues regarding both explicit/implicit social recommendation algorithms, we design a joint model of matrix factorization and implicit walk integrative learning, i.e., ImWalkMF, which only uses explicit ratings information yet models both direct rating feedbacks and multiple direct/indirect implicit correlations among users and items from a random walk perspective. We further propose a combined strategy for training two independent components in the proposed model based on sampling. The experimental results on two real-world sparse datasets demonstrate that ImWalkMF outperforms the traditional regularized/probabilistic matrix factorization models as well as other competitive baselines that utilize explicit/implicit social information.
Juliana M. Rodrigues-Baroni; Lucas R. Nascimento; Louise Ada; Luci F. Teixeira-Salmela
2014-01-01
OBJECTIVE: To systematically review the available evidence on the efficacy of walking training associated with virtual reality-based training in patients with stroke. The specific questions were: Is walking training associated with virtual reality-based training effective in increasing walking speed after stroke? Is this type of intervention more effective in increasing walking speed, than non-virtual reality-based walking interventions? METHOD: A systematic review with meta-analysis of rando...
2013-01-01
Background Walking interventions have been shown to have a positive impact on physical activity (PA) levels, health and wellbeing for adult and older adult populations. There has been very little work carried out to explore the effectiveness of walking interventions for adults with intellectual disabilities. This paper will provide details of the Walk Well intervention, designed for adults with intellectual disabilities, and a randomised controlled trial (RCT) to test its effectiveness. Methods/design This study will adopt a RCT design, with participants allocated to the walking intervention group or a waiting list control group. The intervention consists of three PA consultations (baseline, six weeks and 12 weeks) and an individualised 12 week walking programme. A range of measures will be completed by participants at baseline, post intervention (three months from baseline) and at follow up (three months post intervention and six months from baseline). All outcome measures will be collected by a researcher who will be blinded to the study groups. The primary outcome will be steps walked per day, measured using accelerometers. Secondary outcome measures will include time spent in PA per day (across various intensity levels), time spent in sedentary behaviour per day, quality of life, self-efficacy and anthropometric measures to monitor weight change. Discussion Since there are currently no published RCTs of walking interventions for adults with intellectual disabilities, this RCT will examine if a walking intervention can successfully increase PA, health and wellbeing of adults with intellectual disabilities. Trial registration ISRCTN: ISRCTN50494254 PMID:23816316
Krinski, Kleverton; Machado, Daniel G S; Lirani, Luciana S; DaSilva, Sergio G; Costa, Eduardo C; Hardcastle, Sarah J; Elsangedy, Hassan M
2017-04-01
In order to examine whether environmental settings influence psychological and physiological responses of women with obesity during self-paced walking, 38 women performed two exercise sessions (treadmill and outdoors) for 30 min, where oxygen uptake, heart rate, ratings of perceived exertion, affect, attentional focus, enjoyment, and future intentions to walk were analyzed. Physiological responses were similar during both sessions. However, during outdoor exercise, participants displayed higher externally focused attention, positive affect, and lower ratings of perceived exertion, followed by greater enjoyment and future intention to participate in outdoor walking. The more externally focused attention predicted greater future intentions to participate in walking. Therefore, women with obesity self-selected an appropriate exercise intensity to improve fitness and health in both environmental settings. Also, self-paced outdoor walking presented improved psychological responses. Health care professionals should consider promoting outdoor forms of exercise to maximize psychological benefits and promote long-term adherence to a physically active lifestyle.
Using built environment characteristics to predict walking for exercise
Directory of Open Access Journals (Sweden)
Siscovick David S
2008-02-01
Full Text Available Abstract Background Environments conducive to walking may help people avoid sedentary lifestyles and associated diseases. Recent studies developed walkability models combining several built environment characteristics to optimally predict walking. Developing and testing such models with the same data could lead to overestimating one's ability to predict walking in an independent sample of the population. More accurate estimates of model fit can be obtained by splitting a single study population into training and validation sets (holdout approach or through developing and evaluating models in different populations. We used these two approaches to test whether built environment characteristics near the home predict walking for exercise. Study participants lived in western Washington State and were adult members of a health maintenance organization. The physical activity data used in this study were collected by telephone interview and were selected for their relevance to cardiovascular disease. In order to limit confounding by prior health conditions, the sample was restricted to participants in good self-reported health and without a documented history of cardiovascular disease. Results For 1,608 participants meeting the inclusion criteria, the mean age was 64 years, 90 percent were white, 37 percent had a college degree, and 62 percent of participants reported that they walked for exercise. Single built environment characteristics, such as residential density or connectivity, did not significantly predict walking for exercise. Regression models using multiple built environment characteristics to predict walking were not successful at predicting walking for exercise in an independent population sample. In the validation set, none of the logistic models had a C-statistic confidence interval excluding the null value of 0.5, and none of the linear models explained more than one percent of the variance in time spent walking for exercise. We did not
Roos, Paulien E; Dingwell, Jonathan B
2013-06-21
Older adults and those with increased fall risk tend to walk slower. They may do this voluntarily to reduce their fall risk. However, both slower and faster walking speeds can predict increased risk of different types of falls. The mechanisms that contribute to fall risk across speeds are not well known. Faster walking requires greater forward propulsion, generated by larger muscle forces. However, greater muscle activation induces increased signal-dependent neuromuscular noise. These speed-related increases in neuromuscular noise may contribute to the increased fall risk observed at faster walking speeds. Using a 3D dynamic walking model, we systematically varied walking speed without and with physiologically-appropriate neuromuscular noise. We quantified how actual fall risk changed with gait speed, how neuromuscular noise affected speed-related changes in fall risk, and how well orbital and local dynamic stability measures predicted changes in fall risk across speeds. When we included physiologically-appropriate noise to the 'push-off' force in our model, fall risk increased with increasing walking speed. Changes in kinematic variability, orbital, and local dynamic stability did not predict these speed-related changes in fall risk. Thus, the increased neuromuscular variability that results from increased signal-dependent noise that is necessitated by the greater muscular force requirements of faster walking may contribute to the increased fall risk observed at faster walking speeds. The lower fall risk observed at slower speeds supports experimental evidence that slowing down can be an effective strategy to reduce fall risk. This may help explain the slower walking speeds observed in older adults and others. Copyright © 2013 Elsevier Ltd. All rights reserved.
Longo, Alberto; Hutchinson, W George; Hunter, Ruth F; Tully, Mark A; Kee, Frank
2015-10-01
Walking is the most common form of moderate-intensity physical activity among adults, is widely accessible and especially appealing to obese people. Most often policy makers are interested in valuing the effect on walking of changes in some characteristics of a neighbourhood, the demand response for walking, of infrastructure changes. A positive demand response to improvements in the walking environment could help meet the public health target of 150 min of at least moderate-intensity physical activity per week. We model walking in an individual's local neighbourhood as a 'weak complement' to the characteristics of the neighbourhood itself. Walking is affected by neighbourhood characteristics, substitutes, and individual's characteristics, including their opportunity cost of time. Using compensating variation, we assess the economic benefits of walking and how walking behaviour is affected by improvements to the neighbourhood. Using a sample of 1209 respondents surveyed over a 12 month period (Feb 2010-Jan 2011) in East Belfast, United Kingdom, we find that a policy that increased walkability and people's perception of access to shops and facilities would lead to an increase in walking of about 36 min/person/week, valued at £13.65/person/week. When focussing on inactive residents, a policy that improved the walkability of the area would lead to guidelines for physical activity being reached by only 12.8% of the population who are currently inactive. Additional interventions would therefore be needed to encourage inactive residents to achieve the recommended levels of physical activity, as it appears that interventions that improve the walkability of an area are particularly effective in increasing walking among already active citizens, and, among the inactive ones, the best response is found among healthier, younger and wealthier citizens. Copyright © 2015 Elsevier Ltd. All rights reserved.
Directory of Open Access Journals (Sweden)
David J Clark
2015-05-01
Full Text Available Automaticity is a hallmark feature of walking in adults who are healthy and well-functioning. In the context of walking, ‘automaticity’ refers to the ability of the nervous system to successfully control typical steady state walking with minimal use of attention-demanding executive control resources. Converging lines of evidence indicate that walking deficits and disorders are characterized in part by a shift in the locomotor control strategy from healthy automaticity to compensatory executive control. This is potentially detrimental to walking performance, as an executive control strategy is not optimized for locomotor control. Furthermore, it places excessive demands on a limited pool of executive reserves. The result is compromised ability to perform basic and complex walking tasks and heightened risk for adverse mobility outcomes including falls. Strategies for rehabilitation of automaticity are not well defined, which is due to both a lack of systematic research into the causes of impaired automaticity and to a lack of robust neurophysiological assessments by which to gauge automaticity. These gaps in knowledge are concerning given the serious functional implications of compromised automaticity. Therefore, the objective of this article is to advance the science of automaticity of walking by consolidating evidence and identifying gaps in knowledge regarding: a functional significance of automaticity; b neurophysiology of automaticity; c measurement of automaticity; d mechanistic factors that compromise automaticity; and e strategies for rehabilitation of automaticity.
Efficient sampling of complex network with modified random walk strategies
Xie, Yunya; Chang, Shuhua; Zhang, Zhipeng; Zhang, Mi; Yang, Lei
2018-02-01
We present two novel random walk strategies, choosing seed node (CSN) random walk and no-retracing (NR) random walk. Different from the classical random walk sampling, the CSN and NR strategies focus on the influences of the seed node choice and path overlap, respectively. Three random walk samplings are applied in the Erdös-Rényi (ER), Barabási-Albert (BA), Watts-Strogatz (WS), and the weighted USAir networks, respectively. Then, the major properties of sampled subnets, such as sampling efficiency, degree distributions, average degree and average clustering coefficient, are studied. The similar conclusions can be reached with these three random walk strategies. Firstly, the networks with small scales and simple structures are conducive to the sampling. Secondly, the average degree and the average clustering coefficient of the sampled subnet tend to the corresponding values of original networks with limited steps. And thirdly, all the degree distributions of the subnets are slightly biased to the high degree side. However, the NR strategy performs better for the average clustering coefficient of the subnet. In the real weighted USAir networks, some obvious characters like the larger clustering coefficient and the fluctuation of degree distribution are reproduced well by these random walk strategies.
Women with fibromyalgia walk with an altered muscle synergy.
Pierrynowski, Michael R; Tiidus, Peter M; Galea, Victoria
2005-11-01
Most individuals can use different movement and muscle recruitment patterns to perform a stated task but often only one pattern is selected which optimizes an unknown global objective given the individual's neuromusculoskeletal characteristics. Patients with fibromyalgia syndrome (FS), characterized by their chronic pain, reduced physical work capacity and muscular fatigue, could exhibit a different control signature compared to asymptomatic control volunteers (CV). To test this proposal, 22 women with FS, and 11 CV, were assessed in a gait analysis laboratory. Each subject walked repeatedly at self-selected slow, comfortable, and fast walking speeds. The gait analysis provided, for each walk, each subject's stride time, length, and velocity, and ground reaction force, and lower extremity joint kinematics, moments and powers. The data were then anthropometrically scaled and velocity normalized to reduce the influence of subject mass, leg length, and walking speed on the measured gait outcomes. Similarities and differences in the two groups' scaled and normalized gait patterns were then determined. Results show that FS and CV walk with externally similar stride lengths, times, and velocities, and joint angles and ground reaction forces but they use internally different muscle recruitment patterns. Specifically, FS preferentially power gait using their hip flexors instead of their ankle plantarflexors. Interestingly, CV use a similar muscle fatiguing recruitment pattern to walk fast which parallels the common complaint of fatigue reported by FS walking at comfortable speed.
Stepping forward together: Could walking facilitate interpersonal conflict resolution?
Webb, Christine E; Rossignac-Milon, Maya; Higgins, E Tory
2017-01-01
Walking has myriad benefits for the mind, most of which have traditionally been explored and explained at the individual level of analysis. Much less empirical work has examined how walking with a partner might benefit social processes. One such process is conflict resolution-a field of psychology in which movement is inherent not only in recent theory and research, but also in colloquial language (e.g., "moving on"). In this article, we unify work from various fields pointing to the idea that walking together can facilitate both the intra- and interpersonal pathways to conflict resolution. Intrapersonally, walking supports various psychological mechanisms for reconciliation, including creativity, locomotion motivation, and embodied notions of forward progress. Both alone and in combination with its effects on mood and stress, walking can encourage individual mindsets conducive to resolving conflict (e.g., divergent thinking). Interpersonally, walking can allow partners to reap the cognitive, affective, and behavioral advantages of synchronous movement, such as increased positive rapport, empathy, and prosociality. Walking partners naturally adopt cooperative (as opposed to competitive) postural stances, experience shared attention, and can benefit from discussions in novel environments. Overall, despite its prevalence in conflict resolution theory, little is known about how movement influences conflict resolution practice. Such knowledge has direct implications for a range of psychological questions and approaches within negotiation and alternative mediation techniques, clinical settings, and the study of close relationships. (PsycINFO Database Record (c) 2017 APA, all rights reserved).
[Walking in Crustacea: motor program and peripheral regulation (author's transl)].
Clarac, F; Ayers, J
1977-01-01
1. Rock lobsters can walk in all directions. In the present study, we report the organization of the motor output of the three muscles which control the mero-carpopodite joint (M-C): the extensor E, the flexor F and the accuracy flexor FA, during unrestrained locomotion (fig. 1). 2. During lateral walking, movements of the M-C joint provide most of the propulsive force, whereas during forward and backward walking this joint function more as a strut (fig. 2). Corresponding differences are observed in the motor discharge in the different walking modes. During lateral walking, discharge in the M-C extensor and M-C flexor alternates, whereas during forward and backward walking these antagonists are coactivated (fig. 3 and 4). 3. We have also examined the effects of alterations of proprioceptive feedback: the FA tendon has been cut to eliminate MCO afferents during walking. This ablation does not modify the burst period and the temporal structure of the output pattern is largely unaffected (fig. 5, 6 and 7). MCO may influence the motor output of a given muscle depending upon whether it participates in the return stroke or the power stroke.
Experimental two-dimensional quantum walk on a photonic chip.
Tang, Hao; Lin, Xiao-Feng; Feng, Zhen; Chen, Jing-Yuan; Gao, Jun; Sun, Ke; Wang, Chao-Yue; Lai, Peng-Cheng; Xu, Xiao-Yun; Wang, Yao; Qiao, Lu-Feng; Yang, Ai-Lin; Jin, Xian-Min
2018-05-01
Quantum walks, in virtue of the coherent superposition and quantum interference, have exponential superiority over their classical counterpart in applications of quantum searching and quantum simulation. The quantum-enhanced power is highly related to the state space of quantum walks, which can be expanded by enlarging the photon number and/or the dimensions of the evolution network, but the former is considerably challenging due to probabilistic generation of single photons and multiplicative loss. We demonstrate a two-dimensional continuous-time quantum walk by using the external geometry of photonic waveguide arrays, rather than the inner degree of freedoms of photons. Using femtosecond laser direct writing, we construct a large-scale three-dimensional structure that forms a two-dimensional lattice with up to 49 × 49 nodes on a photonic chip. We demonstrate spatial two-dimensional quantum walks using heralded single photons and single photon-level imaging. We analyze the quantum transport properties via observing the ballistic evolution pattern and the variance profile, which agree well with simulation results. We further reveal the transient nature that is the unique feature for quantum walks of beyond one dimension. An architecture that allows a quantum walk to freely evolve in all directions and at a large scale, combining with defect and disorder control, may bring up powerful and versatile quantum walk machines for classically intractable problems.
Foot trajectory approximation using the pendulum model of walking.
Fang, Juan; Vuckovic, Aleksandra; Galen, Sujay; Conway, Bernard A; Hunt, Kenneth J
2014-01-01
Generating a natural foot trajectory is an important objective in robotic systems for rehabilitation of walking. Human walking has pendular properties, so the pendulum model of walking has been used in bipedal robots which produce rhythmic gait patterns. Whether natural foot trajectories can be produced by the pendulum model needs to be addressed as a first step towards applying the pendulum concept in gait orthosis design. This study investigated circle approximation of the foot trajectories, with focus on the geometry of the pendulum model of walking. Three able-bodied subjects walked overground at various speeds, and foot trajectories relative to the hip were analysed. Four circle approximation approaches were developed, and best-fit circle algorithms were derived to fit the trajectories of the ankle, heel and toe. The study confirmed that the ankle and heel trajectories during stance and the toe trajectory in both the stance and the swing phases during walking at various speeds could be well modelled by a rigid pendulum. All the pendulum models were centred around the hip with pendular lengths approximately equal to the segment distances from the hip. This observation provides a new approach for using the pendulum model of walking in gait orthosis design.
Adaptive evolutionary walks require neutral intermediates in RNA fitness landscapes.
Rendel, Mark D
2011-01-01
In RNA fitness landscapes with interconnected networks of neutral mutations, neutral precursor mutations can play an important role in facilitating the accessibility of epistatic adaptive mutant combinations. I use an exhaustively surveyed fitness landscape model based on short sequence RNA genotypes (and their secondary structure phenotypes) to calculate the minimum rate at which mutants initially appearing as neutral are incorporated into an adaptive evolutionary walk. I show first, that incorporating neutral mutations significantly increases the number of point mutations in a given evolutionary walk when compared to estimates from previous adaptive walk models. Second, that incorporating neutral mutants into such a walk significantly increases the final fitness encountered on that walk - indeed evolutionary walks including neutral steps often reach the global optimum in this model. Third, and perhaps most importantly, evolutionary paths of this kind are often extremely winding in their nature and have the potential to undergo multiple mutations at a given sequence position within a single walk; the potential of these winding paths to mislead phylogenetic reconstruction is briefly considered. Copyright © 2010 Elsevier Inc. All rights reserved.
Self-avoiding polygons and walks in slits
International Nuclear Information System (INIS)
Alvarez, J; Whittington, S G; Rensburg, E J Janse van; Soteros, C E
2008-01-01
A polymer in a confined geometry may be modeled by a self-avoiding walk or a self-avoiding polygon confined between two parallel walls. In two dimensions, this model involves self-avoiding walks or self-avoiding polygons in the square lattice between two parallel confining lines. Interactions of the polymer with the confining walls are introduced by energy terms associated with edges in the walk or polygon which are at or near the confining lines. We use transfer-matrix methods to investigate the forces between the walk or polygon and the confining lines, as well as to investigate the effects of the confining slit's width and of the energy terms on the thermodynamic properties of the walks or polygons in several models. The phase diagram found for the self-avoiding walk models is qualitatively similar to the phase diagram of a directed walk model confined between two parallel lines, as was previously conjectured. However, the phase diagram of one of our polygon models is found to be significantly different and we present numerical data to support this. For that particular model we prove that, for any finite values of the energy terms, there are an infinite number of slit widths where a polygon will induce a steric repulsion between the confining lines
Design of wheel-type walking-assist device
International Nuclear Information System (INIS)
Jung, Seung Ho; Kim, Seung Ho; Kim, Chang Hoi; Seo, Yong Chil; Jung, Kyung Min; Lee, Sung Uk
2006-03-01
In this research, a outdoor wheel-type walking-assist device is developed to help an elder having a poor muscular strength at legs for walking, sitting and standing up easily at outdoors, and also for going and downing stairs. In conceptually designing, the environments of an elder's activity, the size of an elder's body and a necessary function of helping an elder are considered. This device has 4 wheels for stability. When an elder walks in incline plane with the proposed device, a rear-wing is rotated to keep the supporting device horizontal, regardless of an angle of inclination. A height-controlling device, which can control the height of the supporting device for adjusting an elder's height, is varied vertically to help an elder to sit and stand-up easily. Moreover, a outdoor wheel-type walking-assist device is conceptually designed and is made. In order to design it, the preview research is investigated firstly. On the basis of the proposed walking-assist device, the outdoor walking-assist device is designed and made. The outdoor wheel-type walking-assist device can go and down stairs automatically. This device go up and down the stair of having maximum 20cm height and an angle of 25 degrees with maximum 4 sec/stairs speed, and move at flatland with 60cm/sec speed
Health benefits of Nordic walking: a systematic review.
Tschentscher, Marcus; Niederseer, David; Niebauer, Josef
2013-01-01
Modern lifestyle, with its lack of everyday physical activity and exercise training, predisposes people to chronic diseases such as diabetes mellitus, obesity, hypertension, and coronary artery diseases. Brisk walking as a simple and safe form of exercise is undisputedly an effective measure to counteract sedentary lifestyle risks even in the most unfit and could lead to a reduction of the prevalence of chronic diseases in all populations. The purpose of this review is to systematically summarize, analyze, and interpret the health benefits of Nordic walking (walking with poles), and to compare it to brisk walking and jogging. A systematic and comprehensive literature search was performed between November 2010 and May 2012. Data were analyzed between April 2011 and May 2012. Sixteen RCTs with a total of 1062 patients and 11 observational studies with 831 patients were identified. The current analysis revealed that with regard to short- and long-term effects on heart rate, oxygen consumption, quality of life, and other measures, Nordic walking is superior to brisk walking without poles and in some endpoints to jogging. Nordic walking exerts beneficial effects on resting heart rate, blood pressure, exercise capacity, maximal oxygen consumption, and quality of life in patients with various diseases and can thus be recommended to a wide range of people as primary and secondary prevention. Copyright © 2013 American Journal of Preventive Medicine. Published by Elsevier Inc. All rights reserved.
Cardiorespiratory Responses to Pool Floor Walking in People Poststroke.
Jeng, Brenda; Fujii, Takuto; Lim, Hyosok; Vrongistinos, Konstantinos; Jung, Taeyou
2018-03-01
To compare cardiorespiratory responses between pool floor walking and overground walking (OW) in people poststroke. Cross-sectional study. University-based therapeutic exercise facility. Participants (N=28) were comprised of 14 community-dwelling individuals poststroke (5.57±3.57y poststroke) and 14 age- and sex-matched healthy adults (mean age, 58.00±15.51y; male/female ratio, 9:5). Not applicable. A telemetric metabolic system was used to collect cardiorespiratory variables, including oxygen consumption (V˙o 2 ), energy expenditure (EE), and expired volume per unit time (V˙e), during 6-minute walking sessions in chest-depth water and on land at a matched speed, determined by average of maximum walking speed in water. Individuals poststroke elicited no significant differences in cardiorespiratory responses between pool floor walking and OW. However, healthy controls showed significant increases in mean V˙o 2 values by 94%, EE values by 109%, and V˙e values by 94% (all Pstroke group did not. Our results indicate that people poststroke, unlike healthy adults, do not increase EE while walking in water compared with on land. Unlike stationary walking on an aquatic treadmill, forward locomotion during pool floor walking at faster speeds may have increased drag force, which requires greater EE from healthy adults. Without demanding excessive EE, walking in water may offer a naturally supportive environment for gait training in the early stages of rehabilitation. Copyright © 2017 American Congress of Rehabilitation Medicine. All rights reserved.
Pseudo-Hermitian continuous-time quantum walks
Energy Technology Data Exchange (ETDEWEB)
Salimi, S; Sorouri, A, E-mail: shsalimi@uok.ac.i, E-mail: a.sorouri@uok.ac.i [Department of Physics, University of Kurdistan, PO Box 66177-15175, Sanandaj (Iran, Islamic Republic of)
2010-07-09
In this paper we present a model exhibiting a new type of continuous-time quantum walk (as a quantum-mechanical transport process) on networks, which is described by a non-Hermitian Hamiltonian possessing a real spectrum. We call it pseudo-Hermitian continuous-time quantum walk. We introduce a method to obtain the probability distribution of walk on any vertex and then study a specific system. We observe that the probability distribution on certain vertices increases compared to that of the Hermitian case. This formalism makes the transport process faster and can be useful for search algorithms.
The diffraction and walk off in the second harmonic generation
International Nuclear Information System (INIS)
He Yujuan; Cai Bangwei; Zhang Bin
2000-01-01
Taking the second harmonic generation of Gaussian beam in a KDP crystal of type I matching for example, the effects of diffraction and walk off on doubling conversion efficiency have been worked out. The result indicates that the effect of diffraction is very small and can even by neglected. When the input Gaussian beam size is very small, the effect of walk off is very deleterious on doubling conversion. Along with the enlarging of beam size, the effect of walk off is much smaller and can even be neglected
Isotropic quantum walks on lattices and the Weyl equation
D'Ariano, Giacomo Mauro; Erba, Marco; Perinotti, Paolo
2017-12-01
We present a thorough classification of the isotropic quantum walks on lattices of dimension d =1 ,2 ,3 with a coin system of dimension s =2 . For d =3 there exist two isotropic walks, namely, the Weyl quantum walks presented in the work of D'Ariano and Perinotti [G. M. D'Ariano and P. Perinotti, Phys. Rev. A 90, 062106 (2014), 10.1103/PhysRevA.90.062106], resulting in the derivation of the Weyl equation from informational principles. The present analysis, via a crucial use of isotropy, is significantly shorter and avoids a superfluous technical assumption, making the result completely general.
Are We the Walking Dead? Burnout as Zombie Apocalypse.
Doolittle, Benjamin R
2016-11-01
The Walking Dead , one of the most popular television shows in recent history, uses the plot of a zombie apocalypse as a lens into exploring the human condition. Amidst a particularly dangerous moment, the show's hero references the human struggle to survive by remarking, " We are the walking dead." This offhand comment sheds light upon physicians' struggles in medicine, in particular the high prevalence of burnout and the challenge to cultivate compassion and meaning. This is an important question for our age and for our profession. Are we the walking dead? © 2016 Annals of Family Medicine, Inc.
Transient Air Infiltration/Exfiltration in Walk-In Coolers
Energy Technology Data Exchange (ETDEWEB)
Faramarzi, Ramin [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Navaz, H. K. [Kettering University; Kamensky, K. [Michigan State University
2018-03-01
Walk-in coolers are room-sized, insulated, and refrigerated compartments for food product storage. Walk-ins have areas equal or below 280 m2 (3,000 ft2), and are classified either as coolers operating above 0 degrees C (32 degrees F) (medium-temperature) to store fresh fruit, vegetables, and dairy products, or freezers that operate below 0 degrees C (32 degrees F) (low-temperature) to meet health and safety standards of frozen food products. Walk-ins are typically found in restaurants as well as small- and medium-to-large grocery stores or supermarkets.
Predicting the walking speed of pedestrians on stairs
Fujiyama, T.; Tyler, N.
2010-01-01
In this paper, we propose a framework in which the behaviour of a pedestrian is predicted based on the characteristics of both the pedestrian and the facility the pedestrian uses. As an example of its application, we develop a model to predict the walking speed of a pedestrian on stairs. We examine the physiology and biomechanics of walking on stairs, and then develop a model that predicts walking speed based on the weight and leg extensor power of the pedestrian, and the gradient of the stai...
Coupled continuous time-random walks in quenched random environment
Magdziarz, M.; Szczotka, W.
2018-02-01
We introduce a coupled continuous-time random walk with coupling which is characteristic for Lévy walks. Additionally we assume that the walker moves in a quenched random environment, i.e. the site disorder at each lattice point is fixed in time. We analyze the scaling limit of such a random walk. We show that for large times the behaviour of the analyzed process is exactly the same as in the case of uncoupled quenched trap model for Lévy flights.
Random walk of passive tracers among randomly moving obstacles
Gori, Matteo; Donato, Irene; Floriani, Elena; Nardecchia, Ilaria; Pettini, Marco
2016-01-01
Background: This study is mainly motivated by the need of understanding how the diffusion behaviour of a biomolecule (or even of a larger object) is affected by other moving macromolecules, organelles, and so on, inside a living cell, whence the possibility of understanding whether or not a randomly walking biomolecule is also subject to a long-range force field driving it to its target. Method: By means of the Continuous Time Random Walk (CTRW) technique the topic of random walk in random en...
Neuromechanical Control for Dynamic Bipedal Walking with Reduced Impact Forces
DEFF Research Database (Denmark)
Widenka, Johannes; Xiong, Xiaofeng; Matthias Braun, Jan
2016-01-01
Human walking emerges from an intricate interaction of nervous and musculoskeletal systems. Inspired by this principle, we integrate neural control and muscle-like mechanisms to achieve neuromechanical control of the biped robot RunBot. As a result, the neuromechanical controller enables RunBot t......Bot to perform more human-like walking and reduce impact force during walking, compared to original neural control. Moreover, it also generates adaptive joint motions of RunBot; thereby allowing it to deal with different terrains...
Treadmill training and body weight support for walking after stroke.
Mehrholz, Jan; Thomas, Simone; Elsner, Bernhard
2017-08-17
Treadmill training, with or without body weight support using a harness, is used in rehabilitation and might help to improve walking after stroke. This is an update of the Cochrane review first published in 2003 and updated in 2005 and 2014. To determine if treadmill training and body weight support, individually or in combination, improve walking ability, quality of life, activities of daily living, dependency or death, and institutionalisation or death, compared with other physiotherapy gait-training interventions after stroke. The secondary objective was to determine the safety and acceptability of this method of gait training. We searched the Cochrane Stroke Group Trials Register (last searched 14 February 2017), the Cochrane Central Register of Controlled Trials (CENTRAL) and the Database of Reviews of Effects (DARE) (the Cochrane Library 2017, Issue 2), MEDLINE (1966 to 14 February 2017), Embase (1980 to 14 February 2017), CINAHL (1982 to 14 February 2017), AMED (1985 to 14 February 2017) and SPORTDiscus (1949 to 14 February 2017). We also handsearched relevant conference proceedings and ongoing trials and research registers, screened reference lists, and contacted trialists to identify further trials. Randomised or quasi-randomised controlled and cross-over trials of treadmill training and body weight support, individually or in combination, for the treatment of walking after stroke. Two review authors independently selected trials, extracted data, and assessed risk of bias and methodological quality. The primary outcomes investigated were walking speed, endurance, and dependency. We included 56 trials with 3105 participants in this updated review. The average age of the participants was 60 years, and the studies were carried out in both inpatient and outpatient settings. All participants had at least some walking difficulties and many could not walk without assistance. Overall, the use of treadmill training did not increase the chances of walking
Stepping It Up: Walking Behaviors in Children Transitioning from 5th to 7th Grade
Directory of Open Access Journals (Sweden)
Sharon E. Taverno Ross
2018-02-01
Full Text Available The purpose of this study was to (1 describe children’s walking behaviors in 5th to 7th grade and change over time and (2 examine associations between walking behaviors and Walk Score®. Participants consisted of n = 586 students from the Transitions and Activity Changes in Kids (TRACK Study. Children reported any walking behavior (e.g., exercise and transportation over the past five days. Walk Score was calculated based on children’s home address. Descriptive statistics summarized walking behaviors by gender and time, and repeated measure mixed models examined the relationship between walking behaviors and Walk Score. Approximately 46.8% and 19.2% of 5th grade children reported walking for exercise and transportation, respectively, and these percentages declined through 7th grade. Girls reported higher levels of total walking behavior and walking for exercise than boys (p < 0.001. Girls with a higher Walk Score had 63% higher odds of reporting walking for transportation than girls with a lower Walk Score (OR = 1.63, 95% CI = 1.02, 2.62. Walking behaviors among children were infrequent with significant declines over time, and of the nine associations examined with Walk Score, only one was significant. Efforts should prioritize frequent walking behavior and community design to increase children’s physical activity.
Long, Leroy L; Srinivasan, Manoj
2013-04-06
On a treadmill, humans switch from walking to running beyond a characteristic transition speed. Here, we study human choice between walking and running in a more ecological (non-treadmill) setting. We asked subjects to travel a given distance overground in a given allowed time duration. During this task, the subjects carried, and could look at, a stopwatch that counted down to zero. As expected, if the total time available were large, humans walk the whole distance. If the time available were small, humans mostly run. For an intermediate total time, humans often use a mixture of walking at a slow speed and running at a higher speed. With analytical and computational optimization, we show that using a walk-run mixture at intermediate speeds and a walk-rest mixture at the lowest average speeds is predicted by metabolic energy minimization, even with costs for transients-a consequence of non-convex energy curves. Thus, sometimes, steady locomotion may not be energy optimal, and not preferred, even in the absence of fatigue. Assuming similar non-convex energy curves, we conjecture that similar walk-run mixtures may be energetically beneficial to children following a parent and animals on long leashes. Humans and other animals might also benefit energetically from alternating between moving forward and standing still on a slow and sufficiently long treadmill.
Plasschaert, Frank; Jones, Kim; Forward, Malcolm
2009-02-01
Measurement of the energy cost of walking in children with cerebral palsy is used for baseline and outcome assessment. However, such testing relies on the establishment of steady state that is deemed present when oxygen consumption is stable. This is often assumed when walking speed is constant but in practice, speed can and does vary naturally. Whilst constant speed is achievable on a treadmill, this is often impractical clinically, thus rendering an energy cost test to an element of subjectivity. This paper attempts to address this issue by presenting a new method for calculating energy cost of walking that automatically applies a mathematically defined threshold for steady state within a (non-treadmill) walking trial and then strips out all of the non-steady state events within that trial. The method is compared with a generic approach that does not remove non-steady state data but rather uses an average value over a complete walking trial as is often used in the clinical environment. Both methods were applied to the calculation of several energy cost of walking parameters of self-selected walking speed in a cohort of unimpaired subjects and children with cerebral palsy. The results revealed that both methods were strongly correlated for each parameter but showed systematic significant differences. It is suggested that these differences are introduced by the rejection of non-steady state data that would otherwise have incorrectly been incorporated into the calculation of the energy cost of walking indices during self-selected walking with its inherent speed variation.
Quantum mechanics by walking 1. Foundations
International Nuclear Information System (INIS)
Pade, Jochen
2012-01-01
Quantum mechanics by walking introduces to the foundations of non-relativistic quantum mechanics. This book applies to studyings of teaching physics as well as all studyings of physics, who look for an appropriate, easy, fresh, and modern approach to the field. In the present first volume the essential principles of quantum mechanics are worked out. in order to be able to develop their mathematical formulation as fastly and clearly as possible, systematically between wave mechanics and algebraic presentation is changed. Beside themes, which are traditionally in textbooks of quantum mechanics, extensively actual aspects like interaction-free quantum measurement, neutrino oscillations, or quantum cryptography are considered as well as fundamental problems and epistemological questions discussed, as they occur in connection with the measurement process. The list of the postulates of quantum mechanics closes this volume; they form the framework for the extensions and applications, which are discussed in the second volume. The required mathematical aids are introduced step by step. In the appendix the most important mathematical tools are compactly collected, so that supplementing literature can be far reachingly abandoned. Furthermore in the appendix supplementing themes are deepened as for instance the Quantum Zeno effect or delayed-choice experiments.
Piano Crossing – Walking on a Keyboard
Directory of Open Access Journals (Sweden)
Bojan Kverh
2010-11-01
Full Text Available Piano Crossing is an interactive art installation which turns a pedestrian crossing marked with white stripes into a piano keyboard so that pedestrians can generate music by walking over it. Matching tones are created when a pedestrian steps on a particular stripe or key. A digital camera is directed at the crossing from above. A special computer vision application was developed, which maps the stripes of the pedestrian crossing to piano keys and detects by means of an image over which key the center of gravity of each pedestrian is placed at any given moment. Black stripes represent the black piano keys. The application consists of two parts: (1 initialization, where the model of the abstract piano keyboard is mapped to the image of the pedestrian crossing, and (2 the detection of pedestrians at the crossing, so that musical tones can be generated according to their locations. The art installation Piano crossing was presented to the public for the first time during the 51st Jazz Festival in Ljubljana in July 2010.
Piano Crossing – Walking on a Keyboard
Directory of Open Access Journals (Sweden)
Franc Solina
2010-04-01
Full Text Available Piano Crossing is an interactive art installation which turns a pedestrian crossing marked with white stripes into a piano keyboard so that pedestrians can generate music by walking over it. Matching tones are created when a pedestrian steps on a particular stripe or key. A digital camera is directed at the crossing from above. A special computer vision application was developed, which maps the stripes of the pedestrian crossing to piano keys and detects by means of an image over which key the center of gravity of each pedestrian is placed at any given moment. Black stripes represent the black piano keys. The application consists of two parts: (1 initialization, where the model of the abstract piano keyboard is mapped to the image of the pedestrian crossing, and (2 the detection of pedestrians at the crossing, so that musical tones can be generated according to their locations. The art installation Piano crossing was presented to the public for the first time during the 51st Jazz Festival in Ljubljana in July 2010.
Reconstructing the behavior of walking fruit flies
Berman, Gordon; Bialek, William; Shaevitz, Joshua
2010-03-01
Over the past century, the fruit fly Drosophila melanogaster has arisen as almost a lingua franca in the study of animal behavior, having been utilized to study questions in fields as diverse as sleep deprivation, aging, and drug abuse, amongst many others. Accordingly, much is known about what can be done to manipulate these organisms genetically, behaviorally, and physiologically. Most of the behavioral work on this system to this point has been experiments where the flies in question have been given a choice between some discrete set of pre-defined behaviors. Our aim, however, is simply to spend some time with a cadre of flies, using techniques from nonlinear dynamics, statistical physics, and machine learning in an attempt to reconstruct and gain understanding into their behavior. More specifically, we use a multi-camera set-up combined with a motion tracking stage in order to obtain long time-series of walking fruit flies moving about a glass plate. This experimental system serves as a test-bed for analytical, statistical, and computational techniques for studying animal behavior. In particular, we attempt to reconstruct the natural modes of behavior for a fruit fly through a data-driven approach in a manner inspired by recent work in C. elegans and cockroaches.
Mixing times in quantum walks on two-dimensional grids
International Nuclear Information System (INIS)
Marquezino, F. L.; Portugal, R.; Abal, G.
2010-01-01
Mixing properties of discrete-time quantum walks on two-dimensional grids with toruslike boundary conditions are analyzed, focusing on their connection to the complexity of the corresponding abstract search algorithm. In particular, an exact expression for the stationary distribution of the coherent walk over odd-sided lattices is obtained after solving the eigenproblem for the evolution operator for this particular graph. The limiting distribution and mixing time of a quantum walk with a coin operator modified as in the abstract search algorithm are obtained numerically. On the basis of these results, the relation between the mixing time of the modified walk and the running time of the corresponding abstract search algorithm is discussed.
Six-minute-walk test in chronic obstructive pulmonary disease
DEFF Research Database (Denmark)
Polkey, Michael I; Spruit, Martijn A; Edwards, Lisa D
2013-01-01
Outcomes other than spirometry are required to assess nonbronchodilator therapies for chronic obstructive pulmonary disease. Estimates of the minimal clinically important difference for the 6-minute-walk distance (6MWD) have been derived from narrow cohorts using nonblinded intervention....
Parrondo's game using a discrete-time quantum walk
International Nuclear Information System (INIS)
Chandrashekar, C.M.; Banerjee, Subhashish
2011-01-01
We present a new form of a Parrondo game using discrete-time quantum walk on a line. The two players A and B with different quantum coins operators, individually losing the game can develop a strategy to emerge as joint winners by using their coins alternatively, or in combination for each step of the quantum walk evolution. We also present a strategy for a player A (B) to have a winning probability more than player B (A). Significance of the game strategy in information theory and physical applications are also discussed. - Highlights: → Novel form of Parrondo's game on a single particle discrete-time quantum walk. → Strategies for players to emerge as individual winners or as joint winners. → General framework for controlling and using quantum walk with multiple coins. → Strategies can be used in algorithms and situations involving directed motion.
Effects of Interactive Sonification on Emotionally Expressive Walking Styles
DEFF Research Database (Denmark)
Turchet, Luca; Bresin, Roberto
2015-01-01
This paper describes two experiments conducted to investigate the role of sonically simulated ground materials in modulating both production and recognition of walks performed with emotional intentions. The results of the first experiment showed that the involved auditory feedbacks affected...
Movie Recommendation using Random Walks over the Contextual Graph
DEFF Research Database (Denmark)
Bogers, Toine
Recommender systems have become an essential tool in fighting information overload. However, the majority of recommendation algorithms focus only on using ratings information, while disregarding information about the context of the recommendation process. We present ContextWalk, a recommendation...
Dynamic Simulation and Analysis of Human Walking Mechanism
Azahari, Athirah; Siswanto, W. A.; Ngali, M. Z.; Salleh, S. Md.; Yusup, Eliza M.
2017-01-01
Behaviour such as gait or posture may affect a person with the physiological condition during daily activities. The characteristic of human gait cycle phase is one of the important parameter which used to described the human movement whether it is in normal gait or abnormal gait. This research investigates four types of crouch walking (upright, interpolated, crouched and severe) by simulation approach. The assessment are conducting by looking the parameters of hamstring muscle joint, knee joint and ankle joint. The analysis results show that based on gait analysis approach, the crouch walking have a weak pattern of walking and postures. Short hamstring and knee joint is the most influence factor contributing to the crouch walking due to excessive hip flexion that typically accompanies knee flexion.
Treadmill walking exercise modulates bone mineral status and ...
African Journals Online (AJOL)
Treadmill walking exercise modulates bone mineral status and inflammatory cytokines in obese asthmatic patients with long term intake of corticosteroids. Shehab M. Abd El-Kader, Osama H. Al-Jiffri, Eman M. Ashmawy, Riziq Allah M. Gaowgzeh ...
A Walk in the Woods: Or, What Is Art?
Tolstoy, Leo
1999-01-01
Presents a passage from Tolstoy's essay "The School at Yasnaya Polyana." Discusses his experience as a teacher walking through the woods with several children and telling them stories. Describes their reactions and personalities, all very different. (SC)
Record statistics of financial time series and geometric random walks.
Sabir, Behlool; Santhanam, M S
2014-09-01
The study of record statistics of correlated series in physics, such as random walks, is gaining momentum, and several analytical results have been obtained in the past few years. In this work, we study the record statistics of correlated empirical data for which random walk models have relevance. We obtain results for the records statistics of select stock market data and the geometric random walk, primarily through simulations. We show that the distribution of the age of records is a power law with the exponent α lying in the range 1.5≤α≤1.8. Further, the longest record ages follow the Fréchet distribution of extreme value theory. The records statistics of geometric random walk series is in good agreement with that obtained from empirical stock data.
Neutrino oscillations in discrete-time quantum walk framework
Energy Technology Data Exchange (ETDEWEB)
Mallick, Arindam; Mandal, Sanjoy; Chandrashekar, C.M. [C. I. T. Campus, The Institute of Mathematical Sciences, Chennai (India); Homi Bhabha National Institute, Training School Complex, Mumbai (India)
2017-02-15
Here we present neutrino oscillation in the framework of quantum walks. Starting from a one spatial dimensional discrete-time quantum walk we present a scheme of evolutions that will simulate neutrino oscillation. The set of quantum walk parameters which is required to reproduce the oscillation probability profile obtained in both, long range and short range neutrino experiment is explicitly presented. Our scheme to simulate three-generation neutrino oscillation from quantum walk evolution operators can be physically realized in any low energy experimental set-up with access to control a single six-level system, a multiparticle three-qubit or a qubit-qutrit system. We also present the entanglement between spins and position space, during neutrino propagation that will quantify the wave function delocalization around instantaneous average position of the neutrino. This work will contribute towards understanding neutrino oscillation in the framework of the quantum information perspective. (orig.)
A scaling law for random walks on networks
Perkins, Theodore J.; Foxall, Eric; Glass, Leon; Edwards, Roderick
2014-10-01
The dynamics of many natural and artificial systems are well described as random walks on a network: the stochastic behaviour of molecules, traffic patterns on the internet, fluctuations in stock prices and so on. The vast literature on random walks provides many tools for computing properties such as steady-state probabilities or expected hitting times. Previously, however, there has been no general theory describing the distribution of possible paths followed by a random walk. Here, we show that for any random walk on a finite network, there are precisely three mutually exclusive possibilities for the form of the path distribution: finite, stretched exponential and power law. The form of the distribution depends only on the structure of the network, while the stepping probabilities control the parameters of the distribution. We use our theory to explain path distributions in domains such as sports, music, nonlinear dynamics and stochastic chemical kinetics.
Incentive Elasticity of Demand for Bike/Walk Program
2008-12-29
The primary objective of this research is to estimate the "incentive" (price) elasticity of demand for using non-motorized transportation (specifically walking and bicycling) to work. Results can be used directly in the formation of local policies to...
Building the repertoire of measures of walking in Rett syndrome
DEFF Research Database (Denmark)
Stahlhut, Michelle; Downs, Jenny; Leonard, Helen
2017-01-01
performance as measured with the FMS-RS was more strongly consistent with other clinical measures supporting its concurrent validity. Test-retest reliability was good for both the FMS-RS and the 2MWT. Therefore, these measures have the potential to be used in clinical practice and research. Implications...... with Rett syndrome (median 18.4 years, range 2.4-60.9 years) were assessed for clinical severity, gross motor skills, and mobility. To measure walking capacity, 27 of this group completed a 2MWT twice on two different assessment days. To assess walking performance, the FMS-RS was administered to the total......BACKGROUND: The repertoire of measures of walking in Rett syndrome is limited. This study aimed to determine measurement properties of a modified two-minute walk test (2MWT) and a modified Rett syndrome-specific functional mobility scale (FMS-RS) in Rett syndrome. METHODS: Forty-two girls and women...
Impact of Mild versus Moderate Intensity Aerobic Walking Exercise ...
African Journals Online (AJOL)
2014-03-01
Mar 1, 2014 ... Objective: To compare the effects of mild and moderate intensity treadmill walking exercises on markers of bone ... second group (B) received mild intensity aerobic exercise training. ..... Using functional loading to influence.
Relativistically speaking: Let's walk or run through the rain?
Assis, Armando V. D. B.
2010-01-01
We analyse under a simple approach the problem one must decide the best strategy to minimize the contact with rain when moving between two points through the rain. The available strategies: walk (low speed boost $
Trajectory Planning and Walking Pattern Generation of Humanoid Robot Motion
Directory of Open Access Journals (Sweden)
Saeed Abdolshah
2014-12-01
Full Text Available Walking trajectory generation for a humanoid robot is a challenging control issue. In this paper, a walking cycle has been recognized considering human motion, and nine simple steps were distinguished in a full step of walking which form motion trajectory, and generates a simplified ZMP motion formulation. This system was used in humanoid robot simulation motion and is achievable easily in walking steps of robot. A minimum DOFs humanoid robot has been considered and geometrical relationships between the robot links were presented by the Denavit-Hartenberg method. The inverse kinematics equations have been solved regarding to extracted ZMP trajectory formula, and constraints in different steps. As a result; angular velocity, acceleration and power of motors were obtained using the relationships and Jacobin. At each step, extracted data were applied on simulated robot in Matlab, and Visual Nastran software. Zero moment point trajectory was evaluated in simulation environment.
Walk-In Hunting Access (WIHA) Fall 2010
Kansas Data Access and Support Center — This shapefile represents the private lands leased by the Kansas Department of Wildlife and Parks for fall 2010 public hunting access through the Walk-In Hunting...
Walk-In Hunting Access (WIHA) Fall 2009
Kansas Data Access and Support Center — This shapefile represents the private lands leased by the Kansas Department of Wildlife and Parks for fall 2009 public hunting access through the Walk-In Hunting...
Walk-In Hunting Access (WIHA) Fall 2008
Kansas Data Access and Support Center — This shapefile represents the private lands leased by the Kansas Department of Wildlife and Parks for fall 2008 public hunting access through the Walk-In Hunting...
Robot-supported assessment of balance in standing and walking
Shirota, Camila; van Asseldonk, Edwin; Matjacic, Zlatko; Vallery, H.; Barralon, Pierre; Maggioni, Serena; Buurke, Jaap H.; Veneman, Jan F.
2017-01-01
Clinically useful and efficient assessment of balance during standing and walking is especially challenging in patients with neurological disorders. However, rehabilitation robots could facilitate assessment procedures and improve their clinical value. We present a short overview of balance
Walking Stability during Cell Phone Use in Healthy Adults
Kao, Pei-Chun; Higginson, Christopher I.; Seymour, Kelly; Kamerdze, Morgan; Higginson, Jill S.
2015-01-01
The number of falls and/or accidental injuries associated with cellular phone use during walking is growing rapidly. Understanding the effects of concurrent cell phone use on human gait may help develop safety guidelines for pedestrians. It was shown previously that older adults had more pronounced dual-task interferences than younger adults when concurrent cognitive task required visual information processing. Thus, cell phone use might have greater impact on walking stability in older than ...
Adaptive random walks on the class of Web graphs
Tadić, B.
2001-09-01
We study random walk with adaptive move strategies on a class of directed graphs with variable wiring diagram. The graphs are grown from the evolution rules compatible with the dynamics of the world-wide Web [B. Tadić, Physica A 293, 273 (2001)], and are characterized by a pair of power-law distributions of out- and in-degree for each value of the parameter β, which measures the degree of rewiring in the graph. The walker adapts its move strategy according to locally available information both on out-degree of the visited node and in-degree of target node. A standard random walk, on the other hand, uses the out-degree only. We compute the distribution of connected subgraphs visited by an ensemble of walkers, the average access time and survival probability of the walks. We discuss these properties of the walk dynamics relative to the changes in the global graph structure when the control parameter β is varied. For β≥ 3, corresponding to the world-wide Web, the access time of the walk to a given level of hierarchy on the graph is much shorter compared to the standard random walk on the same graph. By reducing the amount of rewiring towards rigidity limit β↦βc≲ 0.1, corresponding to the range of naturally occurring biochemical networks, the survival probability of adaptive and standard random walk become increasingly similar. The adaptive random walk can be used as an efficient message-passing algorithm on this class of graphs for large degree of rewiring.
The Random-Walk Hypothesis on the Indian Stock Market
Ankita Mishra; Vinod Mishra; Russell Smyth
2014-01-01
This study tests the random walk hypothesis for the Indian stock market. Using 19 years of monthly data on six indices from the National Stock Exchange (NSE) and the Bombay Stock Exchange (BSE), this study applies three different unit root tests with two structural breaks to analyse the random walk hypothesis. We find that unit root tests that allow for two structural breaks alone are not able to reject the unit root null; however, a recently developed unit root test that simultaneously accou...
Feedforward neural control of toe walking in humans.
Lorentzen, Jakob; Willerslev-Olsen, Maria; Hüche Larsen, Helle; Svane, Christian; Forman, Christian; Frisk, Rasmus; Farmer, Simon Francis; Kersting, Uwe; Nielsen, Jens Bo
2018-03-23
Activation of ankle muscles at ground contact during toe walking is unaltered when sensory feedback is blocked or the ground is suddenly dropped. Responses in the soleus muscle to transcranial magnetic stimulation, but not peripheral nerve stimulation, are facilitated at ground contact during toe walking. We argue that toe walking is supported by feedforward control at ground contact. Toe walking requires careful control of the ankle muscles in order to absorb the impact of ground contact and maintain a stable position of the joint. The present study aimed to clarify the peripheral and central neural mechanisms involved. Fifteen healthy adults walked on a treadmill (3.0 km h -1 ). Tibialis anterior (TA) and soleus (Sol) EMG, knee and ankle joint angles, and gastrocnemius-soleus muscle fascicle lengths were recorded. Peripheral and central contributions to the EMG activity were assessed by afferent blockade, H-reflex testing, transcranial magnetic brain stimulation (TMS) and sudden unloading of the planter flexor muscle-tendon complex. Sol EMG activity started prior to ground contact and remained high throughout stance. TA EMG activity, which is normally seen around ground contact during heel strike walking, was absent. Although stretch of the Achilles tendon-muscle complex was observed after ground contact, this was not associated with lengthening of the ankle plantar flexor muscle fascicles. Sol EMG around ground contact was not affected by ischaemic blockade of large-diameter sensory afferents, or the sudden removal of ground support shortly after toe contact. Soleus motor-evoked potentials elicited by TMS were facilitated immediately after ground contact, whereas Sol H-reflexes were not. These findings indicate that at the crucial time of ankle stabilization following ground contact, toe walking is governed by centrally mediated motor drive rather than sensory driven reflex mechanisms. These findings have implications for our understanding of the control of
Stationary walking solitons in bulk quadratic nonlinear media
Mihalache, Dumitru; Mazilu, D; Crasonavn, L C; Torner Sabata, Lluís
1997-01-01
We study the mutual trapping of fundamental and second-harmonic light beams propagating in bulk quadratic nonlinear media in the presence of Poynting vector beam walk-off. We show numerically the existence of a two-parameter family of (2 + 1)-dimensional stationary, spatial walking solitons. We have found that the solitons exist at various values of material parameters with different wave intensities and soliton velocities. We discuss the differences between (2 + 1) and (1 + 1)-dimensional wa...
The Automation Control System Design of Walking Beam Heating Furnace
Hong-Yu LIU; Jun-Qing LIU; Jun-Jie XI
2014-01-01
Combining the transformation project of certain strip steel rolling production line, the techniques process of walking beam heating furnace was elaborated in this paper. The practical application of LOS-T18-2ZC1 laser detector was elaborated. The network communication model of walking beam heating furnace control system was designed. The realization method of production process automation control was elaborated. The entire automation control system allocation picture and PLC power distributio...
Joint forces and torques when walking in shallow water.
Orselli, Maria Isabel Veras; Duarte, Marcos
2011-04-07
This study reports for the first time an estimation of the internal net joint forces and torques on adults' lower limbs and pelvis when walking in shallow water, taking into account the drag forces generated by the movement of their bodies in the water and the equivalent data when they walk on land. A force plate and a video camera were used to perform a two-dimensional gait analysis at the sagittal plane of 10 healthy young adults walking at comfortable speeds on land and in water at a chest-high level. We estimated the drag force on each body segment and the joint forces and torques at the ankle, knee, and hip of the right side of their bodies using inverse dynamics. The observed subjects' apparent weight in water was about 35% of their weight on land and they were about 2.7 times slower when walking in water. When the subjects walked in water compared with walking on land, there were no differences in the angular displacements but there was a significant reduction in the joint torques which was related to the water's depth. The greatest reduction was observed for the ankle and then the knee and no reduction was observed for the hip. All joint powers were significantly reduced in water. The compressive and shear joint forces were on average about three times lower during walking in water than on land. These quantitative results substantiate the use of water as a safe environment for practicing low-impact exercises, particularly walking. Copyright © 2011 Elsevier Ltd. All rights reserved.
A new exponent in self-avoiding walks
International Nuclear Information System (INIS)
Srivastava, V.
1983-06-01
Existence of a new exponent is reported in the problem of nonintersecting self-avoiding random walks. It is connected with the asymptotic behaviour of the growth of number of such walks of larger and larger length. The value of the exponent is found to be nearly 0.90 for all two-dimensional and nearly 0.96 for all three-dimensional lattices studied here. (author)
Workplace Neighborhoods, Walking, Physical Activity, Weight Status, and Perceived Health
Forsyth, Ann; Oakes, J.
2014-01-01
Recent interest has focused on how the built environment in residential neighborhoods affects walking and other physical activity. The neighborhood around the workplace has been examined far less. This study explored the neighborhood around the workplace and its correlation with the amount of walking, level of physical activity, body mass index, and perceived health of those who (a) worked away from home (N = 446) and (b) were retired or unemployed (N = 207). Study participants were recruited...
The role of series ankle elasticity in bipedal walking.
Zelik, Karl E; Huang, Tzu-Wei P; Adamczyk, Peter G; Kuo, Arthur D
2014-04-07
The elastic stretch-shortening cycle of the Achilles tendon during walking can reduce the active work demands on the plantarflexor muscles in series. However, this does not explain why or when this ankle work, whether by muscle or tendon, needs to be performed during gait. We therefore employ a simple bipedal walking model to investigate how ankle work and series elasticity impact economical locomotion. Our model shows that ankle elasticity can use passive dynamics to aid push-off late in single support, redirecting the body's center-of-mass (COM) motion upward. An appropriately timed, elastic push-off helps to reduce dissipative collision losses at contralateral heelstrike, and therefore the positive work needed to offset those losses and power steady walking. Thus, the model demonstrates how elastic ankle work can reduce the total energetic demands of walking, including work required from more proximal knee and hip muscles. We found that the key requirement for using ankle elasticity to achieve economical gait is the proper ratio of ankle stiffness to foot length. Optimal combination of these parameters ensures proper timing of elastic energy release prior to contralateral heelstrike, and sufficient energy storage to redirect the COM velocity. In fact, there exist parameter combinations that theoretically yield collision-free walking, thus requiring zero active work, albeit with relatively high ankle torques. Ankle elasticity also allows the hip to power economical walking by contributing indirectly to push-off. Whether walking is powered by the ankle or hip, ankle elasticity may aid walking economy by reducing collision losses. Copyright © 2013 Elsevier Ltd. All rights reserved.
Controlled braking scheme for a wheeled walking aid
Coyle, Eugene; O'Dwyer, Aidan; Young, Eileen; Sullivan, Kevin; Toner, A.
2006-01-01
A wheeled walking aid with an embedded controlled braking system is described. The frame of the prototype is based on combining features of standard available wheeled walking aids. A braking scheme has been designed using hydraulic disc brakes to facilitate accurate and sensitive controlled stopping of the walker by the user, and if called upon, by automatic action. Braking force is modulated via a linear actuating stepping motor. A microcontroller is used for control of both stepper movement...
The influence of incline walking on joint mechanics.
Haggerty, Mason; Dickin, D Clark; Popp, Jennifer; Wang, Henry
2014-04-01
Walking is a popular form of exercise and is associated with many health benefits; however, frontal-plane knee joint loading brought about by a large internal knee-abduction moment and cyclic loading could lead to cartilage degeneration over time. Therefore, knee joint mechanics during an alternative walking exercise needs to be analyzed. The purpose of this study was to examine the lower-extremity joint mechanics in the frontal and sagittal planes during incline walking. Fifteen healthy males walked on a treadmill at five gradients (0%, 5%, 10%, 15%, and 20%) at 1.34m/s, and lower-extremity joint mechanics in the frontal and sagittal planes were quantified. The peak internal knee-abduction moment significantly decreased from the level walking condition at all gradients except 5%. Also, a negative relationship between the internal knee-abduction moment and the treadmill gradient was found to exist in 10% increments (0-10%, 5-15%, and 10-20%). The decrease in the internal knee-abduction moment during incline walking could have positive effects on knee joint health such as potentially reducing cartilage degeneration of the knee joint, reducing pain, and decreasing the rate of development of medial tibiofemoral osteoarthritis. This would be beneficial for a knee surgery patient, obese persons, and older adults who are using incline walking for rehabilitation and exercise protocols. Findings from the current study can provide guidance for the development of rehabilitation and exercise prescriptions incorporating incline walking. Copyright © 2014 Elsevier B.V. All rights reserved.
Mind your step: Energy cost while walking at an enforced gait pattern
Wezenberg, D.; de Haan, A.; van Bennekom, C.A.M.; Houdijk, J.H.P.
2011-01-01
The energy cost of walking could be attributed to energy related to the walking movement and energy related to balance control. In order to differentiate between both components we investigated the energy cost of walking an enforced step pattern, thereby perturbing balance while the walking movement
Mind your step: metabolic energy cost while walking an enforced gait pattern
Wezenberg, D.; de Haan, A.; van Bennekom, C. A. M.; Houdijk, H.
2011-01-01
The energy cost of walking could be attributed to energy related to the walking movement and energy related to balance control. In order to differentiate between both components we investigated the energy cost of walking an enforced step pattern, thereby perturbing balance while the walking movement
Treadmill Adaptation and Verification of Self-Selected Walking Speed: A Protocol for Children
Amorim, Paulo Roberto S.; Hills, Andrew; Byrne, Nuala
2009-01-01
Walking is a common activity of daily life and researchers have used the range 3-6 km.h[superscript -1] as reference for walking speeds habitually used for transportation. The term self-selected (i.e., individual or comfortable walking pace or speed) is commonly used in the literature and is identified as the most efficient walking speed, with…
Random walks in the quarter-plane: invariant measures and performance bounds
Chen, Y.
2015-01-01
This monograph focuses on random walks in the quarter-plane. Such random walks are frequently used to model queueing systems and the invariant measure of a random walk is of major importance in studying the performance of these systems. In special cases the invariant measure of a random walk can be
The Effects of a 12-Week Walking Program on Community-Dwelling Older Adults
Cheng, Shun-Ping; Tsai, Tzu-I; Lii, Yun-Kung; Yu, Shu; Chou, Chen-Liang; Chen, I-Ju
2009-01-01
Walking is a popular and easily accessible form of physical activity. However, walking instruction for older adults is based on the evidence gathered from younger populations. This study evaluated walking conditions, strength, balance, and subjective health status after a 12-week walking-training program in community-dwelling adults greater than…
Lévy Walks Suboptimal under Predation Risk.
Directory of Open Access Journals (Sweden)
Masato S Abe
2015-11-01
Full Text Available A key challenge in movement ecology is to understand how animals move in nature. Previous studies have predicted that animals should perform a special class of random walks, called Lévy walk, to obtain more targets. However, some empirical studies did not support this hypothesis, and the relationship between search strategy and ecological factors is still unclear. We focused on ecological factors, such as predation risk, and analyzed whether Lévy walk may not be favored. It was remarkable that the ecological factors often altered an optimal search strategy from Lévy walk to Brownian walk, depending on the speed of the predator's movement, density of predators, etc. This occurred because higher target encounter rates simultaneously led searchers to higher predation risks. Our findings indicate that animals may not perform Lévy walks often, and we suggest that it is crucial to consider the ecological context for evaluating the search strategy performed by animals in the field.
Lévy Walks Suboptimal under Predation Risk
Abe, Masato S.; Shimada, Masakazu
2015-01-01
A key challenge in movement ecology is to understand how animals move in nature. Previous studies have predicted that animals should perform a special class of random walks, called Lévy walk, to obtain more targets. However, some empirical studies did not support this hypothesis, and the relationship between search strategy and ecological factors is still unclear. We focused on ecological factors, such as predation risk, and analyzed whether Lévy walk may not be favored. It was remarkable that the ecological factors often altered an optimal search strategy from Lévy walk to Brownian walk, depending on the speed of the predator’s movement, density of predators, etc. This occurred because higher target encounter rates simultaneously led searchers to higher predation risks. Our findings indicate that animals may not perform Lévy walks often, and we suggest that it is crucial to consider the ecological context for evaluating the search strategy performed by animals in the field. PMID:26544687
The Automation Control System Design of Walking Beam Heating Furnace
Directory of Open Access Journals (Sweden)
Hong-Yu LIU
2014-10-01
Full Text Available Combining the transformation project of certain strip steel rolling production line, the techniques process of walking beam heating furnace was elaborated in this paper. The practical application of LOS-T18-2ZC1 laser detector was elaborated. The network communication model of walking beam heating furnace control system was designed. The realization method of production process automation control was elaborated. The entire automation control system allocation picture and PLC power distribution system picture of walking beam heating furnace were designed. Charge machine movement process was elaborated. Walking beam movement process was elaborated. Extractor movement process was elaborated. The hydraulic station of walking mechanism was elaborated. Relative control circuit diagram was designed. The control function of parallel shift motor, uplifted and degressive motor was elaborated. The control circuit diagram of parallel shift motor of charge machine and extractor of first heating furnace was designed. The control circuit diagram of uplifted and degressive motor of charge machine and extractor of first heating furnace was designed. The realization method of steel blank length test function was elaborated. The realization method of tracking and sequence control function of heating furnace field roller were elaborated. The design provides important reference base for enhancing walking beam heating furnace control level.
Stair-Walking Performance in Adolescents with Intellectual Disabilities
Directory of Open Access Journals (Sweden)
Wann-Yun Shieh
2016-07-01
Full Text Available Most individuals with intellectual disabilities (ID demonstrate problems in learning and movement coordination. Consequently, they usually have difficulties in activities such as standing, walking, and stair climbing. To monitor the physical impairments of these children, regular gross motor evaluation is crucial. Straight-line level walking is the most frequently used test of their mobility. However, numerous studies have found that unless the children have multiple disabilities, no significant differences can be found between the children with ID and typically-developed children in this test. Stair climbing presents more challenges than level walking because it is associated with numerous physical factors, including lower extremity strength, cardiopulmonary endurance, vision, balance, and fear of falling. Limited ability in those factors is one of the most vital markers for children with ID. In this paper, we propose a sensor-based approach for measuring stair-walking performance, both upstairs and downstairs, for adolescents with ID. Particularly, we address the problem of sensor calibration to ensure measurement accuracy. In total, 62 participants aged 15 to 21 years, namely 32 typically-developed (TD adolescents, 20 adolescents with ID, and 10 adolescents with multiple disabilities (MD, participated. The experimental results showed that stair-walking is more sensitive than straight-line level walking in capturing gait characteristics for adolescents with ID.
Identification of walking human model using agent-based modelling
Shahabpoor, Erfan; Pavic, Aleksandar; Racic, Vitomir
2018-03-01
The interaction of walking people with large vibrating structures, such as footbridges and floors, in the vertical direction is an important yet challenging phenomenon to describe mathematically. Several different models have been proposed in the literature to simulate interaction of stationary people with vibrating structures. However, the research on moving (walking) human models, explicitly identified for vibration serviceability assessment of civil structures, is still sparse. In this study, the results of a comprehensive set of FRF-based modal tests were used, in which, over a hundred test subjects walked in different group sizes and walking patterns on a test structure. An agent-based model was used to simulate discrete traffic-structure interactions. The occupied structure modal parameters found in tests were used to identify the parameters of the walking individual's single-degree-of-freedom (SDOF) mass-spring-damper model using 'reverse engineering' methodology. The analysis of the results suggested that the normal distribution with the average of μ = 2.85Hz and standard deviation of σ = 0.34Hz can describe human SDOF model natural frequency. Similarly, the normal distribution with μ = 0.295 and σ = 0.047 can describe the human model damping ratio. Compared to the previous studies, the agent-based modelling methodology proposed in this paper offers significant flexibility in simulating multi-pedestrian walking traffics, external forces and simulating different mechanisms of human-structure and human-environment interaction at the same time.
Quantum walk on a line with two entangled particles
International Nuclear Information System (INIS)
Omar, Y.; Paunkovic, N.; Sheridan, L.; Bose, S.; Mateus, P.
2005-01-01
Full text: We introduce the concept of a quantum walk with two particles and study it for the case of a discrete time walk on a line. A quantum walk with more than one particle may contain entanglement, thus offering a resource unavailable in the classical scenario and which can present interesting advantages. In this work, we show how the entanglement and the relative phase between the states describing the coin degree of freedom of each particle will influence the evolution of the quantum walk. In particular, the probability to find at least one particle in a certain position after N steps of the walk, as well as the average distance between the two particles, can be larger or smaller than the case of two unentangled particles, depending on the initial conditions we choose. This resource can then be tuned according to our needs, in particular to enhance a given application (algorithmic or other) based on a quantum walk. Experimental implementations are briefly discussed. (author)
Older Ethnic Minority Women's Perceptions of Stroke Prevention and Walking.
Kwon, Ivy; Bharmal, Nazleen; Choi, Sarah; Araiza, Daniel; Moore, Mignon R; Trejo, Laura; Sarkisian, Catherine A
2016-01-01
To inform the development of a tailored behavioral stroke risk reduction intervention for ethnic minority seniors, we sought to explore gender differences in perceptions of stroke prevention and physical activity (walking). In collaboration with community-based organizations, we conducted 12 mixed-gender focus groups of African American, Latino, Chinese, and Korean seniors aged 60 years and older with a history of hypertension (89 women and 42 men). Transcripts were coded and recurring topics compared by gender. Women expressed beliefs that differed from men in 4 topic areas: 1) stroke-related interest, 2) barriers to walking, 3) facilitators to walking, and 4) health behavior change attitudes. Compared with men, women were more interested in their role in response to a stroke and post-stroke care. Women described walking as an acceptable form of exercise, but cited neighborhood safety and pain as walking barriers. Fear of nursing home placement and weight loss were identified as walking facilitators. Women were more prone than men to express active/control attitudes toward health behavior change. Older ethnic minority women, a high-risk population for stroke, may be more receptive to behavioral interventions that address the gender-specific themes identified by this study. Published by Elsevier Inc.
Supporting for Visually Handicapped to Walk Around with RFID Technologies
Directory of Open Access Journals (Sweden)
Masayoshhi Asano
2015-11-01
Full Text Available Visually handicapped use their white cane to find obstacles. They follow tactile walking surface indicators to find routes and intersections. They use all sensory organs they can use to acquire the surrounding information. They match the surrounding information with routing information they have, to find their current location and target direction. However, even if tactile walking surface indicators are installed, it is difficult for them to visit unknown places because they have no correct routing information. When they go outside depending on tactile walking surface indicators, they have to follow them. They cannot plan their walking routes for themselves in unknown places. It is impossible for them to walk around various places such as shopping malls and station concourses as sighted persons, which is indispensable to enjoy their daily life. In this work, we propose a method which supports visually handicapped people to visit and walk around in their unknown places. We use RFID technologies to achieve voice navigation with the direction to their destination from their current location and their moving direction. To verify effectiveness of our system, we navigate blindfolded people experimentally. In the experiment, we have confirmed the success rate is 81 %.
Leone, Carmela; Severijns, Deborah; Doležalová, Vendula; Baert, Ilse; Dalgas, Ulrik; Romberg, Anders; Bethoux, Francois; Gebara, Benoit; Santoyo Medina, Carmen; Maamâgi, Heigo; Rasova, Kamila; Maertens de Noordhout, Benoît; Knuts, Kathy; Skjerbaek, Anders; Jensen, Ellen; Wagner, Joanne M; Feys, Peter
2016-05-01
To investigate the individual occurrence of walking-related motor fatigue in persons with multiple sclerosis (PwMS), according to disability level and disease phenotype.Study design This was a cross-sectional, multinational study.Participants They were 208 PwMS from 11 centers with Expanded Disability Status Scale (EDSS) scores up to 6.5. The percentage change in distance walked (distance walked index, DWI) was calculated between minute 6 and 1 (DWI(6-1)) of the 6-Minute Walk Test (6MWT). Its magnitude was used to classify participants into 4 subgroups: (1) DWI(6-1)[≥5%], (2) DWI(6-1)[5%; -5%], (3) DWI(6-1)[-5%; > -15%], and (4) DWI(6-1)[≤-15%]. The latter group was labeled as having walking-related motor fatigue. PwMS were stratified into 5 subgroups based on the EDSS (0-2.5, 3-4, 4.5-5.5, 6, 6.5) and 3 subgroups based on MS phenotype (relapsing remitting [RR], primary progressive [PP], and secondary progressive [SP]). The DWI6-1was ≥5% in 16 PwMS (7.7%), between 5% and -5% in 70 PwMS (33.6%), between -5% and -15% in 58 PwMS (24%), and ≤-15% in 64 PwMS (30.8%). The prevalence of walking-related motor fatigue (DWI(6-1)[≤-15%]) was significantly higher among the progressive phenotype (PP = 50% and SP = 39%; RR = 15.6%) and PwMS with higher disability level (EDSS 4.5-5.5 = 48.3%, 6 = 46.3% and 6.5 = 51.5%, compared with EDSS 0-2.5 = 7.8% and 3-4 = 16.7%;P< .05). Stepwise multiple regression analysis indicated that EDSS, but not MS phenotype, explained a significant part of the variance in DWI(6-1)(R(2)= 0.086;P< .001). More than one-third of PwMS showed walking-related motor fatigue during the 6MWT, with its prevalence greatest in more disabled persons (up to 51%) and in those with progressive MS phenotype (up to 50%). Identification of walking-related motor fatigue may lead to better-tailored interventions. © The Author(s) 2015.
Particle resuspension due to human walking
International Nuclear Information System (INIS)
Mana, Zakaria
2014-01-01
In nuclear facilities, during normal operations in controlled areas, workers could be exposed to radioactive aerosols (1 μm ≤ dp ≤ 10 μm). One of the airborne contamination sources is particles that are initially seeded on the floor and could be removed by workers while they are walking. During the outage of EDF nuclear facilities, there is a resuspension of some radionuclides in aerosol form (1 μm ≤ dp ≤ 10 μm). Since the number of co-activity will increase in reactors buildings of EDF, it becomes important to understand particle resuspension due to the activity of the operators to reduce their radiation exposure. The purpose of this Ph.D thesis is to quantify the resuspension of particles due to the progress of operators on a contaminated soil. Thus, the approach is to combine an aerodynamic resuspension model with numerical calculations of flow under a shoe, and then to characterize experimentally some input parameters of the model (particle diameter, adhesion forces, shoes motion). The resuspension model Rock'n'Roll proposed by Reeks and Hall (2001) was chosen because it describes physically the resuspension mechanism and because it is based on the moment of forces applied to a particle. This model requires two input parameters such as friction velocity and adhesion forces distribution applied on each particle. Regarding the first argument, numerical simulations were carried on using the ANSYS CFX software applied to a safety shoe in motion (digitized by 3D CAO); the mapping of friction velocity shows values of about 1 m.s -1 for an angular average velocity of 200 degrees.s -1 . As regards the second parameter, AFM (Atomic Force Microscopy) measurements were carried out with alumina and cobalt oxide particles in contact with epoxy surfaces representative of those encountered in EDF power plants. AFM provides the distribution of adhesion forces and reveals a much lower value than what can be calculated theoretically using JKR model (Johnson
Variational data assimilation using targetted random walks
Cotter, S. L.
2011-02-15
The variational approach to data assimilation is a widely used methodology for both online prediction and for reanalysis. In either of these scenarios, it can be important to assess uncertainties in the assimilated state. Ideally, it is desirable to have complete information concerning the Bayesian posterior distribution for unknown state given data. We show that complete computational probing of this posterior distribution is now within the reach in the offline situation. We introduce a Markov chain-Monte Carlo (MCMC) method which enables us to directly sample from the Bayesian posterior distribution on the unknown functions of interest given observations. Since we are aware that these methods are currently too computationally expensive to consider using in an online filtering scenario, we frame this in the context of offline reanalysis. Using a simple random walk-type MCMC method, we are able to characterize the posterior distribution using only evaluations of the forward model of the problem, and of the model and data mismatch. No adjoint model is required for the method we use; however, more sophisticated MCMC methods are available which exploit derivative information. For simplicity of exposition, we consider the problem of assimilating data, either Eulerian or Lagrangian, into a low Reynolds number flow in a two-dimensional periodic geometry. We will show that in many cases it is possible to recover the initial condition and model error (which we describe as unknown forcing to the model) from data, and that with increasing amounts of informative data, the uncertainty in our estimations reduces. © 2011 John Wiley & Sons, Ltd.
How do brochures encourage walking in natural environments in the UK? A content analysis.
Elliott, LR; White, MP; Taylor, AH; Abraham, C
2016-01-01
Although walking for leisure can support health, there has been little systematic attempt to consider how recreational walking is best promoted. In the UK, local authorities create promotional materials for walking networks, but little is known about whether they effectively encourage walking through persuasive messaging. Many of these materials pertain to walks in natural environments which evidence suggests are generally visited less frequently by physically inactive individuals. Consequent...
Walking Adaptability after a Stroke and Its Assessment in Clinical Settings
Balasubramanian, Chitralakshmi K.; Clark, David J.; Fox, Emily J.
2014-01-01
Control of walking has been described by a tripartite model consisting of stepping, equilibrium, and adaptability. This review focuses on walking adaptability, which is defined as the ability to modify walking to meet task goals and environmental demands. Walking adaptability is crucial to safe ambulation in the home and community environments and is often severely compromised after a stroke. Yet quantification of walking adaptability after stroke has received relatively little attention in t...
Walking for Transportation and Leisure Among U.S. Adults--National Health Interview Survey 2010.
Paul, Prabasaj; Carlson, Susan A; Carroll, Dianna D; Berrigan, David; Fulton, Janet E
2015-06-16
Walking, the most commonly reported physical activity among U.S. adults, is undertaken in various domains, including transportation and leisure. This study examined prevalence, bout length, and mean amount of walking in the last week for transportation and leisure, by selected characteristics. Self-reported data from the 2010 National Health Interview Survey (N = 24,017) were analyzed. Prevalence of transportation walking was 29.4% (95% CI: 28.6%-30.3%) and of leisure walking was 50.0% (95% CI: 49.1%-51.0%). Prevalence of transportation walking was higher among men; prevalence of leisure walking was higher among women. Most (52.4%) transportation walking bouts were 10 to 15 minutes; leisure walking bouts were distributed more evenly (28.0%, 10-15 minutes; 17.1%, 41-60 minutes). Mean time spent in transportation walking was higher among men, decreased with increasing BMI, and varied by race/ethnicity and region of residence. Mean time spent leisure walking increased with increasing age and with decreasing BMI. Demographic correlates and patterns of walking differ by domain. Interventions focusing on either leisure or transportation walking should consider correlates for the specific walking domain. Assessing prevalence, bout length, and mean time of walking for transportation and leisure separately allows for more comprehensive surveillance of walking.
Public open spaces and walking for recreation: moderation by attributes of pedestrian environments.
Sugiyama, Takemi; Paquet, Catherine; Howard, Natasha J; Coffee, Neil T; Taylor, Anne W; Adams, Robert J; Daniel, Mark
2014-05-01
This study examined whether attributes of pedestrian environments moderate the relationships between access to public open spaces (POS) and adults' recreational walking. Data were collected from participants of the North West Adelaide Health Study in 2007. Recreational walking was determined using self-reported walking frequency. Measures of POS access (presence, count, and distance to the nearest POS) were assessed using a Geographic Information System. Pedestrian environmental attributes included aesthetics, walking infrastructure, barrier/traffic, crime concern, intersection density, and access to walking trails. Regression analyses examined whether associations between POS access and recreational walking were moderated by pedestrian environmental attributes. The sample included 1574 participants (45% men, mean age: 55). POS access measures were not associated with recreational walking. However, aesthetics, walking infrastructure, and access to walking trail were found to moderate the POS-walking relationships. The presence of POS was associated with walking among participants with aesthetically pleasing pedestrian environments. Counter-intuitively, better access to POS was associated with recreational walking for those with poorer walking infrastructure or no access to walking trails. Local pedestrian environments moderate the relationships between access to POS and recreational walking. Our findings suggest the presence of complex relationships between POS availability and pedestrian environments. Copyright © 2014 Elsevier Inc. All rights reserved.
Effects of Walking Direction and Cognitive Challenges on Gait in Persons with Multiple Sclerosis
Directory of Open Access Journals (Sweden)
Douglas A. Wajda
2013-01-01
Full Text Available Declines in walking performance are commonly seen when undergoing a concurrent cognitive task in persons with multiple sclerosis (MS. The purpose of this study was to determine the effect of walking direction and simultaneous cognitive task on the spatiotemporal gait parameters in persons with MS compared to healthy controls. Ten persons with MS (Median EDSS, 3.0 and ten healthy controls took part in this pilot study. Participants performed 4 walking trials at their self-selected comfortable pace. These trials included forward walking, forward walking with a cognitive task, backward walking, and backward walking with a cognitive task. Walking performance was indexed with measures of velocity, cadence, and stride length for each testing condition. The MS group walked slower with significantly reduced stride length compared to the control group. The novel observation of this investigation was that walking differences between persons with MS and healthy controls were greater during backward walking, and this effect was further highlighted during backward walking with added cognitive test. This raises the possibility that backward walking tests could be an effective way to examine walking difficulties in individuals with MS with relatively minimal walking impairment.
Directory of Open Access Journals (Sweden)
Matthew R Holdgate
Full Text Available Research with humans and other animals suggests that walking benefits physical health. Perhaps because these links have been demonstrated in other species, it has been suggested that walking is important to elephant welfare, and that zoo elephant exhibits should be designed to allow for more walking. Our study is the first to address this suggestion empirically by measuring the mean daily walking distance of elephants in North American zoos, determining the factors that are associated with variations in walking distance, and testing for associations between walking and welfare indicators. We used anklets equipped with GPS data loggers to measure outdoor daily walking distance in 56 adult female African (n = 33 and Asian (n = 23 elephants housed in 30 North American zoos. We collected 259 days of data and determined associations between distance walked and social, housing, management, and demographic factors. Elephants walked an average of 5.3 km/day with no significant difference between species. In our multivariable model, more diverse feeding regimens were correlated with increased walking, and elephants who were fed on a temporally unpredictable feeding schedule walked 1.29 km/day more than elephants fed on a predictable schedule. Distance walked was also positively correlated with an increase in the number of social groupings and negatively correlated with age. We found a small but significant negative correlation between distance walked and nighttime Space Experience, but no other associations between walking distances and exhibit size were found. Finally, distance walked was not related to health or behavioral outcomes including foot health, joint health, body condition, and the performance of stereotypic behavior, suggesting that more research is necessary to determine explicitly how differences in walking may impact elephant welfare.
Holdgate, Matthew R; Meehan, Cheryl L; Hogan, Jennifer N; Miller, Lance J; Soltis, Joseph; Andrews, Jeff; Shepherdson, David J
2016-01-01
Research with humans and other animals suggests that walking benefits physical health. Perhaps because these links have been demonstrated in other species, it has been suggested that walking is important to elephant welfare, and that zoo elephant exhibits should be designed to allow for more walking. Our study is the first to address this suggestion empirically by measuring the mean daily walking distance of elephants in North American zoos, determining the factors that are associated with variations in walking distance, and testing for associations between walking and welfare indicators. We used anklets equipped with GPS data loggers to measure outdoor daily walking distance in 56 adult female African (n = 33) and Asian (n = 23) elephants housed in 30 North American zoos. We collected 259 days of data and determined associations between distance walked and social, housing, management, and demographic factors. Elephants walked an average of 5.3 km/day with no significant difference between species. In our multivariable model, more diverse feeding regimens were correlated with increased walking, and elephants who were fed on a temporally unpredictable feeding schedule walked 1.29 km/day more than elephants fed on a predictable schedule. Distance walked was also positively correlated with an increase in the number of social groupings and negatively correlated with age. We found a small but significant negative correlation between distance walked and nighttime Space Experience, but no other associations between walking distances and exhibit size were found. Finally, distance walked was not related to health or behavioral outcomes including foot health, joint health, body condition, and the performance of stereotypic behavior, suggesting that more research is necessary to determine explicitly how differences in walking may impact elephant welfare.
Increased walking variability in elderly persons with congestive heart failure
Hausdorff, J. M.; Forman, D. E.; Ladin, Z.; Goldberger, A. L.; Rigney, D. R.; Wei, J. Y.
1994-01-01
OBJECTIVES: To determine the effects of congestive heart failure on a person's ability to walk at a steady pace while ambulating at a self-determined rate. SETTING: Beth Israel Hospital, Boston, a primary and tertiary teaching hospital, and a social activity center for elderly adults living in the community. PARTICIPANTS: Eleven elderly subjects (aged 70-93 years) with well compensated congestive heart failure (NY Heart Association class I or II), seven elderly subjects (aged 70-79 years) without congestive heart failure, and 10 healthy young adult subjects (aged 20-30 years). MEASUREMENTS: Subjects walked for 8 minutes on level ground at their own selected walking rate. Footswitches were used to measure the time between steps. Step rate (steps/minute) and step rate variability were calculated for the entire walking period, for 30 seconds during the first minute of the walk, for 30 seconds during the last minute of the walk, and for the 30-second period when each subject's step rate variability was minimal. Group means and 5% and 95% confidence intervals were computed. MAIN RESULTS: All measures of walking variability were significantly increased in the elderly subjects with congestive heart failure, intermediate in the elderly controls, and lowest in the young subjects. There was no overlap between the three groups using the minimal 30-second variability (elderly CHF vs elderly controls: P young: P < 0.001), and no overlap between elderly subjects with and without congestive heart failure when using the overall variability. For all four measures, there was no overlap in any of the confidence intervals, and all group means were significantly different (P < 0.05).
The advantages of a rolling foot in human walking.
Adamczyk, Peter G; Collins, Steven H; Kuo, Arthur D
2006-10-01
The plantigrade human foot rolls over the ground during each walking step, roughly analogous to a wheel. The center of pressure progresses on the ground like a wheel of radius 0.3 L (leg length). We examined the effect of varying foot curvature on the mechanics and energetics of walking. We controlled curvature by attaching rigid arc shapes of various radii to the bottoms of rigid boots restricting ankle motion. We measured mechanical work performed on the center of mass (COM), and net metabolic rate, in human subjects (N=10) walking with seven arc radii from 0.02-0.40 m. Simple models of dynamic walking predict that redirection of COM velocity requires step-to-step transition work, decreasing quadratically with arc radius. Metabolic cost would be expected to change in proportion to mechanical work. We measured the average rate of negative work performed on the COM, and found that it followed the trend well (r2=0.95), with 2.37 times as much work for small radii as for large. Net metabolic rate (subtracting quiet standing) also decreased with increasing arc radius to a minimum at 0.3 L, with a slight increase thereafter. Maximum net metabolic rate was 6.25 W kg(-1) (for small-radius arc feet), about 59% greater than the minimum rate of 3.93 W kg(-1), which in turn was about 45% greater than the rate in normal walking. Metabolic rate was fit reasonably well (r2=0.86) by a quadratic curve, but exceeded that expected from COM work for extreme arc sizes. Other factors appear to increase metabolic cost for walking on very small and very large arc feet. These factors may include effort expended to stabilize the joints (especially the knee) or to maintain balance. Rolling feet with curvature 0.3 L appear energetically advantageous for plantigrade walking, partially due to decreased work for step-to-step transitions.
Neighbourhood walkability, daily steps and utilitarian walking in Canadian adults.
Hajna, Samantha; Ross, Nancy A; Joseph, Lawrence; Harper, Sam; Dasgupta, Kaberi
2015-11-24
To estimate the associations of neighbourhood walkability (based on Geographic Information System (GIS)-derived measures of street connectivity, land use mix, and population density and the Walk Score) with self-reported utilitarian walking and accelerometer-assessed daily steps in Canadian adults. A cross-sectional analysis of data collected as part of the Canadian Health Measures Survey (2007-2009). Home neighbourhoods (500 m polygonal street network buffers around the centroid of the participant's postal code) located in Atlantic Canada, Québec, Ontario, the Prairies and British Columbia. 5605 individuals participated in the survey. 3727 adults (≥18 years) completed a computer-assisted interview and attended a mobile clinic assessment. Analyses were based on those who had complete exposure, outcome and covariate data (n=2949). GIS-derived walkability (based on land use mix, street connectivity and population density); Walk Score. Self-reported utilitarian walking; accelerometer-assessed daily steps. No important relationship was observed between neighbourhood walkability and daily steps. Participants who reported more utilitarian walking, however, accumulated more steps (walkability and odds of walking ≥1 h/week for utilitarian purposes (eg, Q4 vs Q1 of GIS-derived walkability: OR=1.66, 95% CI 1.31 to 2.11; Q3 vs Q1: OR=1.41, 95% CI 1.14 to 1.76; Q2 vs Q1: OR=1.13, 95% CI 0.91 to 1.39) independent of age, sex, body mass index, married/common law status, annual household income, having children in the household, immigrant status, mood disorder, perceived health, ever smoker and season. Contrary to expectations, living in more walkable Canadian neighbourhoods was not associated with more total walking. Utilitarian walking and daily steps were, however, correlated and walkability demonstrated a positive graded relationship with utilitarian walking. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a
Interactive cueing with walk-Mate for Hemiparetic Stroke Rehabilitation
Directory of Open Access Journals (Sweden)
Muto Takeshi
2012-08-01
Full Text Available Abstract Background Many techniques that compensate for locomotion problems in daily life using externally controlled stimulation have recently been reported. These techniques are beneficial for effortlessly supporting patients’ locomotive functions, but the users of such devices must necessarily remain dependent on them. It is possible that some individuals with gait impairment may be prevented recovering locomotive function. From a rehabilitation viewpoint, it may therefore be supposed that ideally, devices that can be used in daily life to improve the locomotive functions of the body itself should be proposed. Methods We evaluate the effectiveness of Walk-Mate, which has been used mainly as a gait compensation device, as a gait rehabilitation training device by analyzing improvement in locomotion before, during and after rehabilitation in hemiparetic patients and comparing it with a previous gait training method. Walk-Mate generates a model walking rhythm in response to a user’s locomotion in real time, and by indicating this rhythm using auditory stimuli, provides a technology that supports walking by reducing asymmetries and fluctuations in foot contact rhythm. If patients can use the system to learn a regulated walking rhythm, then it may also be expected to fulfil the functions of a gait rehabilitation training device for daily life. Results With regard to asymmetry, significantly improvements were seen for compensatory movement during training using Walk-Mate, but improvements were not retained as rehabilitative results. Regarding fluctuations in the foot contact period, significant improvement was observed for compensatory movement during training and these significant improvements were retained as rehabilitative results. In addition, it became clear that such improvement could not be adequately obtained by the previously proposed training technique utilizing constant rhythmic auditory stimulation. Conclusions Walk-Mate effectively
Navigation by anomalous random walks on complex networks.
Weng, Tongfeng; Zhang, Jie; Khajehnejad, Moein; Small, Michael; Zheng, Rui; Hui, Pan
2016-11-23
Anomalous random walks having long-range jumps are a critical branch of dynamical processes on networks, which can model a number of search and transport processes. However, traditional measurements based on mean first passage time are not useful as they fail to characterize the cost associated with each jump. Here we introduce a new concept of mean first traverse distance (MFTD) to characterize anomalous random walks that represents the expected traverse distance taken by walkers searching from source node to target node, and we provide a procedure for calculating the MFTD between two nodes. We use Lévy walks on networks as an example, and demonstrate that the proposed approach can unravel the interplay between diffusion dynamics of Lévy walks and the underlying network structure. Moreover, applying our framework to the famous PageRank search, we show how to inform the optimality of the PageRank search. The framework for analyzing anomalous random walks on complex networks offers a useful new paradigm to understand the dynamics of anomalous diffusion processes, and provides a unified scheme to characterize search and transport processes on networks.
Navigation by anomalous random walks on complex networks
Weng, Tongfeng; Zhang, Jie; Khajehnejad, Moein; Small, Michael; Zheng, Rui; Hui, Pan
2016-11-01
Anomalous random walks having long-range jumps are a critical branch of dynamical processes on networks, which can model a number of search and transport processes. However, traditional measurements based on mean first passage time are not useful as they fail to characterize the cost associated with each jump. Here we introduce a new concept of mean first traverse distance (MFTD) to characterize anomalous random walks that represents the expected traverse distance taken by walkers searching from source node to target node, and we provide a procedure for calculating the MFTD between two nodes. We use Lévy walks on networks as an example, and demonstrate that the proposed approach can unravel the interplay between diffusion dynamics of Lévy walks and the underlying network structure. Moreover, applying our framework to the famous PageRank search, we show how to inform the optimality of the PageRank search. The framework for analyzing anomalous random walks on complex networks offers a useful new paradigm to understand the dynamics of anomalous diffusion processes, and provides a unified scheme to characterize search and transport processes on networks.
A soft robotic exosuit improves walking in patients after stroke.
Awad, Louis N; Bae, Jaehyun; O'Donnell, Kathleen; De Rossi, Stefano M M; Hendron, Kathryn; Sloot, Lizeth H; Kudzia, Pawel; Allen, Stephen; Holt, Kenneth G; Ellis, Terry D; Walsh, Conor J
2017-07-26
Stroke-induced hemiparetic gait is characteristically slow and metabolically expensive. Passive assistive devices such as ankle-foot orthoses are often prescribed to increase function and independence after stroke; however, walking remains highly impaired despite-and perhaps because of-their use. We sought to determine whether a soft wearable robot (exosuit) designed to supplement the paretic limb's residual ability to generate both forward propulsion and ground clearance could facilitate more normal walking after stroke. Exosuits transmit mechanical power generated by actuators to a wearer through the interaction of garment-like, functional textile anchors and cable-based transmissions. We evaluated the immediate effects of an exosuit actively assisting the paretic limb of individuals in the chronic phase of stroke recovery during treadmill and overground walking. Using controlled, treadmill-based biomechanical investigation, we demonstrate that exosuits can function in synchrony with a wearer's paretic limb to facilitate an immediate 5.33 ± 0.91° increase in the paretic ankle's swing phase dorsiflexion and 11 ± 3% increase in the paretic limb's generation of forward propulsion ( P exosuit was sufficient to facilitate more normal walking in ambulatory individuals after stroke. Future work will focus on understanding how exosuit-induced improvements in walking performance may be leveraged to improve mobility after stroke. Copyright © 2017 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.
Search for Directed Networks by Different Random Walk Strategies
Zhu, Zi-Qi; Jin, Xiao-Ling; Huang, Zhi-Long
2012-03-01
A comparative study is carried out on the efficiency of five different random walk strategies searching on directed networks constructed based on several typical complex networks. Due to the difference in search efficiency of the strategies rooted in network clustering, the clustering coefficient in a random walker's eye on directed networks is defined and computed to be half of the corresponding undirected networks. The search processes are performed on the directed networks based on Erdös—Rényi model, Watts—Strogatz model, Barabási—Albert model and clustered scale-free network model. It is found that self-avoiding random walk strategy is the best search strategy for such directed networks. Compared to unrestricted random walk strategy, path-iteration-avoiding random walks can also make the search process much more efficient. However, no-triangle-loop and no-quadrangle-loop random walks do not improve the search efficiency as expected, which is different from those on undirected networks since the clustering coefficient of directed networks are smaller than that of undirected networks.
EMG patterns during assisted walking in the exoskeleton
Directory of Open Access Journals (Sweden)
Francesca eSylos-Labini
2014-06-01
Full Text Available Neuroprosthetic technology and robotic exoskeletons are being developed to facilitate stepping, reduce muscle efforts and promote motor recovery. Nevertheless, the guidance forces of an exoskeleton may influence the sensory inputs, sensorimotor interactions and resulting muscle activity patterns during stepping. The aim of this study was to report the muscle activation patterns in a sample of intact and injured subjects while walking with a robotic exoskeleton and, in particular, to quantify the level of muscle activity during assisted gait. We recorded electromyographic (EMG activity of different leg and arm muscles during overground walking in an exoskeleton in six healthy individuals and four spinal cord injury (SCI participants. In SCI patients, EMG activity of the upper limb muscles was augmented while activation of leg muscles was typically small. Contrary to our expectations, however, in neurologically intact subjects, EMG activity of leg muscles was similar or even larger during exoskeleton-assisted walking compared to normal overground walking. In addition, significant variations in the EMG waveforms were found across different walking conditions. The most variable pattern was observed in the hamstring muscles. Overall, the results are consistent with a non-linear reorganization of the locomotor output when using the robotic stepping devices. The findings may contribute to our understanding of human-machine interactions and adaptation of locomotor activity patterns.
A New Random Walk for Replica Detection in WSNs
Aalsalem, Mohammed Y.; Saad, N. M.; Hossain, Md. Shohrab; Atiquzzaman, Mohammed; Khan, Muhammad Khurram
2016-01-01
Wireless Sensor Networks (WSNs) are vulnerable to Node Replication attacks or Clone attacks. Among all the existing clone detection protocols in WSNs, RAWL shows the most promising results by employing Simple Random Walk (SRW). More recently, RAND outperforms RAWL by incorporating Network Division with SRW. Both RAND and RAWL have used SRW for random selection of witness nodes which is problematic because of frequently revisiting the previously passed nodes that leads to longer delays, high expenditures of energy with lower probability that witness nodes intersect. To circumvent this problem, we propose to employ a new kind of constrained random walk, namely Single Stage Memory Random Walk and present a distributed technique called SSRWND (Single Stage Memory Random Walk with Network Division). In SSRWND, single stage memory random walk is combined with network division aiming to decrease the communication and memory costs while keeping the detection probability higher. Through intensive simulations it is verified that SSRWND guarantees higher witness node security with moderate communication and memory overheads. SSRWND is expedient for security oriented application fields of WSNs like military and medical. PMID:27409082
Autonomous exoskeleton reduces metabolic cost of human walking.
Mooney, Luke M; Rouse, Elliott J; Herr, Hugh M
2014-11-03
Passive exoskeletons that assist with human locomotion are often lightweight and compact, but are unable to provide net mechanical power to the exoskeletal wearer. In contrast, powered exoskeletons often provide biologically appropriate levels of mechanical power, but the size and mass of their actuator/power source designs often lead to heavy and unwieldy devices. In this study, we extend the design and evaluation of a lightweight and powerful autonomous exoskeleton evaluated for loaded walking in (J Neuroeng Rehab 11:80, 2014) to the case of unloaded walking conditions. The metabolic energy consumption of seven study participants (85 ± 12 kg body mass) was measured while walking on a level treadmill at 1.4 m/s. Testing conditions included not wearing the exoskeleton and wearing the exoskeleton, in both powered and unpowered modes. When averaged across the gait cycle, the autonomous exoskeleton applied a mean positive mechanical power of 26 ± 1 W (13 W per ankle) with 2.12 kg of added exoskeletal foot-shank mass (1.06 kg per leg). Use of the leg exoskeleton significantly reduced the metabolic cost of walking by 35 ± 13 W, which was an improvement of 10 ± 3% (p = 0.023) relative to the control condition of not wearing the exoskeleton. The results of this study highlight the advantages of developing lightweight and powerful exoskeletons that can comfortably assist the body during walking.
EMG patterns during assisted walking in the exoskeleton
Sylos-Labini, Francesca; La Scaleia, Valentina; d'Avella, Andrea; Pisotta, Iolanda; Tamburella, Federica; Scivoletto, Giorgio; Molinari, Marco; Wang, Shiqian; Wang, Letian; van Asseldonk, Edwin; van der Kooij, Herman; Hoellinger, Thomas; Cheron, Guy; Thorsteinsson, Freygardur; Ilzkovitz, Michel; Gancet, Jeremi; Hauffe, Ralf; Zanov, Frank; Lacquaniti, Francesco; Ivanenko, Yuri P.
2014-01-01
Neuroprosthetic technology and robotic exoskeletons are being developed to facilitate stepping, reduce muscle efforts, and promote motor recovery. Nevertheless, the guidance forces of an exoskeleton may influence the sensory inputs, sensorimotor interactions and resulting muscle activity patterns during stepping. The aim of this study was to report the muscle activation patterns in a sample of intact and injured subjects while walking with a robotic exoskeleton and, in particular, to quantify the level of muscle activity during assisted gait. We recorded electromyographic (EMG) activity of different leg and arm muscles during overground walking in an exoskeleton in six healthy individuals and four spinal cord injury (SCI) participants. In SCI patients, EMG activity of the upper limb muscles was augmented while activation of leg muscles was typically small. Contrary to our expectations, however, in neurologically intact subjects, EMG activity of leg muscles was similar or even larger during exoskeleton-assisted walking compared to normal overground walking. In addition, significant variations in the EMG waveforms were found across different walking conditions. The most variable pattern was observed in the hamstring muscles. Overall, the results are consistent with a non-linear reorganization of the locomotor output when using the robotic stepping devices. The findings may contribute to our understanding of human-machine interactions and adaptation of locomotor activity patterns. PMID:24982628
Determination of Ankle and Metatarsophalangeal Stiffness During Walking and Jogging.
Mager, Fabian; Richards, Jim; Hennies, Malika; Dötzel, Eugen; Chohan, Ambreen; Mbuli, Alex; Capanni, Felix
2018-05-29
Forefoot stiffness has been shown to influence joint biomechanics. However, little or no data exists on metatarsophalangeal stiffness. Twenty-four healthy rearfoot strike runners were recruited from a staff and student population at the University of Central Lancashire. Five repetitions of shod, self-selected speed level walking and jogging were performed. Kinetic and kinematic data were collected using retro-reflective markers placed on the lower limb and foot, to create a three-segment foot model using the Calibrated Anatomical System Technique. Ankle and metatarsophalangeal moments and angles were calculated. Stiffness values were calculated using a linear best fit line of moment versus of angle plots. Paired t-tests were used to compare values between walking and jogging conditions. Significant differences were seen in ankle range of motion (ROM), but not in metatarsophalangeal ROM. Maximum moments were significantly greater in the ankle during jogging, but these were not significantly different at the metatarsophalangeal joint. Average ankle joint stiffness exhibited significantly lower stiffness when walking compared to jogging. However, the metatarsophalangeal joint exhibited significantly greater stiffness when walking compared to jogging. A greater understanding of forefoot stiffness may inform the development of footwear, prosthetic feet and orthotic devices, such as ankle-foot orthoses for walking and sporting activities.
A New Random Walk for Replica Detection in WSNs.
Aalsalem, Mohammed Y; Khan, Wazir Zada; Saad, N M; Hossain, Md Shohrab; Atiquzzaman, Mohammed; Khan, Muhammad Khurram
2016-01-01
Wireless Sensor Networks (WSNs) are vulnerable to Node Replication attacks or Clone attacks. Among all the existing clone detection protocols in WSNs, RAWL shows the most promising results by employing Simple Random Walk (SRW). More recently, RAND outperforms RAWL by incorporating Network Division with SRW. Both RAND and RAWL have used SRW for random selection of witness nodes which is problematic because of frequently revisiting the previously passed nodes that leads to longer delays, high expenditures of energy with lower probability that witness nodes intersect. To circumvent this problem, we propose to employ a new kind of constrained random walk, namely Single Stage Memory Random Walk and present a distributed technique called SSRWND (Single Stage Memory Random Walk with Network Division). In SSRWND, single stage memory random walk is combined with network division aiming to decrease the communication and memory costs while keeping the detection probability higher. Through intensive simulations it is verified that SSRWND guarantees higher witness node security with moderate communication and memory overheads. SSRWND is expedient for security oriented application fields of WSNs like military and medical.
Quality of Public Open Spaces and Recreational Walking.
Sugiyama, Takemi; Gunn, Lucy D; Christian, Hayley; Francis, Jacinta; Foster, Sarah; Hooper, Paula; Owen, Neville; Giles-Corti, Billie
2015-12-01
We examined associations between specific public open space (POS) attributes and recreational walking to local POS. Between October 2004 and December 2006, 1465 adults of the RESIDential Environments Project, conducted in Perth, Australia, reported whether they walk to a POS for recreation. For each participant, we identified all open spaces larger than 0.8 hectares within 1.6 kilometers from home. On the basis of field audit data, we created 3 scores (presence, count, size-weighted presence) for 19 specific open space attributes. With logistic regression analyses, we found that walking to a POS was associated with the presence of gardens, grassed areas, walking paths, water features, wildlife, amenities, dog-related facilities, and off-leash areas for dogs. It was also associated with the highest number of these attributes in a single open space, but not with the total number of attributes in all POSs within 1.6 kilometers of home. Building 1 high-quality local park may be more effective in promoting recreational walking than is providing many average-quality parks.
Walking behavior on Lapangan Merdeka district in Medan city
Zahrah, W.; Mandai, A. J. O.; Nasution, A. D.
2018-03-01
Lapangan Merdeka district in Medan City is an area with a lot of functions and activities. Pedestrians in this area pose particular behavior for walking. Such behavior can be formed due to certain factors. This study aimed to identify the behavior and motivation of walking, as well as knowing the perception of pedestrians on pedestrian facilities and infrastructures. This research is a qualitative descriptive study. This research was conducted in five streets that have pedestrian lanes by collecting data through observation of pedestrian facilities and infrastructures, as well as the distribution of questionnaires to investigate the characteristics of pedestrians, the behavior and motivation of walking, and perceptions of pedestrian facilities and infrastructure. The research found that the behavior of pedestrians when walking are different on certain characteristics of pedestrians as well as the specific conditions of facilities and infrastructures. The most dominant motivation when walking in this area is easy transportation access. The results of the perception of pedestrians also show that pedestrian facilities and infrastructure are good in this area.
A mechanical protocol to replicate impact in walking footwear.
Price, Carina; Cooper, Glen; Graham-Smith, Philip; Jones, Richard
2014-01-01
Impact testing is undertaken to quantify the shock absorption characteristics of footwear. The current widely reported mechanical testing method mimics the heel impact in running and therefore applies excessive energy to walking footwear. The purpose of this study was to modify the ASTM protocol F1614 (Procedure A) to better represent walking gait. This was achieved by collecting kinematic and kinetic data while participants walked in four different styles of walking footwear (trainer, oxford shoe, flip-flop and triple-density sandal). The quantified heel-velocity and effective mass at ground-impact were then replicated in a mechanical protocol. The kinematic data identified different impact characteristics in the footwear styles. Significantly faster heel velocity towards the floor was recorded walking in the toe-post sandals (flip-flop and triple-density sandal) compared with other conditions (e.g. flip-flop: 0.36±0.05 ms(-1) versus trainer: 0.18±0.06 ms(-1)). The mechanical protocol was adapted by altering the mass and drop height specific to the data captured for each shoe (e.g. flip-flop: drop height 7 mm, mass 16.2 kg). As expected, the adapted mechanical protocol produced significantly lower peak force and accelerometer values than the ASTM protocol (pfootwear style specific. Copyright © 2014 Elsevier B.V. All rights reserved.
Curvature of random walks and random polygons in confinement
International Nuclear Information System (INIS)
Diao, Y; Ernst, C; Montemayor, A; Ziegler, U
2013-01-01
The purpose of this paper is to study the curvature of equilateral random walks and polygons that are confined in a sphere. Curvature is one of several basic geometric properties that can be used to describe random walks and polygons. We show that confinement affects curvature quite strongly, and in the limit case where the confinement diameter equals the edge length the unconfined expected curvature value doubles from π/2 to π. To study curvature a simple model of an equilateral random walk in spherical confinement in dimensions 2 and 3 is introduced. For this simple model we derive explicit integral expressions for the expected value of the total curvature in both dimensions. These expressions are functions that depend only on the radius R of the confinement sphere. We then show that the values obtained by numeric integration of these expressions agrees with numerical average curvature estimates obtained from simulations of random walks. Finally, we compare the confinement effect on curvature of random walks with random polygons. (paper)
Directory of Open Access Journals (Sweden)
Miguel eFERNANDEZ-DEL-OLMO
2014-09-01
Full Text Available Gait disturbances are one of the principal and most incapacitating symptoms of Parkinson’s disease (PD. In addition, walking economy is impaired in PD patients and could contribute to excess fatigue in this population. An important number of studies have shown that treadmill training can improve kinematic parameters in PD patients. However, the effects of treadmill and overground walking on the walking economy remain unknown. The goal of this study was to explore the walking economy changes in response to a treadmill and an overground training program, as well as the differences in the walking economy during treadmill and overground walking. 22 mild PD patients were randomly assigned to a treadmill or overground training group. The training program consisted of 5 weeks (3 sessions/week. We evaluated the energy expenditure of overground walking, before and after each of the training programs. The energy expenditure of treadmill walking (before the program was also evaluated. The treadmill, but not the overground training program, lead to an improvement in the walking economy (the rate of oxygen consumed per distance, during overground walking at a preferred speed in PD patients. In addition, walking on a treadmill required more energy expenditure compared with overground walking at the same speed. This study provides evidence that in mild PD patients, treadmill training is more beneficial compared with that of walking overground, leading to a greater improvement in the walking economy. This finding is of clinical importance for the therapeutic administration of exercise in Parkinson’s disease.
Directory of Open Access Journals (Sweden)
Chun-Yu Kuo
2016-10-01
Full Text Available Prior research has shown that free walking can enhance creative thinking. Nevertheless, it remains unclear whether bidirectional body-mind links are essential for the positive effect of free walking on creative thinking. Moreover, it is unknown whether the positive effect can be generalized to older adults. In Experiment 1, we replicated previous findings with two additional groups of young participants. Participants in the rectangular-walking condition walked along a rectangular path while generating unusual uses for chopsticks. Participants in the free-walking group walked freely as they wished, and participants in the free-generation condition generated unconstrained free paths while the participants in the random-experienced condition walked those paths. Only the free-walking group showed better performance in fluency, flexibility, and originality. In Experiment 2, two groups of older adults were randomly assigned to the free-walking and rectangular-walking conditions. The free-walking group showed better performance than the rectangular-walking group. Moreover, older adults in the free-walking group outperformed young adults in the rectangular-walking group in originality and performed comparably in fluency and flexibility. Bidirectional links between proprioceptive-motor kinematics and metaphorical abstract concepts can enhance divergent thinking for both young and older adults.
Walking adaptability after a stroke and its assessment in clinical settings.
Balasubramanian, Chitralakshmi K; Clark, David J; Fox, Emily J
2014-01-01
Control of walking has been described by a tripartite model consisting of stepping, equilibrium, and adaptability. This review focuses on walking adaptability, which is defined as the ability to modify walking to meet task goals and environmental demands. Walking adaptability is crucial to safe ambulation in the home and community environments and is often severely compromised after a stroke. Yet quantification of walking adaptability after stroke has received relatively little attention in the clinical setting. The objectives of this review were to examine the conceptual challenges for clinical measurement of walking adaptability and summarize the current state of clinical assessment for walking adaptability. We created nine domains of walking adaptability from dimensions of community mobility to address the conceptual challenges in measurement and reviewed performance-based clinical assessments of walking to determine if the assessments measure walking adaptability in these domains. Our literature review suggests the lack of a comprehensive well-tested clinical assessment tool for measuring walking adaptability. Accordingly, recommendations for the development of a comprehensive clinical assessment of walking adaptability after stroke have been presented. Such a clinical assessment will be essential for gauging recovery of walking adaptability with rehabilitation and for motivating novel strategies to enhance recovery of walking adaptability after stroke.
Listening to humans walking together activates the social brain circuitry.
Saarela, Miiamaaria V; Hari, Riitta
2008-01-01
Human footsteps carry a vast amount of social information, which is often unconsciously noted. Using functional magnetic resonance imaging, we analyzed brain networks activated by footstep sounds of one or two persons walking. Listening to two persons walking together activated brain areas previously associated with affective states and social interaction, such as the subcallosal gyrus bilaterally, the right temporal pole, and the right amygdala. These areas seem to be involved in the analysis of persons' identity and complex social stimuli on the basis of auditory cues. Single footsteps activated only the biological motion area in the posterior STS region. Thus, hearing two persons walking together involved a more widespread brain network than did hearing footsteps from a single person.
Emotion rendering in auditory simulations of imagined walking styles
DEFF Research Database (Denmark)
Turchet, Luca; Rodá, Antonio
2016-01-01
This paper investigated how different emotional states of a walker can be rendered and recognized by means of footstep sounds synthesis algorithms. In a first experiment, participants were asked to render, according to imagined walking scenarios, five emotions (aggressive, happy, neutral, sad......, and tender) by manipulating the parameters of synthetic footstep sounds simulating various combinations of surface materials and shoes types. Results allowed to identify, for the involved emotions and sound conditions, the mean values and ranges of variation of two parameters, sound level and temporal...... distance between consecutive steps. Results were in accordance with those reported in previous studies on real walking, suggesting that expression of emotions in walking is independent from the real or imagined motor activity. In a second experiment participants were asked to identify the emotions...
Inescapable Stress Changes Walking Behavior in Flies - Learned Helplessness Revisited.
Batsching, Sophie; Wolf, Reinhard; Heisenberg, Martin
2016-01-01
Like other animals flies develop a state of learned helplessness in response to unescapable aversive events. To show this, two flies, one 'master', one 'yoked', are each confined to a dark, small chamber and exposed to the same sequence of mild electric shocks. Both receive these shocks when the master fly stops walking for more than a second. Behavior in the two animals is differently affected by the shocks. Yoked flies are transiently impaired in place learning and take longer than master flies to exit from the chamber towards light. After the treatment they walk more slowly and take fewer and shorter walking bouts. The low activity is attributed to the fly's experience that its escape response, an innate behavior to terminate the electric shocks, does not help anymore. Earlier studies using heat pulses instead of electric shocks had shown similar effects. This parallel supports the interpretation that it is the uncontrollability that induces the state.
Inescapable Stress Changes Walking Behavior in Flies - Learned Helplessness Revisited
Batsching, Sophie; Wolf, Reinhard; Heisenberg, Martin
2016-01-01
Like other animals flies develop a state of learned helplessness in response to unescapable aversive events. To show this, two flies, one 'master', one 'yoked', are each confined to a dark, small chamber and exposed to the same sequence of mild electric shocks. Both receive these shocks when the master fly stops walking for more than a second. Behavior in the two animals is differently affected by the shocks. Yoked flies are transiently impaired in place learning and take longer than master flies to exit from the chamber towards light. After the treatment they walk more slowly and take fewer and shorter walking bouts. The low activity is attributed to the fly's experience that its escape response, an innate behavior to terminate the electric shocks, does not help anymore. Earlier studies using heat pulses instead of electric shocks had shown similar effects. This parallel supports the interpretation that it is the uncontrollability that induces the state. PMID:27875580
Winning quick and dirty: the greedy random walk
International Nuclear Information System (INIS)
Ben-Naim, E; Redner, S
2004-01-01
As a strategy to complete games quickly, we investigate one-dimensional random walks where the step length increases deterministically upon each return to the origin. When the step length after the kth return equals k, the displacement of the walk x grows linearly in time. Asymptotically, the probability distribution of displacements is a purely exponentially decaying function of |x|/t. The probability E(t, L) for the walk to escape a bounded domain of size L at time t decays algebraically in the long-time limit, E(t, L) ∼ L/t 2 . Consequently, the mean escape time (t) ∼ Lln L, while (t n ) ∼ L 2n-1 for n > 1. Corresponding results are derived when the step length after the kth return scales as k α for α > 0
A generalized model via random walks for information filtering
International Nuclear Information System (INIS)
Ren, Zhuo-Ming; Kong, Yixiu; Shang, Ming-Sheng; Zhang, Yi-Cheng
2016-01-01
There could exist a simple general mechanism lurking beneath collaborative filtering and interdisciplinary physics approaches which have been successfully applied to online E-commerce platforms. Motivated by this idea, we propose a generalized model employing the dynamics of the random walk in the bipartite networks. Taking into account the degree information, the proposed generalized model could deduce the collaborative filtering, interdisciplinary physics approaches and even the enormous expansion of them. Furthermore, we analyze the generalized model with single and hybrid of degree information on the process of random walk in bipartite networks, and propose a possible strategy by using the hybrid degree information for different popular objects to toward promising precision of the recommendation. - Highlights: • We propose a generalized recommendation model employing the random walk dynamics. • The proposed model with single and hybrid of degree information is analyzed. • A strategy with the hybrid degree information improves precision of recommendation.
Multidimensional Lévy walk and its scaling limits
International Nuclear Information System (INIS)
Teuerle, Marek; Magdziarz, Marcin; Żebrowski, Piotr
2012-01-01
In this paper we obtain the scaling limit of a multidimensional Lévy walk and describe the detailed structure of the limiting process. The scaling limit is a subordinated α-stable Lévy motion with the parent process and subordinator being strongly dependent processes. The corresponding Langevin picture is derived. We also introduce a useful method of simulating Lévy walks with a predefined spectral measure, which controls the direction of each jump. Our approach can be applied in the analysis of real-life data—we are able to recover the spectral measure from the data and obtain the full characterization of a Lévy walk. We also give examples of some useful spectral measures, which cover a large class of possible scenarios in the modeling of real-life phenomena. (paper)
Convergence of a random walk method for the Burgers equation
International Nuclear Information System (INIS)
Roberts, S.
1985-10-01
In this paper we consider a random walk algorithm for the solution of Burgers' equation. The algorithm uses the method of fractional steps. The non-linear advection term of the equation is solved by advecting ''fluid'' particles in a velocity field induced by the particles. The diffusion term of the equation is approximated by adding an appropriate random perturbation to the positions of the particles. Though the algorithm is inefficient as a method for solving Burgers' equation, it does model a similar method, the random vortex method, which has been used extensively to solve the incompressible Navier-Stokes equations. The purpose of this paper is to demonstrate the strong convergence of our random walk method and so provide a model for the proof of convergence for more complex random walk algorithms; for instance, the random vortex method without boundaries
Maximal Increments of Local Time of a Random Walk
Jain, Naresh C.; Pruitt, William E.
1987-01-01
Let $(S_j)$ be a lattice random walk, i.e., $S_j = X_1 + \\cdots + X_j$, where $X_1, X_2,\\ldots$ are independent random variables with values in $\\mathbb{Z}$ and common nondegenerate distribution $F$. Let $\\{t_n\\}$ be a nondecreasing sequence of positive integers, $t_n \\leq n$, and $L^\\ast_n = \\max_{0\\leq j\\leq n-t_n}(L_{j+t_n} - L_j)$, where $L_n = \\sum^n_{j=1}1_{\\{0\\}}(S_j)$, the number of times zero is visited by the random walk by time $n$. Assuming that the random walk is recurrent and sa...
The Perceived Naturalness of Virtual Walking Speeds during WIP Locomotion
DEFF Research Database (Denmark)
Nilsson, Niels Chr.; Serafin, Stefania; Nordahl, Rolf
2016-01-01
It is well established that individuals tend to underestimate visually presented walking speeds when relying on treadmills for virtual walking. However, prior to the present studies this perceptual distortion had not been observed in relation to Walking-in-Place (WIP) locomotion, and a number...... to how gait cycle characteristics, visual display properties, and methodological differences affect speed underestimation during treadmill and WIP locomotion. The studies suggested the following: A significant main effect was found for step frequency; both display and geometric field of view were...... inversely proportional to the degree of underestimation; varying degrees of peripheral occlusion and increased HMD weight did not yield significant main effects; and the choice of method (i.e., how the speeds were presented) had a significant effect on the upper and lower bounds of what speeds were...
Walking path-planning method for multiple radiation areas
International Nuclear Information System (INIS)
Liu, Yong-kuo; Li, Meng-kun; Peng, Min-jun; Xie, Chun-li; Yuan, Cheng-qian; Wang, Shuang-yu; Chao, Nan
2016-01-01
Highlights: • Radiation environment modeling method is designed. • Path-evaluating method and segmented path-planning method are proposed. • Path-planning simulation platform for radiation environment is built. • The method avoids to be misled by minimum dose path in single area. - Abstract: Based on minimum dose path-searching method, walking path-planning method for multiple radiation areas was designed to solve minimum dose path problem in single area and find minimum dose path in the whole space in this paper. Path-planning simulation platform was built using C# programming language and DirectX engine. The simulation platform was used in simulations dealing with virtual nuclear facilities. Simulation results indicated that the walking-path planning method is effective in providing safety for people walking in nuclear facilities.
Sensitivity of Footbridge Vibrations to Stochastic Walking Parameters
DEFF Research Database (Denmark)
Pedersen, Lars; Frier, Christian
2010-01-01
of the pedestrian. A stochastic modelling approach is adopted for this paper and it facilitates quantifying the probability of exceeding various vibration levels, which is useful in a discussion of serviceability of a footbridge design. However, estimates of statistical distributions of footbridge vibration levels...... to walking loads might be influenced by the models assumed for the parameters of the load model (the walking parameters). The paper explores how sensitive estimates of the statistical distribution of vertical footbridge response are to various stochastic assumptions for the walking parameters. The basis...... for the study is a literature review identifying different suggestions as to how the stochastic nature of these parameters may be modelled, and a parameter study examines how the different models influence estimates of the statistical distribution of footbridge vibrations. By neglecting scatter in some...
Partition-based discrete-time quantum walks
Konno, Norio; Portugal, Renato; Sato, Iwao; Segawa, Etsuo
2018-04-01
We introduce a family of discrete-time quantum walks, called two-partition model, based on two equivalence-class partitions of the computational basis, which establish the notion of local dynamics. This family encompasses most versions of unitary discrete-time quantum walks driven by two local operators studied in literature, such as the coined model, Szegedy's model, and the 2-tessellable staggered model. We also analyze the connection of those models with the two-step coined model, which is driven by the square of the evolution operator of the standard discrete-time coined walk. We prove formally that the two-step coined model, an extension of Szegedy model for multigraphs, and the two-tessellable staggered model are unitarily equivalent. Then, selecting one specific model among those families is a matter of taste not generality.
Directed self-avoiding walks in random media
International Nuclear Information System (INIS)
Santra, S. B.; Seitz, W. A.; Klein, D. J.
2001-01-01
Two types of directed self-avoiding walks (SAW's), namely, three-choice directed SAW and outwardly directed SAW, have been studied on infinite percolation clusters on the square lattice in two dimensions. The walks on the percolation clusters are generated via a Monte Carlo technique. The longitudinal extension R N and the transverse fluctuation W N have been measured as a function of the number of steps N. Slight swelling is observed in the longitudinal direction on the random lattices. A crossover from shrinking to swelling of the transverse fluctuations is found at a certain length N c of the walks. The exponents related to the transverse fluctuations are seen to be unchanged in the random media even as the percolation threshold is reached. The scaling function form of the extensions are verified
A generalized model via random walks for information filtering
Energy Technology Data Exchange (ETDEWEB)
Ren, Zhuo-Ming, E-mail: zhuomingren@gmail.com [Department of Physics, University of Fribourg, Chemin du Musée 3, CH-1700, Fribourg (Switzerland); Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, ChongQing, 400714 (China); Kong, Yixiu [Department of Physics, University of Fribourg, Chemin du Musée 3, CH-1700, Fribourg (Switzerland); Shang, Ming-Sheng, E-mail: msshang@cigit.ac.cn [Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, ChongQing, 400714 (China); Zhang, Yi-Cheng [Department of Physics, University of Fribourg, Chemin du Musée 3, CH-1700, Fribourg (Switzerland)
2016-08-06
There could exist a simple general mechanism lurking beneath collaborative filtering and interdisciplinary physics approaches which have been successfully applied to online E-commerce platforms. Motivated by this idea, we propose a generalized model employing the dynamics of the random walk in the bipartite networks. Taking into account the degree information, the proposed generalized model could deduce the collaborative filtering, interdisciplinary physics approaches and even the enormous expansion of them. Furthermore, we analyze the generalized model with single and hybrid of degree information on the process of random walk in bipartite networks, and propose a possible strategy by using the hybrid degree information for different popular objects to toward promising precision of the recommendation. - Highlights: • We propose a generalized recommendation model employing the random walk dynamics. • The proposed model with single and hybrid of degree information is analyzed. • A strategy with the hybrid degree information improves precision of recommendation.
Inescapable Stress Changes Walking Behavior in Flies - Learned Helplessness Revisited.
Directory of Open Access Journals (Sweden)
Sophie Batsching
Full Text Available Like other animals flies develop a state of learned helplessness in response to unescapable aversive events. To show this, two flies, one 'master', one 'yoked', are each confined to a dark, small chamber and exposed to the same sequence of mild electric shocks. Both receive these shocks when the master fly stops walking for more than a second. Behavior in the two animals is differently affected by the shocks. Yoked flies are transiently impaired in place learning and take longer than master flies to exit from the chamber towards light. After the treatment they walk more slowly and take fewer and shorter walking bouts. The low activity is attributed to the fly's experience that its escape response, an innate behavior to terminate the electric shocks, does not help anymore. Earlier studies using heat pulses instead of electric shocks had shown similar effects. This parallel supports the interpretation that it is the uncontrollability that induces the state.
A Solution of Time Dependent Schrodinger Equation by Quantum Walk
International Nuclear Information System (INIS)
Sekino, Hideo; Kawahata, Masayuki; Hamada, Shinji
2012-01-01
Time Dependent Schroedinger Equation (TDSE) with an initial Gaussian distribution, is solved by a discrete time/space Quantum Walk (QW) representing consecutive operations corresponding to a dot product of Pauli matrix and momentum operators. We call it as Schroedinger Walk (SW). Though an Hadamard Walk (HW) provides same dynamics of the probability distribution for delta-function-like initial distributions as that of the SW with a delta-function-like initial distribution, the former with a Gaussian initial distribution leads to a solution for advection of the probability distribution; the initial distribution splits into two distinctive distributions moving in opposite directions. Both mechanisms are analysed by investigating the evolution of the both amplitude components. Decoherence of the oscillating amplitudes in central region is found to be responsible for the splitting of the probability distribution in the HW.
Random walk of passive tracers among randomly moving obstacles.
Gori, Matteo; Donato, Irene; Floriani, Elena; Nardecchia, Ilaria; Pettini, Marco
2016-04-14
This study is mainly motivated by the need of understanding how the diffusion behavior of a biomolecule (or even of a larger object) is affected by other moving macromolecules, organelles, and so on, inside a living cell, whence the possibility of understanding whether or not a randomly walking biomolecule is also subject to a long-range force field driving it to its target. By means of the Continuous Time Random Walk (CTRW) technique the topic of random walk in random environment is here considered in the case of a passively diffusing particle among randomly moving and interacting obstacles. The relevant physical quantity which is worked out is the diffusion coefficient of the passive tracer which is computed as a function of the average inter-obstacles distance. The results reported here suggest that if a biomolecule, let us call it a test molecule, moves towards its target in the presence of other independently interacting molecules, its motion can be considerably slowed down.
Decoherence in optimized quantum random-walk search algorithm
International Nuclear Information System (INIS)
Zhang Yu-Chao; Bao Wan-Su; Wang Xiang; Fu Xiang-Qun
2015-01-01
This paper investigates the effects of decoherence generated by broken-link-type noise in the hypercube on an optimized quantum random-walk search algorithm. When the hypercube occurs with random broken links, the optimized quantum random-walk search algorithm with decoherence is depicted through defining the shift operator which includes the possibility of broken links. For a given database size, we obtain the maximum success rate of the algorithm and the required number of iterations through numerical simulations and analysis when the algorithm is in the presence of decoherence. Then the computational complexity of the algorithm with decoherence is obtained. The results show that the ultimate effect of broken-link-type decoherence on the optimized quantum random-walk search algorithm is negative. (paper)
Martin, Karen E; Wood, Lisa; Christian, Hayley; Trapp, Georgina S A
2015-01-01
To examine the role of pet play and dog walking in children's and adolescents' leisure time, and the relationship between these activities and physical activity. The study design was observational. The study setting was metropolitan Perth and nonmetropolitan regions in Western Australia. The study included 1097 primary school (mean age, 10.1 years; SD, 1.6 years) and 657 secondary school (mean age, 14.0 years; SD, 1.3 years) students. Validated measures of total physical activity, dog walking, and pet play activity (prevalence and time) were calculated. Generalized linear models tested for differences between proportions, while adjusting for socioeconomic status, age, and school-level clustering. Approximately one third of primary school and one quarter of secondary school students reported that they walked the dog at least once in the last week. Pet play was the most common play activity for primary and secondary school girls, and the second and third most popular play activity for secondary and primary school boys, respectively. Secondary school students who walked the dog or played with pets spent an average of 1 hour per week on each activity, and they were significantly more likely (p physical activity recommendations than secondary school students not reporting these activities. Given the significant proportion of young people who frequently engage in dog walking and pet play, and the high level of pet ownership in many Western countries, promotion of these activities to support young people's health is warranted.
Bang, Yo-Soon; Son, Kyung Hyun; Kim, Hyun Jin
2016-11-01
[Purpose] The purpose of this study is to investigate the effects of virtual reality training using Nintendo Wii on balance and walking for stroke patients. [Subjects and Methods] Forty stroke patients with stroke were randomly divided into two exercise program groups: virtual reality training (n=20) and treadmill (n=20). The subjects underwent their 40-minute exercise program three times a week for eight weeks. Their balance and walking were measured before and after the complete program. We measured the left/right weight-bearing and the anterior/posterior weight-bearing for balance, as well as stance phase, swing phase, and cadence for walking. [Results] For balance, both groups showed significant differences in the left/right and anterior/posterior weight-bearing, with significant post-program differences between the groups. For walking, there were significant differences in the stance phase, swing phase, and cadence of the virtual reality training group. [Conclusion] The results of this study suggest that virtual reality training providing visual feedback may enable stroke patients to directly adjust their incorrect weight center and shift visually. Virtual reality training may be appropriate for patients who need improved balance and walking ability by inducing their interest for them to perform planned exercises on a consistent basis.
Notthoff, Nanna; Carstensen, Laura L
2017-06-01
Positively framed messages seem to promote walking in older adults better than negatively framed messages. This study targeted elderly people in communities unfavorable to walking. Walking was measured with pedometers during baseline (1 week) and intervention (4 weeks). Participants ( n = 74) were informed about either the benefits of walking or the negative consequences of not walking. Perceived neighborhood walkability was assessed with a modified version of the Neighborhood Walkability Scale. When perceived walkability was high, positively framed messages were more effective than negatively framed messages in promoting walking; when perceived walkability was low, negatively framed messages were comparably effective to positively framed messages.
Walking stability during cell phone use in healthy adults.
Kao, Pei-Chun; Higginson, Christopher I; Seymour, Kelly; Kamerdze, Morgan; Higginson, Jill S
2015-05-01
The number of falls and/or accidental injuries associated with cellular phone use during walking is growing rapidly. Understanding the effects of concurrent cell phone use on human gait may help develop safety guidelines for pedestrians. It was shown previously that older adults had more pronounced dual-task interferences than younger adults when concurrent cognitive task required visual information processing. Thus, cell phone use might have greater impact on walking stability in older than in younger adults. This study examined gait stability and variability during a cell phone dialing task (phone) and two classic cognitive tasks, the Paced Auditory Serial Addition Test (PASAT) and Symbol Digit Modalities Test (SDMT). Nine older and seven younger healthy adults walked on a treadmill at four different conditions: walking only, PASAT, phone, and SDMT. We computed short-term local divergence exponent (LDE) of the trunk motion (local stability), dynamic margins of stability (MOS), step spatiotemporal measures, and kinematic variability. Older and younger adults had similar values of short-term LDE during all conditions, indicating that local stability was not affected by the dual-task. Compared to walking only, older and younger adults walked with significantly greater average mediolateral MOS during phone and SDMT conditions but significantly less ankle angle variability during all dual-tasks and less knee angle variability during PASAT. The current findings demonstrate that healthy adults may try to control foot placement and joint kinematics during cell phone use or another cognitive task with a visual component to ensure sufficient dynamic margins of stability and maintain local stability. Copyright © 2015 Elsevier B.V. All rights reserved.
Dynamical correlations for vicious random walk with a wall
International Nuclear Information System (INIS)
Nagao, Taro
2003-01-01
A one-dimensional system of nonintersecting Brownian particles is constructed as the diffusion scaling limit of Fisher's vicious random walk model. N Brownian particles start from the origin at time t=0 and undergo mutually avoiding motion until a finite time t=T. Dynamical correlation functions among the walkers are exactly evaluated in the case with a wall at the origin. Taking an asymptotic limit N→∞, we observe discontinuous transitions in the dynamical correlations. It is further shown that the vicious walk model with a wall is equivalent to a parametric random matrix model describing the crossover between the Bogoliubov-deGennes universality classes
An Improved Walk Model for Train Movement on Railway Network
International Nuclear Information System (INIS)
Li Keping; Mao Bohua; Gao Ziyou
2009-01-01
In this paper, we propose an improved walk model for simulating the train movement on railway network. In the proposed method, walkers represent trains. The improved walk model is a kind of the network-based simulation analysis model. Using some management rules for walker movement, walker can dynamically determine its departure and arrival times at stations. In order to test the proposed method, we simulate the train movement on a part of railway network. The numerical simulation and analytical results demonstrate that the improved model is an effective tool for simulating the train movement on railway network. Moreover, it can well capture the characteristic behaviors of train scheduling in railway traffic. (general)
First steps in random walks from tools to applications
Klafter, J
2011-01-01
The name ""random walk"" for a problem of a displacement of a point in a sequence of independent random steps was coined by Karl Pearson in 1905 in a question posed to readers of ""Nature"". The same year, a similar problem was formulated by Albert Einstein in one of his Annus Mirabilis works. Even earlier such a problem was posed by Louis Bachelier in his thesis devoted to the theory of financial speculations in 1900. Nowadays the theory of random walks has proved useful in physics andchemistry (diffusion, reactions, mixing in flows), economics, biology (from animal spread to motion of subcel
A reduced order model of a quadruped walking system
International Nuclear Information System (INIS)
Sano, Akihito; Furusho, Junji; Naganuma, Nobuyuki
1990-01-01
Trot walking has recently been studied by several groups because of its stability and realizability. In the trot, diagonally opposed legs form pairs. While one pair of legs provides support, the other pair of legs swings forward in preparation for the next step. In this paper, we propose a reduced order model for the trot walking. The reduced order model is derived by using two dominant modes of the closed loop system in which the local feedback at each joint is implemented. It is shown by numerical examples that the obtained reduced order model can well approximate the original higher order model. (author)
Application of continuous-time random walk to statistical arbitrage
Directory of Open Access Journals (Sweden)
Sergey Osmekhin
2015-01-01
Full Text Available An analytical statistical arbitrage strategy is proposed, where the distribution of the spread is modelled as a continuous-time random walk. Optimal boundaries, computed as a function of the mean and variance of the firstpassage time ofthe spread,maximises an objective function. The predictability of the trading strategy is analysed and contrasted for two forms of continuous-time random walk processes. We found that the waiting-time distribution has a significant impact on the prediction of the expected profit for intraday trading
Passage times of asymmetric anomalous walks with multiple paths
International Nuclear Information System (INIS)
Caceres, Manuel O; Insua, G Liliana
2005-01-01
We investigate the transient and the long-time behaviour of asymmetric anomalous walks in heterogeneous media. Two types of disorder are worked out explicitly: weak and strong disorder; in addition, the occurrence of disordered multiple paths is considered. We calculate the first passage time distribution of the associated stochastic transport process. We discuss the occurrence of the crossover from a power law to an exponential decay for the long-time behaviour of the distribution of the first passage times of disordered biased walks
Holographic walking technicolor and stability of techni-branes
International Nuclear Information System (INIS)
Clark, T.E.; Love, S.T.; Veldhuis, T. ter
2013-01-01
Techni-fermions are added as stacks of D7–D7 ¯ techni-branes within the framework of a holographic technicolor model that has been proposed as a realization of walking technicolor. The stability of the embedding of these branes is determined. When a sufficiently low bulk cut-off is provided the fluctuations remain small. For a longer walking region, as would be required in any realistic model of electroweak symmetry breaking, a larger bulk cut-off is needed and in this case the oscillations destabilize
Running for exercise mitigates age-related deterioration of walking economy.
Directory of Open Access Journals (Sweden)
Justus D Ortega
Full Text Available Impaired walking performance is a key predictor of morbidity among older adults. A distinctive characteristic of impaired walking performance among older adults is a greater metabolic cost (worse economy compared to young adults. However, older adults who consistently run have been shown to retain a similar running economy as young runners. Unfortunately, those running studies did not measure the metabolic cost of walking. Thus, it is unclear if running exercise can prevent the deterioration of walking economy.To determine if and how regular walking vs. running exercise affects the economy of locomotion in older adults.15 older adults (69 ± 3 years who walk ≥ 30 min, 3x/week for exercise, "walkers" and 15 older adults (69 ± 5 years who run ≥ 30 min, 3x/week, "runners" walked on a force-instrumented treadmill at three speeds (0.75, 1.25, and 1.75 m/s. We determined walking economy using expired gas analysis and walking mechanics via ground reaction forces during the last 2 minutes of each 5 minute trial. We compared walking economy between the two groups and to non-aerobically trained young and older adults from a prior study.Older runners had a 7-10% better walking economy than older walkers over the range of speeds tested (p = .016 and had walking economy similar to young sedentary adults over a similar range of speeds (p = .237. We found no substantial biomechanical differences between older walkers and runners. In contrast to older runners, older walkers had similar walking economy as older sedentary adults (p = .461 and ∼ 26% worse walking economy than young adults (p<.0001.Running mitigates the age-related deterioration of walking economy whereas walking for exercise appears to have minimal effect on the age-related deterioration in walking economy.
Directory of Open Access Journals (Sweden)
Elizabeth Procter-Gray
2015-01-01
Full Text Available Background. Regular walking is critical to maintaining health in older age. We examined influences of individual and community factors on walking habits in older adults. Methods. We analyzed walking habits among participants of a prospective cohort study of 745 community-dwelling men and women, mainly aged 70 years or older. We estimated community variations in utilitarian and recreational walking, and examined whether the variations were attributable to community differences in individual and environmental factors. Results. Prevalence of recreational walking was relatively uniform while prevalence of utilitarian walking varied across the 16 communities in the study area. Both types of walking were associated with individual health and physical abilities. However, utilitarian walking was also strongly associated with several measures of neighborhood socioeconomic status and access to amenities while recreational walking was not. Conclusions. Utilitarian walking is strongly influenced by neighborhood environment, but intrinsic factors may be more important for recreational walking. Communities with the highest overall walking prevalence were those with the most utilitarian walkers. Public health promotion of regular walking should take this into account.
Kapadia, Naaz; Masani, Kei; Catharine Craven, B; Giangregorio, Lora M; Hitzig, Sander L; Richards, Kieva; Popovic, Milos R
2014-09-01
Multi-channel surface functional electrical stimulation (FES) for walking has been used to improve voluntary walking and balance in individuals with spinal cord injury (SCI). To investigate short- and long-term benefits of 16 weeks of thrice-weekly FES-assisted walking program, while ambulating on a body weight support treadmill and harness system, versus a non-FES exercise program, on improvements in gait and balance in individuals with chronic incomplete traumatic SCI, in a randomized controlled trial design. Individuals with traumatic and chronic (≥18 months) motor incomplete SCI (level C2 to T12, American Spinal Cord Injury Association Impairment Scale C or D) were recruited from an outpatient SCI rehabilitation hospital, and randomized to FES-assisted walking therapy (intervention group) or aerobic and resistance training program (control group). Outcomes were assessed at baseline, and after 4, 6, and 12 months. Gait, balance, spasticity, and functional measures were collected. Spinal cord independence measure (SCIM) mobility sub-score improved over time in the intervention group compared with the control group (baseline/12 months: 17.27/21.33 vs. 19.09/17.36, respectively). On all other outcome measures the intervention and control groups had similar improvements. Irrespective of group allocation walking speed, endurance, and balance during ambulation all improved upon completion of therapy, and majority of participants retained these gains at long-term follow-ups. Task-oriented training improves walking ability in individuals with incomplete SCI, even in the chronic stage. Further randomized controlled trials, involving a large number of participants are needed, to verify if FES-assisted treadmill training is superior to aerobic and strength training.
Coordination of the Walking Stick Insect Using a System of Nonlinear Coupled Oscillators
National Research Council Canada - National Science Library
Marvin, Daryl J
1992-01-01
The area of walking machines is investigated. A design for a central pattern generator composed of nonlinear coupled oscillators which generates the characteristic gaits of the walking stick insect is presented...
77 FR 69785 - Public Use Limit on Commercial Dog Walking; Revised Disposal Conditions
2012-11-21
... be trained or meet minimum experience requirements, be free of convictions related to animal cruelty... or dog walking services on the City Animal Care and Control Department's dog walking and professional...
Modeling and analysis of passive dynamic bipedal walking with segmented feet and compliant joints
Huang, Yan; Wang, Qi-Ning; Gao, Yue; Xie, Guang-Ming
2012-10-01
Passive dynamic walking has been developed as a possible explanation for the efficiency of the human gait. This paper presents a passive dynamic walking model with segmented feet, which makes the bipedal walking gait more close to natural human-like gait. The proposed model extends the simplest walking model with the addition of flat feet and torsional spring based compliance on ankle joints and toe joints, to achieve stable walking on a slope driven by gravity. The push-off phase includes foot rotations around the toe joint and around the toe tip, which shows a great resemblance to human normal walking. This paper investigates the effects of the segmented foot structure on bipedal walking in simulations. The model achieves satisfactory walking results on even or uneven slopes.
'For the Gentlement to Walk on by way of Exchange'
DEFF Research Database (Denmark)
Simonton, Deborah Leigh
2017-01-01
In 1751 “A large square at the Cross opposite the Town House, [was] ordered to be pavemented for the gentlemen to walk on by way of exchange.” This square, called the Plain Stanes, long continued to be “the place where merchants most did congregate [in Aberdeen].” The marketplace has long...
Entanglement in coined quantum walks on regular graphs
International Nuclear Information System (INIS)
Carneiro, Ivens; Loo, Meng; Xu, Xibai; Girerd, Mathieu; Kendon, Viv; Knight, Peter L
2005-01-01
Quantum walks, both discrete (coined) and continuous time, form the basis of several recent quantum algorithms. Here we use numerical simulations to study the properties of discrete, coined quantum walks. We investigate the variation in the entanglement between the coin and the position of the particle by calculating the entropy of the reduced density matrix of the coin. We consider both dynamical evolution and asymptotic limits for coins of dimensions from two to eight on regular graphs. For low coin dimensions, quantum walks which spread faster (as measured by the mean square deviation of their distribution from uniform) also exhibit faster convergence towards the asymptotic value of the entanglement between the coin and particle's position. For high-dimensional coins, the DFT coin operator is more efficient at spreading than the Grover coin. We study the entanglement of the coin on regular finite graphs such as cycles, and also show that on complete bipartite graphs, a quantum walk with a Grover coin is always periodic with period four. We generalize the 'glued trees' graph used by Childs et al (2003 Proc. STOC, pp 59-68) to higher branching rate (fan out) and verify that the scaling with branching rate and with tree depth is polynomial
A lightweight portable, walk-in trap for catching vultures
African Journals Online (AJOL)
Two holes are drilled through the tubing and the piece of wood is attached to the tubing using 8.7 cm screws (Figure. 3). The location of the latch on the ... lightweight, walk-in trap, with door (shaded area) open, small black square shows location of gate latch. Figure 3. Close-up of gate latch. (photograph: David R. Barber).
I-WALK: An Innovative Approach to Community Walkability
Seeger, Christopher J.; Lillehoj, Catherine J.; Jensen, Alan D.; Wilson, Suzy; Levinson, Lydia R.
2014-01-01
One way of combating rising obesity rates and decreasing physical activity levels among children is to promote active transportation to and from schools. The award-winning I-WALK program provides a comprehensive framework for addressing community walkability and related infrastructure. The program uses a unique and innovative methodology that…
The six-minute walk test in paediatric populations
Janke de Groot
2011-01-01
The six-minute walk test (6MWT) is a self-paced, submaximal exercise test used to assess functional exercise capacity in patients with chronic diseases (Chang 2006, Solway et al 2001). It has been used widely in adults, and is being utilised increasingly in paediatric populations; it has been used
Transcranial direct current stimulation enhances propulsion during walking
van Asseldonk, Edwin H.F.; Jensen, W.; Andersen, O.K.; Akay, M
2014-01-01
Transcranial direct current stimulation (tDCS) has been shown to improve force generation and control in single leg joints in healthy subjects and stroke survivors. However, it is unknown whether these effects also result in improved force production and coordination during walking. Here we
Impact of Mild versus Moderate Intensity Aerobic Walking Exercise ...
African Journals Online (AJOL)
Background: Patients with hemophilia A have low bone density than healthy controls. It is now widely recognized that physical activity and sports are beneficial for patients with hemophilia. Objective: The aim of this study was to compare the effects of mild and moderate intensity treadmill walking exercises on markers of ...
Everyday walking with Parkinson's disease: understanding personal challenges and strategies
Jones, D.A.; Rochester, L.; Birleson, A.; Hetherington, V.; Nieuwboer, A.; Willems, A.M.; van Wegen, E.E.H.; Kwakkel, G.
2008-01-01
Purpose. This qualitative study was designed to explore the personal experience of everyday walking with Parkinson's disease (PD), the challenges and the strategies employed to compensate for difficulties, to help contextualise the scientific knowledge base. Methods. Semi-structured interviews were
Negligible motion artifacts in scalp electroencephalography (EEG during treadmill walking
Directory of Open Access Journals (Sweden)
Kevin eNathan
2016-01-01
Full Text Available Recent Mobile Brain/Body Imaging (MoBI techniques based on active electrode scalp electroencephalogram (EEG allow the acquisition and real-time analysis of brain dynamics during active unrestrained motor behavior involving whole body movements such as treadmill walking, over-ground walking and other locomotive and non-locomotive tasks. Unfortunately, MoBI protocols are prone to physiological and non-physiological artifacts, including motion artifacts that may contaminate the EEG recordings. A few attempts have been made to quantify these artifacts during locomotion tasks but with inconclusive results due in part to methodological pitfalls. In this paper, we investigate the potential contributions of motion artifacts in scalp EEG during treadmill walking at three different speeds (1.5, 3.0, and 4.5 km/h using a wireless 64 channel active EEG system and a wireless inertial sensor attached to the subject’s head. The experimental setup was designed according to good measurement practices using state-of-the-art commercially-available instruments, and the measurements were analyzed using Fourier analysis and wavelet coherence approaches. Contrary to prior claims, the subjects’ motion did not significantly affect their EEG during treadmill walking although precaution should be taken when gait speeds approach 4.5 km/h. Overall, these findings suggest how MoBI methods may be safely deployed in neural, cognitive, and rehabilitation engineering applications.