WorldWideScience

Sample records for walking technicolor holography

  1. Minimal Walking Technicolor

    DEFF Research Database (Denmark)

    Foadi, Roshan; Frandsen, Mads Toudal; A. Ryttov, T.

    2007-01-01

    Different theoretical and phenomenological aspects of the Minimal and Nonminimal Walking Technicolor theories have recently been studied. The goal here is to make the models ready for collider phenomenology. We do this by constructing the low energy effective theory containing scalars......, pseudoscalars, vector mesons and other fields predicted by the minimal walking theory. We construct their self-interactions and interactions with standard model fields. Using the Weinberg sum rules, opportunely modified to take into account the walking behavior of the underlying gauge theory, we find...... interesting relations for the spin-one spectrum. We derive the electroweak parameters using the newly constructed effective theory and compare the results with the underlying gauge theory. Our analysis is sufficiently general such that the resulting model can be used to represent a generic walking technicolor...

  2. Constraining walking and custodial technicolor

    DEFF Research Database (Denmark)

    Foadi, Roshan; Frandsen, Mads Toudal; Sannino, Francesco

    2008-01-01

    We show how to constrain the physical spectrum of walking technicolor models via precision measurements and modified Weinberg sum rules. We also study models possessing a custodial symmetry for the S parameter at the effective Lagrangian level-custodial technicolor-and argue that these models...

  3. Infrared dynamics of Minimal Walking Technicolor

    DEFF Research Database (Denmark)

    Del Debbio, Luigi; Lucini, Biagio; Patella, Agostino

    2010-01-01

    We study the gauge sector of Minimal Walking Technicolor, which is an SU(2) gauge theory with nf=2 flavors of Wilson fermions in the adjoint representation. Numerical simulations are performed on lattices Nt x Ns^3, with Ns ranging from 8 to 16 and Nt=2Ns, at fixed \\beta=2.25, and varying...

  4. Mesonic spectroscopy of Minimal Walking Technicolor

    DEFF Research Database (Denmark)

    Del Debbio, Luigi; Lucini, Biagio; Patella, Agostino

    2010-01-01

    We investigate the structure and the novel emerging features of the mesonic non-singlet spectrum of the Minimal Walking Technicolor (MWT) theory. Precision measurements in the nonsinglet pseudoscalar and vector channels are compared to the expectations for an IR-conformal field theory and a QCD...

  5. Holographic walking technicolor and stability of techni-branes

    International Nuclear Information System (INIS)

    Clark, T.E.; Love, S.T.; Veldhuis, T. ter

    2013-01-01

    Techni-fermions are added as stacks of D7–D7 ¯ techni-branes within the framework of a holographic technicolor model that has been proposed as a realization of walking technicolor. The stability of the embedding of these branes is determined. When a sufficiently low bulk cut-off is provided the fluctuations remain small. For a longer walking region, as would be required in any realistic model of electroweak symmetry breaking, a larger bulk cut-off is needed and in this case the oscillations destabilize

  6. Remarks on flavor-changing neutral currents in walking technicolor

    International Nuclear Information System (INIS)

    Miransky, V.A.; Peris, S.; Raby, S.

    1993-01-01

    We point out that since the running coupling bar α(q 2 ) in walking technicolor (WTC) can be rather strong at the extended technicolor (ETC) scale q 2 ∼Λ ETC 2 , the standard consideration of flavor-changing neutral currents (FCNCs) in WTC based on the lowest order in perturbation theory in α is not fully conclusive. We reanalyze this problem and conclude that FCNCs can indeed be suppressed in WTC if ETC interactions are chosen in an appropriate way. The crucial point is that the factor of enhancement of the masses of pseudo Goldstone bosons in WTC is just that which is sufficient to suppress FCNCs. FCNCs in the so-called strong ETC are also briefly discussed

  7. Electroweak chiral Lagrangian from the topcolor-assisted technicolor model with nontrivial technicolor fermion condensation and walking

    International Nuclear Information System (INIS)

    Ge Fengjun; Jiang Shaozhou; Wang Qing

    2011-01-01

    The electroweak chiral Lagrangian for the topcolor-assisted technicolor model proposed by K. Lane, which uses nontrivial patterns of techniquark condensation and walking, was investigated in this study. We found that the features of the model are qualitatively similar to those of Lane's previous natural topcolor-assisted technicolor prototype model, but there is no limit on the upper bound of the Z ' mass. We discuss the phase structure and possible walking behavior of the model. We obtained the values of all coefficients of the electroweak chiral Lagrangian up to an order of p 4 . We show that although the walking effect reduces the S parameter to half its original value, it maintains an order of 2. Moreover, a special hypercharge arrangement is needed to achieve further reductions in its value.

  8. Pseudo Goldstone Bosons Phenomenology in Minimal Walking Technicolor

    DEFF Research Database (Denmark)

    Hapola, Tuomas; Mescia, Federico; Nardecchia, Marco

    2012-01-01

    We construct the non-linear realized Lagrangian for the Goldstone Bosons associated to the breaking pattern of SU(4) to SO(4). This pattern is expected to occur in any Technicolor extension of the standard model featuring two Dirac fermions transforming according to real representations of the un...... electrically doubly charged states which can be discovered at the Large Hadron Collider....

  9. Discovering Technicolor

    DEFF Research Database (Denmark)

    R. Andersen, J.; Antipin, O.; Azuelos, G.

    2011-01-01

    We provide a pedagogical introduction to extensions of the Standard Model in which the Higgs is composite. These extensions are known as models of dynamical electroweak symmetry breaking or, in brief, Technicolor. Material covered includes: motivations for Technicolor, the construction of underly...... the relevant experimental benchmarks for Vanilla, Running, Walking, and Custodial Technicolor, and a natural fourth family of leptons, by laying out the framework to discover these models at the Large Hadron Collider....... of underlying gauge theories leading to minimal models of Technicolor, the comparison with electroweak precision data, the low energy effective theory, the spectrum of the states common to most of the Technicolor models, the decays of the composite particles and the experimental signals at the Large Hadron...... Collider. The level of the presentation is aimed at readers familiar with the Standard Model but who have little or no prior exposure to Technicolor. Several extensions of the Standard Model featuring a composite Higgs can be reduced to the effective Lagrangian introduced in the text. We establish...

  10. Minimal Super Technicolor

    DEFF Research Database (Denmark)

    Antola, M.; Di Chiara, S.; Sannino, F.

    2011-01-01

    We introduce novel extensions of the Standard Model featuring a supersymmetric technicolor sector (supertechnicolor). As the first minimal conformal supertechnicolor model we consider N=4 Super Yang-Mills which breaks to N=1 via the electroweak interactions. This is a well defined, economical......, between unparticle physics and Minimal Walking Technicolor. We consider also other N =1 extensions of the Minimal Walking Technicolor model. The new models allow all the standard model matter fields to acquire a mass....

  11. Technicolorful Supersymmetry

    International Nuclear Information System (INIS)

    Murayama, Hitoshi

    2003-01-01

    Technicolor achieves electroweak symmetry breaking (EWSB) in an elegant and natural way, while it suffers from severe model building difficulties. I propose to abandon its secondary goal to eliminate scalar bosons in exchange of solving numerous problems using supersymmetry. It helps to understand walking dynamics much better with certain exact results. In the particular model presented here, there is no light elementary Higgs boson and the EWSB is fully dynamical, hence explaining the hierarchy; There is no alignment problem and no light pseudo-Nambu-Goldstone bosons exist; The fermion masses are generated by a ultraviolet-complete renormalizable extended technicolor sector with techni-GIM mechanism and hence the sector is safe from flavor-changing-neutral-current constraints; The ''e + e - '' production of techni-states in the superconformal window is calculable; The electroweak precision observables are (un)fortunately not calculable

  12. Conformal window of gauge theories with four-fermion interactions and ideal walking technicolor

    DEFF Research Database (Denmark)

    Sannino, Francesco; Sakuma, Hidenori

    2010-01-01

    We investigate the effects of four-fermion interactions on the phase diagram of strongly interacting theories for any representation as function of the number of colors and flavors. We show that the conformal window, for any representation, shrinks with respect to the case in which the four...... discover that when the extended technicolor sector, responsible for giving masses to the standard model fermions, is sufficiently strongly coupled the technicolor theory, in isolation, must have an infrared fixed point for the full model to be phenomenologically viable. Using the new phase diagram we show...

  13. Technicolor and Beyond: Unification in Theory Space

    DEFF Research Database (Denmark)

    Sannino, Francesco

    2010-01-01

    The salient features of models of dynamical electroweak symmetry breaking are reviewed. The ideal walking idea is introduced according to which one should carefully take into account the effects of the extended technicolor dynamics on the technicolor dynamics itself. The effects amount at the enh......The salient features of models of dynamical electroweak symmetry breaking are reviewed. The ideal walking idea is introduced according to which one should carefully take into account the effects of the extended technicolor dynamics on the technicolor dynamics itself. The effects amount...... supersymmetry and technicolor. The reason is to provide a unification of different extensions of the standard model. For example, this means that one can recover, according to the parameters and spectrum of the theory distinct extensions of the standard model, from supersymmetry to technicolor and unparticle...

  14. Technicolor gymnastics

    Energy Technology Data Exchange (ETDEWEB)

    Dimopoulos, S. (Stanford Univ., CA (USA). Dept. of Physics); Georgi, H. (Harvard Univ., Cambridge, MA (USA). Lyman Lab. of Physics); Raby, S. (Michigan Univ., Ann Arbor (USA). Dept. of Physics)

    1983-07-21

    We propose a Glashow-Iliopoulos-Maiani mechanism for extended technicolor theories and illustrate it in an explicit model. We find that flavor changing neutral current effects are adequately suppressed if msub(t)<<50 GeV.

  15. Supersymmetric technicolor

    International Nuclear Information System (INIS)

    Srednicki, M.

    1981-01-01

    I will discuss some work I recently completed with M. Dine and W. Fischler on supersymmetric technicolor. E. Witten and S. Dimopoulos and S. Raby have considered similar ideas. Our central idea is to combine supersymmetry and technicolor to produce a natural theory which is capable of reproducing all the known phenomenology of particle physics, especially the quark-lepton mass spectrum and the absence of flavor changing neutral currents. Supersymmetry allows us to introduce fundamental scalars which are naturally light. Some of these scalars play the role of Higgs fields, and give mass to quarks and leptons via ordinary Yukawa couplings (which are chosen so that we get the correct masses and mixing angles). The supersymmetric partners of all known particles turn out to be too heavy to have been observed in experiments to data; many of them, however, weigh less than 100 GeV

  16. Technicolor and Beyond: Unification in Theory Space

    International Nuclear Information System (INIS)

    Sannino, Francesco

    2010-01-01

    I will briefly review the salient features of models of dynamical electroweak symmetry breaking together with the traditional extensions needed to provide masses to the standard model fermions in absence of fundamental scalars. The idea walking idea is introduced according to which one should carefully take into account the effects of the extended technicolor dynamics on the technicolor dynamics itself. The interplay between the four fermion interactions stemming from the extended technicolor interactions and the technicolor model can strongly enhance the anomalous dimension of the mass of the techniquarks allowing to decouple the Flavor Changing Neutral Currents problem from the one of the generation of the large top mass. I will also review the Minimal Walking Technicolor (MWT) models. In the second part of this review I consider the interesting possibility to marry supersymmetry and technicolor. The reason is to provide a unification of different extensions of the standard model. For example, this means that one can recover, according to the parameters and spectrum of the theory distinct extensions of the standard model, from supersymmetry to technicolor and unparticle physiscs. A surprising result is that a minimal (in terms of the smallest number of fields) supersymmetrization of the MWT model leads to the maximal supersymmetry in four dimensions, i.e. N = 4 SYM.

  17. Supersymmetric Extension of Technicolor & Fermion Mass Generation

    DEFF Research Database (Denmark)

    Antola, Matti; Di Chiara, Stefano; Sannino, Francesco

    2012-01-01

    We provide a complete extension of Minimal Walking Technicolor able to account for the standard model fermion masses. The model is supersymmetric at energies greater or equal to the technicolor compositeness scale. We integrate out, at the supersymmetry breaking scale, the elementary Higgses. We...... tests and experimental bounds on the mass spectrum. We then turn to the composite Higgs phenomenology at the LHC and show that current data are already constraining the parameter space of the model....

  18. Holography.

    Science.gov (United States)

    Klein, H. Arthur

    Holography is a process which numbers among its many applications the creation of holograms--unique three dimensional photographs that show spatial relations and shifts just as they exist in reality. This book recounts the history of holography, tracing its development from Euclid's theory of light rays through Huygens' theory of wave motion to…

  19. Little technicolor

    International Nuclear Information System (INIS)

    Thaler, Jesse

    2005-01-01

    Inspired by the AdS/CFT correspondence, we show that any G/H symmetry breaking pattern can be described by a simple two-site moose diagram. This construction trivially reproduces the CCWZ prescription in the context of Hidden Local Symmetry. We interpret this moose in a novel way to show that many little Higgs theories can emerge from ordinary chiral symmetry breaking in scaled-up QCD. We apply this reasoning to the simple group little Higgs to see that the same low energy degrees of freedom can arise from a variety of UV complete theories. We also show how models of holographic composite Higgs bosons can turn into brane-localized little technicolor theories by 'integrating in' the IR brane

  20. Technicolor: status and prospects

    International Nuclear Information System (INIS)

    Womersley, J.

    1997-09-01

    Technicolor models are briefly reviewed, and a number of promising signatures at hadron colliders are described. Low-scale technicolor should be discoverable in Run 11 of the Fermilab Tevatron; failing that, it would be hard to miss at the LHC. While technicolor models may be unfashionable, it is important to search for their signatures; we do not know how nature has chosen to break electroweak symmetry

  1. Towards Working Technicolor: Effective Theories and Dark Matter

    DEFF Research Database (Denmark)

    Bjarke Gudnason, Sven; Kouvaris, Christoforos; Sannino, Francesco

    2006-01-01

    A fifth force, of technicolor type, responsible for breaking the electroweak theory is an intriguing extension of the Standard Model. Recently new theories have been shown to feature walking dynamics for a very low number of techniflavors and are not ruled out by electroweak precision measurement...... technicolor interactions. There are hypercharge assignments for the techniquarks which renders one of the technibaryons electrically neutral. We investigate the cosmological implications of this scenario and provide a component of dark matter....

  2. An extended technicolor model

    International Nuclear Information System (INIS)

    Appelquist, T.; Terning, J.

    1994-01-01

    An extended technicolor model is constructed. Quark and lepton masses, spontaneous CP violation, and precision electroweak measurements are discussed. Dynamical symmetry breaking is analyzed using the concept of the big MAC (most attractive channel)

  3. Fourth lepton family is natural in technicolor

    International Nuclear Information System (INIS)

    Frandsen, Mads T.; Masina, Isabella; Sannino, Francesco

    2010-01-01

    Imagine discovering a new fourth family of leptons at the Large Hadron Collider (LHC) but no signs of an associated fourth family of quarks. What would that imply? An intriguing possibility is that the new fermions needed to compensate for the new leptons gauge anomalies simultaneously address the big hierarchy problem of the standard model. A natural way to accomplish such a scenario is to have the Higgs itself be a composite of these new fermions. This is the setup we are going to investigate in this paper using as a template minimal walking technicolor. We analyze a general heavy neutrino mass structure with and without mixing with the standard model families. We also analyze the LHC potential to observe the fourth lepton family in tandem with the new composite Higgs dynamics. We finally introduce a model uniting the fourth lepton family and the technifermion sector at higher energies.

  4. Ultraminimal technicolor and its dark matter technicolor interacting massive particles

    DEFF Research Database (Denmark)

    Ryttov, Thomas Aaby; Sannino, Francesco

    2008-01-01

    We introduce an explicit model with technifermion matter transforming according to multiple representations of the underlying technicolor gauge group. The model features simultaneously the smallest possible value of the naive S parameter and the smallest possible number of technifermions. The chi...... be sufficiently light to be directly produced and studied at the Large Hadron Collider (LHC)....

  5. Collider phenomenology of technihadrons in the technicolor straw man model

    International Nuclear Information System (INIS)

    Lane, Kenneth; Mrenna, Stephen

    2003-01-01

    We discuss the phenomenology of the lightest SU(3) C singlet and nonsinglet technihadrons in the straw man model of low-scale technicolor (TCSM). The technihadrons are assumed to be those arising in top-color-assisted technicolor models in which top-color is broken by technifermion condensates. We improve upon the description of the color-singlet sector presented in our earlier paper introducing the TCSM [K. Lane, Phys. Rev. D 60, 075007 (1999)]. These improvements are most important for subprocess energies well below the masses of the ρ T and ω T vector technihadrons and, therefore, apply especially to e + e - colliders such as CERN LEP and a low-energy linear collider. In the color-octet sector, we consider mixing of the gluon, the coloron V 8 from top-color breaking, and four isosinglet color-octet technirho mesons ρ T8 . We assume, as expected in walking technicolor, that these ρ T8 decay into q-barq, gg, and gπ T final states, but not into π T π T , where π T is a technipion. All the TCSM production and decay processes discussed here are included in the event generator PYTHIA. We present several simulations appropriate for the Fermilab Tevatron collider, and suggest benchmark model lines for further experimental investigation

  6. Improved Spectroscopy of Minimal Walking Technicolor

    DEFF Research Database (Denmark)

    Kerrane, Eoin; Del Debbio, Luigi; Pica, Claudio

    2010-01-01

    We present an improved study of spectroscopic observables in the $SU(2)$ Yang-Mills theory with two adjoint fermions. We make an improvement on the precision of previous results which clarify the scale of finite volume effects present. This analysis adds to the evidence for near-conformal dynamic...

  7. Strength of the trilinear Higgs boson coupling in technicolor models

    International Nuclear Information System (INIS)

    Doff, A.; Natale, A.A.

    2006-01-01

    In the standard model of elementary particles the fermion and gauge boson masses are generated due to the interaction of these particles with elementary Higgs scalar bosons. Despite its success there are some points in the model as, for instance, the enormous range of masses between the lightest and heaviest fermions and other peculiarities that could be better explained at a deeper level. The nature of the Higgs boson is one of the most important problems in particle physics, and there are many questions that may be answered in the near future by LHC experiments, such as: Is the Higgs boson, if it exists at all, elementary or composite? What are the symmetries behind the Higgs mechanism? There are many variants for the Higgs mechanism. Our interest in this work will be focused in the models of electroweak symmetry breaking via strongly interacting theories of technicolor (TC) type. In these theories the Higgs boson is a composite of the so called technifermions, and at some extent any model where the Higgs boson is not an elementary field follows more or less the same ideas of the technicolor models. In extensions of the standard model the scalar self-couplings can be enhanced, like in the supersymmetric version. If the same happens in models of dynamical symmetry breaking, as far as we know, has not been investigated up to now, and this study is the motivation of our work. Although technicolor is a non-Abelian gauge theory it is not necessarily similar to QCD, and most of the work in this area try to find the TC dynamics dealing with the particle content of the theory in order to obtain a technifermion self-energy that does not lead to phenomenological problems as in the scheme known as walking technicolor. In this work we will consider a very general Ansatz for the technifermion self-energy, which is an essential ingredient to compute the scalar self-couplings. This Ansatz interpolates between all known forms of technifermionic self-energy. As we vary some

  8. Polarization holography

    DEFF Research Database (Denmark)

    Nikolova, L.; Ramanujam, P.S.

    Current research into holography is concerned with applications in optically storing, retrieving, and processing information. Polarization holography has many unique properties compared to conventional holography. It gives results in high efficiency, achromaticity, and special polarization...... properties. This books reviews the research carried out in this field over the last 15 years. The authors provide basic concepts in polarization and the propagation of light through anisotropic materials, before presenting a sound theoretical basis for polarization holography. The fabrication...... and characterization of azobenzene based materials, which remain the most efficient for the purpose, is described in detail. This is followed by a description of other materials that are used in polarization holography. An in-depth description of various applications, including display holography and optical storage...

  9. Neutron holography

    International Nuclear Information System (INIS)

    Beynon, T.D.

    1986-01-01

    the paper concerns neutron holography, which allows an image to be constructed of the surfaces, as well as the interiors, of objects. The technique of neutron holography and its applications are described. Present and future use of the method is briefly outlined. (U.K.)

  10. Electron holography

    CERN Document Server

    Tonomura, Akira

    1993-01-01

    Holography was devised for breaking through the resolution limit of electron microscopes The advent of a "coherent" field emission electron beam has enabled the use of Electron Holography in various areas of magnetic domain structures observation, fluxon observation in superconductors, and fundamental experiments in physics which have been inaccessible using other techniques After examining the fundamentals of electron holography and its applications to the afore mentioned fields, a detailed discussion of the Aharonov-Bohm effect and the related experiments is presented Many photographs and illustrations are included to elucidate the text

  11. Optical holography

    CERN Document Server

    Collier, Robert J; Lin, Lawrence H

    1971-01-01

    Optical Holography deals with the use of optical holography to solve technical problems, with emphasis on the properties of holograms formed with visible light. Topics covered include the Fourier transform, propagation and diffraction, pulsed-laser holography, and optical systems with spherical lenses. A geometric analysis of point-source holograms is also presented, and holograms and hologram spatial filters formed with spatially modulated reference waves are described. This book is comprised of 20 chapters and begins with an introduction to concepts that are basic to understanding hologr

  12. Strongly interacting Higgs sector without technicolor

    International Nuclear Information System (INIS)

    Liu Chuan; Kuti, J.

    1994-12-01

    Simulation results are presented on Higgs mass calculations in the spontaneously broken phase of the Higgs sector in the minimal Standard Model with a higher derviative regulator. A heavy Higgs particle is found in the TeV mass range in the presence of a complex conjugate ghost pair at higher energies. The ghost pair evades easy experimental detection. As a finite and unitary theory in the continuum, this model serves as an explicit and simple example of a strong interacting Higgs sector without technicolor. (orig.)

  13. Nonoblique corrections in technicolor theories revisited

    International Nuclear Information System (INIS)

    Wu, G.

    1995-01-01

    In extended technicolor (ETC) theories, while the sideways ETC boson exchange decreases the width Γ b ≡Γ(Z→b bar b), the flavor-diagonal ETC boson exchange tends to increase it, and the ETC-corrected R b ≡Γ b /Γ had value could agree with recent measurements. The τ asymmetry parameter may also increase in a way consistent with experiment. The weak-interaction ρ parameter receives a correction from diagonal ETC exchange which is just barely acceptable by experiments

  14. Dark Matter from new Technicolor Theories

    DEFF Research Database (Denmark)

    Bjarke Gudnason, Sven; Kouvaris, Christoforos; Sannino, Francesco

    2006-01-01

    We investigate dark matter candidates emerging in recently proposed technicolor theories. We determine the relic density of the lightest, neutral, stable technibaryon having imposed weak thermal equilibrium conditions and overall electric neutrality of the Universe. In addition we consider...... sphaleron processes that violate baryon, lepton and technibaryon number. Our analysis is performed in the case of a first order electroweak phase transition as well as a second order one. We argue that, in both cases, the new technibaryon contributes to the dark matter in the Universe. Finally we examine...... the problem of the constraints on these types of dark matter components from earth based experiments....

  15. Thermodynamic holography

    Science.gov (United States)

    Wei, Bo-Bo; Jiang, Zhan-Feng; Liu, Ren-Bao

    2015-01-01

    The holographic principle states that the information about a volume of a system is encoded on the boundary surface of the volume. Holography appears in many branches of physics, such as optics, electromagnetism, many-body physics, quantum gravity, and string theory. Here we show that holography is also an underlying principle in thermodynamics, a most important foundation of physics. The thermodynamics of a system is fully determined by its partition function. We prove that the partition function of a finite but arbitrarily large system is an analytic function on the complex plane of physical parameters, and therefore the partition function in a region on the complex plane is uniquely determined by its values along the boundary. The thermodynamic holography has applications in studying thermodynamics of nano-scale systems (such as molecule engines, nano-generators and macromolecules) and provides a new approach to many-body physics. PMID:26478214

  16. Dental Holography

    Science.gov (United States)

    Dirtoft, Ingegerd

    1983-12-01

    Ten years have passed since the first articles appeared in this new field. The qualities of the laser light together with the need of contactless 3-D measurements for different dental purposes seemed to be extremely promising, but still just a few scientists have used the method and mostly for laboratory studies. For some reason there has been a preponderance for orthodontic measurements. This seems to be a bit peculiar from holographic view compared with measurements for engineering purposes, which usually are made on metals. So naturally holography can become a clinical tool for measurements in the field of fixed bridges, removable partial dentures and implants. One of the problems is that the need for holography in dental research must be fulfilled in collaboration with physicists. Only a two-way communication during an entire experiment can balance both technical and odontological demands and thus give practical and clinical important results. The need for an easy way of handling the evaluation to get all required information is another problem and of course the holographic equipment must be converted to a box easy to handle for everyone. At last the position of dental holography today is going to be carefully examined together with an attempt to look into the hopefully exciting and not to utopic future for this research field.

  17. Flavor-changing processes in extended technicolor

    International Nuclear Information System (INIS)

    Appelquist, Thomas; Piai, Maurizio; Christensen, Neil; Shrock, Robert

    2004-01-01

    We analyze constraints on a class of extended technicolor (ETC) models from neutral flavor-changing processes induced by (dimension-six) four-fermion operators. The ETC gauge group is taken to commute with the standard model gauge group. The models in the class are distinguished by how the left- and right-handed (L,R) components of the quarks and charged leptons transform under the ETC group. We consider K 0 -K 0 and other pseudoscalar meson mixings, and conclude that they are adequately suppressed if the L and R components of the relevant quarks are assigned to the same (fundamental or conjugate-fundamental) representation of the ETC group. Models in which the L and R components of the down-type quarks are assigned to relatively conjugate representations, while they can lead to realistic CKM mixing and intrafamily mass splittings, do not adequately suppress these mixing processes. We identify an approximate global symmetry that elucidates these behavioral differences and can be used to analyze other possible representation assignments. Flavor-changing decays, involving quarks and/or leptons, are adequately suppressed for any ETC representation assignment of the L and R components of the quarks, as well as the leptons. We draw lessons for future ETC model building

  18. Technicolor dynamics corrections to Wt-barb coupling

    International Nuclear Information System (INIS)

    Yue Chongxing; Huang Jinshu; Lu Gongru; Yang Zhengtao

    1998-01-01

    The authors consider the contributions of new gauge bosons to Wt-barb coupling in one generation technicolor (OGTC) model and topcolor assisted multiscale technicolor (TOPCMTC) model. The authors find that the exchange of diagonal extended technicolor (ETC) gauge boson has no contribution to Wt-barb coupling. Using the LEP value of R b , the authors calculate the corrections to the CKM matrix element V tb which arise from the sideways ETC gauge boson in OGTC model and the sideways ETC gauge bosons and color exchange in TOPCMTC model. The authors find that the δV tb is significantly large for a certain set of the parameters of either OGTC model or TOPCMTC model which might be detected in the Fermilab Tevatron Run 3 experiments

  19. The family mass hierarchy problem in bosonic technicolor

    International Nuclear Information System (INIS)

    Kagan, A.; Samuel, S.

    1990-01-01

    We use a multiple Higgs system to analyze the family mass hierarchy problem in bosonic technicolor. Dependence on a wide range of Yukawa couplings, λ, for quark and lepton mass generation is greatly reduced, i.e., λ ≅ 0.1 to 1. Third and second generation masses are produced at tree-level, the latter via a see-saw mechanism. We use radiative corrections as a source for many mixing angles and first generation masses. A hierarchy of family masses with small of-diagonal Kobayashi-Maskawa entries naturally arises. A higher scale of 1-10 TeV for Higgs masses and supersymmetry breaking is needed to alleviate difficulties with flavor-changing effects. Such a large scale is a feature of bosonic technicolor and no fine-tuning is required to obtain electroweak breaking at ≅ 100 GeV. Bosonic technicolor is therefore a natural framework for multi-Higgs systems. (orig.)

  20. Light Higgs from Scalar See-Saw in Technicolor

    DEFF Research Database (Denmark)

    Foadi, Roshan; Frandsen, Mads Toudal

    2012-01-01

    We consider a TeV scale see-saw mechanism leading to light scalar resonances in models with otherwise intrinsically heavy scalars. The mechanism can provide a 125 GeV technicolor Higgs in e.g. two-scale TC models......We consider a TeV scale see-saw mechanism leading to light scalar resonances in models with otherwise intrinsically heavy scalars. The mechanism can provide a 125 GeV technicolor Higgs in e.g. two-scale TC models...

  1. New techniques in digital holography

    CERN Document Server

    Picart, Pascal

    2015-01-01

    A state of the art presentation of important advances in the field of digital holography, detailing advances related to fundamentals of digital holography, in-line holography applied to fluid mechanics, digital color holography, digital holographic microscopy, infrared holography, special techniques in full field vibrometry and inverse problems in digital holography

  2. Technicolor Higgs boson in the light of LHC data

    DEFF Research Database (Denmark)

    Belyaev, Alexander; S. Brown, Matthew; Foadi, Roshan

    2014-01-01

    We consider scenarios in which the 125 GeV resonance observed at the Large Hadron Collider is a Technicolor (TC) isosinglet scalar, the TC Higgs. By comparison with quantum chromodynamics, we argue that the couplings of the TC Higgs to the massive weak bosons are very close to the Standard Model...

  3. Technicolor and the asymptotic behavior of dynamically generated masses

    International Nuclear Information System (INIS)

    Natale, A.A.

    1984-01-01

    Arguments are given in favor of a hard asymptotic behavior of dynamically generated masses, its consequences for technicolor models are analyzed and a model is proposed, where effects of flavor changing neutral currents are highly supressed and pseudo Goldstone bosons get masses of O(30-90) GeV. (Author) [pt

  4. Single Beam Holography.

    Science.gov (United States)

    Chen, Hsuan; Ruterbusch, Paul H.

    1979-01-01

    Discusses how holography can be used as part of undergraduate physics laboratories. The authors propose a single beam technique of holography, which will reduce the recording scheme as well as relax the isolation requirements. (HM)

  5. Holography and tomography

    Energy Technology Data Exchange (ETDEWEB)

    Howells, M. [Lawrence Berkeley National Lab., CA (United States)

    1997-02-01

    This session includes a collection of outlines of pertinent information, diagrams, graphs, electron micrographs, and color photographs pertaining to historical aspects and recent advances in the development of X-ray Gabor Holography. Many of the photographs feature or pertain to instrumentation used in holography, tomography, and cryo-holography.

  6. Holography and tomography

    International Nuclear Information System (INIS)

    Howells, M.

    1997-01-01

    This session includes a collection of outlines of pertinent information, diagrams, graphs, electron micrographs, and color photographs pertaining to historical aspects and recent advances in the development of X-ray Gabor Holography. Many of the photographs feature or pertain to instrumentation used in holography, tomography, and cryo-holography

  7. Anti-B-B Mixing Constrains Topcolor-Assisted Technicolor

    International Nuclear Information System (INIS)

    Burdman, Gustavo; Lane, Kenneth; Rador, Tonguc

    2000-01-01

    We argue that extended technicolor augmented with topcolor requires that all mixing between the third and the first two quark generations resides in the mixing matrix of left-handed down quarks. Then, the anti-B d -B d mixing that occurs in topcolor models constrains the coloron and Z(prime) boson masses to be greater than about 5 TeV. This implies fine tuning of the topcolor couplings to better than 1 percent

  8. 125 GeV Higgs from a not so light Technicolor Scalar

    DEFF Research Database (Denmark)

    Foadi, Roshan; Frandsen, Mads Toudal; Sannino, Francesco

    2013-01-01

    Assuming that the observed Higgs-like resonance at the Large Hadron Collider is a technicolor isosinglet scalar (the technicolor Higgs), we argue that the standard model top-induced radiative corrections reduce its dynamical mass towards the desired experimental value. We then discuss conditions...

  9. Photon correlation holography.

    Science.gov (United States)

    Naik, Dinesh N; Singh, Rakesh Kumar; Ezawa, Takahiro; Miyamoto, Yoko; Takeda, Mitsuo

    2011-01-17

    Unconventional holography called photon correlation holography is proposed and experimentally demonstrated. Using photon correlation, i.e. intensity correlation or fourth order correlation of optical field, a 3-D image of the object recorded in a hologram is reconstructed stochastically with illumination through a random phase screen. Two different schemes for realizing photon correlation holography are examined by numerical simulations, and the experiment was performed for one of the reconstruction schemes suitable for the experimental proof of the principle. The technique of photon correlation holography provides a new insight into how the information is embedded in the spatial as well as temporal correlation of photons in the stochastic pseudo thermal light.

  10. Electroweak chiral Lagrangian from a natural topcolor-assisted technicolor model

    International Nuclear Information System (INIS)

    Lang Junyi; Jiang Shaozhou; Wang Qing

    2009-01-01

    Based on previous studies on computing coefficients of the electroweak chiral Lagrangian from C. T. Hill's schematic topcolor-assisted technicolor model, we generalize the calculation to K. Lane's prototype natural topcolor-assisted technicolor model. We find that typical features of the model are qualitatively similar to those of Hill's, but Lane's model prefers a smaller technicolor group and the Z ' mass must be smaller than 400 GeV. Furthermore, the S parameter is around the order of +1, mainly due to the existence of three doublets of techniquarks. We obtain the values for all coefficients of the electroweak chiral Lagrangian up to the order p 4 . Apart from large negative four-fermion coupling values, the extended technicolor impacts on the electroweak chiral Lagrangian coefficients are small, since the techniquark self energy, which determines these coefficients, in general receives almost no influence from the extended technicolor induced four-fermion interactions except for its large momentum tail.

  11. A Search for Technicolor at The Large Hadron Collider

    CERN Document Server

    Love, Jeremy R

    The ATLAS detector has been used in this analysis to search for Technihadrons, predicted by Technicolor theories, decaying to two muons. These new states can be produced by the Large Hadron Collider in proton-proton collisions with a center of mass energy of 7 TeV. The Low-Scale Technicolor model predicts the phenomenology of the new $\\rho_T$ and $\\omega_T$. The dimuon invariant mass spectrum is analyzed above 130 GeV to test the consistency of the observed data with the Standard Model prediction. We observe excellent agreement between our data and the background only hypothesis, and proceed to set limits on the cross section times branching ratio of the $\\rho_T$ and $\\omega_T$ as a function of their mass. We combine the dielectron and dimuon channels to exclude masses of the $\\rho_T$ and $\\omega_T$ between 130 GeV - 480 GeV at 95 % Confidence Level for masses of the $\\pi_T$ between 50 GeV - 480 GeV. In addition for the parameter choice of m($\\pi_T$) = m($\\rho_T$/$\\omega_T$) - 100 GeV, 95 % Confidence Level l...

  12. Technicolor/INRIA team at the MediaEval 2013 Violent Scenes Detection Task

    OpenAIRE

    Penet , Cédric; Demarty , Claire-Hélène; Gravier , Guillaume; Gros , Patrick

    2013-01-01

    International audience; This paper presents the work done at Technicolor and INRIA regarding the MediaEval 2013 Violent Scenes Detection task, which aims at detecting violent scenes in movies. We participated in both the objective and the subjective subtasks.

  13. X-ray holography

    International Nuclear Information System (INIS)

    Faigel, G.; Tegze, M.; Belakhovsky, M.; Marchesini, S.; Bortel, G.

    2003-01-01

    In the last decade holographic methods using hard X-rays were developed. They are able to resolve atomic distances, and can give the 3D arrangement of atoms around a selected element. Therefore, hard X-ray holography has potential applications in chemistry, biology and physics. In this article we give a general description of these methods and discuss the developments in the experimental technique. The capabilities of hard X-ray holography are demonstrated by examples

  14. A search for technicolor at the large hadron collider

    Science.gov (United States)

    Love, Jeremy R.

    The Standard Model of particle physics provides an accurate description of all experimental data to date. The only unobserved piece of the Standard Model is the Higgs boson, a consequence of the spontaneous breaking of electroweak symmetry by the Higgs mechanism. An alternative to the Higgs mechanism is proposed by Technicolor theories which break electroweak symmetry dynamically through a new force. Technicolor predicts many new particles, called Technihadrons, that could be observed by experiments at hadron colliders. This thesis presents a search for two of the lightest Technihadrons, the rhoT and oT. The Low-Scale Technicolor model predicts the phenomenology of these new states. The rhoT and oT are produced through qq annihilation and couple to Standard Model fermions through the Drell-Yan process, which can result in the dimuon final state. The rhoT and oT preferentially decay to the piT and a Standard Model gauge boson if kinematically allowed. Changing the mass of the piT relative to that of the rhoT and o T affects the cross section times branching fraction to dimuons. The rhoT and oT are expected to have masses below about 1 TeV. The Large Hadron Collider (LHC) at CERN outside of Geneva, Switzerland, produces proton-proton collisions with a center of mass energy of 7 TeV. A general purpose high energy physics detector ATLAS has been used in this analysis to search for Technihadrons decaying to two muons. We use the ATLAS detector to reconstruct the tracks of muons with high transverse momentum coming from these proton-proton collisions. The dimuon invariant mass spectrum is analyzed above 130 GeV to test the consistency of the observed data with the Standard Model prediction. We observe excellent agreement between our data and the background only hypothesis, and proceed to set limits on the cross section times branching ratio of the rhoT and oT as a function of their mass using the Low-Scale Technicolor model. We combine the dielectron and dimuon channels

  15. An Introduction to Educational Holography.

    Science.gov (United States)

    Lloyd, R. Scott

    Holograms are capable of taking the two-dimensional ways of envisioning information to another dimension of presentation, representation, and conceptualization. Educational holography is joining display holography, holographic testing of materials, and holographic optical elements as a fourth major field in holography. Holograms are explored as…

  16. 2 TeV walking technirho at LHC?

    Directory of Open Access Journals (Sweden)

    Hidenori S. Fukano

    2015-11-01

    Full Text Available The ATLAS collaboration has recently reported an excess of about 2.5 σ global significance at around 2 TeV in the diboson channel with the boson-tagged fat dijets, which may imply a new resonance beyond the standard model. We provide a possible explanation of the excess as the isospin-triplet technivector mesons (technirhos, denoted as ρΠ±,3 of the walking technicolor in the case of the one-family model as a benchmark. As the effective theory for the walking technicolor at the scales relevant to the LHC experiment, we take a scale-invariant version of the hidden local symmetry model so constructed as to accommodate technipions, technivector mesons, and the technidilaton in such a way that the model respects spontaneously broken chiral and scale symmetries of the underlying walking technicolor. In particular, the technidilaton, a (pseudo Nambu–Goldstone boson of the (approximate scale symmetry predicted in the walking technicolor, has been shown to be successfully identified with the 125 GeV Higgs. Currently available LHC limits on those technihadrons are used to fix the couplings of technivector mesons to the standard-model fermions and weak gauge bosons. We find that the technirhos are mainly produced through the Drell–Yan process and predominantly decay to the dibosons, which accounts for the currently reported excess at around 2 TeV. The consistency with the electroweak precision test and other possible discovery channels of the 2 TeV technirhos are also addressed.

  17. Holography out of equilibrium

    NARCIS (Netherlands)

    Smolic, M.

    2013-01-01

    Using holography it is possible to write down the dissipative hydrodynamic behaviour of a boundary field theory which describes a non-conformal fluid. It is also possible to write down the evolution equations of the two-point correlators for the various field present within the cornerstone field

  18. Holography without Fuss.

    Science.gov (United States)

    Davies, Steve

    1989-01-01

    Outlines what a hologram is, the main types of holography, and how a simple system producing a white light reflection hologram can be set up in a school physics laboratory. Discusses the basic optics of the hologram and procedures and materials for making holograms in school. (YP)

  19. Deconstruction and Holography

    CERN Document Server

    Jejjala, V; Minic, D; Jejjala, Vishnu; Leigh, Robert G.; Minic, Djordje

    2003-01-01

    It was recently pointed out that the physics of a single discrete gravitational extra dimension exhibits a peculiar UV/IR connection relating the UV scale to the radius of the effective extra dimension. Here we note that this non-locality is a manifestation of holography, encoding the correct scaling of the number of fundamental degrees of freedom of the UV theory. This in turn relates the Wilsonian RG flow in the UV theory to the effective gravitational dynamics in the extra dimension. The relevant holographic c-function is determined by the expression for the holographic bound. Holography in this context is a result of the requirements of unitarity and diffeomorphism invariance. We comment on the relevance of this observation for the cosmological constant problem.

  20. Pre-holography

    International Nuclear Information System (INIS)

    Kay, Bernard S.; Larkin, Peter

    2008-01-01

    We construct a symplectic isomorphism h from classical Klein Gordon solutions of mass m on (d+1)-dimensional Lorentzian anti-de Sitter space (equipped with the usual symplectic form) to a certain symplectic space of functions on its conformal boundary (only) for all integer and half-integer Δ (=(d/2)+(1/2)(d 2 +4m 2 ) 1/2 ). h induces a large family of new examples of Rehren's algebraic holography in which the net of local quantum Klein Gordon algebras in AdS is seen to map to a suitably defined net of local algebras for the (generalized free) scalar conformal field with anomalous dimension Δ on d-dimensional Minkowski space (the AdS boundary). Relatedly, we show for these models that Bertola et al.'s boundary-limit holography becomes a quantum duality (only) if the test functions for boundary Wightman distributions are restricted in a particular way

  1. Black holes and holography

    International Nuclear Information System (INIS)

    Mathur, Samir D

    2012-01-01

    The idea of holography in gravity arose from the fact that the entropy of black holes is given by their surface area. The holography encountered in gauge/gravity duality has no such relation however; the boundary surface can be placed at an arbitrary location in AdS space and its area does not give the entropy of the bulk. The essential issues are also different between the two cases: in black holes we get Hawking radiation from the 'holographic surface' which leads to the information issue, while in gauge/gravity duality there is no such radiation. To resolve the information paradox we need to show that there are real degrees of freedom at the horizon of the hole; this is achieved by the fuzzball construction. In gauge/gravity duality we have instead a field theory defined on an abstract dual space; there are no gravitational degrees of freedom at the holographic boundary. It is important to understand the relations and differences between these two notions of holography to get a full understanding of the lessons from the information paradox.

  2. Applications and Fundamentals of Holography

    NARCIS (Netherlands)

    Betzios, P.

    2017-01-01

    In this thesis we explore the fascinating topic of Holography for various systems. The intuitive idea of Holography is that one has at hand two dual descriptions of the physical reality at different number of dimensions much like in the usual holograms, where one projects a three dimensional object

  3. Holography in the Junior High.

    Science.gov (United States)

    Tomaszkiewicz, Frank

    1988-01-01

    Examines the use of holography in the art technology program of a junior high school. Characterizing holography as a valuable artistic experience and discovery experience and stressing the importance of student interest and involvement, the author discusses the necessary equipment for the project and includes two diagrams of a holographic setup.…

  4. 78 FR 28643 - Technicolor Creative Services, Post Production Feature Mastering Division, Hollywood, California...

    Science.gov (United States)

    2013-05-15

    ... DEPARTMENT OF LABOR Employment and Training Administration [TA-W-81,335] Technicolor Creative Services, Post Production Feature Mastering Division, Hollywood, California; Notice of Termination of Reconsideration Investigation Pursuant to Section 221 of the Trade Act of 1974, as amended, a reconsideration investigation was initiated in on August ...

  5. iTIMP: isotriplet Technicolor Interacting Massive Particle as Dark Matter

    DEFF Research Database (Denmark)

    T. Frandsen, Mads; Sannino, Francesco

    2010-01-01

    We suggest that a weak isotriplet composite scalar possessing an unbroken U(1) global symmetry naturally arises in technicolor models leading to an interesting type of dark matter candidate: the iTIMP. We propose explicit models of the iTIMP, study earth based constraints and suggest possible...

  6. Technicolor Models with Color-Singlet Technifermions and their Ultraviolet Extensions

    DEFF Research Database (Denmark)

    Ryttov, Thomas; Shrock, Robert

    2011-01-01

    for the technifermions and additional color-singlet, technisinglet fermions arising from the necessity of avoiding stable bound states with exotic electric charges. Precision electroweak constraints on these models are also discussed. We determine some general properties of extended technicolor theories containing...

  7. New trend in electron holography

    Science.gov (United States)

    Tanigaki, Toshiaki; Harada, Ken; Murakami, Yasukazu; Niitsu, Kodai; Akashi, Tetsuya; Takahashi, Yoshio; Sugawara, Akira; Shindo, Daisuke

    2016-06-01

    Electron holography using a coherent electron wave is a promising technique for high-resolution visualization of electromagnetic fields in and around objects. The capability of electron holography has been enhanced by the development of new technologies and has thus become an even more powerful tool for exploring scientific frontiers. This review introduces these technologies including split-illumination electron holography and vector-field electron tomography. Split-illumination electron holography, which uses separated coherent waves, overcomes the limits imposed by the lateral coherence requirement for electron waves in electron holography. Areas that are difficult to observe using conventional electron holography are now observable. Exemplified applications include observing a singular magnetic domain wall in electrical steel sheets, local magnetizations at anti-phase boundaries, and electrostatic potentials in metal-oxide-semiconductor field-effect transistors. Vector-field electron tomography can be used to visualize magnetic vectors in three dimensions. Two components of the vectors are reconstructed using dual-axis tomography, and the remaining one is calculated using div B   =  0. A high-voltage electron microscope can be used to achieve precise magnetic reconstruction. For example, magnetic vortices have been visualized using a 1 MV holography electron microscope.

  8. New trend in electron holography

    International Nuclear Information System (INIS)

    Tanigaki, Toshiaki; Akashi, Tetsuya; Takahashi, Yoshio; Sugawara, Akira; Harada, Ken; Niitsu, Kodai; Shindo, Daisuke; Murakami, Yasukazu

    2016-01-01

    Electron holography using a coherent electron wave is a promising technique for high-resolution visualization of electromagnetic fields in and around objects. The capability of electron holography has been enhanced by the development of new technologies and has thus become an even more powerful tool for exploring scientific frontiers. This review introduces these technologies including split-illumination electron holography and vector-field electron tomography. Split-illumination electron holography, which uses separated coherent waves, overcomes the limits imposed by the lateral coherence requirement for electron waves in electron holography. Areas that are difficult to observe using conventional electron holography are now observable. Exemplified applications include observing a singular magnetic domain wall in electrical steel sheets, local magnetizations at anti-phase boundaries, and electrostatic potentials in metal-oxide-semiconductor field-effect transistors. Vector-field electron tomography can be used to visualize magnetic vectors in three dimensions. Two components of the vectors are reconstructed using dual-axis tomography, and the remaining one is calculated using div B   =  0. A high-voltage electron microscope can be used to achieve precise magnetic reconstruction. For example, magnetic vortices have been visualized using a 1 MV holography electron microscope. (paper)

  9. Electron holography of biological samples.

    Science.gov (United States)

    Simon, P; Lichte, H; Formanek, P; Lehmann, M; Huhle, R; Carrillo-Cabrera, W; Harscher, A; Ehrlich, H

    2008-01-01

    In this paper, we summarise the development of off-axis electron holography on biological samples starting in 1986 with the first results on ferritin from the group of Tonomura. In the middle of the 1990s strong interest was evoked, but then stagnation took place because the results obtained at that stage did not reach the contrast and the resolution achieved by conventional electron microscopy. To date, there exist only a few ( approximately 12) publications on electron holography of biological objects, thus this topic is quite small and concise. The reason for this could be that holography is mostly established in materials science by physicists. Therefore, applications for off-axis holography were powerfully pushed forward in the area of imaging, e.g. electric or magnetic micro- and nanofields. Unstained biological systems investigated by means of off-axis electron holography up to now are ferritin, tobacco mosaic virus, a bacterial flagellum, T5 bacteriophage virus, hexagonal packed intermediate layer of bacteria and the Semliki Forest virus. New results of the authors on collagen fibres and surface layer of bacteria, the so-called S-layer 2D crystal lattice are presented in this review. For the sake of completeness, we will shortly discuss in-line holography of biological samples and off-axis holography of materials related to biological systems, such as biomaterial composites or magnetotactic bacteria.

  10. Holography gets smart

    Science.gov (United States)

    Lowe, Chris; Larbey, Cynthia

    2008-02-01

    At least 6% of world trade, amounting to some 200bn per year, involves counterfeit goods. But this figure would be even higher were it not for the humble hologram. Invented 50 years ago, holograms provide authentication tags to deter copying, and can be found everywhere from credit cards, passports and banknotes to consumer goods, cosmetics and pharmaceuticals. Holography also underpins supermarket scanners and CD players; it can even be used to store optical data in 3D. Now, however, holograms are making their mark as powerful yet cheap diagnostic tools, which could in particular have many applications in biomedicine.

  11. Adaptive Optical Scanning Holography

    Science.gov (United States)

    Tsang, P. W. M.; Poon, Ting-Chung; Liu, J.-P.

    2016-01-01

    Optical Scanning Holography (OSH) is a powerful technique that employs a single-pixel sensor and a row-by-row scanning mechanism to capture the hologram of a wide-view, three-dimensional object. However, the time required to acquire a hologram with OSH is rather lengthy. In this paper, we propose an enhanced framework, which is referred to as Adaptive OSH (AOSH), to shorten the holographic recording process. We have demonstrated that the AOSH method is capable of decreasing the acquisition time by up to an order of magnitude, while preserving the content of the hologram favorably. PMID:26916866

  12. DSN Microwave Antenna Holography

    Science.gov (United States)

    Rochblatt, D. J.; Seidel, B. L.

    1984-01-01

    The DSN microwave antenna holography project will obtain three-dimensional pictures of the large DSN antenna surfaces. These pictures must be of suffi icient resolution to allow adjustment of the reflector panels to an rms surface of 0.5 mm (0.25 mm, goal). The major parameters and equations needed to define a holographic measurement system are outlined and then the proof of concept demonstration measurement that was made at DSS-43 (Australia) that resulted in contour maps with spatial resolution of 7 m in the aperture plane and resolution orthogonal to the aperture plane of 0.7 mm was discussed.

  13. Split-illumination electron holography

    Energy Technology Data Exchange (ETDEWEB)

    Tanigaki, Toshiaki; Aizawa, Shinji; Suzuki, Takahiro; Park, Hyun Soon [Advanced Science Institute, RIKEN, Hirosawa 2-1, Wako, Saitama 351-0198 (Japan); Inada, Yoshikatsu [Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Katahira 2-1-1, Sendai 980-8577 (Japan); Matsuda, Tsuyoshi [Japan Science and Technology Agency, Kawaguchi, Saitama 332-0012 (Japan); Taniyama, Akira [Corporate Research and Development Laboratories, Sumitomo Metal Industries, Ltd., Amagasaki, Hyogo 660-0891 (Japan); Shindo, Daisuke [Advanced Science Institute, RIKEN, Hirosawa 2-1, Wako, Saitama 351-0198 (Japan); Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Katahira 2-1-1, Sendai 980-8577 (Japan); Tonomura, Akira [Advanced Science Institute, RIKEN, Hirosawa 2-1, Wako, Saitama 351-0198 (Japan); Okinawa Institute of Science and Technology, Graduate University, Onna-son, Okinawa 904-0495 (Japan); Central Research Laboratory, Hitachi, Ltd., Hatoyama, Saitama 350-0395 (Japan)

    2012-07-23

    We developed a split-illumination electron holography that uses an electron biprism in the illuminating system and two biprisms (applicable to one biprism) in the imaging system, enabling holographic interference micrographs of regions far from the sample edge to be obtained. Using a condenser biprism, we split an electron wave into two coherent electron waves: one wave is to illuminate an observation area far from the sample edge in the sample plane and the other wave to pass through a vacuum space outside the sample. The split-illumination holography has the potential to greatly expand the breadth of applications of electron holography.

  14. Split-illumination electron holography

    International Nuclear Information System (INIS)

    Tanigaki, Toshiaki; Aizawa, Shinji; Suzuki, Takahiro; Park, Hyun Soon; Inada, Yoshikatsu; Matsuda, Tsuyoshi; Taniyama, Akira; Shindo, Daisuke; Tonomura, Akira

    2012-01-01

    We developed a split-illumination electron holography that uses an electron biprism in the illuminating system and two biprisms (applicable to one biprism) in the imaging system, enabling holographic interference micrographs of regions far from the sample edge to be obtained. Using a condenser biprism, we split an electron wave into two coherent electron waves: one wave is to illuminate an observation area far from the sample edge in the sample plane and the other wave to pass through a vacuum space outside the sample. The split-illumination holography has the potential to greatly expand the breadth of applications of electron holography.

  15. Quasi-two-dimensional holography

    International Nuclear Information System (INIS)

    Kutzner, J.; Erhard, A.; Wuestenberg, H.; Zimpfer, J.

    1980-01-01

    The acoustical holography with numerical reconstruction by area scanning is memory- and time-intensive. With the experiences by the linear holography we tried to derive a scanning for the evaluating of the two-dimensional flaw-sizes. In most practical cases it is sufficient to determine the exact depth extension of a flaw, whereas the accuracy of the length extension is less critical. For this reason the applicability of the so-called quasi-two-dimensional holography is appropriate. The used sound field given by special probes is divergent in the inclined plane and light focussed in the perpendicular plane using cylindrical lenses. (orig.) [de

  16. Holography of Little Inflation

    Directory of Open Access Journals (Sweden)

    Brett McInnes

    2015-05-01

    Full Text Available For several crucial microseconds of its early history, the Universe consisted of a Quark–Gluon Plasma. As it cooled during this era, it traced out a trajectory in the quark matter phase diagram. The form taken by this trajectory is not known with certainty, but is of great importance: it determines, for example, whether the cosmic plasma passed through a first-order phase change during the transition to the hadron era, as has recently been suggested by advocates of the “Little Inflation” model. Just before this transition, the plasma was strongly coupled and therefore can be studied by holographic techniques. We show that holography imposes a strong constraint (taking the form of a bound on the baryonic chemical potential relative to the temperature on the domain through which the cosmic plasma could pass as it cooled, with important consequences for Little Inflation. In fact, we find that holography applied to Little Inflation implies that the cosmic plasma must have passed quite close to the quark matter critical point, and might therefore have been affected by the associated fluctuation phenomena.

  17. Holography for fast reactor inspection

    International Nuclear Information System (INIS)

    Tozer, B.A.

    1980-01-01

    Holography, an optical process whereby an image of the original subject can be reconstructed in three dimensions, is being developed for use as an optical inspection tool. With a potential information storage density of 10 16 bits/m 2 , the ability to reconstruct in 3 dimensions, a depth of field of up to 8 metres, extremely wide angle of view, and potentially diffraction limited resolution, holography should be invaluable for the optical recording of fast reactors during construction, and the inspection of optically accessible regions during operation, or maintenance down-times. The photographic emulsions used for high resolution holography are fine-grained and fog only very slowly when subjected to γ-radiation, so that inspection of highly radio-active regions and components can be effected satisfactorily. Some of the practical limitations affecting holography are described and ways of overcoming them discussed. Some preliminary results are presented. (author)

  18. Holography Experiments on Optical Imaging.

    Science.gov (United States)

    Bonczak, B.; Dabrowski, J.

    1979-01-01

    Describes experiments intended to produce a better understanding of the holographic method of producing images and optical imaging by other optical systems. Application of holography to teaching physics courses is considered. (Author/SA)

  19. Microwave antenna holography

    Science.gov (United States)

    Rochblatt, David J.; Seidel, Boris L.

    1992-01-01

    This microwave holography technique utilizes the Fourier transform relation between the complex far field radiation pattern of an antenna and the complex aperture field distribution. Resulting aperture phase and amplitude distribution data can be used to precisely characterize various crucial performance parameters, including panel alignment, panel shaping, subreflector position, antenna aperture illumination, directivity at various frequencies, and gravity deformation effects. The methodology of data processing presented here was successfully applied to the Deep Space Network (DSN) 34-m beam waveguide antennas. The antenna performance was improved at all operating frequencies by reducing the main reflector mechanical surface rms error to 0.43 mm. At Ka-band (32 GHz), the estimated improvement is 4.1 dB, resulting in an aperture efficiency of 52 percent. The performance improvement was verified by efficiency measurements and additional holographic measurements.

  20. Error analysis by means of acoustic holography

    International Nuclear Information System (INIS)

    Kutzner, J.; Wuestenberg, H.

    1976-01-01

    The possilbilities to use the acoustical holography in nondestructive testing are discussed. Although compared to optical holography the image quality of acoustical holography is reduced this technique can give important informations about the shape of defects. Especially in nondestructive testing of thick walled components no alternative exists until now. (orig.) [de

  1. Holography in small bubble chambers

    International Nuclear Information System (INIS)

    Lecoq, P.

    1984-01-01

    This chapter reports on an experiment to determine the total charm cross section at different incident momenta using the small, heavy liquid bubble chamber HOBC. Holography in liquid hydrogen is also tested using the holographic lexan bubble chamber HOLEBC with the aim of preparing a future holographic experiment in hydrogen. The high intensity tests show that more than 100 incident tracks per hologram do not cause a dramatic effect on the picture quality. Hydrogen is more favorable than freon as the bubble growth is much slower in hydrogen. An advantage of holography is to have the maximum resolution in the full volume of the bubble chamber, which allows a gain in sensitivity by a factor of 10 compared to classical optics as 100 tracks per hologram look reasonable. Holograms are not more difficult to analyze than classical optics high-resolution pictures. The results show that holography is a very powerful technique which can be used in very high resolution particle physics experiments

  2. Electron holography for polymer microscopy

    International Nuclear Information System (INIS)

    Joy, D.C.

    1992-01-01

    Electron holography provides a radically new approach to the problem of imaging objects such as macromolecules, which exhibit little or no contrast when viewed in the conventional transmission electron microscope (TEM). This is overcome in electron holography by using the macromolecule as a phase object. Computer reconstruction of the hologram then allows the phase to be viewed as an image, and amplified. Holography requires a TEM with a field emission gun, and with an electro-static biprism to produce the interference pattern. The hologram requires a similar radiation dose to conventional microscopy but many different images (e.g. a through focal series) can be extracted from the same hologram. Further developments of the technique promise to combine high contrast imaging of the bulk of the macromolecule together with high spatial resolution imaging of surface detail

  3. Strong Coupling Holography

    CERN Document Server

    Dvali, Gia

    2009-01-01

    We show that whenever a 4-dimensional theory with N particle species emerges as a consistent low energy description of a 3-brane embedded in an asymptotically-flat (4+d)-dimensional space, the holographic scale of high-dimensional gravity sets the strong coupling scale of the 4D theory. This connection persists in the limit in which gravity can be consistently decoupled. We demonstrate this effect for orbifold planes, as well as for the solitonic branes and string theoretic D-branes. In all cases the emergence of a 4D strong coupling scale from bulk holography is a persistent phenomenon. The effect turns out to be insensitive even to such extreme deformations of the brane action that seemingly shield 4D theory from the bulk gravity effects. A well understood example of such deformation is given by large 4D Einstein term in the 3-brane action, which is known to suppress the strength of 5D gravity at short distances and change the 5D Newton's law into the four-dimensional one. Nevertheless, we observe that the ...

  4. Wavefront division digital holography

    Science.gov (United States)

    Zhang, Wenhui; Cao, Liangcai; Li, Rujia; Zhang, Hua; Zhang, Hao; Jiang, Qiang; Jin, Guofan

    2018-05-01

    Digital holography (DH), mostly Mach-Zehnder configuration based, belongs to non-common path amplitude splitting interference imaging whose stability and fringe contrast are environmental sensitive. This paper presents a wavefront division DH configuration with both high stability and high-contrast fringes benefitting from quasi common path wavefront-splitting interference. In our proposal, two spherical waves with similar curvature coming from the same wavefront are used, which makes full use of the physical sampling capacity of the detectors. The interference fringe spacing can be adjusted flexibly for both in-line and off-axis mode due to the independent modulation to these two waves. Only a few optical elements, including the mirror-beam splitter interference component, are used without strict alignments, which makes it robust and easy-to-implement. The proposed wavefront division DH promotes interference imaging physics into the practical and miniaturized a step forward. The feasibility of this method is proved by the imaging of a resolution target and a water flea.

  5. Electron Holography: phases matter.

    Science.gov (United States)

    Lichte, Hannes

    2013-06-01

    Essentially, all optics is wave optics, be it with light, X-rays, neutrons or electrons. The information transfer from the object to the image can only be understood in terms of waves given by amplitude and phase. However, phases are difficult to measure: for slowly oscillating waves such as sound or low-frequency electromagnetic waves, phases can be measured directly; for high frequencies this has to be done by heterodyne detection, i.e. superposition with a reference and averaging over time. In optics, this is called interferometry. Because interference is mostly very difficult to achieve, phases have often been considered 'hidden variables' seemingly pulling the strings from backstage, only visible by their action on the image intensity. This was almost the case in conventional Electron Microscopy with the phase differences introduced by an object. However, in the face of the urgent questions from solid state physics and materials science, these phases have to be determined precisely, because they encode the most dominant object properties, such as charge distributions and electromagnetic fields. After more than six decades of very patient advancement, electron interferometry and holography offer unprecedented analytical facilities down to an atomic scale. Akira Tonomura has prominently contributed to the present state.

  6. Acoustic Holography With Incoherent Sources

    NARCIS (Netherlands)

    Druyvesteyn, W.F.; Raangs, R.

    2005-01-01

    In near field acoustic holography the sound field is scanned near the surface of the vibrating object; from these measurements the vibration of the structure can be calculated. In the case of correlated sources one reference signal is sufficient. When incoherent sources are present the separation of

  7. Content metamorphosis in synthetic holography

    International Nuclear Information System (INIS)

    Desbiens, Jacques

    2013-01-01

    A synthetic hologram is an optical system made of hundreds of images amalgamated in a structure of holographic cells. Each of these images represents a point of view on a three-dimensional space which makes us consider synthetic holography as a multiple points of view perspective system. In the composition of a computer graphics scene for a synthetic hologram, the field of view of the holographic image can be divided into several viewing zones. We can attribute these divisions to any object or image feature independently and operate different transformations on image content. In computer generated holography, we tend to consider content variations as a continuous animation much like a short movie. However, by composing sequential variations of image features in relation with spatial divisions, we can build new narrative forms distinct from linear cinematographic narration. When observers move freely and change their viewing positions, they travel from one field of view division to another. In synthetic holography, metamorphoses of image content are within the observer's path. In all imaging Medias, the transformation of image features in synchronisation with the observer's position is a rare occurrence. However, this is a predominant characteristic of synthetic holography. This paper describes some of my experimental works in the development of metamorphic holographic images.

  8. Holography applications in recent China

    Science.gov (United States)

    Hsu, Dahsiung

    2000-10-01

    Reports on recent developments on holography applications in China are given in this paper, including the development of anti-counterfeiting Holograms from 1986-2000, China issued Banknotes in 1999 with holograms and OVIs, the developments in Machine Readable Holograms in China, the developments in Anti-counterfeiting Information Networks in China.

  9. X-ray absorption holography

    Czech Academy of Sciences Publication Activity Database

    Kopecký, Miloš; Lausi, A.; Bussetto, E.; Kub, Jiří; Savoia, A.

    2002-01-01

    Roč. 88, č. 18 (2002), s. 185503-1 - 185503-3 ISSN 0031-9007 R&D Projects: GA MŠk LN00A100 Institutional research plan: CEZ:AV0Z1010921 Keywords : x-ray holography Subject RIV: BH - Optics, Masers, Lasers Impact factor: 7.323, year: 2002

  10. Digital holography for MEMS and microsystem metrology

    CERN Document Server

    Asundi, Anand

    2011-01-01

    Approaching the topic of digital holography from the practical perspective of industrial inspection, Digital Holography for MEMS and Microsystem Metrology describes the process of digital holography and its growing applications for MEMS characterization, residual stress measurement, design and evaluation, and device testing and inspection. Asundi also provides a thorough theoretical grounding that enables the reader to understand basic concepts and thus identify areas where this technique can be adopted. This combination of both practical and theoretical approach will ensure the

  11. Atom-resolving x-ray holography

    International Nuclear Information System (INIS)

    Adams, B.; Hiort, T.; Materlik, G.; Nishino, Y.; Novikov, D. V.

    2000-01-01

    The current state of atomic resolution x-ray holography is discussed on the basis of theory and experimental results. X-ray holography is theoretically described in quantum theory. Presently-used experimental implementations are shown together with the data analysis used. Reconstructions of experimental and simulated holograms are compared for a Cu 3 Au crystal structure. Rigorous experimental realizations of pure direct and reciprocal x-ray holography methods are demonstrated, and future developments and applications of the method are suggested

  12. Virtual integral holography

    Science.gov (United States)

    Venolia, Dan S.; Williams, Lance

    1990-08-01

    components of a stereo display system with user point-of-view tracking for interactive 3D, and a digital realization of integral composite display which we term virtual integral holography. The primary drawbacks of holographic display - film processing turnaround time, and the difficulties of displaying scenes in full color -are obviated, and motion parallax cues provide easy 3D interpretation even for users who cannot see in stereo.

  13. Search for Technicolor Particles in $p {\\bar{p}}$ Collisions at $\\sqrt{1.8}$ TeV

    Energy Technology Data Exchange (ETDEWEB)

    Handa, Takanobu [Hiroshima Univ. (Japan)

    1999-01-01

    We describe a search for technicolor particles at the CDF experiment in p$\\bar{p}$ collisions at √s = 1.8 TeV. We search for color singlet technirho and technipion by analyzing the final state consisting of leptonically decayed W boson and two jets requiring at least one b quark tagging.

  14. Radar, sonar, and holography an introduction

    CERN Document Server

    Kock, Winston E

    1974-01-01

    Radar, Sonar, and Holography: An Introduction provides an introduction to the technology of radar and sonar. Because the new science of holography is affecting both these fields quite strongly, the book includes an explanation of the fundamental principles underlying this new art (including the subjects of wave coherence, interference, and diffraction) and of the hologram process itself. Finally, numerous examples are discussed which show how holography is providing new horizons to radar and sonar systems. The book thus also provides a simple approach to the new technology of holography. The

  15. Surpassing digital holography limits by lensless object scanning holography.

    Science.gov (United States)

    Micó, Vicente; Ferreira, Carlos; García, Javier

    2012-04-23

    We present lensless object scanning holography (LOSH) as a fully lensless method, capable of improving image quality in reflective digital Fourier holography, by means of an extremely simplified experimental setup. LOSH is based on the recording and digital post-processing of a set of digital lensless holograms and results in a synthetic image with improved resolution, field of view (FOV), signal-to-noise ratio (SNR), and depth of field (DOF). The superresolution (SR) effect arises from the generation of a synthetic aperture (SA) based on the linear movement of the inspected object. The same scanning principle enlarges the object FOV. SNR enhancement is achieved by speckle suppression and coherent artifacts averaging due to the coherent addition of the multiple partially overlapping bandpass images. And DOF extension is performed by digital refocusing to different object's sections. Experimental results showing an impressive image quality improvement are reported for a one-dimensional reflective resolution test target. © 2012 Optical Society of America

  16. Pulse Holography: Review Of Applications

    Science.gov (United States)

    Smigielski, Paul

    1990-04-01

    Pulse Holography includes studies concerning time-varying phase objects as well as time-varying reflective objects involving the use of pulse ruby- and YAG-lasers. The paper is divided in two parts. One part concerns the direct use of 3-1) images reconstructed from holograms, i.e. applications to particle size analysis, 3-I) velocity measurements, 3-I) cinematography ... The second part describes applications using holographic interferometry in laboratory or in an industrial environment, i.e. applications to fluid mechanics, vibration analysis, non-destructive testing ... Recent developments including interferornetric cineholography, fiber optics, measurement of non-interferometric displacements ... , are also described. The future of holography depends to a great extent on data processing and interpretation of informations contained in holograms or holographic intericrograms. Therefore, we give the state of art in this field in Europe illustrated with some industrial applications.

  17. Diatomic Metasurface for Vectorial Holography.

    Science.gov (United States)

    Deng, Zi-Lan; Deng, Junhong; Zhuang, Xin; Wang, Shuai; Li, Kingfai; Wang, Yao; Chi, Yihui; Ye, Xuan; Xu, Jian; Wang, Guo Ping; Zhao, Rongkuo; Wang, Xiaolei; Cao, Yaoyu; Cheng, Xing; Li, Guixin; Li, Xiangping

    2018-05-09

    The emerging metasurfaces with the exceptional capability of manipulating an arbitrary wavefront have revived the holography with unprecedented prospects. However, most of the reported metaholograms suffer from limited polarization controls for a restrained bandwidth in addition to their complicated meta-atom designs with spatially variant dimensions. Here, we demonstrate a new concept of vectorial holography based on diatomic metasurfaces consisting of metamolecules formed by two orthogonal meta-atoms. On the basis of a simply linear relationship between phase and polarization modulations with displacements and orientations of identical meta-atoms, active diffraction of multiple polarization states and reconstruction of holographic images are simultaneously achieved, which is robust against both incident angles and wavelengths. Leveraging this appealing feature, broadband vectorial holographic images with spatially varying polarization states and dual-way polarization switching functionalities have been demonstrated, suggesting a new route to achromatic diffractive elements, polarization optics, and ultrasecure anticounterfeiting.

  18. Acoustic emission linear pulse holography

    International Nuclear Information System (INIS)

    Collins, H.D.; Busse, L.J.; Lemon, D.K.

    1983-01-01

    This paper describes the emission linear pulse holography which produces a chronological linear holographic image of a flaw by utilizing the acoustic energy emitted during crack growth. A thirty two point sampling array is used to construct phase-only linear holograms of simulated acoustic emission sources on large metal plates. The concept behind the AE linear pulse holography is illustrated, and a block diagram of a data acquisition system to implement the concept is given. Array element spacing, synthetic frequency criteria, and lateral depth resolution are specified. A reference timing transducer positioned between the array and the inspection zone and which inititates the time-of-flight measurements is described. The results graphically illustrate the technique using a one-dimensional FFT computer algorithm (ie. linear backward wave) for an AE image reconstruction

  19. X-ray fluorescence holography.

    Science.gov (United States)

    Hayashi, Kouichi; Happo, Naohisa; Hosokawa, Shinya; Hu, Wen; Matsushita, Tomohiro

    2012-03-07

    X-ray fluorescence holography (XFH) is a method of atomic resolution holography which utilizes fluorescing atoms as a wave source or a monitor of the interference field within a crystal sample. It provides three-dimensional atomic images around a specified element and has a range of up to a few nm in real space. Because of this feature, XFH is expected to be used for medium-range local structural analysis, which cannot be performed by x-ray diffraction or x-ray absorption fine structure analysis. In this article, we explain the theory of XFH including solutions to the twin-image problem, an advanced measuring system, and data processing for the reconstruction of atomic images. Then, we briefly introduce our recent applications of this technique to the analysis of local lattice distortions in mixed crystals and nanometer-size clusters appearing in the low-temperature phase of a shape-memory alloy.

  20. X-ray fluorescence holography

    International Nuclear Information System (INIS)

    Hayashi, Kouichi; Happo, Naohisa; Hosokawa, Shinya; Hu Wen; Matsushita, Tomohiro

    2012-01-01

    X-ray fluorescence holography (XFH) is a method of atomic resolution holography which utilizes fluorescing atoms as a wave source or a monitor of the interference field within a crystal sample. It provides three-dimensional atomic images around a specified element and has a range of up to a few nm in real space. Because of this feature, XFH is expected to be used for medium-range local structural analysis, which cannot be performed by x-ray diffraction or x-ray absorption fine structure analysis. In this article, we explain the theory of XFH including solutions to the twin-image problem, an advanced measuring system, and data processing for the reconstruction of atomic images. Then, we briefly introduce our recent applications of this technique to the analysis of local lattice distortions in mixed crystals and nanometer-size clusters appearing in the low-temperature phase of a shape-memory alloy. (topical review)

  1. Atomic-resolution neutron holography

    International Nuclear Information System (INIS)

    Cser, L.; Toeroek, Gy.; Krexner, G.

    2001-01-01

    Atomic-resolution neutron holography can be realised by two different schemes. In the frame of the first approach a point-like source of slow neutrons is produced inside the investigated crystal. Due to the extremely large value of the incoherent-scattering cross-section of the proton, hydrogen atoms imbedded in a metal single-crystal lattice may serve as point-like sources when the sample is irradiated by a monochromatic beam of slow neutrons. The second approach utilizes the registration of the interference between the incident and scattered waves by means of a point-like detector inserted in the lattice of the crystal under investigation. In addition, neutron-induced electron holography is considered. The feasibility of these ideas is discussed. (orig.)

  2. X-ray fluorescence holography

    CERN Document Server

    Hayashi, K; Takahashi, Y

    2003-01-01

    X-ray fluorescence holography (XFH) is a new structural analysis method of determining a 3D atomic arrangement around fluorescing atoms. We developed an XFH apparatus using advanced X-ray techniques and succeeded in obtaining high-quality hologram data. Furthermore, we introduced applications to the structural analysis of a thin film and the environment around dopants and, discussed the quantitative analysis of local lattice distortion. (author)

  3. Multicolor Holography With Phase Shifting

    Science.gov (United States)

    Vikram, Chandra S.

    1996-01-01

    Prototype apparatus constructed to test feasibility of two-color holographic interferometric scheme in which data for reconstructing holographic wavefront obtained with help of phase-shifting technique. Provides two sets of data needed to solve equations for effects of temperature and concentration. Concept extended to holography at three or more wavelengths to measure three or more phenomena associated with significant variations in index of refraction

  4. Holography as a measuring tool

    International Nuclear Information System (INIS)

    Tozer, B.A.; Webster, J.M.

    1981-01-01

    Holography has advantages over conventional photography for the recording and direct measurement of physical structures. The three-dimensional reconstruction carries information equivalent to almost a million photographs. Other advantages include the depth of field, resolution, wide angle of view and information storage density. A number of possible applications of holography have been identified within the CEGB and a proposal to apply it during the post-irradiation examination of nuclear fuel elements is now well advanced. Optical inspection of discharged fuel elements from Advanced-Gas-Cooled Reactors, whether undertaken in the irradiated-fuel disposal system at the station or at a post-irradiation-examination centre, can normally be performed remotely. Because of the very high radiation levels near the surfaces of the fuel element, viewing must be carried out through windows about 1.5 metres thick. Conventional photography is possible in the fuel-disposal system, but a specialised camera is required and only relatively low-resolution photographs of the top of the element can be obtained. At the post-irradiation centre, elements are dismantled and a detailed study can then be made, but it is very laborious and consumes expensive radiation- 'cave' time. Holography offers the possibility of recording a three-dimensional image of a complete element, which can then be studied at leisure to provide information on the condition of individual fuel pins. The present state of development of this work at Marchwood Engineering Laboratories is described. (author)

  5. Nd:YAG laser for holography

    International Nuclear Information System (INIS)

    Bykovsky, Yu.A.; Evtihiev, N.N.; Larkin, A.I.

    1982-01-01

    Different possibilities to use photonics, holography and optical processing for nuclear physics has been investigated in our works. The paper presents the results of the study of time and spatial coherence of Nd:YAG laser and application in holography. (orig./HSI)

  6. The origin of the first and third generation fermion masses in a technicolor scenario

    International Nuclear Information System (INIS)

    Doff, A.; Natale, A.A.

    2004-01-01

    We argue that the masses of the first and third fermionic generations, which are respectively of the order of a few MeV up to a hundred GeV, originate from a dynamical symmetry breaking mechanism leading to masses of the order αμ, where α is a small coupling constant, and μ, in the case of the first fermionic generation, is the scale of the dynamical quark mass (∼250 MeV). For the third fermion generation μ is the value of the dynamical techniquark mass (∼250 GeV). We discuss how this possibility can be implemented in a technicolor scenario, and how the mass of the intermediate generation is generated. (orig.)

  7. Flavor-changing Z decay in the one generation technicolor models

    International Nuclear Information System (INIS)

    Wang, X.; Lu, G.; Xiao, Z.

    1995-01-01

    The flavor-changing decay Z→b bar s(bar bs) induced through pseudo Goldstone bosons (PGB's) is calculated in two kinds of one generation technicolor models (OGTM's). (a) For model I, we find that an interesting branching ratio B(Z→b bar s+bar bs)∼10 -6 can be obtained for particular choices of the parameters; such a magnitude of the order of the branching ratio is at the border of being detectable. (b) For model II, the PGB contributions can strongly enhance the branching ratio B(Z→b bar s+bar bs). With the current experimental limit on the branching ratios of rare Z decay, the model-dependent bounds on the mass of the color octet pseudo Goldstone bosons can be derived. As will be seen, the decay Z→b bar s(bar bs) may provide a unique window to study the TC theory

  8. Obtaining Msub(W)-Msub(Z) cos theta in technicolor theories

    International Nuclear Information System (INIS)

    Grady, M.

    1983-01-01

    We show that the successful relation Msub(w) = Msub(z) cos theta is preserved in the technicolor formulation of the dynamical Higgs mechanism provided only that the creation operators for Goldstone bosons associated with broken generators belong to the Isub(w)=1/2 representation of the weak isospin group. We present a plausibility argument that this is indeed the case. No additional isospin or isospin-like global SU(2) symmetries are then required allowing isospin to be spontaneously broken. This may be of help in producing a large msub(c)/msub(s) splitting. It is also shown how the weak hypercharge interaction can produce substantial vacuum isospin breaking in a theory which is only marginally asymptotically free. This mechanism predicts msub(#betta#)μ/msub(μ)approx.=(msub(s)/msub(c)) 3 , providing a natural explanation for small neutrino masses. (orig.)

  9. Symmetry breaking and generational mixing in top-color-assisted technicolor

    International Nuclear Information System (INIS)

    Lane, K.

    1996-01-01

    Top-color-assisted technicolor provides a dynanamical explanation for electroweak and flavor symmetry breaking and for the large mass of the top quark without unnatural fine-tuning. A major challenge is to generate the observed mixing between heavy and light generations while breaking the strong top-color interactions near 1 TeV. I argue that these phenomena, as well as electroweak symmetry breaking, are intimately connected and I present a scenario for them based on nontrivial patterns of technifermion condensation. I also exhibit a class of models realizing this scenario. This picture leads to a rich phenomenology, especially in hadron and lepton collider experiments in the few hundred GeV to few TeV region and in precision electroweak tests at the Z 0 , atomic parity violation, and polarized Mo/ller scattering. copyright 1996 The American Physical Society

  10. Generalised bottom-up holography and walking technicolour

    DEFF Research Database (Denmark)

    D. Dietrich, Dennis; Kouvaris, Christoforos

    2009-01-01

    In extradimensional holographic approaches the flavour symmetry is gauged in the bulk, that is, treated as a local symmetry. Imposing such a local symmetry admits fewer terms coupling the (axial) vectors and (pseudo)scalars than if a global symmetry is imposed. The latter is the case in standard ...

  11. Nine Walks

    DEFF Research Database (Denmark)

    2013-01-01

    Based on studies of, among others, the Situationists and their theories regarding walks as an artistic method and expression nine master students from “Studio Constructing an Archive”, Aarhus School of Architecture, Denmark performed nine walks as part of the exhibition. These walks relate...... to the students’ individual mappings of Behind the Green Door, its structure and content. They highlight a number of motifs found in the exhibition which are of particular interest to the students. The walks represented reflections on the walk as an artistic method and expression. Each walk is an individual...

  12. Artistic Representation with Pulsed Holography

    International Nuclear Information System (INIS)

    Ishii, S

    2013-01-01

    This thesis describes artistic representation through pulsed holography. One of the prevalent practical problems in making holograms is object movement. Any movement of the object or film, including movement caused by acoustic vibration, has the same fatal results. One way of reducing the chance of movement is by ensuring that the exposure is very quick; using a pulsed laser can fulfill this objective. The attractiveness of using pulsed laser is based on the variety of materials or objects that can be recorded (e.g., liquid material or instantaneous scene of a moving object). One of the most interesting points about pulsed holograms is that some reconstructed images present us with completely different views of the real world. For example, the holographic image of liquid material does not appear fluid; it looks like a piece of hard glass that would produce a sharp sound upon tapping. In everyday life, we are unfamiliar with such an instantaneous scene. On the other hand, soft-textured materials such as a feather or wool differ from liquids when observed through holography. Using a pulsed hologram, we can sense the soft touch of the object or material with the help of realistic three-dimensional (3-D) images. The images allow us to realize the sense of touch in a way that resembles touching real objects. I had the opportunity to use a pulsed ruby laser soon after I started to work in the field of holography in 1979. Since then, I have made pulsed holograms of activities, including pouring water, breaking eggs, blowing soap bubbles, and scattering feathers and popcorn. I have also created holographic art with materials and objects, such as silk fiber, fabric, balloons, glass, flowers, and even the human body. Whenever I create art, I like to present the spectator with a new experience in perception. Therefore, I would like to introduce my experimental artwork through those pulsed holograms.

  13. Nearfield acoustic holography. I - Theory of generalized holography and the development of NAH

    Science.gov (United States)

    Maynard, J. D.; Williams, E. G.; Lee, Y.

    1985-01-01

    Because its underlying principles are so fundamental, holography has been studied and applied in many areas of science. Recently, a technique has been developed which takes the maximum advantage of the fundamental principles and extracts much more information from a hologram than is customarily associated with such a measurement. In this paper the fundamental principles of holography are reviewed, and a sound radiation measurement system, called nearfield acoustic holography (NAH), which fully exploits the fundamental principles, is described.

  14. Mix-and-match holography

    KAUST Repository

    Peng, Yifan

    2017-11-22

    Computational caustics and light steering displays offer a wide range of interesting applications, ranging from art works and architectural installations to energy efficient HDR projection. In this work we expand on this concept by encoding several target images into pairs of front and rear phase-distorting surfaces. Different target holograms can be decoded by mixing and matching different front and rear surfaces under specific geometric alignments. Our approach, which we call mix-and-match holography, is made possible by moving from a refractive caustic image formation process to a diffractive, holographic one. This provides the extra bandwidth that is required to multiplex several images into pairing surfaces.

  15. Seismic Holography of Solar Activity

    Science.gov (United States)

    Lindsey, Charles

    2000-01-01

    The basic goal of the project was to extend holographic seismic imaging techniques developed under a previous NASA contract, and to incorporate phase diagnostics. Phase-sensitive imaging gives us a powerful probe of local thermal and Doppler perturbations in active region subphotospheres, allowing us to map thermal structure and flows associated with "acoustic moats" and "acoustic glories". These remarkable features were discovered during our work, by applying simple acoustic power holography to active regions. Included in the original project statement was an effort to obtain the first seismic images of active regions on the Sun's far surface.

  16. Holography through optically active windows

    Science.gov (United States)

    Decker, A. J.

    1979-01-01

    By using two orthogonally polarized reference beams, holograms can be recorded through stressed windows and the reconstructed virtual image will show no stress pattern. As shown analytically, the stress-pattern-free hologram is recordable for any polarization state of the object illumination. Hence, the more efficient nondepolarizing diffuser can be used in performing holography through stressed windows if two reference beams are used. Results are presented for a pair of machined polysulfone windows intended for use in a holographic flow-visualization setup in a single-stage-compressor test rig.

  17. Experimental verification of transient nonlinear acoustical holography.

    Science.gov (United States)

    Jing, Yun; Cannata, Jonathan; Wang, Tianren

    2013-05-01

    This paper presents an experimental study on nonlinear transient acoustical holography. The validity and effectiveness of a recently proposed nonlinear transient acoustical holography algorithm is evaluated in the presence of noise. The acoustic field measured on a post-focal plane of a high-intensity focused transducer is backward projected to reconstruct the pressure distributions on the focal and a pre-focal plane, which are shown to be in good agreement with the measurement. In contrast, the conventional linear holography produces erroneous results in this case where the nonlinearity involved is strong. Forward acoustic field projection was also carried out to further verify the algorithm.

  18. Random walk on random walks

    NARCIS (Netherlands)

    Hilário, M.; Hollander, den W.Th.F.; Sidoravicius, V.; Soares dos Santos, R.; Teixeira, A.

    2014-01-01

    In this paper we study a random walk in a one-dimensional dynamic random environment consisting of a collection of independent particles performing simple symmetric random walks in a Poisson equilibrium with density ¿¿(0,8). At each step the random walk performs a nearest-neighbour jump, moving to

  19. Holography: Art in an Ephemeral Medium.

    Science.gov (United States)

    Buterbaugh, James G.

    1979-01-01

    The science of holography provides an opportunity to see reality by illusion using laser light, lenses, and mirrors. To develop as holographic artists, students must first gain proficiency in using its techniques, equipment, and materials. (Author/CMV)

  20. General temperature field measurement by digital holography

    Czech Academy of Sciences Publication Activity Database

    Doleček, Roman; Psota, Pavel; Lédl, Vít; Vít, Tomáš; Václavík, Jan; Kopecký, V.

    2013-01-01

    Roč. 52, č. 1 (2013), A319-A325 ISSN 1559-128X Institutional support: RVO:61389021 Keywords : digital holography * temperature field measurement * tomography Subject RIV: BH - Optics, Masers, Lasers Impact factor: 1.649, year: 2013

  1. Holography as a Liberal Arts Physics Course

    Science.gov (United States)

    Huang, Jacob Wen-kuang

    1978-01-01

    Describes a liberal arts physics course for all majors interested in holography or to satisfy the general education requirements. An outline of the course and some experience of offering it are given. (Author/GA)

  2. Behavior of the S parameter in the crossover region between walking and QCD-like regimes of an SU(N) gauge theory

    International Nuclear Information System (INIS)

    Kurachi, Masafumi; Shrock, Robert

    2006-01-01

    We consider a vectorial, confining SU(N) gauge theory with a variable number, N f , of massless fermions transforming according to the fundamental representation. Using the Schwinger-Dyson and Bethe-Salpeter equations, we calculate the S parameter in terms of the current-current correlation functions. We focus on values of N f such that the theory is in the crossover region between the regimes of walking behavior and QCD-like (nonwalking) behavior. Our calculations indicate that the contribution to S from a given fermion decreases as one moves from the QCD-like to the walking regimes. The implications of this result for technicolor theories are discussed

  3. Introduction to holography - theory - experimental equipment; Introduction a l'holographie - theorie - dispositifs experimentaux

    Energy Technology Data Exchange (ETDEWEB)

    Consoli, T; Proca, G; Slama, L [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1967-07-01

    This work presents the theory and the technic in the field of holography. It makes a synthesis of the present knowledge in that field. (authors) [French] Ce travail expose les theories et les techniques dans le domaine de l'holographie. Il fait la synthese des connaissances acquises a ce jour dans ce domaine en evolution rapide. (auteurs)

  4. Introduction to holography - theory - experimental equipment; Introduction a l'holographie - theorie - dispositifs experimentaux

    Energy Technology Data Exchange (ETDEWEB)

    Consoli, T.; Proca, G.; Slama, L. [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1967-07-01

    This work presents the theory and the technic in the field of holography. It makes a synthesis of the present knowledge in that field. (authors) [French] Ce travail expose les theories et les techniques dans le domaine de l'holographie. Il fait la synthese des connaissances acquises a ce jour dans ce domaine en evolution rapide. (auteurs)

  5. Visualizing Breath using Digital Holography

    Science.gov (United States)

    Hobson, P. R.; Reid, I. D.; Wilton, J. B.

    2013-02-01

    Artist Jayne Wilton and physicists Peter Hobson and Ivan Reid of Brunel University are collaborating at Brunel University on a project which aims to use a range of techniques to make visible the normally invisible dynamics of the breath and the verbal and non-verbal communication it facilitates. The breath is a source of a wide range of chemical, auditory and physical exchanges with the direct environment. Digital Holography is being investigated to enable a visually stimulating articulation of the physical trajectory of the breath as it leaves the mouth. Initial findings of this research are presented. Real time digital hologram replay allows the audience to move through holographs of breath-born particles.

  6. Acoustic emission linear pulse holography

    Science.gov (United States)

    Collins, H.D.; Busse, L.J.; Lemon, D.K.

    1983-10-25

    This device relates to the concept of and means for performing Acoustic Emission Linear Pulse Holography, which combines the advantages of linear holographic imaging and Acoustic Emission into a single non-destructive inspection system. This unique system produces a chronological, linear holographic image of a flaw by utilizing the acoustic energy emitted during crack growth. The innovation is the concept of utilizing the crack-generated acoustic emission energy to generate a chronological series of images of a growing crack by applying linear, pulse holographic processing to the acoustic emission data. The process is implemented by placing on a structure an array of piezoelectric sensors (typically 16 or 32 of them) near the defect location. A reference sensor is placed between the defect and the array.

  7. Search for technicolor particles produced in association with a W Boson at CDF.

    Science.gov (United States)

    Aaltonen, T; Adelman, J; Alvarez González, B; Amerio, S; Amidei, D; Anastassov, A; Annovi, A; Antos, J; Apollinari, G; Apresyan, A; Arisawa, T; Artikov, A; Asaadi, J; Ashmanskas, W; Attal, A; Aurisano, A; Azfar, F; Badgett, W; Barbaro-Galtieri, A; Barnes, V E; Barnett, B A; Barria, P; Bartos, P; Bauer, G; Beauchemin, P-H; Bedeschi, F; Beecher, D; Behari, S; Bellettini, G; Bellinger, J; Benjamin, D; Beretvas, A; Bhatti, A; Binkley, M; Bisello, D; Bizjak, I; Blair, R E; Blocker, C; Blumenfeld, B; Bocci, A; Bodek, A; Boisvert, V; Bortoletto, D; Boudreau, J; Boveia, A; Brau, B; Bridgeman, A; Brigliadori, L; Bromberg, C; Brubaker, E; Budagov, J; Budd, H S; Budd, S; Burkett, K; Busetto, G; Bussey, P; Buzatu, A; Byrum, K L; Cabrera, S; Calancha, C; Camarda, S; Campanelli, M; Campbell, M; Canelli, F; Canepa, A; Carls, B; Carlsmith, D; Carosi, R; Carrillo, S; Carron, S; Casal, B; Casarsa, M; Castro, A; Catastini, P; Cauz, D; Cavaliere, V; Cavalli-Sforza, M; Cerri, A; Cerrito, L; Chang, S H; Chen, Y C; Chertok, M; Chiarelli, G; Chlachidze, G; Chlebana, F; Cho, K; Chokheli, D; Chou, J P; Chung, K; Chung, W H; Chung, Y S; Chwalek, T; Ciobanu, C I; Ciocci, M A; Clark, A; Clark, D; Compostella, G; Convery, M E; Conway, J; Corbo, M; Cordelli, M; Cox, C A; Cox, D J; Crescioli, F; Cuenca Almenar, C; Cuevas, J; Culbertson, R; Cully, J C; Dagenhart, D; Datta, M; Davies, T; de Barbaro, P; De Cecco, S; Deisher, A; De Lorenzo, G; Dell'orso, M; Deluca, C; Demortier, L; Deng, J; Deninno, M; d'Errico, M; Di Canto, A; di Giovanni, G P; Di Ruzza, B; Dittmann, J R; D'Onofrio, M; Donati, S; Dong, P; Dorigo, T; Dube, S; Ebina, K; Elagin, A; Erbacher, R; Errede, D; Errede, S; Ershaidat, N; Eusebi, R; Fang, H C; Farrington, S; Fedorko, W T; Feild, R G; Feindt, M; Fernandez, J P; Ferrazza, C; Field, R; Flanagan, G; Forrest, R; Frank, M J; Franklin, M; Freeman, J C; Furic, I; Gallinaro, M; Galyardt, J; Garberson, F; Garcia, J E; Garfinkel, A F; Garosi, P; Gerberich, H; Gerdes, D; Gessler, A; Giagu, S; Giakoumopoulou, V; Giannetti, P; Gibson, K; Gimmell, J L; Ginsburg, C M; Giokaris, N; Giordani, M; Giromini, P; Giunta, M; Giurgiu, G; Glagolev, V; Glenzinski, D; Gold, M; Goldschmidt, N; Golossanov, A; Gomez, G; Gomez-Ceballos, G; Goncharov, M; González, O; Gorelov, I; Goshaw, A T; Goulianos, K; Gresele, A; Grinstein, S; Grosso-Pilcher, C; Grundler, U; Guimaraes da Costa, J; Gunay-Unalan, Z; Haber, C; Hahn, S R; Halkiadakis, E; Han, B-Y; Han, J Y; Happacher, F; Hara, K; Hare, D; Hare, M; Harr, R F; Hartz, M; Hatakeyama, K; Hays, C; Heck, M; Heijboer, A; Heinrich, J; Henderson, C; Herndon, M; Heuser, J; Hewamanage, S; Hidas, D; Hill, C S; Hirschbuehl, D; Hocker, A; Hou, S; Houlden, M; Hsu, S-C; Hughes, R E; Hurwitz, M; Husemann, U; Hussein, M; Huston, J; Incandela, J; Introzzi, G; Iori, M; Ivanov, A; James, E; Jang, D; Jayatilaka, B; Jeon, E J; Jha, M K; Jindariani, S; Johnson, W; Jones, M; Joo, K K; Jun, S Y; Jung, J E; Junk, T R; Kamon, T; Kar, D; Karchin, P E; Kato, Y; Kephart, R; Ketchum, W; Keung, J; Khotilovich, V; Kilminster, B; Kim, D H; Kim, H S; Kim, H W; Kim, J E; Kim, M J; Kim, S B; Kim, S H; Kim, Y K; Kimura, N; Kirsch, L; Klimenko, S; Kondo, K; Kong, D J; Konigsberg, J; Korytov, A; Kotwal, A V; Kreps, M; Kroll, J; Krop, D; Krumnack, N; Kruse, M; Krutelyov, V; Kuhr, T; Kulkarni, N P; Kurata, M; Kwang, S; Laasanen, A T; Lami, S; Lammel, S; Lancaster, M; Lander, R L; Lannon, K; Lath, A; Latino, G; Lazzizzera, I; Lecompte, T; Lee, E; Lee, H S; Lee, J S; Lee, S W; Leone, S; Lewis, J D; Lin, C-J; Linacre, J; Lindgren, M; Lipeles, E; Lister, A; Litvintsev, D O; Liu, C; Liu, T; Lockyer, N S; Loginov, A; Lovas, L; Lucchesi, D; Lueck, J; Lujan, P; Lukens, P; Lungu, G; Lys, J; Lysak, R; Macqueen, D; Madrak, R; Maeshima, K; Makhoul, K; Maksimovic, P; Malde, S; Malik, S; Manca, G; Manousakis-Katsikakis, A; Margaroli, F; Marino, C; Marino, C P; Martin, A; Martin, V; Martínez, M; Martínez-Ballarín, R; Mastrandrea, P; Mathis, M; Mattson, M E; Mazzanti, P; McFarland, K S; McIntyre, P; McNulty, R; Mehta, A; Mehtala, P; Menzione, A; Mesropian, C; Miao, T; Mietlicki, D; Miladinovic, N; Miller, R; Mills, C; Milnik, M; Mitra, A; Mitselmakher, G; Miyake, H; Moed, S; Moggi, N; Mondragon, M N; Moon, C S; Moore, R; Morello, M J; Morlock, J; Movilla Fernandez, P; Mülmenstädt, J; Mukherjee, A; Muller, Th; Murat, P; Mussini, M; Nachtman, J; Nagai, Y; Naganoma, J; Nakamura, K; Nakano, I; Napier, A; Nett, J; Neu, C; Neubauer, M S; Neubauer, S; Nielsen, J; Nodulman, L; Norman, M; Norniella, O; Nurse, E; Oakes, L; Oh, S H; Oh, Y D; Oksuzian, I; Okusawa, T; Orava, R; Osterberg, K; Pagan Griso, S; Pagliarone, C; Palencia, E; Papadimitriou, V; Papaikonomou, A; Paramanov, A A; Parks, B; Pashapour, S; Patrick, J; Pauletta, G; Paulini, M; Paus, C; Peiffer, T; Pellett, D E; Penzo, A; Phillips, T J; Piacentino, G; Pianori, E; Pinera, L; Pitts, K; Plager, C; Pondrom, L; Potamianos, K; Poukhov, O; Prokoshin, F; Pronko, A; Ptohos, F; Pueschel, E; Punzi, G; Pursley, J; Rademacker, J; Rahaman, A; Ramakrishnan, V; Ranjan, N; Redondo, I; Renton, P; Renz, M; Rescigno, M; Richter, S; Rimondi, F; Ristori, L; Robson, A; Rodrigo, T; Rodriguez, T; Rogers, E; Rolli, S; Roser, R; Rossi, M; Rossin, R; Roy, P; Ruiz, A; Russ, J; Rusu, V; Rutherford, B; Saarikko, H; Safonov, A; Sakumoto, W K; Santi, L; Sartori, L; Sato, K; Savoy-Navarro, A; Schlabach, P; Schmidt, A; Schmidt, E E; Schmidt, M A; Schmidt, M P; Schmitt, M; Schwarz, T; Scodellaro, L; Scribano, A; Scuri, F; Sedov, A; Seidel, S; Seiya, Y; Semenov, A; Sexton-Kennedy, L; Sforza, F; Sfyrla, A; Shalhout, S Z; Shears, T; Shepard, P F; Shimojima, M; Shiraishi, S; Shochet, M; Shon, Y; Shreyber, I; Simonenko, A; Sinervo, P; Sisakyan, A; Slaughter, A J; Slaunwhite, J; Sliwa, K; Smith, J R; Snider, F D; Snihur, R; Soha, A; Somalwar, S; Sorin, V; Squillacioti, P; Stanitzki, M; St Denis, R; Stelzer, B; Stelzer-Chilton, O; Stentz, D; Strologas, J; Strycker, G L; Suh, J S; Sukhanov, A; Suslov, I; Taffard, A; Takashima, R; Takeuchi, Y; Tanaka, R; Tang, J; Tecchio, M; Teng, P K; Thom, J; Thome, J; Thompson, G A; Thomson, E; Tipton, P; Ttito-Guzmán, P; Tkaczyk, S; Toback, D; Tokar, S; Tollefson, K; Tomura, T; Tonelli, D; Torre, S; Torretta, D; Totaro, P; Tourneur, S; Trovato, M; Tsai, S-Y; Tu, Y; Turini, N; Ukegawa, F; Uozumi, S; van Remortel, N; Varganov, A; Vataga, E; Vázquez, F; Velev, G; Vellidis, C; Vidal, M; Vila, I; Vilar, R; Vogel, M; Volobouev, I; Volpi, G; Wagner, P; Wagner, R G; Wagner, R L; Wagner, W; Wagner-Kuhr, J; Wakisaka, T; Wallny, R; Wang, S M; Warburton, A; Waters, D; Weinberger, M; Weinelt, J; Wester, W C; Whitehouse, B; Whiteson, D; Wicklund, A B; Wicklund, E; Wilbur, S; Williams, G; Williams, H H; Wilson, P; Winer, B L; Wittich, P; Wolbers, S; Wolfe, C; Wolfe, H; Wright, T; Wu, X; Würthwein, F; Yagil, A; Yamamoto, K; Yamaoka, J; Yang, U K; Yang, Y C; Yao, W M; Yeh, G P; Yi, K; Yoh, J; Yorita, K; Yoshida, T; Yu, G B; Yu, I; Yu, S S; Yun, J C; Zanetti, A; Zeng, Y; Zhang, X; Zheng, Y; Zucchelli, S

    2010-03-19

    We present a search for the technicolor particles rho{T} and pi_{T} in the process pp-->rho{T}-->Wpi{T} at a center of mass energy of sqrt[s]=1.96 TeV. The search uses a data sample corresponding to approximately 1.9 fb{-1} of integrated luminosity accumulated by the CDF II detector at the Fermilab Tevatron. The event signature we consider is W-->lnu and pi{T}-->bb, bc or bu depending on the pi{T} charge. We select events with a single high-p{T} electron or muon, large missing transverse energy, and two jets. Jets corresponding to bottom quarks are identified with multiple b-tagging algorithms. The observed number of events and the invariant mass distributions are consistent with the standard model background expectations, and we exclude a region at 95% confidence level in the rho{T}-pi{T} mass plane. As a result, a large fraction of the region m(rho{T})=180-250 GeV/c{2} and m(pi{T})=95-145 GeV/c{2} is excluded.

  8. Can light Nambu-Goldstone boson loops counter the open-quote open-quote S argument close-quote close-quote against technicolor?

    International Nuclear Information System (INIS)

    Fleming, S.; Maksymyk, I.

    1996-01-01

    We examine the oblique correction phenomenology of one-family technicolor with light pseudo Goldstone bosons. From loop calculations based on a gauged chiral Lagrangian for technicolor we are led to conclude that even though loops with light Goldstone bosons give a negative contribution to S measured at the Z pole, this effect is not sufficiently large to unambiguously counter the open-quote open-quote S argument close-quote close-quote against one-family technicolor. This result cannot be guessed a priori, but must be explicitly calculated. Our analysis entails an extended version of the STU oblique parametrization of Peskin and Takeuchi. In principle, this extended formalism (STUVWX) must be used when there are light new particles in loops. copyright 1996 The American Physical Society

  9. Spin and wavelength multiplexed nonlinear metasurface holography

    Science.gov (United States)

    Ye, Weimin; Zeuner, Franziska; Li, Xin; Reineke, Bernhard; He, Shan; Qiu, Cheng-Wei; Liu, Juan; Wang, Yongtian; Zhang, Shuang; Zentgraf, Thomas

    2016-06-01

    Metasurfaces, as the ultrathin version of metamaterials, have caught growing attention due to their superior capability in controlling the phase, amplitude and polarization states of light. Among various types of metasurfaces, geometric metasurface that encodes a geometric or Pancharatnam-Berry phase into the orientation angle of the constituent meta-atoms has shown great potential in controlling light in both linear and nonlinear optical regimes. The robust and dispersionless nature of the geometric phase simplifies the wave manipulation tremendously. Benefitting from the continuous phase control, metasurface holography has exhibited advantages over conventional depth controlled holography with discretized phase levels. Here we report on spin and wavelength multiplexed nonlinear metasurface holography, which allows construction of multiple target holographic images carried independently by the fundamental and harmonic generation waves of different spins. The nonlinear holograms provide independent, nondispersive and crosstalk-free post-selective channels for holographic multiplexing and multidimensional optical data storages, anti-counterfeiting, and optical encryption.

  10. Dark field electron holography for strain measurement

    Energy Technology Data Exchange (ETDEWEB)

    Beche, A., E-mail: armand.beche@fei.com [CEA-Grenoble, INAC/SP2M/LEMMA, F-38054 Grenoble (France); Rouviere, J.L. [CEA-Grenoble, INAC/SP2M/LEMMA, F-38054 Grenoble (France); Barnes, J.P.; Cooper, D. [CEA-LETI, Minatec Campus, F-38054 Grenoble (France)

    2011-02-15

    Dark field electron holography is a new TEM-based technique for measuring strain with nanometer scale resolution. Here we present the procedure to align a transmission electron microscope and obtain dark field holograms as well as the theoretical background necessary to reconstruct strain maps from holograms. A series of experimental parameters such as biprism voltage, sample thickness, exposure time, tilt angle and choice of diffracted beam are then investigated on a silicon-germanium layer epitaxially embedded in a silicon matrix in order to obtain optimal dark field holograms over a large field of view with good spatial resolution and strain sensitivity. -- Research Highlights: {yields} Step by step explanation of the dark field electron holography technique. {yields} Presentation of the theoretical equations to obtain quantitative strain map. {yields} Description of experimental parameters influencing dark field holography results. {yields} Quantitative strain measurement on a SiGe layer embedded in a silicon matrix.

  11. An easy teaching tool for holography

    International Nuclear Information System (INIS)

    Voslion, T; Escarguel, A

    2012-01-01

    In the framework of scientific outreach at the Maison des Sciences of Aix-Marseilles University, we created a teaching kit for holography that can be packed into a small case. It includes all the equipment required to produce holograms almost anywhere and has a simple optical assembly and very good vibration tolerance. The fundamental principles of holography and several applications are illustrated through simple experiments: reflection Denisyuk holograms, angular multiplexing, notch filters, holographic interferometry and diffraction holographic gratings. It is possible to use this tool for several purposes: science outreach, teaching for undergraduate and graduate students and continuing education. In this paper, we explain the basis of holography, how the kit works and indicate some applications and results that can be performed and obtained with it. (paper)

  12. Ten years of x-ray holography

    International Nuclear Information System (INIS)

    Faigel, G.; Bortel, G.; Tegze, M.; Fadley, C.S.; Simionovici, A.S.

    2007-01-01

    With the appearance of nano-science the role of local methods has become more and more important. Hard x-ray holography based on the inside reference point concept is a local probe of the atomic order in solids. It gives the 3D real space image of atoms without the phase ambiguity inherent to diffraction methods. In this paper a brief description of the basics of hard x-ray holography is given. The last ten years' experimental and evaluation-related developments are reviewed. We also introduce different variants of the method, such as Bremsstrahlung and gamma ray holography (GRH). The power of the method is illustrated by examples. We outline new directions and future possibilities. (authors)

  13. Electron holography at atomic dimensions -- Present state

    International Nuclear Information System (INIS)

    Lehmann, M.; Lichte, H.

    1999-01-01

    An electron microscope is a wave optical instrument where the object information is carried by an electron wave. However, an important information, the phase of the electron wave, is lost, because only intensities can be recorded in a conventional electron micrograph. Off-axis electron holography solves this phase problem by encoding amplitude and phase information in an interference pattern, the so-called hologram. After reconstruction, a rather unrestricted wave optical analysis can be performed on a computer. The possibilities as well as the current limitations of off-axis electron holography at atomic dimensions are discussed, and they are illustrated at two applications of structure characterization of ε-NbN and YBCO-1237. Finally, an electron microscope equipped with a Cs-corrector, a monochromator, and a Moellenstedt biprism is outlined for subangstrom holography

  14. Holography beyond the Penrose limit

    International Nuclear Information System (INIS)

    Callan, Curtis G.; McLoughlin, Tristan; Swanson, Ian

    2004-01-01

    The flat pp-wave background geometry has been realized as a particular Penrose limit of AdS 5 xS 5 . It describes a string that has been infinitely boosted along an equatorial null geodesic in the S 5 subspace. The string worldsheet Hamiltonian in this background is free. Finite boosts lead to curvature corrections that induce interacting perturbations of the string worldsheet Hamiltonian. We develop a systematic light-cone gauge quantization of the interacting worldsheet string theory and use it to obtain the interacting spectrum of the so-called 'two-impurity' states of the string. The quantization is technically rather intricate and we provide a detailed account of the methods we use to extract explicit results. We give a systematic treatment of the fermionic states and are able to show that the spectrum possesses the proper extended supermultiplet structure (a nontrivial fact since half the supersymmetry is nonlinearly realized). We test holography by comparing the string energy spectrum with the scaling dimensions of corresponding gauge theory operators. We confirm earlier results that agreement obtains in low orders of perturbation theory, but breaks down at third order. The methods presented here can be used to explore these issues in a wider context than is specifically dealt with in this paper

  15. Pairing induced superconductivity in holography

    Science.gov (United States)

    Bagrov, Andrey; Meszena, Balazs; Schalm, Koenraad

    2014-09-01

    We study pairing induced superconductivity in large N strongly coupled systems at finite density using holography. In the weakly coupled dual gravitational theory the mechanism is conventional BCS theory. An IR hard wall cut-off is included to ensure that we can controllably address the dynamics of a single confined Fermi surface. We address in detail the interplay between the scalar order parameter field and fermion pairing. Adding an explicitly dynamical scalar operator with the same quantum numbers as the fermion-pair, the theory experiences a BCS/BEC crossover controlled by the relative scaling dimensions. We find the novel result that this BCS/BEC crossover exposes resonances in the canonical expectation value of the scalar operator. This occurs not only when the scaling dimension is degenerate with the Cooper pair, but also with that of higher derivative paired operators. We speculate that a proper definition of the order parameter which takes mixing with these operators into account stays finite nevertheless.

  16. Holography with a Landau pole

    Energy Technology Data Exchange (ETDEWEB)

    Faedo, Antón F. [Departament de Física Quántica i Astrofísica and Institut de Ciències del Cosmos (ICC), Universitat de Barcelona, Martí i Franquès 1, ES-08028, Barcelona (Spain); Mateos, David [Departament de Física Quántica i Astrofísica and Institut de Ciències del Cosmos (ICC), Universitat de Barcelona, Martí i Franquès 1, ES-08028, Barcelona (Spain); Institució Catalana de Recerca i Estudis Avançats (ICREA), Passeig Lluís Companys 23, ES-08010, Barcelona (Spain); Pantelidou, Christiana [Departament de Física Quántica i Astrofísica and Institut de Ciències del Cosmos (ICC), Universitat de Barcelona, Martí i Franquès 1, ES-08028, Barcelona (Spain); Tarrío, Javier [Physique Théorique et Mathématique, Université Libre de Bruxelles (ULB), and International Solvay Institutes, Campus de la Plaine CP 231, B-1050, Brussels (Belgium)

    2017-02-08

    Holography for UV-incomplete gauge theories is important but poorly understood. A paradigmatic example is d=4, N=4 super Yang-Mills coupled to N{sub f} quark flavors, which possesses a Landau pole at a UV scale Λ{sub LP}. The dual gravity solution exhibits a UV singularity at a finite proper distance along the holographic direction. Despite this, holographic renormalization can be fully implemented via analytic continuation to an AdS solution. The presence of a UV cut-off manifests itself in several interesting ways. At energies E≪Λ{sub LP} no pathologies appear, as expected from effective field theory. In contrast, at scales E≲Λ{sub LP} the gravitational potential becomes repulsive, and at temperatures T≲Λ{sub LP} the specific heat becomes negative. Although we focus on N=4 super Yang-Mills with flavor, our qualitative results apply to a much more general class of theories, since they only depend on the fact that the metric near the UV singularity is a hyper-scaling violating metric with exponent θ>d−1.

  17. Holography with a Landau pole

    International Nuclear Information System (INIS)

    Faedo, Antón F.; Mateos, David; Pantelidou, Christiana; Tarrío, Javier

    2017-01-01

    Holography for UV-incomplete gauge theories is important but poorly understood. A paradigmatic example is d=4, N=4 super Yang-Mills coupled to N f quark flavors, which possesses a Landau pole at a UV scale Λ LP . The dual gravity solution exhibits a UV singularity at a finite proper distance along the holographic direction. Despite this, holographic renormalization can be fully implemented via analytic continuation to an AdS solution. The presence of a UV cut-off manifests itself in several interesting ways. At energies E≪Λ LP no pathologies appear, as expected from effective field theory. In contrast, at scales E≲Λ LP the gravitational potential becomes repulsive, and at temperatures T≲Λ LP the specific heat becomes negative. Although we focus on N=4 super Yang-Mills with flavor, our qualitative results apply to a much more general class of theories, since they only depend on the fact that the metric near the UV singularity is a hyper-scaling violating metric with exponent θ>d−1.

  18. Holography - Application To Art: Curatorial Observations

    Science.gov (United States)

    Dinsmore, Sydney

    1987-06-01

    An exploration of the need to define a specific and critical language to describe the art of holography. Within any discussion of art, critical analysis must maintain an objective openess, particularily when the discourse concerns new media. To apply technological invention to art, new media is often without precedent on which to base criticism and bias. For this reason, holography falls prey to comparative rhetoric and established evaluation of other forms of imaging,as photography emulated the compositional romanticism of painting initially. Isolated and often misunderstood within the context of history, new media vascillates between legitimacy and curiosity in an attempt to create specific parameters to identify perceptual transition.

  19. Holography on the Spacelab 3 mission

    Science.gov (United States)

    Owen, Robert B.; Kroes, R. L.

    1985-01-01

    Spacelab 3's Fluid Experiment System, in which triglycine sulfate crystals were produced by a low temperature solution-growth technique, employs holography as its primary data-gathering system. This use of holography allows optical techniques which would be difficult to apply in orbit to be used after the holographic data is returned to ground laboratories, using an analysis of the reconstructed holographic image. The system used allows both single- and double-exposure holograms to be obtained in two separate orthogonal configurations.

  20. Resolution in in-line digital holography

    International Nuclear Information System (INIS)

    Fournier, C; Denis, L; Fournel, T

    2010-01-01

    Digital in-line holography is a 3D imaging technique which has been widely developed during the last two decades. This technique achieves the 3D reconstruction of volume objects from a 2D image-hologram. It is a metrological tool and therefore the improvement of resolution is one of the current challenges. However the resolution depends on several experimental parameters and the experimenters have to choose the parameters which will lead to the best resolution. This paper presents the study of resolution in in-line digital holography from the asymptotical bounds of the covariance of estimators used in hologram reconstruction.

  1. Searches for Extra Dimensions, Leptoquarks, and Technicolor at the LHC : proceedings for the Rencontres de Blois on "Particle Physics and Cosmology"

    CERN Document Server

    Grancagnolo, S; The ATLAS collaboration

    2013-01-01

    A review of the last results with the data collected by the ATLAS and CMS experiments during 2011-2012 runs at the LHC is presented. The focus is on exotic searches for Extra Dimensions, Leptoquarks and Technicolor, with various reconstruction and analysis techniques.

  2. Is holography ready for yet another life? or make holography great again

    Science.gov (United States)

    Trolinger, James D.

    2016-08-01

    Holographic metrology, unlike most other applications of holography, has always thrived and continues to thrive by continuously incorporating new supporting technologies that make it more powerful and useful. Successes, failures, lives, and deaths are examined and recognized as evolutionary steps that position the field where opportunities are as great and as many as ever. This is a story of that evolution. Comparisons and analogies with other applications of holography such as data storage, archiving, the arts, entertainment, advertising, and security and their evolution are interesting. Critical events, successes, mistakes, and coincidences represent milestones of abandonment or failure to deliver in many holography communities that followed a different evolutionary path. Events and new technical developments continue to emerge in supporting fields that can revive and expand all holography applications. New opportunities are described with encouragement to act on them and take some risks. Don't wait until all of the required technology and hardware are available, because good scientists always act before then. The paper is about "making holography great again" and your opportunity to be a part of the upcoming revolution. Although the discussion focuses on holographic metrology, the same principles should apply to other holography communities.

  3. Holography, Gravity and Condensed Matter

    Energy Technology Data Exchange (ETDEWEB)

    Hartnoll, Sean [Stanford Univ., CA (United States). Dept. of Physics

    2017-12-20

    Over the five years of funding from this grant, I produced 26 publications. These include a book-long monograph on "Holographic Quantum Matter" that is currently in press with MIT press. The remainder were mostly published in Physical Review Letters, the Journal of High Energy Physics, Nature Physics, Classical and Quantum Gravity and Physical Review B. Over this period, the field of holography applied to condensed matter physics developed from a promising theoretical approach to a mature conceptual and practical edifice, whose ideas were realized in experiments. My own work played a central role in this development. In particular, in the final year of this grant, I co-authored two experimental papers in which ideas that I had developed in earlier years were shown to usefully describe transport in strongly correlated materials — these papers were published in Science and in the Proceedings of the National Academy of Sciences (obviously my contribution to these papers was theoretical). My theoretical work in this period developed several new directions of research that have proven to be influential. These include (i) The construction of highly inhomogeneous black hole event horizons, realizing disordered fixed points and describing new regimes of classical gravity, (ii) The conjecture of a bound on diffusivities that could underpin transport in strongly interacting media — an idea which may be proven in the near future and has turned out to be intimately connected to studies of quantum chaos in black holes and strongly correlated media, (iii) The characterization of new forms of hydrodynamic transport, e.g. with phase-disordered order parameters. These studies pertain to key open questions in our understanding of how non-quasiparticle, intrinsically strongly interacting systems can behave. In addition to the interface between holography and strongly interacting condensed matter systems, I made several advances on understanding the role of entanglement in quantum

  4. Speckle reduction techniques in digital holography

    Energy Technology Data Exchange (ETDEWEB)

    Monaghan, David; Kelly, Damien; Hennelly, Bryan [Department of Computer Science, National University of Ireland, Maynooth, Co. Kildare (Ireland); Javidi, Bahram, E-mail: bryanh@cs.nuim.i [University of Connecticut Electrical and Computer Engineering Department 371 Fairfield Road, Unit 2157 Storrs, CT 06269-2157 (United States)

    2010-02-01

    We have studied several speckle reduction techniques, applicable to digital holography. These include the use of optical diffusers, wavelet filtering, simulating temporal incoherence and filtering in the Fourier domain. The Digital Holograms (DHs) used in this study are captured using a Phase Shift Interferometric (PSI) in-line setup and subsequently reconstructed numerically.

  5. Electron Holography Image Simulation of Nanoparticles

    NARCIS (Netherlands)

    Keimpema, K.; Raedt, H. De; Hosson, J.Th.M. De

    We discuss a real-space and a Fourier-space technique to compute numerically, the phase images observed by electron holography of nanoscale particles. An assessment of the applicability and accuracy of these techniques is made by calculating numerical results for simple geometries for which

  6. Photopolymer for Optical Holography and Holographic Interferometry

    Czech Academy of Sciences Publication Activity Database

    Květoň, M.; Lédl, Vít; Havránek, A.; Fiala, P.

    2010-01-01

    Roč. 295, č. 1 (2010), s. 107-113 ISSN 1022-1360 Institutional research plan: CEZ:AV0Z20430508 Keywords : holographic interferometry * holography * photopolymerization * recording material * refractive index Subject RIV: BH - Optics, Masers, Lasers http://onlinelibrary.wiley.com/doi/10.1002/masy.200900093/pdf

  7. Synthetic optical holography for rapid nanoimaging.

    Science.gov (United States)

    Schnell, M; Carney, P S; Hillenbrand, R

    2014-03-20

    Holography has paved the way for phase imaging in a variety of wide-field techniques, including electron, X-ray and optical microscopy. In scanning optical microscopy, however, the serial fashion of image acquisition seems to challenge a direct implementation of traditional holography. Here we introduce synthetic optical holography (SOH) for quantitative phase-resolved imaging in scanning optical microscopy. It uniquely combines fast phase imaging, technical simplicity and simultaneous operation at visible and infrared frequencies with a single reference arm. We demonstrate SOH with a scattering-type scanning near-field optical microscope (s-SNOM) where it enables reliable quantitative phase-resolved near-field imaging with unprecedented speed. We apply these capabilities to nanoscale, non-invasive and rapid screening of grain boundaries in CVD-grown graphene, by recording 65 kilopixel near-field images in 26 s and 2.3 megapixel images in 13 min. Beyond s-SNOM, the SOH concept could boost the implementation of holography in other scanning imaging applications such as confocal microscopy.

  8. Simple optical setup implementation for digital Fourier transform holography

    Energy Technology Data Exchange (ETDEWEB)

    De Oliveira, G N [Pos-graduacao em Engenharia Mecanica, TEM/PGMEC, Universidade Federal Fluminense, Rua Passo da Patria, 156, Niteroi, R.J., Cep.: 24.210-240 (Brazil); Rodrigues, D M C; Dos Santos, P A M, E-mail: pams@if.uff.br [Instituto de Fisica, Laboratorio de Optica Nao-linear e Aplicada, Universidade Federal Fluminense, Av. Gal. Nilton Tavares de Souza, s/n, Gragoata, Niteroi, R.J., Cep.:24.210-346 (Brazil)

    2011-01-01

    In the present work a simple implementation of Digital Fourier Transform Holography (DFTH) setup is discussed. This is obtained making a very simple modification in the classical setup arquiteture of the Fourier Transform holography. It is also demonstrated the easy and practical viability of the setup in an interferometric application for mechanical parameters determination. The work is also proposed as an interesting advanced introductory training for graduated students in digital holography.

  9. Holography at x-ray wavelengths

    International Nuclear Information System (INIS)

    Solem, T.C.; Baldwin, G.C.; Chapline, G.F.

    1981-01-01

    We discuss alternative holographic techniques for imaging microscopic structures with a short-pulse, high intensity, high-quantum-energy laser. We find that Fresnel transform holography using a photoresist for registration of the hologram is most likely to be within the scope of near term technology. Although it has advantages in time gating, using an in-line electron microscope for hologram registration has an unacceptable tradeoff between quantum efficiency and resolution. Fourier transform holography using a reflector to generate the reference beam might be a reasonable alternative using low resolution film, but is necessarily more complicated. We discuss the dependence of the required laser intensity on the resolution sought and on the elastic and absorption cross sections. We conclude that resonant scattering must be used to obtain holograms at reasonable intensities

  10. Limits of computational white-light holography

    International Nuclear Information System (INIS)

    Mader, Sebastian; Kozacki, Tomasz; Tompkin, Wayne

    2013-01-01

    Recently, computational holograms are being used in applications, where previously conventional holograms were applied. Compared to conventional holography, computational holography is based on imaging of virtual objects instead of real objects, which renders them somewhat more flexibility. Here, computational holograms are calculated based on the superposition of point sources, which are placed at the mesh vertices of arbitrary 3D models. The computed holograms have full parallax and exhibit a problem in viewing that we have called g hosting , which is linked to the viewing of computational holograms based on 3D models close to the image plane. Experimental white-light reconstruction of these holograms showed significant blurring, which is explained here based on simulations of the lateral as well as the axial resolution of a point image with respect to the source spectrum and image distance. In accordance with these simulations, an upper limit of the distance to the image plane is determined, which ensures high quality imaging.

  11. Application of Denisyuk pulsed holography to material testing

    NARCIS (Netherlands)

    Renesse, R.L. van; Burgmeijer, J.W.

    1983-01-01

    When holography is applied outside the laboratory, some well known problems are experienced: vibrations, rigid body motion, stray daylight. Pulse holography can overcome the difficulties with vibrations, but the other problems are less easily solved. When the object area to be holographically tested

  12. Applications of holography to condensed matter physics

    Science.gov (United States)

    Ross, Simon F.

    2012-10-01

    Holography is one of the key insights to emerge from string theory. It connects quantum gravity to field theory, and thereby provides a non-perturbative formulation of string theory. This has enabled progress on a range of theoretical issues, from the quantum description of spacetime to the calculation of scattering amplitudes in supersymmetric field theories. There have been important insights into both the field theories and the spacetime picture. More recently, applied holography has been the subject of intense and rapid development. The idea here is to use the spacetime description to address questions about strongly coupled field theory relevant to application areas such as finite-temperature QCD and condensed matter physics; the focus in this special issue is on the latter. This involves the study of field theory at finite temperature and with chemical potentials for appropriate charges, described in spacetime by charged black hole solutions. The use of holography to study these systems requires a significant extrapolation, from the field theories where classical gravitational calculations in the bulk are a useful approximation to the experimentally relevant theories. Nonetheless, the approach has had some striking qualitative successes, including the construction of holographic versions of superconducting or superfluid phase transitions, the identification of Fermi liquids with a variety of thermal behaviours, and the construction of a map between a class of gravity solutions and the hydrodynamic regime in the field theory. The use of holography provides a qualitatively new perspective on these aspects of strong coupling dynamics. In addition to insight into the behaviour of the strongly coupled field theories, this work has led to new insights into the bulk dynamics and a deeper understanding of holography. The purpose of this focus issue is to strengthen the connections between this direction and other gravitational research and to make the gravity

  13. Ethereal presences in holography and photography

    Science.gov (United States)

    Richardson, M.; Byrne, Kay

    2007-02-01

    This paper examines the concept of the 'Presence of Absence' in post-mortem photography and holography, drawing upon both historical and lesser-known images as reference. To create a photographic negative one needs the presence of light to expose the light sensitive surface, be it glass, a polished plate or plastic. A hologram may also be created when a coherent light source, for example from a Laser, travels through a light sensitive material and falls upon the subject to be recorded. A holograph however, retains the optical qualities of both phase and amplitude, the memory of light. Both mediums recall, as it were, 'now absent moments', and confronts us with what is 'not there' as much as 'what is'. This paper examines the exploration of absence and presence in post-mortem photography and holography and it's a richly visceral visual language. A photonic syntax can interpret death as an elegant yet horrific aesthetic, the photograph may be beautify screened and yet obscene in its content. In essence one can be a voyeur, experiencing a mere visual whisper of the true nature of the subject. Our Victorian forefathers explored postmortem photography as an object of mourning, and at the close of the nineteenth century when Jack the Ripper had the inhabitants of White Chapel in a grip of fear, photography made its mark as a documentation of violent crime. Today, within contemporary photography, death is now presented within the confines of the 'Art Gallery', as a sensual, and at times, sensationalised art form. In exploring post-mortem imagery, both in holography and conventional photography, absence presents an aspect of death as startling in its unanimated form and detailed in its finite examination of mortality.

  14. Principle and Reconstruction Algorithm for Atomic-Resolution Holography

    Science.gov (United States)

    Matsushita, Tomohiro; Muro, Takayuki; Matsui, Fumihiko; Happo, Naohisa; Hosokawa, Shinya; Ohoyama, Kenji; Sato-Tomita, Ayana; Sasaki, Yuji C.; Hayashi, Kouichi

    2018-06-01

    Atomic-resolution holography makes it possible to obtain the three-dimensional (3D) structure around a target atomic site. Translational symmetry of the atomic arrangement of the sample is not necessary, and the 3D atomic image can be measured when the local structure of the target atomic site is oriented. Therefore, 3D local atomic structures such as dopants and adsorbates are observable. Here, the atomic-resolution holography comprising photoelectron holography, X-ray fluorescence holography, neutron holography, and their inverse modes are treated. Although the measurement methods are different, they can be handled with a unified theory. The algorithm for reconstructing 3D atomic images from holograms plays an important role. Although Fourier transform-based methods have been proposed, they require the multiple-energy holograms. In addition, they cannot be directly applied to photoelectron holography because of the phase shift problem. We have developed methods based on the fitting method for reconstructing from single-energy and photoelectron holograms. The developed methods are applicable to all types of atomic-resolution holography.

  15. Search for V H and Technicolor Producion in the qqbb Final State Using the RunII DØ Detector

    Energy Technology Data Exchange (ETDEWEB)

    Clutter, Justace R. [Univ. of Kansas, Lawrence, KS (United States)

    2010-04-01

    A search for dijet resonance production in a four-jet all-hadronic final state from the DØ detector at Fermilab’s Tevatron is presented. The data set, acquired at a p$\\bar{p}$ center-of-mass energy of √s = 1.96 TeV, contains primarily multijet events and represents approximately 1 fb-1 of data. The cross section limits for associated Higgs production and Technicolor pro- cesses are determined through a background subtraction method using data to estimate the background. This four-jet channel is potentially very powerful, but is extremely challenging due to the large multijet background from QCD processes. Background rejection is performed by utilizing b-tagging, pre-selection cuts, a multi-variate boosted decision tree discriminant, and the correlated information contained in the M(bb) and M(jj) dijet invariant masses. The search for V H (WH+ZH) processes yields a 95% confidence level observed upper limit of 20.4 pb on the VH cross section for a Higgs mass of 115 GeV/c2. Additionally, a 95% confidence level observed upper limit of 16.7 pb was set for a Higgs boson mass of 125 GeV/c2 and 24.6 pb was set for a Higgs boson mass of 135 GeV/c2. The same data set was used to place limits on the Technicolor process ρTC → WπTC where the technirho mass was fixed to 240 GeV/c2. For a technipion mass of 115 GeV/c2 we find a 95% confidence level observed upper limit on the cross section of 49 pb. The technipion masses of 125 GeV/c2 and 140 GeV/c2, the 95% confidence level observed upper limits are 57 pb and 71 pb, respectively.

  16. Phase alteration compensation in reflection digital holography

    International Nuclear Information System (INIS)

    Rincon, O; Amezquita, R; Monroy, F

    2011-01-01

    The phase maps obtained from digital holographic microscopy techniques carry information about the axial lengths of the object under study. Additionally, these phase maps have information of tilt and curvatures with origin in the off-axis geometry and the magnification lenses system, respectively. Only a complete compensation of these extra phases allows a correct interpretation of the phase information. In this article a numerical strategy to compensate for these alterations is designed, using a phase mask located in different planes. This strategy is applied in the measurement of a phase steps plate using a digital holography setup.

  17. Photoelectron holography with improved image reconstruction

    Energy Technology Data Exchange (ETDEWEB)

    Matsushita, Tomohiro, E-mail: matusita@spring8.or.j [Japan Synchrotron Radiation Research Institute (JASRI), SPring-8, 1-1-1 Kouto, Sayo-cho, Sayo-gun Hyogo 679-5198 (Japan); Matsui, Fumihiko; Daimon, Hiroshi [Nara Institute of Science and Technology (NAIST), 8916-5 Takayama, Ikoma, Nara 630-0192 (Japan); Hayashi, Kouichi [Institute for Materials Research, Tohoku University, Sendai 980-8577 (Japan)

    2010-05-15

    Electron holography is a type of atomic structural analysis, and it has unique features such as element selectivity and the ability to analyze the structure around an impurity in a crystal. In this paper, we introduce the measurement system, electron holograms, a theory for the recording process of an electron hologram, and a theory for the reconstruction algorithm. We describe photoelectron holograms, Auger electron holograms, and the inverse mode of an electron hologram. The reconstruction algorithm, scattering pattern extraction algorithm (SPEA), the SPEA with maximum entropy method (SPEA-MEM), and SPEA-MEM with translational operation are also described.

  18. Photoelectron holography with improved image reconstruction

    International Nuclear Information System (INIS)

    Matsushita, Tomohiro; Matsui, Fumihiko; Daimon, Hiroshi; Hayashi, Kouichi

    2010-01-01

    Electron holography is a type of atomic structural analysis, and it has unique features such as element selectivity and the ability to analyze the structure around an impurity in a crystal. In this paper, we introduce the measurement system, electron holograms, a theory for the recording process of an electron hologram, and a theory for the reconstruction algorithm. We describe photoelectron holograms, Auger electron holograms, and the inverse mode of an electron hologram. The reconstruction algorithm, scattering pattern extraction algorithm (SPEA), the SPEA with maximum entropy method (SPEA-MEM), and SPEA-MEM with translational operation are also described.

  19. EDITORIAL: Optical tomography and digital holography

    Science.gov (United States)

    Coupland, Jeremy; Lobera, Julia

    2008-07-01

    The articles in this special feature in Measurement Science and Technology concern exciting new developments in the field of digital holography—the process of electronically recording and numerically reconstructing an optical field [1]. Making use of the enormous advances in digital imaging and computer technology, digital holography is presented in a range of applications from fluid flow measurement and structural analysis to medical imaging. The science of digital holography rests on the foundations of optical holography, on the work of Gabor in the late 1940s, and on the development of laser sources in the 1960s, which made his vision a practical reality [2]. Optical holography, however, uses a photosensitive material, both to record a latent image and subsequently to behave as a diffractive optical element with which to reconstruct the incident field. In this way display holograms, using silver halide materials for example, can produce life-size images that are virtually indistinguishable from the object itself [3]. Digital holography, in contrast, separates the steps of recording and reconstruction, and the final image is most often in the form of a 3D computer model. Of course, television cameras have been used from the beginnings of holography to record interferometric images. However, the huge disparity between the resolution of holographic recording materials (more than 3000 cycles/mm) and television cameras (around 50 cycles/mm) was raised as a major concern by early researchers. TV holography, as it was sometimes called, generally recorded low numerical aperture (NA) holograms producing images with characteristically large speckle and was therefore more often referred to as electronic speckle pattern interferomery (ESPI) [4]. It is possible, however, to record large NA holograms on a sensor with restricted resolution by using an objective lens or a diverging reference wave [5]. This is generally referred to as digital holographic microscopy (DHM) since

  20. DHM (Digital Holography Microscope) for imaging cells

    International Nuclear Information System (INIS)

    Emery, Yves; Cuche, Etienne; Colomb, Tristan; Depeursinge, Christian; Rappaz, Benjamin; Marquet, Pierre; Magistretti, Pierre

    2007-01-01

    Light interaction with a sample modifies both intensity and phase of the illuminating wave. Any available supports for image recording are only sensitive to intensity, but Denis Gabor [P. Marquet, B. Rappaz, P. Magistretti, et. al. Digital Holography for quantitative phase-contrast imaging, Optics Letters, 30, 5, pp 291-93 (2005)] invented in 1948 a way to encode the phase as an intensity variation: the h ologram . Digital Holographic Microscopy (DHM) [D. Gabor, A new microscopic principle, Nature, 1948] implements digitally this powerful hologram. Characterization of various pollen grains and of morphology changes of neurones associated with hypotonic shock demonstrates the potential of DHM for imaging cells

  1. Optical voice encryption based on digital holography.

    Science.gov (United States)

    Rajput, Sudheesh K; Matoba, Osamu

    2017-11-15

    We propose an optical voice encryption scheme based on digital holography (DH). An off-axis DH is employed to acquire voice information by obtaining phase retardation occurring in the object wave due to sound wave propagation. The acquired hologram, including voice information, is encrypted using optical image encryption. The DH reconstruction and decryption with all the correct parameters can retrieve an original voice. The scheme has the capability to record the human voice in holograms and encrypt it directly. These aspects make the scheme suitable for other security applications and help to use the voice as a potential security tool. We present experimental and some part of simulation results.

  2. Allegheny County Walk Scores

    Data.gov (United States)

    Allegheny County / City of Pittsburgh / Western PA Regional Data Center — Walk Score measures the walkability of any address using a patented system developed by the Walk Score company. For each 2010 Census Tract centroid, Walk Score...

  3. Toe Walking in Children

    Science.gov (United States)

    ... prone to damage and weaken over time. This diagnosis might be more likely if your child initially walked normally before starting to toe walk. Autism. Toe walking has been linked to autism spectrum ...

  4. Micro-Structure Measurement and Imaging Based on Digital Holography

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Kyeong Suk; Jung, Hyun Chul; Chang, Ho Seob; Akhter, Naseem [Chosun University, Gwangju (Korea, Republic of); Kee, Chang Doo [Chonnam National University, Gwangju (Korea, Republic of)

    2010-06-15

    Advancements in the imaging and computing technology have opened the path to digital holography for non-destructive investigations of technical samples, material property measurement, vibration analysis, flow visualization and stress analysis in aerospace industry which has widened the application of digital holography in the above fields. In this paper, we demonstrate the non-destructive investigation and micro-structure measurement application of digital holography to the small particles and a biological sample. This paper gives a brief description of the digital holograms recorded with this system and illustratively demonstrated

  5. Micro-Structure Measurement and Imaging Based on Digital Holography

    International Nuclear Information System (INIS)

    Kim, Kyeong Suk; Jung, Hyun Chul; Chang, Ho Seob; Akhter, Naseem; Kee, Chang Doo

    2010-01-01

    Advancements in the imaging and computing technology have opened the path to digital holography for non-destructive investigations of technical samples, material property measurement, vibration analysis, flow visualization and stress analysis in aerospace industry which has widened the application of digital holography in the above fields. In this paper, we demonstrate the non-destructive investigation and micro-structure measurement application of digital holography to the small particles and a biological sample. This paper gives a brief description of the digital holograms recorded with this system and illustratively demonstrated

  6. Electron holography of Fe-based nanocrystalline magnetic materials (invited)

    International Nuclear Information System (INIS)

    Shindo, Daisuke; Park, Young-Gil; Gao, Youhui; Park, Hyun Soon

    2004-01-01

    Magnetic domain structures of nanocrystalline magnetic materials were extensively investigated by electron holography with a change in temperature or magnetic field applied. In both soft and hard magnetic materials, the distribution of lines of magnetic flux clarified in situ by electron holography was found to correspond well to their magnetic properties. An attempt to produce a strong magnetic field using a sharp needle made of a permanent magnet, whose movement is controlled by piezo drives has been presented. This article demonstrates that the attempt is promising to investigate the magnetization process of hard magnetic materials by electron holography

  7. First law of entanglement rates from holography

    Science.gov (United States)

    O'Bannon, Andy; Probst, Jonas; Rodgers, Ronnie; Uhlemann, Christoph F.

    2017-09-01

    For a perturbation of the state of a conformal field theory (CFT), the response of the entanglement entropy is governed by the so-called "first law" of entanglement entropy, in which the change in entanglement entropy is proportional to the change in energy. Whether such a first law holds for other types of perturbations, such as a change to the CFT Lagrangian, remains an open question. We use holography to study the evolution in time t of entanglement entropy for a CFT driven by a t -linear source for a conserved U (1 ) current or marginal scalar operator. We find that although the usual first law of entanglement entropy may be violated, a first law for the rates of change of entanglement entropy and energy still holds. More generally, we prove that this first law for rates holds in holography for any asymptotically (d +1 )-dimensional anti-de Sitter metric perturbation whose t dependence first appears at order zd in the Fefferman-Graham expansion about the boundary at z =0 .

  8. Data extraction system for underwater particle holography

    Science.gov (United States)

    Nebrensky, J. J.; Craig, Gary; Hobson, Peter R.; Lampitt, R. S.; Nareid, Helge; Pescetto, A.; Trucco, Andrea; Watson, John

    2000-08-01

    Pulsed laser holography in an extremely powerful technique for the study of particle fields as it allows instantaneous, non-invasive high- resolution recording of substantial volumes. By relaying the real image one can obtain the size, shape, position and - if multiple exposures are made - velocity of every object in the recorded field. Manual analysis of large volumes containing thousands of particles is, however, an enormous and time-consuming task, with operator fatigue an unpredictable source of errors. Clearly the value of holographic measurements also depends crucially on the quality of the reconstructed image: not only will poor resolution degrade the size and shape measurements, but aberrations such as coma and astigmatism can change the perceived centroid of a particle, affecting position and velocity measurements. For large-scale applications of particle field holography, specifically the in situ recording of marine plankton with Holocam, we have developed an automated data extraction system that can be readily switched between the in-line and off-axis geometries and provides optimised reconstruction from holograms recorded underwater. As a videocamera is automatically stepped through the 200 by 200 by 1000mm sample volume, image processing and object tracking routines locate and extract particle images for further classification by a separate software module.

  9. Improving image quality of parallel phase-shifting digital holography

    International Nuclear Information System (INIS)

    Awatsuji, Yasuhiro; Tahara, Tatsuki; Kaneko, Atsushi; Koyama, Takamasa; Nishio, Kenzo; Ura, Shogo; Kubota, Toshihiro; Matoba, Osamu

    2008-01-01

    The authors propose parallel two-step phase-shifting digital holography to improve the image quality of parallel phase-shifting digital holography. The proposed technique can increase the effective number of pixels of hologram twice in comparison to the conventional parallel four-step technique. The increase of the number of pixels makes it possible to improve the image quality of the reconstructed image of the parallel phase-shifting digital holography. Numerical simulation and preliminary experiment of the proposed technique were conducted and the effectiveness of the technique was confirmed. The proposed technique is more practical than the conventional parallel phase-shifting digital holography, because the composition of the digital holographic system based on the proposed technique is simpler.

  10. Off-axis and inline electron holography: Experimental comparison

    International Nuclear Information System (INIS)

    Latychevskaia, Tatiana; Formanek, Petr; Koch, C.T.; Lubk, Axel

    2010-01-01

    Electron holography is a very powerful technique for mapping static electric and magnetic potentials down to atomic resolution. While electron holography is commonly considered synonymous with its off-axis variant in the high energy electron microscopy community, inline electron holography is widely applied in low-energy electron microscopy, where the realization of the off-axis setup is still an experimental challenge. This paper demonstrates that both inline and off-axis holography may be used to recover amplitude and phase shift of the very same object, in our example latex spheres of 90 and 200 nm in diameter, producing very similar results, provided the object does not charge under the electron beam.

  11. Electron holography for fields in solids: Problems and progress

    International Nuclear Information System (INIS)

    Lichte, Hannes; Börrnert, Felix; Lenk, Andreas; Lubk, Axel; Röder, Falk; Sickmann, Jan; Sturm, Sebastian; Vogel, Karin; Wolf, Daniel

    2013-01-01

    Electron holography initially was invented by Dennis Gabor for solving the problems raised by the aberrations of electron lenses in Transmission Electron Microscopy. Nowadays, after hardware correction of aberrations allows true atomic resolution of the structure, for comprehensive understanding of solids, determination of electric and magnetic nanofields is the most challenging task. Since fields are phase objects in the TEM, electron holography is the unrivaled method of choice. After more than 40 years of experimental realization and steady improvement, holography is increasingly contributing to these highly sophisticated and essential questions in materials science, as well to the understanding of electron waves and their interaction with matter. - Highlights: • We review the development of the method of electron holography. • We outline the role of information content as guideline. • We outline the improvements of the method. • We sketch the future instrumental development. • We summarize the still existing problems to solve

  12. Holography explained in the language of potential scattering

    International Nuclear Information System (INIS)

    Csonka, P.L.

    1978-04-01

    Holography is explained in the language of potential scattering kinematics (whereas usually the formalism of wave optics is used). This approach is probably more natural for those who were trained as atomic, nuclear, etc., physicists, but are now attracted by the possibility of x-ray holography. Classical optical instruments are hardly mentioned, and the approximations usually connected with them are not used. Many of the results derived in this report are not new. 5 figures

  13. Some Applications of Holography to Study Strongly Correlated Systems

    Directory of Open Access Journals (Sweden)

    Bhatnagar Neha

    2018-01-01

    Full Text Available In this work, we study the transport coefficients of strongly coupled condensed matter systems using gauge/gravity duality (holography. We consider examples from the real world and evaluate the conductivities from their gravity duals. Adopting the bottom-up approach of holography, we obtain the frequency response of the conductivity for (1+1-dimensional systems. We also evaluate the DC conductivities for non-relativistic condensed matter systems with hyperscaling violating geometry.

  14. Complementarity and quantum walks

    International Nuclear Information System (INIS)

    Kendon, Viv; Sanders, Barry C.

    2005-01-01

    We show that quantum walks interpolate between a coherent 'wave walk' and a random walk depending on how strongly the walker's coin state is measured; i.e., the quantum walk exhibits the quintessentially quantum property of complementarity, which is manifested as a tradeoff between knowledge of which path the walker takes vs the sharpness of the interference pattern. A physical implementation of a quantum walk (the quantum quincunx) should thus have an identifiable walker and the capacity to demonstrate the interpolation between wave walk and random walk depending on the strength of measurement

  15. Electron holography-basics and applications

    International Nuclear Information System (INIS)

    Lichte, Hannes; Lehmann, Michael

    2008-01-01

    Despite the huge progress achieved recently by means of the corrector for aberrations, allowing now a true atomic resolution of 0.1 nm, hence making it an unrivalled tool for nanoscience, transmission electron microscopy (TEM) suffers from a severe drawback: in a conventional electron micrograph only a poor phase contrast can be achieved, i.e. phase structures are virtually invisible. Therefore, conventional TEM is nearly blind for electric and magnetic fields, which are pure phase objects. Since such fields provoked by the atomic structure, e.g. of semiconductors and ferroelectrics, largely determine the solid state properties, hence the importance for high technology applications, substantial object information is missing. Electron holography in TEM offers the solution: by superposition with a coherent reference wave, a hologram is recorded, from which the image wave can be completely reconstructed by amplitude and phase. Now the object is displayed quantitatively in two separate images: one representing the amplitude, the other the phase. From the phase image, electric and magnetic fields can be determined quantitatively in the range from micrometre down to atomic dimensions by all wave optical methods that one can think of, both in real space and in Fourier space. Electron holography is pure wave optics. Therefore, we discuss the basics of coherence and interference, the implementation into a TEM, the path of rays for recording holograms as well as the limits in lateral and signal resolution. We outline the methods of reconstructing the wave by numerical image processing and procedures for extracting the object properties of interest. Furthermore, we present a broad spectrum of applications both at mesoscopic and atomic dimensions. This paper gives an overview of the state of the art pointing at the needs for further development. It is also meant as encouragement for those who refrain from holography, thinking that it can only be performed by specialists in

  16. When holography meets coherent diffraction imaging.

    Science.gov (United States)

    Latychevskaia, Tatiana; Longchamp, Jean-Nicolas; Fink, Hans-Werner

    2012-12-17

    The phase problem is inherent to crystallographic, astronomical and optical imaging where only the intensity of the scattered signal is detected and the phase information is lost and must somehow be recovered to reconstruct the object's structure. Modern imaging techniques at the molecular scale rely on utilizing novel coherent light sources like X-ray free electron lasers for the ultimate goal of visualizing such objects as individual biomolecules rather than crystals. Here, unlike in the case of crystals where structures can be solved by model building and phase refinement, the phase distribution of the wave scattered by an individual molecule must directly be recovered. There are two well-known solutions to the phase problem: holography and coherent diffraction imaging (CDI). Both techniques have their pros and cons. In holography, the reconstruction of the scattered complex-valued object wave is directly provided by a well-defined reference wave that must cover the entire detector area which often is an experimental challenge. CDI provides the highest possible, only wavelength limited, resolution, but the phase recovery is an iterative process which requires some pre-defined information about the object and whose outcome is not always uniquely-defined. Moreover, the diffraction patterns must be recorded under oversampling conditions, a pre-requisite to be able to solve the phase problem. Here, we report how holography and CDI can be merged into one superior technique: holographic coherent diffraction imaging (HCDI). An inline hologram can be recorded by employing a modified CDI experimental scheme. We demonstrate that the amplitude of the Fourier transform of an inline hologram is related to the complex-valued visibility, thus providing information on both, the amplitude and the phase of the scattered wave in the plane of the diffraction pattern. With the phase information available, the condition of oversampling the diffraction patterns can be relaxed, and the

  17. Fire-Walking

    Science.gov (United States)

    Willey, David

    2010-01-01

    This article gives a brief history of fire-walking and then deals with the physics behind fire-walking. The author has performed approximately 50 fire-walks, took the data for the world's hottest fire-walk and was, at one time, a world record holder for the longest fire-walk (www.dwilley.com/HDATLTW/Record_Making_Firewalks.html). He currently…

  18. X-ray interferometric Fourier holography

    International Nuclear Information System (INIS)

    Balyan, M.K.

    2016-01-01

    The X-ray interferometric Fourier holography is proposed and theoretically investigated. Fourier The X-ray interferometric Young fringes and object image reconstruction are investigated. It is shown that the interference pattern of two slits formed on the exit surface of the crystal-analyzer (the third plate of the interferometer) is the X-ray interferometric Young fringes. An expression for X-ray interferometric Young fringes period is obtained. The subsequent reconstruction of the slit image as an object is performed by means of Fourier transform of the intensity distribution on the hologram. Three methods of reconstruction of the amplitude transmission complex function of the object are presented: analytical - approximate method, method of iteration and step by step method. As an example the X-ray Fourier interferometric hologram recording and the complex amplitude transmission function reconstruction for a beryllium circular wire are considered

  19. Holography and higher-spin theories

    International Nuclear Information System (INIS)

    Petkou, T.

    2005-01-01

    I review recent work on the holographic relation between higher-spin theories in Anti-de Sitter spaces and conformal field theories. I present the main results of studies concerning the higher-spin holographic dual of the three-dimensional O(N) vector model. I discuss the special role played by certain double-trace deformations in Conformal Field Theories that have higher-spin holographic duals. Moreover, I show that duality transformations in a U(1) gauge theory on AdS 4 induce boundary double-trace deformations and argue that a similar effect takes place in the holography of linearized higher-spin theories on AdS 4 . (Abstract Copyright [2005], Wiley Periodicals, Inc.)

  20. Advanced in X-ray fluorescence holography

    CERN Document Server

    Hayashi, K

    2002-01-01

    X-ray fluorescence holography (XFH) can resolve 'phase problem' in crystal diffraction and therefore it provides 3D atomic images around specific elements. Since first demonstration of the XFH in 1996, view of atoms has been improved rapidly with the refinement of the hologram data collection method. The present performance of the XFH makes it possible to apply to impurity, thin film and quasicrystal, and opens a way to practical tool for determination of local structure. In this paper, theory including solutions for twin image problem, advanced experimental systems and application to Si sub 0 sub . sub 9 sub 9 sub 9 Ge sub 0 sub . sub 0 sub 0 sub 1 are discussed. (author)

  1. Remote metrology by comparative digital holography

    International Nuclear Information System (INIS)

    Baumbach, Torsten; Osten, Wolfgang; Kopylow, Christoph von; Jueptner, Werner

    2006-01-01

    A method for the remote comparison of objects with regard to their shape or response to a load is presented. The method allows interferometric sensitivity for comparing objects with different microstructure. In contrast to the well-known incoherent techniques based on inverse fringe projection this new approach uses the coherent optical wave field of the master object as a mask for the illumination of the sample object. The coherent mask is created by digital holography to allow instant access to the complete optical information of the master object at any place desired. The mask is reconstructed by a spatial light modulator (SLM). The optical reconstruction of digital holograms with SLM technology allows modification of reconstructed wavefronts with respect to improvement of image quality, the skilled introduction of additional information about the object (augmented reality), and the alignment of the master and test object

  2. Holography, probe branes and isoperimetric inequalities

    Directory of Open Access Journals (Sweden)

    Frank Ferrari

    2015-07-01

    Full Text Available In many instances of holographic correspondences between a d-dimensional boundary theory and a (d+1-dimensional bulk, a direct argument in the boundary theory implies that there must exist a simple and precise relation between the Euclidean on-shell action of a (d−1-brane probing the bulk geometry and the Euclidean gravitational bulk action. This relation is crucial for the consistency of holography, yet it is non-trivial from the bulk perspective. In particular, we show that it relies on a nice isoperimetric inequality that must be satisfied in a large class of Poincaré–Einstein spaces. Remarkably, this inequality follows from theorems by Lee and Wang.

  3. Randomized random walk on a random walk

    International Nuclear Information System (INIS)

    Lee, P.A.

    1983-06-01

    This paper discusses generalizations of the model introduced by Kehr and Kunter of the random walk of a particle on a one-dimensional chain which in turn has been constructed by a random walk procedure. The superimposed random walk is randomised in time according to the occurrences of a stochastic point process. The probability of finding the particle in a particular position at a certain instant is obtained explicitly in the transform domain. It is found that the asymptotic behaviour for large time of the mean-square displacement of the particle depends critically on the assumed structure of the basic random walk, giving a diffusion-like term for an asymmetric walk or a square root law if the walk is symmetric. Many results are obtained in closed form for the Poisson process case, and these agree with those given previously by Kehr and Kunter. (author)

  4. Neutral technicolor pseudo Goldstone bosons production and QCD [quantum chromodynamics] background at the SSC [Superconducting Super Collider

    International Nuclear Information System (INIS)

    Kuo, Wang-Chuang.

    1990-01-01

    The production of the neutral technicolor pseudo Goldstone bosons, P 0 'and P 8 0 ', at large transverse momentum in pp collisions, pp → g(q)P 0 ' (P 8 0 ')X has been investigated in reactions at a high energy collider such as the SSC. The major two-body and three-body decay modes in tree diagrams are investigated in detail. The t bar t decay channel would dominate both the decays of P 0 ' and P 8 0 ' if it is allowed. Otherwise, gg and 3g will be the dominant decay modes unless the mass of the P 0 ' and P 8 0 ' are below 40 GeV, where b bar b becomes dominant. According to the QCD backgrounds, which we have also investigated in detail in this work, the signal for t bar t is much larger than the background and will be the ideal signal for detecting these bosons. However, in the absence of the t bar t channel, the τ bar τ mode can be used to identify P 0 ' up to m P = 300 GeV in the transverse momentum range P perpendicular approx-lt 100 GeV. Similarly, the b bar b decay mode can serve us a signal to identify P 8 0 ' up to m P = 300 GeV for P perpendicular between 500 and 700 GeV. Our results show that these high transverse momentum production processes are useful for the searching for the P 8 0 ' at the SSC. 63 refs

  5. Neutral technicolor pseudo Goldstone bosons production and QCD (quantum chromodynamics) background at the SSC (Superconducting Super Collider)

    Energy Technology Data Exchange (ETDEWEB)

    Kuo, Wang-Chuang.

    1990-09-21

    The production of the neutral technicolor pseudo Goldstone bosons, P{sup 0}{prime}and P{sub 8}{sup 0}{prime}, at large transverse momentum in pp collisions, pp {yields} g(q)P{sup 0}{prime} (P{sub 8}{sup 0}{prime})X has been investigated in reactions at a high energy collider such as the SSC. The major two-body and three-body decay modes in tree diagrams are investigated in detail. The t{bar t} decay channel would dominate both the decays of P{sup 0}{prime} and P{sub 8}{sup 0}{prime} if it is allowed. Otherwise, gg and 3g will be the dominant decay modes unless the mass of the P{sup 0}{prime} and P{sub 8}{sup 0}{prime} are below 40 GeV, where b{bar b} becomes dominant. According to the QCD backgrounds, which we have also investigated in detail in this work, the signal for t{bar t} is much larger than the background and will be the ideal signal for detecting these bosons. However, in the absence of the t{bar t} channel, the {tau}{bar {tau}} mode can be used to identify P{sup 0}{prime} up to m{sub P} = 300 GeV in the transverse momentum range P{sub {perpendicular}} {approx lt} 100 GeV. Similarly, the b{bar b} decay mode can serve us a signal to identify P{sub 8}{sup 0}{prime} up to m{sub P} = 300 GeV for P{sub {perpendicular}} between 500 and 700 GeV. Our results show that these high transverse momentum production processes are useful for the searching for the P{sub 8}{sup 0}{prime} at the SSC. 63 refs.

  6. Relation between random walks and quantum walks

    Science.gov (United States)

    Boettcher, Stefan; Falkner, Stefan; Portugal, Renato

    2015-05-01

    Based on studies of four specific networks, we conjecture a general relation between the walk dimensions dw of discrete-time random walks and quantum walks with the (self-inverse) Grover coin. In each case, we find that dw of the quantum walk takes on exactly half the value found for the classical random walk on the same geometry. Since walks on homogeneous lattices satisfy this relation trivially, our results for heterogeneous networks suggest that such a relation holds irrespective of whether translational invariance is maintained or not. To develop our results, we extend the renormalization-group analysis (RG) of the stochastic master equation to one with a unitary propagator. As in the classical case, the solution ρ (x ,t ) in space and time of this quantum-walk equation exhibits a scaling collapse for a variable xdw/t in the weak limit, which defines dw and illuminates fundamental aspects of the walk dynamics, e.g., its mean-square displacement. We confirm the collapse for ρ (x ,t ) in each case with extensive numerical simulation. The exact values for dw themselves demonstrate that RG is a powerful complementary approach to study the asymptotics of quantum walks that weak-limit theorems have not been able to access, such as for systems lacking translational symmetries beyond simple trees.

  7. More Adults Are Walking

    Centers for Disease Control (CDC) Podcasts

    This podcast is based on the August 2012 CDC Vital Signs report. While more adults are walking, only half get the recommended amount of physical activity. Listen to learn how communities, employers, and individuals may help increase walking.

  8. Quantum walk computation

    International Nuclear Information System (INIS)

    Kendon, Viv

    2014-01-01

    Quantum versions of random walks have diverse applications that are motivating experimental implementations as well as theoretical studies. Recent results showing quantum walks are “universal for quantum computation” relate to algorithms, to be run on quantum computers. We consider whether an experimental implementation of a quantum walk could provide useful computation before we have a universal quantum computer

  9. An easy physics outreach and teaching tool for holography

    International Nuclear Information System (INIS)

    Voslion, T; Escarguel, A

    2013-01-01

    in the framework of scientific outreach at the 'Maison des Sciences' of the Aix-Marseilles University, we created a teaching kit for holography contained in a small case. It includes all the required equipment to produce holograms almost anywhere with a simple optical assembly with a very good vibration tolerance. The fundamental principles of holography and several applications are illustrated through simple experiments: reflection Denisyuk holograms, angular multiplexing, notch filters, holographic interferometry and diffraction holographic gratings. It is possible to use this tool for several purposes: science outreach, teaching for undergraduate and graduate students and continuing education. In this article, we explain the basis of holography, how the kit works, and give some applications and results that can be done with it.

  10. Digital holography and wavefront sensing principles, techniques and applications

    CERN Document Server

    Schnars, Ulf; Watson, John; Jüptner, Werner

    2015-01-01

    This book presents a self-contained treatment of the principles and major applications of digital hologram recording and numerical reconstruction (Digital Holography). This second edition has been significantly revised and enlarged. The authors have extended the chapter on Digital Holographic Microscopy to incorporate new sections on particle sizing, particle image velocimetry and underwater holography. A new chapter now deals comprehensively and extensively with computational wave field sensing. These techniques represent a fascinating alternative to standard interferometry and Digital Holography. They enable wave field sensing without the requirement of a particular reference wave, thus allowing the use of low brilliance light sources and even liquid-crystal displays (LCD) for interferometric applications.              

  11. X-ray holography. Atoms in three dimensions

    International Nuclear Information System (INIS)

    Tegze, M.

    2005-01-01

    The principles of atomic resolution X-ray holography was elaborated in 1991. X-ray photons scatter thousand times less on atoms than electrons of the same wavelength. As a result, both free path and penetration depth are higher which giver information about the bulk material. X-ray holography is realized by irradiating the single crystal sample with radiation from external X-ray source. The incident radiation is ionizing the atoms of the sample to emit fluorescent radiation. The angle dependence of the fluorescent radiation results an image containing the hologram. The hologram itself is extremely small compared to the background that needs 10 10 capturing photons to recover image. Using Thomas Gog's method and synchrotron radiation the X-ray holography becomes more usable, but the method still needs refining both experimentally and theoretically. (TRA)

  12. Dynamic imaging through turbid media based on digital holography.

    Science.gov (United States)

    Li, Shiping; Zhong, Jingang

    2014-03-01

    Imaging through turbid media using visible or IR light instead of harmful x ray is still a challenging problem, especially in dynamic imaging. A method of dynamic imaging through turbid media using digital holography is presented. In order to match the coherence length between the dynamic object wave and the reference wave, a cw laser is used. To solve the problem of difficult focusing in imaging through turbid media, an autofocus technology is applied. To further enhance the image contrast, a spatial filtering technique is used. A description of digital holography and experiments of imaging the objects hidden in turbid media are presented. The experimental result shows that dynamic images of the objects can be achieved by the use of digital holography.

  13. Electron holography for fields in solids: problems and progress.

    Science.gov (United States)

    Lichte, Hannes; Börrnert, Felix; Lenk, Andreas; Lubk, Axel; Röder, Falk; Sickmann, Jan; Sturm, Sebastian; Vogel, Karin; Wolf, Daniel

    2013-11-01

    Electron holography initially was invented by Dennis Gabor for solving the problems raised by the aberrations of electron lenses in Transmission Electron Microscopy. Nowadays, after hardware correction of aberrations allows true atomic resolution of the structure, for comprehensive understanding of solids, determination of electric and magnetic nanofields is the most challenging task. Since fields are phase objects in the TEM, electron holography is the unrivaled method of choice. After more than 40 years of experimental realization and steady improvement, holography is increasingly contributing to these highly sophisticated and essential questions in materials science, as well to the understanding of electron waves and their interaction with matter. © 2013 Elsevier B.V. All rights reserved.

  14. Digital holography with electron wave: measuring into the nanoworld

    Science.gov (United States)

    Mendoza Santoyo, Fernando; Voelkl, Edgar

    2016-04-01

    Dennis Gabor invented Holography in 1949. His main concern at the time was centered on the spherical aberration correction in the recently created electron microscopes, especially after O. Scherzer had shown mathematically that round electron optical lenses always have a positive spherical aberration coefficient and the mechanical requirements for minimizing the spherical aberration were too high to allow for atomic resolution. At the time the lack of coherent electron sources meant that in-line holography was developed using quasi-coherent light sources. As such Holography did not produce scientific good enough results to be considered a must use tool. In 1956, G. Moellenstedt invented a device called a wire-biprism that allowed the object and reference beams to be combined in an off-axis configuration. The invention of the laser at the end of the 1950s gave a great leap to Holography since this light source was highly coherent and hence led to the invention of Holographic Interferometry during the first lustrum of the 1960s. This new discipline in the Optics field has successfully evolved to become a trusted tool in a wide variety of areas. Coherent electron sources were made available only by the late 1970s, a fact that gave an outstanding impulse to electron holography so that today nanomaterials and structures belonging to a wide variety of subjects can be characterized in regards to their physical and mechanical parameters. This invited paper will present and discuss electron holography's state of the art applications to study the shape of nanoparticles and bacteria, and the qualitative and quantitative study of magnetic and electric fields produced by novel nano-structures.

  15. m-Learning and holography: Compatible techniques?

    Science.gov (United States)

    Calvo, Maria L.

    2014-07-01

    Since the last decades, cell phones have become increasingly popular and are nowadays ubiquitous. New generations of cell phones are now equipped with text messaging, internet, and camera features. They are now making their way into the classroom. This is creating a new teaching and learning technique, the so called m-Learning (or mobile-Learning). Because of the many benefits that cell phones offer, teachers could easily use them as a teaching and learning tool. However, an additional work from the teachers for introducing their students into the m-Learning in the classroom needs to be defined and developed. As an example, optical techniques, based upon interference and diffraction phenomena, such as holography, appear to be convenient topics for m-Learning. They can be approached with simple examples and experiments within the cell phones performances and classroom accessibility. We will present some results carried out at the Faculty of Physical Sciences in UCM to obtain very simple holographic recordings via cell phones. The activities were carried out inside the course on Optical Coherence and Laser, offered to students in the fourth course of the Grade in Physical Sciences. Some open conclusions and proposals will be presented.

  16. Using DSLR cameras in digital holography

    Science.gov (United States)

    Hincapié-Zuluaga, Diego; Herrera-Ramírez, Jorge; García-Sucerquia, Jorge

    2017-08-01

    In Digital Holography (DH), the size of the bidimensional image sensor to record the digital hologram, plays a key role on the performance of this imaging technique; the larger the size of the camera sensor, the better the quality of the final reconstructed image. Scientific cameras with large formats are offered in the market, but their cost and availability limit their use as a first option when implementing DH. Nowadays, DSLR cameras provide an easy-access alternative that is worthwhile to be explored. The DSLR cameras are a wide, commercial, and available option that in comparison with traditional scientific cameras, offer a much lower cost per effective pixel over a large sensing area. However, in the DSLR cameras, with their RGB pixel distribution, the sampling of information is different to the sampling in monochrome cameras usually employed in DH. This fact has implications in their performance. In this work, we discuss why DSLR cameras are not extensively used for DH, taking into account the problem reported by different authors of object replication. Simulations of DH using monochromatic and DSLR cameras are presented and a theoretical deduction for the replication problem using the Fourier theory is also shown. Experimental results of DH implementation using a DSLR camera show the replication problem.

  17. Synthetic holography based on scanning microcavity

    Directory of Open Access Journals (Sweden)

    A. Di Donato

    2015-11-01

    Full Text Available Synthetic optical holography (SOH is an imaging technique, introduced in scanning microscopy to record amplitude and phase of a scattered field from a sample. In this paper, it is described a novel implementation of SOH through a lens-free low-coherence system, based on a scanning optical microcavity. This technique combines the low-coherence properties of the source with the mutual interference of scattered waves and the resonant behavior of a micro-cavity, in order to realize a high sensitive imaging system. Micro-cavity is compact and realized by approaching a cleaved optical fiber to the sample. The scanning system works in an open-loop configuration without the need for a reference wave, usually required in interferometric systems. Measurements were performed over calibration samples and a lateral resolution of about 1 μm is achieved by means of an optical fiber with a Numerical Aperture (NA equal to 0.1 and a Mode Field Diameter (MDF of 5.6 μm.

  18. Preliminary tests of holography in BEBC

    International Nuclear Information System (INIS)

    Pouyat, F.

    1982-01-01

    A collaboration has been set-up between the Institut de Recherche in St. Louis (ISL), the Rutherford Appleton Laboratory (RAL), and the BEBC Group at CERN to study possibilities for application of holographic techniques in BEBC. Laboratory tests and a first trial in BEBC have shown that holograms can be recorded with a two-beam set-up adapted to the optics system of the chamber. The object beam passing through the fish-eye windows illuminates the chamber; after reflection from the Scotchlite panel at the bottom of BEBC it falls through a large-aperture lens onto the film plane. The reference beam is projected directly onto the holographic film plane without passing through the chamber liquid. First results are presented on the influence of the BEBC magnetic field, vibrations of the BEBC expansion system, and on the limitations on resolution to be expected. An outlook is given of future plans for trying to feed a test program on holography into the physics program of the chamber. (orig.)

  19. Autofocusing in digital holography using deep learning

    Science.gov (United States)

    Ren, Zhenbo; Xu, Zhimin; Lam, Edmund Y.

    2018-02-01

    In digital holography, it is critical to know the distance in order to reconstruct the multi-sectional object. This autofocusing is traditionally solved by reconstructing a stack of in-focus and out-of-focus images and using some focus metric, such as entropy or variance, to calculate the sharpness of each reconstructed image. Then the distance corresponding to the sharpest image is determined as the focal position. This method is effective but computationally demanding and time-consuming. To get an accurate estimation, one has to reconstruct many images. Sometimes after a coarse search, a refinement is needed. To overcome this problem in autofocusing, we propose to use deep learning, i.e., a convolutional neural network (CNN), to solve this problem. Autofocusing is viewed as a classification problem, in which the true distance is transferred as a label. To estimate the distance is equated to labeling a hologram correctly. To train such an algorithm, totally 1000 holograms are captured under the same environment, i.e., exposure time, incident angle, object, except the distance. There are 5 labels corresponding to 5 distances. These data are randomly split into three datasets to train, validate and test a CNN network. Experimental results show that the trained network is capable of predicting the distance without reconstructing or knowing any physical parameters about the setup. The prediction time using this method is far less than traditional autofocusing methods.

  20. Holography and the Electroweak Phase Transition

    CERN Document Server

    Creminelli, Paolo; Rattazzi, Riccardo; Creminelli, Paolo; Nicolis, Alberto; Rattazzi, Riccardo

    2002-01-01

    We study through holography the compact Randall-Sundrum (RS) model at finite temperature. In the presence of radius stabilization, the system is described at low enough temperature by the RS solution. At high temperature it is described by the AdS-Schwarzshild solution with an event horizon replacing the TeV brane. We calculate the transition temperature T_c between the two phases and we find it to be somewhat smaller than the TeV scale. Assuming that the Universe starts out at T >> T_c and cools down by expansion, we study the rate of the transition to the RS phase. We find that the transition is too slow and the Universe ends up in an old inflation scenario unless tight bounds are satisfied by the model parameters. In particular we find that the AdS curvature must be comparable to the 5D Planck mass and that the radius stabilization mechanism must lead to a sizeable distortion of the basic RS metric.

  1. Spectrally resolved digital holography using a white light LED

    Science.gov (United States)

    Claus, D.; Pedrini, G.; Buchta, D.; Osten, W.

    2017-06-01

    This paper introduces the concept of spectrally resolved digital holography. The measurement principle and the analysis of the data will be discussed in detail. The usefulness of spectrally resolved digital holography is demonstrated for colour imaging and optical metrology with regards to the recovery of modulus information and phase information, respectively. The phase information will be used to measure the shape of an object via the application of the dual wavelength method. Based on the large degree of data available, multiple speckle de-correlated dual wavelength phase maps can be obtained, which when averaged result in a signal to noise ratio improvement.

  2. X-ray holography with an atomic scatterer

    Energy Technology Data Exchange (ETDEWEB)

    Mityureva, A.A.; Smirnov, V.V., E-mail: valery_smirnov@mail.ru

    2016-08-15

    X-ray holography scheme with reference scatterer consisting of heavy atom as reference center and its link to an object consisting of several light atoms and using controlled variation of the alignment is represented. The scheme can reproduce an object in three dimensions with atomic resolution. The distorting factors of reconstruction are considered. - Highlights: • X-ray holography scheme with a reference wave formed by atomic scatterer. • 3D object reconstruction with atomic resolution from the set of holograms. • Simple formula for the distorting factor in reconstruction.

  3. Coaxial waveguide mode reconstruction and analysis with THz digital holography.

    Science.gov (United States)

    Wang, Xinke; Xiong, Wei; Sun, Wenfeng; Zhang, Yan

    2012-03-26

    Terahertz (THz) digital holography is employed to investigate the properties of waveguides. By using a THz digital holographic imaging system, the propagation modes of a metallic coaxial waveguide are measured and the mode patterns are restored with the inverse Fresnel diffraction algorithm. The experimental results show that the THz propagation mode inside the waveguide is a combination of four modes TE₁₁, TE₁₂, TM₁₁, and TM₁₂, which are in good agreement with the simulation results. In this work, THz digital holography presents its strong potential as a platform for waveguide mode charactering. The experimental findings provide a valuable reference for the design of THz waveguides.

  4. Atomic imaging by x-ray-fluorescence holography and electron-emission holography: A comparative theoretical study

    International Nuclear Information System (INIS)

    Len, P.M.; Thevuthasan, S.; Fadley, C.S.; Kaduwela, A.P.; Van Hove, M.A.

    1994-01-01

    We consider from a theoretical viewpoint the direct imaging of atoms at and near the surfaces of solids by both x-ray-fluorescence holography (XFH) and electron-emission holography (EEH). The more ideal nature of x-ray scattering makes XFH images superior to those in single-energy EEH. The overlap of real and twin features for pairs of atoms at ±a can cause their XFH or EEH atomic images to cancel for certain combinations of wave vector and |a|. The relative merits of XFH and EEH for structure studies are considered

  5. X-ray fluorescence holography and multiple-energy x-ray holography: A critical comparison of atomic images

    International Nuclear Information System (INIS)

    Len, P.M.; Gog, T.; Fadley, C.S.; Materlik, G.

    1997-01-01

    We compare x-ray fluorescence holography (XFH) and multiple-energy x-ray holography (MEXH), two techniques that have recently been used to obtain experimental three-dimensional atomic images. For single-energy holograms, these methods are equivalent by virtue of the optical reciprocity theorem. However, XFH can only record holographic information at the characteristic fluorescence energies of the emitting species, while MEXH can record holographic information at any energy above the fluorescent edge of the emitter, thus enabling the suppression of real-twin overlaps and other aberrations and artifacts in atomic images. copyright 1997 The American Physical Society

  6. Fermionic phase transition induced by the effective impurity in holography

    Energy Technology Data Exchange (ETDEWEB)

    Fang, Li-Qing [IFSA Collaborative Innovation Center, Department of Physics and Astronomy,Shanghai Jiao Tong University, Shanghai 200240 (China); School of Physics and Electronic Information, Shangrao Normal University,Shangrao 334000 (China); Kuang, Xiao-Mei [Department of Physics, National Technical University of Athens,GR-15780 Athens (Greece); Instituto de Física, Pontificia Universidad Católica de Valparaíso,Casilla 4059, Valparaíso (Chile); Wang, Bin [IFSA Collaborative Innovation Center, Department of Physics and Astronomy,Shanghai Jiao Tong University, Shanghai 200240 (China); Wu, Jian-Pin [Institute of Gravitation and Cosmology, Department of Physics,School of Mathematics and Physics, Bohai University, Jinzhou 121013 (China); State Key Laboratory of Theoretical Physics, Institute of Theoretical Physics,Chinese Academy of Sciences, Beijing 100190 (China)

    2015-11-20

    We investigate the holographic fermionic phase transition induced by the effective impurity in holography, which is introduced by massless scalar fields in Einstein-Maxwell-massless scalar gravity. We obtain a phase diagram in (α,T) plane separating the Fermi liquid phase and the non-Fermi liquid phase.

  7. Local charge measurement using off-axis electron holography

    DEFF Research Database (Denmark)

    Beleggia, Marco; Gontard, L.C.; Dunin-Borkowski, R.0E.

    2016-01-01

    A model-independent approach based on Gauss’ theorem for measuring the local charge in a specimen from an electron-optical phase image recorded using off-axis electron holography was recently proposed. Here, we show that such a charge measurement is reliable when it is applied to determine the to...

  8. How hummingbirds hum: acoustic holography of hummingbirds during maneuvering flight

    NARCIS (Netherlands)

    Hightower, B.; Wijnings, P.W.A.; Ingersoll, R.; Chin, D.; Scholte, R.; Lentink, D.

    2017-01-01

    Hummingbirds make a characteristic humming sound when they flap their wings. The physics and the biological significance of hummingbird aeroacoustics is still poorly understood. We used acoustic holography and high-speed cameras to determine the acoustic field of six hummingbirds while they either

  9. Intellectual property issues in holography and high tech

    Science.gov (United States)

    Reingand, Nadya

    2004-06-01

    The author with technical education background (Ph.D. in holography) shares her 3+ years of experience working on intellectual property (IP) issues that includes patents, trademarks, and copyrights. A special attention is paid to the patent issues: the application procedure, the patent requirements, the databases for prior art search, how to make the cost efficient filing.

  10. Near field acoustic holography with microphones on a rigid sphere

    DEFF Research Database (Denmark)

    Jacobsen, Finn; Moreno-Pescador, Guillermo; Fernandez Grande, Efren

    2011-01-01

    Spherical near field acoustic holography (spherical NAH) is a technique that makes it possible to reconstruct the sound field inside and just outside a spherical surface on which the sound pressure is measured with an array of microphones. This is potentially very useful for source identification...

  11. Digital holography using a digital photo-camera

    Czech Academy of Sciences Publication Activity Database

    Sekanina, H.; Pospíšil, Jaroslav

    2002-01-01

    Roč. 49, č. 13 (2002), s. 2083-2092 ISSN 0950-0340 Institutional research plan: CEZ:AV0Z1010921 Keywords : digital holography * photo-camera Subject RIV: BH - Optics, Masers, Lasers Impact factor: 1.717, year: 2002

  12. Experiences in using ultrasonic holography with numerical and optical reconstruction

    International Nuclear Information System (INIS)

    Schmitz, V.; Wosnitza, M.

    1978-01-01

    At present, ultrasonic holography can resolve and image faults of 1 mm and more and with distances of one ultrasonic wavelength. The main field of application is for thick-walled structural components. Depending on the expected orientation, test probe arrangements as in standard ultrasonic testing are chosen. (orig./RW) [de

  13. X-ray holography with a position sensitive detector

    Czech Academy of Sciences Publication Activity Database

    Lausi, A.; Kopecký, Miloš; Busetto, E.; Savoia, A.

    2002-01-01

    Roč. 101, č. 5 (2002), s. 621-628 ISSN 0587-4246 Institutional research plan: CEZ:AV0Z1010921 Keywords : fluorescence holography * resolution atoms Subject RIV: BH - Optics, Masers, Lasers Impact factor: 0.345, year: 2002

  14. Jet Tomography versus Holography at RHIC and LHC

    Directory of Open Access Journals (Sweden)

    Torrieri G.

    2011-04-01

    Full Text Available We compare pQCD based jet tomography to AdS/CFT based jet holography approach to address the heavy quark jet puzzle and discuss future tests at RHIC and LHC that could help decide which paradigm can provide the most consistent quantitative theory to explain modification of jet observabkles in high energy nuclear collisions.

  15. Ghost Images in Helioseismic Holography? Toy Models in a Uniform Medium

    Science.gov (United States)

    Yang, Dan

    2018-02-01

    Helioseismic holography is a powerful technique used to probe the solar interior based on estimations of the 3D wavefield. The Porter-Bojarski holography, which is a well-established method used in acoustics to recover sources and scatterers in 3D, is also an estimation of the wavefield, and hence it has the potential of being applied to helioseismology. Here we present a proof-of-concept study, where we compare helioseismic holography and Porter-Bojarski holography under the assumption that the waves propagate in a homogeneous medium. We consider the problem of locating a point source of wave excitation inside a sphere. Under these assumptions, we find that the two imaging methods have the same capability of locating the source, with the exception that helioseismic holography suffers from "ghost images" ( i.e. artificial peaks away from the source location). We conclude that Porter-Bojarski holography may improve the method currently used in helioseismology.

  16. Preliminary investigation of ultrasonic shear wave holography with a view to the inspection of pressure vessels

    International Nuclear Information System (INIS)

    Aldridge, E.E.; Clare, A.B.; Shepherd, D.A.

    1975-01-01

    The manner in which holography would fit into the general scheme of pressure vessel inspection is discussed. Compared to conventional A, B and C presentations holography requires a different processing of the ultrasonic signal and a mechanical scan which may be more demanding than that normally provided for a C display. Preliminary results are presented of the examination of artificial defects in steel plate using shear wave holography. (author)

  17. QCD and Light-Front Holography

    Energy Technology Data Exchange (ETDEWEB)

    Brodsky, Stanley J.; /SLAC /Southern Denmark U., CP3-Origins; de Teramond, Guy F.; /Costa Rica U.

    2010-10-27

    The soft-wall AdS/QCD model, modified by a positive-sign dilaton metric, leads to a remarkable one-parameter description of nonperturbative hadron dynamics. The model predicts a zero-mass pion for zero-mass quarks and a Regge spectrum of linear trajectories with the same slope in the leading orbital angular momentum L of hadrons and the radial quantum number N. Light-Front Holography maps the amplitudes which are functions of the fifth dimension variable z of anti-de Sitter space to a corresponding hadron theory quantized on the light front. The resulting Lorentz-invariant relativistic light-front wave equations are functions of an invariant impact variable {zeta} which measures the separation of the quark and gluonic constituents within the hadron at equal light-front time. The result is to a semi-classical frame-independent first approximation to the spectra and light-front wavefunctions of meson and baryon light-quark bound states, which in turn predict the behavior of the pion and nucleon form factors. The theory implements chiral symmetry in a novel way: the effects of chiral symmetry breaking increase as one goes toward large interquark separation, consistent with spectroscopic data, and the the hadron eigenstates generally have components with different orbital angular momentum; e.g., the proton eigenstate in AdS/QCD with massless quarks has L = 0 and L = 1 light-front Fock components with equal probability. The soft-wall model also predicts the form of the non-perturbative effective coupling {alpha}{sub s}{sup AdS} (Q) and its {beta}-function which agrees with the effective coupling {alpha}{sub g1} extracted from the Bjorken sum rule. The AdS/QCD model can be systematically improved by using its complete orthonormal solutions to diagonalize the full QCD light-front Hamiltonian or by applying the Lippmann-Schwinger method in order to systematically include the QCD interaction terms. A new perspective on quark and gluon condensates is also reviewed.

  18. Asymptotic symmetries, holography and topological hair

    Science.gov (United States)

    Mishra, Rashmish K.; Sundrum, Raman

    2018-01-01

    from AdS4 provide hints for better understanding Minkowski asymptotic symmetries, the 3D structure of its soft limits, and Minkowski holography.

  19. High on walking

    DEFF Research Database (Denmark)

    Woythal, Bente Martinsen; Haahr, Anita; Dreyer, Pia

    2018-01-01

    a leg, and people who live with Parkinson’s disease. The analysis of the data is inspired by Paul Ricoeur’s philosophy of interpretation. Four themes were identified: (a) I feel high in two ways; (b) Walking has to be automatic; (c) Every Monday, I walk with the girls in the park; and (d) I dream...

  20. James Watt's Leicester Walk

    OpenAIRE

    Bell, Kathleen

    2016-01-01

    a poem in which James Watt, inventor of the separate condenser, walks through contemporary Leicester (his route is from Bonners Lane and alongside the canal, taking in the Statue of Liberty on its traffic island near Sage Road). It is derived from the exercise of taking a character for a walk,

  1. More Adults Are Walking

    Centers for Disease Control (CDC) Podcasts

    2012-07-31

    This podcast is based on the August 2012 CDC Vital Signs report. While more adults are walking, only half get the recommended amount of physical activity. Listen to learn how communities, employers, and individuals may help increase walking.  Created: 7/31/2012 by Centers for Disease Control and Prevention (CDC).   Date Released: 8/7/2012.

  2. Intrinsic speckle noise in in-line particle holography due to polydisperse and continuous particle sizes

    Science.gov (United States)

    Edwards, Philip J.; Hobson, Peter R.; Rodgers, G. J.

    2000-08-01

    In-line particle holography is subject to image deterioration due to intrinsic speckle noise. The resulting reduction in the signal to noise ratio (SNR) of the replayed image can become critical for applications such as holographic particle velocimetry (HPV) and 3D visualisation of marine plankton. Work has been done to extend the mono-disperse model relevant to HPV to include poly-disperse particle fields appropriate for the visualisation of marine plankton. Continuous and discrete particle fields are both considered. It is found that random walk statistics still apply for the poly-disperse case. The speckle field is simply the summation of the individual speckle patters due to each scatter size. Therefor the characteristic speckle parameter (which encompasses particle diameter, concentration and sample depth) is alos just the summation of the individual speckle parameters. This reduces the SNR calculation to the same form as for the mono-disperse case. For the continuous situation three distributions, power, exponential and Gaussian are discussed with the resulting SNR calcuated. The work presented here was performed as part of the Holomar project to produce a working underwater holographic camera for recording plankton.

  3. Ultra-realistic imaging advanced techniques in analogue and digital colour holography

    CERN Document Server

    Bjelkhagen, Hans

    2013-01-01

    Ultra-high resolution holograms are now finding commercial and industrial applications in such areas as holographic maps, 3D medical imaging, and consumer devices. Ultra-Realistic Imaging: Advanced Techniques in Analogue and Digital Colour Holography brings together a comprehensive discussion of key methods that enable holography to be used as a technique of ultra-realistic imaging.After a historical review of progress in holography, the book: Discusses CW recording lasers, pulsed holography lasers, and reviews optical designs for many of the principal laser types with emphasis on attaining th

  4. Spatially and Temporally Resolved Diagnostics of Dense Sprays Using Gated, Femtosecond, Digital Holography, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — This is a proposal to develop a unique, gated, picosecond, digital holography system for characterizing dense particle fields in high pressure combustion...

  5. Lévy walks

    Science.gov (United States)

    Zaburdaev, V.; Denisov, S.; Klafter, J.

    2015-04-01

    Random walk is a fundamental concept with applications ranging from quantum physics to econometrics. Remarkably, one specific model of random walks appears to be ubiquitous across many fields as a tool to analyze transport phenomena in which the dispersal process is faster than dictated by Brownian diffusion. The Lévy-walk model combines two key features, the ability to generate anomalously fast diffusion and a finite velocity of a random walker. Recent results in optics, Hamiltonian chaos, cold atom dynamics, biophysics, and behavioral science demonstrate that this particular type of random walk provides significant insight into complex transport phenomena. This review gives a self-consistent introduction to Lévy walks, surveys their existing applications, including latest advances, and outlines further perspectives.

  6. Neuromorphic walking gait control.

    Science.gov (United States)

    Still, Susanne; Hepp, Klaus; Douglas, Rodney J

    2006-03-01

    We present a neuromorphic pattern generator for controlling the walking gaits of four-legged robots which is inspired by central pattern generators found in the nervous system and which is implemented as a very large scale integrated (VLSI) chip. The chip contains oscillator circuits that mimic the output of motor neurons in a strongly simplified way. We show that four coupled oscillators can produce rhythmic patterns with phase relationships that are appropriate to generate all four-legged animal walking gaits. These phase relationships together with frequency and duty cycle of the oscillators determine the walking behavior of a robot driven by the chip, and they depend on a small set of stationary bias voltages. We give analytic expressions for these dependencies. This chip reduces the complex, dynamic inter-leg control problem associated with walking gait generation to the problem of setting a few stationary parameters. It provides a compact and low power solution for walking gait control in robots.

  7. Biomechanical analysis of rollator walking

    DEFF Research Database (Denmark)

    Alkjaer, T; Larsen, Peter K; Pedersen, Gitte

    2006-01-01

    The rollator is a very popular walking aid. However, knowledge about how a rollator affects the walking patterns is limited. Thus, the purpose of the study was to investigate the biomechanical effects of walking with and without a rollator on the walking pattern in healthy subjects.......The rollator is a very popular walking aid. However, knowledge about how a rollator affects the walking patterns is limited. Thus, the purpose of the study was to investigate the biomechanical effects of walking with and without a rollator on the walking pattern in healthy subjects....

  8. Alzheimer random walk

    Science.gov (United States)

    Odagaki, Takashi; Kasuya, Keisuke

    2017-09-01

    Using the Monte Carlo simulation, we investigate a memory-impaired self-avoiding walk on a square lattice in which a random walker marks each of sites visited with a given probability p and makes a random walk avoiding the marked sites. Namely, p = 0 and p = 1 correspond to the simple random walk and the self-avoiding walk, respectively. When p> 0, there is a finite probability that the walker is trapped. We show that the trap time distribution can well be fitted by Stacy's Weibull distribution b(a/b){a+1}/{b}[Γ({a+1}/{b})]-1x^a\\exp(-a/bx^b)} where a and b are fitting parameters depending on p. We also find that the mean trap time diverges at p = 0 as p- α with α = 1.89. In order to produce sufficient number of long walks, we exploit the pivot algorithm and obtain the mean square displacement and its Flory exponent ν(p) as functions of p. We find that the exponent determined for 1000 step walks interpolates both limits ν(0) for the simple random walk and ν(1) for the self-avoiding walk as [ ν(p) - ν(0) ] / [ ν(1) - ν(0) ] = pβ with β = 0.388 when p ≪ 0.1 and β = 0.0822 when p ≫ 0.1. Contribution to the Topical Issue "Continuous Time Random Walk Still Trendy: Fifty-year History, Current State and Outlook", edited by Ryszard Kutner and Jaume Masoliver.

  9. Art-science, beauty-reason and holography

    International Nuclear Information System (INIS)

    Jeong, T H

    2013-01-01

    Display holography holds a distinction that makes it appealing to a wide audience. It can be appreciated at a deep level by people of all ages and in all fields of endeavor. It provides a unique opportunity for us to gather in an intimate location to learn, enjoy, and enlighten one another. This paper offers demonstrations to explore the relationships between art and science, esthetics and mathematics, and the dualities that exist in nature. On the practical level, a visual model for deep understanding of holography and a proposal for 'making holograms that sell' will be presented. In writing this article, the author acknowledges the fact that for this symposium, a Proceeding will be published as well as a set of audio-visual recordings. With that in mind, this article represents largely the printable contents, leaving the audio-visual part as 'performance' to be electronically recorded.

  10. X-ray holography with a customizable reference.

    Science.gov (United States)

    Martin, Andrew V; D'Alfonso, Adrian J; Wang, Fenglin; Bean, Richard; Capotondi, Flavio; Kirian, Richard A; Pedersoli, Emanuele; Pedersoli, Emmanuele; Raimondi, Lorenzo; Stellato, Francesco; Yoon, Chun Hong; Chapman, Henry N

    2014-08-22

    In X-ray Fourier-transform holography, images are formed by exploiting the interference pattern between the X-rays scattered from the sample and a known reference wave. To date, this technique has only been possible with a limited set of special reference waves. We demonstrate X-ray Fourier-transform holography with an almost unrestricted choice for the reference wave, permitting experimental geometries to be designed according to the needs of each experiment and opening up new avenues to optimize signal-to-noise and resolution. The optimization of holographic references can aid the development of holographic techniques to meet the demands of resolution and fidelity required for single-shot imaging applications with X-ray lasers.

  11. Color evaluation of computer-generated color rainbow holography

    International Nuclear Information System (INIS)

    Shi, Yile; Wang, Hui; Wu, Qiong

    2013-01-01

    A color evaluation approach for computer-generated color rainbow holography (CGCRH) is presented. Firstly, the relationship between color quantities of a computer display and a color computer-generated holography (CCGH) colorimetric system is discussed based on color matching theory. An isochromatic transfer relationship of color quantity and amplitude of object light field is proposed. Secondly, the color reproduction mechanism and factors leading to the color difference between the color object and the holographic image that is reconstructed by CGCRH are analyzed in detail. A quantitative color calculation method for the holographic image reconstructed by CGCRH is given. Finally, general color samples are selected as numerical calculation test targets and the color differences between holographic images and test targets are calculated based on our proposed method. (paper)

  12. High-resolution observation by double-biprism electron holography

    International Nuclear Information System (INIS)

    Harada, Ken; Tonomura, Akira; Matsuda, Tsuyoshi; Akashi, Tetsuya; Togawa, Yoshihiko

    2004-01-01

    High-resolution electron holography has been achieved by using a double-biprism interferometer implemented on a 1 MV field emission electron microscope. The interferometer was installed behind the first magnifying lens to narrow carrier fringes and thus enabled complete separation of sideband Fourier spectrum from center band in reconstruction process. Holograms of Au fine particles and single-crystalline thin films with the finest fringe spacing of 4.2 pm were recorded and reconstructed. The overall holography system including the reconstruction process performed well for holograms in which carrier fringes had a spacing of around 10 pm. High-resolution lattice images of the amplitude and phase were clearly reconstructed without mixing of the center band and sideband information. Additionally, entire holograms were recorded without Fresnel fringes normally generated by the filament electrode of the biprism, and the holograms were thus reconstructed without the artifacts caused by Fresnel fringes

  13. Measurements of the Characteristics of Transparent Material Using Digital Holography

    Directory of Open Access Journals (Sweden)

    Ding Yu

    2013-01-01

    Full Text Available Digital holography is applied to measure the characteristics of transparent material. A digital hologram recording system to measure the surface of transparent material was established, and the digital holograms of transparent object were obtained in high quality. For postprocessing of hologram, the least-squares phase unwrapping algorithm was used in phase unwrapping, and the phase reconstruction image of transparent object was obtained. The information of material surfaces was measured and the characteristic was presented in 3D visualization. The validation experiment was conducted by NanoMap 500LS system; the results of validation experiment are well satisfied with the measurement by digital holography, which proved the feasibility of digital holographic technology as a good measurement tool for transparent material.

  14. Application of Super-Resolution Image Reconstruction to Digital Holography

    Directory of Open Access Journals (Sweden)

    Zhang Shuqun

    2006-01-01

    Full Text Available We describe a new application of super-resolution image reconstruction to digital holography which is a technique for three-dimensional information recording and reconstruction. Digital holography has suffered from the low resolution of CCD sensors, which significantly limits the size of objects that can be recorded. The existing solution to this problem is to use optics to bandlimit the object to be recorded, which can cause the loss of details. Here super-resolution image reconstruction is proposed to be applied in enhancing the spatial resolution of digital holograms. By introducing a global camera translation before sampling, a high-resolution hologram can be reconstructed from a set of undersampled hologram images. This permits the recording of larger objects and reduces the distance between the object and the hologram. Practical results from real and simulated holograms are presented to demonstrate the feasibility of the proposed technique.

  15. Advanced split-illumination electron holography without Fresnel fringes

    Energy Technology Data Exchange (ETDEWEB)

    Tanigaki, Toshiaki, E-mail: tanigaki-toshiaki@riken.jp [Center for Emergent Matter Science (CEMS), RIKEN, Hirosawa 2-1, Wako, Saitama 351-0198 (Japan); Aizawa, Shinji; Park, Hyun Soon [Center for Emergent Matter Science (CEMS), RIKEN, Hirosawa 2-1, Wako, Saitama 351-0198 (Japan); Matsuda, Tsuyoshi [Japan Science and Technology Agency, Kawaguchi, Saitama 332-0012 (Japan); Harada, Ken [Central Research Laboratory, Hitachi, Ltd., Hatoyama, Saitama 350-0395 (Japan); Shindo, Daisuke [Center for Emergent Matter Science (CEMS), RIKEN, Hirosawa 2-1, Wako, Saitama 351-0198 (Japan); Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Katahira 2-1-1, Sendai 980-8577 (Japan)

    2014-02-01

    Advanced split-illumination electron holography was developed by employing two biprisms in the illuminating system to split an electron wave into two coherent waves and two biprisms in the imaging system to overlap them. A focused image of an upper condenser-biprism filament was formed on the sample plane, and all other filaments were placed in its shadow. This developed system makes it possible to obtain precise reconstructed object waves without modulations due to Fresnel fringes, in addition to holograms of distant objects from reference waves. - Highlights: • Advanced split-illumination electron holography without Fresnel fringes is developed. • Two biprisms are installed in illuminating system of microscope. • High-precision holographic observations of an area locating far from the sample edge become possible.

  16. Linear programming phase unwrapping for dual-wavelength digital holography.

    Science.gov (United States)

    Wang, Zhaomin; Jiao, Jiannan; Qu, Weijuan; Yang, Fang; Li, Hongru; Tian, Ailing; Asundi, Anand

    2017-01-20

    A linear programming phase unwrapping method in dual-wavelength digital holography is proposed and verified experimentally. The proposed method uses the square of height difference as a convergence standard and theoretically gives the boundary condition in a searching process. A simulation was performed by unwrapping step structures at different levels of Gaussian noise. As a result, our method is capable of recovering the discontinuities accurately. It is robust and straightforward. In the experiment, a microelectromechanical systems sample and a cylindrical lens were measured separately. The testing results were in good agreement with true values. Moreover, the proposed method is applicable not only in digital holography but also in other dual-wavelength interferometric techniques.

  17. Advanced split-illumination electron holography without Fresnel fringes

    International Nuclear Information System (INIS)

    Tanigaki, Toshiaki; Aizawa, Shinji; Park, Hyun Soon; Matsuda, Tsuyoshi; Harada, Ken; Shindo, Daisuke

    2014-01-01

    Advanced split-illumination electron holography was developed by employing two biprisms in the illuminating system to split an electron wave into two coherent waves and two biprisms in the imaging system to overlap them. A focused image of an upper condenser-biprism filament was formed on the sample plane, and all other filaments were placed in its shadow. This developed system makes it possible to obtain precise reconstructed object waves without modulations due to Fresnel fringes, in addition to holograms of distant objects from reference waves. - Highlights: • Advanced split-illumination electron holography without Fresnel fringes is developed. • Two biprisms are installed in illuminating system of microscope. • High-precision holographic observations of an area locating far from the sample edge become possible

  18. Positron emission zone plate holography for particle tracking

    Energy Technology Data Exchange (ETDEWEB)

    Gundogdu, O. [University of Birmingham, School of Physics and Astronomy, Birmingham B15 2TT (United Kingdom)]. E-mail: o.gundogdu@surrey.ac.uk

    2006-01-15

    Positron Emission Particle Tracking (PEPT) is a powerful non-invasive technique that has been used extensively for tracking a single particle. In this paper, we present a study of zone plate holography method in order to track multiple particles, mainly two particles. The main aim is to use as small number of events as possible in the order to make it possible to track particles in fast moving industrial systems. A zone plate with 100% focal efficiency is simulated and applied to the Positron Emission Tomography (PET) data for multiple particle tracking. A simple trajectory code was employed to explore the effects of the nature of the experimental trajectories. A computer holographic reconstruction code that simulates optical reconstruction was developed. The different aspects of the particle location, particle activity ratios for enabling tagging of particles and zone plate and hologram locations are investigated. The effect of the shot noise is investigated and the limitations of the zone plate holography are reported.

  19. Positron emission zone plate holography for particle tracking

    International Nuclear Information System (INIS)

    Gundogdu, O.

    2006-01-01

    Positron Emission Particle Tracking (PEPT) is a powerful non-invasive technique that has been used extensively for tracking a single particle. In this paper, we present a study of zone plate holography method in order to track multiple particles, mainly two particles. The main aim is to use as small number of events as possible in the order to make it possible to track particles in fast moving industrial systems. A zone plate with 100% focal efficiency is simulated and applied to the Positron Emission Tomography (PET) data for multiple particle tracking. A simple trajectory code was employed to explore the effects of the nature of the experimental trajectories. A computer holographic reconstruction code that simulates optical reconstruction was developed. The different aspects of the particle location, particle activity ratios for enabling tagging of particles and zone plate and hologram locations are investigated. The effect of the shot noise is investigated and the limitations of the zone plate holography are reported

  20. Local magnetic structure determination using polarized neutron holography

    International Nuclear Information System (INIS)

    Szakál, Alex; Markó, Márton; Cser, László

    2015-01-01

    A unique and important property of the neutron is that it possesses magnetic moment. This property is widely used for determination of magnetic structure of crystalline samples observing the magnetic components of the diffraction peaks. Investigations of diffraction patterns give information only about the averaged structure of a crystal but for discovering of local spin arrangement around a specific (e.g., impurity) nucleus remains still a challenging problem. Neutron holography is a useful tool to investigate the local structure around a specific nucleus embedded in a crystal lattice. The method has been successfully applied experimentally in several cases using non-magnetic short range interaction of the neutron and the nucleus. A mathematical model of the hologram using interaction between magnetic moment of the atom and the neutron spin for polarized neutron holography is provided. Validity of a polarized neutron holographic experiment is demonstrated by applying the proposed method on model systems

  1. Importance of ultrasonic holography as imaging technique of material faults

    International Nuclear Information System (INIS)

    Schmitz, V.

    1978-01-01

    In ultra-sound testing of thick-wall components the reconstruction of shape and position of material faults stands in the foreground. Ultra-sound holography allows imaging of this kind. The principle of this technique is to completely measure the amount and phase of a sound field arising from the fault location on the surface of the material-piece. The quantity is measured as a complex quantity. To accomplish this, ultra-sound holography works with monochromatic burst-signals. The recording of phase and amplitude formation can be made optically by means of a film carrier as well as numerically in a computer. Corresponding to this fact the reconstruction takes place by means of a laser beam or by means of mathematical formalisms in the computer. Both the methods are realized today and are applied in destruction-free testing. (orig./DG) [de

  2. Electron holography study on the microstructure of magnetic tunnelling junctions

    International Nuclear Information System (INIS)

    Xu, Q.Y.; Wang, Y.G.; You, B.; Du, J.; Hu, A.; Zhang, Z.

    2004-01-01

    Electron holography was applied to study the microstructure evolution of magnetic tunnelling junctions (MTJs) CoFe/AlO x /Co annealed at different temperatures. A mean inner potential barrier was observed in the as-deposited MTJ sample, while it was changed to a potential well after a 200 deg. C or a 400 deg. C annealing. It is suggested that the oxygen atoms were redistributed during the annealing, which left metallic atoms acting as acceptors to confine the electrons, leading to the decrease of the potential of the AlO x barrier layer. The results suggest that the electron holography may be a useful tool for the study of the microstructure of amorphous materials

  3. Holography in Goedel-type spacetimes and their generalizations

    Energy Technology Data Exchange (ETDEWEB)

    Klepac, P [Inst. Theoretical Physics and Astrophysics, Masaryk University, Kotlarska 2, 611 37 Brno (Czech Republic)

    2006-03-01

    In the contribution we review some facts concerning holography in the Godel-type universes, adopting the approach presented in the paper Boyda at all. Then the analysis is extended to an inhomogeneous cylindrically symmetric solution, found in framework of Einstein-Maxwell-dilaton gravity, which violates the causality. In particular, the question is raised, whether holographic screens shield the closed timelike curves from an observer, thus providing a chronology protection mechanism.

  4. Studying atomic-resolution by X-ray fluorescence holography

    International Nuclear Information System (INIS)

    Gao Hongyi; Chen Jianwen; Xie Honglan; Zhu Huafeng; Li Ruxin; Xu Zhizhan

    2005-01-01

    In this work, the results of numerical simulations of X-ray fluorescence holograms and the reconstructed atomic images for Fe single crystal are given. The influences of the recording angles ranges and the polarization effect on the reconstruction of the atomic images are discussed. The process for removing twin images by multiple energy fluorescence holography and expanding the energy range of the incident X-rays to improve the resolution of the reconstructed images is presented

  5. Development of positron diffraction and holography at LLNL

    International Nuclear Information System (INIS)

    Hamza, A.; Asoka-Kumar, P.; Stoeffl, W.; Howell, R.; Miller, D.; Denison, A.

    2003-01-01

    A low-energy positron diffraction and holography spectrometer is currently being constructed at the Lawrence Livermore National Laboratory (LLNL) to study surfaces and adsorbed structures. This instrument will operate in conjunction with the LLNL intense positron beam produced by the 100 MeV LINAC allowing data to be acquired in minutes rather than days. Positron diffraction possesses certain advantages over electron diffraction which are discussed. Details of the instrument based on that of low-energy electron diffraction are described

  6. Magnetic imaging by dichroic x-ray holography

    International Nuclear Information System (INIS)

    Eisebitt, S.; Loergen, M.; Eberhardt, W.; Luening, M.; Schlotter, W.F.; Stoehr, J.; Hellwig, O.

    2004-01-01

    Full text: While holography has evolved to a powerful technique in the visible spectral range, it is difficult to apply at shorter wavelength as no intrinsically coherent (soft) x-ray laser is available as a light source. The progression from visible light towards shorter wavelength is motivated by the increase in spatial resolution that can be achieved. Of equal importance is the possibility to exploit special contrast mechanisms provided by scattering in resonance with transitions between electronic core and valence levels. These contrast mechanisms can be utilized in x-ray holography to form a spectroscopic image of the sample, in analogy to spectromicroscopy. So far, successful x-ray spectroholography has not been reported due to the experimental difficulties associated with the short wavelength and the limited coherent photon flux available. We present images of magnetic domain patterns forming in thin film Co-Pt multilayers, obtained by spectroholography at a wavelength of 1.59 nm. At this wavelength, we exploit x ray magnetic dichroism at the Co 2p 3/2 level in a Fourier transform holography experiment. Holography at this wavelength was made possible by combining nanostructured masks with coherence l tered synchrotron radiation from an undulator source in the experimental setup. The magnetic multilayers have perpendicular anisotropy and are probed using circular polarized x-rays. Dichroic holograms are recorded by combining measurements with positive and negative helicities. The spectroholograms can be numerically inverted to show the pure magnetic sample structure, such as labyrinth or stripe domains. Currently, we achieve a spatial resolution of 100 nm in the magnetic image. The advantages and limitations of this technique will be compared to other lensless imaging techniques such as over sampling phasing. The future prospects of imaging techniques based on coherent scattering are discussed in the context of the current development of free electron x

  7. X-ray diffuse scattering holography of a centrosymmetric sample

    Czech Academy of Sciences Publication Activity Database

    Kopecký, Miloš; Fábry, Jan; Kub, Jiří; Bussetto, E.; Lausi, A.

    2005-01-01

    Roč. 87, č. 23 (2005), 231914/1-231914/3 ISSN 0003-6951 R&D Projects: GA AV ČR IAA100100529 Grant - others:EU(XE) HPRI-CT-1999-00033 Institutional research plan: CEZ:AV0Z10100520 Keywords : x-ray holography * diffuse scattering Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 4.127, year: 2005

  8. Walking to health.

    Science.gov (United States)

    Morris, J N; Hardman, A E

    1997-05-01

    Walking is a rhythmic, dynamic, aerobic activity of large skeletal muscles that confers the multifarious benefits of this with minimal adverse effects. Walking, faster than customary, and regularly in sufficient quantity into the 'training zone' of over 70% of maximal heart rate, develops and sustains physical fitness: the cardiovascular capacity and endurance (stamina) for bodily work and movement in everyday life that also provides reserves for meeting exceptional demands. Muscles of the legs, limb girdle and lower trunk are strengthened and the flexibility of their cardinal joints preserved; posture and carriage may improve. Any amount of walking, and at any pace, expends energy. Hence the potential, long term, of walking for weight control. Dynamic aerobic exercise, as in walking, enhances a multitude of bodily processes that are inherent in skeletal muscle activity, including the metabolism of high density lipoproteins and insulin/glucose dynamics. Walking is also the most common weight-bearing activity, and there are indications at all ages of an increase in related bone strength. The pleasurable and therapeutic, psychological and social dimensions of walking, whilst evident, have been surprisingly little studied. Nor has an economic assessment of the benefits and costs of walking been attempted. Walking is beneficial through engendering improved fitness and/or greater physiological activity and energy turnover. Two main modes of such action are distinguished as: (i) acute, short term effects of the exercise; and (ii) chronic, cumulative adaptations depending on habitual activity over weeks and months. Walking is often included in studies of exercise in relation to disease but it has seldom been specifically tested. There is, nevertheless, growing evidence of gains in the prevention of heart attack and reduction of total death rates, in the treatment of hypertension, intermittent claudication and musculoskeletal disorders, and in rehabilitation after heart

  9. Ultra-realistic 3-D imaging based on colour holography

    International Nuclear Information System (INIS)

    Bjelkhagen, H I

    2013-01-01

    A review of recent progress in colour holography is provided with new applications. Colour holography recording techniques in silver-halide emulsions are discussed. Both analogue, mainly Denisyuk colour holograms, and digitally-printed colour holograms are described and their recent improvements. An alternative to silver-halide materials are the panchromatic photopolymer materials such as the DuPont and Bayer photopolymers which are covered. The light sources used to illuminate the recorded holograms are very important to obtain ultra-realistic 3-D images. In particular the new light sources based on RGB LEDs are described. They show improved image quality over today's commonly used halogen lights. Recent work in colour holography by holographers and companies in different countries around the world are included. To record and display ultra-realistic 3-D images with perfect colour rendering are highly dependent on the correct recording technique using the optimal recording laser wavelengths, the availability of improved panchromatic recording materials and combined with new display light sources.

  10. Ultra-realistic imaging: a new beginning for display holography

    Science.gov (United States)

    Bjelkhagen, Hans I.; Brotherton-Ratcliffe, David

    2014-02-01

    Recent improvements in key foundation technologies are set to potentially transform the field of Display Holography. In particular new recording systems, based on recent DPSS and semiconductor lasers combined with novel recording materials and processing, have now demonstrated full-color analogue holograms of both lower noise and higher spectral accuracy. Progress in illumination technology is leading to a further major reduction in display noise and to a significant increase of the clear image depth and brightness of such holograms. So too, recent progress in 1-step Direct-Write Digital Holography (DWDH) now opens the way to the creation of High Virtual Volume Displays (HVV) - large format full-parallax DWDH reflection holograms having fundamentally larger clear image depths. In a certain fashion HVV displays can be thought of as providing a high quality full-color digital equivalent to the large-format laser-illuminated transmission holograms of the sixties and seventies. Back then, the advent of such holograms led to much optimism for display holography in the market. However, problems with laser illumination, their monochromatic analogue nature and image noise are well cited as being responsible for their failure in reality. Is there reason for believing that the latest technology improvements will make the mark this time around? This paper argues that indeed there is.

  11. Digital holography of particles: benefits of the 'inverse problem' approach

    International Nuclear Information System (INIS)

    Gire, J; Denis, L; Fournier, C; Soulez, F; Ducottet, C; Thiébaut, E

    2008-01-01

    The potential of in-line digital holography to locate and measure the size of particles distributed throughout a volume (in one shot) has been established. These measurements are fundamental for the study of particle trajectories in fluid flow. The most important issues in digital holography today are poor depth positioning accuracy, transverse field-of-view limitations, border artifacts and computational burdens. We recently suggested an 'inverse problem' approach to address some of these issues for the processing of particle digital holograms. The described algorithm improves axial positioning accuracy, gives particle diameters with sub-micrometer accuracy, eliminates border effects and increases the size of the studied volume. This approach for processing particle holograms pushes back some classical constraints. For example, the Nyquist criterion is no longer a restriction for the recording step and the studied volume is no longer confined to the field of view delimited by the sensor borders. In this paper we present a review of the limitations commonly found in digital holography. We then discuss the benefits of the 'inverse problem' approach and the influence of some experimental parameters in this framework

  12. Computer generated holography with intensity-graded patterns

    Directory of Open Access Journals (Sweden)

    Rossella Conti

    2016-10-01

    Full Text Available Computer Generated Holography achieves patterned illumination at the sample plane through phase modulation of the laser beam at the objective back aperture. This is obtained by using liquid crystal-based spatial light modulators (LC-SLMs, which modulate the spatial phase of the incident laser beam. A variety of algorithms are employed to calculate the phase modulation masks addressed to the LC-SLM. These algorithms range from simple gratings-and-lenses to generate multiple diffraction-limited spots, to iterative Fourier-transform algorithms capable of generating arbitrary illumination shapes perfectly tailored on the base of the target contour. Applications for holographic light patterning include multi-trap optical tweezers, patterned voltage imaging and optical control of neuronal excitation using uncaging or optogenetics. These past implementations of computer generated holography used binary input profile to generate binary light distribution at the sample plane. Here we demonstrate that using graded input sources, enables generating intensity graded light patterns and extend the range of application of holographic light illumination. At first, we use intensity-graded holograms to compensate for LC-SLM position dependent diffraction efficiency or sample fluorescence inhomogeneity. Finally we show that intensity-graded holography can be used to equalize photo evoked currents from cells expressing different level of chanelrhodopsin2 (ChR2, one of the most commonly used optogenetics light gated channels, taking into account the non-linear dependence of channel opening on incident light.

  13. Towards Holography via Quantum Source-Channel Codes

    Science.gov (United States)

    Pastawski, Fernando; Eisert, Jens; Wilming, Henrik

    2017-07-01

    While originally motivated by quantum computation, quantum error correction (QEC) is currently providing valuable insights into many-body quantum physics, such as topological phases of matter. Furthermore, mounting evidence originating from holography research (AdS/CFT) indicates that QEC should also be pertinent for conformal field theories. With this motivation in mind, we introduce quantum source-channel codes, which combine features of lossy compression and approximate quantum error correction, both of which are predicted in holography. Through a recent construction for approximate recovery maps, we derive guarantees on its erasure decoding performance from calculations of an entropic quantity called conditional mutual information. As an example, we consider Gibbs states of the transverse field Ising model at criticality and provide evidence that they exhibit nontrivial protection from local erasure. This gives rise to the first concrete interpretation of a bona fide conformal field theory as a quantum error correcting code. We argue that quantum source-channel codes are of independent interest beyond holography.

  14. Femtosecond X-ray Fourier holography imaging of freeflying nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Gorkhover, Tais; Ulmer, Anatoli; Ferguson, Ken R.; Bucher, Max; Maia, Filipe R.N.C.; Bielecki, Johan; Ekeberg, Tomas; Hantke, Max F.; Daurer, Benedikt J.; Bostedt, Christoph

    2018-02-26

    Ultrafast X-ray imaging on individual fragile specimens such as aerosols1, metastable particles2, superfluid quantum systems3 and live biospecimen4 provides high resolution information, which is inaccessible with conventional imaging techniques. Coherent X-ray diffractive imag- 2 ing, however, suffers from intrinsic loss of phase, and therefore structure recovery is often complicated and not always uniquely-defined4, 5. Here, we introduce the method of in-flight holography, where we use nanoclusters as reference X-ray scatterers in order to encode relative phase information into diffraction patterns of a virus. The resulting hologram contains an unambiguous three-dimensional map of a virus and two nanoclusters with the highest lateral resolution so far achieved via single shot X-ray holography. Our approach unlocks the benefits of holography for ultrafast X-ray imaging of nanoscale, non-periodic systems and paves the way to direct observation of complex electron dynamics down to the attosecond time scale.

  15. X-ray holography: atoms in 3D

    International Nuclear Information System (INIS)

    Tegze, M.; Faigel, G.; Bortel, G.; Marchesini, S.; Belakhovsky, M.; Simionovici, A.

    2004-01-01

    X-ray holography is a novel method for the investigation of local atomic arrangements in solids. In conventional diffraction experiments only the intensity of the scattered radiation is measured, its phase is lost. This loss of information makes difficult to reconstruct the atomic arrangements. In holography both the intensity and the phase information is recorded. Using one of the atoms of the solid as source or detector of the x-radiation, atomic resolution can be reached. A three-dimensional picture of the atoms surrounding the source/detector atom can be easily reconstructed from the measured hologram. While in principle the measurement is very simple, in practice the weak signal-to-background ratio (∼ 10-3) makes it difficult. Using high intensity synchrotron radiation the measurement time can be reduced and high quality holograms can be recorded. In this talk we review the principles and experimental techniques of atomic resolution x-ray holography and present a few examples of its application. (author)

  16. Feasibility study for PTV measurement using x-ray holography

    International Nuclear Information System (INIS)

    Uemura, Tomomasa; Yamamoto, Yasufumi; Murata, Shigeru; Nishio, Shigeru; Iguchi, Manabu; Uesugi, Kentaro

    2005-01-01

    Some X-ray imaging techniques are examined for a feasibility study for micro-PIV in this study. There are three X-ray imaging method, the absorption contrast method, the refraction contrast method, and the phase contrast method. The first one is a common method but its spatial resolution is rather poor. The 2nd method corresponds to the Schlieren method that utilizes refraction of parallel light. The characteristics of the method, edge enhancement, can be effective in extracting tracer images. The third method is a kind of holography methods, and this method can record fine tracer particles. Among the three methods, the second and the third method are seemed to be applicable to PIV imaging, and those methods need a parallel X-ray. The SPring-8, the synchrotron radiation facility in Harima, is utilized. There are some methods to realize phase contrast image, most of them requires ultra-high precision in optical alignment. In the present study, though a coherent source is indispensable, the simplest and robust holography method, the inline holography, is used to take phase contrast pictures. (author)

  17. Quantum electrodynamics of the internal source x-ray holographies: Bremsstrahlung, fluorescence, and multiple-energy x-ray holography

    International Nuclear Information System (INIS)

    Miller, G.A.; Sorensen, L.B.

    1997-01-01

    Quantum electrodynamics (QED) is used to derive the differential cross sections measured in the three new experimental internal source ensemble x-ray holographies: bremsstrahlung (BXH), fluorescence (XFH), and multiple-energy (MEXH) x-ray holography. The polarization dependence of the BXH cross section is also obtained. For BXH, we study analytically and numerically the possible effects of the virtual photons and electrons which enter QED calculations in summing over the intermediate states. For the low photon and electron energies used in the current experiments, we show that the virtual intermediate states produce only very small effects. This is because the uncertainty principle limits the distance that the virtual particles can propagate to be much shorter than the separation between the regions of high electron density in the adjacent atoms. We also find that using the asymptotic form of the scattering wave function causes about a 5 10% error for near forward scattering. copyright 1997 The American Physical Society

  18. The Act of Walking

    DEFF Research Database (Denmark)

    Vestergaard, Maria Quvang Harck; Olesen, Mette; Helmer, Pernille Falborg

    2014-01-01

    ’ of mobility (Jensen 2013:111) such as the urban environment, and the infrastructures. Walking has indeed also a ‘software dimension’ as an embodied performance that trigger the human senses (Jensen 2013) and which is closely related to the habitus and identity of the individual (Halprin 1963). The individual......The ability to walk in an area is, in the existing literature, often explained by the physical structures like building density and the presence of facilities in an area, and it is often termed ‘walkability’ (Patton 2007; Forsyth and Southworth 2008; Krizek, Handy and Forsyth 2009; Johnson 2003......; Frumkin 2002). The term ‘walkability’ focuses on how the physical structures in the urban environment can promote walking, and how this potentially eases issues of public health and liveability in our cities (Krizek et al. 2009). However, the study of walking should not be reduced merely to the ‘hardware...

  19. Walking - Sensing - Participation

    DEFF Research Database (Denmark)

    Bødker, Mads; Meinhardt, Nina Dam; Browning, David

    2014-01-01

    Building on ethnographic research and social theory in the field of ‘mobilities’, this workshop paper suggests that field work based on simply walking with people entails a form of embodied participation that informs technological interventions by creating a space within which to address a wider ...... set of experiential or ‘felt’ qualities of living with mobile technologies. Moving from reflections on the value of walking with people, the paper outlines some affordances of a smartphone application built to capture place experiences through walking.......Building on ethnographic research and social theory in the field of ‘mobilities’, this workshop paper suggests that field work based on simply walking with people entails a form of embodied participation that informs technological interventions by creating a space within which to address a wider...

  20. What Is Walking Pneumonia?

    Science.gov (United States)

    ... different from regular pneumonia? Answers from Eric J. Olson, M.D. Walking pneumonia is an informal term ... be treated with an antibiotic. With Eric J. Olson, M.D. Goldman L, et al., eds. Mycoplasma ...

  1. walk over ℤ

    Directory of Open Access Journals (Sweden)

    Philippe Leroux

    2005-01-01

    walk over ℤ can be described from a coassociative coalgebra. Relationships between this coalgebra and the set of periodic orbits of the classical chaotic system x↦2x mod⁡1, x∈[0,1], are also given.

  2. Two Legged Walking Robot

    OpenAIRE

    Kraus, V.

    2015-01-01

    The aim of this work is to construct a two-legged wirelessly controlled walking robot. This paper describes the construction of the robot, its control electronics, and the solution of the wireless control. The article also includes a description of the application to control the robot. The control electronics of the walking robot are built using the development kit Arduino Mega, which is enhanced with WiFi module allowing the wireless control, a set of ultrasonic sensors for detecting obstacl...

  3. Complete de-Dopplerization and acoustic holography for external noise of a high-speed train.

    Science.gov (United States)

    Yang, Diange; Wen, Junjie; Miao, Feng; Wang, Ziteng; Gu, Xiaoan; Lian, Xiaomin

    2016-09-01

    Identification and measurement of moving sound sources are the bases for vehicle noise control. Acoustic holography has been applied in successfully identifying the moving sound source since the 1990s. However, due to the high demand for the accuracy of holographic data, currently the maximum velocity achieved by acoustic holography is just above 100 km/h. The objective of this study was to establish a method based on the complete Morse acoustic model to restore the measured signal in high-speed situations, and to propose a far-field acoustic holography method applicable for high-speed moving sound sources. Simulated comparisons of the proposed far-field acoustic holography with complete Morse model, the acoustic holography with simplified Morse model and traditional delay-and-sum beamforming were conducted. Experiments with a high-speed train running at the speed of 278 km/h validated the proposed far-field acoustic holography. This study extended the applications of acoustic holography to high-speed situations and established the basis for quantitative measurements of far-field acoustic holography.

  4. Computer holography: 3D digital art based on high-definition CGH

    International Nuclear Information System (INIS)

    Matsushima, K; Arima, Y; Nishi, H; Yamashita, H; Yoshizaki, Y; Ogawa, K; Nakahara, S

    2013-01-01

    Our recent works of high-definition computer-generated holograms (CGH) and the techniques used for the creation, such as the polygon-based method, silhouette method and digitized holography, are summarized and reviewed in this paper. The concept of computer holography is proposed in terms of integrating and crystalizing the techniques into novel digital art.

  5. Mapping the electrostatic potential of Au nanoparticles using hybrid electron holography.

    Science.gov (United States)

    Ozsoy-Keskinbora, Cigdem; Boothroyd, Chris B; Dunin-Borkowski, Rafal E; van Aken, Peter A; Koch, Christoph T

    2016-06-01

    Electron holography is a powerful technique for characterizing electrostatic potentials, charge distributions, electric and magnetic fields, strain distributions and semiconductor dopant distributions with sub-nm spatial resolution. Mapping internal electrostatic and magnetic fields within nanoparticles and other low-dimensional materials by TEM requires both high spatial resolution and high phase sensitivity. Carrying out such an analysis fully quantitatively is even more challenging, since artefacts such as dynamical electron scattering may strongly affect the measurement. In-line electron holography, one of the variants of electron holography, features high phase sensitivity at high spatial frequencies, but suffers from inefficient phase recovery at low spatial frequencies. Off-axis electron holography, in contrast, can recover low spatial frequency phase information much more reliably, but is less effective in retrieving phase information at high spatial frequencies when compared to in-line holography. We investigate gold nanoparticles using hybrid electron holography at both atomic-resolution and intermediate magnification. Hybrid electron holography is a novel technique that synergistically combines off-axis and in-line electron holography, allowing the measurement of the complex wave function describing the scattered electrons with excellent signal-to-noise properties at both high and low spatial frequencies. The effect of dynamical electron scattering is minimized by beam tilt averaging. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.

  6. Dark-field electron holography for the measurement of geometric phase

    International Nuclear Information System (INIS)

    Hytch, M.J.; Houdellier, F.; Huee, F.; Snoeck, E.

    2011-01-01

    The genesis, theoretical basis and practical application of the new electron holographic dark-field technique for mapping strain in nanostructures are presented. The development places geometric phase within a unified theoretical framework for phase measurements by electron holography. The total phase of the transmitted and diffracted beams is described as a sum of four contributions: crystalline, electrostatic, magnetic and geometric. Each contribution is outlined briefly and leads to the proposal to measure geometric phase by dark-field electron holography (DFEH). The experimental conditions, phase reconstruction and analysis are detailed for off-axis electron holography using examples from the field of semiconductors. A method for correcting for thickness variations will be proposed and demonstrated using the phase from the corresponding bright-field electron hologram. -- Highlights: → Unified description of phase measurements in electron holography. → Detailed description of dark-field electron holography for geometric phase measurements. → Correction procedure for systematic errors due to thickness variations.

  7. Mapping the electrostatic potential of Au nanoparticles using hybrid electron holography

    Energy Technology Data Exchange (ETDEWEB)

    Ozsoy-Keskinbora, Cigdem, E-mail: c.ozsoy@fkf.mpg.de [Stuttgart Center for Electron Microscopy, Max Planck Institute for Solid State Research, Heisenbergstr. 1, 70569 Stuttgart (Germany); Boothroyd, Chris B.; Dunin-Borkowski, Rafal E. [Ernst Ruska-Centre for Microscopy and Spectroscopy with Electrons and Peter Grünberg Institute, Forschungszentrum Jülich, 52425 Jülich (Germany); Aken, Peter A. van [Stuttgart Center for Electron Microscopy, Max Planck Institute for Solid State Research, Heisenbergstr. 1, 70569 Stuttgart (Germany); Koch, Christoph T. [Structure Research & Electron Microscopy group, Department of Physics, Humboldt University of Berlin, Newtonstraße 15, 12489 Berlin (Germany)

    2016-06-15

    Electron holography is a powerful technique for characterizing electrostatic potentials, charge distributions, electric and magnetic fields, strain distributions and semiconductor dopant distributions with sub-nm spatial resolution. Mapping internal electrostatic and magnetic fields within nanoparticles and other low-dimensional materials by TEM requires both high spatial resolution and high phase sensitivity. Carrying out such an analysis fully quantitatively is even more challenging, since artefacts such as dynamical electron scattering may strongly affect the measurement. In-line electron holography, one of the variants of electron holography, features high phase sensitivity at high spatial frequencies, but suffers from inefficient phase recovery at low spatial frequencies. Off-axis electron holography, in contrast, can recover low spatial frequency phase information much more reliably, but is less effective in retrieving phase information at high spatial frequencies when compared to in-line holography. We investigate gold nanoparticles using hybrid electron holography at both atomic-resolution and intermediate magnification. Hybrid electron holography is a novel technique that synergistically combines off-axis and in-line electron holography, allowing the measurement of the complex wave function describing the scattered electrons with excellent signal-to-noise properties at both high and low spatial frequencies. The effect of dynamical electron scattering is minimized by beam tilt averaging. - Highlights: • Hybrid electron holography approach applied to Au nanoparticles. • Proof of principle of atomic resolution hybrid electron holography experiment demonstrated. • Dynamical scattering artifacts decrease by varying the illumination direction. • The effect of the number of iterations and noise on the low spatial frequencies in the phase are discussed.

  8. Mapping the electrostatic potential of Au nanoparticles using hybrid electron holography

    International Nuclear Information System (INIS)

    Ozsoy-Keskinbora, Cigdem; Boothroyd, Chris B.; Dunin-Borkowski, Rafal E.; Aken, Peter A. van; Koch, Christoph T.

    2016-01-01

    Electron holography is a powerful technique for characterizing electrostatic potentials, charge distributions, electric and magnetic fields, strain distributions and semiconductor dopant distributions with sub-nm spatial resolution. Mapping internal electrostatic and magnetic fields within nanoparticles and other low-dimensional materials by TEM requires both high spatial resolution and high phase sensitivity. Carrying out such an analysis fully quantitatively is even more challenging, since artefacts such as dynamical electron scattering may strongly affect the measurement. In-line electron holography, one of the variants of electron holography, features high phase sensitivity at high spatial frequencies, but suffers from inefficient phase recovery at low spatial frequencies. Off-axis electron holography, in contrast, can recover low spatial frequency phase information much more reliably, but is less effective in retrieving phase information at high spatial frequencies when compared to in-line holography. We investigate gold nanoparticles using hybrid electron holography at both atomic-resolution and intermediate magnification. Hybrid electron holography is a novel technique that synergistically combines off-axis and in-line electron holography, allowing the measurement of the complex wave function describing the scattered electrons with excellent signal-to-noise properties at both high and low spatial frequencies. The effect of dynamical electron scattering is minimized by beam tilt averaging. - Highlights: • Hybrid electron holography approach applied to Au nanoparticles. • Proof of principle of atomic resolution hybrid electron holography experiment demonstrated. • Dynamical scattering artifacts decrease by varying the illumination direction. • The effect of the number of iterations and noise on the low spatial frequencies in the phase are discussed.

  9. Walking the Everyday

    Directory of Open Access Journals (Sweden)

    Matthew Bissen

    2014-11-01

    Full Text Available Since 2010, @matthewalking (Bissen, 2013 has published real-time public texts of walks in the city. This text-based Twitter feed has developed a narrative of a particular everyday life and developed a space of interface with others that represents a centering of perspective within an urban landscape. Walking the city provides a spatial, tactile, social, and embodied knowledge of the environment as each of us emerges into a space, orients ourselves, and determines a path that is highly localized, but is in connection with distant spaces and cultures. According to Ben Jacks in “Walking the City: Manhattan Projects,” “for urban dwellers and designers, walking is a fundamental tool for laying claim to, understanding, and shaping a livable city. Walking yields bodily knowing, recovers place memory, creates narrative, prioritizes human scale, and reconnects people to places” (75. @matthewalking’s walks, at times for as long as 5 hours, attempt to center an experience of an urban existence in a spatial narrative of the city that at once prioritizes a connection to place, but also is projected outward into a mediated relationship with others. The project is a series of unbounded walks, or dérives (drift, through the city that are logged on Twitter and traced to create an archive map of a set of particular urban experiences. The dérive concept as outlined in “The Theory of the Dérive,” by Guy Debord is when “one or more persons during a certain period drop their relations, their work and leisure activities, and all their other usual motives for movement and action, and let themselves be drawn by the attractions of the terrain and the encounters they find there” (62.

  10. Walks on SPR neighborhoods.

    Science.gov (United States)

    Caceres, Alan Joseph J; Castillo, Juan; Lee, Jinnie; St John, Katherine

    2013-01-01

    A nearest-neighbor-interchange (NNI)-walk is a sequence of unrooted phylogenetic trees, T1, T2, . . . , T(k) where each consecutive pair of trees differs by a single NNI move. We give tight bounds on the length of the shortest NNI-walks that visit all trees in a subtree-prune-and-regraft (SPR) neighborhood of a given tree. For any unrooted, binary tree, T, on n leaves, the shortest walk takes Θ(n²) additional steps more than the number of trees in the SPR neighborhood. This answers Bryant’s Second Combinatorial Challenge from the Phylogenetics Challenges List, the Isaac Newton Institute, 2011, and the Penny Ante Problem List, 2009.

  11. Fitness Club / Nordic Walking

    CERN Multimedia

    Fitness Club

    2011-01-01

    Nordic Walking at CERN Enrollments are open for Nordic Walking courses and outings at CERN. Classes will be on Tuesdays as of 20 September, and outings for the more experienced will be on Thursdays as of 15 September. We meet at the CERN Club barracks car park (near entrance A). • 18:00 to 19:00 on 20 & 27 September, as well as 4 & 11 October. Check out our schedule and rates and enroll at: http://cern.ch/club-fitness Hope to see you among us! CERN Fitness Club fitness.club@cern.ch  

  12. Application of comparative digital holography for distant shape control

    Science.gov (United States)

    Baumbach, Torsten; Osten, Wolfgang; von Kopylow, Christoph; Juptner, Werner P. O.

    2004-09-01

    The comparison of two objects is of great importance in the industrial production process. Especially comparing the shape is of particular interest for maintaining calibration tools or controlling the tolerance in the deviation between a sample and a master. Outsourcing and globalization of production places can result in large distances between co-operating partners and might cause problems for maintaining quality standards. Consequently new challenges arise for optical measurement techniques especially in the field of industrial shape control. In this paper we describe the progress of implementing a novel technique for comparing directly two objects with different microstructure. The technique is based on the combination of comparative holography and digital holography. Comparing the objects can be done in two ways. One is the digital comparison in the computer and the other way is by using the analogue reconstruction of a master hologram with a spatial light modulator (SLM) as coherent mask for illuminating the test object. Since this mask is stored digitally it can be transmitted via telecommunication networks and this enables the access to the full optical information of the master object at any place wanted. Beside the basic principle of comparative digital holography (CDH), we will show in this paper the set-up for doing the analogue comparison of two objects with increased sensitivity in comparison to former measurements and the calibration of the SLM that is used for the experiments. We will give examples for the digital and the analogue comparison of objects including a verification of our results by another optical measurement technique.

  13. Advanced Electron Holography Applied to Electromagnetic Field Study in Materials Science.

    Science.gov (United States)

    Shindo, Daisuke; Tanigaki, Toshiaki; Park, Hyun Soon

    2017-07-01

    Advances and applications of electron holography to the study of electromagnetic fields in various functional materials are presented. In particular, the development of split-illumination electron holography, which introduces a biprism in the illumination system of a holography electron microscope, enables highly accurate observations of electromagnetic fields and the expansion of the observable area. First, the charge distributions on insulating materials were studied by using split-illumination electron holography and including a mask in the illumination system. Second, the three-dimensional spin configurations of skyrmion lattices in a helimagnet were visualized by using a high-voltage holography electron microscope. Third, the pinning of the magnetic flux lines in a high-temperature superconductor YBa 2 Cu 3 O 7-y was analyzed by combining electron holography and scanning ion microscopy. Finally, the dynamic accumulation and collective motions of electrons around insulating biomaterial surfaces were observed by utilizing the amplitude reconstruction processes of electron holography. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. 3D flat holography: entropy and logarithmic corrections

    International Nuclear Information System (INIS)

    Bagchi, Arjun; Basu, Rudranil

    2014-01-01

    We compute the leading corrections to the Bekenstein-Hawking entropy of the Flat Space Cosmological (FSC) solutions in 3D flat spacetimes, which are the flat analogues of the BTZ black holes in AdS 3 . The analysis is done by a computation of density of states in the dual 2D Galilean Conformal Field Theory and the answer obtained by this matches with the limiting value of the expected result for the BTZ inner horizon entropy as well as what is expected for a generic thermodynamic system. Along the way, we also develop other aspects of holography of 3D flat spacetimes

  15. Schrödinger holography for z < 2

    International Nuclear Information System (INIS)

    Andrade, Tomás; Peach, Alex; Ross, Simon F; Keeler, Cynthia

    2015-01-01

    We investigate holography for asymptotically Schrödinger spacetimes, using a frame formalism. Our dictionary is based on the anisotropic scaling symmetry. We consider z < 2, where the holographic dictionary is cleaner; we make some comments on z = 2. We propose a definition of asymptotically locally Schrödinger spacetime where the leading components of the frame fields provide suitable geometric boundary data. We show that an asymptotic expansion exists for generic boundary data satisfying our boundary conditions for z < 2. (paper)

  16. Patch near field acoustic holography based on particle velocity measurements

    DEFF Research Database (Denmark)

    Zhang, Yong-Bin; Jacobsen, Finn; Bi, Chuan-Xing

    2009-01-01

    Patch near field acoustic holography (PNAH) based on sound pressure measurements makes it possible to reconstruct the source field near a source by measuring the sound pressure at positions on a surface. that is comparable in size to the source region of concern. Particle velocity is an alternative...... examines the use of particle velocity as the input of PNAH. Because the particle velocity decays faster toward the edges of the measurement aperture than the pressure does and because the wave number ratio that enters into the inverse propagator from pressure to velocity amplifies high spatial frequencies...

  17. High resolution holography - applications at Marchwood Engineering Laboratories

    International Nuclear Information System (INIS)

    Webster, J.M.

    1981-01-01

    With a potential information storage density of 10 16 bits/m 2 , the ability to reconstruct in three dimensions, wide angle of view and potentially diffraction limited resolution, holography should be invaluable for optical recording and inspection of complex shape objects. That it has failed to make any significant impact in this field is due to a variety of practical reasons which have limited resolution, quality and reliability of holograms made with pulsed lasers. Some of these limitations are discussed together with possible methods of overcoming them. In line (Gabor) and side-band systems are discussed. The application to CEGB nuclear power stations is described and preliminary results presented. (author)

  18. Interior near-field acoustical holography in flight.

    Science.gov (United States)

    Williams, E G; Houston, B H; Herdic, P C; Raveendra, S T; Gardner, B

    2000-10-01

    In this paper boundary element methods (BEM) are mated with near-field acoustical holography (NAH) in order to determine the normal velocity over a large area of a fuselage of a turboprop airplane from a measurement of the pressure (hologram) on a concentric surface in the interior of the aircraft. This work represents the first time NAH has been applied in situ, in-flight. The normal fuselage velocity was successfully reconstructed at the blade passage frequency (BPF) of the propeller and its first two harmonics. This reconstructed velocity reveals structure-borne and airborne sound-transmission paths from the engine to the interior space.

  19. New fiber optics illumination system for application to electronics holography

    Science.gov (United States)

    Sciammarella, Cesar A.

    1995-08-01

    The practical application of electronic holography requires the use of fiber optics. The need of employing coherent fiber optics imposes restrictions in the efficient use of laser light. This paper proposes a new solution to this problem. The proposed method increases the efficiency in the use of the laser light and simplifies the interface between the laser source and the fiber optics. This paper will present the theory behind the proposed method. A discussion of the effect of the different parameters that influence the formation of interference fringes is presented. Limitations and results that can be achieved are given. An example of application is presented.

  20. Fast modal decomposition for optical fibers using digital holography.

    Science.gov (United States)

    Lyu, Meng; Lin, Zhiquan; Li, Guowei; Situ, Guohai

    2017-07-26

    Eigenmode decomposition of the light field at the output end of optical fibers can provide fundamental insights into the nature of electromagnetic-wave propagation through the fibers. Here we present a fast and complete modal decomposition technique for step-index optical fibers. The proposed technique employs digital holography to measure the light field at the output end of the multimode optical fiber, and utilizes the modal orthonormal property of the basis modes to calculate the modal coefficients of each mode. Optical experiments were carried out to demonstrate the proposed decomposition technique, showing that this approach is fast, accurate and cost-effective.

  1. Near-Field Resonance Microwave Tomography and Holography

    Science.gov (United States)

    Gaikovich, K. P.; Smirnov, A. I.; Yanin, D. V.

    2018-02-01

    We develop the methods of electromagnetic computer near-field microwave tomography of distributed subsurface inhomogeneities of complex dielectric permittivity and of holography (shape retrieval) of internally homogeneous subsurface objects. The methods are based on the solution of the near-field inverse scattering problem from measurements of the resonance-parameter variations of microwave probes above the medium surface. The capabilities of the proposed diagnostic technique are demonstrated in the numerical simulation for sensors with a cylindrical capacitor as a probe element, the edge capacitance of which is sensitive to subsurface inhomogeneities.

  2. Adaptive Holography in Liquid Crystal Light-Valves

    Directory of Open Access Journals (Sweden)

    Jean-Pierre Huignard

    2012-08-01

    Full Text Available By performing two-wave mixing experiments in a liquid crystal light-valve, optical beam amplification is obtained as a strongly resonant process to which a narrow frequency bandwidth is associated. This property is exploited to realize adaptive holographic interferometric systems able to efficiently detect displacements as small as fraction of picometers. Pressure radiation induced deformations of a reflecting membrane are measured with the same type of system. Then, when used with complex wavefronts, like speckle fields, the LCLV-based interferometer allows to detect extremely small phase modulations. The examples shown demonstrate the potentialities of the light-valve for dynamic holography applications.

  3. X-ray Fluorescence Holography: Principles, Apparatus, and Applications

    Science.gov (United States)

    Hayashi, Kouichi; Korecki, Pawel

    2018-06-01

    X-ray fluorescence holography (XFH) is an atomic structure determination technique that combines the capabilities of X-ray diffraction and X-ray fluorescence spectroscopy. It provides a unique means of gaining fully three-dimensional information about the local atomic structure and lattice site positions of selected elements inside compound samples. In this work, we discuss experimental and theoretical aspects that are essential for the efficient recording and analysis of X-ray fluorescence holograms and review the most recent advances in XFH. We describe experiments performed with brilliant synchrotron radiation as well as with tabletop setups that employ conventional X-ray tubes.

  4. Physiological aspect walking and Nordic walking as adequate kinetic activities.

    OpenAIRE

    BENEŠ, Václav

    2010-01-01

    This bachelor thesis on the topic of The Physiological Aspect of Walking and Nordic Walking as an adequate physical activity focuses on chosen physiological changes of an organism during a five-month training cycle. In the theoretical part I describe the physiological changes of organism during a regularly repeated strain, and also the technique of walking, Nordic walking and health benefits of these activities are defined here. The research part of the thesis describes the measurement method...

  5. Conformal barrier and hidden local symmetry constraints: Walking technirhos in LHC diboson channels

    Directory of Open Access Journals (Sweden)

    Hidenori S. Fukano

    2016-03-01

    Full Text Available We expand the previous analyses of the conformal barrier on the walking technirho for the 2 TeV diboson excesses reported by the ATLAS Collaboration, with a special emphasis on the hidden local symmetry (HLS constraints. We first show that the Standard Model (SM Higgs Lagrangian is equivalent to the scale-invariant nonlinear chiral Lagrangian, which is further gauge equivalent to the scale-invariant HLS model, with the scale symmetry realized nonlinearly via SM Higgs as a (pseudo-dilaton. The scale symmetry forbids the new vector boson decay to the 125 GeV Higgs plus W/Z boson, in sharp contrast to the conventional “equivalence theorem” which is invalidated by the conformality. The HLS forbids mixing between the iso-triplet technirho's, ρΠ and ρP, of the one-family walking technicolor (with four doublets ND=NF/2=4, which, without the HLS, would be generated when switching on the standard model gauging. We also present updated analyses of the walking technirho's for the diboson excesses by fully incorporating the constraints from the conformal barrier and the HLS as well as possible higher order effects: still characteristic of the one-family walking technirho is its smallness of the decay width, roughly of order Γ/Mρ∼[3/NC×1/ND]×[Γ/Mρ]QCD≃70 GeV/2 TeV (ND=NC=4, in perfect agreement with the expected diboson resonance with Γ<100 GeV. The model is so sharply distinguishable from other massive spin 1 models without the conformality and HLS that it is clearly testable at the LHC Run II. If the 2 TeV boson decay to WH/ZH is not observed in the ongoing Run II, then the conformality is operative on the 125 GeV Higgs, strongly suggesting that the 2 TeV excess events are responsible for the walking technirhos and the 125 GeV Higgs is the technidilaton.

  6. Dynamics of valence-shell electrons and nuclei probed by strong-field holography and rescattering

    Science.gov (United States)

    Walt, Samuel G.; Bhargava Ram, Niraghatam; Atala, Marcos; Shvetsov-Shilovski, Nikolay I; von Conta, Aaron; Baykusheva, Denitsa; Lein, Manfred; Wörner, Hans Jakob

    2017-01-01

    Strong-field photoelectron holography and laser-induced electron diffraction (LIED) are two powerful emerging methods for probing the ultrafast dynamics of molecules. However, both of them have remained restricted to static systems and to nuclear dynamics induced by strong-field ionization. Here we extend these promising methods to image purely electronic valence-shell dynamics in molecules using photoelectron holography. In the same experiment, we use LIED and photoelectron holography simultaneously, to observe coupled electronic-rotational dynamics taking place on similar timescales. These results offer perspectives for imaging ultrafast dynamics of molecules on femtosecond to attosecond timescales. PMID:28643771

  7. Two-energy twin image removal in atomic-resolution x-ray holography

    International Nuclear Information System (INIS)

    Nishino, Y.; Ishikawa, T.; Hayashi, K.; Takahashi, Y.; Matsubara, E.

    2002-01-01

    We propose a two-energy twin image removal algorithm for atomic-resolution x-ray holography. The validity of the algorithm is shown in a theoretical simulation and in an experiment of internal detector x-ray holography using a ZnSe single crystal. The algorithm, compared to the widely used multiple-energy algorithm, allows efficient measurement of holograms, and is especially important when the available x-ray energies are fixed. It enables twin image free holography using characteristic x rays from laboratory generators and x-ray pulses of free-electron lasers

  8. Walking to transit.

    Science.gov (United States)

    2011-12-01

    Using a real-life setting, WalkBostons project focused on developing and testing techniques to broaden the scope and range of public participation in transportation planning in a large neighborhood in Boston. The team explored methods of seeking o...

  9. Walking along water

    DEFF Research Database (Denmark)

    Rasmussen, Mattias Borg

    2014-01-01

    Steep slopes, white peaks and deep valleys make up the Andes. As phenomenologists of landscape have told us, different people have different landscapes. By moving across the terrain, walking along, we might get a sense of how this has been carved out by the movement of wind and water, tectonics...

  10. Walking and Sensing Mobile Lives

    DEFF Research Database (Denmark)

    Bødker, Mads; Meinhardt, Nina Dam

    In this position paper, we discuss how mindful walking with people allow us to explore sensory aspects of mobile lives that are typically absent from research. We present an app that aids researchers collect impressions from a walk.......In this position paper, we discuss how mindful walking with people allow us to explore sensory aspects of mobile lives that are typically absent from research. We present an app that aids researchers collect impressions from a walk....

  11. Kineziologická charakteristika Nordic Walking

    OpenAIRE

    Pospíšilová, Petra

    2009-01-01

    Title: Functional a physiological characteristics of Nordic Walking Purposes: The aim of the thesis is to describe and summarize current knowledge about Nordic Walking Methods: Literature analysis Key words: Nordic Walking, free bipedal walk, health benefits, functional indicator changes

  12. Particle field diagnose using angular multiplexing volume holography

    Science.gov (United States)

    Zhao, Yu; Li, Zeren; Luo, Zhenxiong; Jun, Li; Zhong, Jie; Ye, Yan; Li, Shengfu; Zhu, Jianhua

    2017-08-01

    The problem of particle field diagnosing using holography can be met in many areas. But single frame hologram can only catch one moment of the fast event, which can't reveal the change process of an unrepeatable fast event. For events in different time-scale, different solution should be used. We did this work to record a laser induced particle field in the time-scale of tens of micron seconds. A laser of pulse sequence mode is applied to provide 10 pulses, the energy and time interval of whom is 150mJ and 1μs. Four pockels cells are employed to pick up the last four pulses for holographic recording, the other pulses are controlled to pre-expose the photopolymer based recording material, which can enhance photosensitivity of the photopolymer during the moment of holographic recording. The angular multiplexing technique and volume holography is accepted to avoid shifting the photopolymer between each shot. Another Q-switch YAG laser (pulse energy 100mJ, pulse width 10ns) is applied to produce the fast event. As a result, we successfully caught the motion process of the laser induced particle field. The time interval of each frame is 1μs, the angular range of the four references is 14°, and the diffraction efficiency of each hologram is less than 2%. After a basic analysis, this optical system could catch more holograms through a compact design.

  13. Non-relativistic holography and singular black hole

    International Nuclear Information System (INIS)

    Lin Fengli; Wu Shangyu

    2009-01-01

    We provide a framework for non-relativistic holography so that a covariant action principle ensuring the Galilean symmetry for dual conformal field theory is given. This framework is based on the Bargmann lift of the Newton-Cartan gravity to the one-dimensional higher Einstein gravity, or reversely, the null-like Kaluza-Klein reduction. We reproduce the previous zero temperature results, and our framework provides a natural explanation about why the holography is co-dimension 2. We then construct the black hole solution dual to the thermal CFT, and find the horizon is curvature singular. However, we are able to derive the sensible thermodynamics for the dual non-relativistic CFT with correct thermodynamical relations. Besides, our construction admits a null Killing vector in the bulk such that the Galilean symmetry is preserved under the holographic RG flow. Finally, we evaluate the viscosity and find it zero if we neglect the back reaction of the singular horizon, otherwise, it could be non-zero.

  14. Digital Holography and Three-Dimensional Display Principles and Applications

    CERN Document Server

    Poon, Ting-Chung

    2006-01-01

    About the Book Digital (or electronic) holography and its application to 3-D display is one of the formidable problems of evolving areas of high technology that has been receiving great attention in recent years. The realization of life-size interactive 3-D displays has been a seemingly unobtainable goal. Technology is not quite at that level yet, but advances in 3-D display now allow us to take important steps toward the achievement of this objective. The reader is presented with the state-of-the-art developments in both digital holography and 3-D display techniques. The book contains a large amount of research material as well as reviews, new ideas and insights that will be useful for graduate students, scientists, and engineers working in the field. About the Editor Ting-Chung Poon is a professor at Virgina Tech in the Bradley Department of Electrical and Computer Engineering, where he is also Director of the Optical Image Processing Laboratory. His research interests include acousto-optics, hybrid (optica...

  15. Advanced double-biprism holography with atomic resolution

    Energy Technology Data Exchange (ETDEWEB)

    Genz, Florian, E-mail: florian.genz@physik.tu-berlin.de [Technische Universität Berlin, Institut für Optik und Atomare Physik, Straße des 17. Juni, 10623 Berlin (Germany); Niermann, Tore [Technische Universität Berlin, Institut für Optik und Atomare Physik, Straße des 17. Juni, 10623 Berlin (Germany); Buijsse, Bart; Freitag, Bert [FEI Company, Achtseweg Noord 5, 5651 GG Eindhoven (Netherlands); Lehmann, Michael [Technische Universität Berlin, Institut für Optik und Atomare Physik, Straße des 17. Juni, 10623 Berlin (Germany)

    2014-12-15

    The optimum biprism position as suggested by Lichte (Ultramicroscopy 64 (1996) 79 [10]) was implemented into a state-of-the-art transmission electron microscope. For a setup optimized for atomic resolution holograms with a width of 30 nm and a fringe spacing of 30 pm, we investigated the practical improvements on hologram quality. The setup is additionally supplemented by a second biprism as suggested by Harada et al. (Applied Physics Letters 84 (2004) 3229 [12]). In order to estimate the possibilities and limitations of the double biprism setup, geometric optics arguments lead to calculation of the exploitable shadow width, necessary for strong reduction of biprism-induced artefacts. Additionally, we used the double biprism setup to estimate the biprism vibration, yielding the most stable imaging conditions with lowest overall fringe contrast damping. Electron holograms of GaN demonstrate the good match between experiment and simulation, also as a consequence of the improved stability. - Highlights: • Investigation of optimum biprism position implementation into state-of-the-art TEM. • Reduction of artefacts, especially vignetting in double-biprism electron holography. • Biprism vibration and most stable imaging conditions in double-biprism holography. • Demonstration of the optimized double-biprism setup using a thin GaN-foil.

  16. Probing Dense Sprays with Gated, Picosecond, Digital Particle Field Holography

    Directory of Open Access Journals (Sweden)

    James Trolinger

    2011-12-01

    Full Text Available This paper describes work that demonstrated the feasibility of producing a gated digital holography system that is capable of producing high-resolution images of three-dimensional particle and structure details deep within dense particle fields of a spray. We developed a gated picosecond digital holocamera, using optical Kerr cell gating, to demonstrate features of gated digital holography that make it an exceptional candidate for this application. The Kerr cell gate shuttered the camera after the initial burst of ballistic and snake photons had been recorded, suppressing longer path, multiple scattered illumination. By starting with a CW laser without gating and then incorporating a picosecond laser and an optical Kerr gate, we were able to assess the imaging quality of the gated holograms, and determine improvement gained by gating. We produced high quality images of 50–200 μm diameter particles, hairs and USAF resolution charts from digital holograms recorded through turbid media where more than 98% of the light was scattered from the field. The system can gate pulses as short as 3 mm in pathlength (10 ps, enabling image-improving features of the system. The experiments lead us to the conclusion that this method has an excellent capability as a diagnostics tool in dense spray combustion research.

  17. Poor man’s holography: how far can it go?

    International Nuclear Information System (INIS)

    Tian Yu; Wu Xiaoning; Zhang Hongbao

    2013-01-01

    Almost a century ago, Einstein, after Newton, shed new light on gravity by claiming that gravity is geometry. There has been no deeper insight beyond that later on except the recent suspicion that gravity may also be holographic, dual to some sort of quantum field theory living on the boundary with one less dimension. Such a suspicion has been supported mainly by a variety of specific examples from string theory. This paper is intended to purport the holographic gravity from a different perspective. Namely, we shall show that such a holography can actually be observed by working merely within the context of Einstein’s gravity through promoting Brown–York’s formalism, where neither is the spacetime required to be asymptotically AdS nor the boundary to be located at conformal infinity, which also conforms to the spirit inherited from Wilson’s effective field theory. In particular, we show that our holography works remarkably well at least at the level of thermodynamics and hydrodynamics, where a perfect matching between the bulk gravity and boundary fluid is found for entropy and its production by the conserved current method. (paper)

  18. Holography and thermalization in optical pump-probe spectroscopy

    Science.gov (United States)

    Bagrov, A.; Craps, B.; Galli, F.; Keränen, V.; Keski-Vakkuri, E.; Zaanen, J.

    2018-04-01

    Using holography, we model experiments in which a 2 +1 D strange metal is pumped by a laser pulse into a highly excited state, after which the time evolution of the optical conductivity is probed. We consider a finite-density state with mildly broken translation invariance and excite it by oscillating electric field pulses. At zero density, the optical conductivity would assume its thermalized value immediately after the pumping has ended. At finite density, pulses with significant dc components give rise to slow exponential relaxation, governed by a vector quasinormal mode. In contrast, for high-frequency pulses the amplitude of the quasinormal mode is strongly suppressed, so that the optical conductivity assumes its thermalized value effectively instantaneously. This surprising prediction may provide a stimulus for taking up the challenge to realize these experiments in the laboratory. Such experiments would test a crucial open question faced by applied holography: are its predictions artifacts of the large N limit or do they enjoy sufficient UV independence to hold at least qualitatively in real-world systems?

  19. A study on the dimensioning of flaws by acoustical holography

    International Nuclear Information System (INIS)

    Yamamoto, Michio; Ando, Tomozumi; Enami, Koji; Yajima, Minoru; Fukui, Shigetaka.

    1978-01-01

    As a means of evaluating the safety of flawed pressure vessels and other structures against fracture, fracture mechanics has come to be applied. For the application of fracture mechanics it is necessary to get information concerning the sizes and shapes of flaws. The ultrasonic flaw detection method that is widely used as a nondestructive inspection method cannot measure the sizes and shapes of flaws accurately. Considering that acoustical holography is an useful means for the dimensioning of flaws, we performed basic tests on this method and obtained the following results: (1) The measured values of artificial flaws (flat bottom drilled holes: 5 - 36 mm) made on a steel plate of 150 mm thick showed a good linear relation with their actual sizes and scatter in the measured values was +-3 - 6 mm. (2) The measured values of fatigue cracks (length: 5 - 57 mm) introduced into a steel plate of 150 mm thick also showed a good linear relation with their actual sizes and scatter in the measured values was +-3 mm. (3) It was found that acoustical holography can also be applied to heavy section cast steels. (4) The method of correcting distortion caused by curved surface was investigated by computer-aided simulation and it was considered that such distortion can be corrected by radial scanning of a transducer. (author)

  20. [Walking abnormalities in children].

    Science.gov (United States)

    Segawa, Masaya

    2010-11-01

    Walking is a spontaneous movement termed locomotion that is promoted by activation of antigravity muscles by serotonergic (5HT) neurons. Development of antigravity activity follows 3 developmental epochs of the sleep-wake (S-W) cycle and is modulated by particular 5HT neurons in each epoch. Activation of antigravity activities occurs in the first epoch (around the age of 3 to 4 months) as restriction of atonia in rapid eye movement (REM) stage and development of circadian S-W cycle. These activities strengthen in the second epoch, with modulation of day-time sleep and induction of crawling around the age of 8 months and induction of walking by 1 year. Around the age of 1 year 6 months, absence of guarded walking and interlimb cordination is observed along with modulation of day-time sleep to once in the afternoon. Bipedal walking in upright position occurs in the third epoch, with development of a biphasic S-W cycle by the age of 4-5 years. Patients with infantile autism (IA), Rett syndrome (RTT), or Tourette syndrome (TS) show failure in the development of the first, second, or third epoch, respectively. Patients with IA fail to develop interlimb coordination; those with RTT, crawling and walking; and those with TS, walking in upright posture. Basic pathophysiology underlying these condition is failure in restricting atonia in REM stage; this induces dysfunction of the pedunculopontine nucleus and consequently dys- or hypofunction of the dopamine (DA) neurons. DA hypofunction in the developing brain, associated with compensatory upward regulation of the DA receptors causes psychobehavioral disorders in infancy (IA), failure in synaptogenesis in the frontal cortex and functional development of the motor and associate cortexes in late infancy through the basal ganglia (RTT), and failure in functional development of the prefrontal cortex through the basal ganglia (TS). Further, locomotion failure in early childhood causes failure in development of functional

  1. Issues And Concerns In The Presentation And Conception Of Commercial And Fine Art Holography

    Science.gov (United States)

    Cossette, Marie A.

    1987-06-01

    This paper will address the issues raised by the "commercialization" of holography that has taken place since the mid-1980's. The paper examines the range of these issues as they apply to the practise of fine-art holography, the author's area of expertise. The effect of mass-produced and readily available holograms on the public's perception of holographic art will be discussed in light of the presence of holographic images on credit cards and national magazine covers. A major portion of the paper will examine the specific issues raised by the commercialization and mass production of holographic art. These issues will centre on the professional, ethical and artistic implications of commercialized holography as they apply to the practice of fine art holography.

  2. Photoelectron and x-ray holography by contrast: enhancing image quality and dimensionality

    Energy Technology Data Exchange (ETDEWEB)

    Fadley, C.S.; Zhao, L. [Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA (United States); Department of Physics, University of California, Davis, CA (United States); Hove, M.A. van [Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA (United States); Department of Physics, University of California, Davis, CA (United States); Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, CA (United States); Kaduwela, A.; Marchesini, S. [Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA (United States); Omori, S. [Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA (United States); Institute of Industrial Science, University of Tokyo, Tokyo (Japan); Sony Corporation Semiconductor Network Company, Asahi-cho, Atsugi, Kanagawa (Japan)

    2001-11-26

    Three forms of electron or x-ray holography 'by contrast' are discussed: they all exploit small changes in diffraction conditions to improve image quality and/or extract additional information. Spin-polarized photoelectron holography subtracts spin-down from spin-up holograms so as to image the relative orientations of atomic magnetic moments around an emitter atom. Differential photoelectron holography subtracts holograms taken at slightly different energies so as to overcome the forward-scattering problem that normally degrades the three-dimensional imaging of atoms, particularly for emitter atoms that are part of a bulk substrate environment. Resonant x-ray fluorescence holography also subtracts holograms at slightly different energies, these being chosen above and below an absorption edge of a constituent atom, thus allowing the selective imaging of that type of atom, or what has been referred to as imaging 'in true colour'. (author)

  3. Feed particle size evaluation: conventional approach versus digital holography based image analysis

    Directory of Open Access Journals (Sweden)

    Vittorio Dell’Orto

    2010-01-01

    Full Text Available The aim of this study was to evaluate the application of image analysis approach based on digital holography in defining particle size in comparison with the sieve shaker method (sieving method as reference method. For this purpose ground corn meal was analyzed by a sieve shaker Retsch VS 1000 and by image analysis approach based on digital holography. Particle size from digital holography were compared with results obtained by screen (sieving analysis for each of size classes by a cumulative distribution plot. Comparison between particle size values obtained by sieving method and image analysis indicated that values were comparable in term of particle size information, introducing a potential application for digital holography and image analysis in feed industry.

  4. Holography: Use in Training and Testing Drivers on the Road in Accident Avoidance.

    Science.gov (United States)

    Frey, Allan H.; Frey, Donnalyn

    1979-01-01

    Defines holography, identifies visual factors in driving and the techniques used in on-road visual presentations, and presents the design and testing of a holographic system for driver training. (RAO)

  5. A comparison of SONAH and IBEM for near-field acoustic holography

    DEFF Research Database (Denmark)

    Juhl, Peter Møller

    2008-01-01

    Among the popular techniques for acoustic source identification in complex environments are the Statistically Optimal Near Acoustic Holography (SONAH) and the Inverse Boundary Element Method (IBEM). These two methods are quite different regarding the underlying assumptions and the practical...

  6. Numerical simulation study for atomic-resolution x-ray fluorescence holography

    International Nuclear Information System (INIS)

    Xie Honglan; Gao Hongyi; Chen Jianwen; Xiong Shisheng; Xu Zhizhan; Wang Junyue; Zhu Peiping; Xian Dingchang

    2003-01-01

    Based on the principle of x-ray fluorescence holography, an iron single crystal model of a body-centred cubic lattice is numerically simulated. From the fluorescence hologram produced numerically, the Fe atomic images were reconstructed. The atomic images of the (001), (100), (010) crystallographic planes were consistent with the corresponding atomic positions of the model. The result indicates that one can obtain internal structure images of single crystals at atomic-resolution by using x-ray fluorescence holography

  7. Hydrothermal synthesis, off-axis electron holography and magnetic properties of Fe3O4 nanoparticles

    DEFF Research Database (Denmark)

    Almeida, Trevor P.; Muxworthy, Adrian R.; Williams, Wyn

    2014-01-01

    The hydrothermal synthesis of Fe3O4 nanoparticles (NPs) (<50 nm) from mixed FeCl3 / FeCl2 precursor solution at pH ~ 12 has been confirmed using complementary characterisation techniques of transmission electron microscopy and X-ray diffractometry. Off-axis electron holography allowed for visuali......The hydrothermal synthesis of Fe3O4 nanoparticles (NPs) (holography allowed...

  8. Tomographical evaluation of multifrequency-holography data in the ultrasonic testing of cylindrical components

    International Nuclear Information System (INIS)

    Kutzner, K.

    1986-01-01

    The data of multifrequency-holography on circle which were published in a previous paper were evaluated in a tomographical manner. For that the theoretical model which is the foundation of this measuring technique is converted into a Radon transform which can be inverted by standard methods. The results of this technique are compared with the results of the multifrequency-holography on circle. (orig./HP) [de

  9. Nordic Walking Classes

    CERN Multimedia

    Fitness Club

    2015-01-01

    Four classes of one hour each are held on Tuesdays. RDV barracks parking at Entrance A, 10 minutes before class time. Spring Course 2015: 05.05/12.05/19.05/26.05 Prices 40 CHF per session + 10 CHF club membership 5 CHF/hour pole rental Check out our schedule and enroll at: https://espace.cern.ch/club-fitness/Lists/Nordic%20Walking/NewForm.aspx? Hope to see you among us! fitness.club@cern.ch

  10. Ways of Walking

    DEFF Research Database (Denmark)

    Eslambolchilar, Parisa; Bødker, Mads; Chamberlain, Alan

    2016-01-01

    It seems logical to argue that mobile computing technologies are intended for use "on-the-go." However, on closer inspection, the use of mobile technologies pose a number of challenges for users who are mobile, particularly moving around on foot. In engaging with such mobile technologies and thei......It seems logical to argue that mobile computing technologies are intended for use "on-the-go." However, on closer inspection, the use of mobile technologies pose a number of challenges for users who are mobile, particularly moving around on foot. In engaging with such mobile technologies...... and their envisaged development, we argue that interaction designers must increasingly consider a multitude of perspectives that relate to walking in order to frame design problems appropriately. In this paper, we consider a number of perspectives on walking, and we discuss how these may inspire the design of mobile...... technologies. Drawing on insights from non-representational theory, we develop a partial vocabulary with which to engage with qualities of pedestrian mobility, and we outline how taking more mindful approaches to walking may enrich and inform the design space of handheld technologies....

  11. The application of digital image plane holography technology to identify Chinese herbal medicine

    Science.gov (United States)

    Wang, Huaying; Guo, Zhongjia; Liao, Wei; Zhang, Zhihui

    2012-03-01

    In this paper, the imaging technology of digital image plane holography to identify the Chinese herbal medicine is studied. The optical experiment system of digital image plane holography which is the special case of pre-magnification digital holography was built. In the record system, one is an object light by using plane waves which illuminates the object, and the other one is recording hologram by using spherical light wave as reference light. There is a Micro objective lens behind the object. The second phase factor which caus ed by the Micro objective lens can be eliminated by choosing the proper position of the reference point source when digital image plane holography is recorded by spherical light. In this experiment, we use the Lygodium cells and Onion cells as the object. The experiment results with Lygodium cells and Onion cells show that digital image plane holography avoid the process of finding recording distance by using auto-focusing approach, and the phase information of the object can be reconstructed more accurately. The digital image plane holography is applied to the microscopic imaging of cells more effectively, and it is suit to apply for the identify of Chinese Herbal Medicine. And it promotes the application of digital holographic in practice.

  12. Spectroscopic imaging, diffraction, and holography with x-ray photoemission

    International Nuclear Information System (INIS)

    1992-02-01

    X-ray probes are capable of determining the spatial structure of an atom in a specific chemical state, over length scales from about a micron all the way down to atomic resolution. Examples of these probes include photoemission microscopy, energy-dependent photoemission diffraction, photoelectron holography, and X-ray absorption microspectroscopy. Although the method of image formation, chemical-state sensitivity, and length scales can be very different, these X-ray techniques share a common goal of combining a capability for structure determination with chemical-state specificity. This workshop will address recent advances in holographic, diffraction, and direct imaging techniques using X-ray photoemission on both theoretical and experimental fronts. A particular emphasis will be on novel structure determinations with atomic resolution using photoelectrons

  13. Possibilities of NDT of fiber reinforced plastics with holography

    International Nuclear Information System (INIS)

    Schuetze, R.

    1978-01-01

    Holography offers several possibilities of non-destructive testing. The interference band pattern is always a measure of the deformation of a component. Apart from a merely qualitative location of defects, quantitative measurements of component deformation can help to find excess stresses or strains of defects. However, experimental stress analyses of this kind are futile unless the measured values are available in a very short time. For this reason, quantitative evaluation must be automatic. The first objective here is automatic counting of interference bands with the aid of photodiodes or a similar device. It would be desirable to arrive at a method where the automatically recorded measured values are processed by a computer which then draws a stress pattern of the component. (orig./RW) [de

  14. A survey of lasers at the birth of holography

    International Nuclear Information System (INIS)

    Hess, Robert A

    2013-01-01

    The 50th anniversary of the first hologram made with laser light is an appropriate time to shine some light on the lasers that made it possible. Dubbed a solution looking for a problem , the laser emerged from industrial research labs as a new kind of light source for any application requiring coherence. Immediately commercialized by both start-up and well-established corporations, lasers sold in their first year of production left much to be desired but made a good first impression. Their second year of production saw technical improvements that met the requirements for practical holography, and by the end of 1963 were good enough to make holograms of three dimensional, deep and diffuse imagery. Mostly obsolete by the end of the 1960s, very few of the Kennedy era lasers have survived. This survey is intended to identify and celebrate them, so more may be preserved as they are found, to be admired in the future.

  15. Spectroscopic imaging, diffraction, and holography with x-ray photoemission

    Energy Technology Data Exchange (ETDEWEB)

    1992-02-01

    X-ray probes are capable of determining the spatial structure of an atom in a specific chemical state, over length scales from about a micron all the way down to atomic resolution. Examples of these probes include photoemission microscopy, energy-dependent photoemission diffraction, photoelectron holography, and X-ray absorption microspectroscopy. Although the method of image formation, chemical-state sensitivity, and length scales can be very different, these X-ray techniques share a common goal of combining a capability for structure determination with chemical-state specificity. This workshop will address recent advances in holographic, diffraction, and direct imaging techniques using X-ray photoemission on both theoretical and experimental fronts. A particular emphasis will be on novel structure determinations with atomic resolution using photoelectrons.

  16. Holography demonstrations and workshops for science and engineering outreach

    Science.gov (United States)

    Thomas, Weston; Kruse, Kevin; Middlebrook, Christopher

    2012-10-01

    The SPIE/OSA Student Chapter at Michigan Technological University have developed demonstrations and workshops for science and engineering outreach. The practical approach to holography promotes the study of photonic related sciences in high school and college-aged students. An introduction to laser safety, optical laboratory practices, and basic laser coherence theory is given in order to first introduce the participants to the science behind the holograms. The students are then able to create a hologram of an item of their choice, personalizing the experience. By engaging directly, the students are able to see how the theory is applied and also enforces a higher level of attention from them so no mistakes are made in their hologram. Throughout the course participants gain an appreciation for photonics by learning how holograms operate and are constructed through hands on creation of their own holograms. This paper reviews the procedures and methods used in the demonstrations and workshop while examining the overall student experience.

  17. Quasi-three-dimensional particle imaging with digital holography.

    Science.gov (United States)

    Kemppinen, Osku; Heinson, Yuli; Berg, Matthew

    2017-05-01

    In this work, approximate three-dimensional structures of microparticles are generated with digital holography using an automated focus method. This is done by stacking a collection of silhouette-like images of a particle reconstructed from a single in-line hologram. The method enables estimation of the particle size in the longitudinal and transverse dimensions. Using the discrete dipole approximation, the method is tested computationally by simulating holograms for a variety of particles and attempting to reconstruct the known three-dimensional structure. It is found that poor longitudinal resolution strongly perturbs the reconstructed structure, yet the method does provide an approximate sense for the structure's longitudinal dimension. The method is then applied to laboratory measurements of holograms of single microparticles and their scattering patterns.

  18. Low photon count based digital holography for quadratic phase cryptography.

    Science.gov (United States)

    Muniraj, Inbarasan; Guo, Changliang; Malallah, Ra'ed; Ryle, James P; Healy, John J; Lee, Byung-Geun; Sheridan, John T

    2017-07-15

    Recently, the vulnerability of the linear canonical transform-based double random phase encryption system to attack has been demonstrated. To alleviate this, we present for the first time, to the best of our knowledge, a method for securing a two-dimensional scene using a quadratic phase encoding system operating in the photon-counted imaging (PCI) regime. Position-phase-shifting digital holography is applied to record the photon-limited encrypted complex samples. The reconstruction of the complex wavefront involves four sparse (undersampled) dataset intensity measurements (interferograms) at two different positions. Computer simulations validate that the photon-limited sparse-encrypted data has adequate information to authenticate the original data set. Finally, security analysis, employing iterative phase retrieval attacks, has been performed.

  19. Inelastic electron holography: First results with surface plasmons

    Energy Technology Data Exchange (ETDEWEB)

    Falk, Roeder; Hannes, Lichte [Triebenberg Labor, Institute for Structure Physics, TU Dresden, 01062 Dresden (Germany)

    2011-07-01

    Inelastic interaction and wave optics seem to be incompatible in that inelastic processes destroy coherence, which is the fundamental requirement for holography. In special experiments it is shown that energy transfer larger than some undoubtedly destroys coherence of the inelastic electron with the elastic remainder. Consequently, the usual inelastic processes, such as phonon-, plasmon- or inner shell-excitations with energy transfer of several out to several, certainly produce incoherence with the elastic ones. However, it turned out that within the inelastic wave, *newborn* by the inelastic process, there is a sufficiently wide area of coherence for generating *inelastic holograms*. This is exploited to create holograms with electrons scattered at surface-plasmons, which opens up quantum mechanical investigation of these inelastic processes.

  20. Digital holography microscopy in 3D biologic samples analysis

    Energy Technology Data Exchange (ETDEWEB)

    Ricardo, J O; Palacios, F; Palacios, G F; Sanchez, A [Department of Physics, University of Oriente (Cuba); Muramatsu, M [Department of General Physics, University of Sao Paulo - Sao Paulo (Brazil); Gesualdi, M [Engineering center, Models and Applied Social Science, UFABC - Sao Paulo (Brazil); Font, O [Department of Bio-ingeniering, University of Oriente - Santiago de Cuba (Cuba); Valin, J L [Mechanics Department, ISPJAE, Habana (Cuba); Escobedo, M; Herold, S [Department of Computation, University of Oriente (Cuba); Palacios, D F, E-mail: frpalaciosf@gmail.com [Department of Nuclear physics, University of Simon BolIva (Venezuela, Bolivarian Republic of)

    2011-01-01

    In this work it is used a setup for Digital Holography Microscopy (MHD) for 3D biologic samples reconstruction. The phase contrast image reconstruction is done by using the Double propagation Method. The system was calibrated and tested by using a micrometric scale and pure phase object respectively. It was simulated the human red blood cell (erythrocyte) and beginning from the simulated hologram the digital 3D phase image for erythrocytes it was calculated. Also there was obtained experimental holograms of human erythrocytes and its corresponding 3D phase images, being evident the correspondence qualitative and quantitative between these characteristics in the simulated erythrocyte and in the experimentally calculated by DHM in both cases.

  1. Projecting non-diffracting waves with intermediate-plane holography.

    Science.gov (United States)

    Mondal, Argha; Yevick, Aaron; Blackburn, Lauren C; Kanellakopoulos, Nikitas; Grier, David G

    2018-02-19

    We introduce intermediate-plane holography, which substantially improves the ability of holographic trapping systems to project propagation-invariant modes of light using phase-only diffractive optical elements. Translating the mode-forming hologram to an intermediate plane in the optical train can reduce the need to encode amplitude variations in the field, and therefore complements well-established techniques for encoding complex-valued transfer functions into phase-only holograms. Compared to standard holographic trapping implementations, intermediate-plane holograms greatly improve diffraction efficiency and mode purity of propagation-invariant modes, and so increase their useful non-diffracting range. We demonstrate this technique through experimental realizations of accelerating modes and long-range tractor beams.

  2. Shedding light on diatom photonics by means of digital holography.

    Science.gov (United States)

    Di Caprio, Giuseppe; Coppola, Giuseppe; De Stefano, Luca; De Stefano, Mario; Antonucci, Alessandra; Congestri, Roberta; De Tommasi, Edoardo

    2014-05-01

    Diatoms are among the dominant phytoplankters in the world's oceans, and their external silica investments, resembling artificial photonic crystals, are expected to play an active role in light manipulation. Digital holography allowed studying the interaction with light of Coscinodiscus wailesii cell wall reconstructing the light confinement inside the cell cytoplasm, condition that is hardly accessible via standard microscopy. The full characterization of the propagated beam, in terms of quantitative phase and intensity, removed a long-standing ambiguity about the origin of the light confinement. The data were discussed in the light of living cell behavior in response to their environment. Copyright © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. High resolution integral holography using Fourier ptychographic approach.

    Science.gov (United States)

    Li, Zhaohui; Zhang, Jianqi; Wang, Xiaorui; Liu, Delian

    2014-12-29

    An innovative approach is proposed for calculating high resolution computer generated integral holograms by using the Fourier Ptychographic (FP) algorithm. The approach initializes a high resolution complex hologram with a random guess, and then stitches together low resolution multi-view images, synthesized from the elemental images captured by integral imaging (II), to recover the high resolution hologram through an iterative retrieval with FP constrains. This paper begins with an analysis of the principle of hologram synthesis from multi-projections, followed by an accurate determination of the constrains required in the Fourier ptychographic integral-holography (FPIH). Next, the procedure of the approach is described in detail. Finally, optical reconstructions are performed and the results are demonstrated. Theoretical analysis and experiments show that our proposed approach can reconstruct 3D scenes with high resolution.

  4. Molecular photoelectron holography with circularly polarized laser pulses.

    Science.gov (United States)

    Yang, Weifeng; Sheng, Zhihao; Feng, Xingpan; Wu, Miaoli; Chen, Zhangjin; Song, Xiaohong

    2014-02-10

    We investigate the photoelectron momentum distribution of molecular-ion H2+driven by ultrashort intense circularly polarized laser pulses. Both numerical solutions of the time-dependent Schrödinger equation (TDSE) and a quasiclassical model indicate that the photoelectron holography (PH) with circularly polarized pulses can occur in molecule. It is demonstrated that the interference between the direct electron wave and rescattered electron wave from one core to its neighboring core induces the PH. Moreover, the results of the TDSE predict that there is a tilt angle between the interference pattern of the PH and the direction perpendicular to the molecular axis. Furthermore, the tilt angle is sensitively dependent on the wavelength of the driven circularly polarized pulse, which is confirmed by the quasiclassical calculations. The PH induced by circularly polarized laser pulses provides a tool to resolve the electron dynamics and explore the spatial information of molecular structures.

  5. On-Line Metrology with Conoscopic Holography: Beyond Triangulation

    Directory of Open Access Journals (Sweden)

    Ignacio Álvarez

    2009-09-01

    Full Text Available On-line non-contact surface inspection with high precision is still an open problem. Laser triangulation techniques are the most common solution for this kind of systems, but there exist fundamental limitations to their applicability when high precisions, long standoffs or large apertures are needed, and when there are difficult operating conditions. Other methods are, in general, not applicable in hostile environments or inadequate for on-line measurement. In this paper we review the latest research in Conoscopic Holography, an interferometric technique that has been applied successfully in this kind of applications, ranging from submicrometric roughness measurements, to long standoff sensors for surface defect detection in steel at high temperatures.

  6. Direct phase retrieval in double blind Fourier holography.

    Science.gov (United States)

    Raz, Oren; Leshem, Ben; Miao, Jianwei; Nadler, Boaz; Oron, Dan; Dudovich, Nirit

    2014-10-20

    Phase measurement is a long-standing challenge in a wide range of applications, from X-ray imaging to astrophysics and spectroscopy. While in some scenarios the phase is resolved by an interferometric measurement, in others it is reconstructed via numerical optimization, based on some a-priori knowledge about the signal. The latter commonly use iterative algorithms, and thus have to deal with their convergence, stagnation, and robustness to noise. Here we combine these two approaches and present a new scheme, termed double blind Fourier holography, providing an efficient solution to the phase problem in two dimensions, by solving a system of linear equations. We present and experimentally demonstrate our approach for the case of lens-less imaging.

  7. Determination of localized visibility in off-axis electron holography

    International Nuclear Information System (INIS)

    McLeod, Robert A.; Kupsta, Martin; Malac, Marek

    2014-01-01

    Off-axis electron holography is a wavefront-split interference method for the transmission electron microscope that allows the phase shift and amplitude of the electron wavefront to be separated and quantitatively measured. An additional, third component of the holographic signal is the coherence of the electron wavefront. Historically, wavefront coherence has been evaluated by measurement of the holographic fringe visibility (or contrast) based on the minimum and maximum intensity values. We present a method based on statistical moments is presented that allows allow the visibility to be measured in a deterministic and reproducible fashion suitable for quantitative analysis. We also present an algorithm, based on the Fourier-ratio method, which allows the visibility to be resolved in two-dimensions, which we term the local visibility. The local visibility may be used to evaluate the loss of coherence due to electron scattering within a specimen, or as an aid in image analysis and segmentation. The relationship between amplitude and visibility may be used to evaluate the composition and mass thickness of a specimen by means of a 2-D histogram. Results for a selection of elements (C, Al, Si, Ti, Cr, Cu, Ge, and Au) are provided. All presented visibility metrics are biased at low-dose conditions by the presence of shot-noise, for which we provide methods for empirical normalization to achieve linear response. - Highlights: • Report on a new statistical metric to determine holographic fringe visibility. • Adds new signal to electron holography: measure of electron coherence loss in 2-D. • Provide algorithm to calculate 2-D local visibility map. • Show that amplitude and visibility may be used for compositional analysis and segmentation. • Corrected for data bias such as shot noise

  8. Rugged Walking Robot

    Science.gov (United States)

    Larimer, Stanley J.; Lisec, Thomas R.; Spiessbach, Andrew J.

    1990-01-01

    Proposed walking-beam robot simpler and more rugged than articulated-leg walkers. Requires less data processing, and uses power more efficiently. Includes pair of tripods, one nested in other. Inner tripod holds power supplies, communication equipment, computers, instrumentation, sampling arms, and articulated sensor turrets. Outer tripod holds mast on which antennas for communication with remote control site and video cameras for viewing local and distant terrain mounted. Propels itself by raising, translating, and lowering tripods in alternation. Steers itself by rotating raised tripod on turntable.

  9. Random walk loop soup

    OpenAIRE

    Lawler, Gregory F.; Ferreras, José A. Trujillo

    2004-01-01

    The Brownian loop soup introduced in Lawler and Werner (2004) is a Poissonian realization from a sigma-finite measure on unrooted loops. This measure satisfies both conformal invariance and a restriction property. In this paper, we define a random walk loop soup and show that it converges to the Brownian loop soup. In fact, we give a strong approximation result making use of the strong approximation result of Koml\\'os, Major, and Tusn\\'ady. To make the paper self-contained, we include a proof...

  10. A mathematical nature walk

    CERN Document Server

    Adam, John A

    2009-01-01

    How heavy is that cloud? Why can you see farther in rain than in fog? Why are the droplets on that spider web spaced apart so evenly? If you have ever asked questions like these while outdoors, and wondered how you might figure out the answers, this is a book for you. An entertaining and informative collection of fascinating puzzles from the natural world around us, A Mathematical Nature Walk will delight anyone who loves nature or math or both. John Adam presents ninety-six questions about many common natural phenomena--and a few uncommon ones--and then shows how to answer them using mostly b

  11. Physical implementation of quantum walks

    CERN Document Server

    Manouchehri, Kia

    2013-01-01

    Given the extensive application of random walks in virtually every science related discipline, we may be at the threshold of yet another problem solving paradigm with the advent of quantum walks. Over the past decade, quantum walks have been explored for their non-intuitive dynamics, which may hold the key to radically new quantum algorithms. This growing interest has been paralleled by a flurry of research into how one can implement quantum walks in laboratories. This book presents numerous proposals as well as actual experiments for such a physical realization, underpinned by a wide range of

  12. Quantum walks with entangled coins

    International Nuclear Information System (INIS)

    Venegas-Andraca, S E; Ball, J L; Burnett, K; Bose, S

    2005-01-01

    We present a mathematical formalism for the description of un- restricted quantum walks with entangled coins and one walker. The numerical behaviour of such walks is examined when using a Bell state as the initial coin state, with two different coin operators, two different shift operators, and one walker. We compare and contrast the performance of these quantum walks with that of a classical random walk consisting of one walker and two maximally correlated coins as well as quantum walks with coins sharing different degrees of entanglement. We illustrate that the behaviour of our walk with entangled coins can be very different in comparison to the usual quantum walk with a single coin. We also demonstrate that simply by changing the shift operator, we can generate widely different distributions. We also compare the behaviour of quantum walks with maximally entangled coins with that of quantum walks with non-entangled coins. Finally, we show that the use of different shift operators on two and three qubit coins leads to different position probability distributions in one- and two-dimensional graphs

  13. Random-walk enzymes

    Science.gov (United States)

    Mak, Chi H.; Pham, Phuong; Afif, Samir A.; Goodman, Myron F.

    2015-09-01

    Enzymes that rely on random walk to search for substrate targets in a heterogeneously dispersed medium can leave behind complex spatial profiles of their catalyzed conversions. The catalytic signatures of these random-walk enzymes are the result of two coupled stochastic processes: scanning and catalysis. Here we develop analytical models to understand the conversion profiles produced by these enzymes, comparing an intrusive model, in which scanning and catalysis are tightly coupled, against a loosely coupled passive model. Diagrammatic theory and path-integral solutions of these models revealed clearly distinct predictions. Comparison to experimental data from catalyzed deaminations deposited on single-stranded DNA by the enzyme activation-induced deoxycytidine deaminase (AID) demonstrates that catalysis and diffusion are strongly intertwined, where the chemical conversions give rise to new stochastic trajectories that were absent if the substrate DNA was homogeneous. The C →U deamination profiles in both analytical predictions and experiments exhibit a strong contextual dependence, where the conversion rate of each target site is strongly contingent on the identities of other surrounding targets, with the intrusive model showing an excellent fit to the data. These methods can be applied to deduce sequence-dependent catalytic signatures of other DNA modification enzymes, with potential applications to cancer, gene regulation, and epigenetics.

  14. The quantum Levy walk

    International Nuclear Information System (INIS)

    Caceres, Manuel O; Nizama, Marco

    2010-01-01

    We introduce the quantum Levy walk to study transport and decoherence in a quantum random model. We have derived from second-order perturbation theory the quantum master equation for a Levy-like particle that moves along a lattice through scale-free hopping while interacting with a thermal bath of oscillators. The general evolution of the quantum Levy particle has been solved for different preparations of the system. We examine the evolution of the quantum purity, the localized correlation and the probability to be in a lattice site, all of them leading to important conclusions concerning quantum irreversibility and decoherence features. We prove that the quantum thermal mean-square displacement is finite under a constraint that is different when compared to the classical Weierstrass random walk. We prove that when the mean-square displacement is infinite the density of state has a complex null-set inside the Brillouin zone. We show the existence of a critical behavior in the continuous eigenenergy which is related to its non-differentiability and self-affine characteristics. In general, our approach allows us to study analytically quantum fluctuations and decoherence in a long-range hopping model.

  15. Kinematic control of walking.

    Science.gov (United States)

    Lacquaniti, F; Ivanenko, Y P; Zago, M

    2002-10-01

    The planar law of inter-segmental co-ordination we described may emerge from the coupling of neural oscillators between each other and with limb mechanical oscillators. Muscle contraction intervenes at variable times to re-excite the intrinsic oscillations of the system when energy is lost. The hypothesis that a law of coordinative control results from a minimal active tuning of the passive inertial and viscoelastic coupling among limb segments is congruent with the idea that movement has evolved according to minimum energy criteria (1, 8). It is known that multi-segment motion of mammals locomotion is controlled by a network of coupled oscillators (CPGs, see 18, 33, 37). Flexible combination of unit oscillators gives rise to different forms of locomotion. Inter-oscillator coupling can be modified by changing the synaptic strength (or polarity) of the relative spinal connections. As a result, unit oscillators can be coupled in phase, out of phase, or with a variable phase, giving rise to different behaviors, such as speed increments or reversal of gait direction (from forward to backward). Supra-spinal centers may drive or modulate functional sets of coordinating interneurons to generate different walking modes (or gaits). Although it is often assumed that CPGs control patterns of muscle activity, an equally plausible hypothesis is that they control patterns of limb segment motion instead (22). According to this kinematic view, each unit oscillator would directly control a limb segment, alternately generating forward and backward oscillations of the segment. Inter-segmental coordination would be achieved by coupling unit oscillators with a variable phase. Inter-segmental kinematic phase plays the role of global control variable previously postulated for the network of central oscillators. In fact, inter-segmental phase shifts systematically with increasing speed both in man (4) and cat (38). Because this phase-shift is correlated with the net mechanical power

  16. Walking Tips for Older Adults

    Science.gov (United States)

    ... you can continue your walking program. Don’t let a cane or walker stop you It’s OK to use your cane or walker if you already have one. These can improve your balance and help take the load off painful joints. Aim for the right pace Try to walk as fast as you ...

  17. Numerical twin image suppression by nonlinear segmentation mask in digital holography.

    Science.gov (United States)

    Cho, ChoongSang; Choi, ByeongHo; Kang, HoonJong; Lee, SangKeun

    2012-09-24

    The in-line holography has obvious advantages especially in wider spatial bandwidth over the off-axis holography. However, a direct current(DC)-noise and an unwanted twin image should be separated or eliminated in the in-line holography for a high quality reconstruction. An approach for suppressing the twin image is proposed by separating the real and twin image regions in the digital holography. Specifically, the initial region of real and twin images is obtained by a blind separation matrix, and the segmentation mask to suppress the twin image is calculated by nonlinear quantization from the segmented image. For the performance evaluation, the proposed method is compared with the existing approaches including the overlapping block variance and manual-based schemes. Experimental results showed that the proposed method has a better performance at the overlapped region of the real and twin images. Additionally, the proposed method causes less loss of real image than the overlapping block variance-based scheme. Therefore, we believe that the proposed scheme can be a useful tool for high quality reconstruction in the in-line holography.

  18. Quantum walks and search algorithms

    CERN Document Server

    Portugal, Renato

    2013-01-01

    This book addresses an interesting area of quantum computation called quantum walks, which play an important role in building quantum algorithms, in particular search algorithms. Quantum walks are the quantum analogue of classical random walks. It is known that quantum computers have great power for searching unsorted databases. This power extends to many kinds of searches, particularly to the problem of finding a specific location in a spatial layout, which can be modeled by a graph. The goal is to find a specific node knowing that the particle uses the edges to jump from one node to the next. This book is self-contained with main topics that include: Grover's algorithm, describing its geometrical interpretation and evolution by means of the spectral decomposition of the evolution operater Analytical solutions of quantum walks on important graphs like line, cycles, two-dimensional lattices, and hypercubes using Fourier transforms Quantum walks on generic graphs, describing methods to calculate the limiting d...

  19. walk around Irkutsk

    Directory of Open Access Journals (Sweden)

    Elena Grigoryeva

    2011-08-01

    Full Text Available It is noteworthy that this country develops through two types of events: either through a jubilee or through a catastrophe.It seems that Irkutsk Airport will be built only after the next crash. At least the interest to this problem returns regularly after sad events, and this occurs almost half a century (a jubilee, too! – the Council of Ministers decided to relocate the Airport away from the city as long ago as 1962. The Airport does not relate to the topic of this issue, but an attentive reader understands that it is our Carthage, and that the Airport should be relocated. The Romans coped with it faster and more effectively.Back to Irkutsk’s jubilee, we should say that we will do without blare of trumpets. We will just make an unpretentious walk around the city in its summer 350. Each our route covers new (some of them have been completed by the jubilee and old buildings, some of them real monuments. All these buildings are integrated into public spaces of different quality and age.We will also touch on the problems, for old houses, especially the wooden ones often provoke a greedy developer to demolish or to burn them down. Thus a primitive thrift estimates an output of additional square meters. Not to mention how attractive it is to seize public spaces without demolition or without reallocation of the dwellers. Or, rather, the one who is to preserve, to cherish and to improve such houses for the good of the citizens never speaks about this sensitive issue. So we have to do it.Walking is a no-hurry genre, unlike the preparation for the celebration. Walking around the city you like is a pleasant and cognitive process. It will acquaint the architects with the works of their predecessors and colleagues. We hope that such a walk may be interesting for Irkutsk citizens and visitors, too. Isn’t it interesting to learn “at first hand” the intimate details of the restoration of the Trubetskoys’ estate

  20. Walking for art's sake

    CERN Multimedia

    2005-01-01

    The man who compared himself to a proton ! On 20 May, Gianni Motti went down into the LHC tunnel and walked around the 27 kilometres of the underground ring at an average, unaccelerated pace of 5 kph. This was an artistic rather than an athletic performance, aimed at drawing a parallel between the fantastic speed of the beams produced by the future accelerator and the leisurely stroll of a human. The artist, who hails from Lombardy, was accompanied by cameraman Ivo Zanetti, who filmed the event from start to finish, and physicist Jean-Pierre Merlo. The first part of the film can be seen at the Villa Bernasconi, 8 route du Grand-Lancy, Grand Lancy, until 26 June.

  1. Walking for art's sake

    CERN Multimedia

    2005-01-01

      The man who compared himself to a proton ! On 20 May, Gianni Motti went down into the LHC tunnel and walked around the 27 kilometres of the underground ring at an average, unaccelerated pace of 5 kph. This was an artistic rather than an athletic performance, aimed at drawing a parallel between the fantastic speed of the beams produced by the future accelerator and the leisurely stroll of a human. The artist, who hails from Lombardy, was accompanied by cameraman Ivo Zanetti, who filmed the event from start to finish, and physicist Jean-Pierre Merlo. The first part of the film can be seen at the Villa Bernasconi, 8 route du Grand-Lancy, Grand Lancy, until 26 June.

  2. Human treadmill walking needs attention

    Directory of Open Access Journals (Sweden)

    Daniel Olivier

    2006-08-01

    Full Text Available Abstract Background The aim of the study was to assess the attentional requirements of steady state treadmill walking in human subjects using a dual task paradigm. The extent of decrement of a secondary (cognitive RT task provides a measure of the attentional resources required to maintain performance of the primary (locomotor task. Varying the level of difficulty of the reaction time (RT task is used to verify the priority of allocation of attentional resources. Methods 11 healthy adult subjects were required to walk while simultaneously performing a RT task. Participants were instructed to bite a pressure transducer placed in the mouth as quickly as possible in response to an unpredictable electrical stimulation applied on the back of the neck. Each subject was tested under five different experimental conditions: simple RT task alone and while walking, recognition RT task alone and while walking, walking alone. A foot switch system composed of a pressure sensitive sensor was placed under the heel and forefoot of each foot to determine the gait cycle duration. Results Gait cycle duration was unchanged (p > 0.05 by the addition of the RT task. Regardless of the level of difficulty of the RT task, the RTs were longer during treadmill walking than in sitting conditions (p 0.05 was found between the attentional demand of the walking task and the decrement of performance found in the RT task under varying levels of difficulty. This finding suggests that the healthy subjects prioritized the control of walking at the expense of cognitive performance. Conclusion We conclude that treadmill walking in young adults is not a purely automatic task. The methodology and outcome measures used in this study provide an assessment of the attentional resources required by walking on the treadmill at a steady state.

  3. Quantum walks on quotient graphs

    International Nuclear Information System (INIS)

    Krovi, Hari; Brun, Todd A.

    2007-01-01

    A discrete-time quantum walk on a graph Γ is the repeated application of a unitary evolution operator to a Hilbert space corresponding to the graph. If this unitary evolution operator has an associated group of symmetries, then for certain initial states the walk will be confined to a subspace of the original Hilbert space. Symmetries of the original graph, given by its automorphism group, can be inherited by the evolution operator. We show that a quantum walk confined to the subspace corresponding to this symmetry group can be seen as a different quantum walk on a smaller quotient graph. We give an explicit construction of the quotient graph for any subgroup H of the automorphism group and illustrate it with examples. The automorphisms of the quotient graph which are inherited from the original graph are the original automorphism group modulo the subgroup H used to construct it. The quotient graph is constructed by removing the symmetries of the subgroup H from the original graph. We then analyze the behavior of hitting times on quotient graphs. Hitting time is the average time it takes a walk to reach a given final vertex from a given initial vertex. It has been shown in earlier work [Phys. Rev. A 74, 042334 (2006)] that the hitting time for certain initial states of a quantum walks can be infinite, in contrast to classical random walks. We give a condition which determines whether the quotient graph has infinite hitting times given that they exist in the original graph. We apply this condition for the examples discussed and determine which quotient graphs have infinite hitting times. All known examples of quantum walks with hitting times which are short compared to classical random walks correspond to systems with quotient graphs much smaller than the original graph; we conjecture that the existence of a small quotient graph with finite hitting times is necessary for a walk to exhibit a quantum speedup

  4. Disorder and decoherence in coined quantum walks

    International Nuclear Information System (INIS)

    Zhang Rong; Qin Hao; Tang Bao; Xue Peng

    2013-01-01

    This article aims to provide a review on quantum walks. Starting form a basic idea of discrete-time quantum walks, we will review the impact of disorder and decoherence on the properties of quantum walks. The evolution of the standard quantum walks is deterministic and disorder introduces randomness to the whole system and change interference pattern leading to the localization effect. Whereas, decoherence plays the role of transmitting quantum walks to classical random walks. (topical review - quantum information)

  5. Walking drawings and walking ability in children with cerebral palsy.

    Science.gov (United States)

    Chong, Jimmy; Mackey, Anna H; Stott, N Susan; Broadbent, Elizabeth

    2013-06-01

    To investigate whether drawings of the self walking by children with cerebral palsy (CP) were associated with walking ability and illness perceptions. This was an exploratory study in 52 children with CP (M:F = 28:24), mean age 11.1 years (range 5-18), who were attending tertiary level outpatient clinics. Children were asked to draw a picture of themselves walking. Drawing size and content was used to investigate associations with clinical walk tests and children's own perceptions of their CP assessed using a CP version of the Brief Illness Perception Questionnaire. Larger drawings of the self were associated with less distance traveled, higher emotional responses to CP, and lower perceptions of pain or discomfort, independent of age. A larger self-to-overall drawing height ratio was related to walking less distance. Drawings of the self confined within buildings and the absence of other figures were also associated with reduced walking ability. Drawing size and content can reflect walking ability, as well as symptom perceptions and distress. Drawings may be useful for clinicians to use with children with cerebral palsy to aid discussion about their condition. PsycINFO Database Record (c) 2013 APA, all rights reserved.

  6. Measurement of rabbit eardrum vibration through stroboscopic digital holography

    Energy Technology Data Exchange (ETDEWEB)

    De Greef, Daniël; Dirckx, Joris J. J. [University of Antwerp, Laboratory of BioMedical Physics, Groenenborgerlaan 171, B-2020 Antwerp (Belgium)

    2014-05-27

    In this work, we present a setup for high-power single shot stroboscopic digital holography and demonstrate it in an application on rabbit eardrum vibration measurement. The setup is able to make full-field time-resolved measurements of vibrating surfaces with a precision in the nanometer range in a broad frequency range. The height displacement of the measured object is visualized over the entire surface as a function of time. Vibration magnitude and phase maps can be extracted from these data, the latter proving to be very useful to reveal phase delays across the surface. Such deviations from modal motion indicate energy losses due to internal damping, in contrast to purely elastic mechanics. This is of great interest in middle ear mechanics and finite element modelling. In our setup, short laser pulses are fired at selected instants within the surface vibration period and are recorded by a CCD camera. The timing of the pulses and the exposure of the camera are synchronized to the vibration phase by a microprocessor. The high-power frequency-doubled Nd:YAG laser produces pulses containing up to 5 mJ of energy, which is amply sufficient to record single-shot holograms. As the laser pulse length is 8 ns and the smallest time step of the trigger electronics is 1 μs, vibration measurements of frequencies up to 250 kHz are achievable through this method, provided that the maximum vibration amplitude exceeds a few nanometers. In our application, middle ear mechanics, measuring frequencies extend from 5 Hz to 20 kHz. The experimental setup will be presented, as well as results of measurements on a stretched circular rubber membrane and a rabbit's eardrum. Two of the challenges when measuring biological tissues, such as the eardrum, are low reflectivity and fast dehydration. To increase reflectivity, a coating is applied and to counteract the undesirable effects of tissue dehydration, the measurement setup and software have been optimized for speed without

  7. Application of acoustical holography for construction shadow images in ultrasonic testing

    International Nuclear Information System (INIS)

    Kutzner, J.; Zimpfer, J.

    1977-01-01

    The full-scale, three-dimensional presentation of material defects by means of acoustical holography is limited on the one hand by an insufficient resolving power in depth of the procedure and, on the other hand, by the fact that the defects of the material to be examined often reflect mirror-like. Examined is the possible range of reducing these limitations by means of constructing shadow images of defects in ultrasonic testing without - as it is usually done - reconstructing the sonic field reflected by the flow but reconstructing the sonic field diffracted at the flow by means of acoustical holography. It has been shown that acoustical holography, during which the amplitude information is always analyzed as well as - on principle - the phase information, improves the efficiency of ultrasonic testing to a large extent. (orig.) [de

  8. Observation of atomic arrangement by using photoelectron holography and atomic stereo-photograph

    International Nuclear Information System (INIS)

    Matsushita, Tomohiro; Guo, Fang Zhun; Agui, Akane; Matsui, Fumihiko; Daimon, Hiroshi

    2006-01-01

    Both a photoelectron holography and atomic stereo-photograph are the atomic structure analysis methods on the basis of photoelectron diffraction. They have six special features such as 1) direct determination of atomic structure, 2) measurement of three dimensional atomic arrangements surrounding of specific element in the sample, 3) determination of position of atom in spite of electron cloud, 4) unnecessary of perfect periodic structure, 5) good sensitivity of structure in the neighborhood of surface and 6) information of electron structure. Photoelectron diffraction, the principle and measurement system of photoelectron holography and atomic stereo-photograph is explained. As application examples of atomic stereo-photograph, the single crystal of cupper and graphite are indicated. For examples of photoelectron holography, Si(001)2p and Ge(001)3s are explained. (S.Y.)

  9. In-line digital holography with phase-shifting Greek-ladder sieves

    Science.gov (United States)

    Xie, Jing; Zhang, Junyong; Zhang, Yanli; Zhou, Shenlei; Zhu, Jianqiang

    2018-04-01

    Phase shifting is the key technique in in-line digital holography, but traditional phase shifters have their own limitations in short wavelength regions. Here, phase-shifting Greek-ladder sieves with amplitude-only modulation are introduced into in-line digital holography, which are essentially a kind of diffraction lens with three-dimensional array diffraction-limited foci. In the in-line digital holographic experiment, we design two kinds of sieves by lithography and verify the validity of their phase-shifting function by measuring a 1951 U.S. Air Force resolution test target and three-dimensional array foci. With advantages of high resolving power, low cost, and no limitations at shorter wavelengths, phase-shifting Greek-ladder sieves have great potential in X-ray holography or biochemical microscopy for the next generation of synchrotron light sources.

  10. Cave Holography – Out of the lab and under the ground

    International Nuclear Information System (INIS)

    Klayer, J

    2013-01-01

    This paper describes the combination of my hobbies, caving and holography. Most traditional holography involves bringing the objects to a lab with all the necessary holography equipment mounted on a stable table. I instead bring all the equipment assembled as a portable unit to the natural formations in a cave with the cave itself being the stable table. The first successes were Denisyuks made with a HeNe or laser diode and spatial filter mounted on a tripod. For greater depth, transmission holograms were made with a DPSS laser in several configurations sometimes using fiber optics to route the reference beam and sometimes a spatial filter and mirrors. The cave environment presents unique obstacles that have been overcome as evidenced by the beautiful holograms made.

  11. Photorefractive and computational holography in the experimental generation of Airy beams

    Science.gov (United States)

    Suarez, Rafael A. B.; Vieira, Tarcio A.; Yepes, Indira S. V.; Gesualdi, Marcos R. R.

    2016-05-01

    In this paper, we present the experimental generation of Airy beams via computational and photorefractive holography. Experimental generation of Airy beams using conventional optical components presents several difficulties and a practically infeasible. Thus, the optical generation of Airy beams has been made from the optical reconstruction of a computer generated hologram implemented by a spatial light modulator. In the photorefractive holography technique, being used for the first time to our knowledge, the hologram of an Airy beam is constructed (recorded) and reconstructed (read) optically in a nonlinear photorefractive medium. The Airy beam experimental realization was made by a setup of computational and photorefractive holography using a photorefractive Bi12 TiO20 crystal as holographic recording medium. Airy beams and Airy beam arrays were obtained experimentally in accordance with the predicted theory; with excellent prospects for applications in optical trapping and optical communications systems.

  12. Imaging live humans through smoke and flames using far-infrared digital holography.

    Science.gov (United States)

    Locatelli, M; Pugliese, E; Paturzo, M; Bianco, V; Finizio, A; Pelagotti, A; Poggi, P; Miccio, L; Meucci, R; Ferraro, P

    2013-03-11

    The ability to see behind flames is a key challenge for the industrial field and particularly for the safety field. Development of new technologies to detect live people through smoke and flames in fire scenes is an extremely desirable goal since it can save human lives. The latest technologies, including equipment adopted by fire departments, use infrared bolometers for infrared digital cameras that allow users to see through smoke. However, such detectors are blinded by flame-emitted radiation. Here we show a completely different approach that makes use of lensless digital holography technology in the infrared range for successful imaging through smoke and flames. Notably, we demonstrate that digital holography with a cw laser allows the recording of dynamic human-size targets. In this work, easy detection of live, moving people is achieved through both smoke and flames, thus demonstrating the capability of digital holography at 10.6 μm.

  13. Partition calculation for zero-order and conjugate image removal in digital in-line holography.

    Science.gov (United States)

    Ma, Lihong; Wang, Hui; Li, Yong; Jin, Hongzhen

    2012-01-16

    Conventional digital in-line holography requires at least two phase-shifting holograms to reconstruct an original object without zero-order and conjugate image noise. We present a novel approach in which only one in-line hologram and two intensity values (namely the object wave intensity and the reference wave intensity) are required. First, by subtracting the two intensity values the zero-order diffraction can be completely eliminated. Then, an algorithm, called partition calculation, is proposed to numerically remove the conjugate image. A preliminary experimental result is given to confirm the proposed method. The method can simplify the procedure of phase-shifting digital holography and improve the practical feasibility for digital in-line holography.

  14. Investigations of the efficiency of acoustical holography especially in comparison to focussed beams in NDT

    International Nuclear Information System (INIS)

    During the project, the basic knowledge for the practicable application of the linear acoustical holography has been developed. For the application and construction of focusing probes the most important parameters have been determined. The activities for the holography with numerical construction have been concentrated on the reconstruction procedure, the probes, the manipulation and the external controle of time gates. The optimal parameters for holographic scannings have been determined. Practical experiences are showing an acceptable agreement between reconstruction and real flaw sizes, depending on the kind and position of the flaws. The acoustical holography seems to be especially suited for the determination of flaw extensions in depth whereas focusing probes can be applied with more advantage for the extensions in length. (orig.) [de

  15. ELECTRON HOLOGRAPHY OF ELECTROMAGNETIC FIELDS - RECENT THEORETICAL ADVANCES.

    Energy Technology Data Exchange (ETDEWEB)

    BELEGGIA,M.; POZZI, G.; TONOMURA, A.

    2007-01-01

    It has been shown in this work that the Fourier space approach can be fruitfully applied to the calculation of the fields and the associated electron optical phase shift of several magnetic and electrostatic structures, like superconducting vortices in conventional and high-T{sub c} superconductors, reverse biased p-n junctions, magnetic domains and nanoparticles. In all these cases, this novel approach has led to unexpected but extremely interesting results, very often expressed in analytical form, which allow the quantitative and reliable interpretation of the experimental data collected by means of electron holography or of more conventional Lorentz microscopy techniques. Moreover, it is worth recalling that whenever long-range electromagnetic fields are involved, a physical model of the object under investigation is necessary in order to take into account correctly the perturbation of the reference wave induced by the tail of the field protruding into the vacuum. For these reasons, we believe that the Fourier space approach for phase computations we have introduced and discussed in this chapter will represent an invaluable tool for the investigation of electromagnetic fields at the meso- and nano-scale.

  16. Light-Front Holography and AdS/QCD Correspondence

    Energy Technology Data Exchange (ETDEWEB)

    Brodsky, Stanley J.; de Teramond, Guy F.

    2008-04-23

    Light-Front Holography is a remarkable consequence of the correspondence between string theory in AdS space and conformal field theories in physical-space time. It allows string modes {Phi}(z) in the AdS fifth dimension to be precisely mapped to the light-front wavefunctions of hadrons in terms of a specific light-front impact variable {zeta} which measures the separation of the quark and gluonic constituents within the hadron. This mapping was originally obtained by matching the exact expression for electromagnetic current matrix elements in AdS space with the corresponding exact expression for the current matrix element using light-front theory in physical space-time. More recently we have shown that one obtains the identical holographic mapping using matrix elements of the energy-momentum tensor, thus providing an important consistency test and verification of holographic mapping from AdS to physical observables defined on the light-front. The resulting light-front Schrodinger equations predicted from AdS/QCD give a good representation of the observed meson and baryon spectra and give excellent phenomenological predictions for amplitudes such as electromagnetic form factors and decay constants.

  17. Digital reflection holography based systems development for MEMS testing

    Science.gov (United States)

    Singh, Vijay Raj; Liansheng, Sui; Asundi, Anand

    2010-05-01

    MEMS are tiny mechanical devices that are built onto semiconductor chips and are measured in micrometers and nanometers. Testing of MEMS device is an important part in carrying out their functional assessment and reliability analysis. Development of systems based on digital holography (DH) for MEMS inspection and characterization is presented in this paper. Two DH reflection systems, table-top and handheld types, are developed depending on the MEMS measurement requirements and their capabilities are presented. The methodologies for the systems are developed for 3D profile inspection and static & dynamic measurements, which is further integrated with in-house developed software that provides the measurement results in near real time. The applications of the developed systems are demonstrated for different MEMS devices for 3D profile inspection, static deformation/deflection measurements and vibration analysis. The developed systems are well suitable for the testing of MEMS and Microsystems samples, with full-field, static & dynamic inspection as well as to monitor micro-fabrication process.

  18. Photoelectron diffraction and holography: Present status and future prospects

    Energy Technology Data Exchange (ETDEWEB)

    Fadley, C.S. [California Univ., Davis, CA (United States). Dept. of Physics]|[Lawrence Berkeley Lab., CA (United States); Thevuthasan, S. [California Univ., Davis, CA (United States). Dept. of Physics; Kaduwela, A.P. [Lawrence Berkeley Lab., CA (United States)] [and others

    1993-07-01

    Photoelectron diffraction and photoelectron holography, a newly developed variant of it, can provide a rich range of information concerning surface structure. These methods are sensitive to atomic type, chemical state, and spin state. The theoretical prediction of diffraction patterns is also well developed at both the single scattering and multiple scattering levels, and quantitative fits of experiment to theory can lead to structures with accuracies in the {plus_minus}0.03 {Angstrom} range. Direct structural information can also be derived from forward scattering in scanned-angle measurements at higher energies, path length differences contained in scanned-energy data at lower energies, and holographic inversions of data sets spanning some region in angle and energy space. Diffraction can also affect average photoelectron emission depths. Circular dichroism in core-level emission can be fruitfully interpreted in terms of photoelectron diffraction theory, as can measurements with spin-resolved core-spectra, and studies of surface magnetic structures and phase transitions should be possible with these methods. Synchrotron radiation is a key element of fully utilizing these techniques.

  19. How hummingbirds hum: Acoustic holography of hummingbirds during maneuvering flight

    Science.gov (United States)

    Hightower, Ben; Wijnings, Patrick; Ingersoll, Rivers; Chin, Diana; Scholte, Rick; Lentink, David

    2017-11-01

    Hummingbirds make a characteristic humming sound when they flap their wings. The physics and the biological significance of hummingbird aeroacoustics is still poorly understood. We used acoustic holography and high-speed cameras to determine the acoustic field of six hummingbirds while they either hovered stationary in front of a flower or maneuvered to track flower motion. We used a robotic flower that oscillated either laterally or longitudinally with a linear combination of 20 different frequencies between 0.2 and 20 Hz, a range that encompasses natural flower vibration frequencies in wind. We used high-speed marker tracking to dissect the transfer function between the moving flower, the head, and body of the bird. We also positioned four acoustic arrays equipped with 2176 microphones total above, below, and in front of the hummingbird. Acoustic data from the microphones were back-propagated to planes adjacent to the hummingbird to create the first real-time holograms of the pressure field a hummingbird generates in vivo. Integration of all this data offers insight into how hummingbirds modulate the acoustic field during hovering and maneuvering flight.

  20. Inspection using high resolution holography of large volumes

    International Nuclear Information System (INIS)

    Tozer, B.A.; Webster, J.M.

    With a potential information storage density of 10 16 bits/m 2 , the ability to reconstruct in 3 dimensions, extremely wide angle of view, and potentially diffraction limited resolution, holography should be invaluable for the optical inspection and recording of normally inaccessible regions of nuclear power stations. This paper describes some possible applications and reviews a variety of practical problems which must be overcome if the potential is to be realised. Microscopic analysis of reconstructed real images of whole structures, recorded on a single photographic plate can be carried out at leisure to reveal cracks not visible to the naked eye on the original subject. Holograms of AGR fuel elements show a depth of field greater than the length of the element, with a resolution of about 10 μm at the nearest point and better than 300 μm on the rear grid being obtainable from one hologram. Factors limiting resolution, quality and reliability of holograms are discussed and some results presented which indicate the present boundaries of practical achievement in this promising field. (author)

  1. Resurgence and hydrodynamic attractors in Gauss-Bonnet holography

    Science.gov (United States)

    Casalderrey-Solana, Jorge; Gushterov, Nikola I.; Meiring, Ben

    2018-04-01

    We study the convergence of the hydrodynamic series in the gravity dual of Gauss-Bonnet gravity in five dimensions with negative cosmological constant via holography. By imposing boost invariance symmetry, we find a solution to the Gauss-Bonnet equation of motion in inverse powers of the proper time, from which we can extract high order corrections to Bjorken flow for different values of the Gauss-Bonnet parameter λGB. As in all other known examples the gradient expansion is, at most, an asymptotic series which can be understood through applying the techniques of Borel-Padé summation. As expected from the behaviour of the quasi-normal modes in the theory, we observe that the singularities in the Borel plane of this series show qualitative features that interpolate between the infinitely strong coupling limit of N=4 Super Yang Mills theory and the expectation from kinetic theory. We further perform the Borel resummation to constrain the behaviour of hydrodynamic attractors beyond leading order in the hydrodynamic expansion. We find that for all values of λGB considered, the convergence of different initial conditions to the resummation and its hydrodynamization occur at large and comparable values of the pressure anisotropy.

  2. Holography and quantum states in elliptic de Sitter space

    Energy Technology Data Exchange (ETDEWEB)

    Halpern, Illan F. [Department of Physics, University of California,Berkeley, CA, 94720 (United States); Neiman, Yasha [Perimeter Institute for Theoretical Physics,31 Caroline Street N, Waterloo, ON, N2L 2Y5 (Canada)

    2015-12-10

    We outline a program for interpreting the higher-spin dS/CFT model in terms of physics in the causal patch of a dS observer. The proposal is formulated in “elliptic” de Sitter space dS{sub 4}/ℤ{sub 2}, obtained by identifying antipodal points in dS{sub 4}. We discuss recent evidence that the higher-spin model is especially well-suited for this, since the antipodal symmetry of bulk solutions has a simple encoding on the boundary. For context, we test some other (free and interacting) theories for the same property. Next, we analyze the notion of quantum field states in the non-time-orientable dS{sub 4}/ℤ{sub 2}. We compare the physics seen by different observers, with the outcome depending on whether they share an arrow of time. Finally, we implement the marriage between higher-spin holography and observers in dS{sub 4}/ℤ{sub 2}, in the limit of free bulk fields. We succeed in deriving an observer’s operator algebra and Hamiltonian from the CFT, but not her S-matrix. We speculate on the extension of this to interacting higher-spin theory.

  3. Refocusing criterion via sparsity measurements in digital holography.

    Science.gov (United States)

    Memmolo, Pasquale; Paturzo, Melania; Javidi, Bahram; Netti, Paolo A; Ferraro, Pietro

    2014-08-15

    Several automatic approaches have been proposed in the past to compute the refocus distance in digital holography (DH). However most of them are based on a maximization or minimization of a suitable amplitude image contrast measure, regarded as a function of the reconstruction distance parameter. Here we show that, by using the sparsity measure coefficient regarded as a refocusing criterion in the holographic reconstruction, it is possible to recover the focus plane and, at the same time, establish the degree of sparsity of digital holograms, when samples of the diffraction Fresnel propagation integral are used as a sparse signal representation. We employ a sparsity measurement coefficient known as Gini's index thus showing for the first time, to the best of our knowledge, its application in DH, as an effective refocusing criterion. Demonstration is provided for different holographic configurations (i.e., lens and lensless apparatus) and for completely different objects (i.e., a thin pure phase microscopic object as an in vitro cell, and macroscopic puppets) preparation.

  4. Digital Holography, a metrological tool for quantitative analysis: Trends and future applications

    Science.gov (United States)

    Paturzo, Melania; Pagliarulo, Vito; Bianco, Vittorio; Memmolo, Pasquale; Miccio, Lisa; Merola, Francesco; Ferraro, Pietro

    2018-05-01

    A review on the last achievements of Digital Holography is reported in this paper, showing that this powerful method can be a key metrological tool for the quantitative analysis and non-invasive inspection of a variety of materials, devices and processes. Nowadays, its range of applications has been greatly extended, including the study of live biological matter and biomedical applications. This paper overviews the main progresses and future perspectives of digital holography, showing new optical configurations and investigating the numerical issues to be tackled for the processing and display of quantitative data.

  5. Supersonic acoustic intensity with statistically optimized near-field acoustic holography

    DEFF Research Database (Denmark)

    Fernandez Grande, Efren; Jacobsen, Finn

    2011-01-01

    The concept of supersonic acoustic intensity was introduced some years ago for estimating the fraction of the flow of energy radiated by a source that propagates to the far field. It differs from the usual (active) intensity by excluding the near-field energy resulting from evanescent waves...... to the information provided by the near-field acoustic holography technique. This study proposes a version of the supersonic acoustic intensity applied to statistically optimized near-field acoustic holography (SONAH). The theory, numerical results and an experimental study are presented. The possibility of using...

  6. Atomic resolution electrostatic potential mapping of graphene sheets by off-axis electron holography

    Energy Technology Data Exchange (ETDEWEB)

    Cooper, David, E-mail: david.cooper@cea.fr [University Grenoble Alpes, F-38000 Grenoble (France); CEA, LETI, MINATEC Campus, F-38054, Grenoble (France); Pan, Cheng-Ta; Haigh, Sarah [School of Materials, The University of Manchester, Manchester M13 9PL (United Kingdom)

    2014-06-21

    Off-axis electron holography has been performed at atomic resolution with the microscope operated at 80 kV to provide electrostatic potential maps from single, double, and triple layer graphene. These electron holograms have been reconstructed in order to obtain information about atomically resolved and mean inner potentials. We propose that off-axis electron holography can now be used to measure the electrical properties in a range of two-dimensional semiconductor materials and three dimensional devices comprising stacked layers of films to provide important information about their electrical properties.

  7. Electron holography studies of the charge on dislocations in GaN

    Energy Technology Data Exchange (ETDEWEB)

    Cherns, D.; Jiao, C.G.; Mokhtari, H. [H.H. Wills Physics Laboratory, University of Bristol, Tyndall Avenue, Bristol BS8 1TL (United Kingdom); Cai, J.; Ponce, F.A. [Department of Physics and Astronomy, Arizona State University, Tempe, AZ85287 (United States)

    2002-12-01

    The measurement of charge on dislocations in GaN by electron holography is described. Recent results are presented showing that edge dislocations in n-doped GaN are highly negatively charged, whereas those in p-doped GaN are positively charged. It is shown that the results are consistent with a model which assumes Fermi level pinning at dislocation states about 2.5 V below the conduction band edge. The application of electron holography to screw dislocations, and the dependence of the observations on the dislocation core structure, are also discussed. (Abstract Copyright [2002], Wiley Periodicals, Inc.)

  8. Split-illumination electron holography for improved evaluation of electrostatic potential associated with electrophotography

    Energy Technology Data Exchange (ETDEWEB)

    Tanigaki, Toshiaki, E-mail: tanigaki-toshiaki@riken.jp; Aizawa, Shinji; Soon Park, Hyun [Center for Emergent Matter Science (CEMS), RIKEN, Hirosawa 2-1, Wako, Saitama 351-0198 (Japan); Sato, Kuniaki; Akase, Zentaro [Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Katahira 2-1-1, Sendai 980-8577 (Japan); Matsuda, Tsuyoshi [Japan Science and Technology Agency, Kawaguchi, Saitama 332-0012 (Japan); Murakami, Yasukazu; Shindo, Daisuke [Center for Emergent Matter Science (CEMS), RIKEN, Hirosawa 2-1, Wako, Saitama 351-0198 (Japan); Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Katahira 2-1-1, Sendai 980-8577 (Japan); Kawase, Hiromitsu [Product Environment Technology Development Department, Environment and Energy Technology Development Center R and D Group, RICOH Co., Ltd., Shinei-cho, Tsuzuki-ku, Yokohama, Kanagawa 224-0035 (Japan)

    2014-03-31

    Precise evaluation of the electrostatic potential distributions of and around samples with multiple charges using electron holography has long been a problem due to unknown perturbation of the reference wave. Here, we report the first practical application of split-illumination electron holography (SIEH) to tackle this problem. This method enables the use of a non-perturbed reference wave distant from the sample. SIEH revealed the electrostatic potential distributions at interfaces of the charged particles used for development in electrophotography and should lead to dramatic improvements in electrophotography.

  9. Subcycle interference dynamics of time-resolved photoelectron holography with midinfrared laser pulses

    International Nuclear Information System (INIS)

    Bian Xuebin; Yuan, Kai-Jun; Bandrauk, Andre D.; Huismans, Y.; Smirnova, O.; Vrakking, M. J. J.

    2011-01-01

    Time-resolved photoelectron holography from atoms using midinfrared laser pulses is investigated by solving the corresponding time-dependent Schroedinger equation (TDSE) and a classical model, respectively. The numerical simulation of the photoelectron angular distribution of Xe irradiated with a low-frequency free-electron laser source agrees well with the experimental results. Different types of subcycle interferometric structures are predicted by the classical model. Furthermore with the TDSE model it is demonstrated that the holographic pattern is sensitive to the shape of the atomic orbitals. This is a step toward imaging by means of photoelectron holography.

  10. Single-shot femtosecond-pulsed phase-shifting digital holography.

    Science.gov (United States)

    Kakue, Takashi; Itoh, Seiya; Xia, Peng; Tahara, Tatsuki; Awatsuji, Yasuhiro; Nishio, Kenzo; Ura, Shogo; Kubota, Toshihiro; Matoba, Osamu

    2012-08-27

    Parallel phase-shifting digital holography is capable of three-dimensional measurement of a dynamically moving object with a single-shot recording. In this letter, we demonstrated a parallel phase-shifting digital holography using a single femtosecond light pulse whose central wavelength and temporal duration were 800 nm and 96 fs, respectively. As an object, we set spark discharge in atmospheric pressure air induced by applying a high voltage to between two electrodes. The instantaneous change in phase caused by the spark discharge was clearly reconstructed. The reconstructed phase image shows the change of refractive index of air was -3.7 × 10(-4).

  11. Atomic resolution electrostatic potential mapping of graphene sheets by off-axis electron holography

    International Nuclear Information System (INIS)

    Cooper, David; Pan, Cheng-Ta; Haigh, Sarah

    2014-01-01

    Off-axis electron holography has been performed at atomic resolution with the microscope operated at 80 kV to provide electrostatic potential maps from single, double, and triple layer graphene. These electron holograms have been reconstructed in order to obtain information about atomically resolved and mean inner potentials. We propose that off-axis electron holography can now be used to measure the electrical properties in a range of two-dimensional semiconductor materials and three dimensional devices comprising stacked layers of films to provide important information about their electrical properties.

  12. Highly efficient and broadband wide-angle holography using patch-dipole nanoantenna reflectarrays.

    Science.gov (United States)

    Yifat, Yuval; Eitan, Michal; Iluz, Zeev; Hanein, Yael; Boag, Amir; Scheuer, Jacob

    2014-05-14

    We demonstrate wide-angle, broadband, and efficient reflection holography by utilizing coupled dipole-patch nanoantenna cells to impose an arbitrary phase profile on the reflected light. High-fidelity images were projected at angles of 45 and 20° with respect to the impinging light with efficiencies ranging between 40-50% over an optical bandwidth exceeding 180 nm. Excellent agreement with the theoretical predictions was found at a wide spectral range. The demonstration of such reflectarrays opens new avenues toward expanding the limits of large-angle holography.

  13. X-ray fluorescence holography: A different approach to data collection

    International Nuclear Information System (INIS)

    Busetto, E.; Kopecky, M.; Lausi, A.; Menk, R.H.; Miculin, M.; Savoia, A.

    2000-01-01

    The images of nearest neighbors of gallium atoms in a GaAs crystal were obtained by the x-ray fluorescence holography technique. The fluorescence from gallium atoms was selected by means of a thin zinc foil filter that made possible the use of an x-ray silicon photodiode detector without energy resolution. This method makes possible the detection of a much higher signal with respect to all previous experiments, thus reducing drastically measuring times, that is a basic and essential step from contemporary demonstration experiments to possible practical applications of x-ray holography in structure analysis

  14. Microscopy imaging and quantitative phase contrast mapping in turbid microfluidic channels by digital holography.

    Science.gov (United States)

    Paturzo, Melania; Finizio, Andrea; Memmolo, Pasquale; Puglisi, Roberto; Balduzzi, Donatella; Galli, Andrea; Ferraro, Pietro

    2012-09-07

    We show that sharp imaging and quantitative phase-contrast microcopy is possible in microfluidics in flowing turbid media by digital holography. In fact, in flowing liquids with suspended colloidal particles, clear vision is hindered and cannot be recovered by any other microscopic imaging technique. On the contrary, using digital holography, clear imaging is possible thanks to the Doppler frequency shift experienced by the photons scattered by the flowing colloidal particles, which do not contribute to the interference process, i.e. the recorded hologram. The method is illustrated and imaging results are demonstrated for pure phase objects, i.e. biological cells in microfluidic channels.

  15. Split-illumination electron holography for improved evaluation of electrostatic potential associated with electrophotography

    International Nuclear Information System (INIS)

    Tanigaki, Toshiaki; Aizawa, Shinji; Soon Park, Hyun; Sato, Kuniaki; Akase, Zentaro; Matsuda, Tsuyoshi; Murakami, Yasukazu; Shindo, Daisuke; Kawase, Hiromitsu

    2014-01-01

    Precise evaluation of the electrostatic potential distributions of and around samples with multiple charges using electron holography has long been a problem due to unknown perturbation of the reference wave. Here, we report the first practical application of split-illumination electron holography (SIEH) to tackle this problem. This method enables the use of a non-perturbed reference wave distant from the sample. SIEH revealed the electrostatic potential distributions at interfaces of the charged particles used for development in electrophotography and should lead to dramatic improvements in electrophotography

  16. Big power from walking

    Science.gov (United States)

    Illenberger, Patrin K.; Madawala, Udaya K.; Anderson, Iain A.

    2016-04-01

    Dielectric Elastomer Generators (DEG) offer an opportunity to capture the energy otherwise wasted from human motion. By integrating a DEG into the heel of standard footwear, it is possible to harness this energy to power portable devices. DEGs require substantial auxiliary systems which are commonly large, heavy and inefficient. A unique challenge for these low power generators is the combination of high voltage and low current. A void exists in the semiconductor market for devices that can meet these requirements. Until these become available, existing devices must be used in an innovative way to produce an effective DEG system. Existing systems such as the Bi-Directional Flyback (BDFB) and Self Priming Circuit (SPC) are an excellent example of this. The BDFB allows full charging and discharging of the DEG, improving power gained. The SPC allows fully passive voltage boosting, removing the priming source and simplifying the electronics. This paper outlines the drawbacks and benefits of active and passive electronic solutions for maximizing power from walking.

  17. The Dead Walk

    Directory of Open Access Journals (Sweden)

    Bill Phillips

    2014-02-01

    Full Text Available Monsters have always enjoyed a significant presence in the human imagination, and religion was instrumental in replacing the physical horror they engendered with that of a moral threat. Zombies, however, are amoral – their motivation purely instinctive and arbitrary, yet they are, perhaps, the most loathed of all contemporary monsters. One explanation for this lies in the theory of the uncanny valley, proposed by robotics engineer Masahiro Mori. According to the theory, we reserve our greatest fears for those things which seem most human, yet are not – such as dead bodies. Such a reaction is most likely a survival mechanism to protect us from danger and disease – a mechanism even more essential when the dead rise up and walk. From their beginnings zombies have reflected western societies’ greatest fears – be they of revolutionary Haitians, women, or communists. In recent years the rise in the popularity of the zombie in films, books and television series reflects our fears for the planet, the economy, and of death itself

  18. Walking around to grasp interaction

    DEFF Research Database (Denmark)

    Lykke, Marianne; Jantzen, Christian

    2013-01-01

    The paper presents experiences from a study using walk-alongs to provide insight into museum visitors’ experience with interactive features of sound art installations. The overall goal of the study was to learn about the participants’ opinions and feelings about the possibility of interaction...... with the sound installations. The aim was to gain an understanding of the role of the in-teraction, if interaction makes a difference for the understanding of the sound art. 30 walking interviews were carried out at ZKM, Karlsruhe with a total of 57 museum guests, individuals or groups. During the walk......-alongs the research-ers acted as facilitators and partners in the engagement with the sound installa-tions. The study provided good insight into advantages and challenges with the walk-along method, for instance the importance of shared, embodied sensing of space for the understanding of the experience. The common...

  19. Quantum snake walk on graphs

    International Nuclear Information System (INIS)

    Rosmanis, Ansis

    2011-01-01

    I introduce a continuous-time quantum walk on graphs called the quantum snake walk, the basis states of which are fixed-length paths (snakes) in the underlying graph. First, I analyze the quantum snake walk on the line, and I show that, even though most states stay localized throughout the evolution, there are specific states that most likely move on the line as wave packets with momentum inversely proportional to the length of the snake. Next, I discuss how an algorithm based on the quantum snake walk might potentially be able to solve an extended version of the glued trees problem, which asks to find a path connecting both roots of the glued trees graph. To the best of my knowledge, no efficient quantum algorithm solving this problem is known yet.

  20. Vanilla Technicolor at Linear Colliders

    DEFF Research Database (Denmark)

    T. Frandsen, Mads; Jarvinen, Matti; Sannino, Francesco

    2011-01-01

    We analyze the reach of Linear Colliders (LC)s for models of dynamical electroweak symmetry breaking. We show that LCs can efficiently test the compositeness scale, identified with the mass of the new spin-one resonances, till the maximum energy in the center-of-mass of the colliding leptons. In ...

  1. Grand unification theory and technicolor

    International Nuclear Information System (INIS)

    Rubakov, V.A.; Shaposhnikov, M.E.

    1983-01-01

    The lecture course can be considered as introduction to the problems concerning grand unification models. The course is incomplete. Such problems as CP-violations in strong interactions and the problem of gravitational interaction inclusion in the scheme of grand unification theory are not touched upon. Models of early unification, in which strong, weak and electromagnetic interactions are compared according to the ''strength'' at energies of about 10 5 -10 6 GeV, are not discussed. Models with horizontal symmetry, considering different generations of quarks and leptons from one viewpoint, are not analyzed. Cosmological applications of supersymmetric unified theories are not considered. Certain problems of standard elementary particle theory, philosophy of the great unification, general properties of the grand unification models and the main principles of the construction of models: the SU(5) model, models on the SO(10) groups, have been considered. The problem of supersymmetric unification hierarchies, supersymmetric generalization of the minimum SU(5) model, supersymmetry violation and the problem of hierarchies, phenomenology of the o.rand unification models, cosmological application and technicolour, are discussed

  2. Minimal Flavor Constraints for Technicolor

    DEFF Research Database (Denmark)

    Sakuma, Hidenori; Sannino, Francesco

    2010-01-01

    We analyze the constraints on the the vacuum polarization of the standard model gauge bosons from a minimal set of flavor observables valid for a general class of models of dynamical electroweak symmetry breaking. We will show that the constraints have a strong impact on the self-coupling and mas......We analyze the constraints on the the vacuum polarization of the standard model gauge bosons from a minimal set of flavor observables valid for a general class of models of dynamical electroweak symmetry breaking. We will show that the constraints have a strong impact on the self...

  3. Mixed dark matter from technicolor

    DEFF Research Database (Denmark)

    Belyaev, Alexander; T. Frandsen, Mads; Sannino, Francesco

    2011-01-01

    We study natural composite cold dark matter candidates which are pseudo Nambu-Goldstone bosons (pNGB) in models of dynamical electroweak symmetry breaking. Some of these can have a significant thermal relic abundance, while others must be mainly asymmetric dark matter. By considering the thermal...... abundance alone we find a lower bound of MW on the pNGB mass when the (composite) Higgs is heavier than 115 GeV. Being pNGBs, the dark matter candidates are in general light enough to be produced at the LHC....

  4. Analysis of absorbing times of quantum walks

    International Nuclear Information System (INIS)

    Yamasaki, Tomohiro; Kobayashi, Hirotada; Imai, Hiroshi

    2003-01-01

    Quantum walks are expected to provide useful algorithmic tools for quantum computation. This paper introduces absorbing probability and time of quantum walks and gives both numerical simulation results and theoretical analyses on Hadamard walks on the line and symmetric walks on the hypercube from the viewpoint of absorbing probability and time

  5. Random walk through fractal environments

    International Nuclear Information System (INIS)

    Isliker, H.; Vlahos, L.

    2003-01-01

    We analyze random walk through fractal environments, embedded in three-dimensional, permeable space. Particles travel freely and are scattered off into random directions when they hit the fractal. The statistical distribution of the flight increments (i.e., of the displacements between two consecutive hittings) is analytically derived from a common, practical definition of fractal dimension, and it turns out to approximate quite well a power-law in the case where the dimension D F of the fractal is less than 2, there is though, always a finite rate of unaffected escape. Random walks through fractal sets with D F ≤2 can thus be considered as defective Levy walks. The distribution of jump increments for D F >2 is decaying exponentially. The diffusive behavior of the random walk is analyzed in the frame of continuous time random walk, which we generalize to include the case of defective distributions of walk increments. It is shown that the particles undergo anomalous, enhanced diffusion for D F F >2 is normal for large times, enhanced though for small and intermediate times. In particular, it follows that fractals generated by a particular class of self-organized criticality models give rise to enhanced diffusion. The analytical results are illustrated by Monte Carlo simulations

  6. Feasibility study of complex wavefield retrieval in off-axis acoustic holography employing an acousto-optic sensor.

    Science.gov (United States)

    Rodríguez, Guillermo López; Weber, Joshua; Sandhu, Jaswinder Singh; Anastasio, Mark A

    2011-12-01

    We propose and experimentally demonstrate a new method for complex-valued wavefield retrieval in off-axis acoustic holography. The method involves use of an intensity-sensitive acousto-optic (AO) sensor, optimized for use at 3.3 MHz, to record the acoustic hologram and a computational method for reconstruction of the object wavefield. The proposed method may circumvent limitations of conventional implementations of acoustic holography and may facilitate the development of acoustic-holography-based biomedical imaging methods. Copyright © 2011 Elsevier B.V. All rights reserved.

  7. Numerical suppression of the twin image in in-line holography of a volume of micro-objects

    International Nuclear Information System (INIS)

    Denis, L; Fournier, C; Fournel, T; Ducottet, C

    2008-01-01

    We address the twin-image problem that arises in holography due to the lack of phase information in intensity measurements. This problem is of great importance in in-line holography where spatial elimination of the twin image cannot be carried out as in off-axis holography. A unifying description of existing digital suppression methods is given in the light of deconvolution techniques. Holograms of objects spread in 3D cannot be processed through available approaches. We suggest an iterative algorithm and demonstrate its efficacy on both simulated and real data. This method is suitable to enhance the reconstructed images from a digital hologram of small objects

  8. Mass-deformed ABJM theory and LLM geometries: exact holography

    Energy Technology Data Exchange (ETDEWEB)

    Jang, Dongmin; Kim, Yoonbai; Kwon, O-Kab [Department of Physics, BK21 Physics Research Division,Institute of Basic Science, Sungkyunkwan University,Suwon 440-746 (Korea, Republic of); Tolla, D.D. [Department of Physics, BK21 Physics Research Division,Institute of Basic Science, Sungkyunkwan University,Suwon 440-746 (Korea, Republic of); University College, Sungkyunkwan University,Suwon 440-746 (Korea, Republic of)

    2017-04-19

    We present a detailed account and extension of our claim in https://arxiv.org/abs/1610.01490. We test the gauge/gravity duality between the N=6 mass-deformed ABJM theory with U{sub k}(N)×U{sub −k}(N) gauge symmetry and the 11-dimensional supergravity on LLM geometries with SO(4)/ℤ{sub k}×SO(4)/ℤ{sub k} isometry, in the large N limit. Our analysis is based on the evaluation of vacuum expectation values of chiral primary operators from the supersymmetric vacua of mass-deformed ABJM theory and from the implementation of Kaluza-Klein holography to the LLM geometries. We focus on the chiral primary operator with conformal dimension Δ=1. We show that 〈O{sup (Δ=1)}〉=N{sup (3/2)} f{sub (Δ=1)} for all supersymmetric vacuum solutions and LLM geometries with k=1, where the factor f{sub (Δ)} is independent of N. We also confirm that the vacuum expectation value of the energy momentum tensor is vanishing as expected by the supersymmetry. We extend our results to the case of k≠1 for LLM geometries represented by rectangular-shaped Young-diagrams. In analogy with the Coulomb branch of the N=4 super Yang-Mills theory, we argue that the discrete Higgs vacua of the mABJM theory as well as the corresponding LLM geometries are parametrized by the vevs of the chiral primary operators.

  9. Remote interferometry by digital holography for shape control

    Science.gov (United States)

    Baumbach, Torsten; Osten, Wolfgang; Falldorf, Claas; Jueptner, Werner P. O.

    2002-06-01

    Modern production requires more and more effective methods for the inspection and quality control at the production place. Outsourcing and globalization result in possible large distances between co-operating partners. This may cause serious problems with respect to the just-in-time exchange of information and the response to possible violations of quality standards. Consequently new challenges arise for optical measurement techniques especially in the field of industrial shape control. A possible solution for these problems can be delivered by a technique that stores optically the full 3D information of the objects to be compared and where the data can be transported over large distances. In this paper we describe the progress in implementing a new technique for the direct comparison of the shape and deformation of two objects with different microstructure where it is not necessary that both samples are located at the same place. This is done by creating a coherent mask for the illumination of the sample object. The coherent mask is created by Digital Holography to enable the instant access to the complete optical information of the master object at any wanted place. The transmission of the digital master holograms to this place can be done via digital telecommunication networks. The comparison can be done in a digital or analogue way. Both methods result in a disappearance of the object shape and the appearance of the shape or deformation difference between the two objects only. The analogue reconstruction of the holograms with a liquid crystal spatial light modulator can be done by using the light modulator as an intensity modulator or as an phase modulator. The reconstruction technique and the space bandwidth of the light modulator will influence the quality of the result. Therefore the paper describes the progress in applying modern spatial light modulators and digital cameras for the effective storage and optical reconstruction of coherent masks.

  10. Enhancing the beamforming map of spherical arrays at low frequencies using acoustic holography

    DEFF Research Database (Denmark)

    Tiana Roig, Elisabet; Torras Rosell, Antoni; Fernandez Grande, Efren

    2014-01-01

    Recent studies have shown that the localization of acoustic sources based on circular arrays can be improved at low frequencies by combining beamforming with acoustic holography. This paper extends this technique to the three dimensional case by making use of spherical arrays. The pressure captur...

  11. Near field acoustic holography based on the equivalent source method and pressure-velocity transducers

    DEFF Research Database (Denmark)

    Zhang, Y.-B.; Chen, X.-Z.; Jacobsen, Finn

    2009-01-01

    The advantage of using the normal component of the particle velocity rather than the sound pressure in the hologram plane as the input of conventional spatial Fourier transform based near field acoustic holography (NAH) and also as the input of the statistically optimized variant of NAH has recen...... generated by sources on the two sides of the hologram plane is also examined....

  12. Joint Applied Optics and Chinese Optics Letters feature introduction: digital holography and three-dimensional imaging

    OpenAIRE

    Poon, Ting-Chung

    2011-01-01

    This feature issue serves as a pilot issue promoting the joint issue of Applied Optics and Chinese Optics Letters. It focuses upon topics of current relevance to the community working in the area of digital holography and 3-D imaging. (C) 2011 Optical Society of America

  13. Joint Applied Optics and Chinese Optics Letters feature introduction: digital holography and three-dimensional imaging.

    Science.gov (United States)

    Poon, Ting-Chung

    2011-12-01

    This feature issue serves as a pilot issue promoting the joint issue of Applied Optics and Chinese Optics Letters. It focuses upon topics of current relevance to the community working in the area of digital holography and 3-D imaging. © 2011 Optical Society of America

  14. Holography microscopy as an artifact-free alternative to phase-contrast

    Czech Academy of Sciences Publication Activity Database

    Pastorek, Lukáš; Venit, Tomáš; Hozák, Pavel

    2018-01-01

    Roč. 149, č. 2 (2018), s. 179-186 ISSN 0948-6143 R&D Projects: GA MŠk(CZ) LM2015062 Institutional support: RVO:68378050 Keywords : Holography microscopy * Phase-contrast * Halo effect Subject RIV: EB - Genetics ; Molecular Biology OBOR OECD: Cell biology Impact factor: 2.553, year: 2016

  15. Optical sectioning using a digital Fresnel incoherent-holography-based confocal imaging system

    Science.gov (United States)

    Kelner, Roy; Katz, Barak; Rosen, Joseph

    2015-01-01

    We propose a new type of confocal microscope using Fresnel incoherent correlation holography (FINCH). Presented here is a confocal configuration of FINCH using a phase pinhole and point illumination that is able to suppress out-of-focus information from the recorded hologram and hence combine the super-resolution capabilities of FINCH with the sectioning capabilities of confocal microscopy. PMID:26413560

  16. Optical sectioning using a digital Fresnel incoherent-holography-based confocal imaging system

    OpenAIRE

    Kelner, Roy; Katz, Barak; Rosen, Joseph

    2014-01-01

    We propose a new type of confocal microscope using Fresnel incoherent correlation holography (FINCH). Presented here is a confocal configuration of FINCH using a phase pinhole and point illumination that is able to suppress out-of-focus information from the recorded hologram and hence combine the super-resolution capabilities of FINCH with the sectioning capabilities of confocal microscopy.

  17. Digital in-line holography assessment for general phase and opaque particle

    NARCIS (Netherlands)

    Coëtmellec, S.; Wichitwong, W.; Gréhan, G.; Lebrun, D.; Brunel, M.; Janssen, A.J.E.M.

    2014-01-01

    We propose using the circle polynomials to describe a particle’s transmission function in a digital holography setup. This allows both opaque and phase particles to be determined. By means of this description, we demonstrate that it is possible to estimate the digital in-line hologram produced by a

  18. Spatially and temporally resolved diagnostics of dense sprays using gated, femtosecond, digital holography

    Science.gov (United States)

    Trolinger, James D.; Dioumaev, Andrei K.; Ziaee, Ali; Minniti, Marco; Dunn-Rankin, Derek

    2017-08-01

    This paper describes research that demonstrated gated, femtosecond, digital holography, enabling 3D microscopic viewing inside dense, almost opaque sprays, and providing a new and powerful diagnostics capability for viewing fuel atomization processes never seen before. The method works by exploiting the extremely short coherence and pulse length (approximately 30 micrometers in this implementation) provided by a femtosecond laser combined with digital holography to eliminate multiple and wide angle scattered light from particles surrounding the injection region, which normally obscures the image of interest. Photons that follow a path that differs in length by more than 30 micrometers from a straight path through the field to the sensor do not contribute to the holographic recording of photons that travel in a near straight path (ballistic and "snake" photons). To further enhance the method, off-axis digital holography was incorporated to enhance signal to noise ratio and image processing capability in reconstructed images by separating the conjugate images, which overlap and interfere in conventional in-line holography. This also enables digital holographic interferometry. Fundamental relationships and limitations were also examined. The project is a continuing collaboration between MetroLaser and the University of California, Irvine.

  19. A Study Guide on Holography (Draft). Test Edition. AAAS Study Guides on Contemporary Problems.

    Science.gov (United States)

    Jeong, Tung H.

    This is one of several study guides on contemporary problems produced by the American Association for the Advancement of Science with support of the National Science Foundation. The primary purpose of this guide is to provide a student with sufficient practical and technical information to begin independently practicing holography, with occasional…

  20. AdS/QCD and Applications of Light-Front Holography

    DEFF Research Database (Denmark)

    Brodsky, S. J.; Cao, F. G.; de Teramond, G. F.

    2012-01-01

    Light-front holography leads to a rigorous connection between hadronic amplitudes in a higher dimensional anti-de Sitter (AdS) space and frame-independent light-front wavefunctions of hadrons in (3+1)-dimensional physical space-time, thus providing a compelling physical interpretation of the Ad...

  1. Near-Curie magnetic anomaly at the Ni/C interface observed by Electron Holography

    DEFF Research Database (Denmark)

    Ferrari, Loris; Matteucci, Giorgio; Schofield, Marvin A

    2010-01-01

    We analyze with electron holography carried out in a transmission electron microscope the near-Curie behavior of magnetism at the edge of a Nickel thin film coated with Carbon. In-situ experiments with finely controlled variations of the sample temperature reveal an anomaly in the ferromagnetic...

  2. Anomalous scattering and isomorphous replacement in X-ray diffuse scattering holography

    Czech Academy of Sciences Publication Activity Database

    Kopecký, Miloš; Kub, Jiří; Busetto, E.; Lausi, A.; Fábry, Jan; Šourek, Zbyněk

    2007-01-01

    Roč. 204, č. 8 (2007), s. 2572-2577 ISSN 1862-6300 R&D Projects: GA AV ČR IAA100100529; GA MŠk LA 287 Institutional research plan: CEZ:AV0Z10100523; CEZ:AV0Z10100520 Keywords : x-ray difuse scattering * x-ray holography Subject RIV: BM - Solid Matter Physics ; Magnetism

  3. Physical Principles of the Method for Determination of Geometrical Characteristics and Particle Recognition in Digital Holography

    Science.gov (United States)

    Dyomin, V. V.; Polovtsev, I. G.; Davydova, A. Yu.

    2018-03-01

    The physical principles of a method for determination of geometrical characteristics of particles and particle recognition based on the concepts of digital holography, followed by processing of the particle images reconstructed from the digital hologram, using the morphological parameter are reported. An example of application of this method for fast plankton particle recognition is given.

  4. Pedestrian Walking Behavior Revealed through a Random Walk Model

    Directory of Open Access Journals (Sweden)

    Hui Xiong

    2012-01-01

    Full Text Available This paper applies method of continuous-time random walks for pedestrian flow simulation. In the model, pedestrians can walk forward or backward and turn left or right if there is no block. Velocities of pedestrian flow moving forward or diffusing are dominated by coefficients. The waiting time preceding each jump is assumed to follow an exponential distribution. To solve the model, a second-order two-dimensional partial differential equation, a high-order compact scheme with the alternating direction implicit method, is employed. In the numerical experiments, the walking domain of the first one is two-dimensional with two entrances and one exit, and that of the second one is two-dimensional with one entrance and one exit. The flows in both scenarios are one way. Numerical results show that the model can be used for pedestrian flow simulation.

  5. Variable magnification dual lens electron holography for semiconductor junction profiling and strain mapping

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Y.Y., E-mail: wangyy@us.ibm.com [IBM Micro-electronics Division, Zip 40E, Hudson Valley Research Park, 2070 Route 52, Hopewell Junction, NY 12533 (United States); Li, J.; Domenicucci, A. [IBM Micro-electronics Division, Zip 40E, Hudson Valley Research Park, 2070 Route 52, Hopewell Junction, NY 12533 (United States); Bruley, J. [IBM TJ Watson Research Center, 1101 Kitchawan Road, Route 134 Yorktown Heights, NY 10598 (United States)

    2013-01-15

    Dual lens operation for electron holography, which was developed previously (Wang et al., Ultramicroscopy 101 (2004) 63-72; US patent: 7,015,469 B2 (2006)), is re-investigated for bright field (junction profiling) and dark field (strain mapping) electron holography using FEI instrumentation (i.e. F20 and Titan). It is found that dual lens operation provides a wide operational range for electron holography. In addition, the dark field image tilt increases at high objective lens current to include Si Left-Pointing-Angle-Bracket 0 0 4 Right-Pointing-Angle-Bracket diffraction spot. Under the condition of high spatial resolution (1 nm fringe spacing), a large field of view (450 nm), and high fringe contrast (26%) with dual lens operation, a junction map is obtained and strain maps of Si device on Left-Pointing-Angle-Bracket 2 2 0 Right-Pointing-Angle-Bracket and Left-Pointing-Angle-Bracket 0 0 4 Right-Pointing-Angle-Bracket diffraction are acquired. In this paper, a fringe quality number, N Prime , which is number of fringe times fringe contrast, is proposed to estimate the quality of an electron hologram and mathematical reasoning for the N Prime number is provided. -- Highlights: Black-Right-Pointing-Pointer Dual lens electron holography is implemented on FEI instruments (Titan and F20). Black-Right-Pointing-Pointer Wide range of field of view (0.1-0.9 {mu}m) and fringe spacing (0.5-6 nm) is achieved. Black-Right-Pointing-Pointer Fringe quality number is proposed to quantify the quality of an electron hologram. Black-Right-Pointing-Pointer Junction map at high spatial resolution is provided. Black-Right-Pointing-Pointer Strain maps along Left-Pointing-Angle-Bracket 2 2 0 Right-Pointing-Angle-Bracket and Left-Pointing-Angle-Bracket 0 0 4 Right-Pointing-Angle-Bracket direction of Si by dark field electron holography are reported.

  6. Variable magnification dual lens electron holography for semiconductor junction profiling and strain mapping

    International Nuclear Information System (INIS)

    Wang, Y.Y.; Li, J.; Domenicucci, A.; Bruley, J.

    2013-01-01

    Dual lens operation for electron holography, which was developed previously (Wang et al., Ultramicroscopy 101 (2004) 63–72; US patent: 7,015,469 B2 (2006)), is re-investigated for bright field (junction profiling) and dark field (strain mapping) electron holography using FEI instrumentation (i.e. F20 and Titan). It is found that dual lens operation provides a wide operational range for electron holography. In addition, the dark field image tilt increases at high objective lens current to include Si 〈0 0 4〉 diffraction spot. Under the condition of high spatial resolution (1 nm fringe spacing), a large field of view (450 nm), and high fringe contrast (26%) with dual lens operation, a junction map is obtained and strain maps of Si device on 〈2 2 0〉 and 〈0 0 4〉 diffraction are acquired. In this paper, a fringe quality number, N′, which is number of fringe times fringe contrast, is proposed to estimate the quality of an electron hologram and mathematical reasoning for the N′ number is provided. -- Highlights: ► Dual lens electron holography is implemented on FEI instruments (Titan and F20). ► Wide range of field of view (0.1–0.9 μm) and fringe spacing (0.5–6 nm) is achieved. ► Fringe quality number is proposed to quantify the quality of an electron hologram. ► Junction map at high spatial resolution is provided. ► Strain maps along 〈2 2 0〉 and 〈0 0 4〉 direction of Si by dark field electron holography are reported.

  7. Holography microscopy as an artifact-free alternative to phase-contrast.

    Science.gov (United States)

    Pastorek, Lukáš; Venit, Tomáš; Hozák, Pavel

    2018-02-01

    Artifact-free microscopic images represent a key requirement of multi-parametric image analysis in modern biomedical research. Holography microscopy (HM) is one of the quantitative phase imaging techniques, which has been finding new applications in life science, especially in morphological screening, cell migration, and cancer research. Rather than the classical imaging of absorbing (typically stained) specimens by bright-field microscopy, the information about the light-wave's phase shifts induced by the biological sample is employed for final image reconstruction. In this comparative study, we investigated the usability and the reported advantage of the holography imaging. The claimed halo-free imaging was analyzed compared to the widely used Zernike phase-contrast microscopy. The intensity and phase cross-membrane profiles at the periphery of the cell were quantified. The intensity profile for cells in the phase-contrast images suffers from the significant increase in intensity values around the cell border. On the contrary, no distorted profile is present outside the cell membrane in holography images. The gradual increase in phase shift values is present in the internal part of the cell body projection in holography image. This increase may be related to the increase in the cell internal material according to the dry mass theory. Our experimental data proved the halo-free nature of the holography imaging, which is an important prerequisite of the correct thresholding and cell segmentation, nowadays frequently required in high-content screening and other image-based analysis. Consequently, HM is a method of choice whenever the image analysis relies on the accurate data on cell boundaries.

  8. Mechanical design of walking machines.

    Science.gov (United States)

    Arikawa, Keisuke; Hirose, Shigeo

    2007-01-15

    The performance of existing actuators, such as electric motors, is very limited, be it power-weight ratio or energy efficiency. In this paper, we discuss the method to design a practical walking machine under this severe constraint with focus on two concepts, the gravitationally decoupled actuation (GDA) and the coupled drive. The GDA decouples the driving system against the gravitational field to suppress generation of negative power and improve energy efficiency. On the other hand, the coupled drive couples the driving system to distribute the output power equally among actuators and maximize the utilization of installed actuator power. First, we depict the GDA and coupled drive in detail. Then, we present actual machines, TITAN-III and VIII, quadruped walking machines designed on the basis of the GDA, and NINJA-I and II, quadruped wall walking machines designed on the basis of the coupled drive. Finally, we discuss walking machines that travel on three-dimensional terrain (3D terrain), which includes the ground, walls and ceiling. Then, we demonstrate with computer simulation that we can selectively leverage GDA and coupled drive by walking posture control.

  9. Quantum walks based on an interferometric analogy

    International Nuclear Information System (INIS)

    Hillery, Mark; Bergou, Janos; Feldman, Edgar

    2003-01-01

    There are presently two models for quantum walks on graphs. The ''coined'' walk uses discrete-time steps, and contains, besides the particle making the walk, a second quantum system, the coin, that determines the direction in which the particle will move. The continuous walk operates with continuous time. Here a third model for quantum walks is proposed, which is based on an analogy to optical interferometers. It is a discrete-time model, and the unitary operator that advances the walk one step depends only on the local structure of the graph on which the walk is taking place. This type of walk also allows us to introduce elements, such as phase shifters, that have no counterpart in classical random walks. Several examples are discussed

  10. Who walks? Factors associated with walking behavior in disabled older women with and without self-reported walking difficulty.

    Science.gov (United States)

    Simonsick, E M; Guralnik, J M; Fried, L P

    1999-06-01

    To determine how severity of walking difficulty and sociodemographic, psychosocial, and health-related factors influence walking behavior in disabled older women. Cross-sectional analyses of baseline data from the Women's Health and Aging Study (WHAS). An urban community encompassing 12 contiguous zip code areas in the eastern portion of Baltimore City and part of Baltimore County, Maryland. A total of 920 moderately to severely disabled community-resident women, aged 65 years and older, identified from an age-stratified random sample of Medicare beneficiaries. Walking behavior was defined as minutes walked for exercise and total blocks walked per week. Independent variables included self-reported walking difficulty, sociodemographic factors, psychological status (depression, mastery, anxiety, and cognition), and health-related factors (falls and fear of falling, fatigue, vision and balance problems, weight, smoking, and cane use). Walking at least 8 blocks per week was strongly negatively related to severity of walking difficulty. Independent of difficulty level, older age, black race, fatigue, obesity, and cane use were also negatively associated with walking; living alone and high mastery had a positive association with walking. Even among functionally limited women, sociocultural, psychological, and health-related factors were independently associated with walking behavior. Thus, programs aimed at improving walking ability need to address these factors in addition to walking difficulties to maximize participation and compliance.

  11. Single and Dual Task Walking

    Directory of Open Access Journals (Sweden)

    Natalie de Bruin

    2010-01-01

    Full Text Available This study explored the viability and efficacy of integrating cadence-matched, salient music into a walking intervention for patients with Parkinson's disease (PD. Twenty-two people with PD were randomised to a control (CTRL, n=11 or experimental (MUSIC, n=11 group. MUSIC subjects walked with an individualised music playlist three times a week for the intervention period. Playlists were designed to meet subject's musical preferences. In addition, the tempo of the music closely matched (±10–15 bpm the subject's preferred cadence. CTRL subjects continued with their regular activities during the intervention. The effects of training accompanied by “walking songs” were evaluated using objective measures of gait score. The MUSIC group improved gait velocity, stride time, cadence, and motor symptom severity following the intervention. This is the first study to demonstrate that music listening can be safely implemented amongst PD patients during home exercise.

  12. Walking the history of healthcare.

    Science.gov (United States)

    Black, Nick

    2007-12-01

    The history of healthcare is complex, confusing and contested. In Walking London's medical history the story of how health services developed from medieval times to the present day is told through seven walks. The book also aims to help preserve our legacy, as increasingly former healthcare buildings are converted to other uses, and to enhance understanding of the current challenges we face in trying to improve healthcare in the 21st century. Each walk has a theme, ranging from the way hospitals merge or move and the development of primary care to how key healthcare trades became professions and the competition between the church, Crown and City for control of healthcare. While recognising the contributions of the 'great men of medicine', the book takes as much interest in the six ambulance stations built by the London County Council (1915) as the grandest teaching hospitals.

  13. Simultaneous measurement of refractive index and thickness distributions using low-coherence digital holography and vertical scanning

    International Nuclear Information System (INIS)

    Watanabe, Kaho; Ohshima, Masashi; Nomura, Takanori

    2014-01-01

    The simultaneous measurement method of a refractive index distribution and a thickness distribution using low-coherence digital holography with a vertical scanning is proposed. The proposed method consists of a combination of digital holography and low-coherence interferometry. The introduction of a datum plane enables the measurement of both a refractive index distribution and a thickness distribution. By the optical experiment, the potential of the proposed method is confirmed. (paper)

  14. Pedagogies of the Walking Dead

    Directory of Open Access Journals (Sweden)

    Michael A. Peters

    2016-04-01

    Full Text Available This paper investigates the trope of the zombie and the recent upsurge in popular culture surrounding the figure of the zombie described as the “walking dead”. We investigate this trope and figure as a means of analyzing the “pedagogy of the walking dead” with particular attention to the crisis of education in the era of neoliberal capitalism. In particular we examine the professionalization and responsibilization of teachers in the new regulative environment and ask whether there is any room left for the project of critical education.

  15. Reserves Represented by Random Walks

    International Nuclear Information System (INIS)

    Filipe, J A; Ferreira, M A M; Andrade, M

    2012-01-01

    The reserves problem is studied through models based on Random Walks. Random walks are a classical particular case in the analysis of stochastic processes. They do not appear only to study reserves evolution models. They are also used to build more complex systems and as analysis instruments, in a theoretical feature, of other kind of systems. In this work by studying the reserves, the main objective is to see and guarantee that pensions funds get sustainable. Being the use of these models considering this goal a classical approach in the study of pensions funds, this work concluded about the problematic of reserves. A concrete example is presented.

  16. High-intensity x-ray holography: an approach to high-resolution snapshot imaging of biological specimens

    International Nuclear Information System (INIS)

    Solem, J.C.

    1982-08-01

    The crucial physical and technological issues pertaining to the holographic imaging of biological structures with a short-pulse, high-intensity, high-quantum-energy laser were examined. The limitations of x-ray optics are discussed. Alternative holographic techniques were considered, and it was concluded that far-field Fresnel transform holography (Fraunhofer holography) using a photoresist recording surface is most tractable with near term technology. The hydrodynamic expansion of inhomogeneities within the specimen is discussed. It is shown that expansion is the major source of image blurring. Analytic expressions were derived for the explosion of protein concentrations in an x-ray transparent cytoplasm, compared with numerical calculations, and corrections derived to account for the competitive transport processes by which these inhomogeneities lose energy. It is concluded that for the near term Fresnel transform holography, particularly, far-field or Fraunhofer holography, is more practical than Fourier transform holography. Of the alternative fine grain recording media for use with Fresnel transform holography, a photo-resist is most attractive. For best resolution, exposure times must be limited to a few picoseconds, and this calls for investigation of mechanisms to shutter the laser or gate the recording surface. The best contrast ratio between the nitrogen-bearing polymers (protein and the nucleic acids) and water is between the K-edges of oxygen and nitrogen

  17. High-intensity x-ray holography: an approach to high-resolution snapshot imaging of biological specimens

    Energy Technology Data Exchange (ETDEWEB)

    Solem, J.C.

    1982-08-01

    The crucial physical and technological issues pertaining to the holographic imaging of biological structures with a short-pulse, high-intensity, high-quantum-energy laser were examined. The limitations of x-ray optics are discussed. Alternative holographic techniques were considered, and it was concluded that far-field Fresnel transform holography (Fraunhofer holography) using a photoresist recording surface is most tractable with near term technology. The hydrodynamic expansion of inhomogeneities within the specimen is discussed. It is shown that expansion is the major source of image blurring. Analytic expressions were derived for the explosion of protein concentrations in an x-ray transparent cytoplasm, compared with numerical calculations, and corrections derived to account for the competitive transport processes by which these inhomogeneities lose energy. It is concluded that for the near term Fresnel transform holography, particularly, far-field or Fraunhofer holography, is more practical than Fourier transform holography. Of the alternative fine grain recording media for use with Fresnel transform holography, a photo-resist is most attractive. For best resolution, exposure times must be limited to a few picoseconds, and this calls for investigation of mechanisms to shutter the laser or gate the recording surface. The best contrast ratio between the nitrogen-bearing polymers (protein and the nucleic acids) and water is between the K-edges of oxygen and nitrogen.

  18. Walk Score(TM), Perceived Neighborhood Walkability, and walking in the US.

    Science.gov (United States)

    Tuckel, Peter; Milczarski, William

    2015-03-01

    To investigate both the Walk Score(TM) and a self-reported measure of neighborhood walkability ("Perceived Neighborhood Walkability") as estimators of transport and recreational walking among Americans. The study is based upon a survey of a nationally-representative sample of 1224 American adults. The survey gauged walking for both transport and recreation and included a self-reported measure of neighborhood walkability and each respondent's Walk Score(TM). Binary logistic and linear regression analyses were performed on the data. The Walk Score(TM) is associated with walking for transport, but not recreational walking nor total walking. Perceived Neighborhood Walkability is associated with transport, recreational and total walking. Perceived Neighborhood Walkability captures the experiential nature of walking more than the Walk Score(TM).

  19. Adults' Daily Walking for Travel and Leisure: Interaction Between Attitude Toward Walking and the Neighborhood Environment.

    Science.gov (United States)

    Yang, Yong; Diez-Roux, Ana V

    2017-09-01

    Studies on how the interaction of psychological and environmental characteristics influences walking are limited, and the results are inconsistent. Our aim is to examine how the attitude toward walking and neighborhood environments interacts to influence walking. Cross-sectional phone and mail survey. Participants randomly sampled from 6 study sites including Los Angeles, Chicago, Baltimore, Minneapolis, Manhattan, and Bronx Counties in New York City, and Forsyth and Davidson Counties in North Carolina. The final sample consisted of 2621 persons from 2011 to 2012. Total minutes of walking for travel or leisure, attitude toward walking, and perceptions of the neighborhood environments were self-reported. Street Smart (SS) Walk Score (a measure of walkability derived from a variety of geographic data) was obtained for each residential location. Linear regression models adjusting for age, gender, race/ethnicity, education, and income. Attitude toward walking was positively associated with walking for both purposes. Walking for travel was significantly associated with SS Walk Score, whereas walking for leisure was not. The SS Walk Score and selected perceived environment characteristics were associated with walking in people with a very positive attitude toward walking but were not associated with walking in people with a less positive attitude. Attitudes toward walking and neighborhood environments interact to affect walking behavior.

  20. Effects of Nordic walking and walking on spatiotemporal gait parameters and ground reaction force.

    Science.gov (United States)

    Park, Seung Kyu; Yang, Dae Jung; Kang, Yang Hun; Kim, Je Ho; Uhm, Yo Han; Lee, Yong Seon

    2015-09-01

    [Purpose] The purpose of this study was to investigate the effects of Nordic walking and walking on spatiotemporal gait parameters and ground reaction force. [Subjects] The subjects of this study were 30 young adult males, who were divided into a Nordic walking group of 15 subjects and a walking group of 15 subjects. [Methods] To analyze the spatiotemporal parameters and ground reaction force during walking in the two groups, the six-camera Vicon MX motion analysis system was used. The subjects were asked to walk 12 meters using the more comfortable walking method for them between Nordic walking and walking. After they walked 12 meters more than 10 times, their most natural walking patterns were chosen three times and analyzed. To determine the pole for Nordic walking, each subject's height was multiplied by 0.68. We then measured the spatiotemporal gait parameters and ground reaction force. [Results] Compared with the walking group, the Nordic walking group showed an increase in cadence, stride length, and step length, and a decrease in stride time, step time, and vertical ground reaction force. [Conclusion] The results of this study indicate that Nordic walking increases the stride and can be considered as helping patients with diseases affecting their gait. This demonstrates that Nordic walking is more effective in improving functional capabilities by promoting effective energy use and reducing the lower limb load, because the weight of the upper and lower limbs is dispersed during Nordic walking.

  1. More Adults Are Walking PSA (:60)

    Centers for Disease Control (CDC) Podcasts

    This 60 second PSA is based on the August 2012 CDC Vital Signs report. While more adults are walking, only half get the recommended amount of physical activity. Listen to learn how communities, employers, and individuals may help increase walking.

  2. Quantum walks, quantum gates, and quantum computers

    International Nuclear Information System (INIS)

    Hines, Andrew P.; Stamp, P. C. E.

    2007-01-01

    The physics of quantum walks on graphs is formulated in Hamiltonian language, both for simple quantum walks and for composite walks, where extra discrete degrees of freedom live at each node of the graph. It is shown how to map between quantum walk Hamiltonians and Hamiltonians for qubit systems and quantum circuits; this is done for both single-excitation and multiexcitation encodings. Specific examples of spin chains, as well as static and dynamic systems of qubits, are mapped to quantum walks, and walks on hyperlattices and hypercubes are mapped to various gate systems. We also show how to map a quantum circuit performing the quantum Fourier transform, the key element of Shor's algorithm, to a quantum walk system doing the same. The results herein are an essential preliminary to a Hamiltonian formulation of quantum walks in which coupling to a dynamic quantum environment is included

  3. Minnesota Walk-In Access Sites

    Data.gov (United States)

    Minnesota Department of Natural Resources — The Minnesota Walk-In Access site (WIA) GIS data represents areas of private land that have been made open to the public for the purpose of walk-in (foot travel)...

  4. Beam Walking in Special Education

    Science.gov (United States)

    Broadhead, Geoffrey D.

    1974-01-01

    An experimental test on beam walking (for balance), administered to 189 minimally brain injured and 226 educable mentally retarded (EMR) 8- to 13-year-old children, yielded results such as reliability estimates for the mean of three trials were high and there was greater performance reliability for EMR children. (MC)

  5. Successful Statewide Walking Program Websites

    Science.gov (United States)

    Teran, Bianca Maria; Hongu, Nobuko

    2012-01-01

    Statewide Extension walking programs are making an effort to increase physical activity levels in America. An investigation of all 20 of these programs revealed that 14 use websites as marketing and educational tools, which could prove useful as the popularity of Internet communities continues to grow. Website usability information and an analysis…

  6. Thermophoresis as persistent random walk

    International Nuclear Information System (INIS)

    Plyukhin, A.V.

    2009-01-01

    In a simple model of a continuous random walk a particle moves in one dimension with the velocity fluctuating between +v and -v. If v is associated with the thermal velocity of a Brownian particle and allowed to be position dependent, the model accounts readily for the particle's drift along the temperature gradient and recovers basic results of the conventional thermophoresis theory.

  7. Nine walks (photo series / web page)

    OpenAIRE

    Robinson, Andrew

    2015-01-01

    'Nine Walks' is a body of work resulting from my engagement with the Media Arts Research Walking Group at Sheffield Hallam University who are exploring the role of walking in as a social, developmental and production space for the creative arts. / My participation in the walking group is an extension of my investigation of the journey as a creative, conceptual and contemplative space for photography which in turn reflects an interest in the role of the accident, instinct and intuition and the...

  8. Treadmill walking with body weight support

    OpenAIRE

    Aaslund, Mona Kristin

    2012-01-01

    Background: Rehabilitating walking in patients post-stroke with safe, task-specific, intensive training of sufficient duration, can be challenging. Body weight supported treadmill training (BWSTT) has been proposed as an effective method to meet these challenges and may therefore have benefits over training overground walking. However, walking characteristics should not be aggravated during BWSTT or require a long familiarisation time compared to overground walking. Objectives: To investi...

  9. Walking pattern classification and walking distance estimation algorithms using gait phase information.

    Science.gov (United States)

    Wang, Jeen-Shing; Lin, Che-Wei; Yang, Ya-Ting C; Ho, Yu-Jen

    2012-10-01

    This paper presents a walking pattern classification and a walking distance estimation algorithm using gait phase information. A gait phase information retrieval algorithm was developed to analyze the duration of the phases in a gait cycle (i.e., stance, push-off, swing, and heel-strike phases). Based on the gait phase information, a decision tree based on the relations between gait phases was constructed for classifying three different walking patterns (level walking, walking upstairs, and walking downstairs). Gait phase information was also used for developing a walking distance estimation algorithm. The walking distance estimation algorithm consists of the processes of step count and step length estimation. The proposed walking pattern classification and walking distance estimation algorithm have been validated by a series of experiments. The accuracy of the proposed walking pattern classification was 98.87%, 95.45%, and 95.00% for level walking, walking upstairs, and walking downstairs, respectively. The accuracy of the proposed walking distance estimation algorithm was 96.42% over a walking distance.

  10. KidsWalk-to-School: A Guide To Promote Walking to School.

    Science.gov (United States)

    Center for Chronic Disease Prevention and Health Promotion (DHHS/CDC), Atlanta, GA.

    This guide encourages people to create safe walking and biking routes to school, promoting four issues: physically active travel, safe and walkable routes to school, crime prevention, and health environments. The chapters include: "KidsWalk-to-School: A Guide to Promote Walking to School" (Is there a solution? Why is walking to school important?…

  11. Development of independent walking in toddlers

    NARCIS (Netherlands)

    Ivanenko, Yuri P; Dominici, Nadia; Lacquaniti, Francesco

    Surprisingly, despite millions of years of bipedal walking evolution, the gravity-related pendulum mechanism of walking does not seem to be implemented at the onset of independent walking, requiring each toddler to develop it. We discuss the precursor of the mature locomotor pattern in infants as an

  12. Walking Beliefs in Women With Fibromyalgia: Clinical Profile and Impact on Walking Behavior.

    Science.gov (United States)

    Peñacoba, Cecilia; Pastor, María-Ángeles; López-Roig, Sofía; Velasco, Lilian; Lledo, Ana

    2017-10-01

    Although exercise is essential for the treatment of fibromyalgia, adherence is low. Walking, as a form of physical exercise, has significant advantages. The aim of this article is to describe, in 920 women with fibromyalgia, the prevalence of certain walking beliefs and analyze their effects both on the walking behavior itself and on the associated symptoms when patients walk according to a clinically recommended way. The results highlight the high prevalence of beliefs related to pain and fatigue as walking-inhibitors. In the whole sample, beliefs are associated with an increased perception that comorbidity prevents walking, and with higher levels of pain and fatigue. In patients who walk regularly, beliefs are only associated with the perception that comorbidity prevents them from walking. It is necessary to promote walking according to the established way (including breaks to prevent fatigue) and to implement interventions on the most prevalent beliefs that inhibit walking.

  13. To Walk or Not to Walk?: The Hierarchy of Walking Needs

    Science.gov (United States)

    Alfonzo, Mariela

    2005-01-01

    The multitude of quality of life problems associated with declining walking rates has impelled researchers from various disciplines to identify factors related to this behavior change. Currently, this body of research is in need of a transdisciplinary, multilevel theoretical model that can help explain how individual, group, regional, and…

  14. Symmetric and asymmetric hybrid cryptosystem based on compressive sensing and computer generated holography

    Science.gov (United States)

    Ma, Lihong; Jin, Weimin

    2018-01-01

    A novel symmetric and asymmetric hybrid optical cryptosystem is proposed based on compressive sensing combined with computer generated holography. In this method there are six encryption keys, among which two decryption phase masks are different from the two random phase masks used in the encryption process. Therefore, the encryption system has the feature of both symmetric and asymmetric cryptography. On the other hand, because computer generated holography can flexibly digitalize the encrypted information and compressive sensing can significantly reduce data volume, what is more, the final encryption image is real function by phase truncation, the method favors the storage and transmission of the encryption data. The experimental results demonstrate that the proposed encryption scheme boosts the security and has high robustness against noise and occlusion attacks.

  15. High-resolution magnetic-domain imaging by Fourier transform holography at 21 nm wavelength

    International Nuclear Information System (INIS)

    Schaffert, Stefan; Pfau, Bastian; Günther, Christian M; Schneider, Michael; Korff Schmising, Clemens von; Eisebitt, Stefan; Geilhufe, Jan

    2013-01-01

    Exploiting x-ray magnetic circular dichroism at the L-edges of 3d transition metals, Fourier transform holography has become a standard technique to investigate magnetic samples with sub-100 nm spatial resolution. Here, magnetic imaging in the 21 nm wavelength regime using M-edge circular dichroism is demonstrated. Ultrafast pulses in this wavelength regime are increasingly available from both laser- and accelerator-driven soft x-ray sources. We explain the adaptations concerning sample preparation and data evaluation compared to conventional holography in the 1 nm wavelength range. We find the correction of the Fourier transform hologram to in-plane Fourier components to be critical for high-quality reconstruction and demonstrate 70 nm spatial resolution in magnetization imaging with this approach. (paper)

  16. Patch near-field acoustic holography: The influence of acoustic contributions from outside the source

    DEFF Research Database (Denmark)

    Fernandez Grande, Efren; Jacobsen, Finn; Zhang, Yong-Bin

    2009-01-01

    It is a requirement of conventional Near-field Acoustic Holography that the measurement area covers the entire surface of the source. In the case of Patch Near-field Acoustic Holography (patch NAH), the measurement area can be reduced to cover only a specific area of the source which...... is of particular interest (known as the “patch” or “source patch”). The area of the source beyond this patch is not of interest in the analysis. However, its acoustic output may nevertheless contribute to the total sound field in the measurement plane, and influence the reconstruction of the field close...... to the patch. The purpose of this paper is to investigate how the acoustic radiation from outside the patch area influences the reconstruction of the sound field close to the source. The reconstruction is based on simulated measurements of sound pressure and particle velocity. The methods used in this paper...

  17. The Current Status of the Development of Light-Sensitive Media for Holography (a Review)

    Science.gov (United States)

    Barachevsky, V. A.

    2018-03-01

    The results of studies that have been performed over the last decade in the field of development of silver halide and nonsilver holographic recording media of organic and inorganic origin are analyzed. It is shown that previously developed materials mainly allow the development of holographic investigations. Among irreversible materials, considerable progress has been made in improving the characteristics of photopolymerizable recording media, which has allowed their use in color image holography and 3D optical archive-type memory, as well as for fabricating holographic optical elements. In the field of improving the properties of reversible holographic recording media, practically significant results have been obtained for the creation of photoanisotropic materials based on azo dyes experiencing cis-trans photoisomerization, which allow the recording of polarization holograms. The needs of dynamic holography have been satisfied by lightsensitive doped inorganic crystals and polymer layers that have been created with nonlinear optical properties.

  18. Applications Of A Fibre Optic TV Holography System To The Study Of Large Automotive Structures.

    Science.gov (United States)

    Davies, Jeremy C.; Buckberry, Clive H.

    1990-04-01

    Mono-mode fibre optic components, including directional couplers and piezo-electric phase control elements, have been used to construct a TV holography system. The instrument has advantages of simplicity and ruggedness of construction and, with a 40m fibre optic link to a 600m argon ion laser, has proved to be an ideal tool for studying the structural behaviour of automotive assemblies. The TV holography system is described and two examples presented of its use: analysis of the deformation of a petrol engine cylinder bore due to head bolt forces, and the vibration study of a vehicle bodyshell subjected to wheel induced inputs. Limitations in the application of the technique are identified and future work to address these shortcomings outlined.

  19. Trajectory and velocity measurement of a particle in spray by digital holography

    Energy Technology Data Exchange (ETDEWEB)

    Lue Qieni; Chen Yiliang; Yuan Rui; Ge Baozhen; Gao Yan; Zhang Yimo

    2009-12-20

    We present a method for the trajectory and the velocity measurement of a particle in spray by digital holography. Based on multiple exposure digital in-line holography, a sequence of digital holograms of a dynamic spray particle field at different times are recorded with a CW laser and a high-speed CCD. The time evolution of the serial positions of particles, i.e., the motion trajectories of the particles, is obtained by numerically reconstructing the synthetic hologram of a sequence of digital holograms. The center coordinate (x,y) of each particle image can be extracted using a Hough transform and subpixel precision computing, and the velocity of an individual particle can also be obtained, which is then applied to measuring the velocity of diesel spray and alcohol spray. The research shows that the method presented in this paper for measuring spray field is feasible.

  20. Improvement of the accuracy of phase observation by modification of phase-shifting electron holography

    Energy Technology Data Exchange (ETDEWEB)

    Suzuki, Takahiro; Aizawa, Shinji; Tanigaki, Toshiaki [Advanced Science Institute, RIKEN, Hirosawa 2-1, Wako, Saitama 351-0198 (Japan); Ota, Keishin, E-mail: ota@microphase.co.jp [Microphase Co., Ltd., Onigakubo 1147-9, Tsukuba, Ibaragi 300-2651 (Japan); Matsuda, Tsuyoshi [Japan Science and Technology Agency, Kawaguchi-shi, Saitama 332-0012 (Japan); Tonomura, Akira [Advanced Science Institute, RIKEN, Hirosawa 2-1, Wako, Saitama 351-0198 (Japan); Okinawa Institute of Science and Technology, Graduate University, Kunigami, Okinawa 904-0495 (Japan); Central Research Laboratory, Hitachi, Ltd., Hatoyama, Saitama 350-0395 (Japan)

    2012-07-15

    We found that the accuracy of the phase observation in phase-shifting electron holography is strongly restricted by time variations of mean intensity and contrast of the holograms. A modified method was developed for correcting these variations. Experimental results demonstrated that the modification enabled us to acquire a large number of holograms, and as a result, the accuracy of the phase observation has been improved by a factor of 5. -- Highlights: Black-Right-Pointing-Pointer A modified phase-shifting electron holography was proposed. Black-Right-Pointing-Pointer The time variation of mean intensity and contrast of holograms were corrected. Black-Right-Pointing-Pointer These corrections lead to a great improvement of the resultant phase accuracy. Black-Right-Pointing-Pointer A phase accuracy of about 1/4000 rad was achieved from experimental results.

  1. Direct Observation of Individual Charges and Their Dynamics on Graphene by Low-Energy Electron Holography.

    Science.gov (United States)

    Latychevskaia, Tatiana; Wicki, Flavio; Longchamp, Jean-Nicolas; Escher, Conrad; Fink, Hans-Werner

    2016-09-14

    Visualizing individual charges confined to molecules and observing their dynamics with high spatial resolution is a challenge for advancing various fields in science, ranging from mesoscopic physics to electron transfer events in biological molecules. We show here that the high sensitivity of low-energy electrons to local electric fields can be employed to directly visualize individual charged adsorbates and to study their behavior in a quantitative way. This makes electron holography a unique probing tool for directly visualizing charge distributions with a sensitivity of a fraction of an elementary charge. Moreover, spatial resolution in the nanometer range and fast data acquisition inherent to lens-less low-energy electron holography allows for direct visual inspection of charge transfer processes.

  2. Investigating the use of the acousto-optic effect for acoustic holography

    DEFF Research Database (Denmark)

    Torras Rosell, Antoni; Fernandez Grande, Efren; Jacobsen, Finn

    2012-01-01

    Recent studies have demonstrated that the acousto-optic effect, that is, the interaction between sound and light, can be used as a means to visualize acoustic fields in the audible frequency range. The changes of density caused by sound waves propagating in air induce phase shifts to a laser beam...... that travels through the acoustic field. This phenomenon can in practice be captured with a laser Doppler vibrometer (LDV), and the pressure distribution of the acoustic field can be reconstructed using tomography. The present work investigates the potential of the acousto-optic effect in acoustic holography....... Two different holographic methods are examined for this purpose. One method first reconstructs the hologram plane using acousto-optic tomography and then propagates it using conventional near-field acoustic holography (NAH). The other method exploits the so-called Fourier Slice Theorem and bases all...

  3. Tabletop single-shot extreme ultraviolet Fourier transform holography of an extended object.

    Science.gov (United States)

    Malm, Erik B; Monserud, Nils C; Brown, Christopher G; Wachulak, Przemyslaw W; Xu, Huiwen; Balakrishnan, Ganesh; Chao, Weilun; Anderson, Erik; Marconi, Mario C

    2013-04-22

    We demonstrate single and multi-shot Fourier transform holography with the use of a tabletop extreme ultraviolet laser. The reference wave was produced by a Fresnel zone plate with a central opening that allowed the incident beam to illuminate the sample directly. The high reference wave intensity allows for larger objects to be imaged compared to mask-based lensless Fourier transform holography techniques. We obtain a spatial resolution of 169 nm from a single laser pulse and a resolution of 128 nm from an accumulation of 20 laser pulses for an object ~11x11μm(2) in size. This experiment utilized a tabletop extreme ultraviolet laser that produces a highly coherent ~1.2 ns laser pulse at 46.9 nm wavelength.

  4. Digital twin image elimination in soft x-ray in-line holography

    International Nuclear Information System (INIS)

    Koren, G.; Joyeux, D.

    1993-01-01

    In-line holography is attractive for X-ray microscopy due to its recording simplicity. A drawback of this method is the superposition of the virtual and real images, in which structures and details can be modified or lost. This superposition effectively limits the application of in-line holography to X-ray microscopy. The authors present an iterative constrained algorithm for twin image elimination from Gabor holograms of finite support objects. It is based in the different spatial extent of both images, together with a finite support constraint. The conditions under which the algorithm is applicable will be presented, together with an alternative Monte Carlo method for holograms of complex objects recorded in the shadow region

  5. Shifted knife-edge aperture digital in-line holography for fluid velocimetry.

    Science.gov (United States)

    Palero, Virginia; Lobera, Julia; Andrés, Nieves; Arroyo, M Pilar

    2014-06-01

    We describe a digital holography technique that, with the simplicity of an in-line configuration, produces holograms where the real and virtual images are completely separated, as in an off-axis configuration. An in-line setup, in which the object is imaged near the sensor, is modified by placing a shifted knife-edge aperture that blocks half the frequency spectrum at the focal plane of the imaging lens. This simple modification of the in-line holographic configuration allows discriminating the virtual and real images. As a fluid velocimetry technique, the use of this aperture removes the minimum defocusing distance requisite and reduces the out-of-plane velocity measurement errors of classical in-line holography. Results with different test objects are shown.

  6. Penrose limit, spontaneous symmetry breaking, and holography in a pp-wave background

    International Nuclear Information System (INIS)

    Das, Sumit R.; Gomez, Cesar; Rey, Soo-Jong

    2002-01-01

    We argue that the gauge theory dual to the type IIB string theory in a ten-dimensional pp-wave background resides on a Euclidean subspace spanning four of the eight transverse coordinates. We then show that the evolution of the string along one of the light cone directions in the bulk is identifiable as the RG flow of the gauge theory, a relation facilitating the 'holography' of the pp-wave background. The 'holography' reorganizes the dual gauge theory into theories defined over Hilbert subspaces of fixed R charge. The reorganization breaks the SO(4,2)xSO(6) symmetry to a maximal subgroup SO(4)xSO(4) spontaneously. We argue that the low-energy string modes may be regarded as Goldstone modes resulting from such a symmetry breaking pattern

  7. X-ray holography: X-ray interactions and their effects

    International Nuclear Information System (INIS)

    London, R.A.; Trebes, J.E.; Rosen, M.D.

    1988-01-01

    The authors summarize a theoretical study of the interactions of x-rays with a biological sample during the creation of a hologram. The choice of an optimal wavelength for x-ray holography is discussed, based on a description of scattering by objects within an aqueous environment. The problem of the motion resulting from the absorption of x-rays during a short exposure is described. The possibility of using very short exposures in order to capture the image before motion can compromise the resolution is explored. The impact of these calculation on the question of the feasibility of using an x-ray laser for holography of biological structures is discussed. 12 refs., 2 figs

  8. Off-axis electron holography for the measurement of active dopants in silicon semiconductor devices

    International Nuclear Information System (INIS)

    Cooper, David

    2016-01-01

    There is a need in the semiconductor industry for a dopant profiling technique with nm-scale resolution. Here we demonstrate that off-axis electron holography can be used to provide maps of the electrostatic potential in semiconductor devices with nm-scale resolution. In this paper we will discuss issues regarding the spatial resolution and precision of the technique. Then we will discuss problems with specimen preparation and how this affects the accuracy of the measurements of the potentials. Finally we show results from experimental off-axis electron holography applied to nMOS and pMOS CMOS devices grown on bulk silicon and silicon- on-insulator type devices and present solutions to common problems that are encountered when examining these types of devices. (paper)

  9. Improvement of the accuracy of phase observation by modification of phase-shifting electron holography

    International Nuclear Information System (INIS)

    Suzuki, Takahiro; Aizawa, Shinji; Tanigaki, Toshiaki; Ota, Keishin; Matsuda, Tsuyoshi; Tonomura, Akira

    2012-01-01

    We found that the accuracy of the phase observation in phase-shifting electron holography is strongly restricted by time variations of mean intensity and contrast of the holograms. A modified method was developed for correcting these variations. Experimental results demonstrated that the modification enabled us to acquire a large number of holograms, and as a result, the accuracy of the phase observation has been improved by a factor of 5. -- Highlights: ► A modified phase-shifting electron holography was proposed. ► The time variation of mean intensity and contrast of holograms were corrected. ► These corrections lead to a great improvement of the resultant phase accuracy. ► A phase accuracy of about 1/4000 rad was achieved from experimental results.

  10. Near-field ptychography: phase retrieval for inline holography using a structured illumination.

    Science.gov (United States)

    Stockmar, Marco; Cloetens, Peter; Zanette, Irene; Enders, Bjoern; Dierolf, Martin; Pfeiffer, Franz; Thibault, Pierre

    2013-01-01

    Inline holography is a common phase-contrast imaging method which uses free-space propagation to encode the phase signal into measured intensities. However, quantitative retrieval of the sample's image remains challenging, imposing constraints on the nature of the sample or on the propagation distance. Here, we present a way of simultaneously retrieving the sample's complex-valued transmission function and the incident illumination function from near-field diffraction patterns. The procedure relies on the measurement diversity created by lateral translations of the sample with respect to a structured illumination. The reconstruction approach, in essence identical to that employed in ptychography, is applied to hard X-ray synchrotron measurements and to simulations. Compared to other inline holography techniques, we expect near-field ptychography to reduce reconstruction artefacts by factoring out wavefront imperfections and relaxing constraints on the sample's scattering properties, thus ultimately improving the robustness of propagation-based X-ray phase tomography.

  11. Digital holography for coherent fiber beam combining with a co-propagative scheme.

    Science.gov (United States)

    Antier, Marie; Larat, Christian; Lallier, Eric; Bourderionnet, Jérôme; Primot, Jérôme; Brignon, Arnaud

    2014-09-22

    We present a technique for passive coherent fiber beam combining based on digital holography. In this method, the phase errors between the fibers are compensated by the diffracted phase-conjugated -1 order of a digital hologram. Unlike previous digital holography technique, the probe beams measuring the phase errors between the fibers are co-propagating with the phase-locked signal beams. This architecture is compatible with the use of multi-stage isolated amplifying fibers. It does not require any phase calculation algorithm and its correction is collective. This concept is experimentally demonstrated with three fibers at 1.55 μm. A residual phase error of λ/20 is measured.

  12. 3D velocity measurements in fluid flows using multiple exposure holography

    International Nuclear Information System (INIS)

    Stanislas, M.; Rodriguez, O.; Dadi, M.; Beluche, F.

    1987-01-01

    An account is given of multiple exposure holography's application to the measurement of velocity in fluid flows. The method is nonintrusive, and yields access to the three components of the instantaneous velocity in three-dimensional domains. These characteristics render such holographic data complementary to classical LDV. Attention is given to solutions proposed for such limitations inherent in the method as the rather lengthy acquisition time; this difficulty is presently addressed by means of an automated evaluation methodology. 12 references

  13. Optical sectioning for optical scanning holography using phase-space filtering with Wigner distribution functions.

    Science.gov (United States)

    Kim, Hwi; Min, Sung-Wook; Lee, Byoungho; Poon, Ting-Chung

    2008-07-01

    We propose a novel optical sectioning method for optical scanning holography, which is performed in phase space by using Wigner distribution functions together with the fractional Fourier transform. The principle of phase-space optical sectioning for one-dimensional signals, such as slit objects, and two-dimensional signals, such as rectangular objects, is first discussed. Computer simulation results are then presented to substantiate the proposed idea.

  14. Experimental demonstration of high resolution three-dimensional x-ray holography

    International Nuclear Information System (INIS)

    McNulty, I.; Trebes, J.E.; Brase, J.M.; Yorkey, T.J.; Levesque, R.; Szoke, H.; Anderson, E.H.; Jacobsen, C.

    1992-01-01

    Tomographic x-ray holography may make possible the imaging of biological objects at high resolution in three dimensions. We performed a demonstration experiment with soft x-rays to explore the feasibility of this technique. Coherent 3.2-nm undulator radiation was used to record Fourier transform holograms of a microfabricated test object from various illumination angles. The holograms were numerically reconstructed according to the principles of diffraction tomography, yielding images of the object that are well resolved in three dimensions

  15. A low error reconstruction method for confocal holography to determine 3-dimensional properties

    Energy Technology Data Exchange (ETDEWEB)

    Jacquemin, P.B., E-mail: pbjacque@nps.edu [Mechanical Engineering, University of Victoria, EOW 548,800 Finnerty Road, Victoria, BC (Canada); Herring, R.A. [Mechanical Engineering, University of Victoria, EOW 548,800 Finnerty Road, Victoria, BC (Canada)

    2012-06-15

    A confocal holography microscope developed at the University of Victoria uniquely combines holography with a scanning confocal microscope to non-intrusively measure fluid temperatures in three-dimensions (Herring, 1997), (Abe and Iwasaki, 1999), (Jacquemin et al., 2005). The Confocal Scanning Laser Holography (CSLH) microscope was built and tested to verify the concept of 3D temperature reconstruction from scanned holograms. The CSLH microscope used a focused laser to non-intrusively probe a heated fluid specimen. The focused beam probed the specimen instead of a collimated beam in order to obtain different phase-shift data for each scan position. A collimated beam produced the same information for scanning along the optical propagation z-axis. No rotational scanning mechanisms were used in the CSLH microscope which restricted the scan angle to the cone angle of the probe beam. Limited viewing angle scanning from a single view point window produced a challenge for tomographic 3D reconstruction. The reconstruction matrices were either singular or ill-conditioned making reconstruction with significant error or impossible. Establishing boundary conditions with a particular scanning geometry resulted in a method of reconstruction with low error referred to as 'wily'. The wily reconstruction method can be applied to microscopy situations requiring 3D imaging where there is a single viewpoint window, a probe beam with high numerical aperture, and specified boundary conditions for the specimen. The issues and progress of the wily algorithm for the CSLH microscope are reported herein. -- Highlights: Black-Right-Pointing-Pointer Evaluation of an optical confocal holography device to measure 3D temperature of a heated fluid. Black-Right-Pointing-Pointer Processing of multiple holograms containing the cumulative refractive index through the fluid. Black-Right-Pointing-Pointer Reconstruction issues due to restricting angular scanning to the numerical aperture of the

  16. Defect modes in silver-doped photonic crystals made by holography using dichromated gelatin

    Science.gov (United States)

    Dai, Rui; Chen, Shujing; Ren, Zhi; Wang, Zhaona; Liu, Dahe

    2012-10-01

    The defect mode in silver-doped photonic crystals is investigated. 1D and 3D photonic crystals were made by holography using dichromated gelatin mixed with silver nitrate. By controlling the concentration of the silver nitrate, the defect mode was observed in the bandgaps of the holographic photonic crystals. The numerical simulations were made, and the results showed the consistency with the experimental observations.

  17. Towards quantitative electrostatic potential mapping of working semiconductor devices using off-axis electron holography

    DEFF Research Database (Denmark)

    Yazdi, Sadegh; Kasama, Takeshi; Beleggia, Marco

    2015-01-01

    Pronounced improvements in the understanding of semiconductor device performance are expected if electrostatic potential distributions can be measured quantitatively and reliably under working conditions with sufficient sensitivity and spatial resolution. Here, we employ off-axis electron...... holography to characterize an electrically-biased Si p-. n junction by measuring its electrostatic potential, electric field and charge density distributions under working conditions. A comparison between experimental electron holographic phase images and images obtained using three-dimensional electrostatic...

  18. Measurement of the traction force of biological cells by digital holography

    Science.gov (United States)

    Yu, Xiao; Cross, Michael; Liu, Changgeng; Clark, David C.; Haynie, Donald T.; Kim, Myung K.

    2011-01-01

    The traction force produced by biological cells has been visualized as distortions in flexible substrata. We have utilized quantitative phase microscopy by digital holography (DH-QPM) to study the wrinkling of a silicone rubber film by motile fibroblasts. Surface deformation and the cellular traction force have been measured from phase profiles in a direct and straightforward manner. DH-QPM is shown to provide highly efficient and versatile means for quantitatively analyzing cellular motility. PMID:22254175

  19. Electron holography study of the charging effect in microfibrils of sciatic nerve tissues.

    Science.gov (United States)

    Kim, Ki Hyun; Akase, Zentaro; Shindo, Daisuke; Ohno, Nobuhiko; Fujii, Yasuhisa; Terada, Nobuo; Ohno, Shinichi

    2013-08-01

    The charging effects of microfibrils of sciatic nerve tissues due to electron irradiation are investigated using electron holography. The phenomenon that the charging effects are enhanced with an increase of electron intensity is visualized through direct observations of the electric potential distribution around the specimen. The electric potential at the surface of the specimen could be quantitatively evaluated by simulation, which takes into account the reference wave modulation due to the long-range electric field.

  20. A study of the electrode/solution interface during electrochemical reactions by digital holography

    Directory of Open Access Journals (Sweden)

    SHENHAO CHEN

    2006-10-01

    Full Text Available Digital holography was used to study in situ the dynamic changes of the electrode/solution interface and the solution near the electrode during the anodic process of iron in a sulfuric acid solution. The effects of chloride, bromide and iodine ions on this process were also investigated. The magnetic field also has effects on the process. The effects are discussed in combination with SEM results.

  1. A low error reconstruction method for confocal holography to determine 3-dimensional properties

    International Nuclear Information System (INIS)

    Jacquemin, P.B.; Herring, R.A.

    2012-01-01

    A confocal holography microscope developed at the University of Victoria uniquely combines holography with a scanning confocal microscope to non-intrusively measure fluid temperatures in three-dimensions (Herring, 1997), (Abe and Iwasaki, 1999), (Jacquemin et al., 2005). The Confocal Scanning Laser Holography (CSLH) microscope was built and tested to verify the concept of 3D temperature reconstruction from scanned holograms. The CSLH microscope used a focused laser to non-intrusively probe a heated fluid specimen. The focused beam probed the specimen instead of a collimated beam in order to obtain different phase-shift data for each scan position. A collimated beam produced the same information for scanning along the optical propagation z-axis. No rotational scanning mechanisms were used in the CSLH microscope which restricted the scan angle to the cone angle of the probe beam. Limited viewing angle scanning from a single view point window produced a challenge for tomographic 3D reconstruction. The reconstruction matrices were either singular or ill-conditioned making reconstruction with significant error or impossible. Establishing boundary conditions with a particular scanning geometry resulted in a method of reconstruction with low error referred to as “wily”. The wily reconstruction method can be applied to microscopy situations requiring 3D imaging where there is a single viewpoint window, a probe beam with high numerical aperture, and specified boundary conditions for the specimen. The issues and progress of the wily algorithm for the CSLH microscope are reported herein. -- Highlights: ► Evaluation of an optical confocal holography device to measure 3D temperature of a heated fluid. ► Processing of multiple holograms containing the cumulative refractive index through the fluid. ► Reconstruction issues due to restricting angular scanning to the numerical aperture of the beam. ► Minimizing tomographic reconstruction error by defining boundary

  2. Electric radiation mapping of silver/zinc oxide nanoantennas by using electron holography

    Energy Technology Data Exchange (ETDEWEB)

    Sanchez, J. E.; Mendoza-Santoyo, F.; Cantu-Valle, J.; Velazquez-Salazar, J.; José Yacaman, M.; Ponce, A. [Department of Physics and Astronomy, University of Texas at San Antonio, San Antonio 78249 (United States); González, F. J. [Coordinación para la Innovación y la Aplicación de la Ciencia y la Tecnología, Universidad Autónoma de San Luís Potosí, San Luis Potosí 78210 (Mexico); Diaz de Leon, R. [Instituto Tecnológico de San Luis Potosí, San Luis Potosi 78437 (Mexico)

    2015-01-21

    In this work, we report the fabrication of self-assembled zinc oxide nanorods grown on pentagonal faces of silver nanowires by using microwaves irradiation. The nanostructures resemble a hierarchal nanoantenna and were used to study the far and near field electrical metal-semiconductor behavior from the electrical radiation pattern resulting from the phase map reconstruction obtained using off-axis electron holography. As a comparison, we use electric numerical approximations methods for a finite number of ZnO nanorods on the Ag nanowires and show that the electric radiation intensities maps match closely the experimental results obtained with electron holography. The time evolution of the radiation pattern as generated from the nanostructure was recorded under in-situ radio frequency signal stimulation, in which the generated electrical source amplitude and frequency were varied from 0 to 5 V and from 1 to 10 MHz, respectively. The phase maps obtained from electron holography show the change in the distribution of the electric radiation pattern for individual nanoantennas. The mapping of this electrical behavior is of the utmost importance to gain a complete understanding for the metal-semiconductor (Ag/ZnO) heterojunction that will help to show the mechanism through which these receiving/transmitting structures behave at nanoscale level.

  3. Unraveling nonadiabatic ionization and Coulomb potential effect in strong-field photoelectron holography.

    Science.gov (United States)

    Song, Xiaohong; Lin, Cheng; Sheng, Zhihao; Liu, Peng; Chen, Zhangjin; Yang, Weifeng; Hu, Shilin; Lin, C D; Chen, Jing

    2016-06-22

    Strong field photoelectron holography has been proposed as a means for interrogating the spatial and temporal information of electrons and ions in a dynamic system. After ionization, part of the electron wave packet may directly go to the detector (the reference wave), while another part may be driven back and scatters off the ion(the signal wave). The interference hologram of the two waves may be used to extract target information embedded in the collision process. Unlike conventional optical holography, however, propagation of the electron wave packet is affected by the Coulomb potential as well as by the laser field. In addition, electrons are emitted over the whole laser pulse duration, thus multiple interferences may occur. In this work, we used a generalized quantum-trajectory Monte Carlo method to investigate the effect of Coulomb potential and the nonadiabatic subcycle ionization on the photoelectron hologram. We showed that photoelectron hologram can be well described only when the effect of nonadiabatic ionization is accounted for, and Coulomb potential can be neglected only in the tunnel ionization regime. Our results help paving the way for establishing photoelectron holography for probing spatial and dynamic properties of atoms and molecules.

  4. Measurement of width and step-height of photolithographic product patterns by using digital holography

    Energy Technology Data Exchange (ETDEWEB)

    Shin, Ju Yeop; Kang, Sung Hoon; Ma, Hye Joon; Jung, Hyun Chul; Hong, Chung Ki; Kim, Kyeong Suk [Chosun University, Gwangju (Korea, Republic of); Kwon, Ik Hwan [Dept. of Physics, Pohang University of Science and Technology, Pohang (Korea, Republic of); Yang, Seung Pil [Dept. of Ophthalmic Optics, Dong A College of Health, Youngam (Korea, Republic of)

    2016-02-15

    The semiconductor industry is one of the key industries of Korea, which has continued growing at a steady annual growth rate. Important technology for the semiconductor industry is high integration of devices. This is to increase the memory capacity for unit area, of which key is photolithography. The photolithography refers to a technique for printing the shadow of light lit on the mask surface on to wafer, which is the most important process in a semiconductor manufacturing process. In this study, the width and step-height of wafers patterned through this process were measured to ensure uniformity. The widths and inter-plate heights of the specimens patterned using photolithography were measured using transmissive digital holography. A transmissive digital holographic interferometer was configured, and nine arbitrary points were set on the specimens as measured points. The measurement of each point was compared with the measurements performed using a commercial device called scanning electron microscope (SEM) and Alpha Step. Transmission digital holography requires a short measurement time, which is an advantage compared to other techniques. Furthermore, it uses magnification lenses, allowing the flexibility of changing between high and low magnifications. The test results confirmed that transmissive digital holography is a useful technique for measuring patterns printed using photolithography.

  5. Quantitative determination of elastic and inelastic attenuation coefficients by off-axis electron holography

    International Nuclear Information System (INIS)

    Kern, F.; Wolf, D.; Pschera, P.; Lubk, A.

    2016-01-01

    Off-axis electron holography is a well-established transmission electron microscopy technique, typically employed to investigate electric and magnetic fields in and around nanoscale materials, which modify the phase of the reconstructed electron wave function. Here, we elaborate on a detailed analysis of the two characteristic intensity terms that are completing the electron hologram, the conventional image intensity and the interference fringe intensity. We show how both are related to elastic and inelastic scattering absorption at the sample and how they may be separated to analyze the chemical composition of the sample. Since scattering absorption is aperture dependent, a quantitative determination of the corresponding attenuation coefficients (reciprocal mean free path lengths) requires the use of holographic image modi with well-defined objective aperture stops in the back-focal plane of the objective lens. The proposed method extends quantitative electron holography to a correlated three-in-one characterization of electric and magnetic fields, Z-contrast and dielectric losses in materials. - Highlights: • Quantitative determination of attenuation coefficients by electron holography. • Separation of elastic and inelastic attenuation coefficients (mean free path length). • Quantitative determination of the objective aperture semi-angle influence. • Compilation of elastic and inelastic attenuation from different materials.

  6. Acoustic holography as a metrological tool for characterizing medical ultrasound sources and fields

    Science.gov (United States)

    Sapozhnikov, Oleg A.; Tsysar, Sergey A.; Khokhlova, Vera A.; Kreider, Wayne

    2015-01-01

    Acoustic holography is a powerful technique for characterizing ultrasound sources and the fields they radiate, with the ability to quantify source vibrations and reduce the number of required measurements. These capabilities are increasingly appealing for meeting measurement standards in medical ultrasound; however, associated uncertainties have not been investigated systematically. Here errors associated with holographic representations of a linear, continuous-wave ultrasound field are studied. To facilitate the analysis, error metrics are defined explicitly, and a detailed description of a holography formulation based on the Rayleigh integral is provided. Errors are evaluated both for simulations of a typical therapeutic ultrasound source and for physical experiments with three different ultrasound sources. Simulated experiments explore sampling errors introduced by the use of a finite number of measurements, geometric uncertainties in the actual positions of acquired measurements, and uncertainties in the properties of the propagation medium. Results demonstrate the theoretical feasibility of keeping errors less than about 1%. Typical errors in physical experiments were somewhat larger, on the order of a few percent; comparison with simulations provides specific guidelines for improving the experimental implementation to reduce these errors. Overall, results suggest that holography can be implemented successfully as a metrological tool with small, quantifiable errors. PMID:26428789

  7. Prospects for quantitative and time-resolved double and continuous exposure off-axis electron holography

    Energy Technology Data Exchange (ETDEWEB)

    Migunov, Vadim, E-mail: v.migunov@fz-juelich.de [Ernst Ruska-Centre for Microscopy and Spectroscopy with Electrons, Peter Grünberg Institute, Forschungszentrum Jülich, D-52425 Jülich (Germany); Dwyer, Christian [Ernst Ruska-Centre for Microscopy and Spectroscopy with Electrons, Peter Grünberg Institute, Forschungszentrum Jülich, D-52425 Jülich (Germany); Department of Physics, Arizona State University, Tempe, AZ 85287 (United States); Boothroyd, Chris B. [Ernst Ruska-Centre for Microscopy and Spectroscopy with Electrons, Peter Grünberg Institute, Forschungszentrum Jülich, D-52425 Jülich (Germany); Pozzi, Giulio [Ernst Ruska-Centre for Microscopy and Spectroscopy with Electrons, Peter Grünberg Institute, Forschungszentrum Jülich, D-52425 Jülich (Germany); Department of Physics and Astronomy, University of Bologna, viale B. Pichat 6/2, Bologna 40127 (Italy); Dunin-Borkowski, Rafal E. [Ernst Ruska-Centre for Microscopy and Spectroscopy with Electrons, Peter Grünberg Institute, Forschungszentrum Jülich, D-52425 Jülich (Germany)

    2017-07-15

    The technique of double exposure electron holography, which is based on the superposition of two off-axis electron holograms, was originally introduced before the availability of digital image processing to allow differences between electron-optical phases encoded in two electron holograms to be visualised directly without the need for holographic reconstruction. Here, we review the original method and show how it can now be extended to permit quantitative studies of phase shifts that oscillate in time. We begin with a description of the theory of off-axis electron hologram formation for a time-dependent electron wave that results from the excitation of a specimen using an external stimulus with a square, sinusoidal, triangular or other temporal dependence. We refer to the more general method as continuous exposure electron holography, present preliminary experimental measurements and discuss how the technique can be used to image electrostatic potentials and magnetic fields during high frequency switching experiments. - Highlights: • Double and continuous exposure electron holography are described in detail. • The ability to perform quantitative studies of phase shifts that are oscillating in time is illustrated. • Theoretical considerations related to noise are presented. • Future high frequency electromagnetic switching experiments are proposed.

  8. Real-time visualization and analysis of airflow field by use of digital holography

    Science.gov (United States)

    Di, Jianglei; Wu, Bingjing; Chen, Xin; Liu, Junjiang; Wang, Jun; Zhao, Jianlin

    2013-04-01

    The measurement and analysis of airflow field is very important in fluid dynamics. For airflow, smoke particles can be added to visually observe the turbulence phenomena by particle tracking technology, but the effect of smoke particles to follow the high speed airflow will reduce the measurement accuracy. In recent years, with the advantage of non-contact, nondestructive, fast and full-field measurement, digital holography has been widely applied in many fields, such as deformation and vibration analysis, particle characterization, refractive index measurement, and so on. In this paper, we present a method to measure the airflow field by use of digital holography. A small wind tunnel model made of acrylic glass is built to control the velocity and direction of airflow. Different shapes of samples such as aircraft wing and cylinder are placed in the wind tunnel model to produce different forms of flow field. With a Mach-Zehnder interferometer setup, a series of digital holograms carrying the information of airflow filed distributions in different states are recorded by CCD camera and corresponding holographic images are numerically reconstructed from the holograms by computer. Then we can conveniently obtain the velocity or pressure information of the airflow deduced from the quantitative phase information of holographic images and visually display the airflow filed and its evolution in the form of a movie. The theory and experiment results show that digital holography is a robust and feasible approach for real-time visualization and analysis of airflow field.

  9. Optimising electron holography in the presence of partial coherence and instrument instabilities

    Energy Technology Data Exchange (ETDEWEB)

    Chang, Shery L.Y., E-mail: shery.chang@fz-juelich.de; Dwyer, Christian, E-mail: c.dwyer@fz-juelich.de; Boothroyd, Chris B.; Dunin-Borkowski, Rafal E.

    2015-04-15

    Off-axis electron holography provides a direct means of retrieving the phase of the wavefield in a transmission electron microscope, enabling measurement of electric and magnetic fields at length scales from microns to nanometers. To maximise the accuracy of the technique, it is important to acquire holograms using experimental conditions that optimise the phase resolution for a given spatial resolution. These conditions are determined by a number of competing parameters, especially the spatial coherence and the instrument instabilities. Here, we describe a simple, yet accurate, model for predicting the dose rate and exposure time that give the best phase resolution in a single hologram. Experimental studies were undertaken to verify the model of spatial coherence and instrument instabilities that are required for the optimisation. The model is applicable to electron holography in both standard mode and Lorentz mode, and it is relatively simple to apply. - Highlights: • We describe a simple, yet accurate, model for predicting the best phase resolution in off-axis electron holography. • Calibration of the model requires only two series of blank holograms; an intensity sequence and a time sequence. • The model can predict the optimum dose rate and exposure time for any given combination of biprism voltage and magnification. • The model is applicable in both standard mode and Lorentz mode, using either round or elliptical illumination.

  10. Quantitative in situ magnetization reversal studies in Lorentz microscopy and electron holography

    International Nuclear Information System (INIS)

    Rodríguez, L.A.; Magén, C.; Snoeck, E.; Gatel, C.; Marín, L.; Serrano-Ramón, L.

    2013-01-01

    A generalized procedure for the in situ application of magnetic fields by means of the excitation of the objective lens for magnetic imaging experiments in Lorentz microscopy and electron holography is quantitatively described. A protocol for applying magnetic fields with arbitrary in-plane magnitude and orientation is presented, and a freeware script for Digital Micrograph ™ is provided to assist the operation of the microscope. Moreover, a method to accurately reconstruct hysteresis loops is detailed. We show that the out-of-plane component of the magnetic field cannot be always neglected when performing quantitative measurements of the local magnetization. Several examples are shown to demonstrate the accuracy and functionality of the methods. - Highlights: • Generalized procedure for application of magnetic fields with the TEM objective lens. • Arbitrary in-plane magnetic field magnitude and orientation can be applied. • Method to accurately reconstruct hysteresis loops by electron holography. • Out-of-plane field component should be considered in quantitative measurements. • Examples to illustrate the method in Lorentz microscopy and electron holography

  11. Measurement of width and step-height of photolithographic product patterns by using digital holography

    International Nuclear Information System (INIS)

    Shin, Ju Yeop; Kang, Sung Hoon; Ma, Hye Joon; Jung, Hyun Chul; Hong, Chung Ki; Kim, Kyeong Suk; Kwon, Ik Hwan; Yang, Seung Pil

    2016-01-01

    The semiconductor industry is one of the key industries of Korea, which has continued growing at a steady annual growth rate. Important technology for the semiconductor industry is high integration of devices. This is to increase the memory capacity for unit area, of which key is photolithography. The photolithography refers to a technique for printing the shadow of light lit on the mask surface on to wafer, which is the most important process in a semiconductor manufacturing process. In this study, the width and step-height of wafers patterned through this process were measured to ensure uniformity. The widths and inter-plate heights of the specimens patterned using photolithography were measured using transmissive digital holography. A transmissive digital holographic interferometer was configured, and nine arbitrary points were set on the specimens as measured points. The measurement of each point was compared with the measurements performed using a commercial device called scanning electron microscope (SEM) and Alpha Step. Transmission digital holography requires a short measurement time, which is an advantage compared to other techniques. Furthermore, it uses magnification lenses, allowing the flexibility of changing between high and low magnifications. The test results confirmed that transmissive digital holography is a useful technique for measuring patterns printed using photolithography

  12. Improving the phase measurement by the apodization filter in the digital holography

    Science.gov (United States)

    Chang, Shifeng; Wang, Dayong; Wang, Yunxin; Zhao, Jie; Rong, Lu

    2012-11-01

    Due to the finite size of the hologram aperture in digital holography, high frequency intensity and phase fluctuations along the edges of the images, which reduce the precision of phase measurement. In this paper, the apodization filters are applied to improve the phase measurement in the digital holography. Firstly, the experimental setup of the lensless Fourier transform digital holography is built, where the sample is a standard phase grating with the grating constant of 300μm and the depth of 150nm. Then, apodization filters are applied to phase measurement of the sample with three kinds of the window functions: Tukey window, Hanning window and Blackman window, respectively. Finally, the results were compared to the detection data given by the commercial white-light interferometer. It is shown that aperture diffraction effects can be reduced by the digital apodization, and the phase measurement with the apodization is more accurate than in the unapodized case. Meanwhile, the Blackman window function produces better effect than the other two window functions in the measurement of the standard phase grating.

  13. Variable magnification dual lens electron holography for semiconductor junction profiling and strain mapping.

    Science.gov (United States)

    Wang, Y Y; Li, J; Domenicucci, A; Bruley, J

    2013-01-01

    Dual lens operation for electron holography, which was developed previously (Wang et al., Ultramicroscopy 101 (2004) 63-72; US patent: 7,015,469 B2 (2006)), is re-investigated for bright field (junction profiling) and dark field (strain mapping) electron holography using FEI instrumentation (i.e. F20 and Titan). It is found that dual lens operation provides a wide operational range for electron holography. In addition, the dark field image tilt increases at high objective lens current to include Si diffraction spot. Under the condition of high spatial resolution (1 nm fringe spacing), a large field of view (450 nm), and high fringe contrast (26%) with dual lens operation, a junction map is obtained and strain maps of Si device on and diffraction are acquired. In this paper, a fringe quality number, N', which is number of fringe times fringe contrast, is proposed to estimate the quality of an electron hologram and mathematical reasoning for the N' number is provided. Copyright © 2012 Elsevier B.V. All rights reserved.

  14. Quantitative determination of elastic and inelastic attenuation coefficients by off-axis electron holography

    Energy Technology Data Exchange (ETDEWEB)

    Kern, F.; Wolf, D.; Pschera, P.; Lubk, A.

    2016-12-15

    Off-axis electron holography is a well-established transmission electron microscopy technique, typically employed to investigate electric and magnetic fields in and around nanoscale materials, which modify the phase of the reconstructed electron wave function. Here, we elaborate on a detailed analysis of the two characteristic intensity terms that are completing the electron hologram, the conventional image intensity and the interference fringe intensity. We show how both are related to elastic and inelastic scattering absorption at the sample and how they may be separated to analyze the chemical composition of the sample. Since scattering absorption is aperture dependent, a quantitative determination of the corresponding attenuation coefficients (reciprocal mean free path lengths) requires the use of holographic image modi with well-defined objective aperture stops in the back-focal plane of the objective lens. The proposed method extends quantitative electron holography to a correlated three-in-one characterization of electric and magnetic fields, Z-contrast and dielectric losses in materials. - Highlights: • Quantitative determination of attenuation coefficients by electron holography. • Separation of elastic and inelastic attenuation coefficients (mean free path length). • Quantitative determination of the objective aperture semi-angle influence. • Compilation of elastic and inelastic attenuation from different materials.

  15. Acoustic holography as a metrological tool for characterizing medical ultrasound sources and fields.

    Science.gov (United States)

    Sapozhnikov, Oleg A; Tsysar, Sergey A; Khokhlova, Vera A; Kreider, Wayne

    2015-09-01

    Acoustic holography is a powerful technique for characterizing ultrasound sources and the fields they radiate, with the ability to quantify source vibrations and reduce the number of required measurements. These capabilities are increasingly appealing for meeting measurement standards in medical ultrasound; however, associated uncertainties have not been investigated systematically. Here errors associated with holographic representations of a linear, continuous-wave ultrasound field are studied. To facilitate the analysis, error metrics are defined explicitly, and a detailed description of a holography formulation based on the Rayleigh integral is provided. Errors are evaluated both for simulations of a typical therapeutic ultrasound source and for physical experiments with three different ultrasound sources. Simulated experiments explore sampling errors introduced by the use of a finite number of measurements, geometric uncertainties in the actual positions of acquired measurements, and uncertainties in the properties of the propagation medium. Results demonstrate the theoretical feasibility of keeping errors less than about 1%. Typical errors in physical experiments were somewhat larger, on the order of a few percent; comparison with simulations provides specific guidelines for improving the experimental implementation to reduce these errors. Overall, results suggest that holography can be implemented successfully as a metrological tool with small, quantifiable errors.

  16. Equivalence of Szegedy's and coined quantum walks

    Science.gov (United States)

    Wong, Thomas G.

    2017-09-01

    Szegedy's quantum walk is a quantization of a classical random walk or Markov chain, where the walk occurs on the edges of the bipartite double cover of the original graph. To search, one can simply quantize a Markov chain with absorbing vertices. Recently, Santos proposed two alternative search algorithms that instead utilize the sign-flip oracle in Grover's algorithm rather than absorbing vertices. In this paper, we show that these two algorithms are exactly equivalent to two algorithms involving coined quantum walks, which are walks on the vertices of the original graph with an internal degree of freedom. The first scheme is equivalent to a coined quantum walk with one walk step per query of Grover's oracle, and the second is equivalent to a coined quantum walk with two walk steps per query of Grover's oracle. These equivalences lie outside the previously known equivalence of Szegedy's quantum walk with absorbing vertices and the coined quantum walk with the negative identity operator as the coin for marked vertices, whose precise relationships we also investigate.

  17. Rhythmic walking interactions with auditory feedback

    DEFF Research Database (Denmark)

    Jylhä, Antti; Serafin, Stefania; Erkut, Cumhur

    2012-01-01

    of interactions based on varying the temporal characteristics of the output, using the sound of human walking as the input. The system either provides a direct synthesis of a walking sound based on the detected amplitude envelope of the user's footstep sounds, or provides a continuous synthetic walking sound...... as a stimulus for the walking human, either with a fixed tempo or a tempo adapting to the human gait. In a pilot experiment, the different interaction modes are studied with respect to their effect on the walking tempo and the experience of the subjects. The results tentatively outline different user profiles......Walking is a natural rhythmic activity that has become of interest as a means of interacting with software systems such as computer games. Therefore, designing multimodal walking interactions calls for further examination. This exploratory study presents a system capable of different kinds...

  18. Nordic walking and chronic low back pain

    DEFF Research Database (Denmark)

    Morsø, Lars; Hartvigsen, Jan; Puggaard, Lis

    2006-01-01

    activity provide similar benefits. Nordic Walking is a popular and fast growing type of exercise in Northern Europe. Initial studies have demonstrated that persons performing Nordic Walking are able to exercise longer and harder compared to normal walking thereby increasing their cardiovascular metabolism....... Until now no studies have been performed to investigate whether Nordic Walking has beneficial effects in relation to low back pain. The primary aim of this study is to investigate whether supervised Nordic Walking can reduce pain and improve function in a population of chronic low back pain patients...... when compared to unsupervised Nordic Walking and advice to stay active. In addition we investigate whether there is an increase in the cardiovascular metabolism in persons performing supervised Nordic Walking compared to persons who are advised to stay active. Finally, we investigate whether...

  19. City Walks and Tactile Experience

    Directory of Open Access Journals (Sweden)

    Mădălina Diaconu

    2011-01-01

    Full Text Available This paper is an attempt to develop categories of the pedestrian’s tactile and kinaesthetic experience of the city. The beginning emphasizes the haptic qualities of surfaces and textures, which can be “palpated” visually or experienced by walking. Also the lived city is three-dimensional; its corporeal depth is discussed here in relation to the invisible sewers, protuberant profiles, and the formal diversity of roofscapes. A central role is ascribed in the present analysis to the formal similarities between the representation of the city by walking through it and the representation of the tactile form of objects. Additional aspects of the “tactile” experience of the city in a broad sense concern the feeling of their rhythms and the exposure to weather conditions. Finally, several aspects of contingency converge in the visible age of architectural works, which record traces of individual and collective histories.

  20. Groups, graphs and random walks

    CERN Document Server

    Salvatori, Maura; Sava-Huss, Ecaterina

    2017-01-01

    An accessible and panoramic account of the theory of random walks on groups and graphs, stressing the strong connections of the theory with other branches of mathematics, including geometric and combinatorial group theory, potential analysis, and theoretical computer science. This volume brings together original surveys and research-expository papers from renowned and leading experts, many of whom spoke at the workshop 'Groups, Graphs and Random Walks' celebrating the sixtieth birthday of Wolfgang Woess in Cortona, Italy. Topics include: growth and amenability of groups; Schrödinger operators and symbolic dynamics; ergodic theorems; Thompson's group F; Poisson boundaries; probability theory on buildings and groups of Lie type; structure trees for edge cuts in networks; and mathematical crystallography. In what is currently a fast-growing area of mathematics, this book provides an up-to-date and valuable reference for both researchers and graduate students, from which future research activities will undoubted...

  1. Stable walking with asymmetric legs

    International Nuclear Information System (INIS)

    Merker, Andreas; Rummel, Juergen; Seyfarth, Andre

    2011-01-01

    Asymmetric leg function is often an undesired side-effect in artificial legged systems and may reflect functional deficits or variations in the mechanical construction. It can also be found in legged locomotion in humans and animals such as after an accident or in specific gait patterns. So far, it is not clear to what extent differences in the leg function of contralateral limbs can be tolerated during walking or running. Here, we address this issue using a bipedal spring-mass model for simulating walking with compliant legs. With the help of the model, we show that considerable differences between contralateral legs can be tolerated and may even provide advantages to the robustness of the system dynamics. A better understanding of the mechanisms and potential benefits of asymmetric leg operation may help to guide the development of artificial limbs or the design novel therapeutic concepts and rehabilitation strategies.

  2. Random walk through fractal environments

    OpenAIRE

    Isliker, H.; Vlahos, L.

    2002-01-01

    We analyze random walk through fractal environments, embedded in 3-dimensional, permeable space. Particles travel freely and are scattered off into random directions when they hit the fractal. The statistical distribution of the flight increments (i.e. of the displacements between two consecutive hittings) is analytically derived from a common, practical definition of fractal dimension, and it turns out to approximate quite well a power-law in the case where the dimension D of the fractal is ...

  3. Object Study Walk. BLOK P

    Directory of Open Access Journals (Sweden)

    Tone Huse

    2017-03-01

    Full Text Available I would like to take you for a walk, around the housing complex Blok P in the centre of Nuuk, Greenland. I encourage you to move and listen, to smell and touch. In the presence of your evoked senses, linger for a moment; turn your face towards the past. Let us explore urban nostalgia, not as an either/or reactionary, speculative, radical, or future-oriented but as the organizing narrative of our shared journey.

  4. Efficient Interior NSI based on Various BeamformingMethods for Overview and Conformal Mapping usingSONAH Holography for Details on Selected Panels

    DEFF Research Database (Denmark)

    Hald, Jørgen; Mørkholt, Jakob; Gomes, Jesper Skovhus

    of problematic areas is performed with a small planar single-layer or double-layer array in combination with SONAH holography. Using the SONAH algorithm for patch near-field acoustic holography, all sound field parameters can be estimated directly on the irregularly shaped panel surfaces. All the array...

  5. Spin lattices of walking droplets

    Science.gov (United States)

    Saenz, Pedro; Pucci, Giuseppe; Goujon, Alexis; Dunkel, Jorn; Bush, John

    2017-11-01

    We present the results of an experimental investigation of the spontaneous emergence of collective behavior in spin lattice of droplets walking on a vibrating fluid bath. The bottom topography consists of relatively deep circular wells that encourage the walking droplets to follow circular trajectories centered at the lattice sites, in one direction or the other. Wave-mediated interactions between neighboring drops are enabled through a thin fluid layer between the wells. The sense of rotation of the walking droplets may thus become globally coupled. When the coupling is sufficiently strong, interactions with neighboring droplets may result in switches in spin that lead to preferred global arrangements, including correlated (all drops rotating in the same direction) or anti-correlated (neighboring drops rotating in opposite directions) states. Analogies with ferromagnetism and anti-ferromagnetism are drawn. Different spatial arrangements are presented in 1D and 2D lattices to illustrate the effects of topological frustration. This work was supported by the US National Science Foundation through Grants CMMI-1333242 and DMS-1614043.

  6. A Preliminary Comparison of Three Dimensional Particle Tracking and Sizing using Plenoptic Imaging and Digital In-line Holography

    Energy Technology Data Exchange (ETDEWEB)

    Guildenbecher, Daniel Robert; Munz, Elise Dahnke; Farias, Paul Abraham; Thurow, Brian S [Auburn U

    2015-12-01

    Digital in-line holography and plenoptic photography are two techniques for single-shot, volumetric measurement of 3D particle fields. Here we present a preliminary comparison of the two methods by applying plenoptic imaging to experimental configurations that have been previously investigated with digital in-line holography. These experiments include the tracking of secondary droplets from the impact of a water drop on a thin film of water and tracking of pellets from a shotgun. Both plenoptic imaging and digital in-line holography successfully quantify the 3D nature of these particle fields. This includes measurement of the 3D particle position, individual particle sizes, and three-component velocity vectors. For the initial processing methods presented here, both techniques give out-of-plane positional accuracy of approximately 1-2 particle diameters. For a fixed image sensor, digital holography achieves higher effective in-plane spatial resolutions. However, collimated and coherent illumination makes holography susceptible to image distortion through index of refraction gradients, as demonstrated in the shotgun experiments. On the other hand, plenotpic imaging allows for a simpler experimental configuration. Furthermore, due to the use of diffuse, white-light illumination, plenoptic imaging is less susceptible to image distortion in the shotgun experiments. Additional work is needed to better quantify sources of uncertainty, particularly in the plenoptic experiments, as well as develop data processing methodologies optimized for the plenoptic measurement.

  7. Shared and task-specific muscle synergies of Nordic walking and conventional walking.

    Science.gov (United States)

    Boccia, G; Zoppirolli, C; Bortolan, L; Schena, F; Pellegrini, B

    2018-03-01

    Nordic walking is a form of walking that includes a poling action, and therefore an additional subtask, with respect to conventional walking. The aim of this study was to assess whether Nordic walking required a task-specific muscle coordination with respect to conventional walking. We compared the electromyographic (EMG) activity of 15 upper- and lower-limb muscles of 9 Nordic walking instructors, while executing Nordic walking and conventional walking at 1.3 ms -1 on a treadmill. Non-negative matrix factorization method was applied to identify muscle synergies, representing the spatial and temporal organization of muscle coordination. The number of muscle synergies was not different between Nordic walking (5.2 ± 0.4) and conventional walking (5.0 ± 0.7, P = .423). Five muscle synergies accounted for 91.2 ± 1.1% and 92.9 ± 1.2% of total EMG variance in Nordic walking and conventional walking, respectively. Similarity and cross-reconstruction analyses showed that 4 muscle synergies, mainly involving lower-limb and trunk muscles, are shared between Nordic walking and conventional walking. One synergy acting during upper limb propulsion is specific to Nordic walking, modifying the spatial organization and the magnitude of activation of upper limb muscles compared to conventional walking. The inclusion of the poling action in Nordic walking does not increase the complexity of movement control and does not change the coordination of lower limb muscles. This makes Nordic walking a physical activity suitable also for people with low motor skill. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  8. Properties of the vacuum in models for QCD. Holography vs. resummed field theory. A comparative study

    Energy Technology Data Exchange (ETDEWEB)

    Zayakin, Andrey V.

    2011-01-17

    This Thesis is dedicated to a comparison of the two means of studying the electromagnetic properties of the QCD vacuum - holography and resummed field theory. I compare two classes of distinct models for the dynamics of the condensates. The first class consists of the so-called holographic models of QCD. Based upon the Maldacena conjecture, it tries to establish the properties of QCD correlation functions from the behavior of classical solutions of field equations in a higher-dimensional theory. Yet in many aspects the holographic approach has been found to be in an excellent agreement with data. These successes are the prediction of the very small viscosity-to-entropy ratio and the predictions of meson spectra up to 5% accuracy in several models. On the other hand, the resummation methods in field theory have not been discarded so far. Both classes of methods have access to condensates. Thus a comprehensive study of condensates becomes possible, in which I compare my calculations in holography and resummed field theory with each other, as well as with lattice results, field theory and experiment. I prove that the low-energy theorems of QCD keep their validity in holographic models with a gluon condensate in a non-trivial way. I also show that the so-called decoupling relation holds in holography models with chiral and gluon condensates, whereas this relation fails in the Dyson-Schwinger approach. On the contrary, my results on the chiral magnetic effect in holography disagree with the weak-field prediction; the chiral magnetic effect (that is, the electric current generation in a magnetic field) is three times less than the current in the weakly-coupled QCD. The chiral condensate behavior is found to be quadratic in external field both in the Dyson-Schwinger approach and in holography, yet we know that in the exact limit the condensate must be linear, thus both classes of models are concluded to be deficient for establishing the correct condensate behaviour in the

  9. Properties of the vacuum in models for QCD. Holography vs. resummed field theory. A comparative study

    International Nuclear Information System (INIS)

    Zayakin, Andrey V.

    2011-01-01

    This Thesis is dedicated to a comparison of the two means of studying the electromagnetic properties of the QCD vacuum - holography and resummed field theory. I compare two classes of distinct models for the dynamics of the condensates. The first class consists of the so-called holographic models of QCD. Based upon the Maldacena conjecture, it tries to establish the properties of QCD correlation functions from the behavior of classical solutions of field equations in a higher-dimensional theory. Yet in many aspects the holographic approach has been found to be in an excellent agreement with data. These successes are the prediction of the very small viscosity-to-entropy ratio and the predictions of meson spectra up to 5% accuracy in several models. On the other hand, the resummation methods in field theory have not been discarded so far. Both classes of methods have access to condensates. Thus a comprehensive study of condensates becomes possible, in which I compare my calculations in holography and resummed field theory with each other, as well as with lattice results, field theory and experiment. I prove that the low-energy theorems of QCD keep their validity in holographic models with a gluon condensate in a non-trivial way. I also show that the so-called decoupling relation holds in holography models with chiral and gluon condensates, whereas this relation fails in the Dyson-Schwinger approach. On the contrary, my results on the chiral magnetic effect in holography disagree with the weak-field prediction; the chiral magnetic effect (that is, the electric current generation in a magnetic field) is three times less than the current in the weakly-coupled QCD. The chiral condensate behavior is found to be quadratic in external field both in the Dyson-Schwinger approach and in holography, yet we know that in the exact limit the condensate must be linear, thus both classes of models are concluded to be deficient for establishing the correct condensate behaviour in the

  10. Random walks and diffusion on networks

    Science.gov (United States)

    Masuda, Naoki; Porter, Mason A.; Lambiotte, Renaud

    2017-11-01

    Random walks are ubiquitous in the sciences, and they are interesting from both theoretical and practical perspectives. They are one of the most fundamental types of stochastic processes; can be used to model numerous phenomena, including diffusion, interactions, and opinions among humans and animals; and can be used to extract information about important entities or dense groups of entities in a network. Random walks have been studied for many decades on both regular lattices and (especially in the last couple of decades) on networks with a variety of structures. In the present article, we survey the theory and applications of random walks on networks, restricting ourselves to simple cases of single and non-adaptive random walkers. We distinguish three main types of random walks: discrete-time random walks, node-centric continuous-time random walks, and edge-centric continuous-time random walks. We first briefly survey random walks on a line, and then we consider random walks on various types of networks. We extensively discuss applications of random walks, including ranking of nodes (e.g., PageRank), community detection, respondent-driven sampling, and opinion models such as voter models.

  11. Quantum walks with infinite hitting times

    International Nuclear Information System (INIS)

    Krovi, Hari; Brun, Todd A.

    2006-01-01

    Hitting times are the average time it takes a walk to reach a given final vertex from a given starting vertex. The hitting time for a classical random walk on a connected graph will always be finite. We show that, by contrast, quantum walks can have infinite hitting times for some initial states. We seek criteria to determine if a given walk on a graph will have infinite hitting times, and find a sufficient condition, which for discrete time quantum walks is that the degeneracy of the evolution operator be greater than the degree of the graph. The set of initial states which give an infinite hitting time form a subspace. The phenomenon of infinite hitting times is in general a consequence of the symmetry of the graph and its automorphism group. Using the irreducible representations of the automorphism group, we derive conditions such that quantum walks defined on this graph must have infinite hitting times for some initial states. In the case of the discrete walk, if this condition is satisfied the walk will have infinite hitting times for any choice of a coin operator, and we give a class of graphs with infinite hitting times for any choice of coin. Hitting times are not very well defined for continuous time quantum walks, but we show that the idea of infinite hitting-time walks naturally extends to the continuous time case as well

  12. Positive messaging promotes walking in older adults.

    Science.gov (United States)

    Notthoff, Nanna; Carstensen, Laura L

    2014-06-01

    Walking is among the most cost-effective and accessible means of exercise. Mounting evidence suggests that walking may help to maintain physical and cognitive independence in old age by preventing a variety of health problems. However, older Americans fall far short of meeting the daily recommendations for walking. In 2 studies, we examined whether considering older adults' preferential attention to positive information may effectively enhance interventions aimed at promoting walking. In Study 1, we compared the effectiveness of positive, negative, and neutral messages to encourage walking (as measured with pedometers). Older adults who were informed about the benefits of walking walked more than those who were informed about the negative consequences of failing to walk, whereas younger adults were unaffected by framing valence. In Study 2, we examined within-person change in walking in older adults in response to positively- or negatively-framed messages over a 28-day period. Once again, positively-framed messages more effectively promoted walking than negatively-framed messages, and the effect was sustained across the intervention period. Together, these studies suggest that consideration of age-related changes in preferences for positive and negative information may inform the design of effective interventions to promote healthy lifestyles. Future research is needed to examine the mechanisms underlying the greater effectiveness of positively- as opposed to negatively-framed messages and the generalizability of findings to other intervention targets and other subpopulations of older adults. PsycINFO Database Record (c) 2014 APA, all rights reserved.

  13. Walk-Startup of a Two-Legged Walking Mechanism

    Science.gov (United States)

    Babković, Kalman; Nagy, László; Krklješ, Damir; Borovac, Branislav

    There is a growing interest towards humanoid robots. One of their most important characteristic is the two-legged motion - walk. Starting and stopping of humanoid robots introduce substantial delays. In this paper, the goal is to explore the possibility of using a short unbalanced state of the biped robot to quickly gain speed and achieve the steady state velocity during a period shorter than half of the single support phase. The proposed method is verified by simulation. Maintainig a steady state, balanced gait is not considered in this paper.

  14. Nordic walking versus walking without poles for rehabilitation with cardiovascular disease: Randomized controlled trial.

    Science.gov (United States)

    Girold, Sébastien; Rousseau, Jérome; Le Gal, Magalie; Coudeyre, Emmanuel; Le Henaff, Jacqueline

    2017-07-01

    With Nordic walking, or walking with poles, one can travel a greater distance and at a higher rate than with walking without poles, but whether the activity is beneficial for patients with cardiovascular disease is unknown. This randomized controlled trial was undertaken to determine whether Nordic walking was more effective than walking without poles on walk distance to support rehabilitation training for patients with acute coronary syndrome (ACS) and peripheral arterial occlusive disease (PAOD). Patients were recruited in a private specialized rehabilitation centre for cardiovascular diseases. The entire protocol, including patient recruitment, took place over 2 months, from September to October 2013. We divided patients into 2 groups: Nordic Walking Group (NWG, n=21) and Walking Group without poles (WG, n=21). All patients followed the same program over 4 weeks, except for the walk performed with or without poles. The main outcome was walk distance on the 6-min walk test. Secondary outcomes were maximum heart rate during exercise and walk distance and power output on a treadmill stress test. We included 42 patients (35 men; mean age 57.2±11 years and BMI 26.5±4.5kg/m 2 ). At the end of the training period, both groups showed improved walk distance on the 6-min walk test and treatment stress test as well as power on the treadmill stress test (PNordic walking training appeared more efficient than training without poles for increasing walk distance on the 6-min walk test for patients with ACS and PAOD. Copyright © 2017. Published by Elsevier Masson SAS.

  15. System overview and walking dynamics of a passive dynamic walking robot with flat feet

    Directory of Open Access Journals (Sweden)

    Xinyu Liu

    2015-12-01

    Full Text Available The concept of “passive dynamic walking robot” refers to the robot that can walk down a shallow slope stably without any actuation and control which shows a limit cycle during walking. By adding actuation at some joints, the passive dynamic walking robot can walk stably on level ground and exhibit more versatile gaits than fully passive robot, namely, the “limit cycle walker.” In this article, we present the mechanical structures and control system design for a passive dynamic walking robot with series elastic actuators at hip joint and ankle joints. We built a walking model that consisted of an upper body, knee joints, and flat feet and derived its walking dynamics that involve double stance phases in a walking cycle based on virtual power principle. The instant just before impact was chosen as the start of one step to reduce the number of independent state variables. A numerical simulation was implemented by using MATLAB, in which the proposed passive dynamic walking model could walk stably down a shallow slope, which proves that the derived walking dynamics are correct. A physical passive robot prototype was built finally, and the experiment results show that by only simple control scheme the passive dynamic robot could walk stably on level ground.

  16. Strain mapping for the semiconductor industry by dark-field electron holography and nanobeam electron diffraction with nm resolution

    International Nuclear Information System (INIS)

    Cooper, David; Hartmann, Jean Michel; Carron, Veronique; Béché, Armand; Rouvière, Jean-Luc

    2010-01-01

    There is a requirement of the semiconductor industry to measure strain in semiconductor devices with nm-scale resolution. Here we show that dark-field electron holography and nanobeam electron diffraction (NBED) are both complementary techniques that can be used to determine the strain in these devices. We show two-dimensional strain maps acquired by dark holography and line profiles that have been acquired by NBED of recessed SiGe sources and drains with a variety of different gate lengths and Ge concentrations. We have also used dark-field electron holography to measure the evolution in strain during the silicidation process, showing that this can reduce the applied uniaxial compressive strain in the conduction channel by up to a factor of 3

  17. Hybridization approach to in-line and off-axis (electron) holography for superior resolution and phase sensitivity

    Science.gov (United States)

    Ozsoy-Keskinbora, C.; Boothroyd, C. B.; Dunin-Borkowski, R. E.; van Aken, P. A.; Koch, C. T.

    2014-01-01

    Holography - originally developed for correcting spherical aberration in transmission electron microscopes - is now used in a wide range of disciplines that involve the propagation of waves, including light optics, electron microscopy, acoustics and seismology. In electron microscopy, the two primary modes of holography are Gabor's original in-line setup and an off-axis approach that was developed subsequently. These two techniques are highly complementary, offering superior phase sensitivity at high and low spatial resolution, respectively. All previous investigations have focused on improving each method individually. Here, we show how the two approaches can be combined in a synergetic fashion to provide phase information with excellent sensitivity across all spatial frequencies, low noise and an efficient use of electron dose. The principle is also expected to be widely to applications of holography in light optics, X-ray optics, acoustics, ultra-sound, terahertz imaging, etc. PMID:25387480

  18. Wavefield back-propagation in high-resolution X-ray holography with a movable field of view.

    Science.gov (United States)

    Guehrs, Erik; Günther, Christian M; Pfau, Bastian; Rander, Torbjörn; Schaffert, Stefan; Schlotter, William F; Eisebitt, Stefan

    2010-08-30

    Mask-based Fourier transform holography is used to record images of biological objects with 2.2 nm X-ray wavelength. The holography mask and the object are decoupled from each other which allows us to move the field of view over a large area over the sample. Due to the separation of the mask and the sample on different X-ray windows, a gap between both windows in the micrometer range typically exists. Using standard Fourier transform holography, focussed images of the sample can directly be reconstructed only for gap distances within the setup's depth of field. Here, we image diatoms as function of the gap distance and demonstrate the possibility to recover focussed images via a wavefield back-propagation technique. The limitations of our approach with respect to large separations are mainly associated with deviations from flat-field illumination of the object.

  19. Quantum walk on a chimera graph

    Science.gov (United States)

    Xu, Shu; Sun, Xiangxiang; Wu, Jizhou; Zhang, Wei-Wei; Arshed, Nigum; Sanders, Barry C.

    2018-05-01

    We analyse a continuous-time quantum walk on a chimera graph, which is a graph of choice for designing quantum annealers, and we discover beautiful quantum walk features such as localization that starkly distinguishes classical from quantum behaviour. Motivated by technological thrusts, we study continuous-time quantum walk on enhanced variants of the chimera graph and on diminished chimera graph with a random removal of vertices. We explain the quantum walk by constructing a generating set for a suitable subgroup of graph isomorphisms and corresponding symmetry operators that commute with the quantum walk Hamiltonian; the Hamiltonian and these symmetry operators provide a complete set of labels for the spectrum and the stationary states. Our quantum walk characterization of the chimera graph and its variants yields valuable insights into graphs used for designing quantum-annealers.

  20. Full revivals in 2D quantum walks

    International Nuclear Information System (INIS)

    Stefanak, M; Jex, I; Kollar, B; Kiss, T

    2010-01-01

    Recurrence of a random walk is described by the Polya number. For quantum walks, recurrence is understood as the return of the walker to the origin, rather than the full revival of its quantum state. Localization for two-dimensional quantum walks is known to exist in the sense of non-vanishing probability distribution in the asymptotic limit. We show, on the example of the 2D Grover walk, that one can exploit the effect of localization to construct stationary solutions. Moreover, we find full revivals of a quantum state with a period of two steps. We prove that there cannot be longer cycles for a four-state quantum walk. Stationary states and revivals result from interference, which has no counterpart in classical random walks.