WorldWideScience

Sample records for walking speeds flows

  1. Modulation of walking speed by changing optic flow in persons with stroke

    Directory of Open Access Journals (Sweden)

    Lamontagne Anouk

    2007-06-01

    Full Text Available Abstract Background Walking speed, which is often reduced after stroke, can be influenced by the perception of optic flow (OF speed. The present study aims to: 1 compare the modulation of walking speed in response to OF speed changes between persons with stroke and healthy controls and 2 investigate whether virtual environments (VE manipulating OF speed can be used to promote volitional changes in walking speed post stroke. Methods Twelve persons with stroke and 12 healthy individuals walked on a self-paced treadmill while viewing a virtual corridor in a helmet-mounted display. Two experiments were carried out on the same day. In experiment 1, the speed of an expanding OF was varied sinusoidally at 0.017 Hz (sine duration = 60 s, from 0 to 2 times the subject's comfortable walking speed, for a total duration of 5 minutes. In experiment 2, subjects were exposed to expanding OFs at discrete speeds that ranged from 0.25 to 2 times their comfortable speed. Each test trial was paired with a control trial performed at comfortable speed with matching OF. For each of the test trials, subjects were instructed to walk the distance within the same time as during the immediately preceding control trial. VEs were controlled by the CAREN-2 system (Motek. Instantaneous changes in gait speed (experiment 1 and the ratio of speed changes in the test trial over the control trial (experiment 2 were contrasted between the two groups of subjects. Results When OF speed was changing continuously (experiment 1, an out-of-phase modulation was observed in the gait speed of healthy subjects, such that slower OFs induced faster walking speeds, and vice versa. Persons with stroke displayed weaker (p 0.05, T-test. Conclusion Stroke affects the modulation of gait speed in response to changes in the perception of movement through different OF speeds. Nevertheless, the preservation of even a modest modulation enabled the persons with stroke to increase walking speed when

  2. Establishing the Range of Perceptually Natural Visual Walking Speeds for Virtual Walking-In-Place Locomotion

    DEFF Research Database (Denmark)

    Nilsson, Niels Christian; Serafin, Stefania; Nordahl, Rolf

    2014-01-01

    to virtual motion. This paper describes two within-subjects studies performed with the intention of establishing the range of perceptually natural walking speeds for WIP locomotion. In both studies, subjects performed a series of virtual walks while exposed to visual gains (optic flow multipliers) ranging...... from 1.0 to 3.0. Thus, the slowest speed was equal to an estimate of the subjects normal walking speed, while the highest speed was three times greater. The perceived naturalness of the visual speed was assessed using self-reports. The first study compared four different types of movement, namely...... proportional to the degree of underestimation of the virtual speeds for both treadmill-mediated virtual walking and WIP locomotion. Combined, the results constitute a first attempt at establishing a set of guidelines specifying what virtual walking speeds WIP gestures should produce in order to facilitate...

  3. How humans use visual optic flow to regulate stepping during walking.

    Science.gov (United States)

    Salinas, Mandy M; Wilken, Jason M; Dingwell, Jonathan B

    2017-09-01

    Humans use visual optic flow to regulate average walking speed. Among many possible strategies available, healthy humans walking on motorized treadmills allow fluctuations in stride length (L n ) and stride time (T n ) to persist across multiple consecutive strides, but rapidly correct deviations in stride speed (S n =L n /T n ) at each successive stride, n. Several experiments verified this stepping strategy when participants walked with no optic flow. This study determined how removing or systematically altering optic flow influenced peoples' stride-to-stride stepping control strategies. Participants walked on a treadmill with a virtual reality (VR) scene projected onto a 3m tall, 180° semi-cylindrical screen in front of the treadmill. Five conditions were tested: blank screen ("BLANK"), static scene ("STATIC"), or moving scene with optic flow speed slower than ("SLOW"), matched to ("MATCH"), or faster than ("FAST") walking speed. Participants took shorter and faster strides and demonstrated increased stepping variability during the BLANK condition compared to the other conditions. Thus, when visual information was removed, individuals appeared to walk more cautiously. Optic flow influenced both how quickly humans corrected stride speed deviations and how successful they were at enacting this strategy to try to maintain approximately constant speed at each stride. These results were consistent with Weber's law: healthy adults more-rapidly corrected stride speed deviations in a no optic flow condition (the lower intensity stimuli) compared to contexts with non-zero optic flow. These results demonstrate how the temporal characteristics of optic flow influence ability to correct speed fluctuations during walking. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. Fast visual prediction and slow optimization of preferred walking speed.

    Science.gov (United States)

    O'Connor, Shawn M; Donelan, J Maxwell

    2012-05-01

    People prefer walking speeds that minimize energetic cost. This may be accomplished by directly sensing metabolic rate and adapting gait to minimize it, but only slowly due to the compounded effects of sensing delays and iterative convergence. Visual and other sensory information is available more rapidly and could help predict which gait changes reduce energetic cost, but only approximately because it relies on prior experience and an indirect means to achieve economy. We used virtual reality to manipulate visually presented speed while 10 healthy subjects freely walked on a self-paced treadmill to test whether the nervous system beneficially combines these two mechanisms. Rather than manipulating the speed of visual flow directly, we coupled it to the walking speed selected by the subject and then manipulated the ratio between these two speeds. We then quantified the dynamics of walking speed adjustments in response to perturbations of the visual speed. For step changes in visual speed, subjects responded with rapid speed adjustments (lasting 300 s). The timing and direction of these responses strongly indicate that a rapid predictive process informed by visual feedback helps select preferred speed, perhaps to complement a slower optimization process that seeks to minimize energetic cost.

  5. Walking speed-related changes in stride time variability: effects of decreased speed

    Directory of Open Access Journals (Sweden)

    Dubost Veronique

    2009-08-01

    Full Text Available Abstract Background Conflicting results have been reported regarding the relationship between stride time variability (STV and walking speed. While some studies failed to establish any relationship, others reported either a linear or a non-linear relationship. We therefore sought to determine the extent to which decrease in self-selected walking speed influenced STV among healthy young adults. Methods The mean value, the standard deviation and the coefficient of variation of stride time, as well as the mean value of stride velocity were recorded while steady-state walking using the GAITRite® system in 29 healthy young adults who walked consecutively at 88%, 79%, 71%, 64%, 58%, 53%, 46% and 39% of their preferred walking speed. Results The decrease in stride velocity increased significantly mean values, SD and CoV of stride time (p Conclusion The results support the assumption that gait variability increases while walking speed decreases and, thus, gait might be more unstable when healthy subjects walk slower compared with their preferred walking speed. Furthermore, these results highlight that a decrease in walking speed can be a potential confounder while evaluating STV.

  6. Optimal speeds for walking and running, and walking on a moving walkway.

    Science.gov (United States)

    Srinivasan, Manoj

    2009-06-01

    Many aspects of steady human locomotion are thought to be constrained by a tendency to minimize the expenditure of metabolic cost. This paper has three parts related to the theme of energetic optimality: (1) a brief review of energetic optimality in legged locomotion, (2) an examination of the notion of optimal locomotion speed, and (3) an analysis of walking on moving walkways, such as those found in some airports. First, I describe two possible connotations of the term "optimal locomotion speed:" that which minimizes the total metabolic cost per unit distance and that which minimizes the net cost per unit distance (total minus resting cost). Minimizing the total cost per distance gives the maximum range speed and is a much better predictor of the speeds at which people and horses prefer to walk naturally. Minimizing the net cost per distance is equivalent to minimizing the total daily energy intake given an idealized modern lifestyle that requires one to walk a given distance every day--but it is not a good predictor of animals' walking speeds. Next, I critique the notion that there is no energy-optimal speed for running, making use of some recent experiments and a review of past literature. Finally, I consider the problem of predicting the speeds at which people walk on moving walkways--such as those found in some airports. I present two substantially different theories to make predictions. The first theory, minimizing total energy per distance, predicts that for a range of low walkway speeds, the optimal absolute speed of travel will be greater--but the speed relative to the walkway smaller--than the optimal walking speed on stationary ground. At higher walkway speeds, this theory predicts that the person will stand still. The second theory is based on the assumption that the human optimally reconciles the sensory conflict between the forward speed that the eye sees and the walking speed that the legs feel and tries to equate the best estimate of the forward

  7. Biomechanical parameters in lower limbs during natural walking and Nordic walking at different speeds.

    Science.gov (United States)

    Dziuba, Alicja K; Żurek, Grzegorz; Garrard, Ian; Wierzbicka-Damska, Iwona

    2015-01-01

    Nordic Walking (NW) is a sport that has a number of benefits as a rehabilitation method. It is performed with specially designed poles and has been often recommended as a physical activity that helps reduce the load to limbs. However, some studies have suggested that these findings might be erroneous. The aim of this paper was to compare the kinematic, kinetic and dynamic parameters of lower limbs between Natural Walking (W) and Nordic Walking (NW) at both low and high walking speeds. The study used a registration system, BTS Smart software and Kistler platform. Eleven subjects walked along a 15-metre path at low (below 2 m⋅s-1) and high (over 2 m⋅s-1) walking speeds. The Davis model was employed for calculations of kinematic, kinetic and dynamic parameters of lower limbs. With constant speed, the support given by Nordic Walking poles does not make the stroke longer and there is no change in pelvic rotation either. The only change observed was much bigger pelvic anteversion in the sagittal plane during fast NW. There were no changes in forces, power and muscle torques in lower limbs. The study found no differences in kinematic, kinetic and dynamic parameters between Natural Walking (W) and Nordic Walking (NW). Higher speeds generate greater ground reaction forces and muscle torques in lower limbs. Gait parameters depend on walking speed rather than on walking style.

  8. Is perception of self-motion speed a necessary condition for intercepting a moving target while walking?

    Science.gov (United States)

    Morice, Antoine H P; Wallet, Grégory; Montagne, Gilles

    2014-04-30

    While it has been shown that the Global Optic Flow Rate (GOFR) is used in the control of self-motion speed, this study examined its relevance in the control of interceptive actions while walking. We asked participants to intercept approaching targets by adjusting their walking speed in a virtual environment, and predicted that the influence of the GOFR depended on their interception strategy. Indeed, unlike the Constant Bearing Angle (CBA), the Modified Required Velocity (MRV) strategy relies on the perception of self-displacement speed. On the other hand, the CBA strategy involves specific speed adjustments depending on the curvature of the target's trajectory, whereas the MRV does not. We hypothesized that one strategy is selected among the two depending on the informational content of the environment. We thus manipulated the curvature and display of the target's trajectory, and the relationship between physical walking speed and the GOFR (through eye height manipulations). Our results showed that when the target trajectory was not displayed, walking speed profiles were affected by curvature manipulations. Otherwise, walking speed profiles were less affected by curvature manipulations and were affected by the GOFR manipulations. Taken together, these results show that the use of the GOFR for intercepting a moving target while walking depends on the informational content of the environment. Finally we discuss the complementary roles of these two perceptual-motor strategies. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  9. Walking training with cueing of cadence improves walking speed and stride length after stroke more than walking training alone: a systematic review.

    Science.gov (United States)

    Nascimento, Lucas R; de Oliveira, Camila Quel; Ada, Louise; Michaelsen, Stella M; Teixeira-Salmela, Luci F

    2015-01-01

    After stroke, is walking training with cueing of cadence superior to walking training alone in improving walking speed, stride length, cadence and symmetry? Systematic review with meta-analysis of randomised or controlled trials. Adults who have had a stroke. Walking training with cueing of cadence. Four walking outcomes were of interest: walking speed, stride length, cadence and symmetry. This review included seven trials involving 211 participants. Because one trial caused substantial statistical heterogeneity, meta-analyses were conducted with and without this trial. Walking training with cueing of cadence improved walking speed by 0.23 m/s (95% CI 0.18 to 0.27, I(2)=0%), stride length by 0.21 m (95% CI 0.14 to 0.28, I(2)=18%), cadence by 19 steps/minute (95% CI 14 to 23, I(2)=40%), and symmetry by 15% (95% CI 3 to 26, random effects) more than walking training alone. This review provides evidence that walking training with cueing of cadence improves walking speed and stride length more than walking training alone. It may also produce benefits in terms of cadence and symmetry of walking. The evidence appears strong enough to recommend the addition of 30 minutes of cueing of cadence to walking training, four times a week for 4 weeks, in order to improve walking in moderately disabled individuals with stroke. PROSPERO (CRD42013005873). Copyright © 2014 Australian Physiotherapy Association. Published by Elsevier B.V. All rights reserved.

  10. Does manipulating the speed of visual flow in virtual reality change distance estimation while walking in Parkinson's disease?

    Science.gov (United States)

    Ehgoetz Martens, Kaylena A; Ellard, Colin G; Almeida, Quincy J

    2015-03-01

    Although dopaminergic replacement therapy is believed to improve sensory processing in PD, while delayed perceptual speed is thought to be caused by a predominantly cholinergic deficit, it is unclear whether sensory-perceptual deficits are a result of corrupt sensory processing, or a delay in updating perceived feedback during movement. The current study aimed to examine these two hypotheses by manipulating visual flow speed and dopaminergic medication to examine which influenced distance estimation in PD. Fourteen PD and sixteen HC participants were instructed to estimate the distance of a remembered target by walking to the position the target formerly occupied. This task was completed in virtual reality in order to manipulate the visual flow (VF) speed in real time. Three conditions were carried out: (1) BASELINE: VF speed was equal to participants' real-time movement speed; (2) SLOW: VF speed was reduced by 50 %; (2) FAST: VF speed was increased by 30 %. Individuals with PD performed the experiment in their ON and OFF state. PD demonstrated significantly greater judgement error during BASELINE and FAST conditions compared to HC, although PD did not improve their judgement error during the SLOW condition. Additionally, PD had greater variable error during baseline compared to HC; however, during the SLOW conditions, PD had significantly less variable error compared to baseline and similar variable error to HC participants. Overall, dopaminergic medication did not significantly influence judgement error. Therefore, these results suggest that corrupt processing of sensory information is the main contributor to sensory-perceptual deficits during movement in PD rather than delayed updating of sensory feedback.

  11. Predicting the walking speed of pedestrians on stairs

    OpenAIRE

    Fujiyama, T.; Tyler, N.

    2010-01-01

    In this paper, we propose a framework in which the behaviour of a pedestrian is predicted based on the characteristics of both the pedestrian and the facility the pedestrian uses. As an example of its application, we develop a model to predict the walking speed of a pedestrian on stairs. We examine the physiology and biomechanics of walking on stairs, and then develop a model that predicts walking speed based on the weight and leg extensor power of the pedestrian, and the gradient of the stai...

  12. Influence of neuromuscular noise and walking speed on fall risk and dynamic stability in a 3D dynamic walking model.

    Science.gov (United States)

    Roos, Paulien E; Dingwell, Jonathan B

    2013-06-21

    Older adults and those with increased fall risk tend to walk slower. They may do this voluntarily to reduce their fall risk. However, both slower and faster walking speeds can predict increased risk of different types of falls. The mechanisms that contribute to fall risk across speeds are not well known. Faster walking requires greater forward propulsion, generated by larger muscle forces. However, greater muscle activation induces increased signal-dependent neuromuscular noise. These speed-related increases in neuromuscular noise may contribute to the increased fall risk observed at faster walking speeds. Using a 3D dynamic walking model, we systematically varied walking speed without and with physiologically-appropriate neuromuscular noise. We quantified how actual fall risk changed with gait speed, how neuromuscular noise affected speed-related changes in fall risk, and how well orbital and local dynamic stability measures predicted changes in fall risk across speeds. When we included physiologically-appropriate noise to the 'push-off' force in our model, fall risk increased with increasing walking speed. Changes in kinematic variability, orbital, and local dynamic stability did not predict these speed-related changes in fall risk. Thus, the increased neuromuscular variability that results from increased signal-dependent noise that is necessitated by the greater muscular force requirements of faster walking may contribute to the increased fall risk observed at faster walking speeds. The lower fall risk observed at slower speeds supports experimental evidence that slowing down can be an effective strategy to reduce fall risk. This may help explain the slower walking speeds observed in older adults and others. Copyright © 2013 Elsevier Ltd. All rights reserved.

  13. Energetic consequences of human sociality: walking speed choices among friendly dyads.

    Directory of Open Access Journals (Sweden)

    Janelle Wagnild

    Full Text Available Research has shown that individuals have an optimal walking speed-a speed which minimizes energy expenditure for a given distance. Because the optimal walking speed varies with mass and lower limb length, it also varies with sex, with males in any given population tending to have faster optimal walking speeds. This potentially creates an energetic dilemma for mixed-sex walking groups. Here we examine speed choices made by individuals of varying stature, mass, and sex walking together. Individuals (N = 22 walked around a track alone, with a significant other (with and without holding hands, and with friends of the same and opposite sex while their speeds were recorded every 100 m. Our findings show that males walk at a significantly slower pace to match the females' paces (p = 0.009, when the female is their romantic partner. The paces of friends of either same or mixed sex walking together did not significantly change (p>0.05. Thus significant pace adjustment appears to be limited to romantic partners. These findings have implications for both mobility and reproductive strategies of groups. Because the male carries the energetic burden by adjusting his pace (slowing down 7%, the female is spared the potentially increased caloric cost required to walk together. In energetically demanding environments, we will expect to find gender segregation in group composition, particularly when travelling longer distances.

  14. Reliability and Validity of Ten Consumer Activity Trackers Depend on Walking Speed.

    Science.gov (United States)

    Fokkema, Tryntsje; Kooiman, Thea J M; Krijnen, Wim P; VAN DER Schans, Cees P; DE Groot, Martijn

    2017-04-01

    To examine the test-retest reliability and validity of ten activity trackers for step counting at three different walking speeds. Thirty-one healthy participants walked twice on a treadmill for 30 min while wearing 10 activity trackers (Polar Loop, Garmin Vivosmart, Fitbit Charge HR, Apple Watch Sport, Pebble Smartwatch, Samsung Gear S, Misfit Flash, Jawbone Up Move, Flyfit, and Moves). Participants walked three walking speeds for 10 min each; slow (3.2 km·h), average (4.8 km·h), and vigorous (6.4 km·h). To measure test-retest reliability, intraclass correlations (ICC) were determined between the first and second treadmill test. Validity was determined by comparing the trackers with the gold standard (hand counting), using mean differences, mean absolute percentage errors, and ICC. Statistical differences were calculated by paired-sample t tests, Wilcoxon signed-rank tests, and by constructing Bland-Altman plots. Test-retest reliability varied with ICC ranging from -0.02 to 0.97. Validity varied between trackers and different walking speeds with mean differences between the gold standard and activity trackers ranging from 0.0 to 26.4%. Most trackers showed relatively low ICC and broad limits of agreement of the Bland-Altman plots at the different speeds. For the slow walking speed, the Garmin Vivosmart and Fitbit Charge HR showed the most accurate results. The Garmin Vivosmart and Apple Watch Sport demonstrated the best accuracy at an average walking speed. For vigorous walking, the Apple Watch Sport, Pebble Smartwatch, and Samsung Gear S exhibited the most accurate results. Test-retest reliability and validity of activity trackers depends on walking speed. In general, consumer activity trackers perform better at an average and vigorous walking speed than at a slower walking speed.

  15. Rat muscle blood flows during high-speed locomotion

    International Nuclear Information System (INIS)

    Armstrong, R.B.; Laughlin, M.H.

    1985-01-01

    We previously studied blood flow distribution within and among rat muscles as a function of speed from walking (15 m/min) through galloping (75 m/min) on a motor-driven treadmill. The results showed that muscle blood flows continued to increase as a function of speed through 75 m/min. The purpose of the present study was to have rats run up to maximal treadmill speeds to determine if blood flows in the muscles reach a plateau as a function of running speed over the animals normal range of locomotory speeds. Muscle blood flows were measured with radiolabeled microspheres at 1 min of running at 75, 90, and 105 m/min in male Sprague-Dawley rats. The data indicate that even at these relatively high treadmill speeds there was still no clear evidence of a plateau in blood flow in most of the hindlimb muscles. Flows in most muscles continued to increase as a function of speed. These observed patterns of blood flow vs. running speed may have resulted from the rigorous selection of rats that were capable of performing the high-intensity exercise and thus only be representative of a highly specific population of animals. On the other hand, the data could be interpreted to indicate that the cardiovascular potential during exercise is considerably higher in laboratory rats than has normally been assumed and that inadequate blood flow delivery to the muscles does not serve as a major limitation to their locomotory performance

  16. The influence of gait speed on the stability of walking among the elderly.

    Science.gov (United States)

    Fan, Yifang; Li, Zhiyu; Han, Shuyan; Lv, Changsheng; Zhang, Bo

    2016-06-01

    Walking speed is a basic factor to consider when walking exercises are prescribed as part of a training programme. Although associations between walking speed, step length and falling risk have been identified, the relationship between spontaneous walking pattern and falling risk remains unclear. The present study, therefore, examined the stability of spontaneous walking at normal, fast and slow speed among elderly (67.5±3.23) and young (21.4±1.31) individuals. In all, 55 participants undertook a test that involved walking on a plantar pressure platform. Foot-ground contact data were used to calculate walking speed, step length, pressure impulse along the plantar-impulse principal axis and pressure record of time series along the plantar-impulse principal axis. A forward dynamics method was used to calculate acceleration, velocity and displacement of the centre of mass in the vertical direction. The results showed that when the elderly walked at different speeds, their average step length was smaller than that observed among the young (p=0.000), whereas their anterior/posterior variability and lateral variability had no significant difference. When walking was performed at normal or slow speed, no significant between-group difference in cadence was found. When walking at a fast speed, the elderly increased their stride length moderately and their cadence greatly (p=0.012). In summary, the present study found no correlation between fast walking speed and instability among the elderly, which indicates that healthy elderly individuals might safely perform fast-speed walking exercises. Copyright © 2016 Elsevier B.V. All rights reserved.

  17. Energy cost of walking: solving the paradox of steady state in the presence of variable walking speed.

    Science.gov (United States)

    Plasschaert, Frank; Jones, Kim; Forward, Malcolm

    2009-02-01

    Measurement of the energy cost of walking in children with cerebral palsy is used for baseline and outcome assessment. However, such testing relies on the establishment of steady state that is deemed present when oxygen consumption is stable. This is often assumed when walking speed is constant but in practice, speed can and does vary naturally. Whilst constant speed is achievable on a treadmill, this is often impractical clinically, thus rendering an energy cost test to an element of subjectivity. This paper attempts to address this issue by presenting a new method for calculating energy cost of walking that automatically applies a mathematically defined threshold for steady state within a (non-treadmill) walking trial and then strips out all of the non-steady state events within that trial. The method is compared with a generic approach that does not remove non-steady state data but rather uses an average value over a complete walking trial as is often used in the clinical environment. Both methods were applied to the calculation of several energy cost of walking parameters of self-selected walking speed in a cohort of unimpaired subjects and children with cerebral palsy. The results revealed that both methods were strongly correlated for each parameter but showed systematic significant differences. It is suggested that these differences are introduced by the rejection of non-steady state data that would otherwise have incorrectly been incorporated into the calculation of the energy cost of walking indices during self-selected walking with its inherent speed variation.

  18. Walking, running, and resting under time, distance, and average speed constraints: optimality of walk-run-rest mixtures.

    Science.gov (United States)

    Long, Leroy L; Srinivasan, Manoj

    2013-04-06

    On a treadmill, humans switch from walking to running beyond a characteristic transition speed. Here, we study human choice between walking and running in a more ecological (non-treadmill) setting. We asked subjects to travel a given distance overground in a given allowed time duration. During this task, the subjects carried, and could look at, a stopwatch that counted down to zero. As expected, if the total time available were large, humans walk the whole distance. If the time available were small, humans mostly run. For an intermediate total time, humans often use a mixture of walking at a slow speed and running at a higher speed. With analytical and computational optimization, we show that using a walk-run mixture at intermediate speeds and a walk-rest mixture at the lowest average speeds is predicted by metabolic energy minimization, even with costs for transients-a consequence of non-convex energy curves. Thus, sometimes, steady locomotion may not be energy optimal, and not preferred, even in the absence of fatigue. Assuming similar non-convex energy curves, we conjecture that similar walk-run mixtures may be energetically beneficial to children following a parent and animals on long leashes. Humans and other animals might also benefit energetically from alternating between moving forward and standing still on a slow and sufficiently long treadmill.

  19. Do kinematic metrics of walking balance adapt to perturbed optical flow?

    Science.gov (United States)

    Thompson, Jessica D; Franz, Jason R

    2017-08-01

    Visual (i.e., optical flow) perturbations can be used to study balance control and balance deficits. However, it remains unclear whether walking balance control adapts to such perturbations over time. Our purpose was to investigate the propensity for visuomotor adaptation in walking balance control using prolonged exposure to optical flow perturbations. Ten subjects (age: 25.4±3.8years) walked on a treadmill while watching a speed-matched virtual hallway with and without continuous mediolateral optical flow perturbations of three different amplitudes. Each of three perturbation trials consisted of 8min of prolonged exposure followed by 1min of unperturbed walking. Using 3D motion capture, we analyzed changes in foot placement kinematics and mediolateral sacrum motion. At their onset, perturbations elicited wider and shorter steps, alluding to a more cautious, general anticipatory balance control strategy. As perturbations continued, foot placement tended toward values seen during unperturbed walking while step width variability and mediolateral sacrum motion concurrently increased. Our findings suggest that subjects progressively shifted from a general anticipatory balance control strategy to a reactive, task-specific strategy using step-to-step adjustments. Prolonged exposure to optical flow perturbations may have clinical utility to reinforce reactive, task-specific balance control through training. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. Treadmill Adaptation and Verification of Self-Selected Walking Speed: A Protocol for Children

    Science.gov (United States)

    Amorim, Paulo Roberto S.; Hills, Andrew; Byrne, Nuala

    2009-01-01

    Walking is a common activity of daily life and researchers have used the range 3-6 km.h[superscript -1] as reference for walking speeds habitually used for transportation. The term self-selected (i.e., individual or comfortable walking pace or speed) is commonly used in the literature and is identified as the most efficient walking speed, with…

  1. Effects of Door Width and Human Body Size on Walking Speed

    Directory of Open Access Journals (Sweden)

    Jetthumrong Siwalee

    2016-01-01

    Full Text Available Door width is one of the important factors to concern in layout or facilities design because it affects directly to traffic speed and overall traffic time simultaneously. Nowadays, common assessment method is computer simulation which is still not realistic due to the unchanged speed of model while walking through a door. This research aims to study an effect of door width to individual walking speed. Sixty subjects participated in the experiment and performed task by walking through the door that is set the width as 40, 50, 60, 70, 80, 90 and 100 centimetres. The optical motion capture system was used to determine walking speed. The results showed that Fitts’ law was applied to the participants with high weight. Door width below 70 centimetres significantly affected to changing speed at 0-0.5 m. before the door. Additionally, human size also affected changing speed. The factors include shoulder breadth, weight and interaction between shoulder breadth and weight were found to be significant. These factors explained 54.2% of changing speed.

  2. Effects of changing speed on knee and ankle joint load during walking and running.

    Science.gov (United States)

    de David, Ana Cristina; Carpes, Felipe Pivetta; Stefanyshyn, Darren

    2015-01-01

    Joint moments can be used as an indicator of joint loading and have potential application for sports performance and injury prevention. The effects of changing walking and running speeds on joint moments for the different planes of motion still are debatable. Here, we compared knee and ankle moments during walking and running at different speeds. Data were collected from 11 recreational male runners to determine knee and ankle joint moments during different conditions. Conditions include walking at a comfortable speed (self-selected pacing), fast walking (fastest speed possible), slow running (speed corresponding to 30% slower than running) and running (at 4 m · s(-1) ± 10%). A different joint moment pattern was observed between walking and running. We observed a general increase in joint load for sagittal and frontal planes as speed increased, while the effects of speed were not clear in the transverse plane moments. Although differences tend to be more pronounced when gait changed from walking to running, the peak moments, in general, increased when speed increased from comfortable walking to fast walking and from slow running to running mainly in the sagittal and frontal planes. Knee flexion moment was higher in walking than in running due to larger knee extension. Results suggest caution when recommending walking over running in an attempt to reduce knee joint loading. The different effects of speed increments during walking and running should be considered with regard to the prevention of injuries and for rehabilitation purposes.

  3. Tempo and walking speed with music in the urban context.

    Science.gov (United States)

    Franěk, Marek; van Noorden, Leon; Režný, Lukáš

    2014-01-01

    The study explored the effect of music on the temporal aspects of walking behavior in a real outdoor urban setting. First, spontaneous synchronization between the beat of the music and step tempo was explored. The effect of motivational and non-motivational music (Karageorghis et al., 1999) on the walking speed was also studied. Finally, we investigated whether music can mask the effects of visual aspects of the walking route environment, which involve fluctuation of walking speed as a response to particular environmental settings. In two experiments, we asked participants to walk around an urban route that was 1.8 km in length through various environments in the downtown area of Hradec Králové. In Experiment 1, the participants listened to a musical track consisting of world pop music with a clear beat. In Experiment 2, participants were walking either with motivational music, which had a fast tempo and a strong rhythm, or with non-motivational music, which was slower, nice music, but with no strong implication to movement. Musical beat, as well as the sonic character of the music listened to while walking, influenced walking speed but did not lead to precise synchronization. It was found that many subjects did not spontaneously synchronize with the beat of the music at all, and some subjects synchronized only part of the time. The fast, energetic music increases the speed of the walking tempo, while slower, relaxing music makes the walking tempo slower. Further, it was found that listening to music with headphones while walking can mask the influence of the surrounding environment to some extent. Both motivational music and non-motivational music had a larger effect than the world pop music from Experiment 1. Individual differences in responses to the music listened to while walking that were linked to extraversion and neuroticism were also observed. The findings described here could be useful in rhythmic stimulation for enhancing or recovering the features of

  4. Tempo and walking speed with music in the urban context

    Directory of Open Access Journals (Sweden)

    Marek eFranek

    2014-12-01

    Full Text Available The study explored the effect of music on the temporal aspects of walking behavior in a real outdoor urban setting. First, spontaneous synchronization between the beat of the music and step tempo was explored. The effect of motivational and non-motivational music (Karageorghis et al. 1999 on the walking speed was also studied. Finally, we investigated whether music can mask the effects of visual aspects of the walking route environment, which involve fluctuation of walking speed as a response to particular environmental settings. In two experiments, we asked participants to walk around an urban route through various environments in the downtown area of Hradec Králové. In Experiment 1, the participants listened to a musical track consisting of world pop music with a clear beat. In Experiment 2, participants were walking either with motivational music, which had a fast tempo and a strong rhythm, or with non-motivational music, which was slower, nice music, but with no strong implication to movement. Musical beat, as well as the sonic character of the music listened to while walking, influenced walking speed but did not lead to precise synchronization. It was found that many subjects did not spontaneously synchronize with the beat of the music at all, and some subjects synchronized only part of the time. The fast, energetic music increases the speed of the walking tempo, while slower, relaxing music makes the walking tempo slower. Further, it was found that listening to music with headphones while walking can mask the influence of the surrounding environment to some extent. Both motivational music and non-motivational music had a larger effect than the music from Experiment 1. Individual differences in responses to the music listened to while walking that were linked to extraversion and neuroticism were also observed. The findings described here could be useful in rhythmic stimulation for enhancing or recovering the features of movement

  5. Tempo and walking speed with music in the urban context

    Science.gov (United States)

    Franěk, Marek; van Noorden, Leon; Režný, Lukáš

    2014-01-01

    The study explored the effect of music on the temporal aspects of walking behavior in a real outdoor urban setting. First, spontaneous synchronization between the beat of the music and step tempo was explored. The effect of motivational and non-motivational music (Karageorghis et al., 1999) on the walking speed was also studied. Finally, we investigated whether music can mask the effects of visual aspects of the walking route environment, which involve fluctuation of walking speed as a response to particular environmental settings. In two experiments, we asked participants to walk around an urban route that was 1.8 km in length through various environments in the downtown area of Hradec Králové. In Experiment 1, the participants listened to a musical track consisting of world pop music with a clear beat. In Experiment 2, participants were walking either with motivational music, which had a fast tempo and a strong rhythm, or with non-motivational music, which was slower, nice music, but with no strong implication to movement. Musical beat, as well as the sonic character of the music listened to while walking, influenced walking speed but did not lead to precise synchronization. It was found that many subjects did not spontaneously synchronize with the beat of the music at all, and some subjects synchronized only part of the time. The fast, energetic music increases the speed of the walking tempo, while slower, relaxing music makes the walking tempo slower. Further, it was found that listening to music with headphones while walking can mask the influence of the surrounding environment to some extent. Both motivational music and non-motivational music had a larger effect than the world pop music from Experiment 1. Individual differences in responses to the music listened to while walking that were linked to extraversion and neuroticism were also observed. The findings described here could be useful in rhythmic stimulation for enhancing or recovering the features of

  6. Walking during body-weight-supported treadmill training and acute responses to varying walking speed and body-weight support in ambulatory patients post-stroke.

    Science.gov (United States)

    Aaslund, Mona Kristin; Helbostad, Jorunn Lægdheim; Moe-Nilssen, Rolf

    2013-05-01

    Rehabilitating walking in ambulatory patients post-stroke, with training that is safe, task-specific, intensive, and of sufficient duration, can be challenging. Some challenges can be met by using body-weight-supported treadmill training (BWSTT). However, it is not known to what degree walking characteristics are similar during BWSTT and overground walking. In addition, important questions regarding the training protocol of BWSTT remain unanswered, such as how proportion of body-weight support (BWS) and walking speed affect walking characteristics during training. The objective was therefore to investigate if and how kinematic walking characteristics are different between overground walking and treadmill walking with BWS in ambulatory patients post-stroke, and the acute response of altering walking speed and percent BWS during treadmill walking with BWS. A cross-sectional repeated-measures design was used. Ambulating patients post-stroke walked in slow, preferred, and fast walking speed overground and at comparable speeds on the treadmill with 20% and 40% BWS. Kinematic walking characteristics were obtained using a kinematic sensor attached over the lower back. Forty-four patients completed the protocol. Kinematic walking characteristics were similar during treadmill walking with BWS, compared to walking overground. During treadmill walking, choice of walking speed had greater impact on kinematic walking characteristics than proportion of BWS. Faster walking speeds tended to affect the kinematic walking characteristics positively. This implies that in order to train safely and with sufficient intensity and duration, therapists may choose to include BWSTT in walking rehabilitation also for ambulatory patients post-stroke without aggravating gait pattern during training.

  7. Economy, Movement Dynamics, and Muscle Activity of Human Walking at Different Speeds

    DEFF Research Database (Denmark)

    Raffalt, Peter Christian; Guul, Martin Kjær; Nielsen, A. N.

    2017-01-01

    The complex behaviour of human walking with respect to movement variability, economy and muscle activity is speed dependent. It is well known that a U-shaped relationship between walking speed and economy exists. However, it is an open question if the movement dynamics of joint angles and centre...... of mass and muscle activation strategy also exhibit a U-shaped relationship with walking speed. We investigated the dynamics of joint angle trajectories and the centre of mass accelerations at five different speeds ranging from 20 to 180% of the predicted preferred speed (based on Froude speed) in twelve...... healthy males. The muscle activation strategy and walking economy were also assessed. The movement dynamics was investigated using a combination of the largest Lyapunov exponent and correlation dimension. We observed an intermediate stage of the movement dynamics of the knee joint angle and the anterior...

  8. The Perceived Naturalness of Virtual Walking Speeds during WIP Locomotion

    DEFF Research Database (Denmark)

    Nilsson, Niels Chr.; Serafin, Stefania; Nordahl, Rolf

    2016-01-01

    It is well established that individuals tend to underestimate visually presented walking speeds when relying on treadmills for virtual walking. However, prior to the present studies this perceptual distortion had not been observed in relation to Walking-in-Place (WIP) locomotion, and a number...... to how gait cycle characteristics, visual display properties, and methodological differences affect speed underestimation during treadmill and WIP locomotion. The studies suggested the following: A significant main effect was found for step frequency; both display and geometric field of view were...... inversely proportional to the degree of underestimation; varying degrees of peripheral occlusion and increased HMD weight did not yield significant main effects; and the choice of method (i.e., how the speeds were presented) had a significant effect on the upper and lower bounds of what speeds were...

  9. Activating and relaxing music entrains the speed of beat synchronized walking

    OpenAIRE

    Leman, Marc; Moelants, Dirk; Varewyck, Matthias; Styns, Frederik; van Noorden, Leon; Martens, Jean-Pierre

    2013-01-01

    Inspired by a theory of embodied music cognition, we investigate whether music can entrain the speed of beat synchronized walking. If human walking is in synchrony with the beat and all musical stimuli have the same duration and the same tempo, then differences in walking speed can only be the result of music-induced differences in stride length, thus reflecting the vigor or physical strength of the movement. Participants walked in an open field in synchrony with the beat of 52 different musi...

  10. Measuring In-Home Walking Speed using Wall-Mounted RF Transceiver Arrays

    Science.gov (United States)

    Jacobs, Peter G.; Wan, Eric A.; Schafermeer, Erich; Adenwala, Fatema; Paul, Anindya S.; Preiser, Nick; Kaye, Jeffrey

    2014-01-01

    In this paper we present a new method for passively measuring walking speed using a small array of radio transceivers positioned on the walls of a hallway within a home. As a person walks between a radio transmitter and a receiver, the received signal strength (RSS) detected by the receiver changes in a repeatable pattern that may be used to estimate walking speed without the need for the person to wear any monitoring device. The transceivers are arranged as an array of 4 with a known distance between the array elements. Walking past the first pair of transceivers will cause a peak followed by a second peak when the person passes the second pair of transceivers. The time difference between these peaks is used to estimate walking speed directly. We further show that it is possible to estimate the walking speed by correlating the shape of the signal using a single pair of transceivers positioned across from each other in a hallway or doorframe. RMSE performance was less than 15 cm/s using a 2-element array, and less than 8 cm/s using a 4-element array relative to a gait mat used for ground truth. PMID:25570108

  11. A Case Study on the Walking Speed of Pedestrian at the Bus Terminal Area

    Directory of Open Access Journals (Sweden)

    Mohamad Ali Mohd Firdaus

    2018-01-01

    Full Text Available Walking speed is one of the factors in understanding the pedestrian walking behaviours. Every pedestrian has different level of walking speed that are regulated by some factors such as gender and age. This study was conducted at a bus terminal area with two objectives in which the first one was to determine the average walking speed of pedestrian by considering the factors of age, gender, people with and without carrying baggage; and the second one was to make a comparison of the average walking speed that considered age as the factor of comparison between pedestrian at the bus terminal area and crosswalk. Demographic factor of pedestrian walking speed in this study are gender and age consist of male, female, and 7 groups of age categories that are children, adult men and women, senior adult men and women, over 70 and disabled person. Data of experiment was obtained by making a video recording of the movement of people that were walking and roaming around at the main lobby for 45 minutes by using a camcorder. Hence, data analysis was done by using software named Human Behaviour Simulator (HBS for analysing the data extracted from the video. The result of this study was male pedestrian walked faster than female with the average of walking speed 1.13m/s and 1.07m/s respectively. Averagely, pedestrian that walked without carrying baggage had higher walking speed compared to pedestrian that were carrying baggage with the speed of 1.02m/s and 0.70m/s respectively. Male pedestrian walks faster than female because they have higher level of stamina and they are mostly taller than female pedestrian. Furthermore, pedestrian with baggage walks slower because baggage will cause distractions such as pedestrian will have more weight to carry and people tend to walk slower.

  12. A Case Study on the Walking Speed of Pedestrian at the Bus Terminal Area

    Science.gov (United States)

    Firdaus Mohamad Ali, Mohd; Salleh Abustan, Muhamad; Hidayah Abu Talib, Siti; Abustan, Ismail; Rahman, Noorhazlinda Abd; Gotoh, Hitoshi

    2018-03-01

    Walking speed is one of the factors in understanding the pedestrian walking behaviours. Every pedestrian has different level of walking speed that are regulated by some factors such as gender and age. This study was conducted at a bus terminal area with two objectives in which the first one was to determine the average walking speed of pedestrian by considering the factors of age, gender, people with and without carrying baggage; and the second one was to make a comparison of the average walking speed that considered age as the factor of comparison between pedestrian at the bus terminal area and crosswalk. Demographic factor of pedestrian walking speed in this study are gender and age consist of male, female, and 7 groups of age categories that are children, adult men and women, senior adult men and women, over 70 and disabled person. Data of experiment was obtained by making a video recording of the movement of people that were walking and roaming around at the main lobby for 45 minutes by using a camcorder. Hence, data analysis was done by using software named Human Behaviour Simulator (HBS) for analysing the data extracted from the video. The result of this study was male pedestrian walked faster than female with the average of walking speed 1.13m/s and 1.07m/s respectively. Averagely, pedestrian that walked without carrying baggage had higher walking speed compared to pedestrian that were carrying baggage with the speed of 1.02m/s and 0.70m/s respectively. Male pedestrian walks faster than female because they have higher level of stamina and they are mostly taller than female pedestrian. Furthermore, pedestrian with baggage walks slower because baggage will cause distractions such as pedestrian will have more weight to carry and people tend to walk slower.

  13. Effects of walking speed on the step-by-step control of step width.

    Science.gov (United States)

    Stimpson, Katy H; Heitkamp, Lauren N; Horne, Joscelyn S; Dean, Jesse C

    2018-02-08

    Young, healthy adults walking at typical preferred speeds use step-by-step adjustments of step width to appropriately redirect their center of mass motion and ensure mediolateral stability. However, it is presently unclear whether this control strategy is retained when walking at the slower speeds preferred by many clinical populations. We investigated whether the typical stabilization strategy is influenced by walking speed. Twelve young, neurologically intact participants walked on a treadmill at a range of prescribed speeds (0.2-1.2 m/s). The mediolateral stabilization strategy was quantified as the proportion of step width variance predicted by the mechanical state of the pelvis throughout a step (calculated as R 2 magnitude from a multiple linear regression). Our ability to accurately predict the upcoming step width increased over the course of a step. The strength of the relationship between step width and pelvis mechanics at the start of a step was reduced at slower speeds. However, these speed-dependent differences largely disappeared by the end of a step, other than at the slowest walking speed (0.2 m/s). These results suggest that mechanics-dependent adjustments in step width are a consistent component of healthy gait across speeds and contexts. However, slower walking speeds may ease this control by allowing mediolateral repositioning of the swing leg to occur later in a step, thus encouraging slower walking among clinical populations with limited sensorimotor control. Published by Elsevier Ltd.

  14. Speed-related spinal excitation from ankle dorsiflexors to knee extensors during human walking

    DEFF Research Database (Denmark)

    Iglesias, Caroline; Nielsen, Jens Bo; Marchand-Pauvert, Véronique

    2008-01-01

    Automatic adjustments of muscle activity throughout the body are required for the maintenance of balance during human walking. One mechanism that is likely to contribute to this control is the heteronymous spinal excitation between human ankle dorsiflexors and knee extensors (CPQ-reflex). Here, we...... investigated the CPQ-reflex at different walking speeds (1-6 km/h) and stride frequencies (0.6-1.3 Hz) in healthy human subjects to provide further evidence of its modulation, and its role in ensuring postural stability during walking. The CPQ-reflex was small or absent at walking speeds below 2-3 km....../h, then increased with walking speeds about 3-4 km/h, and reached a plateau without any further change at walking speeds from 4 to 6 km/h. The reflex showed no modulation when the stride cycle was varied at constant speed (4 km/h; short steps versus long steps). These changes were unlikely to be only caused...

  15. A case study of energy expenditure based on walking speed reduction during walking upstairs situation at a staircase in FKAAS, UTHM, Johor building

    Science.gov (United States)

    Abustan, M. S.; Ali, M. F. M.; Talib, S. H. A.

    2018-04-01

    Walking velocity is a vector quantity that can be determined by calculating the time taken and displacement of a moving objects. In Malaysia, there are very few researches that were done to determine the walking velocity of citizens to be compared with other countries such as the study about walking upstairs during evacuation process is important when emergency case happen, if there are people in underground garages, they have to walk upstairs for exits and look for shelter and the walking velocity of pedestrian in such cases are necessary to be analysed. Therefore, the objective of this study is to determine the walking speed of pedestrian during walking upstairs situation, finding the relationship between pedestrian walking speed and the characteristics of the pedestrian as well as analysing the energy reduction by comparing the walking speed of pedestrian at the beginning and at the end of staircase. In this case study, an experiment was done to determine the average walking speed of pedestrian. The pedestrian has been selected from different gender, physical character, and age. Based on the data collected, the average normal walking speed of male pedestrian was 1.03 m/s while female was 1.08 m/s. During walking upstairs, the walking speed of pedestrian decreased as the number of floor increased. The average speed for the first stairwell was 0.90 m/s and the number decreased to 0.73 m/s for the second stairwell. From the reduction of speed, the energy used has been calculated and the average kinetic energy used was 1.69 J. Hence, the data collected can be used for further research of staircase design and plan of evacuation process.

  16. EFFECTS OF UNSTABLE SHOES ON ENERGY COST DURING TREADMILL WALKING AT VARIOUS SPEEDS

    Directory of Open Access Journals (Sweden)

    Keiji Koyama

    2012-12-01

    Full Text Available In recent years, shoes having rounded soles in the anterior- posterior direction have been commercially introduced, which are commonly known as unstable shoes (US. However, physiological responses during walking in US, particularly at various speeds, have not been extensively studied to date. The purpose of this study was to investigate the effect of wearing unstable shoes while walking at low to high speeds on the rate of perceived exertion (RPE, muscle activation, oxygen consumption (VO2, and optimum speed. Healthy male adults wore US or normal walking shoes (WS, and walked at various speeds on a treadmill with no inclination. In experiment 1, subjects walked at 3, 4, 5, 6, and 7 km·h-1 (duration, 3 min for all speeds and were recorded on video from the right sagittal plane to calculate the step length and cadence. Simultaneously, electromyogram (EMG was recorded from six different thigh and calf muscles, and the integrated EMG (iEMG was calculated. In experiment 2, RPE, heart rate and VO2 were measured with the walking speed being increased from 3.6 to 7.2 km·h-1 incrementally by 0.9 km·h-1 every 6 min. The optimum speed, defined by the least oxygen cost, was calculated from the fitted quadratic relationship between walking speed and oxygen cost. Wearing US resulted in significantly longer step length and lower cadence compared with WS condition at any given speed. For all speeds, iEMG in the medial gastrocnemius and soleus muscles, heart rate, and VO2 were significantly higher in US than WS. However, RPE and optimum speed (US, 4.75 ± 0.32 km·h-1; WS, 4. 79 ± 0.18 km·h-1 did not differ significantly between the two conditions. These results suggest that unstable shoes can increase muscle activity of lower legs and energy cost without influencing RPE and optimum speed during walking at various speeds

  17. Inertial sensor-based methods in walking speed estimation: a systematic review.

    Science.gov (United States)

    Yang, Shuozhi; Li, Qingguo

    2012-01-01

    Self-selected walking speed is an important measure of ambulation ability used in various clinical gait experiments. Inertial sensors, i.e., accelerometers and gyroscopes, have been gradually introduced to estimate walking speed. This research area has attracted a lot of attention for the past two decades, and the trend is continuing due to the improvement of performance and decrease in cost of the miniature inertial sensors. With the intention of understanding the state of the art of current development in this area, a systematic review on the exiting methods was done in the following electronic engines/databases: PubMed, ISI Web of Knowledge, SportDiscus and IEEE Xplore. Sixteen journal articles and papers in proceedings focusing on inertial sensor based walking speed estimation were fully reviewed. The existing methods were categorized by sensor specification, sensor attachment location, experimental design, and walking speed estimation algorithm.

  18. Inertial Sensor-Based Methods in Walking Speed Estimation: A Systematic Review

    Directory of Open Access Journals (Sweden)

    Qingguo Li

    2012-05-01

    Full Text Available Self-selected walking speed is an important measure of ambulation ability used in various clinical gait experiments. Inertial sensors, i.e., accelerometers and gyroscopes, have been gradually introduced to estimate walking speed. This research area has attracted a lot of attention for the past two decades, and the trend is continuing due to the improvement of performance and decrease in cost of the miniature inertial sensors. With the intention of understanding the state of the art of current development in this area, a systematic review on the exiting methods was done in the following electronic engines/databases: PubMed, ISI Web of Knowledge, SportDiscus and IEEE Xplore. Sixteen journal articles and papers in proceedings focusing on inertial sensor based walking speed estimation were fully reviewed. The existing methods were categorized by sensor specification, sensor attachment location, experimental design, and walking speed estimation algorithm.

  19. Activating and relaxing music entrains the speed of beat synchronized walking.

    Science.gov (United States)

    Leman, Marc; Moelants, Dirk; Varewyck, Matthias; Styns, Frederik; van Noorden, Leon; Martens, Jean-Pierre

    2013-01-01

    Inspired by a theory of embodied music cognition, we investigate whether music can entrain the speed of beat synchronized walking. If human walking is in synchrony with the beat and all musical stimuli have the same duration and the same tempo, then differences in walking speed can only be the result of music-induced differences in stride length, thus reflecting the vigor or physical strength of the movement. Participants walked in an open field in synchrony with the beat of 52 different musical stimuli all having a tempo of 130 beats per minute and a meter of 4 beats. The walking speed was measured as the walked distance during a time interval of 30 seconds. The results reveal that some music is 'activating' in the sense that it increases the speed, and some music is 'relaxing' in the sense that it decreases the speed, compared to the spontaneous walked speed in response to metronome stimuli. Participants are consistent in their observation of qualitative differences between the relaxing and activating musical stimuli. Using regression analysis, it was possible to set up a predictive model using only four sonic features that explain 60% of the variance. The sonic features capture variation in loudness and pitch patterns at periods of three, four and six beats, suggesting that expressive patterns in music are responsible for the effect. The mechanism may be attributed to an attentional shift, a subliminal audio-motor entrainment mechanism, or an arousal effect, but further study is needed to figure this out. Overall, the study supports the hypothesis that recurrent patterns of fluctuation affecting the binary meter strength of the music may entrain the vigor of the movement. The study opens up new perspectives for understanding the relationship between entrainment and expressiveness, with the possibility to develop applications that can be used in domains such as sports and physical rehabilitation.

  20. Influence of Neuromuscular Noise and Walking Speed on Fall Risk and Dynamic Stability in a 3D Dynamic Walking Model

    OpenAIRE

    Roos, Paulien E.; Dingwell, Jonathan B.

    2013-01-01

    Older adults and those with increased fall risk tend to walk slower. They may do this voluntarily to reduce their fall risk. However, both slower and faster walking speeds can predict increased risk of different types of falls. The mechanisms that contribute to fall risk across speeds are not well known. Faster walking requires greater forward propulsion, generated by larger muscle forces. However, greater muscle activation induces increased signal-dependent neuromuscular noise. These speed-r...

  1. Walking training associated with virtual reality-based training increases walking speed of individuals with chronic stroke: systematic review with meta-analysis

    OpenAIRE

    Juliana M. Rodrigues-Baroni; Lucas R. Nascimento; Louise Ada; Luci F. Teixeira-Salmela

    2014-01-01

    OBJECTIVE: To systematically review the available evidence on the efficacy of walking training associated with virtual reality-based training in patients with stroke. The specific questions were: Is walking training associated with virtual reality-based training effective in increasing walking speed after stroke? Is this type of intervention more effective in increasing walking speed, than non-virtual reality-based walking interventions? METHOD: A systematic review with meta-analysis of rando...

  2. Treadmill walking of the pneumatic biped Lucy: Walking at different speeds and step-lengths

    Science.gov (United States)

    Vanderborght, B.; Verrelst, B.; Van Ham, R.; Van Damme, M.; Versluys, R.; Lefeber, D.

    2008-07-01

    Actuators with adaptable compliance are gaining interest in the field of legged robotics due to their capability to store motion energy and to exploit the natural dynamics of the system to reduce energy consumption while walking and running. To perform research on compliant actuators we have built the planar biped Lucy. The robot has six actuated joints, the ankle, knee and hip of both legs with each joint powered by two pleated pneumatic artificial muscles in an antagonistic setup. This makes it possible to control both the torque and the stiffness of the joint. Such compliant actuators are used in passive walkers to overcome friction when walking over level ground and to improve stability. Typically, this kind of robots is only designed to walk with a constant walking speed and step-length, determined by the mechanical design of the mechanism and the properties of the ground. In this paper, we show that by an appropriate control, the robot Lucy is able to walk at different speeds and step-lengths and that adding and releasing weights does not affect the stability of the robot. To perform these experiments, an automated treadmill was built

  3. Vitamin D and walking speed in older adults: Systematic review and meta-analysis.

    Science.gov (United States)

    Annweiler, Cedric; Henni, Samir; Walrand, Stéphane; Montero-Odasso, Manuel; Duque, Gustavo; Duval, Guillaume T

    2017-12-01

    Vitamin D is involved in musculoskeletal health. There is no consensus on a possible association between circulating 25-hydroxyvitamin D (25OHD) concentrations and walking speed, a 'vital sign' in older adults. Our objective was to systematically review and quantitatively assess the association of 25OHD concentration with walking speed. A Medline search was conducted on June 2017, with no limit of date, using the MeSH terms "Vitamin D" OR "Vitamin D Deficiency" combined with "Gait" OR "Gait disorders, Neurologic" OR "Walking speed" OR "Gait velocity". Fixed-effect meta-analyses were performed to compute: i) mean differences in usual and fast walking speeds and Timed Up and Go test (TUG) between participants with severe vitamin D deficiency (≤25nmol/L) (SVDD), vitamin D deficiency (≤50nmol/L) (VDD), vitamin D insufficiency (≤75nmol/L) (VDI) and normal vitamin D (>75nmol/L) (NVD); ii) risk of slow walking speed according to vitamin D status. Of the 243 retrieved studies, 22 observational studies (17 cross-sectional, 5 longitudinal) met the selection criteria. The number of participants ranged between 54 and 4100 (0-100% female). Usual walking speed was slower among participants with hypovitaminosis D, with a clinically relevant difference compared with NVD of -0.18m/s for SVDD, -0.08m/s for VDD and -0.12m/s for VDI. We found similar results regarding the fast walking speed (mean differences -0.04m/s for VDD and VDI compared with NVD) and TUG (mean difference 0.48s for SVDD compared with NVD). A slow usual walking speed was positively associated with SVDD (summary OR=2.17[95%CI:1.52-3.10]), VDD (OR=1.38[95%CI:1.01-1.89]) and VDI (OR=1.38[95%CI:1.04-1.83]), using NVD as the reference. In conclusion, this meta-analysis provides robust evidence that 25OHD concentrations are positively associated with walking speed among adults. Copyright © 2017. Published by Elsevier B.V.

  4. Walking speed and subclinical atherosclerosis in healthy older adults: the Whitehall II study

    OpenAIRE

    Hamer, M.; Kivimaki, M.; Lahiri, A.; Yerramasu, A.; Deanfield, J. E.; Marmot, M. G.; Steptoe, A.

    2010-01-01

    Objective Extended walking speed is a predictor of incident cardiovascular disease (CVD) in older individuals, but the ability of an objective short-distance walking speed test to stratify the severity of preclinical conditions remains unclear. This study examined whether performance in an 8-ft walking speed test is associated with metabolic risk factors and subclinical atherosclerosis.Design Cross-sectional.Setting Epidemiological cohort.Participants 530 adults (aged 63 +/- 6 years, 50.3% ma...

  5. Walking speed and subclinical atherosclerosis in healthy older adults: the Whitehall II study

    OpenAIRE

    Hamer, Mark; Kivimaki, Mika; Lahiri, Avijit; Yerramasu, Ajay; Deanfield, John E; Marmot, Michael G; Steptoe, Andrew

    2010-01-01

    Objective Extended walking speed is a predictor of incident cardiovascular disease (CVD) in older individuals, but the ability of an objective short-distance walking speed test to stratify the severity of preclinical conditions remains unclear. This study examined whether performance in an 8-ft walking speed test is associated with metabolic risk factors and subclinical atherosclerosis. Design Cross-sectional. Setting Epidemiological cohort. Participants 530 adults (aged 63?6?years, 50.3% mal...

  6. Activating and relaxing music entrains the speed of beat synchronized walking.

    Directory of Open Access Journals (Sweden)

    Marc Leman

    Full Text Available Inspired by a theory of embodied music cognition, we investigate whether music can entrain the speed of beat synchronized walking. If human walking is in synchrony with the beat and all musical stimuli have the same duration and the same tempo, then differences in walking speed can only be the result of music-induced differences in stride length, thus reflecting the vigor or physical strength of the movement. Participants walked in an open field in synchrony with the beat of 52 different musical stimuli all having a tempo of 130 beats per minute and a meter of 4 beats. The walking speed was measured as the walked distance during a time interval of 30 seconds. The results reveal that some music is 'activating' in the sense that it increases the speed, and some music is 'relaxing' in the sense that it decreases the speed, compared to the spontaneous walked speed in response to metronome stimuli. Participants are consistent in their observation of qualitative differences between the relaxing and activating musical stimuli. Using regression analysis, it was possible to set up a predictive model using only four sonic features that explain 60% of the variance. The sonic features capture variation in loudness and pitch patterns at periods of three, four and six beats, suggesting that expressive patterns in music are responsible for the effect. The mechanism may be attributed to an attentional shift, a subliminal audio-motor entrainment mechanism, or an arousal effect, but further study is needed to figure this out. Overall, the study supports the hypothesis that recurrent patterns of fluctuation affecting the binary meter strength of the music may entrain the vigor of the movement. The study opens up new perspectives for understanding the relationship between entrainment and expressiveness, with the possibility to develop applications that can be used in domains such as sports and physical rehabilitation.

  7. Activating and Relaxing Music Entrains the Speed of Beat Synchronized Walking

    Science.gov (United States)

    Leman, Marc; Moelants, Dirk; Varewyck, Matthias; Styns, Frederik; van Noorden, Leon; Martens, Jean-Pierre

    2013-01-01

    Inspired by a theory of embodied music cognition, we investigate whether music can entrain the speed of beat synchronized walking. If human walking is in synchrony with the beat and all musical stimuli have the same duration and the same tempo, then differences in walking speed can only be the result of music-induced differences in stride length, thus reflecting the vigor or physical strength of the movement. Participants walked in an open field in synchrony with the beat of 52 different musical stimuli all having a tempo of 130 beats per minute and a meter of 4 beats. The walking speed was measured as the walked distance during a time interval of 30 seconds. The results reveal that some music is ‘activating’ in the sense that it increases the speed, and some music is ‘relaxing’ in the sense that it decreases the speed, compared to the spontaneous walked speed in response to metronome stimuli. Participants are consistent in their observation of qualitative differences between the relaxing and activating musical stimuli. Using regression analysis, it was possible to set up a predictive model using only four sonic features that explain 60% of the variance. The sonic features capture variation in loudness and pitch patterns at periods of three, four and six beats, suggesting that expressive patterns in music are responsible for the effect. The mechanism may be attributed to an attentional shift, a subliminal audio-motor entrainment mechanism, or an arousal effect, but further study is needed to figure this out. Overall, the study supports the hypothesis that recurrent patterns of fluctuation affecting the binary meter strength of the music may entrain the vigor of the movement. The study opens up new perspectives for understanding the relationship between entrainment and expressiveness, with the possibility to develop applications that can be used in domains such as sports and physical rehabilitation. PMID:23874469

  8. Effect of Traffic Noise and Relaxations Sounds on Pedestrian Walking Speed

    Directory of Open Access Journals (Sweden)

    Marek Franěk

    2018-04-01

    Full Text Available Exposure to noise in everyday urban life is considered to be an environmental stressor. A specific outcome of reactions to environmental stress is a fast pace of life that also includes a faster pedestrian walking speed. The present study examined the effect of listening to annoying acoustical stimuli (traffic noise compared with relaxation sounds (forest birdsong on walking speed in a real outdoor urban environment. The participants (N = 83 walked along an urban route of 1.8 km. They listened to either traffic noise or forest birdsong, or they walked without listening to any acoustical stimuli in the control condition. The results showed that participants listening to traffic noise walked significantly faster on the route than both the participants listening to forest birdsong sounds and the participants in the control condition. Participants who listened to forest birdsong walked slightly slower than those under control conditions; however, this difference was not significant. Analysis of the walk experience showed that participants who listened to forest birdsong during the walk liked the route more than those who listened to traffic sounds. The study demonstrated that exposure to traffic noise led to an immediate increase in walking speed. It was also shown that exposure to noise may influence participants’ perception of an environment. The same environment may be more liked in the absence of noise or in the presence of relaxation sounds. The study also documented the positive effect of listening to various kinds of relaxation sounds while walking in an outdoor environment with traffic noise.

  9. Walking speed and subclinical atherosclerosis in healthy older adults: the Whitehall II study.

    Science.gov (United States)

    Hamer, Mark; Kivimaki, Mika; Lahiri, Avijit; Yerramasu, Ajay; Deanfield, John E; Marmot, Michael G; Steptoe, Andrew

    2010-03-01

    Extended walking speed is a predictor of incident cardiovascular disease (CVD) in older individuals, but the ability of an objective short-distance walking speed test to stratify the severity of preclinical conditions remains unclear. This study examined whether performance in an 8-ft walking speed test is associated with metabolic risk factors and subclinical atherosclerosis. Cross-sectional. Setting Epidemiological cohort. 530 adults (aged 63 + or - 6 years, 50.3% male) from the Whitehall II cohort study with no known history or objective signs of CVD. Electron beam computed tomography and ultrasound was used to assess the presence and extent of coronary artery calcification (CAC) and carotid intima-media thickness (IMT), respectively. High levels of CAC (Agatston score >100) were detected in 24% of the sample; the mean IMT was 0.75 mm (SD 0.15). Participants with no detectable CAC completed the walking course 0.16 s (95% CI 0.04 to 0.28) faster than those with CAC > or = 400. Objectively assessed, but not self-reported, faster walking speed was associated with a lower risk of high CAC (odds ratio 0.62, 95% CI 0.40 to 0.96) and lower IMT (beta=-0.04, 95% CI -0.01 to -0.07 mm) in comparison with the slowest walkers (bottom third), after adjusting for conventional risk factors. Faster walking speed was also associated with lower adiposity, C-reactive protein and low-density lipoprotein cholesterol. Short-distance walking speed is associated with metabolic risk and subclinical atherosclerosis in older adults without overt CVD. These data suggest that a non-aerobically challenging walking test reflects the presence of underlying vascular disease.

  10. The independent effects of speed and propulsive force on joint power generation in walking.

    Science.gov (United States)

    Browne, Michael G; Franz, Jason R

    2017-04-11

    Walking speed is modulated using propulsive forces (F P ) during push-off and both preferred speed and F P decrease with aging. However, even prior to walking slower, reduced F P may be accompanied by potentially unfavorable changes in joint power generation. For example, compared to young adults, older adults exhibit a redistribution of mechanical power generation from the propulsive plantarflexor muscles to more proximal muscles acting across the knee and hip. Here, we used visual biofeedback based on real-time F P measurements to decouple and investigate the interaction between joint-level coordination, whole-body F P , and walking speed. 12 healthy young subjects walked on a dual-belt instrumented treadmill at a range of speeds (0.9-1.3m/s). We immediately calculated the average F P from each speed. Subjects then walked at 1.3m/s while completing a series of biofeedback trials with instructions to match their instantaneous F P to their averaged F P from slower speeds. Walking slower decreased F P and total positive joint work with little effect on relative joint-level contributions. Conversely, subjects walked at a constant speed with reduced F P , not by reducing total positive joint work, but by redistributing the mechanical demands of each step from the plantarflexor muscles during push-off to more proximal leg muscles during single support. Interestingly, these naturally emergent joint- and limb-level biomechanical changes, in the absence of neuromuscular constraints, resemble those due to aging. Our findings provide important reference data to understand the presumably complex interactions between joint power generation, whole-body F P , and walking speed in our aging population. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Walking economy is predictably determined by speed, grade, and gravitational load.

    Science.gov (United States)

    Ludlow, Lindsay W; Weyand, Peter G

    2017-11-01

    The metabolic energy that human walking requires can vary by more than 10-fold, depending on the speed, surface gradient, and load carried. Although the mechanical factors determining economy are generally considered to be numerous and complex, we tested a minimum mechanics hypothesis that only three variables are needed for broad, accurate prediction: speed, surface grade, and total gravitational load. We first measured steady-state rates of oxygen uptake in 20 healthy adult subjects during unloaded treadmill trials from 0.4 to 1.6 m/s on six gradients: -6, -3, 0, 3, 6, and 9°. Next, we tested a second set of 20 subjects under three torso-loading conditions (no-load, +18, and +31% body weight) at speeds from 0.6 to 1.4 m/s on the same six gradients. Metabolic rates spanned a 14-fold range from supine rest to the greatest single-trial walking mean (3.1 ± 0.1 to 43.3 ± 0.5 ml O 2 ·kg -body -1 ·min -1 , respectively). As theorized, the walking portion (V̇o 2-walk  =  V̇o 2-gross - V̇o 2-supine-rest ) of the body's gross metabolic rate increased in direct proportion to load and largely in accordance with support force requirements across both speed and grade. Consequently, a single minimum-mechanics equation was derived from the data of 10 unloaded-condition subjects to predict the pooled mass-specific economy (V̇o 2-gross , ml O 2 ·kg -body + load -1 ·min -1 ) of all the remaining loaded and unloaded trials combined ( n = 1,412 trials from 90 speed/grade/load conditions). The accuracy of prediction achieved ( r 2  = 0.99, SEE = 1.06 ml O 2 ·kg -1 ·min -1 ) leads us to conclude that human walking economy is predictably determined by the minimum mechanical requirements present across a broad range of conditions. NEW & NOTEWORTHY Introduced is a "minimum mechanics" model that predicts human walking economy across a broad range of conditions from only three variables: speed, surface grade, and body-plus-load mass. The derivation

  12. Walking smoothness is associated with self-reported function after accounting for gait speed.

    Science.gov (United States)

    Lowry, Kristin A; Vanswearingen, Jessie M; Perera, Subashan; Studenski, Stephanie A; Brach, Jennifer S

    2013-10-01

    Gait speed has shown to be an indicator of functional status in older adults; however, there may be aspects of physical function not represented by speed but by the quality of movement. The purpose of this study was to determine the relations between walking smoothness, an indicator of the quality of movement based on trunk accelerations, and physical function. Thirty older adults (mean age, 77.7±5.1 years) participated. Usual gait speed was measured using an instrumented walkway. Walking smoothness was quantified by harmonic ratios derived from anteroposterior, vertical, and mediolateral trunk accelerations recorded during overground walking. Self-reported physical function was recorded using the function subscales of the Late-Life Function and Disability Instrument. Anteroposterior smoothness was positively associated with all function components of the Late-Life Function and Disability Instrument, whereas mediolateral smoothness exhibited negative associations. Adjusting for gait speed, anteroposterior smoothness remained associated with the overall and lower extremity function subscales, whereas mediolateral smoothness remained associated with only the advanced lower extremity subscale. These findings indicate that walking smoothness, particularly the smoothness of forward progression, represents aspects of the motor control of walking important for physical function not represented by gait speed alone.

  13. Effects of walking speed on asymmetry and bilateral coordination of gait

    Science.gov (United States)

    Plotnik, Meir; Bartsch, Ronny P.; Zeev, Aviva; Giladi, Nir; Hausdorff, Jeffery M.

    2013-01-01

    The mechanisms regulating the bilateral coordination of gait in humans are largely unknown. Our objective was to study how bilateral coordination changes as a result of gait speed modifications during over ground walking. 15 young adults wore force sensitive insoles that measured vertical forces used to determine the timing of the gait cycle events under three walking conditions (i.e., usual-walking, fast and slow). Ground reaction force impact (GRFI) associated with heel-strikes was also quantified, representing the potential contribution of sensory feedback to the regulation of gait. Gait asymmetry (GA) was quantified based on the differences between right and left swing times and the bilateral coordination of gait was assessed using the phase coordination index (PCI), a metric that quantifies the consistency and accuracy of the anti-phase stepping pattern. GA was preserved in the three different gait speeds. PCI was higher (reduced coordination) in the slow gait condition, compared to usual-walking (3.51% vs. 2.47%, respectively, p=0.002), but was not significantly affected in the fast condition. GRFI values were lower in the slow walking as compared to usual-walking and higher in the fast walking condition (pgait related changes in PCI were not associated with the slowed gait related changes in GRFI. The present findings suggest that left-right anti-phase stepping is similar in normal and fast walking, but altered during slowed walking. This behavior might reflect a relative increase in attention resources required to regulate a slow gait speed, consistent with the possibility that cortical function and supraspinal input influences the bilateral coordination of gait. PMID:23680424

  14. In vivo fascicle behavior of the flexor hallucis longus muscle at different walking speeds.

    Science.gov (United States)

    Péter, A; Hegyi, A; Finni, T; Cronin, N J

    2017-12-01

    Ankle plantar flexor muscles support and propel the body in the stance phase of locomotion. Besides the triceps surae, flexor hallucis longus muscle (FHL) may also contribute to this role, but very few in vivo studies have examined FHL function during walking. Here, we investigated FHL fascicle behavior at different walking speeds. Ten healthy males walked overground at three different speeds while FHL fascicle length changes were recorded with ultrasound and muscle activity was recorded with surface electromyography (EMG). Fascicle length at heel strike at toe off and at peak EMG activity did not change with speed. Range of FHL fascicle length change (3.5-4.5 and 1.9-2.9 mm on average in stance and push-off phase, respectively), as well as minimum (53.5-54.9 and 53.8-55.7 mm) and maximum (58-58.4 and 56.8-57.7 mm) fascicle length did not change with speed in the stance or push-off phase. Mean fascicle velocity did not change in the stance phase, but increased significantly in the push-off phase between slow and fast walking speeds (P=.021). EMG activity increased significantly in both phases from slow to preferred and preferred to fast speed (P<.02 in all cases). FHL muscle fascicles worked near-isometrically during the whole stance phase (at least during slow walking) and operated at approximately the same length at different walking speeds. FHL and medial gastrocnemius (MG) have similar fiber length to muscle belly length ratios and, according to our results, also exhibit similar fascicle behavior at different walking speeds. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  15. Factors associated with maximal walking speed among older community-living adults

    DEFF Research Database (Denmark)

    Sallinen, Janne; Mänty, Minna; Leinonen, Raija

    2011-01-01

    explained to 38%. Further adjusting for physical activity, smoking status and use of alcohol increased the variation explained by additional 7%. A minor further increase in variability explained was gained by adding chronic diseases and depressive symptoms in the model. In the final model, the single most...... 07330512) involving 605 community-living ambulatory adults aged 75-81 years. Maximal walking speed, leg extensor power, standing balance and body mass index were measured at the research center. Physical activity, smoking, use of alcohol, chronic diseases and depressive symptoms were self-reported using...... standard questionnaires. Results: The mean maximal walking speed was 1.4 m/s (range 0.3-2.9). In linear regression analysis, age, gender and body mass index explained 11% of the variation in maximal walking speed. Adding leg extensor power and standing balance into the model increased the variation...

  16. Carotid flow pulsatility is higher in women with greater decrement in gait speed during multi-tasking.

    Science.gov (United States)

    Gonzales, Joaquin U; James, C Roger; Yang, Hyung Suk; Jensen, Daniel; Atkins, Lee; Al-Khalil, Kareem; O'Boyle, Michael

    2017-05-01

    Central arterial hemodynamics is associated with cognitive impairment. Reductions in gait speed during walking while performing concurrent tasks known as dual-tasking (DT) or multi-tasking (MT) is thought to reflect the cognitive cost that exceeds neural capacity to share resources. We hypothesized that central vascular function would associate with decrements in gait speed during DT or MT. Gait speed was measured using a motion capture system in 56 women (30-80y) without mild-cognitive impairment. Dual-tasking was considered walking at a fast-pace while balancing a tray. Multi-tasking was the DT condition plus subtracting by serial 7's. Applanation tonometry was used for measurement of aortic stiffness and central pulse pressure. Doppler-ultrasound was used to measure blood flow velocity and β-stiffness index in the common carotid artery. The percent change in gait speed was larger for MT than DT (14.1±11.2 vs. 8.7±9.6%, p decrement (third tertile) as compared to women with less decrement (first tertile) in gait speed during MT after adjusting for age, gait speed, and task error. Carotid pulse pressure and β-stiffness did not contribute to these tertile differences. Elevated carotid flow pulsatility and resistance are characteristics found in healthy women that show lower cognitive capacity to walk and perform multiple concurrent tasks. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Impact of a Pilot Videogame-Based Physical Activity Program on Walking Speed in Adults with Schizophrenia.

    Science.gov (United States)

    Leutwyler, H; Hubbard, E; Cooper, B A; Dowling, G

    2017-11-10

    The purpose of this report is to describe the impact of a videogame-based physical activity program using the Kinect for Xbox 360 game system (Microsoft, Redmond, WA) on walking speed in adults with schizophrenia. In this randomized controlled trial, 28 participants played either an active videogame for 30 min (intervention group) or played a sedentary videogame for 30 min (control group), once a week for 6 weeks. Walking speed was measured objectively with the Short Physical Performance Battery at enrollment and at the end of the 6-week program. The intervention group (n = 13) showed an average improvement in walking speed of 0.08 m/s and the control group (n = 15) showed an average improvement in walking speed of 0.03 m/s. Although the change in walking speed was not statistically significant, the intervention group had between a small and substantial clinically meaningful change. The results suggest a videogame based physical activity program provides clinically meaningful improvement in walking speed, an important indicator of health status.

  18. The effect of walking speed on local dynamic stability is sensitive to calculation methods

    DEFF Research Database (Denmark)

    Stenum, Jan; Bruijn, Sjoerd M; Jensen, Bente Rona

    2014-01-01

    Local dynamic stability has been assessed by the short-term local divergence exponent (λS), which quantifies the average rate of logarithmic divergence of infinitesimally close trajectories in state space. Both increased and decreased local dynamic stability at faster walking speeds have been...... reported. This might pertain to methodological differences in calculating λS. Therefore, the aim was to test if different calculation methods would induce different effects of walking speed on local dynamic stability. Ten young healthy participants walked on a treadmill at five speeds (60%, 80%, 100%, 120......% and 140% of preferred walking speed) for 3min each, while upper body accelerations in three directions were sampled. From these time-series, λS was calculated by three different methods using: (a) a fixed time interval and expressed as logarithmic divergence per stride-time (λS-a), (b) a fixed number...

  19. [Factors associated with slow walking speed in older adults of a district in Lima, Peru].

    Science.gov (United States)

    Rodríguez, Gabriela; Burga-Cisneros, Daniella; Cipriano, Gabriela; Ortiz, Pedro J; Tello, Tania; Casas, Paola; Aliaga, Elizabeth; Varela, Luis F

    2017-01-01

    To determine the factors associated with slow walking speed in older adults living in a district of Lima, Peru. Analysis of secondary data. Adults older than 60 years were included in the study, while adults with physical conditions who did not allow the evaluation of the walking speed were excluded. The dependent variable was slow walking speed (less than 1 m/s), and the independent variables were sociodemographic, clinical, and geriatric data. Raw and adjusted prevalence ratios (PR) were calculated with 95% confidence intervals (95% CI). The study sample included 416 older adults aged 60 to 99 years, and 41% of the participants met the slow walking speed criterion. The factors associated with slow walking speed in this sample were female gender (PR, 1.45; 95% CI, 1.13-1.88), age > 70 years (PR, 1.73; 95% CI, 1.30- 2.30), lower level of education (PR, 2.07, 95% CI, 1.20-3.55), social-familial problems (PR, 1.66; 95% CI, 1.08-2.54), diabetes mellitus (PR, 1.35; 95% CI, 1.01-1.80), and depression (PR, 1.41; 95% CI, 1.02-1.95). The modifiable factors associated with slow walking speed in older adults included clinical and social-familial problems, and these factors are susceptible to interventions from the early stages of life.

  20. Obesity does not impair walking economy across a range of speeds and grades.

    Science.gov (United States)

    Browning, Raymond C; Reynolds, Michelle M; Board, Wayne J; Walters, Kellie A; Reiser, Raoul F

    2013-05-01

    Despite the popularity of walking as a form of physical activity for obese individuals, relatively little is known about how obesity affects the metabolic rate, economy, and underlying mechanical energetics of walking across a range of speeds and grades. The purpose of this study was to quantify metabolic rate, stride kinematics, and external mechanical work during level and gradient walking in obese and nonobese adults. Thirty-two obese [18 women, mass = 102.1 (15.6) kg, BMI = 33.9 (3.6) kg/m(2); mean (SD)] and 19 nonobese [10 women, mass = 64.4 (10.6) kg, BMI = 21.6 (2.0) kg/m(2)] volunteers participated in this study. We measured oxygen consumption, ground reaction forces, and lower extremity kinematics while subjects walked on a dual-belt force-measuring treadmill at 11 speeds/grades (0.50-1.75 m/s, -3° to +9°). We calculated metabolic rate, stride kinematics, and external work. Net metabolic rate (Ė net/kg, W/kg) increased with speed or grade across all individuals. Surprisingly and in contrast with previous studies, Ė net/kg was 0-6% less in obese compared with nonobese adults (P = 0.013). External work, although a primary determinant of Ė net/kg, was not affected by obesity across the range of speeds/grades used in this study. We also developed new prediction equations to estimate oxygen consumption and Ė net/kg and found that Ė net/kg was positively related to relative leg mass and step width and negatively related to double support duration. These results suggest that obesity does not impair walking economy across a range of walking speeds and grades.

  1. Correlation between balance, speed, and walking ability in individuals with chronic hemiparesis

    Directory of Open Access Journals (Sweden)

    Heloisa Maria Jácome de Sousa Britto

    Full Text Available Abstract Alterations in balance and gait are frequently present in patients with hemiparesis. This study aimed at determining whether there is a correlation between static and functional balance, gait speed and walking capacity. To that end, 17 individuals with chronic hemiparesis of both sexes (58.8% men and 42.25 women, mean age of 56.3 ± 9.73 years, took part in the study. Static balance was assessed by computerized baropodometry, under two different sensory conditions: eyes open (EO and eyes closed (EC. Functional balance was evaluated by Berg Balance Scale and walking ability by the Functional Ambulation Classification. Gait speed was assessed by kinemetry. The Kolmogorov-Smirnov test was used to verify data distribution normality. Parametric variables were correlated by Pearson's test and their non-parametric parameters by Spearman's test. Functional balance showed a positive correlation with gait speed (p=0.005; r=0.64 and walking ability (p = 0.019; r = 0.56. Anteroposterior (AP and mediolateral (ML alterations with EO and EC exhibited negative correlations with gait speed (EO: AP amplitude (p = 0.0049 and r = -0.48; mean ML deviation (p = 0.019 and r =-0.56/ EC: mean AP deviation (p = 0.018 and r = -0.56 and mean ML deviation (p = 0.032 and r = -0.52; AP amplitude (p = 0.014 and r = -0.57 and ML amplitude (p = 0.032 and r = -0.52; postural instability (p = 0.019 and r = -0.55 and walking ability (EO: mean AP deviation (p = 0.05 and r = -0.47 and AP amplitude (p = 0.024 and r = -0.54. The results suggest correlations between static and functional balance and gait speed and walking ability, and that balance training can be an important component of gait recovery protocols.

  2. Age-Related Imbalance Is Associated With Slower Walking Speed: An Analysis From the National Health and Nutrition Examination Survey.

    Science.gov (United States)

    Xie, Yanjun J; Liu, Elizabeth Y; Anson, Eric R; Agrawal, Yuri

    Walking speed is an important dimension of gait function and is known to decline with age. Gait function is a process of dynamic balance and motor control that relies on multiple sensory inputs (eg, visual, proprioceptive, and vestibular) and motor outputs. These sensory and motor physiologic systems also play a role in static postural control, which has been shown to decline with age. In this study, we evaluated whether imbalance that occurs as part of healthy aging is associated with slower walking speed in a nationally representative sample of older adults. We performed a cross-sectional analysis of the previously collected 1999 to 2002 National Health and Nutrition Examination Survey (NHANES) data to evaluate whether age-related imbalance is associated with slower walking speed in older adults aged 50 to 85 years (n = 2116). Balance was assessed on a pass/fail basis during a challenging postural task-condition 4 of the modified Romberg Test-and walking speed was determined using a 20-ft (6.10 m) timed walk. Multivariable linear regression was used to evaluate the association between imbalance and walking speed, adjusting for demographic and health-related covariates. A structural equation model was developed to estimate the extent to which imbalance mediates the association between age and slower walking speed. In the unadjusted regression model, inability to perform the NHANES balance task was significantly associated with 0.10 m/s slower walking speed (95% confidence interval: -0.13 to -0.07; P imbalance mediates 12.2% of the association between age and slower walking speed in older adults. In a nationally representative sample, age-related balance limitation was associated with slower walking speed. Balance impairment may lead to walking speed declines. In addition, reduced static postural control and dynamic walking speed that occur with aging may share common etiologic origins, including the decline in visual, proprioceptive, and vestibular sensory and

  3. Restricted Arm Swing Affects Gait Stability and Increased Walking Speed Alters Trunk Movements in Children with Cerebral Palsy

    Science.gov (United States)

    Delabastita, Tijs; Desloovere, Kaat; Meyns, Pieter

    2016-01-01

    Observational research suggests that in children with cerebral palsy, the altered arm swing is linked to instability during walking. Therefore, the current study investigates whether children with cerebral palsy use their arms more than typically developing children, to enhance gait stability. Evidence also suggests an influence of walking speed on gait stability. Moreover, previous research highlighted a link between walking speed and arm swing. Hence, the experiment aimed to explore differences between typically developing children and children with cerebral palsy taking into account the combined influence of restricting arm swing and increasing walking speed on gait stability. Spatiotemporal gait characteristics, trunk movement parameters and margins of stability were obtained using three dimensional gait analysis to assess gait stability of 26 children with cerebral palsy and 24 typically developing children. Four walking conditions were evaluated: (i) free arm swing and preferred walking speed; (ii) restricted arm swing and preferred walking speed; (iii) free arm swing and high walking speed; and (iv) restricted arm swing and high walking speed. Double support time and trunk acceleration variability increased more when arm swing was restricted in children with bilateral cerebral palsy compared to typically developing children and children with unilateral cerebral palsy. Trunk sway velocity increased more when walking speed was increased in children with unilateral cerebral palsy compared to children with bilateral cerebral palsy and typically developing children and in children with bilateral cerebral palsy compared to typically developing children. Trunk sway velocity increased more when both arm swing was restricted and walking speed was increased in children with bilateral cerebral palsy compared to typically developing children. It is proposed that facilitating arm swing during gait rehabilitation can improve gait stability and decrease trunk movements in

  4. Reliability and Validity of Ten Consumer Activity Trackers Depend on Walking Speed

    NARCIS (Netherlands)

    Fokkema, Tryntsje; Kooiman, Thea J. M.; Krijnen, Wim P.; Van der Schans, Cees P.; De Groot, Martijn

    Purpose: To examine the test-retest reliability and validity of ten activity trackers for step counting at three different walking speeds. Methods: Thirty-one healthy participants walked twice on a treadmill for 30 min while wearing 10 activity trackers (Polar Loop, Garmin Vivosmart, Fitbit Charge

  5. Reliability and validity of ten consumer activity trackers depend on walking speed

    NARCIS (Netherlands)

    Fokkema, Tryntsje; Kooiman, Thea; Krijnen, Wim; van der Schans, Cees; de Groot, Martijn

    Purpose: To examine the test–retest reliability and validity of ten activity trackers for step counting at three different walking speeds. Methods: Thirty-one healthy participants walked twice on a treadmill for 30 min while wearing 10 activity trackers (Polar Loop, Garmin Vivosmart, Fitbit Charge

  6. Changes in resting and walking energy expenditure and walking speed during pregnancy in obese women.

    Science.gov (United States)

    Byrne, Nuala M; Groves, Ainsley M; McIntyre, H David; Callaway, Leonie K

    2011-09-01

    Energy-conserving processes reported in undernourished women during pregnancy are a recognized strategy for providing the energy required to support fetal development. Women who are obese before conceiving arguably have sufficient fat stores to support the energy demands of pregnancy without the need to provoke energy-conserving mechanisms. We tested the hypothesis that obese women would show behavioral adaptation [ie, a decrease in self-selected walking (SSW) speed] but not metabolic compensation [ie, a decrease in resting metabolic rate (RMR) or the metabolic cost of walking] during gestation. RMR, SSW speed, metabolic cost of walking, and anthropometric variables were measured in 23 women aged 31 ± 4 y with a BMI (in kg/m(2)) of 33.6 ± 2.5 (mean ± SD) at ≈15 and 30 wk of gestation. RMR was also measured in 2 cohorts of nonpregnant control subjects matched for the age, weight, and height of the pregnant cohort at 15 (n = 23) and 30 (n = 23) wk. Gestational weight gain varied widely (11.3 ± 5.4 kg), and 52% of the women gained more weight than is recommended. RMR increased significantly by an average of 177 ± 176 kcal/d (11 ± 12%; P 80% of the cohort, the net oxygen cost of walking decreased in the same proportion of women. Although the increase in RMR was greater than that explained by weight gain, evidence of both behavioral and biological compensation in the metabolic cost of walking was observed in obese women during gestation. The trial is registered with the Australian Clinical Trials Registry as ACTRN012606000271505.

  7. The Combined Effects of Body Weight Support and Gait Speed on Gait Related Muscle Activity: A Comparison between Walking in the Lokomat Exoskeleton and Regular Treadmill Walking

    Science.gov (United States)

    Van Kammen, Klaske; Boonstra, Annemarijke; Reinders-Messelink, Heleen; den Otter, Rob

    2014-01-01

    Background For the development of specialized training protocols for robot assisted gait training, it is important to understand how the use of exoskeletons alters locomotor task demands, and how the nature and magnitude of these changes depend on training parameters. Therefore, the present study assessed the combined effects of gait speed and body weight support (BWS) on muscle activity, and compared these between treadmill walking and walking in the Lokomat exoskeleton. Methods Ten healthy participants walked on a treadmill and in the Lokomat, with varying levels of BWS (0% and 50% of the participants’ body weight) and gait speed (0.8, 1.8, and 2.8 km/h), while temporal step characteristics and muscle activity from Erector Spinae, Gluteus Medius, Vastus Lateralis, Biceps Femoris, Gastrocnemius Medialis, and Tibialis Anterior muscles were recorded. Results The temporal structure of the stepping pattern was altered when participants walked in the Lokomat or when BWS was provided (i.e. the relative duration of the double support phase was reduced, and the single support phase prolonged), but these differences normalized as gait speed increased. Alternations in muscle activity were characterized by complex interactions between walking conditions and training parameters: Differences between treadmill walking and walking in the exoskeleton were most prominent at low gait speeds, and speed effects were attenuated when BWS was provided. Conclusion Walking in the Lokomat exoskeleton without movement guidance alters the temporal step regulation and the neuromuscular control of walking, although the nature and magnitude of these effects depend on complex interactions with gait speed and BWS. If normative neuromuscular control of gait is targeted during training, it is recommended that very low speeds and high levels of BWS should be avoided when possible. PMID:25226302

  8. Insect-computer hybrid legged robot with user-adjustable speed, step length and walking gait.

    Science.gov (United States)

    Cao, Feng; Zhang, Chao; Choo, Hao Yu; Sato, Hirotaka

    2016-03-01

    We have constructed an insect-computer hybrid legged robot using a living beetle (Mecynorrhina torquata; Coleoptera). The protraction/retraction and levation/depression motions in both forelegs of the beetle were elicited by electrically stimulating eight corresponding leg muscles via eight pairs of implanted electrodes. To perform a defined walking gait (e.g., gallop), different muscles were individually stimulated in a predefined sequence using a microcontroller. Different walking gaits were performed by reordering the applied stimulation signals (i.e., applying different sequences). By varying the duration of the stimulation sequences, we successfully controlled the step frequency and hence the beetle's walking speed. To the best of our knowledge, this paper presents the first demonstration of living insect locomotion control with a user-adjustable walking gait, step length and walking speed. © 2016 The Author(s).

  9. Race Differences: Use of Walking Speed to Identify Community-Dwelling Women at Risk for Poor Health Outcomes--Osteoarthritis Initiative Study.

    Science.gov (United States)

    Kirkness, Carmen S; Ren, Jinma

    2015-07-01

    Onset of disability, risk for future falls, frailty, functional decline, and mortality are strongly associated with a walking speed of less than 1.0 m/s. The study objective was to determine whether there were differences in slow walking speed (differences in walking speed can be attributed to age, obesity, socioeconomic factors, disease severity, or comorbidities. A cross-sectional design was used. Community-dwelling adults were recruited from Baltimore, Maryland; Columbus, Ohio; Pittsburgh, Pennsylvania; and Pawtucket, Rhode Island. Participants were 2,648 women (23% African American) who were 45 to 79 years of age and had a self-selected baseline walking speed of 20 m/s in the Osteoarthritis Initiative Study. Mixed-effects logistic regression models were used to examine racial differences in walking speed (<1.0 m/s versus ≥1.0 m/s), with adjustments for demographic factors, socioeconomic factors, disease severity, and comorbidities. Walking speed was significantly slower for African American women than for white American women (mean walking speed=1.19 and 1.33 m/s, respectively). The prevalence of a walking speed of less than 1.0 m/s in this cohort of middle-aged women was 9%; about 50% of the women with a walking speed of less than 1.0 m/s were younger than 65 years. Women with a walking speed of less than 1.0 m/s had lower values for socioeconomic factors, higher values for disease severity, and higher prevalences of obesity and comorbidities than those with a walking speed of ≥1.0 m/s. After controlling for these covariates, it was found that African American women were 3 times (odds ratio=2.9; 95% confidence interval=2.0, 4.1) more likely to have a walking speed of less than 1.0 m/s than white American women. The study design made it impossible to know whether a walking speed of less than 1.0 m/s in women who were 45 years of age or older was a predictor of future poor health outcomes. In this study, race was independently associated with a walking speed

  10. An observation of the walking speed of evacuees during a simulated tsunami evacuation in Padang, Indonesia

    Science.gov (United States)

    Yosritzal; Kemal, B. M.; Purnawan; Putra, H.

    2018-04-01

    This paper presents a simulation study to observe the walking speed of evacuee in the case of tsunami evacuation in Padang, West Sumatera, Indonesia. A number of 9 volunteers, 6 observers, 1 route with 5 segments were involved in the simulation. The chosen route is the easiest path and the volunteers were ordered to walk in hurry to a particular place which was assumed as a shelter. The observers were placed at some particular places to record the time when an evacuee passes their place. The distance between the observers were measured using a manual distance meter. The study found that the average walking speed during the evacuation was 1.419 m/s. Walking speed is varied by age and gender of the evacuee.

  11. Genetic Analysis of Daily Maximum Milking Speed by a Random Walk Model in Dairy Cows

    DEFF Research Database (Denmark)

    Karacaören, Burak; Janss, Luc; Kadarmideen, Haja

    Data were obtained from dairy cows stationed at research farm ETH Zurich for maximum milking speed. The main aims of this paper are a) to evaluate if the Wood curve is suitable to model mean lactation curve b) to predict longitudinal breeding values by random regression and random walk models of ...... filter applications: random walk model could give online prediction of breeding values. Hence without waiting for whole lactation records, genetic evaluation could be made when the daily or monthly data is available......Data were obtained from dairy cows stationed at research farm ETH Zurich for maximum milking speed. The main aims of this paper are a) to evaluate if the Wood curve is suitable to model mean lactation curve b) to predict longitudinal breeding values by random regression and random walk models...... of maximum milking speed. Wood curve did not provide a good fit to the data set. Quadratic random regressions gave better predictions compared with the random walk model. However random walk model does not need to be evaluated for different orders of regression coefficients. In addition with the Kalman...

  12. Loading of Hip Measured by Hip Contact Forces at Different Speeds of Walking and Running.

    Science.gov (United States)

    Giarmatzis, Georgios; Jonkers, Ilse; Wesseling, Mariska; Van Rossom, Sam; Verschueren, Sabine

    2015-08-01

    Exercise plays a pivotal role in maximizing peak bone mass in adulthood and maintaining it through aging, by imposing mechanical loading on the bone that can trigger bone mineralization and growth. The optimal type and intensity of exercise that best enhances bone strength remains, however, poorly characterized, partly because the exact peak loading of the bone produced by the diverse types of exercises is not known. By means of integrated motion capture as an input to dynamic simulations, contact forces acting on the hip of 20 young healthy adults were calculated during walking and running at different speeds. During walking, hip contact forces (HCFs) have a two-peak profile whereby the first peak increases from 4.22 body weight (BW) to 5.41 BW and the second from 4.37 BW to 5.74 BW, by increasing speed from 3 to 6 km/h. During running, there is only one peak HCF that increases from 7.49 BW to 10.01 BW, by increasing speed from 6 to 12 km/h. Speed related profiles of peak HCFs and ground reaction forces (GRFs) reveal a different progression of the two peaks during walking. Speed has a stronger impact on peak HCFs rather than on peak GRFs during walking and running, suggesting an increasing influence of muscle activity on peak HCF with increased speed. Moreover, results show that the first peak of HCF during walking can be predicted best by hip adduction moment, and the second peak of HCF by hip extension moment. During running, peak HCF can be best predicted by hip adduction moment. The present study contributes hereby to a better understanding of musculoskeletal loading during walking and running in a wide range of speeds, offering valuable information to clinicians and scientists exploring bone loading as a possible nonpharmacological osteogenic stimulus. © 2015 American Society for Bone and Mineral Research. © 2015 American Society for Bone and Mineral Research.

  13. Development and validation of a new method to measure walking speed in free-living environments using the actibelt® platform.

    Directory of Open Access Journals (Sweden)

    Michaela Schimpl

    Full Text Available Walking speed is a fundamental indicator for human well-being. In a clinical setting, walking speed is typically measured by means of walking tests using different protocols. However, walking speed obtained in this way is unlikely to be representative of the conditions in a free-living environment. Recently, mobile accelerometry has opened up the possibility to extract walking speed from long-time observations in free-living individuals, but the validity of these measurements needs to be determined. In this investigation, we have developed algorithms for walking speed prediction based on 3D accelerometry data (actibelt® and created a framework using a standardized data set with gold standard annotations to facilitate the validation and comparison of these algorithms. For this purpose 17 healthy subjects operated a newly developed mobile gold standard while walking/running on an indoor track. Subsequently, the validity of 12 candidate algorithms for walking speed prediction ranging from well-known simple approaches like combining step length with frequency to more sophisticated algorithms such as linear and non-linear models was assessed using statistical measures. As a result, a novel algorithm employing support vector regression was found to perform best with a concordance correlation coefficient of 0.93 (95%CI 0.92-0.94 and a coverage probability CP1 of 0.46 (95%CI 0.12-0.70 for a deviation of 0.1 m/s (CP2 0.78, CP3 0.94 when compared to the mobile gold standard while walking indoors. A smaller outdoor experiment confirmed those results with even better coverage probability. We conclude that walking speed thus obtained has the potential to help establish walking speed in free-living environments as a patient-oriented outcome measure.

  14. Mildly disabled persons with multiple sclerosis use similar net joint power strategies as healthy controls when walking speed increases.

    Science.gov (United States)

    Brincks, John; Christensen, Lars Ejsing; Rehnquist, Mette Voigt; Petersen, Jesper; Sørensen, Henrik; Dalgas, Ulrik

    2018-01-01

    To improve walking in persons with multiple sclerosis (MS), it is essential to understand the underlying mechanisms of walking. This study examined strategies in net joint power generated or absorbed by hip flexors, hip extensors, hip abductors, knee extensors, and plantar flexors in mildly disabled persons with MS and healthy controls at different walking speeds. Thirteen persons with MS and thirteen healthy controls participated and peak net joint power was calculated using 3D motion analysis. In general, no differences were found between speed-matched healthy controls and persons with MS, but the fastest walking speed was significantly higher in healthy controls (2.42 m/s vs. 1.70 m/s). The net joint power increased in hip flexors, hip extensors, hip abductors, knee extensors and plantar flexors in both groups, when walking speed increased. Significant correlations between changes in walking speed and changes in net joint power of plantar flexors, hip extensors and hip flexors existed in healthy controls and persons with MS, and in net knee extensor absorption power of persons with MS only. In contrast to previous studies, these findings suggest that mildly disabled persons with MS used similar kinetic strategies as healthy controls to increase walking speed.

  15. Motor fatigue measurement by distance-induced slow down of walking speed in multiple sclerosis.

    Directory of Open Access Journals (Sweden)

    Rémy Phan-Ba

    Full Text Available BACKGROUND AND RATIONALE: Motor fatigue and ambulation impairment are prominent clinical features of people with multiple sclerosis (pMS. We hypothesized that a multimodal and comparative assessment of walking speed on short and long distance would allow a better delineation and quantification of gait fatigability in pMS. Our objectives were to compare 4 walking paradigms: the timed 25-foot walk (T25FW, a corrected version of the T25FW with dynamic start (T25FW(+, the timed 100-meter walk (T100MW and the timed 500-meter walk (T500MW. METHODS: Thirty controls and 81 pMS performed the 4 walking tests in a single study visit. RESULTS: The 4 walking tests were performed with a slower WS in pMS compared to controls even in subgroups with minimal disability. The finishing speed of the last 100-meter of the T500MW was the slowest measurable WS whereas the T25FW(+ provided the fastest measurable WS. The ratio between such slowest and fastest WS (Deceleration Index, DI was significantly lower only in pMS with EDSS 4.0-6.0, a pyramidal or cerebellar functional system score reaching 3 or a maximum reported walking distance ≤ 4000 m. CONCLUSION: The motor fatigue which triggers gait deceleration over a sustained effort in pMS can be measured by the WS ratio between performances on a very short distance and the finishing pace on a longer more demanding task. The absolute walking speed is abnormal early in MS whatever the distance of effort when patients are unaware of ambulation impairment. In contrast, the DI-measured ambulation fatigability appears to take place later in the disease course.

  16. Assessment of Human Ambulatory Speed by Measuring Near-Body Air Flow

    Directory of Open Access Journals (Sweden)

    Stefano Salati

    2010-09-01

    Full Text Available Accurate measurements of physical activity are important for the diagnosis of the exacerbation of chronic diseases. Accelerometers have been widely employed in clinical research for measuring activity intensity and investigating the association between physical activity and adverse health conditions. However, the ability of accelerometers in assessing physical activity intensity such as walking speed has been constrained by the inter-individual variability in sensor output and by the necessity of developing unobtrusive low-power monitoring systems. This paper will present a study aimed at investigating the accuracy of a wearable measuring system of near-body air flow to determine ambulatory speed in the field.

  17. Mobility-Related Fatigue, Walking Speed, and Muscle Strength in Older People

    DEFF Research Database (Denmark)

    Mänty, Minna; Mendes de Leon, Carlos F.; Rantanen, Taina

    2012-01-01

    history, as well as performance-based assessment of walking speed and maximal isometric strength of knee extension, body extension, and handgrip. Results. In the cross-sectional baseline analysis, one unit increase in fatigue score was associated with 0.03 m/s (b = −.03, p ... the degree to which muscle strength accounts for this association. Methods. The study is based on baseline (n = 523) and 5-year follow-up data (n = 292) from a cohort of 75-year-old persons. Standardized assessments include self-report measures of mobility-related fatigue (score range 0–6) and medical......, p strength accounted up to 21% and among men up to 24% for the association. In the prospective analysis, fatigue at baseline was predictive of change in walking speed...

  18. Effect of the walking speed to the lower limb joint angular displacements, joint moments and ground reaction forces during walking in water.

    Science.gov (United States)

    Miyoshi, Tasuku; Shirota, Takashi; Yamamoto, Shin-ichiro; Nakazawa, Kimitaka; Akai, Masami

    2004-06-17

    The purpose of this study was to compare the changes in ground reaction forces (GRF), joint angular displacements (JAD), joint moments (JM) and electromyographic (EMG) activities that occur during walking at various speeds in water and on land. Fifteen healthy adults participated in this study. In the water experiments, the water depth was adjusted so that body weight was reduced by 80%. A video-motion analysis system and waterproof force platform was used to obtain kinematics and kinetics data and to calculate the JMs. Results revealed that (1) the anterior-posterior GRF patterns differed between walking in water and walking on land, whereas the medio-lateral GRF patterns were similar, (2) the JAD patterns of the hip and ankle were similar between water- and land-walking, whereas the range of motion at the knee joint was lower in water than on land, (3) the JMs in all three joints were lower in water than on land throughout the stance phase, and (4) the hip joint extension moment and hip extensor muscle EMG activity were increased as walking speed increase during walking in water. Rehabilitative water-walking exercise could be designed to incorporate large-muscle activities, especially of the lower-limb extensor muscles, through full joint range of motion and minimization of joint moments.

  19. A novel walking speed estimation scheme and its application to treadmill control for gait rehabilitation.

    Science.gov (United States)

    Yoon, Jungwon; Park, Hyung-Soon; Damiano, Diane Louise

    2012-08-28

    Virtual reality (VR) technology along with treadmill training (TT) can effectively provide goal-oriented practice and promote improved motor learning in patients with neurological disorders. Moreover, the VR + TT scheme may enhance cognitive engagement for more effective gait rehabilitation and greater transfer to over ground walking. For this purpose, we developed an individualized treadmill controller with a novel speed estimation scheme using swing foot velocity, which can enable user-driven treadmill walking (UDW) to more closely simulate over ground walking (OGW) during treadmill training. OGW involves a cyclic acceleration-deceleration profile of pelvic velocity that contrasts with typical treadmill-driven walking (TDW), which constrains a person to walk at a preset constant speed. In this study, we investigated the effects of the proposed speed adaptation controller by analyzing the gait kinematics of UDW and TDW, which were compared to those of OGW at three pre-determined velocities. Ten healthy subjects were asked to walk in each mode (TDW, UDW, and OGW) at three pre-determined speeds (0.5 m/s, 1.0 m/s, and 1.5 m/s) with real time feedback provided through visual displays. Temporal-spatial gait data and 3D pelvic kinematics were analyzed and comparisons were made between UDW on a treadmill, TDW, and OGW. The observed step length, cadence, and walk ratio defined as the ratio of stride length to cadence were not significantly different between UDW and TDW. Additionally, the average magnitude of pelvic acceleration peak values along the anterior-posterior direction for each step and the associated standard deviations (variability) were not significantly different between the two modalities. The differences between OGW and UDW and TDW were mainly in swing time and cadence, as have been reported previously. Also, step lengths between OGW and TDW were different for 0.5 m/s and 1.5 m/s gait velocities, and walk ratio between OGS and UDW was

  20. A novel walking speed estimation scheme and its application to treadmill control for gait rehabilitation

    Directory of Open Access Journals (Sweden)

    Yoon Jungwon

    2012-08-01

    Full Text Available Abstract Background Virtual reality (VR technology along with treadmill training (TT can effectively provide goal-oriented practice and promote improved motor learning in patients with neurological disorders. Moreover, the VR + TT scheme may enhance cognitive engagement for more effective gait rehabilitation and greater transfer to over ground walking. For this purpose, we developed an individualized treadmill controller with a novel speed estimation scheme using swing foot velocity, which can enable user-driven treadmill walking (UDW to more closely simulate over ground walking (OGW during treadmill training. OGW involves a cyclic acceleration-deceleration profile of pelvic velocity that contrasts with typical treadmill-driven walking (TDW, which constrains a person to walk at a preset constant speed. In this study, we investigated the effects of the proposed speed adaptation controller by analyzing the gait kinematics of UDW and TDW, which were compared to those of OGW at three pre-determined velocities. Methods Ten healthy subjects were asked to walk in each mode (TDW, UDW, and OGW at three pre-determined speeds (0.5 m/s, 1.0 m/s, and 1.5 m/s with real time feedback provided through visual displays. Temporal-spatial gait data and 3D pelvic kinematics were analyzed and comparisons were made between UDW on a treadmill, TDW, and OGW. Results The observed step length, cadence, and walk ratio defined as the ratio of stride length to cadence were not significantly different between UDW and TDW. Additionally, the average magnitude of pelvic acceleration peak values along the anterior-posterior direction for each step and the associated standard deviations (variability were not significantly different between the two modalities. The differences between OGW and UDW and TDW were mainly in swing time and cadence, as have been reported previously. Also, step lengths between OGW and TDW were different for 0.5 m/s and 1.5 m/s gait velocities

  1. Investigating the relationship between energy expenditure, walking speed and angle of turning in humans.

    Directory of Open Access Journals (Sweden)

    M A McNarry

    Full Text Available Recent studies have suggested that changing direction is associated with significant additional energy expenditure. A failure to account for this additional energy expenditure of turning has significant implications in the design and interpretation of health interventions. The purpose of this study was therefore to investigate the influence of walking speed and angle, and their interaction, on energy expenditure in 20 healthy adults (7 female; 28±7 yrs. On two separate days, participants completed a turning protocol at one of 16 speed- (2.5, 3.5, 4.5, 5.5 km∙h-1 and angle (0, 45, 90, 180° combinations, involving three minute bouts of walking, interspersed by three minutes seated rest. Each condition involved 5 m of straight walking before turning through the pre-determined angle with the speed dictated by a digital, auditory metronome. Tri-axial accelerometry and magnetometry were measured at 60 Hz, in addition to gas exchange on a breath-by-breath basis. Mixed models revealed a significant main effect for speed (F = 121.609, P < 0.001 and angle (F = 19.186, P < 0.001 on oxygen uptake ([Formula: see text] and a significant interaction between these parameters (F = 4.433, P < 0.001. Specifically, as speed increased, [Formula: see text] increased but significant increases in [Formula: see text] relative to straight line walking were only observed for 90° and 180° turns at the two highest speeds (4.5 and 5.5 km∙hr-1. These findings therefore highlight the importance of accounting for the quantity and magnitude of turns completed when estimating energy expenditure and have significant implications within both sport and health contexts.

  2. Required coefficient of friction in the anteroposterior and mediolateral direction during turning at different walking speeds.

    Science.gov (United States)

    Yamaguchi, Takeshi; Suzuki, Akito; Hokkirigawa, Kazuo

    2017-01-01

    This study investigated the required coefficient of friction (RCOF) and the tangent of center of mass (COM)-center of pressure (COP) angle in the mediolateral (ML) and anteroposterior (AP) directions during turning at different walking speeds. Sixteen healthy young adults (8 males and 8 females) participated in this study. The participants were instructed to conduct trials of straight walking and 90° step and spin turns to the right at each of three self-selected speeds (slow, normal, and fast). The ML and AP directions during turning gait were defined using the orientation of the pelvis to construct a body-fixed reference frame. The RCOF values and COM-COP angle tangent in the ML direction during turning at weight acceptance phase were higher than those during straight walking, and those values increased with increasing walking speed. The ML component of the RCOF and COM-COP tangent values during weight acceptance for step turns were higher than those for spin turns. The mean centripetal force during turning tended to increase with an increase in walking speed and had a strong positive correlation with the RCOF values in the ML direction (R = 0.97 during the weight acceptance phase; R = 0.95 during the push-off phase). Therefore, turning, particularly step turn, is likely to cause lateral slip at weight acceptance because of the increased centripetal force compared with straight walking. Future work should test at-risk population and compare with the present results.

  3. Required coefficient of friction in the anteroposterior and mediolateral direction during turning at different walking speeds.

    Directory of Open Access Journals (Sweden)

    Takeshi Yamaguchi

    Full Text Available This study investigated the required coefficient of friction (RCOF and the tangent of center of mass (COM-center of pressure (COP angle in the mediolateral (ML and anteroposterior (AP directions during turning at different walking speeds. Sixteen healthy young adults (8 males and 8 females participated in this study. The participants were instructed to conduct trials of straight walking and 90° step and spin turns to the right at each of three self-selected speeds (slow, normal, and fast. The ML and AP directions during turning gait were defined using the orientation of the pelvis to construct a body-fixed reference frame. The RCOF values and COM-COP angle tangent in the ML direction during turning at weight acceptance phase were higher than those during straight walking, and those values increased with increasing walking speed. The ML component of the RCOF and COM-COP tangent values during weight acceptance for step turns were higher than those for spin turns. The mean centripetal force during turning tended to increase with an increase in walking speed and had a strong positive correlation with the RCOF values in the ML direction (R = 0.97 during the weight acceptance phase; R = 0.95 during the push-off phase. Therefore, turning, particularly step turn, is likely to cause lateral slip at weight acceptance because of the increased centripetal force compared with straight walking. Future work should test at-risk population and compare with the present results.

  4. Prefrontal, posterior parietal and sensorimotor network activity underlying speed control during walking

    Directory of Open Access Journals (Sweden)

    Thomas C Bulea

    2015-05-01

    Full Text Available Accumulating evidence suggests cortical circuits may contribute to control of human locomotion. Here, noninvasive electroencephalography (EEG recorded from able-bodied volunteers during a novel treadmill walking paradigm was used to assess neural correlates of walking. A systematic processing method, including a recently developed subspace reconstruction algorithm, reduced movement-related EEG artifact prior to independent component analysis and dipole source localization. We quantified cortical activity while participants tracked slow and fast target speeds across two treadmill conditions: an active mode that adjusted belt speed based on user movements and a passive mode reflecting a typical treadmill. Our results reveal frequency specific, multi-focal task related changes in cortical oscillations elicited by active walking. Low γ band power, localized to the prefrontal and posterior parietal cortices, was significantly increased during double support and early swing phases, critical points in the gait cycle since the active controller adjusted speed based on pelvis position and swing foot velocity. These phasic γ band synchronizations provide evidence that prefrontal and posterior parietal networks, previously implicated in visuo-spatial and somotosensory integration, are engaged to enhance lower limb control during gait. Sustained μ and β band desynchronization within sensorimotor cortex, a neural correlate for movement, was observed during walking thereby validating our methods for isolating cortical activity. Our results also demonstrate the utility of EEG recorded during locomotion for probing the multi-regional cortical networks which underpin its execution. For example, the cortical network engagement elicited by the active treadmill suggests that it may enhance neuroplasticity for more effective motor training.

  5. Effect of walking speed and placement position interactions in determining the accuracy of various newer pedometers

    Directory of Open Access Journals (Sweden)

    Wonil Park

    2014-06-01

    Full Text Available Older types of pedometers had varied levels of accuracy, which ranged from 0% to 45%. In addition, to obtain accurate results, it was also necessary to position them in a certain way. By contrast, newer models can be placed anywhere on the body; however, their accuracy is unknown when they are placed at different body sites. We determined the accuracy of various newer pedometers under controlled laboratory and free walking conditions. A total of 40 participants, who varied widely in age and body mass index, were recruited for the study. The numbers of steps recorded using five different pedometers placed at the waist, the chest, in a pocket, and on an armband were compared against those counted with a hand tally counter. With the exception of one, all the pedometers were accurate at moderate walking speeds, irrespective of their placement on the body. However, the accuracy tended to decrease at slower and faster walking speeds, especially when the pedometers were worn in the pockets or kept in the purse (p < 0.05. In conclusion, most pedometers examined were accurate when they were placed at the waist, chest, and armband irrespective of the walking speed or terrain. However, some pedometers had reduced accuracy when they were kept in a pocket or placed in a purse, especially at a slower and faster walking speeds.

  6. Mildly disabled persons with multiple sclerosis use similar net joint power strategies as healthy controls when walking speed increases

    DEFF Research Database (Denmark)

    Brincks, John; Sørensen, Henrik; Dalgas, Ulrik

    2018-01-01

    flexors in mildly disabled persons with MS and healthy controls at different walking speeds. METHODS:Thirteen persons with MS and thirteen healthy controls participated and peak net joint power was calculated using 3D motion analysis. RESULTS:In general, no differences were found between speed......-matched healthy controls and persons with MS, but the fastest walking speed was significantly higher in healthy controls (2.42 m/s vs. 1.70 m/s). The net joint power increased in hip flexors, hip extensors, hip abductors, knee extensors and plantar flexors in both groups, when walking speed increased. Significant...... correlations between changes in walking speed and changes in net joint power of plantar flexors, hip extensors and hip flexors existed in healthy controls and persons with MS, and in net knee extensor absorption power of persons with MS only. CONCLUSION:In contrast to previous studies, these findings suggest...

  7. Unstable footwear as a speed-dependent noise-based training gear to exercise inverted pendulum motion during walking.

    Science.gov (United States)

    Dierick, Frédéric; Bouché, Anne-France; Scohier, Mikaël; Guille, Clément; Buisseret, Fabien

    2018-05-15

    Previous research on unstable footwear has suggested that it may induce mechanical noise during walking. The purpose of this study was to explore whether unstable footwear could be considered as a noise-based training gear to exercise body center of mass (CoM) motion during walking. Ground reaction forces were collected among 24 healthy young women walking at speeds between 3 and 6 km h -1 with control running shoes and unstable rocker-bottom shoes. The external mechanical work, the recovery of mechanical energy of the CoM during and within the step cycles, and the phase shift between potential and kinetic energy curves of the CoM were computed. Our findings support the idea that unstable rocker-bottom footwear could serve as a speed-dependent noise-based training gear to exercise CoM motion during walking. At slow speed, it acts as a stochastic resonance or facilitator that reduces external mechanical work; whereas at brisk speed it acts as a constraint that increases external mechanical work and could mimic a downhill slope.

  8. Human Skeleton Model Based Dynamic Features for Walking Speed Invariant Gait Recognition

    Directory of Open Access Journals (Sweden)

    Jure Kovač

    2014-01-01

    Full Text Available Humans are able to recognize small number of people they know well by the way they walk. This ability represents basic motivation for using human gait as the means for biometric identification. Such biometrics can be captured at public places from a distance without subject's collaboration, awareness, and even consent. Although current approaches give encouraging results, we are still far from effective use in real-life applications. In general, methods set various constraints to circumvent the influence of covariate factors like changes of walking speed, view, clothing, footwear, and object carrying, that have negative impact on recognition performance. In this paper we propose a skeleton model based gait recognition system focusing on modelling gait dynamics and eliminating the influence of subjects appearance on recognition. Furthermore, we tackle the problem of walking speed variation and propose space transformation and feature fusion that mitigates its influence on recognition performance. With the evaluation on OU-ISIR gait dataset, we demonstrate state of the art performance of proposed methods.

  9. Changes in Energy Cost and Total External Work of Muscles in Elite Race Walkers Walking at Different Speeds

    Directory of Open Access Journals (Sweden)

    Chwała Wiesław

    2014-12-01

    Full Text Available The aim of the study was to assess energy cost and total external work (total energy depending on the speed of race walking. Another objective was to determine the contribution of external work to total energy cost of walking at technical, threshold and racing speed in elite competitive race walkers.

  10. Combined application of FBG and PZT sensors for plantar pressure monitoring at low and high speed walking.

    Science.gov (United States)

    Suresh, R; Bhalla, S; Singh, C; Kaur, N; Hao, J; Anand, S

    2015-01-01

    Clinical monitoring of planar pressure is vital in several pathological conditions, such as diabetes, where excess pressure might have serious repercussions on health of the patient, even to the extent of amputation. The main objective of this paper is to experimentally evaluate the combined application of the Fibre Bragg Grating (FBG) and the lead zirconate titanate (PZT) piezoceramic sensors for plantar pressure monitoring during walk at low and high speeds. For fabrication of the pressure sensors, the FBGs are embedded within layers of carbon composite material and stacked in an arc shape. From this embedding technique, average pressure sensitivity of 1.3 pm/kPa and resolution of nearly 0.8 kPa is obtained. These sensors are found to be suitable for measuring the static and the low-speed walk generated foot pressure. Simultaneously, PZT patches of size 10 × 10 × 0.3 mm were used as sensors, utilizing the d_{33} (thickness) coupling mode. A sensitivity of 7.06 mV/kPa and a pressure resolution of 0.14 kPa is obtained from these sensors, which are found to be suitable for foot pressure measurement during high speed walking and running. Both types of sensors are attached to the underside of the sole of commercially available shoes. In the experiments, a healthy male subject walks/runs over the treadmill wearing the fabricated shoes at various speeds and the peak pressure is measured using both the sensors. Commercially available low-cost hardware is used for interrogation of the two sensor types. The test results clearly show the feasibility of the FBG and the PZT sensors for measurement of plantar pressure. The PZT sensors are more accurate for measurement of pressure during walking at high speeds. The FBG sensors, on the other hand, are found to be suitable for static and quasi-dynamic (slow walking) conditions. Typically, the measured pressure varied from 400 to 600 kPa below the forefoot and 100 to 1000 kPa below the heel as the walking speed varied from 1

  11. Walking, running, and resting under time, distance, and average speed constraints: optimality of walk–run–rest mixtures

    Science.gov (United States)

    Long, Leroy L.; Srinivasan, Manoj

    2013-01-01

    On a treadmill, humans switch from walking to running beyond a characteristic transition speed. Here, we study human choice between walking and running in a more ecological (non-treadmill) setting. We asked subjects to travel a given distance overground in a given allowed time duration. During this task, the subjects carried, and could look at, a stopwatch that counted down to zero. As expected, if the total time available were large, humans walk the whole distance. If the time available were small, humans mostly run. For an intermediate total time, humans often use a mixture of walking at a slow speed and running at a higher speed. With analytical and computational optimization, we show that using a walk–run mixture at intermediate speeds and a walk–rest mixture at the lowest average speeds is predicted by metabolic energy minimization, even with costs for transients—a consequence of non-convex energy curves. Thus, sometimes, steady locomotion may not be energy optimal, and not preferred, even in the absence of fatigue. Assuming similar non-convex energy curves, we conjecture that similar walk–run mixtures may be energetically beneficial to children following a parent and animals on long leashes. Humans and other animals might also benefit energetically from alternating between moving forward and standing still on a slow and sufficiently long treadmill. PMID:23365192

  12. Regularity of the Speed of Biased Random Walk in a One-Dimensional Percolation Model

    Science.gov (United States)

    Gantert, Nina; Meiners, Matthias; Müller, Sebastian

    2018-03-01

    We consider biased random walks on the infinite cluster of a conditional bond percolation model on the infinite ladder graph. Axelson-Fisk and Häggström established for this model a phase transition for the asymptotic linear speed \\overline{v} of the walk. Namely, there exists some critical value λ c>0 such that \\overline{v}>0 if λ \\in (0,λ c) and \\overline{v}=0 if λ ≥ λ c. We show that the speed \\overline{v} is continuous in λ on (0,∞) and differentiable on (0,λ c/2). Moreover, we characterize the derivative as a covariance. For the proof of the differentiability of \\overline{v} on (0,λ c/2), we require and prove a central limit theorem for the biased random walk. Additionally, we prove that the central limit theorem fails to hold for λ ≥ λ c/2.

  13. Self-paced versus fixed speed walking and the effect of virtual reality in children with cerebral palsy.

    Science.gov (United States)

    Sloot, Lizeth H; Harlaar, Jaap; van der Krogt, Marjolein M

    2015-10-01

    While feedback-controlled treadmills with a virtual reality could potentially offer advantages for clinical gait analysis and training, the effect of self-paced walking and the virtual environment on the gait pattern of children and different patient groups remains unknown. This study examined the effect of self-paced (SP) versus fixed speed (FS) walking and of walking with and without a virtual reality (VR) in 11 typically developing (TD) children and nine children with cerebral palsy (CP). We found that subjects walked in SP mode with twice as much between-stride walking speed variability (pinteraction effects between SP and group (TD versus CP) were found for five out of 33 parameters. This suggests that children with CP might need more time to familiarize to SP walking, however, these differences were generally too small to be clinically relevant. The VR environment did not affect the kinematic or kinetic parameters, but walking with VR was rated as more similar to overground walking by both groups (p=0.02). The results of this study indicate that both SP and FS walking, with and without VR, can be used interchangeably for treadmill-based clinical gait analysis in children with and without CP. Copyright © 2015 Elsevier B.V. All rights reserved.

  14. The Effect of Head Mounted Display Weight and Locomotion Method on the Perceived Naturalness of Virtual Walking Speeds

    DEFF Research Database (Denmark)

    Nilsson, Niels Chr.; Serafin, Stefania; Nordahl, Rolf

    This poster details a study investigating the effect of Head Mounted Display (HMD) weight and locomotion method (Walking-In-Place and treadmill walking) on the perceived naturalness of virtual walking speeds. The results revealed significant main effects of movement type, but no significant effec...

  15. Effect of walking speed on the gait of king penguins: An accelerometric approach.

    Science.gov (United States)

    Willener, Astrid S T; Handrich, Yves; Halsey, Lewis G; Strike, Siobhán

    2015-12-21

    Little is known about non-human bipedal gaits. This is probably due to the fact that most large animals are quadrupedal and that non-human bipedal animals are mostly birds, whose primary form of locomotion is flight. Very little research has been conducted on penguin pedestrian locomotion with the focus instead on their associated high energy expenditure. In animals, tri-axial accelerometers are frequently used to estimate physiological energy cost, as well as to define the behaviour pattern of a species, or the kinematics of swimming. In this study, we showed how an accelerometer-based technique could be used to determine the biomechanical characteristics of pedestrian locomotion. Eight king penguins, which represent the only family of birds to have an upright bipedal gait, were trained to walk on a treadmill. The trunk tri-axial accelerations were recorded while the bird was walking at four different speeds (1.0, 1.2, 1.4 and 1.6km/h), enabling the amplitude of dynamic body acceleration along the three axes (amplitude of DBAx, DBAy and DBAz), stride frequency, waddling and leaning amplitude, as well as the leaning angle to be defined. The magnitude of the measured variables showed a significant increase with increasing speed, apart from the backwards angle of lean, which decreased with increasing speed. The variability of the measured variables also showed a significant increase with speed apart from the DBAz amplitude, the waddling amplitude, and the leaning angle, where no significant effect of the walking speed was found. This paper is the first approach to describe 3D biomechanics with an accelerometer on wild animals, demonstrating the potential of this technique. Copyright © 2015 Elsevier Ltd. All rights reserved.

  16. Walking economy during cued versus non-cued self-selected treadmill walking in persons with Parkinson's disease.

    Science.gov (United States)

    Gallo, Paul M; McIsaac, Tara L; Garber, Carol Ewing

    2014-01-01

    Gait impairments related to Parkinson's disease (PD) include variable step length and decreased walking velocity, which may result in poorer walking economy. Auditory cueing is a common method used to improve gait mechanics in PD that has been shown to worsen walking economy at set treadmill walking speeds. It is unknown if auditory cueing has the same effects on walking economy at self-selected treadmill walking speeds. To determine if auditory cueing will affect walking economy at self-selected treadmill walking speeds and at speeds slightly faster and slower than self-selected. Twenty-two participants with moderate PD performed three, 6-minute bouts of treadmill walking at three speeds (self-selected and ± 0.22 m·sec-1). One session used cueing and the other without cueing. Energy expenditure was measured and walking economy was calculated (energy expenditure/power). Poorer walking economy and higher energy expenditure occurred during cued walking at a self-selected and a slightly faster walking speed, but there was no apparent difference at the slightly slower speed. These results suggest that potential gait benefits of auditory cueing may come at an energy cost and poorer walking economy for persons with PD at least at some treadmill walking speeds.

  17. Does walking speed mediate the association between visual impairment and self-report of mobility disability? The Salisbury Eye Evaluation Study.

    Science.gov (United States)

    Swenor, Bonnielin K; Bandeen-Roche, Karen; Muñoz, Beatriz; West, Sheila K

    2014-08-01

    To determine whether performance speeds mediate the association between visual impairment and self-reported mobility disability over an 8-year period. Longitudinal analysis. Salisbury, Maryland. Salisbury Eye Evaluation Study participants aged 65 and older (N=2,520). Visual impairment was defined as best-corrected visual acuity worse than 20/40 in the better-seeing eye or visual field less than 20°. Self-reported mobility disability on three tasks was assessed: walking up stairs, walking down stairs, and walking 150 feet. Performance speed on three similar tasks was measured: walking up steps (steps/s), walking down steps (steps/s), and walking 4 m (m/s). For each year of observation, the odds of reporting mobility disability was significantly greater for participants who were visually impaired (VI) than for those who were not (NVI) (odds ratio (OR) difficulty walking up steps=1.58, 95% confidence interval (CI)=1.32-1.89; OR difficulty walking down steps=1.90, 95% CI=1.59-2.28; OR difficulty walking 150 feet=2.11, 95% CI=1.77-2.51). Once performance speed on a similar mobility task was included in the models, VI participants were no longer more likely to report mobility disability than those who were NVI (OR difficulty walking up steps=0.84, 95% CI=0.65-1.11; OR difficulty walking down steps=0.96, 95% CI=0.74-1.24; OR difficulty walking 150 feet=1.22, 95% CI=0.98-1.50). Slower performance speed in VI individuals largely accounted for the difference in the odds of reporting mobility disability, suggesting that VI older adults walk slower and are therefore more likely to report mobility disability than those who are NVI. Improving mobility performance in older adults with visual impairment may minimize the perception of mobility disability. © 2014, Copyright the Authors Journal compilation © 2014, The American Geriatrics Society.

  18. Tracking Steps on Apple Watch at Different Walking Speeds.

    Science.gov (United States)

    Veerabhadrappa, Praveen; Moran, Matthew Duffy; Renninger, Mitchell D; Rhudy, Matthew B; Dreisbach, Scott B; Gift, Kristin M

    2018-04-09

    QUESTION: How accurate are the step counts obtained from Apple Watch? In this validation study, video steps vs. Apple Watch steps (mean ± SD) were 2965 ± 144 vs. 2964 ± 145 steps; P Apple Watch steps when compared with the manual counts obtained from video recordings. Our study is one of the initial studies to objectively validate the accuracy of the step counts obtained from Apple watch at different walking speeds. Apple Watch tested to be an extremely accurate device for measuring daily step counts for adults.

  19. Required coefficient of friction during turning at self-selected slow, normal, and fast walking speeds.

    Science.gov (United States)

    Fino, Peter; Lockhart, Thurmon E

    2014-04-11

    This study investigated the relationship of required coefficient of friction to gait speed, obstacle height, and turning strategy as participants walked around obstacles of various heights. Ten healthy, young adults performed 90° turns around corner pylons of four different heights at their self selected normal, slow, and fast walking speeds using both step and spin turning strategies. Kinetic data was captured using force plates. Results showed peak required coefficient of friction (RCOF) at push off increased with increased speed (slow μ=0.38, normal μ=0.45, and fast μ=0.54). Obstacle height had no effect on RCOF values. The average peak RCOF for fast turning exceeded the OSHA safety guideline for static COF of μ>0.50, suggesting further research is needed into the minimum static COF to prevent slips and falls, especially around corners. Copyright © 2014 Elsevier Ltd. All rights reserved.

  20. Compressibility, turbulence and high speed flow

    CERN Document Server

    Gatski, Thomas B

    2013-01-01

    Compressibility, Turbulence and High Speed Flow introduces the reader to the field of compressible turbulence and compressible turbulent flows across a broad speed range, through a unique complimentary treatment of both the theoretical foundations and the measurement and analysis tools currently used. The book provides the reader with the necessary background and current trends in the theoretical and experimental aspects of compressible turbulent flows and compressible turbulence. Detailed derivations of the pertinent equations describing the motion of such turbulent flows is provided and an extensive discussion of the various approaches used in predicting both free shear and wall bounded flows is presented. Experimental measurement techniques common to the compressible flow regime are introduced with particular emphasis on the unique challenges presented by high speed flows. Both experimental and numerical simulation work is supplied throughout to provide the reader with an overall perspective of current tre...

  1. Exploring the Metabolic and Perceptual Correlates of Self-Selected Walking Speed under Constrained and Un-Constrained Conditions

    Directory of Open Access Journals (Sweden)

    David T Godsiff, Shelly Coe, Charlotte Elsworth-Edelsten, Johnny Collett, Ken Howells, Martyn Morris, Helen Dawes

    2018-03-01

    Full Text Available Mechanisms underpinning self-selected walking speed (SSWS are poorly understood. The present study investigated the extent to which SSWS is related to metabolism, energy cost, and/or perceptual parameters during both normal and artificially constrained walking. Fourteen participants with no pathology affecting gait were tested under standard conditions. Subjects walked on a motorized treadmill at speeds derived from their SSWS as a continuous protocol. RPE scores (CR10 and expired air to calculate energy cost (J.kg-1.m-1 and carbohydrate (CHO oxidation rate (J.kg-1.min-1 were collected during minutes 3-4 at each speed. Eight individuals were re-tested under the same conditions within one week with a hip and knee-brace to immobilize their right leg. Deflection in RPE scores (CR10 and CHO oxidation rate (J.kg-1.min-1 were not related to SSWS (five and three people had deflections in the defined range of SSWS in constrained and unconstrained conditions, respectively (p > 0.05. Constrained walking elicited a higher energy cost (J.kg-1.m-1 and slower SSWS (p 0.05. SSWS did not occur at a minimum energy cost (J.kg-1.m-1 in either condition, however, the size of the minimum energy cost to SSWS disparity was the same (Froude {Fr} = 0.09 in both conditions (p = 0.36. Perceptions of exertion can modify walking patterns and therefore SSWS and metabolism/ energy cost are not directly related. Strategies which minimize perceived exertion may enable faster walking in people with altered gait as our findings indicate they should self-optimize to the same extent under different conditions.

  2. Age differences in the required coefficient of friction during level walking do not exist when experimentally-controlling speed and step length.

    Science.gov (United States)

    Anderson, Dennis E; Franck, Christopher T; Madigan, Michael L

    2014-08-01

    The effects of gait speed and step length on the required coefficient of friction (COF) confound the investigation of age-related differences in required COF. The goals of this study were to investigate whether age differences in required COF during self-selected gait persist when experimentally-controlling speed and step length, and to determine the independent effects of speed and step length on required COF. Ten young and 10 older healthy adults performed gait trials under five gait conditions: self-selected, slow and fast speeds without controlling step length, and slow and fast speeds while controlling step length. During self-selected gait, older adults walked with shorter step lengths and exhibited a lower required COF. Older adults also exhibited a lower required COF when walking at a controlled speed without controlling step length. When both age groups walked with the same speed and step length, no age difference in required COF was found. Thus, speed and step length can have a large influence on studies investigating age-related differences in required COF. It was also found that speed and step length have independent and opposite effects on required COF, with step length having a strong positive effect on required COF, and speed having a weaker negative effect.

  3. IMPACT OF BODY WEIGHT SUPPORTED BACKWARD TREADMILL TRAINING ON WALKING SPEED IN CHILDREN WITH SPASTIC DIPLEGIA

    Directory of Open Access Journals (Sweden)

    Hamada El Sayed Abd Allah Ayoub

    2016-10-01

    Full Text Available Background: A lot of the ambulating children with spastic diplegia were able to walk with flexed hips, knees and ankles this gait pattern is known as crouch gait. The most needed functional achievement of diplegic children habilitation is to be able to walk appropriately. The development of an independent and efficient walking is one of the main objectives for children with cerebral palsy especially those with spastic diplegia. Method: Twenty children with spastic diplegia enrolled in this study, they were classified into two groups of equal number, eligibility to our study were ages ranged from seven to ten years, were able to ambulate, They had gait problems and abnormal gait kinematics. The control group (A received selected physical therapy program based on neurodevelopmental approach for such cases, while the study group (B received partial body weight supported backward treadmill training in addition to regular exercise program. Gait pattern was assessed using the Biodex Gait Trainer II for each group pre and post three months of the treatment program. Results: There was statistically significant improvement in walking speed in the study group (P<0.05 with significant difference when comparing post treatment results between groups (p<0.05. Conclusion: These findings suggested that partial body weight supported backward treadmill training can be included as a supplementary therapeutic modality to improve walking speed and functional abilities of children with diplegic cerebral palsy.

  4. A comparison of at-home walking and 10-meter walking test parameters of individuals with post-stroke hemiparesis.

    Science.gov (United States)

    Nagano, Katsuhito; Hori, Hideaki; Muramatsu, Ken

    2015-02-01

    [Purpose] The purpose of this study was to clarify the difference in gait parameters of at-home walking and the 10-meter walking test results of individuals with hemiparesis. [Subjects] A total of 14 hemiparetic stroke recovery patients participated in this study. Inclusion criteria were: living at home, the ability to walk independently, and demonstrated low extremity on recovery stages III-V on the Brunnstrom Approach. The average age of the subjects was 66 years. [Methods] We used video surveillance and the inked footprint technique to record usual walking speed and maximum speed patterns both in subjects' homes and during the 10-meter walking test. From these methods, walking speed, stride length, and step rate were calculated. [Results] While both usual and maximum walking speeds of the 10-meter walking test correlated with stride length and step rate, at-home walking speeds only significantly correlated with stride length. [Conclusion] Walking patterns of the 10-meter walking test are quantifiably distinct from those demonstrated in patients' homes, and this difference is mainly characterized by stride length. In order to enhance in-home walking ability, exercises that improve length of stride rather than step rate should be recommended.

  5. Linear and Nonlinear Gait Features in Older Adults Walking on Inclined Surfaces at Different Speeds.

    Science.gov (United States)

    Vieira, Marcus Fraga; Rodrigues, Fábio Barbosa; de Sá E Souza, Gustavo Souto; Magnani, Rina Márcia; Lehnen, Georgia Cristina; Andrade, Adriano O

    2017-06-01

    This study evaluated linear and nonlinear gait features in healthy older adults walking on inclined surfaces at different speeds. Thirty-seven active older adults (experimental group) and fifty young adults (control group) walked on a treadmill at 100% and ±20% of their preferred walking speed for 4 min under horizontal (0%), upward (UP) (+8%), and downward (DOWN) (-8%) conditions. Linear gait variability was assessed using the average standard deviation of trunk acceleration between strides (VAR). Gait stability was assessed using the margin of stability (MoS). Nonlinear gait features were assessed by using the maximum Lyapunov exponent, as a measure of local dynamic stability (LDS), and sample entropy (SEn), as a measure of regularity. VAR increased for all conditions, but the interaction effects between treadmill inclination and age, and speed and age were higher for young adults. DOWN conditions showed the lowest stability in the medial-lateral MoS, but not in LDS. LDS was smaller in UP conditions. However, there were no effects of age for either MoS or LDS. The values of SEn decreased almost linearly from the DOWN to the UP conditions, with significant interaction effects of age for anterior-posterior SEn. The overall results supported the hypothesis that inclined surfaces modulate nonlinear gait features and alter linear gait variability, particularly in UP conditions, but there were no significant effects of age for active older adults.

  6. A clinically meaningful training effect in walking speed using functional electrical stimulation for motor-incomplete spinal cord injury.

    Science.gov (United States)

    Street, Tamsyn; Singleton, Christine

    2018-05-01

    The study aimed to investigate the presence of a training effect for rehabilitation of walking function in motor-incomplete spinal cord injury (SCI) through daily use of functional electrical stimulation (FES). A specialist FES outpatient centre. Thirty-five participants (mean age 53, SD 15, range 18-80; mean years since diagnosis 9, range 5 months - 39 years) with drop foot and motor-incomplete SCI (T12 or higher, ASIA Impairment Scale C and D) able to ambulate 10 metres with the use of a walking stick or frame. FES of the peroneal nerve, glutei and hamstrings as clinically indicated over six months in the community. The data was analysed for a training effect (difference between unassisted ten metre walking speed at baseline and after six months) and orthotic effects (difference between walking speed with and without FES) initially on day one and after six months. The data was further analysed for a minimum clinically important difference (MCID) (>0.06 m/s). A clinically meaningful, significant change was observed for initial orthotic effect (0.13m/s, CI: 0.04-0.17, P = 0.013), total orthotic effect (0.11m/s, CI: 0.04-0.18, P = 0.017) and training effect (0.09m/s, CI: 0.02-0.16, P = 0.025). The results suggest that daily independent use of FES may produce clinically meaningful changes in walking speed which are significant for motor-incomplete SCI. Further research exploring the mechanism for the presence of a training effect may be beneficial in targeting therapies for future rehabilitation.

  7. Electromagnetic application device for flow rate/flow speed control

    International Nuclear Information System (INIS)

    Yoshioka, Senji.

    1994-01-01

    Electric current and magnetic field are at first generated in a direction perpendicular to a flow channel of a fluid, and forces generated by electromagnetic interaction of the current and the magnetic field are combined and exerted on the fluid, to control the flow rate and the flow speed thereby decreasing flowing pressure loss. In addition, an electric current generation means and a magnetic field generation means integrated together are disposed to a structural component constituting the flow channel, and they are combined to attain the aimed effect. The current generating means forms a potential difference by supplying electric power to a pair of electrodes as a cathode and an anode by using structures disposed along the channel, to generate an electric field or electric current in a direction perpendicular to the flow channel. The magnetic field generating means forms a counter current (reciprocal current) by using structures disposed along the flow channel, to generate synthesized or emphasized magnetic field. The fluid can be applied with a force in the direction of the flowing direction by the electromagnetic interaction of the electric current and the magnetic field, thereby capable of propelling the fluid. Accordingly, the flowrate/flowing speed can be controlled inside of the flow channel and flowing pressure loss can be decreased. (N.H.)

  8. Insights from field observations into controls on flow front speed in submarine sediment flows

    Science.gov (United States)

    Heerema, C.; Talling, P.; Cartigny, M.; Paull, C. K.; Gwiazda, R.; Clare, M. A.; Parsons, D. R.; Xu, J.; Simmons, S.; Maier, K. L.; Chapplow, N.; Gales, J. A.; McGann, M.; Barry, J.; Lundsten, E. M.; Anderson, K.; O'Reilly, T. C.; Rosenberger, K. J.; Sumner, E. J.; Stacey, C.

    2017-12-01

    Seafloor avalanches of sediment called turbidity currents are one of the most important processes for moving sediment across our planet. Only rivers carry comparable amounts of sediment across such large areas. Here we present some of the first detailed monitoring of these underwater flows that is being undertaken at a series of test sites. We seek to understand the factors that determine flow front speed, and how that speed varies with distance. This frontal speed is particularly important for predicting flow runout, and how the power of these hazardous flows varies with distance. First, we consider unusually detailed measurements of flow front speed defined by transit times between moorings and other tracked objects placed on the floor of Monterey Canyon offshore California in 2016-17. These measurements are then compared to flow front speeds measured using multiple moorings in Bute Inlet, British Columbia in 2016; and by cable breaks in Gaoping Canyon offshore Taiwan in 2006 and 2009. We seek to understand how flow front velocity is related to seafloor gradient, flow front thickness and density. It appears that the spatial evolution of frontal speed is similar in multiple flows, although their peak frontal velocities vary. Flow front velocity tends to increase rapidly initially before declining rather gradually over tens or even hundreds of kilometres. It has been proposed that submarine flows will exist in one of two states; either eroding and accelerating, or depositing sediment and dissipating. We conclude by discussing the implications of this global compilation of flow front velocities for understanding submarine flow behaviour.

  9. Rehabilitation that incorporates virtual reality is more effective than standard rehabilitation for improving walking speed, balance and mobility after stroke: a systematic review

    Directory of Open Access Journals (Sweden)

    Davide Corbetta

    2015-07-01

    Full Text Available Question: In people after stroke, does virtual reality based rehabilitation (VRBR improve walking speed, balance and mobility more than the same duration of standard rehabilitation? In people after stroke, does adding extra VRBR to standard rehabilitation improve the effects on gait, balance and mobility? Design: Systematic review with meta-analysis of randomised trials. Participants: Adults with a clinical diagnosis of stroke. Intervention: Eligible trials had to include one these comparisons: VRBR replacing some or all of standard rehabilitation or VRBR used as extra rehabilitation time added to a standard rehabilitation regimen. Outcome measures: Walking speed, balance, mobility and adverse events. Results: In total, 15 trials involving 341 participants were included. When VRBR replaced some or all of the standard rehabilitation, there were statistically significant benefits in walking speed (MD 0.15 m/s, 95% CI 0.10 to 0.19, balance (MD 2.1 points on the Berg Balance Scale, 95% CI 1.8 to 2.5 and mobility (MD 2.3 seconds on the Timed Up and Go test, 95% CI 1.2 to 3.4. When VRBR was added to standard rehabilitation, mobility showed a significant benefit (0.7 seconds on the Timed Up and Go test, 95% CI 0.4 to 1.1, but insufficient evidence was found to comment about walking speed (one trial and balance (high heterogeneity. Conclusion: Substituting some or all of a standard rehabilitation regimen with VRBR elicits greater benefits in walking speed, balance and mobility in people with stroke. Although the benefits are small, the extra cost of applying virtual reality to standard rehabilitation is also small, especially when spread over many patients in a clinic. Adding extra VRBR time to standard rehabilitation also has some benefits; further research is needed to determine if these benefits are clinically worthwhile. [Corbetta D, Imeri F, Gatti R (2015 Rehabilitation that incorporates virtual reality is more effective than standard

  10. Does dynamic stability govern propulsive force generation in human walking?

    Science.gov (United States)

    Browne, Michael G; Franz, Jason R

    2017-11-01

    Before succumbing to slower speeds, older adults may walk with a diminished push-off to prioritize stability over mobility. However, direct evidence for trade-offs between push-off intensity and balance control in human walking, independent of changes in speed, has remained elusive. As a critical first step, we conducted two experiments to investigate: (i) the independent effects of walking speed and propulsive force ( F P ) generation on dynamic stability in young adults, and (ii) the extent to which young adults prioritize dynamic stability in selecting their preferred combination of walking speed and F P generation. Subjects walked on a force-measuring treadmill across a range of speeds as well as at constant speeds while modulating their F P according to a visual biofeedback paradigm based on real-time force measurements. In contrast to improvements when walking slower, walking with a diminished push-off worsened dynamic stability by up to 32%. Rather, we find that young adults adopt an F P at their preferred walking speed that maximizes dynamic stability. One implication of these findings is that the onset of a diminished push-off in old age may independently contribute to poorer balance control and precipitate slower walking speeds.

  11. The effect of waist twisting on walking speed of an amphibious salamander like robot

    Science.gov (United States)

    Yin, Xin-Yan; Jia, Li-Chao; Wang, Chen; Xie, Guang-Ming

    2016-06-01

    Amphibious salamanders often swing their waist to coordinate quadruped walking in order to improve their crawling speed. A robot with a swing waist joint, like an amphibious salamander, is used to mimic this locomotion. A control method is designed to allow the robot to maintain the rotational speed of its legs continuous and avoid impact between its legs and the ground. An analytical expression is established between the amplitude of the waist joint and the step length. Further, an optimization amplitude is obtained corresponding to the maximum stride. The simulation results based on automatic dynamic analysis of mechanical systems (ADAMS) and physical experiments verify the rationality and validity of this expression.

  12. High speed digital holographic interferometry for hypersonic flow visualization

    Science.gov (United States)

    Hegde, G. M.; Jagdeesh, G.; Reddy, K. P. J.

    2013-06-01

    Optical imaging techniques have played a major role in understanding the flow dynamics of varieties of fluid flows, particularly in the study of hypersonic flows. Schlieren and shadowgraph techniques have been the flow diagnostic tools for the investigation of compressible flows since more than a century. However these techniques provide only the qualitative information about the flow field. Other optical techniques such as holographic interferometry and laser induced fluorescence (LIF) have been used extensively for extracting quantitative information about the high speed flows. In this paper we present the application of digital holographic interferometry (DHI) technique integrated with short duration hypersonic shock tunnel facility having 1 ms test time, for quantitative flow visualization. Dynamics of the flow fields in hypersonic/supersonic speeds around different test models is visualized with DHI using a high-speed digital camera (0.2 million fps). These visualization results are compared with schlieren visualization and CFD simulation results. Fringe analysis is carried out to estimate the density of the flow field.

  13. Wake flow characteristics at high wind speed

    DEFF Research Database (Denmark)

    Aagaard Madsen, Helge; Larsen, Torben J.; Larsen, Gunner Chr.

    2016-01-01

    Wake flow characteristic at high wind speeds is the main subject of this paper. Although the wake losses decrease at high wind speeds it has been found in a recent study that for multiple wake inflow the increase in loading due to wake effects are substantial even at wind speeds well above rated ...

  14. Speed and Duration of Walking and Other Leisure Time Physical Activity and the Risk of Heart Failure

    DEFF Research Database (Denmark)

    Sævereid, Hans Askelund; Schnohr, Peter; Prescott, Eva

    2014-01-01

    in 1976-2003, we studied the association between updated self-assessed leisure-time PA, speed and duration of walking and subsequent hospitalization or death from HF. Light and moderate/high level of leisure-time PA and brisk walking were associated with reduced risk of HF in both genders whereas...... no consistent association with duration of walking was seen. In 18,209 subjects age 20-80 with 1580 cases of HF, using the lowest activity level as reference, the confounder-adjusted hazard ratios (HR) for light and moderate/high leisure-time physical activity were 0.75 (0.66-0.86) and 0.80 (0......-spread PA and public health measures to curb the increase in HF may benefit from this information....

  15. Validity of the Nike+ device during walking and running.

    Science.gov (United States)

    Kane, N A; Simmons, M C; John, D; Thompson, D L; Bassett, D R; Basset, D R

    2010-02-01

    We determined the validity of the Nike+ device for estimating speed, distance, and energy expenditure (EE) during walking and running. Twenty trained individuals performed a maximal oxygen uptake test and underwent anthropometric and body composition testing. Each participant was outfitted with a Nike+ sensor inserted into the shoe and an Apple iPod nano. They performed eight 6-min stages on the treadmill, including level walking at 55, 82, and 107 m x min(-1), inclined walking (82 m x min(-1)) at 5 and 10% grades, and level running at 134, 161, and 188 m x min(-1). Speed was measured using a tachometer and EE was measured by indirect calorimetry. Results showed that the Nike+ device overestimated the speed of level walking at 55 m x min(-1) by 20%, underestimated the speed of level walking at 107 m x min(-1) by 12%, but closely estimated the speed of level walking at 82 m x min(-1), and level running at all speeds (pNike+ device overestimated the EE of level walking by 18-37%, but closely estimated the EE of level running (pNike+ in-shoe device provided reasonable estimates of speed and distance during level running at the three speeds tested in this study. However, it overestimated EE during level walking and it did not detect the increased cost of inclined locomotion.

  16. The effect of walking speed on hamstrings length and lengthening velocity in children with spastic cerebral palsy

    NARCIS (Netherlands)

    Krogt, van der M.M.; Doorenbosch, C.A.M.; Harlaar, J.

    2009-01-01

    0.001). These data are important as a reference for valid interpretation of hamstrings length and velocity data in gait analyses at different walking speeds. The results indicate that the presence of spasticity is associated with reduced hamstrings length and lengthening velocity during gait, even

  17. Reference values of maximum walking speed among independent community-dwelling Danish adults aged 60 to 79 years

    DEFF Research Database (Denmark)

    Tibaek, S; Holmestad-Bechmann, N; Pedersen, Trine B

    2015-01-01

    OBJECTIVES: To establish reference values for maximum walking speed over 10m for independent community-dwelling Danish adults, aged 60 to 79 years, and to evaluate the effects of gender and age. DESIGN: Cross-sectional study. SETTING: Danish companies and senior citizens clubs. PARTICIPANTS: Two ...

  18. Effects of high intensity resistance aquatic training on body composition and walking speed in women with mild knee osteoarthritis: a 4-month RCT with 12-month follow-up.

    Science.gov (United States)

    Waller, B; Munukka, M; Rantalainen, T; Lammentausta, E; Nieminen, M T; Kiviranta, I; Kautiainen, H; Häkkinen, A; Kujala, U M; Heinonen, A

    2017-08-01

    To investigate the effects of 4-months intensive aquatic resistance training on body composition and walking speed in post-menopausal women with mild knee osteoarthritis (OA), immediately after intervention and after 12-months follow-up. Additionally, influence of leisure time physical activity (LTPA) will be investigated. This randomised clinical trial assigned eighty-seven volunteer postmenopausal women into two study arms. The intervention group (n = 43) participated in 48 supervised intensive aquatic resistance training sessions over 4-months while the control group (n = 44) maintained normal physical activity. Eighty four participants continued into the 12-months' follow-up period. Body composition was measured with dual-energy X-ray absorptiometry (DXA). Walking speed over 2 km and the knee injury and osteoarthritis outcome score (KOOS) were measured. LTPA was recorded with self-reported diaries. After the 4-month intervention there was a significant decrease (P = 0.002) in fat mass (mean change: -1.17 kg; 95% CI: -2.00 to -0.43) and increase (P = 0.002) in walking speed (0.052 m/s; 95% CI: 0.018 to 0.086) in favour of the intervention group. Body composition returned to baseline after 12-months. In contrast, increased walking speed was maintained (0.046 m/s; 95% CI 0.006 to 0.086, P = 0.032). No change was seen in lean mass or KOOS. Daily LTPA over the 16-months had a significant effect (P = 0.007) on fat mass loss (f 2  = 0.05) but no effect on walking speed. Our findings show that high intensity aquatic resistance training decreases fat mass and improves walking speed in post-menopausal women with mild knee OA. Only improvements in walking speed were maintained at 12-months follow-up. Higher levels of LTPA were associated with fat mass loss. ISRCTN65346593. Copyright © 2017 Osteoarthritis Research Society International. Published by Elsevier Ltd. All rights reserved.

  19. 30 min of treadmill walking at self-selected speed does not increase gait variability in independent elderly.

    Science.gov (United States)

    Da Rocha, Emmanuel S; Kunzler, Marcos R; Bobbert, Maarten F; Duysens, Jacques; Carpes, Felipe P

    2018-06-01

    Walking is one of the preferred exercises among elderly, but could a prolonged walking increase gait variability, a risk factor for a fall in the elderly? Here we determine whether 30 min of treadmill walking increases coefficient of variation of gait in elderly. Because gait responses to exercise depend on fitness level, we included 15 sedentary and 15 active elderly. Sedentary participants preferred a lower gait speed and made smaller steps than the actives. Step length coefficient of variation decreased ~16.9% by the end of the exercise in both the groups. Stride length coefficient of variation decreased ~9% after 10 minutes of walking, and sedentary elderly showed a slightly larger step width coefficient of variation (~2%) at 10 min than active elderly. Active elderly showed higher walk ratio (step length/cadence) than sedentary in all times of walking, but the times did not differ in both the groups. In conclusion, treadmill gait kinematics differ between sedentary and active elderly, but changes over time are similar in sedentary and active elderly. As a practical implication, 30 min of walking might be a good strategy of exercise for elderly, independently of the fitness level, because it did not increase variability in step and stride kinematics, which is considered a risk of fall in this population.

  20. Assessment of intersegmental coordination of rats during walking at different speeds - Application of continuous relative phase

    DEFF Research Database (Denmark)

    Raffalt, Peter Christian; Nielsen, Louise R; Madsen, Stefan

    2018-01-01

    of the CRP (ACRP) and DP and on the mean ACRP and mean DP was established by statistical parametric mapping (SPM) and a one-way ANOVA for repeated measures. Absolute and relative reliability were assessed by measurement error and intra-class correlation coefficient. The SPM analysis revealed time dependent......The present study investigated the feasibility and reliability of continuous relative phase (CRP) and deviation phase (DP) to assess intersegmental hind limb coordination pattern and coordination variability in rats during walking. Twenty-six adult rats walked at 8 m/min, 12 m/min and 16 m....../min while two-dimensional kinematics were recorded. Segment angles and segment angular velocities of the paw, shank and thigh on the left hind-limb were extracted from 15 strides and CRP was calculated for the paw-shank and shank-thigh coupling. The effect of walking speed on the time point average curve...

  1. Plasma-Assisted Chemistry in High-Speed Flow

    International Nuclear Information System (INIS)

    Leonov, Sergey B.; Yarantsev, Dmitry A.; Napartovich, Anatoly P.; Kochetov, Igor V.

    2007-01-01

    Fundamental problems related to the high-speed combustion are analyzed. The result of plasma-chemical modeling is presented as a motivation of experimental activity. Numerical simulations of the effect of uniform non-equilibrium discharge on the premixed hydrogen and ethylene-air mixture in supersonic flow demonstrate an advantage of such a technique over a heating. Experimental results on multi-electrode non-uniform discharge maintenance behind wallstep and in cavity of supersonic flow are presented. The model test on hydrogen and ethylene ignition is demonstrated at direct fuel injection to low-temperature high-speed airflow

  2. The Hidden Flow Structure and Metric Space of Network Embedding Algorithms Based on Random Walks.

    Science.gov (United States)

    Gu, Weiwei; Gong, Li; Lou, Xiaodan; Zhang, Jiang

    2017-10-13

    Network embedding which encodes all vertices in a network as a set of numerical vectors in accordance with it's local and global structures, has drawn widespread attention. Network embedding not only learns significant features of a network, such as the clustering and linking prediction but also learns the latent vector representation of the nodes which provides theoretical support for a variety of applications, such as visualization, link prediction, node classification, and recommendation. As the latest progress of the research, several algorithms based on random walks have been devised. Although those algorithms have drawn much attention for their high scores in learning efficiency and accuracy, there is still a lack of theoretical explanation, and the transparency of those algorithms has been doubted. Here, we propose an approach based on the open-flow network model to reveal the underlying flow structure and its hidden metric space of different random walk strategies on networks. We show that the essence of embedding based on random walks is the latent metric structure defined on the open-flow network. This not only deepens our understanding of random- walk-based embedding algorithms but also helps in finding new potential applications in network embedding.

  3. Effects of adding a virtual reality environment to different modes of treadmill walking.

    Science.gov (United States)

    Sloot, L H; van der Krogt, M M; Harlaar, J

    2014-03-01

    Differences in gait between overground and treadmill walking are suggested to result from imposed treadmill speed and lack of visual flow. To counteract this effect, feedback-controlled treadmills that allow the subject to control the belt speed along with an immersive virtual reality (VR) have recently been developed. We studied the effect of adding a VR during both fixed speed (FS) and self-paced (SP) treadmill walking. Nineteen subjects walked on a dual-belt instrumented treadmill with a simple endless road projected on a 180° circular screen. A main effect of VR was found for hip flexion offset, peak hip extension, peak knee extension moment, knee flexion moment gain and ankle power during push off. A consistent interaction effect between VR and treadmill mode was found for 12 out of 30 parameters, although the differences were small and did not exceed 50% of the within subject stride variance. At FS, the VR seemed to slightly improve the walking pattern towards overground walking, with for example a 6.5mm increase in stride length. At SP, gait became slightly more cautious by adding a VR, with a 9.1mm decrease in stride length. Irrespective of treadmill mode, subjects rated walking with the VR as more similar to overground walking. In the context of clinical gait analysis, the effects of VR are too small to be relevant and are outweighed by the gains of adding a VR, such as a more stimulating experience and possibility of augmenting it by real-time feedback. Copyright © 2013 Elsevier B.V. All rights reserved.

  4. The use of relative coupling intervals in horses during walk

    DEFF Research Database (Denmark)

    Olsen, Emil; Pfau, Thilo

    Walking speed varies between over-ground trials and a speed-independent gait-parameter does not exist for use in horses. We introduce relative (R) lateral (L) and diagonal (D) coupling intervals (CI) and hypothesize that both are independent of walking speed. Four horses were walked over 8 Kistler...

  5. Cavitation performance improvement of high specific speed mixed-flow pump

    International Nuclear Information System (INIS)

    Chen, T; Sun, Y B; Wu, D Z; Wang, L Q

    2012-01-01

    Cavitation performance improvement of large hydraulic machinery such as pump and turbine has been a hot topic for decades. During the design process of the pumps, in order to minimize size, weight and cost centrifugal and mixed-flow pump impellers are required to operate at the highest possible rotational speed. The rotational speed is limited by the phenomenon of cavitation. The hydraulic model of high-speed mixed-flow pump with large flow rate and high pumping head, which was designed based on the traditional method, always involves poor cavitation performance. In this paper, on the basis of the same hydraulic design parameters, two hydraulic models of high-speed mixed-flow pump were designed by using different methods, in order to investigate the cavitation and hydraulic performance of the two models, the method of computational fluid dynamics (CFD) was adopted for internal flow simulation of the high specific speed mixed-flow pump. Based on the results of numerical simulation, the influences of impeller parameters and three-dimensional configuration on pressure distribution of the blades' suction surfaces were analyzed. The numerical simulation results shows a better pressure distribution and lower pressure drop around the leading edge of the improved model. The research results could provide references to the design and optimization of the anti-cavitation blade.

  6. Investigations on high speed MHD liquid flow

    International Nuclear Information System (INIS)

    Yamasaki, Takasuke; Kamiyama, Shin-ichi.

    1982-01-01

    Lately, the pressure drop problem of MHD two-phase flow in a duct has been investigated theoretically and experimentally in conjunction with the problems of liquid metal MHD two-phase flow power-generating cycle or of liquid metal boiling two-phase flow in the blanket of a nuclear fusion reactor. Though many research results have been reported so far for MHD single-phase flow, the hydrodynamic studies on high speed two-phase flow are reported only rarely, specifically the study dealing with the generation of cavitation is not found. In the present investigation, the basic equation was derived, analyzing the high speed MHD liquid flow in a diverging duct as the one-dimensional flow of homogeneous two-phase fluid of small void ratio. Furthermore, the theoretical solution for the effect of magnetic field on cavitation-generating conditions was tried. The pressure distribution in MHD flow in a duct largely varies with load factor, and even if the void ratio is small, the pressure distribution in two-phase flow is considerably different from that in single-phase flow. Even if the MHD two-phase flow in a duct is subsonic flow at the throat, the critical conditions may be achieved sometimes in a diverging duct. It was shown that cavitation is more likely to occur as magnetic field becomes more intense if it is generated downstream of the throat. This explains the experimental results qualitatively. (Wakatsuki, Y.)

  7. Effect of uphill and downhill walking on walking performance in geriatric patients using a wheeled walker.

    Science.gov (United States)

    Lindemann, Ulrich; Schwenk, Michael; Schmitt, Syn; Weyrich, Michael; Schlicht, Wolfgang; Becker, Clemens

    2017-08-01

    Wheeled walkers are recommended to improve walking performance in older persons and to encourage and assist participation in daily life. Nevertheless, using a wheeled walker can cause serious problems in the natural environment. This study aimed to compare uphill and downhill walking with walking level in geriatric patients using a wheeled walker. Furthermore, we investigated the effect of using a wheeled walker with respect to dual tasking when walking level. A total of 20 geriatric patients (median age 84.5 years) walked 10 m at their habitual pace along a level surface, uphill and downhill, with and without a standard wheeled walker. Gait speed, stride length and cadence were assessed by wearable sensors and the walk ratio was calculated. When using a wheeled walker while walking level the walk ratio improved (0.58 m/[steps/min] versus 0.57 m/[steps/min], p = 0.023) but gait speed decreased (1.07 m/s versus 1.12 m/s, p = 0.020) when compared to not using a wheeled walker. With respect to the walk ratio, uphill and downhill walking with a wheeled walker decreased walking performance when compared to level walking (0.54 m/[steps/min] versus 0.58 m/[steps/min], p = 0.023 and 0.55 m/[steps/min] versus 0.58 m/[steps/min], p = 0.001, respectively). At the same time, gait speed decreased (0.079 m/s versus 1.07 m/s, p walker improved the quality of level walking but the performance of uphill and downhill walking was worse compared to walking level when using a wheeled walker.

  8. Effect of Body Composition on Walking Economy

    Directory of Open Access Journals (Sweden)

    Maciejczyk Marcin

    2016-12-01

    Full Text Available Purpose. The aim of the study was to evaluate walking economy and physiological responses at two walking speeds in males with similar absolute body mass but different body composition. Methods. The study involved 22 young men with similar absolute body mass, BMI, aerobic performance, calf and thigh circumference. The participants differed in body composition: body fat (HBF group and lean body mass (HLBM group. In the graded test, maximal oxygen uptake (VO2max and maximal heart rate were measured. Walking economy was evaluated during two walks performed at two different speeds (4.8 and 6.0 km ‧ h-1. Results. The VO2max was similar in both groups, as were the physiological responses during slow walking. The absolute oxygen uptake or oxygen uptake relative to body mass did not significantly differentiate the studied groups. The only indicator significantly differentiating the two groups was oxygen uptake relative to LBM. Conclusions. Body composition does not significantly affect walking economy at low speed, while during brisk walking, the economy is better in the HLBM vs. HBF group, provided that walking economy is presented as oxygen uptake relative to LBM. For this reason, we recommend this manner of oxygen uptake normalization in the evaluation of walking economy.

  9. Internal Flow of a High Specific-Speed Diagonal-Flow Fan (Rotor Outlet Flow Fields with Rotating Stall

    Directory of Open Access Journals (Sweden)

    Norimasa Shiomi

    2003-01-01

    Full Text Available We carried out investigations for the purpose of clarifying the rotor outlet flow fields with rotating stall cell in a diagonal-flow fan. The test fan was a high–specific-speed (ns=1620 type of diagonal-flow fan that had 6 rotor blades and 11 stator blades. It has been shown that the number of the stall cell is 1, and its propagating speed is approximately 80% of its rotor speed, although little has been known about the behavior of the stall cell because a flow field with a rotating stall cell is essentially unsteady. In order to capture the behavior of the stall cell at the rotor outlet flow fields, hot-wire surveys were performed using a single-slant hotwire probe. The data obtained by these surveys were processed by means of a double phase-locked averaging technique, which enabled us to capture the flow field with the rotating stall cell in the reference coordinate system fixed to the rotor. As a result, time-dependent ensemble averages of the three-dimensional velocity components at the rotor outlet flow fields were obtained. The behavior of the stall cell was shown for each velocity component, and the flow patterns on the meridional planes were illustrated.

  10. Locomotion Mode Affects the Physiological Strain during Exercise at Walk-Run Transition Speed inElderly Men.

    Science.gov (United States)

    Freire, Raul; Farinatti, Paulo; Cunha, Felipe; Silva, Brenno; Monteiro, Walace

    2017-07-01

    This study investigated cardiorespiratory responses and rating of perceived exertion (RPE) during prolonged walking and running exercise performed at the walk-run transition speed (WRTS) in untrained healthy elderly men. 20 volunteers (mean±SE, age: 68.4±1.2 yrs; height: 170.0±0.02 cm; body mass: 74.7±2.3 kg) performed the following bouts of exercise: a) maximal cardiopulmonary exercise test (CPET); b) specific protocol to detect WRTS; and c) two 30-min walking and running bouts at WRTS. Expired gases were collected during exercise bouts via the Ultima CardiO 2 metabolic analyzer. Compared to walking, running at the WRTS resulted in higher oxygen uptake (>0.27 L·min -1 ), pulmonary ventilation (>7.7 L·min -1 ), carbon dioxide output (>0.23 L·min -1 ), heart rate (>15 beats·min -1 ), oxygen pulse (>0.88 15 mL·beats -1 ), energy expenditure (>27 kcal) and cost of oxygen transport (>43 mL·kg -1 ·km -1 ·bout -1 ). The increase of overall and local RPEs with exercise duration was similar across locomotion modes (Pexercise tolerance. © Georg Thieme Verlag KG Stuttgart · New York.

  11. Pedestrian Walking Behavior Revealed through a Random Walk Model

    Directory of Open Access Journals (Sweden)

    Hui Xiong

    2012-01-01

    Full Text Available This paper applies method of continuous-time random walks for pedestrian flow simulation. In the model, pedestrians can walk forward or backward and turn left or right if there is no block. Velocities of pedestrian flow moving forward or diffusing are dominated by coefficients. The waiting time preceding each jump is assumed to follow an exponential distribution. To solve the model, a second-order two-dimensional partial differential equation, a high-order compact scheme with the alternating direction implicit method, is employed. In the numerical experiments, the walking domain of the first one is two-dimensional with two entrances and one exit, and that of the second one is two-dimensional with one entrance and one exit. The flows in both scenarios are one way. Numerical results show that the model can be used for pedestrian flow simulation.

  12. Too much or too little step width variability is associated with a fall history in older persons who walk at or near normal gait speed

    Directory of Open Access Journals (Sweden)

    Newman Anne B

    2005-07-01

    Full Text Available Abstract Background Decreased gait speed and increased stride time, stride length, double support time, and stance time variability have consistently been associated with falling whereas step width variability has not been strongly related to falls. The purpose was to examine the linear and nonlinear associations between gait variability and fall history in older persons and to examine the influence of gait speed. Methods Gait characteristics and fall history were obtained in 503 older adults (mean age = 79; 61% female participating in the Cardiovascular Health Study who could ambulate independently. Gait characteristics were recorded from two trials on a 4 meter computerized walkway at the subject's self-selected walking speed. Gait variability was calculated as the coefficient of variation. The presence of a fall in the past 12 months was determined by interview. The nonlinear association between gait variability and fall history was examined using a simple three level classification derived from the distribution of the data and from literature based cut-points. Multivariate logistic regression was used to examine the association between step width variability (extreme or moderate and fall history stratifying by gait speed (1.0 m/s and controlling for age and gender. Results Step length, stance time, and step time variability did not differ with respect to fall history (p > .33. Individuals with extreme step width variability (either low or high step width variability were more likely to report a fall in the past year than individuals with moderate step width variability. In individuals who walked ≥ 1.0 m/s (n = 281, after controlling for age, gender, and gait speed, compared to individuals with moderate step width variability individuals with either low or high step width variability were more likely to have fallen in the past year (OR and 95% CI 4.38 [1.79–10.72]. The association between step width variability and fall history was not

  13. Speed and duration of walking and other leisure time physical activity and the risk of heart failure: a prospective cohort study from the Copenhagen City Heart Study.

    Directory of Open Access Journals (Sweden)

    Hans Askelund Saevereid

    Full Text Available AIM: Physical activity (PA confers some protection against development of heart failure (HF but little is known of the role of intensity and duration of exercise. METHODS AND RESULTS: In a prospective cohort study of men and women free of previous MI, stroke or HF with one or more examinations in 1976-2003, we studied the association between updated self-assessed leisure-time PA, speed and duration of walking and subsequent hospitalization or death from HF. Light and moderate/high level of leisure-time PA and brisk walking were associated with reduced risk of HF in both genders whereas no consistent association with duration of walking was seen. In 18,209 subjects age 20-80 with 1580 cases of HF, using the lowest activity level as reference, the confounder-adjusted hazard ratios (HR for light and moderate/high leisure-time physical activity were 0.75 (0.66-0.86 and 0.80 (0.69-0.93, respectively. In 9,937 subjects with information on walking available and 542 cases of HF, moderate and high walking speed were associated with adjusted HRs of 0.53 (0.43-0.66 and 0.30 (0.21-0.44, respectively, and daily walking of ½-1 hrs, 1-2 and >2 hrs with HR of 0.80 (0.61-1.06, 0.82 (0.62-1.06, and 0.96 (0.73-1.27, respectively. Results were similar for both genders and remained robust after exclusion of HF related to coronary heart disease and after a series of sensitivity analyses. CONCLUSIONS: Speed rather than duration of walking was associated with reduced risk of HF. Walking is the most wide-spread PA and public health measures to curb the increase in HF may benefit from this information.

  14. Comparison of walking overground and in a Computer Assisted Rehabilitation Environment (CAREN in individuals with and without transtibial amputation

    Directory of Open Access Journals (Sweden)

    Gates Deanna H

    2012-11-01

    Full Text Available Abstract Background Due to increased interest in treadmill gait training, recent research has focused on the similarities and differences between treadmill and overground walking. Most of these studies have tested healthy, young subjects rather than impaired populations that might benefit from such training. These studies also do not include optic flow, which may change how the individuals integrate sensory information when walking on a treadmill. This study compared overground walking to treadmill walking in a computer assisted virtual reality environment (CAREN in individuals with and without transtibial amputations (TTA. Methods Seven individuals with traumatic TTA and 27 unimpaired controls participated. Subjects walked overground and on a treadmill in a CAREN at a normalized speed. The CAREN applied optic flow at the same speed that the subject walked. Temporal-spatial parameters, full body kinematics, and kinematic variability were collected during all trials. Results Both subject groups decreased step time and control subjects decreased step length when walking in the CAREN. Differences in lower extremity kinematics were small (○ and did not exceed the minimal detectable change values for these measures. Control subjects exhibited decreased transverse and frontal plane range of motion of the pelvis and trunk when walking in the CAREN, while patients with TTA did not. Both groups exhibited increased step width variability during treadmill walking in the CAREN, but only minor changes in kinematic variability. Conclusions The results of this study suggest that treadmill training in a virtual environment should be similar enough to overground that changes should carry over. Caution should be made when comparing step width variability and step time results from studies utilizing a treadmill to those overground.

  15. Race walking gait and its influence on race walking economy in world-class race walkers.

    Science.gov (United States)

    Gomez-Ezeiza, Josu; Torres-Unda, Jon; Tam, Nicholas; Irazusta, Jon; Granados, Cristina; Santos-Concejero, Jordan

    2018-03-06

    The aim of this study was to determine the relationships between biomechanical parameters of the gait cycle and race walking economy in world-class Olympic race walkers. Twenty-One world-class race walkers possessing the Olympic qualifying standard participated in this study. Participants completed an incremental race walking test starting at 10 km·h -1 , where race walking economy (ml·kg -1 ·km -1 ) and spatiotemporal gait variables were analysed at different speeds. 20-km race walking performance was related to race walking economy, being the fastest race walkers those displaying reduced oxygen cost at a given speed (R = 0.760, p < 0.001). Longer ground contact times, shorter flight times, longer midstance sub-phase and shorter propulsive sub-phase during stance were related to a better race walking economy (moderate effect, p < 0.05). According to the results of this study, the fastest race walkers were more economi cal than the lesser performers. Similarly, shorter flight times are associated with a more efficient race walking economy. Coaches and race walkers should avoid modifying their race walking style by increasing flight times, as it may not only impair economy, but also lead to disqualification.

  16. Multicomponent Exercise Improves Hemodynamic Parameters and Mobility, but Not Maximal Walking Speed, Transfer Capacity, and Executive Function of Older Type II Diabetic Patients

    Directory of Open Access Journals (Sweden)

    Hélio José Coelho Junior

    2018-01-01

    Full Text Available The present study aimed to investigate the effects of a 6-month multicomponent exercise program (MCEP on functional, cognitive, and hemodynamic parameters of older Type 2 diabetes mellitus (T2DM patients. Moreover, additional analyses were performed to evaluate if T2DM patients present impaired adaptability in response to physical exercise when compared to nondiabetic volunteers. A total of 72 T2DM patients and 72 age-matched healthy volunteers (CG were recruited and submitted to functional, cognitive, and hemodynamic evaluations before and after six months of a MCEP. The program of exercise was performed twice a week at moderate intensity. Results indicate T2DM and nondiabetic patients present an increase in mobility (i.e., usual walking speed after the MCEP. However, improvements in maximal walking speed, transfer capacity, and executive function were only observed in the CG. On the other hand, only T2DM group reveals a marked decline in blood pressure. In conclusion, data of the current study indicate that a 6-month MCEP improves mobility and reduce blood pressure in T2DM patients. However, maximal walking speed, transfer capacity, and executive function were only improved in CG, indicating that T2DM may present impaired adaptability in response to physical stimulus.

  17. Modelling Free Flow Speed on Two-Lane Rural Highways in Bosnia and Herzegovina

    Directory of Open Access Journals (Sweden)

    Ivan Lovrić

    2014-04-01

    Full Text Available Free flow speed is used as a parameter in transportation planning and capacity analysis models, as well as speed-flow diagrams. Many of these models suggest estimating free flow speed according to measurements from similar highways, which is not a practical method for use in B&H. This paper first discusses problems with using these methodologies in conditions prevailing in B&H and then presents a free flow speed evaluation model developed from a comprehensive field survey conducted on nine homogeneous sections of state and regional roads.

  18. Loss reduction in axial-flow compressors through low-speed model testing

    Science.gov (United States)

    Wisler, D. C.

    1984-01-01

    A systematic procedure for reducing losses in axial-flow compressors is presented. In this procedure, a large, low-speed, aerodynamic model of a high-speed core compressor is designed and fabricated based on aerodynamic similarity principles. This model is then tested at low speed where high-loss regions associated with three-dimensional endwall boundary layers flow separation, leakage, and secondary flows can be located, detailed measurements made, and loss mechanisms determined with much greater accuracy and much lower cost and risk than is possible in small, high-speed compressors. Design modifications are made by using custom-tailored airfoils and vector diagrams, airfoil endbends, and modified wall geometries in the high-loss regions. The design improvements resulting in reduced loss or increased stall margin are then scaled to high speed. This paper describes the procedure and presents experimental results to show that in some cases endwall loss has been reduced by as much as 10 percent, flow separation has been reduced or eliminated, and stall margin has been substantially improved by using these techniques.

  19. Functional electrical stimulation-assisted walking for persons with incomplete spinal injuries

    DEFF Research Database (Denmark)

    Ladouceur, M.; Barbeau, H.

    2000-01-01

    This study investigated the changes in maximal overground walking speed (MOWS) that occurred during; walking training with a functional electrical stimulation (FES) orthosis by chronic spinal cord injured persons with incomplete motor function loss. The average walking: speed over a distance of 10...

  20. Elastic coupling of limb joints enables faster bipedal walking

    Science.gov (United States)

    Dean, J.C.; Kuo, A.D.

    2008-01-01

    The passive dynamics of bipedal limbs alone are sufficient to produce a walking motion, without need for control. Humans augment these dynamics with muscles, actively coordinated to produce stable and economical walking. Present robots using passive dynamics walk much slower, perhaps because they lack elastic muscles that couple the joints. Elastic properties are well known to enhance running gaits, but their effect on walking has yet to be explored. Here we use a computational model of dynamic walking to show that elastic joint coupling can help to coordinate faster walking. In walking powered by trailing leg push-off, the model's speed is normally limited by a swing leg that moves too slowly to avoid stumbling. A uni-articular spring about the knee allows faster but uneconomical walking. A combination of uni-articular hip and knee springs can speed the legs for improved speed and economy, but not without the swing foot scuffing the ground. Bi-articular springs coupling the hips and knees can yield high economy and good ground clearance similar to humans. An important parameter is the knee-to-hip moment arm that greatly affects the existence and stability of gaits, and when selected appropriately can allow for a wide range of speeds. Elastic joint coupling may contribute to the economy and stability of human gait. PMID:18957360

  1. Reducing the impact of speed dispersion on subway corridor flow.

    Science.gov (United States)

    Qiao, Jing; Sun, Lishan; Liu, Xiaoming; Rong, Jian

    2017-11-01

    The rapid increase in the volume of subway passengers in Beijing has necessitated higher requirements for the safety and efficiency of subway corridors. Speed dispersion is an important factor that affects safety and efficiency. This paper aims to analyze the management control methods for reducing pedestrian speed dispersion in subways. The characteristics of the speed dispersion of pedestrian flow were analyzed according to field videos. The control measurements which were conducted by placing traffic signs, yellow marking, and guardrail were proposed to alleviate speed dispersion. The results showed that the methods of placing traffic signs, yellow marking, and a guardrail improved safety and efficiency for all four volumes of pedestrian traffic flow, and the best-performing control measurement was guardrails. Furthermore, guardrails' optimal position and design measurements were explored. The research findings provide a rationale for subway managers in optimizing pedestrian traffic flow in subway corridors. Copyright © 2017. Published by Elsevier Ltd.

  2. Daily intermittent hypoxia enhances walking after chronic spinal cord injury

    Science.gov (United States)

    Hayes, Heather B.; Jayaraman, Arun; Herrmann, Megan; Mitchell, Gordon S.; Rymer, William Z.

    2014-01-01

    Objectives: To test the hypothesis that daily acute intermittent hypoxia (dAIH) and dAIH combined with overground walking improve walking speed and endurance in persons with chronic incomplete spinal cord injury (iSCI). Methods: Nineteen subjects completed the randomized, double-blind, placebo-controlled, crossover study. Participants received 15, 90-second hypoxic exposures (dAIH, fraction of inspired oxygen [Fio2] = 0.09) or daily normoxia (dSHAM, Fio2 = 0.21) at 60-second normoxic intervals on 5 consecutive days; dAIH was given alone or combined with 30 minutes of overground walking 1 hour later. Walking speed and endurance were quantified using 10-Meter and 6-Minute Walk Tests. The trial is registered at ClinicalTrials.gov (NCT01272349). Results: dAIH improved walking speed and endurance. Ten-Meter Walk time improved with dAIH vs dSHAM after 1 day (mean difference [MD] 3.8 seconds, 95% confidence interval [CI] 1.1–6.5 seconds, p = 0.006) and 2 weeks (MD 3.8 seconds, 95% CI 0.9–6.7 seconds, p = 0.010). Six-Minute Walk distance increased with combined dAIH + walking vs dSHAM + walking after 5 days (MD 94.4 m, 95% CI 17.5–171.3 m, p = 0.017) and 1-week follow-up (MD 97.0 m, 95% CI 20.1–173.9 m, p = 0.014). dAIH + walking increased walking distance more than dAIH after 1 day (MD 67.7 m, 95% CI 1.3–134.1 m, p = 0.046), 5 days (MD 107.0 m, 95% CI 40.6–173.4 m, p = 0.002), and 1-week follow-up (MD 136.0 m, 95% CI 65.3–206.6 m, p walking improved walking speed and distance in persons with chronic iSCI. The impact of dAIH is enhanced by combination with walking, demonstrating that combinatorial therapies may promote greater functional benefits in persons with iSCI. Classification of evidence: This study provides Class I evidence that transient hypoxia (through measured breathing treatments), along with overground walking training, improves walking speed and endurance after iSCI. PMID:24285617

  3. Interpolating between random walks and optimal transportation routes: Flow with multiple sources and targets

    Science.gov (United States)

    Guex, Guillaume

    2016-05-01

    In recent articles about graphs, different models proposed a formalism to find a type of path between two nodes, the source and the target, at crossroads between the shortest-path and the random-walk path. These models include a freely adjustable parameter, allowing to tune the behavior of the path toward randomized movements or direct routes. This article presents a natural generalization of these models, namely a model with multiple sources and targets. In this context, source nodes can be viewed as locations with a supply of a certain good (e.g. people, money, information) and target nodes as locations with a demand of the same good. An algorithm is constructed to display the flow of goods in the network between sources and targets. With again a freely adjustable parameter, this flow can be tuned to follow routes of minimum cost, thus displaying the flow in the context of the optimal transportation problem or, by contrast, a random flow, known to be similar to the electrical current flow if the random-walk is reversible. Moreover, a source-targetcoupling can be retrieved from this flow, offering an optimal assignment to the transportation problem. This algorithm is described in the first part of this article and then illustrated with case studies.

  4. AC-DC integrated load flow calculation for variable speed offshore wind farms

    DEFF Research Database (Denmark)

    Zhao, Menghua; Chen, Zhe; Blaabjerg, Frede

    2005-01-01

    This paper proposes a sequential AC-DC integrated load flow algorithm for variable speed offshore wind farms. In this algorithm, the variable frequency and the control strategy of variable speed wind turbine systems are considered. In addition, the losses of wind turbine systems and the losses...... of converters are also integrated into the load flow algorithm. As a general algorithm, it can be applied to different types of wind farm configurations, and the load flow is related to the wind speed....

  5. Predicting Free Flow Speed and Crash Risk of Bicycle Traffic Flow Using Artificial Neural Network Models

    Directory of Open Access Journals (Sweden)

    Cheng Xu

    2015-01-01

    Full Text Available Free flow speed is a fundamental measure of traffic performance and has been found to affect the severity of crash risk. However, the previous studies lack analysis and modelling of impact factors on bicycles’ free flow speed. The main focus of this study is to develop multilayer back propagation artificial neural network (BPANN models for the prediction of free flow speed and crash risk on the separated bicycle path. Four different models with considering different combinations of input variables (e.g., path width, traffic condition, bicycle type, and cyclists’ characteristics were developed. 459 field data samples were collected from eleven bicycle paths in Hangzhou, China, and 70% of total samples were used for training, 15% for validation, and 15% for testing. The results show that considering the input variables of bicycle types and characteristics of cyclists will effectively improve the accuracy of the prediction models. Meanwhile, the parameters of bicycle types have more significant effect on predicting free flow speed of bicycle compared to those of cyclists’ characteristics. The findings could contribute for evaluation, planning, and management of bicycle safety.

  6. Compressibility, turbulence and high speed flow

    CERN Document Server

    Gatski, Thomas B

    2009-01-01

    This book introduces the reader to the field of compressible turbulence and compressible turbulent flows across a broad speed range through a unique complimentary treatment of both the theoretical foundations and the measurement and analysis tools currently used. For the computation of turbulent compressible flows, current methods of averaging and filtering are presented so that the reader is exposed to a consistent development of applicable equation sets for both the mean or resolved fields as well as the transport equations for the turbulent stress field. For the measurement of turbulent compressible flows, current techniques ranging from hot-wire anemometry to PIV are evaluated and limitations assessed. Characterizing dynamic features of free shear flows, including jets, mixing layers and wakes, and wall-bounded flows, including shock-turbulence and shock boundary-layer interactions, obtained from computations, experiments and simulations are discussed. Key features: * Describes prediction methodologies in...

  7. Nordic Walking Practice Might Improve Plantar Pressure Distribution

    Science.gov (United States)

    Perez-Soriano, Pedro; Llana-Belloch, Salvador; Martinez-Nova, Alfonso; Morey-Klapsing, G.; Encarnacion-Martinez, Alberto

    2011-01-01

    Nordic walking (NW), characterized by the use of two walking poles, is becoming increasingly popular (Morgulec-Adamowicz, Marszalek, & Jagustyn, 2011). We studied walking pressure patterns of 20 experienced and 30 beginner Nordic walkers. Plantar pressures from nine foot zones were measured during trials performed at two walking speeds (preferred…

  8. Load flow analysis for variable speed offshore wind farms

    DEFF Research Database (Denmark)

    Chen, Zhe; Zhao, Menghua; Blaabjerg, Frede

    2009-01-01

    factors such as the different wind farm configurations, the control of wind turbines and the power losses of pulse width modulation converters are considered. The DC/DC converter model is proposed and integrated into load flow algorithm by modifying the Jacobian matrix. Two iterative methods are proposed...... and integrated into the load flow algorithm: one takes into account the control strategy of converters and the other considers the power losses of converters. In addition, different types of variable speed wind turbine systems with different control methods are investigated. Finally, the method is demonstrated......A serial AC-DC integrated load flow algorithm for variable speed offshore wind farms is proposed. It divides the electrical system of a wind farm into several local networks, and different load flow methods are used for these local networks sequentially. This method is fast, more accurate, and many...

  9. High-speed solar wind flow parameters at 1 AU

    International Nuclear Information System (INIS)

    Feldman, W.C.; Asbridge, J.R.; Bame, S.J.; Gosling, J.T.

    1976-01-01

    To develop a set of constraints for theories of solar wind high-speed streams, a detailed study was made of the fastest streams observed at 1 AU during the time period spanning March 1971 through July 1974. Streams were accepted for study only if (1) the maximum speed exceeded 650 km s -1 ; (2) effects of stream-stream dynamical interaction on the flow parameters could be safely separated from the intrinsic characteristics of the high-speed regions; (3) the full width at half maximum (FWHM) of the stream when mapped back to 20 solar radii by using a constant speed approximation was greater than 45degree in Carrington longitude; and (4) there were no obvious solar-activity-induced contaminating effects. Nineteen streams during this time interval satisfied these criteria. Average parameters at 1 AU for those portions of these streams above V=650 km s -1 are given.Not only is it not presently known why electrons are significantly cooler than the protons within high-speed regions, but also observed particle fluxes and convected energy fluxes for speed greater than 650 km s -1 are substantially larger than those values predicted by any of the existing theories of solar wind high-speed streams. More work is therefore needed in refining present solar wind models to see whether suitable modifications and/or combinations of existing theories based on reasonable coronal conditions can accommodate the above high-speed flow parameters

  10. Kinetic analysis of the function of the upper body for elite race walkers during official men 20 km walking race.

    Science.gov (United States)

    Hoga-Miura, Koji; Ae, Michiyoshi; Fujii, Norihisa; Yokozawa, Toshiharu

    2016-10-01

    This study investigated the function of the upper extremities of elite race walkers during official 20 km races, focusing on the angular momentum about the vertical axis and other parameters of the upper extremities. Sixteen walkers were analysed using the three-dimensional direct linear transformation method during three official men's 20 km walking races. The subjects, included participants at the Olympics and World Championships, who finished without disqualification and had not been disqualified during the two years prior to or following the races analysed in the present study. The angular momenta of the upper and lower body were counterbalanced as in running and normal walking. The momentum of the upper body was mainly generated by the upper extremities. The joint force moment of the right shoulder and the joint torque at the left shoulder just before right toe-off were significantly correlated with the walking speed. These were counterbalanced by other moments and torques to the torso torque, which worked to obtain a large mechanical energy flow from the recovery leg to the support leg in the final phase of the support phase. Therefore, a function of the shoulder torque was to counterbalance the torso torque to gain a fast walking speed with substantial mechanical energy flow.

  11. Speed-Dependent Modulation of the Locomotor Behavior in Adult Mice Reveals Attractor and Transitional Gaits.

    Science.gov (United States)

    Lemieux, Maxime; Josset, Nicolas; Roussel, Marie; Couraud, Sébastien; Bretzner, Frédéric

    2016-01-01

    Locomotion results from an interplay between biomechanical constraints of the muscles attached to the skeleton and the neuronal circuits controlling and coordinating muscle activities. Quadrupeds exhibit a wide range of locomotor gaits. Given our advances in the genetic identification of spinal and supraspinal circuits important to locomotion in the mouse, it is now important to get a better understanding of the full repertoire of gaits in the freely walking mouse. To assess this range, young adult C57BL/6J mice were trained to walk and run on a treadmill at different locomotor speeds. Instead of using the classical paradigm defining gaits according to their footfall pattern, we combined the inter-limb coupling and the duty cycle of the stance phase, thus identifying several types of gaits: lateral walk, trot, out-of-phase walk, rotary gallop, transverse gallop, hop, half-bound, and full-bound. Out-of-phase walk, trot, and full-bound were robust and appeared to function as attractor gaits (i.e., a state to which the network flows and stabilizes) at low, intermediate, and high speeds respectively. In contrast, lateral walk, hop, transverse gallop, rotary gallop, and half-bound were more transient and therefore considered transitional gaits (i.e., a labile state of the network from which it flows to the attractor state). Surprisingly, lateral walk was less frequently observed. Using graph analysis, we demonstrated that transitions between gaits were predictable, not random. In summary, the wild-type mouse exhibits a wider repertoire of locomotor gaits than expected. Future locomotor studies should benefit from this paradigm in assessing transgenic mice or wild-type mice with neurotraumatic injury or neurodegenerative disease affecting gait.

  12. Stride rate and walking intensity in healthy older adults.

    Science.gov (United States)

    Peacock, Leslie; Hewitt, Allan; Rowe, David A; Sutherland, Rona

    2014-04-01

    The study investigated (a) walking intensity (stride rate and energy expenditure) under three speed instructions; (b) associations between stride rate, age, height, and walking intensity; and (c) synchronization between stride rate and music tempo during overground walking in a population of healthy older adults. Twenty-nine participants completed 3 treadmill-walking trials and 3 overground-walking trials at 3 self-selected speeds. Treadmill VO2 was measured using indirect calorimetry. Stride rate and music tempo were recorded during overground-walking trials. Mean stride rate exceeded minimum thresholds for moderate to vigorous physical activity (MVPA) under slow (111.41 ± 11.93), medium (118.17 ± 11.43), and fast (123.79 ± 11.61) instructions. A multilevel model showed that stride rate, age, and height have a significant effect (p Music can be a useful way to guide walking cadence.

  13. Children's Brain Responses to Optic Flow Vary by Pattern Type and Motion Speed.

    Directory of Open Access Journals (Sweden)

    Rick O Gilmore

    Full Text Available Structured patterns of global visual motion called optic flow provide crucial information about an observer's speed and direction of self-motion and about the geometry of the environment. Brain and behavioral responses to optic flow undergo considerable postnatal maturation, but relatively little brain imaging evidence describes the time course of development in motion processing systems in early to middle childhood, a time when psychophysical data suggest that there are changes in sensitivity. To fill this gap, electroencephalographic (EEG responses were recorded in 4- to 8-year-old children who viewed three time-varying optic flow patterns (translation, rotation, and radial expansion/contraction at three different speeds (2, 4, and 8 deg/s. Modulations of global motion coherence evoked coherent EEG responses at the first harmonic that differed by flow pattern and responses at the third harmonic and dot update rate that varied by speed. Pattern-related responses clustered over right lateral channels while speed-related responses clustered over midline channels. Both children and adults show widespread responses to modulations of motion coherence at the second harmonic that are not selective for pattern or speed. The results suggest that the developing brain segregates the processing of optic flow pattern from speed and that an adult-like pattern of neural responses to optic flow has begun to emerge by early to middle childhood.

  14. Television Viewing, Walking Speed, and Grip Strength in a Prospective Cohort Study

    Science.gov (United States)

    KEEVIL, VICTORIA L.; WIJNDAELE, KATRIEN; LUBEN, ROBERT; SAYER, AVAN A.; WAREHAM, NICHOLAS J.; KHAW, KAY-TEE

    2015-01-01

    ABSTRACT Purpose Television (TV) watching is the most prevalent sedentary leisure time activity in the United Kingdom. We examined associations between TV viewing time, measured over 10 yr, and two objective measures of physical capability, usual walking speed (UWS) and grip strength. Methods Community-based participants (n = 8623; 48–92 yr old) enrolled in the European Prospective Investigation of Cancer—Norfolk study attended a third health examination (3HC, 2006–2011) for measurement of maximum grip strength (Smedley dynamometer) and UWS. TV viewing time was estimated using a validated questionnaire (n = 6086) administered during two periods (3HC, 2006–2007; 2HC, 1998–2000). Associations between physical capability and TV viewing time category (<2, 2 < 3, 3 < 4, and ≥4 h·d−1) at the 3HC, 2HC, and using an average of the two measures were explored. Sex-stratified analyses were adjusted for age, physical activity, anthropometry, wealth, comorbidity, smoking, and alcohol intake and combined if no sex–TV viewing time interactions were identified. Results Men and women who watched the least TV at the 2HC or 3HC walked at a faster usual pace than those who watched the most TV. There was no evidence of effect modification by sex (Pinteraction = 0.09), and in combined analyses, participants who watched for <2 h·d−1 on average walked 4.29 cm·s−1 (95% confidence interval, 2.56–6.03) faster than those who watched for ≥4 h·d−1, with evidence of a dose–response association (Ptrend < 0.001). However, no strong associations with grip strength were found. Conclusions TV viewing time predicted UWS in older adults. More research is needed to inform public health policy and prospective associations between other measures of sedentariness, such as total sitting time or objectively measured sedentary time, and physical capability should be explored. PMID:25785826

  15. Motor modules in robot-aided walking

    Directory of Open Access Journals (Sweden)

    Gizzi Leonardo

    2012-10-01

    Full Text Available Abstract Background It is hypothesized that locomotion is achieved by means of rhythm generating networks (central pattern generators and muscle activation generating networks. This modular organization can be partly identified from the analysis of the muscular activity by means of factorization algorithms. The activity of rhythm generating networks is described by activation signals whilst the muscle intervention generating network is represented by motor modules (muscle synergies. In this study, we extend the analysis of modular organization of walking to the case of robot-aided locomotion, at varying speed and body weight support level. Methods Non Negative Matrix Factorization was applied on surface electromyographic signals of 8 lower limb muscles of healthy subjects walking in gait robotic trainer at different walking velocities (1 to 3km/h and levels of body weight support (0 to 30%. Results The muscular activity of volunteers could be described by low dimensionality (4 modules, as for overground walking. Moreover, the activation signals during robot-aided walking were bursts of activation timed at specific phases of the gait cycle, underlying an impulsive controller, as also observed in overground walking. This modular organization was consistent across the investigated speeds, body weight support level, and subjects. Conclusions These results indicate that walking in a Lokomat robotic trainer is achieved by similar motor modules and activation signals as overground walking and thus supports the use of robotic training for re-establishing natural walking patterns.

  16. Running for exercise mitigates age-related deterioration of walking economy.

    Directory of Open Access Journals (Sweden)

    Justus D Ortega

    Full Text Available Impaired walking performance is a key predictor of morbidity among older adults. A distinctive characteristic of impaired walking performance among older adults is a greater metabolic cost (worse economy compared to young adults. However, older adults who consistently run have been shown to retain a similar running economy as young runners. Unfortunately, those running studies did not measure the metabolic cost of walking. Thus, it is unclear if running exercise can prevent the deterioration of walking economy.To determine if and how regular walking vs. running exercise affects the economy of locomotion in older adults.15 older adults (69 ± 3 years who walk ≥ 30 min, 3x/week for exercise, "walkers" and 15 older adults (69 ± 5 years who run ≥ 30 min, 3x/week, "runners" walked on a force-instrumented treadmill at three speeds (0.75, 1.25, and 1.75 m/s. We determined walking economy using expired gas analysis and walking mechanics via ground reaction forces during the last 2 minutes of each 5 minute trial. We compared walking economy between the two groups and to non-aerobically trained young and older adults from a prior study.Older runners had a 7-10% better walking economy than older walkers over the range of speeds tested (p = .016 and had walking economy similar to young sedentary adults over a similar range of speeds (p =  .237. We found no substantial biomechanical differences between older walkers and runners. In contrast to older runners, older walkers had similar walking economy as older sedentary adults (p =  .461 and ∼ 26% worse walking economy than young adults (p<.0001.Running mitigates the age-related deterioration of walking economy whereas walking for exercise appears to have minimal effect on the age-related deterioration in walking economy.

  17. Walking at speeds close to the preferred transition speed as an approach to obesity treatment

    Directory of Open Access Journals (Sweden)

    Ilić Duško

    2012-01-01

    Full Text Available Introduction. Increasing energy expenditure through certain exercise is an important component of effective interventions to enhance initial weight loss and prevent weight regain. Objective. The purpose of this study was to determine the effect of a 16-week weight loss exercise programme on morpho-functional changes in female adults and to examine the programme effects on two subpopulations with different levels of obesity. Methods. Fifty-six middle-aged women were divided into 2 groups according to their body mass index (BMI: 25-29.9 kg/m2 - overweight (OW and ≥30 kg/m2 - obese (OB. The exercise protocol included a walking technique based on hip rotation at horizontal plane at speeds close to the preferred transition speed (PTS. At the initiation of the study and after 16 weeks of the programme, anthropometric, morphological and cardiovascular parameters of all subjects were assessed. The main effects of Group (OW and OB and Time and the interaction effect of Group by Time were tested by time repeated measures General Linear Model (mixed between-within subjects ANOVA. Results. Mean weight loss during the programme was 10.3 kg and 20.1 kg in OW and OB, respectively. The average fat mass (FM loss was 9.4 kg in OW and 16.9 kg in OB. The Mixed ANOVA revealed a significant Group by Time interaction effects for waist circumference, body weight, body water, fat free mass, FM, %FM and BMI (p<0.05. Conclusion. The applied exercise protocol has proved as beneficial in the treatment of obesity, since it resulted in a significant weight loss and body composition changes. The reduction in body weight was achieved mainly on account of the loss of fat mass.

  18. Cardiorespiratory Responses to Pool Floor Walking in People Poststroke.

    Science.gov (United States)

    Jeng, Brenda; Fujii, Takuto; Lim, Hyosok; Vrongistinos, Konstantinos; Jung, Taeyou

    2018-03-01

    To compare cardiorespiratory responses between pool floor walking and overground walking (OW) in people poststroke. Cross-sectional study. University-based therapeutic exercise facility. Participants (N=28) were comprised of 14 community-dwelling individuals poststroke (5.57±3.57y poststroke) and 14 age- and sex-matched healthy adults (mean age, 58.00±15.51y; male/female ratio, 9:5). Not applicable. A telemetric metabolic system was used to collect cardiorespiratory variables, including oxygen consumption (V˙o 2 ), energy expenditure (EE), and expired volume per unit time (V˙e), during 6-minute walking sessions in chest-depth water and on land at a matched speed, determined by average of maximum walking speed in water. Individuals poststroke elicited no significant differences in cardiorespiratory responses between pool floor walking and OW. However, healthy controls showed significant increases in mean V˙o 2 values by 94%, EE values by 109%, and V˙e values by 94% (all Pstroke group did not. Our results indicate that people poststroke, unlike healthy adults, do not increase EE while walking in water compared with on land. Unlike stationary walking on an aquatic treadmill, forward locomotion during pool floor walking at faster speeds may have increased drag force, which requires greater EE from healthy adults. Without demanding excessive EE, walking in water may offer a naturally supportive environment for gait training in the early stages of rehabilitation. Copyright © 2017 American Congress of Rehabilitation Medicine. All rights reserved.

  19. Differences in physical aging measured by walking speed: evidence from the English Longitudinal Study of Ageing.

    Science.gov (United States)

    Weber, Daniela

    2016-01-28

    Physical functioning and mobility of older populations are of increasing interest when populations are aging. Lower body functioning such as walking is a fundamental part of many actions in daily life. Limitations in mobility threaten independent living as well as quality of life in old age. In this study we examine differences in physical aging and convert those differences into the everyday measure of single years of age. We use the English Longitudinal Study of Ageing, which was collected biennially between 2002 and 2012. Data on physical performance, health as well as information on economics and demographics of participants were collected. Lower body performance was assessed with two timed walks at normal pace each of 8 ft (2.4 m) of survey participants aged at least 60 years. We employed growth curve models to study differences in physical aging and followed the characteristic-based age approach to illustrate those differences in single years of age. First, we examined walking speed of about 11,700 English individuals, and identified differences in aging trajectories by sex and other characteristics (e.g. education, occupation, regional wealth). Interestingly, higher educated and non-manual workers outperformed their counterparts for both men and women. Moreover, we transformed the differences between subpopulations into single years of age to demonstrate the magnitude of those gaps, which appear particularly high at early older ages. This paper expands research on aging and physical performance. In conclusion, higher education provides an advantage in walking of up to 15 years for men and 10 years for women. Thus, enhancements in higher education have the potential to ensure better mobility and independent living in old age for a longer period.

  20. Variability in energy cost and walking gait during race walking in competitive race walkers.

    Science.gov (United States)

    Brisswalter, J; Fougeron, B; Legros, P

    1998-09-01

    The aim of this study was to examine the variability of energy cost (Cw) and race walking gait after a 3-h walk at the competition pace in race walkers of the same performance level. Nine competitive race walkers were studied. In the same week, after a first test of VO2max determination, each subject completed two submaximal treadmill walks (6 min length, 0% grade, 12 km X h(-1) speed) before and after a 3-h overground test completed at the individual competition speed of the race walker. During the two submaximal tests, subjects were filmed between the 2nd and the 4th min, and physiological parameters were recorded between the 4th and the 6th min. Results showed two trends. On the one hand, we observed a significant and systematic increase in energy cost of walking (mean deltaCw = 8.4%), whereas no variation in the gait kinematics prescribed by the rules of race walking was recorded. On the other hand, this increase in metabolic energy demand was accompanied by variations of different magnitude and direction of stride length, of the excursion of the heel and of the maximal ankle flexion at toe-off among the race walkers. These results indicated that competitive race walkers are able to maintain their walking gait with exercise duration apart from a systematic increase in energy cost. Moreover, in this form of locomotion the effect of fatigue on the gait variability seems to be an individual function of the race walk constraints and the constraints of the performer.

  1. Running for exercise mitigates age-related deterioration of walking economy.

    Science.gov (United States)

    Ortega, Justus D; Beck, Owen N; Roby, Jaclyn M; Turney, Aria L; Kram, Rodger

    2014-01-01

    Impaired walking performance is a key predictor of morbidity among older adults. A distinctive characteristic of impaired walking performance among older adults is a greater metabolic cost (worse economy) compared to young adults. However, older adults who consistently run have been shown to retain a similar running economy as young runners. Unfortunately, those running studies did not measure the metabolic cost of walking. Thus, it is unclear if running exercise can prevent the deterioration of walking economy. To determine if and how regular walking vs. running exercise affects the economy of locomotion in older adults. 15 older adults (69 ± 3 years) who walk ≥ 30 min, 3x/week for exercise, "walkers" and 15 older adults (69 ± 5 years) who run ≥ 30 min, 3x/week, "runners" walked on a force-instrumented treadmill at three speeds (0.75, 1.25, and 1.75 m/s). We determined walking economy using expired gas analysis and walking mechanics via ground reaction forces during the last 2 minutes of each 5 minute trial. We compared walking economy between the two groups and to non-aerobically trained young and older adults from a prior study. Older runners had a 7-10% better walking economy than older walkers over the range of speeds tested (p = .016) and had walking economy similar to young sedentary adults over a similar range of speeds (p =  .237). We found no substantial biomechanical differences between older walkers and runners. In contrast to older runners, older walkers had similar walking economy as older sedentary adults (p =  .461) and ∼ 26% worse walking economy than young adults (peconomy whereas walking for exercise appears to have minimal effect on the age-related deterioration in walking economy.

  2. High speed motion neutron radiography of two-phase flow

    International Nuclear Information System (INIS)

    Robinson, A.H.; Wang, S.L.

    1983-01-01

    Current research in the area of two-phase flow utilizes a wide variety of sensing devices, but some limitations exist on the information which can be obtained. Neutron radiography is a feasible alternative to ''see'' the two-phase flow. A system to perform neutron radiographic analysis of dynamic events which occur on the order of several milliseconds has been developed at Oregon State University. Two different methods have been used to radiograph the simulated two-phase flow. These are pulsed, or ''flash'' radiography, and high speed movie neutron radiography. The pulsed method serves as a ''snap-shot'' with an exposure time ranging from 10 to 20 milliseconds. In high speed movie radiography, a scintillator is used to convert neutrons into light which is enhanced by an optical intensifier and then photographed by a high speed camera. Both types of radiography utilize the pulsing capability of the OSU TRIGA reactor. The principle difficulty with this type of neutron radiography is the fogging of the image due to the large amount of scattering in the water. This difficulty can be overcome by using thin regions for the two-phase flow or using heavy water instead of light water. The results obtained in this paper demonstrate the feasibility of using neutron radiography to obtain data in two-phase flow situations. Both movies and flash radiographs have been obtained of air bubbles in water and boiling from a heater element. The neutron radiographs of the boiling element show both nucleate boiling and film boiling. (Auth.)

  3. Quantum random walks and their convergence to Evans–Hudson ...

    Indian Academy of Sciences (India)

    Quantum dynamical semigroup; Evans–Hudson flow; quantum random walk. 1. Introduction. The aim of this article is to investigate convergence of random walks on von Neumann algebra to Evans–Hudson flows. Here the random walks and Evans–Hudson flows are gene- ralizations of classical Markov chains and Markov ...

  4. Association between stride time fractality and gait adaptability during unperturbed and asymmetric walking.

    Science.gov (United States)

    Ducharme, Scott W; Liddy, Joshua J; Haddad, Jeffrey M; Busa, Michael A; Claxton, Laura J; van Emmerik, Richard E A

    2018-04-01

    Human locomotion is an inherently complex activity that requires the coordination and control of neurophysiological and biomechanical degrees of freedom across various spatiotemporal scales. Locomotor patterns must constantly be altered in the face of changing environmental or task demands, such as heterogeneous terrains or obstacles. Variability in stride times occurring at short time scales (e.g., 5-10 strides) is statistically correlated to larger fluctuations occurring over longer time scales (e.g., 50-100 strides). This relationship, known as fractal dynamics, is thought to represent the adaptive capacity of the locomotor system. However, this has not been tested empirically. Thus, the purpose of this study was to determine if stride time fractality during steady state walking associated with the ability of individuals to adapt their gait patterns when locomotor speed and symmetry are altered. Fifteen healthy adults walked on a split-belt treadmill at preferred speed, half of preferred speed, and with one leg at preferred speed and the other at half speed (2:1 ratio asymmetric walking). The asymmetric belt speed condition induced gait asymmetries that required adaptation of locomotor patterns. The slow speed manipulation was chosen in order to determine the impact of gait speed on stride time fractal dynamics. Detrended fluctuation analysis was used to quantify the correlation structure, i.e., fractality, of stride times. Cross-correlation analysis was used to measure the deviation from intended anti-phasing between legs as a measure of gait adaptation. Results revealed no association between unperturbed walking fractal dynamics and gait adaptability performance. However, there was a quadratic relationship between perturbed, asymmetric walking fractal dynamics and adaptive performance during split-belt walking, whereby individuals who exhibited fractal scaling exponents that deviated from 1/f performed the poorest. Compared to steady state preferred walking

  5. Associations of Walking Speed, Grip Strength, and Standing Balance With Total and Cause-Specific Mortality in a General Population of Japanese Elders.

    Science.gov (United States)

    Nofuji, Yu; Shinkai, Shoji; Taniguchi, Yu; Amano, Hidenori; Nishi, Mariko; Murayama, Hiroshi; Fujiwara, Yoshinori; Suzuki, Takao

    2016-02-01

    Walking speed, grip strength, and standing balance are key components of physical performance in older people. The present study aimed to evaluate (1) associations of these physical performance measures with cause-specific mortality, (2) independent associations of individual physical performance measures with mortality, and (3) the added value of combined use of the 3 physical performance measures in predicting all-cause and cause-specific mortality. Prospective cohort study with a follow-up of 10.5 years. Tokyo Metropolitan Institute of Gerontology Longitudinal Interdisciplinary Study on Aging (TMIG-LISA), Japan. A total of 1085 initially nondisabled older Japanese aged 65 to 89 years. Usual walking speed, grip strength, and standing balance were measured at baseline survey. During follow-up, 324 deaths occurred (122 of cardiovascular disease, 75 of cancer, 115 of other causes, and 12 of unknown causes). All 3 physical performance measures were significantly associated with all-cause, cardiovascular, and other-cause mortality, but not with cancer mortality, independent of potential confounders. When all 3 physical performance measures were simultaneously entered into the model, each was significantly independently associated with all-cause and cardiovascular mortality. The C statistics for all-cause and cardiovascular mortality were significantly increased by adding grip strength and standing balance to walking speed (P balance predicted all-cause, cardiovascular, and other-cause mortality, but not cancer mortality, independent of covariates. Moreover, these 3 components of physical performance were independently associated with all-cause and cardiovascular mortality and their combined use increased prognostic power. Copyright © 2016 AMDA – The Society for Post-Acute and Long-Term Care Medicine. Published by Elsevier Inc. All rights reserved.

  6. Empirical analysis of gross vehicle weight and free flow speed and consideration on its relation with differential speed limit.

    Science.gov (United States)

    Saifizul, Ahmad Abdullah; Yamanaka, Hideo; Karim, Mohamed Rehan

    2011-05-01

    Most highly motorized countries in the world have implemented different speed limits for light weight and heavy weight vehicles. The heavy vehicle speed limit is usually chosen to be lower than that of passenger cars due to the difficulty for the drivers to safely maneuver the heavy vehicle at high speed and greater impact during a crash. However, in many cases, the speed limit for heavy vehicle is set by only considering the vehicle size or category, mostly due to simplicity in enforcement. In this study, traffic and vehicular data for all vehicle types were collected using a weigh-in-motion system installed at Federal Route 54 in Malaysia. The first finding from the data showed that the weight variation for each vehicle category is considerable. Therefore, the effect of gross vehicle weight (GVW) and category of heavy vehicle on free flow speed and their interaction were analyzed using statistical techniques. Empirical analysis results showed that statistically for each type of heavy vehicle, there was a significant relationship between free flow speed of a heavy vehicle and GVW. Specifically, the results suggest that the mean and variance of free flow speed decrease with an increase GVW by the amount unrelated to size and shape for all GVW range. Then, based on the 85th percentile principle, the study proposed a new concept for setting the speed limit for heavy vehicle by incorporating GVW where a different speed limit is imposed to the heavy vehicle, not only based on vehicle classification, but also according to its GVW. Copyright © 2010 Elsevier Ltd. All rights reserved.

  7. Inductive flow meter for measuring the speed of flow and gas volume contained in a flow of liquid metal

    International Nuclear Information System (INIS)

    Mueller, S.

    1980-01-01

    The speed of flow of the sodium is measured in two closely adjacent flow crossections using pairs of electrodes in the field of two disc-shaped permanent magnets made of AlNiCo 450, by means of measurements of running time of speed fluctuations. The result of the measurement is independent of the temperature of the sensor and the temperature of the sodium. The same arrangement makes it possible to determine the proportion by volume of the fission gas in sodium with a limiting freequency of several kHz. (DG) [de

  8. Comparison of the Mini-Balance Evaluations Systems Test with the Berg Balance Scale in relationship to walking speed and motor recovery post stroke.

    Science.gov (United States)

    Madhavan, Sangeetha; Bishnoi, Alka

    2017-12-01

    The Mini-BESTest is a recently developed balance assessment tool that incorporates challenging dynamic balance tasks. Few studies have compared the psychometric properties of the Mini-BESTest to the commonly used Berg Balance Scale (BBS). However, the utility of these scales in relationship to post stroke walking speeds has not been explored. The purpose of this study was to compare the sensitivity and specificity of the Mini-BESTest and BBS to evaluate walking speeds in individuals with stroke. A retrospective exploratory design. Forty-one individuals with chronic stroke were evaluated with the Mini-BESTest, BBS, and 10-meter self-selected walk test (10MWT). Based on their self-selected gait speeds (below or above 0.8 m/s), participants were classified as slow and fast walkers. Significant linear correlations were observed between the Mini-BESTest vs. BBS (r = 0.72, p ≤ 0.001), Mini-BESTest vs. 10MWT (r = 0.58, p ≤ 0.001), and BBS vs. 10MWT (r = 0.30, p = 0.05). Independent t-tests comparing the balance scores for the slow and fast walkers revealed significant group differences for the Mini-BESTest (p = 0.003), but not for the BBS (p = 0.09). The Mini-BESTest demonstrated higher sensitivity (93%) and specificity (64%) compared to the BBS (sensitivity 81%, specificity 56%) for discriminating participants into slow and fast walkers. The Mini-BESTest has a greater discriminative ability than the BBS to categorize individuals with stroke into slow and fast walkers.

  9. Walking on high heels changes muscle activity and the dynamics of human walking significantly

    DEFF Research Database (Denmark)

    Simonsen, Erik B; Svendsen, Morten Bo Søndergaard; Nørreslet, Andreas

    2012-01-01

    The aim of the study was to investigate the distribution of net joint moments in the lower extremities during walking on high-heeled shoes compared with barefooted walking at identical speed. Fourteen female subjects walked at 4 km/h across three force platforms while they were filmed by five...... digital video cameras operating at 50 frames/second. Both barefooted walking and walking on high-heeled shoes (heel height: 9 cm) were recorded. Net joint moments were calculated by 3D inverse dynamics. EMG was recorded from eight leg muscles. The knee extensor moment peak in the first half of the stance...... phase was doubled when walking on high heels. The knee joint angle showed that high-heeled walking caused the subjects to flex the knee joint significantly more in the first half of the stance phase. In the frontal plane a significant increase was observed in the knee joint abductor moment and the hip...

  10. Fractal fluctuations in spatiotemporal variables when walking on a self-paced treadmill.

    Science.gov (United States)

    Choi, Jin-Seung; Kang, Dong-Won; Seo, Jeong-Woo; Tack, Gye-Rae

    2017-12-08

    This study investigated the fractal dynamic properties of stride time (ST), stride length (SL) and stride speed (SS) during walking on a self-paced treadmill (STM) in which the belt speed is automatically controlled by the walking speed. Twelve healthy young subjects participated in the study. The subjects walked at their preferred walking speed under four conditions: STM, STM with a metronome (STM+met), fixed-speed (conventional) treadmill (FTM), and FTM with a metronome (FTM+met). To compare the fractal dynamics between conditions, the mean, variability, and fractal dynamics of ST, SL, and SS were compared. Moreover, the relationship among the variables was examined under each walking condition using three types of surrogates. The mean values of all variables did not differ between the two treadmills, and the variability of all variables was generally larger for STM than for FTM. The use of a metronome resulted in a decrease in variability in ST and SS for all conditions. The fractal dynamic characteristics of SS were maintained with STM, in contrast to FTM, and only the fractal dynamic characteristics of ST disappeared when using a metronome. In addition, the fractal dynamic patterns of the cross-correlated surrogate results were identical to those of all variables for the two treadmills. In terms of the fractal dynamic properties, STM walking was generally closer to overground walking than FTM walking. Although further research is needed, the present results will be useful in research on gait fractal dynamics and rehabilitation. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Women with fibromyalgia walk with an altered muscle synergy.

    Science.gov (United States)

    Pierrynowski, Michael R; Tiidus, Peter M; Galea, Victoria

    2005-11-01

    Most individuals can use different movement and muscle recruitment patterns to perform a stated task but often only one pattern is selected which optimizes an unknown global objective given the individual's neuromusculoskeletal characteristics. Patients with fibromyalgia syndrome (FS), characterized by their chronic pain, reduced physical work capacity and muscular fatigue, could exhibit a different control signature compared to asymptomatic control volunteers (CV). To test this proposal, 22 women with FS, and 11 CV, were assessed in a gait analysis laboratory. Each subject walked repeatedly at self-selected slow, comfortable, and fast walking speeds. The gait analysis provided, for each walk, each subject's stride time, length, and velocity, and ground reaction force, and lower extremity joint kinematics, moments and powers. The data were then anthropometrically scaled and velocity normalized to reduce the influence of subject mass, leg length, and walking speed on the measured gait outcomes. Similarities and differences in the two groups' scaled and normalized gait patterns were then determined. Results show that FS and CV walk with externally similar stride lengths, times, and velocities, and joint angles and ground reaction forces but they use internally different muscle recruitment patterns. Specifically, FS preferentially power gait using their hip flexors instead of their ankle plantarflexors. Interestingly, CV use a similar muscle fatiguing recruitment pattern to walk fast which parallels the common complaint of fatigue reported by FS walking at comfortable speed.

  12. Cellular automaton simulation of pedestrian counter flow with different walk velocities

    International Nuclear Information System (INIS)

    Weng, W. G.; Chen, T.; Yuan, H. Y.; Fan, W. C.

    2006-01-01

    This paper presents a cellular automaton model without step back for pedestrian dynamics considering the human behaviors which can make judgments in some complex situations. This model can simulate pedestrian movement with different walk velocities through update at different time-step intervals. Two kinds of boundary conditions including periodic and open boundary for pedestrian counter flow are considered, and their dynamical characteristics are discussed. Simulation results show that for periodic boundary condition there are three phases of pedestrian patterns, i.e., freely moving phase, lane formation phase, and perfectly stopped phase at some certain total density ranges. In the stage of lane formation, the phenomenon that pedestrians exceed those with lower walk velocity through a narrow walkway can be found. For open boundary condition, at some certain entrance densities, there are two steady states of pedestrian patterns; but the first is metastable. Spontaneous fluctuations can break the first steady state, i.e., freely moving phase, and run into the second steady state, i.e., perfectly stopped phase

  13. Control entropy identifies differential changes in complexity of walking and running gait patterns with increasing speed in highly trained runners.

    Science.gov (United States)

    McGregor, Stephen J; Busa, Michael A; Skufca, Joseph; Yaggie, James A; Bollt, Erik M

    2009-06-01

    Regularity statistics have been previously applied to walking gait measures in the hope of gaining insight into the complexity of gait under different conditions and in different populations. Traditional regularity statistics are subject to the requirement of stationarity, a limitation for examining changes in complexity under dynamic conditions such as exhaustive exercise. Using a novel measure, control entropy (CE), applied to triaxial continuous accelerometry, we report changes in complexity of walking and running during increasing speeds up to exhaustion in highly trained runners. We further apply Karhunen-Loeve analysis in a new and novel way to the patterns of CE responses in each of the three axes to identify dominant modes of CE responses in the vertical, mediolateral, and anterior/posterior planes. The differential CE responses observed between the different axes in this select population provide insight into the constraints of walking and running in those who may have optimized locomotion. Future comparisons between athletes, healthy untrained, and clinical populations using this approach may help elucidate differences between optimized and diseased locomotor control.

  14. Modeling of high speed micro rotors in moderate flow confinement

    NARCIS (Netherlands)

    Dikmen, E.; van der Hoogt, Peter; Aarts, Ronald G.K.M.; Sas, P.; Bergen, B.

    2008-01-01

    The recent developments in high speed micro rotating machinery lead to the need for multiphysical modeling of the rotor and the surrounding medium. In this study, thermal and flow induced effects on rotor dynamics of geometries with moderate flow confinement are studied. The structure is modeled via

  15. Local scattering property scales flow speed estimation in laser speckle contrast imaging

    International Nuclear Information System (INIS)

    Miao, Peng; Chao, Zhen; Feng, Shihan; Ji, Yuanyuan; Yu, Hang; Thakor, Nitish V; Li, Nan

    2015-01-01

    Laser speckle contrast imaging (LSCI) has been widely used in in vivo blood flow imaging. However, the effect of local scattering property (scattering coefficient µ s ) on blood flow speed estimation has not been well investigated. In this study, such an effect was quantified and involved in relation between speckle autocorrelation time τ c and flow speed v based on simulation flow experiments. For in vivo blood flow imaging, an improved estimation strategy was developed to eliminate the estimation bias due to the inhomogeneous distribution of the scattering property. Compared to traditional LSCI, a new estimation method significantly suppressed the imaging noise and improves the imaging contrast of vasculatures. Furthermore, the new method successfully captured the blood flow changes and vascular constriction patterns in rats’ cerebral cortex from normothermia to mild and moderate hypothermia. (letter)

  16. Differences in foot kinematics between young and older adults during walking.

    Science.gov (United States)

    Arnold, John B; Mackintosh, Shylie; Jones, Sara; Thewlis, Dominic

    2014-02-01

    Our understanding of age-related changes to foot function during walking has mainly been based on plantar pressure measurements, with little information on differences in foot kinematics between young and older adults. The purpose of this study was to investigate the differences in foot kinematics between young and older adults during walking using a multi-segment foot model. Joint kinematics of the foot and ankle for 20 young (mean age 23.2 years, standard deviation (SD) 3.0) and 20 older adults (mean age 73.2 years, SD 5.1) were quantified during walking with a 12 camera Vicon motion analysis system using a five segment kinematic model. Differences in kinematics were compared between older adults and young adults (preferred and slow walking speeds) using Student's t-tests or if indicated, Mann-Whitney U tests. Effect sizes (Cohen's d) for the differences were also computed. The older adults had a less plantarflexed calcaneus at toe-off (-9.6° vs. -16.1°, d = 1.0, p = range of motion (ROM) of the midfoot (11.9° vs. 14.8°, d = 1.3, p = young adults. Walking speed did not influence these differences, as they remained present when groups walked at comparable speeds. The findings of this study indicate that independent of walking speed, older adults exhibit significant differences in foot kinematics compared to younger adults, characterised by less propulsion and reduced mobility of multiple foot segments. Copyright © 2013 Elsevier B.V. All rights reserved.

  17. High-speed cell recognition algorithm for ultrafast flow cytometer imaging system

    Science.gov (United States)

    Zhao, Wanyue; Wang, Chao; Chen, Hongwei; Chen, Minghua; Yang, Sigang

    2018-04-01

    An optical time-stretch flow imaging system enables high-throughput examination of cells/particles with unprecedented high speed and resolution. A significant amount of raw image data is produced. A high-speed cell recognition algorithm is, therefore, highly demanded to analyze large amounts of data efficiently. A high-speed cell recognition algorithm consisting of two-stage cascaded detection and Gaussian mixture model (GMM) classification is proposed. The first stage of detection extracts cell regions. The second stage integrates distance transform and the watershed algorithm to separate clustered cells. Finally, the cells detected are classified by GMM. We compared the performance of our algorithm with support vector machine. Results show that our algorithm increases the running speed by over 150% without sacrificing the recognition accuracy. This algorithm provides a promising solution for high-throughput and automated cell imaging and classification in the ultrafast flow cytometer imaging platform.

  18. Distributed flow sensing for closed-loop speed control of a flexible fish robot.

    Science.gov (United States)

    Zhang, Feitian; Lagor, Francis D; Yeo, Derrick; Washington, Patrick; Paley, Derek A

    2015-10-23

    Flexibility plays an important role in fish behavior by enabling high maneuverability for predator avoidance and swimming in turbulent flow. This paper presents a novel flexible fish robot equipped with distributed pressure sensors for flow sensing. The body of the robot is molded from soft, hyperelastic material, which provides flexibility. Its Joukowski-foil shape is conducive to modeling the fluid analytically. A quasi-steady potential-flow model is adopted for real-time flow estimation, whereas a discrete-time vortex-shedding flow model is used for higher-fidelity simulation. The dynamics for the flexible fish robot yield a reduced model for one-dimensional swimming. A recursive Bayesian filter assimilates pressure measurements to estimate flow speed, angle of attack, and foil camber. The closed-loop speed-control strategy combines an inverse-mapping feedforward controller based on an average model derived for periodic actuation of angle-of-attack and a proportional-integral feedback controller utilizing the estimated flow information. Simulation and experimental results are presented to show the effectiveness of the estimation and control strategy. The paper provides a systematic approach to distributed flow sensing for closed-loop speed control of a flexible fish robot by regulating the flapping amplitude.

  19. Design of wheel-type walking-assist device

    International Nuclear Information System (INIS)

    Jung, Seung Ho; Kim, Seung Ho; Kim, Chang Hoi; Seo, Yong Chil; Jung, Kyung Min; Lee, Sung Uk

    2006-03-01

    In this research, a outdoor wheel-type walking-assist device is developed to help an elder having a poor muscular strength at legs for walking, sitting and standing up easily at outdoors, and also for going and downing stairs. In conceptually designing, the environments of an elder's activity, the size of an elder's body and a necessary function of helping an elder are considered. This device has 4 wheels for stability. When an elder walks in incline plane with the proposed device, a rear-wing is rotated to keep the supporting device horizontal, regardless of an angle of inclination. A height-controlling device, which can control the height of the supporting device for adjusting an elder's height, is varied vertically to help an elder to sit and stand-up easily. Moreover, a outdoor wheel-type walking-assist device is conceptually designed and is made. In order to design it, the preview research is investigated firstly. On the basis of the proposed walking-assist device, the outdoor walking-assist device is designed and made. The outdoor wheel-type walking-assist device can go and down stairs automatically. This device go up and down the stair of having maximum 20cm height and an angle of 25 degrees with maximum 4 sec/stairs speed, and move at flatland with 60cm/sec speed

  20. Study on transient hydrodynamic performance and cavitation characteristic of high-speed mixed-flow pump

    International Nuclear Information System (INIS)

    Chen, T; Liu, Y L; Sun, Y B; Wang, L Q; Wu, D Z

    2013-01-01

    In order to analyse the hydrodynamic performance and cavitation characteristic of a high-speed mixed-flow pump during transient operations, experimental studies were carried out. The transient hydrodynamic performance and cavitation characteristics of the mixed-flow pump with guide vane during start-up operation processes were tested on the pump performance test-bed. Performance tests of the pump were carried out under various inlet pressures and speed-changing operations. The real-time instantaneous external characteristics such as rotational speed, hydraulic head, flow rate, suction pressure and discharge pressure of the pump were measured. Based on the experimental results, the effect of fluid acceleration on the hydrodynamic performances and cavitation characteristics of the mixed-flow pump were analysed and evaluated

  1. Unsteady flow simulations of Pelton turbine at different rotational speeds

    Directory of Open Access Journals (Sweden)

    Minsuk Choi

    2015-11-01

    Full Text Available This article presents numerical simulations of a small Pelton turbine suitable for desalination system. A commercial flow solver was adopted to resolve difficulties in the numerical simulation for Pelton turbine such as the relative motion of the turbine runner to the injector and two-phase flow of water and air. To decrease the numerical diffusion of the water jet, a new topology with only hexagonal mesh was suggested for the computational mesh around the complex geometry of a bucket. The predicted flow coefficient, net head coefficient, and overall efficiency showed a good agreement with the experimental data. Based on the validation of the numerical results, the pattern of wet area on the bucket inner surface has been analyzed at different rotational speeds, and an attempt to find the connection between rotational speeds, torque, and efficiency has been made.

  2. On-Chip Enucleation of Bovine Oocytes using Microrobot-Assisted Flow-Speed Control

    Directory of Open Access Journals (Sweden)

    Akihiko Ichikawa

    2013-06-01

    Full Text Available In this study, we developed a microfluidic chip with a magnetically driven microrobot for oocyte enucleation. A microfluidic system was specially designed for enucleation, and the microrobot actively controls the local flow-speed distribution in the microfluidic chip. The microrobot can adjust fluid resistances in a channel and can open or close the channel to control the flow distribution. Analytical modeling was conducted to control the fluid speed distribution using the microrobot, and the model was experimentally validated. The novelties of the developed microfluidic system are as follows: (1 the cutting speed improved significantly owing to the local fluid flow control; (2 the cutting volume of the oocyte can be adjusted so that the oocyte undergoes less damage; and (3 the nucleus can be removed properly using the combination of a microrobot and hydrodynamic forces. Using this device, we achieved a minimally invasive enucleation process. The average enucleation time was 2.5 s and the average removal volume ratio was 20%. The proposed new system has the advantages of better operation speed, greater cutting precision, and potential for repeatable enucleation.

  3. Influence of the swing ankle angle on walking stability for a passive dynamic walking robot with flat feet

    Directory of Open Access Journals (Sweden)

    Xizhe Zang

    2016-03-01

    Full Text Available To achieve high walking stability for a passive dynamic walking robot is not easy. In this article, we aim to investigate whether the walking performance for a passive dynamic walking robot can be improved by just simply changing the swing ankle angle before impact. To validate this idea, a passive bipedal walking model with two straight legs, two flat feet, a hip joint, and two ankle joints was built in this study. The walking dynamics that contains double stance phase was derived. By numerical simulation of the walking in MATLAB, we found that the walking performance can be adjusted effectively by only simply changing the swing ankle angle before impact. A bigger swing ankle angle in a reasonable range will lead to a higher walking stability and a lower initial walking speed of the next step. A bigger swing ankle angle before impact leads to a bigger amount of energy lost during impact for the quasi-passive dynamic walking robot which will influence the walking stability of the next step.

  4. Energy costs and performance of transfemoral amputees and non-amputees during walking and running: A pilot study.

    Science.gov (United States)

    Mengelkoch, Larry J; Kahle, Jason T; Highsmith, M Jason

    2017-10-01

    Limited information is available concerning the effects of prosthetic foot components on energy costs and ambulatory performance for transfemoral amputees. Compare energy costs (VO 2 ; gait economy) and ambulatory performance (self-selected walking speeds, self-selected running speeds, peak running speeds) differences during walking and running for transfemoral amputees and matched, non-amputee runners. Repeated measures. Transfemoral amputees were accommodated and tested with three prosthetic feet: conventional foot, solid-ankle cushioned heel (SACH); energy storing and return foot, Renegade; and running-specific energy storing and return foot, Nitro. During walking, VO 2 was similar between transfemoral amputees but was increased compared to controls. Self-selected walking speeds were slower for SACH compared to Renegade and Nitro. For transfemoral amputees, gait economy was decreased and self-selected walking speeds were slower compared to controls. During fixed running speeds, transfemoral amputees ran using Nitro, and VO 2 was greater compared to controls. Transfemoral amputees ran at self-selected running speeds using Renegade and Nitro. Self-selected running speeds were slower for Renegade compared to Nitro. For transfemoral amputees, gait economy was decreased and self-selected running speeds were slower compared to controls. VO 2 peak was similar between transfemoral amputees and controls, but controls achieved greater peak running speeds and % grade. Energy costs were greater and ambulatory performance was lower for transfemoral amputees compared to matched, non-amputee controls for all prosthetic foot conditions. Clinical relevance Both types of energy storing and return feet may improve walking performance for transfemoral amputees by providing faster self-selected walking speeds. For transfemoral amputees interested in performing vigorous running (exercise and running competition), clinicians should recommend a running-specific energy storing and

  5. A community-based Falls Management Exercise Programme (FaME) improves balance, walking speed and reduced fear of falling.

    Science.gov (United States)

    Yeung, Pui Yee; Chan, Wayne; Woo, Jean

    2015-04-01

    Although effective community falls prevention programmes for the older persons have been described, challenges remain in translating proven interventions into daily practice. To evaluate the efficacy, feasibility and acceptability of a falls prevention programme that can be integrated into daily activities in a group of community-dwelling older adults with risk of falling. A cohort study with intervention and comparison groups was designed to evaluate a 36-week group-based falls prevention exercise programme (FaME) in the community setting. Participants were aged 60 years or older, had fallen in the past 12 months, had fear of falling with avoidance of activities or had deficits in balance control. Primary outcome measures included assessment of balance control and mobility; secondary outcome measures included level of physical activity, assessment of fear of falling and health-related quality of life. There were 48 and 51 participants in the intervention and comparison groups, respectively. There were improvements in measurements of balance, walking speed and self-efficacy. The drop out rate was low (14.6% and 3.9% from the intervention and comparison groups, respectively). Overall compliance in the intervention group was 79%. Factors that motivated continued participation include the regular and long-term nature of the programme helping to reinforce their exercise habits, the simplicity of movements and friendliness of the group. The FaME programme improves balance, walking speed and reduces fear of falling. It could be widely promoted and integrated into regular health and social activities in community settings.

  6. Walking performance and muscle strength in the later stage poststroke: a nonlinear relationship.

    Science.gov (United States)

    Carvalho, Cristiane; Sunnerhagen, Katharina S; Willén, Carin

    2013-05-01

    To evaluate the relation between muscle strength in the lower extremities and walking performance (speed and distance) in subjects in the later stage poststroke and to compare this with normative data. A cross-sectional observational study. University hospital department. Subjects poststroke (n=41; 31 men, 10 women) with a mean age of 59±5.8 years and a time from stroke onset of 52±36 months were evaluated. An urban sample (n=144) of 40- to 79-year-olds (69 men, 75 women) formed the healthy reference group. Not applicable. Muscle strength in the lower extremities was measured with an isokinetic dynamometer and combined into a strength index. Values for the 30-meter walk test for self-selected and maximum speed and the 6-minute walk test were measured. A nonlinear regression model was used. The average strength index was 730±309 in the subjects after stroke compared with 1112±362 in the healthy group. A nonlinear relation between walking performance and muscle strength was evident. The model explained 37% of the variance in self-selected speed in the stroke group and 20% in the healthy group, and 63% and 38%, respectively, in the maximum walking speed. For the 6-minute walk test, the model explained 44% of the variance in the stroke group. Subjects in the later stage poststroke were weaker than the healthy reference group, and their weakness was associated with walking performance. At the same strength index, subjects walked at lower speeds and shorter distances after stroke, indicating that there are multiple impairments that affect walking ability. Treatments focused on increasing muscle strength thus continue to hold promise. Copyright © 2013 American Congress of Rehabilitation Medicine. Published by Elsevier Inc. All rights reserved.

  7. The preferred walk to run transition speed in actual lunar gravity.

    Science.gov (United States)

    De Witt, John K; Edwards, W Brent; Scott-Pandorf, Melissa M; Norcross, Jason R; Gernhardt, Michael L

    2014-09-15

    Quantifying the preferred transition speed (PTS) from walking to running has provided insight into the underlying mechanics of locomotion. The dynamic similarity hypothesis suggests that the PTS should occur at the same Froude number across gravitational environments. In normal Earth gravity, the PTS occurs at a Froude number of 0.5 in adult humans, but previous reports found the PTS occurred at Froude numbers greater than 0.5 in simulated lunar gravity. Our purpose was to (1) determine the Froude number at the PTS in actual lunar gravity during parabolic flight and (2) compare it with the Froude number at the PTS in simulated lunar gravity during overhead suspension. We observed that Froude numbers at the PTS in actual lunar gravity (1.39±0.45) and simulated lunar gravity (1.11±0.26) were much greater than 0.5. Froude numbers at the PTS above 1.0 suggest that the use of the inverted pendulum model may not necessarily be valid in actual lunar gravity and that earlier findings in simulated reduced gravity are more accurate than previously thought. © 2014. Published by The Company of Biologists Ltd.

  8. Honeybees' speed depends on dorsal as well as lateral, ventral and frontal optic flows.

    Directory of Open Access Journals (Sweden)

    Geoffrey Portelli

    Full Text Available Flying insects use the optic flow to navigate safely in unfamiliar environments, especially by adjusting their speed and their clearance from surrounding objects. It has not yet been established, however, which specific parts of the optical flow field insects use to control their speed. With a view to answering this question, freely flying honeybees were trained to fly along a specially designed tunnel including two successive tapering parts: the first part was tapered in the vertical plane and the second one, in the horizontal plane. The honeybees were found to adjust their speed on the basis of the optic flow they perceived not only in the lateral and ventral parts of their visual field, but also in the dorsal part. More specifically, the honeybees' speed varied monotonically, depending on the minimum cross-section of the tunnel, regardless of whether the narrowing occurred in the horizontal or vertical plane. The honeybees' speed decreased or increased whenever the minimum cross-section decreased or increased. In other words, the larger sum of the two opposite optic flows in the horizontal and vertical planes was kept practically constant thanks to the speed control performed by the honeybees upon encountering a narrowing of the tunnel. The previously described ALIS ("AutopiLot using an Insect-based vision System" model nicely matches the present behavioral findings. The ALIS model is based on a feedback control scheme that explains how honeybees may keep their speed proportional to the minimum local cross-section of a tunnel, based solely on optic flow processing, without any need for speedometers or rangefinders. The present behavioral findings suggest how flying insects may succeed in adjusting their speed in their complex foraging environments, while at the same time adjusting their distance not only from lateral and ventral objects but also from those located in their dorsal visual field.

  9. Risk of falls in older people during fast-walking--the TASCOG study.

    Science.gov (United States)

    Callisaya, M L; Blizzard, L; McGinley, J L; Srikanth, V K

    2012-07-01

    To investigate the relationship between fast-walking and falls in older people. Individuals aged 60-86 years were randomly selected from the electoral roll (n=176). Gait speed, step length, cadence and a walk ratio were recorded during preferred- and fast-walking using an instrumented walkway. Falls were recorded prospectively over 12 months. Log multinomial regression was used to estimate the relative risk of single and multiple falls associated with gait variables during fast-walking and change between preferred- and fast-walking. Covariates included age, sex, mood, physical activity, sensorimotor and cognitive measures. The risk of multiple falls was increased for those with a smaller walk ratio (shorter steps, faster cadence) during fast-walking (RR 0.92, CI 0.87, 0.97) and greater reduction in the walk ratio (smaller increase in step length, larger increase in cadence) when changing to fast-walking (RR 0.73, CI 0.63, 0.85). These gait patterns were associated with poorer physiological and cognitive function (prisk of multiple falls was also seen for those in the fastest quarter of gait speed (p=0.01) at fast-walking. A trend for better reaction time, balance, memory and physical activity for higher categories of gait speed was stronger for fallers than non-fallers (prisk of multiple falls. There may be two distinct groups at risk--the frail person with short shuffling steps, and the healthy person exposed to greater risk. Copyright © 2012 Elsevier B.V. All rights reserved.

  10. Flow visualization of bubble behavior under two-phase natural circulation flow conditions using high speed digital camera

    Energy Technology Data Exchange (ETDEWEB)

    Lemos, Wanderley F.; Su, Jian, E-mail: wlemos@con.ufrj.br, E-mail: sujian@lasme.coppe.ufrj.br [Coordenacao dos Programas de Pos-Graduacao em Engenharia (COPPE/UFRJ), Rio de Janeiro, RJ (Brazil). Programa de Engenharia Nuclear; Faccini, Jose L.H., E-mail: faccini@ien.gov.br [Instituto de Engenharia Nuclear (IEN/CNEN-RJ), Rio de Janeiro, RJ (Brazil). Lab. de Termo-Hidraulica Experimental

    2013-07-01

    The The present work aims at identifying flow patterns and measuring interfacial parameters in two-phase natural circulation by using visualization technique with high-speed digital camera. The experiments were conducted in the Natural Circulation Circuit (CCN), installed at Nuclear Engineering Institute/CNEN. The thermo-hydraulic circuit comprises heater, heat exchanger, expansion tank, the pressure relief valve and pipes to interconnect the components. A glass tube is installed at the midpoint of the riser connected to the heater outlet. The natural circulation circuit is complemented by acquisition system of values of temperatures, flow and graphic interface. The instrumentation has thermocouples, volumetric flow meter, rotameter and high-speed digital camera. The experimental study is performed through analysis of information from measurements of temperatures at strategic points along the hydraulic circuit, besides natural circulation flow rates. The comparisons between analytical and experimental values are validated by viewing, recording and processing of the images for the flows patterns. Variables involved in the process of identification of flow regimes, dimensionless parameters, the phase velocity of the flow, initial boiling point, the phenomenon of 'flashing' pre-slug flow type were obtained experimentally. (author)

  11. Flow visualization of bubble behavior under two-phase natural circulation flow conditions using high speed digital camera

    International Nuclear Information System (INIS)

    Lemos, Wanderley F.; Su, Jian; Faccini, Jose L.H.

    2013-01-01

    The The present work aims at identifying flow patterns and measuring interfacial parameters in two-phase natural circulation by using visualization technique with high-speed digital camera. The experiments were conducted in the Natural Circulation Circuit (CCN), installed at Nuclear Engineering Institute/CNEN. The thermo-hydraulic circuit comprises heater, heat exchanger, expansion tank, the pressure relief valve and pipes to interconnect the components. A glass tube is installed at the midpoint of the riser connected to the heater outlet. The natural circulation circuit is complemented by acquisition system of values of temperatures, flow and graphic interface. The instrumentation has thermocouples, volumetric flow meter, rotameter and high-speed digital camera. The experimental study is performed through analysis of information from measurements of temperatures at strategic points along the hydraulic circuit, besides natural circulation flow rates. The comparisons between analytical and experimental values are validated by viewing, recording and processing of the images for the flows patterns. Variables involved in the process of identification of flow regimes, dimensionless parameters, the phase velocity of the flow, initial boiling point, the phenomenon of 'flashing' pre-slug flow type were obtained experimentally. (author)

  12. Predictive neuromechanical simulations indicate why walking performance declines with ageing.

    Science.gov (United States)

    Song, Seungmoon; Geyer, Hartmut

    2018-04-01

    Although the natural decline in walking performance with ageing affects the quality of life of a growing elderly population, its physiological origins remain unknown. By using predictive neuromechanical simulations of human walking with age-related neuro-musculo-skeletal changes, we find evidence that the loss of muscle strength and muscle contraction speed dominantly contribute to the reduced walking economy and speed. The findings imply that focusing on recovering these muscular changes may be the only effective way to improve performance in elderly walking. More generally, the work is of interest for investigating the physiological causes of altered gait due to age, injury and disorders. Healthy elderly people walk slower and energetically less efficiently than young adults. This decline in walking performance lowers the quality of life for a growing ageing population, and understanding its physiological origin is critical for devising interventions that can delay or revert it. However, the origin of the decline in walking performance remains unknown, as ageing produces a range of physiological changes whose individual effects on gait are difficult to separate in experiments with human subjects. Here we use a predictive neuromechanical model to separately address the effects of common age-related changes to the skeletal, muscular and nervous systems. We find in computer simulations of this model that the combined changes produce gait consistent with elderly walking and that mainly the loss of muscle strength and mass reduces energy efficiency. In addition, we find that the slower preferred walking speed of elderly people emerges in the simulations when adapting to muscle fatigue, again mainly caused by muscle-related changes. The results suggest that a focus on recovering these muscular changes may be the only effective way to improve performance in elderly walking. © 2018 The Authors. The Journal of Physiology © 2018 The Physiological Society.

  13. Comparison of the metabolic energy cost of overground and treadmill walking in older adults.

    Science.gov (United States)

    Berryman, Nicolas; Gayda, Mathieu; Nigam, Anil; Juneau, Martin; Bherer, Louis; Bosquet, Laurent

    2012-05-01

    We assessed whether the metabolic energy cost of walking was higher when measured overground or on a treadmill in a population of healthy older adults. We also assessed the association between the two testing modes. Participants (n = 20, 14 men and 6 women aged between 65 and 83 years of age) were randomly divided into two groups. Half of them went through the overground-treadmill sequence while the other half did the opposite order. A familiarization visit was held for each participant prior to the actual testing. For both modes of testing, five walking speeds were experimented (0.67, 0.89, 1.11, 1.33 and 1.67 m s(-1)). Oxygen uptake was monitored for all walking speeds. We found a significant difference between treadmill and track metabolic energy cost of walking, whatever the walking speed. The results show that walking on the treadmill requires more metabolic energy than walking overground for all experimental speeds (P < 0.05). The association between both measures was low to moderate (0.17 < ICC < 0.65), and the standard error of measurement represented 6.9-15.7% of the average value. These data indicate that metabolic energy cost of walking results from a treadmill test does not necessarily apply in daily overground activities. Interventions aiming at reducing the metabolic energy cost of walking should be assessed with the same mode as it was proposed during the intervention. If the treadmill mode is necessary for any purposes, functional overground walking tests should be implemented to obtain a more complete and specific evaluation.

  14. Positivity-preserving space-time CE/SE scheme for high speed flows

    KAUST Repository

    Shen, Hua

    2017-03-02

    We develop a space-time conservation element and solution element (CE/SE) scheme using a simple slope limiter to preserve the positivity of the density and pressure in computations of inviscid and viscous high-speed flows. In general, the limiter works with all existing CE/SE schemes. Here, we test the limiter on a central Courant number insensitive (CNI) CE/SE scheme implemented on hybrid unstructured meshes. Numerical examples show that the proposed limiter preserves the positivity of the density and pressure without disrupting the conservation law; it also improves robustness without losing accuracy in solving high-speed flows.

  15. Positivity-preserving space-time CE/SE scheme for high speed flows

    KAUST Repository

    Shen, Hua; Parsani, Matteo

    2017-01-01

    We develop a space-time conservation element and solution element (CE/SE) scheme using a simple slope limiter to preserve the positivity of the density and pressure in computations of inviscid and viscous high-speed flows. In general, the limiter works with all existing CE/SE schemes. Here, we test the limiter on a central Courant number insensitive (CNI) CE/SE scheme implemented on hybrid unstructured meshes. Numerical examples show that the proposed limiter preserves the positivity of the density and pressure without disrupting the conservation law; it also improves robustness without losing accuracy in solving high-speed flows.

  16. Flow and free running speed characterization of dental air turbine handpieces.

    Science.gov (United States)

    Dyson, J E; Darvell, B W

    1999-09-01

    Dental air turbine handpieces have been widely used in clinical dentistry for over 30 years, yet little work has been reported on their performance. A few studies have been concerned with measurement of speed (i.e. rotation rate), torque and power performance of these devices, but neither investigations of functional relationships between controlling variables nor theory dealing specifically with this class of turbine have been reported. This has hindered the development of satisfactory methods of handpiece specification and of testing dental rotary cutting tools. It was the intention of the present work to remedy that deficiency. Measurements of pressure, temperature, gas flow rate and rotation rate were made with improved accuracy and precision for 14 ball bearing turbine handpieces on several gases. Functional relationships between gas properties, supply pressure, flow rate, turbine design factors and free running speed were identified and equations describing these aspects of behaviour of this class of turbine developed. The rotor radius, through peripheral Mach number, was found to be a major determinant of speed performance. In addition, gas flow was found to be an important limiting factor through the effect of choke. Each dental handpiece can be treated as a simple orifice of a characteristic cross-sectional area. Free running speed can be explained in terms of gas properties and pressure, with allowance for a design-specific performance coefficient.

  17. Physiotherapy Effects in Gait Speed in Patients with Knee Osteoarthritis.

    Science.gov (United States)

    Tani, Klejda; Kola, Irena; Dhamaj, Fregen; Shpata, Vjollca; Zallari, Kiri

    2018-03-15

    Knee osteoarthritis is a chronic degenerative disease, known as the most common cause of difficulty walking in older adults and subsequently is associated with slow walking. Also one of the main symptoms is a degenerative and mechanics type of pain. Pain is very noticeable while walking in rugged terrain, during ascent and descent of stairs, when changing from sitting to standing position as well as staying in one position for a long time. Many studies have shown that the strength of the quadriceps femoris muscle can affect gait, by improving or weakening it. Kinesio Tape is a physiotherapeutic technique, which reduces pain and increases muscular strength by irritating the skin receptors. The aims of this study was first to verify if the application of Kinesio Tape on quadriceps femoris muscle increases gait speed in patients with knee osteoarthritis and secondly if applying Kinesio Tape on quadriceps femoris muscle reduces pain while walking. Seventy-four patients with primary knee osteoarthritis, aged 50 - 73 years, participated in this study. Firstly we observed the change of gait speed, while walking for 10 meters at normal speed for each patient, before, one day and three days after the application of Kinesio Tape on quadriceps femoris muscle, with the help of the 10 - meter walk test. Secondly, we observed the change of pain, while walking for 10 meters at normal speed for each patient, before, one day and three days after the application, with the help of Numerical Pain Rating Scale - NRS. Our results indicated that there was a significant increase in gait speed while walking for 10 meters one day and also three days after application of Kinesio Tape on quadriceps femoris muscle. Also, there was a significant reduction of pain level 1 and 3 days after application of Kinesio Tape, compared to the level of pain before its application. Our results indicated that there was a significant decrease in pain and increase of gait speed while walking for 10 meters

  18. Counting the corners of a random walk and its application to traffic flow

    International Nuclear Information System (INIS)

    Knorr, Florian; Schreckenberg, Michael

    2012-01-01

    We study a system with two types of interacting particles on a one-dimensional lattice. Particles of the first type, which we call ‘active’, are able to detect particles of the second type (called ‘passive’). By relating the problem to a discrete random walk in one dimension with a fixed number of steps we determine the fraction of active and detected particles for both open and periodic boundary conditions as well as for the case where passive particles interact with both or only one neighbors. In the random walk picture, where the two particles types stand for steps in opposite directions, passive particles are detected whenever the resulting path has a corner. For open boundary conditions, it turns out that a simple mean field approximation reproduces the exact result if the particles interact with one neighbor only. A practical application of this problem is heterogeneous traffic flow with communicating and non-communicating vehicles. In this context communicating vehicles can be thought of as active particles which can by front (and rear) sensors detect the vehicle ahead (and behind) although these vehicles do not actively share information. Therefore, we also present simulation results which show the validity of our analysis for real traffic flow. (paper)

  19. Impaired Economy of Gait and Decreased Six-Minute Walk Distance in Parkinson's Disease

    Directory of Open Access Journals (Sweden)

    Leslie I. Katzel

    2012-01-01

    Full Text Available Changes in the biomechanics of gait may alter the energy requirements of walking in Parkinson's Disease (PD. This study investigated economy of gait during submaximal treadmill walking in 79 subjects with mild to moderate PD and the relationship between gait economy and 6-minute walk distance (6 MW. Oxygen consumption (VO2 at the self-selected treadmill walking speed averaged 64% of peak oxygen consumption (VO2 peak. Submaximal VO2 levels exceeded 70% of VO2 peak in 30% of the subjects. Overall the mean submaximal VO2 was 51% higher than VO2 levels expected for the speed and grade consistent with severe impairment in economy of gait. There was an inverse relationship between economy of gait and 6MW (r=−0.31, P<0.01 and with the self-selected walking speed (r=−0.35, P<0.01. Thus, the impairment in economy of gait and decreased physiologic reserve result in routine walking being performed at a high percentage of VO2 peak.

  20. Dynamic optimization of a biped model: Energetic walking gaits with different mechanical and gait parameters

    Directory of Open Access Journals (Sweden)

    Kang An

    2015-05-01

    Full Text Available Energy consumption is one of the problems for bipedal robots walking. For the purpose of studying the parameter effects on the design of energetic walking bipeds with strong adaptability, we use a dynamic optimization method on our new walking model to first investigate the effects of the mechanical parameters, including mass and length distribution, on the walking efficiency. Then, we study the energetic walking gait features with the combinations of walking speed and step length. Our walking model is designed upon Srinivasan’s model. Dynamic optimization is used for a free search with minimal constraints. The results show that the cost of transport of a certain gait increases with the increase in the mass and length distribution parameters, except for that the cost of transport decreases with big length distribution parameter and long step length. We can also find a corresponding range of walking speed and step length, in which the variation in one of the two parameters has no obvious effect on the cost of transport. With fixed mechanical parameters, the cost of transport increases with the increase in the walking speed. There is a speed–step length relationship for walking with minimal cost of transport. The hip torque output strategy is adjusted in two situations to meet the walking requirements.

  1. Experimental Comparison of Speed : Fuel-flow and Speed-area Controls on a Turbojet Engine for Small Step Disturbances

    Science.gov (United States)

    Wenzel, L M; Hart, C E; Craig, R T

    1957-01-01

    Optimum proportional-plus-integral control settings for speed - fuel-flow control, determined by minimization of integral criteria, correlated well with analytically predicted optimum settings. Engine response data are given for a range of control settings around the optimum. An inherent nonlinearity in the speed-area loop necessitated the use of nonlinear controls. Response data for two such nonlinear control schemes are presented.

  2. Step-by-step variability of swing phase trajectory area during steady state walking at a range of speeds

    Science.gov (United States)

    Hurt, Christopher P.; Brown, David A.

    2018-01-01

    Background Step kinematic variability has been characterized during gait using spatial and temporal kinematic characteristics. However, people can adopt different trajectory paths both between individuals and even within individuals at different speeds. Single point measures such as minimum toe clearance (MTC) and step length (SL) do not necessarily account for the multiple paths that the foot may take during the swing phase to reach the same foot fall endpoint. The purpose of this study was to test a step-by-step foot trajectory area (SBS-FTA) variability measure that is able to characterize sagittal plane foot trajectories of varying areas, and compare this measure against MTC and SL variability at different speeds. We hypothesize that the SBS-FTA variability would demonstrate increased variability with speed. Second, we hypothesize that SBS-FTA would have a stronger curvilinear fit compared with the CV and SD of SL and MTC. Third, we hypothesize SBS-FTA would be more responsive to change in the foot trajectory at a given speed compared to SL and MTC. Fourth, SBS-FTA variability would not strongly co-vary with SL and MTC variability measures since it represents a different construct related to foot trajectory area variability. Methods We studied 15 nonimpaired individuals during walking at progressively faster speeds. We calculated SL, MTC, and SBS-FTA area. Results SBS-FTA variability increased with speed, had a stronger curvilinear fit compared with the CV and SD of SL and MTC, was more responsive at a given speed, and did not strongly co-vary with SL and MTC variability measures. Conclusion SBS foot trajectory area variability was sensitive to change with faster speeds, captured a relationship that the majority of the other measures did not demonstrate, and did not co-vary strongly with other measures that are also components of the trajectory. PMID:29370202

  3. Foot trajectory approximation using the pendulum model of walking.

    Science.gov (United States)

    Fang, Juan; Vuckovic, Aleksandra; Galen, Sujay; Conway, Bernard A; Hunt, Kenneth J

    2014-01-01

    Generating a natural foot trajectory is an important objective in robotic systems for rehabilitation of walking. Human walking has pendular properties, so the pendulum model of walking has been used in bipedal robots which produce rhythmic gait patterns. Whether natural foot trajectories can be produced by the pendulum model needs to be addressed as a first step towards applying the pendulum concept in gait orthosis design. This study investigated circle approximation of the foot trajectories, with focus on the geometry of the pendulum model of walking. Three able-bodied subjects walked overground at various speeds, and foot trajectories relative to the hip were analysed. Four circle approximation approaches were developed, and best-fit circle algorithms were derived to fit the trajectories of the ankle, heel and toe. The study confirmed that the ankle and heel trajectories during stance and the toe trajectory in both the stance and the swing phases during walking at various speeds could be well modelled by a rigid pendulum. All the pendulum models were centred around the hip with pendular lengths approximately equal to the segment distances from the hip. This observation provides a new approach for using the pendulum model of walking in gait orthosis design.

  4. Flow Studies of Decelerators at Supersonic Speeds

    Science.gov (United States)

    1959-01-01

    Wind tunnel tests recorded the effect of decelerators on flow at various supersonic speeds. Rigid parachute models were tested for the effects of porosity, shroud length, and number of shrouds. Flexible model parachutes were tested for effects of porosity and conical-shaped canopy. Ribbon dive brakes on a missile-shaped body were tested for effect of tension cable type and ribbon flare type. The final test involved a plastic sphere on riser lines.

  5. Characteristics of the gait adaptation process due to split-belt treadmill walking under a wide range of right-left speed ratios in humans.

    Science.gov (United States)

    Yokoyama, Hikaru; Sato, Koji; Ogawa, Tetsuya; Yamamoto, Shin-Ichiro; Nakazawa, Kimitaka; Kawashima, Noritaka

    2018-01-01

    The adaptability of human bipedal locomotion has been studied using split-belt treadmill walking. Most of previous studies utilized experimental protocol under remarkably different split ratios (e.g. 1:2, 1:3, or 1:4). While, there is limited research with regard to adaptive process under the small speed ratios. It is important to know the nature of adaptive process under ratio smaller than 1:2, because systematic evaluation of the gait adaptation under small to moderate split ratios would enable us to examine relative contribution of two forms of adaptation (reactive feedback and predictive feedforward control) on gait adaptation. We therefore examined a gait behavior due to on split-belt treadmill adaptation under five belt speed difference conditions (from 1:1.2 to 1:2). Gait parameters related to reactive control (stance time) showed quick adjustments immediately after imposing the split-belt walking in all five speed ratios. Meanwhile, parameters related to predictive control (step length and anterior force) showed a clear pattern of adaptation and subsequent aftereffects except for the 1:1.2 adaptation. Additionally, the 1:1.2 ratio was distinguished from other ratios by cluster analysis based on the relationship between the size of adaptation and the aftereffect. Our findings indicate that the reactive feedback control was involved in all the speed ratios tested and that the extent of reaction was proportionally dependent on the speed ratio of the split-belt. On the contrary, predictive feedforward control was necessary when the ratio of the split-belt was greater. These results enable us to consider how a given split-belt training condition would affect the relative contribution of the two strategies on gait adaptation, which must be considered when developing rehabilitation interventions for stroke patients.

  6. IN VITRO FLOW ANALYSIS OF NOVEL DOUBLE-CUTTING, OPEN-PORT, ULTRAHIGH-SPEED VITRECTOMY SYSTEMS.

    Science.gov (United States)

    Zehetner, Claus; Moelgg, Marion; Bechrakis, Emmanouil; Linhart, Caroline; Bechrakis, Nikolaos E

    2017-10-09

    To analyze the performance and flow characteristics of novel double-cutting, open-port, 23-, 25-, and 27-gauge ultrahigh-speed vitrectomy systems. In vitro fluidic measurements were performed to assess the volumetric aspiration profiles of several vitrectomy systems in basic salt solution and egg white. Double-cutting open-port vitrectomy probes delivered stable aspiration flow rates that were less prone to flow variation affected by the cutting speed. Increase in cutting frequency to the maximum level resulted in flow reduction of less than 10% (0.0%-9.5%). Commercially available 23-, 25-, and 27-G double-cutting probes exhibited higher egg-white and basic salt solution flow rates at all evaluated cut rates, with aspirational efficiencies being 1.1 to 2.9 times the flow rates of standard single-blade vitrectomy probes of the same caliber at the maximum preset vacuum. The highest relative differences were observed at faster cut rates. The newly introduced double-cutting open-port vitrectomy probes delivered stable aspiration flow rates that were less prone to flow variation affected by the cutting speed. The fluidic principle of constant flow even at the highest cut rates and low vacuum levels might impact surgical strategies, especially when performing manipulations close to the retina.

  7. Treadmill training and body weight support for walking after stroke.

    Science.gov (United States)

    Mehrholz, Jan; Thomas, Simone; Elsner, Bernhard

    2017-08-17

    Treadmill training, with or without body weight support using a harness, is used in rehabilitation and might help to improve walking after stroke. This is an update of the Cochrane review first published in 2003 and updated in 2005 and 2014. To determine if treadmill training and body weight support, individually or in combination, improve walking ability, quality of life, activities of daily living, dependency or death, and institutionalisation or death, compared with other physiotherapy gait-training interventions after stroke. The secondary objective was to determine the safety and acceptability of this method of gait training. We searched the Cochrane Stroke Group Trials Register (last searched 14 February 2017), the Cochrane Central Register of Controlled Trials (CENTRAL) and the Database of Reviews of Effects (DARE) (the Cochrane Library 2017, Issue 2), MEDLINE (1966 to 14 February 2017), Embase (1980 to 14 February 2017), CINAHL (1982 to 14 February 2017), AMED (1985 to 14 February 2017) and SPORTDiscus (1949 to 14 February 2017). We also handsearched relevant conference proceedings and ongoing trials and research registers, screened reference lists, and contacted trialists to identify further trials. Randomised or quasi-randomised controlled and cross-over trials of treadmill training and body weight support, individually or in combination, for the treatment of walking after stroke. Two review authors independently selected trials, extracted data, and assessed risk of bias and methodological quality. The primary outcomes investigated were walking speed, endurance, and dependency. We included 56 trials with 3105 participants in this updated review. The average age of the participants was 60 years, and the studies were carried out in both inpatient and outpatient settings. All participants had at least some walking difficulties and many could not walk without assistance. Overall, the use of treadmill training did not increase the chances of walking

  8. Effects of upper body parameters on biped walking efficiency studied by dynamic optimization

    Directory of Open Access Journals (Sweden)

    Kang An

    2016-12-01

    Full Text Available Walking efficiency is one of the considerations for designing biped robots. This article uses the dynamic optimization method to study the effects of upper body parameters, including upper body length and mass, on walking efficiency. Two minimal actuations, hip joint torque and push-off impulse, are used in the walking model, and minimal constraints are set in a free search using the dynamic optimization. Results show that there is an optimal solution of upper body length for the efficient walking within a range of walking speed and step length. For short step length, walking with a lighter upper body mass is found to be more efficient and vice versa. It is also found that for higher speed locomotion, the increase of the upper body length and mass can make the walking gait optimal rather than other kind of gaits. In addition, the typical strategy of an optimal walking gait is that just actuating the swing leg at the beginning of the step.

  9. The efficacy of the Ankle Mimicking Prosthetic Foot prototype 4.0 during walking: Physiological determinants.

    Science.gov (United States)

    De Pauw, Kevin; Cherelle, Pierre; Roelands, Bart; Lefeber, Dirk; Meeusen, Romain

    2018-04-01

    Evaluating the effectiveness of a novel prosthetic device during walking is an important step in product development. To investigate the efficacy of a novel quasi-passive ankle prosthetic device, Ankle Mimicking Prosthetic Foot 4.0, during walking at different speeds, using physiological determinants in transtibial and transfemoral amputees. Nonrandomized crossover design for amputees. Six able-bodied subjects, six unilateral transtibial amputees, and six unilateral transfemoral amputees underwent a 6-min walk test at normal speed, followed by series of 2-min walking at slow, normal, and fast speeds. The intensity of effort and subjective measures were determined. Amputees performed all walking tests on a treadmill with current and novel prostheses. Shapiro-Wilk normality tests and parametric and nonparametric tests were conducted (p 4.0 is a novel quasi-passive ankle prosthesis with state-of-the-art technological parts. Subjective measures show the importance of this technology, but the intensity of effort during walking still remains higher compared to current passive prostheses, especially in transfemoral amputees.

  10. Walking adaptability therapy after stroke: study protocol for a randomized controlled trial.

    Science.gov (United States)

    Timmermans, Celine; Roerdink, Melvyn; van Ooijen, Marielle W; Meskers, Carel G; Janssen, Thomas W; Beek, Peter J

    2016-08-26

    Walking in everyday life requires the ability to adapt walking to the environment. This adaptability is often impaired after stroke, and this might contribute to the increased fall risk after stroke. To improve safe community ambulation, walking adaptability training might be beneficial after stroke. This study is designed to compare the effects of two interventions for improving walking speed and walking adaptability: treadmill-based C-Mill therapy (therapy with augmented reality) and the overground FALLS program (a conventional therapy program). We hypothesize that C-Mill therapy will result in better outcomes than the FALLS program, owing to its expected greater amount of walking practice. This is a single-center parallel group randomized controlled trial with pre-intervention, post-intervention, retention, and follow-up tests. Forty persons after stroke (≥3 months) with deficits in walking or balance will be included. Participants will be randomly allocated to either C-Mill therapy or the overground FALLS program for 5 weeks. Both interventions will incorporate practice of walking adaptability and will be matched in terms of frequency, duration, and therapist attention. Walking speed, as determined by the 10 Meter Walking Test, will be the primary outcome measure. Secondary outcome measures will pertain to walking adaptability (10 Meter Walking Test with context or cognitive dual-task and Interactive Walkway assessments). Furthermore, commonly used clinical measures to determine walking ability (Timed Up-and-Go test), walking independence (Functional Ambulation Category), balance (Berg Balance Scale), and balance confidence (Activities-specific Balance Confidence scale) will be used, as well as a complementary set of walking-related assessments. The amount of walking practice (the number of steps taken per session) will be registered using the treadmill's inbuilt step counter (C-Mill therapy) and video recordings (FALLS program). This process measure will

  11. Effect of variations in air speed on cross-flow cylinder frosting

    International Nuclear Information System (INIS)

    Monaghan, P.F.; Cassidy, S.F.; Oosthuizen, P.H.

    1990-01-01

    In this paper the effect of fluctuating air speed on frost growth and heat transfer to a cylinder in cross-flow is discussed. Frost-growth of up to 20 hours is simulated using an experimentally validated finite difference computer model. Graphical results are presented for frost mass, frost depth, frost surface temperature and heat transfer versus time under both steady and fluctuating air speed conditions. In general, it is found that a thinner, more dense frost layer develops under fluctuating air speed conditions giving improved heat transfer. This phenomenon may be explained by the increased frequency of frost surface thaw/freeze cycles when fluctuating air speed conditions prevail

  12. Influence of treadmill acceleration on actual walk-to-run transition.

    Science.gov (United States)

    Van Caekenberghe, I; Segers, V; De Smet, K; Aerts, P; De Clercq, D

    2010-01-01

    When accelerating continuously, humans spontaneously change from a walking to a running pattern by means of a walk-to-run transition (WRT). Results of previous studies indicate that when higher treadmill accelerations are imposed, higher WRT-speeds can be expected. By studying the kinematics of the WRT at different accelerations, the underlying mechanisms can be unravelled. 19 young, healthy female subjects performed walk-to-run transitions on a constantly accelerating treadmill (0.1, 0.2 and 0.5 m s(-2)). A higher acceleration induced a higher WRT-speed, by effecting the preparation of transition, as well as the actual transition step. Increasing the acceleration caused a higher WRT-speed as a result of a greater step length during the transition step, which was mainly a consequence of a prolonged airborne phase. Besides this effect on the transition step, the direct preparation phase of transition (i.e. the last walking step before transition) appeared to fulfil specific constraints required to execute the transition regardless of the acceleration imposed. This highlights an important role for this step in the debate regarding possible determinants of WRT. In addition spatiotemporal and kinematical data confirmed that WRT remains a discontinuous change of gait pattern in all accelerations imposed. It is concluded that the walk-to-run transition is a discontinuous switch from walking to running which depends on the magnitude of treadmill belt acceleration. Copyright 2009 Elsevier B.V. All rights reserved.

  13. Random walk-percolation-based modeling of two-phase flow in porous media: Breakthrough time and net to gross ratio estimation

    Science.gov (United States)

    Ganjeh-Ghazvini, Mostafa; Masihi, Mohsen; Ghaedi, Mojtaba

    2014-07-01

    Fluid flow modeling in porous media has many applications in waste treatment, hydrology and petroleum engineering. In any geological model, flow behavior is controlled by multiple properties. These properties must be known in advance of common flow simulations. When uncertainties are present, deterministic modeling often produces poor results. Percolation and Random Walk (RW) methods have recently been used in flow modeling. Their stochastic basis is useful in dealing with uncertainty problems. They are also useful in finding the relationship between porous media descriptions and flow behavior. This paper employs a simple methodology based on random walk and percolation techniques. The method is applied to a well-defined model reservoir in which the breakthrough time distributions are estimated. The results of this method and the conventional simulation are then compared. The effect of the net to gross ratio on the breakthrough time distribution is studied in terms of Shannon entropy. Use of the entropy plot allows one to assign the appropriate net to gross ratio to any porous medium.

  14. Kinesthetic taping improves walking function in patients with stroke: a pilot cohort study.

    Science.gov (United States)

    Boeskov, Birgitte; Carver, Line Tornehøj; von Essen-Leise, Anders; Henriksen, Marius

    2014-01-01

    Stroke is an important cause of severe disability and impaired motor function. Treatment modalities that improve motor function in patients with stroke are needed. The objective of this study was to investigate the effect of kinesthetic taping of the anterior thigh and knee on maximal walking speed and clinical indices of spasticity in patients with stroke. Thirty-two patients (9 women) receiving rehabilitation after stroke (average, 50 days since stroke) who had impaired walking ability were recruited. Primary outcome was maximal walking speed measured by the 10-meter walk test. Secondary outcomes were number of steps taken during the test and clinical signs of spasticity measured by the Tardieu Scale. Tests were conducted before and immediately after application of kinesthetic tape to the anterior thigh and knee of the paretic lower limb. After application of the tape, the maximal walking speed increased, on average, by 0.08 m/s (95% CI, 0.04 to 0.12; P kinesthetic taping of the anterior thigh and knee provides an immediate improvement in walking function in patients with stroke. Such a positive effect on motor function could be a valuable adjunct in physical therapy and rehabilitation of patients with stroke.

  15. Steady and transient coordination structures of walking and running

    NARCIS (Netherlands)

    Lamoth, C. J. C.; Daffertshofer, A.; Huys, R.; Beek, P. J.

    We studied multisegmental coordination and stride characteristics in nine participants while walking and running on a treadmill. The study's main aim was to evaluate the coordination patterns of walking and running and their variance as a function of locomotion speed, with a specific focus on gait

  16. Steady and transient coordination structures of walking and running

    NARCIS (Netherlands)

    Lamoth, C.J.C.; Daffertshofer, A.; Huys, R.; Beek, P.J.

    2009-01-01

    We studied multisegmental coordination and stride characteristics in nine participants while walking and running on a treadmill. The study's main aim was to evaluate the coordination patterns of walking and running and their variance as a function of locomotion speed, with a specific focus on gait

  17. Experimental analysis of flow structure in contra-rotating axial flow pump designed with different rotational speed concept

    Science.gov (United States)

    Cao, Linlin; Watanabe, Satoshi; Imanishi, Toshiki; Yoshimura, Hiroaki; Furukawa, Akinori

    2013-08-01

    As a high specific speed pump, the contra-rotating axial flow pump distinguishes itself in a rear rotor rotating in the opposite direction of the front rotor, which remarkably contributes to the energy conversion, the reduction of the pump size, better hydraulic and cavitation performances. However, with two rotors rotating reversely, the significant interaction between blade rows was observed in our prototype contra-rotating rotors, which highly affected the pump performance compared with the conventional axial flow pumps. Consequently, a new type of rear rotor was designed by the rotational speed optimization methodology with some additional considerations, aiming at better cavitation performance, the reduction of blade rows interaction and the secondary flow suppression. The new rear rotor showed a satisfactory performance at the design flow rate but an unfavorable positive slope of the head — flow rate curve in the partial flow rate range less than 40% of the design flow rate, which should be avoided for the reliability of pump-pipe systems. In the present research, to understand the internal flow field of new rear rotor and its relation to the performances at the partial flow rates, the velocity distributions at the inlets and outlets of the rotors are firstly investigated. Then, the boundary layer flows on rotor surfaces, which clearly reflect the secondary flow inside the rotors, are analyzed through the limiting streamline observations using the multi-color oil-film method. Finally, the unsteady numerical simulations are carried out to understand the complicated internal flow structures in the rotors.

  18. Numerical Simulation of 3D Solid-Liquid Turbulent Flow in a Low Specific Speed Centrifugal Pump: Flow Field Analysis

    Directory of Open Access Journals (Sweden)

    Baocheng Shi

    2014-06-01

    Full Text Available For numerically simulating 3D solid-liquid turbulent flow in low specific speed centrifugal pumps, the iteration convergence problem caused by complex internal structure and high rotational speed of pump is always a problem for numeral simulation researchers. To solve this problem, the combination of three measures of dynamic underrelaxation factor adjustment, step method, and rotational velocity control means according to residual curves trends of operating parameters was used to improve the numerical convergence. Numeral simulation of 3D turbulent flow in a low specific speed solid-liquid centrifugal pump was performed, and the results showed that the improved solution strategy is greatly helpful to the numerical convergence. Moreover, the 3D turbulent flow fields in pumps have been simulated for the bottom ash-particles with the volume fraction of 10%, 20%, and 30% at the same particle diameter of 0.1 mm. The two-phase calculation results are compared with those of single-phase clean water flow. The calculated results gave the main region of the abrasion of the impeller and volute casing and improve the hydraulic design of the impeller in order to decrease the abrasion and increase the service life of the pump.

  19. Use of mobility aids reduces attentional demand in challenging walking conditions.

    Science.gov (United States)

    Miyasike-daSilva, Veronica; Tung, James Y; Zabukovec, Jeanie R; McIlroy, William E

    2013-02-01

    While mobility aids (e.g., four-wheeled walkers) are designed to facilitate walking and prevent falls in individuals with gait and balance impairments, there is evidence indicating that walkers may increase attentional demands during walking. We propose that walkers may reduce attentional demands under conditions that challenge balance control. This study investigated the effect of walker use on walking performance and attentional demand under a challenged walking condition. Young healthy subjects walked along a straight pathway, or a narrow beam. Attentional demand was assessed with a concurrent voice reaction time (RT) task. Slower RTs, reduced gait speed, and increased number of missteps (>92% of all missteps) were observed during beam-walking. However, walker use reduced attentional demand (faster RTs) and was linked to improved walking performance (increased gait speed, reduced missteps). Data from two healthy older adult cases reveal similar trends. In conclusion, mobility aids can be beneficial by reducing attentional demands and increasing gait stability when balance is challenged. This finding has implications on the potential benefit of mobility aids for persons who rely on walkers to address balance impairments. Copyright © 2012 Elsevier B.V. All rights reserved.

  20. High-speed flow visualization in a pump-turbine under off-design operating conditions

    International Nuclear Information System (INIS)

    Hasmatuchi, V; Roth, S; Botero, F; Avellan, F; Farhat, M

    2010-01-01

    The flow hydrodynamics in a low specific speed radial pump-turbine reduced scale model is experimentally investigated under off-design operating conditions in generating mode. Wall pressure measurements, in the stator, synchronized with high-speed flow visualizations in the vaneless space between the impeller and the guide vanes using air bubbles injection are performed. When starting from the best efficiency point and increasing the runner speed, a significant increase of the pressure fluctuations is observed mainly in channels between wicket gates. The spectral analysis shows a rise of one stall cell, rotating with about 70% of the impeller frequency, at runaway, which further increases as the zero discharge condition is approached. Then a specific image processing technique is detailed and applied to create a synthetic instantaneous view of the flow pattern on the entire guide vanes circumference for an operating point in turbine-brake mode, where backflow and vortices accompany the stall passage.

  1. Energy flow analysis of amputee walking shows a proximally-directed transfer of energy in intact limbs, compared to a distally-directed transfer in prosthetic limbs at push-off.

    Science.gov (United States)

    Weinert-Aplin, R A; Howard, D; Twiste, M; Jarvis, H L; Bennett, A N; Baker, R J

    2017-01-01

    Reduced capacity and increased metabolic cost of walking occurs in amputees, despite advances in prosthetic componentry. Joint powers can quantify deficiencies in prosthetic gait, but do not reveal how energy is exchanged between limb segments. This study aimed to quantify these energy exchanges during amputee walking. Optical motion and forceplate data collected during walking at a self-selected speed for cohorts of 10 controls, 10 unilateral trans-tibial, 10 unilateral trans-femoral and 10 bilateral trans-femoral amputees were used to determine the energy exchanges between lower limb segments. At push-off, consistent thigh and shank segment powers were observed between amputee groups (1.12W/kg vs. 1.05W/kg for intact limbs and 0.97W/kg vs. 0.99W/kg for prosthetic limbs), and reduced prosthetic ankle power, particularly in trans-femoral amputees (3.12W/kg vs. 0.87W/kg). Proximally-directed energy exchange was observed in the intact limbs of amputees and controls, while prosthetic limbs displayed distally-directed energy exchanges at the knee and hip. This study used energy flow analysis to show a reversal in the direction in which energy is exchanged between prosthetic limb segments at push-off. This reversal was required to provide sufficient energy to propel the limb segments and is likely a direct result of the lack of push-off power at the prosthetic ankle, particularly in trans-femoral amputees, and leads to their increased metabolic cost of walking. Copyright © 2016 IPEM. Published by Elsevier Ltd. All rights reserved.

  2. Human H-reflexes are smaller in difficult beam walking than in normal treadmill walking.

    Science.gov (United States)

    Llewellyn, M; Yang, J F; Prochazka, A

    1990-01-01

    Hoffman (H) reflexes were elicited from the soleus (SOL) muscle while subjects walked on a treadmill and on a narrow beam (3.5 cm wide, raised 34 cm from the floor). The speed of walking on the treadmill was selected for each subject to match the background activation level of their SOL muscle during beam walking. The normal reciprocal activation pattern of the tibialis anterior and SOL muscles in treadmill walking was replaced by a pattern dominated by co-contraction on the beam. In addition, the step cycle duration was more variable and the time spent in the swing phase was reduced on the beam. The H-reflexes were highly modulated in both tasks, the amplitude being high in the stance phase and low in the swing phase. The H-reflex amplitude was on average 40% lower during beam walking than treadmill walking. The relationship between the H-reflex amplitude and the SOL EMG level was quantified by a regression line relating the two variables. The slope of this line was on average 41% lower in beam walking than treadmill walking. The lower H-reflex gain observed in this study and the high level of fusimotor drive observed in cats performing similar tasks suggest that the two mechanisms which control the excitability of this reflex pathway (i.e. fusimotor action and control of transmission at the muscle spindle to moto-neuron synapse) may be controlled independently.

  3. Detection of Abnormal Muscle Activations during Walking Following Spinal Cord Injury (SCI)

    Science.gov (United States)

    Wang, Ping; Low, K. H.; McGregor, Alison H.; Tow, Adela

    2013-01-01

    In order to identify optimal rehabilitation strategies for spinal cord injury (SCI) participants, assessment of impaired walking is required to detect, monitor and quantify movement disorders. In the proposed assessment, ten healthy and seven SCI participants were recruited to perform an over-ground walking test at slow walking speeds. SCI…

  4. Discussion of various flow calculation methods in high-speed centrifuges

    International Nuclear Information System (INIS)

    Louvet, P.; Cortet, C.

    1979-01-01

    The flow in high-speed centrifuges for the separation of uranium isotopes has been studied in the frame of linearized theory for long years. Three different methods have been derived for viscous compressible flow with small Ekman numbers and high Mach numbers: - numerical solution of flow equation by finite element method and Gaussian elimination (Centaure Code), - boundary layer theory using matched asymptotic expansions, - the so called eigenfunction method slightly modified. The mathematical assumptions, the easiness and the accuracy of the computations are compared. Numerical applications are performed successively for thermal countercurrent centrifuges with or without injections

  5. Variability of leg kinematics during overground walking in persons with chronic incomplete spinal cord injury.

    Science.gov (United States)

    Sohn, Won Joon; Tan, Andrew Q; Hayes, Heather B; Pochiraju, Saahith; Deffeyes, Joan; Trumbower, Randy D

    2018-03-20

    Incomplete spinal cord injury (iSCI) often leads to partial disruption of spinal pathways that are important for motor control of walking. Persons with iSCI present with deficits in walking ability due, in part, to inconsistent leg kinematics during stepping. While kinematic variability is important for normal walking, growing evidence indicates that excessive variability may limit walking ability and increase reliance on assistive devices (AD) after iSCI. The purpose of this study was to assess the effects of iSCI-induced impairments on kinematic variability during overground walking. We hypothesized that iSCI results in greater variability of foot and joint displacement during overground walking compared to controls. We further hypothesized that variability is larger in persons with limited walking speed and greater reliance on ADs. To test these hypotheses, iSCI and control subjects walked overground. Kinematic variability was quantified as step-to-step foot placement variability (endpoint), and variability in hip-knee, hip-ankle, and knee-ankle joint space (angular coefficient of correspondence; ACC). We characterized sensitivity of kinematic variability to cadence, auditory cue, and AD. Supporting our hypothesis, persons with iSCI exhibited greater kinematic variability than controls, which scaled with deficits in overground walking speed (pvariability, and with walking speed, indicates both are markers of walking performance. Moreover, hip-knee and hip-ankle ACC discriminated between AD use, indicating that ACC may capture AD-specific control strategies. We conclude that increased variability of foot and joint displacement are indicative of motor impairment severity and may serve as therapeutic targets to restore walking after iSCI.

  6. Within-day variability on short and long walking tests in persons with multiple sclerosis.

    Science.gov (United States)

    Feys, Peter; Bibby, Bo; Romberg, Anders; Santoyo, Carme; Gebara, Benoit; de Noordhout, Benoit Maertens; Knuts, Kathy; Bethoux, Francois; Skjerbæk, Anders; Jensen, Ellen; Baert, Ilse; Vaney, Claude; de Groot, Vincent; Dalgas, Ulrik

    2014-03-15

    To compare within-day variability of short (10 m walking test at usual and fastest speed; 10MWT) and long (2 and 6-minute walking test; 2MWT/6MWT) tests in persons with multiple sclerosis. Observational study. MS rehabilitation and research centers in Europe and US within RIMS (European network for best practice and research in MS rehabilitation). Ambulatory persons with MS (Expanded Disability Status Scale 0-6.5). Subjects of different centers performed walking tests at 3 time points during a single day. 10MWT, 2MWT and 6MWT at fastest speed and 10MWT at usual speed. Ninety-five percent limits of agreement were computed using a random effects model with individual pwMS as random effect. Following this model, retest scores are with 95% certainty within these limits of baseline scores. In 102 subjects, within-day variability was constant in absolute units for the 10MWT, 2MWT and 6MWT at fastest speed (+/-0.26, 0.16 and 0.15m/s respectively, corresponding to +/-19.2m and +/-54 m for the 2MWT and 6MWT) independent on the severity of ambulatory dysfunction. This implies a greater relative variability with increasing disability level, often above 20% depending on the applied test. The relative within-day variability of the 10MWT at usual speed was +/-31% independent of ambulatory function. Absolute values of within-day variability on walking tests at fastest speed were independent of disability level and greater with short compared to long walking tests. Relative within-day variability remained overall constant when measured at usual speed. Crown Copyright © 2014. Published by Elsevier B.V. All rights reserved.

  7. Kinematic Adaptations of Forward and Backward Walking on Land and in Water

    Directory of Open Access Journals (Sweden)

    Cadenas-Sanchez Cristina

    2015-12-01

    Full Text Available The aim of this study was to compare sagittal plane lower limb kinematics during walking on land and submerged to the hip in water. Eight healthy adults (age 22.1 ± 1.1 years, body height 174.8 ± 7.1 cm, body mass 63.4 ± 6.2 kg were asked to cover a distance of 10 m at comfortable speed with controlled step frequency, walking forward or backward. Sagittal plane lower limb kinematics were obtained from three dimensional video analysis to compare spatiotemporal gait parameters and joint angles at selected events using two-way repeated measures ANOVA. Key findings were a reduced walking speed, stride length, step length and a support phase in water, and step length asymmetry was higher compared to the land condition (p<0.05. At initial contact, knees and hips were more flexed during walking forward in water, whilst, ankles were more dorsiflexed during walking backward in water. At final stance, knees and ankles were more flexed during forward walking, whilst the hip was more flexed during backward walking. These results show how walking in water differs from walking on land, and provide valuable insights into the development and prescription of rehabilitation and training programs.

  8. Using wind speed from a blade-mounted flow sensor for power and load assessment on modern wind turbines

    DEFF Research Database (Denmark)

    Pedersen, Mads M.; Larsen, Torben J.; Madsen, Helge Aa

    2017-01-01

    In this paper an alternative method to evaluate power performance and loads on wind turbines using a blade-mounted flow sensor is investigated. The hypothesis is that the wind speed measured at the blades has a high correlation with the power and loads such that a power or load assessment can...... be performed from a few hours or days of measurements. In the present study a blade-mounted five-hole pitot tube is used as the flow sensor as an alternative to the conventional approach, where the reference wind speed is either measured at a nearby met mast or on the nacelle using lidar technology or cup...... anemometers. From the flow sensor measurements, an accurate estimate of the wind speed at the rotor plane can be obtained. This wind speed is disturbed by the presence of the wind turbine, and it is therefore different from the free-flow wind speed. However, the recorded wind speed has a high correlation...

  9. Influence of water depth on energy expenditure during aquatic walking in people post stroke.

    Science.gov (United States)

    Lim, Hyosok; Azurdia, Daniel; Jeng, Brenda; Jung, Taeyou

    2018-05-11

    This study aimed to investigate the metabolic cost during aquatic walking at various depths in people post stroke. The secondary purpose was to examine the differences in metabolic cost between aquatic walking and land walking among individuals post stroke. A cross-sectional research design is used. Twelve participants post stroke (aged 55.5 ± 13.3 years) completed 6 min of walking in 4 different conditions: chest-depth, waist-depth, and thigh-depth water, and land. Data were collected on 4 separate visits with at least 48 hr in between. On the first visit, all participants were asked to walk in chest-depth water at their fastest speed. The walking speed was used as a reference speed, which was applied to the remaining 3 walking conditions. The order of remaining walking conditions was randomized. Energy expenditure (EE), oxygen consumption (VO 2 ), and minute ventilation (V E ) were measured with a telemetric metabolic system. Our findings showed statistically significant differences in EE, VO 2 , and V E among the 4 different walking conditions: chest-depth, waist-depth, and thigh-depth water, and land (all p stroke consume less energy in chest-depth water, which may allow them to perform prolonged duration of training. Thigh-depth water demonstrated greater EE compared with other water depths; thus, it can be recommended for time-efficient cardiovascular exercise. Waist-depth water showed similar EE to land walking, which may have been contributed by the countervailing effects of buoyancy and water resistance. Copyright © 2018 John Wiley & Sons, Ltd.

  10. Lévy Walks Suboptimal under Predation Risk.

    Directory of Open Access Journals (Sweden)

    Masato S Abe

    2015-11-01

    Full Text Available A key challenge in movement ecology is to understand how animals move in nature. Previous studies have predicted that animals should perform a special class of random walks, called Lévy walk, to obtain more targets. However, some empirical studies did not support this hypothesis, and the relationship between search strategy and ecological factors is still unclear. We focused on ecological factors, such as predation risk, and analyzed whether Lévy walk may not be favored. It was remarkable that the ecological factors often altered an optimal search strategy from Lévy walk to Brownian walk, depending on the speed of the predator's movement, density of predators, etc. This occurred because higher target encounter rates simultaneously led searchers to higher predation risks. Our findings indicate that animals may not perform Lévy walks often, and we suggest that it is crucial to consider the ecological context for evaluating the search strategy performed by animals in the field.

  11. Lévy Walks Suboptimal under Predation Risk

    Science.gov (United States)

    Abe, Masato S.; Shimada, Masakazu

    2015-01-01

    A key challenge in movement ecology is to understand how animals move in nature. Previous studies have predicted that animals should perform a special class of random walks, called Lévy walk, to obtain more targets. However, some empirical studies did not support this hypothesis, and the relationship between search strategy and ecological factors is still unclear. We focused on ecological factors, such as predation risk, and analyzed whether Lévy walk may not be favored. It was remarkable that the ecological factors often altered an optimal search strategy from Lévy walk to Brownian walk, depending on the speed of the predator’s movement, density of predators, etc. This occurred because higher target encounter rates simultaneously led searchers to higher predation risks. Our findings indicate that animals may not perform Lévy walks often, and we suggest that it is crucial to consider the ecological context for evaluating the search strategy performed by animals in the field. PMID:26544687

  12. Differential effects of absent visual feedback control on gait variability during different locomotion speeds.

    Science.gov (United States)

    Wuehr, M; Schniepp, R; Pradhan, C; Ilmberger, J; Strupp, M; Brandt, T; Jahn, K

    2013-01-01

    Healthy persons exhibit relatively small temporal and spatial gait variability when walking unimpeded. In contrast, patients with a sensory deficit (e.g., polyneuropathy) show an increased gait variability that depends on speed and is associated with an increased fall risk. The purpose of this study was to investigate the role of vision in gait stabilization by determining the effects of withdrawing visual information (eyes closed) on gait variability at different locomotion speeds. Ten healthy subjects (32.2 ± 7.9 years, 5 women) walked on a treadmill for 5-min periods at their preferred walking speed and at 20, 40, 70, and 80 % of maximal walking speed during the conditions of walking with eyes open (EO) and with eyes closed (EC). The coefficient of variation (CV) and fractal dimension (α) of the fluctuations in stride time, stride length, and base width were computed and analyzed. Withdrawing visual information increased the base width CV for all walking velocities (p < 0.001). The effects of absent visual information on CV and α of stride time and stride length were most pronounced during slow locomotion (p < 0.001) and declined during fast walking speeds. The results indicate that visual feedback control is used to stabilize the medio-lateral (i.e., base width) gait parameters at all speed sections. In contrast, sensory feedback control in the fore-aft direction (i.e., stride time and stride length) depends on speed. Sensory feedback contributes most to fore-aft gait stabilization during slow locomotion, whereas passive biomechanical mechanisms and an automated central pattern generation appear to control fast locomotion.

  13. Speed adaptation in a powered transtibial prosthesis controlled with a neuromuscular model.

    Science.gov (United States)

    Markowitz, Jared; Krishnaswamy, Pavitra; Eilenberg, Michael F; Endo, Ken; Barnhart, Chris; Herr, Hugh

    2011-05-27

    Control schemes for powered ankle-foot prostheses would benefit greatly from a means to make them inherently adaptive to different walking speeds. Towards this goal, one may attempt to emulate the intact human ankle, as it is capable of seamless adaptation. Human locomotion is governed by the interplay among legged dynamics, morphology and neural control including spinal reflexes. It has been suggested that reflexes contribute to the changes in ankle joint dynamics that correspond to walking at different speeds. Here, we use a data-driven muscle-tendon model that produces estimates of the activation, force, length and velocity of the major muscles spanning the ankle to derive local feedback loops that may be critical in the control of those muscles during walking. This purely reflexive approach ignores sources of non-reflexive neural drive and does not necessarily reflect the biological control scheme, yet can still closely reproduce the muscle dynamics estimated from biological data. The resulting neuromuscular model was applied to control a powered ankle-foot prosthesis and tested by an amputee walking at three speeds. The controller produced speed-adaptive behaviour; net ankle work increased with walking speed, highlighting the benefits of applying neuromuscular principles in the control of adaptive prosthetic limbs.

  14. Walking football as sustainable exercise for older adults - A pilot investigation.

    Science.gov (United States)

    Reddy, Peter; Dias, Irundika; Holland, Carol; Campbell, Niyah; Nagar, Iaysha; Connolly, Luke; Krustrup, Peter; Hubball, Harry

    2017-06-01

    The health benefits of playing football and the importance of exercise and social contact for healthy ageing are well established, but few older adults in the UK take enough exercise. Football is popular, flexible in format and draws players into engrossing, effortful and social exercise, but the physical demands of play at full speed may make it unsustainable for some older adults. Restricted to walking pace, will play still be engaging? Will health benefits be retained? Will physical demands remain manageable? This pilot study aims to investigate: (1) the experience of older adults playing walking football every week, is it sustainable and rewarding, (2) the intensity and locomotor pattern of walking football, (3) the scale and nature of walking football health benefits and (4) possible cognitive benefits of playing walking football through measures of processing speed, selective and divided attention and updating and inhibition components of executive function.
 'Walking football' and 'waiting list' groups were compared before and after 12 weeks of one-hour per week football. Walking football was found to be engaging, sustainable for older adults and moderately intensive; however, selective health and cognitive benefits were not found from this brief intervention. Highlights Walking football is a lower impact but authentic form of football that enables older players to extend their active participation. Walking football is enjoyable and moderately demanding and may be a sustainable form of exercise for older adults. Health and cognitive benefits to playing walking football were not found.

  15. Functional roles of lower-limb joint moments while walking in water.

    Science.gov (United States)

    Miyoshi, Tasuku; Shirota, Takashi; Yamamoto, Shin-Ichiro; Nakazawa, Kimitaka; Akai, Masami

    2005-02-01

    To clarify the functional roles of lower-limb joint moments and their contribution to support and propulsion tasks while walking in water compared with that on land. Sixteen healthy, young subjects walked on land and in water at several different speeds with and without additional loads. Walking in water is a major rehabilitation therapy for patients with orthopedic disorders. However, the functional role of lower-limb joint moments while walking in water is still unclear. Kinematics, electromyographic activities in biceps femoris and gluteus maximums, and ground reaction forces were measured under the following conditions: walking on land and in water at a self-determined pace, slow walking on land, and fast walking in water with or without additional loads (8 kg). The hip, knee, and ankle joint moments were calculated by inverse dynamics. The contribution of the walking speed increased the hip extension moment, and the additional weight increased the ankle plantar flexion and knee extension moment. The major functional role was different in each lower-limb joint muscle. That of the muscle group in the ankle is to support the body against gravity, and that of the muscle group involved in hip extension is to contribute to propulsion. In addition, walking in water not only reduced the joint moments but also completely changed the inter-joint coordination. It is of value for clinicians to be aware that the greater the viscosity of water produces a greater load on the hip joint when fast walking in water.

  16. Aerobic treadmill plus Bobath walking training improves walking in subacute stroke: a randomized controlled trial.

    Science.gov (United States)

    Eich, H-J; Mach, H; Werner, C; Hesse, S

    2004-09-01

    To evaluate the immediate and long-term effects of aerobic treadmill plus Bobath walking training in subacute stroke survivors compared with Bobath walking training alone. Randomized controlled trial. Rehabilitation unit. Fifty patients, first-time supratentorial stroke, stroke interval less than six weeks, Barthel Index (0-100) from 50 to 80, able to walk a minimum distance of 12 m with either intermittent help or stand-by while walking, cardiovascular stable, minimum 50 W in the bicycle ergometry, randomly allocated to two groups, A and B. Group A 30 min of treadmill training, harness secured and minimally supported according to patients' needs, and 30 min of physiotherapy, every workday for six weeks, speed and inclination of the treadmill were adjusted to achieve a heart rate of HR: (Hrmax-HRrest)*0.6+HRrest; in group B 60 min of daily physiotherapy for six weeks. Primary outcome variables were the absolute improvement of walking velocity (m/s) and capacity (m), secondary were gross motor function including walking ability (score out of 13) and walking quality (score out of 41), blindly assessed before and after the intervention, and at follow-up three months later. Patients tolerated the aerobic training well with no side-effects, significantly greater improvement of walking velocity and capacity both at study end (p =0.001 versus p =0.002) and at follow-up (p Bobath walking training in moderately affected stroke patients was better than Bobath walking training alone with respect to the improvement of walking velocity and capacity. The treatment approach is recommended in patients meeting the inclusion criteria. A multicentre trial should follow to strengthen the evidence.

  17. Metabolic cost and mechanics of walking in women with fibromyalgia syndrome.

    Science.gov (United States)

    MacPhee, Renée S; McFall, Kristen; Perry, Stephen D; Tiidus, Peter M

    2013-10-18

    Fibromyalgia syndrome (FS) is characterized by the presence of widespread pain, fatigue, muscle weakness and reduced work capacity. Previous research has demonstrated that women with fibromyalgia have altered walking (gait) patterns, which may be a consequence of muscular pain. This altered gait is characterized by greater reliance on hip flexors rather than ankle plantar flexors and resembles gait patterns seen in normal individuals walking at higher speeds, suggesting that gait of individuals with fibromyalgia may be less efficient.This study compared rates of energy expenditure of 6 females with FS relative to 6 normal, age and weight matched controls, at various walking speeds on a motorized treadmill. Metabolic measurements including V02 (ml/kg/min), respirations, heart rate and calculated energy expenditures as well as the Borg Scale of Perceived Exertion scale ratings were determined at baseline and for 10 min while walking at each of 2, 4 and 5 km/hour on 1% grade. Kinematic recordings of limb and body movements while treadmill walking and separate measurements of ground reaction forces while walking over ground were also determined. In addition, all subjects completed the RAND 36-Item Health Survey (1.0). Gait analysis results were similar to previous reports of altered gait patterns in FS females. Despite noticeable differences in gait patterns, no significant differences (p > 0.05) existed between the FS and control subjects on any metabolic measures at any walking speed. Total number of steps taken was also similar between groups. Ratings on the Borg Scale of Perceived Exertion, the RAND and self-reported levels of pain indicated significantly greater (p gait patterns and greater perceptions of effort and pain did not significantly increase the metabolic costs of walking in women with FS and hence, increased sensations of fatigue in FS women may not be related to alteration in metabolic cost of ambulation.

  18. Implementing quantum walks using orbital angular momentum of classical light

    CSIR Research Space (South Africa)

    Goyal, SK

    2013-06-01

    Full Text Available –5]. This speed up gained in quantum walks promises ad- vantages when applied in quantum computation for cer- tain classes of quantum algorithms [6], for example, quan- tum search algorithms [7, 8]. Quantum walks have also been used to analyze energy transport...

  19. Body weight-supported treadmill training vs. overground walking training for persons with chronic stroke: a pilot randomized controlled trial.

    Science.gov (United States)

    Combs-Miller, Stephanie A; Kalpathi Parameswaran, Anu; Colburn, Dawn; Ertel, Tara; Harmeyer, Amanda; Tucker, Lindsay; Schmid, Arlene A

    2014-09-01

    To compare the effects of body weight-supported treadmill training and overground walking training when matched for task and dose (duration/frequency/intensity) on improving walking function, activity, and participation after stroke. Single-blind, pilot randomized controlled trial with three-month follow-up. University and community settings. A convenience sample of participants (N = 20) at least six months post-stroke and able to walk independently were recruited. Thirty-minute walking interventions (body weight-supported treadmill training or overground walking training) were administered five times a week for two weeks. Intensity was monitored with the Borg Rating of Perceived Exertion Scale at five-minute increments to maintain a moderate training intensity. Walking speed (comfortable/fast 10-meter walk), walking endurance (6-minute walk), spatiotemporal symmetry, and the ICF Measure of Participation and ACTivity were assessed before, immediately after, and three months following the intervention. The overground walking training group demonstrated significantly greater improvements in comfortable walking speed compared with the body weight-supported treadmill training group immediately (change of 0.11 m/s vs. 0.06 m/s, respectively; p = 0.047) and three months (change of 0.14 m/s vs. 0.08 m/s, respectively; p = 0.029) after training. Only the overground walking training group significantly improved comfortable walking speed (p = 0.001), aspects of gait symmetry (p = 0.032), and activity (p = 0.003) immediately after training. Gains were maintained at the three-month follow-up (p training was more beneficial than body weight-supported treadmill training at improving self-selected walking speed for the participants in this study. © The Author(s) 2014.

  20. Acute Cardiorespiratory and Metabolic Responses During Exoskeleton-Assisted Walking Overground Among Persons with Chronic Spinal Cord Injury

    Science.gov (United States)

    Hartigan, Clare; Kandilakis, Casey; Pharo, Elizabeth; Clesson, Ismari

    2015-01-01

    Background: Lower extremity robotic exoskeleton technology is being developed with the promise of affording people with spinal cord injury (SCI) the opportunity to stand and walk. The mobility benefits of exoskeleton-assisted walking can be realized immediately, however the cardiorespiratory and metabolic benefits of this technology have not been thoroughly investigated. Objective: The purpose of this pilot study was to evaluate the acute cardiorespiratory and metabolic responses associated with exoskeleton-assisted walking overground and to determine the degree to which these responses change at differing walking speeds. Methods: Five subjects (4 male, 1 female) with chronic SCI (AIS A) volunteered for the study. Expired gases were collected during maximal graded exercise testing and two, 6-minute bouts of exoskeleton-assisted walking overground. Outcome measures included peak oxygen consumption (V̇O2peak), average oxygen consumption (V̇O2avg), peak heart rate (HRpeak), walking economy, metabolic equivalent of tasks for SCI (METssci), walk speed, and walk distance. Results: Significant differences were observed between walk-1 and walk-2 for walk speed, total walk distance, V̇O2avg, and METssci. Exoskeleton-assisted walking resulted in %V̇O2peak range of 51.5% to 63.2%. The metabolic cost of exoskeleton-assisted walking ranged from 3.5 to 4.3 METssci. Conclusion: Persons with motor-complete SCI may be limited in their capacity to perform physical exercise to the extent needed to improve health and fitness. Based on preliminary data, cardiorespiratory and metabolic demands of exoskeleton-assisted walking are consistent with activities performed at a moderate intensity. PMID:26364281

  1. Acute Cardiorespiratory and Metabolic Responses During Exoskeleton-Assisted Walking Overground Among Persons with Chronic Spinal Cord Injury.

    Science.gov (United States)

    Evans, Nicholas; Hartigan, Clare; Kandilakis, Casey; Pharo, Elizabeth; Clesson, Ismari

    2015-01-01

    Lower extremity robotic exoskeleton technology is being developed with the promise of affording people with spinal cord injury (SCI) the opportunity to stand and walk. The mobility benefits of exoskeleton-assisted walking can be realized immediately, however the cardiorespiratory and metabolic benefits of this technology have not been thoroughly investigated. The purpose of this pilot study was to evaluate the acute cardiorespiratory and metabolic responses associated with exoskeleton-assisted walking overground and to determine the degree to which these responses change at differing walking speeds. Five subjects (4 male, 1 female) with chronic SCI (AIS A) volunteered for the study. Expired gases were collected during maximal graded exercise testing and two, 6-minute bouts of exoskeleton-assisted walking overground. Outcome measures included peak oxygen consumption (V̇O2peak), average oxygen consumption (V̇O2avg), peak heart rate (HRpeak), walking economy, metabolic equivalent of tasks for SCI (METssci), walk speed, and walk distance. Significant differences were observed between walk-1 and walk-2 for walk speed, total walk distance, V̇O2avg, and METssci. Exoskeleton-assisted walking resulted in %V̇O2peak range of 51.5% to 63.2%. The metabolic cost of exoskeleton-assisted walking ranged from 3.5 to 4.3 METssci. Persons with motor-complete SCI may be limited in their capacity to perform physical exercise to the extent needed to improve health and fitness. Based on preliminary data, cardiorespiratory and metabolic demands of exoskeleton-assisted walking are consistent with activities performed at a moderate intensity.

  2. Anticipatory changes in control of swing foot and lower limb joints when walking onto a moving surface traveling at constant speed.

    Science.gov (United States)

    Hsu, Wei-Chun; Wang, Ting-Ming; Lu, Hsuan-Lun; Lu, Tung-Wu

    2015-01-01

    Adapting to a predictable moving surface such as an escalator is a crucial part of daily locomotor tasks in modern cities. However, the associated biomechanics have remained unexplored. In a gait laboratory, fifteen young adults walked from the ground onto a moving or a static surface while their kinematic and kinetic data were obtained for calculating foot and pelvis motions, as well as the angles and moments of the lower limb joints. Between-surface-condition comparisons were performed using a paired t-test (α = 0.05). The results showed that anticipatory locomotor adjustments occurred at least a stride before successfully walking onto the moving surface, including increasing step length and speed in the trailing step (p moving surface (p > 0.05), mainly through reduced extension of the trailing hip but increased pelvic anterior tilt and leading swing ankle plantarflexion (p moving surfaces such as escalators. Copyright © 2014 Elsevier B.V. All rights reserved.

  3. Preconditioned conjugate-gradient methods for low-speed flow calculations

    Science.gov (United States)

    Ajmani, Kumud; Ng, Wing-Fai; Liou, Meng-Sing

    1993-01-01

    An investigation is conducted into the viability of using a generalized Conjugate Gradient-like method as an iterative solver to obtain steady-state solutions of very low-speed fluid flow problems. Low-speed flow at Mach 0.1 over a backward-facing step is chosen as a representative test problem. The unsteady form of the two dimensional, compressible Navier-Stokes equations is integrated in time using discrete time-steps. The Navier-Stokes equations are cast in an implicit, upwind finite-volume, flux split formulation. The new iterative solver is used to solve a linear system of equations at each step of the time-integration. Preconditioning techniques are used with the new solver to enhance the stability and convergence rate of the solver and are found to be critical to the overall success of the solver. A study of various preconditioners reveals that a preconditioner based on the Lower-Upper Successive Symmetric Over-Relaxation iterative scheme is more efficient than a preconditioner based on Incomplete L-U factorizations of the iteration matrix. The performance of the new preconditioned solver is compared with a conventional Line Gauss-Seidel Relaxation (LGSR) solver. Overall speed-up factors of 28 (in terms of global time-steps required to converge to a steady-state solution) and 20 (in terms of total CPU time on one processor of a CRAY-YMP) are found in favor of the new preconditioned solver, when compared with the LGSR solver.

  4. Preconditioned Conjugate Gradient methods for low speed flow calculations

    Science.gov (United States)

    Ajmani, Kumud; Ng, Wing-Fai; Liou, Meng-Sing

    1993-01-01

    An investigation is conducted into the viability of using a generalized Conjugate Gradient-like method as an iterative solver to obtain steady-state solutions of very low-speed fluid flow problems. Low-speed flow at Mach 0.1 over a backward-facing step is chosen as a representative test problem. The unsteady form of the two dimensional, compressible Navier-Stokes equations are integrated in time using discrete time-steps. The Navier-Stokes equations are cast in an implicit, upwind finite-volume, flux split formulation. The new iterative solver is used to solve a linear system of equations at each step of the time-integration. Preconditioning techniques are used with the new solver to enhance the stability and the convergence rate of the solver and are found to be critical to the overall success of the solver. A study of various preconditioners reveals that a preconditioner based on the lower-upper (L-U)-successive symmetric over-relaxation iterative scheme is more efficient than a preconditioner based on incomplete L-U factorizations of the iteration matrix. The performance of the new preconditioned solver is compared with a conventional line Gauss-Seidel relaxation (LGSR) solver. Overall speed-up factors of 28 (in terms of global time-steps required to converge to a steady-state solution) and 20 (in terms of total CPU time on one processor of a CRAY-YMP) are found in favor of the new preconditioned solver, when compared with the LGSR solver.

  5. The influence of step frequency on the range of perceptually natural visual walking speeds during walking-in-place and treadmill locomotion

    DEFF Research Database (Denmark)

    Nilsson, Niels Christian; Serafin, Stefania; Nordahl, Rolf

    2014-01-01

    Walking-In-Place (WIP) techniques make relatively natural walking experiences within immersive virtual environments possible when the physical interaction space is limited in size. In order to facilitate such experiences it is necessary to establish a natural connection between steps in place and...

  6. Development and numerical analysis of low specific speed mixed-flow pump

    International Nuclear Information System (INIS)

    Li, H F; Huo, Y W; Pan, Z B; Zhou, W C; He, M H

    2012-01-01

    With the development of the city, the market of the mixed flow pump with large flux and high head is prospect. The KSB Shanghai Pump Co., LTD decided to develop low speed specific speed mixed flow pump to meet the market requirements. Based on the centrifugal pump and axial flow pump model, aiming at the characteristics of large flux and high head, a new type of guide vane mixed flow pump was designed. The computational fluid dynamics method was adopted to analyze the internal flow of the new type model and predict its performances. The time-averaged Navier-Stokes equations were closed by SST k-ω turbulent model to adapt internal flow of guide vane with larger curvatures. The multi-reference frame(MRF) method was used to deal with the coupling of rotating impeller and static guide vane, and the SIMPLEC method was adopted to achieve the coupling solution of velocity and pressure. The computational results shows that there is great flow impact on the head of vanes at different working conditions, and there is great flow separation at the tailing of the guide vanes at different working conditions, and all will affect the performance of pump. Based on the computational results, optimizations were carried out to decrease the impact on the head of vanes and flow separation at the tailing of the guide vanes. The optimized model was simulated and its performance was predicted. The computational results show that the impact on the head of vanes and the separation at the tailing of the guide vanes disappeared. The high efficiency of the optimized pump is wide, and it fit the original design destination. The newly designed mixed flow pump is now in modeling and its experimental performance will be getting soon.

  7. Development and numerical analysis of low specific speed mixed-flow pump

    Science.gov (United States)

    Li, H. F.; Huo, Y. W.; Pan, Z. B.; Zhou, W. C.; He, M. H.

    2012-11-01

    With the development of the city, the market of the mixed flow pump with large flux and high head is prospect. The KSB Shanghai Pump Co., LTD decided to develop low speed specific speed mixed flow pump to meet the market requirements. Based on the centrifugal pump and axial flow pump model, aiming at the characteristics of large flux and high head, a new type of guide vane mixed flow pump was designed. The computational fluid dynamics method was adopted to analyze the internal flow of the new type model and predict its performances. The time-averaged Navier-Stokes equations were closed by SST k-ω turbulent model to adapt internal flow of guide vane with larger curvatures. The multi-reference frame(MRF) method was used to deal with the coupling of rotating impeller and static guide vane, and the SIMPLEC method was adopted to achieve the coupling solution of velocity and pressure. The computational results shows that there is great flow impact on the head of vanes at different working conditions, and there is great flow separation at the tailing of the guide vanes at different working conditions, and all will affect the performance of pump. Based on the computational results, optimizations were carried out to decrease the impact on the head of vanes and flow separation at the tailing of the guide vanes. The optimized model was simulated and its performance was predicted. The computational results show that the impact on the head of vanes and the separation at the tailing of the guide vanes disappeared. The high efficiency of the optimized pump is wide, and it fit the original design destination. The newly designed mixed flow pump is now in modeling and its experimental performance will be getting soon.

  8. Virtual Refrigerant Mass Flow and Power Sensors for Variable-Speed Compressors

    OpenAIRE

    Kim, Woohyun; Braun, James E.

    2012-01-01

    The use of variable-speed compressors in heat pumps and air conditioners has increased in recent years in order to improve comfort and energy efficiency. At the same time, there is a trend towards embedding more sensors in this type of equipment to facilitate real-time energy monitoring and diagnostics. Although compressor mass flow rate and power consumption are useful indices for performance monitoring and diagnostics, they are expensive to measure. The virtual variable-speed compressor sen...

  9. Effects of Initial Stance of Quadruped Trotting on Walking Stability

    Directory of Open Access Journals (Sweden)

    Peisun Ma

    2008-11-01

    Full Text Available It is very important for quadruped walking machine to keep its stability in high speed walking. It has been indicated that moment around the supporting diagonal line of quadruped in trotting gait largely influences walking stability. In this paper, moment around the supporting diagonal line of quadruped in trotting gait is modeled and its effects on body attitude are analyzed. The degree of influence varies with different initial stances of quadruped and we get the optimal initial stance of quadruped in trotting gait with maximal walking stability. Simulation results are presented.

  10. Online Speed Scaling Based on Active Job Count to Minimize Flow Plus Energy

    DEFF Research Database (Denmark)

    Lam, Tak-Wah; Lee, Lap Kei; To, Isaac K. K.

    2013-01-01

    This paper is concerned with online scheduling algorithms that aim at minimizing the total flow time plus energy usage. The results are divided into two parts. First, we consider the well-studied “simple” speed scaling model and show how to analyze a speed scaling algorithm (called AJC) that chan...

  11. Using GPS, accelerometry and heart rate to predict outdoor graded walking energy expenditure.

    Science.gov (United States)

    de Müllenheim, P-Y; Chaudru, S; Emily, M; Gernigon, M; Mahé, G; Bickert, S; Prioux, J; Noury-Desvaux, B; Le Faucheur, A

    2018-02-01

    To determine the best method and combination of methods among global positioning system (GPS), accelerometry, and heart rate (HR) for estimating energy expenditure (EE) during level and graded outdoor walking. Thirty adults completed 6-min outdoor walks at speeds of 2.0, 3.5, and 5.0kmh -1 during three randomized outdoor walking sessions: one level walking session and two graded (uphill and downhill) walking sessions on a 3.4% and a 10.4% grade. EE was measured using a portable metabolic system (K4b 2 ). Participants wore a GlobalSat ® DG100 GPS receiver, an ActiGraph™ wGT3X+ accelerometer, and a Polar ® HR monitor. Linear mixed models (LMMs) were tested for EE predictions based on GPS speed and grade, accelerometer counts or HR-related parameters (alone and combined). Root-mean-square error (RMSE) was used to determine the accuracy of the models. Published speed/grade-, count-, and HR-based equations were also cross-validated. According to the LMMs, GPS was as accurate as accelerometry (RMSE=0.89-0.90kcalmin -1 ) and more accurate than HR (RMSE=1.20kcalmin -1 ) for estimating EE during level walking; GPS was the most accurate method for estimating EE during both level and uphill (RMSE=1.34kcalmin -1 )/downhill (RMSE=0.84kcalmin -1 ) walking; combining methods did not increase the accuracy reached using GPS (or accelerometry for level walking). The cross-validation results were in accordance with the LMMs, except for downhill walking. Our study provides useful information regarding the best method(s) for estimating EE with appropriate equations during level and graded outdoor walking. Copyright © 2017 Sports Medicine Australia. Published by Elsevier Ltd. All rights reserved.

  12. the factors that affect the free flow speed on an arterial in ilorin, nigeria

    African Journals Online (AJOL)

    user

    lower average free flow speed of commercial saloon cars on wet pavement than on dry pavement, with 12% percentage ... average space mean speed in a low volume traffic stream when ..... travel way width and number of traffic control units.

  13. Modeling pedestrian crossing speed profiles considering speed change behavior for the safety assessment of signalized intersections.

    Science.gov (United States)

    Iryo-Asano, Miho; Alhajyaseen, Wael K M

    2017-11-01

    Pedestrian safety is one of the most challenging issues in road networks. Understanding how pedestrians maneuver across an intersection is the key to applying countermeasures against traffic crashes. It is known that the behaviors of pedestrians at signalized crosswalks are significantly different from those in ordinary walking spaces, and they are highly influenced by signal indication, potential conflicts with vehicles, and intersection geometries. One of the most important characteristics of pedestrian behavior at crosswalks is the possible sudden speed change while crossing. Such sudden behavioral change may not be expected by conflicting vehicles, which may lead to hazardous situations. This study aims to quantitatively model the sudden speed changes of pedestrians as they cross signalized crosswalks under uncongested conditions. Pedestrian speed profiles are collected from empirical data and speed change events are extracted assuming that the speed profiles are stepwise functions. The occurrence of speed change events is described by a discrete choice model as a function of the necessary walking speed to complete crossing before the red interval ends, current speed, and the presence of turning vehicles in the conflict area. The amount of speed change before and after the event is modeled using regression analysis. A Monte Carlo simulation is applied for the entire speed profile of the pedestrians. The results show that the model can represent the pedestrian travel time distribution more accurately than the constant speed model. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Gait characteristics under different walking conditions: Association with the presence of cognitive impairment in community-dwelling older people.

    Directory of Open Access Journals (Sweden)

    Anne-Marie De Cock

    Full Text Available Gait characteristics measured at usual pace may allow profiling in patients with cognitive problems. The influence of age, gender, leg length, modified speed or dual tasking is unclear.Cross-sectional analysis was performed on a data registry containing demographic, physical and spatial-temporal gait parameters recorded in five walking conditions with a GAITRite® electronic carpet in community-dwelling older persons with memory complaints. Four cognitive stages were studied: cognitively healthy individuals, mild cognitive impaired patients, mild dementia patients and advanced dementia patients.The association between spatial-temporal gait characteristics and cognitive stages was the most prominent: in the entire study population using gait speed, steps per meter (translation for mean step length, swing time variability, normalised gait speed (corrected for leg length and normalised steps per meter at all five walking conditions; in the 50-to-70 years old participants applying step width at fast pace and steps per meter at usual pace; in the 70-to-80 years old persons using gait speed and normalised gait speed at usual pace, fast pace, animal walk and counting walk or steps per meter and normalised steps per meter at all five walking conditions; in over-80 years old participants using gait speed, normalised gait speed, steps per meter and normalised steps per meter at fast pace and animal dual-task walking. Multivariable logistic regression analysis adjusted for gender predicted in two compiled models the presence of dementia or cognitive impairment with acceptable accuracy in persons with memory complaints.Gait parameters in multiple walking conditions adjusted for age, gender and leg length showed a significant association with cognitive impairment. This study suggested that multifactorial gait analysis could be more informative than using gait analysis with only one test or one variable. Using this type of gait analysis in clinical practice

  15. Kinetic theory of situated agents applied to pedestrian flow in a corridor

    Science.gov (United States)

    Rangel-Huerta, A.; Muñoz-Meléndez, A.

    2010-03-01

    A situated agent-based model for simulation of pedestrian flow in a corridor is presented. In this model, pedestrians choose their paths freely and make decisions based on local criteria for solving collision conflicts. The crowd consists of multiple walking agents equipped with a function of perception as well as a competitive rule-based strategy that enables pedestrians to reach free access areas. Pedestrians in our model are autonomous entities capable of perceiving and making decisions. They apply socially accepted conventions, such as avoidance rules, as well as individual preferences such as the use of specific exit points, or the execution of eventual comfort turns resulting in spontaneous changes of walking speed. Periodic boundary conditions were considered in order to determine the density-average walking speed, and the density-average activity with respect to specific parameters: comfort angle turn and frequency of angle turn of walking agents. The main contribution of this work is an agent-based model where each pedestrian is represented as an autonomous agent. At the same time the pedestrian crowd dynamics is framed by the kinetic theory of biological systems.

  16. Distinct sets of locomotor modules control the speed and modes of human locomotion

    Science.gov (United States)

    Yokoyama, Hikaru; Ogawa, Tetsuya; Kawashima, Noritaka; Shinya, Masahiro; Nakazawa, Kimitaka

    2016-01-01

    Although recent vertebrate studies have revealed that different spinal networks are recruited in locomotor mode- and speed-dependent manners, it is unknown whether humans share similar neural mechanisms. Here, we tested whether speed- and mode-dependence in the recruitment of human locomotor networks exists or not by statistically extracting locomotor networks. From electromyographic activity during walking and running over a wide speed range, locomotor modules generating basic patterns of muscle activities were extracted using non-negative matrix factorization. The results showed that the number of modules changed depending on the modes and speeds. Different combinations of modules were extracted during walking and running, and at different speeds even during the same locomotor mode. These results strongly suggest that, in humans, different spinal locomotor networks are recruited while walking and running, and even in the same locomotor mode different networks are probably recruited at different speeds. PMID:27805015

  17. Direct numerical simulation of laminar-turbulent flow over a flat plate at hypersonic flow speeds

    Science.gov (United States)

    Egorov, I. V.; Novikov, A. V.

    2016-06-01

    A method for direct numerical simulation of a laminar-turbulent flow around bodies at hypersonic flow speeds is proposed. The simulation is performed by solving the full three-dimensional unsteady Navier-Stokes equations. The method of calculation is oriented to application of supercomputers and is based on implicit monotonic approximation schemes and a modified Newton-Raphson method for solving nonlinear difference equations. By this method, the development of three-dimensional perturbations in the boundary layer over a flat plate and in a near-wall flow in a compression corner is studied at the Mach numbers of the free-stream of M = 5.37. In addition to pulsation characteristic, distributions of the mean coefficients of the viscous flow in the transient section of the streamlined surface are obtained, which enables one to determine the beginning of the laminar-turbulent transition and estimate the characteristics of the turbulent flow in the boundary layer.

  18. Impact of left ventricular assist device speed adjustment on exercise tolerance and markers of wall stress.

    Science.gov (United States)

    Hayward, Christopher S; Salamonsen, Robert; Keogh, Anne M; Woodard, John; Ayre, Peter; Prichard, Roslyn; Kotlyar, Eugene; Macdonald, Peter S; Jansz, Paul; Spratt, Phillip

    2015-09-01

    Left ventricular assist devices are crucial in rehabilitation of patients with end-stage heart failure. Whether cardiopulmonary function is enhanced with higher pump output is unknown. 10 patients (aged 39±16 years, mean±SD) underwent monitored adjustment of pump speed to determine minimum safe low speed and maximum safe high speed at rest. Patients were then randomized to these speed settings and underwent three 6-minute walk tests (6MWT) and symptom-limited cardiopulmonary stress tests (CPX) on separate days. Pump speed settings (low, normal and high) resulted in significantly different resting pump flows of 4.43±0.6, 5.03±0.94, and 5.72±1.2 l/min (Pexercise (Pexercise time (p=.27). Maximum workload achieved and peak oxygen consumption were significantly different comparing low to high pump speed settings only (Prelease was significantly reduced at higher pump speed with exercise (Prelease consistent with lower myocardial wall stress. This did not, however, improve exercise tolerance.

  19. Turbulent Scalar Transport Model Validation for High Speed Propulsive Flows, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — This effort entails the validation of a RANS turbulent scalar transport model (SFM) for high speed propulsive flows, using new experimental data sets and...

  20. Walking-Beam Solar-Cell Conveyor

    Science.gov (United States)

    Feder, H.; Frasch, W.

    1982-01-01

    Microprocessor-controlled walking-beam conveyor moves cells between work stations in automated assembly line. Conveyor has arm at each work station. In unison arms pick up all solar cells and advance them one station; then beam retracks to be in position for next step. Microprocessor sets beam stroke, speed, and position.

  1. Socioeconomic status, non-communicable disease risk factors, and walking speed in older adults: multi-cohort population based study.

    Science.gov (United States)

    Stringhini, Silvia; Carmeli, Cristian; Jokela, Markus; Avendaño, Mauricio; McCrory, Cathal; d'Errico, Angelo; Bochud, Murielle; Barros, Henrique; Costa, Giuseppe; Chadeau-Hyam, Marc; Delpierre, Cyrille; Gandini, Martina; Fraga, Silvia; Goldberg, Marcel; Giles, Graham G; Lassale, Camille; Kenny, Rose Anne; Kelly-Irving, Michelle; Paccaud, Fred; Layte, Richard; Muennig, Peter; Marmot, Michael G; Ribeiro, Ana Isabel; Severi, Gianluca; Steptoe, Andrew; Shipley, Martin J; Zins, Marie; Mackenbach, Johan P; Vineis, Paolo; Kivimäki, Mika

    2018-03-23

    To assess the association of low socioeconomic status and risk factors for non-communicable diseases (diabetes, high alcohol intake, high blood pressure, obesity, physical inactivity, smoking) with loss of physical functioning at older ages. Multi-cohort population based study. 37 cohort studies from 24 countries in Europe, the United States, Latin America, Africa, and Asia, 1990-2017. 109 107 men and women aged 45-90 years. Physical functioning assessed using the walking speed test, a valid index of overall functional capacity. Years of functioning lost was computed as a metric to quantify the difference in walking speed between those exposed and unexposed to low socioeconomic status and risk factors. According to mixed model estimations, men aged 60 and of low socioeconomic status had the same walking speed as men aged 66.6 of high socioeconomic status (years of functioning lost 6.6 years, 95% confidence interval 5.0 to 9.4). The years of functioning lost for women were 4.6 (3.6 to 6.2). In men and women, respectively, 5.7 (4.4 to 8.1) and 5.4 (4.3 to 7.3) years of functioning were lost by age 60 due to insufficient physical activity, 5.1 (3.9 to 7.0) and 7.5 (6.1 to 9.5) due to obesity, 2.3 (1.6 to 3.4) and 3.0 (2.3 to 4.0) due to hypertension, 5.6 (4.2 to 8.0) and 6.3 (4.9 to 8.4) due to diabetes, and 3.0 (2.2 to 4.3) and 0.7 (0.1 to 1.5) due to tobacco use. In analyses restricted to high income countries, the number of years of functioning lost attributable to low socioeconomic status by age 60 was 8.0 (5.7 to 13.1) for men and 5.4 (4.0 to 8.0) for women, whereas in low and middle income countries it was 2.6 (0.2 to 6.8) for men and 2.7 (1.0 to 5.5) for women. Within high income countries, the number of years of functioning lost attributable to low socioeconomic status by age 60 was greater in the United States than in Europe. Physical functioning continued to decline as a function of unfavourable risk factors between ages 60 and 85. Years of functioning

  2. Generating pulsatility by pump speed modulation with continuous-flow total artificial heart in awake calves.

    Science.gov (United States)

    Fukamachi, Kiyotaka; Karimov, Jamshid H; Sunagawa, Gengo; Horvath, David J; Byram, Nicole; Kuban, Barry D; Dessoffy, Raymond; Sale, Shiva; Golding, Leonard A R; Moazami, Nader

    2017-12-01

    The purpose of this study was to evaluate the effects of sinusoidal pump speed modulation of the Cleveland Clinic continuous-flow total artificial heart (CFTAH) on hemodynamics and pump flow in an awake chronic calf model. The sinusoidal pump speed modulations, performed on the day of elective sacrifice, were set at ±15 and ± 25% of mean pump speed at 80 bpm in four awake calves with a CFTAH. The systemic and pulmonary arterial pulse pressures increased to 12.0 and 12.3 mmHg (±15% modulation) and to 15.9 and 15.7 mmHg (±25% modulation), respectively. The pulsatility index and surplus hemodynamic energy significantly increased, respectively, to 1.05 and 1346 ergs/cm at ±15% speed modulation and to 1.51 and 3381 ergs/cm at ±25% speed modulation. This study showed that it is feasible to generate pressure pulsatility with pump speed modulation; the platform is suitable for evaluating the physiologic impact of pulsatility and allows determination of the best speed modulations in terms of magnitude, frequency, and profiles.

  3. Older adults adopted more cautious gait patterns when walking in socks than barefoot.

    Science.gov (United States)

    Tsai, Yi-Ju; Lin, Sang-I

    2013-01-01

    Walking barefoot or in socks is common for ambulating indoors and has been reported to be associated with increased risk of falls and related injuries in the elderly. This study sought to determine if gait patterns differed between these two conditions for young and older adults. A motion analysis system was used to record and calculate the stride characteristics and motion of the body's center of mass (COM) of 21 young and 20 older adults. For the walking tasks, the participants walked on a smooth floor surface at their preferred speed either barefoot or in socks in a random order. The socks were commercially available and commonly used. The results demonstrated that while walking in socks, compared with walking barefoot, older adults adopted a more cautious gait pattern including decreased walking speed and shortened stride length as well as reduced COM minimal velocity during the single limb support phase. Young adults, however, did not demonstrate significant changes. These findings suggest that walking with socks might present a greater balance threat for older adults. Clinically, safety precautions about walking in socks should be considered to be given to older adults, especially those with balance deficits. Copyright © 2012 Elsevier B.V. All rights reserved.

  4. A Real-Time Method to Estimate Speed of Object Based on Object Detection and Optical Flow Calculation

    Science.gov (United States)

    Liu, Kaizhan; Ye, Yunming; Li, Xutao; Li, Yan

    2018-04-01

    In recent years Convolutional Neural Network (CNN) has been widely used in computer vision field and makes great progress in lots of contents like object detection and classification. Even so, combining Convolutional Neural Network, which means making multiple CNN frameworks working synchronously and sharing their output information, could figure out useful message that each of them cannot provide singly. Here we introduce a method to real-time estimate speed of object by combining two CNN: YOLOv2 and FlowNet. In every frame, YOLOv2 provides object size; object location and object type while FlowNet providing the optical flow of whole image. On one hand, object size and object location help to select out the object part of optical flow image thus calculating out the average optical flow of every object. On the other hand, object type and object size help to figure out the relationship between optical flow and true speed by means of optics theory and priori knowledge. Therefore, with these two key information, speed of object can be estimated. This method manages to estimate multiple objects at real-time speed by only using a normal camera even in moving status, whose error is acceptable in most application fields like manless driving or robot vision.

  5. Walk-Startup of a Two-Legged Walking Mechanism

    Science.gov (United States)

    Babković, Kalman; Nagy, László; Krklješ, Damir; Borovac, Branislav

    There is a growing interest towards humanoid robots. One of their most important characteristic is the two-legged motion - walk. Starting and stopping of humanoid robots introduce substantial delays. In this paper, the goal is to explore the possibility of using a short unbalanced state of the biped robot to quickly gain speed and achieve the steady state velocity during a period shorter than half of the single support phase. The proposed method is verified by simulation. Maintainig a steady state, balanced gait is not considered in this paper.

  6. Burst Speed of Wild Fishes under High-Velocity Flow Conditions Using Stamina Tunnel with Natural Guidance System in River

    Science.gov (United States)

    Izumi, Mattashi; Yamamoto, Yasuyuki; Yataya, Kenichi; Kamiyama, Kohhei

    Swimming experiments were conducted on wild fishes in a natural guidance system stamina tunnel (cylindrical pipe) installed in a fishway of a local river under high-velocity flow conditions (tunnel flow velocity : 211 to 279 cm·s-1). In this study, the swimming characteristics of fishes were observed. The results show that (1) the swimming speeds of Tribolodon hakonensis (Japanese dace), Phoxinus lagowshi steindachneri (Japanese fat-minnow), Plecoglossus altivelis (Ayu), and Zacco platypus (Pale chub) were in proportion to their body length under identical water flow velocity conditions; (2) the maximum burst speed of Japanese dace and Japanese fat-minnow (measuring 4 to 6 cm in length) was 262 to 319 cm·s-1 under high flow velocity conditions (225 to 230 cm·s-1), while the maximum burst speed of Ayu and Pale chub (measuring 5 cm to 12 cm in length) was 308 to 355 cm·s-1 under high flow velocity conditions (264 to 273 cm·s-1) ; (3) the 50cm-maximum swimming speed of swimming fishes was 1.07 times faster than the pipe-swimming speed; (4) the faster the flow velocity, the shorter the swimming distance became.

  7. Displacement of the pelvis during human walking : experimental data and model predictions

    NARCIS (Netherlands)

    Zijlstra, W; Hof, AL

    1997-01-01

    Displacements of the pelvis during treadmill walking were studied in dependence of walking speed, stride frequency and stride length. Displacement curves per stride cycle were described by means of harmonic analysis. Simple mechanical, or geometrical models of the body's center of mass (COM)

  8. Concurrent Flame Growth, Spread and Extinction over Composite Fabric Samples in Low Speed Purely Forced Flow in Microgravity

    Science.gov (United States)

    Zhao, Xiaoyang; T'ien, James S.; Ferkul, Paul V.; Olson, Sandra L.

    2015-01-01

    As a part of the NASA BASS and BASS-II experimental projects aboard the International Space Station, flame growth, spread and extinction over a composite cotton-fiberglass fabric blend (referred to as the SIBAL fabric) were studied in low-speed concurrent forced flows. The tests were conducted in a small flow duct within the Microgravity Science Glovebox. The fuel samples measured 1.2 and 2.2 cm wide and 10 cm long. Ambient oxygen was varied from 21% down to 16% and flow speed from 40 cm/s down to 1 cm/s. A small flame resulted at low flow, enabling us to observe the entire history of flame development including ignition, flame growth, steady spread (in some cases) and decay at the end of the sample. In addition, by decreasing flow velocity during some of the tests, low-speed flame quenching extinction limits were found as a function of oxygen percentage. The quenching speeds were found to be between 1 and 5 cm/s with higher speed in lower oxygen atmosphere. The shape of the quenching boundary supports the prediction by earlier theoretical models. These long duration microgravity experiments provide a rare opportunity for solid fuel combustion since microgravity time in ground-based facilities is generally not sufficient. This is the first time that a low-speed quenching boundary in concurrent spread is determined in a clean and unambiguous manner.

  9. Hearing acuity as a predictor of walking difficulties in older women.

    Science.gov (United States)

    Viljanen, Anne; Kaprio, Jaakko; Pyykkö, Ilmari; Sorri, Martti; Koskenvuo, Markku; Rantanen, Taina

    2009-12-01

    To examine whether hearing acuity correlates with walking ability and whether impaired hearing at baseline predicts new self-reported walking difficulties after 3 years. Prospective follow-up. Research laboratory and community. Four hundred thirty-four women aged 63 to 76. Hearing was measured using clinical audiometry. A person was defined as having a hearing impairment if a pure-tone average of thresholds at 0.5 to 4 kHz in the better ear was 21 dB or greater. Maximal walking speed was measured over 10 m (m/s), walking endurance as the distance (m), covered in 6 minutes and difficulties in walking 2 km according to self-report. At baseline, women with hearing impairment (n=179) had slower maximal walking speed (1.7 +/- 0.3 m/s vs 1.8 +/- 0.3 m/s, P=.007), lower walking endurance (520 +/- 75 m vs 536 +/- 75 m, P=.08), and more selfreported major difficulties in walking 2 km (12.8% vs 5.5%, P=.02) than those without hearing impairment. During follow-up, major walking difficulties developed for 33 participants. Women with hearing impairment at baseline had a twice the age-adjusted risk for new walking difficulties as those without hearing impairment (odds ratio=2.04, 95% confidence interval=0.96-4.33). Hearing acuity correlated with mobility, which may be explained by the association between impaired hearing and poor balance and greater risk for falls, both of which underlie decline in mobility. Prevention of hearing loss is not only important for the ability to communicate, but may also have more wide-ranging influences on functional ability.

  10. The influence of air flow speed on fire propagation in object

    Directory of Open Access Journals (Sweden)

    Jevtić Radoje

    2015-01-01

    Full Text Available Fire presents the process of the uncontrolled combustion that makes material damage and endangers human lives. It is important to know the factors that fire depends on for success projecting and realization of fire protection systems. One of such factors is different air flow that could be presented as wind, draft and the like. The simulation of different air flow speeds and its influences on fire propagation in object were analyzed in this paper.

  11. Application of PIV to the Measurement of High Speed Jet Flows

    Science.gov (United States)

    Lourenco, L.

    1999-01-01

    The Particle Image Velocimetry, PIV, has been implemented for the investigation of high-speed jet flows at the NASA Langley Research Center. In this approach the velocity (displacement) is found as the location of a peak in the correlation map of particle images acquired in quick succession. In the study, the technique for the correct seeding of the flow field were developed and implemented and the operational parameters influencing the accuracy of the measurement have been optimized.

  12. Energy expenditure and physiological responses during walking on a treadmill and moving on the Torqway vehicle.

    Science.gov (United States)

    Maciejczyk, Marcin; Wiecek, Magdalena; Szymura, Jadwiga; Szygula, Zbigniew

    2016-01-01

    One of the new products which can be used to increase physical activity and energy expenditure is the Torqway vehicle, powered by the upper limbs. The aim of this study was to (1) assess the usefulness and repeatability of the Torqway vehicle for physical exercise, (2) compare energy expenditure and physiological responses during walking on a treadmill and during physical effort while moving on the Torqway at a constant speed. The participants (11 men, aged 20.2 ± 1.3) performed the incremental test and submaximal exercises (walking on the treadmill and moving on the Torqway vehicle at the same speed). Energy expenditure during the exercise on the Torqway was significantly higher (p = 0.001) than during the walking performed at the same speed. The intensity of the exercise performed on the Torqway expressed as %VO2max and %HRmax was significantly ( p walking (respectively: 35.0 ± 6.0 vs. 29.4 ± 7.4 %VO2max and 65.1 ± 7.3 vs. 47.2 ± 7.4 %HRmax). Exercise on the Torqway vehicle allows for the intensification of the exercise at a low movement speed, comparable to walking. Moving on the Torqway vehicle could be an effective alternative activity for physical fitness and exercise rehabilitation programs.

  13. The adaptation of limb kinematics to increasing walking speeds in freely moving mice 129/Sv and C57BL/6.

    Science.gov (United States)

    Serradj, Nadjet; Jamon, Marc

    2009-07-19

    The kinematics of locomotion was analyzed in two strains of great importance for the creation of mutated mice (C56BL/6 and 129/Sv). Different behavioral situations were used to trigger sequences of movement covering the whole range of velocities in the mice, and the variations of kinematic parameters were analyzed in relation with velocity. Both stride frequency and stride length contributed to the moving speed, but stride frequency was found to be the main contributor to the speed increase. A trot-gallop transition was detected at speed about 70 cm/s, in relation with a sharp shift in limb coordination. The results of this study were consistent with pieces of information previously published concerning the gait analyses of other strains, and provided an integrative view of the basic motor pattern of mice. On the other hand some qualitative differences were found in the movement characteristics of the two strains. The stride frequency showed a higher contribution to speed in 129/Sv than in C57BL/6. In addition, 129/Sv showed a phase shift in the forelimb and hindlimb, and a different position of the foot during the stance time that revealed a different gait and body position during walking. Overall, 129/Sv moved at a slower speed than C57BL/6 in any behavioral situation. This difference was related to a basal lower level of motor activity. The possibility that an alteration in the dopamine circuit was responsible for the different movement pattern in 129/Sv is discussed.

  14. Relationship between quantum walks and relativistic quantum mechanics

    International Nuclear Information System (INIS)

    Chandrashekar, C. M.; Banerjee, Subhashish; Srikanth, R.

    2010-01-01

    Quantum walk models have been used as an algorithmic tool for quantum computation and to describe various physical processes. This article revisits the relationship between relativistic quantum mechanics and the quantum walks. We show the similarities of the mathematical structure of the decoupled and coupled forms of the discrete-time quantum walk to that of the Klein-Gordon and Dirac equations, respectively. In the latter case, the coin emerges as an analog of the spinor degree of freedom. Discrete-time quantum walk as a coupled form of the continuous-time quantum walk is also shown by transforming the decoupled form of the discrete-time quantum walk to the Schroedinger form. By showing the coin to be a means to make the walk reversible and that the Dirac-like structure is a consequence of the coin use, our work suggests that the relativistic causal structure is a consequence of conservation of information. However, decoherence (modeled by projective measurements on position space) generates entropy that increases with time, making the walk irreversible and thereby producing an arrow of time. The Lieb-Robinson bound is used to highlight the causal structure of the quantum walk to put in perspective the relativistic structure of the quantum walk, the maximum speed of walk propagation, and earlier findings related to the finite spread of the walk probability distribution. We also present a two-dimensional quantum walk model on a two-state system to which the study can be extended.

  15. Lower limb joint moment during walking in water.

    Science.gov (United States)

    Miyoshi, Tasuku; Shirota, Takashi; Yamamoto, Shin-Ichiro; Nakazawa, Kimitaka; Akai, Masami

    2003-11-04

    Walking in water is a widely used rehabilitation method for patients with orthopedic disorders or arthritis, based on the belief that the reduction of weight in water makes it a safer medium and prevents secondary injuries of the lower-limb joints. To our knowledge, however, no experimental data on lower-limb joint moment during walking in water is available. The aim of this study was to quantify the joint moments of the ankle, knee, and hip during walking in water in comparison with those on land. Eight healthy volunteers walked on land and in water at a speed comfortable for them. A video-motion analysis system and waterproof force platform were used to obtain kinematic data and to calculate the joint moments. The hip joint moment was shown to be an extension moment almost throughout the stance phase during walking in water, while it changed from an extension- to flexion-direction during walking on land. The knee joint moment had two extension peaks during walking on land, whereas it had only one extension peak, a late one, during walking in water. The ankle joint moment during walking in water was considerably reduced but in the same direction, plantarflexion, as that during walking on land. The joint moments of the hip, knee, and ankle were not merely reduced during walking in water; rather, inter-joint coordination was totally changed.

  16. Numerical analysis of high-speed liquid lithium free-surface flow

    International Nuclear Information System (INIS)

    Gordeev, Sergej; Heinzel, Volker; Stieglitz, Robert

    2012-01-01

    Highlights: ► The free surface behavior of a high speed lithium jet is investigated by means of a CFD LES analysis. ► The study is aiming to validate adequate LES technique. ► The Osaka University experiments with liquid lithium jet have been simulated. ► Four cases with jet flow velocities of 4, 9, 13 and 15 m/s are analyzed. ► Calculation results show a good qualitative and a quantitative agreement with the experimental data. - Abstract: The free-surface stability of the target of the International Fusion Material Irradiation Facility (IFMIF) is one of the crucial issues, since the spatio-temporal behavior of the free-surface determines the neutron flux to be generated. This article investigates the relation between the evolution of a wall boundary layer in a convergent nozzle and the free surface shape of a high speed lithium jet by means of a CFD LES analysis using the Osaka University experiments. The study is aiming to validate adequate LES technique to analyze the individual flow phenomena observed. Four cases with jet flow velocities of 4, 9, 13 and 15 m/s are analyzed. First analyses of calculation results show that the simulation exhibits a good qualitative and a quantitative agreement with the experimental data, which allows in the future a more realistic prediction of the IFMIF target behavior.

  17. The influence of water depth on kinematic and spatiotemporal gait parameters during aquatic treadmill walking.

    Science.gov (United States)

    Jung, Taeyou; Kim, Yumi; Lim, Hyosok; Vrongistinos, Konstantinos

    2018-01-16

    The purpose of this study was to investigate kinematic and spatiotemporal variables of aquatic treadmill walking at three different water depths. A total of 15 healthy individuals completed three two-minute walking trials at three different water depths. The aquatic treadmill walking was conducted at waist-depth, chest-depth and neck-depth, while a customised 3-D underwater motion analysis system captured their walking. Each participant's self-selected walking speed at the waist level was used as a reference speed, which was applied to the remaining two test conditions. A repeated measures ANOVA showed statistically significant differences among the three walking conditions in stride length, cadence, peak hip extension, hip range of motion (ROM), peak ankle plantar flexion and ankle ROM (All p values hip ROM as the water depth rose from waist and chest to the neck level. However, our study found no significant difference between waist and chest level water in all variables. Hydrodynamics, such as buoyancy and drag force, in response to changes in water depths, can affect gait patterns during aquatic treadmill walking.

  18. Advancement and Application of Multi-Phase CFD Modeling to High Speed Supercavitating Flows

    Science.gov (United States)

    2013-08-13

    October 2008 - December 2013 4. TITLE AND SUBTITLE Advancement and Application of Multi-Phase CFD Modeling to High Speed Supercavitating Flows...influence cavity hysteresis behavior. These observations are used to guide improved supercavitating -vehicle analyses including numerical predictions...experiments, and modeling 15. SUBJECT TERMS supercavitation , computational fluid dynamics, multiphase flow 16. SECURITY CLASSIFICATION OF: a

  19. Mechanical and neural stretch responses of the human soleus muscle at different walking speeds

    DEFF Research Database (Denmark)

    Cronin, Neil J; Ishikawa, Masaki; Grey, Michael J

    2009-01-01

    responses. Twelve healthy subjects walked on a treadmill with the left leg attached to an actuator capable of rapidly dorsiflexing the ankle joint. Ultrasound was used to measure fascicle lengths in SOL during walking, and surface electromyography (EMG) was used to record muscle activation. Dorsiflexion...

  20. Cardiovascular Responses Associated with Daily Walking in Subacute Stroke

    Directory of Open Access Journals (Sweden)

    Sanjay K. Prajapati

    2013-01-01

    Full Text Available Despite the importance of regaining independent ambulation after stroke, the amount of daily walking completed during in-patient rehabilitation is low. The purpose of this study is to determine if (1 walking-related heart rate responses reached the minimum intensity necessary for therapeutic aerobic exercise (40%–60% heart rate reserve or (2 heart rate responses during bouts of walking revealed excessive workload that may limit walking (>80% heart rate reserve. Eight individuals with subacute stroke attending in-patient rehabilitation were recruited. Participants wore heart rate monitors and accelerometers during a typical rehabilitation day. Walking-related changes in heart rate and walking bout duration were determined. Patients did not meet the minimum cumulative requirements of walking intensity (>40% heart rate reserve and duration (>10 minutes continuously necessary for cardiorespiratory benefit. Only one patient exceeded 80% heart rate reserve. The absence of significant increases in heart rate associated with walking reveals that patients chose to walk at speeds well below a level that has meaningful cardiorespiratory health benefits. Additionally, cardiorespiratory workload is unlikely to limit participation in walking. Measurement of heart rate and walking during in-patient rehabilitation may be a useful approach to encourage patients to increase the overall physical activity and to help facilitate recovery.

  1. Sympathetic nervous system activity measured by skin conductance quantifies the challenge of walking adaptability tasks after stroke.

    Science.gov (United States)

    Clark, David J; Chatterjee, Sudeshna A; McGuirk, Theresa E; Porges, Eric C; Fox, Emily J; Balasubramanian, Chitralakshmi K

    2018-02-01

    Walking adaptability tasks are challenging for people with motor impairments. The construct of perceived challenge is typically measured by self-report assessments, which are susceptible to subjective measurement error. The development of an objective physiologically-based measure of challenge may help to improve the ability to assess this important aspect of mobility function. The objective of this study to investigate the use of sympathetic nervous system (SNS) activity measured by skin conductance to gauge the physiological stress response to challenging walking adaptability tasks in people post-stroke. Thirty adults with chronic post-stroke hemiparesis performed a battery of seventeen walking adaptability tasks. SNS activity was measured by skin conductance from the palmar surface of each hand. The primary outcome variable was the percent change in skin conductance level (ΔSCL) between the baseline resting and walking phases of each task. Task difficulty was measured by performance speed and by physical therapist scoring of performance. Walking function and balance confidence were measured by preferred walking speed and the Activities-specific Balance Confidence Scale, respectively. There was a statistically significant negative association between ΔSCL and task performance speed and between ΔSCL and clinical score, indicating that tasks with greater SNS activity had slower performance speed and poorer clinical scores. ΔSCL was significantly greater for low functioning participants versus high functioning participants, particularly during the most challenging walking adaptability tasks. This study supports the use of SNS activity measured by skin conductance as a valuable approach for objectively quantifying the perceived challenge of walking adaptability tasks in people post-stroke. Published by Elsevier B.V.

  2. Insights into gait disorders: walking variability using phase plot analysis, Parkinson's disease.

    Science.gov (United States)

    Esser, Patrick; Dawes, Helen; Collett, Johnny; Howells, Ken

    2013-09-01

    Gait variability may have greater utility than spatio-temporal parameters and can, be an indication for risk of falling in people with Parkinson's disease (PD). Current methods rely on prolonged data collection in order to obtain large datasets which may be demanding to obtain. We set out to explore a phase plot variability analysis to differentiate typically developed adults (TDAs) from PD obtained from two 10 m walks. Fourteen people with PD and good mobility (Rivermead Mobility Index≥8) and ten aged matched TDA were recruited and walked over 10-m at self-selected walking speed. An inertial measurement unit was placed over the projected centre of mass (CoM) sampling at 100 Hz. Vertical CoM excursion was derived to determine modelled spatiotemporal data after which the phase plot analysis was applied producing a cloud of datapoints. SDA described the spread and SDB the width of the cloud with β the angular vector of the data points. The ratio (∀) was defined as SDA: SDB. Cadence (p=.342) and stride length (p=.615) did not show a significance between TDA and PD. A difference was found for walking speed (p=.041). Furthermore a significant difference was found for β (p=.010), SDA (p=.004) other than SDB (p=.385) or ratio ∀ (p=.830). Two sequential 10-m walks showed no difference in PD for cadence (p=.193), stride length (p=.683), walking speed (p=.684) and β (p=.194), SDA (p=.051), SDB (p=.145) or ∀ (p=.226). The proposed phase plot analysis, performed on CoM motion could be used to reliably differentiate PD from TDA over a 10-m walk. Copyright © 2013 Elsevier B.V. All rights reserved.

  3. From medium heterogeneity to flow and transport: A time-domain random walk approach

    Science.gov (United States)

    Hakoun, V.; Comolli, A.; Dentz, M.

    2017-12-01

    The prediction of flow and transport processes in heterogeneous porous media is based on the qualitative and quantitative understanding of the interplay between 1) spatial variability of hydraulic conductivity, 2) groundwater flow and 3) solute transport. Using a stochastic modeling approach, we study this interplay through direct numerical simulations of Darcy flow and advective transport in heterogeneous media. First, we study flow in correlated hydraulic permeability fields and shed light on the relationship between the statistics of log-hydraulic conductivity, a medium attribute, and the flow statistics. Second, we determine relationships between Eulerian and Lagrangian velocity statistics, this means, between flow and transport attributes. We show how Lagrangian statistics and thus transport behaviors such as late particle arrival times are influenced by the medium heterogeneity on one hand and the initial particle velocities on the other. We find that equidistantly sampled Lagrangian velocities can be described by a Markov process that evolves on the characteristic heterogeneity length scale. We employ a stochastic relaxation model for the equidistantly sampled particle velocities, which is parametrized by the velocity correlation length. This description results in a time-domain random walk model for the particle motion, whose spatial transitions are characterized by the velocity correlation length and temporal transitions by the particle velocities. This approach relates the statistical medium and flow properties to large scale transport, and allows for conditioning on the initial particle velocities and thus to the medium properties in the injection region. The approach is tested against direct numerical simulations.

  4. Effects of different frequencies of rhythmic auditory cueing on the stride length, cadence, and gait speed in healthy young females.

    Science.gov (United States)

    Yu, Lili; Zhang, Qi; Hu, Chunying; Huang, Qiuchen; Ye, Miao; Li, Desheng

    2015-02-01

    [Purpose] The aim of this study was to explore the effects of different frequencies of rhythmic auditory cueing (RAC) on stride length, cadence, and gait speed in healthy young females. The findings of this study might be used as clinical guidance of physical therapy for choosing the suitable frequency of RAC. [Subjects] Thirteen healthy young females were recruited in this study. [Methods] Ten meters walking tests were measured in all subjects under 4 conditions with each repeated 3 times and a 3-min seated rest period between repetitions. Subjects first walked as usual and then were asked to listen carefully to the rhythm of a metronome and walk with 3 kinds of RAC (90%, 100%, and 110% of the mean cadence). The three frequencies (90%, 100%, and 110%) of RAC were randomly assigned. Gait speed, stride length, and cadence were calculated, and a statistical analysis was performed using the SPSS (version 17.0) computer package. [Results] The gait speed and cadence of 90% RAC walking showed significant decreases compared with normal walking and 100% and 110% RAC walking. The stride length, cadence, and gait speed of 110% RAC walking showed significant increases compared with normal walking and 90% and 100% RAC walking. [Conclusion] Our results showed that 110% RAC was the best of the 3 cueing frequencies for improvement of stride length, cadence, and gait speed in healthy young females.

  5. Ground reaction forces during level ground walking with body weight unloading

    Science.gov (United States)

    Barela, Ana M. F.; de Freitas, Paulo B.; Celestino, Melissa L.; Camargo, Marcela R.; Barela, José A.

    2014-01-01

    Background: Partial body weight support (BWS) systems have been broadly used with treadmills as a strategy for gait training of individuals with gait impairments. Considering that we usually walk on level ground and that BWS is achieved by altering the load on the plantar surface of the foot, it would be important to investigate some ground reaction force (GRF) parameters in healthy individuals walking on level ground with BWS to better implement rehabilitation protocols for individuals with gait impairments. Objective: To describe the effects of body weight unloading on GRF parameters as healthy young adults walked with BWS on level ground. Method: Eighteen healthy young adults (27±4 years old) walked on a walkway, with two force plates embedded in the middle of it, wearing a harness connected to a BWS system, with 0%, 15%, and 30% BWS. Vertical and horizontal peaks and vertical valley of GRF, weight acceptance and push-off rates, and impulse were calculated and compared across the three experimental conditions. Results: Overall, participants walked more slowly with the BWS system on level ground compared to their normal walking speed. As body weight unloading increased, the magnitude of the GRF forces decreased. Conversely, weight acceptance rate was similar among conditions. Conclusions: Different amounts of body weight unloading promote different outputs of GRF parameters, even with the same mean walk speed. The only parameter that was similar among the three experimental conditions was the weight acceptance rate. PMID:25590450

  6. Ground reaction forces during level ground walking with body weight unloading

    Directory of Open Access Journals (Sweden)

    Ana M. F. Barela

    2014-12-01

    Full Text Available Background: Partial body weight support (BWS systems have been broadly used with treadmills as a strategy for gait training of individuals with gait impairments. Considering that we usually walk on level ground and that BWS is achieved by altering the load on the plantar surface of the foot, it would be important to investigate some ground reaction force (GRF parameters in healthy individuals walking on level ground with BWS to better implement rehabilitation protocols for individuals with gait impairments. Objective: To describe the effects of body weight unloading on GRF parameters as healthy young adults walked with BWS on level ground. Method: Eighteen healthy young adults (27±4 years old walked on a walkway, with two force plates embedded in the middle of it, wearing a harness connected to a BWS system, with 0%, 15%, and 30% BWS. Vertical and horizontal peaks and vertical valley of GRF, weight acceptance and push-off rates, and impulse were calculated and compared across the three experimental conditions. Results: Overall, participants walked more slowly with the BWS system on level ground compared to their normal walking speed. As body weight unloading increased, the magnitude of the GRF forces decreased. Conversely, weight acceptance rate was similar among conditions. Conclusions: Different amounts of body weight unloading promote different outputs of GRF parameters, even with the same mean walk speed. The only parameter that was similar among the three experimental conditions was the weight acceptance rate.

  7. Estimation of Engine Intake Air Mass Flow using a generic Speed-Density method

    Directory of Open Access Journals (Sweden)

    Vojtíšek Michal

    2014-10-01

    Full Text Available Measurement of real driving emissions (RDE from internal combustion engines under real-world operation using portable, onboard monitoring systems (PEMS is becoming an increasingly important tool aiding the assessment of the effects of new fuels and technologies on environment and human health. The knowledge of exhaust flow is one of the prerequisites for successful RDE measurement with PEMS. One of the simplest approaches for estimating the exhaust flow from virtually any engine is its computation from the intake air flow, which is calculated from measured engine rpm and intake manifold charge pressure and temperature using a generic speed-density algorithm, applicable to most contemporary four-cycle engines. In this work, a generic speed-density algorithm was compared against several reference methods on representative European production engines - a gasoline port-injected automobile engine, two turbocharged diesel automobile engines, and a heavy-duty turbocharged diesel engine. The overall results suggest that the uncertainty of the generic speed-density method is on the order of 10% throughout most of the engine operating range, but increasing to tens of percent where high-volume exhaust gas recirculation is used. For non-EGR engines, such uncertainty is acceptable for many simpler and screening measurements, and may be, where desired, reduced by engine-specific calibration.

  8. Using wind speed from a blade-mounted flow sensor for power and load assessment on modern wind turbines

    Directory of Open Access Journals (Sweden)

    M. M. Pedersen

    2017-11-01

    Full Text Available In this paper an alternative method to evaluate power performance and loads on wind turbines using a blade-mounted flow sensor is investigated. The hypothesis is that the wind speed measured at the blades has a high correlation with the power and loads such that a power or load assessment can be performed from a few hours or days of measurements.In the present study a blade-mounted five-hole pitot tube is used as the flow sensor as an alternative to the conventional approach, where the reference wind speed is either measured at a nearby met mast or on the nacelle using lidar technology or cup anemometers. From the flow sensor measurements, an accurate estimate of the wind speed at the rotor plane can be obtained. This wind speed is disturbed by the presence of the wind turbine, and it is therefore different from the free-flow wind speed. However, the recorded wind speed has a high correlation with the actual power production as well as the flap-wise loads as it is measured close to the blade where the aerodynamic forces are acting.Conventional power curves are based on at least 180 h of 10 min mean values, but using the blade-mounted flow sensor both the observation average time and the overall assessment time can potentially be shortened. The basis for this hypothesis is that the sensor is able to provide more observations with higher accuracy, as the sensor follows the rotation of the rotor and because of the high correlation between the flow at the blades and the power production. This is the research question addressed in this paper.The method is first tested using aeroelastic simulations where the dependence of the radial position and effect of multiple blade-mounted flow sensors are also investigated. Next the method is evaluated on the basis of full-scale measurements on a pitch-regulated, variable-speed 3.6 MW wind turbine.It is concluded that the wind speed derived from the blade-mounted flow sensor is highly correlated with the

  9. Reliability and validity of a smartphone-based assessment of gait parameters across walking speed and smartphone locations: Body, bag, belt, hand, and pocket.

    Science.gov (United States)

    Silsupadol, Patima; Teja, Kunlanan; Lugade, Vipul

    2017-10-01

    The assessment of spatiotemporal gait parameters is a useful clinical indicator of health status. Unfortunately, most assessment tools require controlled laboratory environments which can be expensive and time consuming. As smartphones with embedded sensors are becoming ubiquitous, this technology can provide a cost-effective, easily deployable method for assessing gait. Therefore, the purpose of this study was to assess the reliability and validity of a smartphone-based accelerometer in quantifying spatiotemporal gait parameters when attached to the body or in a bag, belt, hand, and pocket. Thirty-four healthy adults were asked to walk at self-selected comfortable, slow, and fast speeds over a 10-m walkway while carrying a smartphone. Step length, step time, gait velocity, and cadence were computed from smartphone-based accelerometers and validated with GAITRite. Across all walking speeds, smartphone data had excellent reliability (ICC 2,1 ≥0.90) for the body and belt locations, with bag, hand, and pocket locations having good to excellent reliability (ICC 2,1 ≥0.69). Correlations between the smartphone-based and GAITRite-based systems were very high for the body (r=0.89, 0.98, 0.96, and 0.87 for step length, step time, gait velocity, and cadence, respectively). Similarly, Bland-Altman analysis demonstrated that the bias approached zero, particularly in the body, bag, and belt conditions under comfortable and fast speeds. Thus, smartphone-based assessments of gait are most valid when placed on the body, in a bag, or on a belt. The use of a smartphone to assess gait can provide relevant data to clinicians without encumbering the user and allow for data collection in the free-living environment. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Mixed Platoon Flow Dispersion Model Based on Speed-Truncated Gaussian Mixture Distribution

    Directory of Open Access Journals (Sweden)

    Weitiao Wu

    2013-01-01

    Full Text Available A mixed traffic flow feature is presented on urban arterials in China due to a large amount of buses. Based on field data, a macroscopic mixed platoon flow dispersion model (MPFDM was proposed to simulate the platoon dispersion process along the road section between two adjacent intersections from the flow view. More close to field observation, truncated Gaussian mixture distribution was adopted as the speed density distribution for mixed platoon. Expectation maximum (EM algorithm was used for parameters estimation. The relationship between the arriving flow distribution at downstream intersection and the departing flow distribution at upstream intersection was investigated using the proposed model. Comparison analysis using virtual flow data was performed between the Robertson model and the MPFDM. The results confirmed the validity of the proposed model.

  11. Treadmill training improves overground walking economy in Parkinson’s disease: A randomized, controlled pilot study

    Directory of Open Access Journals (Sweden)

    Miguel eFERNANDEZ-DEL-OLMO

    2014-09-01

    Full Text Available Gait disturbances are one of the principal and most incapacitating symptoms of Parkinson’s disease (PD. In addition, walking economy is impaired in PD patients and could contribute to excess fatigue in this population. An important number of studies have shown that treadmill training can improve kinematic parameters in PD patients. However, the effects of treadmill and overground walking on the walking economy remain unknown. The goal of this study was to explore the walking economy changes in response to a treadmill and an overground training program, as well as the differences in the walking economy during treadmill and overground walking. 22 mild PD patients were randomly assigned to a treadmill or overground training group. The training program consisted of 5 weeks (3 sessions/week. We evaluated the energy expenditure of overground walking, before and after each of the training programs. The energy expenditure of treadmill walking (before the program was also evaluated. The treadmill, but not the overground training program, lead to an improvement in the walking economy (the rate of oxygen consumed per distance, during overground walking at a preferred speed in PD patients. In addition, walking on a treadmill required more energy expenditure compared with overground walking at the same speed. This study provides evidence that in mild PD patients, treadmill training is more beneficial compared with that of walking overground, leading to a greater improvement in the walking economy. This finding is of clinical importance for the therapeutic administration of exercise in Parkinson’s disease.

  12. Performance of a six-legged planetary rover - Power, positioning, and autonomous walking

    Science.gov (United States)

    Krotkov, Eric; Simmons, Reid

    The authors quantify several performance metrics for the Ambler, a six-legged robot configured for autonomous traversal of Mars-like terrain. They present power consumption measures for walking on sandy terrain and for vertical lifts at different velocities. They document the accuracy of a novel dead reckoning approach, and analyze the accuracy. They describe the results of autonomous walking experiments in terms of terrain traversed, walking speed, number of instructions executed and endurance.

  13. Effects of a visuotemporal cue on walking ability of independent ambulatory subjects with spinal cord injury as compared with healthy subjects.

    Science.gov (United States)

    Pramodhyakul, N; Amatachaya, P; Sooknuan, T; Arayawichanon, P; Amatachaya, S

    2014-03-01

    An experimental, cross-sectional study. To investigate effects of using a visuotemporal cue on the walking ability of independent ambulatory subjects with spinal cord injury (SCI) as compared with healthy subjects. A tertiary rehabilitation center, Thailand. Forty independent ambulatory subjects with SCI and healthy subjects participated in the study (20 subjects per group). All of them were assessed for their walking speed, stride length, cadence and percents of step symmetry under two conditions, including walking at their fastest speed with and without a visuotemporal cue along a 10 m walkway. When walking with a visuotemporal cue, walking speed, stride length and cadence of the subjects were significantly increased from the uncued condition (Pwalking speed and cadence, whereas, subjects with SCI demonstrated significantly higher improvement in stride length as compared with the other group (Pbenefits of using a visuotemporal cue to improve variables relating to walking ability in subjects with intact integrative capability of the brain but with different levels of sensorimotor deterioration. The findings suggest the use of a visuotemporal cue to improve the effectiveness of programs in sport and exercise sciences, and rehabilitation treatments.

  14. NASA low-speed centrifugal compressor for 3-D viscous code assessment and fundamental flow physics research

    Science.gov (United States)

    Hathaway, M. D.; Wood, J. R.; Wasserbauer, C. A.

    1991-01-01

    A low speed centrifugal compressor facility recently built by the NASA Lewis Research Center is described. The purpose of this facility is to obtain detailed flow field measurements for computational fluid dynamic code assessment and flow physics modeling in support of Army and NASA efforts to advance small gas turbine engine technology. The facility is heavily instrumented with pressure and temperature probes, both in the stationary and rotating frames of reference, and has provisions for flow visualization and laser velocimetry. The facility will accommodate rotational speeds to 2400 rpm and is rated at pressures to 1.25 atm. The initial compressor stage being tested is geometrically and dynamically representative of modern high-performance centrifugal compressor stages with the exception of Mach number levels. Preliminary experimental investigations of inlet and exit flow uniformly and measurement repeatability are presented. These results demonstrate the high quality of the data which may be expected from this facility. The significance of synergism between computational fluid dynamic analysis and experimentation throughout the development of the low speed centrifugal compressor facility is demonstrated.

  15. Flow in a Low Specific Speed Centrifugal Pump Using PIV

    Directory of Open Access Journals (Sweden)

    Cui Dai

    2013-01-01

    Full Text Available The interflow plays important roles in centrifugal pump design. In order to study the effect of rotation and z-axis on internal flow, two-dimensional particle image velocimetry (PIV measurements have been performed to measure the steady velocity field on three planes in all impeller passages of a low specific-speed centrifugal pump. The results show that the relative velocity flows in blade passages are obviously different in terms of the positions of the blade relative to the tongue. The interaction between the impeller and tongue changes the occurrence and development of low velocity region with time. From shroud to hub, the relative velocity gradually increases, and the minimum value moves toward the suction surface. On the midplane, the magnitude increases with increased flow rate from pressure surface to suction surface, while at the shroud and hub, the measured velocity first increases with decreased flow rate from the blade pressure surface to nearly ζ = 0.5 to 0.6.

  16. The Oxygen Consumption and Metabolic Cost of Walking and Running in Adults With Achondroplasia

    Science.gov (United States)

    Sims, David T.; Onambélé-Pearson, Gladys L.; Burden, Adrian; Payton, Carl; Morse, Christopher I.

    2018-01-01

    The disproportionate body mass and leg length of Achondroplasic individuals may affect their net oxygen consumption (V͘O2) and metabolic cost (C) when walking at running compared to those of average stature (controls). The aim of this study was to measure submaximal V͘O2 and C during a range of set walking speeds (SWS; 0.56 – 1.94 m⋅s-1, increment 0.28 m⋅s-1), set running speeds (SRS; 1.67 – 3.33 m⋅s-1, increment 0.28 m⋅s-1) and a self-selected walking speed (SSW). V͘O2 and C was scaled to total body mass (TBM) and fat free mass (FFM) while gait speed was scaled to leg length using Froude’s number (Fr). Achondroplasic V͘O2TBM and V͘O2FFM were on average 29 and 35% greater during SWS (P 0.05), but CTBM and CFFM at SSW were 23 and 29% higher (P < 0.05) in the Achondroplasic group compared to controls, respectively. V͘O2TBM and V͘O2FFM correlated with Fr for both groups (r = 0.984 – 0.999, P < 0.05). Leg length accounted for the majority of the higher V͘O2TBM and V͘O2FFM in the Achondroplasic group, but further work is required to explain the higher Achondroplasic CTBM and CFFM at all speeds compared to controls. New and Noteworthy: There is a leftward shift of oxygen consumption scaled to total body mass and fat free mass in Achondroplasic adults when walking and running. This is nullified when talking into account leg length. However, despite these scalars, Achondroplasic individuals have a higher walking and metabolic cost compared to age matched non-Achondroplasic individuals, suggesting biomechanical differences between the groups. PMID:29720948

  17. MOSS spectroscopic camera for imaging time resolved plasma species temperature and flow speed

    International Nuclear Information System (INIS)

    Michael, Clive; Howard, John

    2000-01-01

    A MOSS (Modulated Optical Solid-State) spectroscopic camera has been devised to monitor the spatial and temporal variations of temperatures and flow speeds of plasma ion species, the Doppler broadening measurement being made of spectroscopic lines specified. As opposed to a single channel MOSS spectrometer, the camera images light from plasma onto an array of light detectors, being mentioned 2D imaging of plasma ion temperatures and flow speeds. In addition, compared to a conventional grating spectrometer, the MOSS camera shows an excellent light collecting performance which leads to the improvement of signal to noise ratio and of time resolution. The present paper first describes basic items of MOSS spectroscopy, then follows MOSS camera with an emphasis on the optical system of 2D imaging. (author)

  18. MOSS spectroscopic camera for imaging time resolved plasma species temperature and flow speed

    Energy Technology Data Exchange (ETDEWEB)

    Michael, Clive; Howard, John [Australian National Univ., Plasma Research Laboratory, Canberra (Australia)

    2000-03-01

    A MOSS (Modulated Optical Solid-State) spectroscopic camera has been devised to monitor the spatial and temporal variations of temperatures and flow speeds of plasma ion species, the Doppler broadening measurement being made of spectroscopic lines specified. As opposed to a single channel MOSS spectrometer, the camera images light from plasma onto an array of light detectors, being mentioned 2D imaging of plasma ion temperatures and flow speeds. In addition, compared to a conventional grating spectrometer, the MOSS camera shows an excellent light collecting performance which leads to the improvement of signal to noise ratio and of time resolution. The present paper first describes basic items of MOSS spectroscopy, then follows MOSS camera with an emphasis on the optical system of 2D imaging. (author)

  19. A study on the performance and internal flow characteristics of a very low specific speed centrifugal pump

    International Nuclear Information System (INIS)

    Choi, Young Do; Kurokawa, Junichi; Lee, Young Ho

    2005-01-01

    In the very low specific speed range (n s < 0.25, non-dimensional), the efficiency of centrifugal pump designed by a conventional method is very low in common. Therefore, positive-displacement pumps have long been used widely. Recently, since the centrifugal pumps are becoming higher in rotational speed and smaller in size, there experts to develop a new centrifugal pump with a high performance to replace the positive-displacement pumps. The purpose of this study is to investigate the internal flow characteristics of a very low specific speed centrifugal pump and to examine the effect of internal flow pattern on pump performance. The results show that the theoretical head definition of semi-open impeller should be revised by the consideration of high slip factor in the semi-open impeller, and the leakage flow through the tip clearance results in a large effect on the impeller internal flow. Strong reverse flow at the outlet of semi-open impeller reduces the absolute tangential velocity considerably, and the decreased absolute tangential velocity increases the slip factor with the reduction of theoretical head

  20. Residual attentional capacity amongst young and elderly during dual and triple task walking

    DEFF Research Database (Denmark)

    Læssøe, Uffe; Hoeck, Hans C.; Simonsen, Ole

    2008-01-01

    to the cognitive task the elderly increased their temporal stride-to-stride variability by 39% in the walking task and by 57% in the combined motor task. These increases were significantly larger than observed for the young. Equivalent decreases in trunk acceleration autocorrelation coefficients and gait speed...... in the study. The participants walked along a figure-of-eight track at a self-selected speed. The effect of introducing a concurrent cognitive task and a concurrent functional motor task was evaluated. Stride-to-stride variability was measured by heel contacts and by trunk accelerometry. In response...... were found. A combination of sufficiently challenging motor tasks and concurrent cognitive tasks can reveal signs of limited residual attentional capacity during walking amongst the elderly....

  1. Functional effects of treadmill-based gait training at faster speeds in stroke survivors: a prospective, single-group study.

    Science.gov (United States)

    Mohammadi, Roghayeh; Ershad, Navid; Rezayinejad, Marziyeh; Fatemi, Elham; Phadke, Chetan P

    2017-09-01

    To examine the functional effects of walking retraining at faster than self-selected speed (SSS). Ten individuals with chronic stroke participated in a 4-week training over a treadmill at walking speeds 40% faster than SSS, three times per week, 30 min/session. Outcome measures assessed before, after, and 2 months after the end of intervention were the Timed Up and Go, the 6-Minute Walk, the 10-Meter Walk test, the Modified Ashworth Scale, SSS, and fastest comfortable speed. After 4 weeks of training, all outcome measures showed clinically meaningful and statistically significant improvements (Ptraining. The results showed that a strategy of training at a speed 40% faster than SSS can improve functional activity in individuals with chronic stroke, with effects lasting up to 2 months after the intervention.

  2. Minimum toe clearance events in divided attention treadmill walking in older and young adults: a cross-sectional study.

    Science.gov (United States)

    Santhiranayagam, Braveena K; Lai, Daniel T H; Sparrow, W A; Begg, Rezaul K

    2015-07-12

    Falls in older adults during walking frequently occur while performing a concurrent task; that is, dividing attention to respond to other demands in the environment. A particularly hazardous fall-related event is tripping due to toe-ground contact during the swing phase of the gait cycle. The aim of this experiment was to determine the effects of divided attention on tripping risk by investigating the gait cycle event Minimum Toe Clearance (MTC). Fifteen older adults (mean 73.1 years) and 15 young controls (mean 26.1 years) performed three walking tasks on motorized treadmill: (i) at preferred walking speed (preferred walking), (ii) while carrying a glass of water at a comfortable walking speed (dual task walking), and (iii) speed-matched control walking without the glass of water (control walking). Position-time coordinates of the toe were acquired using a 3 dimensional motion capture system (Optotrak NDI, Canada). When MTC was present, toe height at MTC (MTC_Height) and MTC timing (MTC_Time) were calculated. The proportion of non-MTC gait cycles was computed and for non-MTC gait cycles, toe-height was extracted at the mean MTC_Time. Both groups maintained mean MTC_Height across all three conditions. Despite greater MTC_Height SD in preferred gait, the older group reduced their variability to match the young group in dual task walking. Compared to preferred speed walking, both groups attained MTC earlier in dual task and control conditions. The older group's MTC_Time SD was greater across all conditions; in dual task walking, however, they approximated the young group's SD. Non-MTC gait cycles were more frequent in the older group across walking conditions (for example, in preferred walking: young - 2.9 %; older - 18.7 %). In response to increased attention demands older adults preserve MTC_Height but exercise greater control of the critical MTC event by reducing variability in both MTC_Height and MTC_Time. A further adaptive locomotor control strategy to reduce

  3. The effect of uphill and downhill walking on gait parameters: A self-paced treadmill study.

    Science.gov (United States)

    Kimel-Naor, Shani; Gottlieb, Amihai; Plotnik, Meir

    2017-07-26

    It has been shown that gait parameters vary systematically with the slope of the surface when walking uphill (UH) or downhill (DH) (Andriacchi et al., 1977; Crowe et al., 1996; Kawamura et al., 1991; Kirtley et al., 1985; McIntosh et al., 2006; Sun et al., 1996). However, gait trials performed on inclined surfaces have been subject to certain technical limitations including using fixed speed treadmills (TMs) or, alternatively, sampling only a few gait cycles on inclined ramps. Further, prior work has not analyzed upper body kinematics. This study aims to investigate effects of slope on gait parameters using a self-paced TM (SPTM) which facilitates more natural walking, including measuring upper body kinematics and gait coordination parameters. Gait of 11 young healthy participants was sampled during walking in steady state speed. Measurements were made at slopes of +10°, 0° and -10°. Force plates and a motion capture system were used to reconstruct twenty spatiotemporal gait parameters. For validation, previously described parameters were compared with the literature, and novel parameters measuring upper body kinematics and bilateral gait coordination were also analyzed. Results showed that most lower and upper body gait parameters were affected by walking slope angle. Specifically, UH walking had a higher impact on gait kinematics than DH walking. However, gait coordination parameters were not affected by walking slope, suggesting that gait asymmetry, left-right coordination and gait variability are robust characteristics of walking. The findings of the study are discussed in reference to a potential combined effect of slope and gait speed. Follow-up studies are needed to explore the relative effects of each of these factors. Copyright © 2017. Published by Elsevier Ltd.

  4. Self-selected speeds and metabolic cost of longboard skateboarding.

    Science.gov (United States)

    Board, Wayne J; Browning, Raymond C

    2014-11-01

    The purpose of this study was to determine self-selected speeds, metabolic rate, and gross metabolic cost during longboard skateboarding. We measured overground speed and metabolic rate while 15 experienced longboarders traveled at their self-selected slow, typical and fast speeds. Mean longboarding speeds were 3.7, 4.5 and 5.1 m s(-1), during slow, typical and fast trials, respectively. Mean rates of oxygen consumption were 24.1, 29.1 and 37.2 ml kg(-1) min(-1) and mean rates of energy expenditure were 33.5, 41.8 and 52.7 kJ min(-1) at the slow, typical and fast speeds, respectively. At typical speeds, average intensity was ~8.5 METs. There was a significant positive relationship between oxygen consumption and energy expenditure versus speed (R(2) = 0.69 (P < 0.001), and R(2) = 0.78 (P < 0.001), respectively). The gross metabolic cost was ~2.2 J kg(-1) m(-1) at the typical speed, greater than that reported for cycling and ~50% smaller than that of walking. These results suggest that longboarding is a novel form of physical activity that elicits vigorous intensity, yet is economical compared to walking.

  5. Numerical study on the impact of ground heating and ambient wind speed on flow fields in street canyons

    Science.gov (United States)

    Li, Lei; Yang, Lin; Zhang, Li-Jie; Jiang, Yin

    2012-11-01

    The impact of ground heating on flow fields in street canyons under different ambient wind speed conditions was studied based on numerical methods. A series of numerical tests were performed, and three factors including height-to-width (H/W) ratio, ambient wind speed and ground heating intensity were taken into account. Three types of street canyon with H/W ratios of 0.5, 1.0 and 2.0, respectively, were used in the simulation and seven speed values ranging from 0.0 to 3.0 m s-1 were set for the ambient wind speed. The ground heating intensity, which was defined as the difference between the ground temperature and air temperature, ranged from 10 to 40 K with an increase of 10 K in the tests. The results showed that under calm conditions, ground heating could induce circulation with a wind speed of around 1.0 m s-1, which is enough to disperse pollutants in a street canyon. It was also found that an ambient wind speed threshold may exist for street canyons with a fixed H/W ratio. When ambient wind speed was lower than the threshold identified in this study, the impact of the thermal effect on the flow field was obvious, and there existed a multi-vortex flow pattern in the street canyon. When the ambient wind speed was higher than the threshold, the circulation pattern was basically determined by dynamic effects. The tests on the impact of heating intensity showed that a higher ground heating intensity could strengthen the vortical flow within the street canyon, which would help improve pollutant diffusion capability in street canyons.

  6. Effects of Bell Speed and Flow Rate on Evaporation of Water Spray from a Rotary Bell Atomizer

    Directory of Open Access Journals (Sweden)

    Rajan Ray

    2015-05-01

    Full Text Available A phase doppler anemometer (PDA was used to determine the effects of evaporation on water spray for three rotary bell atomizer operational variable parameters: shaping air, bell speed and liquid flow. Shaping air was set at either 200 standard liters per minute (L/min or 300 L/min, bell speed was set to 30, 40 or 50 thousand rotations per minute (krpm and water flow rate was varied between 100, 200 or 300 cubic centimeters per minute (cm3/min. The total evaporation between 22.5 and 37.5 cm from the atomizer (cm3/s was calculated for all the combinations of those variables. Evaporation rate increased with higher flow rate and bell speed but no statistically significant effects were obtained for variable shaping air on interactions between parameters.

  7. The immediate effects of robot-assistance on energy consumption and cardiorespiratory load during walking compared to walking without robot-assistance: a systematic review.

    Science.gov (United States)

    Lefeber, Nina; Swinnen, Eva; Kerckhofs, Eric

    2017-10-01

    The integration of sufficient cardiovascular stress into robot-assisted gait (RAG) training could combine the benefits of both RAG and aerobic training. The aim was to summarize literature data on the immediate effects of RAG compared to walking without robot-assistance on metabolic-, cardiorespiratory- and fatigue-related parameters. PubMed and Web of Science were searched for eligible articles till February 2016. Means, SDs and significance values were extracted. Effect sizes were calculated. Fourteen studies were included, concerning 155 participants (85 healthy subjects, 39 stroke and 31 spinal cord injury patients), 9 robots (2 end-effectors, 1 treadmill-based and 6 wearable exoskeletons), and 7 outcome parameters (mostly oxygen consumption and heart rate). Overall, metabolic and cardiorespiratory parameters were lower during RAG compared to walking without robot-assistance (moderate to large effect sizes). In healthy subjects, when no body-weight support (BWS) was provided, RAG with an end-effector device was more energy demanding than walking overground (p > .05, large effect sizes). Generally, results suggest that RAG is less energy-consuming and cardiorespiratory stressful than walking without robot-assistance, but results depend on factors such as robot type, walking speed, BWS and effort. Additional research is needed to draw firm conclusions. Implications for Rehabilitation Awareness of the energy consumption and cardiorespiratory load of robot-assisted gait (RAG) training is important in the rehabilitation of (neurological) patients with impaired cardiorespiratory fitness and patients who are at risk of cardiovascular diseases. On the other hand, the integration of sufficient cardiometabolic stress in RAG training could combine the effects of both RAG and aerobic training. Energy consumption and cardiorespiratory load during walking with robot-assistance seems to depend on factors such as robot type, walking speed, body-weight support or amount of

  8. Reduction and technical simplification of testing protocol for walking based on repeatability analyses: An Interreg IVa pilot study

    Directory of Open Access Journals (Sweden)

    Nejc Sarabon

    2010-12-01

    Full Text Available The aim of this study was to define the most appropriate gait measurement protocols to be used in our future studies in the Mobility in Ageing project. A group of young healthy volunteers took part in the study. Each subject carried out a 10-metre walking test at five different speeds (preferred, very slow, very fast, slow, and fast. Each walking speed was repeated three times, making a total of 15 trials which were carried out in a random order. Each trial was simultaneously analysed by three observers using three different technical approaches: a stop watch, photo cells and electronic kinematic dress. In analysing the repeatability of the trials, the results showed that of the five self-selected walking speeds, three of them (preferred, very fast, and very slow had a significantly higher repeatability of the average walking velocity, step length and cadence than the other two speeds. Additionally, the data showed that one of the three technical methods for gait assessment has better metric characteristics than the other two. In conclusion, based on repeatability, technical and organizational simplification, this study helped us to successfully define a simple and reliable walking test to be used in the main study of the project.

  9. GABAergic inhibition of leg motoneurons is required for normal walking behavior in freely moving Drosophila.

    Science.gov (United States)

    Gowda, Swetha B M; Paranjpe, Pushkar D; Reddy, O Venkateswara; Thiagarajan, Devasena; Palliyil, Sudhir; Reichert, Heinrich; VijayRaghavan, K

    2018-02-27

    Walking is a complex rhythmic locomotor behavior generated by sequential and periodical contraction of muscles essential for coordinated control of movements of legs and leg joints. Studies of walking in vertebrates and invertebrates have revealed that premotor neural circuitry generates a basic rhythmic pattern that is sculpted by sensory feedback and ultimately controls the amplitude and phase of the motor output to leg muscles. However, the identity and functional roles of the premotor interneurons that directly control leg motoneuron activity are poorly understood. Here we take advantage of the powerful genetic methodology available in Drosophila to investigate the role of premotor inhibition in walking by genetically suppressing inhibitory input to leg motoneurons. For this, we have developed an algorithm for automated analysis of leg motion to characterize the walking parameters of wild-type flies from high-speed video recordings. Further, we use genetic reagents for targeted RNAi knockdown of inhibitory neurotransmitter receptors in leg motoneurons together with quantitative analysis of resulting changes in leg movement parameters in freely walking Drosophila Our findings indicate that targeted down-regulation of the GABA A receptor Rdl (Resistance to Dieldrin) in leg motoneurons results in a dramatic reduction of walking speed and step length without the loss of general leg coordination during locomotion. Genetically restricting the knockdown to the adult stage and subsets of motoneurons yields qualitatively identical results. Taken together, these findings identify GABAergic premotor inhibition of motoneurons as an important determinant of correctly coordinated leg movements and speed of walking in freely behaving Drosophila . Copyright © 2018 the Author(s). Published by PNAS.

  10. Physiotherapy Effects in Gait Speed in Patients with Knee Osteoarthritis

    Directory of Open Access Journals (Sweden)

    Klejda Tani

    2018-03-01

    CONCLUSIONS: Our results indicated that there was a significant decrease in pain and increase of gait speed while walking for 10 meters. Kinesio Tape can be used in patients with knee osteoarthritis, especially when changing walking stereotypes is a long-term goal of the treatment.

  11. Speeding up or slowing down?: Gait adaptations to preserve gait stability in response to balance perturbations

    NARCIS (Netherlands)

    Hak, L.; Houdijk, J.H.P.; Steenbrink, F.; van der Wurff, P.; Beek, P.J.; van Dieen, J.H.

    2012-01-01

    It has frequently been proposed that lowering walking speed is a strategy to enhance gait stability and to decrease the probability of falling. However, previous studies have not been able to establish a clear relation between walking speed and gait stability. We investigated whether people do

  12. Predictors of Gait Speeds and the Relationship of Gait Speeds to Falls in Men and Women with Parkinson Disease

    Directory of Open Access Journals (Sweden)

    Samuel T. Nemanich

    2013-01-01

    Full Text Available Gait difficulties and falls are commonly reported in people with Parkinson disease (PD. Reduction in gait speed is a major characteristic of Parkinsonian gait, yet little is known about its underlying determinants, its ability to reflect an internal reservation about walking, or its relationship to falls. To study these issues, we selected age, disease severity, and nonmotor factors (i.e., depression, quality of life, balance confidence, and exercise beliefs and attitudes to predict self-selected (SELF, fast-as-possible (FAST, and the difference (DIFF between these walking speeds in 78 individuals with PD. We also examined gender differences in gait speeds and evaluated how gait speeds were related to a retrospective fall report. Age, disease severity, and balance confidence were strong predictors of SELF, FAST, and, to a lesser extent, DIFF. All three parameters were strongly associated with falling. DIFF was significantly greater in men compared to women and was significantly associated with male but not female fallers. The results supported the clinical utility of using a suite of gait speed parameters to provide insight into the gait difficulties and differentiating between fallers in people with PD.

  13. Does walking strategy in older people change as a function of walking distance?

    Science.gov (United States)

    Najafi, Bijan; Helbostad, Jorunn L; Moe-Nilssen, Rolf; Zijlstra, Wiebren; Aminian, Kamiar

    2009-02-01

    This study investigates whether the spatio-temporal parameters of gait in the elderly vary as a function of walking distance. The gait pattern of older subjects (n=27) over both short (SWDLWD>20 m) walking was evaluated using an ambulatory device consisting of body-worn sensors (Physilog). The stride velocity (SV), gait cycle time (GCT), and inter-cycle variability of each parameter (CV) were evaluated for each subject. Analysis was undertaken after evaluating the errors and the test-retest reliability of the Physilog device compared with an electronic walkway system (GaitRite) over the SWD with different walking speeds. While both systems were highly reliable with respect to the SV and GCT parameters (ICC>0.82), agreement for the gait variability was poor. Interestingly, our data revealed that the measured gait parameters over SWD and LWD were significantly different. LWD trials had a mean increase of 5.2% (pLWD trials decreased by an average of 1% relative to the SWD case, the drop was not significant. Moreover, reliability for gait variability measures was poor, irrespective of the instrument and despite a moderate improvement for LWD trials. Taken together, our findings indicate that for valid and reliable comparisons, test and retest should be performed under identical distance conditions. Furthermore, our findings suggest that the older subjects may choose different walking strategies for SWD and LWD conditions.

  14. Analysis of coined quantum walks with renormalization

    Science.gov (United States)

    Boettcher, Stefan; Li, Shanshan

    2018-01-01

    We introduce a framework to analyze quantum algorithms with the renormalization group (RG). To this end, we present a detailed analysis of the real-space RG for discrete-time quantum walks on fractal networks and show how deep insights into the analytic structure as well as generic results about the long-time behavior can be extracted. The RG flow for such a walk on a dual Sierpinski gasket and a Migdal-Kadanoff hierarchical network is obtained explicitly from elementary algebraic manipulations, after transforming the unitary evolution equation into Laplace space. Unlike for classical random walks, we find that the long-time asymptotics for the quantum walk requires consideration of a diverging number of Laplace poles, which we demonstrate exactly for the closed-form solution available for the walk on a one-dimensional loop. In particular, we calculate the probability of the walk to overlap with its starting position, which oscillates with a period that scales as NdwQ/df with system size N . While the largest Jacobian eigenvalue λ1 of the RG flow merely reproduces the fractal dimension, df=log2λ1 , the asymptotic analysis shows that the second Jacobian eigenvalue λ2 becomes essential to determine the dimension of the quantum walk via dwQ=log2√{λ1λ2 } . We trace this fact to delicate cancellations caused by unitarity. We obtain identical relations for other networks, although the details of the RG analysis may exhibit surprisingly distinct features. Thus, our conclusions—which trivially reproduce those for regular lattices with translational invariance with df=d and dwQ=1 —appear to be quite general and likely apply to networks beyond those studied here.

  15. Test-retest reliability and sensitivity of the 20-meter walk test among patients with knee osteoarthritis.

    Science.gov (United States)

    Motyl, Jillian M; Driban, Jeffrey B; McAdams, Erica; Price, Lori Lyn; McAlindon, Timothy E

    2013-05-10

    The 20-meter walk test is a physical function measure commonly used in clinical research studies and rehabilitation clinics to measure gait speed and monitor changes in patients' physical function over time. Unfortunately, the reliability and sensitivity of this walk test are not well defined and, therefore, limit our ability to evaluate real changes in gait speed not attributable to normal variability. The aim of this study was to assess the test-restest reliability and sensitivity of the 20-meter walk test, at a self-selected pace, among patients with mild to moderate knee osteoarthritis (OA) and to suggest a standardized protocol for future test administration. This was a measurement reliability study. Fifteen consecutive people enrolled in a randomized-controlled trial of intra-articular corticosteroid injections for knee OA participated in this study. All participants completed 4 trials on 2 separate days, 7 to 21 days apart (8 trials total). Each day was divided into 2 sessions, which each involved 2 walking trials. We compared walk times between trials with Wilcoxon signed-rank tests. Similar analyses compared average walk times between sessions. To confirm these analyses, we also calculated Spearman correlation coefficients to assess the relationship between sessions. Finally, smallest detectable differences (SDD) were calculated to estimate the sensitivity of the 20-meter walk test. Wilcoxon signed-rank tests between trials within the same session demonstrated that trials in session 1 were significantly different and in the subsequent 3 sessions, the median differences between trials were not significantly different. Therefore, the first session of each day was considered a practice session, and the SDD between the second session of each day were calculated. SDD was -1.59 seconds (walking slower) and 0.15 seconds (walking faster). Practice trials and a standardized protocol should be used in administration of the 20-meter walk test. Changes in walk time

  16. Body Acceleration as Indicator for Walking Economy in an Ageing Population.

    Science.gov (United States)

    Valenti, Giulio; Bonomi, Alberto G; Westerterp, Klaas R

    2015-01-01

    In adults, walking economy declines with increasing age and negatively influences walking speed. This study aims at detecting determinants of walking economy from body acceleration during walking in an ageing population. 35 healthy elderly (18 males, age 51 to 83 y, BMI 25.5±2.4 kg/m2) walked on a treadmill. Energy expenditure was measured with indirect calorimetry while body acceleration was sampled at 60Hz with a tri-axial accelerometer (GT3X+, ActiGraph), positioned on the lower back. Walking economy was measured as lowest energy needed to displace one kilogram of body mass for one meter while walking (WCostmin, J/m/kg). Gait features were extracted from the acceleration signal and included in a model to predict WCostmin. On average WCostmin was 2.43±0.42 J/m/kg and correlated significantly with gait rate (r2 = 0.21, peconomy is induced by the adoption of an increased gait rate and by irregular body acceleration in the horizontal plane.

  17. Relativistically speaking: Let's walk or run through the rain?

    OpenAIRE

    Assis, Armando V. D. B.

    2010-01-01

    We analyse under a simple approach the problem one must decide the best strategy to minimize the contact with rain when moving between two points through the rain. The available strategies: walk (low speed boost $

  18. Nearly Interactive Parabolized Navier-Stokes Solver for High Speed Forebody and Inlet Flows

    Science.gov (United States)

    Benson, Thomas J.; Liou, May-Fun; Jones, William H.; Trefny, Charles J.

    2009-01-01

    A system of computer programs is being developed for the preliminary design of high speed inlets and forebodies. The system comprises four functions: geometry definition, flow grid generation, flow solver, and graphics post-processor. The system runs on a dedicated personal computer using the Windows operating system and is controlled by graphical user interfaces written in MATLAB (The Mathworks, Inc.). The flow solver uses the Parabolized Navier-Stokes equations to compute millions of mesh points in several minutes. Sample two-dimensional and three-dimensional calculations are demonstrated in the paper.

  19. The Need for Speed in Rodent Locomotion Analyses

    Science.gov (United States)

    Batka, Richard J.; Brown, Todd J.; Mcmillan, Kathryn P.; Meadows, Rena M.; Jones, Kathryn J.; Haulcomb, Melissa M.

    2016-01-01

    Locomotion analysis is now widely used across many animal species to understand the motor defects in disease, functional recovery following neural injury, and the effectiveness of various treatments. More recently, rodent locomotion analysis has become an increasingly popular method in a diverse range of research. Speed is an inseparable aspect of locomotion that is still not fully understood, and its effects are often not properly incorporated while analyzing data. In this hybrid manuscript, we accomplish three things: (1) review the interaction between speed and locomotion variables in rodent studies, (2) comprehensively analyze the relationship between speed and 162 locomotion variables in a group of 16 wild-type mice using the CatWalk gait analysis system, and (3) develop and test a statistical method in which locomotion variables are analyzed and reported in the context of speed. Notable results include the following: (1) over 90% of variables, reported by CatWalk, were dependent on speed with an average R2 value of 0.624, (2) most variables were related to speed in a nonlinear manner, (3) current methods of controlling for speed are insufficient, and (4) the linear mixed model is an appropriate and effective statistical method for locomotion analyses that is inclusive of speed-dependent relationships. Given the pervasive dependency of locomotion variables on speed, we maintain that valid conclusions from locomotion analyses cannot be made unless they are analyzed and reported within the context of speed. PMID:24890845

  20. Acute Effects of Walking Exercise on Stair Negotiation in Sedentary and Physically Active Older Adults.

    Science.gov (United States)

    Kunzler, Marcos R; da Rocha, Emmanuel S; Bobbert, Maarten F; Duysens, Jacques; Carpes, Felipe P

    2017-07-01

    In negotiating stairs, low foot clearance increases the risk of tripping and a fall. Foot clearance may be related to physical fitness, which differs between active and sedentary participants, and be acutely affected by exercise. Impaired stair negotiation could be an acute response to exercise. Here we determined acute changes in foot clearances during stair walking in sedentary (n = 15) and physically active older adults (n = 15) after prolonged exercise. Kinematic data were acquired during negotiation with a 3-steps staircase while participants walked at preferred speed, before and after 30 min walking at preferred speed and using a treadmill. Foot clearances were compared before and after exercise and between the groups. Sedentary older adults presented larger (0.5 cm for lead and 2 cm for trail leg) toe clearances in ascent, smaller (0.7 cm) heel clearance in the leading foot in descent, and larger (1 cm) heel clearance in the trailing foot in descent than physically active. Sedentary older adults negotiate stairs in a slightly different way than active older adults, and 30 min walking at preferred speed does not affect clearance in stair negotiation.

  1. Kinematic control of walking.

    Science.gov (United States)

    Lacquaniti, F; Ivanenko, Y P; Zago, M

    2002-10-01

    The planar law of inter-segmental co-ordination we described may emerge from the coupling of neural oscillators between each other and with limb mechanical oscillators. Muscle contraction intervenes at variable times to re-excite the intrinsic oscillations of the system when energy is lost. The hypothesis that a law of coordinative control results from a minimal active tuning of the passive inertial and viscoelastic coupling among limb segments is congruent with the idea that movement has evolved according to minimum energy criteria (1, 8). It is known that multi-segment motion of mammals locomotion is controlled by a network of coupled oscillators (CPGs, see 18, 33, 37). Flexible combination of unit oscillators gives rise to different forms of locomotion. Inter-oscillator coupling can be modified by changing the synaptic strength (or polarity) of the relative spinal connections. As a result, unit oscillators can be coupled in phase, out of phase, or with a variable phase, giving rise to different behaviors, such as speed increments or reversal of gait direction (from forward to backward). Supra-spinal centers may drive or modulate functional sets of coordinating interneurons to generate different walking modes (or gaits). Although it is often assumed that CPGs control patterns of muscle activity, an equally plausible hypothesis is that they control patterns of limb segment motion instead (22). According to this kinematic view, each unit oscillator would directly control a limb segment, alternately generating forward and backward oscillations of the segment. Inter-segmental coordination would be achieved by coupling unit oscillators with a variable phase. Inter-segmental kinematic phase plays the role of global control variable previously postulated for the network of central oscillators. In fact, inter-segmental phase shifts systematically with increasing speed both in man (4) and cat (38). Because this phase-shift is correlated with the net mechanical power

  2. Targeting paretic propulsion to improve poststroke walking function: a preliminary study.

    Science.gov (United States)

    Awad, Louis N; Reisman, Darcy S; Kesar, Trisha M; Binder-Macleod, Stuart A

    2014-05-01

    To determine the feasibility and safety of implementing a 12-week locomotor intervention targeting paretic propulsion deficits during walking through the joining of 2 independent interventions, walking at maximal speed on a treadmill and functional electrical stimulation of the paretic ankle musculature (FastFES); to determine the effects of FastFES training on individual subjects; and to determine the influence of baseline impairment severity on treatment outcomes. Single group pre-post preliminary study investigating a novel locomotor intervention. Research laboratory. Individuals (N=13) with locomotor deficits after stroke. FastFES training was provided for 12 weeks at a frequency of 3 sessions per week and 30 minutes per session. Measures of gait mechanics, functional balance, short- and long-distance walking function, and self-perceived participation were collected at baseline, posttraining, and 3-month follow-up evaluations. Changes after treatment were assessed using pairwise comparisons and compared with known minimal clinically important differences or minimal detectable changes. Correlation analyses were run to determine the correlation between baseline clinical and biomechanical performance versus improvements in walking speed. Twelve of the 13 subjects that were recruited completed the training. Improvements in paretic propulsion were accompanied by improvements in functional balance, walking function, and self-perceived participation (each Pstudy of this promising locomotor intervention for persons poststroke. Copyright © 2014 American Congress of Rehabilitation Medicine. Published by Elsevier Inc. All rights reserved.

  3. Ultra-high-speed digital in-line holography system applied to particle-laden supersonic underexpanded jet flows

    DEFF Research Database (Denmark)

    Ingvorsen, Kristian Mark; Buchmann, Nicolas A.; Soria, Julio

    2012-01-01

    -fluid interactions in these high-speed flows special high performance techniques are required. The present work is an investigation into the applicability of magnified digital in-line holography with ultra-high-speed recording for the study of three-dimensional supersonic particle-laden flows. An optical setup...... × 10mm calibration grid and 120 μm particles on a glass plate. In the case with the calibration grid it is found that accurate determination of the depthwise position is possible. However, when applying the same technique to the particle target, significant problems are encountered. © 2012...

  4. Optical Flow-Field Techniques Used for Measurements in High-Speed Centrifugal Compressors

    Science.gov (United States)

    Skoch, Gary J.

    1999-01-01

    The overall performance of a centrifugal compressor depends on the performance of the impeller and diffuser as well as on the interactions occurring between these components. Accurate measurements of the flow fields in each component are needed to develop computational models that can be used in compressor design codes. These measurements must be made simultaneously over an area that covers both components so that researchers can understand the interactions occurring between the two components. Optical measurement techniques are being used at the NASA Lewis Research Center to measure the velocity fields present in both the impeller and diffuser of a 4:1 pressure ratio centrifugal compressor operating at several conditions ranging from design flow to surge. Laser Doppler Velocimetry (LDV) was used to measure the intrablade flows present in the impeller, and the results were compared with analyses obtained from two three-dimensional viscous codes. The development of a region of low throughflow velocity fluid within this high-speed impeller was examined and compared with a similar region first observed in a large low-speed centrifugal impeller at Lewis. Particle Image Velocimetry (PIV) is a relatively new technique that has been applied to measuring the diffuser flow fields. PIV can collect data rapidly in the diffuser while avoiding the light-reflection problems that are often encountered when LDV is used. The Particle Image Velocimeter employs a sheet of pulsed laser light that is introduced into the diffuser in a quasi-radial direction through an optical probe inserted near the diffuser discharge. The light sheet is positioned such that its centerline is parallel to the hub and shroud surfaces and such that it is parallel to the diffuser vane, thereby avoiding reflections from the solid surfaces. Seed particles small enough to follow the diffuser flow are introduced into the compressor at an upstream location. A high-speed charge-coupled discharge (CCD) camera is

  5. Interaction of obstructive sleep apnoea and cognitive impairment with slow gait speed in middle-aged and older adults.

    Science.gov (United States)

    Lee, Sunghee; Shin, Chol

    2017-07-01

    to investigate whether slow gait speed is associated with cognitive impairment and further whether the association is modified by obstructive sleep apnoea (OSA). in total, 2,222 adults aged 49-80 years, free from dementia, stroke and head injury were asked to walk a 4-m course at fast and usual gait speeds. The time taken to walk was measured. All participants completed the Korean Mini-Mental State Examination, which was validated in the Korean language, to assess cognitive function. Additionally, the participants completed a polysomnography test to ascertain OSA (defined as an apnoea-hypopnoea index ≥15). Multivariable linear regression models were utilised to test the associations. time taken to walk 4 m showed significant inverse associations with cognitive scores (P value = 0.001 at fast gait speed and P = 0.002 at usual gait speed). Furthermore, a significant interaction according to OSA on the association between time to walk and cognitive impairment was found (P value for interaction = 0.003 at fast gait speed and P value for interaction = 0.007 at usual gait speed). we found that the inverse association between the time taken to walk 4 m and a cognitive score became significantly stronger, if an individual had OSA. © The Author 2017. Published by Oxford University Press on behalf of the British Geriatrics Society. All rights reserved. For Permissions, please email: journals.permissions@oup.com

  6. Which walking capacity tests to use in multiple sclerosis? A multicentre study providing the basis for a core set

    NARCIS (Netherlands)

    Gijbels, D.; Dalgas, U.; Romberg, A.; de Groot, V.; Bethoux, F.; Vaney, C.; Gebara, B.; Santoyo, C.; Maamagi, H.; Rasova, K.; de Maertens, N.B.; Knuts, K.; Feys, P.

    2012-01-01

    Background: Many different walking capacity test formats are being used. It is unclear whether walking speed, obtained from short tests, and walking distance, obtained from long tests, provide different clinical information. Objectives: To determine the differential effect of various short and long

  7. Deep white matter hyperintensities, microstructural integrity and dual task walking in older people.

    Science.gov (United States)

    Ghanavati, Tabassom; Smitt, Myriam Sillevis; Lord, Stephen R; Sachdev, Perminder; Wen, Wei; Kochan, Nicole A; Brodaty, Henry; Delbaere, Kim

    2018-01-03

    To examine neural, physiological and cognitive influences on gait speed under single and dual-task conditions. Sixty-two community-dwelling older people (aged 80.0 ± 4.2 years) participated in our study. Gait speed was assessed with a timed 20-meter walk under single and dual-task (reciting alternate letters of the alphabet) conditions. Participants also underwent tests to estimate physiological fall risk based on five measures of sensorimotor function, cognitive function across five domains, brain white matter (WM) hyperintensities and WM microstructural integrity by measuring fractional anisotropy (FA). Univariate linear regression analyses showed that global physiological and cognitive measures were associated with single (β = 0.594 and β=-0.297, respectively) and dual-task gait speed (β = 0.306 and β=-0.362, respectively). Deep WMHs were associated with dual-task gait speed only (β = 0.257). Multivariate mediational analyses showed that global and executive cognition reduced the strength of the association between deep WMHs and dual-task gait speed by 27% (β = 0.188) and 44% (β = 0.145) respectively. There was a significant linear association between single-task gait speed and mean FA values of the genu (β=-0.295) and splenium (β=-0.326) of the corpus callosum, and between dual-task gait speed and mean FA values of Superior Cerebellar Peduncle (β=-0.284), splenium of the Corpus Callosum (β=-0.286) and Cingulum (β=-0.351). Greater deep WMH volumes are associated with slower walking speed under dual-task conditions, and this relationship is mediated in part by global cognition and executive abilities specifically. Furthermore, both cerebellum and cingulum are related to dual-task walking due to their role in motor skill performance and attention, respectively.

  8. Can overestimation of walking ability increase the risk of falls in people in the subacute stage after stroke on their return home?

    Science.gov (United States)

    Morone, G; Iosa, M; Pratesi, L; Paolucci, S

    2014-03-01

    Falls are common in patients who have had a stroke who return home after neurorehabilitation. Some studies have found that walking speed inversely correlates with the risk of falls. This study examined whether comparison between comfortable self-selected walking speed and maximum maintainable speed is informative with regard to the risk of falls in patients with stroke. A prospective cohort study was performed with 75 ambulant stroke patients. At discharge, the Barthel Index score and performance at the 10-m and 6-min walking tests were assessed. Number of falls was recorded by telephone interview every two months for one year. Regression analysis was performed to identify factors that were related to the risk of falls. Using forward multiple linear regression, only the ratio between walking speeds on the 6-min and 10-m tests was linked to the number of falls in the year after discharge (R=-0.451, prisk of suffering a fall. Copyright © 2014 Elsevier B.V. All rights reserved.

  9. Within-day variability on short and long walking tests in persons with multiple sclerosis

    NARCIS (Netherlands)

    Feys, P.; Bibby, B.; Romberg, A.; Santoyo, C.; Gebara, B.; de Noordhout, B.M.; Knuts, K.; Bethoux, F.; Skjerbaek, A.; Jensen, E.; Baert, I.; Vaney, C.; de Groot, V.; Dalgas, U.

    2014-01-01

    Objective To compare within-day variability of short (10 m walking test at usual and fastest speed; 10MWT) and long (2 and 6-minute walking test; 2MWT/6MWT) tests in persons with multiple sclerosis. Design Observational study. Setting MS rehabilitation and research centers in Europe and US within

  10. The effect of simulating weight gain on the energy cost of walking in unimpaired children and children with cerebral palsy.

    Science.gov (United States)

    Plasschaert, Frank; Jones, Kim; Forward, Malcolm

    2008-12-01

    To examine the effect of simulating weight gain on the energy cost of walking in children with cerebral palsy (CP) compared with unimpaired children. Repeated measures, matched subjects, controlled. University hospital clinical gait and movement analysis laboratory. Children (n=42) with CP and unimpaired children (n=42). Addition of 10% of body mass in weight belt. Energy cost of walking parameters consisting of walking speed, Physiological Cost Index, Total Heart Beat Index, oxygen uptake (VO2), gross oxygen cost, nondimensional net oxygen cost, and net oxygen cost with speed normalized to height were measured by using a breath-by-breath gas analysis system (K4b2) and a light beam timing gate system arranged around a figure 8 track. Two walking trials were performed in random order, with and the other without wearing a weighted belt. Children with CP and their unimpaired counterparts responded in fundamentally different ways to weight gain. The unimpaired population maintained speed and VO2 but the children with CP trended toward a drop in their speed and an increase in their VO2. The oxygen consumption of children with CP showed a greater dependence on mass than the unimpaired group (P=.043). An increase of a relatively small percentage in body mass began to significantly impact the energy cost of walking in children with CP. This result highlights the need for weight control to sustain the level of functional walking in these children.

  11. Biomechanical implications of walking with indigenous footwear.

    Science.gov (United States)

    Willems, Catherine; Stassijns, Gaetane; Cornelis, Wim; D'Août, Kristiaan

    2017-04-01

    This study investigates biomechanical implications of walking with indigenous "Kolhapuri" footwear compared to barefoot walking among a population of South Indians. Ten healthy adults from South India walked barefoot and indigenously shod at voluntary speed on an artificial substrate. The experiment was repeated outside, on a natural substrate. Data were collected from (1) a heel-mounted 3D-accelerometer recording peak impact at heel contact, (2) an ankle-mounted 3D-goniometer (plantar/dorsiflexion and inversion/eversion), and (3) sEMG electrodes at the m. tibialis anterior and the m. gastrocnemius medialis. Data show that the effect of indigenous footwear on the measured variables, compared to barefoot walking, is relatively small and consistent between substrates (even though subjects walked faster on the natural substrate). Walking barefoot, compared to shod walking yields higher impact accelerations, but the differences are small and only significant for the artificial substrate. The main rotations of the ankle joint are mostly similar between conditions. Only the shod condition shows a faster ankle rotation over the rapid eversion motion on the natural substrate. Maximal dorsiflexion in late stance differs between the footwear conditions on an artificial substrate, with the shod condition involving a less dorsiflexed ankle, and the plantar flexion at toe-off is more extreme when shod. Overall the activity pattern of the external foot muscles is similar. The indigenous footwear studied (Kolhapuri) seems to alter foot biomechanics only in a subtle way. While offering some degree of protection, walking in this type of footwear resembles barefoot gait and this type of indigenous footwear might be considered "minimal". © 2017 The Authors American Journal of Physical Anthropology Published by Wiley Periodicals, Inc.

  12. Characterization of Diamond Nanoparticles by High-Speed Micro-Thermal Field-Flow Fractionation

    Czech Academy of Sciences Publication Activity Database

    Janča, Josef

    2015-01-01

    Roč. 20, č. 8 (2015), s. 671-680 ISSN 1023-666X R&D Projects: GA MŠk(CZ) LO1212 Institutional support: RVO:68081731 Keywords : diamond nanoparticles * high-speed microfluidic separation * micro-thermal field-flow fractionation, * article size distribution Subject RIV: JA - Electronics ; Optoelectronics, Electrical Engineering Impact factor: 1.515, year: 2015

  13. Negligible motion artifacts in scalp electroencephalography (EEG during treadmill walking

    Directory of Open Access Journals (Sweden)

    Kevin eNathan

    2016-01-01

    Full Text Available Recent Mobile Brain/Body Imaging (MoBI techniques based on active electrode scalp electroencephalogram (EEG allow the acquisition and real-time analysis of brain dynamics during active unrestrained motor behavior involving whole body movements such as treadmill walking, over-ground walking and other locomotive and non-locomotive tasks. Unfortunately, MoBI protocols are prone to physiological and non-physiological artifacts, including motion artifacts that may contaminate the EEG recordings. A few attempts have been made to quantify these artifacts during locomotion tasks but with inconclusive results due in part to methodological pitfalls. In this paper, we investigate the potential contributions of motion artifacts in scalp EEG during treadmill walking at three different speeds (1.5, 3.0, and 4.5 km/h using a wireless 64 channel active EEG system and a wireless inertial sensor attached to the subject’s head. The experimental setup was designed according to good measurement practices using state-of-the-art commercially-available instruments, and the measurements were analyzed using Fourier analysis and wavelet coherence approaches. Contrary to prior claims, the subjects’ motion did not significantly affect their EEG during treadmill walking although precaution should be taken when gait speeds approach 4.5 km/h. Overall, these findings suggest how MoBI methods may be safely deployed in neural, cognitive, and rehabilitation engineering applications.

  14. Analysis of Metal Flow Behavior and Residual Stress Formation of Complex Functional Profiles under High-Speed Cold Roll-Beating

    Directory of Open Access Journals (Sweden)

    Fengkui Cui

    2018-01-01

    Full Text Available To obtain a good surface layer performance of the complex functional profile during the high-speed cold roll-beating forming process, this paper analyzed the metal plastic flow and residual stress-formed mechanism by using a theoretical model of the metal flow and residual stress generation. By using simulation software, the cold roll-beating forming process of a spline shaft was simulated and analyzed. The metal flow and residual stress formation law in the motion were researched. In a practical experiment, the changes in the grains in the spline tooth profile section and the residual stress distribution on the tooth profile were studied. A microcorrespondence relationship was established between the metal plastic flow and the residual stress generation. The conclusions indicate that the rate at which the metal flow decreases changes gradually at different metal layers. The residual stress value is directly related to the plastic flow difference. As the roll-beating speed increases, the uneven degree of plastic deformation at the workpiece surface increases, and the residual stress in the tooth profile is generally greater. At the same roll-beating speed, the rate change trend of the metal flow decreases gradually from the surface to the inner layer and from the dedendum to the addendum. The residual stress distribution on the surface of the tooth profile decreases from the dedendum to the addendum. These findings provide a basis and guidance for the controlled use of residual stress, obtaining better surface layer quality in the high-speed cold roll-beating process of the complex functional profile.

  15. Cognitive processing speed is related to fall frequency in older adults with multiple sclerosis.

    Science.gov (United States)

    Sosnoff, Jacob J; Balantrapu, Swathi; Pilutti, Lara A; Sandroff, Brian M; Morrison, Steven; Motl, Robert W

    2013-08-01

    To examine mobility, balance, fall risk, and cognition in older adults with multiple sclerosis (MS) as a function of fall frequency. Retrospective, cross-sectional design. University research laboratory. Community-dwelling persons with MS (N=27) aged between 50 and 75 years were divided into 2 groups-single-time (n=11) and recurrent (n=16; >2 falls/12 mo) fallers-on the basis of fall history. Not applicable. Mobility was assessed using a variety of measures including Multiple Sclerosis Walking Scale-12, walking speed (Timed 25-Foot Walk test), endurance (6-Minute Walk test), and functional mobility (Timed Up and Go test). Balance was assessed with the Berg Balance Scale, posturography, and self-reported balance confidence. Fall risk was assessed with the Physiological Profile Assessment. Cognitive processing speed was quantified with the Symbol Digit Modalities Test and the Paced Auditory Serial Addition Test. Recurrent fallers had slower cognitive processing speed than single-time fallers (P ≤.01). There was no difference in mobility, balance, or fall risk between recurrent and single-time fallers (P>.05). Results indicated that cognitive processing speed is associated with fall frequency and may have implications for fall prevention strategies targeting recurrent fallers with MS. Copyright © 2013 American Congress of Rehabilitation Medicine. Published by Elsevier Inc. All rights reserved.

  16. FDG-PET imaging of lower extremity muscular activity during level walking

    International Nuclear Information System (INIS)

    Oi, Naoyuki; Iwaya, Tsutomu; Tobimatsu, Yoshiko; Fujimoto, Toshihiko; Itoh, Masatoshi; Yamaguchi, Keiichiro

    2003-01-01

    We analyzed muscular activity of the lower extremities during level walking using positron emission tomography (PET) with 18 F-fluorodeoxyglucose ( 18 F-FDG). We examined 17 healthy male subjects; 11 were assigned to a walking group and 6 to a resting group. After 18 F-FDG injection, the walking group subjects walked at a free speed for 15 min. A whole-body image was then obtained by a PET camera, and the standardized uptake ratio (SUR) was computed for each muscle. The SUR for each muscle of the walking group was compared with that for the corresponding muscles in the resting group. The level of muscular activity of all the muscles we examined were higher during level walking than when resting. The activity of the lower leg muscles was higher than that of the thigh muscles during level walking. The muscular activity of the soleus was highest among all the muscles examined. Among the gluteal muscles, the muscular activity of the gluteus minimus was higher than that of the gluteus maximus and gluteus medius. The concurrent validity of measuring muscular activity of the lower extremity during level walking by the PET method using 18 F-FDG was demonstrated. (author)

  17. Metabolic cost and mechanics of walking in women with fibromyalgia syndrome

    OpenAIRE

    MacPhee, Ren?e S; McFall, Kristen; Perry, Stephen D; Tiidus, Peter M

    2013-01-01

    Background Fibromyalgia syndrome (FS) is characterized by the presence of widespread pain, fatigue, muscle weakness and reduced work capacity. Previous research has demonstrated that women with fibromyalgia have altered walking (gait) patterns, which may be a consequence of muscular pain. This altered gait is characterized by greater reliance on hip flexors rather than ankle plantar flexors and resembles gait patterns seen in normal individuals walking at higher speeds, suggesting that gait o...

  18. A pilot clinical trial on a Variable Automated Speed and Sensing Treadmill (VASST) for hemiparetic gait rehabilitation in stroke patients.

    Science.gov (United States)

    Chua, Karen S G; Chee, Johnny; Wong, Chin J; Lim, Pang H; Lim, Wei S; Hoo, Chuan M; Ong, Wai S; Shen, Mira L; Yu, Wei S

    2015-01-01

    Impairments in walking speed and capacity are common problems after stroke which may benefit from treadmill training. However, standard treadmills, are unable to adapt to the slower walking speeds of stroke survivors and are unable to automate training progression. This study tests a Variable Automated Speed and Sensing Treadmill (VASST) using a standard clinical protocol. VASST is a semi-automated treadmill with multiple sensors and micro controllers, including wireless control to reposition a fall-prevention harness, variable pre-programmed exercise parameters and laser beam foot sensors positioned on the belt to detect subject's foot positions. An open-label study with assessor blinding was conducted in 10 community-dwelling chronic hemiplegic patients who could ambulate at least 0.1 m/s. Interventions included physiotherapist-supervised training on VASST for 60 min three times per week for 4 weeks (total 12 h). Outcome measures of gait speed, quantity, balance, and adverse events were assessed at baseline, 2, 4, and 8 weeks. Ten subjects (8 males, mean age 55.5 years, 2.1 years post stroke) completed VASST training. Mean 10-m walk test speed was 0.69 m/s (SD = 0.29) and mean 6-min walk test distance was 178.3 m (84.0). After 4 weeks of training, 70% had significant positive gains in gait speed (0.06 m/s, SD = 0.08 m/s, P = 0.037); and 90% improved in walking distance. (54.3 m, SD = 30.9 m, P = 0.005). There were no adverse events. This preliminary study demonstrates the initial feasibility and short-term efficacy of VASST for walking speed and distance for people with chronic post-stroke hemiplegia.

  19. A new phase coding method using a slice selection gradient for high speed flow velocity meaurements in NMR tomography

    International Nuclear Information System (INIS)

    Oh, C.H.; Cho, Z.H.; California Univ., Irvine

    1986-01-01

    A new phase coding method using a selection gradient for high speed NMR flow velocity measurements is introduced and discussed. To establish a phase-velocity relationship of flow under the slice selection gradient and spin-echo RF pulse, the Bloch equation was numerically solved under the assumption that only one directional flow exists, i.e. in the direction of slice selection. Details of the numerical solution of the Bloch equation and techniques related to the numerical computations are also given. Finally, using the numerical calculation, high speed flow velocity measurement was attempted and found to be in good agreement with other complementary controlled measurements. (author)

  20. Exercise as a therapy for improvement of walking ability in adults with multiple sclerosis: a meta-analysis.

    Science.gov (United States)

    Pearson, Melissa; Dieberg, Gudrun; Smart, Neil

    2015-07-01

    To quantify improvements in walking performance commonly observed in patients with multiple sclerosis (pwMS), a systematic literature search and meta-analysis were conducted quantifying the expected benefits of exercise on walking ability in pwMS. Potential studies were identified by systematic search using PubMed (1966 to March 31, 2014), EMBASE (1974 to March 31, 2014), CINAHL (1998 to March 31, 2014), SPORTDiscus (1991 to March 31, 2014), and the Cochrane Central Register of Controlled Trials (1966 to March 31, 2014). The search used key concepts of "multiple sclerosis" AND "exercise." Randomized controlled trials of exercise training in adult pwMS. Data on patient and study characteristics, walking ability, 10-m walk test (10mWT), timed 25-foot walk test (T25FW), 2-minute walk test (2MWT), 6-minute walk test (6MWT), and timed Up and Go (TUG) were extracted and archived. Data from 13 studies were included. In pwMS who exercised, significant improvements were found in walking speed, measured by the 10mWT (mean difference [MD] reduction in walking time of -1.76s; 95% confidence interval [CI], -2.47 to -1.06; Pwalking endurance as measured by the 6MWT and 2MWT, with an increased walking distance of MD=36.46m (95% CI, 15.14-57.79; Pwalking speed and endurance in pwMS. Copyright © 2015 American Congress of Rehabilitation Medicine. Published by Elsevier Inc. All rights reserved.

  1. Required friction during overground walking is lower among obese compared to non-obese older men, but does not differ with obesity among women.

    Science.gov (United States)

    Arena, Sara L; Garman, Christina R; Nussbaum, Maury A; Madigan, Michael L

    2017-07-01

    Obesity and aging have been independently associated with altered required friction during walking, but it is unclear how these factors interact to influence the likelihood of slipping. Therefore, the purpose of this study was to determine whether there are differences related to obesity and aging on required friction during overground walking. Fourteen older non-obese, 11 older obese, 20 younger non-obese, and 20 younger obese adults completed walking trials at both a self-selected and hurried speed. When walking at a hurried speed, older obese men walked at a slower gait speed and exhibited lower frictional demands compared both to older non-obese men and to younger obese men. No differences in required friction were found between non-obese and obese younger adults. These results suggest that the increased rate of falls among obese or older adults is not likely due to a higher risk of slip initiation. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. High speed photography for investigating kiloampere discharges in supersonic air flows

    International Nuclear Information System (INIS)

    Jones, G.R.; Strachan, D.

    1975-01-01

    Examples of the use of conventional high speed photographic techniques are given for obtaining information about the behaviour of high current arc discharges in different gas flow fields. The photographic records yield information about the extent of both the luminous arc core and the surrounding heated volume of gas. A knowledge of these parameters leads to a better understanding of arc discharges which occur in gas blast circuit breakers. (author)

  3. Measurements of granular flow dynamics with high speed digital images

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jingeol [Univ. of Florida, Gainesville, FL (United States)

    1994-01-01

    The flow of granular materials is common to many industrial processes. This dissertation suggests and validates image processing algorithms applied to high speed digital images to measure the dynamics (velocity, temperature and volume fraction) of dry granular solids flowing down an inclined chute under the action of gravity. Glass and acrylic particles have been used as granular solids in the experiment. One technique utilizes block matching for spatially averaged velocity measurements of the glass particles. This technique is compared with the velocity measurement using an optic probe which is a conventional granular flow velocity measurement device. The other technique for measuring the velocities of individual acrylic particles is developed with correspondence using a Hopfield network. This technique first locates the positions of particles with pattern recognition techniques, followed by a clustering technique, which produces point patterns. Also, several techniques are compared for particle recognition: synthetic discriminant function (SDF), minimum average correlation energy (MACE) filter, modified minimum average correlation energy (MMACE) filter and variance normalized correlation. The author proposes an MMACE filter which improves generalization of the MACE filter by adjusting the amount of averaged spectrum of training images in the spectrum whitening stages of the MACE filter. Variance normalized correlation is applied to measure the velocity and temperature of flowing glass particles down the inclined chute. The measurements are taken for the steady and wavy flow and qualitatively compared with a theoretical model of granular flow.

  4. Influence of lower body pressure support on the walking patterns of healthy children and adults.

    Science.gov (United States)

    Kurz, Max J; Deffeyes, Joan E; Arpin, David J; Karst, Gregory M; Stuberg, Wayne A

    2012-11-01

    The purpose of this investigation was to evaluate the effect of a lower body positive pressure support system on the joint kinematics and activity of the lower extremity antigravity musculature of adults and children during walking. Adults (age = 25 ± 4 years) and children (age = 13 ± 2 years) walked at a preferred speed and a speed that was based on the Froude number, while 0-80% of their body weight was supported. Electrogoniometers were used to monitor knee and ankle joint kinematics. Surface electromyography was used to quantify the magnitude of the vastus lateralis and gastrocnemius muscle activity. There were three key findings: (1) The lower extremity joint angles and activity of the lower extremity antigravity muscles of children did not differ from those of adults. (2) The magnitude of the changes in the lower extremity joint motion and antigravity muscle activity was dependent upon an interaction between body weight support and walking speed. (3) Lower body positive pressure support resulted in reduced activation of the antigravity musculature, and reduced range of motion of the knee and ankle joints.

  5. Walking execution is not affected by divided attention in patients with multiple sclerosis with no disability, but there is a motor planning impairment.

    Science.gov (United States)

    Nogueira, Leandro Alberto Calazans; Santos, Luciano Teixeira Dos; Sabino, Pollyane Galinari; Alvarenga, Regina Maria Papais; Thuler, Luiz Claudio Santos

    2013-08-01

    We analysed the cognitive influence on walking in multiple sclerosis (MS) patients, in the absence of clinical disability. A case-control study was conducted with 12 MS patients with no disability and 12 matched healthy controls. Subjects were referred for completion a timed walk test of 10 m and a 3D-kinematic analysis. Participants were instructed to walk at a comfortable speed in a dual-task (arithmetic task) condition, and motor planning was measured by mental chronometry. Scores of walking speed and cadence showed no statistically significant differences between the groups in the three conditions. The dual-task condition showed an increase in the double support duration in both groups. Motor imagery analysis showed statistically significant differences between real and imagined walking in patients. MS patients with no disability did not show any influence of divided attention on walking execution. However, motor planning was overestimated as compared with real walking.

  6. Energy transformation, transfer, and release dynamics in high speed turbulent flows

    Science.gov (United States)

    2017-03-01

    Secondly, a new high -order (4 th -order) convective flux formulation was developed that uses the tabulated information, yet produces a fully consistent...Klippenstein 2012 Comprehensive H2/O2 Kinetic Model for High - Pressure Combustion. Int. J. Chem. Kinetics 44:444-474. Cabot, W.H., A.W. Cook, P.L. Miller, D.E...AFRL-AFOSR-VA-TR-2017-0054 Energy Transformation, Transfer, and Release Dynamics in High -Speed Turbulent Flows Paul Dimotakis CALIFORNIA INSTITUTE

  7. Restoration of gait for spinal cord injury patients using HAL with intention estimator for preferable swing speed.

    Science.gov (United States)

    Tsukahara, Atsushi; Hasegawa, Yasuhisa; Eguchi, Kiyoshi; Sankai, Yoshiyuki

    2015-03-01

    This paper proposes a novel gait intention estimator for an exoskeleton-wearer who needs gait support owing to walking impairment. The gait intention estimator not only detects the intention related to the start of the swing leg based on the behavior of the center of ground reaction force (CoGRF), but also infers the swing speed depending on the walking velocity. The preliminary experiments categorized into two stages were performed on a mannequin equipped with the exoskeleton robot [Hybrid Assistive Limb: (HAL)] including the proposed estimator. The first experiment verified that the gait support system allowed the mannequin to walk properly and safely. In the second experiment, we confirmed the differences in gait characteristics attributed to the presence or absence of the proposed swing speed profile. As a feasibility study, we evaluated the walking capability of a severe spinal cord injury patient supported by the system during a 10-m walk test. The results showed that the system enabled the patient to accomplish a symmetrical walk from both spatial and temporal standpoints while adjusting the speed of the swing leg. Furthermore, the critical differences of gait between our system and a knee-ankle-foot orthosis were obtained from the CoGRF distribution and the walking time. Through the tests, we demonstrated the effectiveness and practical feasibility of the gait support algorithms.

  8. Task difficulty has no effect on haptic anchoring during tandem walking in young and older adults.

    Science.gov (United States)

    Costa, Andréia Abud da Silva; Santos, Luciana Oliveira Dos; Mauerberg-deCastro, Eliane; Moraes, Renato

    2018-02-14

    This study assessed the contribution of the "anchor system's" haptic information to balance control during walking at two levels of difficulty. Seventeen young adults and seventeen older adults performed 20 randomized trials of tandem walking in a straight line, on level ground and on a slightly-raised balance beam, both with and without the use of the anchors. The anchor consists of two flexible cables, whose ends participants hold in each hand, to which weights (125 g) are attached at the opposing ends, and which rest on the ground. As the participants walk, they pull on the cables, dragging the anchors. Spatiotemporal gait variables (step speed and single- and double-support duration) were processed using retro-reflective markers on anatomical sites. An accelerometer positioned in the cervical region registered trunk acceleration. Walking on the balance beam increased single- and double-support duration and reduced step speed in older adults, which suggests that this condition was more difficult than walking on the level ground. The anchors reduced trunk acceleration in the frontal plane, but the level of difficulty of the walking task showed no effect. Thus, varying the difficulty of the task had no influence on the way in which participants used the anchor system while tandem walking. The older adults exhibited more difficulty in walking on the balance beam as compared to the younger adults; however, the effect of the anchor system was similar in both groups. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. Comparison of inverse dynamics calculated by two- and three-dimensional models during walking

    DEFF Research Database (Denmark)

    Alkjaer, T; Simonsen, E B; Dyhre-Poulsen, P

    2001-01-01

    recorded the subjects as they walked across two force plates. The subjects were invited to approach a walking speed of 4.5 km/h. The ankle, knee and hip joint moments in the sagittal plane were calculated by 2D and 3D inverse dynamics analysis and compared. Despite the uniform walking speed (4.53 km....../h) and similar footwear, relatively large inter-individual variations were found in the joint moment patterns during the stance phase. The differences between individuals were present in both the 2D and 3D analysis. For the entire sample of subjects the overall time course pattern of the ankle, knee and hip...... the magnitude of the joint moments calculated by 2D and 3D inverse dynamics but the inter-individual variation was not affected by the different models. The simpler 2D model seems therefore appropriate for human gait analysis. However, comparisons of gait data from different studies are problematic...

  10. Anticipatory kinematics and muscle activity preceding transitions from level-ground walking to stair ascent and descent.

    Science.gov (United States)

    Peng, Joshua; Fey, Nicholas P; Kuiken, Todd A; Hargrove, Levi J

    2016-02-29

    The majority of fall-related accidents are during stair ambulation-occurring commonly at the top and bottom stairs of each flight, locations in which individuals are transitioning to stairs. Little is known about how individuals adjust their biomechanics in anticipation of walking-stair transitions. We identified the anticipatory stride mechanics of nine able-bodied individuals as they approached transitions from level ground walking to stair ascent and descent. Unlike prior investigations of stair ambulation, we analyzed two consecutive "anticipation" strides preceding the transitions strides to stairs, and tested a comprehensive set of kinematic and electromyographic (EMG) data from both the leading and trailing legs. Subjects completed ten trials of baseline overground walking and ten trials of walking to stair ascent and descent. Deviations relative to baseline were assessed. Significant changes in mechanics and EMG occurred in the earliest anticipation strides analyzed for both ascent and descent transitions. For stair descent, these changes were consistent with observed reductions in walking speed, which occurred in all anticipation strides tested. For stair ascent, subjects maintained their speed until the swing phase of the latest anticipation stride, and changes were found that would normally be observed for decreasing speed. Given the timing and nature of the observed changes, this study has implications for enhancing intent recognition systems and evaluating fall-prone or disabled individuals, by testing their abilities to sense upcoming transitions and decelerate during locomotion. Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. The Oxygen Consumption and Metabolic Cost of Walking and Running in Adults With Achondroplasia

    Directory of Open Access Journals (Sweden)

    David T. Sims

    2018-04-01

    Full Text Available The disproportionate body mass and leg length of Achondroplasic individuals may affect their net oxygen consumption (V͘O2 and metabolic cost (C when walking at running compared to those of average stature (controls. The aim of this study was to measure submaximal V͘O2 and C during a range of set walking speeds (SWS; 0.56 – 1.94 m⋅s-1, increment 0.28 m⋅s-1, set running speeds (SRS; 1.67 – 3.33 m⋅s-1, increment 0.28 m⋅s-1 and a self-selected walking speed (SSW. V͘O2 and C was scaled to total body mass (TBM and fat free mass (FFM while gait speed was scaled to leg length using Froude’s number (Fr. Achondroplasic V͘O2TBM and V͘O2FFM were on average 29 and 35% greater during SWS (P < 0.05 and 12 and 18% higher during SRS (P < 0.05 than controls, respectively. Achondroplasic CTBM and CFFM were 29 and 33% greater during SWS (P < 0.05 and 12 and 18% greater during SRS (P < 0.05 than controls, respectively. There was no difference in SSW V͘O2TBM or V͘O2FFM between groups (P > 0.05, but CTBM and CFFM at SSW were 23 and 29% higher (P < 0.05 in the Achondroplasic group compared to controls, respectively. V͘O2TBM and V͘O2FFM correlated with Fr for both groups (r = 0.984 – 0.999, P < 0.05. Leg length accounted for the majority of the higher V͘O2TBM and V͘O2FFM in the Achondroplasic group, but further work is required to explain the higher Achondroplasic CTBM and CFFM at all speeds compared to controls.New and Noteworthy: There is a leftward shift of oxygen consumption scaled to total body mass and fat free mass in Achondroplasic adults when walking and running. This is nullified when talking into account leg length. However, despite these scalars, Achondroplasic individuals have a higher walking and metabolic cost compared to age matched non-Achondroplasic individuals, suggesting biomechanical differences between the groups.

  12. Irrigant flow in the root canal: experimental validation of an unsteady Computational Fluid Dynamics model using high-speed imaging.

    Science.gov (United States)

    Boutsioukis, C; Verhaagen, B; Versluis, M; Kastrinakis, E; van der Sluis, L W M

    2010-05-01

    To compare the results of a Computational Fluid Dynamics (CFD) simulation of the irrigant flow within a prepared root canal, during final irrigation with a syringe and a needle, with experimental high-speed visualizations and theoretical calculations of an identical geometry and to evaluate the effect of off-centre positioning of the needle inside the root canal. A CFD model was created to simulate irrigant flow from a side-vented needle inside a prepared root canal. Calculations were carried out for four different positions of the needle inside a prepared root canal. An identical root canal model was made from poly-dimethyl-siloxane (PDMS). High-speed imaging of the flow seeded with particles and Particle Image Velocimetry (PIV) were combined to obtain the velocity field inside the root canal experimentally. Computational, theoretical and experimental results were compared to assess the validity of the computational model. Comparison between CFD computations and experiments revealed good agreement in the velocity magnitude and vortex location and size. Small lateral displacements of the needle inside the canal had a limited effect on the flow field. High-speed imaging experiments together with PIV of the flow inside a simulated root canal showed a good agreement with the CFD model, even though the flow was unsteady. Therefore, the CFD model is able to predict reliably the flow in similar domains.

  13. The Effect of Foot Progression Angle on Knee Joint Compression Force during Walking

    DEFF Research Database (Denmark)

    Baldvinsson, Henrik Koblauch; Heilskov-Hansen, Thomas; Alkjær, Tine

    2013-01-01

    males walked at a fixed speed of 4.5 km/h under three conditions: Normal walking, internally rotated and externally rotated. All gait-trials were recorded by six infrared cameras. Net joint moments were calculated by 3D inverse dynamics. The results revealed that the medial knee joint compartment......It is unclear how rotations of the lower limb affect the knee joint compression forces during walking. Increases in the frontal plane knee moment have been reported when walking with internally rotated feet and a decrease when walking with externally rotated feet. The aim of this study...... was to investigate the knee joint compressive forces during walking with internal, external and normal foot rotation and to determine if the frontal plane knee joint moment is an adequate surrogate for the compression forces in the medial and lateral knee joint compartments under such gait modifications. Ten healthy...

  14. Ankle Plantarflexor Spasticity Does Not Restrict the Recovery of Ankle Plantarflexor Strength or Ankle Power Generation for Push-Off During Walking Following Traumatic Brain Injury.

    Science.gov (United States)

    Williams, Gavin; Banky, Megan; Olver, John

    2016-01-01

    The main aim of this project was to determine the impact of plantarflexor spasticity on muscle performance for ambulant people with traumatic brain injury (TBI). A large metropolitan rehabilitation hospital. Seventy-two ambulant people with TBI who were attending physiotherapy for mobility limitations. Twenty-four participants returned for a 6-month follow-up reassessment. Cross-sectional cohort study. Self-selected walking speed, Tardieu scale, ankle plantarflexor strength, and ankle power generation (APG). Participants with ankle plantarflexor spasticity had significantly lower self-selected walking speed; however, there was no significant difference in ankle plantarflexor strength or APG. Participants with ankle plantarflexor spasticity were not restricted in the recovery of self-selected walking speed, ankle plantarflexor strength, or APG, indicating equivalent ability to improve their mobility over time despite the presence of spasticity. Following TBI, people with ankle plantarflexor spasticity have significantly greater mobility limitations than those without spasticity, yet retain the capacity for recovery of self-selected walking speed, ankle plantarflexor strength, and APG.

  15. Validity of FitBit, Jawbone UP, Nike+ and other wearable devices for level and stair walking.

    Science.gov (United States)

    Huang, Yangjian; Xu, Junkai; Yu, Bo; Shull, Peter B

    2016-07-01

    Increased physical activity can provide numerous health benefits. The relationship between physical activity and health assumes reliable activity measurements including step count and distance traveled. This study assessed step count and distance accuracy for Nike+ FuelBand, Jawbone UP 24, Fitbit One, Fitbit Flex, Fitbit Zip, Garmin Vivofit, Yamax CW-701, and Omron HJ-321 during level, upstairs, and downstairs walking in healthy adults. Forty subjects walked on flat ground (400m), upstairs (176 steps), and downstairs (176 steps), and a subset of 10 subjects performed treadmill walking trials to assess the influence of walking speed on accuracy. Activity monitor measured step count and distance values were compared with actual step count (determined from video recordings) and distance to determine accuracy. For level walking, step count errors in Yamax CW-701, Fitbit Zip, Fitbit One, Omron HJ-321, and Jawbone UP 24 were within 1% and distance errors in Fitbit Zip and Yamax CW-701 were within 5%. Garmin Vivofit and Omron HJ-321 were the most accurate in estimating step count for stairs with errors less than 4%. An important finding is that all activity monitors overestimated distance for stair walking by at least 45%. In general, there were not accuracy differences among activity monitors for stair walking. Accuracy did not change between moderate and fast walking speeds, though slow walking increased errors for some activity monitors. Nike+ FuelBand was the least accurate step count estimator during all walking tasks. Caution should be taken when interpreting step count and distance estimates for activities involving stairs. Copyright © 2016 Elsevier B.V. All rights reserved.

  16. Influence of speed and frequency towards the automotive turbocharger turbine performance under pulsating flow conditions

    International Nuclear Information System (INIS)

    Padzillah, M.H.; Rajoo, S.; Martinez-Botas, R.F.

    2014-01-01

    Highlights: • 3D CFD modeling of a turbocharger turbine with pulsating flow. • Characterization based on turbine speed and frequency. • Speed has higher influence on turbine performance compared to frequency. • Detailed localized flow behavior are shown for better understanding. - Abstract: The ever-increasing demand for low carbon applications in automotive industry has intensified the development of highly efficient engines and energy recovery devices. Even though there are significant developments in the alternative powertrains such as full electric, their full deployment is hindered by high costing and unattractive life-cycle energy and emission balance. Thus powertrain based on highly efficient internal combustion engines are still considered to be the mainstream for years to come. Traditionally, turbocharger has been an essential tool to boost the engine power, however in recent years it is seen as an enabling technology for engine downsizing. It is a well-known fact that a turbocharger turbine in an internal combustion engine operates in a highly pulsating exhaust flow. There are numerous studies looking into the complex interaction of the pulsating exhaust gas within the turbocharger turbine, however the phenomena is still not fully integrated into the design stage. Industry practice is still to design and match the turbine to an engine based on steady performance maps. The current work is undertaken with the mind to move one step closer towards fully integrating the pulsating flow performance into the turbocharger turbine design. This paper presents the development efforts and results from a full 3-D CFD model of a turbocharger turbine stage. The simulations were conducted at 30,000 rpm and 48,000 rpm (50% and 80% design speed respectively) for both 20 Hz and 80 Hz pulsating flow inlet conditions. Complete validation procedure using cold-flow experimental data is also described. The temporal and spatial resolutions of the incidence angle at the

  17. Patient Satisfaction of Using the ActiGait® Drop Foot Stimulator System and Effect of Treatment on Walking

    DEFF Research Database (Denmark)

    Severinsen, Kåre Eg; Grey, Kurt; Juhl, Anne

    2014-01-01

    In this case-control study of ten chronic stroke patients with drop foot we report preliminary data on patient satisfaction, self- assessed changes in walking performance, effect on walking speed as well as adverse effects after surgical implantation of the ActiGait® drop foot stimulator in a cli...... with great care due to the small population size, the case control design and the limitations of the ten meter walk test in describing walking quality and safety....

  18. Comparison of energy expenditure between aquatic and overground treadmill walking in people post-stroke.

    Science.gov (United States)

    Jung, Taeyou; Ozaki, Yoshi; Lai, Byron; Vrongistinos, Konstantinos

    2014-03-01

    This study aimed to compare the cardiorespiratory responses between aquatic treadmill walking (ATW) and overground treadmill walking (OTW) in people with hemiparesis post-stroke. Eight participants post-stroke aged 58.5 ± 11.4 years and eight healthy adult controls aged 56.1 ± 8.6 years participated in a cross-sectional comparative study. Participants completed three 8-minute walking sessions separated by at least 72-hour rest. On the first visit, participants identified their comfortable walking speed on an aquatic and overground treadmill. The second and third visit consisted of either ATW or OTW at a matched speed. Oxygen consumption (VO2), carbon dioxide production (VCO2 ), minute ventilation (VE) and energy expenditure (EE) were measured at rest and during walking in both exercise modes. Mean steady-state cardiorespiratory responses during ATW showed a significant decrease compared with OTW at a matched speed. During ATW, mean VO2 values decreased by 39% in the stroke group and 21% in the control group, mean VCO2 values decreased by 42% in the stroke group and 30% in the control group, and mean EE decreased by 40% in the stroke group and 25% in the control group. Mean steady-state VE values and resting cardiorespiratory response values showed no significant change between the two conditions. This study demonstrated a decreased metabolic cost when ATW at matched speeds to that of OTW. Reduced metabolic cost during ATW may allow for longer durations of treadmill-induced gait training compared with OTW for improved outcomes. This knowledge may aid clinicians when prescribing aquatic treadmill exercise for people post-stroke with goals of improving gait and functional mobility. However, decreased metabolic cost during ATW suggests that to improve cardiovascular fitness, ATW may not be a time-efficient method of cardiovascular exercise for healthy adults and people post-stroke. Copyright © 2013 John Wiley & Sons, Ltd.

  19. Technical report on prototype intelligent network flow optimization (INFLO) dynamic speed harmonization and queue warning.

    Science.gov (United States)

    2015-06-01

    This Technical Report on Prototype Intelligent Network Flow Optimization (INFLO) Dynamic Speed Harmonization and : Queue Warning is the final report for the project. It describes the prototyping, acceptance testing and small-scale : demonstration of ...

  20. Supercavitating flow around high-speed underwater projectile near free surface induced by air entrainment

    Directory of Open Access Journals (Sweden)

    Chang Xu

    2018-03-01

    Full Text Available Cavitating flow near free surface is a complicated issue and may provide new inspiration on high-speed surface cruising. This study observes stable supercavitating flow as a new phenomenon in a launch experiment of axisymmetric projectile when the upper side of the projectile coincides with the free surface. A numerical approach is established using large eddy-simulation and volume-of-fluid methods, and good agreements are achieved between numerical and experimental results. Supercavity formation mechanism is revealed by analyzing the experiment photographs and the iso-surface of 90% water volume fraction in numerical results. The entrainment of a large amount of air into the cavity can cause the pressure inside the cavity to similarly increase with the pressure outside the cavity, which makes the actual cavitation number close to zero and is similar to supercavitation. Cases with various headforms of the projectile and cavitation numbers on the cavitating flow, as well as the drag reduction effects are further examined. Results indicate that the present strategy near the free surface could possibly be a new effective approach for high-speed cruising after vigorous design optimization in the future.

  1. Random walk on random walks

    NARCIS (Netherlands)

    Hilário, M.; Hollander, den W.Th.F.; Sidoravicius, V.; Soares dos Santos, R.; Teixeira, A.

    2014-01-01

    In this paper we study a random walk in a one-dimensional dynamic random environment consisting of a collection of independent particles performing simple symmetric random walks in a Poisson equilibrium with density ¿¿(0,8). At each step the random walk performs a nearest-neighbour jump, moving to

  2. Mechanical and energetic consequences of reduced ankle plantar-flexion in human walking.

    Science.gov (United States)

    Huang, Tzu-wei P; Shorter, Kenneth A; Adamczyk, Peter G; Kuo, Arthur D

    2015-11-01

    The human ankle produces a large burst of 'push-off' mechanical power late in the stance phase of walking, reduction of which leads to considerably poorer energy economy. It is, however, uncertain whether the energetic penalty results from poorer efficiency when the other leg joints substitute for the ankle's push-off work, or from a higher overall demand for work due to some fundamental feature of push-off. Here, we show that greater metabolic energy expenditure is indeed explained by a greater demand for work. This is predicted by a simple model of walking on pendulum-like legs, because proper push-off reduces collision losses from the leading leg. We tested this by experimentally restricting ankle push-off bilaterally in healthy adults (N=8) walking on a treadmill at 1.4 m s(-1), using ankle-foot orthoses with steel cables limiting motion. These produced up to ∼50% reduction in ankle push-off power and work, resulting in up to ∼50% greater net metabolic power expenditure to walk at the same speed. For each 1 J reduction in ankle work, we observed 0.6 J more dissipative collision work by the other leg, 1.3 J more positive work from the leg joints overall, and 3.94 J more metabolic energy expended. Loss of ankle push-off required more positive work elsewhere to maintain walking speed; this additional work was performed by the knee, apparently at reasonably high efficiency. Ankle push-off may contribute to walking economy by reducing dissipative collision losses and thus overall work demand. © 2015. Published by The Company of Biologists Ltd.

  3. Effect of Nordic Walking and Water Aerobics Training on Body Composition and the Blood Flow in Lower Extremities in Elderly Women

    Directory of Open Access Journals (Sweden)

    Jasiński Ryszard

    2015-03-01

    Full Text Available Nordic walking and water aerobics are very popular forms of physical activity in the elderly population. The aim of the study was to evaluate the influence of regular health training on the venous blood flow in lower extremities and body composition in women over 50 years old. Twenty-four women of mean age 57.9 (± 3.43 years, randomly divided into three groups (Nordic walking, water aerobics, and non-training, participated in the study. The training lasted 8 weeks, with one-hour sessions twice a week. Dietary habits were not changed. Before and after training vein refilling time and the function of the venous pump of the lower extremities were measured by photoplethysmography. Body composition was determined by bioelectrical impedance. Eight weeks of Nordic walking training improved the venous blood flow in lower extremities and normalized body composition in the direction of reducing chronic venous disorder risk factors. The average values of the refilling time variable (p = 0.04, p = 0.02, respectively decreased in both the right and the left leg. After training a statistically significant increase in the venous pump function index was found only in the right leg (p = 0.04. A significant increase in fat-free mass, body cell mass and total body water was observed (p = 0.01, whereas body mass, the body mass index, and body fat decreased (p < 0.03. With regard to water aerobic training, no similar changes in the functions of the venous system or body composition were observed.

  4. Full Step Cycle Kinematic and Kinetic Comparison of Barefoot Walking and a Traditional Shoe Walking in Healthy Youth: Insights for Barefoot Technology

    Directory of Open Access Journals (Sweden)

    Yi Xu

    2017-01-01

    Full Text Available Objective. Barefoot technology shoes are becoming increasingly popular, yet modifications are still needed. The present study aims to gain valuable insights by comparing barefoot walking to neutral shoe walking in a healthy youth population. Methods. 28 healthy university students (22 females and 6 males were recruited to walk on a 10-meter walkway both barefoot and in neutral running shoes at their comfortable walking speed. Full step cycle kinematic and kinetic data were collected using an 8-camera motion capture system. Results. In the early stance phase, the knee extension moment (MK1, the first peak absorbed joint power at the knee joint (PK1, and the flexion angle of knee/dorsiflexion angle of the ankle were significantly reduced when walking in neutral running shoes. However, in the late stance, barefoot walking resulted in decreased hip joint flexion moment (MH2, second peak extension knee moment (MK3, hip flexors absorbed power (PH2, hip flexors generated power (PH3, second peak absorbed power by knee flexors (PK2, and second peak anterior-posterior component of joint force at the hip (APFH2, knee (APFK2, and ankle (APFA2. Conclusions. These results indicate that it should be cautious to discard conventional elements from future running shoe designs and rush to embrace the barefoot technology fashion.

  5. Using wireless technology in clinical practice: does feedback of daily walking activity improve walking outcomes of individuals receiving rehabilitation post-stroke? Study protocol for a randomized controlled trial

    Science.gov (United States)

    2013-01-01

    Background Regaining independent ambulation is the top priority for individuals recovering from stroke. Thus, physical rehabilitation post-stroke should focus on improving walking function and endurance. However, the amount of walking completed by individuals with stroke attending rehabilitation is far below that required for independent community ambulation. There has been increased interest in accelerometer-based monitoring of walking post-stroke. Walking monitoring could be integrated within the goal-setting process for those with ambulation goals in rehabilitation. The feedback from these devices can be downloaded to a computer to produce reports. The purpose of this study is to determine the effect of accelerometer-based feedback of daily walking activity during rehabilitation on the frequency and duration of walking post-stroke. Methods Participants will be randomly assigned to one of two groups: feedback or no feedback. Participants will wear accelerometers daily during in- and out-patient rehabilitation and, for participants in the feedback group, the participants’ treating physiotherapist will receive regular reports of walking activity. The primary outcome measures are the amount of daily walking completed, as measured using the accelerometers, and spatio-temporal characteristics of walking (e.g. walking speed). We will also examine goal attainment, satisfaction with progress towards goals, stroke self-efficacy, and community-integration. Discussion Increased walking activity during rehabilitation is expected to improve walking function and community re-integration following discharge. In addition, a focus on altering walking behaviour within the rehabilitation setting may lead to altered behaviour and increased activity patterns after discharge. Trial registration ClinicalTrials.gov NCT01521234 PMID:23865593

  6. Joint forces and torques when walking in shallow water.

    Science.gov (United States)

    Orselli, Maria Isabel Veras; Duarte, Marcos

    2011-04-07

    This study reports for the first time an estimation of the internal net joint forces and torques on adults' lower limbs and pelvis when walking in shallow water, taking into account the drag forces generated by the movement of their bodies in the water and the equivalent data when they walk on land. A force plate and a video camera were used to perform a two-dimensional gait analysis at the sagittal plane of 10 healthy young adults walking at comfortable speeds on land and in water at a chest-high level. We estimated the drag force on each body segment and the joint forces and torques at the ankle, knee, and hip of the right side of their bodies using inverse dynamics. The observed subjects' apparent weight in water was about 35% of their weight on land and they were about 2.7 times slower when walking in water. When the subjects walked in water compared with walking on land, there were no differences in the angular displacements but there was a significant reduction in the joint torques which was related to the water's depth. The greatest reduction was observed for the ankle and then the knee and no reduction was observed for the hip. All joint powers were significantly reduced in water. The compressive and shear joint forces were on average about three times lower during walking in water than on land. These quantitative results substantiate the use of water as a safe environment for practicing low-impact exercises, particularly walking. Copyright © 2011 Elsevier Ltd. All rights reserved.

  7. Phenotypic characterization of speed-associated gait changes in mice reveals modular organization of locomotor networks

    DEFF Research Database (Denmark)

    Bellardita, Carmelo; Kiehn, Ole

    2015-01-01

    behavioral outcomes expressed at different speeds of locomotion. Here, we use detailed kinematic analyses to search for signatures of a modular organization of locomotor circuits in intact and genetically modified mice moving at different speeds of locomotion. We show that wild-type mice display three...... distinct gaits: two alternating, walk and trot, and one synchronous, bound. Each gait is expressed in distinct ranges of speed with phenotypic inter-limb and intra-limb coordination. A fourth gait, gallop, closely resembled bound in most of the locomotor parameters but expressed diverse inter......-limb coordination. Genetic ablation of commissural V0V neurons completely removed the expression of one alternating gait, trot, but left intact walk, gallop, and bound. Ablation of commissural V0V and V0D neurons led to a loss of walk, trot, and gallop, leaving bound as the default gait. Our study provides...

  8. A randomized trial of functional electrical stimulation for walking in incomplete spinal cord injury: Effects on walking competency.

    Science.gov (United States)

    Kapadia, Naaz; Masani, Kei; Catharine Craven, B; Giangregorio, Lora M; Hitzig, Sander L; Richards, Kieva; Popovic, Milos R

    2014-09-01

    Multi-channel surface functional electrical stimulation (FES) for walking has been used to improve voluntary walking and balance in individuals with spinal cord injury (SCI). To investigate short- and long-term benefits of 16 weeks of thrice-weekly FES-assisted walking program, while ambulating on a body weight support treadmill and harness system, versus a non-FES exercise program, on improvements in gait and balance in individuals with chronic incomplete traumatic SCI, in a randomized controlled trial design. Individuals with traumatic and chronic (≥18 months) motor incomplete SCI (level C2 to T12, American Spinal Cord Injury Association Impairment Scale C or D) were recruited from an outpatient SCI rehabilitation hospital, and randomized to FES-assisted walking therapy (intervention group) or aerobic and resistance training program (control group). Outcomes were assessed at baseline, and after 4, 6, and 12 months. Gait, balance, spasticity, and functional measures were collected. Spinal cord independence measure (SCIM) mobility sub-score improved over time in the intervention group compared with the control group (baseline/12 months: 17.27/21.33 vs. 19.09/17.36, respectively). On all other outcome measures the intervention and control groups had similar improvements. Irrespective of group allocation walking speed, endurance, and balance during ambulation all improved upon completion of therapy, and majority of participants retained these gains at long-term follow-ups. Task-oriented training improves walking ability in individuals with incomplete SCI, even in the chronic stage. Further randomized controlled trials, involving a large number of participants are needed, to verify if FES-assisted treadmill training is superior to aerobic and strength training.

  9. Cerebral Blood Flow Responses to Aquatic Treadmill Exercise.

    Science.gov (United States)

    Parfitt, Rhodri; Hensman, Marianne Y; Lucas, Samuel J E

    2017-07-01

    Aquatic treadmills are used as a rehabilitation method for conditions such as spinal cord injury, osteoarthritis, and stroke, and can facilitate an earlier return to exercise training for athletes. However, their effect on cerebral blood flow (CBF) responses has not been examined. We tested the hypothesis that aquatic treadmill exercise would augment CBF and lower HR compared with land-based treadmill exercise. Eleven participants completed incremental exercise (crossover design) starting from walking pace (4 km·h, immersed to iliac crest [aquatic], 6 km·h [land]) and increasing 1 km·h every 2 min up to 10 km·h for aquatic (maximum belt speed) or 12 km·h for land. After this, participants completed two 2-min bouts of exercise immersed to midthigh and midchest at constant submaximal speed (aquatic), or were ramped to exhaustion (land; increased gradient 2° every min). Middle cerebral artery blood flow velocity (MCAv) and HR were measured throughout, and the initial 10 min of each protocol and responses at each immersion level were compared. Compared with land-based treadmill, MCAvmean increased more from baseline for aquatic exercise (21% vs 12%, P aquatic walking compared with land-based moderate intensity running (~10 cm·s, P = 0.56). Greater water immersion lowered HR (139 vs 178 bpm for midchest vs midthigh), whereas MCAvmean remained constant (P = 0.37). Findings illustrate the potential for aquatic treadmill exercise to enhance exercise-induced elevations in CBF and thus optimize shear stress-mediated adaptation of the cerebrovasculature.

  10. Walking while performing working memory tasks changes the prefrontal cortex hemodynamic activations and gait kinematics

    Directory of Open Access Journals (Sweden)

    Ming-I Brandon Lin

    2016-05-01

    Full Text Available BackgroundIncreasing evidence suggests that walking while performing a concurrent task negatively influences gait performance. However, it remains unclear how higher-level cognitive processes and coordination of limb movements are altered in challenging walking environments. This study investigated the influence of cognitive task complexity and walking road condition on the neutral correlates of executive function and postural control in dual-task walking. MethodsTwenty-four healthy young adults completed a series of overground walks with three walking road conditions (wide, narrow, with obstacles with and without the concurrent n-back working memory tasks of two complexity levels (1-back and 3-back. Prefrontal brain activation was assessed by functional near-infrared spectroscopy. A three-dimensional motion analysis system was used simultaneously to measure gait performance and lower-extremity kinematics. Repeated measures analysis of variance were performed to examine the differences between the conditions. ResultsIn comparison with standing still, participants showed lower n-back task accuracy while walking, with the worst performance from the road with obstacles. Spatiotemporal gait parameters, lower-extremity joint movements, and the relative changes in oxygenated hemoglobin (HbO concentration levels were all significantly different across the task complexity and walking path conditions. While dual-tasking participants were found to flex their hips and knees less, leading to a slower gait speed, longer stride time, shorter step length, and greater gait variability than during normal walking. For narrow-road walking, smaller ankle dorsiflexion and larger hip flexion were observed, along with a reduced gait speed. Obstacle negotiation was mainly characterized by increased gait variability than other conditions. HbO levels appeared to be lower during dual-task walking than normal walking. Compared to wide and obstacle conditions, walking on

  11. Effect of carbon-composite knee-ankle-foot orthoses on walking efficiency and gait in former polio patients.

    Science.gov (United States)

    Brehm, Merel-Anne; Beelen, Anita; Doorenbosch, Caroline A M; Harlaar, Jaap; Nollet, Frans

    2007-10-01

    To investigate the effects of total-contact fitted carbon-composite knee-ankle-foot orthoses (KAFOs) on energy cost of walking in patients with former polio who normally wear a conventional leather/metal KAFO or plastic/metal KAFO. A prospective uncontrolled study with a multiple baseline and follow-up design. Follow-up measurements continued until 26 weeks after intervention. Twenty adults with polio residuals (mean age 55 years). Each participant received a new carbon-composite KAFO, fitted according to a total-contact principle, which resulted in a rigid, lightweight and well-fitting KAFO. Energy cost of walking, walking speed, biomechanics of gait, physical functioning and patient satisfaction. The energy cost decreased significantly, by 8%, compared with the original KAFO. Furthermore, the incremention energy cost during walking with the carbon-composite KAFO was reduced by 18% towards normative values. An improvement in knee flexion, forward excursion of the centre of pressure, peak ankle moment, and timing of peak ankle power were significantly associated with the decrease in energy cost. Walking speed and physical functioning remained unchanged. In patients with former polio, carbon-composite KAFOs are superior to conventional leather/metal and plastic/metal KAFOs with respect to improving walking efficiency and gait, and are therefore important in reducing overuse and maintaining functional abilities in polio survivors.

  12. Performance of a visuomotor walking task in an augmented reality training setting.

    Science.gov (United States)

    Haarman, Juliet A M; Choi, Julia T; Buurke, Jaap H; Rietman, Johan S; Reenalda, Jasper

    2017-12-01

    Visual cues can be used to train walking patterns. Here, we studied the performance and learning capacities of healthy subjects executing a high-precision visuomotor walking task, in an augmented reality training set-up. A beamer was used to project visual stepping targets on the walking surface of an instrumented treadmill. Two speeds were used to manipulate task difficulty. All participants (n = 20) had to change their step length to hit visual stepping targets with a specific part of their foot, while walking on a treadmill over seven consecutive training blocks, each block composed of 100 stepping targets. Distance between stepping targets was varied between short, medium and long steps. Training blocks could either be composed of random stepping targets (no fixed sequence was present in the distance between the stepping targets) or sequenced stepping targets (repeating fixed sequence was present). Random training blocks were used to measure non-specific learning and sequenced training blocks were used to measure sequence-specific learning. Primary outcome measures were performance (% of correct hits), and learning effects (increase in performance over the training blocks: both sequence-specific and non-specific). Secondary outcome measures were the performance and stepping-error in relation to the step length (distance between stepping target). Subjects were able to score 76% and 54% at first try for lower speed (2.3 km/h) and higher speed (3.3 km/h) trials, respectively. Performance scores did not increase over the course of the trials, nor did the subjects show the ability to learn a sequenced walking task. Subjects were better able to hit targets while increasing their step length, compared to shortening it. In conclusion, augmented reality training by use of the current set-up was intuitive for the user. Suboptimal feedback presentation might have limited the learning effects of the subjects. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. Step-to-step variability in treadmill walking: influence of rhythmic auditory cueing.

    Directory of Open Access Journals (Sweden)

    Philippe Terrier

    Full Text Available While walking, human beings continuously adjust step length (SpL, step time (SpT, step speed (SpS = SpL/SpT and step width (SpW by integrating both feedforward and feedback mechanisms. These motor control processes result in correlations of gait parameters between consecutive strides (statistical persistence. Constraining gait with a speed cue (treadmill and/or a rhythmic auditory cue (metronome, modifies the statistical persistence to anti-persistence. The objective was to analyze whether the combined effect of treadmill and rhythmic auditory cueing (RAC modified not only statistical persistence, but also fluctuation magnitude (standard deviation, SD, and stationarity of SpL, SpT, SpS and SpW. Twenty healthy subjects performed 6 × 5 min. walking tests at various imposed speeds on a treadmill instrumented with foot-pressure sensors. Freely-chosen walking cadences were assessed during the first three trials, and then imposed accordingly in the last trials with a metronome. Fluctuation magnitude (SD of SpT, SpL, SpS and SpW was assessed, as well as NonStationarity Index (NSI, which estimates the dispersion of local means in the times series (SD of 20 local means over 10 steps. No effect of RAC on fluctuation magnitude (SD was observed. SpW was not modified by RAC, what is likely the evidence that lateral foot placement is separately regulated. Stationarity (NSI was modified by RAC in the same manner as persistent pattern: Treadmill induced low NSI in the time series of SpS, and high NSI in SpT and SpL. On the contrary, SpT, SpL and SpS exhibited low NSI under RAC condition. We used relatively short sample of consecutive strides (100 as compared to the usual number of strides required to analyze fluctuation dynamics (200 to 1000 strides. Therefore, the responsiveness of stationarity measure (NSI to cued walking opens the perspective to perform short walking tests that would be adapted to patients with a reduced gait perimeter.

  14. Supercomputer implementation of finite element algorithms for high speed compressible flows. Progress report, period ending 30 June 1986

    International Nuclear Information System (INIS)

    Thornton, E.A.; Ramakrishnan, R.

    1986-06-01

    Prediction of compressible flow phenomena using the finite element method is of recent origin and considerable interest. Two shock capturing finite element formulations for high speed compressible flows are described. A Taylor-Galerkin formulation uses a Taylor series expansion in time coupled with a Galerkin weighted residual statement. The Taylor-Galerkin algorithms use explicit artificial dissipation, and the performance of three dissipation models are compared. A Petrov-Galerkin algorithm has as its basis the concepts of streamline upwinding. Vectorization strategies are developed to implement the finite element formulations on the NASA Langley VPS-32. The vectorization scheme results in finite element programs that use vectors of length of the order of the number of nodes or elements. The use of the vectorization procedure speeds up processing rates by over two orders of magnitude. The Taylor-Galerkin and Petrov-Galerkin algorithms are evaluated for 2D inviscid flows on criteria such as solution accuracy, shock resolution, computational speed and storage requirements. The convergence rates for both algorithms are enhanced by local time-stepping schemes. Extension of the vectorization procedure for predicting 2D viscous and 3D inviscid flows are demonstrated. Conclusions are drawn regarding the applicability of the finite element procedures for realistic problems that require hundreds of thousands of nodes

  15. Effectiveness of Motorcycle speed controlled by speed hump

    Directory of Open Access Journals (Sweden)

    Pornsiri Urapa

    2014-09-01

    Full Text Available Speed humps are one of the traffic calming measures widely accepted to control vehicle speed in the local road. Humps standards from the western countries are designed mainly for the passenger car. This study, therefore, aims to reveal the effectiveness of speed hump to control the motorcycle speed. This study observes the free-flow speed of the riders at the total of 20 speed bumps and humps. They are 0.3-14.8 meter in width and 5-18 centimeter in height. The results reveal that the 85th percentile speeds reduce 15-65 percent when crossing the speed bumps and speed humps. Besides, this study develops the speed model to predict the motorcycle mean speed and 85th percentile speed. It is found that speed humps follow the ITE standard can control motorcycle crossing speeds to be 25-30 Kph which are suitable to travel on the local road.

  16. Numerical analysis of a pedestrian to car collision: Effect of variations in walk

    Directory of Open Access Journals (Sweden)

    Špička J.

    2016-12-01

    Full Text Available This work is focused on the modelling of car to pedestrian crash scenario. Virtual hybrid human body model VIRTHUMAN as well as a simplified model of car chassis is modelled under Virtual Performance Solution software. The main idea of the work is the investigation and sensitivity analysis of various initial conditions of the pedestrian during frontal car crash scenario, such as position of the extremities due to different step phases or turning of the pedestrian around his own axis. The experimental data of human gait measurement are used so that one human step is divided into 9 phases to capture the effect of walk when the pedestrian crosses a road. Consequently, the influence of different initial conditions on the kinematics, dynamics of the collision together with injury prediction of pedestrian is discussed. Moreover, the effect of walk is taken into account within translational velocities of the full human body and rotational velocities of the extremities. The trend of the injury prediction for varying initial conditions is monitored. The configurations with zero and non-zero initial velocities are compared with each other, in order to study the effect of walking speed of the pedestrian. Note that only the average walking speed is considered. On the basis of the achieved results, the importance or redundancy of modelling the walking motion and the consideration of different step phases in the car-pedestrian accident can be examined.

  17. Spatial search by quantum walk

    International Nuclear Information System (INIS)

    Childs, Andrew M.; Goldstone, Jeffrey

    2004-01-01

    Grover's quantum search algorithm provides a way to speed up combinatorial search, but is not directly applicable to searching a physical database. Nevertheless, Aaronson and Ambainis showed that a database of N items laid out in d spatial dimensions can be searched in time of order √(N) for d>2, and in time of order √(N) poly(log N) for d=2. We consider an alternative search algorithm based on a continuous-time quantum walk on a graph. The case of the complete graph gives the continuous-time search algorithm of Farhi and Gutmann, and other previously known results can be used to show that √(N) speedup can also be achieved on the hypercube. We show that full √(N) speedup can be achieved on a d-dimensional periodic lattice for d>4. In d=4, the quantum walk search algorithm takes time of order √(N) poly(log N), and in d<4, the algorithm does not provide substantial speedup

  18. A matrix-free implicit treatment for all speed flows on unstructured grids

    International Nuclear Information System (INIS)

    Kloczko, Th.

    2006-03-01

    The aim of this research work is the development of an efficient implicit scheme for computing compressible and low-speed flows on unstructured meshes. The first part is devoted to the review and analysis of some standard block-implicit treatments for the two-dimensional Euler and Navier-Stokes equations with a view to identify the best candidate for a fair comparison with the matrix-free treatment. The second part forms the main original contribution of this research work. It describes and analyses a matrix-free treatment that can be applied to any type of flow (inviscid/viscous, low Mach/highly compressible, steady/unsteady). The third part deals with the implementation of this treatment within the CAST3M code, and the demonstration of its advantages over existing techniques for computing applications of interest for the CEA: low-Mach number steady and unsteady flows in a Tee junction for example

  19. Speed scaling for weighted flow time

    NARCIS (Netherlands)

    Bansal, N.; Pruhs, K.R.; Stein, C.

    2007-01-01

    In addition to the traditional goal of efficiently managing time and space, many computers now need to efficiently manage power usage. For example, Intel's SpeedStep and AMD's PowerNOW technologies allow the Windows XP operating system to dynamically change the speed of the processor to prolong

  20. Relation between random walks and quantum walks

    Science.gov (United States)

    Boettcher, Stefan; Falkner, Stefan; Portugal, Renato

    2015-05-01

    Based on studies of four specific networks, we conjecture a general relation between the walk dimensions dw of discrete-time random walks and quantum walks with the (self-inverse) Grover coin. In each case, we find that dw of the quantum walk takes on exactly half the value found for the classical random walk on the same geometry. Since walks on homogeneous lattices satisfy this relation trivially, our results for heterogeneous networks suggest that such a relation holds irrespective of whether translational invariance is maintained or not. To develop our results, we extend the renormalization-group analysis (RG) of the stochastic master equation to one with a unitary propagator. As in the classical case, the solution ρ (x ,t ) in space and time of this quantum-walk equation exhibits a scaling collapse for a variable xdw/t in the weak limit, which defines dw and illuminates fundamental aspects of the walk dynamics, e.g., its mean-square displacement. We confirm the collapse for ρ (x ,t ) in each case with extensive numerical simulation. The exact values for dw themselves demonstrate that RG is a powerful complementary approach to study the asymptotics of quantum walks that weak-limit theorems have not been able to access, such as for systems lacking translational symmetries beyond simple trees.

  1. Power, speed & automation with Adobe Photoshop

    CERN Document Server

    Scott, Geoff

    2012-01-01

    This is a must for the serious Photoshop user! Power, Speed & Automation explores how to customize and automate Photoshop to increase your speed and productivity.  With numerous step-by-step instructions, the authors-two of Adobe's own software developers!- walk you through the steps to best tailor Photoshop's interface to your personal workflow; write and apply Actions; and use batching and scripts to process large numbers of images quickly and automatically.  You will learn how to build your own dialogs and panels to improve your production workflows in Photoshop, the secrets of changing

  2. Flow establishment behind blunt bodies at hypersonic speeds in a shock tunnel

    Science.gov (United States)

    Park, G.; Hruschka, R.; Gai, S. L.; Neely, A. J.

    2008-11-01

    An investigation of flow establishment behind two blunt bodies, a circular cylinder and a 45° half-angle blunted-cone was conducted. Unlike previous studies which relied solely on surface measurements, the present study combines these with unique high-speed visualisation to image the establishment of the flow structure in the base region. Test flows were generated using a free-piston shock tunnel at a nominal Mach number of 10. The freestream unit Reynolds numbers considered were 3.02x105/m and 1.17x106/m at total enthalpies of 13.35MJ/kg and 3.94MJ/kg, respectively. In general, the experiments showed that it takes longer to establish steady heat flux than pressure. The circular cylinder data showed that the near wake had a slight Reynolds number effect, where the size of the near wake was smaller for the high enthalpy flow condition. The blunted-cone data showed that the heat flux and pressures reached steady states in the near wake at similar times for both high and low enthalpy conditions.

  3. The physiological cost index of walking with a powered knee-ankle-foot orthosis in subjects with poliomyelitis: A pilot study.

    Science.gov (United States)

    Arazpour, Mokhtar; Ahmadi Bani, Monireh; Samadian, Mohammad; Mousavi, Mohammad E; Hutchins, Stephen W; Bahramizadeh, Mahmood; Curran, Sarah; Mardani, Mohammad A

    2016-08-01

    A powered knee-ankle-foot orthosis was developed to provide restriction of knee flexion during stance phase and active flexion and extension of the knee during swing phase of gait. The purpose of this study was to determine its effect on the physiological cost index, walking speed and the distance walked in people with poliomyelitis compared to when walking with a knee-ankle-foot orthosis with drop lock knee joints. Quasi experimental study. Seven subjects with poliomyelitis volunteered for the study and undertook gait analysis with both types of knee-ankle-foot orthosis. Walking with the powered knee-ankle-foot orthosis significantly reduced walking speed (p = 0.015) and the distance walked (p = 0.004), and also, it did not improve physiological cost index values (p = 0.009) compared to walking with the locked knee-ankle-foot orthosis. Using a powered knee-ankle-foot orthosis did not significantly improve any of the primary outcome measures during walking for poliomyelitis subjects. This powered knee-ankle-foot orthosis design did not improve the physiological cost index of walking for people with poliomyelitis when compared to walking with a knee-ankle-foot orthosis with drop lock knee joints. This may have been due to the short training period used or the bulky design and additional weight of the powered orthosis. Further research is therefore warranted. © The International Society for Prosthetics and Orthotics 2015.

  4. Combining Gait Speed and Recall Memory to Predict Survival in Late Life: Population-Based Study.

    Science.gov (United States)

    Marengoni, Alessandra; Bandinelli, Stefania; Maietti, Elisa; Guralnik, Jack; Zuliani, Giovanni; Ferrucci, Luigi; Volpato, Stefano

    2017-03-01

    To evaluate the relationship between gait speed, recall memory, and mortality. A cohort study (last follow-up December 2009). Tuscany, Italy. Individual data from 1,014 community-dwelling older adults aged 60 years or older with baseline gait speed and recall memory measurements and follow-up for a median time of 9.10 (IQR 7.1;9.3) years. Participants were a mean (SD) age of 73.9 (7.3) years, and 55.8% women. Participants walking faster than 0.8 m/s were defined as fast walkers; good recall memory was defined as a score of 2 or 3 in the 3-word delayed recall section of the Mini-Mental State Examination. All-cause mortality. There were 302 deaths and the overall 100 person-year death rate was 3.77 (95% CI: 3.37-4.22). Both low gait speed and poor recall memory were associated with mortality when analysed separately (HR = 2.47; 95% CI: 1.87-3.27 and HR = 1.47; 95% CI: 1.16-1.87, respectively). When we grouped participants according to both recall and gait speed, death rates (100 person-years) progressively increased from those with both good gait speed and memory (2.0; 95% CI: 1.6-2.5), to those with fast walk but poor memory (3.4; 95% CI: 2.8-4.2), to those with slow walk and good memory (8.8; 95% CI: 6.4-12.1), to those with both slow walk and poor memory (13.0; 95% CI: 10.6-16.1). In multivariate analysis, poor memory significantly increases mortality risk among persons with fast gait speed (HR = 1.40; 95% CI: 1.04-1.89). In older persons, gait speed and recall memory are independent predictors of expected survival. Information on memory function might better stratify mortality risk among persons with fast gait speed. © 2016, Copyright the Authors Journal compilation © 2016, The American Geriatrics Society.

  5. Flow speed measurement using two-point collective light scattering

    International Nuclear Information System (INIS)

    Heinemeier, N.P.

    1998-09-01

    Measurements of turbulence in plasmas and fluids using the technique of collective light scattering have always been plagued by very poor spatial resolution. In 1994, a novel two-point collective light scattering system for the measurement of transport in a fusion plasma was proposed. This diagnostic method was design for a great improvement of the spatial resolution, without sacrificing accuracy in the velocity measurement. The system was installed at the W7-AS steallartor in Garching, Germany, in 1996, and has been operating since. This master thesis is an investigation of the possible application of this new method to the measurement of flow speeds in normal fluids, in particular air, although the results presented in this work have significance for the plasma measurements as well. The main goal of the project was the experimental verification of previous theoretical predictions. However, the theoretical considerations presented in the thesis show that the method can only be hoped to work for flows that are almost laminar and shearless, which makes it of very small practical interest. Furthermore, this result also implies that the diagnostic at W7-AS cannot be expected to give the results originally hoped for. (au)

  6. Electric field measurements in a kHz-driven He jet - The influence of the gas flow speed

    NARCIS (Netherlands)

    Sobota, A.; Guaitella, O.; Sretenović, G.B.; Krstić, I.B.; Kovačević, V.V.; Obrusník, A.; Nguyen, Y.N.; Zajíčková, L.; Obradović, B.M.; Kuraica, M.M.

    2016-01-01

    This report focuses on the dependence of electric field strength in the effluent of a vertically downwards-operated plasma jet freely expanding into room air as a function of the gas flow speed. A 30 kHz AC-driven He jet was used in a coaxial geometry, with an amplitude of 2 kV and gas flow between

  7. EMG and force production of the flexor hallucis longus muscle in isometric plantarflexion and the push-off phase of walking.

    Science.gov (United States)

    Péter, Annamária; Hegyi, András; Stenroth, Lauri; Finni, Taija; Cronin, Neil J

    2015-09-18

    Large forces are generated under the big toe in the push-off phase of walking. The largest flexor muscle of the big toe is the flexor hallucis longus (FHL), which likely contributes substantially to these forces. This study examined FHL function at different levels of isometric plantarflexion torque and in the push-off phase at different speeds of walking. FHL and calf muscle activity were measured with surface EMG and plantar pressure was recorded with pressure insoles. FHL activity was compared to the activity of the calf muscles. Force and impulse values were calculated under the big toe, and were compared to the entire pressed area of the insole to determine the relative contribution of big toe flexion forces to the ground reaction force. FHL activity increased with increasing plantarflexion torque level (F=2.8, P=0.024) and with increasing walking speed (F=11.608, Ppush-off phase of walking, peak force under the big toe increased at a higher rate than force under the other areas of the plantar surface (F=3.801, P=0.018), implying a greater relative contribution to total force at faster speeds. Moreover, substantial differences were found between isometric plantarflexion and walking concerning FHL activity relative to that of the calf muscles, highlighting the task-dependant behaviour of FHL. Copyright © 2015 Elsevier Ltd. All rights reserved.

  8. Development and application of a particle image velocimeter for high-speed flows

    Science.gov (United States)

    Molezzi, M. J.; Dutton, J. C.

    1992-01-01

    A particle image velocimetry (PIV) system has been developed for use in high-speed separated air flows. The image acquisition system uses two 550 mJ/pulse Nd:YAG lasers and is fully controlled by a host Macintosh computer. The interrogation system is also Macintosh-based and performs interrogations at approximately 2.3 sec/spot and 4.0 sec/spot when using the Young's fringe and autocorrelation methods, respectively. The system has been proven in preliminary experiments using known-displacement simulated PIV photographs and a simple axisymmetric jet flow. Further results have been obtained in a transonic wind tunnel operating at Mach 0.4 to 0.5 (135 m/s to 170 m/s). PIV experiments were done with an empty test section to provide uniform flow data for comparison with pressure and LDV data, then with a two-dimensional base model, revealing features of the von Karman vortex street wake and underlying small scale turbulence.

  9. Effects of Injection Timing on Fluid Flow Characteristics of Partially Premixed Combustion Based on High-Speed Particle Image Velocimetry

    KAUST Repository

    Izadi Najafabadi, Mohammad; Tanov, Slavey; Wang, Hua; Somers, Bart; Johansson, Bengt; Dam, Nico

    2017-01-01

    behavior. The scope of the present study is to investigate the fluid flow characteristics of PPC at different injection timings. To this end, high-speed Particle Image Velocimetry (PIV) is implemented in a light-duty optical engine to measure fluid flow

  10. Fire-Walking

    Science.gov (United States)

    Willey, David

    2010-01-01

    This article gives a brief history of fire-walking and then deals with the physics behind fire-walking. The author has performed approximately 50 fire-walks, took the data for the world's hottest fire-walk and was, at one time, a world record holder for the longest fire-walk (www.dwilley.com/HDATLTW/Record_Making_Firewalks.html). He currently…

  11. Mind your step: metabolic energy cost while walking an enforced gait pattern.

    Science.gov (United States)

    Wezenberg, D; de Haan, A; van Bennekom, C A M; Houdijk, H

    2011-04-01

    The energy cost of walking could be attributed to energy related to the walking movement and energy related to balance control. In order to differentiate between both components we investigated the energy cost of walking an enforced step pattern, thereby perturbing balance while the walking movement is preserved. Nine healthy subjects walked three times at comfortable walking speed on an instrumented treadmill. The first trial consisted of unconstrained walking. In the next two trials, subject walked while following a step pattern projected on the treadmill. The steps projected were either composed of the averaged step characteristics (periodic trial), or were an exact copy including the variability of the steps taken while walking unconstrained (variable trial). Metabolic energy cost was assessed and center of pressure profiles were analyzed to determine task performance, and to gain insight into the balance control strategies applied. Results showed that the metabolic energy cost was significantly higher in both the periodic and variable trial (8% and 13%, respectively) compared to unconstrained walking. The variation in center of pressure trajectories during single limb support was higher when a gait pattern was enforced, indicating a more active ankle strategy. The increased metabolic energy cost could originate from increased preparatory muscle activation to ensure proper foot placement and a more active ankle strategy to control for lateral balance. These results entail that metabolic energy cost of walking can be influenced significantly by control strategies that do not necessary alter global gait characteristics. Copyright © 2011 Elsevier B.V. All rights reserved.

  12. Dynamic optimization of walker-assisted FES-activated paraplegic walking: simulation and experimental studies.

    Science.gov (United States)

    Nekoukar, Vahab; Erfanian, Abbas

    2013-11-01

    In this paper, we propose a musculoskeletal model of walker-assisted FES-activated paraplegic walking for the generation of muscle stimulation patterns and characterization of the causal relationships between muscle excitations, multi-joint movement, and handle reaction force (HRF). The model consists of the lower extremities, trunk, hands, and a walker. The simulation of walking is performed using particle swarm optimization to minimize the tracking errors from the desired trajectories for the lower extremity joints, to reduce the stimulations of the muscle groups acting around the hip, knee, and ankle joints, and to minimize the HRF. The results of the simulation studies using data recorded from healthy subjects performing walker-assisted walking indicate that the model-generated muscle stimulation patterns are in agreement with the EMG patterns that have been reported in the literature. The experimental results on two paraplegic subjects demonstrate that the proposed methodology can improve walking performance, reduce HRF, and increase walking speed when compared to the conventional FES-activated paraplegic walking. Copyright © 2013 IPEM. Published by Elsevier Ltd. All rights reserved.

  13. A non-Lévy random walk in chacma baboons: what does it mean?

    Directory of Open Access Journals (Sweden)

    Cédric Sueur

    Full Text Available The Lévy walk is found from amoebas to humans and has been described as the optimal strategy for food research. Recent results, however, have generated controversy about this conclusion since animals also display alternatives to the Lévy walk such as the Brownian walk or mental maps and because movement patterns found in some species only seem to depend on food patches distribution. Here I show that movement patterns of chacma baboons do not follow a Lévy walk but a Brownian process. Moreover this Brownian walk is not the main process responsible for movement patterns of baboons. Findings about their speed and trajectories show that baboons use metal maps and memory to find resources. Thus the Brownian process found in this species appears to be more dependent on the environment or might be an alternative when known food patches are depleted and when animals have to find new resources.

  14. Application of X-ray micro-computed tomography on high-speed cavitating diesel fuel flows

    Energy Technology Data Exchange (ETDEWEB)

    Mitroglou, N.; Lorenzi, M.; Gavaises, M. [City University London, School of Mathematics Computer Science and Engineering, London (United Kingdom); Santini, M. [University of Bergamo, Department of Engineering, Bergamo (Italy)

    2016-11-15

    The flow inside a purpose built enlarged single-orifice nozzle replica is quantified using time-averaged X-ray micro-computed tomography (micro-CT) and high-speed shadowgraphy. Results have been obtained at Reynolds and cavitation numbers similar to those of real-size injectors. Good agreement for the cavitation extent inside the orifice is found between the micro-CT and the corresponding temporal mean 2D cavitation image, as captured by the high-speed camera. However, the internal 3D structure of the developing cavitation cloud reveals a hollow vapour cloud ring formed at the hole entrance and extending only at the lower part of the hole due to the asymmetric flow entry. Moreover, the cavitation volume fraction exhibits a significant gradient along the orifice volume. The cavitation number and the needle valve lift seem to be the most influential operating parameters, while the Reynolds number seems to have only small effect for the range of values tested. Overall, the study demonstrates that use of micro-CT can be a reliable tool for cavitation in nozzle orifices operating under nominal steady-state conditions. (orig.)

  15. Application of X-ray micro-computed tomography on high-speed cavitating diesel fuel flows

    Science.gov (United States)

    Mitroglou, N.; Lorenzi, M.; Santini, M.; Gavaises, M.

    2016-11-01

    The flow inside a purpose built enlarged single-orifice nozzle replica is quantified using time-averaged X-ray micro-computed tomography (micro-CT) and high-speed shadowgraphy. Results have been obtained at Reynolds and cavitation numbers similar to those of real-size injectors. Good agreement for the cavitation extent inside the orifice is found between the micro-CT and the corresponding temporal mean 2D cavitation image, as captured by the high-speed camera. However, the internal 3D structure of the developing cavitation cloud reveals a hollow vapour cloud ring formed at the hole entrance and extending only at the lower part of the hole due to the asymmetric flow entry. Moreover, the cavitation volume fraction exhibits a significant gradient along the orifice volume. The cavitation number and the needle valve lift seem to be the most influential operating parameters, while the Reynolds number seems to have only small effect for the range of values tested. Overall, the study demonstrates that use of micro-CT can be a reliable tool for cavitation in nozzle orifices operating under nominal steady-state conditions.

  16. Application of X-ray micro-computed tomography on high-speed cavitating diesel fuel flows

    International Nuclear Information System (INIS)

    Mitroglou, N.; Lorenzi, M.; Gavaises, M.; Santini, M.

    2016-01-01

    The flow inside a purpose built enlarged single-orifice nozzle replica is quantified using time-averaged X-ray micro-computed tomography (micro-CT) and high-speed shadowgraphy. Results have been obtained at Reynolds and cavitation numbers similar to those of real-size injectors. Good agreement for the cavitation extent inside the orifice is found between the micro-CT and the corresponding temporal mean 2D cavitation image, as captured by the high-speed camera. However, the internal 3D structure of the developing cavitation cloud reveals a hollow vapour cloud ring formed at the hole entrance and extending only at the lower part of the hole due to the asymmetric flow entry. Moreover, the cavitation volume fraction exhibits a significant gradient along the orifice volume. The cavitation number and the needle valve lift seem to be the most influential operating parameters, while the Reynolds number seems to have only small effect for the range of values tested. Overall, the study demonstrates that use of micro-CT can be a reliable tool for cavitation in nozzle orifices operating under nominal steady-state conditions. (orig.)

  17. Effect of exoskeletal joint constraint and passive resistance on metabolic energy expenditure: Implications for walking in paraplegia.

    Directory of Open Access Journals (Sweden)

    Sarah R Chang

    Full Text Available An important consideration in the design of a practical system to restore walking in individuals with spinal cord injury is to minimize metabolic energy demand on the user. In this study, the effects of exoskeletal constraints on metabolic energy expenditure were evaluated in able-bodied volunteers to gain insight into the demands of walking with a hybrid neuroprosthesis after paralysis. The exoskeleton had a hydraulic mechanism to reciprocally couple hip flexion and extension, unlocked hydraulic stance controlled knee mechanisms, and ankles fixed at neutral by ankle-foot orthoses. These mechanisms added passive resistance to the hip (15 Nm and knee (6 Nm joints while the exoskeleton constrained joint motion to the sagittal plane. The average oxygen consumption when walking with the exoskeleton was 22.5 ± 3.4 ml O2/min/kg as compared to 11.7 ± 2.0 ml O2/min/kg when walking without the exoskeleton at a comparable speed. The heart rate and physiological cost index with the exoskeleton were at least 30% and 4.3 times higher, respectively, than walking without it. The maximum average speed achieved with the exoskeleton was 1.2 ± 0.2 m/s, at a cadence of 104 ± 11 steps/min, and step length of 70 ± 7 cm. Average peak hip joint angles (25 ± 7° were within normal range, while average peak knee joint angles (40 ± 8° were less than normal. Both hip and knee angular velocities were reduced with the exoskeleton as compared to normal. While the walking speed achieved with the exoskeleton could be sufficient for community ambulation, metabolic energy expenditure was significantly increased and unsustainable for such activities. This suggests that passive resistance, constraining leg motion to the sagittal plane, reciprocally coupling the hip joints, and weight of exoskeleton place considerable limitations on the utility of the device and need to be minimized in future designs of practical hybrid neuroprostheses for walking after paraplegia.

  18. Navigational strategies during fast walking: a comparison between trained athletes and non-athletes.

    Science.gov (United States)

    Gérin-Lajoie, Martin; Ronsky, Janet L; Loitz-Ramage, Barbara; Robu, Ion; Richards, Carol L; McFadyen, Bradford J

    2007-10-01

    Many common activities such as walking in a shopping mall, moving in a busy subway station, or even avoiding opponents during sports, all require different levels of navigational skills. Obstacle circumvention is beginning to be understood across age groups, but studying trained athletes with greater levels of motor ability will further our understanding of skillful adaptive locomotor behavior. The objective of this work was to compare navigational skills during fast walking between elite athletes (e.g. soccer, field hockey, basketball) and aged-matched non-athletes under different levels of environmental complexity in relation to obstacle configuration and visibility. The movements of eight women athletes and eight women non-athletes were measured as they walked as fast as possible through different obstacle courses in both normal and low lighting conditions. Results showed that athletes, despite similar unobstructed maximal speeds to non-athletes, had faster walking times during the navigation of all obstructed environments. It appears that athletes can process visuo-spatial information faster since both groups can make appropriate navigational decisions, but athletes can navigate through complex, novel, environments at greater speeds. Athletes' walking times were also more affected by the low lighting conditions suggesting that they normally scan the obstructed course farther ahead. This study also uses new objective measures to assess functional locomotor capacity in order to discriminate individuals according to their level of navigational ability. The evaluation paradigm and outcome measures developed may be applicable to the evaluation of skill level in athletic training and selection, as well as in gait rehabilitation following impairment.

  19. Advanced high speed X-ray CT scanner for measurement and visualization of multi-phase flow

    International Nuclear Information System (INIS)

    Hori, Keiichi; Fujimoto, Tetsuro; Kawanishi, Kohei; Nishikawa, Hideo

    1998-01-01

    The development of an ultra-fast X-ray computed tomography (CT) scanner has been performed. The object of interest is in a transient or unsettled state, which makes the conventional CT scanner inappropriate. A concept of electrical switching of electron beam of X-ray generation unit is adopted to reduce the scanning time instead of a mechanical motion adopted by a conventional CT scanner. The mechanical motion is a major obstacle to improve the scanning speed. A prototype system with a scanning time of 3.6 milliseconds was developed at first. And, the feasibility was confirmed to measure the dynamic events of two-phase flow. However, faster scanning speed is generally required for the practical use in the thermalhydraulics research field. Therefore, the development of advanced type has been performed. This advanced type can operate under the scanning time of 0.5 milliseconds and is applicable for the measurement of the multi-phase flow with velocity up to 4-5 m/s. (author)

  20. The Effect of Backpack Load Carriage on the Kinetics and Kinematics of Ankle and Knee Joints During Uphill Walking.

    Science.gov (United States)

    Lee, Jinkyu; Yoon, Yong-Jin; Shin, Choongsoo S

    2017-12-01

    The purpose of this study was to investigate the effect of load carriage on the kinematics and kinetics of the ankle and knee joints during uphill walking, including joint work, range of motion (ROM), and stance time. Fourteen males walked at a self-selected speed on an uphill (15°) slope wearing military boots and carrying a rifle in hand without a backpack (control condition) and with a backpack. The results showed that the stance time significantly decreased with backpack carriage (p < .05). The mediolateral impulse significantly increased with backpack carriage (p < .05). In the ankle joints, the inversion-eversion, and dorsi-plantar flexion ROM in the ankle joints increased with backpack carriage (p < .05). The greater dorsi-plantar flexion ROM with backpack carriage suggested 1 strategy for obtaining high plantar flexor power during uphill walking. The result of the increased mediolateral impulse and inversion-eversion ROM in the ankle joints indicated an increase in body instability caused by an elevated center of mass with backpack carriage during uphill walking. The decreased stance time indicated that an increase in walking speed could be a compensatory mechanism for reducing the instability of the body during uphill walking while carrying a heavy backpack.

  1. Randomized random walk on a random walk

    International Nuclear Information System (INIS)

    Lee, P.A.

    1983-06-01

    This paper discusses generalizations of the model introduced by Kehr and Kunter of the random walk of a particle on a one-dimensional chain which in turn has been constructed by a random walk procedure. The superimposed random walk is randomised in time according to the occurrences of a stochastic point process. The probability of finding the particle in a particular position at a certain instant is obtained explicitly in the transform domain. It is found that the asymptotic behaviour for large time of the mean-square displacement of the particle depends critically on the assumed structure of the basic random walk, giving a diffusion-like term for an asymmetric walk or a square root law if the walk is symmetric. Many results are obtained in closed form for the Poisson process case, and these agree with those given previously by Kehr and Kunter. (author)

  2. Nine Walks

    DEFF Research Database (Denmark)

    2013-01-01

    Based on studies of, among others, the Situationists and their theories regarding walks as an artistic method and expression nine master students from “Studio Constructing an Archive”, Aarhus School of Architecture, Denmark performed nine walks as part of the exhibition. These walks relate...... to the students’ individual mappings of Behind the Green Door, its structure and content. They highlight a number of motifs found in the exhibition which are of particular interest to the students. The walks represented reflections on the walk as an artistic method and expression. Each walk is an individual...

  3. A prediction of 3-D viscous flow and performance of the NASA Low-Speed Centrifugal Compressor

    Science.gov (United States)

    Moore, John; Moore, Joan G.

    1990-01-01

    A prediction of the three-dimensional turbulent flow in the NASA Low-Speed Centrifugal Compressor Impeller has been made. The calculation was made for the compressor design conditions with the specified uniform tip clearance gap. The predicted performance is significantly worse than that predicted in the NASA design study. This is explained by the high tip leakage flow in the present calculation and by the different model adopted for tip leakage flow mixing. The calculation gives an accumulation of high losses in the shroud/pressure-side quadrant near the exit of the impeller. It also predicts a region of meridional backflow near the shroud wall. Both of these flow features should be extensive enough in the NASA impeller to allow detailed flow measurements, leading to improved flow modeling. Recommendations are made for future flow studies in the NASA impeller.

  4. 走廊弯腰疏散行为试验研究%Experimental Study on Bent-over Walking Behavior of Occupants in Corridors

    Institute of Scientific and Technical Information of China (English)

    杨立兵; 陈建宏; 周汉陵

    2012-01-01

    Bent-over walking behavior of occupants in corridor is studied experimentally in this paper. 6 runs of experiments, with up to 45 students participating in, were conducted with different initial densities . The fundamental diagram of bent-over walking pedestrian flow at low density was obtained by manually analyzing the video recording. The results were compared with pedestrian flow and crawler flow of others. It shows that the free velocity is 1.4 m/s and 1. 7 m/s for the bent-over walking and walking, respectively, while about 0.73 m/s for crawling. When the density is smaller than 0. 5 1/m2, the velocity for these three types of movement behaviors agrees well. While above 0. 5 1/m , there appear clear differences and it can be said that the bent-over walking behavior may be a good way under smoke or heat situation. The frequency distribution of velocity was also investigated for bent-over walking flow. The mean value of speed is about 1. 02 ± 0. 16 m/s and 1. 09 ± 0. 2 m/s for female and male students in these experiments respectively. At low velocity region, the female students account for a larger proportion, whereas the frequency of male students is larger at high velocity regions.%为研究走廊里人群弯腰疏散行为,组织45名学生进行6组不同初始密度疏散试验,通过录像分析得出不同密度时弯腰疏散基本图,将结果与行走及爬行疏散比较.试验结果表明:弯腰和行走疏散的速度分别是1.4 m/s和1.7 m/s,而爬行疏散速度为0.73 m/s;在密度小于0.5人/m2时,3种疏散方式的流动速度相当;在密度大于0.5人/m2时,3种移动方式速度有明显差异;得出弯腰疏散的速度频率分布图,速度均值为:女生1.02±0.16 m/s,男生1.09±0.2 m/s;在低速度区,女生占很大比重,男生在高速度区的频率较高.

  5. Perceived enjoyment, concentration, intention, and speed violation behavior: Using flow theory and theory of planned behavior.

    Science.gov (United States)

    Atombo, Charles; Wu, Chaozhong; Zhang, Hui; Wemegah, Tina D

    2017-10-03

    Road accidents are an important public health concern, and speeding is a major contributor. Although flow theory (FLT) is a valid model for understanding behavior, currently the nature of the roles and interplay of FLT constructs within the theory of planned behavior (TPB) framework when attempting to explain the determinants of motivations for intention to speed and speeding behavior of car drivers is not yet known. The study aims to synthesize TPB and FLT in explaining drivers of advanced vehicles intentions to speed and speed violation behaviors and evaluate factors that are critical for explaining intention and behavior. The hypothesized model was validated using a sample collected from 354 fully licensed drivers of advanced vehicles, involving 278 males and 76 females on 2 occasions separated by a 3-month interval. During the first of the 2 occasions, participants completed questionnaire measures of TPB and FLT variables. Three months later, participants' speed violation behaviors were assessed. The study observed a significant positive relationship between the constructs. The proposed model accounted for 51 and 45% of the variance in intention to speed and speed violation behavior, respectively. The independent predictors of intention were enjoyment, attitude, and subjective norm. The independent predictors of speed violation behavior were enjoyment, concentration, intention, and perceived behavioral control. The findings suggest that safety interventions for preventing speed violation behaviors should be aimed at underlying beliefs influencing the speeding behaviors of drivers of advanced vehicles. Furthermore, perceived enjoyment is of equal importance to driver's intention, influencing speed violation behavior.

  6. Forward propulsion asymmetry is indicative of changes in plantarflexor coordination during walking in individuals with post-stroke hemiparesis.

    Science.gov (United States)

    Allen, Jessica L; Kautz, Steven A; Neptune, Richard R

    2014-08-01

    A common measure of rehabilitation effectiveness post-stroke is self-selected walking speed, yet individuals may achieve the same speed using different coordination strategies. Asymmetry in the propulsion generated by each leg can provide insight into paretic leg coordination due to its relatively strong correlation with hemiparetic severity. Subjects walking at the same speed can exhibit different propulsion asymmetries, with some subjects relying more on the paretic leg and others on the nonparetic leg. The goal of this study was to assess whether analyzing propulsion asymmetry can help distinguish between improved paretic leg coordination versus nonparetic leg compensation. Three-dimensional forward dynamics simulations were developed for two post-stroke hemiparetic subjects walking at identical speeds before/after rehabilitation with opposite changes in propulsion asymmetry. Changes in the individual muscle contributions to forward propulsion were examined. The major source of increased forward propulsion in both subjects was from the ankle plantarflexors. How they were utilized differed and appears related to changes in propulsion asymmetry. Subject A increased propulsion generated from the paretic plantarflexors, while Subject B increased propulsion generated from the nonparetic plantarflexors. Each subject's strategy to increase speed also included differences in other muscle groups (e.g., hamstrings) that did not appear to be related to propulsion asymmetry. The results of this study highlight how speed cannot be used to elucidate underlying muscle coordination changes following rehabilitation. In contrast, propulsion asymmetry appears to provide insight into changes in plantarflexor output affecting propulsion generation and may be useful in monitoring rehabilitation outcomes. Copyright © 2014 Elsevier Ltd. All rights reserved.

  7. Determination of Ankle and Metatarsophalangeal Stiffness During Walking and Jogging.

    Science.gov (United States)

    Mager, Fabian; Richards, Jim; Hennies, Malika; Dötzel, Eugen; Chohan, Ambreen; Mbuli, Alex; Capanni, Felix

    2018-05-29

    Forefoot stiffness has been shown to influence joint biomechanics. However, little or no data exists on metatarsophalangeal stiffness. Twenty-four healthy rearfoot strike runners were recruited from a staff and student population at the University of Central Lancashire. Five repetitions of shod, self-selected speed level walking and jogging were performed. Kinetic and kinematic data were collected using retro-reflective markers placed on the lower limb and foot, to create a three-segment foot model using the Calibrated Anatomical System Technique. Ankle and metatarsophalangeal moments and angles were calculated. Stiffness values were calculated using a linear best fit line of moment versus of angle plots. Paired t-tests were used to compare values between walking and jogging conditions. Significant differences were seen in ankle range of motion (ROM), but not in metatarsophalangeal ROM. Maximum moments were significantly greater in the ankle during jogging, but these were not significantly different at the metatarsophalangeal joint. Average ankle joint stiffness exhibited significantly lower stiffness when walking compared to jogging. However, the metatarsophalangeal joint exhibited significantly greater stiffness when walking compared to jogging. A greater understanding of forefoot stiffness may inform the development of footwear, prosthetic feet and orthotic devices, such as ankle-foot orthoses for walking and sporting activities.

  8. Walk Score(TM), Perceived Neighborhood Walkability, and walking in the US.

    Science.gov (United States)

    Tuckel, Peter; Milczarski, William

    2015-03-01

    To investigate both the Walk Score(TM) and a self-reported measure of neighborhood walkability ("Perceived Neighborhood Walkability") as estimators of transport and recreational walking among Americans. The study is based upon a survey of a nationally-representative sample of 1224 American adults. The survey gauged walking for both transport and recreation and included a self-reported measure of neighborhood walkability and each respondent's Walk Score(TM). Binary logistic and linear regression analyses were performed on the data. The Walk Score(TM) is associated with walking for transport, but not recreational walking nor total walking. Perceived Neighborhood Walkability is associated with transport, recreational and total walking. Perceived Neighborhood Walkability captures the experiential nature of walking more than the Walk Score(TM).

  9. Using dynamic walking models to identify factors that contribute to increased risk of falling in older adults.

    Science.gov (United States)

    Roos, Paulien E; Dingwell, Jonathan B

    2013-10-01

    Falls are common in older adults. The most common cause of falls is tripping while walking. Simulation studies demonstrated that older adults may be restricted by lower limb strength and movement speed to regain balance after a trip. This review examines how modeling approaches can be used to determine how different measures predict actual fall risk and what some of the causal mechanisms of fall risk are. Although increased gait variability predicts increased fall risk experimentally, it is not clear which variability measures could best be used, or what magnitude of change corresponded with increased fall risk. With a simulation study we showed that the increase in fall risk with a certain increase in gait variability was greatly influenced by the initial level of variability. Gait variability can therefore not easily be used to predict fall risk. We therefore explored other measures that may be related to fall risk and investigated the relationship between stability measures such as Floquet multipliers and local divergence exponents and actual fall risk in a dynamic walking model. We demonstrated that short-term local divergence exponents were a good early predictor for fall risk. Neuronal noise increases with age. It has however not been fully understood if increased neuronal noise would cause an increased fall risk. With our dynamic walking model we showed that increased neuronal noise caused increased fall risk. Although people who are at increased risk of falling reduce their walking speed it had been questioned whether this slower speed would actually cause a reduced fall risk. With our model we demonstrated that a reduced walking speed caused a reduction in fall risk. This may be due to the decreased kinematic variability as a result of the reduced signal-dependent noise of the smaller muscle forces that are required for slower. These insights may be used in the development of fall prevention programs in order to better identify those at increased risk of

  10. Using Dynamic Walking Models to Identify Factors that Contribute to Increased Risk of Falling in Older Adults

    Science.gov (United States)

    Roos, Paulien E.; Dingwell, Jonathan B.

    2013-01-01

    Falls are common in older adults. The most common cause of falls is tripping while walking. Simulation studies demonstrated that older adults may be restricted by lower limb strength and movement speed to regain balance after a trip. This review examines how modeling approaches can be used to determine how different measures predict actual fall risk and what some of the causal mechanisms of fall risk are. Although increased gait variability predicts increased fall risk experimentally, it is not clear which variability measures could best be used, or what magnitude of change corresponded with increased fall risk. With a simulation study we showed that the increase in fall risk with a certain increase in gait variability was greatly influenced by the initial level of variability. Gait variability can therefore not easily be used to predict fall risk. We therefore explored other measures that may be related to fall risk and investigated the relationship between stability measures such as Floquet multipliers and local divergence exponents and actual fall risk in a dynamic walking model. We demonstrated that short-term local divergence exponents were a good early predictor for fall risk. Neuronal noise increases with age. It has however not been fully understood if increased neuronal noise would cause an increased fall risk. With our dynamic walking model we showed that increased neuronal noise caused increased fall risk. Although people who are at increased risk of falling reduce their walking speed it had been questioned whether this slower speed would actually cause a reduced fall risk. With our model we demonstrated that a reduced walking speed caused a reduction in fall risk. This may be due to the decreased kinematic variability as a result of the reduced signal-dependent noise of the smaller muscle forces that are required for slower. These insights may be used in the development of fall prevention programs in order to better identify those at increased risk of

  11. Flow speed measurement using two-point collective light scattering

    Energy Technology Data Exchange (ETDEWEB)

    Heinemeier, N.P

    1998-09-01

    Measurements of turbulence in plasmas and fluids using the technique of collective light scattering have always been plagued by very poor spatial resolution. In 1994, a novel two-point collective light scattering system for the measurement of transport in a fusion plasma was proposed. This diagnostic method was design for a great improvement of the spatial resolution, without sacrificing accuracy in the velocity measurement. The system was installed at the W7-AS steallartor in Garching, Germany, in 1996, and has been operating since. This master thesis is an investigation of the possible application of this new method to the measurement of flow speeds in normal fluids, in particular air, although the results presented in this work have significance for the plasma measurements as well. The main goal of the project was the experimental verification of previous theoretical predictions. However, the theoretical considerations presented in the thesis show that the method can only be hoped to work for flows that are almost laminar and shearless, which makes it of very small practical interest. Furthermore, this result also implies that the diagnostic at W7-AS cannot be expected to give the results originally hoped for. (au) 1 tab., 51 ills., 29 refs.

  12. Flipping the analytical coin : closing the information flow loop in high speed (real time) analysis

    NARCIS (Netherlands)

    K.E. Shahroudi

    1997-01-01

    textabstractAnalysis modules tend to be set up as one way flow of information, i.e a clear distinction between cause and effect or input and output. However, as the speed of analysis approaches real time (or faster than movie rate), it becomes increasingly difficult for an external user to

  13. High speed ultrasonic system to measure bubbles velocities in a horizontal two-phase flow

    International Nuclear Information System (INIS)

    Cunha Filho, Jurandyr S.; Jian Su; Farias, Marcos S.; Faccini, Jose L.H.; Lamy, Carlos A.

    2009-01-01

    In this work, a non invasive technique consisting of a high speed ultrasonic multitransducer pulse-echo system was developed to characterize gas-liquid two-phase flow parameters that are important in the study of the primary refrigeration circuit of nuclear reactors. The high speed ultrasonic system consists of two transducers (10 MHz/φ 6.35 mm), a generator/multiplexer board, and software that selects and has a data acquisition system of the ultrasonic signals. The resolutions of the system and the pulse time generated from each transducer are, respectively, 10 ns and 1.06 ms. The system initially was used in the local instantaneous measurement of gas-liquid interface in a circular horizontal pipe test section made of a 5 m long stainless steel pipe of 51.2 mm inner diameter, where the elongated bubbles velocity was measured (Taylor bubbles). The results show that the high speed ultrasonic pulse-echo system provides good results for the determination of elongated bubbles velocities. (author)

  14. Locomotor Training and Strength and Balance Exercises for Walking Recovery After Stroke: Response to Number of Training Sessions.

    Science.gov (United States)

    Rose, Dorian K; Nadeau, Stephen E; Wu, Samuel S; Tilson, Julie K; Dobkin, Bruce H; Pei, Qinglin; Duncan, Pamela W

    2017-11-01

    Evidence-based guidelines are needed to inform rehabilitation practice, including the effect of number of exercise training sessions on recovery of walking ability after stroke. The objective of this study was to determine the response to increasing number of training sessions of 2 interventions-locomotor training and strength and balance exercises-on poststroke walking recovery. This is a secondary analysis of the Locomotor Experience Applied Post-Stroke (LEAPS) randomized controlled trial. Six rehabilitation sites in California and Florida and participants' homes were used. Participants were adults who dwelled in the community (N=347), had had a stroke, were able to walk at least 3 m (10 ft) with assistance, and had completed the required number of intervention sessions. Participants received 36 sessions (3 times per week for 12 weeks), 90 minutes in duration, of locomotor training (gait training on a treadmill with body-weight support and overground training) or strength and balance training. Talking speed, as measured by the 10-Meter Walk Test, and 6-minute walking distance were assessed before training and following 12, 24, and 36 intervention sessions. Participants at 2 and 6 months after stroke gained in gait speed and walking endurance after up to 36 sessions of treatment, but the rate of gain diminished steadily and, on average, was very low during the 25- to 36-session epoch, regardless of treatment type or severity of impairment. Results may not generalize to people who are unable to initiate a step at 2 months after stroke or people with severe cardiac disease. In general, people who dwelled in the community showed improvements in gait speed and walking distance with up to 36 sessions of locomotor training or strength and balance exercises at both 2 and 6 months after stroke. However, gains beyond 24 sessions tended to be very modest. The tracking of individual response trajectories is imperative in planning treatment. Published by Oxford University

  15. Experimental and computational investigation of the NASA low-speed centrifugal compressor flow field

    Science.gov (United States)

    Hathaway, Michael D.; Chriss, Randall M.; Wood, Jerry R.; Strazisar, Anthony J.

    1993-01-01

    An experimental and computational investigation of the NASA Lewis Research Center's low-speed centrifugal compressor (LSCC) flow field was conducted using laser anemometry and Dawes' three-dimensional viscous code. The experimental configuration consisted of a backswept impeller followed by a vaneless diffuser. Measurements of the three-dimensional velocity field were acquired at several measurement planes through the compressor. The measurements describe both the throughflow and secondary velocity field along each measurement plane. In several cases the measurements provide details of the flow within the blade boundary layers. Insight into the complex flow physics within centrifugal compressors is provided by the computational fluid dynamics analysis (CFD), and assessment of the CFD predictions is provided by comparison with the measurements. Five-hole probe and hot-wire surveys at the inlet and exit to the impeller as well as surface flow visualization along the impeller blade surfaces provided independent confirmation of the laser measurement technique. The results clearly document the development of the throughflow velocity wake that is characteristic of unshrouded centrifugal compressors.

  16. Step-wise changes in glacier flow speed coincide with calving and glacial earthquakes at Helheim Glacier, Greenland

    DEFF Research Database (Denmark)

    Nettles, M.; Larsen, T. B.; Elósegui, P.

    2008-01-01

    Geodetic observations show several large, sudden increases in flow speed at Helheim Glacier, one of Greenland's largest outlet glaciers, during summer, 2007. These step-like accelerations, detected along the length of the glacier, coincide with teleseismically detected glacial earthquakes and major...... iceberg calving events. No coseismic offset in the position of the glacier surface is observed; instead, modest tsunamis associated with the glacial earthquakes implicate glacier calving in the seismogenic process. Our results link changes in glacier velocity directly to calving-front behavior...... at Greenland's largest outlet glaciers, on timescales as short as minutes to hours, and clarify the mechanism by which glacial earthquakes occur. Citation: Nettles, M., et al. (2008), Step-wise changes in glacier flow speed coincide with calving and glacial earthquakes at Helheim Glacier, Greenland....

  17. Kinematic and muscle demand similarities between motor-assisted elliptical training and walking: Implications for pediatric gait rehabilitation.

    Science.gov (United States)

    Burnfield, Judith M; Cesar, Guilherme M; Buster, Thad W; Irons, Sonya L; Nelson, Carl A

    2017-01-01

    Many children with physical disabilities and special health care needs experience barriers to accessing effective therapeutic technologies to improve walking and fitness in healthcare and community environments. The expense of many robotic and exoskeleton technologies hinders widespread use in most clinics, school settings, and fitness facilities. A motor-assisted elliptical trainer that is being used to address walking and fitness deficits in adults was modified to enable children as young as three years of age to access the technology (Pedi-ICARE). We compared children's kinematic and muscle activation patterns during walking and training on the Pedi-ICARE. Eighteen children walked (self-selected comfortable speed), Pedi-ICARE trained with motor-assistance at self-selected comfortable speed (AAC), and trained while over-riding motor-assistance (AAC+). Coefficient of multiple correlations (CMCs) compared lower extremity kinematic profiles during AAC and AAC+ to gait. Repeated measures ANOVAs identified muscle demand differences across conditions. CMCs revealed strong similarities at the hip and knee between each motor-assisted elliptical condition and gait. Ankle CMCs were only moderate. Muscle demands were generally lowest during AAC. Over-riding the motor increased hip and knee muscle demands. The similarity of motion patterns between Pedi-ICARE conditions and walking suggest the device could be used to promote task-specific training to improve walking. The capacity to manipulate muscle demands using different motor-assistance conditions highlights Pedi-ICARE's versatility in addressing a wide range of children's abilities. Copyright © 2016 Elsevier B.V. All rights reserved.

  18. Timescale Halo: Average-Speed Targets Elicit More Positive and Less Negative Attributions than Slow or Fast Targets

    Science.gov (United States)

    Hernandez, Ivan; Preston, Jesse Lee; Hepler, Justin

    2014-01-01

    Research on the timescale bias has found that observers perceive more capacity for mind in targets moving at an average speed, relative to slow or fast moving targets. The present research revisited the timescale bias as a type of halo effect, where normal-speed people elicit positive evaluations and abnormal-speed (slow and fast) people elicit negative evaluations. In two studies, participants viewed videos of people walking at a slow, average, or fast speed. We find evidence for a timescale halo effect: people walking at an average-speed were attributed more positive mental traits, but fewer negative mental traits, relative to slow or fast moving people. These effects held across both cognitive and emotional dimensions of mind and were mediated by overall positive/negative ratings of the person. These results suggest that, rather than eliciting greater perceptions of general mind, the timescale bias may reflect a generalized positivity toward average speed people relative to slow or fast moving people. PMID:24421882

  19. Walking pattern classification and walking distance estimation algorithms using gait phase information.

    Science.gov (United States)

    Wang, Jeen-Shing; Lin, Che-Wei; Yang, Ya-Ting C; Ho, Yu-Jen

    2012-10-01

    This paper presents a walking pattern classification and a walking distance estimation algorithm using gait phase information. A gait phase information retrieval algorithm was developed to analyze the duration of the phases in a gait cycle (i.e., stance, push-off, swing, and heel-strike phases). Based on the gait phase information, a decision tree based on the relations between gait phases was constructed for classifying three different walking patterns (level walking, walking upstairs, and walking downstairs). Gait phase information was also used for developing a walking distance estimation algorithm. The walking distance estimation algorithm consists of the processes of step count and step length estimation. The proposed walking pattern classification and walking distance estimation algorithm have been validated by a series of experiments. The accuracy of the proposed walking pattern classification was 98.87%, 95.45%, and 95.00% for level walking, walking upstairs, and walking downstairs, respectively. The accuracy of the proposed walking distance estimation algorithm was 96.42% over a walking distance.

  20. Effects of treadmill grade and speed on medial gastrocnemius muscle activity in chronic stroke patients

    Directory of Open Access Journals (Sweden)

    Roghayeh Mohammadi

    2017-01-01

    Full Text Available Introduction: Plantarflexor muscles produce propulsive force in the second half of stance phase; deficient motor output from these muscles would lead to inadequate propulsion at push off phase of gait following stroke. It is important to develop strategies to improve plantarflexor output. This study examined the effects of walking on a treadmill at varying gradients and speeds on medial gastrocnemius (MG muscle activation in stroke survivors. Materials and Methods: Nineteen stroke survivors (13M/6F: average age 55.37±7.54 years; body mass index 29.10±4.52kg/m2 participated in the study. Participants walked  on  a  standard  treadmill  at  three  different positive inclines (0°, 3°, and 6°  and speeds (self-selected, self-selected+20%, self-selected+40%. The electromyographic activity of MG recorded at push off phase of the gait. Results: A linear mixed model regression analysis was used to analysis. The paretic MG muscle activity increased at faster speeds irrespective of incline (p0.05. Conclusion: It would appear that stroke survivors employ distinct muscle activation strategies on the paretic and non-paretic sides in response to different walking speeds and inclines

  1. Effects of task-specific and impairment-based training compared with usual care on functional walking ability after inpatient stroke rehabilitation: LEAPS Trial.

    Science.gov (United States)

    Nadeau, Stephen E; Wu, Samuel S; Dobkin, Bruce H; Azen, Stanley P; Rose, Dorian K; Tilson, Julie K; Cen, Steven Y; Duncan, Pamela W

    2013-05-01

    After inpatient stroke rehabilitation, many people still cannot participate in community activities because of limited walking ability. To compare the effectiveness of 2 conceptually different, early physical therapy (PT) interventions to usual care (UC) in improving walking 6 months after stroke. The locomotor experience applied post-stroke (LEAPS) study was a single-blind, randomized controlled trial conducted in 408 adults with disabling hemiparetic stroke. Participants were stratified at baseline (2 months) by impairment in walking speed: severe (exercise at home (home exercise program [HEP], n = 126). LTP participants were 18% more likely to transition to a higher functional walking level: severe to >0.4 m/s and moderate to >0.8 m/s than UC participants (95% confidence interval [CI] = 7%-29%), and HEP participants were 17% more likely to transition (95% CI = 5%-29%). Mean gain in walking speed in LTP participants was 0.13 m/s greater (95% CI = 0.09-0.18) and in HEP participants, 0.10 m/s greater (95% CI = 0.05-0.14) than in UC participants. Progressive PT, using either walking training on a treadmill and overground, conducted in a clinic, or strength and balance exercises conducted at home, was superior to UC in improving walking, regardless of severity of initial impairment.

  2. Musical motor feedback (MMF) in walking hemiparetic stroke patients: randomized trials of gait improvement.

    Science.gov (United States)

    Schauer, Michael; Mauritz, Karl-Heinz

    2003-11-01

    To demonstrate the effect of rhythmical auditory stimulation in a musical context for gait therapy in hemiparetic stroke patients, when the stimulation is played back measure by measure initiated by the patient's heel-strikes (musical motor feedback). Does this type of musical feedback improve walking more than a less specific gait therapy? The randomized controlled trial considered 23 registered stroke patients. Two groups were created by randomization: the control group received 15 sessions of conventional gait therapy and the test group received 15 therapy sessions with musical motor feedback. Inpatient rehabilitation hospital. Median post-stroke interval was 44 days and the patients were able to walk without technical aids with a speed of approximately 0.71 m/s. Gait velocity, step duration, gait symmetry, stride length and foot rollover path length (heel-on-toe-off distance). The test group showed more mean improvement than the control group: stride length increased by 18% versus 0%, symmetry deviation decreased by 58% versus 20%, walking speed increased by 27% versus 4% and rollover path length increased by 28% versus 11%. Musical motor feedback improves the stroke patient's walk in selected parameters more than conventional gait therapy. A fixed memory in the patient's mind about the song and its timing may stimulate the improvement of gait even without the presence of an external pacemaker.

  3. The Effect of 12 Weeks Individualized Combined Exercise Rehabilitation Training on Physiological Cost Index (PCI and Walking Speed in Patients with Multiple Sclerosis at all Levels of Physical Disability

    Directory of Open Access Journals (Sweden)

    M Narimani

    2016-11-01

    Full Text Available Background & aim: Most research on the effects of exercise on people with MS rehabilitation exercises sclerosis (MS  have been carried out on patients with low to moderate disability, but research on patients with different severity of disability (physical disability scale of zero to 10 still has to be carefully considered. The aim of this study was to investigate the effects of twelve weeks of rehabilitation exercises personalized compound exercise on physiological cost index (PCI and average speed walking in patients with MS at various levels of disability. Methods: The present research was a semi-experimental practical study. Thus among female patients admitted to the MS Association of Shahrekord city, 96 people were chosen on the basis of physical disability scores and divided into three groups. The first group consisted of less than 5/4 a total of 44 people, the second group between 5/65 and 5/6 up third of each 26 patients were then randomly assigned to an experimental group and a control group. Afterwards each group was divided randomly into an experimental group and a control group. The first group (the scale of disability less than 4.5, N= 44. The second group (the scale of disability 5 - 6.5, N=26. Also 26 patients were in the third group (the scale of disability 6.5 and above. In addition, they were divided into 6 experimental and control groups. Training programs for experimental groups were 12 weeks, three sessions per week and one hour for each session. Factors such as physiological cost index and walking speed were measured with the appropriate tools before and after training. The experimental groups of 1, 2 and 3 each did their own intervention, while the control groups received only stretching exercises. Analysis of data obtained from 96 patients studied was done using descriptive statistics and the analysis of covariance and paired comparing of the adjusted means (P<0.05. ‌‌‌ Results: A significant difference in walking

  4. A flexed posture in elderly patients is associated with impairments in postural control during walking.

    Science.gov (United States)

    de Groot, Maartje H; van der Jagt-Willems, Hanna C; van Campen, Jos P C M; Lems, Willem F; Beijnen, Jos H; Lamoth, Claudine J C

    2014-02-01

    A flexed posture (FP) is characterized by protrusion of the head and an increased thoracic kyphosis (TK), which may be caused by osteoporotic vertebral fractures (VFs). These impairments may affect motor function, and consequently increase the risk of falling and fractures. The aim of the current study was therefore to examine postural control during walking in elderly patients with FP, and to investigate the relationship with geriatric phenomena that may cause FP, such as increased TK, VFs, frailty, polypharmacy and cognitive impairments. Fifty-six elderly patients (aged 80 ± 5.2 years; 70% female) walked 160 m at self-selected speed while trunk accelerations were recorded. Walking speed, mean stride time and coefficient of variation (CV) of stride time were recorded. In addition, postural control during walking was quantified by time-dependent variability measures derived from the theory of stochastic dynamics, indicating smoothness, degree of predictability, and local stability of trunk acceleration patterns. Twenty-five patients (45%) had FP and demonstrated a more variable and less structured gait pattern, and a more irregular trunk acceleration pattern than patients with normal posture. FP was significantly associated with an increased TK, but not with other geriatric phenomena. An increased TK may bring the body's centre of mass forward, which requires correcting responses, and reduces the ability to respond on perturbation, which was reflected by higher variation in the gait pattern in FP-patients. Impairments in postural control during walking are a major risk factor for falling: the results indicate that patients with FP have impaired postural control during walking and might therefore be at increased risk of falling. Copyright © 2013 Elsevier B.V. All rights reserved.

  5. Hydraulic performance numerical simulation of high specific speed mixed-flow pump based on quasi three-dimensional hydraulic design method

    International Nuclear Information System (INIS)

    Zhang, Y X; Su, M; Hou, H C; Song, P F

    2013-01-01

    This research adopts the quasi three-dimensional hydraulic design method for the impeller of high specific speed mixed-flow pump to achieve the purpose of verifying the hydraulic design method and improving hydraulic performance. Based on the two families of stream surface theory, the direct problem is completed when the meridional flow field of impeller is obtained by employing iterative calculation to settle the continuity and momentum equation of fluid. The inverse problem is completed by using the meridional flow field calculated in the direct problem. After several iterations of the direct and inverse problem, the shape of impeller and flow field information can be obtained finally when the result of iteration satisfies the convergent criteria. Subsequently the internal flow field of the designed pump are simulated by using RANS equations with RNG k-ε two-equation turbulence model. The static pressure and streamline distributions at the symmetrical cross-section, the vector velocity distribution around blades and the reflux phenomenon are analyzed. The numerical results show that the quasi three-dimensional hydraulic design method for high specific speed mixed-flow pump improves the hydraulic performance and reveal main characteristics of the internal flow of mixed-flow pump as well as provide basis for judging the rationality of the hydraulic design, improvement and optimization of hydraulic model

  6. Aging well: Processing speed inhibition and working memory related to balance and aerobic endurance.

    Science.gov (United States)

    Zettel-Watson, Laura; Suen, Meagan; Wehbe, Lara; Rutledge, Dana N; Cherry, Barbara J

    2017-01-01

    The present study explored whether certain physical performance measures could be linked to specific cognitive domains in healthy older adults. A total of 50 adults (mean age 69.5 years, SD 8.1) were evaluated on physical performance using measures of balance (Fullerton Advanced Balance Scale), functional mobility (8-ft up-and-go), lower body strength (30-s chair stand), gait (30-ft walk velocity) and aerobic endurance (6-min walk). Cognitive measures included Stroop Color-Word Test, Digit Span Backward, Trail Making Tests, Everyday Problems Test, Digit Symbol Substitution and a Brown-Peterson test. Principal component analyses reduced cognition to domains of processing speed, inhibition and working memory. Hierarchical regression analyses were carried out with age and each physical measure as potential predictors of the three cognitive domains. The balance scale and 6-min walk were specifically associated with processing speed, inhibition and working memory. Better dynamic balance and aerobic endurance predicted enhanced processing speed, inhibition and working memory in older adults, with these last two domains considered components of executive function. Geriatr Gerontol Int 2017; 17: 108-115. © 2015 Japan Geriatrics Society.

  7. Who walks? Factors associated with walking behavior in disabled older women with and without self-reported walking difficulty.

    Science.gov (United States)

    Simonsick, E M; Guralnik, J M; Fried, L P

    1999-06-01

    To determine how severity of walking difficulty and sociodemographic, psychosocial, and health-related factors influence walking behavior in disabled older women. Cross-sectional analyses of baseline data from the Women's Health and Aging Study (WHAS). An urban community encompassing 12 contiguous zip code areas in the eastern portion of Baltimore City and part of Baltimore County, Maryland. A total of 920 moderately to severely disabled community-resident women, aged 65 years and older, identified from an age-stratified random sample of Medicare beneficiaries. Walking behavior was defined as minutes walked for exercise and total blocks walked per week. Independent variables included self-reported walking difficulty, sociodemographic factors, psychological status (depression, mastery, anxiety, and cognition), and health-related factors (falls and fear of falling, fatigue, vision and balance problems, weight, smoking, and cane use). Walking at least 8 blocks per week was strongly negatively related to severity of walking difficulty. Independent of difficulty level, older age, black race, fatigue, obesity, and cane use were also negatively associated with walking; living alone and high mastery had a positive association with walking. Even among functionally limited women, sociocultural, psychological, and health-related factors were independently associated with walking behavior. Thus, programs aimed at improving walking ability need to address these factors in addition to walking difficulties to maximize participation and compliance.

  8. Minimum Performance on Clinical Tests of Physical Function to Predict Walking 6,000 Steps/Day in Knee Osteoarthritis: An Observational Study.

    Science.gov (United States)

    Master, Hiral; Thoma, Louise M; Christiansen, Meredith B; Polakowski, Emily; Schmitt, Laura A; White, Daniel K

    2018-07-01

    Evidence of physical function difficulties, such as difficulty rising from a chair, may limit daily walking for people with knee osteoarthritis (OA). The purpose of this study was to identify minimum performance thresholds on clinical tests of physical function predictive to walking ≥6,000 steps/day. This benchmark is known to discriminate people with knee OA who develop functional limitation over time from those who do not. Using data from the Osteoarthritis Initiative, we quantified daily walking as average steps/day from an accelerometer (Actigraph GT1M) worn for ≥10 hours/day over 1 week. Physical function was quantified using 3 performance-based clinical tests: 5 times sit-to-stand test, walking speed (tested over 20 meters), and 400-meter walk test. To identify minimum performance thresholds for daily walking, we calculated physical function values corresponding to high specificity (80-95%) to predict walking ≥6,000 steps/day. Among 1,925 participants (mean ± SD age 65.1 ± 9.1 years, mean ± SD body mass index 28.4 ± 4.8 kg/m 2 , and 55% female) with valid accelerometer data, 54.9% walked ≥6,000 steps/day. High specificity thresholds of physical function for walking ≥6,000 steps/day ranged 11.4-14.0 seconds on the 5 times sit-to-stand test, 1.13-1.26 meters/second for walking speed, or 315-349 seconds on the 400-meter walk test. Not meeting these minimum performance thresholds on clinical tests of physical function may indicate inadequate physical ability to walk ≥6,000 steps/day for people with knee OA. Rehabilitation may be indicated to address underlying impairments limiting physical function. © 2017, American College of Rheumatology.

  9. Thermoconvective flow velocity in a high-speed magnetofluid seal after it has stopped

    Science.gov (United States)

    Krakov, M. S.; Nikiforov, I. V.

    2012-09-01

    Convective flow is investigated in the high-speed (linear velocity of the shaft seal is more than 1 m/s) magnetofluid shaft seal after it has been stopped. Magnetic fluid is preliminarily heated due to viscous friction in the moving seal. After the shaft has been stopped, nonuniform heated fluid remains under the action of a high-gradient magnetic field. Numerical analysis has revealed that in this situation, intense thermomagnetic convection is initiated. The velocity of magnetic fluid depends on its viscosity. For the fluid with viscosity of 2 × 10-4 m2/s the maximum flow velocity within the volume of magnetic fluid with a characteristic size of 1 mm can attain a value of 10 m/s.

  10. Locomotor sequence learning in visually guided walking

    DEFF Research Database (Denmark)

    Choi, Julia T; Jensen, Peter; Nielsen, Jens Bo

    2016-01-01

    walking. In addition, we determined how age (i.e., healthy young adults vs. children) and biomechanical factors (i.e., walking speed) affected the rate and magnitude of locomotor sequence learning. The results showed that healthy young adults (age 24 ± 5 years, N = 20) could learn a specific sequence...... of step lengths over 300 training steps. Younger children (age 6-10 years, N = 8) have lower baseline performance, but their magnitude and rate of sequence learning was the same compared to older children (11-16 years, N = 10) and healthy adults. In addition, learning capacity may be more limited...... to modify step length from one trial to the next. Our sequence learning paradigm is derived from the serial reaction-time (SRT) task that has been used in upper limb studies. Both random and ordered sequences of step lengths were used to measure sequence-specific and sequence non-specific learning during...

  11. Tribological properties of high-speed steel treated by compression plasma flow

    International Nuclear Information System (INIS)

    Cherenda, K.K.; Uglov, V.V.; Anishchik, V.M.; Stalmashonak, A.K.; Astashinski, V.M.

    2004-01-01

    Full text: The investigation of tribological properties of two high-speed steels AISI M2 and AISI Tl treated by the nitrogen compression plasma flow was the main aim of this work. Two types of samples were investigated before and after quenching. The plasma flow was received in a magneto-plasma compressor. The impulse duration was ∼100 μs, the number of impulses varied in the range of 1-5, the nitrogen pressure in the chamber was 400-4000 Pa, the energy absorbed by the sample was 2-10 J/cm 2 per impulse. Tribological properties were examined by means of a tribometer TAYl under conditions of dry friction. The Vickers's microhardness was measured by a hard meter PMT3. X-ray diffraction analysis, Auger electron spectroscopy, scanning electron microscopy and energy dispersion microanalysis were used for samples characterization. The earlier conducted investigations showed that the compression plasma flow suited well for the improvement of tribological properties of iron and low-alloyed steels due to the formation of hardening nitrides in the near surface layer. It was found that in the case of high-speed steels only not quenched samples had increased hardness after treatment. The latter can be explained by the formation of hardening nitrides though the phase analysis did not clearly reveal their presence. The element composition confirmed the presence of nitrogen in the surface layer with the concentration up to 30 at. %. The treatment of quenched samples almost always resulted in the hardness decrease due to the dissolution or partial dissolution of alloying elements carbides: M 6 C, MC, M 23 C 6 . The rate of carbides dissolution increased with the growth of the energy absorbed by the sample. The treated samples showed a lower value of the friction coefficient than the untreated one. It could be explained by the formation of nitrogenous austenite which was found out by the phase analysis. At the same time the compression plasma flow strongly influenced surface

  12. Shoe-Insole Technology for Injury Prevention in Walking

    Directory of Open Access Journals (Sweden)

    Hanatsu Nagano

    2018-05-01

    Full Text Available Impaired walking increases injury risk during locomotion, including falls-related acute injuries and overuse damage to lower limb joints. Gait impairments seriously restrict voluntary, habitual engagement in injury prevention activities, such as recreational walking and exercise. There is, therefore, an urgent need for technology-based interventions for gait disorders that are cost effective, willingly taken-up, and provide immediate positive effects on walking. Gait control using shoe-insoles has potential as an effective population-based intervention, and new sensor technologies will enhance the effectiveness of these devices. Shoe-insole modifications include: (i ankle joint support for falls prevention; (ii shock absorption by utilising lower-resilience materials at the heel; (iii improving reaction speed by stimulating cutaneous receptors; and (iv preserving dynamic balance via foot centre of pressure control. Using sensor technology, such as in-shoe pressure measurement and motion capture systems, gait can be precisely monitored, allowing us to visualise how shoe-insoles change walking patterns. In addition, in-shoe systems, such as pressure monitoring and inertial sensors, can be incorporated into the insole to monitor gait in real-time. Inertial sensors coupled with in-shoe foot pressure sensors and global positioning systems (GPS could be used to monitor spatiotemporal parameters in real-time. Real-time, online data management will enable ‘big-data’ applications to everyday gait control characteristics.

  13. Understanding the Demographic Differences in Neighborhood Walking Supports.

    Science.gov (United States)

    Carlson, Susan A; Watson, Kathleen B; Paul, Prabasaj; Schmid, Thomas L; Fulton, Janet E

    2017-04-01

    Information about how presence and usefulness of neighborhood supports for walking differs by demographic characteristics can help guide community strategies to promote walking. Reported presence and usefulness of neighborhood supports (shops, transit stops, sidewalks, parks, interesting things to look at, well-lit at night, low crime rate, and cars following speed limit) were examined in 3973 U.S. adults who completed the 2014 SummerStyles survey. Percentage reporting neighborhood supports as present ranged from 25.3% (SE = 0.8) for interesting things to 55.8% (SE = 1.0) for low crime rate. Percentage who reported a support as useful ranged from 24.6% (SE = 1.4) for transit stops to 79.0% (SE = 1.1) for sidewalks among those with the support. This percentage ranged from 13.4% (SE = 0.8) for transit stops to 52.8% (SE = 1.1) for shops among those without the support. One or more demographic differences were observed for the presence of each support, and the presence of all supports differed by education and metro status. Demographic patterns were less clear when examining usefulness and patterns often differed by support type and presence. Presence and usefulness of neighborhood supports for walking can differ by type and demographic characteristics. Recognizing these difference can help communities plan and implement strategies to promote walking.

  14. Study on numerical methods for transient flow induced by speed-changing impeller of fluid machinery

    International Nuclear Information System (INIS)

    Wu, Dazhuan; Chen, Tao; Wang, Leqin; Cheng, Wentao; Sun, Youbo

    2013-01-01

    In order to establish a reliable numerical method for solving the transient rotating flow induced by a speed-changing impeller, two numerical methods based on finite volume method (FVM) were presented and analyzed in this study. Two-dimensional numerical simulations of incompressible transient unsteady flow induced by an impeller during starting process were carried out respectively by using DM and DSR methods. The accuracy and adaptability of the two methods were evaluated by comprehensively comparing the calculation results. Moreover, an intensive study on the application of DSR method was conducted subsequently. The results showed that transient flow structure evolution and transient characteristics of the starting impeller are obviously affected by the starting process. The transient flow can be captured by both two methods, and the DSR method shows a higher computational efficiency. As an application example, the starting process of a mixed-flow pump was simulated by using DSR method. The calculation results were analyzed by comparing with the experiment data.

  15. Walking for art's sake

    CERN Multimedia

    2005-01-01

    The man who compared himself to a proton ! On 20 May, Gianni Motti went down into the LHC tunnel and walked around the 27 kilometres of the underground ring at an average, unaccelerated pace of 5 kph. This was an artistic rather than an athletic performance, aimed at drawing a parallel between the fantastic speed of the beams produced by the future accelerator and the leisurely stroll of a human. The artist, who hails from Lombardy, was accompanied by cameraman Ivo Zanetti, who filmed the event from start to finish, and physicist Jean-Pierre Merlo. The first part of the film can be seen at the Villa Bernasconi, 8 route du Grand-Lancy, Grand Lancy, until 26 June.

  16. Walking for art's sake

    CERN Multimedia

    2005-01-01

      The man who compared himself to a proton ! On 20 May, Gianni Motti went down into the LHC tunnel and walked around the 27 kilometres of the underground ring at an average, unaccelerated pace of 5 kph. This was an artistic rather than an athletic performance, aimed at drawing a parallel between the fantastic speed of the beams produced by the future accelerator and the leisurely stroll of a human. The artist, who hails from Lombardy, was accompanied by cameraman Ivo Zanetti, who filmed the event from start to finish, and physicist Jean-Pierre Merlo. The first part of the film can be seen at the Villa Bernasconi, 8 route du Grand-Lancy, Grand Lancy, until 26 June.

  17. Thermoconvective flow velocity in a high-speed magnetofluid seal after it has stopped

    OpenAIRE

    Krakov, M. S.; Nikiforov, I. V.

    2012-01-01

    Convective flow is investigated in the high-speed (linear velocity of the shaft seal is more than 1 m/s) magnetofluid shaft seal after it has been stopped. Magnetic fluid is preliminarily heated due to viscous friction in the moving seal. After the shaft has been stopped, nonuniform heated fluid remains under the action of a high-gradient magnetic field. Numerical analysis has revealed that in this situation, intense thermomagnetic convection is initiated. The velocity of magnetic fluid depen...

  18. Real-time Multiresolution Crosswalk Detection with Walk Light Recognition for the Blind

    Directory of Open Access Journals (Sweden)

    ROMIC, K.

    2018-02-01

    Full Text Available Real-time image processing and object detection techniques have a great potential to be applied in digital assistive tools for the blind and visually impaired persons. In this paper, algorithm for crosswalk detection and walk light recognition is proposed with the main aim to help blind person when crossing the road. The proposed algorithm is optimized to work in real-time on portable devices using standard cameras. Images captured by camera are processed while person is moving and decision about detected crosswalk is provided as an output along with the information about walk light if one is present. Crosswalk detection method is based on multiresolution morphological image processing, while the walk light recognition is performed by proposed 6-stage algorithm. The main contributions of this paper are accurate crosswalk detection with small processing time due to multiresolution processing and the recognition of the walk lights covering only small amount of pixels in image. The experiment is conducted using images from video sequences captured in realistic situations on crossings. The results show 98.3% correct crosswalk detections and 89.5% correct walk lights recognition with average processing speed of about 16 frames per second.

  19. Transient flow characteristics of a high speed rotary valve

    Science.gov (United States)

    Browning, Patrick H.

    were experimentally mapped as a function of valve speed, inter-cylinder pressure ratios and volume ratios and the results were compared to compressible flow theoretical models. Specifically, the transient behavior suggested a short-lived loss-mode initiation closely resembled by shock tube theory followed by a quasi-steady flow regime resembling choked flow behavior. An empirical model was then employed to determine the useful range of the CCV design as applied to a four-stroke CIBAI engine cycle modeled using a 1-D quasi-steady numerical method, with particular emphasis on the cyclic timing of the CCV opening. Finally, a brief discussion of a high-temperature version of the CCV design is presented.

  20. Validity of the MarkWiiR for kinematic analysis during walking and running gaits

    Directory of Open Access Journals (Sweden)

    Johnny Padulo

    2014-11-01

    Full Text Available The aim of this study was to validate the MarkWiiR (MW captured by the Nintendo Wii-Remote (100-Hz to assess active marker displacement by comparison with 2D video analysis. Ten participants were tested on a treadmill at different walking (1<6 km · h-1 and running (10<13 km · h-1 speeds. During the test, the active marker for MW and a passive marker for video analysis were recorded simultaneously with the two devices. The displacement of the marker on the two axes (x-y was computed using two different programs, Kinovea 0.8.15 and CoreMeter, for the camera and MW, respectively. Pearson correlation was acceptable (x-axis r≥0.734 and y-axis r≥0.684, and Bland–Altman plots of the walking speeds showed an average error of 0.24±0.52% and 1.5±0.91% for the x- and y-axis, respectively. The difference of running speeds showed average errors of 0.67±0.33% and 1.26±0.33% for the x- and y-axes, respectively. These results demonstrate that the two measures are similar from both the x- and the y-axis perspective. In conclusion, these findings suggest that the MarkWiiR is a valid and reliable tool to assess the kinematics of an active marker during walking and running gaits.

  1. An Analysis of Flow in Rotating Passage of Large Radial-Inlet Centrifugal Compressor at Tip Speed of 700 Feet Per Second

    National Research Council Canada - National Science Library

    Prian, Vasily

    1951-01-01

    An analysis was made of the flow in the rotating passages of a 48-inch diameter radial-inlet centrifugal impeller at a tip speed of 700 feet per second in order to provide more knowledge on the flow...

  2. Numerical analysis of flow induced noise propagation in supercavitating vehicles at subsonic speeds.

    Science.gov (United States)

    Ramesh, Sai Sudha; Lim, Kian Meng; Zheng, Jianguo; Khoo, Boo Cheong

    2014-04-01

    Flow supercavitation begins when fluid is accelerated over a sharp edge, usually at the nose of an underwater vehicle, where phase change occurs and causes low density gaseous cavity to gradually envelop the whole object (supercavity) and thereby enabling higher speeds of underwater vehicles. The process of supercavity inception/development by means of "natural cavitation" and its sustainment through ventilated cavitation result in turbulence and fluctuations at the water-vapor interface that manifest themselves as major sources of hydrodynamic noise. Therefore in the present context, three main sources are investigated, namely, (1) flow generated noise due to turbulent pressure fluctuations around the supercavity, (2) small scale pressure fluctuations at the vapor-water interface, and (3) pressure fluctuations due to direct impingement of ventilated gas-jets on the supercavity wall. An understanding of their relative contributions toward self-noise is very crucial for the efficient operation of high frequency acoustic sensors that facilitate the vehicle's guidance system. Qualitative comparisons of acoustic pressure distribution resulting from aforementioned sound sources are presented by employing a recently developed boundary integral method. By using flow data from a specially developed unsteady computational fluid dynamics solver for simulating supercavitating flows, the boundary-element method based acoustic solver was developed for computing flow generated sound.

  3. Pilates exercise training vs. physical therapy for improving walking and balance in people with multiple sclerosis: a randomized controlled trial.

    Science.gov (United States)

    Kalron, Alon; Rosenblum, Uri; Frid, Lior; Achiron, Anat

    2017-03-01

    Evaluate the effects of a Pilates exercise programme on walking and balance in people with multiple sclerosis and compare this exercise approach to conventional physical therapy sessions. Randomized controlled trial. Multiple Sclerosis Center, Sheba Medical Center, Tel-Hashomer, Israel. Forty-five people with multiple sclerosis, 29 females, mean age (SD) was 43.2 (11.6) years; mean Expanded Disability Status Scale (S.D) was 4.3 (1.3). Participants received 12 weekly training sessions of either Pilates ( n=22) or standardized physical therapy ( n=23) in an outpatient basis. Spatio-temporal parameters of walking and posturography parameters during static stance. Functional tests included the Time Up and Go Test, 2 and 6-minute walk test, Functional Reach Test, Berg Balance Scale and the Four Square Step Test. In addition, the following self-report forms included the Multiple Sclerosis Walking Scale and Modified Fatigue Impact Scale. At the termination, both groups had significantly increased their walking speed ( P=0.021) and mean step length ( P=0.023). According to the 2-minute and 6-minute walking tests, both groups at the end of the intervention program had increased their walking speed. Mean (SD) increase in the Pilates and physical therapy groups were 39.1 (78.3) and 25.3 (67.2) meters, respectively. There was no effect of group X time in all instrumented and clinical balance and gait measures. Pilates is a possible treatment option for people with multiple sclerosis in order to improve their walking and balance capabilities. However, this approach does not have any significant advantage over standardized physical therapy.

  4. A Three Month Home Exercise Programme Augmented with Nordic Poles for Patients with Intermittent Claudication Enhances Quality of Life and Continues to Improve Walking Distance and Compliance After One Year.

    Science.gov (United States)

    Oakley, C; Spafford, C; Beard, J D

    2017-05-01

    The objective of this study was to collect 1 year follow-up information on walking distance, speed, compliance, and cost in patients with intermittent claudication who took part in a previously reported 12 week randomised clinical trial of a home exercise programme augmented with Nordic pole walking versus controls who walked normally. A second objective was to look at quality of life and ankle brachial pressure indices (ABPIs) after a 12 week augmented home exercise programme. Thirty-two of the 38 patients who completed the original trial were followed-up after 6 and 12 months. Frequency, duration, speed, and distance of walking were recorded using diaries and pedometers. A new observational cohort of 29 patients was recruited to the same augmented home exercise programme. ABPIs, walking improvement, and quality of life questionnaire were recorded at baseline and 12 weeks (end of the programme). Both groups in the follow-up study continued to improve their walking distance and speed over the following year. Compliance was excellent: 98% of the augmented group were still walking with poles at both 6 and 12 months, while 74% of the control group were still walking at the same point. The augmented group increased their mean walking distance to 17.5 km by 12 months, with a mean speed of 4.2 km/hour. The control group only increased their mean walking distance from 4.2 km to 5.6 km, and speed to 3.3 km/hour. Repeated ANOVA showed the results to be highly significant (p = .002). The 21/29 patients who completed the observational study showed a statistically significant increase in resting ABPIs from baseline (mean ± SD 0.75 ± 0.12) to week 12 (mean ± SD 0.85 ± 0.12) (t = (20) -8.89, p = .000 [two-tailed]). All their walking improvement and quality of life parameters improved significantly (p = .002 or less in the six categories) over the same period and their mean health scores improved by 79%. Following a 12 week augmented home exercise

  5. Investigation on Flow-Induced Noise due to Backflow in Low Specific Speed Centrifugal Pumps

    Directory of Open Access Journals (Sweden)

    Qiaorui Si

    2013-01-01

    Full Text Available Flow-induced noise causes disturbances during the operation of centrifugal pumps and also affects their performance. The pumps often work at off-design conditions, mainly at part-load conditions, because of frequent changes in the pump device system. Consequently numerous unstable phenomena occur. In low specific speed centrifugal pumps the main disturbance is the inlet backflow, which is considered as one of the most important factors of flow-induced noise and vibration. In this study, a test rig of the flow-induced noise and vibration of the centrifugal pump was built to collect signals under various operating conditions. The three-dimensional unsteady flow of centrifugal pumps was calculated based on the Reynolds-averaged equations that resemble the shear stress transport (SST k-ω turbulence model. The results show that the blade passing frequency and shaft frequency are dominant in the spectrum of flow-induced noise, whereas the shaft component, amplitude value at shaft frequency, and peak frequencies around the shaft increase with decreasing flow. Through flow field analysis, the inlet backflow of the impeller occurs under 0.7 times the design flow. The pressure pulsation spectrum with backflow conditions validates the flow-induced noise findings. The velocity characteristics of the backflow zone at the inlet pipe were analyzed, and the dynamic characteristics of the backflow eddy during one impeller rotating period were simultaneously obtained by employing the backflow conditions. A flow visualization experiment was performed to confirm the numerical calculations.

  6. Comparison of Electromyographic Activity Pattern of Knee Two-Joint Muscles between Youngs and Olders in Gait Different Speeds

    Directory of Open Access Journals (Sweden)

    Hamideh Khodaveisi

    2016-01-01

    Full Text Available Objective: In recent years, it has been focused much attention on gait analysis. Factors such as speed, age and gender affect gait parameters. The purpose of the present study was to compare the electromyographic activity pattern of knee two-joint muscles between younger and older subjects in different gait speeds. Matterials & Methods: The method of current study was analytical cross-sectional method in which 15 healthy young men and 15 old men, were selected conveniently. Electromyographic activity of rectus femoris, biceps femoris, semitendinus and gastrocenemius were recorded during walking with preferred (100%, slow (80% and fast (120% speeds in a 10 meter walkway. Normalized RMSs of muscles were compared using RM-ANOVA and Tokey’s tests by SPSS 18 software. Results: According to results, RMSs of rectus femoris in midstance (P<0.01 and gastrocenemius in loading response (P=0.02 phases in all walking speeds were higher in older subjects than in younger ones, and it increased with speed in both age groups (P<0.01. Biceps femoris RMS in terminal stance at 80% speed, was lower in older subjects than in younger ones (P=0.01 and it increased with walking speed (P=0.01. Semitendinus activity in loading and midstance phases at 120% speed was higher in older subjects than in younger ones (P<0.01, and it increased with speed in both age groups in swing phase (P<0.05. Conclusion: According to the results, older subjects have more muscle co-contraction around knee at high speed in midstance phase than younger subjects. These age-related changes in muscle activity, leads to increase in joint stiffness and stability during single support, and probably play a role in reducing push off power at faster speeds.

  7. Is the impact of fatigue related to walking capacity and perceived ability in persons with multiple sclerosis? A multicenter study.

    Science.gov (United States)

    Dalgas, U; Langeskov-Christensen, M; Skjerbæk, A; Jensen, E; Baert, I; Romberg, A; Santoyo Medina, C; Gebara, B; Maertens de Noordhout, B; Knuts, K; Béthoux, F; Rasova, K; Severijns, D; Bibby, B M; Kalron, A; Norman, B; Van Geel, F; Wens, I; Feys, P

    2018-04-15

    The relationship between fatigue impact and walking capacity and perceived ability in patients with multiple sclerosis (MS) is inconclusive in the existing literature. A better understanding might guide new treatment avenues for fatigue and/or walking capacity in patients with MS. To investigate the relationship between the subjective impact of fatigue and objective walking capacity as well as subjective walking ability in MS patients. A cross-sectional multicenter study design was applied. Ambulatory MS patients (n = 189, age: 47.6 ± 10.5 years; gender: 115/74 women/men; Expanded Disability Status Scale (EDSS): 4.1 ± 1.8 [range: 0-6.5]) were tested at 11 sites. Objective tests of walking capacity included short walking tests (Timed 25-Foot Walk (T25FW), 10-Metre Walk Test (10mWT) at usual and fastest speed and the timed up and go (TUG)), and long walking tests (2- and 6-Minute Walk Tests (MWT). Subjective walking ability was tested applying the Multiple Sclerosis Walking Scale-12 (MSWS-12). Fatigue impact was measured by the self-reported modified fatigue impact scale (MFIS) consisting of a total score (MFIS total ) and three subscales (MFIS physical , MFIS cognitive and MFIS psychosocial ). Uni- and multivariate regression analysis were performed to evaluate the relation between walking and fatigue impact. MFIS total was negatively related with long (6MWT, r = -0.14, p = 0.05) and short composite (TUG, r = -0.22, p = 0.003) walking measures. MFIS physical showed a significant albeit weak relationship to walking speed in all walking capacity tests (r = -0.22 to -0.33, p < .0001), which persisted in the multivariate linear regression analysis. Subjective walking ability (MSWS-12) was related to MFIS total (r = 0.49, p < 0.0001), as well as to all other subscales of MFIS (r = 0.24-0.63, p < 0.001), showing stronger relationships than objective measures of walking. The physical impact of fatigue is weakly

  8. Dynamic Characteristics of Ventilatory and Gas Exchange during Sinusoidal Walking in Humans.

    Directory of Open Access Journals (Sweden)

    Yoshiyuki Fukuoka

    Full Text Available Our present study investigated whether the ventilatory and gas exchange responses show different dynamics in response to sinusoidal change in cycle work rate or walking speed even if the metabolic demand was equivalent in both types of exercise. Locomotive parameters (stride length and step frequency, breath-by-breath ventilation (V̇E and gas exchange (CO2 output (V̇CO2 and O2 uptake (V̇O2 responses were measured in 10 healthy young participants. The speed of the treadmill was sinusoidally changed between 3 km·h-1 and 6 km·h-1 with various periods (from 10 to 1 min. The amplitude of locomotive parameters against sinusoidal variation showed a constant gain with a small phase shift, being independent of the oscillation periods. In marked contrast, when the periods of the speed oscillations were shortened, the amplitude of V̇E decreased sharply whereas the phase shift of V̇E increased. In comparing walking and cycling at the equivalent metabolic demand, the amplitude of V̇E during sinusoidal walking (SW was significantly greater than that during sinusoidal cycling (SC, and the phase shift became smaller. The steeper slope of linear regression for the V̇E amplitude ratio to V̇CO2 amplitude ratio was observed during SW than SC. These findings suggested that the greater amplitude and smaller phase shift of ventilatory dynamics were not equivalent between SW and SC even if the metabolic demand was equivalent between both exercises. Such phenomenon would be derived from central command in proportion to locomotor muscle recruitment (feedforward and muscle afferent feedback.

  9. Correlates of walking for transportation and use of public transportation among adults in St Louis, Missouri, 2012.

    Science.gov (United States)

    Zwald, Marissa L; Hipp, James A; Corseuil, Marui W; Dodson, Elizabeth A

    2014-07-03

    Attributes of the built environment can influence active transportation, including use of public transportation. However, the relationship between perceptions of the built environment and use of public transportation deserves further attention. The objectives of this study were 1) to assess the relationship between personal characteristics and public transportation use with meeting national recommendations for moderate physical activity through walking for transportation and 2) to examine associations between personal and perceived environmental factors and frequency of public transportation use. In 2012, we administered a mail-based survey to 772 adults in St Louis, Missouri, to assess perceptions of the built environment, physical activity, and transportation behaviors. The abbreviated International Physical Activity Questionnaire was used to assess walking for transportation and use of public transportation. The Neighborhood Environment Walkability Scale was used to examine perceptions of the built environment. Associations were assessed by using multinomial logistic regression. People who used public transportation at least once in the previous week were more likely to meet moderate physical activity recommendations by walking for transportation. Age and employment were significantly associated with public transportation use. Perceptions of high traffic speed and high crime were negatively associated with public transportation use. Our results were consistent with previous research suggesting that public transportation use is related to walking for transportation. More importantly, our study suggests that perceptions of traffic speed and crime are related to frequency of public transportation use. Future interventions to encourage public transportation use should consider policy and planning decisions that reduce traffic speed and improve safety.

  10. Shared and task-specific muscle synergies of Nordic walking and conventional walking.

    Science.gov (United States)

    Boccia, G; Zoppirolli, C; Bortolan, L; Schena, F; Pellegrini, B

    2018-03-01

    Nordic walking is a form of walking that includes a poling action, and therefore an additional subtask, with respect to conventional walking. The aim of this study was to assess whether Nordic walking required a task-specific muscle coordination with respect to conventional walking. We compared the electromyographic (EMG) activity of 15 upper- and lower-limb muscles of 9 Nordic walking instructors, while executing Nordic walking and conventional walking at 1.3 ms -1 on a treadmill. Non-negative matrix factorization method was applied to identify muscle synergies, representing the spatial and temporal organization of muscle coordination. The number of muscle synergies was not different between Nordic walking (5.2 ± 0.4) and conventional walking (5.0 ± 0.7, P = .423). Five muscle synergies accounted for 91.2 ± 1.1% and 92.9 ± 1.2% of total EMG variance in Nordic walking and conventional walking, respectively. Similarity and cross-reconstruction analyses showed that 4 muscle synergies, mainly involving lower-limb and trunk muscles, are shared between Nordic walking and conventional walking. One synergy acting during upper limb propulsion is specific to Nordic walking, modifying the spatial organization and the magnitude of activation of upper limb muscles compared to conventional walking. The inclusion of the poling action in Nordic walking does not increase the complexity of movement control and does not change the coordination of lower limb muscles. This makes Nordic walking a physical activity suitable also for people with low motor skill. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  11. Inversion of Flow Depth and Speed from Tsunami Deposits using TsuSedMod

    Science.gov (United States)

    Spiske, M.; Weiss, R.; Roskosch, J.; Bahlburg, H.

    2008-12-01

    The global evolution of a tsunami wave train can be expressed by the sum of local effects along a tsunami- wave beam. The near-shore evolution of tsunami is very complex as the waves interact with the sea-bottom sediments. Filtered through offshore and onshore erosion and deposition, this evolution is recorded in the coastal area by topographical changes, local erosion and tsunami deposits. Recordable sedimentary on-site features include grain-size distributions and horizontal thickness trends. Immediately after an event, indicators of flow depth and run up extent, such as water marks on buildings and vegetation, debris and plastic bags caught in trees and swash lines, can be measured in the field. A direct measurement of the overland flow velocity is usually not possible. However, regarding recent tsunami events, videos of surveillance cameras or witness accounts helped to estimate the characteristics of overland flow. For historical and paleotsunami events such information is not directly available. Jaffe & Gelfenbaum (2007) developed an inversion model (TsuSedMod) to estimate flow depth and speed based upon the grain-size distribution and the thickness of onshore tsunami sediments. This model assumes a steady distribution of sediment in the water column, for which the appication of the Rouse equation is possible. Further simplifications, especially concerning the turbulence structure, are based on the mixing- length theory by Prandtl, the standard approximation in physical sedimentology. We calculated flow depths for sediments left behind by the 2004 Sumatra-Tsunami in India and Kenya (Weiss & Bahlburg, 2006; Bahlburg & Weiss, 2007) and by the 2006 Java-Tsunami on Java (Piepenbreier et al., 2007), using the model of Jaffe and Gelfenbaum (2007). Estimated flow depth were compared with measured data to extend the validation procedure. This extension is needed to gain confidence and understanding before the next step is taken to compute the near

  12. Lower limb joint kinetics in walking: the role of industry recommended footwear.

    Science.gov (United States)

    Keenan, Geoffrey S; Franz, Jason R; Dicharry, Jay; Della Croce, Ugo; Kerrigan, D Casey

    2011-03-01

    The effects of current athletic footwear on lower extremity biomechanics are unknown. The aim of this study was to examine the changes, if any, that occur in peak lower extremity net joint moments while walking in industry recommended athletic footwear. Sixty-eight healthy young adults underwent kinetic evaluation of lower extremity extrinsic joint moments while walking barefoot and while walking in current standard athletic footwear matched to the foot mechanics of each subject while controlling for speed. A secondary analysis was performed comparing peak knee joint extrinsic moments during barefoot walking to those while walking in three different standard footwear types: stability, motion control, and cushion. 3-D motion capture data were collected in synchrony with ground reaction force data collected from an instrumented treadmill. The shod condition was associated with a 9.7% increase in the first peak knee varus moment, and increases in the hip flexion and extension moments. These increases may be largely related to a 6.5% increase in stride length with shoes associated with increases in the ground reaction forces in all three axes. The changes from barefoot walking observed in the peak knee joint moments were similar when subjects walked in all three footwear types. It is unclear to what extent these increased joint moments may be clinically relevant, or potentially adverse. Nonetheless, these differences should be considered in the recommendation as well as the design of footwear in the future. Copyright © 2010 Elsevier B.V. All rights reserved.

  13. Exoskeleton Motion Control for Children Walking Rehabilitation

    Directory of Open Access Journals (Sweden)

    Cristina Ploscaru

    2016-06-01

    Full Text Available This paper introduces a quick method for motion control of an exoskeleton used on children walking rehabilitation with ages between four to seven years old. The exoskeleton used on this purpose has six servomotors which work independently and actuates each human lower limb joints (hips, knees and ankles. For obtaining the desired motion laws, a high-speed motion analysis equipment was used. The experimental rough data were mathematically modeled in order to obtain the proper motion equations for controlling the exoskeleton servomotors.

  14. Analysis of Low Speed Stall Aerodynamics of a Swept Wing with Laminar Flow Glove

    Science.gov (United States)

    Bui, Trong T.

    2014-01-01

    Reynolds-Averaged Navier-Stokes (RANS) computational fluid dynamics (CFD) analysis was conducted to study the low-speed stall aerodynamics of a GIII aircraft's swept wing modified with a laminar-flow wing glove. The stall aerodynamics of the gloved wing were analyzed and compared with the unmodified wing for the flight speed of 120 knots and altitude of 2300 ft above mean sea level (MSL). The Star-CCM+ polyhedral unstructured CFD code was first validated for wing stall predictions using the wing-body geometry from the First American Institute of Aeronautics and Astronautics (AIAA) CFD High-Lift Prediction Workshop. It was found that the Star-CCM+ CFD code can produce results that are within the scattering of other CFD codes considered at the workshop. In particular, the Star-CCM+ CFD code was able to predict wing stall for the AIAA wing-body geometry to within 1 degree of angle of attack as compared to benchmark wind-tunnel test data. Current results show that the addition of the laminar-flow wing glove causes the gloved wing to stall much earlier than the unmodified wing. Furthermore, the gloved wing has a different stall characteristic than the clean wing, with no sharp lift drop-off at stall for the gloved wing.

  15. Analysis of Low-Speed Stall Aerodynamics of a Swept Wing with Laminar-Flow Glove

    Science.gov (United States)

    Bui, Trong T.

    2014-01-01

    Reynolds-Averaged Navier-Stokes (RANS) computational fluid dynamics (CFD) analysis was conducted to study the low-speed stall aerodynamics of a GIII aircraft's swept wing modified with a laminar-flow wing glove. The stall aerodynamics of the gloved wing were analyzed and compared with the unmodified wing for the flight speed of 120 knots and altitude of 2300 ft above mean sea level (MSL). The Star-CCM+ polyhedral unstructured CFD code was first validated for wing stall predictions using the wing-body geometry from the First American Institute of Aeronautics and Astronautics (AIAA) CFD High-Lift Prediction Workshop. It was found that the Star-CCM+ CFD code can produce results that are within the scattering of other CFD codes considered at the workshop. In particular, the Star-CCM+ CFD code was able to predict wing stall for the AIAA wing-body geometry to within 1 degree of angle of attack as compared to benchmark wind-tunnel test data. Current results show that the addition of the laminar-flow wing glove causes the gloved wing to stall much earlier than the unmodified wing. Furthermore, the gloved wing has a different stall characteristic than the clean wing, with no sharp lift drop-off at stall for the gloved wing.

  16. Walking in water and on land after an incomplete spinal cord injury.

    Science.gov (United States)

    Tamburella, Federica; Scivoletto, Giorgio; Cosentino, Elena; Molinari, Marco

    2013-10-01

    Although no data are available on the effects of water environment on the gait of subjects with spinal cord injury (SCI), hydrotherapy is used in the rehabilitation protocols of SCI patients. The aim of this study was to characterize gait features of subjects with incomplete SCI walking in water and on land in comparison with healthy controls (CTRLs) to identify the specificity of water environment on influencing gait in SCI subjects. This is a matched case-control study. Kinematic gait parameters and range of motion of joint angles of 15 SCI subjects and 15 CTRLs were analyzed. Compared with gait on land, gait in water of the SCI patients was characterized by speed and stance phase reduction, gait cycle time increment, and invariance of stride length and range of motion values. Comparison with CTRL data remarked that walking in water reduces gait differences between the groups. Furthermore, in water, the SCI subjects presented a reduction in variability of the hip and knee joint angles, whereas in the CTRLs, a larger variability was observed. Gait in water of the SCI subjects is associated with kinematic parameters more similar to those of the CTRLs, particularly regarding speed, stride length, and stance phase, supporting the idea that walking in a water environment may be of rehabilitative significance for SCI subjects.

  17. ULTRA-SHARP nonoscillatory convection schemes for high-speed steady multidimensional flow

    Science.gov (United States)

    Leonard, B. P.; Mokhtari, Simin

    1990-01-01

    For convection-dominated flows, classical second-order methods are notoriously oscillatory and often unstable. For this reason, many computational fluid dynamicists have adopted various forms of (inherently stable) first-order upwinding over the past few decades. Although it is now well known that first-order convection schemes suffer from serious inaccuracies attributable to artificial viscosity or numerical diffusion under high convection conditions, these methods continue to enjoy widespread popularity for numerical heat transfer calculations, apparently due to a perceived lack of viable high accuracy alternatives. But alternatives are available. For example, nonoscillatory methods used in gasdynamics, including currently popular TVD schemes, can be easily adapted to multidimensional incompressible flow and convective transport. This, in itself, would be a major advance for numerical convective heat transfer, for example. But, as is shown, second-order TVD schemes form only a small, overly restrictive, subclass of a much more universal, and extremely simple, nonoscillatory flux-limiting strategy which can be applied to convection schemes of arbitrarily high order accuracy, while requiring only a simple tridiagonal ADI line-solver, as used in the majority of general purpose iterative codes for incompressible flow and numerical heat transfer. The new universal limiter and associated solution procedures form the so-called ULTRA-SHARP alternative for high resolution nonoscillatory multidimensional steady state high speed convective modelling.

  18. Development of a Dual-PIV system for high-speed flow applications

    Science.gov (United States)

    Schreyer, Anne-Marie; Lasserre, Jean J.; Dupont, Pierre

    2015-10-01

    A new Dual-particle image velocimetry (Dual-PIV) system for application in supersonic flows was developed. The system was designed for shock wave/turbulent boundary layer interactions with separation. This type of flow places demanding requirements on the system, from the large range of characteristic frequencies O(100 Hz-100 kHz) to spatial and temporal resolutions necessary for the measurement of turbulent quantities (Dolling in AIAA J 39(8):1517-1531, 2001; Dupont et al. in J Fluid Mech 559:255-277, 2006; Smits and Dussauge in Turbulent shear layers in supersonic flow, 2nd edn. Springer, New York, 2006). While classic PIV systems using high-resolution CCD sensors allow high spatial resolution, these systems cannot provide the required temporal resolution. Existing high-speed PIV systems provide temporal and CMOS sensor resolutions, and even laser pulse energies, that are not adapted to our needs. The only obvious solution allowing sufficiently high spatial resolution, access to high frequencies, and a high laser pulse energy is a multi-frame system: a Dual-PIV system, consisting of two synchronized PIV systems observing the same field of view, will give access to temporal characteristics of the flow. The key technology of our system is frequency-based image separation: two lasers of different wavelengths illuminate the field of view. The cross-pollution with laser light from the respective other branches was quantified during system validation. The overall system noise was quantified, and the prevailing error of only 2 % reflects the good spatial and temporal alignment. The quality of the measurement system is demonstrated with some results on a subsonic jet flow including the spatio-temporal inter-correlation functions between the systems. First measurements in a turbulent flat-plate boundary layer at Mach 2 show the same satisfactory data quality and are also presented and discussed.

  19. Evaluation of the gait performance of above-knee amputees while walking with 3R20 and 3R15 knee joints

    Directory of Open Access Journals (Sweden)

    AliReza Taheri

    2012-01-01

    Full Text Available Background: The performance of the subjects with above-knee amputation is noticeably poorer than normal subjects. Various types of components have been designed to compensate their performance. Among various prosthetic components, the knee joint has great influence on the function. Two types of knee joints (3R15, 3R20 have been used broadly for above-knee prostheses. However, there is not enough research to highlight the influence of these joints on the gait performance of the subjects. Therefore, an aim of this research was to investigate the performance of the above-knee amputees while walking with 3R15 and 3R20 knee joints. Materials and Methods: 7 above-knee amputees were recruited in this research study. They were asked to walk with a comfortable speed to investigate the gait function of the subjects with 3 cameras 3D motion analysis system (Kinematrix system. The difference between the performances of the subjects with these joints was compared by use of paired t-test. Results: The results of this study showed that, the performances of the subjects with 3R20 were better than that with 3R15. The walking speed of the subjects with 3R20 was 66.7 m/min compared to 30.4 m/min (P-value = 0.045. Moreover; the symmetry of walking with 3R20 was more than that with 3R15, based on the spatio- temporal gait parameters values (P-value <0.05. Conclusion: The difference between the performances of the subjects with 3R20 and 3R15 knee joints was related to the walking speed, which improved while walking with 3R20 joint.

  20. Varied overground walking training versus body-weight-supported treadmill training in adults within 1 year of stroke: a randomized controlled trial.

    Science.gov (United States)

    DePaul, Vincent G; Wishart, Laurie R; Richardson, Julie; Thabane, Lehana; Ma, Jinhui; Lee, Timothy D

    2015-05-01

    Although task-related walking training has been recommended after stroke, the theoretical basis, content, and impact of interventions vary across the literature. There is a need for a comparison of different approaches to task-related walking training after stroke. To compare the impact of a motor-learning-science-based overground walking training program with body-weight-supported treadmill training (BWSTT) in ambulatory, community-dwelling adults within 1 year of stroke onset. In this rater-blinded, 1:1 parallel, randomized controlled trial, participants were stratified by baseline gait speed. Participants assigned to the Motor Learning Walking Program (MLWP) practiced various overground walking tasks under the supervision of 1 physiotherapist. Cognitive effort was encouraged through random practice and limited provision of feedback and guidance. The BWSTT program emphasized repetition of the normal gait cycle while supported on a treadmill and assisted by 1 to 3 therapy staff. The primary outcome was comfortable gait speed at postintervention assessment (T2). In total, 71 individuals (mean age = 67.3; standard deviation = 11.6 years) with stroke (mean onset = 20.9 [14.1] weeks) were randomized (MLWP, n = 35; BWSTT, n = 36). There was no significant between-group difference in gait speed at T2 (0.002 m/s; 95% confidence interval [CI] = -0.11, 0.12; P > .05). The MLWP group improved by 0.14 m/s (95% CI = 0.09, 0.19), and the BWSTT group improved by 0.14 m/s (95% CI = 0.08, 0.20). In this sample of community-dwelling adults within 1 year of stroke, a 15-session program of varied overground walking-focused training was not superior to a BWSTT program of equal frequency, duration, and in-session step activity. © The Author(s) 2014.

  1. Modified Motor Vehicles Travel Speed Models on the Basis of Curb Parking Setting under Mixed Traffic Flow

    Directory of Open Access Journals (Sweden)

    Zhenyu Mei

    2012-01-01

    Full Text Available The ongoing controversy about in what condition should we set the curb parking has few definitive answers because comprehensive research in this area has been lacking. Our goal is to present a set of heuristic urban street speed functions under mixed traffic flow by taking into account impacts of curb parking. Two impacts have been defined to classify and quantify the phenomena of motor vehicles' speed dynamics in terms of curb parking. The first impact is called Space impact, which is caused by the curb parking types. The other one is the Time impact, which results from the driver maneuvering in or out of parking space. In this paper, based on the empirical data collected from six typical urban streets in Nanjing, China, two models have been proposed to describe these phenomena for one-way traffic and two-way traffic, respectively. An intensive experiment has been conducted in order to calibrate and validate these proposed models, by taking into account the complexity of the model parameters. We also provide guidelines in terms of how to cluster and calculate those models' parameters. Results from these models demonstrated promising performance of modeling motor vehicles' speed for mixed traffic flow under the influence of curb parking.

  2. Influence of air flow, temperature and agitation speed in the batch acetification process to obtain orange vinegar (Citrus sinensis var.W. Navel

    Directory of Open Access Journals (Sweden)

    María Ferreyra

    2012-03-01

    Full Text Available This paper describes the influence of process variables to produce orange vinegar. Orange juice was fermented with Saccharomyces cerevisiae until reach 14% v/v. The biooxidation was carried out with Acetobacter sp., in submerge culture using a laboratory scale fermentor. In order to avoid the inhibitory effect of ethanol on acetic acid bacteria, the orange wine was diluted to 6% v/v with a mineral solution. It was performed a factorial design 2k to study the influence of variables. It was studied air flow rate/agitation at levels of 0.3-0.6 vvm and 200-400 rpm and the effect of air flow rate/temperature at 0.4-0.6 vvm and 25- 30°C, respectively. Duplicate treatments were carried out and the results were evaluated in terms of productivity and fermentation yield. Statistical design (p-value<0.05 was analyzed using Statgraphics Centurion XV Corporate software. Treatments performed at 200 rpm and different air flow levels, did not show significant differences on acetification rate. At higher agitation speed and air flow rates, the productivity was high. The best yields were obtained at lower air flows levels and higher agitation speed. Temperature did not present statistically differences on studied variables. The best yield was obtained at 400 rpm and 0.3 vvm at 25°C. It can be concluded that agitation speed plays an important role for a better acetification rate however higher air flow rates causes less yields.

  3. Effect of speed on local dynamic stability of locomotion under different task constraints in running.

    Science.gov (United States)

    Mehdizadeh, Sina; Arshi, Ahmed Reza; Davids, Keith

    2014-01-01

    A number of studies have investigated effects of speed on local dynamic stability of walking, although this relationship has been rarely investigated under changing task constraints, such as during forward and backward running. To rectify this gap in the literature, the aim of this study was to investigate the effect of running speed on local dynamic stability of forward and backward running on a treadmill. Fifteen healthy male participants took part in this study. Participants ran in forward and backward directions at speeds of 80%, 100% and 120% of their preferred running speed. The three-dimensional motion of a C7 marker was recorded using a motion capture system. Local dynamic stability of the marker was quantified using short- and long-term largest finite-time Lyapunov exponents (LyE). Results showed that short-term largest finite-time LyE values increased with participant speed meaning that local dynamic stability decreased with increasing speed. Long-term largest finite-time LyEs, however, remained unaffected as speed increased. Results of this study indicated that, as in walking, slow running is more stable than fast running. These findings improve understanding of how stability is regulated when constraints on the speed of movements is altered. Implications for the design of rehabilitation or sport practice programmes suggest how task constraints could be manipulated to facilitate adaptations in locomotion stability during athletic training.

  4. Modeling of speed distribution for mixed bicycle traffic flow

    Directory of Open Access Journals (Sweden)

    Cheng Xu

    2015-11-01

    Full Text Available Speed is a fundamental measure of traffic performance for highway systems. There were lots of results for the speed characteristics of motorized vehicles. In this article, we studied the speed distribution for mixed bicycle traffic which was ignored in the past. Field speed data were collected from Hangzhou, China, under different survey sites, traffic conditions, and percentages of electric bicycle. The statistics results of field data show that the total mean speed of electric bicycles is 17.09 km/h, 3.63 km/h faster and 27.0% higher than that of regular bicycles. Normal, log-normal, gamma, and Weibull distribution models were used for testing speed data. The results of goodness-of-fit hypothesis tests imply that the log-normal and Weibull model can fit the field data very well. Then, the relationships between mean speed and electric bicycle proportions were proposed using linear regression models, and the mean speed for purely electric bicycles or regular bicycles can be obtained. The findings of this article will provide effective help for the safety and traffic management of mixed bicycle traffic.

  5. Cellular Automata Models of Traffic Behavior in Presence of Speed Breaking Structures

    International Nuclear Information System (INIS)

    Ramachandran, Parthasarathy

    2009-01-01

    In this article, we study traffic flow in the presence of speed breaking structures. The speed breakers are typically used to reduce the local speed of vehicles near certain institutions such as schools and hospitals. Through a cellular automata model we study the impact of such structures on global traffic characteristics. The simulation results indicate that the presence of speed breakers could reduce the global flow under moderate global densities. However, under low and high global density traffic regime the presence of speed breakers does not have an impact on the global flow. Further the speed limit enforced by the speed breaker creates a phase distinction. For a given global density and slowdown probability, as the speed limit enforced by the speed breaker increases, the traffic moves from the reduced flow phase to maximum flow phase. This underlines the importance of proper design of these structures to avoid undesired flow restrictions. (general)

  6. Flow Rate In Microfluidic Pumps As A Function Of Tension and Pump Motor Head Speed

    Science.gov (United States)

    Irwin, Anthony; McBride, Krista

    2015-03-01

    As the use of microfluidic devices has become more common in recent years the need for standardization within the pump systems has grown. The pumps are ball bearing rotor microfluidic pumps and work off the idea of peristalsis. The rapid contraction and relaxation propagating down a tube or a microfluidic channel. The ball bearings compress the tube (occlusion) and move along part of the tube length forcing fluid to move inside of the tube in the same direction of the ball bearings. When the ball bearing rolls off the area occupied by the microfluidic channel, its walls and ceiling undergo restitution and a pocket of low pressure is briefly formed pulling more of the liquid into the pump system. Before looking to standardize the pump systems it must be known how the tension placed by the pumps bearing heads onto the PDMS inserts channels affect the pumps performance (mainly the flow rate produced). The relationship of the speed at which the bearings on the motor head spin and the flow rate must also be established. This research produced calibration curves for flow rate vs. tension and rpm. These calibration curves allow the devices to be set to optimal user settings by simply varying either the motor head tension or the motor head speed. I would like to acknowledge the help and support of Vanderbilt University SyBBURE program, Christina Marasco, Stacy Sherod, Franck Block and Krista McBride.

  7. [Calf circumference and its association with gait speed in elderly participants at Peruvian Naval Medical Center].

    Science.gov (United States)

    Díaz Villegas, Gregory Mishell; Runzer Colmenares, Fernando

    2015-01-01

    To evaluate the association between calf circumference and gait speed in elderly patients 65 years or older at Geriatric day clinic at Peruvian Centro Médico Naval. Cross-sectional, retrospective study. We assessed 139 participants, 65 years or older at Peruvian Centro Médico Naval including calf circumference, gait speed and Short Physical Performance Battery. With bivariate analyses and logistic regression model we search for association between variables. The age mean was 79.37 years old (SD: 8.71). 59.71% were male, the 30.97% had a slow walking speed and the mean calf circumference was 33.42cm (SD: 5.61). After a bivariate analysis, we found a calf circumference mean of 30.35cm (SD: 3.74) in the slow speed group and, in normal gait group, a mean of 33.51cm (SD: 3.26) with significantly differences. We used logistic regression to analyze association with slow gait speed, founding statistically significant results adjusting model by disability and age. Low calf circumference is associated with slow speed walk in population over 65 years old. Copyright © 2014. Published by Elsevier Espana.

  8. [Six-minute walk test in children with neuromuscular disease.

    Science.gov (United States)

    Cruz-Anleu, Israel Didier; Baños-Mejía, Benjamín Omar; Galicia-Amor, Susana

    2013-01-01

    Background: neuromuscular diseases affect the motor unit. When they evolve, respiratory complications are common; the six-minute walk test plays an important role in the assessment of functional capacity. Methods: prospective, transversal, descriptive and observational study. We studied seven children with a variety of neuromuscular diseases and spontaneous ambulation. We tested their lung function, and administered a six-minute walk test and a test of respiratory muscle strength to these children. Results: the age was 9.8 ± 2.4 years. All patients were males. Forced vital capacity decreased in three patients (42.8 %), forced expiratory volume during the first second (2.04 ± 1.4 L) and peak expiratory flow (4.33 ± 3.3 L/s) were normal. The maximum strength of respiratory muscles was less than 60 % of predicted values. The distance covered in the six-minute walk test was lower when compared with healthy controls (29.9 %). Conclusions: the six-minute walk test can be a useful tool in early stages of this disease, since it is easy to perform and well tolerated by the patients.

  9. Grizzly bear (Ursus arctos horribilis) locomotion: forelimb joint mechanics across speed in the sagittal and frontal planes.

    Science.gov (United States)

    Shine, Catherine L; Robbins, Charles T; Nelson, O Lynne; McGowan, Craig P

    2017-04-01

    The majority of terrestrial locomotion studies have focused on parasagittal motion and paid less attention to forces or movement in the frontal plane. Our previous research has shown that grizzly bears produce higher medial ground reaction forces (lateral pushing from the animal) than would be expected for an upright mammal, suggesting frontal plane movement may be an important aspect of their locomotion. To examine this, we conducted an inverse dynamics analysis in the sagittal and frontal planes, using ground reaction forces and position data from three high-speed cameras of four adult female grizzly bears. Over the speed range collected, the bears used walks, running walks and canters. The scapulohumeral joint, wrist and the limb overall absorb energy (average total net work of the forelimb joints, -0.97 W kg -1 ). The scapulohumeral joint, elbow and total net work of the forelimb joints have negative relationships with speed, resulting in more energy absorbed by the forelimb at higher speeds (running walks and canters). The net joint moment and power curves maintain similar patterns across speed as in previously studied species, suggesting grizzly bears maintain similar joint dynamics to other mammalian quadrupeds. There is no significant relationship with net work and speed at any joint in the frontal plane. The total net work of the forelimb joints in the frontal plane was not significantly different from zero, suggesting that, despite the high medial ground reaction forces, the forelimb acts as a strut in that plane. © 2017. Published by The Company of Biologists Ltd.

  10. Walking Training with Foot Drop Stimulator Controlled by a Tilt Sensor to Improve Walking Outcomes: A Randomized Controlled Pilot Study in Patients with Stroke in Subacute Phase

    Directory of Open Access Journals (Sweden)

    G. Morone

    2012-01-01

    Full Text Available Foot drop is a quite common problem in nervous system disorders. Neuromuscular electrical stimulation (NMES has showed to be an alternative approach to correct foot drop improving walking ability in patients with stroke. In this study, twenty patients with stroke in subacute phase were enrolled and randomly divided in two groups: one group performing the NMES (i.e. Walkaide Group, WG and the Control Group (CG performing conventional neuromotor rehabilitation. Both groups underwent the same amount of treatment time. Significant improvements of walking speed were recorded for WG (% than for CG (%, as well as in terms of locomotion (Functional Ambulation Classification score: . In terms of mobility and force, ameliorations were recorded, even if not significant (Rivermead Mobility Index: ; Manual Muscle Test: . Similar changes between groups were observed for independence in activities of daily living, neurological assessments, and spasticity reduction. These results highlight the potential efficacy for patients affected by a droop foot of a walking training performed with a neurostimulator in subacute phase.

  11. First steps in random walks from tools to applications

    CERN Document Server

    Klafter, J

    2011-01-01

    The name ""random walk"" for a problem of a displacement of a point in a sequence of independent random steps was coined by Karl Pearson in 1905 in a question posed to readers of ""Nature"". The same year, a similar problem was formulated by Albert Einstein in one of his Annus Mirabilis works. Even earlier such a problem was posed by Louis Bachelier in his thesis devoted to the theory of financial speculations in 1900. Nowadays the theory of random walks has proved useful in physics andchemistry (diffusion, reactions, mixing in flows), economics, biology (from animal spread to motion of subcel

  12. Using GPS-derived speed patterns for recognition of transport modes in adults.

    Science.gov (United States)

    Huss, Anke; Beekhuizen, Johan; Kromhout, Hans; Vermeulen, Roel

    2014-10-11

    Identification of active or sedentary modes of transport is of relevance for studies assessing physical activity or addressing exposure assessment. We assessed in a proof-of-principle study if speed as logged by GPSs could be used to identify modes of transport (walking, bicycling, and motorized transport: car, bus or train). 12 persons commuting to work walking, bicycling or with motorized transport carried GPSs for two commutes and recorded their mode of transport. We evaluated seven speed metrics: mean, 95th percentile of speed, standard deviation of the mean, rate-of-change, standardized-rate-of-change, acceleration and deceleration. We assessed which speed metric would best identify the transport mode using discriminant analyses. We applied cross validation and calculated agreement (Cohen's Kappa) between actual and derived modes of transport. Mode of transport was reliably classified whenever a person used a mode of transport for longer than one minute. Best results were observed when using the 95th percentile of speed, acceleration and deceleration (kappa 0.73). When we combined all motorized traffic into one category, kappa increased to 0.95. GPS-measured speed enable the identification of modes of transport. Given the current low costs of GPS devices and the built-in capacity of GPS tracking in most smartphones, the use of such devices in large epidemiological studies may facilitate the assessment of physical activity related to transport modes, or improve exposure assessment using automated travel mode detection.

  13. Walkway Length Determination for Steady State Walking in Young and Older Adults

    Science.gov (United States)

    Macfarlane, Pamela A.; Looney, Marilyn A.

    2008-01-01

    The primary purpose of this study was to determine acceleration (AC) and deceleration (DC) distances that would accommodate young and older adults walking at their preferred and fast speeds. A secondary purpose was to determine the minimal walkway length needed to record six steady state (SS) steps (three full gait cycles) for younger and older…

  14. An online gait generator for quadruped walking using motor primitives

    Directory of Open Access Journals (Sweden)

    Chunlin Zhou

    2016-11-01

    Full Text Available This article presents implementation of an online gait generator on a quadruped robot. Firstly, the design of a quadruped robot is presented. The robot contains four leg modules each of which is constructed by a 2 degrees of freedom (2-DOF five-bar parallel linkage mechanism. Together with other two rotational DOF, the leg module is able to perform 4-DOF movement. The parallel mechanism of the robot allows all the servos attached on the body frame, so that the leg mass is decreased and motor load can be balanced. Secondly, an online gait generator based on dynamic movement primitives for the walking control is presented. Dynamic movement primitives provide an approach to generate periodic trajectories and they can be modulated in real time, which makes the online adjustment of walking gaits possible. This gait controller is tested by the quadruped robot in regulating walking speed, switching between forward\\backward movements and steering. The controller is easy to apply, expand and is quite effective on phase coordination and online trajectory modulation. Results of simulated experiments are presented.

  15. Feasibility and Preliminary Efficacy of Visual Cue Training to Improve Adaptability of Walking after Stroke: Multi-Centre, Single-Blind Randomised Control Pilot Trial

    Science.gov (United States)

    Hollands, Kristen L.; Pelton, Trudy A.; Wimperis, Andrew; Whitham, Diane; Tan, Wei; Jowett, Sue; Sackley, Catherine M.; Wing, Alan M.; Tyson, Sarah F.; Mathias, Jonathan; Hensman, Marianne; van Vliet, Paulette M.

    2015-01-01

    Objectives Given the importance of vision in the control of walking and evidence indicating varied practice of walking improves mobility outcomes, this study sought to examine the feasibility and preliminary efficacy of varied walking practice in response to visual cues, for the rehabilitation of walking following stroke. Design This 3 arm parallel, multi-centre, assessor blind, randomised control trial was conducted within outpatient neurorehabilitation services Participants Community dwelling stroke survivors with walking speed adaptability practice using visual cues are feasible and may improve mobility and balance. Future studies should continue a carefully phased approach using identified methods to improve retention. Trial Registration Clinicaltrials.gov NCT01600391 PMID:26445137

  16. Effects of the Integration of Dynamic Weight Shifting Training Into Treadmill Training on Walking Function of Children with Cerebral Palsy: A Randomized Controlled Study.

    Science.gov (United States)

    Wu, Ming; Kim, Janis; Arora, Pooja; Gaebler-Spira, Deborah J; Zhang, Yunhui

    2017-11-01

    The aim of the study was to determine whether applying an assistance force to the pelvis and legs during treadmill training can improve walking function in children with cerebral palsy. Twenty-three children with cerebral palsy were randomly assigned to the robotic or treadmill only group. For participants who were assigned to the robotic group, a controlled force was applied to the pelvis and legs during treadmill walking. For participants who were assigned to the treadmill only group, manual assistance was provided as needed. Each participant trained 3 times/wk for 6 wks. Outcome measures included walking speed, 6-min walking distance, and clinical assessment of motor function, which were evaluated before, after training, and 8 wks after the end of training, and were compared between two groups. Significant increases in walking speed and 6-min walking distance were observed after robotic training (P = 0.03), but no significant change was observed after treadmill training only. A greater increase in 6-min walking distance was observed after robotic training than that after treadmill only training (P = 0.01). Applying a controlled force to the pelvis and legs, for facilitating weight-shift and leg swing, respectively, during treadmill training may improve walking speed and endurance in children with cerebral palsy. Complete the self-assessment activity and evaluation online at http://www.physiatry.org/JournalCME CME OBJECTIVES: Upon completion of this article, the reader should be able to: (1) discuss the importance of physical activity at the participation level (sports programs) for children with cerebral palsy; (2) contrast the changes in walking ability and endurance for children in GMFCS level I, II and III following sports programs; and (3) identify the impact of higher frequency of sports program attendance over time on walking ability. Advanced ACCREDITATION: The Association of Academic Physiatrists is accredited by the Accreditation Council for Continuing

  17. Gaze shifts and fixations dominate gaze behavior of walking cats

    Science.gov (United States)

    Rivers, Trevor J.; Sirota, Mikhail G.; Guttentag, Andrew I.; Ogorodnikov, Dmitri A.; Shah, Neet A.; Beloozerova, Irina N.

    2014-01-01

    Vision is important for locomotion in complex environments. How it is used to guide stepping is not well understood. We used an eye search coil technique combined with an active marker-based head recording system to characterize the gaze patterns of cats walking over terrains of different complexity: (1) on a flat surface in the dark when no visual information was available, (2) on the flat surface in light when visual information was available but not required, (3) along the highly structured but regular and familiar surface of a horizontal ladder, a task for which visual guidance of stepping was required, and (4) along a pathway cluttered with many small stones, an irregularly structured surface that was new each day. Three cats walked in a 2.5 m corridor, and 958 passages were analyzed. Gaze activity during the time when the gaze was directed at the walking surface was subdivided into four behaviors based on speed of gaze movement along the surface: gaze shift (fast movement), gaze fixation (no movement), constant gaze (movement at the body’s speed), and slow gaze (the remainder). We found that gaze shifts and fixations dominated the cats’ gaze behavior during all locomotor tasks, jointly occupying 62–84% of the time when the gaze was directed at the surface. As visual complexity of the surface and demand on visual guidance of stepping increased, cats spent more time looking at the surface, looked closer to them, and switched between gaze behaviors more often. During both visually guided locomotor tasks, gaze behaviors predominantly followed a repeated cycle of forward gaze shift followed by fixation. We call this behavior “gaze stepping”. Each gaze shift took gaze to a site approximately 75–80 cm in front of the cat, which the cat reached in 0.7–1.2 s and 1.1–1.6 strides. Constant gaze occupied only 5–21% of the time cats spent looking at the walking surface. PMID:24973656

  18. Aeroacoustic modelling of low-speed flows

    Energy Technology Data Exchange (ETDEWEB)

    Wen Zhong Shen; Noerkaer Soerensen, Jens

    1998-08-01

    A new numerical algorithm for acoustic noise generation is developed. The approach involves two steps comprising an incompressible flow part and inviscid acoustic part. The acoustic part can be started at any time of the incompressible computation. The formulation can be applied both for isentropic flows and non-isentropic flows. The model is validated for the cases of an isentropic pulsating sphere and non-isentropic flows past a circular cylinder and a NACA 0015 airfoil. The computations show that the generated acoustic frequencies have the form 1/m of the basic frequency of incompressible flow. (au) 15 refs.

  19. Walking and talking: an investigation of cognitive-motor dual tasking in multiple sclerosis.

    Science.gov (United States)

    Hamilton, F; Rochester, L; Paul, L; Rafferty, D; O'Leary, C P; Evans, J J

    2009-10-01

    Deficits in motor functioning, including walking, and in cognitive functions, including attention, are known to be prevalent in multiple sclerosis (MS), though little attention has been paid to how impairments in these areas of functioning interact. This study investigated the effects of performing a concurrent cognitive task when walking in people with MS. Level of task demand was manipulated to investigate whether this affected level of dual-task decrement. Eighteen participants with MS and 18 healthy controls took part. Participants completed walking and cognitive tasks under single- and dual-task conditions. Compared to healthy controls, MS participants showed greater decrements in performance under dual-task conditions in cognitive task performance, walking speed and swing time variability. In the MS group, the degree of decrement under dual-task conditions was related to levels of fatigue, a measure of general cognitive functioning and self-reported everyday cognitive errors, but not to measures of disease severity or duration. Difficulty with walking and talking in MS may be a result of a divided attention deficit or of overloading of the working memory system, and further investigation is needed. We suggest that difficulty with walking and talking in MS may lead to practical problems in everyday life, including potentially increasing the risk of falls. Clinical tools to assess cognitive-motor dual-tasking ability are needed.

  20. KidsWalk-to-School: A Guide To Promote Walking to School.

    Science.gov (United States)

    Center for Chronic Disease Prevention and Health Promotion (DHHS/CDC), Atlanta, GA.

    This guide encourages people to create safe walking and biking routes to school, promoting four issues: physically active travel, safe and walkable routes to school, crime prevention, and health environments. The chapters include: "KidsWalk-to-School: A Guide to Promote Walking to School" (Is there a solution? Why is walking to school important?…

  1. Random Walk Model for the Growth of Monolayer in Dip Pen Nanolithography

    International Nuclear Information System (INIS)

    Kim, H; Ha, S; Jang, J

    2013-01-01

    By using a simple random-walk model, we simulate the growth of a self-assembled monolayer (SAM) pattern generated in dip pen nanolithography (DPN). In this model, the SAM pattern grows mainly via the serial pushing of molecules deposited from the tip. We examine various SAM patterns, such as lines, crosses, and letters by changing the tip scan speed.

  2. Limb swinging in elephants and giraffes and implications for the reconstruction of limb movements and speed estimates in large dinosaurs

    Directory of Open Access Journals (Sweden)

    A. Christian

    1999-01-01

    Full Text Available Speeds of walking dinosaurs that left fossil trackways have been estimated using the stride length times natural pendulum frequency of the limbs. In a detailed analysis of limb movements in walking Asian elephants and giraffes, however, distinct differences between actual limb movements and the predicted limb movements using only gravity as driving force were observed. Additionally, stride frequency was highly variable. Swing time was fairly constant, but especially at high walking speeds, much shorter than half the natural pendulum period. An analysis of hip and shoulder movements during walking showed that limb swinging was influenced by accelerations of hip and shoulder joints especially at high walking speeds. These results suggest an economical fast walking mechanism that could have been utilised by large dinosaurs to increase maximum speeds of locomotion. These findings throw new light on the dynamics of large vertebrates and can be used to improve speed estimates in large dinosaurs. Geschwindigkeiten gehender Dinosaurier, die fossile Fährten hinterlassen haben, wurden als Produkt aus Schrittlänge und natürlicher Pendelfrequenz der Beine abgeschätzt. Eine detaillierte Analyse der Beinbewegungen von gehenden Asiatischen Elefanten und Giraffen offenbarte allerdings klare Unterschiede zwischen den tatsächlichen Extremitätenbewegungen und den Bewegungen, die zu erwarten wären, wenn die Gravitation die einzige treibende Kraft darstellte. Zudem erwies sich die Schrittfrequenz als hochgradig variabel. Die Schwingzeit der Gliedmaßen war recht konstant, aber besonders bei hohen Gehgeschwindigkeiten viel kürzer als die halbe natürliche Pendelperiode der Extremitäten. Eine Analyse der Bewegungen der Hüft- und Schultergelenke während des Gehens zeigte, daß das Schwingen der Gliedmaßen durch Beschleunigungen dieser Gelenke beeinflußt wurde, insbesondere bei hohen Gehgeschwindigkeiten. Die Resultate legen einen ökonomischen Mechanismus

  3. Wire-mesh sensor, ultrasound and high-speed videometry applied for the characterization of horizontal gas-liquid slug flow

    Science.gov (United States)

    Ofuchi, C. Y.; Morales, R. E. M.; Arruda, L. V. R.; Neves, F., Jr.; Dorini, L.; do Amaral, C. E. F.; da Silva, M. J.

    2012-03-01

    Gas-liquid flows occur in a broad range of industrial applications, for instance in chemical, petrochemical and nuclear industries. Correct understating of flow behavior is crucial for safe and optimized operation of equipments and processes. Thus, measurement of gas-liquid flow plays an important role. Many techniques have been proposed and applied to analyze two-phase flows so far. In this experimental research, data from a wire-mesh sensor, an ultrasound technique and high-speed camera are used to study two-phase slug flows in horizontal pipes. The experiments were performed in an experimental two-phase flow loop which comprises a horizontal acrylic pipe of 26 mm internal diameter and 9 m length. Water and air were used to produce the two-phase flow and their flow rates are separately controlled to produce different flow conditions. As a parameter of choice, translational velocity of air bubbles was determined by each of the techniques and comparatively evaluated along with a mechanistic flow model. Results obtained show good agreement among all techniques. The visualization of flow obtained by the different techniques is also presented.

  4. Varied overground walking-task practice versus body-weight-supported treadmill training in ambulatory adults within one year of stroke: a randomized controlled trial protocol

    Directory of Open Access Journals (Sweden)

    DePaul Vincent G

    2011-10-01

    Full Text Available Abstract Background Although task-oriented training has been shown to improve walking outcomes after stroke, it is not yet clear whether one task-oriented approach is superior to another. The purpose of this study is to compare the effectiveness of the Motor Learning Walking Program (MLWP, a varied overground walking task program consistent with key motor learning principles, to body-weight-supported treadmill training (BWSTT in community-dwelling, ambulatory, adults within 1 year of stroke. Methods/Design A parallel, randomized controlled trial with stratification by baseline gait speed will be conducted. Allocation will be controlled by a central randomization service and participants will be allocated to the two active intervention groups (1:1 using a permuted block randomization process. Seventy participants will be assigned to one of two 15-session training programs. In MLWP, one physiotherapist will supervise practice of various overground walking tasks. Instructions, feedback, and guidance will be provided in a manner that facilitates self-evaluation and problem solving. In BWSTT, training will emphasize repetition of the normal gait cycle while supported over a treadmill, assisted by up to three physiotherapists. Outcomes will be assessed by a blinded assessor at baseline, post-intervention and at 2-month follow-up. The primary outcome will be post-intervention comfortable gait speed. Secondary outcomes include fast gait speed, walking endurance, balance self-efficacy, participation in community mobility, health-related quality of life, and goal attainment. Groups will be compared using analysis of covariance with baseline gait speed strata as the single covariate. Intention-to-treat analysis will be used. Discussion In order to direct clinicians, patients, and other health decision-makers, there is a need for a head-to-head comparison of different approaches to active, task-related walking training after stroke. We hypothesize that

  5. Varied overground walking-task practice versus body-weight-supported treadmill training in ambulatory adults within one year of stroke: a randomized controlled trial protocol.

    Science.gov (United States)

    DePaul, Vincent G; Wishart, Laurie R; Richardson, Julie; Lee, Timothy D; Thabane, Lehana

    2011-10-21

    Although task-oriented training has been shown to improve walking outcomes after stroke, it is not yet clear whether one task-oriented approach is superior to another. The purpose of this study is to compare the effectiveness of the Motor Learning Walking Program (MLWP), a varied overground walking task program consistent with key motor learning principles, to body-weight-supported treadmill training (BWSTT) in community-dwelling, ambulatory, adults within 1 year of stroke. A parallel, randomized controlled trial with stratification by baseline gait speed will be conducted. Allocation will be controlled by a central randomization service and participants will be allocated to the two active intervention groups (1:1) using a permuted block randomization process. Seventy participants will be assigned to one of two 15-session training programs. In MLWP, one physiotherapist will supervise practice of various overground walking tasks. Instructions, feedback, and guidance will be provided in a manner that facilitates self-evaluation and problem solving. In BWSTT, training will emphasize repetition of the normal gait cycle while supported over a treadmill, assisted by up to three physiotherapists. Outcomes will be assessed by a blinded assessor at baseline, post-intervention and at 2-month follow-up. The primary outcome will be post-intervention comfortable gait speed. Secondary outcomes include fast gait speed, walking endurance, balance self-efficacy, participation in community mobility, health-related quality of life, and goal attainment. Groups will be compared using analysis of covariance with baseline gait speed strata as the single covariate. Intention-to-treat analysis will be used. In order to direct clinicians, patients, and other health decision-makers, there is a need for a head-to-head comparison of different approaches to active, task-related walking training after stroke. We hypothesize that outcomes will be optimized through the application of a task

  6. Complementarity and quantum walks

    International Nuclear Information System (INIS)

    Kendon, Viv; Sanders, Barry C.

    2005-01-01

    We show that quantum walks interpolate between a coherent 'wave walk' and a random walk depending on how strongly the walker's coin state is measured; i.e., the quantum walk exhibits the quintessentially quantum property of complementarity, which is manifested as a tradeoff between knowledge of which path the walker takes vs the sharpness of the interference pattern. A physical implementation of a quantum walk (the quantum quincunx) should thus have an identifiable walker and the capacity to demonstrate the interpolation between wave walk and random walk depending on the strength of measurement

  7. Measurement of liquid film flow on nuclear rod bundle in micro-scale by using very high speed camera system

    Science.gov (United States)

    Pham, Son; Kawara, Zensaku; Yokomine, Takehiko; Kunugi, Tomoaki

    2012-11-01

    Playing important roles in the mass and heat transfer as well as the safety of boiling water reactor, the liquid film flow on nuclear fuel rods has been studied by different measurement techniques such as ultrasonic transmission, conductivity probe, etc. Obtained experimental data of this annular two-phase flow, however, are still not enough to construct the physical model for critical heat flux analysis especially at the micro-scale. Remain problems are mainly caused by complicated geometry of fuel rod bundles, high velocity and very unstable interface behavior of liquid and gas flow. To get over these difficulties, a new approach using a very high speed digital camera system has been introduced in this work. The test section simulating a 3×3 rectangular rod bundle was made of acrylic to allow a full optical observation of the camera. Image data were taken through Cassegrain optical system to maintain the spatiotemporal resolution up to 7 μm and 20 μs. The results included not only the real-time visual information of flow patterns, but also the quantitative data such as liquid film thickness, the droplets' size and speed distributions, and the tilt angle of wavy surfaces. These databases could contribute to the development of a new model for the annular two-phase flow. Partly supported by the Global Center of Excellence (G-COE) program (J-051) of MEXT, Japan.

  8. Physiological aspect walking and Nordic walking as adequate kinetic activities.

    OpenAIRE

    BENEŠ, Václav

    2010-01-01

    This bachelor thesis on the topic of The Physiological Aspect of Walking and Nordic Walking as an adequate physical activity focuses on chosen physiological changes of an organism during a five-month training cycle. In the theoretical part I describe the physiological changes of organism during a regularly repeated strain, and also the technique of walking, Nordic walking and health benefits of these activities are defined here. The research part of the thesis describes the measurement method...

  9. Walking Beliefs in Women With Fibromyalgia: Clinical Profile and Impact on Walking Behavior.

    Science.gov (United States)

    Peñacoba, Cecilia; Pastor, María-Ángeles; López-Roig, Sofía; Velasco, Lilian; Lledo, Ana

    2017-10-01

    Although exercise is essential for the treatment of fibromyalgia, adherence is low. Walking, as a form of physical exercise, has significant advantages. The aim of this article is to describe, in 920 women with fibromyalgia, the prevalence of certain walking beliefs and analyze their effects both on the walking behavior itself and on the associated symptoms when patients walk according to a clinically recommended way. The results highlight the high prevalence of beliefs related to pain and fatigue as walking-inhibitors. In the whole sample, beliefs are associated with an increased perception that comorbidity prevents walking, and with higher levels of pain and fatigue. In patients who walk regularly, beliefs are only associated with the perception that comorbidity prevents them from walking. It is necessary to promote walking according to the established way (including breaks to prevent fatigue) and to implement interventions on the most prevalent beliefs that inhibit walking.

  10. Effects of Nordic walking and walking on spatiotemporal gait parameters and ground reaction force.

    Science.gov (United States)

    Park, Seung Kyu; Yang, Dae Jung; Kang, Yang Hun; Kim, Je Ho; Uhm, Yo Han; Lee, Yong Seon

    2015-09-01

    [Purpose] The purpose of this study was to investigate the effects of Nordic walking and walking on spatiotemporal gait parameters and ground reaction force. [Subjects] The subjects of this study were 30 young adult males, who were divided into a Nordic walking group of 15 subjects and a walking group of 15 subjects. [Methods] To analyze the spatiotemporal parameters and ground reaction force during walking in the two groups, the six-camera Vicon MX motion analysis system was used. The subjects were asked to walk 12 meters using the more comfortable walking method for them between Nordic walking and walking. After they walked 12 meters more than 10 times, their most natural walking patterns were chosen three times and analyzed. To determine the pole for Nordic walking, each subject's height was multiplied by 0.68. We then measured the spatiotemporal gait parameters and ground reaction force. [Results] Compared with the walking group, the Nordic walking group showed an increase in cadence, stride length, and step length, and a decrease in stride time, step time, and vertical ground reaction force. [Conclusion] The results of this study indicate that Nordic walking increases the stride and can be considered as helping patients with diseases affecting their gait. This demonstrates that Nordic walking is more effective in improving functional capabilities by promoting effective energy use and reducing the lower limb load, because the weight of the upper and lower limbs is dispersed during Nordic walking.

  11. Time and Effort Required by Persons with Spinal Cord Injury to Learn to Use a Powered Exoskeleton for Assisted Walking.

    Science.gov (United States)

    Kozlowski, Allan J; Bryce, Thomas N; Dijkers, Marcel P

    2015-01-01

    Powered exoskeletons have been demonstrated as being safe for persons with spinal cord injury (SCI), but little is known about how users learn to manage these devices. To quantify the time and effort required by persons with SCI to learn to use an exoskeleton for assisted walking. A convenience sample was enrolled to learn to use the first-generation Ekso powered exoskeleton to walk. Participants were given up to 24 weekly sessions of instruction. Data were collected on assistance level, walking distance and speed, heart rate, perceived exertion, and adverse events. Time and effort was quantified by the number of sessions required for participants to stand up, walk for 30 minutes, and sit down, initially with minimal and subsequently with contact guard assistance. Of 22 enrolled participants, 9 screen-failed, and 7 had complete data. All of these 7 were men; 2 had tetraplegia and 5 had motor-complete injuries. Of these, 5 participants could stand, walk, and sit with contact guard or close supervision assistance, and 2 required minimal to moderate assistance. Walk times ranged from 28 to 94 minutes with average speeds ranging from 0.11 to 0.21 m/s. For all participants, heart rate changes and reported perceived exertion were consistent with light to moderate exercise. This study provides preliminary evidence that persons with neurological weakness due to SCI can learn to walk with little or no assistance and light to somewhat hard perceived exertion using a powered exoskeleton. Persons with different severities of injury, including those with motor complete C7 tetraplegia and motor incomplete C4 tetraplegia, may be able to learn to use this device.

  12. Rollover footwear affects lower limb biomechanics during walking.

    Science.gov (United States)

    Forghany, Saeed; Nester, Christopher J; Richards, Barry; Hatton, Anna Lucy; Liu, Anmin

    2014-01-01

    To investigate the effect of rollover footwear on walking speed, metabolic cost of gait, lower limb kinematics, kinetics, EMG muscle activity and plantar pressure. Twenty subjects (mean age-33.1 years, height-1.71 m, body mass-68.9 kg, BMI 23.6, 12 male) walked in: a flat control footwear; a flat control footwear weighted to match the mass of a rollover shoe; a rollover shoe; MBT footwear. Data relating to metabolic energy and temporal aspects of gait were collected during 6 min of continuous walking, all other data in a gait laboratory. The rollover footwear moved the contact point under the shoe anteriorly during early stance, increasing midfoot pressures. This changed internal ankle dorsiflexion moments to plantarflexion moments earlier, reducing ankle plantarflexion and tibialis anterior activity after initial contact, and increasing calf EMG activity. In mid stance the rollover footwear resulted in a more dorsiflexed ankle position but less ankle movement. During propulsion, the rollover footwear reduced peak ankle dorsiflexion, peak internal plantarflexor ankle moments and the range of ankle plantarflexion. Vertical ground reaction loading rates were increased by the rollover footwear. There were no effects on temporal or energy cost of gait and no effect of elevated shoe weight. Investigating all proposed effects of this footwear concurrently has enabled a more valid investigation of how the footwear effects are interrelated. There were concurrent changes in several aspects of lower limb function, with greatest effects at the foot and ankle, but no change in the metabolic cost of walking. Copyright © 2013 Elsevier B.V. All rights reserved.

  13. Walking drawings and walking ability in children with cerebral palsy.

    Science.gov (United States)

    Chong, Jimmy; Mackey, Anna H; Stott, N Susan; Broadbent, Elizabeth

    2013-06-01

    To investigate whether drawings of the self walking by children with cerebral palsy (CP) were associated with walking ability and illness perceptions. This was an exploratory study in 52 children with CP (M:F = 28:24), mean age 11.1 years (range 5-18), who were attending tertiary level outpatient clinics. Children were asked to draw a picture of themselves walking. Drawing size and content was used to investigate associations with clinical walk tests and children's own perceptions of their CP assessed using a CP version of the Brief Illness Perception Questionnaire. Larger drawings of the self were associated with less distance traveled, higher emotional responses to CP, and lower perceptions of pain or discomfort, independent of age. A larger self-to-overall drawing height ratio was related to walking less distance. Drawings of the self confined within buildings and the absence of other figures were also associated with reduced walking ability. Drawing size and content can reflect walking ability, as well as symptom perceptions and distress. Drawings may be useful for clinicians to use with children with cerebral palsy to aid discussion about their condition. PsycINFO Database Record (c) 2013 APA, all rights reserved.

  14. Outflow of traffic from the national capital Kuala Lumpur to the north, south and east coast highways using flow, speed and density relationships

    Institute of Scientific and Technical Information of China (English)

    Nik Hashim Nik Mustapha; Nik Nur Wahidah Nik Hashim

    2016-01-01

    The functional relationships between flow (veh/km), density (veh/h) and speed (km/h) in traffic congestion have a long history of research. However, their findings and techniques persist to be relevant to this day. The analysis is pertinent, particularly in finding the best fit for the three major highways in Malaysia, namely the KL-Karak Highway, KL-Seremban Highway and KL-Ipoh Highway. The trans-logarithm function of density—speed model was compared to the classical models of Greenshields, Greenberg, Underwood and Drake et al. using data provided by the Transport Statistics Malaysia 2014. The results of regression analysis revealed that the Greenshields and Greenberg models were statistically signifi-cant. The trans-logarithm function was also tested and the results were nonetheless without exception. Its usefulness in addition to statistical significance related to the derived economic concepts of maximum speed and the related number of vehicles, flow and density and the limits of free speed were relevant in comparing the individual levels of traffic congestion between highways. For instance, KL-Karak Highway was least congested compared to KL-Seremban Highway and KL-Ipoh Highway. Their maximum speeds, based on three lanes carriage capacity of one direction, were 33.4 km/h for KL-Karak, 15.9 km/h for KL-Seremban, and 21.1 km/h for KL-Ipoh. Their corresponding flows were approxi-mated at 1080.9 veh/h, 1555.4 veh/h, and 1436.6 veh/h.

  15. Effect of welding current and speed on occurrence of humping bead in high-speed GMAW

    Institute of Scientific and Technical Information of China (English)

    Chen Ji; Wu Chuansong

    2009-01-01

    The developed mathematical model of humping formation mechanism in high-speed gas metal arc welding (GMAW) is used to analyze the effects of welding current and welding speed on the occurrence of humping bead. It considers both the momentum and heat content of backward flowing molten jet inside weld pool. Three-dimensional geometry of weld pool, the spacing between two adjacent humps and hump height along humping weld bead are calculated under different levels of welding current and welding speed. It shows that wire feeding rate, power intensity and the moment of backward flowing molten jet are the major factors on humping bead formation.

  16. Turning is an important marker of balance confidence and walking limitation in persons with multiple sclerosis.

    Directory of Open Access Journals (Sweden)

    Gautam Adusumilli

    Full Text Available The standard functional tool for gait assessment in multiple sclerosis (MS clinical trials has been the 25-Foot Timed Walk Test, a measure of gait speed. Straight-line gait assessment may not reflect adequately upon balance and coordination. Walking tests with turns may add additional information towards understanding gait and balance status, and be more reflective of ambulation in the community. Understanding the impact of turn parameters on patient-reported outcomes of balance and walking would help MS clinicians better formulate treatment plans for persons with gait limitations. In this study, ninety-one persons with MS (Expanded Disability Status Score; EDSS, range: 0-6.5 were enrolled in an initial cross-sectional study. Twenty-four subjects (EDSS, range:1.0-6.0 completed a follow-up visit an average of 12 months later. Spatiotemporal gait analysis was collected at both visits using APDM Opal wireless body-worn sensors while performing the Timed-Up-and-Go (TUG and 6-Minute Walk Test (6MWT. For both cross-sectional and longitudinal data, regression analyses determined the impact on the addition of turning parameters to stride velocity (SV, in the prediction of self-reported balance confidence (Activities-Specific Balance Confidence Scale (ABC and walking limitation (12-item Multiple Sclerosis Walking Scale (MSWS-12. The addition of 6MWT peak turn velocity (PTV to 6MWT SV increased the predictive power of the 6MWT for the ABC from 20% to 33%, and increased the predictive power from 28% to 41% for the MSWS-12. TUG PTV added to TUG SV also strengthened the relationship of the TUG for the ABC from 19% to 28%, and 27% to 36% for the MSWS-12. For those with 1 year follow-up, percent change in turn number of steps (TNS%Δ during the 6MWT added to 6MWT SV%Δ improved the modeling of ABC%Δ from 24% to 33%. 6MWT PTV%Δ added to 6MWT SV%Δ increased the predictive power of MSWS-12%Δ from 8% to 27%. Conclusively, turn parameters improved modeling of

  17. Walking performance: correlation between energy cost of walking and walking participation. new statistical approach concerning outcome measurement.

    Directory of Open Access Journals (Sweden)

    Marco Franceschini

    Full Text Available Walking ability, though important for quality of life and participation in social and economic activities, can be adversely affected by neurological disorders, such as Spinal Cord Injury, Stroke, Multiple Sclerosis or Traumatic Brain Injury. The aim of this study is to evaluate if the energy cost of walking (CW, in a mixed group of chronic patients with neurological diseases almost 6 months after discharge from rehabilitation wards, can predict the walking performance and any walking restriction on community activities, as indicated by Walking Handicap Scale categories (WHS. One hundred and seven subjects were included in the study, 31 suffering from Stroke, 26 from Spinal Cord Injury and 50 from Multiple Sclerosis. The multivariable binary logistical regression analysis has produced a statistical model with good characteristics of fit and good predictability. This model generated a cut-off value of.40, which enabled us to classify correctly the cases with a percentage of 85.0%. Our research reveal that, in our subjects, CW is the only predictor of the walking performance of in the community, to be compared with the score of WHS. We have been also identifying a cut-off value of CW cost, which makes a distinction between those who can walk in the community and those who cannot do it. In particular, these values could be used to predict the ability to walk in the community when discharged from the rehabilitation units, and to adjust the rehabilitative treatment to improve the performance.

  18. Partial body weight support treadmill training speed influences paretic and non-paretic leg muscle activation, stride characteristics, and ratings of perceived exertion during acute stroke rehabilitation.

    Science.gov (United States)

    Burnfield, Judith M; Buster, Thad W; Goldman, Amy J; Corbridge, Laura M; Harper-Hanigan, Kellee

    2016-06-01

    Intensive task-specific training is promoted as one approach for facilitating neural plastic brain changes and associated motor behavior gains following neurologic injury. Partial body weight support treadmill training (PBWSTT), is one task-specific approach frequently used to improve walking during the acute period of stroke recovery (training parameters and physiologic demands during this early recovery phase. To examine the impact of four walking speeds on stride characteristics, lower extremity muscle demands (both paretic and non-paretic), Borg ratings of perceived exertion (RPE), and blood pressure. A prospective, repeated measures design was used. Ten inpatients post unilateral stroke participated. Following three familiarization sessions, participants engaged in PBWSTT at four predetermined speeds (0.5, 1.0, 1.5 and 2.0mph) while bilateral electromyographic and stride characteristic data were recorded. RPE was evaluated immediately following each trial. Stride length, cadence, and paretic single limb support increased with faster walking speeds (p⩽0.001), while non-paretic single limb support remained nearly constant. Faster walking resulted in greater peak and mean muscle activation in the paretic medial hamstrings, vastus lateralis and medial gastrocnemius, and non-paretic medial gastrocnemius (p⩽0.001). RPE also was greatest at the fastest compared to two slowest speeds (ptraining at the slowest speeds. Copyright © 2016 Elsevier B.V. All rights reserved.

  19. Effects of Three Types of Exercise Interventions on Healthy Old Adults' Gait Speed : A Systematic Review and Meta-Analysis

    NARCIS (Netherlands)

    Hortobagyi, Tibor; Lesinski, Melanie; Gäbler, Martijn; VanSwearingen, Jessie M.; Malatesta, Davide; Granacher, Urs

    2015-01-01

    Background Habitual walking speed predicts many clinical conditions later in life, but it declines with age. However, which particular exercise intervention can minimize the age-related gait speed loss is unclear. Purpose Our objective was to determine the effects of strength, power, coordination,

  20. Nordic walking versus walking without poles for rehabilitation with cardiovascular disease: Randomized controlled trial.

    Science.gov (United States)

    Girold, Sébastien; Rousseau, Jérome; Le Gal, Magalie; Coudeyre, Emmanuel; Le Henaff, Jacqueline

    2017-07-01

    With Nordic walking, or walking with poles, one can travel a greater distance and at a higher rate than with walking without poles, but whether the activity is beneficial for patients with cardiovascular disease is unknown. This randomized controlled trial was undertaken to determine whether Nordic walking was more effective than walking without poles on walk distance to support rehabilitation training for patients with acute coronary syndrome (ACS) and peripheral arterial occlusive disease (PAOD). Patients were recruited in a private specialized rehabilitation centre for cardiovascular diseases. The entire protocol, including patient recruitment, took place over 2 months, from September to October 2013. We divided patients into 2 groups: Nordic Walking Group (NWG, n=21) and Walking Group without poles (WG, n=21). All patients followed the same program over 4 weeks, except for the walk performed with or without poles. The main outcome was walk distance on the 6-min walk test. Secondary outcomes were maximum heart rate during exercise and walk distance and power output on a treadmill stress test. We included 42 patients (35 men; mean age 57.2±11 years and BMI 26.5±4.5kg/m 2 ). At the end of the training period, both groups showed improved walk distance on the 6-min walk test and treatment stress test as well as power on the treadmill stress test (PNordic walking training appeared more efficient than training without poles for increasing walk distance on the 6-min walk test for patients with ACS and PAOD. Copyright © 2017. Published by Elsevier Masson SAS.