WorldWideScience

Sample records for wakefield accelerator driven

  1. Proton-driven Plasma Wakefield Acceleration

    CERN Multimedia

    CERN. Geneva

    2012-01-01

    The construction of ever larger and costlier accelerator facilities has a limited future, and new technologies will be needed to push the energy frontier. Plasma wakefield acceleration is a rapidly developing field and is a promising candidate technology for future high energy colliders. We focus on the recently proposed idea of proton-driven plasma wakefield acceleration and describe the current status and plans for this approach.

  2. Laser-driven wakefield electron acceleration and associated radiation sources

    International Nuclear Information System (INIS)

    Davoine, X.

    2009-10-01

    The first part of this research thesis introduces the basic concepts needed for the understanding of the laser-driven wakefield acceleration. It describes the properties of the used laser beams and plasmas, presents some notions about laser-plasma interactions for a better understanding of the physics of laser-driven acceleration. The second part deals with the numerical modelling and the presentation of simulation tools needed for the investigation of laser-induced wakefield acceleration. The last part deals with the optical control of the injection, a technique analogous to the impulsion collision scheme

  3. AWAKE, The Advanced Proton Driven Plasma Wakefield Acceleration Experiment at CERN

    CERN Document Server

    Gschwendtner, E.; Amorim, L.; Apsimon, R.; Assmann, R.; Bachmann, A.M.; Batsch, F.; Bauche, J.; Berglyd Olsen, V.K.; Bernardini, M.; Bingham, R.; Biskup, B.; Bohl, T.; Bracco, C.; Burrows, P.N.; Burt, G.; Buttenschon, B.; Butterworth, A.; Caldwell, A.; Cascella, M.; Chevallay, E.; Cipiccia, S.; Damerau, H.; Deacon, L.; Dirksen, P.; Doebert, S.; Dorda, U.; Farmer, J.; Fedosseev, V.; Feldbaumer, E.; Fiorito, R.; Fonseca, R.; Friebel, F.; Gorn, A.A.; Grulke, O.; Hansen, J.; Hessler, C.; Hofle, W.; Holloway, J.; Huther, M.; Jaroszynski, D.; Jensen, L.; Jolly, S.; Joulaei, A.; Kasim, M.; Keeble, F.; Li, Y.; Liu, S.; Lopes, N.; Lotov, K.V.; Mandry, S.; Martorelli, R.; Martyanov, M.; Mazzoni, S.; Mete, O.; Minakov, V.A.; Mitchell, J.; Moody, J.; Muggli, P.; Najmudin, Z.; Norreys, P.; Oz, E.; Pardons, A.; Pepitone, K.; Petrenko, A.; Plyushchev, G.; Pukhov, A.; Rieger, K.; Ruhl, H.; Salveter, F.; Savard, N.; Schmidt, J.; Seryi, A.; Shaposhnikova, E.; Sheng, Z.M.; Sherwood, P.; Silva, L.; Soby, L.; Sosedkin, A.P.; Spitsyn, R.I.; Trines, R.; Tuev, P.V.; Turner, M.; Verzilov, V.; Vieira, J.; Vincke, H.; Wei, Y.; Welsch, C.P.; Wing, M.; Xia, G.; Zhang, H.

    2016-01-01

    The Advanced Proton Driven Plasma Wakefield Acceleration Experiment (AWAKE) aims at studying plasma wakefield generation and electron acceleration driven by proton bunches. It is a proof-of-principle R&D experiment at CERN and the world's first proton driven plasma wakefield acceleration experiment. The AWAKE experiment will be installed in the former CNGS facility and uses the 400 GeV/c proton beam bunches from the SPS. The first experiments will focus on the self-modulation instability of the long (rms ~12 cm) proton bunch in the plasma. These experiments are planned for the end of 2016. Later, in 2017/2018, low energy (~15 MeV) electrons will be externally injected to sample the wakefields and be accelerated beyond 1 GeV. The main goals of the experiment will be summarized. A summary of the AWAKE design and construction status will be presented.

  4. A Proton-Driven Plasma Wakefield Acceleration experiment at CERN

    CERN Multimedia

    The AWAKE Collaboration has been formed in order to demonstrate protondriven plasma wakefield acceleration for the first time. This technology could lead to future colliders of high energy but of a much reduced length compared to proposed linear accelerators. The SPS proton beam in the CNGS facility will be injected into a 10m plasma cell where the long proton bunches will be modulated into significantly shorter micro-bunches. These micro-bunches will then initiate a strong wakefield in the plasma with peak fields above 1 GV/m that will be harnessed to accelerate a bunch of electrons from about 20MeV to the GeV scale within a few meters. The experimental program is based on detailed numerical simulations of beam and plasma interactions. The main accelerator components, the experimental area and infrastructure required as well as the plasma cell and the diagnostic equipment are discussed in detail. First protons to the experiment are expected at the end of 2016 and this will be followed by an initial 3–4 yea...

  5. An $ep$ collider based on proton-driven plasma wakefield acceleration

    CERN Document Server

    Wing, M.; Mete, O.; Aimidula, A.; Welsch, C.; Chattopadhyay, S.; Mandry, S.

    2014-01-01

    Recent simulations have shown that a high-energy proton bunch can excite strong plasma wakefields and accelerate a bunch of electrons to the energy frontier in a single stage of acceleration. This scheme could lead to a future $ep$ collider using the LHC for the proton beam and a compact electron accelerator of length 170 m, producing electrons of energy up to 100 GeV. The parameters of such a collider are discussed as well as conceptual layouts within the CERN accelerator complex. The physics of plasma wakefield acceleration will also be introduced, with the AWAKE experiment, a proof of principle demonstration of proton-driven plasma wakefield acceleration, briefly reviewed, as well as the physics possibilities of such an $ep$ collider.

  6. Dynamics of electron acceleration in laser-driven wakefields. Acceleration limits and asymmetric plasma waves

    Energy Technology Data Exchange (ETDEWEB)

    Popp, Antonia

    2011-12-16

    The experiments presented in this thesis study several aspects of electron acceleration in a laser-driven plasma wave. High-intensity lasers can efficiently drive a plasma wave that sustains electric fields on the order of 100 GV/m. Electrons that are trapped in this plasma wave can be accelerated to GeV-scale energies. As the accelerating fields in this scheme are 3-4 orders of magnitude higher than in conventional radio-frequency accelerators, the necessary acceleration distance can be reduced by the same factor, turning laser-wakefield acceleration (LWFA) into a promising compact, and potentially cheaper, alternative. However, laser-accelerated electron bunches have not yet reached the parameter standards of conventional accelerators. This work will help to gain better insight into the acceleration process and to optimize the electron bunch properties. The 25 fs, 1.8 J-pulses of the ATLAS laser at the Max-Planck-Institute of Quantum Optics were focused into a steady-state flow gas cell. This very reproducible and turbulence-free gas target allows for stable acceleration of electron bunches. Thus the sensitivity of electron parameters to subtle changes of the experimental setup could be determined with meaningful statistics. At optimized experimental parameters, electron bunches of {approx}50 pC total charge were accelerated to energies up to 450 MeV with a divergence of {approx}2 mrad FWHM. As, in a new design of the gas cell, its length can be varied from 2 to 14 mm, the electron bunch energy could be evaluated after different acceleration distances, at two different electron densities. From this evolution important acceleration parameters could be extracted. At an electron density of 6.43. 10{sup 18} cm{sup -3} the maximum electric field strength in the plasma wave was determined to be {approx}160 GV/m. The length after which the relativistic electrons outrun the accelerating phase of the electric field and are decelerated again, the so-called dephasing length

  7. Dynamics of electron acceleration in laser-driven wakefields. Acceleration limits and asymmetric plasma waves

    International Nuclear Information System (INIS)

    Popp, Antonia

    2011-01-01

    The experiments presented in this thesis study several aspects of electron acceleration in a laser-driven plasma wave. High-intensity lasers can efficiently drive a plasma wave that sustains electric fields on the order of 100 GV/m. Electrons that are trapped in this plasma wave can be accelerated to GeV-scale energies. As the accelerating fields in this scheme are 3-4 orders of magnitude higher than in conventional radio-frequency accelerators, the necessary acceleration distance can be reduced by the same factor, turning laser-wakefield acceleration (LWFA) into a promising compact, and potentially cheaper, alternative. However, laser-accelerated electron bunches have not yet reached the parameter standards of conventional accelerators. This work will help to gain better insight into the acceleration process and to optimize the electron bunch properties. The 25 fs, 1.8 J-pulses of the ATLAS laser at the Max-Planck-Institute of Quantum Optics were focused into a steady-state flow gas cell. This very reproducible and turbulence-free gas target allows for stable acceleration of electron bunches. Thus the sensitivity of electron parameters to subtle changes of the experimental setup could be determined with meaningful statistics. At optimized experimental parameters, electron bunches of ∼50 pC total charge were accelerated to energies up to 450 MeV with a divergence of ∼2 mrad FWHM. As, in a new design of the gas cell, its length can be varied from 2 to 14 mm, the electron bunch energy could be evaluated after different acceleration distances, at two different electron densities. From this evolution important acceleration parameters could be extracted. At an electron density of 6.43. 10 18 cm -3 the maximum electric field strength in the plasma wave was determined to be ∼160 GV/m. The length after which the relativistic electrons outrun the accelerating phase of the electric field and are decelerated again, the so-called dephasing length, was found to be 4.9 mm

  8. Acceleration of laser-injected electron beams in an electron-beam driven plasma wakefield accelerator

    International Nuclear Information System (INIS)

    Knetsch, Alexander

    2018-03-01

    Plasma wakefields deliver accelerating fields that are approximately a 100 times higher than those in conventional radiofrequency or even superconducting radiofrequency cavities. This opens a transformative path towards novel, compact and potentially ubiquitous accelerators. These prospects, and the increasing demand for electron accelerator beamtime for various applications in natural, material and life sciences, motivate the research and development on novel plasma-based accelerator concepts. However, these electron beam sources need to be understood and controlled. The focus of this thesis is on electron beam-driven plasma wakefield acceleration (PWFA) and the controlled injection and acceleration of secondary electron bunches in the accelerating wake fields by means of a short-pulse near-infrared laser. Two laser-triggered injection methods are explored. The first one is the Trojan Horse Injection, which relies on very good alignment and timing control between electron beam and laser pulse and then promises electron bunches with hitherto unprecedented quality as regards emittance and brightness. The physics of electron injection in the Trojan Horse case is explored with a focus on the final longitudinal bunch length. Then a theoretical and numerical study is presented that examines the physics of Trojan Horse injection when performed in an expanding wake generated by a smooth density down-ramp. The benefits are radically decreased drive-electron bunch requirements and a unique bunch-length control that enables longitudinal electron-bunch shaping. The second laser-triggered injection method is the Plasma Torch Injection, which is a versatile, all-optical laser-plasma-based method capable to realize tunable density downramp injection. At the SLAC National Laboratory, the first proof-of-principle was achieved both for Trojan Horse and Plasma Torch injection. Setup details and results are reported in the experimental part of the thesis along with the commissioning

  9. High-quality electron beam generation in a proton-driven hollow plasma wakefield accelerator

    Science.gov (United States)

    Li, Y.; Xia, G.; Lotov, K. V.; Sosedkin, A. P.; Hanahoe, K.; Mete-Apsimon, O.

    2017-10-01

    Simulations of proton-driven plasma wakefield accelerators have demonstrated substantially higher accelerating gradients compared to conventional accelerators and the viability of accelerating electrons to the energy frontier in a single plasma stage. However, due to the strong intrinsic transverse fields varying both radially and in time, the witness beam quality is still far from suitable for practical application in future colliders. Here we demonstrate the efficient acceleration of electrons in proton-driven wakefields in a hollow plasma channel. In this regime, the witness bunch is positioned in the region with a strong accelerating field, free from plasma electrons and ions. We show that the electron beam carrying the charge of about 10% of 1 TeV proton driver charge can be accelerated to 0.6 TeV with a preserved normalized emittance in a single channel of 700 m. This high-quality and high-charge beam may pave the way for the development of future plasma-based energy frontier colliders.

  10. Proton-driven plasma wakefield acceleration: a path to the future of high-energy particle physics

    CERN Document Server

    Assmann, R.; Bohl, T.; Bracco, C.; Buttenschon, B.; Butterworth, A.; Caldwell, A.; Chattopadhyay, S.; Cipiccia, S.; Feldbaumer, E.; Fonseca, R.A.; Goddard, B.; Gross, M.; Grulke, O.; Gschwendtner, E.; Holloway, J.; Huang, C.; Jaroszynski, D.; Jolly, S.; Kempkes, P.; Lopes, N.; Lotov, K.; Machacek, J.; Mandry, S.R.; McKenzie, J.W.; Meddahi, M.; Militsyn, B.L.; Moschuering, N.; Muggli, P.; Najmudin, Z.; Noakes, T.C.Q.; Norreys, P.A.; Oz, E.; Pardons, A.; Petrenko, A.; Pukhov, A.; Rieger, K.; Reimann, O.; Ruhl, H.; Shaposhnikova, E.; Silva, L.O.; Sosedkin, A.; Tarkeshian, R.; Trines, R.M.G.N.; Tuckmantel, T.; Vieira, J.; Vincke, H.; Wing, M.; Xia, G.

    2014-01-01

    New acceleration technology is mandatory for the future elucidation of fundamental particles and their interactions. A promising approach is to exploit the properties of plasmas. Past research has focused on creating large-amplitude plasma waves by injecting an intense laser pulse or an electron bunch into the plasma. However, the maximum energy gain of electrons accelerated in a single plasma stage is limited by the energy of the driver. Proton bunches are the most promising drivers of wakefields to accelerate electrons to the TeV energy scale in a single stage. An experimental program at CERN -- the AWAKE experiment -- has been launched to study in detail the important physical processes and to demonstrate the power of proton-driven plasma wakefield acceleration. Here we review the physical principles and some experimental considerations for a future proton-driven plasma wakefield accelerator.

  11. Proton-driven plasma wakefield acceleration: a path to the future of high-energy particle physics

    International Nuclear Information System (INIS)

    Assmann, R; Gross, M; Bingham, R; Holloway, J; Bohl, T; Bracco, C; Butterworth, A; Feldbaumer, E; Goddard, B; Gschwendtner, E; Buttenschön, B; Caldwell, A; Chattopadhyay, S; Cipiccia, S; Jaroszynski, D; Fonseca, R A; Grulke, O; Kempkes, P; Huang, C; Jolly, S

    2014-01-01

    New acceleration technology is mandatory for the future elucidation of fundamental particles and their interactions. A promising approach is to exploit the properties of plasmas. Past research has focused on creating large-amplitude plasma waves by injecting an intense laser pulse or an electron bunch into the plasma. However, the maximum energy gain of electrons accelerated in a single plasma stage is limited by the energy of the driver. Proton bunches are the most promising drivers of wakefields to accelerate electrons to the TeV energy scale in a single stage. An experimental program at CERN—the AWAKE experiment—has been launched to study in detail the important physical processes and to demonstrate the power of proton-driven plasma wakefield acceleration. Here we review the physical principles and some experimental considerations for a future proton-driven plasma wakefield accelerator. (paper)

  12. AWAKE Design Report: A Proton-Driven Plasma Wakefield Acceleration Experiment at CERN

    CERN Document Server

    Caldwell, A; Lotov, K; Muggli, P; Wing, M

    2013-01-01

    The AWAKE Collaboration has been formed in order to demonstrate proton driven plasma wakefield acceleration for the first time. This technology could lead to future colliders of high energy but of a much reduced length compared to proposed linear accelerators. The SPS proton beam in the CNGS facility will be injected into a 10m plasma cell where the long proton bunches will be modulated into significantly shorter micro-bunches. These micro-bunches will then initiate a strong wakefield in the plasma with peak fields above 1 GV/m that will be harnessed to accelerate a bunch of electrons from about 20MeV to the GeV scale within a few meters. The experimental program is based on detailed numerical simulations of beam and plasma interactions. The main accelerator components, the experimental area and infrastructure required as well as the plasma cell and the diagnostic equipment are discussed in detail. First protons to the experiment are expected at the end of 2015 and this will be followed by an initial 3–4 ye...

  13. Laser wakefield acceleration

    International Nuclear Information System (INIS)

    Esarey, E.; Ting, A.; Sprangle, P.

    1989-01-01

    The laser wakefield accelerator (LWFA) is a novel plasma based electron acceleration scheme which utilizes a relativistic optical guiding mechanism for laser pulse propagation. In the LWFA, a short, high power, single frequency laser pulse is propagated through a plasma. As the laser pulse propagates, its radial and axial ponderomotive forces nonresonantly generate large amplitude plasma waves (wakefields) with a phase velocity equal to the group velocity of the pulse. A properly phased electron bunch may then be accelerated by the axial wakefield and focused by the transverse wakefield. Optical guiding of the laser pulse in the plasma is necessary in order to achieve high energies in a single stage of acceleration. At sufficiently high laser powers, optical guiding may be achieved through relativistic effects associated with the plasma electrons. Preliminary analysis indicates that this scheme may overcome some of the difficulties present in the plasma beat wave accelerator and in the plasma wakefield accelerator. Analytical and numerical calculations are presented which study both laser pulse propagation within a plasma as well as the subsequent generation of large amplitude plasma waves. In addition, the generation of large amplitude plasma waves in regimes where the plasma waves become highly nonlinear is examined

  14. Acceleration of on-axis and ring-shaped electron beams in wakefields driven by Laguerre-Gaussian pulses

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Guo-Bo [College of Science, National University of Defense Technology, Changsha 410073 (China); Key Laboratory for Laser Plasmas (MOE) and Department of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai 200240 (China); Chen, Min, E-mail: minchen@sjtu.edu.cn, E-mail: yanyunma@126.com; Luo, Ji; Zeng, Ming; Yuan, Tao; Yu, Ji-Ye; Yu, Lu-Le; Weng, Su-Ming [Key Laboratory for Laser Plasmas (MOE) and Department of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai 200240 (China); Collaborative Innovation Center of IFSA (CICIFSA), Shanghai Jiao Tong University, Shanghai 200240 (China); Ma, Yan-Yun, E-mail: minchen@sjtu.edu.cn, E-mail: yanyunma@126.com [College of Science, National University of Defense Technology, Changsha 410073 (China); Collaborative Innovation Center of IFSA (CICIFSA), Shanghai Jiao Tong University, Shanghai 200240 (China); Yu, Tong-Pu [College of Science, National University of Defense Technology, Changsha 410073 (China); Sheng, Zheng-Ming [Key Laboratory for Laser Plasmas (MOE) and Department of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai 200240 (China); Collaborative Innovation Center of IFSA (CICIFSA), Shanghai Jiao Tong University, Shanghai 200240 (China); SUPA, Department of Physics, University of Strathclyde, Glasgow G4 0NG (United Kingdom)

    2016-03-14

    The acceleration of electron beams with multiple transverse structures in wakefields driven by Laguerre-Gaussian pulses has been studied through three-dimensional (3D) particle-in-cell simulations. Under different laser-plasma conditions, the wakefield shows different transverse structures. In general cases, the wakefield shows a donut-like structure and it accelerates the ring-shaped hollow electron beam. When a lower plasma density or a smaller laser spot size is used, besides the donut-like wakefield, a central bell-like wakefield can also be excited. The wake sets in the center of the donut-like wake. In this case, both a central on-axis electron beam and a ring-shaped electron beam are simultaneously accelerated. Further, reducing the plasma density or laser spot size leads to an on-axis electron beam acceleration only. The research is beneficial for some potential applications requiring special pulse beam structures, such as positron acceleration and collimation.

  15. Experiments on resonator concept of plasma wakefield accelerator driven by a train of relativistic electron bunches

    International Nuclear Information System (INIS)

    Kiselev, V.A.; Linnik, A.F.; Mirny, V. I; Onishchenko, I.N.; Uskov, V.V.

    2008-01-01

    The experimental installation was elaborated to increase plasma wakefield amplitude by means of using plasma resonator that allows all bunches of the train to participate in wakefield build-up contrary to waveguide case, in which due to group velocity effect only a part of the bunches participates. Experiments on plasma producing with resonant density, at which a coincidence of the plasma frequency and bunch repetition frequency is provided, are carried out. The first results of the measurements of beam energy loss on plasma wakefield excitation and energy gain by accelerated electrons are presented

  16. Argonne Wakefield Accelerator Update '92

    International Nuclear Information System (INIS)

    Rosing, M.; Balka, L.; Chojnacki, E.; Gai, W.; Ho, C.; Konecny, R.; Power, J.; Schoessow, P.; Simpson, J.

    1992-01-01

    The Argonne Wakefield Accelerator (AWA) is an experiment designed to test various ideas related to wakefield technology. Construction is now underway for a 100 nC electron beam in December of 1992. This report updates this progress

  17. Coherent multimoded dielectric wakefield accelerators

    International Nuclear Information System (INIS)

    Power, J.

    1998-01-01

    There has recently been a study of the potential uses of multimode dielectric structures for wakefield acceleration [1]. This technique is based on adjusting the wakefield modes of the structure to constructively interfere at certain delays with respect to the drive bunch, thus providing an accelerating gradient enhancement over single mode devices. In this report we examine and attempt to clarify the issues raised by this work in the light of the present state of the art in wakefield acceleration

  18. Monoenergetic laser wakefield acceleration

    Directory of Open Access Journals (Sweden)

    N. E. Andreev

    2000-02-01

    Full Text Available Three dimensional test particle simulations are applied to optimization of the plasma-channeled laser wakefield accelerator (LWFA operating in a weakly nonlinear regime. Electron beam energy spread, emittance, and luminosity depend upon the proportion of the electron bunch size to the plasma wavelength. This proportion tends to improve with the laser wavelength increase. We simulate a prospective two-stage ∼1GeV LWFA with controlled energy spread and emittance. The input parameters correspond to realistic capabilities of the BNL Accelerator Test Facility that features a picosecond-terawatt CO_{2} laser and a high-brightness electron gun.

  19. Laser Wakefield Acceleration Driven by a CO2 Laser (STELLA-LW) - Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Kimura, Wayne D

    2008-06-27

    The original goals of the Staged Electron Laser Acceleration – Laser Wakefield (STELLA-LW) program were to investigate two new methods for laser wakefield acceleration (LWFA). In pseudo-resonant LWFA (PR-LWFA), a laser pulse experiences nonlinear pulse steepening while traveling through the plasma. This steepening allows the laser pulse to generate wakefields even though the laser pulse length is too long for resonant LWFA to occur. For the conditions of this program, PR-LWFA requires a minimum laser peak power of 3 TW and a low plasma density (10^16 cm^-3). Seeded self-modulated LWFA (seeded SM-LWFA) combines LWFA with plasma wakefield acceleration (PWFA). An ultrashort (~100 fs) electron beam bunch acts as a seed in a plasma to form a wakefield via PWFA. This wakefield is subsequently amplified by the laser pulse through a self-modulated LWFA process. At least 1 TW laser power and, for a ~100-fs bunch, a plasma density ~10^17 cm^-3 are required. STELLA-LW was located on Beamline #1 at the Brookhaven National Laboratory (BNL) Accelerator Test Facility (ATF). The ATF TW CO2 laser served as the driving laser beam for both methods. For PR-LWFA, a single bunch was to probe the wakefield produced by the laser beam. For seeded SM-LWFA, the ATF linac would produce two bunches, where the first would be the seed and the second would be the witness. A chicane would compress the first bunch to enable it to generate wakefields via PWFA. The plasma source was a short-length, gas-filled capillary discharge with the laser beam tightly focused in the center of the capillary, i.e., no laser guiding was used, in order to obtain the needed laser intensity. During the course of the program, several major changes had to be made. First, the ATF could not complete the upgrade of the CO2 laser to the 3 TW peak power needed for the PR-LWFA experiment. Therefore, the PR-LWFA experiment had to be abandoned leaving only the seeded SM-LWFA experiment. Second, the ATF discovered that the

  20. Towards external injection in laser wakefield acceleration

    NARCIS (Netherlands)

    Stragier, X.F.D.

    2011-01-01

    In laser wakefield acceleration (LWA) a plasma wave is driven by a high intensity ultra short laser pulse and the longitudinal electric fields in the plasma wave are used to accelerate electron bunches. Electrons with an appropriate kinetic energy, injected on the right phase of the plasma wave, get

  1. Photon acceleration in laser wakefield accelerators

    International Nuclear Information System (INIS)

    Trines, R. M. G. M.

    2007-01-01

    If the index of a refraction of a dispersive medium, such as a plasma, changes in time, it can be used to change the frequency of light propagating through the medium. This effect is called photon acceleration. It has been predicted in both theory and simulations, and also been demonstrated experimentally for the case of moving ionization fronts in gases (the so-called ionization blueshift) as well as for laser-driven wakefields.Here, we present studies of photon acceleration in laser-driven plasma wakefields. The unique spectral characteristics of this process will be discussed, to distinguish it from e.g. photon acceleration by ionization fronts, frequency domain interferometry or self-phase modulation. The dynamics of the photons in laser-wakefield interaction are studied through both regular particle-in-cell and wave-kinetic simulations. The latter approach provides a powerful, versatile, and easy-to-use method to track the propagation of individual spectral components, providing new insight into the physics of laser-plasma interaction. Theory, simulations and experimental results will be brought together to provide a full understanding of the dynamics of a laser pulse in its own wakefield.Even though the wave-kinetic approach mentioned above has mainly been developed for the description of laser-plasma interaction, it can be applied to a much wider range of fast wave-slow wave interaction processes: Langmuir waves-ion acoustic waves, drift waves-zonal flow, Rossby waves-zonal flow, or even photons-gravitational waves. Several recent results in these areas will be shown, often with surprising results

  2. An ultrashort pulse ultra-violet radiation undulator source driven by a laser plasma wakefield accelerator

    Energy Technology Data Exchange (ETDEWEB)

    Anania, M. P. [SUPA, Department of Physics, University of Strathclyde, Glasgow G4 0NG (United Kingdom); INFN, Laboratori Nazionali di Frascati, I-00044 Frascati (Italy); Brunetti, E.; Wiggins, S. M.; Grant, D. W.; Welsh, G. H.; Issac, R. C.; Cipiccia, S.; Shanks, R. P.; Manahan, G. G.; Aniculaesei, C.; Jaroszynski, D. A., E-mail: d.a.jaroszynski@strath.ac.uk [SUPA, Department of Physics, University of Strathclyde, Glasgow G4 0NG (United Kingdom); Geer, S. B. van der; Loos, M. J. de [Pulsar Physics, Burghstraat 47, 5614 BC Eindhoven (Netherlands); Poole, M. W.; Shepherd, B. J. A.; Clarke, J. A. [ASTeC, STFC, Daresbury Laboratory, Warrington WA4 4AD (United Kingdom); Gillespie, W. A. [SUPA, School of Engineering, Physics and Mathematics, University of Dundee, Dundee DD1 4HN (United Kingdom); MacLeod, A. M. [School of Computing and Creative Technologies, University of Abertay Dundee, Dundee DD1 1HG (United Kingdom)

    2014-06-30

    Narrow band undulator radiation tuneable over the wavelength range of 150–260 nm has been produced by short electron bunches from a 2 mm long laser plasma wakefield accelerator based on a 20 TW femtosecond laser system. The number of photons measured is up to 9 × 10{sup 6} per shot for a 100 period undulator, with a mean peak brilliance of 1 × 10{sup 18} photons/s/mrad{sup 2}/mm{sup 2}/0.1% bandwidth. Simulations estimate that the driving electron bunch r.m.s. duration is as short as 3 fs when the electron beam has energy of 120–130 MeV with the radiation pulse duration in the range of 50–100 fs.

  3. Sapphire capillaries for laser-driven wakefield acceleration in plasma. Fs-laser micromachining and characterization

    International Nuclear Information System (INIS)

    Schwinkendorf, Jan-Patrick

    2012-05-01

    Plasma wakefields are a promising approach for the acceleration of electrons with ultrahigh (10 to 100 GV/m) electric fields. Nowadays, high-intensity laser pulses are routinely utilized to excite these large-amplitude plasma waves. However, several detrimental effects such as laser diffraction, electron-wake dephasing and laser depletion may terminate the acceleration process. Two of these phenomena can be mitigated or avoided by the application of capillary waveguides, e.g. fabricated out of sapphire for longevity. Capillaries may compensate for laser diffraction like a fiber and allow for the creation of tapered gas-density profiles working against the dephasing between the accelerating wave and the particles. Additionally, they offer the possibility of controlled particle injection. This thesis is reporting on the set up of a laser for fs-micromachining of capillaries of almost arbitrary shapes and a test stand for density-profile characterization. These devices will permit the creation of tailored gas-density profiles for controlled electron injection and acceleration inside plasma.

  4. Sapphire capillaries for laser-driven wakefield acceleration in plasma. Fs-laser micromachining and characterization

    Energy Technology Data Exchange (ETDEWEB)

    Schwinkendorf, Jan-Patrick

    2012-08-15

    Plasma wakefields are a promising approach for the acceleration of electrons with ultrahigh (10 to 100 GV/m) electric fields. Nowadays, high-intensity laser pulses are routinely utilized to excite these large-amplitude plasma waves. However, several detrimental effects such as laser diffraction, electron-wake dephasing and laser depletion may terminate the acceleration process. Two of these phenomena can be mitigated or avoided by the application of capillary waveguides, e.g. fabricated out of sapphire for longevity. Capillaries may compensate for laser diffraction like a fiber and allow for the creation of tapered gas-density profiles working against the dephasing between the accelerating wave and the particles. Additionally, they offer the possibility of controlled particle injection. This thesis is reporting on the set up of a laser for fs-micromachining of capillaries of almost arbitrary shapes and a test stand for density-profile characterization. These devices will permit the creation of tailored gas-density profiles for controlled electron injection and acceleration inside plasma.

  5. Bremsstrahlung hard x-ray source driven by an electron beam from a self-modulated laser wakefield accelerator

    Science.gov (United States)

    Lemos, N.; Albert, F.; Shaw, J. L.; Papp, D.; Polanek, R.; King, P.; Milder, A. L.; Marsh, K. A.; Pak, A.; Pollock, B. B.; Hegelich, B. M.; Moody, J. D.; Park, J.; Tommasini, R.; Williams, G. J.; Chen, Hui; Joshi, C.

    2018-05-01

    An x-ray source generated by an electron beam produced using a Self-Modulated Laser Wakefield Accelerator (SM-LWFA) is explored for use in high energy density science facilities. By colliding the electron beam, with a maximum energy of 380 MeV, total charge of >10 nC and a divergence of 64 × 100 mrad, from a SM-LWFA driven by a 1 ps 120 J laser, into a high-Z foil, an x/gamma-ray source was generated. A broadband bremsstrahlung energy spectrum with temperatures ranging from 0.8 to 2 MeV was measured with an almost 2 orders of magnitude flux increase when compared with other schemes using LWFA. GEANT4 simulations were done to calculate the source size and divergence.

  6. Argonne Wakefield Accelerator update '92

    International Nuclear Information System (INIS)

    Rosing, M.; Balka, L.; Chojnacki, E.; Gai, W.; Ho, C.; Konecny, R.; Power, J.; Schoessow, P.; Simpson, J.

    1992-01-01

    The construction of the Argonne Wakefield Accelerator (AWA) is under way. The majority of the hardware is about to be delivered or is installed. Radiation safety systems are in the review process, and the laser system is operational. Bunch production should begin in December 1992. 4 refs., 5 figs

  7. Strategies for mitigating the ionization-induced beam head erosion problem in an electron-beam-driven plasma wakefield accelerator

    Directory of Open Access Journals (Sweden)

    W. An

    2013-10-01

    Full Text Available Strategies for mitigating ionization-induced beam head erosion in an electron-beam-driven plasma wakefield accelerator (PWFA are explored when the plasma and the wake are both formed by the transverse electric field of the beam itself. Beam head erosion can occur in a preformed plasma because of a lack of focusing force from the wake at the rising edge (head of the beam due to the finite inertia of the electrons. When the plasma is produced by field ionization from the space charge field of the beam, the head erosion is significantly exacerbated due to the gradual recession (in the beam frame of the 100% ionization contour. Beam particles in front of the ionization front cannot be focused (guided causing them to expand as in vacuum. When they expand, the location of the ionization front recedes such that even more beam particles are completely unguided. Eventually this process terminates the wake formation prematurely, i.e., well before the beam is depleted of its energy. Ionization-induced head erosion can be mitigated by controlling the beam parameters (emittance, charge, and energy and/or the plasma conditions. In this paper we explore how the latter can be optimized so as to extend the beam propagation distance and thereby increase the energy gain. In particular we show that, by using a combination of the alkali atoms of the lowest practical ionization potential (Cs for plasma formation and a precursor laser pulse to generate a narrow plasma filament in front of the beam, the head erosion rate can be dramatically reduced. Simulation results show that in the upcoming “two-bunch PWFA experiments” on the FACET facility at SLAC national accelerator laboratory the energy gain of the trailing beam can be up to 10 times larger for the given parameters when employing these techniques. Comparison of the effect of beam head erosion in preformed and ionization produced plasmas is also presented.

  8. A proposed laser wakefield acceleration experiment

    International Nuclear Information System (INIS)

    Ebrahim, N.A.

    1995-05-01

    In this report we discuss the basic concepts of a laser wakefield experiment using an ultrashort laser pulse. In particular, we obtain some heuristic estimates of experimental parameters relevant to an experiment to test the laser wakefield acceleration concept. (author). 8 refs., 2 tabs

  9. The nonlinear CWFA [Cherenkov Wakefield Accelerator

    International Nuclear Information System (INIS)

    Schoessow, P.

    1989-01-01

    The possible use of nonlinear media to enhance the performance of the Cherenkov Wakefield Accelerator (CWFA) is considered. Numerical experiments have been performed using a new wakefield code which demonstrate larger gradients and transformer ratios in the nonlinear CWFA than are obtained in the linear case. 7 refs., 3 figs

  10. Photocathode driven linac at UCLA for FEL and plasma wakefield acceleration experiments

    International Nuclear Information System (INIS)

    Hartman, S.; Aghamir, F.; Barletta, W.; Cline, D.; Dodd, J.; Katsouleas, T.; Kolonko, J.; Park, S.; Pellegrini, C.; Rosenzweig, J.; Smolin, J.; Terrien, J.; Davis, J.; Hairapetian, G.; Joshi, C.; Luhmann, N. Jr.; McDermott, D.

    1991-01-01

    The UCLA compact 20-MeV/c electron linear accelerator is designed to produce a single electron bunch with a peak current of 200 A, an rms energy spread of 0.2% or less, and a short 1.2 picosecond rms pulse duration. The linac is also designed to minimize emittance growth down the beamline so as to obtain emittances of the order of 8πmm-mrad in the experimental region. The linac will feed two beamlines, the first will run straight into the undulator for FEL experiments while the second will be used for diagnostics, longitudinal bunch compression, and other electron beam experiments. Here the authors describe the considerations put into the design of the accelerating structures and the transport to the experimental areas

  11. Accelerator Studies on a possible Experiment on Proton-Driven Plasma Wakefields at CERN

    CERN Document Server

    Assmann, R W; Fartoukh, S; Geschonke, G; Goddard, B; Hessler, C; Hillenbrand, S; Meddahi, M; Roesler, S; Zimmermann, F; Caldwell, A; Muggli, P; Xia, G

    2011-01-01

    There has been a proposal by Caldwell et al to use proton beams as drivers for high energy linear colliders. An experimental test with CERN’s proton beams is being studied. Such a test requires a transfer line for transporting the beam to the experiment, a focusing section for beam delivery into the plasma, the plasma cell and a downstream diagnostics and dump section. The work done at CERN towards the conceptual layout and design of such a test area is presented. A possible development of such a test area into a CERN test facility for high-gradient acceleration experiments is discussed.

  12. Hot spots and dark current in advanced plasma wakefield accelerators

    Directory of Open Access Journals (Sweden)

    G. G. Manahan

    2016-01-01

    Full Text Available Dark current can spoil witness bunch beam quality and acceleration efficiency in particle beam-driven plasma wakefield accelerators. In advanced schemes, hot spots generated by the drive beam or the wakefield can release electrons from higher ionization threshold levels in the plasma media. These electrons may be trapped inside the plasma wake and will then accumulate dark current, which is generally detrimental for a clear and unspoiled plasma acceleration process. Strategies for generating clean and robust, dark current free plasma wake cavities are devised and analyzed, and crucial aspects for experimental realization of such optimized scenarios are discussed.

  13. Laser wakefield accelerator experiments at LBNL

    International Nuclear Information System (INIS)

    Leemans, W.P.; Rodgers, D.; Catravas, P.E.; Fubiani, G.; Geddes, C.G.R.; Esarey, E.; Shadwick, B.A.; Brussaard, G.J.H.; Tilborg, J. van; Chattopadhyay, S.; Wurtele, J.S.; Archambault, L.; Dickinson, M.R.; DiMaggio, S.; Short, R.; Barat, K.L.; Donahue, R.; Floyd, J.; Smith, A.; Wong, E.

    2001-01-01

    The status is presented of the laser wakefield acceleration research at the l'OASIS laboratory of the Center for Beam Physics at LBNL. Experiments have been performed on laser driven production of relativistic electron beams from plasmas using a high repetition rate (10 Hz), high power (10 TW) Ti:sapphire (0.8 μm) laser system. Large amplitude plasma waves have been excited in the self-modulated laser wakefield regime by tightly focusing (spot diameter 8 μm) a single high power (≤10 TW), ultra-short (≥50 fs) laser pulse onto a high density (>10 19 cm -3 ) pulsed gasjet (length 1.2 mm). Nuclear activation measurements in lead and copper targets indicate the production of electrons with energy in excess of 25 MeV. This result was confirmed by electron distribution measurements using a bending magnet spectrometer. Progress on implementing the colliding pulse laser injection method is also presented. This method is expected to produce low emittance ( 7 electrons/bunch

  14. Planned Enhanced Wakefield Transformer Ratio Experiment at Argonne Wakefield Accelerator

    CERN Document Server

    Kanareykin, Alex; Gai, Wei; Jing, Chunguang; Konecny, Richard; Power, John G

    2005-01-01

    In this paper, we present a preliminary experimental study of a wakefield accelerating scheme that uses a carefully spaced and current ramped electron pulse train to produce wakefields that increases the transformer ratio much higher than 2. A dielectric structure was designed and fabricated to operate at 13.625 GHz with dielectric constant of 15.7. The structure will be initially excited by two beams with first and second beam charge ratio of 1:3. The expected transformer ratio is 3 and the setup can be easily extend to 4 pulses which leads to a transformer ratio of more than 6. The dielectric structure cold test results show the tube is within the specification. A set of laser splitters was also tested to produce ramped bunch train of 2 - 4 pulses. Overall design of the experiment and initial results will be presented.

  15. Probing plasma wakefields using electron bunches generated from a laser wakefield accelerator

    Science.gov (United States)

    Zhang, C. J.; Wan, Y.; Guo, B.; Hua, J. F.; Pai, C.-H.; Li, F.; Zhang, J.; Ma, Y.; Wu, Y. P.; Xu, X. L.; Mori, W. B.; Chu, H.-H.; Wang, J.; Lu, W.; Joshi, C.

    2018-04-01

    We show experimental results of probing the electric field structure of plasma wakes by using femtosecond relativistic electron bunches generated from a laser wakefield accelerator. Snapshots of laser-driven linear wakes in plasmas with different densities and density gradients are captured. The spatiotemporal evolution of the wake in a plasma density up-ramp is recorded. Two parallel wakes driven by a laser with a main spot and sidelobes are identified in the experiment and reproduced in simulations. The capability of this new method for capturing the electron- and positron-driven wakes is also shown via 3D particle-in-cell simulations.

  16. Electromagnetic radiation from a laser wakefield accelerator

    NARCIS (Netherlands)

    Khachatryan, A.G.; van Goor, F.A.; Boller, Klaus J.

    2008-01-01

    Coherent and incoherent electromagnetic radiation emitted from a laser wakefield accelerator is calculated based on Lienard-Wiechert potentials. It is found that at wavelengths longer than the bunch length, the radiation is coherent. The coherent radiation, which typically lies in the infrared

  17. Quasi-stable injection channels in a wakefield accelerator

    CERN Document Server

    Wiltshire-Turkay, Mara; Pukhov, Alexander

    2016-01-01

    Particle-driven plasma-wakefield acceleration is a promising alternative to conventional electron acceleration techniques, potentially allowing electron acceleration to energies orders of magnitude higher than can currently be achieved. In this work we investigate the dependence of the energy gain on the position at which electrons are injected into the wake. Test particle simulations show previously unobserved complex structure in the parameter space, with quasi-stable injection channels forming for particles injected in narrow regions away from the centre of the wake. The result is relevant to the planning and tuning of experiments making use of external injection.

  18. Wakefields and Instabilities in Linear Accelerators

    CERN Document Server

    Ferrario, M.; Palumbo, L.

    2014-12-19

    When a charged particle travels across the vacuum chamber of an accelerator, it induces electromagnetic fields, which are left mainly behind the generating particle. These electromagnetic fields act back on the beam and influence its motion. Such an interaction of the beam with its surro undings results in beam energy losses, alters the shape of the bunches, and shifts the betatron and synchrotron frequencies. At high beam current the fields can even lead to instabilities, thus limiting the performance of the accelerator in terms of beam quality and current intensity. We discuss in this lecture the general features of the electromagnetic fields, introducing the concepts of wakefields and giving a few simple examples in cylindrical geometry. We then show the effect of the wakefields on the dynamics of a beam in a linac, dealing in particular with the beam breakup instability and how to cure it.

  19. Theory of the dielectric wakefield accelerator

    International Nuclear Information System (INIS)

    Mtingwa, S.K.

    1990-10-01

    The general theory for all angular modes m of the dielectric wakefield accelerator is reformulated. The expressions for the accelerating electric fields and transverse wake forces are written in terms of matrices, the zeros of one of which determine the excitation frequencies of the dielectric structure. In this scheme it is possible to obtain a maximum accelerating gradient of 2.0 megavolts per meter per nanoCoulomb of driver beam charge, for a driver beam of 0.7 millimeters rms bunch length. 29 refs., 5 figs

  20. Experimental studies of plasma wake-field acceleration and focusing

    International Nuclear Information System (INIS)

    Rosenzweig, J.B.; Cole, B.; Ho, C.; Argonne National Lab., IL

    1989-01-01

    More than four years after the initial proposal of the Plasma Wake-field Accelerator (PWFA), it continues to be the object of much investigation, due to the promise of the ultra-high accelerating gradients that can exist in relativistic plasma waves driven in the wake of charged particle beams. These large amplitude plasma wake-fields are of interest in the laboratory, both for the wealth of basic nonlinear plasma wave phenomena which can be studied, as well as for the applications of acceleration of focusing of electrons and positrons in future linear colliders. Plasma wake-field waves are also of importance in nature, due to their possible role in direct cosmic ray acceleration. The purpose of the present work is to review the recent experimental advances made in PWFA research at Argonne National Laboratory, in which many interesting beam and plasma phenomena have been observed. Emphasis is given to discussion of the nonlinear aspects of the PWFA beam-plasma interaction. 29 refs., 13 figs

  1. Dielectric Wakefield Accelerator to drive the future FEL Light Source.

    Energy Technology Data Exchange (ETDEWEB)

    Jing, C.; Power, J.; Zholents, A. (Accelerator Systems Division (APS)); ( HEP); (LLC)

    2011-04-20

    X-ray free-electron lasers (FELs) are expensive instruments and a large part of the cost of the entire facility is driven by the accelerator. Using a high-energy gain dielectric wake-field accelerator (DWA) instead of the conventional accelerator may provide a significant cost saving and reduction of the facility size. In this article, we investigate using a collinear dielectric wakefield accelerator to provide a high repetition rate, high current, high energy beam to drive a future FEL x-ray light source. As an initial case study, a {approx}100 MV/m loaded gradient, 850 GHz quartz dielectric based 2-stage, wakefield accelerator is proposed to generate a main electron beam of 8 GeV, 50 pC/bunch, {approx}1.2 kA of peak current, 10 x 10 kHz (10 beamlines) in just 100 meters with the fill factor and beam loading considered. This scheme provides 10 parallel main beams with one 100 kHz drive beam. A drive-to-main beam efficiency {approx}38.5% can be achieved with an advanced transformer ratio enhancement technique. rf power dissipation in the structure is only 5 W/cm{sup 2} in the high repetition rate, high gradient operation mode, which is in the range of advanced water cooling capability. Details of study presented in the article include the overall layout, the transform ratio enhancement scheme used to increase the drive to main beam efficiency, main wakefield linac design, cooling of the structure, etc.

  2. Plasma wakefields driven by an incoherent combination of laser pulses: a path towards high-average power laser-plasma accelerators

    Energy Technology Data Exchange (ETDEWEB)

    Benedetti, C.; Schroeder, C.B.; Esarey, E.; Leemans, W.P.

    2014-05-01

    he wakefield generated in a plasma by incoherently combining a large number of low energy laser pulses (i.e.,without constraining the pulse phases) is studied analytically and by means of fully-self-consistent particle-in-cell simulations. The structure of the wakefield has been characterized and its amplitude compared with the amplitude of the wake generated by a single (coherent) laser pulse. We show that, in spite of the incoherent nature of the wakefield within the volume occupied by the laser pulses, behind this region the structure of the wakefield can be regular with an amplitude comparable or equal to that obtained from a single pulse with the same energy. Wake generation requires that the incoherent structure in the laser energy density produced by the combined pulses exists on a time scale short compared to the plasma period. Incoherent combination of multiple laser pulses may enable a technologically simpler path to high-repetition rate, high-average power laser-plasma accelerators and associated applications.

  3. Electron Acceleration in Wakefield and Supra-Bubble Regimes by Ultraintense Laser with Asymmetric Pulse

    International Nuclear Information System (INIS)

    Maimaitiaili, Bake; Sayipjamal, Dulat; Aimierding, Aimidula; Xie Baisong

    2011-01-01

    Electron acceleration in plasma driven by circular polarized ultraintense laser with asymmetric pulse are investigated analytically and numerically in terms of oscillation-center Hamiltonian formalism. Studies include wakefield acceleration, which dominates in blow-out or bubble regime and snow-plow acceleration which dominates in supra-bubble regime. By a comparison with each other it is found that snow-plow acceleration has lower acceleration capability. In wakefield acceleration, there exists an obvious optimum pulse asymmetry or/and pulse lengths that leads to the high net energy gain while in snow-plow acceleration it is insensitive to the pulse lengths. Power and linear scaling laws for wakefield and snow-plow acceleration respetively are observed from the net energy gain depending on laser field amplitude. Moreover, there exists also an upper and lower limit on plasma density for an effective acceleration in both of regimes. (physics of gases, plasmas, and electric discharges)

  4. The transverse forces in wakefield accelerators

    International Nuclear Information System (INIS)

    Rosing, M.; Gai, W.

    1990-01-01

    An attempt is presented to compare beam breakup problems in dielectric lined waveguide with plasmas as they pertain to wakefield accelerators. In the waveguide position it is measured relative to the physical center of the guide but in a plasma position it is relative to the centroid of the bunch creating the wakes. Dielectrics are very linear making their behaviour well suited for analytical study. Plasmas are very nonlinear so many approximations should be made to put them into an analytical regime. (R.P.) 6 refs.; 4 figs

  5. Transverse wakefield effects in the two-beam accelerator

    International Nuclear Information System (INIS)

    Selph, F.; Sessler, A.

    1986-01-01

    Transverse wakefield effects in the high-gradient accelerating structure of the two-beam accelerator (TBA) are analyzed theoretically using three different models. The first is a very simple two-particle model, the second is for a beam with uniform charge distribution, constant betatron wavelength, and a linear wake approximation. Both of these models give analytic scaling laws. The third model has a Gaussian beam (represented by 11 superparticles), energy variation across the bunch, acceleration, variation of betatron focusing with energy, and variation of the wakefield from linearity. The three models are compared, and the third model is used to explore the wakefield effects when accelerator parameters such as energy, energy spread, injection energy, accelerating gradient, and betatron wavelength are varied. Also explored are the sensitivity of the beam to the wakefield profile to the longitudinal charge distribution. Finally, in consideration of wakefield effects, possible parameters of a TBA are presented. (orig./HSI)

  6. Beyond injection: Trojan horse underdense photocathode plasma wakefield acceleration

    Energy Technology Data Exchange (ETDEWEB)

    Hidding, B.; Rosenzweig, J. B.; Xi, Y.; O' Shea, B.; Andonian, G.; Schiller, D.; Barber, S.; Williams, O.; Pretzler, G.; Koenigstein, T.; Kleeschulte, F.; Hogan, M. J.; Litos, M.; Corde, S.; White, W. W.; Muggli, P.; Bruhwiler, D. L.; Lotov, K. [Institut fuer Laser- und Plasmaphysik, Heinrich-Heine-Universitaet Duesseldorf 40225 Duesseldorf (Germany) and Particle Beam Physics Laboratory, Department for Physics and Astronomy, UCLA (United States); Particle Beam Physics Laboratory, Department for Physics and Astronomy, UCLA (United States); Institut fuer Laser- und Plasmaphysik, Heinrich-Heine-Universitaet Duesseldorf 40225 Duesseldorf (Germany); Stanford Linear Accelerator Center (United States); Max-Planck-Institut fuer Physik, Muenchen (Germany); Tech-X Corporation, Boulder, Colorado (United States) and 1348 Redwood Ave., Boulder, Colorado 80304 (United States); Budker Institute of Nuclear Physics SB RAS, 630090, Novosibirsk (Russian Federation) and Novosibirsk State University, 630090, Novosibirsk (Russian Federation)

    2012-12-21

    An overview on the underlying principles of the hybrid plasma wakefield acceleration scheme dubbed 'Trojan Horse' acceleration is given. The concept is based on laser-controlled release of electrons directly into a particle-beam-driven plasma blowout, paving the way for controlled, shapeable electron bunches with ultralow emittance and ultrahigh brightness. Combining the virtues of a low-ionization-threshold underdense photocathode with the GV/m-scale electric fields of a practically dephasing-free beam-driven plasma blowout, this constitutes a 4th generation electron acceleration scheme. It is applicable as a beam brightness transformer for electron bunches from LWFA and PWFA systems alike. At FACET, the proof-of-concept experiment 'E-210: Trojan Horse Plasma Wakefield Acceleration' has recently been approved and is in preparation. At the same time, various LWFA facilities are currently considered to host experiments aiming at stabilizing and boosting the electron bunch output quality via a trojan horse afterburner stage. Since normalized emittance and brightness can be improved by many orders of magnitude, the scheme is an ideal candidate for light sources such as free-electron-lasers and those based on Thomson scattering and betatron radiation alike.

  7. Wakefield monitor development for CLIC accelerating structure

    CERN Document Server

    Peauger, F; Girardot, P; Andersson, A; Riddone, G; Samoshkin, A; Solodko, A; Zennaro, R; Ruber, R

    2010-01-01

    Abstract To achieve high luminosity in CLIC, the accelerating structures must be aligned to an accuracy of 5 μm with respect to the beam trajectory. Position detectors called Wakefield Monitors (WFM) are integrated to the structure for a beam based alignment. This paper describes the requirements of such monitors. Detailed RF design and electromagnetic simulations of the WFM itself are presented. In particular, time domain computations are performed and an evaluation of the resolution is done for two higher order modes at 18 and 24 GHz. The mechanical design of a prototype accelerating structure with WFM is also presented as well as the fabrication status of three complete structures. The objective is to implement two of them in CTF3 at CERN for a feasibility demonstration with beam and high power rf.

  8. Novel gas target for laser wakefield accelerators

    Science.gov (United States)

    Aniculaesei, C.; Kim, Hyung Taek; Yoo, Byung Ju; Oh, Kyung Hwan; Nam, Chang Hee

    2018-02-01

    A novel gas target for interactions between high power lasers and gaseous medium, especially for laser wakefield accelerators, has been designed, manufactured, and characterized. The gas target has been designed to provide a uniform density profile along the central gas cell axis by combining a gas cell and slit nozzle. The gas density has been tuned from ˜1017 atoms/cm3 to ˜1019 atoms/cm3 and the gas target length can be varied from 0 to 10 cm; both changes can be made simultaneously while keeping the uniform gas profile. The gas density profile inside the gas cell has been measured using interferometry and validated using computational fluid dynamics.

  9. Plasma Wakefield Acceleration of an Intense Positron Beam

    Energy Technology Data Exchange (ETDEWEB)

    Blue, B

    2004-04-21

    The Plasma Wakefield Accelerator (PWFA) is an advanced accelerator concept which possess a high acceleration gradient and a long interaction length for accelerating both electrons and positrons. Although electron beam-plasma interactions have been extensively studied in connection with the PWFA, very little work has been done with respect to positron beam-plasma interactions. This dissertation addresses three issues relating to a positron beam driven plasma wakefield accelerator. These issues are (a) the suitability of employing a positron drive bunch to excite a wake; (b) the transverse stability of the drive bunch; and (c) the acceleration of positrons by the plasma wake that is driven by a positron bunch. These three issues are explored first through computer simulations and then through experiments. First, a theory is developed on the impulse response of plasma to a short drive beam which is valid for small perturbations to the plasma density. This is followed up with several particle-in-cell (PIC) simulations which study the experimental parameter (bunch length, charge, radius, and plasma density) range. Next, the experimental setup is described with an emphasis on the equipment used to measure the longitudinal energy variations of the positron beam. Then, the transverse dynamics of a positron beam in a plasma are described. Special attention is given to the way focusing, defocusing, and a tilted beam would appear to be energy variations as viewed on our diagnostics. Finally, the energy dynamics imparted on a 730 {micro}m long, 40 {micro}m radius, 28.5 GeV positron beam with 1.2 x 10{sup 10} particles in a 1.4 meter long 0-2 x 10{sup 14} e{sup -}/cm{sup 3} plasma is described. First the energy loss was measured as a function of plasma density and the measurements are compared to theory. Then, an energy gain of 79 {+-} 15 MeV is shown. This is the first demonstration of energy gain of a positron beam in a plasma and it is in good agreement with the predictions

  10. Transverse emittance growth in staged laser-wakefield acceleration

    Directory of Open Access Journals (Sweden)

    T. Mehrling

    2012-11-01

    Full Text Available We present a study on the emittance evolution of electron bunches, externally injected into laser-driven plasma waves using the three-dimensional particle-in-cell (PIC code OSIRIS. Results show order-of-magnitude transverse emittance growth during the injection process, if the electron bunch is not matched to its intrinsic betatron motion inside the wakefield. This behavior is supported by analytic theory reproducing the simulation data to a percent level. The length over which the full emittance growth develops is found to be less than or comparable to the typical dimension of a single plasma module in current multistage designs. In addition, the analytic theory enables the quantitative prediction of emittance degradation in two consecutive accelerators coupled by free-drift sections, excluding this as a scheme for effective emittance-growth suppression, and thus suggests the necessity of beam-matching sections between acceleration stages with fundamental implications on the overall design of staged laser-wakefield accelerators.

  11. Particle-in-cell simulation of x-ray wakefield acceleration and betatron radiation in nanotubes

    Directory of Open Access Journals (Sweden)

    Xiaomei Zhang

    2016-10-01

    Full Text Available Though wakefield acceleration in crystal channels has been previously proposed, x-ray wakefield acceleration has only recently become a realistic possibility since the invention of the single-cycled optical laser compression technique. We investigate the acceleration due to a wakefield induced by a coherent, ultrashort x-ray pulse guided by a nanoscale channel inside a solid material. By two-dimensional particle-in-cell computer simulations, we show that an acceleration gradient of TeV/cm is attainable. This is about 3 orders of magnitude stronger than that of the conventional plasma-based wakefield accelerations, which implies the possibility of an extremely compact scheme to attain ultrahigh energies. In addition to particle acceleration, this scheme can also induce the emission of high energy photons at ∼O(10–100  MeV. Our simulations confirm such high energy photon emissions, which is in contrast with that induced by the optical laser driven wakefield scheme. In addition to this, the significantly improved emittance of the energetic electrons has been discussed.

  12. Simulation of density measurements in plasma wakefields using photo acceleration

    CERN Document Server

    Kasim, Muhammad Firmansyah; Ceurvorst, Luke; Sadler, James; Burrows, Philip N; Trines, Raoul; Holloway, James; Wing, Matthew; Bingham, Robert; Norreys, Peter

    2015-01-01

    One obstacle in plasma accelerator development is the limitation of techniques to diagnose and measure plasma wakefield parameters. In this paper, we present a novel concept for the density measurement of a plasma wakefield using photon acceleration, supported by extensive particle in cell simulations of a laser pulse that copropagates with a wakefield. The technique can provide the perturbed electron density profile in the laser’s reference frame, averaged over the propagation length, to be accurate within 10%. We discuss the limitations that affect the measurement: small frequency changes, photon trapping, laser displacement, stimulated Raman scattering, and laser beam divergence. By considering these processes, one can determine the optimal parameters of the laser pulse and its propagation length. This new technique allows a characterization of the density perturbation within a plasma wakefield accelerator.

  13. Simulation of density measurements in plasma wakefields using photon acceleration

    Directory of Open Access Journals (Sweden)

    Muhammad Firmansyah Kasim

    2015-03-01

    Full Text Available One obstacle in plasma accelerator development is the limitation of techniques to diagnose and measure plasma wakefield parameters. In this paper, we present a novel concept for the density measurement of a plasma wakefield using photon acceleration, supported by extensive particle in cell simulations of a laser pulse that copropagates with a wakefield. The technique can provide the perturbed electron density profile in the laser’s reference frame, averaged over the propagation length, to be accurate within 10%. We discuss the limitations that affect the measurement: small frequency changes, photon trapping, laser displacement, stimulated Raman scattering, and laser beam divergence. By considering these processes, one can determine the optimal parameters of the laser pulse and its propagation length. This new technique allows a characterization of the density perturbation within a plasma wakefield accelerator.

  14. Compact and tunable focusing device for plasma wakefield acceleration

    Science.gov (United States)

    Pompili, R.; Anania, M. P.; Chiadroni, E.; Cianchi, A.; Ferrario, M.; Lollo, V.; Notargiacomo, A.; Picardi, L.; Ronsivalle, C.; Rosenzweig, J. B.; Shpakov, V.; Vannozzi, A.

    2018-03-01

    Plasma wakefield acceleration, either driven by ultra-short laser pulses or electron bunches, represents one of the most promising techniques able to overcome the limits of conventional RF technology and allows the development of compact accelerators. In the particle beam-driven scenario, ultra-short bunches with tiny spot sizes are required to enhance the accelerating gradient and preserve the emittance and energy spread of the accelerated bunch. To achieve such tight transverse beam sizes, a focusing system with short focal length is mandatory. Here we discuss the development of a compact and tunable system consisting of three small-bore permanent-magnet quadrupoles with 520 T/m field gradient. The device has been designed in view of the plasma acceleration experiments planned at the SPARC_LAB test-facility. Being the field gradient fixed, the focusing is adjusted by tuning the relative position of the three magnets with nanometer resolution. Details about its magnetic design, beam-dynamics simulations, and preliminary results are examined in the paper.

  15. Experimental results of laser wakefield acceleration using a femtosecond terawatt laser pulse

    International Nuclear Information System (INIS)

    Kando, Masaki; Ahn, Hyeyoung; Dewa, Hideki

    1999-01-01

    Laser wakefield acceleration (LWA) experiments have been carried out in an underdense plasma driven by a 2 TW, 90 fs laser pulse synchronized with a 17 MeV RF linac electron injector at 10 Hz. Around optimum plasma densities for LWA, we have observed electrons accelerated to 35 MeV. Wakefield excitation has been confirmed by measuring the electron density oscillation with a frequency domain interferometer. At plasma densities higher than the optimum density, we have also observed high energy electrons over 100 MeV up to 200 MeV. (author)

  16. Plasma Wakefield Accelerated Beams for Demonstration of FEL Gain at FLASHForward

    OpenAIRE

    Niknejadi, Pardis; Aschikhin, Alexander; Hu, Zhanghu; Karstensen, Sven; Knetsch, Alexander; Kononenko, Olena; Libov, Vladyslav; Ludwig, Kai; Martinez de la Ossa, Alberto; Marutzky, Frank; Mehrling, Timon; Osterhoff, Jens; Behrens, Christopher; Palmer, Charlotte; Poder, Kristjan

    2017-01-01

    FLASHForward is the Future-ORiented Wakefield Accelerator Research and Development project at the DESY free-electron laser (FEL) facility FLASH. It aims to produce high-quality, GeV-energy electron beams over a plasma cell of a few centimeters. The plasma is created by means of a 25 TW Ti:Sapphire laser system. The plasma wakefield will be driven by high-current-density electron beams extracted from the FLASH accelerator. The project focuses on the advancement of plasma-based particle acceler...

  17. Short-range wakefields generated in the blowout regime of plasma-wakefield acceleration

    Science.gov (United States)

    Stupakov, G.

    2018-04-01

    In the past, calculation of wakefields generated by an electron bunch propagating in a plasma has been carried out in linear approximation, where the plasma perturbation can be assumed small and plasma equations of motion linearized. This approximation breaks down in the blowout regime where a high-density electron driver expels plasma electrons from its path and creates a cavity void of electrons in its wake. In this paper, we develop a technique that allows us to calculate short-range longitudinal and transverse wakes generated by a witness bunch being accelerated inside the cavity. Our results can be used for studies of the beam loading and the hosing instability of the witness bunch in plasma-wakefield and laser-wakefield acceleration.

  18. First results of the plasma wakefield acceleration experiment at PITZ

    International Nuclear Information System (INIS)

    Lishilin, O.; Gross, M.; Brinkmann, R.; Engel, J.; Grüner, F.; Koss, G.; Krasilnikov, M.; Martinez de la Ossa, A.; Mehrling, T.; Osterhoff, J.; Pathak, G.; Philipp, S.; Renier, Y.; Richter, D.; Schroeder, C.; Schütze, R.; Stephan, F.

    2016-01-01

    The self-modulation instability of long particle beams was proposed as a new mechanism to produce driver beams for proton driven plasma wakefield acceleration (PWFA). The PWFA experiment at the Photo Injector Test facility at DESY, Zeuthen site (PITZ) was launched to experimentally demonstrate and study the self-modulation of long electron beams in plasma. Key aspects for the experiment are the very flexible photocathode laser system, a plasma cell and well-developed beam diagnostics. In this contribution we report about the plasma cell design, preparatory experiments and the results of the first PWFA experiment at PITZ. - Highlights: • A self-modulation mechanism for producing driver beams for PWFA is proposed. • A proof-of-principle experiment is launched at the Photo Injector Test facility at DESY. • The self-modulation instability occurs in long particle beams passing through plasma. • A heat pipe oven and a laser are used to produce plasma.

  19. Scaling laws of design parameters for plasma wakefield accelerators

    International Nuclear Information System (INIS)

    Uhm, Han S.; Nam, In H.; Suk, Hyyong

    2012-01-01

    Simple scaling laws for the design parameters of plasma wakefield accelerators were obtained using a theoretical model, which were confirmed via particle simulation studies. It was found that the acceleration length was given by Δx=0.804λ p /(1−β g ), where λ p is the plasma wavelength and β g c the propagation velocity of the ion cavity. The acceleration energy can also be given by ΔE=(γ m −1)mc 2 =2.645mc 2 /(1−β g ), where m is the electron rest mass. As expected, the acceleration length and energy increase drastically as β g approached unity. These simple scaling laws can be very instrumental in the design of better-performing plasma wakefield accelerators. -- Highlights: ► Simple scaling laws for the design parameters of laser wakefield accelerators were obtained using a theoretical model. ► The scaling laws for acceleration length and acceleration energy were compared with particle-in-cell simulation results. ► The acceleration length and the energy increase drastically as β g approaches unity. ► These simple scaling laws can be very instrumental in the design of laser wakefield accelerators.

  20. Preformed transient gas channels for laser wakefield particle acceleration

    International Nuclear Information System (INIS)

    Wood, W.M.

    1994-01-01

    Acceleration of electrons by laser-driven plasma wake fields is limited by the range over which a laser pulse can maintain its intensity. This distance is typically given by the Rayleigh range for the focused laser beam, usually on the order of 0.1 mm to 1 mm. For practical particle acceleration, interaction distances on the order of centimeters are required. Therefore, some means of guiding high intensity laser pulses is necessary. Light intensities on the order of a few times 10 17 W/cm 2 are required for laser wakefield acceleration schemes using near IR radiation. Gas densities on the order of or greater than 10 17 cm -3 are also needed. Laser-atom interaction studies in this density and intensity regime are generally limited by the concomitant problems in beam propagation introduced by the creation of a plasma. In addition to the interaction distance limit imposed by the Rayleigh range, defocusing of the high intensity laser pulse further limits the peak intensity which can be achieved. To solve the problem of beam propagation limitations in laser-plasma wakefield experiments, two potential methods for creating transient propagation channels in gaseous targets are investigated. The first involves creation of a charge-neutral channel in a gas by an initial laser pulse, which then is ionized by a second, ultrashort, high-intensity pulse to create a waveguide. The second method involves the ionization of a gas column by an ultrashort pulse; a transient waveguide is formed by the subsequent expansion of the heated plasma into the neutral gas

  1. Laser wakefield accelerator based light sources: potential applications and requirements

    Energy Technology Data Exchange (ETDEWEB)

    Albert, F. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States). NIF and Photon Sciences; Thomas, A. G. [Univ. of Michigan, Ann Arbor, MI (United States). Dept. of Nuclear Engineering and Radiological Sciences; Mangles, S. P.D. [Imperial College, London (United Kingdom). Blackett Lab.; Banerjee, S. [Univ. of Nebraska, Lincoln, NE (United States); Corde, S. [SLAC National Accelerator Lab., Menlo Park, CA (United States); Flacco, A. [ENSTA, CNRS, Ecole Polytechnique, Palaiseau (France); Litos, M. [SLAC National Accelerator Lab., Menlo Park, CA (United States); Neely, D. [Science and Technology Facilities Council (STFC), Oxford (United Kingdom). Rutherford Appleton Lab. (RAL). Central Laser Facility; Viera, J. [Univ. of Lisbon (Portugal). GoLP-Inst. de Plasmas e Fusao Nuclear-Lab. Associado; Najmudin, Z. [Imperial College, London (United Kingdom). Blackett Lab.; Bingham, R. [Science and Technology Facilities Council (STFC), Oxford (United Kingdom). Rutherford Appleton Lab. (RAL). Central Laser Facility; Joshi, C. [Univ. of California, Los Angeles, CA (United States). Dept. of Electrical Engineering; Katsouleas, T. [Duke Univ., Durham, NC (United States). Platt School of Engineering

    2015-01-15

    In this article we review the prospects of laser wakefield accelerators as next generation light sources for applications. This work arose as a result of discussions held at the 2013 Laser Plasma Accelerators Workshop. X-ray phase contrast imaging, X-ray absorption spectroscopy, and nuclear resonance fluorescence are highlighted as potential applications for laser-plasma based light sources. We discuss ongoing and future efforts to improve the properties of radiation from plasma betatron emission and Compton scattering using laser wakefield accelerators for these specific applications.

  2. High quality electron beams from a laser wakefield accelerator

    Energy Technology Data Exchange (ETDEWEB)

    Wiggins, S M; Issac, R C; Welsh, G H; Brunetti, E; Shanks, R P; Anania, M P; Cipiccia, S; Manahan, G G; Aniculaesei, C; Ersfeld, B; Islam, M R; Burgess, R T L; Vieux, G; Jaroszynski, D A [SUPA, Department of Physics, University of Strathclyde, Glasgow (United Kingdom); Gillespie, W A [SUPA, Division of Electronic Engineering and Physics, University of Dundee, Dundee (United Kingdom); MacLeod, A M [School of Computing and Creative Technologies, University of Abertay Dundee, Dundee (United Kingdom); Van der Geer, S B; De Loos, M J, E-mail: m.wiggins@phys.strath.ac.u [Pulsar Physics, Burghstraat 47, 5614 BC Eindhoven (Netherlands)

    2010-12-15

    High quality electron beams have been produced in a laser-plasma accelerator driven by femtosecond laser pulses with a peak power of 26 TW. Electrons are produced with an energy up to 150 MeV from the 2 mm gas jet accelerator and the measured rms relative energy spread is less than 1%. Shot-to-shot stability in the central energy is 3%. Pepper-pot measurements have shown that the normalized transverse emittance is {approx}1{pi} mm mrad while the beam charge is in the range 2-10 pC. The generation of high quality electron beams is understood from simulations accounting for beam loading of the wakefield accelerating structure. Experiments and self-consistent simulations indicate that the beam peak current is several kiloamperes. Efficient transportation of the beam through an undulator is simulated and progress is being made towards the realization of a compact, high peak brilliance free-electron laser operating in the vacuum ultraviolet and soft x-ray wavelength ranges.

  3. Proof on principle experiments of laser wakefield acceleration

    International Nuclear Information System (INIS)

    Nakajima, K.; Kawakubo, T.; Nakanishi, H.

    1994-01-01

    The principle of laser wakefield particle acceleration has been tested by the Nd:glass laser system providing a short pulse with a power of 10 TW and a duration of 1 ps. Electrons accelerated up to 18 MeV/c have been observed by injecting 1 MeV/c electrons emitted from a solid target by an intense laser impact. The accelerating field gradient of 30 GeV/m is inferred. (author)

  4. Wake-field studies on photonic band gap accelerator cavities

    International Nuclear Information System (INIS)

    Li, D.; Kroll, N.; Stanford Linear Accelerator Center, M/S 26, P.O. Box 4349, Stanford, California; Smith, D.R.; Schultz, S.

    1997-01-01

    We have studied the wake-field of several metal Photonic Band Gap (PBG) cavities which consist of either a square or a hexagonal array of metal cylinders, bounded on top and bottom by conducting or superconducting sheets, surrounded by placing microwave absorber at the periphery or by replacing outer rows of metal cylinders with lossy dielectric ones, or by metallic walls. A removed cylinder from the center of the array constitutes a site defect where a localized electromagnetic mode can occur. While both monopole and dipole wake-fields have been studied, we confine our attention here mainly to the dipole case. The dipole wake-field is produced by modes in the propagation bands which tend to fill the entire cavity more or less uniformly and are thus easy to damp selectively. MAFIA time domain simulation of the transverse wake-field has been compared with that of a cylindrical pill-box comparison cavity. Even without damping the wake-field of the metal PBG cavity is substantially smaller than that of the pill-box cavity and may be further reduced by increasing the size of the lattice. By introducing lossy material at the periphery we have been able to produce Q factors for the dipole modes in the 40 to 120 range without significantly degrading the accelerating mode. copyright 1997 American Institute of Physics

  5. A high current, short pulse electron source for wakefield accelerators

    International Nuclear Information System (INIS)

    Ho, Ching-Hung.

    1992-01-01

    Design studies for the generation of a high current, short pulse electron source for the Argonne Wakefield Accelerator are presented. An L-band laser photocathode rf gun cavity is designed using the computer code URMEL to maximize the electric field on the cathode surface for fixed frequency and rf input power. A new technique using a curved incoming laser wavefront to minimize the space charge effect near the photocathode is studied. A preaccelerator with large iris to minimize wakefield effects is used to boost the drive beam to a useful energy of around 20 MeV for wakefield acceleration experiments. Focusing in the photocathode gun and the preaccelerator is accomplished with solenoids. Beam dynamics simulations throughout the preaccelerator are performed using particle simulation codes TBCI-SF and PARMELA. An example providing a useful set of operation parameters for the Argonne Wakefield Accelerator is given. The effects of the sagitta of the curved beam and laser amplitude and timing jitter effects are discussed. Measurement results of low rf power level bench tests and a high power test for the gun cavity are presented and discussed

  6. Demonstration of the hollow channel plasma wakefield accelerator

    Energy Technology Data Exchange (ETDEWEB)

    Gessner, Spencer J.

    2016-09-17

    A plasma wakefield accelerator is a device that converts the energy of a relativistic particle beam into a large-amplitude wave in a plasma. The plasma wave, or wakefield, supports an enormous electricfield that is used to accelerate a trailing particle beam. The plasma wakefield accelerator can therefore be used as a transformer, transferring energy from a high-charge, low-energy particle beam into a high-energy, low-charge particle beam. This technique may lead to a new generation of ultra-compact, high-energy particle accelerators. The past decade has seen enormous progress in the field of plasma wakefield acceleration with experimental demonstrations of the acceleration of electron beams by several gigaelectron-volts. The acceleration of positron beams in plasma is more challenging, but also necessary for the creation of a high-energy electron-positron collider. Part of the challenge is that the plasma responds asymmetrically to electrons and positrons, leading to increased disruption of the positron beam. One solution to this problem, first proposed over twenty years ago, is to use a hollow channel plasma which symmetrizes the response of the plasma to beams of positive and negative charge, making it possible to accelerate positrons in plasma without disruption. In this thesis, we describe the theory relevant to our experiment and derive new results when needed. We discuss the development and implementation of special optical devices used to create long plasma channels. We demonstrate for the first time the generation of meter-scale plasma channels and the acceleration of positron beams therein.

  7. Coaxial two-channel high-gradient dielectric wakefield accelerator

    Directory of Open Access Journals (Sweden)

    G. V. Sotnikov

    2009-06-01

    Full Text Available A new scheme for a dielectric wakefield accelerator is proposed that employs a cylindrical multizone dielectric structure configured as two concentric dielectric tubes with outer and inner vacuum channels for drive and accelerated bunches. Analytical and numerical studies have been carried out for such coaxial dielectric-loaded structures (CDS for high-gradient acceleration. An analytical theory of wakefield excitation by particle bunches in a multizone CDS has been formulated. Numerical calculations are presented for an example of a CDS using dielectric tubes with dielectric permittivity 5.7, having external diameters of 2.121 and 0.179 mm with inner diameters of 2.095 and 0.1 mm. An annular 5 GeV, 6 nC electron bunch with rms length of 0.035 mm energizes a wakefield on the structure axis having an accelerating gradient of ∼600  MeV/m with a transformer ratio ∼8∶1. The period of the accelerating field is ∼0.33  mm. If the width of the drive bunch channel is decreased, it is possible to obtain an accelerating gradient of >1  GeV/m while keeping the transformer ratio approximately the same. Full numerical simulations using a particle-in-cell code have confirmed results of the linear theory and furthermore have shown the important influence of the quenching wave that restricts the region of the wakefield to within several periods following the drive bunch. Numerical simulations for another example have shown nearly stable transport of drive and accelerated bunches through the CDS, using a short train of drive bunches.

  8. Optically controlled seeding of Raman forward scattering and injection of electrons in a self-modulated laser-wakefield accelerator

    International Nuclear Information System (INIS)

    Chen, W.-T.; Chien, T.-Y.; Lee, C.-H.; Lin, J.-Y.; Wang, J.; Chen, S.-Y.

    2004-01-01

    Optical seeding of plasma waves and the injection of electrons are key issues in self-modulated laser-wakefield accelerators. By implementing a copropagating laser prepulse with proper timing, we are able to control the growth of Raman forward scattering and the production of accelerated electrons. The dependence of the Raman intensity on prepulse timing indicates that the seeding of Raman forward scattering is dominated by the ionization-induced wakefield, and the dependence of the divergence and number of accelerated electrons further reveals that the stimulated Raman backward scattering of the prepulse plays the essential role of injecting hot electrons into the fast plasma wave driven by the main pulse

  9. Supersonic jets of hydrogen and helium for laser wakefield acceleration

    CERN Document Server

    Svensson, K.; Wojda, F.; Senje, L.; Burza, M.; Aurand, B.; Genoud, G.; Persson, A.; Wahlström, C.-G.; Lundh, O.

    2016-01-01

    The properties of laser wakefield accelerated electrons in supersonic gas flows of hydrogen and helium are investigated. At identical backing pressure, we find that electron beams emerging from helium show large variations in their spectral and spatial distributions, whereas electron beams accelerated in hydrogen plasmas show a higher degree of reproducibility. In an experimental investigation of the relation between neutral gas density and backing pressure, it is found that the resulting number density for helium is ∼30% higher than for hydrogen at the same backing pressure. The observed differences in electron beam properties between the two gases can thus be explained by differences in plasma electron density. This interpretation is verified by repeating the laser wakefield acceleration experiment using similar plasma electron densities for the two gases, which then yielded electron beams with similar properties.

  10. A preliminary design of the collinear dielectric wakefield accelerator

    Energy Technology Data Exchange (ETDEWEB)

    Zholents, A.; Gai, W.; Doran, S.; Lindberg, R.; Power, J.G.; Strelnikov, N.; Sun, Y.; Trakhtenberg, E.; Vasserman, I. [ANL, Argonne, IL 60439 (United States); Jing, C.; Kanareykin, A.; Li, Y. [Euclid Techlabs LLC, Solon, OH 44139 (United States); Gao, Q. [Tsinghua University, Beijing (China); Shchegolkov, D.Y.; Simakov, E.I. [LANL, Los Alamos, NM 87545 (United States)

    2016-09-01

    A preliminary design of the multi-meter long collinear dielectric wakefield accelerator that achieves a highly efficient transfer of the drive bunch energy to the wakefields and to the witness bunch is considered. It is made from ~0.5 m long accelerator modules containing a vacuum chamber with dielectric-lined walls, a quadrupole wiggler, an rf coupler, and BPM assembly. The single bunch breakup instability is a major limiting factor for accelerator efficiency, and the BNS damping is applied to obtain the stable multi-meter long propagation of a drive bunch. Numerical simulations using a 6D particle tracking computer code are performed and tolerances to various errors are defined.

  11. Supersonic jets of hydrogen and helium for laser wakefield acceleration

    Directory of Open Access Journals (Sweden)

    K. Svensson

    2016-05-01

    Full Text Available The properties of laser wakefield accelerated electrons in supersonic gas flows of hydrogen and helium are investigated. At identical backing pressure, we find that electron beams emerging from helium show large variations in their spectral and spatial distributions, whereas electron beams accelerated in hydrogen plasmas show a higher degree of reproducibility. In an experimental investigation of the relation between neutral gas density and backing pressure, it is found that the resulting number density for helium is ∼30% higher than for hydrogen at the same backing pressure. The observed differences in electron beam properties between the two gases can thus be explained by differences in plasma electron density. This interpretation is verified by repeating the laser wakefield acceleration experiment using similar plasma electron densities for the two gases, which then yielded electron beams with similar properties.

  12. Optimization of a train of bunches for plasma wakefield acceleration

    Energy Technology Data Exchange (ETDEWEB)

    Martorelli, Roberto

    2016-05-10

    Particle accelerators are a fundamental instrument for the understanding of fundamental mechanism in nature. The need of always higher energies for the particle beams requires a huge increase of the sizes of the accelerators using the actual technology. Moreover the highest energies are achieved nowadays by circular colliders, not perfectly suitable for acceleration of electrons and positrons due to the radiation losses. In order to overcome this problem a new branch of physics studying alternative technique for particle acceleration has been developed. Among the various alternatives a promising one is the plasma wakefield acceleration (PWFA), in which a driver bunch interacts with a cold background plasma, exciting a plasma wave. The electric field of the plasma wave is then used for the acceleration of a second bunch. Such a mechanism allows to reach fields strength far beyond currently available, limited by the dielectric strength of the material. Among the different driver configurations, a promising one is the use of a modulated beam, namely a train of bunches, that provides a coherent interference among the electric fields generated by the single bunches. Such mechanism is subjected to a renewed interest in view of the forthcoming AWAKE experiment at CERN in which the long proton beam produced at the SPS facility is used as a driver. This possibility is achieved thanks to the onset of the self-modulation instability that modulates the long beam in a train of approximately 100 bunches. In order to accelerate the witness bunch to high energies is necessary on the other hand an efficient exchange of energy from the driver to the accelerated bunch, as well as a long duration of the driver so that can propagates for kilometers. This thesis deals with this two last aspects. The aim of this work is to provide an optimization for the modulated driver in order to improve specific features of the PWFA. This work shows the possibility to achieve an improved efficiency

  13. Control of electron injection and acceleration in laser-wakefield accelerators

    International Nuclear Information System (INIS)

    Guillaume, E.

    2015-01-01

    Laser-plasma accelerators provide a promising compact alternative to conventional accelerators. Plasma waves with extremely strong electric fields are generated when a high intensity laser is focused into an underdense gas target. Electrons that are trapped in these laser-driven plasma waves can be accelerated up to energies of a few GeVs. Despite their great potential, laser-wakefield accelerators face some issues, regarding notably the stability and reproducibility of the beam when electrons are injected in the accelerating structure. In this manuscript, different techniques of electron injection are presented and compared, notably injection in a sharp density gradient and ionization injection. It is shown that combining these two methods allows for the generation of stable and tunable electron beams. We have also studied a way to manipulate the electron bunch in the phase-space in order to accelerate the bunch beyond the dephasing limit. Such a technique was used with quasi-monoenergetic electron beams to enhance their energy. Moreover, the origin of the evolution of the angular momentum of electrons observed experimentally was investigated. Finally, we demonstrated experimentally a new method - the laser-plasma lens - to strongly reduce the divergence of the electron beam. This laser-plasma lens consists of a second gas jet placed at the exit of the accelerator. The laser pulse drives a wakefield in this second jet whose focusing forces take advantage to reduce the divergence of the trailing electron bunch. A simple analytical model describing the principle is presented, underlining the major importance of the second jet length, density and distance from the first jet. Experimental demonstration of the laser-plasma lens shows a divergence reduction by a factor of 2.6 for electrons up to 300 MeV, in accordance with the model predictions

  14. Radiation pressure injection in laser-wakefield acceleration

    Science.gov (United States)

    Liu, Y. L.; Kuramitsu, Y.; Isayama, S.; Chen, S. H.

    2018-01-01

    We investigated the injection of electrons in laser-wakefield acceleration induced by a self-modulated laser pulse by a two dimensional particle-in-cell simulation. The localized electric fields and magnetic fields are excited by the counter-streaming flows on the surface of the ion bubble, owing to the Weibel or two stream like instability. The electrons are injected into the ion bubble from the sides of it and then accelerated by the wakefield. Contrary to the conventional wave breaking model, the injection of monoenergetic electrons are mainly caused by the electromagnetic process. A simple model was proposed to address the instability, and the growth rate was verified numerically and theoretically.

  15. A proof of principle experiment of laser wakefield accelerator

    International Nuclear Information System (INIS)

    Nakajima, K.; Enomoto, A.; Nakanishi, H.; Ogata, A.; Kato, Y.; Kitagawa, Y.; Mima, K.; Shiraga, H.; Yamakawa, K.; Downer, M.; Horton, W.; Newberger, B.; Tajima, T.

    1992-01-01

    Ultrashort super-intense lasers allow us to test a principle of the laser wakefield particle acceleration. The peak power of 30 TW and the pulse width of 1 ps produced by the Nd:glass laser system is capable of creating a highly-ionized plasma of a moderate density gas in an ultrafast time scale and generating a large amplitude plasma wave with the accelerating gradient of 2.5 GeV/m. Particle acceleration can be demonstrated by injecting a few MeV electrons emitted from a solid target by intense laser irradiation. (Author) 2 figs., 5 refs

  16. Radio-isotope production using laser Wakefield accelerators

    International Nuclear Information System (INIS)

    Leemans, W.P.; Rodgers, D.; Catravas, P.E.; Geddes, C.G.R.; Fubiani, G.; Toth, C.; Esarey, E.; Shadwick, B.A.; Donahue, R.; Smith, A.; Reitsma, A.

    2001-01-01

    A 10 Hz, 10 TW solid state laser system has been used to produce electron beams suitable for radio-isotope production. The laser beam was focused using a 30 cm focal length f/6 off-axis parabola on a gas plume produced by a high pressure pulsed gas jet. Electrons were trapped and accelerated by high gradient wakefields excited in the ionized gas through the self-modulated laser wakefield instability. The electron beam was measured to contain excesses of 5 nC/bunch. A composite Pb/Cu target was used to convert the electron beam into gamma rays which subsequently produced radio-isotopes through (gamma, n) reactions. Isotope identification through gamma-ray spectroscopy and half-life time measurements demonstrated that Cu 61 was produced which indicates that 20-25 MeV gamma rays were produced, and hence electrons with energies greater than 25-30 MeV. The production of high energy electrons was independently confirmed using a bending magnet spectrometer. The measured spectra had an exponential distribution with a 3 MeV width. The amount of activation was on the order of 2.5 uCi after 3 hours of operation at 1 Hz. Future experiments will aim at increasing this yield by post-accelerating the electron beam using a channel guided laser wakefield accelerator

  17. Laser wakefield electron acceleration. A novel approach employing supersonic microjets and few-cycle laser pulses

    International Nuclear Information System (INIS)

    Schmid, Karl

    2011-01-01

    This thesis covers the few-cycle laser-driven acceleration of electrons in a laser-generated plasma. This process, known as laser wakefield acceleration (LWFA), relies on strongly driven plasma waves for the generation of accelerating gradients in the vicinity of several 100 GV/m, a value four orders of magnitude larger than that attainable by conventional accelerators. This thesis demonstrates that laser pulses with an ultrashort duration of 8 fs and a peak power of 6 TW allow the production of electron energies up to 50 MeV via LWFA. The special properties of laser accelerated electron pulses, namely the ultrashort pulse duration, the high brilliance, and the high charge density, open up new possibilities in many applications of these electron beams. (orig.)

  18. Accurate modeling of the hose instability in plasma wakefield accelerators

    Science.gov (United States)

    Mehrling, T. J.; Benedetti, C.; Schroeder, C. B.; Martinez de la Ossa, A.; Osterhoff, J.; Esarey, E.; Leemans, W. P.

    2018-05-01

    Hosing is a major challenge for the applicability of plasma wakefield accelerators and its modeling is therefore of fundamental importance to facilitate future stable and compact plasma-based particle accelerators. In this contribution, we present a new model for the evolution of the plasma centroid, which enables the accurate investigation of the hose instability in the nonlinear blowout regime. It paves the road for more precise and comprehensive studies of hosing, e.g., with drive and witness beams, which were not possible with previous models.

  19. Multi-stage wake-field accelerator

    International Nuclear Information System (INIS)

    Gai, Wei.

    1989-01-01

    In this paper we propose a multi-stage wake field acceleration scheme to overcome the low transformer ratio problem and still provide high accelerating gradients. The idea is very simple. We use a train of several electron bunches from a linear accelerator (main linac) with well defined separations between the bunches (tens of ns) to drive wake field devices. Here we have made the assumption that the wake field devices are available, whether plasma, iris-loaded metallic or dielectric wake field structures. 10 refs

  20. Laser wakefield acceleration using wire produced double density ramps

    Directory of Open Access Journals (Sweden)

    M. Burza

    2013-01-01

    Full Text Available A novel approach to implement and control electron injection into the accelerating phase of a laser wakefield accelerator is presented. It utilizes a wire, which is introduced into the flow of a supersonic gas jet creating shock waves and three regions of differing plasma electron density. If tailored appropriately, the laser plasma interaction takes place in three stages: Laser self-compression, electron injection, and acceleration in the second plasma wave period. Compared to self-injection by wave breaking of a nonlinear plasma wave in a constant density plasma, this scheme increases beam charge by up to 1 order of magnitude in the quasimonoenergetic regime. Electron acceleration in the second plasma wave period reduces electron beam divergence by ≈25%, and the localized injection at the density downramps results in spectra with less than a few percent relative spread.

  1. Optical plasma torch electron bunch generation in plasma wakefield accelerators

    Directory of Open Access Journals (Sweden)

    G. Wittig

    2015-08-01

    Full Text Available A novel, flexible method of witness electron bunch generation in plasma wakefield accelerators is described. A quasistationary plasma region is ignited by a focused laser pulse prior to the arrival of the plasma wave. This localized, shapeable optical plasma torch causes a strong distortion of the plasma blowout during passage of the electron driver bunch, leading to collective alteration of plasma electron trajectories and to controlled injection. This optically steered injection is more flexible and faster when compared to hydrodynamically controlled gas density transition injection methods.

  2. Multi-gigaelectronvolt acceleration of positrons in a self-loaded plasma wakefield

    Energy Technology Data Exchange (ETDEWEB)

    Corde, Sebastien [SLAC National Accelerator Lab., Menlo Park, CA (United States); Adli, E. [SLAC National Accelerator Lab., Menlo Park, CA (United States); Univ. of Oslo, Oslo (Norway); Allen, J. M. [SLAC National Accelerator Lab., Menlo Park, CA (United States); An, W. [Univ. of California, Los Angeles, CA (United States); Clarke, C. I. [SLAC National Accelerator Lab., Menlo Park, CA (United States); Delahaye, J. P. [SLAC National Accelerator Lab., Menlo Park, CA (United States); Frederico, J. [SLAC National Accelerator Lab., Menlo Park, CA (United States); Gessner, S. [SLAC National Accelerator Lab., Menlo Park, CA (United States); Green, S. Z. [SLAC National Accelerator Lab., Menlo Park, CA (United States); Hogan, M. J. [SLAC National Accelerator Lab., Menlo Park, CA (United States); Joshi, C. [Univ. of California, Los Angeles, CA (United States); Lipkowitz, N. [SLAC National Accelerator Lab., Menlo Park, CA (United States); Litos, M. [SLAC National Accelerator Lab., Menlo Park, CA (United States); Lu, W. [Tsinghua Univ., Beijing (China); Marsh, K. A. [Univ. of California, Los Angeles, CA (United States); Mori, W. B. [Univ. of California, Los Angeles, CA (United States); Schmeltz, M. [SLAC National Accelerator Lab., Menlo Park, CA (United States); Vafaei-Najafabadi, N. [Univ. of California, Los Angeles, CA (United States); Walz, D. [SLAC National Accelerator Lab., Menlo Park, CA (United States); Yakimenko, V. [SLAC National Accelerator Lab., Menlo Park, CA (United States); Yocky, G. [SLAC National Accelerator Lab., Menlo Park, CA (United States); Clayton, C. E. [Univ. of California, Los Angeles, CA (United States)

    2015-08-26

    New accelerator concepts must be developed to make future particle colliders more compact and affordable. The Plasma Wakefield Accelerator (PWFA) is one such concept, where the electric field of a plasma wake excited by a charged-particle bunch is used to accelerate a trailing bunch of particles. To apply plasma acceleration to particle colliders, it is imperative that both the electrons and their antimatter counterpart, the positrons, are efficiently accelerated at high fields using plasmas1. While substantial progress has recently been reported on high-field, high-efficiency acceleration of electrons in a PWFA powered by an electron bunch 2, such an electron-driven wake is unsuitable for the acceleration and focusing of a positron bunch. Here we demonstrate a new regime of PWFA where particles in the front of a single positron bunch transfer their energy to a substantial number of those in the rear of the same bunch by exciting a wakefield in the plasma. In the process, the accelerating field is altered – self-loaded – so that about a billion positrons gain five gigaelectronvolts (GeV) of energy with a narrow energy spread in a distance of just 1.3 meters. They extract about 30% of the wake’s energy and form a spectrally distinct bunch with as low as a 1.8% r.m.s. energy spread. This demonstrated ability of positron-driven plasma wakes to efficiently accelerate a significant number of positrons with a small energy spread may overcome the long-standing challenge of positron acceleration in plasma-based accelerators.

  3. Increasing the transformer ratio at the Argonne wakefield accelerator

    International Nuclear Information System (INIS)

    Power, J.G.; Conde, M.; Liu, W.; Yusof, Z.; Gai, W.; Jing, C.; Kanareykin, A.

    2011-01-01

    The transformer ratio is defined as the ratio of the maximum energy gain of the witness bunch to the maximum energy loss experienced by the drive bunch (or a bunch within a multidrive bunch train). This plays an important role in the collinear wakefield acceleration scheme. A high transformer ratio is desirable since it leads to a higher overall efficiency under similar conditions (e.g. the same beam loading, the same structure, etc.). One technique to enhance the transformer ratio beyond the ordinary limit of 2 is to use a ramped bunch train. The first experimental demonstration observed a transformer ratio only marginally above 2 due to the mismatch between the drive microbunch length and the frequency of the accelerating structure (C. Jing, A. Kanareykin, J. Power, M. Conde, Z. Yusof, P. Schoessow, and W. Gai, Phys. Rev. Lett. 98, 144801 (2007)). Recently, we revisited this experiment with an optimized microbunch length using a UV laser stacking technique at the Argonne Wakefield Accelerator facility and measured a transformer ratio of 3.4. Measurements and data analysis from these experiments are presented in detail.

  4. Characterisation of electron beams from laser-driven particle accelerators

    Energy Technology Data Exchange (ETDEWEB)

    Brunetti, E.; Manahan, G. G.; Shanks, R. P.; Islam, M. R.; Ersfeld, B.; Anania, M. P.; Cipiccia, S.; Issac, R. C.; Vieux, G.; Welsh, G. H.; Wiggins, S. M.; Jaroszynski, D. A. [Physics Department, University of Strathclyde, Glasgow G4 0NG (United Kingdom)

    2012-12-21

    The development, understanding and application of laser-driven particle accelerators require accurate measurements of the beam properties, in particular emittance, energy spread and bunch length. Here we report measurements and simulations showing that laser wakefield accelerators can produce beams of quality comparable to conventional linear accelerators.

  5. Laser wakefield acceleration with high-power, few-cycle mid-IR lasers

    OpenAIRE

    Papp, Daniel; Wood, Jonathan C.; Gruson, Vincent; Bionta, Mina; Gruse, Jan-Niclas; Cormier, Eric; Najmudin, Zulfikar; Légaré, François; Kamperidis, Christos

    2018-01-01

    The study of laser wakefield electron acceleration (LWFA) using mid-IR laser drivers is a promising path for future laser driven electronaccelerators, when compared to traditional near-IR laser drivers uperating at 0.8-1 {\\mu}m central wavelength ({\\lambda}laser), as the necessary vector potential a_0 for electron injection can be achieved with smaller laser powers due to the linear dependence on {\\lambda}laser. In this work, we perform 2D PIC simulations on LWFA using few-cycle high power (5...

  6. Progress of Laser-Driven Plasma Accelerators

    International Nuclear Information System (INIS)

    Nakajima, Kazuhisa

    2007-01-01

    There is a great interest worldwide in plasma accelerators driven by ultra-intense lasers which make it possible to generate ultra-high gradient acceleration and high quality particle beams in a much more compact size compared with conventional accelerators. A frontier research on laser and plasma accelerators is focused on high energy electron acceleration and ultra-short X-ray and Tera Hertz radiations as their applications. These achievements will provide not only a wide range of sciences with benefits of a table-top accelerator but also a basic science with a tool of ultrahigh energy accelerators probing an unknown extremely microscopic world.Harnessing the recent advance of ultra-intense ultra-short pulse lasers, the worldwide research has made a tremendous breakthrough in demonstrating high-energy high-quality particle beams in a compact scale, so called ''dream beams on a table top'', which represents monoenergetic electron beams from laser wakefield accelerators and GeV acceleration by capillary plasma-channel laser wakefield accelerators. This lecture reviews recent progress of results on laser-driven plasma based accelerator experiments to quest for particle acceleration physics in intense laser-plasma interactions and to present new outlook for the GeV-range high-energy laser plasma accelerators

  7. Theory and measurements of emittance preservation in plasma wakefield acceleration

    Energy Technology Data Exchange (ETDEWEB)

    Frederico, Joel

    2016-12-01

    In this dissertation, we examine the preservation and measurement of emittance in the plasma wakefield acceleration blowout regime. Plasma wakefield acceleration (PWFA) is a revolutionary approach to accelerating charged particles that has been demonstrated to have the potential for gradients orders of magnitude greater than traditional approaches. The application of PWFA to the design of a linear collider will make new high energy physics research possible, but the design parameters must first be shown to be competitive with traditional methods. Emittance preservation is necessary in the design of a linear collider in order to maximize luminosity. We examine the conditions necessary for circular symmetry in the PWFA blowout regime, and demonstrate that current proposals meet these bounds. We also present an application of beam lamentation which describes the process of beam parameter and emittance matching. We show that the emittance growth saturates as a consequence of energy spread in the beam. The initial beam parameters determine the amount of emittance growth, while the contribution of energy spread is negligible. We also present a model for ion motion in the presence of a beam that is much more dense than the plasma. By combining the model of ion motion and emittance growth, we find the emittance growth due to ion motion is minimal in the case of marginal ion motion. In addition, we present a simulation that validates the ion motion model, which is under further development to examine emittance growth of both marginal and pronounced ion motion. Finally, we present a proof-of-concept of an emittance measurement which may enable the analysis of emittance preservation in future PWFA experiments.

  8. Gamma-neutron activation experiments using laser wakefield accelerators

    International Nuclear Information System (INIS)

    Leemans, W.P.; Rodgers, D.; Catravas, P.E.; Geddes, C.G.R.; Fubiani, G.; Esarey, E.; Shadwick, B.A.; Donahue, R.; Smith, A.

    2001-01-01

    Gamma-neutron activation experiments have been performed with relativistic electron beams produced by a laser wakefield accelerator. The electron beams were produced by tightly focusing (spot diameter ≅6 μm) a high power (up to 10 TW), ultra-short (≥50 fs) laser beam from a high repetition rate (10 Hz) Ti:sapphire (0.8 μm) laser system, onto a high density (>10 19 cm -3 ) pulsed gasjet of length ≅1.5 mm. Nuclear activation measurements in lead and copper targets indicate the production of electrons with energy in excess of 25 MeV. This result was confirmed by electron distribution measurements using a bending magnet spectrometer. Measured γ-ray and neutron yields are also found to be in reasonable agreement with simulations using a Monte Carlo transport code

  9. Wakefield damping in a pair of X-band accelerators for linear colliders

    Directory of Open Access Journals (Sweden)

    Roger M. Jones

    2006-10-01

    Full Text Available We consider the means to damp the wakefield left behind ultrarelativistic charges. In particular, we focus on a pair of traveling wave accelerators operating at an X-band frequency of 11.424 GHz. In order to maximize the efficiency of acceleration, in the context of a linear collider, multiple bunches of charged particles are accelerated within a given pulse of the electromagnetic field. The wakefield left behind successive bunches, if left unchecked, can seriously disturb the progress of trailing bunches and can lead to an appreciable dilution in the emittance of the beam. We report on a method to minimize the influence of the wakefield on trailing bunches. This method entails detuning the characteristic mode frequencies which make up the electromagnetic field, damping the wakefield, and interleaving the frequencies of adjacent accelerating structures. Theoretical predictions of the wakefield and modes, based on a circuit model, are compared with experimental measurements of the wakefield conducted within the ASSET facility at SLAC. Very good agreement is obtained between theory and experiment and this allows us to have some confidence in designing the damping of wakefields in a future linear collider consisting of several thousand of these accelerating structures.

  10. Wakefield Damping in a Pair of X-Band Accelerators for Linear Colliders

    International Nuclear Information System (INIS)

    Jones, R.M.; Adolphsen, C.E.; Wang, J.W.; Li, Z.; SLAC

    2006-01-01

    We consider means to damp the wake-field left behind ultra-relativistic charges. In particular, we focus on a pair of travelling wave accelerators operating at an X-band frequency of 11.424 GHz. In order to maximize the efficiency of acceleration, in the context of a linear collider, multiple bunches of charged particles are accelerated within a given pulse of the electromagnetic field. The wake-field left behind successive bunches, if left unchecked, can seriously disturb the progress of trailing bunches and can lead to an appreciable dilution in the emittance of the beam. We report on a method to minimize the influence of the wake-field on trailing bunches. This method entails detuning the characteristic mode frequencies which make-up the electromagnetic field, damping the wake-field, and interleaving the frequencies of adjacent accelerating structures. Theoretical predictions of the wake-field and modes, based on a circuit model, are compared with experimental measurements of the wake-field conducted within the ASSET facility at SLAC. Very good agreement is obtained between theory and experiment and this allows us to have some confidence in designing the damping of wake-fields in a future linear collider consisting of several thousand of these accelerating structures

  11. Localization of ionization-induced trapping in a laser wakefield accelerator using a density down-ramp

    CERN Document Server

    Hansson, M.; Ekerfelt, H.; Aurand, B.; Gallardo Ganzalez, I.; Desforges, F. G.; Davoine, X.; Maitrallain, A.; Reymond, S.; Monot, P.; Persson, A.; Dobosz Dufrénoy S.; Wahlström C-G.; Cros, B.; Lundh, O.

    2016-01-01

    We report on a study on controlled trapping of electrons, by field ionization of nitrogen ions, in laser wakefield accelerators in variable length gas cells. In addition to ionization-induced trapping in the density plateau inside the cells, which results in wide, but stable, electron energy spectra, a regime of ionization-induced trapping localized in the density down-ramp at the exit of the gas cells, is found. The resulting electron energy spectra are peaked, with 10% shot-to-shot fluctuations in peak energy. Ionization-induced trapping of electrons in the density down-ramp is a way to trap and accelerate a large number of electrons, thus improving the efficiency of the laser-driven wakefield acceleration.

  12. Development and characterization of plasma targets for controlled injection of electrons into laser-driven wakefields

    Science.gov (United States)

    Kleinwaechter, Tobias; Goldberg, Lars; Palmer, Charlotte; Schaper, Lucas; Schwinkendorf, Jan-Patrick; Osterhoff, Jens

    2012-10-01

    Laser-driven wakefield acceleration within capillary discharge waveguides has been used to generate high-quality electron bunches with GeV-scale energies. However, owing to fluctuations in laser and plasma conditions in combination with a difficult to control self-injection mechanism in the non-linear wakefield regime these bunches are often not reproducible and can feature large energy spreads. Specialized plasma targets with tailored density profiles offer the possibility to overcome these issues by controlling the injection and acceleration processes. This requires precise manipulation of the longitudinal density profile. Therefore our target concept is based on a capillary structure with multiple gas in- and outlets. Potential target designs are simulated using the fluid code OpenFOAM and those meeting the specified criteria are fabricated using femtosecond-laser machining of structures into sapphire plates. Density profiles are measured over a range of inlet pressures utilizing gas-density profilometry via Raman scattering and pressure calibration with longitudinal interferometry. In combination these allow absolute density mapping. Here we report the preliminary results.

  13. Accelerating field step-up transformer in wake-field accelerators

    International Nuclear Information System (INIS)

    Chojnacki, E.; Gai, W.; Schoessow, P.; Simpson, J.

    1991-01-01

    In the wake-field scheme of particle acceleration, a short, intense drive bunch of electrons passes through a slow-wave structure, leaving behind high rf power in its wake field. The axial accelerating electric field associated with the rf can be quite large, > 100 MeV/m, and is used to accelerate a much less intense ''witness'' beam to eventual energies > 1 TeV. The rf power is deposited predominantly in the fundamental mode of the structure, which, for dielectric-lined waveguide as used at Argonne, is the TM 01 mode. In all likelihood on the field amplitude will be limited only by rf breakdown of the dielectric material, the limit of which is currently unknown in the short time duration, high frequency regime of wake-field acceleration operation. To obtain such strong electric fields with given wake-field rf power, the dimensions of the dielectric-lined waveguide have to be fairly small, OD of the order of a cm and ID of a few mm, and this gives rise to the generation of strong deflection modes with beam misalignment. While a scheme exists to damp such deflection modes on a bunch-to-bunch time scale, head-tail beam deflection could still be a problem and BNS damping as well as FODO focusing are incomplete cures. Presented here are details of a scheme by which the rf power is generated by in a large-diameter wake-field tube, where deflection mode generation by the intense drive beam is tolerable, and then fed into a small-diameter acceleration tube where the less intense witness beam is accelerated by the greatly enhanced axial electric field. The witness beam generates little deflection-mode power itself, even in the small acceleration tube, thus a final high-quality, high-energy electron beam is produced

  14. Automatic Beam Path Analysis of Laser Wakefield Particle Acceleration Data

    Energy Technology Data Exchange (ETDEWEB)

    Rubel, Oliver; Geddes, Cameron G.R.; Cormier-Michel, Estelle; Wu, Kesheng; Prabhat,; Weber, Gunther H.; Ushizima, Daniela M.; Messmer, Peter; Hagen, Hans; Hamann, Bernd; Bethel, E. Wes

    2009-10-19

    Numerical simulations of laser wakefield particle accelerators play a key role in the understanding of the complex acceleration process and in the design of expensive experimental facilities. As the size and complexity of simulation output grows, an increasingly acute challenge is the practical need for computational techniques that aid in scientific knowledge discovery. To that end, we present a set of data-understanding algorithms that work in concert in a pipeline fashion to automatically locate and analyze high energy particle bunches undergoing acceleration in very large simulation datasets. These techniques work cooperatively by first identifying features of interest in individual timesteps, then integrating features across timesteps, and based on the information derived perform analysis of temporally dynamic features. This combination of techniques supports accurate detection of particle beams enabling a deeper level of scientific understanding of physical phenomena than hasbeen possible before. By combining efficient data analysis algorithms and state-of-the-art data management we enable high-performance analysis of extremely large particle datasets in 3D. We demonstrate the usefulness of our methods for a variety of 2D and 3D datasets and discuss the performance of our analysis pipeline.

  15. Low energy spread 100 MeV-1 GeV electron bunches from laser wakefield acceleration at LOASIS

    International Nuclear Information System (INIS)

    Geddes, C.G.R.; Esarey, E.; Michel, P.; Nagler, B.; Nakamura, K.; Plateau, G.R.; Schroeder, C.B.; Shadwick, B.A.; Toth, Cs.; Van Tilborg, J.; Leemans, W.P.; Hooker, S.M.; Gonsalves, A.J.; Michel, E.; Cary, J.R.; Bruhwiler, D.

    2006-01-01

    Experiments at the LOASIS laboratory of LBNL recently demonstrated production of 100 MeV electron beams with low energy spread and low divergence from laser wakefield acceleration. The radiation pressure of a 10 TW laser pulse guided over 10 diffraction ranges by a plasma density channel was used to drive an intense plasma wave (wakefield), producing acceleration gradients on the order of 100 GV/m in a mm-scale channel. Beam energy has now been increased from 100 to 1000 MeV by using a cm-scale guiding channel at lower density, driven by a 40TW laser, demonstrating the anticipated scaling to higher beam energies. Particle simulations indicate that the low energy spread beams were produced from self trapped electrons through the interplay of trapping, loading, and dephasing. Other experiments and simulations are also underway to control injection of particles into the wake, and hence improve beam quality and stability further

  16. Plasma Density Tapering for Laser Wakefield Acceleration of Electrons and Protons

    International Nuclear Information System (INIS)

    Ting, A.; Gordon, D.; Kaganovich, D.; Sprangle, P.; Helle, M.; Hafizi, B.

    2010-01-01

    Extended acceleration in a Laser Wakefield Accelerator can be achieved by tailoring the phase velocity of the accelerating plasma wave, either through profiling of the density of the plasma or direct manipulation of the phase velocity. Laser wakefield acceleration has also reached a maturity that proton acceleration by wakefield could be entertained provided we begin with protons that are substantially relativistic, ∼1 GeV. Several plasma density tapering schemes are discussed. The first scheme is called ''bucket jumping'' where the plasma density is abruptly returned to the original density after a conventional tapering to move the accelerating particles to a neighboring wakefield period (bucket). The second scheme is designed to specifically accelerate low energy protons by generating a nonlinear wakefield in a plasma region with close to critical density. The third scheme creates a periodic variation in the phase velocity by beating two intense laser beams with laser frequency difference equal to the plasma frequency. Discussions and case examples with simulations are presented where substantial acceleration of electrons or protons could be obtained.

  17. Acceleration of a trailing positron bunch in a plasma wakefield accelerator

    International Nuclear Information System (INIS)

    Doche, A.; Beekman, C.; Corde, S.

    2017-01-01

    High gradients of energy gain and high energy efficiency are necessary parameters for compact, cost-efficient and high-energy particle colliders. Plasma Wakefield Accelerators (PWFA) offer both, making them attractive candidates for next-generation colliders. Here in these devices, a charge-density plasma wave is excited by an ultra-relativistic bunch of charged particles (the drive bunch). The energy in the wave can be extracted by a second bunch (the trailing bunch), as this bunch propagates in the wake of the drive bunch. While a trailing electron bunch was accelerated in a plasma with more than a gigaelectronvolt of energy gain, accelerating a trailing positron bunch in a plasma is much more challenging as the plasma response can be asymmetric for positrons and electrons. We report the demonstration of the energy gain by a distinct trailing positron bunch in a plasma wakefield accelerator, spanning nonlinear to quasi-linear regimes, and unveil the beam loading process underlying the accelerator energy efficiency. A positron bunch is used to drive the plasma wake in the experiment, though the quasi-linear wake structure could as easily be formed by an electron bunch or a laser driver. Finally, the results thus mark the first acceleration of a distinct positron bunch in plasma-based particle accelerators.

  18. Properties of Trapped Electron Bunches in a Plasma Wakefield Accelerator

    Energy Technology Data Exchange (ETDEWEB)

    Kirby, Neil; /SLAC

    2009-10-30

    Plasma-based accelerators use the propagation of a drive bunch through plasma to create large electric fields. Recent plasma wakefield accelerator (PWFA) experiments, carried out at the Stanford Linear Accelerator Center (SLAC), successfully doubled the energy for some of the 42 GeV drive bunch electrons in less than a meter; this feat would have required 3 km in the SLAC linac. This dissertation covers one phenomenon associated with the PWFA, electron trapping. Recently it was shown that PWFAs, operated in the nonlinear bubble regime, can trap electrons that are released by ionization inside the plasma wake and accelerate them to high energies. These trapped electrons occupy and can degrade the accelerating portion of the plasma wake, so it is important to understand their origins and how to remove them. Here, the onset of electron trapping is connected to the drive bunch properties. Additionally, the trapped electron bunches are observed with normalized transverse emittance divided by peak current, {epsilon}{sub N,x}/I{sub t}, below the level of 0.2 {micro}m/kA. A theoretical model of the trapped electron emittance, developed here, indicates that the emittance scales inversely with the square root of the plasma density in the non-linear 'bubble' regime of the PWFA. This model and simulations indicate that the observed values of {epsilon}{sub N,x}/I{sub t} result from multi-GeV trapped electron bunches with emittances of a few {micro}m and multi-kA peak currents. These properties make the trapped electrons a possible particle source for next generation light sources. This dissertation is organized as follows. The first chapter is an overview of the PWFA, which includes a review of the accelerating and focusing fields and a survey of the remaining issues for a plasma-based particle collider. Then, the second chapter examines the physics of electron trapping in the PWFA. The third chapter uses theory and simulations to analyze the properties of the trapped

  19. Beam Transfer Line Design for a Plasma Wakefield Acceleration Experiment (AWAKE) at the CERN SPS

    CERN Document Server

    Bracco, C; Brethoux, D; Clerc, V; Goddard, B; Gschwendtner, E; Jensen, L K; Kosmicki, A; Le Godec, G; Meddahi, M; Muggli, P; Mutin, C; Osborne, O; Papastergiou, K; Pardons, A; Velotti, F M; Vincke, H

    2013-01-01

    The world’s first proton driven plasma wakefield acceleration experiment (AWAKE) is presently being studied at CERN. The experimentwill use a high energy proton beam extracted from the SPS as driver. Two possible locations for installing the AWAKE facility were considered: the West Area and the CNGS beam line. The previous transfer line from the SPS to the West Area was completely dismantled in 2005 and would need to be fully re-designed and re-built. For this option, geometric constraints for radiation protection reasons would limit the maximum proton beam energy to 300 GeV. The existing CNGS line could be used by applying only minor changes to the lattice for the final focusing and the interface between the proton beam and the laser, required for plasma ionisation and bunch-modulation seeding. The beam line design studies performed for the two options are presented.

  20. Modeling laser wakefield accelerators in a Lorentz boosted frame

    Energy Technology Data Exchange (ETDEWEB)

    Vay, J.-L.; Geddes, C.G.R.; Cormier-Michel, E.; Grote, D.P.

    2010-09-15

    Modeling of laser-plasma wakefield accelerators in an optimal frame of reference [1] is shown to produce orders of magnitude speed-up of calculations from first principles. Obtaining these speedups requires mitigation of a high frequency instability that otherwise limits effectiveness in addition to solutions for handling data input and output in a relativistically boosted frame of reference. The observed high-frequency instability is mitigated using methods including an electromagnetic solver with tunable coefficients, its extension to accomodate Perfectly Matched Layers and Friedman's damping algorithms, as well as an efficient large bandwidth digital filter. It is shown that choosing theframe of the wake as the frame of reference allows for higher levels of filtering and damping than is possible in other frames for the same accuracy. Detailed testing also revealed serendipitously the existence of a singular time step at which the instability level is minimized, independently of numerical dispersion, thus indicating that the observed instability may not be due primarily to Numerical Cerenkov as has been conjectured. The techniques developed for Cerenkov mitigation prove nonetheless to be very efficient at controlling the instability. Using these techniques, agreement at the percentage level is demonstrated between simulations using different frames of reference, with speedups reaching two orders of magnitude for a 0.1 GeV class stages. The method then allows direct and efficient full-scale modeling of deeply depleted laser-plasma stages of 10 GeV-1 TeV for the first time, verifying the scaling of plasma accelerators to very high energies. Over 4, 5 and 6 orders of magnitude speedup is achieved for the modeling of 10 GeV, 100 GeV and 1 TeV class stages, respectively.

  1. Modeling laser wakefield accelerators in a Lorentz boosted frame

    Energy Technology Data Exchange (ETDEWEB)

    Vay, J.-L.; Geddes, C.G.R.; Cormier-Michel, E.; Grotec, D. P.

    2010-06-15

    Modeling of laser-plasma wakefield accelerators in an optimal frame of reference is shown to produce orders of magnitude speed-up of calculations from first principles. Obtaining these speedups requires mitigation of a high-frequency instability that otherwise limits effectiveness in addition to solutions for handling data input and output in a relativistically boosted frame of reference. The observed high-frequency instability is mitigated using methods including an electromagnetic solver with tunable coefficients, its extension to accomodate Perfectly Matched Layers and Friedman's damping algorithms, as well as an efficient large bandwidth digital filter. It is shown that choosing the frame of the wake as the frame of reference allows for higher levels of filtering and damping than is possible in other frames for the same accuracy. Detailed testing also revealed serendipitously the existence of a singular time step at which the instability level is minimized, independently of numerical dispersion, thus indicating that the observed instability may not be due primarily to Numerical Cerenkov as has been conjectured. The techniques developed for Cerenkov mitigation prove nonetheless to be very efficient at controlling the instability. Using these techniques, agreement at the percentage level is demonstrated between simulations using different frames of reference, with speedups reaching two orders of magnitude for a 0.1 GeV class stages. The method then allows direct and efficient full-scale modeling of deeply depleted laser-plasma stages of 10 GeV-1 TeV for the first time, verifying the scaling of plasma accelerators to very high energies. Over 4, 5 and 6 orders of magnitude speedup is achieved for the modeling of 10 GeV, 100 GeV and 1 TeV class stages, respectively.

  2. Modeling laser wakefield accelerators in a Lorentz boosted frame

    International Nuclear Information System (INIS)

    Vay, J.-L.; Geddes, C.G.R.; Cormier-Michel, E.; Grote, D.P.

    2010-01-01

    Modeling of laser-plasma wakefield accelerators in an optimal frame of reference (1) is shown to produce orders of magnitude speed-up of calculations from first principles. Obtaining these speedups requires mitigation of a high frequency instability that otherwise limits effectiveness in addition to solutions for handling data input and output in a relativistically boosted frame of reference. The observed high-frequency instability is mitigated using methods including an electromagnetic solver with tunable coefficients, its extension to accommodate Perfectly Matched Layers and Friedman's damping algorithms, as well as an efficient large bandwidth digital filter. It is shown that choosing the frame of the wake as the frame of reference allows for higher levels of filtering and damping than is possible in other frames for the same accuracy. Detailed testing also revealed serendipitously the existence of a singular time step at which the instability level is minimized, independently of numerical dispersion, thus indicating that the observed instability may not be due primarily to Numerical Cerenkov as has been conjectured. The techniques developed for Cerenkov mitigation prove nonetheless to be very efficient at controlling the instability. Using these techniques, agreement at the percentage level is demonstrated between simulations using different frames of reference, with speedups reaching two orders of magnitude for a 0.1 GeV class stages. The method then allows direct and efficient full-scale modeling of deeply depleted laser-plasma stages of 10 GeV-1 TeV for the first time, verifying the scaling of plasma accelerators to very high energies. Over 4, 5 and 6 orders of magnitude speedup is achieved for the modeling of 10 GeV, 100 GeV and 1 TeV class stages, respectively.

  3. Self-injection threshold in self-guided laser wakefield accelerators

    Directory of Open Access Journals (Sweden)

    S. P. D. Mangles

    2012-01-01

    Full Text Available A laser pulse traveling through a plasma can excite large amplitude plasma waves that can be used to accelerate relativistic electron beams in a very short distance—a technique called laser wakefield acceleration. Many wakefield acceleration experiments rely on the process of wave breaking, or self-injection, to inject electrons into the wave, while other injection techniques rely on operation without self-injection. We present an experimental study into the parameters, including the pulse energy, focal spot quality, and pulse power, that determine whether or not a wakefield accelerator will self-inject. By taking into account the processes of self-focusing and pulse compression we are able to extend a previously described theoretical model, where the minimum bubble size k_{p}r_{b} required for trapping is not constant but varies slowly with density and find excellent agreement with this model.

  4. Laser driven particle acceleration

    International Nuclear Information System (INIS)

    Faure, J.

    2009-06-01

    This dissertation summarizes the last ten years of research at the Laboratory of Applied Optics on laser-plasma based electron acceleration. The main result consists of the development and study of a relativistic electron source with unique properties: high energy (100-300 MeV) in short distances (few millimeters), mono-energetic, ultra-short (few fs), stable and tunable. The manuscript describes the steps that led to understanding the physics, and then mastering it in order to produce this new electron source. Non linear propagation of the laser pulse in the plasma is first presented, with phenomena such as non linear wakefield excitation, relativistic and ponderomotive self-focusing in the short pulse regime, self-compression. Acceleration and injection of electrons are then reviewed from a theoretical perspective. Experimental demonstrations of self-injection in the bubble regime and then colliding pulse injection are then presented. These experiments were among the first to produce monoenergetic, high quality, stable and tunable electron beams from a laser-plasma accelerator. The last two chapters are dedicated to the characterization of the electron beam using transition radiation and to its applications to gamma radiography and radiotherapy. Finally, the perspectives of this research are presented in the conclusion. Scaling laws are used to determine the parameters that the electron beams will reach using peta-watt laser systems currently under construction. (author)

  5. Experimental and Numerical Investigation of Compact Dielectric Wakefield Accelerators

    Science.gov (United States)

    2016-03-01

    macroparticles. Additionally the laser is chosen to have a transverse rms spot size of σc = 0.8 mm and rms duration of σt = 1 ps. A solenoidal lens is...photocathode laser . . . . . . . . . . 24 3.3 Experimental realization of a linearly-ramped bunch with a multifrequency linac... laser . Our approach toward the development of a compact beam-driven accelerator consists of four main components depicted in Fig. 1. The production of

  6. Observation of laser multiple filamentation process and multiple electron beams acceleration in a laser wakefield accelerator

    International Nuclear Information System (INIS)

    Li, Wentao; Liu, Jiansheng; Wang, Wentao; Chen, Qiang; Zhang, Hui; Tian, Ye; Zhang, Zhijun; Qi, Rong; Wang, Cheng; Leng, Yuxin; Li, Ruxin; Xu, Zhizhan

    2013-01-01

    The multiple filaments formation process in the laser wakefield accelerator (LWFA) was observed by imaging the transmitted laser beam after propagating in the plasma of different density. During propagation, the laser first self-focused into a single filament. After that, it began to defocus with energy spreading in the transverse direction. Two filaments then formed from it and began to propagate independently, moving away from each other. We have also demonstrated that the laser multiple filamentation would lead to the multiple electron beams acceleration in the LWFA via ionization-induced injection scheme. Besides, its influences on the accelerated electron beams were also analyzed both in the single-stage LWFA and cascaded LWFA

  7. The influence of plasma density decreasement by pre-pulse on the laser wakefield acceleration

    Directory of Open Access Journals (Sweden)

    Ke-Gong Dong

    2011-12-01

    Full Text Available In the laser wakefield acceleration, the generation of electron beam is very sensitive to the plasma density. Not only the laser-wakefield interaction, but also the electron trapping and acceleration would be effected by the plasma density. However, the plasma density could be changed in the experiment by different reasons, which will result in the mismatch of parameters arranged initially. Forward Raman scattering spectrum demonstrated that the interaction density was decreased obviously in the experiment, which was verified by the pre-pulse conditions and two-dimensional particle-in-cell simulations. It was demonstrated that the plasma density was very important on the self-evolutions and energy coupling of laser pulse and wakefield, and eventually the energy spectrum of electron beam.

  8. Externally Controlled Injection of Electrons by a Laser Pulse in a Laser Wakefield Electron Accelerator

    CERN Document Server

    Chen Szu Yuan; Chen Wei Ting; Chien, Ting-Yei; Lee, Chau-Hwang; Lin, Jiunn-Yuan; Wang, Jyhpyng

    2005-01-01

    Spatially and temporally localized injection of electrons is a key element for development of plasma-wave electron accelerator. Here we report the demonstration of two different schemes for electron injection in a self-modulated laser wakefield accelerator (SM-LWFA) by using a laser pulse. In the first scheme, by implementing a copropagating laser prepulse with proper timing, we are able to control the growth of Raman forward scattering and the production of accelerated electrons. We found that the stimulated Raman backward scattering of the prepulse plays the essential role of injecting hot electrons into the fast plasma wave driven by the pump pulse. In the second scheme, by using a transient density ramp we achieve self-injection of electrons in a SM-LWFA with spatial localization. The transient density ramp is produced by a prepulse propagating transversely to drill a density depression channel via ionization and expansion. The same mechanism of injection with comparable efficiency is also demonstrated wi...

  9. Temporal dynamics of the longitudinal bunch profile in a laser wakefield accelerator

    Energy Technology Data Exchange (ETDEWEB)

    Heigoldt, Matthias

    2017-05-19

    This thesis deals with the temporal characterisation of electron bunches produced by a laser plasma accelerator. In the so-called laser wakefield acceleration (LWFA) scheme, an ultra-short high-intensity laser pulse excites a plasma wave, which can sustain accelerating electric fields of several hundred GV/m, thus exceeding the fields attainable by current state-of-the-art radio frequency (RF) accelerators by four orders of magnitude, offering the prospect of downsizing both the size and cost of such machines. Furthermore, by intrinsically confining the accelerated electron beam to the μm-scale size of the plasma wave, LWFAs provide ultra-short and highly brilliant beams, sparking great scientific interest for their application as a driver for compact sources of ultra-short X-ray pulses, e.g. Thomson-scattering, betatron sources or table-top free-electron lasers (FELs). The bunch profile is an important quantity for the application of these sources. With particular regard to the envisioned table-top FELs, it also determines the available peak current, an import input parameter for an appropriate undulator design that is optimized to support the self-amplified spontaneous emission (SASE) process. The experiments presented in this thesis comprise the measurement of the temporal profile of electron bunches produced by LWFA and further investigation of the evolution of the temporal profile in dependence of the acceleration distance and the plasma density. By measuring the intensity spectrum of coherent transition radiation (CTR) emitted by LWFA-driven electron bunches in the frequency domain, the experiments allow a reconstruction of the longitudinal bunch profiles with unprecedented resolution. Compared to earlier work, a key improvement is the single-shot coverage of a broadband spectral range of more than four octaves, which yields a time resolution of the reconstructed bunch profile in the sub-femtosecond region. This work further inspired the development of a new

  10. Temporal dynamics of the longitudinal bunch profile in a laser wakefield accelerator

    International Nuclear Information System (INIS)

    Heigoldt, Matthias

    2017-01-01

    This thesis deals with the temporal characterisation of electron bunches produced by a laser plasma accelerator. In the so-called laser wakefield acceleration (LWFA) scheme, an ultra-short high-intensity laser pulse excites a plasma wave, which can sustain accelerating electric fields of several hundred GV/m, thus exceeding the fields attainable by current state-of-the-art radio frequency (RF) accelerators by four orders of magnitude, offering the prospect of downsizing both the size and cost of such machines. Furthermore, by intrinsically confining the accelerated electron beam to the μm-scale size of the plasma wave, LWFAs provide ultra-short and highly brilliant beams, sparking great scientific interest for their application as a driver for compact sources of ultra-short X-ray pulses, e.g. Thomson-scattering, betatron sources or table-top free-electron lasers (FELs). The bunch profile is an important quantity for the application of these sources. With particular regard to the envisioned table-top FELs, it also determines the available peak current, an import input parameter for an appropriate undulator design that is optimized to support the self-amplified spontaneous emission (SASE) process. The experiments presented in this thesis comprise the measurement of the temporal profile of electron bunches produced by LWFA and further investigation of the evolution of the temporal profile in dependence of the acceleration distance and the plasma density. By measuring the intensity spectrum of coherent transition radiation (CTR) emitted by LWFA-driven electron bunches in the frequency domain, the experiments allow a reconstruction of the longitudinal bunch profiles with unprecedented resolution. Compared to earlier work, a key improvement is the single-shot coverage of a broadband spectral range of more than four octaves, which yields a time resolution of the reconstructed bunch profile in the sub-femtosecond region. This work further inspired the development of a new

  11. Study of Laser Wakefield Accelerators as injectors for Synchrotron light sources

    CERN Document Server

    Hillenbrand, Steffen; Müller, Anke-Susanne; Jansen, Oliver; Judin, Vitali; Pukhov, Alexander

    2014-01-01

    Laser WakeField Accelerators (LWFA) feature short bunch lengths and high peak currents, combined with a small facility footprint. This makes them very interesting as injectors for Synchrotron light sources. Using the ANKA Synchrotron as an example, we investigate the possibility to inject a LWFA bunch into an electron storage ring. Particular emphasis is put on the longitudinal evolution of the bunch.

  12. The Experimental Stand for Research of Wakefield Method of Charged Particles Acceleration

    International Nuclear Information System (INIS)

    Kiselev, V.A.; Linnik, A.F.; Onishchenko, I.N.; Onishchenko, N.I.; Sotnikov, G.V.; Uskov, V.V.

    2006-01-01

    The experimental installation and diagnostic equipment with motivation to use for various researches of wakefield method of charged particles acceleration both in plasma and in dielectric structure has been described. The main parameters of a sequence of short relativistic electron bunch and values of physical characteristics of slow-down structures have been presented

  13. Experimental and Theoretical Researches of a Resonator Concept of a Dielectric Wakefield Accelerator

    International Nuclear Information System (INIS)

    Onishchenko, I.N.; Kiselev, V.A.; Linnik, A.F.; Onishchenko, N.I.; Sotnikov, G.V.; Uskov, V.V.

    2006-01-01

    Wakefield excitation in a cylindrical dielectric waveguide or resonator by a regular sequence of electron bunches foe application to high-gradient particle acceleration has been investigated theoretically and experimentally using an electron linac 'ALMAZ-2' (4.5 MeV, 6.10 3 bunches of duration 60 ps and charge 0.32 nC each)

  14. Experimental signatures of direct-laser-acceleration-assisted laser wakefield acceleration

    Science.gov (United States)

    Shaw, J. L.; Lemos, N.; Marsh, K. A.; Froula, D. H.; Joshi, C.

    2018-04-01

    The direct laser acceleration (DLA) of electrons in a laser wakefield accelerator (LWFA) operating in the forced or quasi-blowout regimes has been investigated through experiment and simulation. When there is a significant overlap between the trapped electrons and the drive laser in a LWFA cavity, the resulting electrons can gain energy from both the LWFA and the DLA mechanisms. Experimental work investigates the properties of the electron beams produced in a LWFA with ionization injection by dispersing those beams in the direction perpendicular to the laser polarization. These electron beams show certain spectral features that are characteristic of DLA. These characteristic features are reproduced using particle-in-cell simulations, where particle tracking was used to elucidate the roles of LWFA and DLA to the energy gain of the electrons in this experimental regime and to demonstrate that such spectral features are definitive signatures of the presence of DLA in LWFA.

  15. Numerical simulations of intense charged particle beam propagation in a dielectric wakefield accelerator

    International Nuclear Information System (INIS)

    Gai, W.; Kanareykin, A.D.; Kustov, A.L.; Simpson, J.

    1995-01-01

    The propagation of an intense electron beam through a long dielectric tube is a critical issue for the success of the dielectric wakefield acceleration scheme. Due to the head-tail instability, a high current charged particle beam cannot propagate long distance without external focusing. In this paper we examine the beam handling and control problem in the dielectric wakefield accelerator. We show that for the designed 15.6 GHz and 20 GHz dielectric structures a 150 MeV, 40 endash 100 nC beam can be controlled and propagate up to 5 meters without significant particle losses by using external applied focusing and defocusing channel (FODO) around the dielectric tube. Particle dynamics of the accelerated beam is also studied. Our results show that for typical dielectric acceleration structures, the head-tail instabilities can be conveniently controlled in the same way as the driver beam. copyright 1995 American Institute of Physics

  16. Numerical Verification of the Power Transfer and Wakefield Coupling in the CLIC Two-Beam Accelerator

    CERN Document Server

    Candel, Arno; NG, C; Rawat, V; Schussman, G; Ko, K; Syratchev, I; Grudiev, A; Wuensch, W

    2011-01-01

    The Compact Linear Collider (CLIC) provides a path to a multi-TeV accelerator to explore the energy frontier of High Energy Physics. Its two-beam accelerator (TBA) concept envisions complex 3D structures, which must be modeled to high accuracy so that simulation results can be directly used to prepare CAD drawings for machining. The required simulations include not only the fundamental mode properties of the accelerating structures but also the Power Extraction and Transfer Structure (PETS), as well as the coupling between the two systems. Time-domain simulations will be performed to understand pulse formation, wakefield damping, fundamental power transfer and wakefield coupling in these structures. Applying SLAC’s parallel finite element code suite, these large-scale problems will be solved on some of the largest supercomputers available. The results will help to identify potential issues and provide new insights on the design, leading to further improvements on the novel two-beam accelerator scheme.

  17. Summary report : working group 5 on 'electron beam-driven plasma and structure based acceleration concepts'

    International Nuclear Information System (INIS)

    Conde, M. E.; Katsouleas, T.

    2000-01-01

    The talks presented and the work performed on electron beam-driven accelerators in plasmas and structures are summarized. Highlights of the working group include new experimental results from the E-157 Plasma Wakefield Experiment, the E-150 Plasma Lens Experiment and the Argonne Dielectric Structure Wakefield experiments. The presentations inspired discussion and analysis of three working topics: electron hose instability, ion channel lasers and the plasma afterburner

  18. On the quasi-monoenergetic electron beam generation in the laser wakefield acceleration

    International Nuclear Information System (INIS)

    Bulanov, S.V.; Tajima, Toshiki

    2005-01-01

    A new phase of laser acceleration research has entered, as signified by the recent reports in Nature 9/30/05 of the generation of quasi-monoenergetic electron beam by laser wakefield acceleration in three experiments. We survey the current status of experiments and offer their theoretical interpretation. We understand why the choice of parameters is of such importance and why the earlier experiments showed energy spectra far from monoenergy. (author)

  19. Limitation on the accelerating gradient of a wakefield excited by an ultrarelativistic electron beam in rubidium plasma

    Directory of Open Access Journals (Sweden)

    N. Vafaei-Najafabadi

    2016-10-01

    Full Text Available We have investigated the viability of using plasmas formed by ionization of high Z, low ionization potential element rubidium (Rb for beam-driven plasma wakefield acceleration. The Rb vapor column confined by argon (Ar buffer gas was used to reduce the expected limitation on the beam propagation length due to head erosion that was observed previously when a lower Z but higher ionization potential lithium vapor was used. However, injection of electrons into the wakefield due to ionization of Ar buffer gas and nonuniform ionization of Rb^{1+} to Rb^{2+} was a possible concern. In this paper we describe experimental results and the supporting simulations which indicate that such ionization of Ar and Rb^{1+} in the presence of combined fields of the beam and the wakefield inside the wake does indeed occur. Some of this charge accumulates in the accelerating region of the wake leading to the reduction of the electric field—an effect known as beam loading. The beam-loading effect is quantified by determining the average transformer ratio ⟨R⟩ which is the maximum energy gained divided by the maximum energy lost by the electrons in the bunch used to produce the wake. ⟨R⟩ is shown to depend on the propagation length and the quantity of the accumulated charge, indicating that the distributed injection of secondary Rb electrons is the main cause of beam loading in this experiment. The average transformer ratio is reduced from 1.5 to less than 1 as the excess charge from secondary ionization increased from 100 to 700 pC. The simulations show that while the decelerating field remains constant, the accelerating field is reduced from its unloaded value of 82 to 46  GeV/m due to this distributed injection of dark current into the wake.

  20. Simulation study of the sub-terawatt laser wakefield acceleration operated in self-modulated regime

    Science.gov (United States)

    Hsieh, C.-Y.; Lin, M.-W.; Chen, S.-H.

    2018-02-01

    Laser wakefield acceleration (LWFA) can be accomplished by introducing a sub-terawatt (TW) laser pulse into a thin, high-density gas target. In this way, the self-focusing effect and the self-modulation that happened on the laser pulse produce a greatly enhanced laser peak intensity that can drive a nonlinear plasma wave to accelerate electrons. A particle-in-cell model is developed to study sub-TW LWFA when a 0.6-TW laser pulse interacts with a dense hydrogen plasma. Gas targets having a Gaussian density profile or a flat-top distribution are defined for investigating the properties of sub-TW LWFA when conducting with a gas jet or a gas cell. In addition to using 800-nm laser pulses, simulations are performed with 1030-nm laser pulses, as they represent a viable approach to realize the sub-TW LWFA driven by high-frequency, diode-pumped laser systems. The peak density which allows the laser peak power PL˜2 Pc r of self-focusing critical power is favourable for conducting sub-TW LWFA. Otherwise, an excessively high peak density can induce an undesired filament effect which rapidly disintegrates the laser field envelope and violates the process of plasma wave excitation. The plateau region of a flat-top density distribution allows the self-focusing and the self-modulation of the laser pulse to develop, from which well-established plasma bubbles can be produced to accelerate electrons. The process of electron injection is complicated in such high-density plasma conditions; however, increasing the length of the plateau region represents a straightforward method to realize the injection and acceleration of electrons within the first bubble, such that an improved LWFA performance can be accomplished.

  1. Electron beam manipulation, injection and acceleration in plasma wakefield accelerators by optically generated plasma density spikes

    Energy Technology Data Exchange (ETDEWEB)

    Wittig, Georg; Karger, Oliver S.; Knetsch, Alexander [Institute of Experimental Physics, University of Hamburg, 22761 Hamburg (Germany); Xi, Yunfeng; Deng, Aihua; Rosenzweig, James B. [Particle Beam Physics Laboratory, UCLA, Los Angeles, CA 90095 (United States); Bruhwiler, David L. [RadiaSoft LLC, Boulder, CO 80304 (United States); RadiaBeam Technologies LLC (United States); Smith, Jonathan [Tech-X UK Ltd, Daresbury, Cheshire WA4 4FS (United Kingdom); Sheng, Zheng-Ming; Jaroszynski, Dino A.; Manahan, Grace G. [Physics Department, SUPA, University of Strathclyde, Glasgow G4 0NG (United Kingdom); Hidding, Bernhard [Institute of Experimental Physics, University of Hamburg, 22761 Hamburg (Germany); Physics Department, SUPA, University of Strathclyde, Glasgow G4 0NG (United Kingdom)

    2016-09-01

    We discuss considerations regarding a novel and robust scheme for optically triggered electron bunch generation in plasma wakefield accelerators [1]. In this technique, a transversely propagating focused laser pulse ignites a quasi-stationary plasma column before the arrival of the plasma wake. This localized plasma density enhancement or optical “plasma torch” distorts the blowout during the arrival of the electron drive bunch and modifies the electron trajectories, resulting in controlled injection. By changing the gas density, and the laser pulse parameters such as beam waist and intensity, and by moving the focal point of the laser pulse, the shape of the plasma torch, and therefore the generated trailing beam, can be tuned easily. The proposed method is much more flexible and faster in generating gas density transitions when compared to hydrodynamics-based methods, and it accommodates experimentalists needs as it is a purely optical process and straightforward to implement.

  2. Experimental Characterization of Electron-Beam-Driven Wakefield Modes in a Dielectric-Woodpile Cartesian Symmetric Structure

    Science.gov (United States)

    Hoang, P. D.; Andonian, G.; Gadjev, I.; Naranjo, B.; Sakai, Y.; Sudar, N.; Williams, O.; Fedurin, M.; Kusche, K.; Swinson, C.; Zhang, P.; Rosenzweig, J. B.

    2018-04-01

    Photonic structures operating in the terahertz (THz) spectral region enable the essential characteristics of confinement, modal control, and electric field shielding for very high gradient accelerators based on wakefields in dielectrics. We report here an experimental investigation of THz wakefield modes in a three-dimensional photonic woodpile structure. Selective control in exciting or suppressing of wakefield modes with a nonzero transverse wave vector is demonstrated by using drive beams of varying transverse ellipticity. Additionally, we show that the wakefield spectrum is insensitive to the offset position of strongly elliptical beams. These results are consistent with analytic theory and three-dimensional simulations and illustrate a key advantage of wakefield systems with Cartesian symmetry: the suppression of transverse wakes by elliptical beams.

  3. Performance of the Argonne Wakefield Accelerator facility and initial experimental results

    International Nuclear Information System (INIS)

    Gai, W.; Conde, M.; Cox, G.; Konecny, R.; Power, J.; Schoessow, P.; Simpson, J.; Barov, N.

    1996-01-01

    The Argonne Wakefield Accelerator (AWA) facility has begun its experimental program. This unique facility is designed to address advanced acceleration research which requires very short, intense electron bunches. The facility incorporates two photo-cathode based electron sources. One produces up to 100 nC, multi-kiloamp 'drive' bunches which are used to excite wakefields in dielectric loaded structures and in plasma. The second source produces much lower intensity 'witness' pulses which are used to probe the fields produced by the drive. The drive and witness pulses can be precisely timed as well as laterally positioned with respect to each other. We discuss commissioning, initial experiments, and outline plans for a proposed 1 GeV demonstration accelerator. (author)

  4. Performance of the Argonne Wakefield Accelerator Facility and initial experimental results

    International Nuclear Information System (INIS)

    Gai, W.; Conde, M.; Cox, G.; Konecny, R.; Power, J.; Schoessow, P.; Simpson, J.; Barov, N.

    1996-01-01

    The Argonne Wakefield Accelerator facility has begun its experimental program. It is designed to address advanced acceleration research requiring very short, intense electron bunches. It incorporates two photocathode based electron sources. One produces up to 100 nC, multi-kiloamp 'drive' bunches which are used to excite wakefields in dielectric loaded structures and in plasma. The second source produces much lower intensity 'witness' pulses which are used to probe the fields produced by the drive. The drive and witness pulses can be precisely timed as well as laterally positioned with respect to each other. This paper discusses commissioning, initial experiments, and outline plans for a proposed 1 GeV demonstration accelerator

  5. Electron trapping and acceleration by the plasma wakefield of a self-modulating proton beam

    CERN Document Server

    Lotov, K.V.; Petrenko, A.V.; Amorim, L.D.; Vieira, J.; Fonseca, R.A.; Silva, L.O.; Gschwendtner, E.; Muggli, P.

    2014-01-01

    It is shown that co-linear injection of electrons or positrons into the wakefield of the self-modulating particle beam is possible and ensures high energy gain. The witness beam must co-propagate with the tail part of the driver, since the plasma wave phase velocity there can exceed the light velocity, which is necessary for efficient acceleration. If the witness beam is many wakefield periods long, then the trapped charge is limited by beam loading effects. The initial trapping is better for positrons, but at the acceleration stage a considerable fraction of positrons is lost from the wave. For efficient trapping of electrons, the plasma boundary must be sharp, with the density transition region shorter than several centimeters. Positrons are not susceptible to the initial plasma density gradient.

  6. Initial results of the new high intensity electron gun at the Argonne Wakefield Accelerator

    International Nuclear Information System (INIS)

    Conde, M. E.; Gai, W.; Konecny, R.; Power, J. G.; Schoessow, P.; Sun, X.

    2000-01-01

    The authors report on the status of the new short bunch, high intensity electron gun at the Argonne Wakefield Accelerator. The 1-1/2 cell L-band photocathode RF gun is expected to produce 10--100 nC bunches with 2--5 ps rms pulse length and normalized emittance less than 100 mm mrad. The beam energy at the exit of the gun cavity will be in the range 7.5--10 MeV. A standing-wave linac structure operating at the same frequency (1.3 GHz) will increase the beam energy to about 15 MeV. This beam will be used in wakefield acceleration experiments with dielectric loaded structures. These travelling-wave dielectric loaded structures, operating at 7.8 and 15.6 GHz, will be excited by the propagation of single bunches or by trains of up to 32 electron bunches

  7. Design of an electron injector for multi-stages laser wakefield acceleration

    International Nuclear Information System (INIS)

    Audet, T.

    2016-01-01

    Laser wakefield acceleration (LWFA) is a particle acceleration process relying on the interaction between high intensity laser pulses, of the order of 10 18 W/cm 2 and a plasma. The plasma wave generated in the laser wake sustain high amplitude electric fields (1- 100 GV/m). Those electric fields are 3 orders of magnitude higher than maximum electric fields in radio frequency cavities and represent the main benefit of LWFA, allowing more compact acceleration. However improvements of the LWFA-produced electron bunches properties, stability and repetition rate are mandatory for LWFA to be usable for applications. A scheme to improve electron bunches properties and to potentially increase the repetition rate is multi-stage LWFA. The laser plasma electron source, called the injector, has to produce relatively low energy (50 - 100 MeV), but high charge, small size and low divergence electron bunches. Produced electron bunches then have to be transported and injected into a second stage to increase electron kinetic energy. The subject of this thesis is to study and design a laser wakefield electron injector for multistage LWFA. In the frame of CILEX and the two-stages LWFA program, a prototype of the injector was built : ELISA consisting in a variable length gas cell. The plasma electronic density, which is a critical parameter for the control of the electron bunches properties, was characterized both experimentally and numerically. ELISA was used at 2 different laser facilities and physical mechanisms linked to electron bunches properties were studied in function of experimental parameters. A range of experimental parameters suitable for a laser wakefield injector was determined. A magnetic transport and diagnostic line was also built, implemented and tested at the UHI100 laser facility of the CEA Saclay. It allowed a more precise characterization of electron bunches generated with ELISA as well as an estimation of the quality of transported electron bunches for their

  8. Control, timing, and data acquisition for the Argonne Wakefield Accelerator (AWA)

    International Nuclear Information System (INIS)

    Schoessow, P.; Ho, C.; Power, J.; Chojnacki, E.

    1993-01-01

    The AWA is a new facility primarily designed for wakefield acceleration experiments at the 100 MV/m scale, which incorporates a high current linac and rf photocathode electron source, a low emittance rf electron gun for witness beam generation, and associated beamlines and diagnostics. The control system is based on VME and CA-MAC electronics interfaced to a high performance work-station and provides some distributed processing capability. In addition to the control of linac rf, laser optics, and beamlines, the system is also used for acquisition of video data both from luminescent beam position monitors and from streak camera pulse length diagnostics. Online image feature extraction will permit wakefields to be computed during the course of data taking. The linac timing electronics and its interface to the control system is described

  9. Accelerator-driven X-ray Sources

    Energy Technology Data Exchange (ETDEWEB)

    Nguyen, Dinh Cong [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2015-11-09

    After an introduction which mentions x-ray tubes and storage rings and gives a brief review of special relativity, the subject is treated under the following topics and subtopics: synchrotron radiation (bending magnet radiation, wiggler radiation, undulator radiation, brightness and brilliance definition, synchrotron radiation facilities), x-ray free-electron lasers (linac-driven X-ray FEL, FEL interactions, self-amplified spontaneous emission (SASE), SASE self-seeding, fourth-generation light source facilities), and other X-ray sources (energy recovery linacs, Inverse Compton scattering, laser wakefield accelerator driven X-ray sources. In summary, accelerator-based light sources cover the entire electromagnetic spectrum. Synchrotron radiation (bending magnet, wiggler and undulator radiation) has unique properties that can be tailored to the users’ needs: bending magnet and wiggler radiation is broadband, undulator radiation has narrow spectral lines. X-ray FELs are the brightest coherent X-ray sources with high photon flux, femtosecond pulses, full transverse coherence, partial temporal coherence (SASE), and narrow spectral lines with seeding techniques. New developments in electron accelerators and radiation production can potentially lead to more compact sources of coherent X-rays.

  10. Pump depletion limited evolution of the relativistic plasma wave-front in a forced laser-wakefield accelerator

    International Nuclear Information System (INIS)

    Fang, F; Clayton, C E; Marsh, K A; Pak, A E; Ralph, J E; Joshi, C; Lopes, N C

    2009-01-01

    In a forced laser-wakefield accelerator experiment (Malka et al 2002 Science 298 1596) where the length of the pump laser pulse is a few plasma periods long, the leading edge of the laser pulse undergoes frequency downshifting and head erosion as the laser energy is transferred to the wake. Therefore, after some propagation distance, the group velocity of the leading edge of the pump pulse-and thus of the driven electron plasma wave-will slow down. This can have implications for the dephasing length of the accelerated electrons and therefore needs to be understood experimentally. We have carried out an experimental investigation where we have measured the velocity v f of the 'wave-front' of the plasma wave driven by a nominally 50 fs (full width half maximum), intense (a 0 ≅ 1), 0.815 μm laser pulse. To determine the speed of the wave front, time- and space-resolved refractometry, interferometry and Thomson scattering were used. Although a laser pulse propagating through a relatively low-density plasma (n e = 1.3 x 10 19 cm -3 ) showed no measurable changes in v f over 1.3 mm (and no accelerated electrons), a high-density plasma (n e = 5 x 10 19 cm -3 ) generated accelerated electrons and showed a continuous change in v f as the laser pulse propagated through the plasma. Possible causes and consequences of the observed v f evolution are discussed.

  11. Generation of annular, high-charge electron beams at the Argonne wakefield accelerator

    Science.gov (United States)

    Wisniewski, E. E.; Li, C.; Gai, W.; Power, J.

    2013-01-01

    We present and discuss the results from the experimental generation of high-charge annular(ring-shaped)electron beams at the Argonne Wakefield Accelerator (AWA). These beams were produced by using laser masks to project annular laser profiles of various inner and outer diameters onto the photocathode of an RF gun. The ring beam is accelerated to 15 MeV, then it is imaged by means of solenoid lenses. Transverse profiles are compared for different solenoid settings. Discussion includes a comparison with Parmela simulations, some applications of high-charge ring beams,and an outline of a planned extension of this study.

  12. Generation of annular, high-charge electron beams at the Argonne wakefield accelerator

    Science.gov (United States)

    Wisniewski, E. E.; Li, C.; Gai, W.; Power, J.

    2012-12-01

    We present and discuss the results from the experimental generation of high-charge annular(ring-shaped)electron beams at the Argonne Wakefield Accelerator (AWA). These beams were produced by using laser masks to project annular laser profiles of various inner and outer diameters onto the photocathode of an RF gun. The ring beam is accelerated to 15 MeV, then it is imaged by means of solenoid lenses. Transverse profiles are compared for different solenoid settings. Discussion includes a comparison with Parmela simulations, some applications of high-charge ring beams,and an outline of a planned extension of this study.

  13. Laser-driven acceleration with Bessel and Gaussian beams

    International Nuclear Information System (INIS)

    Hafizi, B.; Esarey, E.; Sprangle, P.

    1997-01-01

    The possibility of enhancing the energy gain in laser-driven accelerators by using Bessel laser beams is examined. Scaling laws are derived for the propagation length, acceleration gradient, and energy gain in various accelerators for both Gaussian and Bessel beam drivers. For equal beam powers, the energy gain can be increased by a factor of N 1/2 by utilizing a Bessel beam with N lobes, provided that the acceleration gradient is linearly proportional to the laser field. This is the case in the inverse free electron laser and the inverse Cherenkov accelerators. If the acceleration gradient is proportional to the square of the laser field (e.g., the laser wakefield, plasma beat wave, and vacuum beat wave accelerators), the energy gain is comparable with either beam profile. copyright 1997 American Institute of Physics

  14. Production of a monoenergetic electron bunch in a self-injected laser-wakefield accelerator

    International Nuclear Information System (INIS)

    Chang, C.-L.; Hsieh, C.-T.; Ho, Y.-C.; Chen, Y.-S.; Lin, J.-Y.; Wang, J.; Chen, S.-Y.

    2007-01-01

    Production of a monoenergetic electron bunch in a self-injected laser-wakefield accelerator is investigated with a tomographic method which resolves the electron injection and acceleration processes. It is found that all the electrons in the monoenergetic electron bunch are injected at the same location in the plasma column and then accelerated with an acceleration gradient exceeding 2 GeV/cm. The injection position shifts with the position of pump-pulse focus, and no significant deceleration is observed for the monoenergetic electron bunch after it reaches the maximum energy. The results are consistent with the model of transverse wave breaking and beam loading for the injection of monoenergetic electrons. The tomographic method adds a crucial dimension to the whole array of existing diagnostics for laser beams, plasma waves, and electron beams. With this method the details of the underlying physical processes in laser-plasma interactions can be resolved and compared directly to particle-in-cell simulations

  15. Obtaining the Wakefield Due to Cell-to-Cell Misalignments in a Linear Accelerator Structure

    OpenAIRE

    Bane, Karl L. F.; Li, Zenghai

    2001-01-01

    A linear accelerator structure, such as will be used in the linacs of the JLC/NLC collider, is composed of on the order of 100 cells. The cells are constructed as individual cups that are brazed together to form a structure. Fabrication error will result in slight cell-to-cell misalignments along the finished structure. In this report we derive an approximation to the transverse wakefield of a structure with cell-to-cell misalignments in terms of the eigenfunctions and eigenvalues of the erro...

  16. Wakefield and Beam Centering Measurements of a Damped and Detuned X-Band Accelerator Structure

    International Nuclear Information System (INIS)

    Adolphsen, Chris

    1999-01-01

    In the Next Linear Collider (NLC) design, X-Band (11.4 GHz) accelerator structures are used to accelerate multibunch beams to several hundred GeV. Although these structures allow for high gradient operation, their strong deflecting modes impose a number of operational constraints. In particular, the long-range transverse wakefields generated by the bunches need to be reduced by about two orders of magnitude to prevent significant beam breakup. During the past five years, a reduction scheme that employs both detuning and damping of the structure dipole modes has been developed to meet this requirement. Several prototype Damped and Detuned Structures (DDS) have been built to test and refine this scheme. The wakefield of the latest version, DDS3, has recently been measured in the Accelerator Structure Setup (ASSET) facility at SLAC. In this paper, we present these results together with predictions based on an equivalent circuit model of the structure. We also present ASSET studies in which the beam-induced dipole signals that are coupled out for damping purposes are used to center the beam in the structure

  17. Acceleration of electrons at wakefield excitation by a sequence of relativistic electron bunches in dielectric resonator

    International Nuclear Information System (INIS)

    Kiselev, V.A.; Linnik, A.F.; Mirnyj, V.I.; Onishchenko, I.N.; Uskov, V.V.

    2009-01-01

    Method is proposed to divide a regular sequence of electron bunches into parts of bunches driving wakefield and witness bunches, which should be accelerated. It allows to avoid the necessity of additional electron accelerator for witness bunches producing and the necessity of precision short time techniques of injection phase adjusting. The idea concludes to the frequency detuning between bunches repetition frequency and the frequency of the fundamental mode of excited wakefield. Experiments were carried out on the linear resonant accelerator 'Almaz-2', which injected in the dielectric resonator a sequence of 6000 short bunches of relativistic electrons with energy 4.5 MeV, charge 0.16 nC and duration 60 psec each, the repetition interval 360 ps. Frequency detuning was entered by change of frequency of the master generator of the klystron within the limits of one percent so that the phase taper on the length of bunches sequence achieved 2π. Energy spectra of electrons of bunches sequence, which have been propagated through the dielectric resonator are measured and analyzed

  18. Optimization And Single-Shot Characterization Of Ultrashort Thz Pulses From A Laser Wakefield Accelerator

    International Nuclear Information System (INIS)

    Plateau, G.R.; Matlis, N.H.; van Tilborg, J.; Geddes, C.G.R.; Toth, Cs.; Schroeder, C.B.; Leemans, W.P.

    2009-01-01

    We present spatiotemporal characterization of μJ-class ultrashort THz pulses generated from a laser wakefield accelerator (LWFA). Accelerated electrons, resulting from the interaction of a high-intensity laser pulse with a plasma, emit high-intensity THz pulses as coherent transition radiation. Such high peak-power THz pulses, suitable for high-field (MV/cm) pump-probe experiments, also provide a non-invasive bunch-length diagnostic and thus feedback for the accelerator. The characterization of the THz pulses includes energy measurement using a Golay cell, 2D sign-resolved electro-optic measurement and single-shot spatiotemporal electric-field distribution retrieval using a new technique, coined temporal electric-field cross-Correlation (TEX). All three techniques corroborate THz pulses of ∼ 5 μJ, with peak fields of 100's of kV/cm and ∼ 0.4 ps rms duration.

  19. Beam manipulation for compact laser wakefield accelerator based free-electron lasers

    International Nuclear Information System (INIS)

    Loulergue, A; Labat, M; Benabderrahmane, C; Couprie, M E; Evain, C; Malka, V

    2015-01-01

    Free-electron lasers (FELs) are a unique source of light, particularly in the x-ray domain. After the success of FELs based on conventional acceleration using radio-frequency cavities, an important challenge is the development of FELs based on electron bunching accelerated by a laser wakefield accelerator (LWFA). However, the present LWFA electron bunch properties do not permit use directly for a significant FEL amplification. It is known that longitudinal decompression of electron beams delivered by state-of-the-art LWFA eases the FEL process. We propose here a second order transverse beam manipulation turning the large inherent transverse chromatic emittances of LWFA beams into direct FEL gain advantage. Numerical simulations are presented showing that this beam manipulation can further enhance by orders of magnitude the peak power of the radiation. (paper)

  20. Multistage Coupling of Laser-Wakefield Accelerators with Curved Plasma Channels

    Science.gov (United States)

    Luo, J.; Chen, M.; Wu, W. Y.; Weng, S. M.; Sheng, Z. M.; Schroeder, C. B.; Jaroszynski, D. A.; Esarey, E.; Leemans, W. P.; Mori, W. B.; Zhang, J.

    2018-04-01

    Multistage coupling of laser-wakefield accelerators is essential to overcome laser energy depletion for high-energy applications such as TeV-level electron-positron colliders. Current staging schemes feed subsequent laser pulses into stages using plasma mirrors while controlling electron beam focusing with plasma lenses. Here a more compact and efficient scheme is proposed to realize the simultaneous coupling of the electron beam and the laser pulse into a second stage. A partly curved channel, integrating a straight acceleration stage with a curved transition segment, is used to guide a fresh laser pulse into a subsequent straight channel, while the electrons continue straight. This scheme benefits from a shorter coupling distance and continuous guiding of the electrons in plasma while suppressing transverse beam dispersion. Particle-in-cell simulations demonstrate that the electron beam from a previous stage can be efficiently injected into a subsequent stage for further acceleration while maintaining high capture efficiency, stability, and beam quality.

  1. BRAHMMA - accelerator driven subcritical facility

    International Nuclear Information System (INIS)

    Roy, Tushar; Shukla, Shefali; Shukla, M.; Ray, N.K.; Kashyap, Y.S.; Patel, T.; Gadkari, S.C.

    2017-01-01

    Accelerator Driven Subcritical systems are being studied worldwide for their potential in burning minor actinides and reducing long term radiotoxicity of spent nuclear fuels. In order to pursue the physics studies of Accelerator Driven Subcritical systems, a thermal subcritical assembly BRAHMMA (BeOReflectedAndHDPeModeratedMultiplying Assembly) has been developed at Purnima Labs, BARC. The facility consists of two major components: Subcritical core and Accelerator (DT/ DD Purnima Neutron Generator)

  2. Longitudinal gas-density profilometry for plasma-wakefield acceleration targets

    Energy Technology Data Exchange (ETDEWEB)

    Schaper, Lucas, E-mail: lschaper01@qub.ac.uk [Universität Hamburg, FB Physik, Institut für Experimentalphysik, Luruper Chaussee 149, 22761 Hamburg (Germany); Deutsches Elektronen-Synchrotron DESY, Notkestraße 85, 22607 Hamburg (Germany); Goldberg, Lars; Kleinwächter, Tobias; Schwinkendorf, Jan-Patrick; Osterhoff, Jens [Deutsches Elektronen-Synchrotron DESY, Notkestraße 85, 22607 Hamburg (Germany)

    2014-03-11

    Precise tailoring of plasma-density profiles has been identified as one of the critical points in achieving stable and reproducible conditions in plasma wakefield accelerators. Here, the strict requirements of next generation plasma-wakefield concepts, such as hybrid-accelerators, with densities around 10{sup 17} cm{sup −3} pose challenges to target fabrication as well as to their reliable diagnosis. To mitigate these issues we combine target simulation with fabrication and characterization. The resulting density profiles in capillaries with gas jet and multiple in- and outlets are simulated with the fluid code OpenFOAM. Satisfactory simulation results then are followed by fabrication of the desired target shapes with structures down to the 10 µm level. The detection of Raman scattered photons using lenses with large collection solid angle allows to measure the corresponding longitudinal density profiles at different number densities and allows a detection sensitivity down to the low 10{sup 17} cm{sup −3} density range at high spatial resolution. This offers the possibility to gain insight into steep density gradients as for example in gas jets and at the plasma-to-vacuum transition.

  3. Longitudinal gas-density profilometry for plasma-wakefield acceleration targets

    Science.gov (United States)

    Schaper, Lucas; Goldberg, Lars; Kleinwächter, Tobias; Schwinkendorf, Jan-Patrick; Osterhoff, Jens

    2014-03-01

    Precise tailoring of plasma-density profiles has been identified as one of the critical points in achieving stable and reproducible conditions in plasma wakefield accelerators. Here, the strict requirements of next generation plasma-wakefield concepts, such as hybrid-accelerators, with densities around 1017 cm-3 pose challenges to target fabrication as well as to their reliable diagnosis. To mitigate these issues we combine target simulation with fabrication and characterization. The resulting density profiles in capillaries with gas jet and multiple in- and outlets are simulated with the fluid code OpenFOAM. Satisfactory simulation results then are followed by fabrication of the desired target shapes with structures down to the 10 μm level. The detection of Raman scattered photons using lenses with large collection solid angle allows to measure the corresponding longitudinal density profiles at different number densities and allows a detection sensitivity down to the low 1017 cm-3 density range at high spatial resolution. This offers the possibility to gain insight into steep density gradients as for example in gas jets and at the plasma-to-vacuum transition.

  4. Application of High-performance Visual Analysis Methods to Laser Wakefield Particle Acceleration Data

    International Nuclear Information System (INIS)

    Rubel, Oliver; Prabhat, Mr.; Wu, Kesheng; Childs, Hank; Meredith, Jeremy; Geddes, Cameron G.R.; Cormier-Michel, Estelle; Ahern, Sean; Weber, Gunther H.; Messmer, Peter; Hagen, Hans; Hamann, Bernd; Bethel, E. Wes

    2008-01-01

    Our work combines and extends techniques from high-performance scientific data management and visualization to enable scientific researchers to gain insight from extremely large, complex, time-varying laser wakefield particle accelerator simulation data. We extend histogram-based parallel coordinates for use in visual information display as well as an interface for guiding and performing data mining operations, which are based upon multi-dimensional and temporal thresholding and data subsetting operations. To achieve very high performance on parallel computing platforms, we leverage FastBit, a state-of-the-art index/query technology, to accelerate data mining and multi-dimensional histogram computation. We show how these techniques are used in practice by scientific researchers to identify, visualize and analyze a particle beam in a large, time-varying dataset

  5. Reduced 3d modeling on injection schemes for laser wakefield acceleration at plasma scale lengths

    Science.gov (United States)

    Helm, Anton; Vieira, Jorge; Silva, Luis; Fonseca, Ricardo

    2017-10-01

    Current modelling techniques for laser wakefield acceleration (LWFA) are based on particle-in-cell (PIC) codes which are computationally demanding. In PIC simulations the laser wavelength λ0, in μm-range, has to be resolved over the acceleration lengths in meter-range. A promising approach is the ponderomotive guiding center solver (PGC) by only considering the laser envelope for laser pulse propagation. Therefore only the plasma skin depth λp has to be resolved, leading to speedups of (λp /λ0) 2. This allows to perform a wide-range of parameter studies and use it for λ0 Tecnologia (FCT), Portugal, through Grant No. PTDC/FIS-PLA/2940/2014 and PD/BD/105882/2014.

  6. Pump depletion limited evolution of the relativistic plasma wave-front in a forced laser-wakefield accelerator

    Energy Technology Data Exchange (ETDEWEB)

    Fang, F; Clayton, C E; Marsh, K A; Pak, A E; Ralph, J E; Joshi, C [Department of Electrical Engineering, University of California, Los Angeles, CA 90095 (United States); Lopes, N C [Grupo de Lasers e Plasmas, Instituto Superior Tecnico, Lisbon (Portugal)], E-mail: cclayton@ucla.edu

    2009-02-15

    In a forced laser-wakefield accelerator experiment (Malka et al 2002 Science 298 1596) where the length of the pump laser pulse is a few plasma periods long, the leading edge of the laser pulse undergoes frequency downshifting and head erosion as the laser energy is transferred to the wake. Therefore, after some propagation distance, the group velocity of the leading edge of the pump pulse-and thus of the driven electron plasma wave-will slow down. This can have implications for the dephasing length of the accelerated electrons and therefore needs to be understood experimentally. We have carried out an experimental investigation where we have measured the velocity v{sub f} of the 'wave-front' of the plasma wave driven by a nominally 50 fs (full width half maximum), intense (a{sub 0} {approx_equal} 1), 0.815 {mu}m laser pulse. To determine the speed of the wave front, time- and space-resolved refractometry, interferometry and Thomson scattering were used. Although a laser pulse propagating through a relatively low-density plasma (n{sub e} = 1.3 x 10{sup 19} cm{sup -3}) showed no measurable changes in v{sub f} over 1.3 mm (and no accelerated electrons), a high-density plasma (n{sub e} = 5 x 10{sup 19} cm{sup -3}) generated accelerated electrons and showed a continuous change in v{sub f} as the laser pulse propagated through the plasma. Possible causes and consequences of the observed v{sub f} evolution are discussed.

  7. Laser-driven accelerators

    International Nuclear Information System (INIS)

    Anon.

    1982-01-01

    Several devices for using laser fields have been proposed and they can be classified in three broad categories - 'far-field' accelerators (such as the principle of inverse free electron lasers), 'media' accelerators (which, for example, use the inverse Cherenkov effect or laser-controlled plasma waves), and 'near-field' accelerators (using a loaded guiding structure such as cavities or gratings). These different approaches come from the fact that a particle cannot be accelerated by the absorption of single photons (because of momentum conservation) and thus some other element has to intervene. (orig./HSI).

  8. Phase space linearization and external injection of electron bunches into laser-driven plasma wakefields at REGAE

    International Nuclear Information System (INIS)

    Zeitler, Benno Michael Georg

    2017-01-01

    Laser Wake field Acceleration (LWFA) has the potential to become the next-generation acceleration technique for electrons. In particular, the large field gradients provided by these plasma-based accelerators are an appealing property, promising a significant reduction of size for future machines and user facilities. Despite the unique advantages of these sources, however, as of today, the produced electron bunches cannot yet compete in all beam quality criteria compared to conventional acceleration methods. Especially the stability in terms of beam pointing and energy gain, as well as a comparatively large energy spread of LWFA electron bunches require further advancement for their applicability. The accelerated particles are typically trapped from within the plasma which is used to create the large field gradients in the wake of a high-power laser. From this results a lack of control and access to observing the actual electron injection - and, consequently, a lack of experimental verification. To tackle this problem, the injection of external electrons into a plasma wakefield seems promising. In this case, the initial beam parameters are known, so that a back-calculation and reconstruction of the wakefield structure are feasible. Such an experiment is planned at the Relativistic Electron Gun for Atomic Exploration (REGAE). REGAE, which is located at DESY in Hamburg, is a small linear accelerator offering unique beam parameters compatible with the requirements of the planned experiment. The observations and results gained from such an external injection are expected to improve the beam quality and stability of internal injection variants, due to the broadened understanding of the underlying plasma dynamics. Furthermore, an external injection will always be required for so-called staging of multiple LWFA-driven cavities. Also, the demonstration of a suchlike merging of conventional and plasma accelerators gives rise to novel hybrid accelerators, where the matured

  9. Phase space linearization and external injection of electron bunches into laser-driven plasma wakefields at REGAE

    Energy Technology Data Exchange (ETDEWEB)

    Zeitler, Benno Michael Georg [Hamburg Univ. (Germany). Fakultaet fuer Mathematik, Informatik und Naturwissenschaften

    2017-01-15

    Laser Wake field Acceleration (LWFA) has the potential to become the next-generation acceleration technique for electrons. In particular, the large field gradients provided by these plasma-based accelerators are an appealing property, promising a significant reduction of size for future machines and user facilities. Despite the unique advantages of these sources, however, as of today, the produced electron bunches cannot yet compete in all beam quality criteria compared to conventional acceleration methods. Especially the stability in terms of beam pointing and energy gain, as well as a comparatively large energy spread of LWFA electron bunches require further advancement for their applicability. The accelerated particles are typically trapped from within the plasma which is used to create the large field gradients in the wake of a high-power laser. From this results a lack of control and access to observing the actual electron injection - and, consequently, a lack of experimental verification. To tackle this problem, the injection of external electrons into a plasma wakefield seems promising. In this case, the initial beam parameters are known, so that a back-calculation and reconstruction of the wakefield structure are feasible. Such an experiment is planned at the Relativistic Electron Gun for Atomic Exploration (REGAE). REGAE, which is located at DESY in Hamburg, is a small linear accelerator offering unique beam parameters compatible with the requirements of the planned experiment. The observations and results gained from such an external injection are expected to improve the beam quality and stability of internal injection variants, due to the broadened understanding of the underlying plasma dynamics. Furthermore, an external injection will always be required for so-called staging of multiple LWFA-driven cavities. Also, the demonstration of a suchlike merging of conventional and plasma accelerators gives rise to novel hybrid accelerators, where the matured

  10. Summary Report of Working Group 5: Electron Beam Driven Plasma Accelerators

    International Nuclear Information System (INIS)

    Hogan, Mark J.; Conde, Manoel E.

    2009-01-01

    Electron beam driven plasma accelerators have seen rapid progress over the last decade. Recent efforts have built on this success by constructing a concept for a plasma wakefield accelerator based linear collider. The needs for any future collider to deliver both energy and luminosity have substantial implications for interpreting current experiments and setting priorities for the future. This working group reviewed current experiments and ideas in the context of the demands of a future collider. The many discussions and presentations are summarized here.

  11. Improvement of the quality of laser-wakefield accelerators: towards a compact free-electron laser

    International Nuclear Information System (INIS)

    Lehe, R.

    2014-01-01

    When an intense and short laser pulse propagates through an underdense gas, it can accelerate a fraction of the electrons of the gas, and thereby generate an electron bunch with an energy of a few hundreds of MeV. This phenomenon, which is referred to as laser-wakefield acceleration, has many potential applications, including the design of ultra-bright X-ray sources known as free electron lasers (FEL). However, these applications require the electron bunch to have an excellent quality (low divergence, emittance and energy spread). In this thesis, different solutions to improve the quality of the electron bunch are developed, both analytically and through the use of Particle-In-Cell (PIC) simulations. It is first shown however that PIC simulations tend to erroneously overestimate the emittance of the bunch, due to the numerical Cherenkov effect. Thus, in order to correctly estimate the emittance, a modified PIC algorithm is proposed, which is not subject to this unphysical Cherenkov effect. Using this algorithm, we have observed and studied a new mechanism to generate the electron bunch: optical transverse injection. This mechanism can produce bunches with a high charge, a low emittance and a low energy spread. In addition, we also proposed an experimental setup - the laser-plasma lens - which can strongly reduce the final divergence of the bunch. Finally, these results are put into context by discussing the properties required for the design of a compact FEL. It is shown in particular that laser-wakefield accelerator could be advantageously combined with innovative laser-plasma undulators, in order to produce bright X-rays sources. (author)

  12. 2D hydrodynamic simulations of a variable length gas target for density down-ramp injection of electrons into a laser wakefield accelerator

    Energy Technology Data Exchange (ETDEWEB)

    Kononenko, O., E-mail: olena.kononenko@desy.de [Deutsches Elektronen-Synchrotron DESY, Hamburg (Germany); Lopes, N.C.; Cole, J.M.; Kamperidis, C.; Mangles, S.P.D.; Najmudin, Z. [The John Adams Institute for Accelerator Science, The Blackett Laboratory, Imperial College London, SW7 2BZ UK (United Kingdom); Osterhoff, J. [Deutsches Elektronen-Synchrotron DESY, Hamburg (Germany); Poder, K. [The John Adams Institute for Accelerator Science, The Blackett Laboratory, Imperial College London, SW7 2BZ UK (United Kingdom); Rusby, D.; Symes, D.R. [Central Laser Facility, STFC Rutherford Appleton Laboratory, Chilton, Didcot OX11 0QX (United Kingdom); Warwick, J. [Queens University Belfast, North Ireland (United Kingdom); Wood, J.C. [The John Adams Institute for Accelerator Science, The Blackett Laboratory, Imperial College London, SW7 2BZ UK (United Kingdom); Palmer, C.A.J. [Deutsches Elektronen-Synchrotron DESY, Hamburg (Germany)

    2016-09-01

    In this work, two-dimensional (2D) hydrodynamic simulations of a variable length gas cell were performed using the open source fluid code OpenFOAM. The gas cell was designed to study controlled injection of electrons into a laser-driven wakefield at the Astra Gemini laser facility. The target consists of two compartments: an accelerator and an injector section connected via an aperture. A sharp transition between the peak and plateau density regions in the injector and accelerator compartments, respectively, was observed in simulations with various inlet pressures. The fluid simulations indicate that the length of the down-ramp connecting the sections depends on the aperture diameter, as does the density drop outside the entrance and the exit cones. Further studies showed, that increasing the inlet pressure leads to turbulence and strong fluctuations in density along the axial profile during target filling, and consequently, is expected to negatively impact the accelerator stability.

  13. ACE3P Computations of Wakefield Coupling in the CLIC Two-Beam Accelerator

    International Nuclear Information System (INIS)

    Candel, Arno

    2010-01-01

    The Compact Linear Collider (CLIC) provides a path to a multi-TeV accelerator to explore the energy frontier of High Energy Physics. Its novel two-beam accelerator concept envisions rf power transfer to the accelerating structures from a separate high-current decelerator beam line consisting of power extraction and transfer structures (PETS). It is critical to numerically verify the fundamental and higher-order mode properties in and between the two beam lines with high accuracy and confidence. To solve these large-scale problems, SLAC's parallel finite element electromagnetic code suite ACE3P is employed. Using curvilinear conformal meshes and higher-order finite element vector basis functions, unprecedented accuracy and computational efficiency are achieved, enabling high-fidelity modeling of complex detuned structures such as the CLIC TD24 accelerating structure. In this paper, time-domain simulations of wakefield coupling effects in the combined system of PETS and the TD24 structures are presented. The results will help to identify potential issues and provide new insights on the design, leading to further improvements on the novel CLIC two-beam accelerator scheme.

  14. Laser-wakefield accelerators for medical phase contrast imaging: Monte Carlo simulations and experimental studies

    Science.gov (United States)

    Cipiccia, S.; Reboredo, D.; Vittoria, Fabio A.; Welsh, G. H.; Grant, P.; Grant, D. W.; Brunetti, E.; Wiggins, S. M.; Olivo, A.; Jaroszynski, D. A.

    2015-05-01

    X-ray phase contrast imaging (X-PCi) is a very promising method of dramatically enhancing the contrast of X-ray images of microscopic weakly absorbing objects and soft tissue, which may lead to significant advancement in medical imaging with high-resolution and low-dose. The interest in X-PCi is giving rise to a demand for effective simulation methods. Monte Carlo codes have been proved a valuable tool for studying X-PCi including coherent effects. The laser-plasma wakefield accelerators (LWFA) is a very compact particle accelerator that uses plasma as an accelerating medium. Accelerating gradient in excess of 1 GV/cm can be obtained, which makes them over a thousand times more compact than conventional accelerators. LWFA are also sources of brilliant betatron radiation, which are promising for applications including medical imaging. We present a study that explores the potential of LWFA-based betatron sources for medical X-PCi and investigate its resolution limit using numerical simulations based on the FLUKA Monte Carlo code, and present preliminary experimental results.

  15. Characterization of the equilibrium configuration for modulated beams in a plasma wakefield accelerator

    CERN Document Server

    Martorelli, Roberto

    2016-01-01

    We analyze the equilibrium configuration for a modulated beam with sharp boundaries exposed to the fields self-generated by the interaction with a plasma. Through a semi-analytical approach we show the presence of multiple equilibrium configurations and we determine the one more suitable for wakefield excitation. Once pointed out the absence of confinement for the front of the beam and the consequently divergence driven by the emittance, we study the evolution of the equilibrium configuration while propagating in the plasma, discarding all the others time-dependencies. We show the onset of a rigid backward drift of the equilibrium configuration and we provide an explanation in the increasing length of the first bunch.

  16. Laser dynamics in transversely inhomogeneous plasma and its relevance to wakefield acceleration

    Science.gov (United States)

    Pathak, V. B.; Vieira, J.; Silva, L. O.; Nam, Chang Hee

    2018-05-01

    We present full set of coupled equations describing the weakly relativistic dynamics of a laser in a plasma with transverse inhomogeneity. We apply variational principle approach to obtain these coupled equations governing laser spot-size, transverse wavenumber, curvature, transverse centroid, etc. We observe that such plasma inhomogeneity can lead to stronger self-focusing. We further discuss the guiding conditions of laser in parabolic plasma channels. With the help of multi-dimensional particle in cell simulations the study is extended to the blowout regime of laser wakefield acceleration to show laser as well as self-injected electron bunch steering in plasma to generate unconventional particle trajectories. Our simulation results demonstrate that such transverse inhomogeneities due to asymmetric self focusing lead to asymmetric bubble excitation, thus inducing off-axis self-injection.

  17. Bubble shape and electromagnetic field in the nonlinear regime for laser wakefield acceleration

    International Nuclear Information System (INIS)

    Li, X. F.; Yu, Q.; Huang, S.; Kong, Q.; Gu, Y. J.; Kawata, S.

    2015-01-01

    The electromagnetic field in the electron “bubble” regime for ultra-intense laser wakefield acceleration was solved using the d'Alembert equations. Ignoring the residual electrons, we assume an ellipsoidal bubble forms under ideal conditions, with bubble velocity equal to the speed of light in vacuum. The general solution for bubble shape and electromagnetic field were obtained. The results were confirmed in 2.5D PIC (particle-in-cell) simulations. Moreover, slopes for the longitudinal electric field of larger than 0.5 were found in these simulations. With spherical bubbles, this slope is always smaller than or equal to 0.5. This behavior validates the ellipsoid assumption

  18. Photon acceleration versus frequency-domain interferometry for laser wakefield diagnostics

    Energy Technology Data Exchange (ETDEWEB)

    Dias, J M; Oliveira e Silva, L; Mendonca, J T [GoLP/Centro de Fisica de Plasmas, Inst. Superior Tecnico, Lisbon (Portugal)

    1998-03-01

    A detailed comparison between the photon acceleration diagnostic technique and the frequency-domain interferometric technique for laser wakefield diagnostics, by using ray-tracing equations is presented here. The dispersion effects on the probe beam and the implications of an arbitrary phase velocity of the plasma wave are discussed for both diagnostic techniques. In the presence of large amplitude plasma wave and long interaction distances significant frequency shifts can be observed. The importance of this effect on the determination of the phase and frequency shifts measurements given by each of the two diagnostic techniques, is also analyzed. The accuracy of both diagnostic techniques is discussed and some of their technical problems are reviewed. (author)

  19. Multiple quasi-monoenergetic electron beams from laser-wakefield acceleration with spatially structured laser pulse

    Energy Technology Data Exchange (ETDEWEB)

    Ma, Y.; Li, M. H.; Li, Y. F.; Wang, J. G.; Tao, M. Z.; Han, Y. J.; Zhao, J. R.; Huang, K.; Yan, W. C.; Ma, J. L.; Li, Y. T. [Beijing National Laboratory of Condensed Matter Physics, Institute of Physics, CAS, Beijing 100080 (China); Chen, L. M., E-mail: lmchen@iphy.ac.cn [Beijing National Laboratory of Condensed Matter Physics, Institute of Physics, CAS, Beijing 100080 (China); Department of Physics and Astronomy and IFSA Collaborative Innovation Center, Shanghai Jiao Tong University, Shanghai 200240 (China); Li, D. Z. [Institute of High Energy Physics, CAS, Beijing 100049 (China); Chen, Z. Y. [Institute of Fluid Physics, China Academy of Engineering Physics, Mianyang, Sichuan 621999 (China); Sheng, Z. M. [Department of Physics and Astronomy and IFSA Collaborative Innovation Center, Shanghai Jiao Tong University, Shanghai 200240 (China); Department of Physics, Scottish Universities Physics Alliance, University of Strathclyde, Glasgow G4 0NG (United Kingdom); Zhang, J. [Department of Physics and Astronomy and IFSA Collaborative Innovation Center, Shanghai Jiao Tong University, Shanghai 200240 (China)

    2015-08-15

    By adjusting the focus geometry of a spatially structured laser pulse, single, double, and treble quasi-monoenergetic electron beams were generated, respectively, in laser-wakefield acceleration. Single electron beam was produced as focusing the laser pulse to a single spot. While focusing the laser pulse to two spots that are approximately equal in energy and size and intense enough to form their own filaments, two electron beams were produced. Moreover, with a proper distance between those two focal spots, three electron beams emerged with a certain probability owing to the superposition of the diffractions of those two spots. The energy spectra of the multiple electron beams are quasi-monoenergetic, which are different from that of the large energy spread beams produced due to the longitudinal multiple-injection in the single bubble.

  20. Editorial: Focus on Laser- and Beam-Driven Plasma Accelerators

    Science.gov (United States)

    Joshi, Chan; Malka, Victor

    2010-04-01

    The ability of short but intense laser pulses to generate high-energy electrons and ions from gaseous and solid targets has been well known since the early days of the laser fusion program. However, during the past decade there has been an explosion of experimental and theoretical activity in this area of laser-matter interaction, driven by the prospect of realizing table-top plasma accelerators for research, medical and industrial uses, and also relatively small and inexpensive plasma accelerators for high-energy physics at the frontier of particle physics. In this focus issue on laser- and beam-driven plasma accelerators, the latest advances in this field are described. Focus on Laser- and Beam-Driven Plasma Accelerators Contents Slow wave plasma structures for direct electron acceleration B D Layer, J P Palastro, A G York, T M Antonsen and H M Milchberg Cold injection for electron wakefield acceleration X Davoine, A Beck, A Lifschitz, V Malka and E Lefebvre Enhanced proton flux in the MeV range by defocused laser irradiation J S Green, D C Carroll, C Brenner, B Dromey, P S Foster, S Kar, Y T Li, K Markey, P McKenna, D Neely, A P L Robinson, M J V Streeter, M Tolley, C-G Wahlström, M H Xu and M Zepf Dose-dependent biological damage of tumour cells by laser-accelerated proton beams S D Kraft, C Richter, K Zeil, M Baumann, E Beyreuther, S Bock, M Bussmann, T E Cowan, Y Dammene, W Enghardt, U Helbig, L Karsch, T Kluge, L Laschinsky, E Lessmann, J Metzkes, D Naumburger, R Sauerbrey, M. Scḧrer, M Sobiella, J Woithe, U Schramm and J Pawelke The optimum plasma density for plasma wakefield excitation in the blowout regime W Lu, W An, M Zhou, C Joshi, C Huang and W B Mori Plasma wakefield acceleration experiments at FACET M J Hogan, T O Raubenheimer, A Seryi, P Muggli, T Katsouleas, C Huang, W Lu, W An, K A Marsh, W B Mori, C E Clayton and C Joshi Electron trapping and acceleration on a downward density ramp: a two-stage approach R M G M Trines, R Bingham, Z Najmudin

  1. Energy loss of a high charge bunched electron beam in plasma: Simulations, scaling, and accelerating wakefields

    Directory of Open Access Journals (Sweden)

    J. B. Rosenzweig

    2004-06-01

    Full Text Available The energy loss and gain of a beam in the nonlinear, “blowout” regime of the plasma wakefield accelerator, which features ultrahigh accelerating fields, linear transverse focusing forces, and nonlinear plasma motion, has been asserted, through previous observations in simulations, to scale linearly with beam charge. Additionally, from a recent analysis by Barov et al., it has been concluded that for an infinitesimally short beam, the energy loss is indeed predicted to scale linearly with beam charge for arbitrarily large beam charge. This scaling is predicted to hold despite the onset of a relativistic, nonlinear response by the plasma, when the number of beam particles occupying a cubic plasma skin depth exceeds that of plasma electrons within the same volume. This paper is intended to explore the deviations from linear energy loss using 2D particle-in-cell simulations that arise in the case of experimentally relevant finite length beams. The peak accelerating field in the plasma wave excited behind the finite-length beam is also examined, with the artifact of wave spiking adding to the apparent persistence of linear scaling of the peak field amplitude into the nonlinear regime. At large enough normalized charge, the linear scaling of both decelerating and accelerating fields collapses, with serious consequences for plasma wave excitation efficiency. Using the results of parametric particle-in-cell studies, the implications of these results for observing severe deviations from linear scaling in present and planned experiments are discussed.

  2. Betatron radiation based diagnostics for plasma wakefield accelerated electron beams at the SPARC-LAB test facility

    International Nuclear Information System (INIS)

    Shpakov, V.; Anania, M.P.; Biagioni, A.; Chiadroni, E.; Cianchi, A.; Curcio, A.; Dabagov, S.; Ferrario, M.; Filippi, F.; Marocchino, A.; Paroli, B.; Pompili, R.; Rossi, A.R.; Zigler, A.

    2016-01-01

    Recent progress with wake-field acceleration has shown a great potential in providing high gradient acceleration fields, while the quality of the beams remains relatively poor. Precise knowledge of the beam size at the exit from the plasma and matching conditions for the externally injected beams are the key for improvement of beam quality. Betatron radiation emitted by the beam during acceleration in the plasma is a powerful tool for the transverse beam size measurement, being also non-intercepting. In this work we report on the technical solutions chosen at SPARC-LAB for such diagnostics tool, along with expected parameters of betatron radiation. - Highlights: • The betatron radiation parameters in SPARC-LAB wakefiled experiments were studied. • The differences with betatron radiation in other wake-field experiments were highlighted. • The solution for betatron radiation detection was investigated.

  3. Betatron radiation based diagnostics for plasma wakefield accelerated electron beams at the SPARC-LAB test facility

    Energy Technology Data Exchange (ETDEWEB)

    Shpakov, V.; Anania, M.P.; Biagioni, A.; Chiadroni, E. [INFN - LNF, via Enrico Fermi 40, 00044 Frascati (Italy); Cianchi, A. [INFN - LNF, via Enrico Fermi 40, 00044 Frascati (Italy); “Tor Vergata” University, via della Ricerca Scientifica 1, 00133 Rome (Italy); Curcio, A. [INFN - LNF, via Enrico Fermi 40, 00044 Frascati (Italy); Dabagov, S. [INFN - LNF, via Enrico Fermi 40, 00044 Frascati (Italy); P.N. Lebedev Physical Institute RAS, Leninskiy Prospekt 53, 119991 Moscow (Russian Federation); NRNU “MEPhI”, Kashirskoe highway 31, 115409 Moscow (Russian Federation); Ferrario, M.; Filippi, F. [INFN - LNF, via Enrico Fermi 40, 00044 Frascati (Italy); Marocchino, A. [Dipartimento SBAI Universitá di Roma ‘La Sapienza’, via Antonio Scarpa 14/16, 00161 Rome (Italy); Paroli, B. [INFN - MI, via Celoria 16, 20133 Milan (Italy); Pompili, R. [INFN - LNF, via Enrico Fermi 40, 00044 Frascati (Italy); Rossi, A.R. [INFN - MI, via Celoria 16, 20133 Milan (Italy); Zigler, A. [Racah Institute of Physics Hebrew University of Jerusalem (Israel)

    2016-09-01

    Recent progress with wake-field acceleration has shown a great potential in providing high gradient acceleration fields, while the quality of the beams remains relatively poor. Precise knowledge of the beam size at the exit from the plasma and matching conditions for the externally injected beams are the key for improvement of beam quality. Betatron radiation emitted by the beam during acceleration in the plasma is a powerful tool for the transverse beam size measurement, being also non-intercepting. In this work we report on the technical solutions chosen at SPARC-LAB for such diagnostics tool, along with expected parameters of betatron radiation. - Highlights: • The betatron radiation parameters in SPARC-LAB wakefiled experiments were studied. • The differences with betatron radiation in other wake-field experiments were highlighted. • The solution for betatron radiation detection was investigated.

  4. The UCLA/SLAC Ultra-High Gradient Cerenkov Wakefield Accelerator Experiment

    CERN Document Server

    Thompson, Matthew C; Hogan, Mark; Ischebeck, Rasmus; Muggli, Patric; Rosenzweig, James E; Scott, A; Siemann, Robert; Travish, Gil; Walz, Dieter; Yoder, Rodney

    2005-01-01

    An experiment is planned to study the performance of dielectric Cerenkov wakefield accelerating structures at extremely high gradients in the GV/m range. This new UCLA/SLAC collaboration will take advantage of the unique SLAC FFTB electron beam and its demonstrated ultra-short pulse lengths and high currents (e.g., sz = 20 μm at Q = 3 nC). The electron beam will be focused down and sent through varying lengths of fused silica capillary tubing with two different sizes: ID = 200 μm / OD = 325 μm and ID = 100 μm / OD = 325 μm. The pulse length of the electron beam will be varied in order to alter the accelerating gradient and probe the breakdown threshold of the dielectric structures. In addition to breakdown studies, we plan to collect and measure coherent Cerenkov radiation emitted from the capillary tube to gain information about the strength of the accelerating fields. Status and progress on the experiment are reported.

  5. Computer simulations of a single-laser double-gas-jet wakefield accelerator concept

    Directory of Open Access Journals (Sweden)

    R. G. Hemker

    2002-04-01

    Full Text Available We report in this paper on full scale 2D particle-in-cell simulations investigating laser wakefield acceleration. First we describe our findings of electron beam generation by a laser propagating through a single gas jet. Using realistic parameters which are relevant for the experimental setup in our laboratory we find that the electron beam resulting after the propagation of a 0.8 μm, 50 fs laser through a 1.5 mm gas jet has properties that would make it useful for further acceleration. Our simulations show that the electron beam is generated when the laser exits the gas jet, and the properties of the generated beam, especially its energy, depend only weakly on most properties of the gas jet. We therefore propose to use the first gas jet as a plasma cathode and then use a second gas jet placed immediately behind the first to provide additional acceleration. Our simulations of this proposed setup indicate the feasibility of this idea and also suggest ways to optimize the quality of the resulting beam.

  6. Injection of electrons by colliding laser pulses in a laser wakefield accelerator

    Energy Technology Data Exchange (ETDEWEB)

    Hansson, M., E-mail: martin.hansson@fysik.lth.se; Aurand, B.; Ekerfelt, H.; Persson, A.; Lundh, O.

    2016-09-01

    To improve the stability and reproducibility of laser wakefield accelerators and to allow for future applications, controlling the injection of electrons is of great importance. This allows us to control the amount of charge in the beams of accelerated electrons and final energy of the electrons. Results are presented from a recent experiment on controlled injection using the scheme of colliding pulses and performed using the Lund multi-terawatt laser. Each laser pulse is split into two parts close to the interaction point. The main pulse is focused on a 2 mm diameter gas jet to drive a nonlinear plasma wave below threshold for self-trapping. The second pulse, containing only a fraction of the total laser energy, is focused to collide with the main pulse in the gas jet under an angle of 150°. Beams of accelerated electrons with low divergence and small energy spread are produced using this set-up. Control over the amount of accelerated charge is achieved by rotating the plane of polarization of the second pulse in relation to the main pulse. Furthermore, the peak energy of the electrons in the beams is controlled by moving the collision point along the optical axis of the main pulse, and thereby changing the acceleration length in the plasma. - Highlights: • Compact colliding pulse injection set-up used to produce low energy spread e-beams. • Beam charge controlled by rotating the polarization of injection pulse. • Peak energy controlled by point of collision to vary the acceleration length.

  7. Exploiting multi-scale parallelism for large scale numerical modelling of laser wakefield accelerators

    International Nuclear Information System (INIS)

    Fonseca, R A; Vieira, J; Silva, L O; Fiuza, F; Davidson, A; Tsung, F S; Mori, W B

    2013-01-01

    A new generation of laser wakefield accelerators (LWFA), supported by the extreme accelerating fields generated in the interaction of PW-Class lasers and underdense targets, promises the production of high quality electron beams in short distances for multiple applications. Achieving this goal will rely heavily on numerical modelling to further understand the underlying physics and identify optimal regimes, but large scale modelling of these scenarios is computationally heavy and requires the efficient use of state-of-the-art petascale supercomputing systems. We discuss the main difficulties involved in running these simulations and the new developments implemented in the OSIRIS framework to address these issues, ranging from multi-dimensional dynamic load balancing and hybrid distributed/shared memory parallelism to the vectorization of the PIC algorithm. We present the results of the OASCR Joule Metric program on the issue of large scale modelling of LWFA, demonstrating speedups of over 1 order of magnitude on the same hardware. Finally, scalability to over ∼10 6 cores and sustained performance over ∼2 P Flops is demonstrated, opening the way for large scale modelling of LWFA scenarios. (paper)

  8. Wakefield and RF Kicks Due to Coupler Asymmetry in TESLA-Type Accelerating Cavities

    International Nuclear Information System (INIS)

    Bane, K

    2008-01-01

    In a future linear collider, such as the International Linear Collider (ILC), trains of high current, low emittance bunches will be accelerated in a linac before colliding at the interaction point. Asymmetries in the accelerating cavities of the linac will generate fields that will kick the beam transversely and degrade the beam emittance and thus the collider performance. In the main linac of the ILC, which is filled with TESLA-type superconducting cavities, it is the fundamental (FM) and higher mode (HM) couplers that are asymmetric and thus the source of such kicks. The kicks are of two types: one, due to (the asymmetry in) the fundamental RF fields and the other, due to transverse wakefields that are generated by the beam even when it is on axis. In this report we calculate the strength of these kicks and estimate their effect on the ILC beam. The TESLA cavity comprises nine cells, one HM coupler in the upstream end, and one (identical, though rotated) HM coupler and one FM coupler in the downstream end (for their shapes and location see Figs. 1, 2) [1]. The cavity is 1.1 m long, the iris radius 35 mm, and the coupler beam pipe radius 39 mm. Note that the couplers reach closer to the axis than the irises, down to a distance of 30 mm

  9. High quality electron beams from a plasma channel guided laser wakefield accelerator

    International Nuclear Information System (INIS)

    Geddes, C.G.R.; Toth, Cs.; Tilborg, J. van; Esarey, E.; Schroeder, C.B.; Bruhwiler, D.; Nieter, C.; Cary, J.; Leemans, W.P.

    2004-01-01

    Laser driven accelerators, in which particles are accelerated by the electric field of a plasma wave driven by an intense laser, have demonstrated accelerating electric fields of hundreds of GV/m. These fields are thousands of times those achievable in conventional radiofrequency (RF) accelerators, spurring interest in laser accelerators as compact next generation sources of energetic electrons and radiation. To date however, acceleration distances have been severely limited by lack of a controllable method for extending the propagation distance of the focused laser pulse. The ensuing short acceleration distance results in low energy beams with 100% electron energy spread, limiting applications. Here we demonstrate that a relativistically intense laser can be guided by a preformed plasma density channel and that the longer propagation distance can result in electron beams of percent energy spread with low emittance and increased energy, containing >10 9 electrons above 80 MeV. The preformed plasma channel technique forms the basis of a new class of accelerators, combining beam quality comparable to RF accelerators with the high gradients of laser accelerators to produce compact tunable high brightness electron and radiation sources

  10. Three electron beams from a laser-plasma wakefield accelerator and the energy apportioning question

    CERN Document Server

    Yang, X; Reboredo Gil, David; Welsh, Gregor H; Li, Y.F; Cipiccia, Silvia; Ersfeld, Bernhard; Grant, D. W; Grant, P. A; Islam, Muhammad; Tooley, M.B; Vieux, Gregory; Wiggins, Sally; Sheng, Zheng-Ming; Jaroszynski, Dino

    2017-01-01

    Laser-wakefield accelerators are compact devices capable of delivering ultra-short electron bunches with pC-level charge and MeV-GeV energy by exploiting the ultra-high electric fields arising from the interaction of intense laser pulses with plasma. We show experimentally and through numerical simulations that a high-energy electron beam is produced simultaneously with two stable lowerenergy beams that are ejected in oblique and counter-propagating directions, typically carrying off 5–10% of the initial laser energy. A MeV, 10s nC oblique beam is ejected in a 30°–60° hollow cone, which is filled with more energetic electrons determined by the injection dynamics. A nC-level, 100s keV backward-directed beam is mainly produced at the leading edge of the plasma column. We discuss the apportioning of absorbed laser energy amongst the three beams. Knowledge of the distribution of laser energy and electron beam charge, which determine the overall efficiency, is important for various applications of laser-wake...

  11. Temporal characterization of ultrashort linearly chirped electron bunches generated from a laser wakefield accelerator

    Directory of Open Access Journals (Sweden)

    C. J. Zhang

    2016-06-01

    Full Text Available A new method for diagnosing the temporal characteristics of ultrashort electron bunches with linear energy chirp generated from a laser wakefield accelerator is described. When the ionization-injected bunch interacts with the back of the drive laser, it is deflected and stretched along the direction of the electric field of the laser. Upon exiting the plasma, if the bunch goes through a narrow slit in front of the dipole magnet that disperses the electrons in the plane of the laser polarization, it can form a series of bunchlets that have different energies but are separated by half a laser wavelength. Since only the electrons that are undeflected by the laser go through the slit, the energy spectrum of the bunch is modulated. By analyzing the modulated energy spectrum, the shots where the bunch has a linear energy chirp can be recognized. Consequently, the energy chirp and beam current profile of those bunches can be reconstructed. This method is demonstrated through particle-in-cell simulations and experiment.

  12. An accurate Rb density measurement method for a plasma wakefield accelerator experiment using a novel Rb reservoir

    CERN Document Server

    Öz, E.; Muggli, P.

    2016-01-01

    A method to accurately measure the density of Rb vapor is described. We plan on using this method for the Advanced Wakefield (AWAKE)~\\cite{bib:awake} project at CERN , which will be the world's first proton driven plasma wakefield experiment. The method is similar to the hook~\\cite{bib:Hook} method and has been described in great detail in the work by W. Tendell Hill et. al.~\\cite{bib:densitymeter}. In this method a cosine fit is applied to the interferogram to obtain a relative accuracy on the order of $1\\%$ for the vapor density-length product. A single-mode, fiber-based, Mach-Zenhder interferometer will be built and used near the ends of the 10 meter-long AWAKE plasma source to be able to make accurate relative density measurement between these two locations. This can then be used to infer the vapor density gradient along the AWAKE plasma source and also change it to the value desired for the plasma wakefield experiment. Here we describe the plan in detail and show preliminary results obtained using a prot...

  13. Study of the Betatron and Compton X-ray sources produced in laser wakefield acceleration of electrons

    International Nuclear Information System (INIS)

    Ferri, Julien

    2016-01-01

    An ultra-short and ultra-intense laser pulse propagating in a low-density gas can accelerate in its wake a part of the electrons ionized from the gas to relativistic energies of a few hundreds of MeV over distances of a few millimeters only. During their acceleration, as a consequence of their transverse motion, these electrons emit strongly collimated X-rays in the forward direction, which are called betatron radiations. The characteristics of this source turn it into an interesting tool for high-resolution imagery.In this thesis, we explore three different axis to work on this source using simulations on the Particles-In-Cells codes CALDER and CALDER-Circ. We first study the creation of a betatron X-ray source with kilo-joule and pico-second laser pulses, for which duration and energy are then much higher than usual in this domain. In spite of the unusual laser parameters, we show that X-ray sources can still be generated, furthermore in two different regimes.In a second study, the generally observed discrepancies between experiments and simulations are investigated. We show that the use of realistic laser profiles instead of Gaussian ones in the simulations strongly degrades the performances of the laser-plasma accelerator and of the betatron source. Additionally, this leads to a better qualitative and quantitative agreement with the experiment. Finally, with the aim of improving the X-ray emission, we explore several techniques based on the manipulation of the plasma density profile used for acceleration. We find that both the use of a transverse gradient and of a density step increases the amplitude of the electrons transverse motions, and then increases the radiated energy. Alternatively, we show that this goal can also be achieved through the transition from a laser wakefield regime to a plasma wakefield regime induced by an increase of the density. The laser wakefield optimizes the electron acceleration whereas the plasma wakefield favours the X

  14. Dose properties of x-ray beams produced by laser-wakefield-accelerated electrons

    International Nuclear Information System (INIS)

    Kainz, K K; Hogstrom, K R; Antolak, J A; Almond, P R; Bloch, C D

    2005-01-01

    Given that laser wakefield acceleration (LWFA) has been demonstrated experimentally to accelerate electron beams to energies beyond 25 MeV, it is reasonable to assess the ability of existing LWFA technology to compete with conventional radiofrequency linear accelerators in producing electron and x-ray beams for external-beam radiotherapy. We present calculations of the dose distributions (off-axis dose profiles and central-axis depth dose) and dose rates of x-ray beams that can be produced from electron beams that are generated using state-of-the-art LWFA. Subsets of an LWFA electron energy distribution were propagated through the treatment head elements (presuming an existing design for an x-ray production target and flattening filter) implemented within the EGSnrc Monte Carlo code. Three x-ray energy configurations (6 MV, 10 MV and 18 MV) were studied, and the energy width ΔE of the electron-beam subsets varied from 0.5 MeV to 12.5 MeV. As ΔE increased from 0.5 MeV to 4.5 MeV, we found that the off-axis and central-axis dose profiles for x-rays were minimally affected (to within about 3%), a result slightly different from prior calculations of electron beams broadened by scattering foils. For ΔE of the order of 12 MeV, the effect on the off-axis profile was of the order of 10%, but the central-axis depth dose was affected by less than 2% for depths in excess of about 5 cm beyond d max . Although increasing ΔE beyond 6.5 MeV increased the dose rate at d max by more than 10 times, the absolute dose rates were about 3 orders of magnitude below those observed for LWFA-based electron beams at comparable energies. For a practical LWFA-based x-ray device, the beam current must be increased by about 4-5 orders of magnitude. (note)

  15. Electron diffraction using ultrafast electron bunches from a laser-wakefield accelerator at kHz repetition rate

    Science.gov (United States)

    He, Z.-H.; Thomas, A. G. R.; Beaurepaire, B.; Nees, J. A.; Hou, B.; Malka, V.; Krushelnick, K.; Faure, J.

    2013-02-01

    We show that electron bunches in the 50-100 keV range can be produced from a laser wakefield accelerator using 10 mJ, 35 fs laser pulses operating at 0.5 kHz. It is shown that using a solenoid magnetic lens, the electron bunch distribution can be shaped. The resulting transverse and longitudinal coherence is suitable for producing diffraction images from a polycrystalline 10 nm aluminum foil. The high repetition rate, the stability of the electron source, and the fact that its uncorrelated bunch duration is below 100 fs make this approach promising for the development of sub-100 fs ultrafast electron diffraction experiments.

  16. Electron diffraction using ultrafast electron bunches from a laser-wakefield accelerator at kHz repetition rate

    Energy Technology Data Exchange (ETDEWEB)

    He, Z.-H.; Thomas, A. G. R.; Nees, J. A.; Hou, B.; Krushelnick, K. [Center for Ultrafast Optical Science, University of Michigan, Ann Arbor, Michigan 48106-2099 (United States); Beaurepaire, B.; Malka, V.; Faure, J. [Laboratoire d' Optique Appliquee, ENSTA-CNRS-Ecole Polytechnique, UMR 7639, 91761 Palaiseau (France)

    2013-02-11

    We show that electron bunches in the 50-100 keV range can be produced from a laser wakefield accelerator using 10 mJ, 35 fs laser pulses operating at 0.5 kHz. It is shown that using a solenoid magnetic lens, the electron bunch distribution can be shaped. The resulting transverse and longitudinal coherence is suitable for producing diffraction images from a polycrystalline 10 nm aluminum foil. The high repetition rate, the stability of the electron source, and the fact that its uncorrelated bunch duration is below 100 fs make this approach promising for the development of sub-100 fs ultrafast electron diffraction experiments.

  17. A bremsstrahlung gamma-ray source based on stable ionization injection of electrons into a laser wakefield accelerator

    Energy Technology Data Exchange (ETDEWEB)

    Döpp, A., E-mail: andreas.doepp@polytechnique.edu [LOA, ENSTA ParisTech, CNRS, École polytechnique, Université Paris-Saclay, 828 bd des Maréchaux, 91762 Palaiseau Cedex (France); Centro de Laseres Pulsados, Parque Cientfico, 37185 Villamayor, Salamanca (Spain); Guillaume, E.; Thaury, C.; Lifschitz, A. [LOA, ENSTA ParisTech, CNRS, École polytechnique, Université Paris-Saclay, 828 bd des Maréchaux, 91762 Palaiseau Cedex (France); Sylla, F. [SourceLAB SAS, 86 rue de Paris, 91400 Orsay (France); Goddet, J-P.; Tafzi, A.; Iaquanello, G.; Lefrou, T.; Rousseau, P. [LOA, ENSTA ParisTech, CNRS, École polytechnique, Université Paris-Saclay, 828 bd des Maréchaux, 91762 Palaiseau Cedex (France); Conejero, E.; Ruiz, C. [Departamento de Física Aplicada, Universidad de Salamanca, Plaza de laMerced s/n, 37008 Salamanca (Spain); Ta Phuoc, K.; Malka, V. [LOA, ENSTA ParisTech, CNRS, École polytechnique, Université Paris-Saclay, 828 bd des Maréchaux, 91762 Palaiseau Cedex (France)

    2016-09-11

    Laser wakefield acceleration permits the generation of ultra-short, high-brightness relativistic electron beams on a millimeter scale. While those features are of interest for many applications, the source remains constraint by the poor stability of the electron injection process. Here we present results on injection and acceleration of electrons in pure nitrogen and argon. We observe stable, continuous ionization-induced injection of electrons into the wakefield for laser powers exceeding a threshold of 7 TW. The beam charge scales approximately with the laser energy and is limited by beam loading. For 40 TW laser pulses we measure a maximum charge of almost 1 nC per shot, originating mostly from electrons of less than 10 MeV energy. The relatively low energy, the high charge and its stability make this source well-suited for applications such as non-destructive testing. Hence, we demonstrate the production of energetic radiation via bremsstrahlung conversion at 1 Hz repetition rate. In accordance with GEANT4 Monte-Carlo simulations, we measure a γ-ray source size of less than 100 μm for a 0.5 mm tantalum converter placed at 2 mm from the accelerator exit. Furthermore we present radiographs of image quality indicators.

  18. Plasma based accelerators

    Energy Technology Data Exchange (ETDEWEB)

    Caldwell, Allen [Max-Planck-Institut fuer Physik, Muenchen (Germany)

    2015-05-01

    The concept of laser-induced plasma wakefields as a technique to accelerate charged particles was introduced 35 years ago as a means to go beyond the accelerating gradients possible with metallic cavities supporting radio frequency electromagnetic fields. Significant developments in laser technology have made possible the pulse intensity needed to realize this concept, and rapid progress is now underway in the realization of laser-driven plasma wakefield acceleration. It has also been realized that similar accelerating gradients can be produced by particle beams propagating in plasmas, and experimental programs have also been undertaken to study this possibility. Positive results have been achieved with electron-driven plasma wakefields, and a demonstration experiment with proton-driven wakefields is under construction at CERN. The concepts behind these different schemes and their pros and cons are described, as well as the experimental results achieved. An outlook for future practical uses of plasma based accelerators will also be given.

  19. Energy Efficiency of an Intracavity Coupled, Laser-Driven Linear Accelerator Pumped by an External Laser

    International Nuclear Information System (INIS)

    Neil Na, Y.C.; Siemann, R.H.; SLAC; Byer, R.L.; Stanford U., Phys. Dept.

    2005-01-01

    We calculate the optimum energy efficiency of a laser-driven linear accelerator by adopting a simple linear model. In the case of single bunch operation, the energy efficiency can be enhanced by incorporating the accelerator into a cavity that is pumped by an external laser. In the case of multiple bunch operation, the intracavity configuration is less advantageous because the strong wakefield generated by the electron beam is also recycled. Finally, the calculation indicates that the luminosity of a linear collider based on such a structure is comparably small if high efficiency is desired

  20. Photoinjector optimization using a derivative-free, model-based trust-region algorithm for the Argonne Wakefield Accelerator

    Science.gov (United States)

    Neveu, N.; Larson, J.; Power, J. G.; Spentzouris, L.

    2017-07-01

    Model-based, derivative-free, trust-region algorithms are increasingly popular for optimizing computationally expensive numerical simulations. A strength of such methods is their efficient use of function evaluations. In this paper, we use one such algorithm to optimize the beam dynamics in two cases of interest at the Argonne Wakefield Accelerator (AWA) facility. First, we minimize the emittance of a 1 nC electron bunch produced by the AWA rf photocathode gun by adjusting three parameters: rf gun phase, solenoid strength, and laser radius. The algorithm converges to a set of parameters that yield an emittance of 1.08 μm. Second, we expand the number of optimization parameters to model the complete AWA rf photoinjector (the gun and six accelerating cavities) at 40 nC. The optimization algorithm is used in a Pareto study that compares the trade-off between emittance and bunch length for the AWA 70MeV photoinjector.

  1. Colliding pulse injection experiments in non-collinear geometry for controlled laser plasma wakefield acceleration of electrons

    International Nuclear Information System (INIS)

    Toth, Carl B.; Esarey, Eric H.; Geddes, Cameron G.R.; Leemans, Wim P.; Nakamura, Kei; Panasenko, Dmitriy; Schroeder, Carl B.; Bruhwiler, D.; Cary, J.R.

    2007-01-01

    An optical injection scheme for a laser-plasma based accelerator which employs a non-collinear counter-propagating laser beam to push background electrons in the focusing and acceleration phase via ponderomotive beat with the trailing part of the wakefield driver pulse is discussed. Preliminary experiments were performed using a drive beam of a 0 = 2.6 and colliding beam of a 1 = 0.8 both focused on the middle of a 200 mu m slit jet backed with 20 bar, which provided ∼ 260 mu m long gas plume. The enhancement in the total charge by the colliding pulse was observed with sharp dependence on the delay time of the colliding beam. Enhancement of the neutron yield was also measured, which suggests a generation of electrons above 10 MeV

  2. Beam-beam instability driven by wakefield effects in linear colliders

    CERN Document Server

    Brinkmann, R; Schulte, Daniel

    2002-01-01

    The vertical beam profile distortions induced by wakefield effects in linear colliders (the so-called ``banana effect'') generate a beam-beam instability at the collision point when the vertical disruption parameter is large. We illustrate this effect in the case of the TESLA linear collider project. We specify the tolerance on the associated emittance growth, which translates into tolerances on injection jitter and, for a given tuning procedure, on structure misalignments. We look for possible cures based on fast orbit correction at the interaction point and using a fast luminosity monitor.

  3. Transmutation and accelerator driven systems

    International Nuclear Information System (INIS)

    Shapira, J.P.

    2001-01-01

    Full text: Today, countries who are presently involved in nuclear energy are facing many challenges to maintain this option open for the next few decades. Among them, management of nuclear wastes produced in nuclear reactors and in fuel cycle operations has become a very strong environmental issue among the public. In most countries with sizeable commercial nuclear programs, deep geological disposal of ultimate highly active and long-lived nuclear wastes is considered as the reference long-term management scheme. But, many questions arise on the possibility to demonstrate that such wastes can be dealt in such a way as to protect the future generations and the environment. The characteristics of nuclear wastes, the various back end policies concerning spent fuels and the nuclear wastes long-term management options will be first described. Then recent proposals, based on transmutation, especially those using accelerator driven systems (ADS) and/or thorium will be presented. Finally, the possibility for the nuclear physics community to play a part in alleviating the nuclear wastes burden will be pointed out. (author)

  4. Improvements to laser wakefield accelerated electron beam stability, divergence, and energy spread using three-dimensional printed two-stage gas cell targets

    International Nuclear Information System (INIS)

    Vargas, M.; Schumaker, W.; He, Z.-H.; Zhao, Z.; Behm, K.; Chvykov, V.; Hou, B.; Krushelnick, K.; Maksimchuk, A.; Yanovsky, V.; Thomas, A. G. R.

    2014-01-01

    High intensity, short pulse lasers can be used to accelerate electrons to ultra-relativistic energies via laser wakefield acceleration (LWFA) [T. Tajima and J. M. Dawson, Phys. Rev. Lett. 43, 267 (1979)]. Recently, it was shown that separating the injection and acceleration processes into two distinct stages could prove beneficial in obtaining stable, high energy electron beams [Gonsalves et al., Nat. Phys. 7, 862 (2011); Liu et al., Phys. Rev. Lett. 107, 035001 (2011); Pollock et al., Phys. Rev. Lett. 107, 045001 (2011)]. Here, we use a stereolithography based 3D printer to produce two-stage gas targets for LWFA experiments on the HERCULES laser system at the University of Michigan. We demonstrate substantial improvements to the divergence, pointing stability, and energy spread of a laser wakefield accelerated electron beam compared with a single-stage gas cell or gas jet target

  5. Improvements to laser wakefield accelerated electron beam stability, divergence, and energy spread using three-dimensional printed two-stage gas cell targets

    Energy Technology Data Exchange (ETDEWEB)

    Vargas, M.; Schumaker, W.; He, Z.-H.; Zhao, Z.; Behm, K.; Chvykov, V.; Hou, B.; Krushelnick, K.; Maksimchuk, A.; Yanovsky, V.; Thomas, A. G. R., E-mail: agrt@umich.edu [Center for Ultrafast Optical Science, University of Michigan, Ann Arbor, Michigan 48109 (United States)

    2014-04-28

    High intensity, short pulse lasers can be used to accelerate electrons to ultra-relativistic energies via laser wakefield acceleration (LWFA) [T. Tajima and J. M. Dawson, Phys. Rev. Lett. 43, 267 (1979)]. Recently, it was shown that separating the injection and acceleration processes into two distinct stages could prove beneficial in obtaining stable, high energy electron beams [Gonsalves et al., Nat. Phys. 7, 862 (2011); Liu et al., Phys. Rev. Lett. 107, 035001 (2011); Pollock et al., Phys. Rev. Lett. 107, 045001 (2011)]. Here, we use a stereolithography based 3D printer to produce two-stage gas targets for LWFA experiments on the HERCULES laser system at the University of Michigan. We demonstrate substantial improvements to the divergence, pointing stability, and energy spread of a laser wakefield accelerated electron beam compared with a single-stage gas cell or gas jet target.

  6. Laser-driven electron accelerators

    International Nuclear Information System (INIS)

    Palmer, R.B.

    1981-01-01

    The following possibilities are discussed: inverse free electron laser (wiggler accelerator); inverse Cerenkov effect; plasma accelerator; dielectric tube; and grating linac. Of these, the grating acceleraton is considered the most attractive alternative

  7. Applications of laser-driven particle acceleration

    CERN Document Server

    Parodi, Katia; Schreiber, Jorg

    2018-01-01

    The first book of its kind to highlight the unique capabilities of laser-driven acceleration and its diverse potential, Applications of Laser-Driven Particle Acceleration presents the basic understanding of acceleration concepts and envisioned prospects for selected applications. As the main focus, this new book explores exciting and diverse application possibilities, with emphasis on those uniquely enabled by the laser driver that can also be meaningful and realistic for potential users. A key aim of the book is to inform multiple, interdisciplinary research communities of the new possibilities available and to inspire them to engage with laser-driven acceleration, further motivating and advancing this developing field. Material is presented in a thorough yet accessible manner, making it a valuable reference text for general scientific and engineering researchers who are not necessarily subject matter experts. Applications of Laser-Driven Particle Acceleration is edited by Professors Paul R. Bolton, Katia ...

  8. Wakefield accelerator with hybrid plasma-dielectric structure of rectangular cross-section

    International Nuclear Information System (INIS)

    Kiselev, V.A.; Linnik, A.F.; Mirnyj, V.I.; Onishchenko, I.N.; Uskov, V.V.

    2010-01-01

    Increase of wakefield intensity at its excitation by a long train of relativistic electron bunches in the rectangular dielectric structure when it is filled with plasma of resonant density was experimentally observed. The first portion of the bunches, produced by electron linac 'Almaz-2', ionizes gas at atmospheric pressure so that plasma frequency becomes equal to bunch repetition frequency and to the frequency of principal Eigen mode of the dielectric structure. Excitation enhancement at such resonant conditions is being studied taking into account the improvement of bunch train propagation in the transit channel caused by charge compensation with plasma and the electrodynamics change of the dielectric structure at filling with plasma.

  9. Stable electron beams from laser wakefield acceleration with few-terawatt driver using a supersonic air jet

    Science.gov (United States)

    Boháček, K.; Kozlová, M.; Nejdl, J.; Chaulagain, U.; Horný, V.; Krůs, M.; Ta Phuoc, K.

    2018-03-01

    The generation of stable electron beams produced by the laser wakefield acceleration mechanism with a few-terawatt laser system (600 mJ, 50 fs) in a supersonic synthetic air jet is reported and the requirements necessary to build such a stable electron source are experimentally investigated in conditions near the bubble regime threshold. The resulting electron beams have stable energies of (17.4 ± 1.1) MeV and an energy spread of (13.5 ± 1.5) MeV (FWHM), which has been achieved by optimizing the properties of the supersonic gas jet target for the given laser system. Due to the availability of few-terawatt laser systems in many laboratories around the world these stable electron beams open possibilities for applications of this type of particle source.

  10. Laser-driven acceleration with Bessel beam

    International Nuclear Information System (INIS)

    Imasaki, Kazuo; Li, Dazhi

    2005-01-01

    A new approach of laser-driven acceleration with Bessel beam is described. Bessel beam, in contrast to the Gaussian beam, shows diffraction-free'' characteristics in its propagation, which implies potential in laser-driven acceleration. But a normal laser, even if the Bessel beam, laser can not accelerate charged particle efficiently because the difference of velocity between the particle and photon makes cyclic acceleration and deceleration phase. We proposed a Bessel beam truncated by a set of annular slits those makes several special regions in its travelling path, where the laser field becomes very weak and the accelerated particles are possible to receive no deceleration as they undergo decelerating phase. Thus, multistage acceleration is realizable with high gradient. In a numerical computation, we have shown the potential of multistage acceleration based on a three-stage model. (author)

  11. Comments to accelerator-driven system

    International Nuclear Information System (INIS)

    Taka aki, Matsumoto

    2003-01-01

    Accelerator-driven system (ADS) that was a subcritical nuclear reactor driven by a high power proton accelerator was recently studied by several large organisations over the world. This paper described two comments for ADS: philosophical and technological ones. The latter was made from a view point of micro ball lightning (BL) that was newly discovered by the author. Negative and positive aspects of micro BL for ADS were discussed. (author)

  12. A tunable electron beam source using trapping of electrons in a density down-ramp in laser wakefield acceleration.

    Science.gov (United States)

    Ekerfelt, Henrik; Hansson, Martin; Gallardo González, Isabel; Davoine, Xavier; Lundh, Olle

    2017-09-25

    One challenge in the development of laser wakefield accelerators is to demonstrate sufficient control and reproducibility of the parameters of the generated bunches of accelerated electrons. Here we report on a numerical study, where we demonstrate that trapping using density down-ramps allows for tuning of several electron bunch parameters by varying the properties of the density down-ramp. We show that the electron bunch length is determined by the difference in density before and after the ramp. Furthermore, the transverse emittance of the bunch is controlled by the steepness of the ramp. Finally, the amount of trapped charge depends both on the density difference and on the steepness of the ramp. We emphasize that both parameters of the density ramp are feasible to vary experimentally. We therefore conclude that this tunable electron accelerator makes it suitable for a wide range of applications, from those requiring short pulse length and low emittance, such as the free-electron lasers, to those requiring high-charge, large-emittance bunches to maximize betatron X-ray generation.

  13. High-energy coherent terahertz radiation emitted by wide-angle electron beams from a laser-wakefield accelerator

    Science.gov (United States)

    Yang, Xue; Brunetti, Enrico; Jaroszynski, Dino A.

    2018-04-01

    High-charge electron beams produced by laser-wakefield accelerators are potentially novel, scalable sources of high-power terahertz radiation suitable for applications requiring high-intensity fields. When an intense laser pulse propagates in underdense plasma, it can generate femtosecond duration, self-injected picocoulomb electron bunches that accelerate on-axis to energies from 10s of MeV to several GeV, depending on laser intensity and plasma density. The process leading to the formation of the accelerating structure also generates non-injected, sub-picosecond duration, 1–2 MeV nanocoulomb electron beams emitted obliquely into a hollow cone around the laser propagation axis. These wide-angle beams are stable and depend weakly on laser and plasma parameters. Here we perform simulations to characterise the coherent transition radiation emitted by these beams if passed through a thin metal foil, or directly at the plasma–vacuum interface, showing that coherent terahertz radiation with 10s μJ to mJ-level energy can be produced with an optical to terahertz conversion efficiency up to 10‑4–10‑3.

  14. Generating multi-GeV electron bunches using single stage laser wakefield acceleration in a 3D nonlinear regime

    Directory of Open Access Journals (Sweden)

    W. Lu

    2007-06-01

    Full Text Available The extraordinary ability of space-charge waves in plasmas to accelerate charged particles at gradients that are orders of magnitude greater than in current accelerators has been well documented. We develop a phenomenological framework for laser wakefield acceleration (LWFA in the 3D nonlinear regime, in which the plasma electrons are expelled by the radiation pressure of a short pulse laser, leading to nearly complete blowout. Our theory provides a recipe for designing a LWFA for given laser and plasma parameters and estimates the number and the energy of the accelerated electrons whether self-injected or externally injected. These formulas apply for self-guided as well as externally guided pulses (e.g. by plasma channels. We demonstrate our results by presenting a sample particle-in-cell (PIC simulation of a 30   fs, 200 TW laser interacting with a 0.75 cm long plasma with density 1.5×10^{18}  cm^{-3} to produce an ultrashort (10 fs monoenergetic bunch of self-injected electrons at 1.5 GeV with 0.3 nC of charge. For future higher-energy accelerator applications, we propose a parameter space, which is distinct from that described by Gordienko and Pukhov [Phys. Plasmas 12, 043109 (2005PHPAEN1070-664X10.1063/1.1884126] in that it involves lower plasma densities and wider spot sizes while keeping the intensity relatively constant. We find that this helps increase the output electron beam energy while keeping the efficiency high.

  15. Technology of magnetically driven accelerators

    International Nuclear Information System (INIS)

    Brix, D.L.; Hawkins, S.A.; Poor, S.E.; Reginato, L.L.; Smith, M.W.

    1985-01-01

    The marriage of Induction Linac technology with Nonlinear Magnetic Modulators has produced some unique capabilities. It appears possible to produce electron beams with average currents measured in amperes, at gradients exceeding 1 MeV/meter, and with power efficiencies approaching 50%. A 2 MeV, 5 kA electron accelerator has been constructed at the Lawrence Livermore National Laboratory (LLNL) to demonstrate these concepts and to provide a test facility for high brightness sources. The pulse drive for the accelerator is based on state-of-the-art magnetic pulse compressors with very high peak power capability, repetition rates exceeding a kilohertz and excellent reliability

  16. Technology of magnetically driven accelerators

    International Nuclear Information System (INIS)

    Birx, D.L.; Hawkins, S.A.; Poor, S.E.; Reginato, L.L.; Smith, M.W.

    1985-01-01

    The marriage of Induction Linac technology with Nonlinear Magnetic Modulators has produced some unique capabilities. It appears possible to produce electron beams with average currents measured in amperes, at gradients exceeding 1 MeV/meter, and with power efficiencies approach 50%. A 2 MeV, 5 kA electron accelerator has been constructed at the Lawrence Livermore National Laboratory (LLNL) to demonstrate these concepts and to provide a test facility for high brightness sources. The pulse drive for the accelerator is based on state-of-the-art magnetic pulse compressors with very high peak power capability, repetition rates exceeding a kilohertz and excellent reliability

  17. Shaping of pulses in optical grating-based laser systems for optimal control of electrons in laser plasma wake-field accelerator

    International Nuclear Information System (INIS)

    Toth, Cs.; Faure, J.; Geddes, C.G.R.; Tilborg, J. van; Leemans, W.P.

    2003-01-01

    In typical chirped pulse amplification (CPA) laser systems, scanning the grating separation in the optical compressor causes the well know generation of linear chirp of frequency vs. time in a laser pulse, as well as a modification of all the higher order phase terms. By setting the compressor angle slightly different from the optimum value to generate the shortest pulse, a typical scan around this value will produce significant changes to the pulse shape. Such pulse shape changes can lead to significant differences in the interaction with plasmas such as used in laser wake-field accelerators. Strong electron yield dependence on laser pulse shape in laser plasma wake-field electron acceleration experiments have been observed in the L'OASIS Lab of LBNL [1]. These experiments show the importance of pulse skewness parameter, S, defined here on the basis of the ratio of the ''head-width-half-max'' (HWHM) and the ''tail-width-halfmax'' (TWHM), respectively

  18. Simulations and experiments on external electron injection for laser wakefield acceleration

    NARCIS (Netherlands)

    Dijk, van W.

    2010-01-01

    Laser wake field acceleration is a technique that can be used to accelerate electrons using electric fields that are several orders of magnitude higher than those available in conventional accelerators. With these higher fields, it is possible to drastically reduce the length of accelerator needed

  19. Note: Real-time monitoring via second-harmonic interferometry of a flow gas cell for laser wakefield acceleration

    Science.gov (United States)

    Brandi, F.; Giammanco, F.; Conti, F.; Sylla, F.; Lambert, G.; Gizzi, L. A.

    2016-08-01

    The use of a gas cell as a target for laser wakefield acceleration (LWFA) offers the possibility to obtain stable and manageable laser-plasma interaction process, a mandatory condition for practical applications of this emerging technique, especially in multi-stage accelerators. In order to obtain full control of the gas particle number density in the interaction region, thus allowing for a long term stable and manageable LWFA, real-time monitoring is necessary. In fact, the ideal gas law cannot be used to estimate the particle density inside the flow cell based on the preset backing pressure and the room temperature because the gas flow depends on several factors like tubing, regulators, and valves in the gas supply system, as well as vacuum chamber volume and vacuum pump speed/throughput. Here, second-harmonic interferometry is applied to measure the particle number density inside a flow gas cell designed for LWFA. The results demonstrate that real-time monitoring is achieved and that using low backing pressure gas (<1 bar) and different cell orifice diameters (<2 mm) it is possible to finely tune the number density up to the 1019 cm-3 range well suited for LWFA.

  20. Note: Real-time monitoring via second-harmonic interferometry of a flow gas cell for laser wakefield acceleration.

    Science.gov (United States)

    Brandi, F; Giammanco, F; Conti, F; Sylla, F; Lambert, G; Gizzi, L A

    2016-08-01

    The use of a gas cell as a target for laser wakefield acceleration (LWFA) offers the possibility to obtain stable and manageable laser-plasma interaction process, a mandatory condition for practical applications of this emerging technique, especially in multi-stage accelerators. In order to obtain full control of the gas particle number density in the interaction region, thus allowing for a long term stable and manageable LWFA, real-time monitoring is necessary. In fact, the ideal gas law cannot be used to estimate the particle density inside the flow cell based on the preset backing pressure and the room temperature because the gas flow depends on several factors like tubing, regulators, and valves in the gas supply system, as well as vacuum chamber volume and vacuum pump speed/throughput. Here, second-harmonic interferometry is applied to measure the particle number density inside a flow gas cell designed for LWFA. The results demonstrate that real-time monitoring is achieved and that using low backing pressure gas (<1 bar) and different cell orifice diameters (<2 mm) it is possible to finely tune the number density up to the 10(19) cm(-3) range well suited for LWFA.

  1. Note: Real-time monitoring via second-harmonic interferometry of a flow gas cell for laser wakefield acceleration

    Energy Technology Data Exchange (ETDEWEB)

    Brandi, F., E-mail: fernando.brandi@ino.it [Intense Laser Irradiation Laboratory (ILIL), Istituto Nazionale di Ottica (INO-CNR), Via Moruzzi 1, 56124 Pisa (Italy); Istituto Italiano di Tecnologia (IIT), Via Morego 30, 16163 Genova (Italy); Giammanco, F.; Conti, F. [Dipartimento di Fisica, Università degli Studi di Pisa, Largo B. Pontecorvo 3, 56127 Pisa (Italy); Plasma Diagnostics and Technologies Ltd., via Matteucci n.38/D, 56124 Pisa (Italy); Sylla, F. [SourceLAB SAS, 86 Rue de Paris, 91400 Orsay (France); Lambert, G. [LOA, ENSTA ParisTech, CNRS, Ecole Polytechnique, Université Paris-Saclay, 828 bd des Maréchaux, 91762 Palaiseau Cedex (France); Gizzi, L. A. [Intense Laser Irradiation Laboratory (ILIL), Istituto Nazionale di Ottica (INO-CNR), Via Moruzzi 1, 56124 Pisa (Italy)

    2016-08-15

    The use of a gas cell as a target for laser wakefield acceleration (LWFA) offers the possibility to obtain stable and manageable laser-plasma interaction process, a mandatory condition for practical applications of this emerging technique, especially in multi-stage accelerators. In order to obtain full control of the gas particle number density in the interaction region, thus allowing for a long term stable and manageable LWFA, real-time monitoring is necessary. In fact, the ideal gas law cannot be used to estimate the particle density inside the flow cell based on the preset backing pressure and the room temperature because the gas flow depends on several factors like tubing, regulators, and valves in the gas supply system, as well as vacuum chamber volume and vacuum pump speed/throughput. Here, second-harmonic interferometry is applied to measure the particle number density inside a flow gas cell designed for LWFA. The results demonstrate that real-time monitoring is achieved and that using low backing pressure gas (<1 bar) and different cell orifice diameters (<2 mm) it is possible to finely tune the number density up to the 10{sup 19} cm{sup −3} range well suited for LWFA.

  2. On the properties of synchrotron-like X-ray emission from laser wakefield accelerated electron beams

    Science.gov (United States)

    McGuffey, C.; Schumaker, W.; Matsuoka, T.; Chvykov, V.; Dollar, F.; Kalintchenko, G.; Kneip, S.; Najmudin, Z.; Mangles, S. P. D.; Vargas, M.; Yanovsky, V.; Maksimchuk, A.; Thomas, A. G. R.; Krushelnick, K.

    2018-04-01

    The electric and magnetic fields responsible for electron acceleration in a Laser Wakefield Accelerator (LWFA) also cause electrons to radiate x-ray photons. Such x-ray pulses have several desirable properties including short duration and being well collimated with tunable high energy. We measure the scaling of this x-ray source experimentally up to laser powers greater than 100 TW. An increase in laser power allows electron trapping at a lower density as well as with an increased trapped charge. These effects resulted in an x-ray fluence that was measured to increase non-linearly with laser power. The fluence of x-rays was also compared with that produced from K-α emission resulting from a solid target interaction for the same energy laser pulse. The flux was shown to be comparable, but the LWFA x-rays had a significantly smaller source size. This indicates that such a source may be useful as a backlighter for probing high energy density plasmas with ultrafast temporal resolution.

  3. Weapon plutonium in accelerator driven power system

    International Nuclear Information System (INIS)

    Shvedov, O.V.; Murin, B.P.; Kochurov, B.P.; Shubin, Yu.M.; Volk, V.I.; Bogdanov, P.V.

    1997-01-01

    Accelerator Driven Systems are planned to be developed for the use (or destruction) of dozens of tons of weapon-grade Plutonium (W-Pu) resulted from the reducing of nuclear weapons. In the paper are compared the parameters of various types of accelerators, the physical properties of various types of targets and blankets, and the results of fuel cycle simulation. Some economical aspects are also discussed

  4. Tailoring the laser pulse shape to improve the quality of the self-injected electron beam in laser wakefield acceleration

    International Nuclear Information System (INIS)

    Upadhyay, Ajay K.; Samant, Sushil A.; Krishnagopal, S.

    2013-01-01

    In laser wakefield acceleration, tailoring the shape of the laser pulse is one way of influencing the laser-plasma interaction and, therefore, of improving the quality of the self-injected electron beam in the bubble regime. Using three-dimensional particle-in-cell simulations, the evolution dynamics of the laser pulse and the quality of the self-injected beam, for a Gaussian pulse, a positive skew pulse (i.e., one with sharp rise and slow fall), and a negative skew pulse (i.e., one with a slow rise and sharp fall) are studied. It is observed that with a negative skew laser pulse there is a substantial improvement in the emittance (by around a factor of two), and a modest improvement in the energy-spread, compared to Gaussian as well as positive skew pulses. However, the injected charge is less in the negative skew pulse compared to the other two. It is also found that there is an optimal propagation distance that gives the best beam quality; beyond this distance, though the energy increases, the beam quality deteriorates, but this deterioration is least for the negative skew pulse. Thus, the negative skew pulse gives an improvement in terms of beam quality (emittance and energy spread) over what one can get with a Gaussian or positive skew pulse. In part, this is because of the lesser injected charge, and the strong suppression of continuous injection for the negative skew pulse.

  5. Recent progress on laser acceleration research

    International Nuclear Information System (INIS)

    Nakajima, Kazuhisa; Dewa, Hideki; Hosokai, Tomonao; Kanazawa, Shuhei; Kando, Masaki; Kondoh, Shuji; Kotaki, Hideyuki

    2000-01-01

    Recently there has been a tremendous experimental progress in ultrahigh field particle acceleration driven by ultraintense laser pulses in plasmas. A design of the laser wakefield accelerators aiming at GeV energy gains is discussed by presenting our recent progress on the laser wakefield acceleration experiments, the developments of high quality electron beam injectors and the capillary plasma waveguide for optical guiding of ultrashort intense laser pulses. (author)

  6. Photonic Crystal Laser-Driven Accelerator Structures

    International Nuclear Information System (INIS)

    Cowan, B

    2004-01-01

    The authors discuss simulated photonic crystal structure designs for laser-driven particle acceleration. They focus on three-dimensional planar structures based on the so-called ''woodpile'' lattice, demonstrating guiding of a speed-of-light accelerating mode by a defect in the photonic crystal lattice. They introduce a candidate geometry and discuss the properties of the accelerating mode. They also discuss the linear beam dynamics in the structure present a novelmethod for focusing the beam. In addition they describe ongoing investigations of photonic crystal fiber-based structures

  7. The acceleration of particles by relativistic electron plasma waves driven by the optical mixing of laser light in a plasma

    International Nuclear Information System (INIS)

    Ebrahim, N.A.; Douglas, S.R.

    1992-03-01

    Electron acceleration by relativistic large-amplitude electron plasma waves is studied by theory and particle simulations. The maximum acceleration that can be obtained from this process depends on many different factors. This report presents a study of how these various factors impact on the acceleration mechanism. Although particular reference is made to the laser plasma beatwave concept, the study is equally relevant to the acceleration of particles in the plasma wakefield accelerator and the laser wakefield accelerator

  8. Femtosecond laser micromachining of sapphire capillaries for laser-wakefield acceleration

    Energy Technology Data Exchange (ETDEWEB)

    Messner, Philipp; Delbos, Niels Matthias; Maier, Andreas R. [CFEL, Center for Free-Electron Laser Science, 22607 Hamburg (Germany); University of Hamburg, Institute of Experimental Physics, 22761 Hamburg (Germany); Calmano, Thomas [University of Hamburg, Institute of Experimental Physics, 22761 Hamburg (Germany)

    2015-07-01

    Laser-plasma accelerator are promising candidates to provide ultra-relativistic electron beams for compact light sources. One factor that limits the achievable electron beam energy in a laser plasma accelerator is the Rayleigh length of the driver laser, which dictates the length over which the electron beams can effectively be accelerated. To overcome this limitation lasers can be guided in a capillary waveguide to extend the acceleration length beyond the Rayleigh length. The production of waveguide structures on scales, that are suitable for plasma acceleration is very challenging. Here, we present experimental results from waveguide machining in sapphire crystals using a Clark MXR CPA 2010 laser with a wavelength of 775nm, 1KHZ repetition rate and a pulse duration of 160 fs. We discuss the effects of different parameters like energy, lens types, writing speed and polarisation on the size and shape of the capillaries, and compare the performance of different parameter sets.

  9. Charged particle and photon acceleration by wakefield plasma waves in non-uniform plasmas

    International Nuclear Information System (INIS)

    Bulanov, S.V.; Kirsanov, V.I.; Sakharov, A.S.; Pegoraro, F.

    1993-01-01

    We discuss the acceleration of charged particles and the upshift of the frequency of short wave packets of laser radiation. The acceleration and the upshift are caused by wake plasma waves excited by a strong laser pulse in a non-uniform plasma. We show that unlimited acceleration of charged particles is possible for specific spatial dependencies of the plasma density. In this unlimited acceleration regime, particles have a fixed phase relationship with respect to the plasma wave, while their energy increases with time. When the wave breaking limit is approached and surpassed, the efficiency of the acceleration of the charged particles and of the frequency upshift of the photons can be increased significantly. (author) 3 refs

  10. Cosmic acceleration driven by mirage inhomogeneities

    Energy Technology Data Exchange (ETDEWEB)

    Galfard, Christophe [DAMTP, Centre for Mathematical Sciences, University of Cambridge, Wilberforce road, Cambridge CB3 0WA (United Kingdom); Germani, Cristiano [DAMTP, Centre for Mathematical Sciences, University of Cambridge, Wilberforce road, Cambridge CB3 0WA (United Kingdom); Kehagias, Alex [Physics Division, National Technical University of Athens, 15780 Zografou Campus, Athens (Greece)

    2006-03-21

    A cosmological model based on an inhomogeneous D3-brane moving in an AdS{sub 5} x S{sub 5} bulk is introduced. Although there are no special points in the bulk, the brane universe has a centre and is isotropic around it. The model has an accelerating expansion and its effective cosmological constant is inversely proportional to the distance from the centre, giving a possible geometrical origin for the smallness of a present-day cosmological constant. Besides, if our model is considered as an alternative of early-time acceleration, it is shown that the early stage accelerating phase ends in a dust-dominated FRW homogeneous universe. Mirage-driven acceleration thus provides a dark matter component for the brane universe final state. We finally show that the model fulfils the current constraints on inhomogeneities.

  11. Photonic Crystal Laser-Driven Accelerator Structures

    International Nuclear Information System (INIS)

    Cowan, Benjamin M.

    2007-01-01

    Laser-driven acceleration holds great promise for significantly improving accelerating gradient. However, scaling the conventional process of structure-based acceleration in vacuum down to optical wavelengths requires a substantially different kind of structure. We require an optical waveguide that (1) is constructed out of dielectric materials, (2) has transverse size on the order of a wavelength, and (3) supports a mode with speed-of-light phase velocity in vacuum. Photonic crystals---structures whose electromagnetic properties are spatially periodic---can meet these requirements. We discuss simulated photonic crystal accelerator structures and describe their properties. We begin with a class of two-dimensional structures which serves to illustrate the design considerations and trade-offs involved. We then present a three-dimensional structure, and describe its performance in terms of accelerating gradient and efficiency. We discuss particle beam dynamics in this structure, demonstrating a method for keeping a beam confined to the waveguide. We also discuss material and fabrication considerations. Since accelerating gradient is limited by optical damage to the structure, the damage threshold of the dielectric is a critical parameter. We experimentally measure the damage threshold of silicon for picosecond pulses in the infrared, and determine that our structure is capable of sustaining an accelerating gradient of 300 MV/m at 1550 nm. Finally, we discuss possibilities for manufacturing these structures using common microfabrication techniques

  12. Photonic laser-driven accelerator for GALAXIE

    Energy Technology Data Exchange (ETDEWEB)

    Naranjo, B.; Ho, M.; Hoang, P.; Putterman, S.; Valloni, A.; Rosenzweig, J. B. [UCLA Dept. of Physics and Astronomy Los Angeles, CA 90095-1547 (United States)

    2012-12-21

    We report on the design and development of an all-dielectric laser-driven accelerator to be used in the GALAXIE (GV-per-meter Acce Lerator And X-ray-source Integrated Experiment) project's compact free-electron laser. The approach of our working design is to construct eigenmodes, borrowing from the field of photonics, which yield the appropriate, highly demanding dynamics in a high-field, short wavelength accelerator. Topics discussed include transverse focusing, power coupling, bunching, and fabrication.

  13. High-quality electron beam generation and bright betatron radiation from a cascaded laser wakefield accelerator (Conference Presentation)

    Science.gov (United States)

    Liu, Jiansheng; Wang, Wentao; Li, Wentao; Qi, Rong; Zhang, Zhijun; Yu, Changhai; Wang, Cheng; Liu, Jiaqi; Qing, Zhiyong; Ming, Fang; Xu, Yi; Leng, Yuxin; Li, Ruxin; Xu, Zhizhan

    2017-05-01

    One of the major goals of developing laser wakefiled accelerators (LWFAs) is to produce compact high-energy electron beam (e-beam) sources, which are expected to be applied in developing compact x-ray free-electron lasers and monoenergetic gamma-ray sources. Although LWFAs have been demonstrated to generate multi-GeV e-beams, to date they are still failed to produce high quality e beams with several essential properties (narrow energy spread, small transverse emittance and high beam charge) achieved simultaneously. Here we report on the demonstration of a high-quality cascaded LWFA experimentally via manipulating electron injection, seeding in different periods of the wakefield, as well as controlling energy chirp for the compression of energy spread. The cascaded LWFA was powered by a 1-Hz 200-TW femtosecond laser facility at SIOM. High-brightness e beams with peak energies in the range of 200-600 MeV, 0.4-1.2% rms energy spread, 10-80 pC charge, and 0.2 mrad rms divergence are experimentally obtained. Unprecedentedly high 6-dimensional (6-D) brightness B6D,n in units of A/m2/0.1% was estimated at the level of 1015-16, which is very close to the typical brightness of e beams from state-of-the-art linac drivers and several-fold higher than those of previously reported LWFAs. Furthermore, we propose a scheme to minimize the energy spread of an e beam in a cascaded LWFA to the one-thousandth-level by inserting a stage to compress its longitudinal spatial distribution via velocity bunching. In this scheme, three-segment plasma stages are designed for electron injection, e-beam length compression, and e-beam acceleration, respectively. A one-dimensional theory and two-dimensional particle-in-cell simulations have demonstrated this scheme and an e beam with 0.2% rms energy spread and low transverse emittance could be generated without loss of charge. Based on the high-quality e beams generated in the LWFA, we have experimentally realized a new scheme to enhance the

  14. On electron betatron motion and electron injection in laser wakefield accelerators

    Czech Academy of Sciences Publication Activity Database

    Matsuoka, T.; McGuffey, C.; Cummings, P.G.; Bulanov, S.S.; Chvykov, V.; Dollar, F.; Horovitz, Y.; Kalinchenko, Galina; Krushelnick, K.; Rousseau, P.; Thomas, A.G.R.; Yanovsky, V.; Maksimchuk, A.

    2015-01-01

    Roč. 56, č. 8 (2015), s. 1-8 ISSN 0741-3335 Institutional support: RVO:68378271 Keywords : accelerators * beams and electromagnetism * nuclear physics * plasma physics Subject RIV: BH - Optics, Masers, Lasers Impact factor: 2.404, year: 2015

  15. Forward directed x-ray from source produced by relativistic electrons from a Self-Modulated Laser Wakefield Accelerator

    Science.gov (United States)

    Lemos, Nuno; Albert, Felicie; Shaw, Jessica; King, Paul; Milder, Avi; Marsh, Ken; Pak, Arthur; Joshi, Chan

    2017-10-01

    Plasma-based particle accelerators are now able to provide the scientific community with novel light sources. Their applications span many disciplines, including high-energy density sciences, where they can be used as probes to explore the physics of dense plasmas and warm dense matter. A recent advance is in the experimental and theoretical characterization of x-ray emission from electrons in the self-modulated laser wakefield regime (SMLWFA) where little is known about the x-ray properties. A series of experiments at the LLNL Jupiter Laser Facility, using the 1 ps 150 J Titan laser, have demonstrated low divergence electron beams with energies up to 300 MeV and 6 nCs of charge, and betatron x-rays with critical energies up to 20 keV. This work identifies two other mechanisms which produce high energy broadband x-rays and gamma-rays from the SMLWFA: Bremsstrahlung and inverse Compton scattering. We demonstrate the use of Compton scattering and bremsstrahlung to generate x/Gamma-rays from 3 keV up to 1.5 MeV with a source size of 50um and a divergence of 100 mrad. This work is an important step towards developing this x-ray light source on large-scale international laser facilities, and also opens up the prospect of using them for applications. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under the contract DE-AC52-07NA27344. Lawrence Livermore National Security, LLC.

  16. On stability of accelerator driven systems

    International Nuclear Information System (INIS)

    Makai, Mihaly

    2003-01-01

    An unsolved problem of energy production in nuclear reactors is the waste management. A large portion of the nuclear waste is the spent fuel. At present, two possibilities are seen. The first one is to 'wrap up' all the radioactive waste safely and to bury it at a remote quiet place where it can rest undisturbed until its activity decreases to a tolerable level. The second one is to exploit the excitation energy still present in the nuclear waste. In order to release that energy, the spent fuel is bombarded by high energy particles obtained from an accelerator. The resulting system is called accelerator driven system (ADS). In an ADS, the spent fuel forms a subcritical reactor, which is driven by an external source. (author)

  17. Analytical researches on the accelerating structures, wakefields, and beam dynamics for future linear colliders

    International Nuclear Information System (INIS)

    Gao, J.

    1996-01-01

    The research works presented in this memoir are oriented not only to the R and D programs towards future linear colliders, but also to the pedagogic purposes. The first part of this memoir (from Chapter 2 to Chapter 9) establishes an analytical framework of the disk-loaded slow wave accelerating structures with can be served as the advanced courses for the students who have got some basic trainings in the linear accelerator theories. The analytical formulae derived in this part describe clearly the properties of the disk-loaded accelerating structures, such as group velocity, shunt impedance, coupling coefficients κ and β, loss factors, and wake fields. The second part (from Chapter 11 to Chapter 13) gives the beam dynamics simulations and the final proposal of an S-Band Superconducting Linear Collider (SSLC) which is aimed to avoid the dark current problem in TESLA project. This memoir has not included all the works conducted since April 1992, such as beam dynamics simulations for CLIC Test Facility (CFT-2) and the design of High Charge Structures (HCS) (11π/12 mode) for CFT-2, in order to make this memoir more harmonious, coherent and continuous. (author)

  18. Three electron beams from a laser-plasma wakefield accelerator and the energy apportioning question

    Czech Academy of Sciences Publication Activity Database

    Yang, X.; Brunetti, E.; Gil, D.R.; Welsh, G.H.; Li, F.Y.; Cipiccia, S.; Ersfeld, B.; Grant, D.W.; Grant, P.A.; Islam, M.R.; Tooley, M.P.; Vieux, Grégory; Wiggins, S.M.; Sheng, Z.M.; Jaroszynski, D.A.

    2017-01-01

    Roč. 7, Mar (2017), s. 1-7, č. článku 43910. ISSN 2045-2322 R&D Projects: GA MŠk EF15_008/0000162; GA MŠk LQ1606 EU Projects: European Commission(XE) 654148 - LASERLAB-EUROPE Grant - others:ELI Beamlines(XE) CZ.02.1.01/0.0/0.0/15_008/0000162 Institutional support: RVO:68378271 Keywords : relativistic electrons * driven * radiation * wake * dosimetry * regime * code Subject RIV: BL - Plasma and Gas Discharge Physics OBOR OECD: Fluids and plasma physics (including surface physics) Impact factor: 4.259, year: 2016

  19. Bubble shape and electromagnetic field in the nonlinear regime for laser wakefield acceleration

    Czech Academy of Sciences Publication Activity Database

    Li, X.F.; Yu, Q.; Gu, Yanjun; Huang, S.; Kong, Q.; Kawata, S.

    2015-01-01

    Roč. 22, č. 8 (2015), "083112-1"-"083112-6" ISSN 1070-664X R&D Projects: GA MŠk ED1.1.00/02.0061; GA MŠk EE2.3.20.0279 Grant - others:ELI Beamlines(XE) CZ.1.05/1.1.00/02.0061; LaserZdroj (OP VK 3)(XE) CZ.1.07/2.3.00/20.0279 Institutional support: RVO:68378271 Keywords : electron-beams * plasma- waves * excitation * driven Subject RIV: BL - Plasma and Gas Discharge Physics Impact factor: 2.207, year: 2015

  20. Summary report: working group 2 on 'Plasma Based Acceleration Concepts'

    International Nuclear Information System (INIS)

    Esarey, E.; Leemans, W.P.

    1998-01-01

    A summary of the talks, papers and discussion sessions presented in the Working Group on Plasma Based Acceleration Concepts is given within the context of the progress towards a 1 GeV laser driven accelerator module. The topics covered within the Working Group were self-modulated laser wakefield acceleration, standard laser wakefield acceleration, plasma beat wave acceleration, laser guiding and wake excitation in plasma channels, plasma wakefield acceleration, plasma lenses and optical injection techniques for laser wakefield accelerators. An overview will be given of the present status of experimental and theoretical progress as well as an outlook towards the future physics and technological challenges for the development of an optimized accelerator module

  1. Characterization studies of lithium vapour generated in heat pipe oven for the Plasma Wakefield Accelerator Experiment

    International Nuclear Information System (INIS)

    Mohandas, K.K.; Mahavar, Kanchan; Ajai Kumar; Kumar, Ravi A.V.

    2013-01-01

    Characterization and optimization studies of lithium vapor by white light as well as UV laser absorption were carried out as part of generation of photo ionized Li plasma for the Plasma Wake Field Acceleration Experiment. Temperature and buffer gas pressure dependency of the neutral density of lithium vapor was studied in detail. The line integrated neutral density of Li(n o L) was found to be of the order of 10 17 -10 18 cm -2 at heat pipe oven temperatures in the range from 600-800℃ which is sufficient to obtain the required 1013-1014 cm -3 plasma densities by photo ionization. (author)

  2. Hosing Instability of the Drive Electron Beam in the E157 Plasma-Wakefield Acceleration Experiment at the Stanford Linear Accelerator

    International Nuclear Information System (INIS)

    Blue, Brent Edward

    2005-01-01

    In the plasma-wakefield experiment at SLAC, known as E157, an ultra-relativistic electron beam is used to both excite and witness a plasma wave for advanced accelerator applications. If the beam is tilted, then it will undergo transverse oscillations inside of the plasma. These oscillations can grow exponentially via an instability know as the electron hose instability. The linear theory of electron-hose instability in a uniform ion column predicts that for the parameters of the E157 experiment (beam charge, bunch length, and plasma density) a growth of the centroid offset should occur. Analysis of the E157 data has provided four critical results. The first was that the incoming beam did have a tilt. The tilt was much smaller than the radius and was measured to be 5.3 (micro)m/(delta) z at the entrance of the plasma (IP1.) The second was the beam centroid oscillates in the ion channel at half the frequency of the beam radius (betatron beam oscillations), and these oscillations can be predicted by the envelope equation. Third, up to the maximum operating plasma density of E157 (∼2 x 10 14 cm -3 ), no growth of the centroid offset was measured. Finally, time-resolved data of the beam shows that up to this density, no significant growth of the tail of the beam (up to 8ps from the centroid) occurred even though the beam had an initial tilt

  3. Hosing Instability of the Drive Electron Beam in the E157 Plasma-Wakefield Acceleration Experiment at the Stanford Linear Accelerator

    Energy Technology Data Exchange (ETDEWEB)

    Blue, Brent Edward; /SLAC /UCLA

    2005-10-10

    In the plasma-wakefield experiment at SLAC, known as E157, an ultra-relativistic electron beam is used to both excite and witness a plasma wave for advanced accelerator applications. If the beam is tilted, then it will undergo transverse oscillations inside of the plasma. These oscillations can grow exponentially via an instability know as the electron hose instability. The linear theory of electron-hose instability in a uniform ion column predicts that for the parameters of the E157 experiment (beam charge, bunch length, and plasma density) a growth of the centroid offset should occur. Analysis of the E157 data has provided four critical results. The first was that the incoming beam did have a tilt. The tilt was much smaller than the radius and was measured to be 5.3 {micro}m/{delta}{sub z} at the entrance of the plasma (IP1.) The second was the beam centroid oscillates in the ion channel at half the frequency of the beam radius (betatron beam oscillations), and these oscillations can be predicted by the envelope equation. Third, up to the maximum operating plasma density of E157 ({approx}2 x 10{sup 14} cm{sup -3}), no growth of the centroid offset was measured. Finally, time-resolved data of the beam shows that up to this density, no significant growth of the tail of the beam (up to 8ps from the centroid) occurred even though the beam had an initial tilt.

  4. Coherent transition radiation from a laser wakefield accelerator as an electron bunch diagnostic

    International Nuclear Information System (INIS)

    Tilborg, J. van; Geddes, C.G.R.; Toth, C.; Esarey, E.; Schroeder, C.B.; Martin, M.C.; Hao, Z.; Leemans, W.P.

    2004-01-01

    The observation and modeling of coherent transition radiation from femtosecond laser accelerated electron bunches is discussed. The coherent transition radiation, scaling quadratically with bunch charge, is generated as the electrons transit the plasma-vacuum boundary. Due to the limited transverse radius of the plasma boundary, diffraction effects will strongly modify the angular distribution and the total energy radiated is reduced compared to an infinite transverse boundary. The multi-nC electron bunches, concentrated in a length of a few plasma periods (several tens of microns), experience partial charge neutralization while propagating inside the plasma towards the boundary. This reduces the space-charge blowout of the beam, allowing for coherent radiation at relatively high frequencies (several THz). The charge distribution of the electron bunch at the plasma-vacuum boundary can be derived from Fourier analysis of the coherent part of the transition radiation spectrum. A Michelson interferometer was used to measure the coherent spectrum, and electron bunches with duration on the order of 50 fs (rms) were observed

  5. Accelerator driven sub-critical core

    Science.gov (United States)

    McIntyre, Peter M; Sattarov, Akhdiyor

    2015-03-17

    Systems and methods for operating an accelerator driven sub-critical core. In one embodiment, a fission power generator includes a sub-critical core and a plurality of proton beam generators. Each of the proton beam generators is configured to concurrently provide a proton beam into a different area of the sub-critical core. Each proton beam scatters neutrons within the sub-critical core. The plurality of proton beam generators provides aggregate power to the sub-critical core, via the proton beams, to scatter neutrons sufficient to initiate fission in the sub-critical core.

  6. Accelerating Science Driven System Design With RAMP

    Energy Technology Data Exchange (ETDEWEB)

    Wawrzynek, John [Univ. of California, Berkeley, CA (United States)

    2015-05-01

    Researchers from UC Berkeley, in collaboration with the Lawrence Berkeley National Lab, are engaged in developing an Infrastructure for Synthesis with Integrated Simulation (ISIS). The ISIS Project was a cooperative effort for “application-driven hardware design” that engages application scientists in the early parts of the hardware design process for future generation supercomputing systems. This project served to foster development of computing systems that are better tuned to the application requirements of demanding scientific applications and result in more cost-effective and efficient HPC system designs. In order to overcome long conventional design-cycle times, we leveraged reconfigurable devices to aid in the design of high-efficiency systems, including conventional multi- and many-core systems. The resulting system emulation/prototyping environment, in conjunction with the appropriate intermediate abstractions, provided both a convenient user programming experience and retained flexibility, and thus efficiency, of a reconfigurable platform. We initially targeted the Berkeley RAMP system (Research Accelerator for Multiple Processors) as that hardware emulation environment to facilitate and ultimately accelerate the iterative process of science-driven system design. Our goal was to develop and demonstrate a design methodology for domain-optimized computer system architectures. The tangible outcome is a methodology and tools for rapid prototyping and design-space exploration, leading to highly optimized and efficient HPC systems.

  7. Design of a high charge (10 - 100 nC) and short pulse (2 - 5 ps) rf photocathode gun for wakefield acceleration

    International Nuclear Information System (INIS)

    Gai, W.

    1998-01-01

    In this paper we present a design report on a 1-1/2 cell, L Band RF photocathode gun that is capable of generating and accelerating electron beams with peak currents >10 kA. We have performed simulation for bunch intensities in the range of 10-100 nC with peak axial electrical field at the photocathode of 30-100 MV/m. Unlike conventional short electron pulse generation, this design does not require magnetic pulse compression. Based on numerical simulations using SUPERFISH and PARMELA, this design will produce 20-100 nC beam at 18 MeV with rms bunch length 0.6-1.25 mm and normalized transverse emittance 30-108 mm mrad. Applications of this beam for wakefield acceleration is also discussed

  8. Experimental Evidence of Radiation Reaction in the Collision of a High-Intensity Laser Pulse with a Laser-Wakefield Accelerated Electron Beam

    Science.gov (United States)

    Cole, J. M.; Behm, K. T.; Gerstmayr, E.; Blackburn, T. G.; Wood, J. C.; Baird, C. D.; Duff, M. J.; Harvey, C.; Ilderton, A.; Joglekar, A. S.; Krushelnick, K.; Kuschel, S.; Marklund, M.; McKenna, P.; Murphy, C. D.; Poder, K.; Ridgers, C. P.; Samarin, G. M.; Sarri, G.; Symes, D. R.; Thomas, A. G. R.; Warwick, J.; Zepf, M.; Najmudin, Z.; Mangles, S. P. D.

    2018-02-01

    The dynamics of energetic particles in strong electromagnetic fields can be heavily influenced by the energy loss arising from the emission of radiation during acceleration, known as radiation reaction. When interacting with a high-energy electron beam, today's lasers are sufficiently intense to explore the transition between the classical and quantum radiation reaction regimes. We present evidence of radiation reaction in the collision of an ultrarelativistic electron beam generated by laser-wakefield acceleration (ɛ >500 MeV ) with an intense laser pulse (a0>10 ). We measure an energy loss in the postcollision electron spectrum that is correlated with the detected signal of hard photons (γ rays), consistent with a quantum description of radiation reaction. The generated γ rays have the highest energies yet reported from an all-optical inverse Compton scattering scheme, with critical energy ɛcrit>30 MeV .

  9. Experimental Evidence of Radiation Reaction in the Collision of a High-Intensity Laser Pulse with a Laser-Wakefield Accelerated Electron Beam

    Directory of Open Access Journals (Sweden)

    J. M. Cole

    2018-02-01

    Full Text Available The dynamics of energetic particles in strong electromagnetic fields can be heavily influenced by the energy loss arising from the emission of radiation during acceleration, known as radiation reaction. When interacting with a high-energy electron beam, today’s lasers are sufficiently intense to explore the transition between the classical and quantum radiation reaction regimes. We present evidence of radiation reaction in the collision of an ultrarelativistic electron beam generated by laser-wakefield acceleration (ϵ>500  MeV with an intense laser pulse (a_{0}>10. We measure an energy loss in the postcollision electron spectrum that is correlated with the detected signal of hard photons (γ rays, consistent with a quantum description of radiation reaction. The generated γ rays have the highest energies yet reported from an all-optical inverse Compton scattering scheme, with critical energy ϵ_{crit}>30  MeV.

  10. Near-GeV-energy laser-wakefield acceleration of self-injected electrons in a centimeter-scale plasma channel

    International Nuclear Information System (INIS)

    Tsung, F.S.; Narang, Ritesh; Joshi, C.; Mori, W. B.; Fonseca, R. A.; Silva, L.O.

    2004-01-01

    The first three-dimensional, particle-in-cell (PIC) simulations of laser-wakefield acceleration of self-injected electrons in a 0.84 cm long plasma channel are reported. The frequency evolution of the initially 50 fs (FWHM) long laser pulse by photon interaction with the wake followed by plasma dispersion enhances the wake which eventually leads to self-injection of electrons from the channel wall. This first bunch of electrons remains spatially highly localized. Its phase space rotation due to slippage with respect to the wake leads to a monoenergetic bunch of electrons with a central energy of 0.26 GeV after 0.55 cm propagation. At later times, spatial bunching of the laser enhances the acceleration of a second bunch of electrons to energies up to 0.84 GeV before the laser pulse intensity is significantly reduced

  11. Wakefield effects in a linear collider

    International Nuclear Information System (INIS)

    Bane, K.L.F.

    1986-12-01

    In this paper the wakefields for the Stanford Linear Accelerator Center (SLAC) accelerating structure are first discussed, and then some considerations dealing with the longitudinal wakefields are described. The main focus is on the effects of the transverse wakefield on the beam, including the case when there is an energy variation along the bunch. The use of an energy spread to inhibit emittance growth in a linac, indeed to damp the oscillations of the core of the bunch to below the unperturbed betatron oscillations, (in a process that is similar to Landau Damping) is qualitatively detailed. The example of the SLC, including errors, is also in detail

  12. E-Beam Driven Accelerators: Working Group Summary

    International Nuclear Information System (INIS)

    Muggli, P.; Southern California U.; Ng, J.S.T.; SLAC

    2005-01-01

    The working group has identified the parameters of an afterburner based on the design of a future linear collider. The new design brings the center of mass energy of the collider from 1 to 2 TeV. The afterburner is located in the final focus section of the collider, operates at a gradient of ∼4 GeV/m, and is only about 125 m long. Very important issues remain to be addressed, and include the physics and design of the positron side of the afterburner, as well as of the final focus system. Present plasma wakefield accelerator experiments have reached a level of maturity and of relevance to the afterburner, that make it timely to involve the high energy physics and accelerator community in the afterburner design process. The main result of this working group is the first integration of the designs of a future linear collider and an afterburner

  13. About using of ion accelerators in accelerator driven systems

    Energy Technology Data Exchange (ETDEWEB)

    Chigrinov, S; Kevitskaya, A; Petlevskij, V; Rutkovskaya, C [Belarussian Academy of Sciences, Minsk-Sosny (Belarus). Radiation Physics and Chemistry Inst.

    1997-12-31

    The prospects of using deuteron and alpha particle beams in Accelerator Driven Molten Salt Breeder for simultaneous production of uranium 233 and of thermal power are discussed, disregarding the problems of reactor construction and design. It is shown that by replacing the proton beam by beams of deuterons or alpha particles the energy cost of one neutron can be reduced from 11.5 MeV down to 9.3-10 MeV. The average energy of neutrons increases from 17.7 MeV to 24.3 MeV or 28.2 MeV, respectively. Thus, the gain in the number of fissile nuclei and in thermal power production of at least 1.2 - 1.3 times can be expected in ACMB. (J.U.). 1 tab., 3 figs., 4 refs.

  14. Minor actinide transmutation in accelerator driven systems

    Energy Technology Data Exchange (ETDEWEB)

    Friess, Friederike [IANUS, TU Darmstadt (Germany)

    2015-07-01

    Transmutation of radioactive waste, the legacy of nuclear energy use, gains rising interest. This includes the development of facilities able to transmute minor actinides (MA) into stable or short-lived isotopes before final disposal. The most common proposal is to use a double-strata approach with accelerator-driven-systems (ADS) for the efficient transmutation of MA and power reactors to dispose plutonium. An ADS consists of a sub-critical core that reaches criticality with neutrons supplied by a spallation target. An MCNP model of the ADS system Multi Purpose Research Reactor for Hightech Applications will be presented. Depletion calculations have been performed for both standard MOX fuel and transmutation fuel with an increased content of minor actinides. The resulting transmutation rates for MAs are compared to published values. Special attention is given to selected fission products such as Tc-99 and I-129, which impact the radiation from the spent fuel significantly.

  15. Accelerator driven radiation clean nuclear power system conceptual research symposium

    International Nuclear Information System (INIS)

    Zhao Zhixiang

    2000-06-01

    The R and D of ADS (Accelerators Driven Subcritical System) in China introduced. 31 theses are presented. It includes the basic principle of ADS, accelerators, sub-critical reactors, neutron physics, nuclear data, partitioning and transmutation

  16. Uncertainty assessment for accelerator-driven systems

    International Nuclear Information System (INIS)

    Finck, P. J.; Gomes, I.; Micklich, B.; Palmiotti, G.

    1999-01-01

    The concept of a subcritical system driven by an external source of neutrons provided by an accelerator ADS (Accelerator Driver System) has been recently revived and is becoming more popular in the world technical community with active programs in Europe, Russia, Japan, and the U.S. A general consensus has been reached in adopting for the subcritical component a fast spectrum liquid metal cooled configuration. Both a lead-bismuth eutectic, sodium and gas are being considered as a coolant; each has advantages and disadvantages. The major expected advantage is that subcriticality avoids reactivity induced transients. The potentially large subcriticality margin also should allow for the introduction of very significant quantities of waste products (minor Actinides and Fission Products) which negatively impact the safety characteristics of standard cores. In the U.S. these arguments are the basis for the development of the Accelerator Transmutation of Waste (ATW), which has significant potential in reducing nuclear waste levels. Up to now, neutronic calculations have not attached uncertainties on the values of the main nuclear integral parameters that characterize the system. Many of these parameters (e.g., degree of subcriticality) are crucial to demonstrate the validity and feasibility of this concept. In this paper we will consider uncertainties related to nuclear data only. The present knowledge of the cross sections of many isotopes that are not usually utilized in existing reactors (like Bi, Pb-207, Pb-208, and also Minor Actinides and Fission Products) suggests that uncertainties in the integral parameters will be significantly larger than for conventional reactor systems, and this raises concerns on the neutronic performance of those systems

  17. Technologies using accelerator-driven targets under development at BNL

    International Nuclear Information System (INIS)

    Van Tuyle, G.J.

    1994-01-01

    Recent development work conducted at Brookhaven National Laboratory on technologies which use particle accelerator-driven targets is summarized. These efforts include development of the Spallation-Induced Lithium Conversion (SILC) Target for the Accelerator Production of Tritium (APT), the Accelerator-Driven Assembly for Plutonium Transformation (ADAPT) Target for the Accelerator-Based Conversion (ABC) of excess weapons plutonium. The PHOENIX Concept for the accelerator-driven transmutation of minor actinides and fission products from the waste stream of commercial nuclear power plants, and other potential applications

  18. Plasma accelerators

    International Nuclear Information System (INIS)

    Bingham, R.; Angelis, U. de; Johnston, T.W.

    1991-01-01

    Recently attention has focused on charged particle acceleration in a plasma by a fast, large amplitude, longitudinal electron plasma wave. The plasma beat wave and plasma wakefield accelerators are two efficient ways of producing ultra-high accelerating gradients. Starting with the plasma beat wave accelerator (PBWA) and laser wakefield accelerator (LWFA) schemes and the plasma wakefield accelerator (PWFA) steady progress has been made in theory, simulations and experiments. Computations are presented for the study of LWFA. (author)

  19. Advances in the SLAC RDDS: Modeling Manifold Damping and its Effect on the Wakefield for the Next Linear Collider

    International Nuclear Information System (INIS)

    Jones, Roger M

    2000-01-01

    The RDDS (Rounded Damped Detuned Structure) accelerator damps the transverse wakefield excited by bunches of electrons traversing thousands of linear accelerator structures. Errors in the fabrication of the cells which constitute each structure can result in a wakefield which is resonantly driven by the bunches, leading to BBU (Beam Break Up) and to a substantial growth in the beam emittance. One means to avoid these deleterious effects is to provide additional damping of the manifold, via plating the walls of the manifold with an electrically lossy material such as canthol or by fabricating the wall with stainless steel rather than copper. Results are presented on the wakefield and emittance growth in structures with a moderately lossy manifold

  20. Proliferation Potential of Accelerator-Driven Systems: Feasibility Calculations

    International Nuclear Information System (INIS)

    Riendeau, C.D.; Moses, D.L.; Olson, A.P.

    1998-01-01

    Accelerator-driven systems for fissile materials production have been proposed and studied since the early 1950s. Recent advances in beam power levels for small accelerators have raised the possibility that such use could be feasible for a potential proliferator. The objective of this study is to review the state of technology development for accelerator-driven spallation neutron sources and subcritical reactors. Energy and power requirements were calculated for a proton accelerator-driven neutron spallation source and subcritical reactors to produce a significant amount of fissile material--plutonium

  1. Accelerating universes driven by bulk particles

    International Nuclear Information System (INIS)

    Brito, F.A.; Cruz, F.F.; Oliveira, J.F.N.

    2005-01-01

    We consider our universe as a 3d domain wall embedded in a 5d dimensional Minkowski space-time. We address the problem of inflation and late time acceleration driven by bulk particles colliding with the 3d domain wall. The expansion of our universe is mainly related to these bulk particles. Since our universe tends to be permeated by a large number of isolated structures, as temperature diminishes with the expansion, we model our universe with a 3d domain wall with increasing internal structures. These structures could be unstable 2d domain walls evolving to fermi-balls which are candidates to cold dark matter. The momentum transfer of bulk particles colliding with the 3d domain wall is related to the reflection coefficient. We show a nontrivial dependence of the reflection coefficient with the number of internal dark matter structures inside the 3d domain wall. As the population of such structures increases the velocity of the domain wall expansion also increases. The expansion is exponential at early times and polynomial at late times. We connect this picture with string/M-theory by considering BPS 3d domain walls with structures which can appear through the bosonic sector of a five-dimensional supergravity theory

  2. Argonne's new Wakefield Test Facility

    International Nuclear Information System (INIS)

    Simpson, J.D.

    1992-01-01

    The first phase of a high current, short bunch length electron beam research facility, the AWA, is near completion at Argonne. At the heart of the facility is a photocathode based electron gun and accelerating sections designed to deliver 20 MeV pulses with up to 100 nC per pulse and with pulse lengths of approximately 15 ps (fw). Using a technique similar to that originated at Argonne's AATF facility, a separate weak probe pulse can be generated and used to diagnose wake effects produced by the intense pulses. Initial planned experiments include studies of plasma wakefields and dielectric wakefield devices, and expect to demonstrate large, useful accelerating gradients (> 100 MeV/m). Later phases of the facility will increase the drive bunch energy to more than 100 MeV to enable acceleration experiments up to the GeV range. Specifications, design details, and commissioning progress are presented

  3. Quantitative single shot and spatially resolved plasma wakefield diagnostics

    CERN Document Server

    Kasim, Muhammad Firmansyah; Ceurvorst, Luke; Levy, Matthew C; Ratan, Naren; Sadler, James; Bingham, Robert; Burrows, Philip N; Trines, Raoul; Wing, Matthew; Norreys, Peter

    2015-01-01

    Diagnosing plasma conditions can give great advantages in optimizing plasma wakefield accelerator experiments. One possible method is that of photon acceleration. By propagating a laser probe pulse through a plasma wakefield and extracting the imposed frequency modulation, one can obtain an image of the density modulation of the wakefield. In order to diagnose the wakefield parameters at a chosen point in the plasma, the probe pulse crosses the plasma at oblique angles relative to the wakefield. In this paper, mathematical expressions relating the frequency modulation of the laser pulse and the wakefield density profile of the plasma for oblique crossing angles are derived. Multidimensional particle-in-cell simulation results presented in this paper confirm that the frequency modulation profiles and the density modulation profiles agree to within 10%. Limitations to the accuracy of the measurement are discussed in this paper. This technique opens new possibilities to quantitatively diagnose the plasma wakefie...

  4. Materials issues in accelerator driven-systems

    International Nuclear Information System (INIS)

    Al Mazouzi, A.

    2008-01-01

    Full text of publication follows. Nuclear energy has to cope with critical topics to resolve the economical question of increasing energy demand and, in particular, the public acceptability demands: - increasing the absolute safety of the installations; - managing more efficiently the nuclear waste; In that respect, the development of a new type of nuclear installation coping with above constraints of technological as well as socio-economical nature may be of high importance for the future of sustainable energy provision. An accelerator-driven system (ADS) - a subcritical core, operated as a waste burner for minor actinides (MAs) and long-lived fission products (LLFPs) or as nuclear amplifier for energy production, fed with primary neutrons by a spallation source - has the potential to cope with above constraints and to pave the way to a more environmentally safe and acceptable nuclear energy production. Within the framework of EUROTRANS, the European community has launched a broad R and D programme in collaboration with partners from Europe and abroad (USA, Japan), to address the technical, technological and fundamental issues related to the realisation of an experimental machine that is intended to allow: - continuation, and extension of the present knowledge towards ADS, in the field of reactor materials, fuel and reactor physics research; - enhancement and triggering of new R and D activities such as nuclear waste transmutation, ADS technology, liquid metal embrittlement, The present lecture will cover the main aspects of the design of an experimental XT-ADS taking as example the work that has been performed at SCK.CEN within MYRRHA project. The safety aspect of such machine will be addressed on terms of structural material performance, with emphasis on issues related to the interaction between structural materials (austenitic and ferritic martensitic steels) and the liquid metal coolant (lead-alloys). Finally, a discussion will be given on the open issues and

  5. Nuclear data requirements for accelerator driven sub-critical systems

    Indian Academy of Sciences (India)

    The development of accelerator driven sub-critical systems (ADSS) require significant amount of new nuclear data in extended energy regions as well as for a variety of new materials. This paper reviews these perspectives in the Indian context.

  6. The physics of accelerator driven sub-critical reactors

    Indian Academy of Sciences (India)

    Accelerator driven systems (ADS) are attracting worldwide attention .... The region of interest (or the entire reactor core) is divided into a suitable number ..... have also presented the status of the theoretical and experimental activities being.

  7. High power radiation guiding systems for laser driven accelerators

    International Nuclear Information System (INIS)

    Cutolo, A.

    1985-01-01

    This paper reviews the main problems encountered in the design of an optical system for transmitting high fluence radiation in a laser driven accelerator. Particular attention is devoted to the analysis of mirror and waveguide systems. (orig.)

  8. Requirements of a proton beam accelerator for an accelerator-driven reactor

    International Nuclear Information System (INIS)

    Takahashi, H.; Zhao, Y.; Tsoupas, N.; An, Y.; Yamazaki, Y.

    1997-01-01

    When the authors first proposed an accelerator-driven reactor, the concept was opposed by physicists who had earlier used the accelerator for their physics experiments. This opposition arose because they had nuisance experiences in that the accelerator was not reliable, and very often disrupted their work as the accelerator shut down due to electric tripping. This paper discusses the requirements for the proton beam accelerator. It addresses how to solve the tripping problem and how to shape the proton beam

  9. Accelerator driven heavy water blanket on circulating fuel

    International Nuclear Information System (INIS)

    Kazaritsky, V.D.; Blagovolin, P.P.; Mladov, V.R.; Okhlopkov, M.L.; Batyaev, V.F.; Stepanov, N.V.; Seliverstov, V.V.

    1997-01-01

    A conceptual design of a heavy water blanket with circulating fuel for an accelerator driven transmutation system is described. The hybrid system consists of a high-current linear accelerator of protons and 4 targets, each placed inside a subcritical blanket

  10. Choosing the optimal parameters of subcritical reactors driven by accelerators

    International Nuclear Information System (INIS)

    Khudaverdyan, A.G.; Zhamkochyan, V.M.

    1998-03-01

    Physical aspects of a subcritical Nuclear Power Plants (NPP) driven by proton accelerators are considered. Estimated theoretical calculations are made for subcritical regimes of various types of reactors. It was shown that the creation of the quite effective explosion-safe NPP is real at an existing level of the accelerator technique by using available reactor units (including the serial ones). (author)

  11. HILBILAC development for accelerator-driven transmutation

    Energy Technology Data Exchange (ETDEWEB)

    Pirozhenko, V.; Plink, O. [Moscow Radiotechnical Institute (Russian Federation)

    1995-10-01

    High-Intensity Low-Beta Ion Linac (HILBILAC) is intended for acceleration of ion beams with current of about 1 A and higher. The CW HILBILAC with beam current of 2l50 mA is under development at MRTI. Concept of parameters choice is presented along with results of beam dynamics and resonator parameters calculations. A pulse prototype HILBILAC-TEST will have to be constructed and tested for the CW accelerator development, its scheme and parameters are presented.

  12. International conference on sub-critical accelerator driven systems. Proceedings

    International Nuclear Information System (INIS)

    Litovkina, L.P.; Titarenko, Yu.E.

    1999-01-01

    The International Meeting on Sub-Critical Accelerator Driven Systems was organized by the State Scientific Center - Institute for Theoretical and Experimental Physics with participation of Atomic Ministry of RF. The Meeting objective was to analyze the recent achievements and tendencies of the accelerator-driven systems development. The Meeting program covers a broad range of problems including the accelerator-driven systems (ADS) conceptual design; analyzing the ADS role in nuclear fuel cycle; accuracy of modeling the main parameters of ADS; conceptual design of high-current accelerators. Moreover, the results of recent experimental and theoretical studies on nuclear data accumulation to support the ADS technologies are presented. About 70 scientists from the main scientific centers of Russia, as well as scientists from USA, France, Belgium, India, and Yugoslavia, attended the meeting and presented 44 works [ru

  13. Accelerator driven nuclear energy and transmutation systems

    International Nuclear Information System (INIS)

    Boldeman, J.W.

    1999-01-01

    Nuclear power generation has been a mature industry for many years. However, despite the overall safety record and the great attractions of nuclear power, especially in times of concern about green house gases emissions, there continues to be some lack of public acceptance of this technology. This sensitivity to nuclear power has several elements in addition to the concern of a potential nuclear accident. These include the possible diversion of plutonium into nuclear weapon production and the concern about the long term storage of plutonium and other transuranic elements. A concept which seeks to allay these fears but still takes advantage of the nuclear fuel cycle and utilises decades of research and development in this technology, is the idea of using modern accelerators to transmute the long lived radio nuclides and simultaneously generate power. A review of the novel concepts for energy production and transmutation of isotopes will be presented. Of the various proposals, the most developed is the Energy Amplifier Concept promoted by Rubbia. The possibility of using high-energy, high-current accelerators to produce large fluxes of neutrons has been known since the earliest days of accelerator technology. E.O. Lawrence, for example, promoted the concept of producing nuclear material with such an accelerator. The Canadians in the early 50s considered using accelerators to produce fuel for their heavy water reactors and there were well advanced designs for a device called the Intense Neutron Generator. The speculative idea of using accelerator produced neutrons for the transmutation of transuranic elements (i.e. elements such as neptunium plutonium and other elements with higher Z atomic number) has also been studied extensively, notably at a number of laboratories in the US, Europe and Japan. However at this time, all facilities that have actually been constructed have been designed primarily for condensed matter studies i.e. studies of the structural properties

  14. Dielectric Wakefield Researches

    International Nuclear Information System (INIS)

    Kiselev, V.A.; Linnik, A.F.; Onishchenko, N.I.; Uskov, V.V.; Marshall, T.C.

    2006-01-01

    Excitation of wakefield in cylindrical dielectric waveguide/resonator by a sequence of relativistic electron bunches was investigated using an electron linac 'Almaz-2' (4.5 MeV, 6·10 3 bunches of duration 60 ps and charge 0.32 nC each). Energy spectrum of electrons, radial topography and longitudinal distribution of wakefield, and total energy of excited wakefield were measured by means of magnetic analyzer, high frequency probe, and a sensitive calorimeter

  15. Wakefield Band Partitioning in LINAC Structures

    International Nuclear Information System (INIS)

    Jones, Roger M

    2003-01-01

    In the NLC project multiple bunches of electrons and positrons will be accelerated initially to a centre of mass of 500 GeV and later to 1 TeV or more. In the process of accelerating 192 bunches within a pulse train, wakefields are excited which kick the trailing bunches off axis and can cause luminosity dilution and BBU (Beam Break Up). Several structures to damp the wakefield have been designed and tested at SLAC and KEK and these have been found to successfully damp the wakefield [1]. However, these 2π/3 structures suffered from electrical breakdown and this has prompted us to explore lower group velocity structures operating at higher fundamental mode phase advances. The wakefield partitioning amongst the bands has been found to change markedly with increased phase advance. Here we report on general trends in the kick factor and associated wakefield band partitioning in dipole bands as a function of phase advance of the synchronous mode in linacs. These results are applicable to both TW (travelling wave) and SW (standing wave) structures

  16. Laser-driven Ion Acceleration using Nanodiamonds

    Science.gov (United States)

    D'Hauthuille, Luc; Nguyen, Tam; Dollar, Franklin

    2016-10-01

    Interactions of high-intensity lasers with mass-limited nanoparticles enable the generation of extremely high electric fields. These fields accelerate ions, which has applications in nuclear medicine, high brightness radiography, as well as fast ignition for inertial confinement fusion. Previous studies have been performed with ensembles of nanoparticles, but this obscures the physics of the interaction due to the wide array of variables in the interaction. The work presented here looks instead at the interactions of a high intensity short pulse laser with an isolated nanodiamond. Specifically, we studied the effect of nanoparticle size and intensity of the laser on the interaction. A novel target scheme was developed to isolate the nanodiamond. Particle-in-cell simulations were performed using the EPOCH framework to show the sheath fields and resulting energetic ion beams.

  17. The electron accelerator for the AWAKE experiment at CERN

    Energy Technology Data Exchange (ETDEWEB)

    Pepitone, K., E-mail: kevin.pepitone@cern.ch [CERN, Geneva (Switzerland); Doebert, S., E-mail: steffen.doebert@cern.ch [CERN, Geneva (Switzerland); Burt, G. [The University of Lancaster, Lancaster (United Kingdom); Chevallay, E.; Chritin, N.; Delory, C.; Fedosseev, V.; Hessler, Ch.; McMonagle, G. [CERN, Geneva (Switzerland); Mete, O. [The University of Manchester, Manchester (United Kingdom); Verzilov, V. [Triumf, Vancouver (Canada); Apsimon, R. [The University of Lancaster, Lancaster (United Kingdom)

    2016-09-01

    The AWAKE collaboration prepares a proton driven plasma wakefield acceleration experiment using the SPS beam at CERN. A long proton bunch extracted from the SPS interacts with a high power laser and a 10 m long rubidium vapour plasma cell to create strong wakefields allowing sustained electron acceleration. The electron bunch to probe these wakefields is supplied by a 20 MeV electron accelerator. The electron accelerator consists of an RF-gun and a short booster structure. This electron source should provide beams with intensities between 0.1 and 1 nC, bunch lengths between 0.3 and 3 ps and an emittance of the order of 2 mm mrad. The wide range of parameters should cope with the uncertainties and future prospects of the planned experiments. The layout of the electron accelerator, its instrumentation and beam dynamics simulations are presented.

  18. Reactivity Monitoring of Accelerator-Driven Nuclear Reactor Systems

    NARCIS (Netherlands)

    Uyttenhove, W.

    2016-01-01

    This thesis provides a methodology and set-up of a reactivity monitoring tool for Accelerator-Driven Systems (ADS). The reactivity monitoring tool should guarantee the operation of an ADS at a safe margin from criticality. Robustness is assured in different aspects of the monitoring tool: the choice

  19. The neutronics of an Accelerator-Driven Energy Amplifier

    Energy Technology Data Exchange (ETDEWEB)

    Moeller, E.; Gudowski, W. [Royal Institute of Technology, Stockholm (Sweden)

    1995-10-01

    This study has been focused on an Accelerator-Driven Energy Amplifier, based on the concept proposed by the CERN-group. To analyze the performance of this system the extensive optimization of the core lattice was done, the temperature coefficients of reactivity were investigated, reactivity budget and power distribution were estimated.

  20. Laser-driven ion acceleration: methods, challenges and prospects

    Science.gov (United States)

    Badziak, J.

    2018-01-01

    The recent development of laser technology has resulted in the construction of short-pulse lasers capable of generating fs light pulses with PW powers and intensities exceeding 1021 W/cm2, and has laid the basis for the multi-PW lasers, just being built in Europe, that will produce fs pulses of ultra-relativistic intensities ~ 1023 - 1024 W/cm2. The interaction of such an intense laser pulse with a dense target can result in the generation of collimated beams of ions of multi-MeV to GeV energies of sub-ps time durations and of extremely high beam intensities and ion fluencies, barely attainable with conventional RF-driven accelerators. Ion beams with such unique features have the potential for application in various fields of scientific research as well as in medical and technological developments. This paper provides a brief review of state-of-the art in laser-driven ion acceleration, with a focus on basic ion acceleration mechanisms and the production of ultra-intense ion beams. The challenges facing laser-driven ion acceleration studies, in particular those connected with potential applications of laser-accelerated ion beams, are also discussed.

  1. Neutron Transport Methods for Accelerator-Driven Systems

    International Nuclear Information System (INIS)

    Nicholas Tsoulfanidis; Elmer Lewis

    2005-01-01

    The objective of this project has been to develop computational methods that will enable more effective analysis of Accelerator Driven Systems (ADS). The work is centered at the University of Missouri at Rolla, with a subcontract at Northwestern University, and close cooperation with the Nuclear Engineering Division at Argonne National Laboratory. The work has fallen into three categories. First, the treatment of the source for neutrons originating from the spallation target which drives the neutronics calculations of the ADS. Second, the generalization of the nodal variational method to treat the R-Z geometry configurations frequently needed for scoping calculations in Accelerator Driven Systems. Third, the treatment of void regions within variational nodal methods as needed to treat the accelerator beam tube

  2. Accelerator-driven transmutation reactor analysis code system (ATRAS)

    Energy Technology Data Exchange (ETDEWEB)

    Sasa, Toshinobu; Tsujimoto, Kazufumi; Takizuka, Takakazu; Takano, Hideki [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    1999-03-01

    JAERI is proceeding a design study of the hybrid type minor actinide transmutation system which mainly consist of an intense proton accelerator and a fast subcritical core. Neutronics and burnup characteristics of the accelerator-driven system is important from a view point of the maintenance of subcriticality and energy balance during the system operation. To determine those characteristics accurately, it is necessary to involve reactions at high-energy region, which are not treated on ordinary reactor analysis codes. The authors developed a code system named ATRAS to analyze the neutronics and burnup characteristics of accelerator-driven subcritical reactor systems. ATRAS has a function of burnup analysis taking account of the effect of spallation neutron source. ATRAS consists of a spallation analysis code, a neutron transport codes and a burnup analysis code. Utility programs for fuel exchange, pre-processing and post-processing are also incorporated. (author)

  3. Conceptual design of a commercial accelerator driven thorium reactor

    International Nuclear Information System (INIS)

    Fuller, C. G.; Ashworth, R. W.

    2010-01-01

    This paper describes the substantial work done in underpinning and developing the concept design for a commercial 600 MWe, accelerator driven, thorium fuelled, lead cooled, power producing, fast reactor. The Accelerator Driven Thorium Reactor (ADTR TM) has been derived from original work by Carlo Rubbia. Over the period 2007 to 2009 Aker Solutions commissioned this concept design work and, in close collaboration with Rubbia, developed the physics, engineering and business model. Much has been published about the Energy Amplifier concept and accelerator driven systems. This paper concentrates on the unique physics developed during the concept study of the ADTR TM power station and the progress made in engineering and design of the system. Particular attention is paid to where the concept design has moved significantly beyond published material. Description of challenges presented for the engineering and safety of a commercial system and how they will be addressed is included. This covers the defining system parameters, accelerator sizing, core and fuel design issues and, perhaps most importantly, reactivity control. The paper concludes that the work undertaken supports the technical viability of the ADTR TM power station. Several unique features of the reactor mean that it can be deployed in countries with aspirations to gain benefit from nuclear power and, at 600 MWe, it fits a size gap for less mature grid systems. It can provide a useful complement to Generation III, III+ and IV systems through its ability to consume actinides whilst at the same time providing useful power. (authors)

  4. ELIMAIA: A Laser-Driven Ion Accelerator for Multidisciplinary Applications

    Directory of Open Access Journals (Sweden)

    Daniele Margarone

    2018-04-01

    Full Text Available The main direction proposed by the community of experts in the field of laser-driven ion acceleration is to improve particle beam features (maximum energy, charge, emittance, divergence, monochromaticity, shot-to-shot stability in order to demonstrate reliable and compact approaches to be used for multidisciplinary applications, thus, in principle, reducing the overall cost of a laser-based facility compared to a conventional accelerator one and, at the same time, demonstrating innovative and more effective sample irradiation geometries. The mission of the laser-driven ion target area at ELI-Beamlines (Extreme Light Infrastructure in Dolní Břežany, Czech Republic, called ELI Multidisciplinary Applications of laser-Ion Acceleration (ELIMAIA , is to provide stable, fully characterized and tuneable beams of particles accelerated by Petawatt-class lasers and to offer them to the user community for multidisciplinary applications. The ELIMAIA beamline has been designed and developed at the Institute of Physics of the Academy of Science of the Czech Republic (IoP-ASCR in Prague and at the National Laboratories of Southern Italy of the National Institute for Nuclear Physics (LNS-INFN in Catania (Italy. An international scientific network particularly interested in future applications of laser driven ions for hadrontherapy, ELI MEDical applications (ELIMED, has been established around the implementation of the ELIMAIA experimental system. The basic technology used for ELIMAIA research and development, along with envisioned parameters of such user beamline will be described and discussed.

  5. Self-Resonant Plasma Wake-Field Excitation by a Laser-Pulse with a Steep Leading-Edge for Particle-Acceleration

    NARCIS (Netherlands)

    Goloviznin, V. V.; van Amersfoort, P. W.

    1995-01-01

    The self-modulational instability of a relatively long laser pulse with a power close to or less than the critical power for relativistic self-focusing in plasma is considered. Strong wake-field excitation occurs as the result of a correlated transverse and longitudinal evolution of the pulse. The

  6. The dipole wakefield for a rounded damped detuned linear accelerator with optimized cell-to-manifold coupling

    International Nuclear Information System (INIS)

    Jones, R.M.; Miller, R.H.; Li, Z.; Ruth, R.D.; Srinivas, V.; Wang, J.W.; Higo, T.

    1998-09-01

    A redesign of the basic cell configuration of the Damped Detuned Structure has been briefly reported where the cells are referred to as ellipsoidal cavities, and accelerator structures incorporating them are designated DDS5 and DDS6. This new structure type has been renamed RDDS 1, and the first of this series, RDDS 1, is presently under design and fabrication. The carefully sculpted cell profile (fabricated on computer controlled lathes at KEK incorporating diamond point machining) provides a 20% increase in shunt impedance which, when combined with other parameters, allows for a dramatic reduction in the RF power required for the NLC (Next Linear Collider). The detuning profile, damping manifold taper, and the cell to manifold coupling constant profile have all been carefully optimized so as to permit decoupling the cells at the ends of the structure from the manifolds while still adequately minimizing the transverse wake. The decoupling is required in order to fit adequately matched terminations into the structure. The single structure analysis has been supplemented with studies of wake degradation arising from systematic fabrication errors and wake improvement obtained by combining manifold damping with structure interleaving

  7. High energy photon emission from wakefields

    Energy Technology Data Exchange (ETDEWEB)

    Farinella, D. M., E-mail: dfarinel@uci.edu; Lau, C. K.; Taimourzadeh, S.; Hwang, Y.; Abazajian, K.; Canac, N.; Taborek, P.; Tajima, T. [Department of Physics and Astronomy, University of California, Irvine, California 92697 (United States); Zhang, X. M., E-mail: zhxm@siom.ac.cn [Department of Physics and Astronomy, University of California, Irvine, California 92697 (United States); Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai 201800 (China); Koga, J. K., E-mail: koga.james@qst.go.jp [Kansai Photon Science Institute, Japan Atomic Energy Agency (JAEA), Kizugawa, Kyoto 619-0215 (Japan); Ebisuzaki, T., E-mail: ebisu@riken.jp [RIKEN, Wako, Saitama 351-0198 (Japan)

    2016-07-15

    Experimental evidence has accumulated to indicate that wakefield acceleration (WFA) accompanies intense and sometimes coherent emission of radiation such as from betatron radiation. The investigation of this issue has additional impetus nowadays because we are learning (1) there is an additional acceleration process of the ponderomotive acceleration; (2) WFA may become relevant in much higher density regimes; (3) WFA has been proposed as the mechanism for extreme high energy cosmic ray acceleration and gamma ray bursts for active galactic nuclei. These require us to closely examine the radiative mechanisms in WFA anew. We report studies of radiation from wakefield (self-injected betatron) and ponderomotive (laser field) mechanisms in scalings of the frequency and intensity of the driver, as well as the plasma density.

  8. Ashing vs. electric generation in accelerator driven system

    International Nuclear Information System (INIS)

    Solanilla, Roberto B.

    1999-01-01

    Accelerator Driven Systems have been conceived as an alternative for the processing of the radioactive wastes contained in spent fuel elements from nuclear power plants. These systems are formed by the coupling of a nuclear reactor - preferably a subcritical reactor - with a particle accelerator providing particles with energy in the order of the GeV. The long-lived fission products and actinides of the spent fuels are transformed by nuclear reactions in stable isotopes or in short-lived radioisotopes. The basic parameters for the electric energy production of the different systems are analysed. (author)

  9. A Cost Benefit Analysis of an Accelerator Driven Transmutation System

    International Nuclear Information System (INIS)

    Westlen, D.; Gudowski, W.; Wallenius, J.; Tucek, K.

    2002-01-01

    This paper estimates the economical costs and benefits associated with a nuclear waste transmutation strategy. An 800 MWth, fast neutron spectrum, subcritical core design has been used in the study (the so called Sing-Sing Core). Three different fuel cycle scenarios have been compared. The main purpose of the paper has been to identify the cost drivers of a partitioning and transmutation strategy, and to estimate the cost of electricity generated in a nuclear park with operating accelerator driven systems. It has been found that directing all transuranic discharges from spent light water reactor (LWR) uranium oxide (UOX) fuel to accelerator driven systems leads to a cost increase for nuclear power of 50±15%, while introduction of a mixed oxide (MOX) burning step in the LWRs diminishes the cost penalty to 35±10%. (authors)

  10. Laser-driven particle acceleration towards radiobiology and medicine

    CERN Document Server

    2016-01-01

    This book deals with the new method of laser-driven acceleration for application to radiation biophysics and medicine. It provides multidisciplinary contributions from world leading scientist in order to assess the state of the art of innovative tools for radiation biology research and medical applications of ionizing radiation. The book contains insightful contributions on highly topical aspects of spatio-temporal radiation biophysics, evolving over several orders of magnitude, typically from femtosecond and sub-micrometer scales. Particular attention is devoted to the emerging technology of laser-driven particle accelerators and their applicatio to spatio-temporal radiation biology and medical physics, customization of non-conventional and selective radiotherapy and optimized radioprotection protocols.

  11. Convectively driven decadal zonal accelerations in Earth's fluid core

    Science.gov (United States)

    More, Colin; Dumberry, Mathieu

    2018-04-01

    Azimuthal accelerations of cylindrical surfaces co-axial with the rotation axis have been inferred to exist in Earth's fluid core on the basis of magnetic field observations and changes in the length-of-day. These accelerations have a typical timescale of decades. However, the physical mechanism causing the accelerations is not well understood. Scaling arguments suggest that the leading order torque averaged over cylindrical surfaces should arise from the Lorentz force. Decadal fluctuations in the magnetic field inside the core, driven by convective flows, could then force decadal changes in the Lorentz torque and generate zonal accelerations. We test this hypothesis by constructing a quasi-geostrophic model of magnetoconvection, with thermally driven flows perturbing a steady, imposed background magnetic field. We show that when the Alfvén number in our model is similar to that in Earth's fluid core, temporal fluctuations in the torque balance are dominated by the Lorentz torque, with the latter generating mean zonal accelerations. Our model reproduces both fast, free Alfvén waves and slow, forced accelerations, with ratios of relative strength and relative timescale similar to those inferred for the Earth's core. The temporal changes in the magnetic field which drive the time-varying Lorentz torque are produced by the underlying convective flows, shearing and advecting the magnetic field on a timescale associated with convective eddies. Our results support the hypothesis that temporal changes in the magnetic field deep inside Earth's fluid core drive the observed decadal zonal accelerations of cylindrical surfaces through the Lorentz torque.

  12. Separations technology development to support accelerator-driven transmutation concepts

    International Nuclear Information System (INIS)

    Venneri, F.; Arthur, E.; Bowman, C.

    1996-01-01

    This is the final report of a one-year Laboratory-Directed Research and Development (LDRD) Project at the Los Alamos National Laboratory (LANL). This project investigated separations technology development needed for accelerator-driven transmutation technology (ADTT) concepts, particularly those associated with plutonium disposition (accelerator-based conversion, ABC) and high-level radioactive waste transmutation (accelerator transmutation of waste, ATW). Specific focus areas included separations needed for preparation of feeds to ABC and ATW systems, for example from spent reactor fuel sources, those required within an ABC/ATW system for material recycle and recovery of key long-lived radionuclides for further transmutation, and those required for reuse and cleanup of molten fluoride salts. The project also featured beginning experimental development in areas associated with a small molten-salt test loop and exploratory centrifugal separations systems

  13. Acceleration of polyethelene foils by laser driven ablation

    International Nuclear Information System (INIS)

    Ahlstrom, H.G.; Burginyon, G.A.; Haas, R.A.

    1974-01-01

    The production of thermonuclear energy, by laser driven implosion of spherical DT shells, with achievable laser technology, requires the development of an efficient and stable implosion. Certain aspects of the acceleration of the spherical shells can be studied experimentally by irradiating thin, 5 to 25 μm, polyethelene foils. The results of foil acceleration experiments performed using a Nd:YAG-Glass laser capable of producing 150 J, 1 nsec pulses will be discussed. The dynamics of the accelerated foil, the ion blow off, high energy electron spectrum (6 to 180 keV), x-ray spectrum (1 to 150 keV) the spatial distribution of the x-ray emission, the laser beam focal spot energy distribution, the laser temporal pulse shape and spectrum for reflected and transmitted radiation have all been measured simultaneously. The results of these measurements are compared with detailed numerical simulations. (U.S.)

  14. Novel target design for enhanced laser driven proton acceleration

    Directory of Open Access Journals (Sweden)

    Malay Dalui

    2017-09-01

    Full Text Available We demonstrate a simple method of preparing structured target for enhanced laser-driven proton acceleration under target-normal-sheath-acceleration scheme. A few layers of genetically modified, clinically grown micron sized E. Coli bacteria cell coated on a thin metal foil has resulted in an increase in the maximum proton energy by about 1.5 times and the total proton yield is enhanced by approximately 25 times compared to an unstructured reference foil at a laser intensity of 1019 W/cm2. Particle-in-cell simulations on the system shows that the structures on the target-foil facilitates anharmonic resonance, contributing to enhanced hot electron production which leads to stronger accelerating field. The effect is observed to grow as the number of structures is increased in the focal area of the laser pulse.

  15. Accelerator-Driven Thorium Cycle: New Technology Makes It Feasible

    International Nuclear Information System (INIS)

    Adams, Marvin; Best, Fred; Kurwitz, Cable; McInturff, Al; McIntyre, Peter; Rogers, Bob; Sattarov, Akhdior; Wu Zeyun; Yavuz, Mustafa; Meitzler, Charles

    2002-01-01

    We have developed a conceptual design for an accelerator-driven thorium cycle power reactor which addresses the issues of accelerator performance, reliability, and neutronics that limited earlier designs. The proton drive beam is provided by a flux-coupled stack of isochronous cyclotrons, occupying the same footprint as a single cyclotron but providing 7 independent beams from 7 separate accelerating structures within a common magnetic envelope. The core is arranged in a hexagonal lattice, and the 7 beams are used to provide a hexagonal drive beam pattern so that the effective neutron gain is relatively uniform over the entire core volume. Reliability is achieved by redundancy: if any drive beam is interrupted, the other 6 suffice to maintain reactor operation. A new approach to fuel cladding should make it possible to operate with lead moderator at temperatures ∼ 800 C, enabling access to advanced heat cycles and perhaps to a Brayton cycle for hydrogen production. (authors)

  16. Final Report: Experimental Investigation of Nonlinear Plasma Wake-Fields

    International Nuclear Information System (INIS)

    Rosenzweig, J.

    1997-01-01

    We discuss the exploration of the newly proposed blowout regime of the plasma wakefield accelerator and advanced photoinjector technology for linear collider applications. The plasma wakefield experiment at ANL produced several ground-breaking results in the physics of the blowout regime. The photoinjector R and D effort produced breakthroughs in theoretical, computational, and experimental methods in high brightness beam physics. Results have been published

  17. Advanced approaches to high intensity laser-driven ion acceleration

    International Nuclear Information System (INIS)

    Henig, Andreas

    2010-01-01

    Since the pioneering work that was carried out 10 years ago, the generation of highly energetic ion beams from laser-plasma interactions has been investigated in much detail in the regime of target normal sheath acceleration (TNSA). Creation of ion beams with small longitudinal and transverse emittance and energies extending up to tens of MeV fueled visions of compact, laser-driven ion sources for applications such as ion beam therapy of tumors or fast ignition inertial con finement fusion. However, new pathways are of crucial importance to push the current limits of laser-generated ion beams further towards parameters necessary for those applications. The presented PhD work was intended to develop and explore advanced approaches to high intensity laser-driven ion acceleration that reach beyond TNSA. In this spirit, ion acceleration from two novel target systems was investigated, namely mass-limited microspheres and nm-thin, free-standing diamond-like carbon (DLC) foils. Using such ultrathin foils, a new regime of ion acceleration was found where the laser transfers energy to all electrons located within the focal volume. While for TNSA the accelerating electric field is stationary and ion acceleration is spatially separated from laser absorption into electrons, now a localized longitudinal field enhancement is present that co-propagates with the ions as the accompanying laser pulse pushes the electrons forward. Unprecedented maximum ion energies were obtained, reaching beyond 0.5 GeV for carbon C 6+ and thus exceeding previous TNSA results by about one order of magnitude. When changing the laser polarization to circular, electron heating and expansion were shown to be efficiently suppressed, resulting for the first time in a phase-stable acceleration that is dominated by the laser radiation pressure which led to the observation of a peaked C 6+ spectrum. Compared to quasi-monoenergetic ion beam generation within the TNSA regime, a more than 40 times increase in

  18. Advanced approaches to high intensity laser-driven ion acceleration

    Energy Technology Data Exchange (ETDEWEB)

    Henig, Andreas

    2010-04-26

    Since the pioneering work that was carried out 10 years ago, the generation of highly energetic ion beams from laser-plasma interactions has been investigated in much detail in the regime of target normal sheath acceleration (TNSA). Creation of ion beams with small longitudinal and transverse emittance and energies extending up to tens of MeV fueled visions of compact, laser-driven ion sources for applications such as ion beam therapy of tumors or fast ignition inertial con finement fusion. However, new pathways are of crucial importance to push the current limits of laser-generated ion beams further towards parameters necessary for those applications. The presented PhD work was intended to develop and explore advanced approaches to high intensity laser-driven ion acceleration that reach beyond TNSA. In this spirit, ion acceleration from two novel target systems was investigated, namely mass-limited microspheres and nm-thin, free-standing diamond-like carbon (DLC) foils. Using such ultrathin foils, a new regime of ion acceleration was found where the laser transfers energy to all electrons located within the focal volume. While for TNSA the accelerating electric field is stationary and ion acceleration is spatially separated from laser absorption into electrons, now a localized longitudinal field enhancement is present that co-propagates with the ions as the accompanying laser pulse pushes the electrons forward. Unprecedented maximum ion energies were obtained, reaching beyond 0.5 GeV for carbon C{sup 6+} and thus exceeding previous TNSA results by about one order of magnitude. When changing the laser polarization to circular, electron heating and expansion were shown to be efficiently suppressed, resulting for the first time in a phase-stable acceleration that is dominated by the laser radiation pressure which led to the observation of a peaked C{sup 6+} spectrum. Compared to quasi-monoenergetic ion beam generation within the TNSA regime, a more than 40 times

  19. Comparison calculations for an accelerator-driven minor actinide burner

    International Nuclear Information System (INIS)

    2002-01-01

    International interest in accelerator-driven systems (ADS) has recently been increasing in view of the important role that these systems may play as efficient minor actinide and long-lived fission-product (LLFP) burners and/or energy producers with an enhanced safety potential. However, the current methods of analysis and nuclear data for minor actinide and LLFP burners are not as well established as those for conventionally fuelled reactor systems. Hence, in 1999, the OECD/NEA Nuclear Science Committee organised a benchmark exercise for an accelerator-driven minor actinide burner to check the performances of reactor codes and nuclear data for ADS with unconventional fuel and coolant. The benchmark model was a lead-bismuth-cooled subcritical system driven by a beam of 1 GeV protons. This report provides an analysis of the results supplied by seven participants from eight countries. The analysis reveals significant differences in important neutronic parameters, indicating a need for further investigation of the nuclear data, especially minor actinide data, as well as the calculation methods. This report will be of particular interest to reactor physicists and nuclear data evaluators developing nuclear systems for nuclear waste management. (authors)

  20. Long-term evolution of broken wakefields in finite radius plasmas

    CERN Document Server

    Lotov, Konstantin; Petrenko, Alexey

    2014-01-01

    A novel effect of fast heating and charging a finite-radius plasma is discovered in the context of plasma wakefield acceleration. As the plasma wave breaks, the most of its energy is transferred to plasma electrons which create strong charge-separation electric field and azimuthal magnetic field around the plasma. The slowly varying field structure is preserved for hundreds of wakefield periods and contains (together with hot electrons) up to 80% of the initial wakefield energy.

  1. Particle-in-cell simulations of plasma accelerators and electron-neutral collisions

    Directory of Open Access Journals (Sweden)

    David L. Bruhwiler

    2001-10-01

    Full Text Available We present 2D simulations of both beam-driven and laser-driven plasma wakefield accelerators, using the object-oriented particle-in-cell code XOOPIC, which is time explicit, fully electromagnetic, and capable of running on massively parallel supercomputers. Simulations of laser-driven wakefields with low \\(∼10^{16} W/cm^{2}\\ and high \\(∼10^{18} W/cm^{2}\\ peak intensity laser pulses are conducted in slab geometry, showing agreement with theory and fluid simulations. Simulations of the E-157 beam wakefield experiment at the Stanford Linear Accelerator Center, in which a 30 GeV electron beam passes through 1 m of preionized lithium plasma, are conducted in cylindrical geometry, obtaining good agreement with previous work. We briefly describe some of the more significant modifications to XOOPIC required by this work, and summarize the issues relevant to modeling relativistic electron-neutral collisions in a particle-in-cell code.

  2. Concept of an accelerator-driven subcritical research reactor within the TESLA accelerator installation

    International Nuclear Information System (INIS)

    Pesic, Milan; Neskovic, Nebojsa

    2006-01-01

    Study of a small accelerator-driven subcritical research reactor in the Vinca Institute of Nuclear Sciences was initiated in 1999. The idea was to extract a beam of medium-energy protons or deuterons from the TESLA accelerator installation, and to transport and inject it into the reactor. The reactor core was to be composed of the highly enriched uranium fuel elements. The reactor was designated as ADSRR-H. Since the use of this type of fuel elements was not recommended any more, the study of a small accelerator-driven subcritical research reactor employing the low-enriched uranium fuel elements began in 2004. The reactor was designated as ADSRR-L. We compare here the results of the initial computer simulations of ADSRR-H and ADSRR-L. The results have confirmed that our concept could be the basis for designing and construction of a low neutron flux model of the proposed accelerator-driven subcritical power reactor to be moderated and cooled by lead. Our objective is to study the physics and technologies necessary to design and construct ADSRR-L. The reactor would be used for development of nuclear techniques and technologies, and for basic and applied research in neutron physics, metrology, radiation protection and radiobiology

  3. A new concept for accelerator driven transmutation of nuclear wastes

    International Nuclear Information System (INIS)

    Arthur, E.D.

    1991-01-01

    A new concept for an accelerator-driven transmutation system is described. The central feature of the concept is generation of intense fluxes of thermal neutrons. In the system all long-lived radionuclides comprising high-level nuclear waste can be transmuted efficiently. Transmutation takes place in a unique, low material inventory environment. Presently two principal areas are being investigated for application of the concept. The first is associated with cleanup of defense high-level waste at DOE sites such as Hanford. The second, longer term area involves production of electric power using a coupled accelerator-multiplying blanket system. This system would utilize natural thorium or uranium and would transmute long-lived components of high-level waste concurrently during operation. 5 refs., 5 figs

  4. MYRRHA project: an Accelerator Driven System (ADS) Prototype

    Energy Technology Data Exchange (ETDEWEB)

    Ait Abderrahim, H

    2000-07-01

    The goal of the MYRRHA project is to investigate the design, development and realisation of a versatile neutron source based on an Accelerator Driven System (ADS). Efforts in 1999 were focussed on the optimisation of a high-performance device with a maximum neutron flux for MA irradiation experiments of 1.10{sup 1}'5 n/cm{sup 2}.s with neutron energies exceeding 0.75 MeV and about 3.10{sup 15} n/cm{sup 2}.s for all energies. Design proposals for different MYRRHA ADS components including the accelerator and the spallation source were elaborated. Potential applications of an ADS neutron source as well as various engineering aspects are discussed.

  5. Research opportunities with compact accelerator-driven neutron sources

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, I.S. [Oak Ridge National Laboratory, Oak Ridge, TN (United States); Andreani, C., E-mail: carla.andreani@uniroma2.it [Università degli Studi di Roma “Tor Vergata”, Physics Department and NAST Centre, Via della Ricerca Scientifica 1, 00133 Roma (Italy); CNR-IPCF Sezione di Messina, Messina (Italy); Museo Storico della Fisica e Centro Studi e Ricerche Enrico Fermi, Roma (Italy); Carpenter, J.M. [Argonne National Laboratory, Argonne, IL (United States); Festa, G., E-mail: giulia.festa@uniroma2.it [Università degli Studi di Roma “Tor Vergata”, Physics Department and NAST Centre, Via della Ricerca Scientifica 1, 00133 Roma (Italy); Museo Storico della Fisica e Centro Studi e Ricerche Enrico Fermi, Roma (Italy); Gorini, G. [Università degli Studi di Milano—Bicocca, Milano (Italy); Loong, C.-K. [Università degli Studi di Roma “Tor Vergata”, Centro NAST, Via della Ricerca Scientifica 1, 00133 Roma (Italy); Senesi, R. [Università degli Studi di Roma “Tor Vergata”, Physics Department and NAST Centre, Via della Ricerca Scientifica 1, 00133 Roma (Italy); CNR-IPCF Sezione di Messina, Messina (Italy); Museo Storico della Fisica e Centro Studi e Ricerche Enrico Fermi, Roma (Italy)

    2016-10-13

    Since the discovery of the neutron in 1932 neutron beams have been used in a very broad range of applications, As an aging fleet of nuclear reactor sources is retired the use of compact accelerator-driven neutron sources (CANS) is becoming more prevalent. CANS are playing a significant and expanding role in research and development in science and engineering, as well as in education and training. In the realm of multidisciplinary applications, CANS offer opportunities over a wide range of technical utilization, from interrogation of civil structures to medical therapy to cultural heritage study. This paper aims to provide the first comprehensive overview of the history, current status of operation, and ongoing development of CANS worldwide. The basic physics and engineering regarding neutron production by accelerators, target–moderator systems, and beam line instrumentation are introduced, followed by an extensive discussion of various evolving applications currently exploited at CANS.

  6. Research opportunities with compact accelerator-driven neutron sources

    Science.gov (United States)

    Anderson, I. S.; Andreani, C.; Carpenter, J. M.; Festa, G.; Gorini, G.; Loong, C.-K.; Senesi, R.

    2016-10-01

    Since the discovery of the neutron in 1932 neutron beams have been used in a very broad range of applications, As an aging fleet of nuclear reactor sources is retired the use of compact accelerator-driven neutron sources (CANS) is becoming more prevalent. CANS are playing a significant and expanding role in research and development in science and engineering, as well as in education and training. In the realm of multidisciplinary applications, CANS offer opportunities over a wide range of technical utilization, from interrogation of civil structures to medical therapy to cultural heritage study. This paper aims to provide the first comprehensive overview of the history, current status of operation, and ongoing development of CANS worldwide. The basic physics and engineering regarding neutron production by accelerators, target-moderator systems, and beam line instrumentation are introduced, followed by an extensive discussion of various evolving applications currently exploited at CANS.

  7. Analysis of an accelerator-driven subcritical light water reactor

    International Nuclear Information System (INIS)

    Kruijf, W.J.M. de; Wakker, P.H.; Wetering, T.F.H. van de; Verkooijen, A.H.M.

    1997-01-01

    An analysis of the basic characteristics of an accelerator-driven light water reactor has been made. The waste in the nuclear fuel cycle is considerably less than in the light water reactor open fuel cycle. This is mainly caused by the use of equilibrium nuclear fuel in the reactor. The accelerator enables the use of a fuel composition with infinite multiplication factor k ∞ < 1. The main problem of the use of this type of fuel is the strongly peaked flux distribution in the reactor core. A simple analytical model shows that a large core is needed with a high peak power factor in order to generate net electric energy. The fuel in the outer regions of the reactor core is used very poorly. 7 refs., 4 figs., 1 tab

  8. Research opportunities with compact accelerator-driven neutron sources

    International Nuclear Information System (INIS)

    Anderson, I.S.; Andreani, C.; Carpenter, J.M.; Festa, G.; Gorini, G.; Loong, C.-K.; Senesi, R.

    2016-01-01

    Since the discovery of the neutron in 1932 neutron beams have been used in a very broad range of applications, As an aging fleet of nuclear reactor sources is retired the use of compact accelerator-driven neutron sources (CANS) is becoming more prevalent. CANS are playing a significant and expanding role in research and development in science and engineering, as well as in education and training. In the realm of multidisciplinary applications, CANS offer opportunities over a wide range of technical utilization, from interrogation of civil structures to medical therapy to cultural heritage study. This paper aims to provide the first comprehensive overview of the history, current status of operation, and ongoing development of CANS worldwide. The basic physics and engineering regarding neutron production by accelerators, target–moderator systems, and beam line instrumentation are introduced, followed by an extensive discussion of various evolving applications currently exploited at CANS.

  9. MYRRHA project: an Accelerator Driven System (ADS) Prototype

    International Nuclear Information System (INIS)

    Ait Abderrahim, H.

    2000-01-01

    The goal of the MYRRHA project is to investigate the design, development and realisation of a versatile neutron source based on an Accelerator Driven System (ADS). Efforts in 1999 were focussed on the optimisation of a high-performance device with a maximum neutron flux for MA irradiation experiments of 1.10 1 '5 n/cm 2 .s with neutron energies exceeding 0.75 MeV and about 3.10 15 n/cm 2 .s for all energies. Design proposals for different MYRRHA ADS components including the accelerator and the spallation source were elaborated. Potential applications of an ADS neutron source as well as various engineering aspects are discussed

  10. Simulation an Accelerator driven Subcritical Reactor core with thorium fuel

    International Nuclear Information System (INIS)

    Shirmohammadi, L.; Pazirandeh, A.

    2011-01-01

    The main purpose of this work is simulation An Accelerator driven Subcritical core with Thorium as a new generation nuclear fuel. In this design core , A subcritical core coupled to an accelerator with proton beam (E p =1 GeV) is simulated by MCNPX code .Although the main purpose of ADS systems are transmutation and use MA (Minor Actinides) as a nuclear fuel but another use of these systems are use thorium fuel. This simulated core has two fuel assembly type : (Th-U) and (U-Pu) . Consequence , Neutronic parameters related to ADS core are calculated. It has shown that Thorium fuel is use able in this core and less nuclear waste ,Although Iran has not Thorium reserves but study on Thorium fuel cycle can open a new horizontal in use nuclear energy as a clean energy and without nuclear waste

  11. Role of accelerator-driven systems in waste incineration scenarios

    Energy Technology Data Exchange (ETDEWEB)

    Salvatores, M.; Slessarev, I.; Tchistiakov, A. [CEA Centre d`Etudes de Cadarache, 13 - Saint-Paul-lez-Durance (France). Direction des Reacteurs Nucleaires; Spiro, M.; Terrien, Y.; Mouney, H.; Vergnes, J.

    1997-12-31

    At CEA accelerator-driven systems (ADS) are studied in the frame of the R and D required to answer the request of a law voted in 1991 by the French Parliament, `to search for solutions allowing to partition and transmute long lived radioactive wastes, in order to reduce their volume and toxicity`. These systems (called `INCAs`) are still at a conceptual level. However, the role of ADS has been clarified as a first step, and this will be the subject of the present paper. (author)

  12. Accelerator-driven molten-salt blankets: Physics issues

    International Nuclear Information System (INIS)

    Houts, M.G.; Beard, C.A.; Buksa, J.J.; Davidson, J.W.; Durkee, J.W.; Perry, R.T.; Poston, D.I.

    1994-01-01

    A number of nuclear physics issues concerning the Los Alamos molten-salt, accelerator-driven plutonium converter are discussed. General descriptions of several concepts using internal and external, moderation are presented. Burnup and salt processing requirement calculations are presented for four concepts, indicating that both the high power density externally moderated concept and an internally moderated concept achieve total plutonium burnups approaching 90% at salt processing rates of less than 2 m 3 per year. Beginning-of-life reactivity temperature coefficients and system kinetic response are also discussed. Future research should investigate the effect of changing blanket composition on operational and safety characteristics

  13. Accelerator-driven molten-salt blankets: Physics issues

    International Nuclear Information System (INIS)

    Houts, M.G.; Beard, C.A.; Buksa, J.J.; Davidson, J.W.; Durkee, J.W.; Perry, R.T.; Poston, D.I.

    1994-01-01

    A number of nuclear physics issues concerning the Los Alamos molten-salt accelerator-driven plutonium converter are discussed. General descriptions of several concepts using internal and external moderation are presented. Burnup and salt processing requirement calculations are presented for four concepts, indicating that both the high power density externally moderated concept and an internally moderated concept achieve total plutonium burnups approaching 90% at salt processing rates of less than 2 m 3 per year. Beginning-of-life reactivity temperature coefficients and system kinetic response are also discussed. Future research should investigate the effect of changing blanket composition on operational and safety characteristics

  14. Accelerator-driven assembly for plutonium transformation (ADAPT)

    Science.gov (United States)

    Tuyle, Greorgy J. Van; Todosow, Michael; Powell, James; Schweitzer, Donald

    1995-01-01

    A particle accelerator-driven spallation target and corresponding blanket region are proposed for the ultimate disposition of weapons-grade plutonium being retired from excess nuclear weapons in the U.S. and Russia. The highly fissle plutonium is contained within .25 to .5 cm diameter silicon-carbide coated graphite beads, which are cooled by helium, within the slightly subcritical blanket region. Major advantages include very high one-pass burnup (over 90%), a high integrity waste form (the coated beads), and operation in a subcritical mode, thereby minimizing the vulnerability to the positive reativity feedbacks often associated with plutonium fuel.

  15. An accelerator-driven reactor for meeting future energy demand

    International Nuclear Information System (INIS)

    Takahashi, Hiroshi; Yang, Y.; Yu, A.

    1997-01-01

    Fissile fuel can be produced at a high rate using an accelerator-driven Pu-fueled subcritical fast reactor which avoids encountering a shortage of Pu during a high growth rate in the production of nuclear energy. Furthermore, the necessity of the early introduction of the fast reactor can be moderated. Subcritical operation provides flexible nuclear energy options along with high neutron economy for producing the fuel, for transmuting high-level waste such as minor actinides, and for efficiently converting excess and military Pu into proliferation-resistant fuel

  16. Present status and issues for accelerator driven transmutation system

    International Nuclear Information System (INIS)

    Mizumoto, Motoharu

    2003-01-01

    Proper treatment of high-level nuclear wastes (HLW) that are produced in operation of nuclear power plants is one of the most important problems for further utilization of nuclear energy. The purpose of the accelerator driven nuclear waste transmutation system (ADS) is to transmute these nuclei to stable or short-lived nuclei by various radiation-induced nuclear reactions. When ADS for HLW can be realized, burden to deep geological disposal can be considerably reduced. In the paper, present status and issues for ADS will be discussed. (author)

  17. Transmutation of 129I Using an Accelerator-Driven System

    International Nuclear Information System (INIS)

    Nishihara, Kenji; Takano, Hideki

    2002-01-01

    A conceptual blanket design for 129 I transmutation is proposed for an accelerator-driven system (ADS) that is designed to transmute minor actinides (MAs). In this ADS, 250 kg/yr of MA and 56 kg/yr of iodine are simultaneously transmuted, and they correspond to the quantities generated from ∼10 units of existing light water reactors. Furthermore, an introduction scenario and the benefit of iodine transmutation are studied for future introduction of fast breeder reactors. It is shown that the transmutation of iodine benefits the concept of underground disposal

  18. Pulsed radiobiology with laser-driven plasma accelerators

    Science.gov (United States)

    Giulietti, Antonio; Grazia Andreassi, Maria; Greco, Carlo

    2011-05-01

    Recently, a high efficiency regime of acceleration in laser plasmas has been discovered, allowing table top equipment to deliver doses of interest for radiotherapy with electron bunches of suitable kinetic energy. In view of an R&D program aimed to the realization of an innovative class of accelerators for medical uses, a radiobiological validation is needed. At the present time, the biological effects of electron bunches from the laser-driven electron accelerator are largely unknown. In radiobiology and radiotherapy, it is known that the early spatial distribution of energy deposition following ionizing radiation interactions with DNA molecule is crucial for the prediction of damages at cellular or tissue levels and during the clinical responses to this irradiation. The purpose of the present study is to evaluate the radio-biological effects obtained with electron bunches from a laser-driven electron accelerator compared with bunches coming from a IORT-dedicated medical Radio-frequency based linac's on human cells by the cytokinesis block micronucleus assay (CBMN). To this purpose a multidisciplinary team including radiotherapists, biologists, medical physicists, laser and plasma physicists is working at CNR Campus and University of Pisa. Dose on samples is delivered alternatively by the "laser-linac" operating at ILIL lab of Istituto Nazionale di Ottica and an RF-linac operating for IORT at Pisa S. Chiara Hospital. Experimental data are analyzed on the basis of suitable radiobiological models as well as with numerical simulation based on Monte Carlo codes. Possible collective effects are also considered in the case of ultrashort, ultradense bunches of ionizing radiation.

  19. Optimization of accelerator-driven technology for LWR waste transmutation

    International Nuclear Information System (INIS)

    Bowman, C.D.

    1996-01-01

    The role of accelerator-driven transmutation technology is examined in the context of the destruction of actinide waste from commercial light water reactors. It is pointed out that the commercial plutonium is much easier to use for entry-level nuclear weapons than weapons plutonium. Since commercial plutonium is easier to use, since there is very much more of it already, and since it is growing rapidly, the permanent disposition of commercial plutonium is an issue of greater importance than weapons plutonium. The minor actinides inventory, which may be influenced by transmutation, is compared in terms of nuclear properties with commercial and weapons plutonium and for possible utility as weapons material. Fast and thermal spectrum systems are compared as means for destruction of plutonium and the minor actinides. it is shown that the equilibrium fast spectrum actinide inventory is about 100 times larger than for thermal spectrum systems, and that there is about 100 times more weapons-usable material in the fast spectrum system inventory compared to the thermal spectrum system. Finally it is shown that the accelerator size for transmutation can be substantially reduced by design which uses the accelerator-produced neutrons only to initiate the unsustained fission chains characteristic of the subcritical system. The analysis argues for devoting primary attention to the development of thermal spectrum transmutation technology. A thermal spectrum transmuter operating at a fission power of 750-MWth fission power, which is sufficient to destroy the actinide waste from one 3,000-MWth light water reactor, may be driven by a proton beam of 1 GeV energy and a current of 7 mA. This accelerator is within the range of realizable cyclotron technology and is also near the size contemplated for the next generation spallation neutron source under consideration by the US, Europe, and Japan

  20. Research project on accelerator-driven subcritical system using FFAG accelerator and Kyoto University critical assembly

    International Nuclear Information System (INIS)

    Mishima, Kaichiro; Unesaki, Hironobu; Misawa, Tsuyoshi; Tanigaki, Minoru; Mori, Yoshiharu; Shiroya, Seiji; Inoue, Makoto; Ishi, Y.; Fukumoto, Shintaro

    2005-01-01

    The KART (Kumatori Accelerator-driven Reactor Test facility) project started in Research Reactor Institute, Kyoto University in fiscal year 2002 with the grant by the Japanese Ministry of Education, Culture, Sports, Science and Technology. The purpose of this research project is to demonstrate the basis feasibility of accelerator driven system (ADS), studying the effect of incident neutron energy on the effective multiplication factor in a subcritical nuclear fuel system. For this purpose, a variable-energy FFAG (Fixed Field Alternating Gradient) accelerator complex is being constructed to be coupled with the Kyoto University Critical Assembly (KUCA). The FFAG proton accelerator complex consists of ion-beta, booster and main rings. This system aims to attain 1 μA proton beam with energy range from 20 to 150 MeV with a repetition rate of 120 Hz. The first beam from the FFAG complex is expected to be available by the end of FY 2005, and the experiment on ADS with KUCA and the FFAG complex (FFAG-KUCA experiment) will start in FY 2006. Before the FFAG-KUCA experiment starts, preliminary experiments with 14 MeV neutrons are currently being performed using a Cockcroft-Walton type accelerator coupled with the KUCA. Experimental data are analyzed using continuous energy Monte-Carlo codes MVP, MCNP and MNCP-X. (author)

  1. The spatial kinetic analysis of accelerator-driven subcritical reactor

    International Nuclear Information System (INIS)

    Takahashi, H.; An, Y.; Chen, X.

    1998-02-01

    The operation of the accelerator driven reactor with subcritical condition provides a more flexible choice of the reactor materials and of design parameters. A deep subcriticality is chosen sometime from the analysis of point kinetics. When a large reactor is operated in deep subcritical condition by using a localized spallation source, the power distribution has strong spatial dependence, and point kinetics does not provide proper analysis for reactor safety. In order to analyze the spatial and energy dependent kinetic behavior in the subcritical reactor, the authors developed a computation code which is composed of two parts, the first one is for creating the group cross section and the second part solves the multi-group kinetic diffusion equations. The reactor parameters such as the cross section of fission, scattering, and energy transfer among the several energy groups and regions are calculated by using a code modified from the Monte Carlo codes MCNPA and LAHET instead of the usual analytical method of ANISN, TWOTRAN codes. Thus the complicated geometry of the accelerator driven reactor core can be precisely taken into account. The authors analyzed the subcritical minor actinide transmutor studied by Japan Atomic Energy Research Institute (JAERI) using the code

  2. Candidate molten salt investigation for an accelerator driven subcritical core

    Energy Technology Data Exchange (ETDEWEB)

    Sooby, E., E-mail: soobyes@tamu.edu [Texas A and M University, Accelerator Research Laboratory, 3380 University Dr. East, College Station, TX 77845 (United States); Baty, A. [Texas A and M University, Accelerator Research Laboratory, 3380 University Dr. East, College Station, TX 77845 (United States); Beneš, O. [European Commission, DG Joint Research Centre, Institute for Transuranium Elements, P.O. Box 2340, 76125 Karlsruhe (Germany); McIntyre, P.; Pogue, N. [Texas A and M University, Accelerator Research Laboratory, 3380 University Dr. East, College Station, TX 77845 (United States); Salanne, M. [Université Pierre et Marie Curie, CNRS, Laboratoire PECSA, F-75005 Paris (France); Sattarov, A. [Texas A and M University, Accelerator Research Laboratory, 3380 University Dr. East, College Station, TX 77845 (United States)

    2013-09-15

    Highlights: • Developing accelerator driven subcritical fission to destroy transuranics in SNF. • The core is a vessel containing a molten mixture of NaCl and transuranic chlorides. • Molecular dynamics used to calculate the thermophysical properties of the salt. • Density and molecular structure for actinide salts reported here. • The neutronics of ADS fission in molten salt are presented. -- Abstract: We report a design for accelerator-driven subcritical fission in a molten salt core (ADSMS) that utilizes a fuel salt composed of NaCl and transuranic (TRU) chlorides. The ADSMS core is designed for fast neutronics (28% of neutrons >1 MeV) to optimize TRU destruction. The choice of a NaCl-based salt offers benefits for corrosion, operating temperature, and actinide solubility as compared with LiF-based fuel salts. A molecular dynamics (MD) code has been used to estimate properties of the molten salt system which are important for ADSMS design but have never been measured experimentally. Results from the MD studies are reported. Experimental measurements of fuel salt properties and studies of corrosion and radiation damage on candidate metals for the core vessel are anticipated.

  3. Candidate molten salt investigation for an accelerator driven subcritical core

    International Nuclear Information System (INIS)

    Sooby, E.; Baty, A.; Beneš, O.; McIntyre, P.; Pogue, N.; Salanne, M.; Sattarov, A.

    2013-01-01

    Highlights: • Developing accelerator driven subcritical fission to destroy transuranics in SNF. • The core is a vessel containing a molten mixture of NaCl and transuranic chlorides. • Molecular dynamics used to calculate the thermophysical properties of the salt. • Density and molecular structure for actinide salts reported here. • The neutronics of ADS fission in molten salt are presented. -- Abstract: We report a design for accelerator-driven subcritical fission in a molten salt core (ADSMS) that utilizes a fuel salt composed of NaCl and transuranic (TRU) chlorides. The ADSMS core is designed for fast neutronics (28% of neutrons >1 MeV) to optimize TRU destruction. The choice of a NaCl-based salt offers benefits for corrosion, operating temperature, and actinide solubility as compared with LiF-based fuel salts. A molecular dynamics (MD) code has been used to estimate properties of the molten salt system which are important for ADSMS design but have never been measured experimentally. Results from the MD studies are reported. Experimental measurements of fuel salt properties and studies of corrosion and radiation damage on candidate metals for the core vessel are anticipated

  4. Development of an accelerating piston implosion-driven launcher

    International Nuclear Information System (INIS)

    Huneault, J; Loiseau, J; Higgins, A J

    2014-01-01

    The ability to soft-launch projectiles to velocities exceeding 10 km/s is of interest for a number of scientific fields, including orbital debris impact testing and equation of state research. Current soft-launch technologies have reached a performance plateau below this operating range. In the implosion-driven launcher (ILD) concept, explosives are used to dynamically compress a light driver gas to significantly higher pressures and temperatures than the propellant of conventional light-gas guns. The propellant of the IDL is compressed through the linear implosion of a pressurized tube. The imploding tube behaves like a piston which travels into the light gas at the explosive detonation velocity, thus forming an increasingly long column of shock-compressed gas which can be used to propel a projectile. The McGill designed IDL has demonstrated the ability to launch a 0.1-g projectile to 9.1 km/s. This work will focus on the implementation of a novel launch cycle in which the explosively driven piston is accelerated in order to gradually increase driver gas compression, thus maintaining a relatively constant projectile driving pressure. The theoretical potential of the concept as well as the experimental development of an accelerating piston driver will be examined.

  5. Solid hydrogen target for laser driven proton acceleration

    Science.gov (United States)

    Perin, J. P.; Garcia, S.; Chatain, D.; Margarone, D.

    2015-05-01

    The development of very high power lasers opens up new horizons in various fields, such as laser plasma acceleration in Physics and innovative approaches for proton therapy in Medicine. Laser driven proton acceleration is commonly based on the so-called Target Normal Sheath Acceleration (TNSA) mechanisms: a high power laser is focused onto a solid target (thin metallic or plastic foil) and interact with matter at very high intensity, thus generating a plasma; as a consequence "hot" electrons are produced and move into the forward direction through the target. Protons are generated at the target rear side, electrons try to escape from the target and an ultra-strong quasi-electrostatic field (~1TV/m) is generated. Such a field can accelerate protons with a wide energy spectrum (1-200 MeV) in a few tens of micrometers. The proton beam characteristics depend on the laser parameters and on the target geometry and nature. This technique has been validated experimentally in several high power laser facilities by accelerating protons coming from hydrogenated contaminant (mainly water) at the rear of metallic target, however, several research groups are investigating the possibility to perform experiments by using "pure" hydrogen targets. In this context, the low temperature laboratory at CEA-Grenoble has developed a cryostat able to continuously produce a thin hydrogen ribbon (from 40 to 100 microns thick). A new extrusion concept, without any moving part has been carried out, using only the thermodynamic properties of the fluid. First results and perspectives are presented in this paper.

  6. Transverse wakefield of waveguide damped structures and beam dynamics

    International Nuclear Information System (INIS)

    Lin, X.

    1995-08-01

    In the design of new high energy particle colliders with higher luminosity one is naturally led to consider multi-bunch operation. However, the passage of a leading bunch through an accelerator cavity Generates a wakefield that may have a deleterious effect on the motion of the subsequent bunches. Therefore, the suppression of the wakefield is an essential requirement for beam stability. One solution to this problem, which has been studied extensively is to drain the wakefield energy out of the cavity by means of waveguides coupled with the cavity and fed into matched terminations. Waveguide dimensions are chosen to yield a cutoff frequency well above the frequency of the accelerating mode so that the latter is undamped. This paper presents a thorough investigation of the wakefield for this configuration. The effectiveness of waveguide damping has typically been assessed by evaluating the resultant Q ext of higher order cavity modes to determine their exponential damping rate. We have developed an efficient method to calculate Q ext of the damped modes from popular computer simulation codes such as MAFIA. This method has been successively applied to the B-factory RF cavity We have also found another type of wakefield, associated with waveguide cut-off, which decays as t -3/2 rather than in the well-known exponentially damped manner. Accordingly, we called it the persistent Wakefield. A similar phenomenon with essentially the same physical origin but occurring in the decay of unstable quantum states, has received extensive study. Then we have developed various methods of calculating this persistent wakefield, including mode matching and computer simulation. Based on a circuit model we estimate the limit that waveguide damping can reach to reduce the wakefield

  7. Analysis of radial and longitudinal field of plasma wakefield generated by a Laguerre-Gauss laser pulse

    Energy Technology Data Exchange (ETDEWEB)

    Firouzjaei, Ali Shekari; Shokri, Babak [Department of Physics, Shahid Beheshti University, G.C., Evin, Tehran 19839-63113 (Iran, Islamic Republic of)

    2016-06-15

    In the present paper, we study the wakes known as the donut wake which is generated by Laguerre-Gauss (LG) laser pulses. Effects of the special spatial profile of a LG pulse on the radial and longitudinal wakefields are presented via an analytical model in a weakly non-linear regime in two dimensions. Different aspects of the donut-shaped wakefields have been analyzed and compared with Gaussian-driven wakes. There is also some discussion about the accelerating-focusing phase of the donut wake. Variations of longitudinal and radial wakes with laser amplitude, pulse length, and pulse spot size have been presented and discussed. Finally, we present the optimum pulse duration for such wakes.

  8. Alternative definitions of kinetic parameters for accelerator driven systems

    International Nuclear Information System (INIS)

    Talamo, Alberto; Gohar, Yousry; Dulla, Sandra; Ravetto, Piero

    2012-01-01

    Highlights: ► New definition of kinetic parameters for accelerator driven systems. ► Difference between effective and average delayed neutron fraction. ► Difference between effective and average prompt neutron lifetime. ► Effect of the neutron source (Cf, D–D, D–T) on k src . ► Effect of the (n, xn) reactions and source energy-angle distribution on k src . - Abstract: This study introduces a new formulation of kinetic parameters for accelerator driven systems and it is structured into two parts. The first part is dedicated to the classic definition of the kinetic parameters and compares different calculation methodologies. The second part considers a new definition of the kinetic parameters for subcritical assemblies, with particular emphasis on the delayed neutron fraction and the prompt neutron lifetime. This new definition takes into account neutrons from the external neutron source and (n, xn) reactions, which increase the fraction of prompt neutrons. The developed theoretical framework has been applied by Monte Carlo and deterministic calculations to the YALINA Thermal subcritical assembly located in Belarus. This facility can be driven by californium, deuterium–deuterium (D–D), or deuterium–tritium (D–T) external neutron sources. For the D–T neutron source, (n, xn) reactions must be taken into account in order to produce accurate results because the average energy of D–T source neutrons is 14.1 MeV, a value which is much higher than the threshold energy of the (n, 2n) cross section of uranium isotopes.

  9. Study of laser driven plasma based electron acceleration and Bremsstrahlung radiation emission using ultra-high intensity laser pulses

    International Nuclear Information System (INIS)

    Rao, B.S.

    2013-01-01

    High energy particle accelerators are one of the most important inventions of the twentieth century which have led to enormous advances in basic scientific understanding of world around us. Despite their grand success, the present day high energy accelerators are hitting practical limits due to their large size and cost. This is because the accelerating gradients in conventional radio-frequency (RF) accelerators are typically limited to < 50 MV/m by the field breakdown of the accelerating structure. To address this major issue, many advanced accelerator techniques have been proposed and some of them are being actively pursued. Laser wakefield acceleration (LWFA) in plasma medium is one of the techniques being most actively pursued world over due to extremely large acceleration gradients of the order of 100 GV/m possible in this scheme which promises significant reduction of the size and cost of the future high energy accelerators. The present thesis work mainly deals with laser wakefield acceleration (LWFA) of self-injected electrons to 10s of MeV energy in plasma medium of length of the order of 500 μm using the table-top 10 TW laser at Laser Plasma Division, Raja Ramanna Centre for Advanced Technology

  10. Thorium utilization in heavy water moderated Accelerator Driven Systems

    International Nuclear Information System (INIS)

    Bajpai, Anil; Degweker, S.B.; Ghosh, Biplab

    2011-01-01

    Research on Accelerator Driven Systems (ADSs) is being carried out around the world primarily with the objective of waste transmutation. Presently, the volume of waste in India is small and therefore there is little incentive to develop ADS based waste transmutation technology immediately. With limited indigenous U availability and the presence of large Th deposits in the country, there is a clear incentive to develop Th related technologies. India also has vast experience in design, construction and operation of heavy water moderated reactors. Heavy water moderated reactors employing solid Th fuels can be self sustaining, but the discharge burnups are too low to be economical. A possible way to improve the performance such reactors is to use an external neutron source as is done in ADS. This paper discusses our studies on Th utilization in heavy water moderated ADSs. The study is carried out at the lattice level. The time averaged k-infinity of the Th bundle from zero burnup up to the discharge burnup is taken to be the same as the core (ensemble) averaged k-infinity. For the purpose of the analysis we have chosen standard PHWR and AHWR assemblies. Variation of the pitch and coolant (H 2 O/D 2 O) are studied. Both, the once through cycle and the recycling option are studied. In the latter case the study is carried out for various enrichments (% 233 U in Th) of the recycled Th fuel bundles. The code DTF as modified for lattice and burnup calculations (BURNTRAN) was used for carrying out the study. The once through cycle represents the most attractive ADS concept (Th burner ADS) possible for Th utilization. It avoids reprocessing of Th spent fuel and in the ideal situation the use of any fissile material either initially or for sustaining itself. The gain in this system is however rather low requiring a high power accelerator and a substantial fraction of the power generated to be fed back to the accelerator. The self sustaining Th-U cycle in a heavy moderated ADS

  11. System and safety studies of accelerator driven transmutation systems

    International Nuclear Information System (INIS)

    Gudowski, W.; Wallenius, J.; Tucek, K.; Eriksson, Marcus; Carlsson, Johan; Seltborg, P.; Cetnar, J.

    2001-05-01

    The research on safety of Accelerator-Driven Transmutation Systems (ADS) at the department has been focused on: a) ADS core design and development of advanced nuclear fuel optimised for high transmutation rates and good safety features; b) analysis of ADS-dynamics c) computer code and nuclear data development relevant for simulation and optimization of ADS; d) participation in ADS experiments including 1 MW spallation target manufacturing, subcritical experiments MUSE (CEA-Cadarache). Moreover, during the reporting period the EU-project 'IABAT', co-ordinated by the department has been finished and 4 other projects have been initiated in the frame of the 5th European Framework Programme. Most of the research topics reported in this paper are referred to appendices, which have been published in the open literature. The topics, which are not yet published, are described here in more details

  12. Radiological Impact of the TRIGA Accelerator-Driven Experiment (TRADE)

    CERN Document Server

    Herrera-Martínez, A; Kadi, Y; Zanini, L; Parks, G T; Rubbia, Carlo; Burgio, N; Carta, M; Santagata, A; Cinotti, L

    2002-01-01

    The TRADE project, which is part of the European Roadmap towards the development of Accelerator Driven Systems (ADS), foresees the coupling of a 110 MeV, 2 mA proton cyclotron with the core of a 1 MW Triga research reactor. We performed radioprotection studies using two state-of-the-art computer code packages, FLUKA and EA-MC. We concentrated on the calculation of the neutron and particle flux and dose rates during normal operation as well as in the case of several possible accidents, in order to assess the radiation damage and define the design of key components of the facility, such as the beam-line shielding. Both high-energy particle interactions and low-energy neutron transport are treated with a sophisticated method based on a full Monte Carlo simulation, combined with the use of modern nuclear data libraries.

  13. System and safety studies of accelerator driven transmutation systems

    Energy Technology Data Exchange (ETDEWEB)

    Gudowski, W.; Wallenius, J.; Tucek, K.; Eriksson, Marcus; Carlsson, Johan; Seltborg, P.; Cetnar, J. [Royal Inst. of Technology, Stockholm (Sweden). Dept. of Nuclear and Reactor Physics

    2001-05-01

    The research on safety of Accelerator-Driven Transmutation Systems (ADS) at the department has been focused on: a) ADS core design and development of advanced nuclear fuel optimised for high transmutation rates and good safety features; b) analysis of ADS-dynamics c) computer code and nuclear data development relevant for simulation and optimization of ADS; d) participation in ADS experiments including 1 MW spallation target manufacturing, subcritical experiments MUSE (CEA-Cadarache). Moreover, during the reporting period the EU-project 'IABAT', co-ordinated by the department has been finished and 4 other projects have been initiated in the frame of the 5th European Framework Programme. Most of the research topics reported in this paper are referred to appendices, which have been published in the open literature. The topics, which are not yet published, are described here in more details.

  14. MYRRHA: a multipurpose accelerator driven system for research and development

    International Nuclear Information System (INIS)

    Tichelen Van, K.; Malambu, E.; Benoit, Ph.; Kupschus, P.; Ait Abderrahim, H.; Vandeplassche, D.; Ternier, S.; Jongen, Y.

    2001-01-01

    The development of a new nuclear installation that is able to fulfil the economical, social, environmental and technological demands, is a cornerstone for the future provision of sustainable energy. Accelerator Driven Systems (ADS) can pave the way for a more environmentally safe and acceptable nuclear energy production. Fundamental and applied R and D are crucial in the development of ADS technologies and demand the availability of appropriate prototype installations. In answer to this need and in order to update its current irradiation potential, the Belgian Nuclear Research Centre (SCK·CEN), in partnership with Ion Beam Applications s. a. (IBA), is launching the MYRRHA project. It is focussed on the design, development and realisation of a modular and flexible irradiation facility based on the ADS concept. This paper describes the concept, the applications foreseen in the MYRRHA installation and the accompanying design activities currently being performed at SCK·CEN and IBA. (authors)

  15. Radiological Hazard of Spallation Products in Accelerator-Driven System

    International Nuclear Information System (INIS)

    Saito, M.; Stankovskii, A.; Artisyuk, V.; Korovin, Yu.; Shmelev, A.; Titarenko, Yu.

    2002-01-01

    The central issue underlying this paper is related to elucidating the hazard of radioactive spallation products that might be an important factor affecting the design option of accelerator-driven systems (ADSs). Hazard analysis based on the concept of Annual Limit on Intake identifies alpha-emitting isotopes of rare earths (REs) (dysprosium, gadolinium, and samarium) as the dominant contributors to the overall toxicity of traditional (W, Pb, Pb-Bi) targets. The matter is addressed from several points of view: code validation to simulate their yields, choice of material for the neutron producing targets, and challenging the beam type. The paper quantitatively determines the domain in which the toxicity of REs exceeds that of polonium activation products broadly discussed now in connection with advertising lead-bismuth technology for the needs of ADSs

  16. MYRRHA: A multipurpose accelerator driven system for research and development

    International Nuclear Information System (INIS)

    Van Tichelen, K.; Malambu, E.; Benoit, Ph.; Kupschus, P.; Ait Abderrahim, H.

    2000-01-01

    The development of a new nuclear installation that is able to fulfil the economical, social, environmental and technological demands, is of first importance for the future of sustainable energy provision. Accelerator Driven Systems can pave the way for a more environ- mentally safe and acceptable nuclear energy production. Fundamental and applied R and D are crucial in the development of ADS technologies and demand the availability of appropriate prototype installations. In answer to this need and in order to update its current irradiation potential, the Belgian Nuclear Research Centre (SCK.CEN) has launched the Myrrha project. It is focussed on the design, development and realisation of a modular and flexible irradiation facility based on ADS. This paper describes the concept, the applications fore- seen in the Myrrha installation and the accompanying design activities currently being performed at SCK.CEN. (authors)

  17. Role of resistivity gradient in laser-driven ion acceleration

    Directory of Open Access Journals (Sweden)

    L. A. Gizzi

    2011-01-01

    Full Text Available It was predicted that, when a fast electron beam with some angular spread is normally incident on a resistivity gradient, magnetic field generation can occur that can inhibit beam propagation [A. R. Bell et al., Phys. Rev. E 58, 2471 (1998PLEEE81063-651X10.1103/PhysRevE.58.2471]. This effect can have consequences on the laser-driven ion acceleration. In the experiment reported here, we compare ion emission from laser irradiated coated and uncoated metal foils and we show that the ion beam from the coated target has a much smaller angular spread. Detailed hybrid numerical simulations confirm that the inhibition of fast electron transport through the resistivity gradient may explain the observed effect.

  18. The physics design of accelerator-driven transmutation systems

    International Nuclear Information System (INIS)

    Venneri, F.

    1995-01-01

    Nuclear systems under study in the Los Alamos Accelerator-Driven Transmutation Technology program (ADTT) will allow the destruction of nuclear spent fuel and weapons-return plutonium, as well as the production of nuclear energy from the thorium cycle, without a long-lived radioactive waste stream. The subcritical systems proposed represent a radical departure from traditional nuclear concepts (reactors), yet the actual implementation of ADTT systems is based on modest extrapolations of existing technology. These systems strive to keep the best that the nuclear technology has developed over the years, within a sensible conservative design envelope and eventually manage to offer a safer, less expensive and more environmentally sound approach to nuclear power

  19. Thermal hydraulics of accelerator driven system: validation and analysis

    International Nuclear Information System (INIS)

    Kumari, I.; Khanna, A.

    2014-01-01

    This paper presents validation of RELAP5/Mod4.0 code modified to incorporate Lead Bismuth Eutectic (LBE)fluid properties for simulation of Accelerator Driven System (ADS) against Barone's NACIE facility.Results of mass flow rates (MFR), Reynolds number, heat transfer coefficients, temperatures and temperature difference for three powers (10.8, 21.7 and 32.5 kW) under natural circulation of LBE match with Barone's values within 7%,18%,37%, 5% and 8% of relative error respectively. After this validation Indian ADS for thermal power of 15 kW has been simulated. Simulated profiles of temperature, MFR and pressure drop LBE and air are reported. Air and LBE temperatures of present work match with literature design values within 5% of relative error. (author)

  20. Selection of initial events of accelerator driven subcritical system

    International Nuclear Information System (INIS)

    Wang Qianglong; Hu Liqin; Wang Jiaqun; Li Yazhou; Yang Zhiyi

    2013-01-01

    The Probabilistic Safety Assessment (PSA) is an important tool in reactor safety analysis and a significant reference to the design and operation of reactor. It is the origin and foundation of the PSA for a reactor to select the initial events. Accelerator Driven Subcritical System (ADS) has advanced design characteristics, complicated subsystems and little engineering and operating experience, which makes it much more difficult to identify the initial events of ADS. Based on the current design project of ADS, the system's safety characteristics and special issues were analyzed in this article. After a series of deductions with Master Logic Diagram (MLD) and considering the relating experience of other advanced research reactors, a preliminary initial events was listed finally, which provided the foundation for the next safety assessment. (authors)

  1. The physics design of accelerator-driven transmutation systems

    Energy Technology Data Exchange (ETDEWEB)

    Venneri, F. [Los Alamos National Laboratory, NM (United States)

    1995-10-01

    Nuclear systems under study in the Los Alamos Accelerator-Driven Transmutation Technology program (ADTT) will allow the destruction of nuclear spent fuel and weapons-return plutonium, as well as the production of nuclear energy from the thorium cycle, without a long-lived radioactive waste stream. The subcritical systems proposed represent a radical departure from traditional nuclear concepts (reactors), yet the actual implementation of ADTT systems is based on modest extrapolations of existing technology. These systems strive to keep the best that the nuclear technology has developed over the years, within a sensible conservative design envelope and eventually manage to offer a safe, less expensive and more environmentally sound approach to nuclear power.

  2. Disposition of nuclear waste using subcritical accelerator-driven systems

    International Nuclear Information System (INIS)

    Venneri, F.; Li, N.; Williamson, M.; Houts, M.; Lawrence, G.

    1998-01-01

    Spent fuel from nuclear power plants contains large quantities of Pu, other actinides, and fission products (FP). This creates challenges for permanent disposal because of the long half-lives of some isotopes and the potential for diversion of the fissile material. Two issues of concern for the US repository concept are: (1) long-term radiological risk peaking tens-of-thousands of years in the future; and (2) short-term thermal loading (decay heat) that limits capacity. An accelerator-driven neutron source can destroy actinides through fission, and can convert long-lived fission products to shorter-lived or stable isotopes. Studies over the past decade have established that accelerator transmutation of waste (ATW) can have a major beneficial impact on the nuclear waste problem. Specifically, the ATW concept the authors are evaluating: (1) destroys over 99.9% of the actinides; (2) destroys over 99.9% of the Tc and I; (3) separates Sr-90 and Cs-137; (4) separates uranium from the spent fuel; (5) produces electric power

  3. Laser-driven ion acceleration with hollow laser beams

    International Nuclear Information System (INIS)

    Brabetz, C.; Kester, O.; Busold, S.; Bagnoud, V.; Cowan, T.; Deppert, O.; Jahn, D.; Roth, M.; Schumacher, D.

    2015-01-01

    The laser-driven acceleration of protons from thin foils irradiated by hollow high-intensity laser beams in the regime of target normal sheath acceleration (TNSA) is reported for the first time. The use of hollow beams aims at reducing the initial emission solid angle of the TNSA source, due to a flattening of the electron sheath at the target rear side. The experiments were conducted at the PHELIX laser facility at the GSI Helmholtzzentrum für Schwerionenforschung GmbH with laser intensities in the range from 10 18  W cm −2 to 10 20  W cm −2 . We observed an average reduction of the half opening angle by (3.07±0.42)° or (13.2±2.0)% when the targets have a thickness between 12 μm and 14 μm. In addition, the highest proton energies were achieved with the hollow laser beam in comparison to the typical Gaussian focal spot

  4. Laser-driven ion acceleration with hollow laser beams

    Energy Technology Data Exchange (ETDEWEB)

    Brabetz, C., E-mail: c.brabetz@gsi.de; Kester, O. [Goethe-Universität Frankfurt am Main, 60323 Frankfurt (Germany); GSI Helmholtzzentrum für Schwerionenforschung GmbH, 64291 Darmstadt (Germany); Busold, S.; Bagnoud, V. [GSI Helmholtzzentrum für Schwerionenforschung GmbH, 64291 Darmstadt (Germany); Helmholtz-Institut Jena, 07743 Jena (Germany); Cowan, T. [Helmholtz-Zentrum Dresden-Rossendorf, 01328 Dresden (Germany); Technische Universität Dresden, 01069 Dresden (Germany); Deppert, O.; Jahn, D.; Roth, M. [Technische Universität Darmstadt, 64277 Darmstadt (Germany); Schumacher, D. [GSI Helmholtzzentrum für Schwerionenforschung GmbH, 64291 Darmstadt (Germany)

    2015-01-15

    The laser-driven acceleration of protons from thin foils irradiated by hollow high-intensity laser beams in the regime of target normal sheath acceleration (TNSA) is reported for the first time. The use of hollow beams aims at reducing the initial emission solid angle of the TNSA source, due to a flattening of the electron sheath at the target rear side. The experiments were conducted at the PHELIX laser facility at the GSI Helmholtzzentrum für Schwerionenforschung GmbH with laser intensities in the range from 10{sup 18} W cm{sup −2} to 10{sup 20} W cm{sup −2}. We observed an average reduction of the half opening angle by (3.07±0.42)° or (13.2±2.0)% when the targets have a thickness between 12 μm and 14 μm. In addition, the highest proton energies were achieved with the hollow laser beam in comparison to the typical Gaussian focal spot.

  5. Accelerator-driven subcritical facility:Conceptual design development

    Science.gov (United States)

    Gohar, Yousry; Bolshinsky, Igor; Naberezhnev, Dmitry; Duo, Jose; Belch, Henry; Bailey, James

    2006-06-01

    A conceptual design development of an accelerator-driven subcritical facility has been carried out in the preparation of a joint activity with Kharkov Institute of Physics and Technology of Ukraine. The main functions of the facility are the medical isotope production and the support of the Ukraine nuclear industry. An electron accelerator is considered to drive the subcritical assembly. The neutron source intensity and spectrum have been studied. The energy deposition, spatial neutron generation, neutron utilization fraction, and target dimensions have been quantified to define the main target performance parameters, and to select the target material and beam parameters. Different target conceptual designs have been developed based the engineering requirements including heat transfer, thermal hydraulics, structure, and material issues. The subcritical assembly is designed to obtain the highest possible neutron flux level with a Keff of 0.98. Different fuel materials, uranium enrichments, and reflector materials are considered in the design process. The possibility of using low enrichment uranium without penalizing the facility performance is carefully evaluated. The mechanical design of the facility has been developed to maximize its utility and minimize the time for replacing the target and the fuel assemblies. Safety, reliability, and environmental considerations are included in the facility conceptual design. The facility is configured to accommodate future design improvements, upgrades, and new missions. In addition, it has large design margins to accommodate different operating conditions and parameters. In this paper, the conceptual design and the design analyses of the facility will be presented.

  6. KIPT accelerator-driven system design and performance

    International Nuclear Information System (INIS)

    Gohar, Y.; Bolshinsky, I.; Karnaukhov, I.

    2015-01-01

    Argonne National Laboratory (ANL) of the US is collaborating with the Kharkov Institute of Physics and Technology (KIPT) of Ukraine to develop and construct a neutron source facility. The facility is planned to produce medical isotopes, train young nuclear professionals, support Ukraine's nuclear industry and provide capability to perform reactor physics, material research, and basic science experiments. It consists of a subcritical assembly with low-enriched uranium fuel driven with an electron accelerator. The target design utilises tungsten or natural uranium for neutron production through photonuclear reactions from the Bremsstrahlung radiation generated by 100-MeV electrons. The accelerator electron beam power is 100 KW. The neutron source intensity, spectrum, and spatial distribution have been studied as a function of the electron beam parameters to maximise the neutron yield and satisfy different engineering requirements. Physics, thermal-hydraulics, and thermal-stress analyses were performed and iterated to maximise the neutron source strength and to minimise the maximum temperature and the thermal stress in the target materials. The subcritical assembly is designed to obtain the highest possible neutron flux intensity with an effective neutron multiplication factor of <0.98. Different fuel and reflector materials are considered for the subcritical assembly design. The mechanical design of the facility has been developed to maximise its utility and minimise the time for replacing the target, fuel, and irradiation cassettes by using simple and efficient procedures. Shielding analyses were performed to define the dose map around the facility during operation as a function of the heavy concrete shield thickness. Safety, reliability and environmental considerations are included in the facility design. The facility is configured to accommodate future design upgrades and new missions. In addition, it has unique features relative to the other international

  7. Physics design of an accelerator for an accelerator-driven subcritical system

    Directory of Open Access Journals (Sweden)

    Zhihui Li

    2013-08-01

    Full Text Available An accelerator-driven subcritical system (ADS program was launched in China in 2011, which aims to design and build an ADS demonstration facility with the capability of more than 1000 MW thermal power in multiple phases lasting about 20 years. The driver linac is defined to be 1.5 GeV in energy, 10 mA in current and in cw operation mode. To meet the extremely high reliability and availability, the linac is designed with much installed margin and fault tolerance, including hot-spare injectors and local compensation method for key element failures. The accelerator complex consists of two parallel 10-MeV injectors, a joint medium-energy beam transport line, a main linac, and a high-energy beam transport line. The superconducting acceleration structures are employed except for the radio frequency quadrupole accelerators (RFQs which are at room temperature. The general design considerations and the beam dynamics design of the driver linac complex are presented here.

  8. Extremely short relativistic-electron-bunch generation in the laser wakefield via novel bunch injection scheme

    Directory of Open Access Journals (Sweden)

    A. G. Khachatryan

    2004-12-01

    Full Text Available Recently a new electron-bunch injection scheme for the laser wakefield accelerator has been proposed [JETP Lett. 74, 371 (2001JTPLA20021-364010.1134/1.1427124; Phys. Rev. E 65, 046504 (2002PLEEE81063-651X10.1103/PhysRevE.65.046504]. In this scheme, a low energy electron bunch, sent in a plasma channel just before a high-intensity laser pulse, is trapped in the laser wakefield, considerably compressed and accelerated to an ultrarelativistic energy. In this paper we show the possibility of the generation of an extremely short (on the order of 1   μm long or a few femtoseconds in duration relativistic-electron-bunch by this mechanism. The initial electron bunch, which can be generated, for example, by a laser-driven photocathode rf gun, should have an energy of a few hundred keVs to a few MeVs, a duration in the picosecond range or less and a relatively low concentration. The trapping conditions and parameters of an accelerated bunch are investigated. The laser pulse dynamics as well as a possible experimental setup for the demonstration of the injection scheme are also considered.

  9. Electron injection by evolution of self-modulated laser wakefields

    International Nuclear Information System (INIS)

    Kim, Changbum; Kim, Guang-Hoon; Kim, Jong-Uk; Lee, Hae June; Suk, Hyyong; Ko, In Soo

    2003-01-01

    Self-injection mechanisms in the self-modulated laser wakefield acceleration (SM-LWFA) are investigated. Two-dimensional (2D) particle-in-cell (PIC) simulations show that a significant amount of plasma electrons can be self-injected into the acceleration phase of a laser wakefield by a dynamic increase in the wake wavelength in the longitudinal direction. In this process, it is found that the wake wavelength increases due to the relativistic effect and this leads to a large amount of electron injection into the wakefields. In this paper, the injection phenomena are studied with 2D simulations and a brief explanation of the new self-injection mechanism is presented. (author)

  10. MYRRHA: a multipurpose accelerator driven system for research and development

    International Nuclear Information System (INIS)

    Benoit, Ph.; Ait Abderrahim, H.; Kupschus, P.; Malambu, E.; Tichelen, K. van; Arien, B.; Vermeersch, F.; Jongen, Y.; Vandeplassche, D.; Ternier, S.

    2001-01-01

    SCK-CEN, the Belgian Nuclear Research Centre, and IBA s.a., Ion Beam Application, a world leader in accelerator technology, want to fulfil a prominent role in the Accelerator Driven Systems field and are designing an ADS prototype, the MYRRHA Project, and conducting an associated R and D programme. The partners are foreseeing MYRRHA as a first step towards the European ADS-Demo facility. The project focuses primarily on ADS related research, i.e. structural materials and nuclear fuel research, liquid metals and associated aspects, sub-critical reactor physics and subsequently on applications such as waste transmutation, radioisotope production and safety research on sub-critical systems. In this respect, the MYRRHA system should become a new major research infrastructure for the European partners presently involved in the ADS Demo development, supporting and enabling the international R and D programs. Ion Beam Applications, the Belgium world leader in particle accelerators, had joined the MYRRHA Project to perform the accelerator development. Currently the study and preliminary conceptual design of the MYRRHA system is going on and an intensive R and D programme is conducted to assess the most risky points of the present design. This study will define the final choice of the characteristics of the facility depending on the selected fields of application to be achieved. The MYRRHA concept, as it is today, is based on the coupling of an upgraded commercial proton accelerator with a spallation target surrounded by a subcritical neutron-multiplying medium. Its design is determined by the versatility m applications that should be made possible. Further technical and/or strategic developments of the project might change the concept. A cyclotron, based on positive ion acceleration technology brings the protons up to an energy level of 350 MeV. The nominal current is 5 mA of protons. The spallation target system consists in a circuit with, at the upper part, a free

  11. Femtosecond electron-bunch dynamics in laser wakefields and vacuum

    Directory of Open Access Journals (Sweden)

    A. G. Khachatryan

    2007-12-01

    Full Text Available Recent advances in laser wakefield acceleration demonstrated the generation of extremely short (with a duration of a few femtoseconds relativistic electron bunches with relatively low (of the order of couple of percent energy spread. In this article we study the dynamics of such bunches in drift space (vacuum and in channel-guided laser wakefields. Analytical solutions were found for the transverse coordinate of an electron and for the bunch envelope in the wakefield in the case of arbitrary change in the energy. Our results show strong bunch dynamics already on a millimeter scale propagation distance both in plasma and in vacuum. When the bunch propagates in vacuum, its transverse sizes grow considerably; the same is observed for the normalized bunch emittance that worsens the focusability of the bunch. A scheme of two-stage laser wakefield accelerator with small drift space between the stages is proposed. It is found that fast longitudinal betatron phase mixing occurs in a femtosecond bunch when it propagates along the wakefield axis. When bunch propagates off axis, strong bunch decoherence and fast emittance degradation due to the finite bunch length was observed.

  12. Transmutation of nuclear waste in accelerator-driven systems

    CERN Document Server

    Herrera-Martínez, A

    2004-01-01

    Today more than ever energy is not only a cornerstone of human development, but also a key to the environmental sustainability of economic activity. In this context, the role of nuclear power may be emphasized in the years to come. Nevertheless, the problems of nuclear waste, safety and proliferation still remain to be solved. It is believed that the use of accelerator-driven systems (ADSs) for nuclear waste transmutation and energy production would address these problems in a simple, clean and economically viable, and therefore sustainable, manner. This thesis covers the major nuclear physics aspects of ADSs, in particular the spallation process and the core neutronics specific to this type of systems. The need for accurate nuclear data is described, together with a detailed analysis of the specific isotopes and energy ranges in which this data needs to be improved and the impact of their uncertainty. Preliminary experimental results for some of these isotopes, produced by the Neutron Time-of-Flight (n_TOF) ...

  13. Macroscopic multigroup constants for accelerator driven system core calculation

    International Nuclear Information System (INIS)

    Heimlich, Adino; Santos, Rubens Souza dos

    2011-01-01

    The high-level wastes stored in facilities above ground or shallow repositories, in close connection with its nuclear power plant, can take almost 106 years before the radiotoxicity became of the order of the background. While the disposal issue is not urgent from a technical viewpoint, it is recognized that extended storage in the facilities is not acceptable since these ones cannot provide sufficient isolation in the long term and neither is it ethical to leave the waste problem to future generations. A technique to diminish this time is to transmute these long-lived elements into short-lived elements. The approach is to use an Accelerator Driven System (ADS), a sub-critical arrangement which uses a Spallation Neutron Source (SNS), after separation the minor actinides and the long-lived fission products (LLFP), to convert them to short-lived isotopes. As an advanced reactor fuel, still today, there is a few data around these type of core systems. In this paper we generate macroscopic multigroup constants for use in calculations of a typical ADS fuel, take into consideration, the ENDF/BVI data file. Four energy groups are chosen to collapse the data from ENDF/B-VI data file by PREPRO code. A typical MOX fuel cell is used to validate the methodology. The results are used to calculate one typical subcritical ADS core. (author)

  14. Advanced Computational Models for Accelerator-Driven Systems

    International Nuclear Information System (INIS)

    Talamo, A.; Ravetto, P.; Gudowsk, W.

    2012-01-01

    In the nuclear engineering scientific community, Accelerator Driven Systems (ADSs) have been proposed and investigated for the transmutation of nuclear waste, especially plutonium and minor actinides. These fuels have a quite low effective delayed neutron fraction relative to uranium fuel, therefore the subcriticality of the core offers a unique safety feature with respect to critical reactors. The intrinsic safety of ADS allows the elimination of the operational control rods, hence the reactivity excess during burnup can be managed by the intensity of the proton beam, fuel shuffling, and eventually by burnable poisons. However, the intrinsic safety of a subcritical system does not guarantee that ADSs are immune from severe accidents (core melting), since the decay heat of an ADS is very similar to the one of a critical system. Normally, ADSs operate with an effective multiplication factor between 0.98 and 0.92, which means that the spallation neutron source contributes little to the neutron population. In addition, for 1 GeV incident protons and lead-bismuth target, about 50% of the spallation neutrons has energy below 1 MeV and only 15% of spallation neutrons has energies above 3 MeV. In the light of these remarks, the transmutation performances of ADS are very close to those of critical reactors.

  15. Candidate molten salt investigation for an accelerator driven subcritical core

    Science.gov (United States)

    Sooby, E.; Baty, A.; Beneš, O.; McIntyre, P.; Pogue, N.; Salanne, M.; Sattarov, A.

    2013-09-01

    We report a design for accelerator-driven subcritical fission in a molten salt core (ADSMS) that utilizes a fuel salt composed of NaCl and transuranic (TRU) chlorides. The ADSMS core is designed for fast neutronics (28% of neutrons >1 MeV) to optimize TRU destruction. The choice of a NaCl-based salt offers benefits for corrosion, operating temperature, and actinide solubility as compared with LiF-based fuel salts. A molecular dynamics (MD) code has been used to estimate properties of the molten salt system which are important for ADSMS design but have never been measured experimentally. Results from the MD studies are reported. Experimental measurements of fuel salt properties and studies of corrosion and radiation damage on candidate metals for the core vessel are anticipated. A special thanks is due to Prof. Paul Madden for introducing the ADSMS group to the concept of using the molten salt as the spallation target, rather than a conventional heavy metal spallation target. This feature helps to optimize this core as a Pu/TRU burner.

  16. Thermal hydraulics of accelerator driven system windowless targets

    Directory of Open Access Journals (Sweden)

    Bruno ePanella

    2015-07-01

    Full Text Available The study of the fluid dynamics of the windowless spallation target of an Accelerator Driven System (ADS is presented. Several target mockup configurations have been investigated: the first one was a symmetrical target, that was made by two concentric cylinders, the other configurations are not symmetrical. In the experiments water has been used as hydraulic equivalent to lead-bismuth eutectic fluid. The experiments have been carried out at room temperature and flow rate up to 24 kg/s. The fluid velocity components have been measured by an ultrasound technique. The velocity field of the liquid within the target region either for the approximately axial-symmetrical configuration or for the not symmetrical ones as a function of the flow rate and the initial liquid level is presented. A comparison of experimental data with the prediction of the finite volume FLUENT code is also presented. Moreover the results of a 2D-3D numerical analysis that investigates the effect on the steady state thermal and flow fields due to the insertion of guide vanes in the windowless target unit of the EFIT project ADS nuclear reactor are presented, by analysing both the cold flow case (absence of power generation and the hot flow case (nominal power generation inside the target unit.

  17. Computer codes and methods for simulating accelerator driven systems

    International Nuclear Information System (INIS)

    Sartori, E.; Byung Chan Na

    2003-01-01

    A large set of computer codes and associated data libraries have been developed by nuclear research and industry over the past half century. A large number of them are in the public domain and can be obtained under agreed conditions from different Information Centres. The areas covered comprise: basic nuclear data and models, reactor spectra and cell calculations, static and dynamic reactor analysis, criticality, radiation shielding, dosimetry and material damage, fuel behaviour, safety and hazard analysis, heat conduction and fluid flow in reactor systems, spent fuel and waste management (handling, transportation, and storage), economics of fuel cycles, impact on the environment of nuclear activities etc. These codes and models have been developed mostly for critical systems used for research or power generation and other technological applications. Many of them have not been designed for accelerator driven systems (ADS), but with competent use, they can be used for studying such systems or can form the basis for adapting existing methods to the specific needs of ADS's. The present paper describes the types of methods, codes and associated data available and their role in the applications. It provides Web addresses for facilitating searches for such tools. Some indications are given on the effect of non appropriate or 'blind' use of existing tools to ADS. Reference is made to available experimental data that can be used for validating the methods use. Finally, some international activities linked to the different computational aspects are described briefly. (author)

  18. Time-resolved measurements with streaked diffraction patterns from electrons generated in laser plasma wakefield

    Science.gov (United States)

    He, Zhaohan; Nees, John; Hou, Bixue; Krushelnick, Karl; Thomas, Alec; Beaurepaire, Benoît; Malka, Victor; Faure, Jérôme

    2013-10-01

    Femtosecond bunches of electrons with relativistic to ultra-relativistic energies can be robustly produced in laser plasma wakefield accelerators (LWFA). Scaling the electron energy down to sub-relativistic and MeV level using a millijoule laser system will make such electron source a promising candidate for ultrafast electron diffraction (UED) applications due to the intrinsic short bunch duration and perfect synchronization with the optical pump. Recent results of electron diffraction from a single crystal gold foil, using LWFA electrons driven by 8-mJ, 35-fs laser pulses at 500 Hz, will be presented. The accelerated electrons were collimated with a solenoid magnetic lens. By applying a small-angle tilt to the magnetic lens, the diffraction pattern can be streaked such that the temporal evolution is separated spatially on the detector screen after propagation. The observable time window and achievable temporal resolution are studied in pump-probe measurements of photo-induced heating on the gold foil.

  19. Bi-stability in accelerator driven 233U breeders

    International Nuclear Information System (INIS)

    Ghosh, Biplab; Degweker, S.B.

    2011-01-01

    Research on Accelerator Driven Systems (ADSs) is being carried out around the world primarily with the objective of waste transmutation. Presently, the volume of waste in India is small and therefore there is little incentive to develop ADS based waste transmutation technology immediately. On the other hand, the indigenous U availability is limited and hence there is a strong incentive for breeding. Moreover the large Th deposits in the country provide a clear incentive to develop Th related technologies. Th has the additional advantage that it produces very little trans-uranic waste. While Pu fuelled fast reactors using advanced metallic fuel can have high breeding ratios due to the hard spectrum in such reactors, Th fuelled critical reactors can at best be self sustaining or marginal breeders. A possible way to improve the breeding of Th fueled reactors is to use an external neutron source as is done in ADSs. ADSs can not only give improved breeding but also permit greater flexibility in type of fuel that may be used and have the potential to considerably simplify the Th fuel cycle as in the case of the Th burner. In this paper we study various issues associated with breeding in ADSs such as the energy economics of breeding in ADSs using various types of neutron sources and the effect of the reactor spectrum and the discharge fluence (or irradiation time) of the fuel on the breeding performance. We show that even with non-fissioning, non-power- producing targets such as Pb or LBE it is possible to choose the fuel irradiation time so that the breeder produces sufficient power to drive the accelerator and export the balance to the grid, without significantly diminishing the 233 U breeding rate. By increasing the discharge fluence (irradiation time) it is possible to increase the power. However, the 233 U production rate falls off rapidly to about half its maximum value. This is the Th burner region. As the equations governing the breeding process are non

  20. Plasma based charged-particle accelerators

    International Nuclear Information System (INIS)

    Bingham, R; Mendonca, J T; Shukla, P K

    2004-01-01

    Studies of charged-particle acceleration processes remain one of the most important areas of research in laboratory, space and astrophysical plasmas. In this paper, we present the underlying physics and the present status of high gradient and high energy plasma accelerators. We will focus on the acceleration of charged particles to relativistic energies by plasma waves that are created by intense laser and particle beams. The generation of relativistic plasma waves by intense lasers or electron beams in plasmas is important in the quest for producing ultra-high acceleration gradients for accelerators. With the development of compact short pulse high brightness lasers and electron positron beams, new areas of studies for laser/particle beam-matter interactions is opening up. A number of methods are being pursued vigorously to achieve ultra-high acceleration gradients. These include the plasma beat wave accelerator mechanism, which uses conventional long pulse (∼100 ps) modest intensity lasers (I ∼ 10 14 -10 16 W cm -2 ), the laser wakefield accelerator (LWFA), which uses the new breed of compact high brightness lasers ( 10 18 W cm -2 , the self-modulated LWFA concept, which combines elements of stimulated Raman forward scattering, and electron acceleration by nonlinear plasma waves excited by relativistic electron and positron bunches. In the ultra-high intensity regime, laser/particle beam-plasma interactions are highly nonlinear and relativistic, leading to new phenomena such as the plasma wakefield excitation for particle acceleration, relativistic self-focusing and guiding of laser beams, high-harmonic generation, acceleration of electrons, positrons, protons and photons. Fields greater than 1 GV cm -1 have been generated with particles being accelerated to 200 MeV over a distance of millimetre. Plasma wakefields driven by positron beams at the Stanford Linear Accelerator Center facility have accelerated the tail of the positron beam. In the near future

  1. Accelerator driven systems for energy production and waste incineration: Physics, design and related nuclear data

    Energy Technology Data Exchange (ETDEWEB)

    Herman, M; Stanculescu, A [International Atomic Energy Agency, Vienna (Austria); Paver, N [University of Trieste and INFN, Trieste (Italy)

    2003-06-15

    This volume contains the notes of lectures given at the workshops 'Hybrid Nuclear Systems for Energy Production, Utilisation of Actinides and Transmutation of Long-lived Radioactive Waste' and 'Nuclear Data for Science and Technology: Accelerator Driven Waste Incineration', held at the Abdus Salam ICTP in September 2001. The subject of the first workshop was focused on the so-called Accelerator Driven Systems, and covered the most important physics and technological aspects of this innovative field. The second workshop was devoted to an exhaustive survey on the acquisition, evaluation, retrieval and validation of the nuclear data relevant to the design of Accelerator Driven Systems.

  2. Transmutation of fission products in reactors and accelerator-driven systems

    International Nuclear Information System (INIS)

    Janssen, A.J.

    1994-01-01

    Energy flows and mass flows in several scenarios are considered. Economical and safety aspects of the transmutation scenarios are compared. It is difficult to find a sound motivation for the transmutation of fission products with accelerator-driven systems. If there would be any hesitation in transmuting fission products in nuclear reactors, there would be an even stronger hesitation to use accelerator-driven systems, mainly because of their lower energy efficiency and their poor cost effectiveness. The use of accelerator-driven systems could become a 'meaningful' option only if nuclear energy would be banished completely. (orig./HP)

  3. Accelerator driven systems for energy production and waste incineration: Physics, design and related nuclear data

    International Nuclear Information System (INIS)

    Herman, M.; Stanculescu, A.; Paver, N.

    2003-01-01

    This volume contains the notes of lectures given at the workshops 'Hybrid Nuclear Systems for Energy Production, Utilisation of Actinides and Transmutation of Long-lived Radioactive Waste' and 'Nuclear Data for Science and Technology: Accelerator Driven Waste Incineration', held at the Abdus Salam ICTP in September 2001. The subject of the first workshop was focused on the so-called Accelerator Driven Systems, and covered the most important physics and technological aspects of this innovative field. The second workshop was devoted to an exhaustive survey on the acquisition, evaluation, retrieval and validation of the nuclear data relevant to the design of Accelerator Driven Systems

  4. Electron acceleration by femtosecond laser interaction with micro-structured plasmas

    Science.gov (United States)

    Goers, Andy James

    Laser-driven accelerators are a promising and compact alternative to RF accelerator technology for generating relativistic electron bunches for medical, scientific, and security applications. This dissertation presents three experiments using structured plasmas designed to advance the state of the art in laser-based electron accelerators, with the goal of reducing the energy of the drive laser pulse and enabling higher repetition rate operation with current laser technology. First, electron acceleration by intense femtosecond laser pulses in He-like nitrogen plasma waveguides is demonstrated. Second, significant progress toward a proof of concept realization of quasi-phasematched direct acceleration (QPM-DLA) is presented. Finally, a laser wakefield accelerator at very high plasma density is studied, enabling relativistic electron beam generation with ˜10 mJ pulse energies. Major results from these experiments include: • Acceleration of electrons up to 120 MeV from an ionization injected wakefield accelerator driven in a 1.5 mm long He-like nitrogen plasma waveguide • Guiding of an intense, quasi-radially polarized femtosecond laser pulse in a 1 cm plasma waveguide. This pulse provides a strong drive field for the QPM-DLA concept. • Wakefield acceleration of electrons up to ˜10 MeV with sub-terawatt, ˜10 mJ pulses interacting with a thin (˜200 mum), high density (>1020 cm-3) plasma. • Observation of an intense, coherent, broadband wave breaking radiation flash from a high plasma density laser wakefield accelerator. The flash radiates > 1% of the drive laser pulse energy in a bandwidth consistent with half-cycle (˜1 fs) emission from violent unidirectional acceleration of electron bunches from rest. These results open the way to high repetition rate (>˜kHz) laser-driven generation of relativistic electron beams with existing laser technology.

  5. New options for developing of nuclear energy using an accelerator-driven reactor

    International Nuclear Information System (INIS)

    Takahashi, Hiroshi.

    1997-01-01

    Fissile fuel can be produced at a high rate using an accelerator-driven Pu-fueled subcritical fast reactor. Thus, the necessity of early introduction of the fast reactor can be moderated. High reliability of the proton accelerator, which is essential to implementing an accelerator-driven reactor in the nuclear energy field can be achieved by a slight extension of the accelerator's length, with only a small economical penalty. Subcritical operation provides flexible nuclear energy options including high neutron economy producing the fuel, transmuting high-level wastes, such as minor actinides, and of converting efficiently the excess Pu and military Pu into proliferation-resistant fuel

  6. On wakefields with two-dimensional planar geometry

    International Nuclear Information System (INIS)

    Chao, A.W.; Bane, K.L.F.

    1996-10-01

    In order to reach higher acceleration gradients in linear accelerators, it is advantageous to use a higher accelerating RF frequency, which in turn requires smaller accelerating structures. As the structure size becomes smaller, rectangular structures become increasingly interesting because they are easier to construct than cylindrically symmetric ones. One drawback of small structures, however, is that the wakefields generated by the beam in such structures tend to be strong. Recently, it has been suggested that one way of ameliorating this problem is to use rectangular structures that are very flat and to use flat beams. In the limiting case of a very flat planar geometry, the problem resembles a purely two-dimensional (2-D) problem, the wakefields of which have been studied

  7. Operational Characteristics of an Accelerator Driven Fissile Solution System

    International Nuclear Information System (INIS)

    Kimpland, Robert Herbert

    2016-01-01

    Operational characteristics represent the set of responses that a nuclear system exhibits during normal operation. Operators rely on this behavior to assess the status of the system and to predict the consequences of off-normal events. These characteristics largely refer to the relationship between power and system operating conditions. The static and dynamic behavior of a chain-reacting system, operating at sufficient power, is primarily governed by reactivity effects. The science of reactor physics has identified and evaluated a number of such effects, including Doppler broadening and shifts in the thermal neutron spectrum. Often these reactivity effects are quantified in the form of feedback coefficients that serve as coupling coefficients relating the neutron population and the physical mechanisms that drive reactivity effects, such as fissile material temperature and density changes. The operational characteristics of such nuclear systems usually manifest themselves when perturbations between system power (neutron population) and system operating conditions arise. Successful operation of such systems requires the establishment of steady equilibrium conditions. However, prior to obtaining the desired equilibrium (steady-state) conditions, an approach from zero-power (startup) must occur. This operational regime may possess certain limiting system conditions that must be maintained to achieve effective startup. Once steady-state is achieved, a key characteristic of this operational regime is the level of stability that the system possesses. Finally, a third operational regime, shutdown, may also possess limiting conditions of operation that must be maintained. This report documents the operational characteristics of a ''generic'' Accelerator Driven Fissile Solution (ADFS) system during the various operational regimes of startup, steady-state operation, and shutdown. Typical time-dependent behavior for each operational regime will be illustrated, and key system

  8. Unlimited electron acceleration in laser-driven plasma waves

    International Nuclear Information System (INIS)

    Katsouleas, T.; Dawson, J.M.

    1983-01-01

    It is shown that the limitation to the energy gain of 2(ω/ω/sub p/) 2 mc 2 of an electron in the laser-plasma beat-wave accelerator can be overcome by imposing a magnetic field of appropriate strength perpendicular to the plasma wave. This accelerates particles parallel to the phase fronts of the accelerating wave which keeps them in phase with it. Arbitrarily large energy is theoretically possible

  9. Wakefield calculations on parallel computers

    International Nuclear Information System (INIS)

    Schoessow, P.

    1990-01-01

    The use of parallelism in the solution of wakefield problems is illustrated for two different computer architectures (SIMD and MIMD). Results are given for finite difference codes which have been implemented on a Connection Machine and an Alliant FX/8 and which are used to compute wakefields in dielectric loaded structures. Benchmarks on code performance are presented for both cases. 4 refs., 3 figs., 2 tabs

  10. Spectroscopic measurements of plasma emission light for plasma-based acceleration experiments

    International Nuclear Information System (INIS)

    Filippi, F.; Mostacci, A.; Palumbo, L.; Anania, M.P.; Biagioni, A.; Chiadroni, E.; Ferrario, M.; Cianchi, A.; Zigler, A.

    2016-01-01

    Advanced particle accelerators are based on the excitation of large amplitude plasma waves driven by either electron or laser beams. Future experiments scheduled at the SPARC-LAB test facility aim to demonstrate the acceleration of high brightness electron beams through the so-called resonant Plasma Wakefield Acceleration scheme in which a train of electron bunches (drivers) resonantly excites wakefields into a preformed hydrogen plasma; the last bunch (witness) injected at the proper accelerating phase gains energy from the wake. The quality of the accelerated beam depends strongly on plasma density and its distribution along the acceleration length. The measurements of plasma density of the order of 10 16 –10 17  cm −3 can be performed with spectroscopic measurements of the plasma-emitted light. The measured density distribution for hydrogen filled capillary discharge with both Balmer alpha and Balmer beta lines and shot-to-shot variation are here reported.

  11. Spectroscopic measurements of plasma emission light for plasma-based acceleration experiments

    Science.gov (United States)

    Filippi, F.; Anania, M. P.; Biagioni, A.; Chiadroni, E.; Cianchi, A.; Ferrario, M.; Mostacci, A.; Palumbo, L.; Zigler, A.

    2016-09-01

    Advanced particle accelerators are based on the excitation of large amplitude plasma waves driven by either electron or laser beams. Future experiments scheduled at the SPARC_LAB test facility aim to demonstrate the acceleration of high brightness electron beams through the so-called resonant Plasma Wakefield Acceleration scheme in which a train of electron bunches (drivers) resonantly excites wakefields into a preformed hydrogen plasma; the last bunch (witness) injected at the proper accelerating phase gains energy from the wake. The quality of the accelerated beam depends strongly on plasma density and its distribution along the acceleration length. The measurements of plasma density of the order of 1016-1017 cm-3 can be performed with spectroscopic measurements of the plasma-emitted light. The measured density distribution for hydrogen filled capillary discharge with both Balmer alpha and Balmer beta lines and shot-to-shot variation are here reported.

  12. Research on accelerator-driven transmutation and studies of experimental facilities

    Energy Technology Data Exchange (ETDEWEB)

    Takizuka, Takakazu [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    1997-11-01

    JAERI is carrying out R and Ds on accelerator-driven transmutation systems under the national OMEGA Program that aims at development of the technology to improve efficiency and safety in the final disposal of radioactive waste. Research facilities for accelerator-driven transmutation experiments are proposed to construct within the framework of the planned JAERI Neutron Science Project. This paper describes the features of the proposed accelerator-driven transmutation systems and their technical issues to be solved. A research facility plan under examination is presented. The plan is divided in two phases. In the second phase, technical feasibility of accelerator-driven systems will be demonstrated with a 30-60 MW experimental integrated system and with a 7 MW high-power target facility. (author)

  13. Some basic advantages of accelerator-driven transmutation of minor actinides and iodine-129

    Energy Technology Data Exchange (ETDEWEB)

    Shmelev, A.N.; Apse, V.A.; Kulikov, G.G. [Moscow Engineering Physics Institute (Russian Federation)

    1995-10-01

    The blanket of accelerator-driven facility designed for I-129 transmutation doesn`t contain fissile and fertile materials. So the overheating of iodine compounds transmuted is practically excluded. The efficacy of I-129 transmutation is estimated. Curium being accumulated in nuclear reactors can be incinerated in blanket of accelerator-driven facility. The deep depletion of curium diluted with inert material can be achieved.

  14. Self-resonant wakefield excitation by intense laser pulse in plasmas

    International Nuclear Information System (INIS)

    Andreev, N.E.; Pogosova, A.A.; Gorbunov, L.M.; Ramazashvili, R.R.; Kirsanov, V.I.

    1993-01-01

    It is demonstrated by theoretical analysis and numerical calculations that in an underdense plasma the process of three-dimensional evolution of the short and strong laser pulse (with duration equal to several plasma periods) leads to compression and self-modulation of the pulse, so that during a fairly long period of time beats of pulse amplitude generates resonantly a strong and stable plasma wakefield. The intensity of the wake-field is so high that it can provide a new promising outlook for the plasma based accelerator concept. Linear analysis of dispersion relation predicts that taking into account transverse component of wavenumber considerably increases the growth rate of resonance instability of the pulse. The numerical simulations demonstrate that considered self-focusing and resonant-modulation instability are essentially three dimensional processes. Laser field evolution in each transverse cross section of the pulse is synchronized by the regular structure of plasma wave that is excited by the pulse. The considered effect of resonant modulation has a threshold. For the pulses with the intensity below the threshold the refraction dominates and no modulation appears. The studied phenomenon can be referred to as the Self-Resonant Wakefield (SRWF) excitation that is driven by self-focusing and self-modulation of laser pulse with quite a moderate initial duration. In fact, this method of excitation differs from both suggested in Ref.1 (PBWA) and in Refs.2,3 (LWFA), being even more than the combination of these concepts. Unlike the first scheme it does not require initially the two-frequency laser pulse, since the modulation here appears in the most natural way due to evolution of the pulse. In contrast with the LWFA, the considered SRWF generation scheme gives the possibility to raise the intensity of wake-excitation due to pulse self-focusing ( initial stage) and self modulation (second stage)

  15. Wakefield excitation in plasma resonator by a sequence of relativistic electron bunches

    International Nuclear Information System (INIS)

    Kiselev, V.A.; Linnik, A.F.; Mirny, V.I.; Onishchenko, I.N.; Uskov, V.V.

    2008-01-01

    Wakefield excitation in a plasma resonator by a sequence of relativistic electron bunches with the purpose to increase excited field amplitude in comparison to waveguide case is experimentally investigated. A sequence of short electron bunches is produced by the linear resonant accelerator. Plasma resonator is formed at the beam-plasma discharge in rectangular metal waveguide filled with gas and closed by metal foil at entrance and movable short-circuited plunger at exit. Measurements of wakefield amplitude are performed showing considerably higher wakefield amplitude for resonator case

  16. Accelerator-driven neutron sources for materials research

    International Nuclear Information System (INIS)

    Jameson, R.A.

    1990-01-01

    Particle accelerators are important tools for materials research and production. Advances in high-intensity linear accelerator technology make it possible to consider enhanced neutron sources for fusion material studies or as a source of spallation neutrons. Energy variability, uniformity of target dose distribution, target bombardment from multiple directions, time-scheduled dose patterns, and other features can be provided, opening new experimental opportunities. New designs have also been used to ensure hands-on maintenance on the accelerator in these factory-type facilities. Designs suitable for proposals such as the Japanese Energy-Selective Intense Neutron Source, and the international Fusion Materials Irradiation Facility are discussed

  17. On the Possibility of Accelerating Positron on an Electron Wake at SABER

    International Nuclear Information System (INIS)

    Ischebeck, R.; Joshi, C.; Katsouleas, T.C.; Muggli, P.; Wang, X.

    2008-01-01

    A new approach for positron acceleration in non-linear plasma wakefields driven by electron beams is presented. Positrons can be produced by colliding an electron beam with a thin foil target embedded in the plasma. Integration of positron production and acceleration in one stage is realized by a single relativistic, intense electron beam. Simulations with the parameters of the proposed SABER facility [1] at SLAC suggest that this concept could be tested there

  18. An experimental and analytical study of a buoyancy driven cooling system for a particle accelerator

    International Nuclear Information System (INIS)

    Campbell, B.; Ranganathan, R.

    1993-05-01

    A buoyancy driven closed-loop cooling system that transports the heat generated in a particle accelerator to the ambient has been evaluated both through experiments performed earlier and analysis techniques developed elsewhere. Excellent comparisons between measurements and calculations have been obtained. The model illustrates the feasibility (from a heat transfer viewpoint) of such a cooling system for a particle accelerator

  19. An experimental and analytical study of a buoyancy driven cooling system for a particle accelerator

    International Nuclear Information System (INIS)

    Campbell, B.; Ranganathan, R.

    1993-01-01

    A buoyancy driven closed-loop cooling system that transports the heat generated in a particle accelerator to the ambient has been evaluated both through experiments performed earlier and analysis techniques developed elsewhere. Excellent comparisons between measurements and calculations have been obtained. The model illustrates the feasibility (from a heat transfer viewpoint) of such a cooling system for a particle accelerator

  20. Curvature-driven acceleration: a utopia or a reality?

    International Nuclear Information System (INIS)

    Das, Sudipta; Banerjee, Narayan; Dadhich, Naresh

    2006-01-01

    The present work shows that a combination of nonlinear contributions from the Ricci curvature in Einstein field equations can drive a late time acceleration of expansion of the universe. The transit from the decelerated to the accelerated phase of expansion takes place smoothly without having to resort to a study of asymptotic behaviour. This result emphasizes the need for thorough and critical examination of models with nonlinear contribution from the curvature

  1. Curvature-driven acceleration: a utopia or a reality?

    Energy Technology Data Exchange (ETDEWEB)

    Das, Sudipta [Relativity and Cosmology Research Centre, Department of Physics, Jadavpur University, Calcutta-700 032 (India); Banerjee, Narayan [Relativity and Cosmology Research Centre, Department of Physics, Jadavpur University, Calcutta-700 032 (India); Dadhich, Naresh [Inter University Centre for Astronomy and Astrophysics, Post Bag 4, Ganeshkhind, Pune 411 007 (India)

    2006-06-21

    The present work shows that a combination of nonlinear contributions from the Ricci curvature in Einstein field equations can drive a late time acceleration of expansion of the universe. The transit from the decelerated to the accelerated phase of expansion takes place smoothly without having to resort to a study of asymptotic behaviour. This result emphasizes the need for thorough and critical examination of models with nonlinear contribution from the curvature.

  2. MEMS-based, RF-driven, compact accelerators

    Science.gov (United States)

    Persaud, A.; Seidl, P. A.; Ji, Q.; Breinyn, I.; Waldron, W. L.; Schenkel, T.; Vinayakumar, K. B.; Ni, D.; Lal, A.

    2017-10-01

    Shrinking existing accelerators in size can reduce their cost by orders of magnitude. Furthermore, by using radio frequency (RF) technology and accelerating ions in several stages, the applied voltages can be kept low paving the way to new ion beam applications. We make use of the concept of a Multiple Electrostatic Quadrupole Array Linear Accelerator (MEQALAC) and have previously shown the implementation of its basic components using printed circuit boards, thereby reducing the size of earlier MEQALACs by an order of magnitude. We now demonstrate the combined integration of these components to form a basic accelerator structure, including an initial beam-matching section. In this presentation, we will discuss the results from the integrated multi-beam ion accelerator and also ion acceleration using RF voltages generated on-board. Furthermore, we will show results from Micro-Electro-Mechanical Systems (MEMS) fabricated focusing wafers, which can shrink the dimension of the system to the sub-mm regime and lead to cheaper fabrication. Based on these proof-of-concept results we outline a scaling path to high beam power for applications in plasma heating in magnetized target fusion and in neutral beam injectors for future Tokamaks. This work was supported by the Office of Science of the US Department of Energy through the ARPA-e ALPHA program under contracts DE-AC02-05CH11231.

  3. Status of Wakefield Monitor Experiments at the CLIC Test Facility

    CERN Document Server

    Lillestøl, Reidar; Aftab, Namra; Corsini, Roberto; Döbert, Steffen; Farabolini, Wilfrid; Grudiev, Alexej; Javeed, Sumera; Pfingstner, Juergen; Wuensch, Walter

    2016-01-01

    For the very low emittance beams in CLIC, it is vital to mitigate emittance growth which leads to reduced luminosity in the detectors. One factor that leads to emittance growth is transverse wakefields in the accelerating structures. In order to combat this the structures must be aligned with a precision of a few um. For achieving this tolerance, accelerating structures are equipped with wakefield monitors that measure higher-order dipole modes excited by the beam when offset from the structure axis. We report on such measurements, performed using prototype CLIC accelerating structures which are part of the module installed in the CLIC Test Facility 3 (CTF3) at CERN. Measurements with and without the drive beam that feeds rf power to the structures are compared. Improvements to the experimental setup are discussed, and finally remaining measurements that should be performed before the completion of the program are summarized.

  4. Development of High-Gradient Dielectric Laser-Driven Particle Accelerator Structures

    Energy Technology Data Exchange (ETDEWEB)

    Byer, Robert L. [Stanford Univ., CA (United States). Edward L. Ginzton Lab.

    2013-11-07

    The thrust of Stanford's program is to conduct research on high-gradient dielectric accelerator structures driven with high repetition-rate, tabletop infrared lasers. The close collaboration between Stanford and SLAC (Stanford Linear Accelerator Center) is critical to the success of this project, because it provides a unique environment where prototype dielectric accelerator structures can be rapidly fabricated and tested with a relativistic electron beam.

  5. RF power generation and coupling measurements for the dielectric wakefield step-up transformer

    International Nuclear Information System (INIS)

    Conde, M. E.

    1998-01-01

    The dielectric wakefield transformer (DWT) is one route to practical high energy wakefield-based accelerators. Progress has been made in a number of areas relevant to the demonstration of this device. In this article we describe recent bench measurements and beam experiments using 7.8 and 15.6 GHz structures and discuss some remaining technical challenges in the development of the DWT

  6. Accelerator system model (ASM): A unique tool in exploring accelerator driven transmutation technologies (ADTT) system trade space

    Energy Technology Data Exchange (ETDEWEB)

    Myers, T.J.; Favale, A.J.; Berwald, D.H.; Burger, E.C.; Paulson, C.C.; Peacock, M.A.; Piaszczyk, C.M.; Piechowiak, E.M.; Rathke, J.W. [Northrop Grumman Corp., Bethpage, NY (United States). Advanced Technology and Development Center

    1997-09-01

    To aid in the development and optimization of emerging Accelerator Driven Transmutation Technology (ADTT) concepts, the Northrop Grumman Corporation, working together with G.H. Gillespie Associates and Los Alamos National Laboratory has developed a computational tool which combines both accelerator physics layout/analysis capabilities with engineering analysis capabilities to create a standardized platform to compare and contrast accelerator system configurations. In this context, the accelerator system configuration includes not only the accelerating structures, but also the major support systems such as the vacuum, thermal control, RF power, and cryogenic subsystem (if superconducting accelerator operation is investigated) as well as estimates of the costs for enclosures (accelerating tunnel and RF halls). This paper presents an overview of the Accelerator System Model (ASM) code flow, as well as a discussion of the data and analysis upon which it is based. Also presented is material which addresses the development of the evaluation criteria employed by this code including a presentation of the economic analysis methods, and a discussion of the cost database employed. The paper concludes with examples depicting completed and planned trade studies for both normal and superconducting accelerator applications. 8 figs.

  7. Electron versus proton accelerator driven sub-critical system performance using TRIGA reactors at power

    International Nuclear Information System (INIS)

    Carta, M.; Burgio, N.; D'Angelo, A.; Santagata, A.; Petrovich, C.; Schikorr, M.; Beller, D.; Felice, L. S.; Imel, G.; Salvatores, M.

    2006-01-01

    This paper provides a comparison of the performance of an electron accelerator-driven experiment, under discussion within the Reactor Accelerator Coupling Experiments (RACE) Project, being conducted within the U.S. Dept. of Energy's Advanced Fuel Cycle Initiative (AFCI), and of the proton-driven experiment TRADE (TRIGA Accelerator Driven Experiment) originally planned at ENEA-Casaccia in Italy. Both experiments foresee the coupling to sub-critical TRIGA core configurations, and are aimed to investigate the relevant kinetic and dynamic accelerator-driven systems (ADS) core behavior characteristics in the presence of thermal reactivity feedback effects. TRADE was based on the coupling of an upgraded proton cyclotron, producing neutrons via spallation reactions on a tantalum (Ta) target, with the core driven at a maximum power around 200 kW. RACE is based on the coupling of an Electron Linac accelerator, producing neutrons via photoneutron reactions on a tungsten-copper (W-Cu) or uranium (U) target, with the core driven at a maximum power around 50 kW. The paper is focused on analysis of expected dynamic power response of the RACE core following reactivity and/or source transients. TRADE and RACE target-core power coupling coefficients are compared and discussed. (authors)

  8. Introduction to wakefields and wake potentials

    Energy Technology Data Exchange (ETDEWEB)

    Wilson, P.B.

    1989-01-01

    What are wakefields and wake potentials, and why are these concepts useful in the physics of linear accelerators and storage rings We approach this question by first reviewing the basic physical concepts which underlie the mathematical formalism. We then present a summary of the various techniques that have been developed to make detailed calculations of wake potentials. Finally, we give some applications to current problems of interest in accelerator physics. No attempt at completeness can be made in an introductory article of modest length. Rather, we try to give a broad overview and to list key references for more detailed study. It will also be apparent that the last chapter on this subject, with all the loose ends neatly tied up, has yet to be written. There are subtle points, there are controversial questions, and active calculations to resolve these questions are continuing at the time of this writing. 61 refs., 10 figs., 1 tab.

  9. Introduction to wakefields and wake potentials

    International Nuclear Information System (INIS)

    Wilson, P.B.

    1989-01-01

    What are wakefields and wake potentials, and why are these concepts useful in the physics of linear accelerators and storage rings? We approach this question by first reviewing the basic physical concepts which underlie the mathematical formalism. We then present a summary of the various techniques that have been developed to make detailed calculations of wake potentials. Finally, we give some applications to current problems of interest in accelerator physics. No attempt at completeness can be made in an introductory article of modest length. Rather, we try to give a broad overview and to list key references for more detailed study. It will also be apparent that the last chapter on this subject, with all the loose ends neatly tied up, has yet to be written. There are subtle points, there are controversial questions, and active calculations to resolve these questions are continuing at the time of this writing. 61 refs., 10 figs., 1 tab

  10. Accelerator-driven transmutation of spent fuel elements

    Science.gov (United States)

    Venneri, Francesco; Williamson, Mark A.; Li, Ning

    2002-01-01

    An apparatus and method is described for transmuting higher actinides, plutonium and selected fission products in a liquid-fuel subcritical assembly. Uranium may also be enriched, thereby providing new fuel for use in conventional nuclear power plants. An accelerator provides the additional neutrons required to perform the processes. The size of the accelerator needed to complete fuel cycle closure depends on the neutron efficiency of the supported reactors and on the neutron spectrum of the actinide transmutation apparatus. Treatment of spent fuel from light water reactors (LWRs) using uranium-based fuel will require the largest accelerator power, whereas neutron-efficient high temperature gas reactors (HTGRs) or CANDU reactors will require the smallest accelerator power, especially if thorium is introduced into the newly generated fuel according to the teachings of the present invention. Fast spectrum actinide transmutation apparatus (based on liquid-metal fuel) will take full advantage of the accelerator-produced source neutrons and provide maximum utilization of the actinide-generated fission neutrons. However, near-thermal transmutation apparatus will require lower standing

  11. High power ring methods and accelerator driven subcritical reactor application

    Energy Technology Data Exchange (ETDEWEB)

    Tahar, Malek Haj [Univ. of Grenoble (France)

    2016-08-07

    High power proton accelerators allow providing, by spallation reaction, the neutron fluxes necessary in the synthesis of fissile material, starting from Uranium 238 or Thorium 232. This is the basis of the concept of sub-critical operation of a reactor, for energy production or nuclear waste transmutation, with the objective of achieving cleaner, safer and more efficient process than today’s technologies allow. Designing, building and operating a proton accelerator in the 500-1000 MeV energy range, CW regime, MW power class still remains a challenge nowadays. There is a limited number of installations at present achieving beam characteristics in that class, e.g., PSI in Villigen, 590 MeV CW beam from a cyclotron, SNS in Oakland, 1 GeV pulsed beam from a linear accelerator, in addition to projects as the ESS in Europe, a 5 MW beam from a linear accelerator. Furthermore, coupling an accelerator to a sub-critical nuclear reactor is a challenging proposition: some of the key issues/requirements are the design of a spallation target to withstand high power densities as well as ensure the safety of the installation. These two domains are the grounds of the PhD work: the focus is on the high power ring methods in the frame of the KURRI FFAG collaboration in Japan: upgrade of the installation towards high intensity is crucial to demonstrate the high beam power capability of FFAG. Thus, modeling of the beam dynamics and benchmarking of different codes was undertaken to validate the simulation results. Experimental results revealed some major losses that need to be understood and eventually overcome. By developing analytical models that account for the field defects, one identified major sources of imperfection in the design of scaling FFAG that explain the important tune variations resulting in the crossing of several betatron resonances. A new formula is derived to compute the tunes and properties established that characterize the effect of the field imperfections on the

  12. Wakefield generation in magnetized plasmas

    International Nuclear Information System (INIS)

    Holkundkar, Amol; Brodin, Gert; Marklund, Mattias

    2011-01-01

    We consider wakefield generation in plasmas by electromagnetic pulses propagating perpendicular to a strong magnetic field, in the regime where the electron cyclotron frequency is equal to or larger than the plasma frequency. Particle-in-cell simulations reveal that for moderate magnetic field strengths previous results are reproduced, and the wakefield wave number spectrum has a clear peak at the inverse skin depth. However, when the cyclotron frequency is significantly larger than the plasma frequency, the wakefield spectrum becomes broadband, and simultaneously the loss rate of the driving pulse is much enhanced. A set of equations for the scalar and vector potentials reproducing these results are derived, using only the assumption of a weakly nonlinear interaction.

  13. Analytical model for electromagnetic radiation from a wakefield excited by intense short laser pulses in an unmagnetized plasma

    Energy Technology Data Exchange (ETDEWEB)

    Chen Ziyu; Chen Shi; Dan Jiakun; Li Jianfeng; Peng Qixian, E-mail: ziyuch@gmail.com [Institute of Fluid Physics, China Academy of Engineering Physics, Mianyang 621900 (China)

    2011-10-15

    A simple one-dimensional analytical model for electromagnetic emission from an unmagnetized wakefield excited by an intense short-pulse laser in the nonlinear regime has been developed in this paper. The expressions for the spectral and angular distributions of the radiation have been derived. The model suggests that the origin of the radiation can be attributed to the violent sudden acceleration of plasma electrons experiencing the accelerating potential of the laser wakefield. The radiation process could help to provide a qualitative interpretation of existing experimental results, and offers useful information for future laser wakefield experiments.

  14. Analytical model for electromagnetic radiation from a wakefield excited by intense short laser pulses in an unmagnetized plasma

    International Nuclear Information System (INIS)

    Chen Ziyu; Chen Shi; Dan Jiakun; Li Jianfeng; Peng Qixian

    2011-01-01

    A simple one-dimensional analytical model for electromagnetic emission from an unmagnetized wakefield excited by an intense short-pulse laser in the nonlinear regime has been developed in this paper. The expressions for the spectral and angular distributions of the radiation have been derived. The model suggests that the origin of the radiation can be attributed to the violent sudden acceleration of plasma electrons experiencing the accelerating potential of the laser wakefield. The radiation process could help to provide a qualitative interpretation of existing experimental results, and offers useful information for future laser wakefield experiments.

  15. Accelerator-driven Medical Sterilization to Replace Co-60 Sources

    Energy Technology Data Exchange (ETDEWEB)

    Kroc, Thomas K. [Fermilab; Thangaraj, Jayakar C.T. [Fermilab; Penning, Richard T. [Fermilab; Kephart, Robert D. [Fermilab

    2017-08-11

    This report documents the results of a study prepared at the request of the Office of Radiological Security of the National Nuclear Security Administration (NNSA), as part of the Domestic Protect and Reduce mission by the Illinois Accelerator Research Center (IARC) of Fermi National Accelerator Laboratory. The study included a literature survey of over 80 relevant documents and articles including industry standards, regulatory documents, technical papers, a court case, previous task force reports and industry white papers. The team also conducted interviews or had conversations with over 40 individuals representing over a dozen organizations over the course of its 10-month program. This report summarizes our findings, addresses the specific questions posed to us by NNSA, and concludes with a list of actionable recommendations.

  16. Opportunity of characteristic's improvement for accelerator driven systems

    CERN Document Server

    Kiselev, G V

    2001-01-01

    Review of sentences on the investigation into different variations of electronuclear plants be directed to the improvement in characteristics of the plants in an effort to the efficient disposal of long-lived components of radioactive wastes is presented. Attention is drown to the fact that subcritical reactor with complicated neutron valve can be used. This permits for drop in demand to current of proton accelerator. Briefly description of the process scheme with the indication of problems is given

  17. Accelerator driven systems (ADS): A principal neutronics and transmutation potential

    International Nuclear Information System (INIS)

    Slessarev, I.

    1997-01-01

    An accelerator-based system using a beam of high energy protons to produce supplementary neutrons as a result of spallation processes in a target is investigated. The spallation neutrons are successively used to feed a subcritical blanket where they create a neutron surplus available for incineration of those long-lived toxic nuclei which require neutrons (long-lived fission products and minor actinides), and enhance the deterministic safety features for reactivity-type of accidents

  18. Accelerator driven neutron sources in Korea. Current and future

    International Nuclear Information System (INIS)

    Lee, Young-Ouk; Oh, Byung-Hoon; Hong, Bong-Geun; Chang, Jonghwa; Chang, Moon-Hee; Kim, Guinyun; Kim, Gi-Donng; Choi, Byung-Ho

    2008-01-01

    The Pohang Neutron Facility, based on a 65 MeV electron linear accelerator, has a neutron-gamma separation circuit, water-moderated tantalum target and 12 m TOF. It produces pulsed photonuclear neutrons with ≅2 μs width, 50 mA peak current and 15 Hz repetition, mainly for the neutron nuclear data production in up to keV energies. The Tandem Van de Graff at Korea Institute of Geoscience and Mineral Resources (KIGAM) is dedicated to measure MeV energy neutron capture and total cross section using TOF and prompt gamma ray detection system. The facility pulsed ≅10 8 mono-energetic neutrons/sec from 3 H(p,n) reaction with 1-2 ns width and 125 ns period. Korea Institute of Radiological and Medical Sciences (KIRAMS) has the MC50 medical cyclotron which accelerates protons up to an energy of 45 MeV and has several beam ports for proton or neutron irradiations. Beam current can be controlled from a few nano amperes to 50 uA. Korea Atomic Energy Research Institute (KAERI) has a plan to develop a neutron source by using 20 MeV electron accelerator. This photo-neutron source will be mainly used for nuclear data measurements based on time-of-flight experiments. A high intensity fast neutron source is also proposed to respond growing demands of fast neutrons, especially for the fusion material test. Throughput will be as high as several 10 13 neutrons/sec from D-T reaction powered by a high current (200 mA) ion source, a drive-in target and cooling systems, and closed circuit tritium ventilation/recovery systems. The Proton Engineering Frontier Project (PEFP) is developing a 100 MeV, 20 mA pulsed proton linear accelerator equipped with 5 target rooms, one of which is dedicated to produce neutrons using tungsten target. PEFP also proposes the 1-2 GeV rapid cycling synchrotron accelerator as an extension of the PEFP linac, which can be used for nuclear and high energy physics experiment, spallation neutron source, radioisotope, medical research, etc. (author)

  19. Modelling of two-zone accelerator-driven systems

    Directory of Open Access Journals (Sweden)

    V. A. Babenko

    2012-09-01

    Full Text Available Neutron-physical modelings of two-zone subcritical reactor driven by high-intensity neutron generator are considered. The cascade principle in subcritical reactors, the use of which can hypothetically substantially amplify the neutron flux from the external source is discussed in this article. The theoretical preconditions of the cascade principle are discussed, and the directions of practical realization of the cascade subcritical system are considered, namely the possible methods of neutron feedback between reactor sections elimination. The results of Monte Carlo neutron-physical modeling of the cascade subcritical systems are presented and discussed.

  20. A broadband gamma-ray spectrometry using novel unfolding algorithms for characterization of laser wakefield-generated betatron radiation

    Energy Technology Data Exchange (ETDEWEB)

    Jeon, Jong Ho, E-mail: jhjeon07@ibs.re.kr; Nakajima, Kazuhisa, E-mail: naka115@dia-net.ne.jp; Pathak, Vishwa Bandhu; Cho, Myung Hoon; Yoo, Byung Ju; Shin, Kang Woo [Center for Relativistic Laser Science, Institute for Basic Science (IBS), Gwangju 500-712 (Korea, Republic of); Kim, Hyung Taek; Sung, Jae Hee; Lee, Seung Ku; Choi, Il Woo [Center for Relativistic Laser Science, Institute for Basic Science (IBS), Gwangju 500-712 (Korea, Republic of); Advanced Photonics Research Institute, GIST, Gwangju 500-712 (Korea, Republic of); Rhee, Yong Joo [Nuclear Data Center, Korea Atomic Energy Research Institute, Daejeon 305-353 (Korea, Republic of); Shin, Jung Hun; Jo, Sung Ha [Advanced Photonics Research Institute, GIST, Gwangju 500-712 (Korea, Republic of); Hojbota, Calin; Cho, Byeoung Ick; Nam, Chang Hee [Center for Relativistic Laser Science, Institute for Basic Science (IBS), Gwangju 500-712 (Korea, Republic of); Department of Physics and Photon Science, GIST, Gwangju 500-712 (Korea, Republic of)

    2015-12-15

    We present a high-flux, broadband gamma-ray spectrometry capable of characterizing the betatron radiation spectrum over the photon energy range from 10 keV to 20 MeV with respect to the peak photon energy, spectral bandwidth, and unique discrimination from background radiations, using a differential filtering spectrometer and the unfolding procedure based on the Monte Carlo code GEANT4. These properties are experimentally verified by measuring betatron radiation from a cm-scale laser wakefield accelerator (LWFA) driven by a 1-PW laser, using a differential filtering spectrometer consisting of a 15-filter and image plate stack. The gamma-ray spectra were derived by unfolding the photostimulated luminescence (PSL) values recorded on the image plates, using the spectrometer response matrix modeled with the Monte Carlo code GEANT4. The accuracy of unfolded betatron radiation spectra was assessed by unfolding the test PSL data simulated with GEANT4, showing an ambiguity of less than 20% and clear discrimination from the background radiation with less than 10%. The spectral analysis of betatron radiation from laser wakefield-accelerated electron beams with energies up to 3 GeV revealed radiation spectra characterized by synchrotron radiation with the critical photon energy up to 7 MeV. The gamma-ray spectrometer and unfolding method presented here facilitate an in-depth understanding of betatron radiation from LWFA process and a novel radiation source of high-quality photon beams in the MeV regime.

  1. ITEP Subcritical Neutron Generator driven by charged particle accelerator

    Energy Technology Data Exchange (ETDEWEB)

    Shvedov, O.V.; Chuvilo, I.V.; Vasiliev, V.V. [Institute of Theoretical and Experimental Physics, Moscow (Russian Federation)] [and others

    1995-10-01

    A research facility prototype including a combination of a linear accelerator, a neutron generating target, a nuclear safety ensuring and means of its attainment for Subcritical Neutron Generator are considered. The scheme of the multiplying is shown. The assembly will be mounted in the body of the partly dismantled ITEP HWR. Requirements for subcritical assembly are worked out and their feasibility within the framework of the heavy-water blanket is shown. The facility`s application as a full-scale model of more powerful installations of this kind and for fundamental experimental research has been investigated.

  2. GPU accelerated CT reconstruction for clinical use: quality driven performance

    Science.gov (United States)

    Vaz, Michael S.; Sneyders, Yuri; McLin, Matthew; Ricker, Alan; Kimpe, Tom

    2007-03-01

    We present performance and quality analysis of GPU accelerated FDK filtered backprojection for cone beam computed tomography (CBCT) reconstruction. Our implementation of the FDK CT reconstruction algorithm does not compromise fidelity at any stage and yields a result that is within 1 HU of a reference C++ implementation. Our streaming implementation is able to perform reconstruction as the images are acquired; it addresses low latency as well as fast throughput, which are key considerations for a "real-time" design. Further, it is scaleable to multiple GPUs for increased performance. The implementation does not place any constraints on image acquisition; it works effectively for arbitrary angular coverage with arbitrary angular spacing. As such, this GPU accelerated CT reconstruction solution may easily be used with scanners that are already deployed. We are able to reconstruct a 512 x 512 x 340 volume from 625 projections, each sized 1024 x 768, in less than 50 seconds. The quoted 50 second timing encompasses the entire reconstruction using bilinear interpolation and includes filtering on the CPU, uploading the filtered projections to the GPU, and also downloading the reconstructed volume from GPU memory to system RAM.

  3. Resistance-driven bunching mode of an accelerated ion pulse

    International Nuclear Information System (INIS)

    Lee, E.P.

    1981-01-01

    Amplification of a longitudinal perturbation of an ion pulse in a linear induction accelerator is calculated. The simplified accelerator model consists only of an applied field (E/sub a/), distributed gap impedance per meter (R) and beam-pipe capacity per meter (C). The beam is treated as a cold, one-dimensional fluid. It is found that normal mode frequencies are nearly real, with only a very small damping rate proportional to R. This result is valid for a general current profile and is not restricted to small R. However, the mode structure exhibits spatial amplification from pulse head to tail by the factor exp(RCLv/sub o//2), where L is pulse length and v 0 is drift velocity. This factor is very large for typical HIF parameters. An initially small disturbance, when expanded in terms of the normal modes, is found to oscillate with maximum amplitude proportional to the amplification factor. Unlike the analogous problem in a circular machine, linear growth is limited in amplitude bntegrating the void fraction profile and comparing the cross-sectionally averaged void fraction with direct measurements using two quick closing valves. Results on the calibration of combinations of full-flow turbine meters, Pitot tube rakes and gamma densitometers for measuring cross-sectionally averaged mass velocity in steady steam-water flow are presented. The results are interpreted ntation

  4. Feasibility of waste transmutation using accelerator-driven IRIS subcritical system

    International Nuclear Information System (INIS)

    Petroviae, B.; Carelli, M.; Paramonov, D.

    2001-01-01

    Waste transmutation is considered for reducing radio-toxicity of nuclear waste generated in power reactors. Accelerator driven subcritical systems (ADS) offer certain advantages over the use of nuclear reactors. Transmutation of fission products (e.g. 99 Tc) generally requires thermal neutron spectrum, while for actinides fast spectrum provides better performance. Proposed solutions to this problem include a multi-strata approach as well as a multi-zone (thermal/fast-spectrum) single systems. In this paper we examine the feasibility of employing a dual-spectrum two-zone accelerator-driven IRIS subcritical for waste transmutation. (author)

  5. Feasibility analysis of constant TRU feeding in waste transmutation system using accelerator-driven subcritical system

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Kun Jai; Cho, Nam Zin; Jo, Chang Keun; Park, Chang Je; Kim, Do Sam; Park, Jeong Hwan [Korea Advanced Institute of Science and Technology, Taejon (Korea)

    1999-03-01

    It is probable that the issue of nuclear spent fuel and high-level waste can have negative impact on the future expansion of nuclear power programs. Accelerator-driven nuclear waste transmutation with constant composition TRU feeding which satisfies non-proliferation condition will help establish the long-range nuclear waste disposal strategy. In this study, current status of accelerator-driven transmutation of waste technology, and feasibility analysis of constant composition TRU feeding system were investigated. We ascertained that solid system using constant composition TRU is feasible with the the capability of transmutation. (author). 13 refs., 53 figs., 20 tabs.

  6. Accelerator-driven nuclear synergetic systems-an overview of the research activities in Sweden

    International Nuclear Information System (INIS)

    Conde, H.; Baecklin, A.; Carius, S.

    1995-01-01

    The rapid development of the accelerator technology which enables the construction of reliable and very intense neutron sources has initiated a growing interest for accelerator driven transmutation systems in Sweden. After the Specialist Meeting on Accelerator-Driven Transmutation Technology for Radwaste and other Applications on 24-28 June 1991 at Saltsjoebaden, Sweden, the research activities oriented towards accelerator-driven systems have been started at several research centers in Sweden. Also the governmental agencies responsible for the spent fuel policy showed a positive attitude to these activities through a limited financial support, particularly for studies of the safety aspects of these systems. Also the nuclear power industry and utilities show a positive interest in the research on these concepts. The present paper presents an overview of the Swedish research activities on accelerator-driven systems and the proposed future coordination, organizations and prospects for this research in the context of the national nuclear energy and spent fuel policy. The Swedish perspective for international cooperation is also described

  7. Accelerator-driven nuclear synergetic systems-an overview of the research activities in Sweden

    Energy Technology Data Exchange (ETDEWEB)

    Conde, H.; Baecklin, A.; Carius, S. [Uppsala Univ. (Sweden)] [and others

    1995-10-01

    The rapid development of the accelerator technology which enables the construction of reliable and very intense neutron sources has initiated a growing interest for accelerator driven transmutation systems in Sweden. After the Specialist Meeting on Accelerator-Driven Transmutation Technology for Radwaste and other Applications on 24-28 June 1991 at Saltsjoebaden, Sweden, the research activities oriented towards accelerator-driven systems have been started at several research centers in Sweden. Also the governmental agencies responsible for the spent fuel policy showed a positive attitude to these activities through a limited financial support, particularly for studies of the safety aspects of these systems. Also the nuclear power industry and utilities show a positive interest in the research on these concepts. The present paper presents an overview of the Swedish research activities on accelerator-driven systems and the proposed future coordination, organizations and prospects for this research in the context of the national nuclear energy and spent fuel policy. The Swedish perspective for international cooperation is also described.

  8. Safety and control of accelerator-driven subcritical systems

    Energy Technology Data Exchange (ETDEWEB)

    Rief, H. [Ispra Establishment (Italy); Takahashi, H. [Brookhaven National Laboratory, Long Island, NY (United States)

    1995-10-01

    To study control and safety of accelertor driven nuclear systems, a one point kinetic model was developed and programed. It deals with fast transients as a function of reactivity insertion. Doppler feedback, and the intensity of an external neutron source. The model allows for a simultaneous calculation of an equivalent critical reactor. It was validated by a comparison with a benchmark specified by the Nuclear Energy Agency Committee of Reactor Physics. Additional features are the possibility of inserting a linear or quadratic time dependent reactivity ramp which may account for gravity induced accidents like earthquakes, the possibility to shut down the external neutron source by an exponential decay law of the form exp({minus}t/{tau}), and a graphical display of the power and reactivity changes. The calculations revealed that such boosters behave quite benignly even if they are only slightly subcritical.

  9. Observation of 690 MV m-1 Electron Accelerating Gradient with a Laser-Driven Dielectric Microstructure

    Energy Technology Data Exchange (ETDEWEB)

    Wootton, K.P.; Wu, Z.; /SLAC; Cowan, B.M.; /Tech-X, Boulder; Hanuka, A.; /SLAC /Technion; Makasyuk, I.V.; /SLAC; Peralta, E.A.; Soong, K.; Byer, R.L.; /Stanford U.; England, R.J.; /SLAC

    2016-06-27

    Acceleration of electrons using laser-driven dielectric microstructures is a promising technology for the miniaturization of particle accelerators. In this work, experimental results are presented of relativistic electron acceleration with 690±100 MVm-1 gradient. This is a record-high accelerating gradient for a dielectric microstructure accelerator, nearly doubling the previous record gradient. To reach higher acceleration gradients the present experiment employs 90 fs duration laser pulses.

  10. Laser-driven acceleration at ELI Beamlines - radioprotection aspects

    International Nuclear Information System (INIS)

    Olsovcova, V.; Fasso, A; Versaci, R.

    2014-01-01

    The international research centre ELI Beamlines, which is under construction in the village of Dolni Brezany near Prague, will exploit high power lasers of PW class to generate and accelerate beams of charged particles (up to tens of GeVs in energy). The beams will be used for both fundamental and applied research by experts from various scientific fields, including biology, medicine, plasma physics but also dosimetry and radiation protection. As laboratories operating lasers do not belong among the traditional 'radiation workplaces', there are no suitable specialized recommendations or standards available. Therefore, it is necessary to newly implement the existing general recommendations. Further, the generated mixed fields possess unique properties due to their production methods. As a result, the routinely used detection methods are not reliable or fail completely. (authors)

  11. A European roadmap for developing accelerator driven systems (ADS) for nuclear waste incineration. Executive summary

    International Nuclear Information System (INIS)

    The European Technical Working Group on ADS

    2001-01-01

    In 1998 the Research Ministers of France, Italy and Spain, set up a Ministers' Advisors Group on the use of accelerator driven systems (ADS) for nuclear waste transmutation. This led to the establishing of a technical working group under the chairmanship of Prof. Carlo Rubbia to identify the critical technical issues and to prepare a 'Roadmap' for a demonstration programme to be performed within 12 years. In the following Roadmap, the technical working group (consisting of representatives from Austria, Belgium, Finland, France, Germany, Italy, Portugal, Spain, Sweden and the JRC) has identified the steps necessary to start the construction of an experimental accelerator driven system towards the end of the decade. This is considered as an essential prerequisite to assess the safe and efficient behaviour of such systems for a large-scale deployment for transmutation purposes in the first half of this century. The development and deployment of accelerator driven systems requires three steps: a comprehensive mid- and long-term R and D program, to develop the single elements and components of the system. This includes development of new fuels and fuel cycle systems; planning, design, construction and operation of an Experimental Accelerator Driven System for the demonstration of the concept; planning, design, construction and operation of a large size prototype accelerator driven systems with subsequent large-scale deployment. Following a first phase of R and D focused on the understanding of the basic principles of ADS (already partly underway), the programmes should be streamlined and focused on a practical demonstration of the key issues. These demonstrations should cover high intensity proton accelerators (beam currents in the range 1-20 mA), spallation targets of high power (of power in excess of 1 megawatt), and their effective coupling with a sub-critical core. Cost estimates are taken into account as well as the ADS activities in Japan and USA

  12. Beamed neutron emission driven by laser accelerated light ions

    Science.gov (United States)

    Kar, S.; Green, A.; Ahmed, H.; Alejo, A.; Robinson, A. P. L.; Cerchez, M.; Clarke, R.; Doria, D.; Dorkings, S.; Fernandez, J.; Mirfayzi, S. R.; McKenna, P.; Naughton, K.; Neely, D.; Norreys, P.; Peth, C.; Powell, H.; Ruiz, J. A.; Swain, J.; Willi, O.; Borghesi, M.

    2016-05-01

    Highly anisotropic, beam-like neutron emission with peak flux of the order of 109 n/sr was obtained from light nuclei reactions in a pitcher-catcher scenario, by employing MeV ions driven by a sub-petawatt laser. The spatial profile of the neutron beam, fully captured for the first time by employing a CR39 nuclear track detector, shows a FWHM divergence angle of ˜ 70^\\circ , with a peak flux nearly an order of magnitude higher than the isotropic component elsewhere. The observed beamed flux of neutrons is highly favourable for a wide range of applications, and indeed for further transport and moderation to thermal energies. A systematic study employing various combinations of pitcher-catcher materials indicates the dominant reactions being d(p, n+p)1H and d(d,n)3He. Albeit insufficient cross-section data are available for modelling, the observed anisotropy in the neutrons’ spatial and spectral profiles is most likely related to the directionality and high energy of the projectile ions.

  13. Summary of the Accelerator-Driven Transmutation Technologies and their applications

    Energy Technology Data Exchange (ETDEWEB)

    Wanger, T.P.

    1995-10-01

    During the past 15 years many advances have been made in the technology of high-power accelerators, and in the understanding of the beam-physics issues associated with their high-performance requirements. These developments have contributed significantly to the high level of confidence in the practicality of the applications that were the central point of the international Accelerator-Driven Transmutation Technologies (ADTT) Conference. Even so, there are many accelerator topics that needed to be addressed, and the Conference provided the opportunity to address these issues.

  14. Design of an accelerator-driven system for the destruction of nuclear waste

    International Nuclear Information System (INIS)

    Kadi, Y.; Revol, J.P.

    2003-01-01

    Progress in particle accelerator technology makes it possible to use a proton accelerator to produce energy and to destroy nuclear waste efficiently. The Energy Amplifier (EA) proposed by Carlo Rubbia and his group is a sub-critical fast neutron system driven by a proton accelerator. It is particularly attractive for destroying, through fission, transuranic elements produced by present nuclear reactors. The EA could also transform efficiently and at minimal cost long-lived fission fragments using the concept of Adiabatic Resonance Crossing (ARC) recently tested at CERN with the TARC experiment. (author)

  15. Accelerated expansion of the universe driven by tachyonic matter

    International Nuclear Information System (INIS)

    Padmanabhan, T.

    2002-01-01

    It is an accepted practice in cosmology to invoke a scalar field with a potential V(φ) when the observed evolution of the universe cannot be reconciled with theoretical prejudices. Since one function degree of freedom in the expansion factor a(t) can be traded off for the function V(φ), it is always possible to find a scalar field potential which will reproduce a given evolution. I provide a recipe for determining V(φ) from a(t) in two cases: (i) a normal scalar field with the Lagrangian L=(1/2)∂ a φ∂ a φ-V(φ) used in quintessence or dark energy models; (ii) a tachyonic field with the Lagrangian L=-V(φ)[1-∂ a φ∂ a φ] 1/2 , motivated by recent string theoretic results. In the latter case, it is possible to have accelerated expansion of the universe during the late phase in certain cases

  16. Important requirements for RF generators for Accelerator-Driven Transmutation Technologies (ADTT)

    International Nuclear Information System (INIS)

    Lynch, M.T.; Tallerico, P.J.; Lawrence, G.P.

    1994-01-01

    All Accelerator-Driven Transmutation applications require very large amounts of RF Power. For example, one version of a Plutonium burning system requires an 800-MeV, 80-mA, proton accelerator running at 100% duty factor. This accelerator requires approximately 110-MW of continuous RF power if one assumes only 10% reserve power for control of the accelerator fields. In fact, to minimize beam spill, the RF controls may need as much as 15 to 20% of reserve power. In addition, unlike an electron accelerator in which the beam is relativistic, a failed RF station can disturb the synchronism of the beam, possibly shutting down the entire accelerator. These issues and more lead to a set of requirements for the RF generators which are stringent, and in some cases, conflicting. In this paper, we will describe the issues and requirements, and outline a plan for RF generator development to meet the needs of the Accelerator-Driven Transmutation Technologies. The key issues which will be discussed include: operating efficiency, operating linearity, effect on the input power grid, bandwidth, gain, reliability, operating voltage, and operating current

  17. Conceptual study of high power proton linac for accelerator driven subcritical nuclear power system

    International Nuclear Information System (INIS)

    Yu Qingchang; Ouyang Huafu; Xu Taoguang

    2002-01-01

    As a prior option of the next generation of energy source, the accelerator driven subcritical nuclear power system (ADS) can use efficiently the uranium and thorium resource, transmute the high-level long-lived radioactive wastes and raise nuclear safety. The ADS accelerator should provide the proton beam with tens megawatts. The superconducting linac is a good selection of ADS accelerator because of its high efficiency and low beam loss rate. The ADS accelerator presented by the authors consists of a 5 MeV radio-frequency quadrupole, a 100 MeV independently phased superconducting cavity linac and a 1 GeV elliptical superconducting cavity linac. The accelerating structures and main parameters are determined and the research and development plan is considered

  18. Conceptual study of high power proton linac for accelerator driven subcritical nuclear power system

    CERN Document Server

    Yu Qi; Ouyang Hua Fu; Xu Tao Guang

    2001-01-01

    As a prior option of the next generation of energy source, the accelerator driven subcritical nuclear power system (ADS) can use efficiently the uranium and thorium resource, transmute the high-level long-lived radioactive wastes and raise nuclear safety. The ADS accelerator should provide the proton beam with tens megawatts. The superconducting linac is a good selection of ADS accelerator because of its high efficiency and low beam loss rate. The ADS accelerator presented by the consists of a 5 MeV radio-frequency quadrupole, a 100 MeV independently phased superconducting cavity linac and a 1 GeV elliptical superconducting cavity linac. The accelerating structures and main parameters are determined and the research and development plan is considered

  19. Analysis on burn-up behaviors for accelerator-driven sub-critical facility

    International Nuclear Information System (INIS)

    Liu Guisheng; Zhao Zhixiang; Zhang Baocheng; Shen Qinbiao; Ding Dazhao

    2000-01-01

    An analysis is performed on burn-up behaviors for accelerator-driven sub-critical reactor by means of the code PASC-1 for neutronics calculation, the code CBURN for burn-up calculation and 44 group constants is processed by CENDL-2 and ENDF/B-6 using NJOY-91.91

  20. Soft x-ray driven ablation and its positive use for a new efficient acceleration

    International Nuclear Information System (INIS)

    Yabe, Takashi; Kiyokawa, Shuji; Mochizuki, Takayasu; Sakabe, Shuji; Yamanaka, Chiyoe

    1983-01-01

    The ablation process driven by soft X-ray is investigated by one-dimensional hydrodynamic code coupled with LTE, average ion model and multi-group radiation package. The following two major results are obtained: (1) the ablation pressure and mass ablation rate scalings, and (2) a new acceleration scheme which positively uses the unique property of soft X-ray transport. (author)

  1. Accelerator driven systems: Energy generation and transmutation of nuclear waste. Status report

    International Nuclear Information System (INIS)

    1997-11-01

    The report includes 31 individual contributions by experts from six countries and two international organizations in different areas of the accelerator driven transmutation technology intended to be applied for the treatment of highly radioactive waste and power generation. A separate abstract was prepared for each paper

  2. Laser-driven acceleration of protons from hydrogenated annealed silicon targets

    Czech Academy of Sciences Publication Activity Database

    Picciotto, A.; Margarone, Daniele; Krása, Josef; Velyhan, Andriy; Serra, E.; Bellutti, P.; Scarduelli, G.; Calliari, L.; Krouský, Eduard; Rus, Bedřich; Dapor, M.

    2010-01-01

    Roč. 92, č. 3 (2010), 34008/1-34008/5 ISSN 0295-5075 R&D Projects: GA MŠk(CZ) LC528 Institutional research plan: CEZ:AV0Z10100523 Keywords : laser-driven acceleration * laser ablation * plasma-material interactions * boundary layer effects Subject RIV: BH - Optics, Masers, Lasers Impact factor: 2.753, year: 2010

  3. Accelerator driven systems: Energy generation and transmutation of nuclear waste. Status report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-11-01

    The report includes 31 individual contributions by experts from six countries and two international organizations in different areas of the accelerator driven transmutation technology intended to be applied for the treatment of highly radioactive waste and power generation. A separate abstract was prepared for each paper. Refs, figs, tabs.

  4. Accelerator Driven Sub-Critical System for the Radioactive Waste Transmutation

    International Nuclear Information System (INIS)

    Avramovic, I.; Pesic, M.

    2008-01-01

    Spent nuclear fuel discharged from nuclear power plants is the main problem during design of radioactive waste disposal. Most of the hazard stems from only a few chemical elements. The radiotoxicity of these elements can be efficiently reduced using partitioning and transmutation in fast reactors and accelerator driven subcritical systems. (author)

  5. Reliability studies of a high-power proton accelerator for accelerator-driven system applications for nuclear waste transmutation

    International Nuclear Information System (INIS)

    Burgazzi, Luciano; Pierini, Paolo

    2007-01-01

    The main effort of the present study is to analyze the availability and reliability of a high-performance linac (linear accelerator) conceived for Accelerator-Driven Systems (ADS) purpose and to suggest recommendations, in order both to meet the high operability goals and to satisfy the safety requirements dictated by the reactor system. Reliability Block Diagrams (RBD) approach has been considered for system modelling, according to the present level of definition of the design: component failure modes are assessed in terms of Mean Time Between Failure (MTBF) and Mean Time To Repair (MTTR), reliability and availability figures are derived, applying the current reliability algorithms. The lack of a well-established component database has been pointed out as the main issue related to the accelerator reliability assessment. The results, affected by the conservative character of the study, show a high margin for the improvement in terms of accelerator reliability and availability figures prediction. The paper outlines the viable path towards the accelerator reliability and availability enhancement process and delineates the most proper strategies. The improvement in the reliability characteristics along this path is shown as well

  6. Reliability studies of a high-power proton accelerator for accelerator-driven system applications for nuclear waste transmutation

    Energy Technology Data Exchange (ETDEWEB)

    Burgazzi, Luciano [ENEA-Centro Ricerche ' Ezio Clementel' , Advanced Physics Technology Division, Via Martiri di Monte Sole, 4, 40129 Bologna (Italy)]. E-mail: burgazzi@bologna.enea.it; Pierini, Paolo [INFN-Sezione di Milano, Laboratorio Acceleratori e Superconduttivita Applicata, Via Fratelli Cervi 201, I-20090 Segrate (MI) (Italy)

    2007-04-15

    The main effort of the present study is to analyze the availability and reliability of a high-performance linac (linear accelerator) conceived for Accelerator-Driven Systems (ADS) purpose and to suggest recommendations, in order both to meet the high operability goals and to satisfy the safety requirements dictated by the reactor system. Reliability Block Diagrams (RBD) approach has been considered for system modelling, according to the present level of definition of the design: component failure modes are assessed in terms of Mean Time Between Failure (MTBF) and Mean Time To Repair (MTTR), reliability and availability figures are derived, applying the current reliability algorithms. The lack of a well-established component database has been pointed out as the main issue related to the accelerator reliability assessment. The results, affected by the conservative character of the study, show a high margin for the improvement in terms of accelerator reliability and availability figures prediction. The paper outlines the viable path towards the accelerator reliability and availability enhancement process and delineates the most proper strategies. The improvement in the reliability characteristics along this path is shown as well.

  7. Monte Carlo Analysis of the Accelerator-Driven System at Kyoto University Research Reactor Institute

    Directory of Open Access Journals (Sweden)

    Wonkyeong Kim

    2016-04-01

    Full Text Available An accelerator-driven system consists of a subcritical reactor and a controllable external neutron source. The reactor in an accelerator-driven system can sustain fission reactions in a subcritical state using an external neutron source, which is an intrinsic safety feature of the system. The system can provide efficient transmutations of nuclear wastes such as minor actinides and long-lived fission products and generate electricity. Recently at Kyoto University Research Reactor Institute (KURRI; Kyoto, Japan, a series of reactor physics experiments was conducted with the Kyoto University Critical Assembly and a Cockcroft–Walton type accelerator, which generates the external neutron source by deuterium–tritium reactions. In this paper, neutronic analyses of a series of experiments have been re-estimated by using the latest Monte Carlo code and nuclear data libraries. This feasibility study is presented through the comparison of Monte Carlo simulation results with measurements.

  8. Towards the final BSA modeling for the accelerator-driven BNCT facility at INFN LNL

    Energy Technology Data Exchange (ETDEWEB)

    Ceballos, C. [Centro de Aplicaciones Tecnlogicas y Desarrollo Nuclear, 5ta y30, Miramar, Playa, Ciudad Habana (Cuba); Esposito, J., E-mail: juan.esposito@lnl.infn.it [INFN, Laboratori Nazionali di Legnaro (LNL), via dell' Universita, 2, I-35020 Legnaro (PD) (Italy); Agosteo, S. [Politecnico di Milano, Dipartimento di Energia, Piazza Leonardo da Vinci 32, 20133 Milano (Italy)] [INFN, Sezione di Milano, via Celoria 16, 20133 Milano (Italy); Colautti, P.; Conte, V.; Moro, D. [INFN, Laboratori Nazionali di Legnaro (LNL), via dell' Universita, 2, I-35020 Legnaro (PD) (Italy); Pola, A. [Politecnico di Milano, Dipartimento di Energia, Piazza Leonardo da Vinci 32, 20133 Milano (Italy)] [INFN, Sezione di Milano, via Celoria 16, 20133 Milano (Italy)

    2011-12-15

    Some remarkable advances have been made in the last years on the SPES-BNCT project of the Istituto Nazionale di Fisica Nucleare (INFN) towards the development of the accelerator-driven thermal neutron beam facility at the Legnaro National Laboratories (LNL), aimed at the BNCT experimental treatment of extended skin melanoma. The compact neutron source will be produced via the {sup 9}Be(p,xn) reactions using the 5 MeV, 30 mA beam driven by the RFQ accelerator, whose modules construction has been recently completed, into a thick beryllium target prototype already available. The Beam Shaping Assembly (BSA) final modeling, using both neutron converter and the new, detailed, Be(p,xn) neutron yield spectra at 5 MeV energy recently measured at the CN Van de Graaff accelerator at LNL, is summarized here.

  9. Monte Carlo analysis of the accelerator-driven system at Kyoto University Research Reactor Institute

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Won Kyeong; Lee, Deok Jung [Nuclear Engineering Division, Ulsan National Institute of Science and Technology, Ulsan (Korea, Republic of); Lee, Hyun Chul [VHTR Technology Development Division, Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of); Pyeon, Cheol Ho [Nuclear Engineering Science Division, Kyoto University Research Reactor Institute, Osaka (Japan); Shin, Ho Cheol [Core and Fuel Analysis Group, Korea Hydro and Nuclear Power Central Research Institute, Daejeon (Korea, Republic of)

    2016-04-15

    An accelerator-driven system consists of a subcritical reactor and a controllable external neutron source. The reactor in an accelerator-driven system can sustain fission reactions in a subcritical state using an external neutron source, which is an intrinsic safety feature of the system. The system can provide efficient transmutations of nuclear wastes such as minor actinides and long-lived fission products and generate electricity. Recently at Kyoto University Research Reactor Institute (KURRI; Kyoto, Japan), a series of reactor physics experiments was conducted with the Kyoto University Critical Assembly and a Cockcroft-Walton type accelerator, which generates the external neutron source by deuterium-tritium reactions. In this paper, neutronic analyses of a series of experiments have been re-estimated by using the latest Monte Carlo code and nuclear data libraries. This feasibility study is presented through the comparison of Monte Carlo simulation results with measurements.

  10. A new awakening for accelerator cavities

    CERN Multimedia

    Katarina Anthony

    2013-01-01

    Imagine: an accelerator unbound by length; one that can bring a beam up to the TeV level in just a few hundred metres. Sounds like a dream? Perhaps not for long. At CERN’s Proton Driven Plasma Wakefield Acceleration Experiment (AWAKE), physicists may soon be working to bring this contemporary fairy-tale to life.   The AWAKE experiment in the CNGS facility. Wherever you find a modern linear particle accelerator, you’ll find with it a lengthy series of RF accelerating cavities. Although based on technology first developed over half a century ago, RF cavities have dominated the accelerating world since their inception. However, new developments in plasma accelerator systems may soon be bringing a new player into the game. By harnessing the power of wakefields generated by beams in plasma cells, physicists may be able to produce accelerator gradients of many GV/m –  hundreds of times higher than those achieved in current RF cavities. “Plasma wakef...

  11. Laser-ablation-based ion source characterization and manipulation for laser-driven ion acceleration

    Science.gov (United States)

    Sommer, P.; Metzkes-Ng, J.; Brack, F.-E.; Cowan, T. E.; Kraft, S. D.; Obst, L.; Rehwald, M.; Schlenvoigt, H.-P.; Schramm, U.; Zeil, K.

    2018-05-01

    For laser-driven ion acceleration from thin foils (∼10 μm–100 nm) in the target normal sheath acceleration regime, the hydro-carbon contaminant layer at the target surface generally serves as the ion source and hence determines the accelerated ion species, i.e. mainly protons, carbon and oxygen ions. The specific characteristics of the source layer—thickness and relevant lateral extent—as well as its manipulation have both been investigated since the first experiments on laser-driven ion acceleration using a variety of techniques from direct source imaging to knife-edge or mesh imaging. In this publication, we present an experimental study in which laser ablation in two fluence regimes (low: F ∼ 0.6 J cm‑2, high: F ∼ 4 J cm‑2) was applied to characterize and manipulate the hydro-carbon source layer. The high-fluence ablation in combination with a timed laser pulse for particle acceleration allowed for an estimation of the relevant source layer thickness for proton acceleration. Moreover, from these data and independently from the low-fluence regime, the lateral extent of the ion source layer became accessible.

  12. Intense laser driven collision-less shock and ion acceleration in magnetized plasmas

    Science.gov (United States)

    Mima, K.; Jia, Q.; Cai, H. B.; Taguchi, T.; Nagatomo, H.; Sanz, J. R.; Honrubia, J.

    2016-05-01

    The generation of strong magnetic field with a laser driven coil has been demonstrated by many experiments. It is applicable to the magnetized fast ignition (MFI), the collision-less shock in the astrophysics and the ion shock acceleration. In this paper, the longitudinal magnetic field effect on the shock wave driven by the radiation pressure of an intense short pulse laser is investigated by theory and simulations. The transition of a laminar shock (electro static shock) to the turbulent shock (electromagnetic shock) occurs, when the external magnetic field is applied in near relativistic cut-off density plasmas. This transition leads to the enhancement of conversion of the laser energy into high energy ions. The enhancement of the conversion efficiency is important for the ion driven fast ignition and the laser driven neutron source. It is found that the total number of ions reflected by the shock increases by six time when the magnetic field is applied.

  13. Advanced Accelerator Development Strategy Report: DOE Advanced Accelerator Concepts Research Roadmap Workshop

    Energy Technology Data Exchange (ETDEWEB)

    None, None

    2016-02-03

    Over a full two day period, February 2–3, 2016, the Office of High Energy Physics convened a workshop in Gaithersburg, MD to seek community input on development of an Advanced Accelerator Concepts (AAC) research roadmap. The workshop was in response to a recommendation by the HEPAP Accelerator R&D Subpanel [1] [2] to “convene the university and laboratory proponents of advanced acceleration concepts to develop R&D roadmaps with a series of milestones and common down selection criteria towards the goal for constructing a multi-TeV e+e– collider” (the charge to the workshop can be found in Appendix A). During the workshop, proponents of laser-driven plasma wakefield acceleration (LWFA), particle-beam-driven plasma wakefield acceleration (PWFA), and dielectric wakefield acceleration (DWFA), along with a limited number of invited university and laboratory experts, presented and critically discussed individual concept roadmaps. The roadmap workshop was preceded by several preparatory workshops. The first day of the workshop featured presentation of three initial individual roadmaps with ample time for discussion. The individual roadmaps covered a time period extending until roughly 2040, with the end date assumed to be roughly appropriate for initial operation of a multi-TeV e+e– collider. The second day of the workshop comprised talks on synergies between the roadmaps and with global efforts, potential early applications, diagnostics needs, simulation needs, and beam issues and challenges related to a collider. During the last half of the day the roadmaps were revisited but with emphasis on the next five to ten years (as specifically requested in the charge) and on common challenges. The workshop concluded with critical and unanimous endorsement of the individual roadmaps and an extended discussion on the characteristics of the common challenges. (For the agenda and list of participants see Appendix B.)

  14. Accelerator driven light water fast reactor (revisiting to the accelerator LWR fuel regenerator)

    International Nuclear Information System (INIS)

    Takahashi, H.; Zhang, J.

    1999-01-01

    A tight-latticed, high-enriched Pu fuel reactor cooled by water or by super-critical steam has a high neutron economy, similar to that of Na-or Pb-cooled fast reactor. Operating in a subcritical condition by providing spallation neutrons, this Pu-fueled reactor can run safely, despite the positive coolant void coefficients. It can be used to transmute the proliferation-prone Pu into proliferation-resistive U-233 fuel using thorium as the fertile material. Rather than employing the large linear accelerator proposed for the LWR fuel regenerator studied in the INFCE program, a small circular accelerator, such as a cyclotron or a Fixed Field Alternating Gradient Synchrotron (FFAG), can run a large power reactor in a slightly subcritical reactor using control rods, on-line fuel reshuffling, and slightly graded proton-beam injection. Some thoughts on improving the reliability of the proton accelerator, on transmutation of the long-lived fission products of Tc-99, and I-129, and the future direction of the development of the fast reactor are discussed. (author)

  15. Fast accelerator driven subcritical system for energy production: nuclear fuel evolution

    International Nuclear Information System (INIS)

    Barros, Graiciany de P.; Pereira, Claubia; Veloso, Maria A.F.; Costa, Antonella L.

    2011-01-01

    Accelerators Driven Systems (ADS) are an innovative type of nuclear system, which is useful for long-lived fission product transmutation and fuel regeneration. The ADS consist of a coupling of a sub-critical nuclear core reactor and a proton beam produced by a particle accelerator. These particles are injected into a target for the neutrons production by spallation reactions. The neutrons are then used to maintain the fission chain in the sub-critical core. The aim of this study is to investigate the nuclear fuel evolution of a lead cooled accelerator driven system used for energy production. The fuel studied is a mixture based upon "2"3"2Th and "2"3"3U. Since thorium is an abundant fertile material, there is hope for the thorium-cycle fuels for an accelerator driven sub-critical system. The target is a lead spallation target and the core is filled with a hexagonal lattice. High energy neutrons are used to reduce the negative reactivity caused by the presence of protoactinium, since this effect is most pronounced in the thermal range of the neutron spectrum. For that reason, such material is not added moderator to the system. In this work is used the Monte Carlo code MCNPX 2.6.0, that presents the the depletion/ burnup capability. The k_e_f_f evolution, the neutron energy spectrum in the core and the nuclear fuel evolution using ADS source (SDEF) and kcode-mode are evaluated during the burnup. (author)

  16. Ion acceleration in non-equilibrium plasmas driven by fast drifting electron

    Energy Technology Data Exchange (ETDEWEB)

    Castro, G. [INFN- Laboratori Nazionali del Sud, via S.Sofia 62, 95123 Catania (Italy); Università degli Studi di Catania, Dipartimento di Fisica e Astronomia, V. S.Sofia 64, 95123 Catania (Italy); Di Bartolo, F., E-mail: fdibartolo@unime.it [Università di Messina, V.le F. Stagno D’Alcontres 31, 98166, Messina (Italy); Gambino, N. [INFN- Laboratori Nazionali del Sud, via S.Sofia 62, 95123 Catania (Italy); Università degli Studi di Catania, Dipartimento di Metodologie Fisiche e Chimiche per L’ingegneria, Viale A.Doria 6, 95125 Catania (Italy); Mascali, D. [INFN- Laboratori Nazionali del Sud, via S.Sofia 62, 95123 Catania (Italy); CSFNSM, Viale A. Doria 6, 95125 Catania (Italy); Romano, F.P. [INFN- Laboratori Nazionali del Sud, via S.Sofia 62, 95123 Catania (Italy); CNR-IBAM Via Biblioteca 4, 95124 Catania (Italy); Anzalone, A.; Celona, L.; Gammino, S. [INFN- Laboratori Nazionali del Sud, via S.Sofia 62, 95123 Catania (Italy); Di Giugno, R. [INFN- Laboratori Nazionali del Sud, via S.Sofia 62, 95123 Catania (Italy); Università degli Studi di Catania, Dipartimento di Fisica e Astronomia, V. S.Sofia 64, 95123 Catania (Italy); Lanaia, D. [INFN- Laboratori Nazionali del Sud, via S.Sofia 62, 95123 Catania (Italy); Miracoli, R. [INFN- Laboratori Nazionali del Sud, via S.Sofia 62, 95123 Catania (Italy); Università degli Studi di Catania, Dipartimento di Fisica e Astronomia, V. S.Sofia 64, 95123 Catania (Italy); Serafino, T. [CSFNSM, Viale A. Doria 6, 95125 Catania (Italy); Tudisco, S. [INFN- Laboratori Nazionali del Sud, via S.Sofia 62, 95123 Catania (Italy); CSFNSM, Viale A. Doria 6, 95125 Catania (Italy)

    2013-05-01

    We hereby present results on ion acceleration mechanisms in non equilibrium plasmas generated by microwaves or high intensity laser pulses. Experiments point out that in magnetized plasmas X–B conversion takes place for under resonance values of the magnetic field, i.e. an electromagnetic mode is converted into an electrostatic wave. The strong self-generated electric field, of the order of 10{sup 7} V/m, causes a E × B drift which accelerates both ions and electrons, as it is evident by localized sputtering in the plasma chamber. These fields are similar (in magnitude) to the ones obtainable in laser generated plasmas at intensity of 10{sup 12} W/cm{sup 2}. In this latter case, we observe that the acceleration mechanism is driven by electrons drifting much faster than plasma bulk, thus generating an extremely strong electric field ∼10{sup 7} V/m. The two experiments confirm that ions acceleration at low energy is possible with table-top devices and following complementary techniques: i.e. by using microwave-driven (producing CW beams) plasmas, or non-equilibrium laser-driven plasmas (producing pulsed beams). Possible applications involve ion implantation, materials surface modifications, ion beam assisted lithography, etc.

  17. Neutron Imaging at Compact Accelerator-Driven Neutron Sources in Japan

    Directory of Open Access Journals (Sweden)

    Yoshiaki Kiyanagi

    2018-03-01

    Full Text Available Neutron imaging has been recognized to be very useful to investigate inside of materials and products that cannot be seen by X-ray. New imaging methods using the pulsed structure of neutron sources based on accelerators has been developed also at compact accelerator-driven neutron sources and opened new application fields in neutron imaging. The world’s first dedicated imaging instrument at pulsed neutron sources was constructed at J-PARC in Japan owing to the development of such new methods. Then, usefulness of the compact accelerator-driven neutron sources in neutron science was recognized and such facilities were newly constructed in Japan. Now, existing and new sources have been used for neutron imaging. Traditional imaging and newly developed pulsed neutron imaging such as Bragg edge transmission have been applied to various fields by using compact and large neutron facilities. Here, compact accelerator-driven neutron sources used for imaging in Japan are introduced and some of their activities are presented.

  18. Linear accelerator driven (LADR) and regenerative reactors (LARR) for nuclear non-proliferation

    International Nuclear Information System (INIS)

    Steinberg, M.; Takahashi, H.; Powell, J.R.; Kouts, H.J.C.

    1977-09-01

    Linear accelerator breeders (LAB) could be used to produce fissile fuel in two modes, either with fuel reprocessing or without fuel reprocessing. With fuel reprocessing, the fissile material would be separated from the target and refabricated into a fuel element for use in a burner power reactor. Without reprocessing, the fissile material would be produced in-situ, either in a fresh fuel element or in a depleted or burned element after use in a power reactor. In the latter mode the fissile material would be increased in concentration for reuse in a power reactor. This system is called a Linear Accelerator Regenerative Reactor (LARR). The LAB can also be conceived of operating in a power production mode in which the spallation neutrons would be used to drive a subcritical assembly to produce power. This is called a Linear Accelerator Driven Reactor (LADR). A discussion is given of the principles and some of the technical problems of both types of accelerator breeders

  19. Wire measurement of impedance of an X-band accelerating structure

    CERN Document Server

    Baboi, N; Dolgashev, V A; Jones, R M; Lewandowski, J R; Tantawi, S G; Wang, J W

    2004-01-01

    Several tens of thousands of accelerator structures will be needed for the next generation of linear collders known as the GLC/NLC (Global Linear Collider/Next Linear Collider). To prevent the beam being driven into a disruptive BBU (Beam Break Up) mode or at the very least, the emittance being signifcantly diluted, it is important to damp down the wakefield left by driving bunches to a manageable level. Manufacturing errors and errors in design need to be measurable and compared with predictions. We develop a circuit model of wire-loaded X-band accelerator structures. This enables the wakefield (the inverse transform of the beam impedance) to be readily computed and compared with the wire measurement. We apply this circuit model to the latest series of accelerating for the GLC/NLC. This circuit model is based upon the single-cell model developed in [1] extended here to complete, multi-cell structures.

  20. Future accelerator technology

    International Nuclear Information System (INIS)

    Sessler, A.M.

    1986-05-01

    A general discussion is presented of the acceleration of particles. Upon this foundation is built a categorization scheme into which all accelerators can be placed. Special attention is devoted to accelerators which employ a wake-field mechanism and a restricting theorem is examined. It is shown how the theorem may be circumvented. Comments are made on various acceleration schemes

  1. Accelerator-driven thermal fission systems may provide energy supply advantages

    International Nuclear Information System (INIS)

    Linford, R.K.

    1992-01-01

    This presentation discusses the energy supply advantages of using accelerator-driven thermal fission systems. Energy supply issues as related to cost, fuel supply stability, environmental impact, and safety are reviewed. It is concluded that the Los Alamos Accelerator Transmutation of Waste (ATW) concept, discussed here, has the following advantages: improved safety in the form of low inventory and subcriticality; reduced high-level radioactive waste management timescales for both fission products and actinides; and a very long-term fuel supply requiring no enrichment

  2. Benchmarks of subcriticality in accelerator-driven system at Kyoto University Critical Assembly

    Directory of Open Access Journals (Sweden)

    Cheol Ho Pyeon

    2017-09-01

    Full Text Available Basic research on the accelerator-driven system is conducted by combining 235U-fueled and 232Th-loaded cores in the Kyoto University Critical Assembly with the pulsed neutron generator (14 MeV neutrons and the proton beam accelerator (100 MeV protons with a heavy metal target. The results of experimental subcriticality are presented with a wide range of subcriticality level between near critical and 10,000 pcm, as obtained by the pulsed neutron source method, the Feynman-α method, and the neutron source multiplication method.

  3. New method for laser driven ion acceleration with isolated, mass-limited targets

    International Nuclear Information System (INIS)

    Paasch-Colberg, T.; Sokollik, T.; Gorling, K.; Eichmann, U.; Steinke, S.; Schnuerer, M.; Nickles, P.V.; Andreev, A.; Sandner, W.

    2011-01-01

    A new technique to investigate laser driven ion acceleration with fully isolated, mass-limited glass spheres with a diameter down to 8μm is presented. A Paul trap was used to prepare a levitating glass sphere for the interaction with a laser pulse of relativistic intensity. Narrow-bandwidth energy spectra of protons and oxygen ions have been observed and were attributed to specific acceleration field dynamics in case of the spherical target geometry. A general limiting mechanism has been found that explains the experimentally observed ion energies for the mass-limited target.

  4. System and safety studies of accelerator driven transmutation systems. Annual report 1999

    International Nuclear Information System (INIS)

    Gudowski, Waclaw; Wallenius, Jan; Eriksson, Marcus; Carlsson, Johan; Seltborg, Per; Tucek, Kamil

    2000-05-01

    In 1996, SKB commenced funding of the project 'System and safety studies of accelerator driven transmutation systems and development of a spallation target'. The aim of the project was stated as: Development of a complete code for simulation of transmutation processes in an accelerator driven system. Application of the code for analysis of neutron flux, transmutation rates, reactivity changes, toxicity and radiation damages in the transmutation core. Build up of competence regarding issues related to spallation targets, development of research activities regarding relevant material issues. Performing of basic experiments in order to investigate the adequacy of using the spallation. target as a neutron source for a transmutation system, and participation in the planning and implementation of an international demonstration experiment. In the present report, activities within and related to the framework of the project, performed at the department of Nuclear and Reactor Physics at the Royal Institute of Technology during 1999, are accounted for

  5. System and safety studies of accelerator driven transmutation systems. Annual report 1997

    International Nuclear Information System (INIS)

    Wallenius, J.; Carlsson, Johan; Gudowski, W.

    1997-12-01

    In November 1996, SKB started financing of the project ''System and safety studies of accelerator driven transmutation systems and development of a spallation target''. The aim of the project was stated as: 1) Development of a complete code for simulation of transmutation processes in an accelerator driven system. Application of the code for analysis of neutron flux, transmutation rates, reactivity changes, toxicity and radiation damages in the transmutation core. 2) Build up of competence regarding issues related to spallation targets development of research activities regarding relevant material issues. Performing of basic experiments in order to investigate the adequacy of using the spallation target as a neutron source for a transmutation system, and participation in the planning and implementation of an international demonstration-experiment. In the present report, activities within the framework of the project performed at the department of Nuclear and Reactor Physics at the Royal Institute of Technology during 1997, are accounted for

  6. System and safety studies of accelerator driven transmutation systems. Annual report 1997

    Energy Technology Data Exchange (ETDEWEB)

    Wallenius, J.; Carlsson, Johan; Gudowski, W. [Royal Inst. of Tech., Stockholm (Sweden). Dept. of Nuclear and Reactor Physics

    1997-12-01

    In November 1996, SKB started financing of the project ``System and safety studies of accelerator driven transmutation systems and development of a spallation target``. The aim of the project was stated as: 1) Development of a complete code for simulation of transmutation processes in an accelerator driven system. Application of the code for analysis of neutron flux, transmutation rates, reactivity changes, toxicity and radiation damages in the transmutation core. 2) Build up of competence regarding issues related to spallation targets development of research activities regarding relevant material issues. Performing of basic experiments in order to investigate the adequacy of using the spallation target as a neutron source for a transmutation system, and participation in the planning and implementation of an international demonstration-experiment. In the present report, activities within the framework of the project performed at the department of Nuclear and Reactor Physics at the Royal Institute of Technology during 1997, are accounted for. 13 refs, 6 figs.

  7. Temperature Profile of the Solution Vessel of an Accelerator-Driven Subcritical Fissile Solution System

    Energy Technology Data Exchange (ETDEWEB)

    Klein, Steven Karl [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Determan, John C. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2015-09-14

    Dynamic System Simulation (DSS) models of fissile solution systems have been developed and verified against a variety of historical configurations. DSS techniques have been applied specifically to subcritical accelerator-driven systems using fissile solution fuels of uranium. Initial DSS models were developed in DESIRE, a specialized simulation scripting language. In order to tailor the DSS models to specifically meet needs of system designers they were converted to a Visual Studio implementation, and one of these subsequently to National Instrument’s LabVIEW for human factors engineering and operator training. Specific operational characteristics of subcritical accelerator-driven systems have been examined using a DSS model tailored to this particular class using fissile fuel.

  8. Temperature Profile of the Solution Vessel of an Accelerator-Driven Subcritical Fissile Solution System

    International Nuclear Information System (INIS)

    Klein, Steven Karl; Determan, John C.

    2015-01-01

    Dynamic System Simulation (DSS) models of fissile solution systems have been developed and verified against a variety of historical configurations. DSS techniques have been applied specifically to subcritical accelerator-driven systems using fissile solution fuels of uranium. Initial DSS models were developed in DESIRE, a specialized simulation scripting language. In order to tailor the DSS models to specifically meet needs of system designers they were converted to a Visual Studio implementation, and one of these subsequently to National Instrument's LabVIEW for human factors engineering and operator training. Specific operational characteristics of subcritical accelerator-driven systems have been examined using a DSS model tailored to this particular class using fissile fuel.

  9. System and safety studies of accelerator driven transmutation systems. Annual report 1999

    Energy Technology Data Exchange (ETDEWEB)

    Gudowski, Waclaw; Wallenius, Jan; Eriksson, Marcus; Carlsson, Johan; Seltborg, Per; Tucek, Kamil [Royal Inst. of Tech., Stockholm (Sweden). Dept. of Nuclear and Reactor Physics

    2000-05-01

    In 1996, SKB commenced funding of the project 'System and safety studies of accelerator driven transmutation systems and development of a spallation target'. The aim of the project was stated as: Development of a complete code for simulation of transmutation processes in an accelerator driven system. Application of the code for analysis of neutron flux, transmutation rates, reactivity changes, toxicity and radiation damages in the transmutation core. Build up of competence regarding issues related to spallation targets, development of research activities regarding relevant material issues. Performing of basic experiments in order to investigate the adequacy of using the spallation. target as a neutron source for a transmutation system, and participation in the planning and implementation of an international demonstration experiment. In the present report, activities within and related to the framework of the project, performed at the department of Nuclear and Reactor Physics at the Royal Institute of Technology during 1999, are accounted for.

  10. An innovative accelerator-driven inertial electrostatic confinement device using converging ion beams

    International Nuclear Information System (INIS)

    Bauer, T. H.; Wigeland, R. A.

    1999-01-01

    Fundamental physics issues facing development of fusion power on a small-scale are assessed with emphasis on the idea of Inertial Electrostatic Confinement (IEC). The authors propose a new concept of accelerator-driven IEC fusion, termed Converging Beam Inertial Electrostatic Confinement (CB-IEC). CB-IEC offers a number of innovative features that make it an attractive pathway toward resolving fundamental physics issues and assessing the ultimate viability of the IEC concept for power generation

  11. LANL sunnyside experiment: Study of neutron production in accelerator-driven targets

    International Nuclear Information System (INIS)

    Morgan, G.; Butler, G.; Cappiello, M.; Carius, S.; Daemen, L.; DeVolder, B.; Frehaut, J.; Goulding, C.; Grace, R.; Green, R.; Lisowski, P.; Littleton, P.; King, J.; King, N.; Prael, R.; Stratton, T.; Turner, S.; Ullmann, J.; Venneri, F.; Yates, M.

    1995-01-01

    Measurements have been made of the neutron production in prototypic targets for accelerator driven systems. Studies were conducted on four target assemblies containing lead, lithium, tungsten, and a thorium-salt mixture. Integral data on total neutron production were obtained as well as more differential data on neutron leakage and neutron flux profiles in the blanket/moderator region. Data analysis on total neutron production is complete and shows excellent agreement with calculations using the LAHET/MCNP code system

  12. Ability of Accelerator-Driven Systems (ADS) to Transmute Long Lived Fission Fragments

    International Nuclear Information System (INIS)

    Nguyen Mong Giao; Nguyen Thi Ai Thu; Tu Thanh Danh; Tran Thanh Dung; Huynh, Thi Kim Chi

    2010-12-01

    This paper presents the research results of the possibility to transmute the long-lived radioactive isotopes into stable or short-lived, mainly the long-lived fission fragments as 99 Tc, 127 I, 129 I, 181 Ta, 107 Ag, 109 Ag by accelerator-driven systems. We use semi-empirical formulas to establish our calculating code with the support of computer programs. (author)

  13. Ability to burn plutonium and minor actinides. Interest of accelerator driven system compared to critical reactor

    International Nuclear Information System (INIS)

    Vergnes, J.; Mouney, H.

    1998-01-01

    In the frame of the French Act of December 1991, EDF is presently assessing the interest of Acceleration Driven System (ADS) for the Transmutation of the Plutonium and Minor Actinides (MA) produced by its park of nuclear reactors. The studies presented here assess the efficiency of ADS and critical reactors to incinerate Pu and MA (Minor Actinides) and the potential interest of ADS for that purpose. (author)

  14. LANL sunnyside experiment: Study of neutron production in accelerator-driven targets

    Energy Technology Data Exchange (ETDEWEB)

    Morgan, G.; Butler, G.; Cappiello, M. [Los Alamos National Laboratory, NM (United States)] [and others

    1995-10-01

    Measurements have been made of the neutron production in prototypic targets for accelerator driven systems. Studies were conducted on four target assemblies containing lead, lithium, tungsten, and a thorium-salt mixture. Integral data on total neutron production were obtained as well as more differential data on neutron leakage and neutron flux profiles in the blanket/moderator region. Data analysis on total neutron production is complete and shows excellent agreement with calculations using the LAHET/MCNP code system.

  15. Transition from wakefield generation to soliton formation

    Science.gov (United States)

    Holkundkar, Amol R.; Brodin, Gert

    2018-04-01

    It is well known that when a short laser pulse propagates in an underdense plasma, it induces longitudinal plasma oscillations at the plasma frequency after the pulse, typically referred to as the wakefield. However, for plasma densities approaching the critical density, wakefield generation is suppressed, and instead the EM-pulse (electromagnetic pulse) undergoes nonlinear self-modulation. In this article we have studied the transition from the wakefield generation to formation of quasi-solitons as the plasma density is increased. For this purpose we have applied a one-dimensional relativistic cold fluid model, which has also been compared with particle-in-cell simulations. A key result is that the energy loss of the EM-pulse due to wakefield generation has its maximum for a plasma density of the order 10% of the critical density, but that wakefield generation is sharply suppressed when the density is increased further.

  16. Burning of spent fuel of an accelerator-driven modular HTGR in sub-critical condition

    International Nuclear Information System (INIS)

    Jing Xingqing; Yang Yongwei; Chang Hong; Wu Zongxin; Gu Yuxiang

    2002-01-01

    The modular high temperature gas cooled reactor (MHTGR) has good safety characteristics because of the use of coated particles in the fuel element. After the particles cool outside of the reactor for some time, the spent fuel can be re-utilized. The author describes a physics feasibility study for the burning of spent fuel from a 350 MW ring-shaped modular high temperature gas cooled reactor in an accelerator-driven sub-critical reactor. A conceptual design is given for the 30 MW accelerator-driven sub-critical reactor. The neutron transport in the sub-critical reactor was simulated using the MCNP code, and the burnup was calculated using the ORIGEN2 code. The results show that the accelerator-driven sub-critical gas-cooled reactor has reliable sub-criticality and low power density and that the spent fuel from a 350 MW ring-shaped modular high temperature gas cooled reactor can be burned to provide 20% more energy

  17. Dynamic analysis of an accelerator-driven fluid-fueled subcritical radioactive waste burning system

    International Nuclear Information System (INIS)

    Woosley, M.L. Jr.; Rydin, R.A.

    1998-01-01

    The recent revival of interest in accelerator-driven subcritical fluid-fueled systems is documented. Several important applications of these systems are mentioned, and this is used to motivate the need for dynamic analysis of the nuclear kinetics of such systems. A physical description of the Los alamos National Laboratory accelerator-based conversion (ABC) concept is provided. This system is used as the basis for the kinetics study in this research. The current approach to the dynamic simulation of an accelerator-driven subcritical fluid-fueled system includes four functional elements: a discrete ordinates model is used to calculate the flux distribution for the source-driven system; a nodal convection model is used to calculate time-dependent isotope and temperature distributions that impact reactivity; a nodal importance weighting model is used to calculate the reactivity impact of temperature and isotope distributions and to feed this information back to the time-dependent nodal convection model; and a transient driver is used to simulate transients, model the balance of plant, and record simulation data. Specific transients that have been analyzed with the current modeling system are discussed. These transients include loss-of-flow and loss-of-cooling accidents, xenon and samarium transients, and cold-plug and overfueling events. The results of various transients have uncovered unpredictable behavior, unresolved design issues, and the need for active control. The need for the development of a nodal-coupling spatial kinetics model is mentioned

  18. System and safety studies of accelerator driven transmutation systems. Annual report 1998

    International Nuclear Information System (INIS)

    Wallenius, J.; Gudowski, W.; Carlsson, Johan; Eriksson, Marcus; Tucek, K.

    1998-12-01

    This annual report describes the accelerator-driven transmutation project conducted at the Department of Nuclear and Reactor Physics at the Royal Institute of Technology. The main results are: development of the simulation tools for accelerator-driven transmutation calculations including an integrated Monte-Carlo burnup module and improvements of neutron energy fission yield simulations, processing of the evacuated nuclear data files including preparation of the temperature dependent neutron cross-sections, development of nuclear data for a medium energy range for some isotopes, development of the models and codes for radiation damage simulations, system studies for the spent fuel transmuter, based on heavy metal coolant and advanced nuclear fuel, contribution to the spallation target design being manufactured in IPPE, Obninsk, and accelerator reliability studies. Moreover a lot of efforts were put to further develop existing international collaboration with the most active research groups in the world together with educational activities in Sweden including a number of meetings and workshops and a graduate course in transmutation. This project has been conducted in close collaboration with the EU-project 'Impact of the accelerator based technologies on nuclear fission safety' - IABAT and in bilateral cooperation with different foreign research groups

  19. System and safety studies of accelerator driven transmutation systems. Annual report 1998

    Energy Technology Data Exchange (ETDEWEB)

    Wallenius, J.; Gudowski, W.; Carlsson, Johan; Eriksson, Marcus; Tucek, K. [Royal Inst. of Tech., Stockholm (Sweden). Dept. of Nuclear and Reactor Physics

    1998-12-01

    This annual report describes the accelerator-driven transmutation project conducted at the Department of Nuclear and Reactor Physics at the Royal Institute of Technology. The main results are: development of the simulation tools for accelerator-driven transmutation calculations including an integrated Monte-Carlo burnup module and improvements of neutron energy fission yield simulations, processing of the evacuated nuclear data files including preparation of the temperature dependent neutron cross-sections, development of nuclear data for a medium energy range for some isotopes, development of the models and codes for radiation damage simulations, system studies for the spent fuel transmuter, based on heavy metal coolant and advanced nuclear fuel, contribution to the spallation target design being manufactured in IPPE, Obninsk, and accelerator reliability studies. Moreover a lot of efforts were put to further develop existing international collaboration with the most active research groups in the world together with educational activities in Sweden including a number of meetings and workshops and a graduate course in transmutation. This project has been conducted in close collaboration with the EU-project `Impact of the accelerator based technologies on nuclear fission safety` - IABAT and in bilateral cooperation with different foreign research groups 31 refs, 23 figs

  20. Operation and reactivity measurements of an accelerator driven subcritical TRIGA reactor

    Science.gov (United States)

    O'Kelly, David Sean

    Experiments were performed at the Nuclear Engineering Teaching Laboratory (NETL) in 2005 and 2006 in which a 20 MeV linear electron accelerator operating as a photoneutron source was coupled to the TRIGA (Training, Research, Isotope production, General Atomics) Mark II research reactor at the University of Texas at Austin (UT) to simulate the operation and characteristics of a full-scale accelerator driven subcritical system (ADSS). The experimental program provided a relatively low-cost substitute for the higher power and complexity of internationally proposed systems utilizing proton accelerators and spallation neutron sources for an advanced ADSS that may be used for the burning of high-level radioactive waste. Various instrumentation methods that permitted ADSS neutron flux monitoring in high gamma radiation fields were successfully explored and the data was used to evaluate the Stochastic Pulsed Feynman method for reactivity monitoring.

  1. Free-electron laser driven by the LBNL laser-plasma accelerator

    International Nuclear Information System (INIS)

    Schroeder, C.B.; Fawley, W.M.; Gruner, F.; Bakeman, M.; Nakamura, K.; Robinson, K.E.; Toth, Cs.; Esarey, E.; Leemans, W.P.

    2008-01-01

    A design of a compact free-electron laser (FEL), generating ultra-fast, high-peak flux, XUV pulses is presented. The FEL is driven by ahigh-current, 0.5 GeV electron beam from the Lawrence Berkeley National Laboratory (LBNL) laser-plasma accelerator, whose active acceleration length is only a few centimeters. The proposed ultra-fast source (∼10 fs) would be intrinsically temporally synchronized to the drive laser pulse, enabling pump-probe studies in ultra-fast science. Owing to the high current (>10 kA) of the laser-plasma-accelerated electron beams, saturated output fluxes are potentially greater than 10 13 photons/pulse. Devices based both on self-amplified spontaneous emission and high-harmonic generated input seeds, to reduce undulator length and fluctuations, are considered.

  2. Design of a free-electron laser driven by the LBNL laser-plasma-accelerator

    International Nuclear Information System (INIS)

    Schroeder, C.B.; Fawley, W.M.; Montgomery, A.L.; Robinson, K.E.; Gruner, F.; Bakeman, M.; Leemans, W.P.

    2007-01-01

    We discuss the design and current status of a compact free-electron laser (FEL), generating ultra-fast, high-peak flux, VUV pulses driven by a high-current, GeV electron beam from the existing Lawrence Berkeley National Laboratory (LBNL) laser-plasma accelerator, whose active acceleration length is only a few cm. The proposed ultra-fast source would be intrinsically temporally synchronized to the drive laser pulse, enabling pump-probe studies in ultra-fast science with pulse lengths of tens of fs. Owing to the high current ( and 10 kA) of the laser-plasma-accelerated electron beams, saturated output fluxes are potentially greater than 1013 photons/pulse. Devices based both on SASE and high-harmonic generated input seeds, to reduce undulator length and fluctuations, are considered

  3. Coulomb-driven energy boost of heavy ions for laser-plasma acceleration.

    Science.gov (United States)

    Braenzel, J; Andreev, A A; Platonov, K; Klingsporn, M; Ehrentraut, L; Sandner, W; Schnürer, M

    2015-03-27

    An unprecedented increase of kinetic energy of laser accelerated heavy ions is demonstrated. Ultrathin gold foils have been irradiated by an ultrashort laser pulse at a peak intensity of 8×10^{19}  W/  cm^{2}. Highly charged gold ions with kinetic energies up to >200  MeV and a bandwidth limited energy distribution have been reached by using 1.3 J laser energy on target. 1D and 2D particle in cell simulations show how a spatial dependence on the ion's ionization leads to an enhancement of the accelerating electrical field. Our theoretical model considers a spatial distribution of the ionization inside the thin target, leading to a field enhancement for the heavy ions by Coulomb explosion. It is capable of explaining the energy boost of highly charged ions, enabling a higher efficiency for the laser-driven heavy ion acceleration.

  4. Research programme for the 660 MeV proton accelerator driven MOX-plutonium subcritical assembly

    International Nuclear Information System (INIS)

    Barashenkov, V.S.; Buttsev, V.S.; Buttseva, G.L.; Dudarev, S.Yu.; Polanski, A.; Puzynin, I.V.; Sissakyan, A.N.

    2000-01-01

    The paper presents a research programme of the Experimental Accelerator Driven System (ADS), which employs a subcritical assembly and a 660 MeV proton accelerator operating at the Laboratory of Nuclear Problems of the JINR, Dubna. MOX fuel (25% PuO 2 + 75% UO 2 ) designed for the BN-600 reactor use will be adopted for the core of the assembly. The present conceptual design of the experimental subcritical assembly is based on a core of a nominal unit capacity of 15 kW (thermal). This corresponds to the multiplication coefficient k eff = 0.945, energetic gain G=30 and the accelerator beam power 0.5 kW

  5. Extremely short relativistic-electron-bunch generation in the laser wakefield via novel bunch injection scheme

    NARCIS (Netherlands)

    Khachatryan, A.G.; van Goor, F.A.; Boller, Klaus J.; Reitsma, A.J.W.; Jaroszynski, D.A.

    2004-01-01

    Recently a new electron-bunch injection scheme for the laser wakefield accelerator has been proposed [JETP Lett. 74, 371 (2001); Phys. Rev. E 65, 046504 (2002)]. In this scheme, a low energy electron bunch, sent in a plasma channel just before a high-intensity laser pulse, is trapped in the laser

  6. A beamline systems model for Accelerator-Driven Transmutation Technology (ADTT) facilities

    Energy Technology Data Exchange (ETDEWEB)

    Todd, A.M.M.; Paulson, C.C.; Peacock, M.A. [Grumman Research and Development Center, Princeton, NJ (United States)] [and others

    1995-10-01

    A beamline systems code, that is being developed for Accelerator-Driven Transmutation Technology (ADTT) facility trade studies, is described. The overall program is a joint Grumman, G.H. Gillespie Associates (GHGA) and Los Alamos National Laboratory effort. The GHGA Accelerator Systems Model (ASM) has been adopted as the framework on which this effort is based. Relevant accelerator and beam transport models from earlier Grumman systems codes are being adapted to this framework. Preliminary physics and engineering models for each ADTT beamline component have been constructed. Examples noted include a Bridge Coupled Drift Tube Linac (BCDTL) and the accelerator thermal system. A decision has been made to confine the ASM framework principally to beamline modeling, while detailed target/blanket, balance-of-plant and facility costing analysis will be performed externally. An interfacing external balance-of-plant and facility costing model, which will permit the performance of iterative facility trade studies, is under separate development. An ABC (Accelerator Based Conversion) example is used to highlight the present models and capabilities.

  7. A beamline systems model for Accelerator-Driven Transmutation Technology (ADTT) facilities

    International Nuclear Information System (INIS)

    Todd, Alan M. M.; Paulson, C. C.; Peacock, M. A.; Reusch, M. F.

    1995-01-01

    A beamline systems code, that is being developed for Accelerator-Driven Transmutation Technology (ADTT) facility trade studies, is described. The overall program is a joint Grumman, G. H. Gillespie Associates (GHGA) and Los Alamos National Laboratory effort. The GHGA Accelerator Systems Model (ASM) has been adopted as the framework on which this effort is based. Relevant accelerator and beam transport models from earlier Grumman systems codes are being adapted to this framework. Preliminary physics and engineering models for each ADTT beamline component have been constructed. Examples noted include a Bridge Coupled Drift Tube Linac (BCDTL) and the accelerator thermal system. A decision has been made to confine the ASM framework principally to beamline modeling, while detailed target/blanket, balance-of-plant and facility costing analysis will be performed externally. An interfacing external balance-of-plant and facility costing model, which will permit the performance of iterative facility trade studies, is under separate development. An ABC (Accelerator Based Conversion) example is used to highlight the present models and capabilities

  8. Accelerator-driven system design concept for disposing of spent nuclear fuels

    International Nuclear Information System (INIS)

    Gohar, Y.; Cao, Y.; Kellogg, R.; Merzari, E.

    2015-01-01

    At present, the US SNF (Spent Nuclear Fuel) inventory is growing by about 2,000 metric tonnes (MT) per year from the current operating nuclear power plants to reach about 70,000 MT by 2015. This SNF inventory contains about 1% transuranics (700 MT), which has about 115 MT of minor actinides. Accelerator-driven systems utilising proton accelerators with neutron spallation targets and subcritical blankets can be utilised for transmuting these transuranics, simultaneously generating carbon free energy, and significantly reducing the capacity of the required geological repository storage facility for the spent nuclear fuels. A fraction of the SNF plutonium can be used as a MOX fuel in the current/future thermal power reactors and as a starting fuel for future fast power reactors. The uranium of the spent nuclear fuel can be recycled for use in future nuclear power plants. This paper shows that only four to five accelerator-driven systems operating for less than 33 full power years can dispose of the US SNF inventory expected by 2015. In addition, a significant fraction of the long-lived fission products will be transmuted at the same time. Each system consists of a proton accelerator with a neutron spallation target and a subcritical assembly. The accelerator beam parameters are 1 GeV protons and 25 MW beam power, which produce 3 GWt in the subcritical assembly. A liquid metal (lead or lead-bismuth eutectic) spallation target is selected because of design advantages. This target is located at the centre of the subcritical assembly to maximise the utilisation of spallation neutrons. Because of the high power density in the target material, the target has its own coolant loop, which is independent of the subcritical assembly coolant loop. Mobile fuel forms with transuranic materials without uranium are considered in this work with liquid lead or lead-bismuth eutectic as fuel carrier

  9. Electron bunch length measurement with a wakefield radiation decelerator

    Directory of Open Access Journals (Sweden)

    Weiwei Li

    2014-03-01

    Full Text Available In this paper, we propose a novel method to measure the electron bunch length with a dielectric wakefield radiation (DWR decelerator which is composed of two dielectric-lined waveguides (DLWs and an electron spectrometer. When an electron beam passes through a DLW, the DWR is excited which leads to an energy loss of the electron beam. The energy loss is found to be largely dependent on the electron bunch length and can be easily measured by an electron spectrometer which is essential for a normal accelerator facility. Our study shows that this method has a high resolution and a great simplicity.

  10. Photonuclear fission with quasimonoenergetic electron beams from laser wakefields

    International Nuclear Information System (INIS)

    Reed, S. A.; Chvykov, V.; Kalintchenko, G.; Matsuoka, T.; Rousseau, P.; Yanovsky, V.; Vane, C. R.; Beene, J. R.; Stracener, D.; Schultz, D. R.; Maksimchuk, A.

    2006-01-01

    Recent advancements in laser wakefield accelerators have resulted in the generation of low divergence, hundred MeV, quasimonoenergetic electron beams. The bremsstrahlung produced by these highly energetic electrons in heavy converters includes a large number of MeV γ rays that have been utilized to induce photofission in natural uranium. Analysis of the measured delayed γ emission demonstrates production of greater than 3x10 5 fission events per joule of laser energy, which is more than an order of magnitude greater than that previously achieved. Monte Carlo simulations model the generated bremsstrahlung spectrum and compare photofission yields as a function of target depth and incident electron energy

  11. LAVENDER: A steady-state core analysis code for design studies of accelerator driven subcritical reactors

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Shengcheng; Wu, Hongchun; Cao, Liangzhi; Zheng, Youqi, E-mail: yqzheng@mail.xjtu.edu.cn; Huang, Kai; He, Mingtao; Li, Xunzhao

    2014-10-15

    Highlights: • A new code system for design studies of accelerator driven subcritical reactors (ADSRs) is developed. • S{sub N} transport solver in triangular-z meshes, fine deletion analysis and multi-channel thermal-hydraulics analysis are coupled in the code. • Numerical results indicate that the code is reliable and efficient for design studies of ADSRs. - Abstract: Accelerator driven subcritical reactors (ADSRs) have been proposed and widely investigated for the transmutation of transuranics (TRUs). ADSRs have several special characteristics, such as the subcritical core driven by spallation neutrons, anisotropic neutron flux distribution and complex geometry etc. These bring up requirements for development or extension of analysis codes to perform design studies. A code system named LAVENDER has been developed in this paper. It couples the modules for spallation target simulation and subcritical core analysis. The neutron transport-depletion calculation scheme is used based on the homogenized cross section from assembly calculations. A three-dimensional S{sub N} nodal transport code based on triangular-z meshes is employed and a multi-channel thermal-hydraulics analysis model is integrated. In the depletion calculation, the evolution of isotopic composition in the core is evaluated using the transmutation trajectory analysis algorithm (TTA) and fine depletion chains. The new code is verified by several benchmarks and code-to-code comparisons. Numerical results indicate that LAVENDER is reliable and efficient to be applied for the steady-state analysis and reactor core design of ADSRs.

  12. Accelerator-driven transmutation: a high-tech solution to some nuclear waste problems

    International Nuclear Information System (INIS)

    Hechanova, A.E.

    2000-01-01

    This paper discusses current technical and political issues regarding the innovative concept of using accelerator-driven transmutation processes for nuclear waste management. Two complex and related issues are addressed. First, the evolution and improvements of the design technologies are identified to indicate that there has been sufficient technological advancement with regard to a 1991 scientific peer review to warrant the advent of a large-scale national research and development program. Second, the economics and politics of the transmutation system are examined to identify non-technical barriers to the implementation of the program. Transmutation of waste has been historically viewed by nuclear engineers as one of those technologies that is too good to be true and probably too expensive to be feasible. The concept discussed in the present paper uses neutrons ( which result from protons accelerated into spallation targets)to transmute the major very long-lived hazardous materials such as the radioactive isotopes of technetium, iodine, neptunium, plutonium, americium, and curium. Although not a new concept, accelerator-driven transmutation technology (ADTT) lead by a team at Los Alamos National Laboratory (LANL) has made some significant advances which are discussed in the present paper. (authors)

  13. Wakefield effects in the SLC beam delivery system

    International Nuclear Information System (INIS)

    Napoly, O.

    1996-06-01

    Wakefield effects occurring in the SLC after the LI28 emittance measurement station could be responsible for part of all of the observed discrepancy between the expected vertical spot sizes at the IP and the measured ones. The strongest wakefields are generated by the parts of the beam chamber which are the closest to the beam, like collimators. In this note we review the effect of the following wakefield sources: geometric wakefields from final focus fixed and movable collimators, geometric and resistive wakefields from linac collimators jaws, resistive wakefields from the beam pipe at the sextupole and final transformer locations. We mostly concentrate on the transverse dipole and quadrupole wakefield effects, although the longitudinal wakefields are briefly studied at the end. We limit ourselves to the vertical beam dynamics and to the lowest (mainly linear) order of the wakefield expansion with respect to the beam offset, which excludes the near wall effect on the beam. (author)

  14. Studies of Accelerator-Driven Systems for Transmutation of Nuclear Waste

    International Nuclear Information System (INIS)

    Dahlfors, Marcus

    2006-01-01

    Accelerator-driven systems for transmutation of nuclear waste have been suggested as a means for dealing with spent fuel components that pose potential radiological hazard for long periods of time. While not entirely removing the need for underground waste repositories, this nuclear waste incineration technology provides a viable method for reducing both waste volumes and storage times. Potentially, the time spans could be diminished from hundreds of thousand years to merely 1.000 years or even less. A central aspect for accelerator-driven systems design is the prediction of safety parameters and fuel economy. The simulations performed rely heavily on nuclear data and especially on the precision of the neutron cross section representations of essential nuclides over a wide energy range, from the thermal to the fast energy regime. In combination with a more demanding neutron flux distribution as compared with ordinary light-water reactors, the expanded nuclear data energy regime makes exploration of the cross section sensitivity for simulations of accelerator-driven systems a necessity. This fact was observed throughout the work and a significant portion of the study is devoted to investigations of nuclear data related effects. The computer code package EA-MC, based on 3-D Monte Carlo techniques, is the main computational tool employed for the analyses presented. Directly related to the development of the code is the extensive IAEA ADS Benchmark 3.2, and an account of the results of the benchmark exercises as implemented with EA-MC is given. CERN's Energy Amplifier prototype is studied from the perspectives of neutron source types, nuclear data sensitivity and transmutation. The commissioning of the n T OF experiment, which is a neutron cross section measurement project at CERN, is also described

  15. Journey from discovery of nuclear fission to accelerator-driven sub-critical reactor systems (ADS)

    International Nuclear Information System (INIS)

    Kapoor, S.S.

    2005-01-01

    The epoch making discovery of nuclear fission in 1939, which resulted purely from the curiosity driven basic research to understand the atomic and nuclear structure has changed the world forever with the onset of a new era in the history of human civilization. The basic nuclear physics research pursued after the discovery of fission has also been of much relevance in the harnessing of nuclear energy. In the recent years, there is considerable interest towards developing accelerator driven sub-critical reactor systems (ADS) for the incineration of the long-lived spent fuel radioactive waste and for the utilization of thorium fuel for nuclear power generation. In this talk, we discuss important milestones in the journey from discovery of nuclear fission to ADS. (author)

  16. Climate-change-driven accelerated sea-level rise detected in the altimeter era.

    Science.gov (United States)

    Nerem, R S; Beckley, B D; Fasullo, J T; Hamlington, B D; Masters, D; Mitchum, G T

    2018-02-27

    Using a 25-y time series of precision satellite altimeter data from TOPEX/Poseidon, Jason-1, Jason-2, and Jason-3, we estimate the climate-change-driven acceleration of global mean sea level over the last 25 y to be 0.084 ± 0.025 mm/y 2 Coupled with the average climate-change-driven rate of sea level rise over these same 25 y of 2.9 mm/y, simple extrapolation of the quadratic implies global mean sea level could rise 65 ± 12 cm by 2100 compared with 2005, roughly in agreement with the Intergovernmental Panel on Climate Change (IPCC) 5th Assessment Report (AR5) model projections. Copyright © 2018 the Author(s). Published by PNAS.

  17. Experimental investigations of the accelerator-driven transmutation technologies at the subcritical facility ''Yalina''

    International Nuclear Information System (INIS)

    Chigrinov, S.E.; Kiyavitskaya, H.I.; Serafimovich, I.G.; Rakhno, I.L.; Rutkovskaia, Ch.K.; Fokov, Y.; Khilmanovich, A.M.; Marstinkevich, B.A.; Bournos, V.V.; Korneev, S.V.; Mazanik, S.E.; Kulikovskaya, A.V.; Korbut, T.P.; Voropaj, N.K.; Zhouk, I.V.; Kievec, M.K.

    2002-01-01

    The investigations on accelerator-driven transmutation technologies (ADTT) focus on the reduction of the amount of long-lived wastes and the physics of a subcritical system driven with an external neutron source. This paper presents the experimental facility 'Yalina' which was designed and created at the Radiation Physics and Chemistry Problems Institute of the National Academy of Sciences of Belarus in the framework of the ISTC project no. B-070 to study the peculiarities of ADTT in thermal spectrum. A detailed description of the assembly, neutron generator and a preliminary analysis of some calculated and experimental data (multiplication factor, neutron flux density distribution in the assembly, transmutation rates of some long-lived fission products and minor actinides) are presented. (authors)

  18. Theory of Feynman-alpha technique with masking window for accelerator-driven systems

    International Nuclear Information System (INIS)

    Kitamura, Yasunori; Misawa, Tsuyoshi

    2017-01-01

    Highlights: • A theory of the modified Feynman-alpha technique for the ADS was developed. • The experimental conditions under which this technique works were discussed. • It is expected this technique is applied to the subcriticality monitor for the ADS. - Abstract: Recently, a modified Feynman-alpha technique for the subcritical system driven by periodically triggered neutron bursts was developed. One of the main features of this technique is utilization of a simple formula that is advantageous in evaluating the subcriticality. However, owing to the absence of the theory of this technique, this feature has not been fully investigated yet. In the present study, a theory of this technique is provided. Furthermore, the experimental conditions under which the simple formula works are discussed to apply this technique to the subcriticality monitor for the accelerator-driven system.

  19. MCNPX and MCB coupled methodology for the burnup calculation of the KIPT accelerator driven subcritical system

    International Nuclear Information System (INIS)

    Zhong, Z.; Gohar, Y.; Talamo, A.

    2009-01-01

    Argonne National Laboratory (ANL) of USA and Kharkov Inst. of Physics and Technology (KIPT) of Ukraine have been collaborating on the conceptual design development of an electron accelerator driven subcritical facility (ADS). The facility will be utilized for basic research, medical isotopes production, and training young nuclear specialists. The burnup methodology and analysis of the KIPT ADS are presented in this paper. MCNPX and MCB Monte Carlo computer codes have been utilized. MCNPX has the capability of performing electron, photon and neutron coupled transport problems, but it lacks the burnup capability for driven subcritical systems. MCB has the capability for performing the burnup calculation of driven subcritical systems, while it cannot transport electrons. A calculational methodology coupling MCNPX and MCB has been developed, which can exploit the electrons transport capability of MCNPX for neutron production and the burnup capability of MCB for driven subcritical systems. In this procedure, a neutron source file is generated using MCNPX transport calculation, preserving the neutrons yield from photonuclear reactions initiated by electrons, and this source file is utilized by MCB for the burnup analyses with the same geometrical model. In this way, the ADS depletion calculation can be accurately. (authors)

  20. Selected works of basic research on the physics and technology of accelerator driven clean nuclear power system

    International Nuclear Information System (INIS)

    Zhao Zhixiang

    2002-01-01

    38 theses are presented in this selected works of basic research on the physics and technology of accelerator driven clean nuclear power system. It includes reactor physics and experiment, accelerators physics and technology, nuclear physics, material research and partitioning. 13 abstracts, which has been presented on magazines home and abroad, are collected in the appendix

  1. A small scale accelerator driven subcritical assembly development and demonstration experiment at LAMPF

    International Nuclear Information System (INIS)

    Wender, S.A.; Venneri, F.; Bowman, C.D.; Arthur, E.D.; Heighway, E.A.; Beard, C.A.; Bracht, R.R.; Buksa, J.J.; Chavez, W.; DeVolder, B.G.

    1994-01-01

    A small scale experiment is described that will demonstrate many of the aspects of accelerator-driven transmutation technology. This experiment uses the high-power proton beam from the Los Alamos Meson Physics Facility accelerator and will be located in the Area-A experimental hall. Beam currents of up to 1 mA will be used to produce neutrons with a molten lead target. The target is surrounded by a molten salt and graphite moderator blanket. Fissionable material can be added to the molten salt to demonstrate plutonium burning or transmutation of commercial spent fuel or energy production from thorium. The experiment will be operated at power levels up to 5 MW t

  2. The Italian R and D and industrial program for an accelerator driven system experimental plant

    International Nuclear Information System (INIS)

    Carta, M.; Gherardi, G.; Buono, S.; Cinotti, L.

    2001-01-01

    Accelerator Driven Systems (ADS), coupling an accelerator with a target and a sub-critical reactor, could simultaneously burn minor actinides and transmute long-lived fission products, while producing a consistent amount of electrical energy. A team of Italian R and D organizations and industries has set up a network of coordinated programs addressed to study the design issues of an 80 MW th Experimental Facility. The present memo focalizes the attention on some results obtained by the R and D activities and by the ongoing industrial short term activities aiming at the preparation of the proposed preliminary design, leaving the deal to define the details of the subsequent medium term activities to the expected common program in the European context. (author)

  3. Prompt nuclear analytical techniques for material research in accelerator driven transmutation technologies: Prospects and quantitative analyses

    International Nuclear Information System (INIS)

    Vacik, J.; Hnatowicz, V.; Cervena, J.; Perina, V.; Mach, R.

    1998-01-01

    Accelerator driven transmutation technology (ADTT) is a promising way toward liquidation of spent nuclear fuel, nuclear wastes and weapon grade Pu. The ADTT facility comprises a high current (proton) accelerator supplying a sub-critical reactor assembly with spallation neutrons. The reactor part is supposed to be cooled by molten fluorides or metals which serve, at the same time, as a carrier of nuclear fuel. Assumed high working temperature (400-600 C) and high radiation load in the subcritical reactor and spallation neutron source put forward the problem of optimal choice of ADTT construction materials, especially from the point of their radiation and corrosion resistance when in contact with liquid working media. The use of prompt nuclear analytical techniques in ADTT related material research is considered and examples of preliminary analytical results obtained using neutron depth profiling method are shown for illustration. (orig.)

  4. Feasibility of an XUV FEL Oscillator Driven by a SCRF Linear Accelerator

    Energy Technology Data Exchange (ETDEWEB)

    Lumpkin, A. H.; Freund, H. P.; Reinsch, M.

    2014-01-01

    The Advanced Superconducting Test Accelerator (ASTA) facility is currently under construction at Fermi National Accelerator Laboratory. Using a1-ms-long macropulse composed of up to 3000 micropulses, and with beam energies projected from 45 to 800 MeV, the possibility for an extreme ultraviolet (XUV) free-electron laser oscillator (FELO) with the higher energy is evaluated. We have used both GINGER with an oscillator module and the MEDUSA/OPC code to assess FELO saturation prospects at 120 nm, 40 nm, and 13.4 nm. The results support saturation at all of these wavelengths which are also shorter than the demonstrated shortest wavelength record of 176 nm from a storage-ring-based FELO. This indicates linac-driven FELOs can be extended into this XUV wavelength regime previously only reached with single-pass FEL configurations.

  5. Monte Carlo analysis of accelerator-driven systems studies on spallation neutron yield and energy gain

    CERN Document Server

    Hashemi-Nezhad, S R; Westmeier, W; Bamblevski, V P; Krivopustov, M I; Kulakov, B A; Sosnin, A N; Wan, J S; Odoj, R

    2001-01-01

    The neutron yield in the interaction of protons with lead and uranium targets has been studied using the LAHET code system. The dependence of the neutron multiplicity on target dimensions and proton energy has been calculated and the dependence of the energy amplification on the proton energy has been investigated in an accelerator-driven system of a given effective multiplication coefficient. Some of the results are compared with experimental findings and with similar calculations by the DCM/CEM code of Dubna and the FLUKA code system used in CERN. (14 refs).

  6. Nuclear models, experiments and data libraries needed for numerical simulation of accelerator-driven system

    International Nuclear Information System (INIS)

    Bauge, E.; Bersillon, O.

    2000-01-01

    This paper presents the transparencies of the speech concerning the nuclear models, experiments and data libraries needed for numerical simulation of Accelerator-Driven Systems. The first part concerning the nuclear models defines the spallation process, the corresponding models (intra-nuclear cascade, statistical model, Fermi breakup, fission, transport, decay and macroscopic aspects) and the code systems. The second part devoted to the experiments presents the angular measurements, the integral measurements, the residual nuclei and the energy deposition. In the last part, dealing with the data libraries, the author details the fundamental quantities as the reaction cross-section, the low energy transport databases and the decay libraries. (A.L.B.)

  7. Collaboration between SCK·CEN and JAEA for partitioning and transmutation through accelerator-driven system

    International Nuclear Information System (INIS)

    2017-03-01

    This technical report reviews Research and Development (R and D) programs for the Partitioning and Transmutation (P and T) technology through Accelerator-Driven System (ADS) at Studiecentrum voor Kernenergie/Centre d'Etude de l'Énergie Nucléaire (SCK·CEN) and Japan Atomic Energy Agency (JAEA). The results obtained in the present Collaboration Arrangement between the two organizations for the ADS are also summarized, and possible further collaborations and mutual realizations in the future are sketched. (author)

  8. Accelerator-driven transmutation projects in Sweden in a European perspective

    International Nuclear Information System (INIS)

    Gudowski, Waclaw; Wallenius, J.; Tucek, K.; Ericsson, M.; Carlsson, J.; Cetnar, J.

    2001-01-01

    Accelerator driven transmutation projects in Sweden are dealt with within the country's energy policy and energy plans as well as in relation to European perspectives. ADS activities at Royal Institute of Technology (RIT) and Sweden are concerned with: Conceptual design nitride fueled ADS) of Sing-Sing core (heavily 'poisoned'; Development of nitride fuel (in a EU-frame); transients of ADS; Managing nuclear data and stimulating development dedicated data libraries; Development of Monte-Carlo burnup; Design of RVACS for ADS. Besides the mentioned, this paper describes projects in fourth Framework Programme of European Union, fifth Framework Programme of EU and Experiments related to ADS

  9. Conceptual research on reactor core physics for accelerator driven sub-critical reactor

    International Nuclear Information System (INIS)

    Zhao Zhixiang; Ding Dazhao; Liu Guisheng; Fan Sheng; Shen Qingbiao; Zhang Baocheng; Tian Ye

    2000-01-01

    The main properties of reactor core physics are analysed for accelerator driven sub-critical reactor. These properties include the breeding of fission nuclides, the condition of equilibrium, the accumulation of long-lived radioactive wastes, the effect from poison of fission products, as well as the thermal power output and the energy gain for sub-critical reactor. The comparison between thermal and fast system for main properties are carried out. The properties for a thermal-fast coupled system are also analysed

  10. MYRRHA project: a Multipurpose Accelerator Driven System (ADS) for R and D

    International Nuclear Information System (INIS)

    Ait Abderrahim, A.

    2001-01-01

    The objective of the MYRRHA project is to develop a multipurpose neutron source for research and development applications on the basis of an Accelerator Driven System (ADS). Current activities in this area focus on (1) the continuation and the extension towards ADS of the ongoing programmes at SCK-CEN in the field of reactor materials, fuel and reactor physics research; (2) the enhancement and the triggering of new R and D activities such as nuclear waste transmutation, ADS technology, liquid metal embrittlement; (3) the initiation of medical applications, for example proton therapy and PET production, or proton Based irradiation programmes. Main achievements in these topical areas in 2000 are summarised

  11. Modeling laser-driven electron acceleration using WARP with Fourier decomposition

    Energy Technology Data Exchange (ETDEWEB)

    Lee, P., E-mail: patrick.lee@u-psud.fr [LPGP, CNRS, Univ. Paris-Sud, Université Paris-Saclay, 91405 Orsay (France); Audet, T.L. [LPGP, CNRS, Univ. Paris-Sud, Université Paris-Saclay, 91405 Orsay (France); Lehe, R.; Vay, J.-L. [Lawrence Berkeley National Laboratory, Berkeley, CA 94720 (United States); Maynard, G.; Cros, B. [LPGP, CNRS, Univ. Paris-Sud, Université Paris-Saclay, 91405 Orsay (France)

    2016-09-01

    WARP is used with the recent implementation of the Fourier decomposition algorithm to model laser-driven electron acceleration in plasmas. Simulations were carried out to analyze the experimental results obtained on ionization-induced injection in a gas cell. The simulated results are in good agreement with the experimental ones, confirming the ability of the code to take into account the physics of electron injection and reduce calculation time. We present a detailed analysis of the laser propagation, the plasma wave generation and the electron beam dynamics.

  12. Radiation-induced segregation in materials: Implications for accelerator-driven neutron source applications

    Energy Technology Data Exchange (ETDEWEB)

    Faulkner, R.B.; Song, S. [Loughborough Univ. of Technology (United Kingdom)

    1995-10-01

    This paper reviews exisiting models for radiation-induced segregation to microstrucural interfaces and surfaces. It indicates how the models have been successfully used in the past in neutron irradiation situations and how they may be modified to account for accelerator-driven RIS. The predictions of the models suggest that any impurity with large misfit will suffer RIS and that the effect is heightened as radiation damage increases. The paper suggests methods to utilise the RIS in transmutation technology by dynamically segregating long life nuclides to preferred sites in the microstructure so that subsequent transmutations occur with maximum efficiency.

  13. Efficiency of an LBE spallation target in an accelerator-driven molten salt subcritical reactor

    Energy Technology Data Exchange (ETDEWEB)

    Bak, Sang-In [Sungkyunkwan University, Suwon (Korea, Republic of); Hong, Seung-Woo [Sungkyunkwan University, Suwon (Korea, Republic of); Kadi, Yacine [CERN, Geneva (Switzerland)

    2016-10-15

    An Accelerator-Driven System (ADS) combined with a subcritical Molten Salt Reactor (MSR) is a type of hybrid reactor originally designed to breed uranium from thorium or to incinerate long-lived minor actinides in nuclear wastes. In an MSR, the salt material is used not only as a nuclear fuel but also as a primary coolant. In addition, this material is used as a target for inducing spallation neutrons in most AD-MSR concepts. A high energy proton beam impinges on a heavy metal target to induce spallation reactions and produces neutrons. Accordingly, a reliable proton accelerator is needed to feed the source neutrons. As ADSs have been criticized for requiring high power accelerators, minimization of beam power is an important aspect of ADS design. A primary concern associated with ADS development is stable high-power accelerators. We therefore studied the neutron source efficiencies of an AD-MSR involving chloride fuels by including a Pb-Bi eutectic (LBE) spallation target. The proton source efficiency and the accelerator beam power required have been studied for an AD-MSR. Adoption of an LBE spallation target induces an increase in proton source efficiencies in comparison to the case without a spallation target. Thus the presence of an efficient spallation target is useful in the reduction of the beam power of an accelerator. Almost 33 % of the beam power can be reduced in comparison to the case without the target for NaCl-Th/{sup 233}U fuel, and about 16 % for NaCl-U/TRU fuel. The beam power amplifications increase by 1.5 times for NaCl-Th/{sup 233}U and 1.2 times for NaCl-U/TRU in comparison with the no target AD-MSR.

  14. Opportunistic or event-driven maintenance at the Stanford Linear Accelerator Center

    International Nuclear Information System (INIS)

    Allen, C.W.; Anderson, S.; Erickson, R.; Linebarger, W.; Sheppard, J.C.; Stanek, M.

    1997-03-01

    The Stanford Linear Accelerator Center (SLAC) uses a maintenance management philosophy that is best described as opportunistic or event-driven. Opportunistic maintenance can be defined as a systematic method of collecting, investigating, pre-planning, and publishing a set of proposed maintenance tasks and acting on them when there is an unscheduled failure or repair ''opportunity''. Opportunistic maintenance can be thought of as a modification of the run-to-fail maintenance management philosophy. This maintenance plan was adopted and developed to improve the overall availability of SLAC's linear accelerator, beam delivery systems, and associated controls, power systems, and utilities. In the late 1980's, as the technical complexity of the accelerator facility increased, variations on a conventional maintenance plan were used with mixed results. These variations typically included some type of regular periodic interruption to operations. The periodic shutdowns and unscheduled failures were additive and resulted in unsatisfactory availability. Maintenance issues are evaluated in a daily meeting that includes the accelerator managers, maintenance supervisors and managers, safety office personnel, program managers, and accelerator operators. Lists of pending maintenance tasks are made available to the general SLAC population by a World Wide Web site on a local internet. A conventional information system which pre-dates the WWW site is still being used to provide paper copies to groups that are not yet integrated into the WWW system. The local internet provides real time maintenance information, allowing people throughout the facility to track progress on tasks with essentially real-time status updates. With the introduction of opportunistic maintenance, the accelerator's availability has been measurably better. This paper will discuss processes, rolls and responsibilities of key maintenance groups, and management tools developed to support opportunistic maintenance

  15. Minimum wakefield achievable by waveguide damped cavity

    International Nuclear Information System (INIS)

    Lin, X.E.; Kroll, N.M.

    1995-01-01

    The authors use an equivalent circuit to model a waveguide damped cavity. Both exponentially damped and persistent (decay t -3/2 ) components of the wakefield are derived from this model. The result shows that for a cavity with resonant frequency a fixed interval above waveguide cutoff, the persistent wakefield amplitude is inversely proportional to the external Q value of the damped mode. The competition of the two terms results in an optimal Q value, which gives a minimum wakefield as a function of the distance behind the source particle. The minimum wakefield increases when the resonant frequency approaches the waveguide cutoff. The results agree very well with computer simulation on a real cavity-waveguide system

  16. Study of ultra-high gradient wakefield excitation by intense ultrashort laser pulses in plasma

    International Nuclear Information System (INIS)

    Kotaki, Hideyuki

    2002-12-01

    We investigate a mechanism of nonlinear phenomena in laser-plasma interaction, a laser wakefield excited by intense laser pulses, and the possibility of generating an intense bright electron source by an intense laser pulse. We need to understand and further employ some of these phenomena for our purposes. We measure self-focusing, filamentation, and the anomalous blueshift of the laser pulse. The ionization of gas with the self-focusing causes a broad continuous spectrum with blueshift. The normal blueshift depends on the laser intensity and the plasma density. We, however, have found different phenomenon. The laser spectrum shifts to fixed wavelength independent of the laser power and gas pressure above some critical power. We call the phenomenon 'anomalous blueshift'. The results are explained by the formation of filaments. An intense laser pulse can excite a laser wakefield in plasma. The coherent wakefield excited by 2 TW, 50 fs laser pulses in a gas-jet plasma around 10 18 cm -3 is measured with a time-resolved frequency domain interferometer (FDI). The density distribution of the helium gas is measured with a time-resolved Mach-Zehnder interferometer to search for the optimum laser focus position and timing in the gas-jet. The results show an accelerating wakefield excitation of 20 GeV/m with good coherency, which is useful for ultrahigh gradient particle acceleration in a compact system. This is the first time-resolved measurement of laser wakefield excitation in a gas-jet plasma. The experimental results are compared with a Particle-in-Cell (PIC) simulation. The pump-probe interferometer system of FDI and the anomalous blueshift will be modified to the optical injection system as a relativistic electron beam injector. In 1D PIC simulation we obtain the results of high quality intense electron beam acceleration. These results illuminate the possibility of a high energy and a high quality electron beam acceleration. (author)

  17. Supersonic micro-jets and their application to few-cycle laser-driven electron acceleration

    International Nuclear Information System (INIS)

    Schmid, Karl

    2009-01-01

    This thesis covers the few-cycle laser-driven acceleration of electrons in a laser-generated plasma. The laser system employed in this work is a new development based on optical parametric chirped pulse amplification and is the only multi-TW few-cycle laser in the world. In the experiment, the laser beam is focused onto a supersonic helium gas jet which leads to the formation of a plasma channel. The laser pulse, having an intensity of 10 19 W/cm 2 propagates through the plasma with an electron density of 2 x 10 19 cm -3 and forms via a highly nonlinear interaction a strongly anharmonic plasma wave. The amplitude of the wave is so large that the wave breaks, thereby injecting electrons from the background plasma into the accelerating phase. The energy transfer from the laser pulse to the plasma is so strong that the maximum propagation distance is limited to the 100 m range. Therefore, gas jets specifically tuned to these requirements have to be employed. The properties of microscopic supersonic gas jets are thoroughly analyzed in this work. Based on numeric flow simulation, this study encompasses several extensive parameter studies that illuminate all relevant features of supersonic flows in microscopic gas nozzles. This allowed the optimized design of de Laval nozzles with exit diameters ranging from 150 μm to 3 mm. The employment of these nozzles in the experiment greatly improved the electron beam quality. After these optimizations, the laser-driven electron accelerator now yields monoenergetic electron pulses with energies up to 50 MeV and charges between one and ten pC. The electron beam has a typical divergence of 5 mrad and comprises an energy spectrum that is virtually free from low energetic background. The electron pulse duration could not yet be determined experimentally but simulations point towards values in the range of 1 fs. The acceleration gradient is estimated from simulation and experiment to be approximately 0.5 TV/m. The electron accelerator

  18. Supersonic micro-jets and their application to few-cycle laser-driven electron acceleration

    Energy Technology Data Exchange (ETDEWEB)

    Schmid, Karl

    2009-07-23

    This thesis covers the few-cycle laser-driven acceleration of electrons in a laser-generated plasma. The laser system employed in this work is a new development based on optical parametric chirped pulse amplification and is the only multi-TW few-cycle laser in the world. In the experiment, the laser beam is focused onto a supersonic helium gas jet which leads to the formation of a plasma channel. The laser pulse, having an intensity of 10{sup 19} W/cm{sup 2} propagates through the plasma with an electron density of 2 x 10{sup 19} cm{sup -3} and forms via a highly nonlinear interaction a strongly anharmonic plasma wave. The amplitude of the wave is so large that the wave breaks, thereby injecting electrons from the background plasma into the accelerating phase. The energy transfer from the laser pulse to the plasma is so strong that the maximum propagation distance is limited to the 100 m range. Therefore, gas jets specifically tuned to these requirements have to be employed. The properties of microscopic supersonic gas jets are thoroughly analyzed in this work. Based on numeric flow simulation, this study encompasses several extensive parameter studies that illuminate all relevant features of supersonic flows in microscopic gas nozzles. This allowed the optimized design of de Laval nozzles with exit diameters ranging from 150 {mu}m to 3 mm. The employment of these nozzles in the experiment greatly improved the electron beam quality. After these optimizations, the laser-driven electron accelerator now yields monoenergetic electron pulses with energies up to 50 MeV and charges between one and ten pC. The electron beam has a typical divergence of 5 mrad and comprises an energy spectrum that is virtually free from low energetic background. The electron pulse duration could not yet be determined experimentally but simulations point towards values in the range of 1 fs. The acceleration gradient is estimated from simulation and experiment to be approximately 0.5 TV/m. The

  19. Ultra-low emittance beam generation using two-color ionization injection in a CO2 laser-driven plasma accelerator

    International Nuclear Information System (INIS)

    Schroeder, Carl; Benedetti, Carlo; Bulanov, Stepan; Chen, Min; Esarey, Eric; Geddes, Cameron; Vay, J.; Yu, Lule; Leemans, Wim

    2015-01-01

    Ultra-low emittance (tens of nm) beams can be generated in a plasma accelerator using ionization injection of electrons into a wakefield. An all-optical method of beam generation uses two laser pulses of different colors. A long-wavelength drive laser pulse (with a large ponderomotive force and small peak electric field) is used to excite a large wakefield without fully ionizing a gas, and a short-wavelength injection laser pulse (with a small ponderomotive force and large peak electric field), co-propagating and delayed with respect to the pump laser, to ionize a fraction of the remaining bound electrons at a trapped wake phase, generating an electron beam that is accelerated in the wake. The trapping condition, the ionized electron distribution, and the trapped bunch dynamics are discussed. Expressions for the beam transverse emittance, parallel and orthogonal to the ionization laser polarization, are presented. An example is shown using a 10-micron CO 2 laser to drive the wake and a frequency-doubled Ti:Al 2 O 3 laser for ionization injection.

  20. Laser-driven electron beam and radiation sources for basic, medical and industrial sciences

    Science.gov (United States)

    NAKAJIMA, Kazuhisa

    2015-01-01

    To date active research on laser-driven plasma-based accelerators have achieved great progress on production of high-energy, high-quality electron and photon beams in a compact scale. Such laser plasma accelerators have been envisaged bringing a wide range of applications in basic, medical and industrial sciences. Here inheriting the groundbreaker’s review article on “Laser Acceleration and its future” [Toshiki Tajima, (2010)],1) we would like to review recent progress of producing such electron beams due to relativistic laser-plasma interactions followed by laser wakefield acceleration and lead to the scaling formulas that are useful to design laser plasma accelerators with controllability of beam energy and charge. Lastly specific examples of such laser-driven electron/photon beam sources are illustrated. PMID:26062737

  1. Transient analyses for lead–bismuth cooled accelerator-driven system

    International Nuclear Information System (INIS)

    Sugawara, Takanori; Nishihara, Kenji; Tsujimoto, Kazufumi

    2013-01-01

    Highlights: ► The transient analyses for the LBE cooled accelerator-driven system were performed. ► The purpose was to investigate the possibility of the core damage. ► All results except the protected loss of heat sink satisfied the no-damage criteria. - Abstract: The transient analyses for the lead–bismuth cooled Accelerator-Driven System (ADS) were performed with the use of the SIMMER-III and RELAP5/mod3.2 codes to investigate the possibility of the core damage. Five accidents; the beam window breakage, the protected loss of heat sink, the beam overpower, the unprotected loss of flow and the unprotected blockage accident were analyzed as the typical accidents in the ADS. Through these calculations, it was confirmed that all calculation results except the protected loss of heat sink satisfied the no-damage criteria. In the protected loss of heat sink, the cladding tube temperature reached at the melting temperature after 20 h although the calculation condition was very conservative. It is required to design a safety system of the ADS to decrease the frequencies of the accidents and to ease the accidents

  2. Radiation reaction effect on laser driven auto-resonant particle acceleration

    International Nuclear Information System (INIS)

    Sagar, Vikram; Sengupta, Sudip; Kaw, P. K.

    2015-01-01

    The effects of radiation reaction force on laser driven auto-resonant particle acceleration scheme are studied using Landau-Lifshitz equation of motion. These studies are carried out for both linear and circularly polarized laser fields in the presence of static axial magnetic field. From the parametric study, a radiation reaction dominated region has been identified in which the particle dynamics is greatly effected by this force. In the radiation reaction dominated region, the two significant effects on particle dynamics are seen, viz., (1) saturation in energy gain by the initially resonant particle and (2) net energy gain by an initially non-resonant particle which is caused due to resonance broadening. It has been further shown that with the relaxation of resonance condition and with optimum choice of parameters, this scheme may become competitive with the other present-day laser driven particle acceleration schemes. The quantum corrections to the Landau-Lifshitz equation of motion have also been taken into account. The difference in the energy gain estimates of the particle by the quantum corrected and classical Landau-Lifshitz equation is found to be insignificant for the present day as well as upcoming laser facilities

  3. Beam transient analyses of Accelerator Driven Subcritical Reactors based on neutron transport method

    Energy Technology Data Exchange (ETDEWEB)

    He, Mingtao; Wu, Hongchun [School of Nuclear Science and Technology, Xi’an Jiaotong University, Xi’an 710049, Shaanxi (China); Zheng, Youqi, E-mail: yqzheng@mail.xjtu.edu.cn [School of Nuclear Science and Technology, Xi’an Jiaotong University, Xi’an 710049, Shaanxi (China); Wang, Kunpeng [Nuclear and Radiation Safety Center, PO Box 8088, Beijing 100082 (China); Li, Xunzhao; Zhou, Shengcheng [School of Nuclear Science and Technology, Xi’an Jiaotong University, Xi’an 710049, Shaanxi (China)

    2015-12-15

    Highlights: • A transport-based kinetics code for Accelerator Driven Subcritical Reactors is developed. • The performance of different kinetics methods adapted to the ADSR is investigated. • The impacts of neutronic parameters deteriorating with fuel depletion are investigated. - Abstract: The Accelerator Driven Subcritical Reactor (ADSR) is almost external source dominated since there is no additional reactivity control mechanism in most designs. This paper focuses on beam-induced transients with an in-house developed dynamic analysis code. The performance of different kinetics methods adapted to the ADSR is investigated, including the point kinetics approximation and space–time kinetics methods. Then, the transient responds of beam trip and beam overpower are calculated and analyzed for an ADSR design dedicated for minor actinides transmutation. The impacts of some safety-related neutronics parameters deteriorating with fuel depletion are also investigated. The results show that the power distribution varying with burnup leads to large differences in temperature responds during transients, while the impacts of kinetic parameters and feedback coefficients are not very obvious. Classification: Core physic.

  4. Subcriticality of accelerator driven system by AESJ/JAERI working party

    International Nuclear Information System (INIS)

    Iwasaki, Tomohiko

    2002-01-01

    Under Atomic Energy Society of Japan (AESJ) and Japan Atomic Energy Research Institute (JAERI), a Working Party on Reactor Physics of Accelerator-Driven System (ADS-WP) has been set since March 1999 to review and investigate special subjects related to reactor physics research of Accelerator-Driven System (ADS). In the ADS-WP, the extensive and aggressive activity is being made by 25 professional members in the field of reactor physics in Japan. The ADS is now studying three subjects related to subcriticality of ADS; (1) calculation accuracy of subcriticality on ADS, (2) critical safety issues of ADS, and (3) theoretical review of subcriticality and its measurement methods. This paper describes two topics related to the subjects (1) and (2); one is an analysis of maximum reactivity potentially inserted to a subcritical core and the other is a benchmark proposal for checking calculation accuracy of subcriticality on ADS. The full specification of the calculation benchmark will be supplied by June 2002. Researchers from overseas, especially from Korea, are welcome to join this benchmark

  5. Application of gas-cooled Accelerator Driven System (ADS) transmutation devices to sustainable nuclear energy development

    Energy Technology Data Exchange (ETDEWEB)

    Abanades, A., E-mail: abanades@etsii.upm.es [ETSII/Universidad Politecnica de Madrid, J.Gutierrez Abascal, 2-28006 Madrid (Spain); Garcia, C.; Garcia, L. [Instituto Superior de Tecnologia y Ciencias Aplicadas. Quinta de los, Molinos, Ave. Salvador Allende y Luaces, Ciudad de la Habana, CP 10400, Apartado Postal 6163 (Cuba); Escriva, A.; Perez-Navarro, A. [Instituto de Ingenieria Energetica, Universidad Politecnica de Valencia, C.P. 46022 Valencia (Spain); Rosales, J. [Instituto Superior de Tecnologia y Ciencias Aplicadas. Quinta de los, Molinos, Ave. Salvador Allende y Luaces, Ciudad de la Habana, CP 10400, Apartado Postal 6163 (Cuba)

    2011-06-15

    Highlights: > Utilization of Accelerator Driven System (ADS) for Hydrogen production. > Evaluation of the potential use of gas-cooled ADS for a sustainable use of Uranium resources by transmutation of nuclear wastes, electricity and Hydrogen production. > Application of the Sulfur-Iodine thermochemical process to subcritical systems. > Application of CINDER90 to calculate burn-up in subcritical systems. - Abstract: The conceptual design of a pebble bed gas-cooled transmutation device is shown with the aim to evaluate its potential for its deployment in the context of the sustainable nuclear energy development, which considers high temperature reactors for their operation in cogeneration mode, producing electricity, heat and Hydrogen. As differential characteristics our device operates in subcritical mode, driven by a neutron source activated by an accelerator that adds clear safety advantages and fuel flexibility opening the possibility to reduce the nuclear stockpile producing energy from actual LWR irradiated fuel with an efficiency of 45-46%, either in the form of Hydrogen, electricity, or both.

  6. Transmutation of 126Sn in spallation targets of accelerator-driven systems

    International Nuclear Information System (INIS)

    Han, Chi Young; Saito, Masaki; Sagara, Hiroshi

    2009-01-01

    The practical feasibility of 126 Sn transmutation in spallation targets of accelerator-driven systems was evaluated from the viewpoints of accumulation of radioactive spallation products and neutron production as well as transmutation amount of 126 Sn. A cylindrical liquid 126 Sn target whose length depends on proton beam energy was described, based on a Pb-Bi target design of accelerator-driven system being developed in JAEA. A proton beam of 1.5 GeV-20 mA was estimated to give the transmutation rate of 126 Sn 6.4 kg/yr, which corresponds to the amount of 126 Sn annually discharged in 27 LWRs of 1 GWt and 33 GWd/THM. The equilibrium radioactivity of spallation products would reach 9% of that of 126 Sn transmuted in the spallation target, and the equilibrium toxicity would be just 3%. Some parametric analyses showed that the effective half-life of 126 Sn could be reduced through a proper reduction of the target size. The 126 Sn target was calculated to produce 40 neutrons per proton of 1.5 GeV and give a neutron spectrum very similar to that of the reference Pb-Bi target. As a result, the transmutation of 126 Sn in the spallation target has a high feasibility in terms of better transmutation performance and comparable target performance. (author)

  7. Microwave Ion Source and Beam Injection for an Accelerator-driven Neutron Source

    International Nuclear Information System (INIS)

    Vainionpaa, J.H.; Gough, R.; Hoff, M.; Kwan, J.W.; Ludewigt, B.A.; Regis, M.J.; Wallig, J.G.; Wells, R.

    2007-01-01

    An over-dense microwave driven ion source capable of producing deuterium (or hydrogen) beams at 100-200 mA/cm2 and with atomic fraction >90 percent was designed and tested with an electrostatic low energy beam transport section (LEBT). This ion source was incorporated into the design of an Accelerator Driven Neutron Source (ADNS). The other key components in the ADNS include a 6 MeV RFQ accelerator, a beam bending and scanning system, and a deuterium gas target. In this design a 40 mA D+ beam is produced from a 6 mm diameter aperture using a 60 kV extraction voltage. The LEBT section consists of 5 electrodes arranged to form 2 Einzel lenses that focus the beam into the RFQ entrance. To create the ECR condition, 2 induction coils are used to create ∼ 875 Gauss on axis inside the source chamber. To prevent HV breakdown in the LEBT a magnetic field clamp is necessary to minimize the field in this region. Matching of the microwave power from the waveguide to the plasma is done by an autotuner. We observed significant improvement of the beam quality after installing a boron nitride liner inside the ion source. The measured emittance data are compared with PBGUNS simulations

  8. Microwave Ion Source and Beam Injection for an Accelerator-Driven Neutron Source

    International Nuclear Information System (INIS)

    Vainionpaa, J.H.; Gough, R.; Hoff, M.; Kwan, J.W.; Ludewigt, B.A.; Regis, M.J.; Wallig, J.G.; Wells, R.

    2007-01-01

    An over-dense microwave driven ion source capable of producing deuterium (or hydrogen) beams at 100-200 mA/cm 2 and with atomic fraction > 90% was designed and tested with an electrostatic low energy beam transport section (LEBT). This ion source was incorporated into the design of an Accelerator Driven Neutron Source (ADNS). The other key components in the ADNS include a 6 MeV RFQ accelerator, a beam bending and scanning system, and a deuterium gas target. In this design a 40 mA D + beam is produced from a 6 mm diameter aperture using a 60 kV extraction voltage. The LEBT section consists of 5 electrodes arranged to form 2 Einzel lenses that focus the beam into the RFQ entrance. To create the ECR condition, 2 induction coils are used to create ∼ 875 Gauss on axis inside the source chamber. To prevent HV breakdown in the LEBT a magnetic field clamp is necessary to minimize the field in this region. Matching of the microwave power from the waveguide to the plasma is done by an autotuner. They observed significant improvement of the beam quality after installing a boron nitride liner inside the ion source. The measured emittance data are compared with PBGUNS simulations

  9. Proceedings of the international symposium on acceleration-driven transmutation systems and Asia ADS network initiative

    International Nuclear Information System (INIS)

    Oigawa, Hiroyuki

    2003-09-01

    An International Symposium on 'Accelerator-Driven Transmutation Systems and Asia ADS Network Initiative' was held on March 24 and 25, 2003 at Gakushi-Kaikan, Tokyo, hosted by Japan Atomic Energy Research Institute, Kyoto University, Osaka University, High Energy Accelerator Research Organization and Tokyo Institute of Technology. The objectives of this symposium are to make participants acquainted with the current status and future plans for research and development (R and D) of ADS in the world and to enhance the initiation of an international collaborative network for ADS in Asia. This report records the papers and the materials of 15 presentations in the symposium. On the first day of the symposium, current activities for R and D of ADS were presented from United States, Europe, Japan, Korea, and China. On the second day, R and D activities in the fields of accelerator and nuclear physics were presented. After these presentations, a panel discussion was organized with regard to the prospective international collaboration and multidisciplinary synergy effect, which are essential to manage various technological issues encountered in R and D stage of ADS. Through the discussion, common understanding was promoted concerning the importance of establishing international network. It was agreed to establish the international network for scientific information exchange among Asian countries including Japan, Korea, China, and Vietnam in view of the future international collaboration in R and D of ADS. (author)

  10. THz cavities and injectors for compact electron acceleration using laser-driven THz sources

    Directory of Open Access Journals (Sweden)

    Moein Fakhari

    2017-04-01

    Full Text Available We present a design methodology for developing ultrasmall electron injectors and accelerators based on cascaded cavities excited by short multicycle THz pulses obtained from laser-driven THz generation schemes. Based on the developed concept for optimal coupling of the THz pulse, a THz electron injector and two accelerating stages are designed. The designed electron gun consists of a four cell cavity operating at 300 GHz and a door-knob waveguide to coaxial coupler. Moreover, special designs are proposed to mitigate the problem of thermal heat flow and induced mechanical stress to achieve a stable device. We demonstrated a gun based on cascaded cavities that is powered by only 1.1 mJ of THz energy in 300 cycles to accelerate electron bunches up to 250 keV. An additional two linac sections can be added with five and four cell cavities both operating at 300 GHz boosting the bunch energy up to 1.2 MeV using a 4-mJ THz pulse.

  11. Radiation therapy with laser-driven accelerated particle beams: physical dosimetry and spatial dose distribution

    Energy Technology Data Exchange (ETDEWEB)

    Reinhardt, Sabine; Assmann, Walter [Ludwig-Maximilians Universitaet Muenchen (Germany); Kneschaurek, Peter; Wilkens, Jan [MRI, Technische Universitaet Muenchen (Germany)

    2011-07-01

    One of the main goals of the Munich Centre for Advanced Photonics (MAP) is the application of laser driven accelerated (LDA) particle beams for radiation therapy. Due to the unique acceleration process ultrashort particle pulses of high intensity (> 10{sup 7} particles /cm{sup 2}/ns) are generated, which makes online detection an ambitious task. So far, state of the art detection of laser accelerated ion pulses are non-electronic detectors like radiochromic films (RCF), imaging plates (IP) or nuclear track detectors (e.g. CR39). All these kind of detectors are offline detectors requiring several hours of processing time. For this reason they are not qualified for an application in radiation therapy where quantitative real time detection of the beam is an essential prerequisite. Therefore we are investigating pixel detectors for real time monitoring of LDA particle pulses. First tests of commercially available systems with 8-20 MeV protons are presented. For radiobiological experiments second generation Gafchromic films (EBT2) have been calibrated with protons of 12 and 20 MeV for a dose range of 0.3-10 Gy. Dose verification in proton irradiation of subcutaneous tumours in mice was successfully accomplished using these films.

  12. Advanced Accelerator Test Facility (AATF) upgrade plan

    International Nuclear Information System (INIS)

    Gai, W.; Ho, C.; Konecny, R.

    1989-01-01

    We have successfully demonstrated the principles of wake-field acceleration using structures (cavity, dielectric) and plasmas as wake-field devices using the AATF at Argonne National Laboratory. Due to the limited driver electron pulse intensity and relative long pulse length, only modest accelerating gradients were observed. In order to study the wake field effects in much greater detail and demonstrate the feasibility of wake-field accelerator for high energy physics, we are considering construction of a laser photocathode injector on the existing 20 MeV Chem-Linac to produce very intense and short electron pulses. 10 refs., 5 figs

  13. A DATA-DRIVEN ANALYTIC MODEL FOR PROTON ACCELERATION BY LARGE-SCALE SOLAR CORONAL SHOCKS

    Energy Technology Data Exchange (ETDEWEB)

    Kozarev, Kamen A. [Smithsonian Astrophysical Observatory (United States); Schwadron, Nathan A. [Institute for the Study of Earth, Oceans, and Space, University of New Hampshire (United States)

    2016-11-10

    We have recently studied the development of an eruptive filament-driven, large-scale off-limb coronal bright front (OCBF) in the low solar corona, using remote observations from the Solar Dynamics Observatory ’s Advanced Imaging Assembly EUV telescopes. In that study, we obtained high-temporal resolution estimates of the OCBF parameters regulating the efficiency of charged particle acceleration within the theoretical framework of diffusive shock acceleration (DSA). These parameters include the time-dependent front size, speed, and strength, as well as the upstream coronal magnetic field orientations with respect to the front’s surface normal direction. Here we present an analytical particle acceleration model, specifically developed to incorporate the coronal shock/compressive front properties described above, derived from remote observations. We verify the model’s performance through a grid of idealized case runs using input parameters typical for large-scale coronal shocks, and demonstrate that the results approach the expected DSA steady-state behavior. We then apply the model to the event of 2011 May 11 using the OCBF time-dependent parameters derived by Kozarev et al. We find that the compressive front likely produced energetic particles as low as 1.3 solar radii in the corona. Comparing the modeled and observed fluences near Earth, we also find that the bulk of the acceleration during this event must have occurred above 1.5 solar radii. With this study we have taken a first step in using direct observations of shocks and compressions in the innermost corona to predict the onsets and intensities of solar energetic particle events.

  14. Basis and objectives of the Los Alamos Accelerator-Driven Transmutation Technology Project

    International Nuclear Information System (INIS)

    Bowman, C.D.

    1995-01-01

    The Accelerator-Driven Transmutation Technology (ADTT) Project carries three approaches for dealing with waste from the defense and commercial nuclear energy enterprise. First, the problem of excess weapons plutonium in the US and Russia originating both from stockpile reductions and from defense production site clean-up is one of significant current and long-term concern. The ADTT technology offers the possibility of almost complete destruction of this plutonium by fission. The technology might be particularly effective for destruction of the low quality plutonium from defense site clean-up since the system does not require the fabrication of the waste into fuel assemblies, does not require reprocessing and refabrication, and can tolerate a high level of impurities in the feed stream. Second, the ADTT system also can destroy the plutonium, other higher actinide, and long-lived fission product from commercial nuclear waste which now can only be dealt with by geologic storage. And finally, and probably most importantly the system can be used for the production of virtually unlimited electric power from thorium with concurrent destruction of its long-lived waste components so that geologic containment for them is not required. In addition plutonium is not a significant byproduct of the power generation so that non-proliferation concerns about nuclear power are almost completely eliminated. All of the ADTT systems operate with an accelerator supplementing the neutrons which in reactors are provided only by the fission process, and therefore the system can be designed to eliminate the possibility for a runaway chain reaction. The means for integration of the accelerator into nuclear power technology in order to make these benefits possible is described including estimates of accelerator operating parameters required for the three objectives

  15. Basis and objectives of the Los Alamos Accelerator-Driven Transmutation technology project

    Science.gov (United States)

    Bowman, Charles D.

    1995-09-01

    The Accelerator-Driven Transmutation Technology (ADTT) Project carries three approaches for dealing with waste from the defense and commercial nuclear energy enterprise. First, the problem of excess weapons plutonium in the U.S. and Russia originating both from stockpile reductions and from defense production site clean-up is one of significant current and long-term concern. The ADTT technology offers the possibility of almost complete destruction of this plutonium by fission. The technology might be particularly effective for destruction of the low quality plutonium from defense site clean-up since the system does not require the fabrication of the waste into fuel assemblies, does not require reprocessing and refabrication, and can tolerate a high level of impurities in the feed stream. Second, the ADTT system also can destroy the plutonium, other higher actinide, and long-lived fission product from commercial nuclear waste which now can only be dealt with by geologic storage. And finally, and probably most importantly the system can be used for the production of virtually unlimited electric power from thorium with concurrent destruction of its long-lived waste components so that geologic containment for them is not required. In addition plutonium is not a significant byproduct of the power generation so that non-proliferation concerns about nuclear power are almost completely eliminated. All of the ADTT systems operate with an accelerator supplementing the neutrons which in reactors are provided only by the fission process, and therefore the system can be designed to eliminate the possibility for a runaway chain reaction. The means for integration of the accelerator into nuclear power technology in order to make these benefits possible is described including estimates of accelerator operating parameters required for the three objectives.

  16. Results from Accelerator Driven TRIGA Reactor Experiments at The University of Texas at Austin

    International Nuclear Information System (INIS)

    O'Kelly, S.; Braisted, J.; Krause, M.; Welch, L.

    2008-01-01

    Accelerator Driven Transmutation of High-Level Waste (ATW) is one possible solution to the fuel reprocessing back-end problem for the disposal of high level waste such as minor actinides (Am, Np or Cm) and long-lived fission products. International programs continue to support research towards the eventual construction and operation of a proton accelerator driven spallation neutron source coupled to a subcritical 'neutron amplifier' for more efficient HLW transmutation. This project was performed under DOE AFCI Reactor-Accelerator Coupling Experiments (RACE). A 20 MeV Electron Linac was installed in the BP no 5 cave placing neutron source adjacent to an offset reactor core to maximize neutron coupling with available systems. Asymmetric neutron injection 'wasted' neutrons due to high leakage but sufficient neutrons were available to raise reactor power to ∼100 watts. The Linac provided approximately 100 mA but only 50% reached target. The Linac cooling system could not prevent overheating at frequencies over 200 Hz. The Linac electron beam had harmonics of primary frequency and periodic low frequency pulse intensity changes. Neutron detection using fission chambers in current mode eliminated saturation dead time and produced better sensitivity. The Operation of 'dual shielded' fission chambers reduced electron noise from linac. Benchmark criticality calculation using start-up data showed that the MCNPX model overestimates reactivity. TRIGA core was loaded to just slightly supercritical by adding graphite elements and measuring reactivity of $0.037. MCNPX modeled TRIGA core with and without graphite to arrive at 'true' measured subcritical multiplication of 0.998733± 0.00069. Thus, Alpha for the UT-RACE TRIGA core was approximately 155.99 s -1 . The Stochastic Feynman-Alpha Method (SFM) accuracy was evaluated during transients and reactivity changes. SFM was shown to be a potential real-time method of reactivity determination in future ADSS but requires stable

  17. Numerical investigation of beam-driven PWFA in quasi-nonlinear regime

    International Nuclear Information System (INIS)

    Londrillo, P.; Gatti, C.; Ferrario, M.

    2014-01-01

    In beam-driven Plasma Based Wakefield Acceleration (PWFA), the quasi-nonlinear model has been designed to combine high efficient ‘blowout’ regimes, where cold and overdense driving electron beams form a totally rarefied plasma channel, with low charge beam distribution assuring the excited wakefield preserves relevant linear properties. This scheme can have applications in experimental facilities, like SPARC 150 MeV linac at LNF-INFN laboratories, where low-emittance, low-charge narrow electron beams can be produced to be injected on a preformed plasma channel. Here we present a preliminary numerical investigation of this configuration, using the fully 3D ALaDyn PIC code, as a preparatory work to design optimal conditions for the COMB experimental set-up. Specific numerical tools, having computational and diagnostic advantages in PWFA conditions and checks of the numerical outcomes with analytical results, are also presented and discussed

  18. Calculation and analysis of burnup and optimum core design in accelerator driven sub-critical system

    International Nuclear Information System (INIS)

    Wang Yuwei; Yang Yongwei; Cui Pengfei

    2011-01-01

    The premise of the accelerator driven sub-critical system (ADS) in the accident is still subcritical, the biggest k eff change with burn time is less than 1.5% and the cladding material, HT9 steel, can withstand the maximum radiation damage, core fuel area is divided into fuel transmutation area and fuel multiplication area, and fuel transmutation area maintains the same fuel composition in the whole process. Through the analysis of the composition of the fuel, shape of core layout and the power distribution, etc., supposed outer and inner Pu enrichment ratio range of 1.0-1.5, then the fuel components of fuel multiplication area was adjusted. Time evolution of k eff was calculated by COUPLED2 which coupled with MCNP and ORIGEN. At the same time the power peaking factors, minoractinides transmutation rate desired to maximization and burnup were considered. A sub-critical system fitting for engineering practice was established. (authors)

  19. Research Programme for the 660 Mev Proton Accelerator Driven MOX-Plutonium Subcritical Assembly

    CERN Document Server

    Barashenkov, V S; Buttseva, G L; Dudarev, S Yu; Polanski, A; Puzynin, I V; Sissakian, A N

    2000-01-01

    The paper presents a research programme of the Experimental Acclerator Driven System (ADS), which employs a subcritical assembly and a 660 MeV proton acceletator operating at the Laboratory of Nuclear Problems of the JINR, Dubna. MOX fuel (25% PuO_2 + 75% UO_2) designed for the BN-600 reactor use will be adopted for the core of the assembly. The present conceptual design of the experimental subcritical assembly is based on a core of a nominal unit capacity of 15 kW (thermal). This corresponds to the multiplication coefficient k_eff = 0.945, energetic gain G = 30 and the accelerator beam power 0.5 kW.

  20. Status of an induction accelerator driven, high-power microwave generator at Livermore

    International Nuclear Information System (INIS)

    Houck, T.L.; Westenskow, G.A.

    1993-01-01

    The authors are testing an enhanced version of the Choppertron, a high-power rf generator which shows great promise of achieving greater than 400 MW of output power at 11.4 GHz with stable phase and amplitude. This version of the Choppertron is driven by a 5-MeV, 1-kA induction accelerator beam. Modifications to the original Choppertron included aggressive suppression of high order modes in the two output structures, lengthening of the modulation section to match for higher beam energy, and improved efficiency. Final results of the original Choppertron experiment, status of the ongoing experiment and planned experiments for the next year are presented. The motivation of the research program at the LLNL Microwave Source Facility is to develop microwave sources which could be suitable drivers for a future TeV linear e + e - collider