WorldWideScience

Sample records for wake methods including

  1. Unsteady panel method for complex configurations including wake modeling

    CSIR Research Space (South Africa)

    Van Zyl, Lourens H

    2008-01-01

    Full Text Available implementations of the DLM are however not very versatile in terms of geometries that can be modeled. The ZONA6 code offers a versatile surface panel body model including a separated wake model, but uses a pressure panel method for lifting surfaces. This paper...

  2. Indirect methods for wake potential integration

    International Nuclear Information System (INIS)

    Zagorodnov, I.

    2006-05-01

    The development of the modern accelerator and free-electron laser projects requires to consider wake fields of very short bunches in arbitrary three dimensional structures. To obtain the wake numerically by direct integration is difficult, since it takes a long time for the scattered fields to catch up to the bunch. On the other hand no general algorithm for indirect wake field integration is available in the literature so far. In this paper we review the know indirect methods to compute wake potentials in rotationally symmetric and cavity-like three dimensional structures. For arbitrary three dimensional geometries we introduce several new techniques and test them numerically. (Orig.)

  3. Wake Vortex Avoidance System and Method

    Science.gov (United States)

    Shams, Qamar A. (Inventor); Zuckerwar, Allan J. (Inventor); Knight, Howard K. (Inventor)

    2017-01-01

    A wake vortex avoidance system includes a microphone array configured to detect low frequency sounds. A signal processor determines a geometric mean coherence based on the detected low frequency sounds. A display displays wake vortices based on the determined geometric mean coherence.

  4. Free wake models for vortex methods

    Energy Technology Data Exchange (ETDEWEB)

    Kaiser, K. [Technical Univ. Berlin, Aerospace Inst. (Germany)

    1997-08-01

    The blade element method works fast and good. For some problems (rotor shapes or flow conditions) it could be better to use vortex methods. Different methods for calculating a wake geometry will be presented. (au)

  5. Wake simulation for wind turbines with a free, prescribed- and hybrid-wake method

    Energy Technology Data Exchange (ETDEWEB)

    Bareiss, R.; Guidati, G.; Wagner, S. [Univ. Stuttgart, Inst. fuer Aerodynamik und Gasdynamik, Stuttgart (Germany)

    1997-08-01

    Calculations of the radial distribution and the time history of the induction factors have been performed with a number of different wake models implemented in a vortex-lattice method for tip-speed ratios in the range 1-13. The new models lead to a significant reduction of the computational effort down to 3-27% compared to a free-wake model with errors less than 5%. (au)

  6. Rotor wake and flow analysis using a coupled Eulerian–Lagrangian method

    Directory of Open Access Journals (Sweden)

    Yongjie Shi

    2016-01-01

    Full Text Available A coupled Eulerian–Lagrangian methodology was developed in this paper in order to provide an efficient and accurate tool for rotor wake and flow prediction. A Eulerian-based Reynolds-averaged Navier–Stokes (RANS solver was employed to simulate the grid-covered near-body zone, and a grid-free Lagrangian-based viscous wake method (VWM was implemented to model the complicated rotor-wake dynamics in the off-body wake zone. A carefully designed coupling strategy was developed to pass the flow variables between two solvers. A sample case of a forward flying rotor was performed first in order to show the capabilities of the VWM for wake simulations. Next, the coupled method was applied to rotors in several representative flight conditions. Excellent agreement regarding wake geometry, chordwise pressure distribution and sectional normal force with available experimental data demonstrated the validity of the method. In addition, a comparison with the full computational fluid dynamics (CFD method is presented to illustrate the efficiency and accuracy of the proposed coupled method.

  7. Dynamic Loads and Wake Prediction for Large Wind Turbines Based on Free Wake Method

    Institute of Scientific and Technical Information of China (English)

    Cao Jiufa; Wang Tongguang; Long Hui; Ke Shitang; Xu Bofeng

    2015-01-01

    With large scale wind turbines ,the issue of aerodynamic elastic response is even more significant on dy-namic behaviour of the system .Unsteady free vortex wake method is proposed to calculate the shape of wake and aerodynamic load .Considering the effect of aerodynamic load ,inertial load and gravity load ,the decoupling dy-namic equations are established by using finite element method in conjunction of the modal method and equations are solved numerically by Newmark approach .Finally ,the numerical simulation of a large scale wind turbine is performed through coupling the free vortex wake modelling with structural modelling .The results show that this coupling model can predict the flexible wind turbine dynamic characteristics effectively and efficiently .Under the influence of the gravitational force ,the dynamic response of flapwise direction contributes to the dynamic behavior of edgewise direction under the operational condition of steady wind speed .The difference in dynamic response be-tween the flexible and rigid wind turbines manifests when the aerodynamics/structure coupling effect is of signifi-cance in both wind turbine design and performance calculation .

  8. Wake characterization methods of a circulation control wing

    Science.gov (United States)

    El Sayed Mohamed, Y.; Semaan, R.; Sattler, S.; Radespiel, R.

    2017-10-01

    We propose a three-pronged methodology to characterise the wake behind a circulation control wing. The study relies on time-resolved particle image velocimetry (TR-PIV) measurements in a water tunnel for a range of blowing intensities. The first method is the well-known proper orthogonal decomposition (POD). The second tool is a new implementation of the power spectrum. Finally, a modified Q-criterion vortex detection and quantification method is presented. The results show the complementary advantage of the three methods in analysing wake flows with varying conditions.

  9. Multi-Model Ensemble Wake Vortex Prediction

    Science.gov (United States)

    Koerner, Stephan; Holzaepfel, Frank; Ahmad, Nash'at N.

    2015-01-01

    Several multi-model ensemble methods are investigated for predicting wake vortex transport and decay. This study is a joint effort between National Aeronautics and Space Administration and Deutsches Zentrum fuer Luft- und Raumfahrt to develop a multi-model ensemble capability using their wake models. An overview of different multi-model ensemble methods and their feasibility for wake applications is presented. The methods include Reliability Ensemble Averaging, Bayesian Model Averaging, and Monte Carlo Simulations. The methodologies are evaluated using data from wake vortex field experiments.

  10. Some observations concerning blade-element-momentum (BEM) methods and vortex wake methods, including numerical experiments with a simple vortex model

    Energy Technology Data Exchange (ETDEWEB)

    Snel, H. [Netherlands Energy Research Foundation ECN, Renewable Energy, Wind Energy (Netherlands)

    1997-08-01

    Recently the Blade Element Momentum (BEM) method has been made more versatile. Inclusion of rotational effects on time averaged profile coefficients have improved its achievements for performance calculations in stalled flow. Time dependence as a result of turbulent inflow, pitching actions and yawed operation is now treated more correctly (although more improvement is needed) than before. It is of interest to note that adaptations in modelling of unsteady or periodic induction stem from qualitative and quantitative insights obtained from free vortex models. Free vortex methods and further into the future Navier Stokes (NS) calculations, together with wind tunnel and field experiments, can be very useful in enhancing the potential of BEM for aero-elastic response calculations. It must be kept in mind however that extreme caution must be used with free vortex methods, as will be discussed in the following chapters. A discussion of the shortcomings and the strength of BEM and of vortex wake models is given. Some ideas are presented on how BEM might be improved without too much loss of efficiency. (EG)

  11. Methods for estimating wake flow and effluent dispersion near simple block-like buildings

    International Nuclear Information System (INIS)

    Hosker, R.P. Jr.

    1981-05-01

    This report is intended as an interim guide for those who routinely face air quality problems associated with near-building exhaust stack placement and height, and the resulting concentration patterns. Available data and methods for estimating wake flow and effluent dispersion near isolated block-like structures are consolidated. The near-building and wake flows are described, and quantitative estimates for frontal eddy size, height and extent of roof and wake cavities, and far wake behavior are provided. Concentration calculation methods for upwind, near-building, and downwind pollutant sources are given. For an upwind source, it is possible to estimate the required stack height, and to place upper limits on the likely near-building concentration. The influences of near-building source location and characteristics relative to the building geometry and orientation are considered. Methods to estimate effective stack height, upper limits for concentration due to flush roof vents, and the effect of changes in rooftop stack height are summarized. Current wake and wake cavity models are presented. Numerous graphs of important expressions have been prepared to facilitate computations and quick estimates of flow patterns and concentration levels for specific simple buildings. Detailed recommendations for additional work are given

  12. Aerodynamic optimization of wind turbine rotors using a blade element momentum method with corrections for wake rotation and expansion

    DEFF Research Database (Denmark)

    Døssing, Mads; Aagaard Madsen, Helge; Bak, Christian

    2012-01-01

    The blade element momentum (BEM) method is widely used for calculating the quasi-steady aerodynamics of horizontal axis wind turbines. Recently, the BEM method has been expanded to include corrections for wake expansion and the pressure due to wake rotation (), and more accurate solutions can now...... by the positive effect of wake rotation, which locally causes the efficiency to exceed the Betz limit. Wake expansion has a negative effect, which is most important at high tip speed ratios. It was further found that by using , it is possible to obtain a 5% reduction in flap bending moment when compared with BEM....... In short, allows fast aerodynamic calculations and optimizations with a much higher degree of accuracy than the traditional BEM model. Copyright © 2011 John Wiley & Sons, Ltd....

  13. Simulation of Rotary-Wing Near-Wake Vortex Structures Using Navier-Stokes CFD Methods

    Science.gov (United States)

    Kenwright, David; Strawn, Roger; Ahmad, Jasim; Duque, Earl; Warmbrodt, William (Technical Monitor)

    1997-01-01

    This paper will use high-resolution Navier-Stokes computational fluid dynamics (CFD) simulations to model the near-wake vortex roll-up behind rotor blades. The locations and strengths of the trailing vortices will be determined from newly-developed visualization and analysis software tools applied to the CFD solutions. Computational results for rotor nearwake vortices will be used to study the near-wake vortex roll up for highly-twisted tiltrotor blades. These rotor blades typically have combinations of positive and negative spanwise loading and complex vortex wake interactions. Results of the computational studies will be compared to vortex-lattice wake models that are frequently used in rotorcraft comprehensive codes. Information from these comparisons will be used to improve the rotor wake models in the Tilt-Rotor Acoustic Code (TRAC) portion of NASA's Short Haul Civil Transport program (SHCT). Accurate modeling of the rotor wake is an important part of this program and crucial to the successful design of future civil tiltrotor aircraft. The rotor wake system plays an important role in blade-vortex interaction noise, a major problem for all rotorcraft including tiltrotors.

  14. Longitudinal and transverse wake potentials in SLAC

    International Nuclear Information System (INIS)

    Bane, K.; Wilson, P.

    1980-01-01

    In a machine with short bunches of high peak currents, such as the SLAC collider, one needs to know the longitudinal wake potential, for the higher mode losses, and the transverse wake potential, since, for bunches passing slightly off axis, the induced transverse forces will tend to cause beam break up. The longitudinal and transverse wakes of the SLAC structure presented here, were calculated by computer using the modal method, and including an analytic extension for higher modes. (Auth.)

  15. Comparison of Engineering Wake Models with CFD Simulations

    DEFF Research Database (Denmark)

    Andersen, Søren Juhl; Sørensen, Jens Nørkær; Ivanell, S.

    2014-01-01

    The engineering wake models by Jensen [1] and Frandsen et al. [2] are assessed for different scenarios simulated using Large Eddy Simulation and the Actuator Line method implemented in the Navier-Stokes equations. The scenarios include the far wake behind a single wind turbine, a long row of turb...

  16. Two improvements to the dynamic wake meandering model: including the effects of atmospheric shear on wake turbulence and incorporating turbulence build-up in a row of wind turbines

    DEFF Research Database (Denmark)

    Keck, Rolf-Erik; de Mare, Martin Tobias; Churchfield, Matthew J.

    2015-01-01

    The dynamic wake meandering (DWM) model is an engineering wake model designed to physically model the wake deficit evolution and the unsteady meandering that occurs in wind turbine wakes. The present study aims at improving two features of the model: The effect of the atmospheric boundary layer s...

  17. Three-dimensional wake field analysis by boundary element method

    International Nuclear Information System (INIS)

    Miyata, K.

    1987-01-01

    A computer code HERTPIA was developed for the calculation of electromagnetic wake fields excited by charged particles travelling through arbitrarily shaped accelerating cavities. This code solves transient wave problems for a Hertz vector. The numerical analysis is based on the boundary element method. This program is validated by comparing its results with analytical solutions in a pill-box cavity

  18. Applicability of a panel method, which includes nonlinear effects, to a forward-swept-wing aircraft

    Science.gov (United States)

    Ross, J. C.

    1984-01-01

    The ability of a lower order panel method VSAERO, to accurately predict the lift and pitching moment of a complete forward-swept-wing/canard configuration was investigated. The program can simulate nonlinear effects including boundary-layer displacement thickness, wake roll up, and to a limited extent, separated wakes. The predictions were compared with experimental data obtained using a small-scale model in the 7- by 10- Foot Wind Tunnel at NASA Ames Research Center. For the particular configuration under investigation, wake roll up had only a small effect on the force and moment predictions. The effect of the displacement thickness modeling was to reduce the lift curve slope slightly, thus bringing the predicted lift into good agreement with the measured value. Pitching moment predictions were also improved by the boundary-layer simulation. The separation modeling was found to be sensitive to user inputs, but appears to give a reasonable representation of a separated wake. In general, the nonlinear capabilities of the code were found to improve the agreement with experimental data. The usefullness of the code would be enhanced by improving the reliability of the separated wake modeling and by the addition of a leading edge separation model.

  19. Wake fields and wake field acceleration

    International Nuclear Information System (INIS)

    Bane, K.L.F.; Wilson, P.B.; Weiland, T.

    1984-12-01

    In this lecture we introduce the concepts of wake fields and wake potentials, examine some basic properties of these functions, show how they can be calculated, and look briefly at a few important applications. One such application is wake field acceleration. The wake field accelerator is capable of producing the high gradients required for future very high energy e + e - linear colliders. The principles of wake field acceleration, and a brief description of experiments in progress in this area, are presented in the concluding section. 40 references, 27 figures

  20. Effects of outer perturbances on dynamics of wake vortices

    International Nuclear Information System (INIS)

    Baranov, N.A.; Belotserkovsky, A.S.; Turchak, L.I.

    2004-01-01

    One of the problems in aircraft flight safety is reduction of the risk related with aircraft encounter with wake vortices generated by other aircraft. An efficient approach to this problem is design of systems providing information on areas of potential danger of wake vortices to pilots in real time. The main components of such a system are a unit for calculations of wake vortices behind aircraft and a unit for calculations of areas of potential danger. A promising way to development of real time algorithms for calculation of wake vortices is the use of vortex methods in CFD based on the hypothesis of quasi-3D flow in the area of wake vorticity. The mathematical model developed by our team calculates positions and intensity of wake vortices past aircraft taking account of such effects as viscous dissipation of vortices, effects of ambient turbulence, wind shear, as well as viscous interaction between wake vortices and the underlying surface. The necessity of including the last factor could be stems from the fact that in the case where wake vortices are in close proximity of the rigid surface, the viscous interaction between the wake vortices and the surface boundary layer results in the boundary layer separation changing the overall intensity and dynamics of the wake vortices. To evaluate the boundaries of the danger areas the authors use an approach based on calculation of additional aerodynamic forces and moments acting on the aircraft encountering wake vortices by means of evaluation of the aircraft additional velocities and angular rates corresponding to distribution of disturbed velocities on the aircraft surface. These criteria could be based on local characteristics of the vorticity areas or on characteristics related to the perturbation effects on the aircraft. The latter characteristics include the actual aerodynamic roll moment, the maximum angular rate or the maximum roll of the aircraft under perturbations in the wake vortices. To estimate the accuracy

  1. Verification of the SLC wake potentials

    International Nuclear Information System (INIS)

    Bane, K.; Weiland, T.

    1983-01-01

    The accurate knowledge of the monopole, dipole, and quadrupole wake potentials is essential for SLC. These wake potentials were previously computed by the modal method. The time domain code TBCI allows independent verification of these results. This comparison shows that the two methods agree to within 10% for bunch lengths down to 1 mm. TBCI results also indicate that rounding the irises gives at least a 10% reduction in the wake potentials

  2. Dynamic wake meandering modeling

    Energy Technology Data Exchange (ETDEWEB)

    Larsen, Gunner C.; Aagaard Madsen, H.; Bingoel, F. (and others)

    2007-06-15

    We present a consistent, physically based theory for the wake meandering phenomenon, which we consider of crucial importance for the overall description of wind turbine loadings in wind farms. In its present version the model is confined to single wake situations. The model philosophy does, however, have the potential to include also mutual wake interaction phenomenons. The basic conjecture behind the dynamic wake meandering model is that wake transportation in the atmospheric boundary layer is driven by the large scale lateral- and vertical turbulence components. Based on this conjecture a stochastic model of the downstream wake meandering is formulated. In addition to the kinematic formulation of the dynamics of the 'meandering frame of reference', models characterizing the mean wake deficit as well as the added wake turbulence, described in the meandering frame of reference, are an integrated part the model complex. For design applications, the computational efficiency of wake deficit prediction is a key issue. Two computationally low cost models are developed for this purpose. The character of the added wake turbulence, generated by the up-stream turbine in the form of shed and trailed vorticity, has been approached by analytical as well as by numerical studies. The dynamic wake meandering philosophy has been verified by comparing model predictions with extensive full-scale measurements. These comparisons have demonstrated good agreement, both qualitatively and quantitatively, concerning both flow characteristics and turbine load characteristics. Contrary to previous attempts to model wake loading, the dynamic wake meandering approach opens for a unifying description in the sense that turbine power and load aspects can be treated simultaneously. This capability is a direct and attractive consequence of the model being based on the underlying physical process, and it potentially opens for optimization of wind farm topology, of wind farm operation as

  3. Diffusion in building wakes

    International Nuclear Information System (INIS)

    Ramsdell, J.V.

    1988-03-01

    Straight-line Gaussian models adequately describe atmospheric diffusion for many applications. They have been modified for use in estimating diffusion in building wakes by adding terms that include projected building area and by redefining the diffusion coefficients so that the coefficients have minimum values that are related to building dimensions. In a recent study, Ramsdell reviewed the building-wake dispersion models used by the Nuclear Regulatory Commission (NRC) in its control room habitability assessments. The review included comparison of model estimates of centerline concentrations with concentrations observed in experiments at seven nuclear reactors. In general, the models are conservative in that they tend to predict concentrations that are greater than those actually observed. However, the models show little skill in accounting for variations in the observed concentrations. Subsequently, the experimental data and multiples linear regression techniques have been used to develop a new building wake diffusion model. This paper describes the new building wake model and compares it with other models. 8 refs., 2 figs

  4. Wake modeling and simulation

    Energy Technology Data Exchange (ETDEWEB)

    Larsen, G.C.; Aagaard Madsen, H.; Larsen, T.J.; Troldborg, N.

    2008-07-15

    We present a consistent, physically based theory for the wake meandering phenomenon, which we consider of crucial importance for the overall description of wind turbine loadings in wind farms. In its present version the model is confined to single wake situations. The model philosophy does, however, have the potential to include also mutual wake interaction phenomenons. The basic conjecture behind the dynamic wake meandering (DWM) model is that wake transportation in the atmospheric boundary layer is driven by the large scale lateral- and vertical turbulence components. Based on this conjecture a stochastic model of the downstream wake meandering is formulated. In addition to the kinematic formulation of the dynamics of the 'meandering frame of reference', models characterizing the mean wake deficit as well as the added wake turbulence, described in the meandering frame of reference, are an integrated part the DWM model complex. For design applications, the computational efficiency of wake deficit prediction is a key issue. A computationally low cost model is developed for this purpose. Likewise, the character of the added wake turbulence, generated by the up-stream turbine in the form of shed and trailed vorticity, has been approached by a simple semi-empirical model essentially based on an eddy viscosity philosophy. Contrary to previous attempts to model wake loading, the DWM approach opens for a unifying description in the sense that turbine power- and load aspects can be treated simultaneously. This capability is a direct and attractive consequence of the model being based on the underlying physical process, and it potentially opens for optimization of wind farm topology, of wind farm operation as well as of control strategies for the individual turbine. To establish an integrated modeling tool, the DWM methodology has been implemented in the aeroelastic code HAWC2, and example simulations of wake situations, from the small Tjaereborg wind farm, have

  5. Wake-Model Effects on Induced Drag Prediction of Staggered Boxwings

    Directory of Open Access Journals (Sweden)

    Julian Schirra

    2018-01-01

    Full Text Available For staggered boxwings the predictions of induced drag that rely on common potential-flow methods can be of limited accuracy. For example, linear, freestream-fixed wake models cannot resolve effects related to wake deflection and roll-up, which can have significant affects on the induced drag projection of these systems. The present work investigates the principle impact of wake modelling on the accuracy of induced drag prediction of boxwings with stagger. The study compares induced drag predictions of a higher-order potential-flow method that uses fixed and relaxed-wake models, and of an Euler-flow method. Positive-staggered systems at positive angles of attack are found to be particularly prone to higher-order wake effects due to vertical contraction of wakes trajectories, which results in smaller effective height-to-span ratios than compared with negative stagger and thus closer interactions between trailing wakes and lifting surfaces. Therefore, when trying to predict induced drag of positive staggered boxwings, only a potential-flow method with a fully relaxed-wake model will provide the high-degree of accuracy that rivals that of an Euler method while being computationally significantly more efficient.

  6. Energy-Efficient Data Collection Method for Sensor Networks by Integrating Asymmetric Communication and Wake-Up Radio

    Directory of Open Access Journals (Sweden)

    Masanari Iwata

    2018-04-01

    Full Text Available In large-scale wireless sensor networks (WSNs, nodes close to sink nodes consume energy more quickly than other nodes due to packet forwarding. A mobile sink is a good solution to this issue, although it causes two new problems to nodes: (i overhead of updating routing information; and (ii increased operating time due to aperiodic query. To solve these problems, this paper proposes an energy-efficient data collection method, Sink-based Centralized transmission Scheduling (SC-Sched, by integrating asymmetric communication and wake-up radio. Specifically, each node is equipped with a low-power wake-up receiver. The sink node determines transmission scheduling, and transmits a wake-up message using a large transmission power, directly activating a pair of nodes simultaneously which will communicate with a normal transmission power. This paper further investigates how to deal with frame loss caused by fading and how to mitigate the impact of the wake-up latency of communication modules. Simulation evaluations confirm that using multiple channels effectively reduces data collection time and SC-Sched works well with a mobile sink. Compared with the conventional duty-cycling method, SC-Sched greatly reduces total energy consumption and improves the network lifetime by 7.47 times in a WSN with 4 data collection points and 300 sensor nodes.

  7. Wind Turbine Wake in Atmospheric Turbulence

    DEFF Research Database (Denmark)

    Réthoré, Pierre-Elouan Mikael

    to calibrate faster and simpler engineering wind farm wake models. The most attractive solution was the actuator disc method with the steady state k-ε turbulence model. The first step to design such a tool is the treatment of the forces. This thesis presents a computationally inexpensive method to apply......) shows that the problem mainly comes from the assumptions of the eddy-viscosity concept, which are deeply invalidated in the wind turbine wake region. Different models that intent to correct the k-ε model’s issues are investigated, of which none of them is found to be adequate. The mixing of the wake...

  8. Panel method for the wake effects on the aerodynamics of vertical-axis wind turbines

    Science.gov (United States)

    Goyal, Udit; Rempfer, Dietmar

    2011-11-01

    A formulation based on the panel method is implemented for studying the unsteady aerodynamics of straight-bladed vertical-axis wind turbines. A combination of source and vortex distributions is used to represent an airfoil in Darrieus type motion. Our approach represents a low-cost computational technique that takes into account the dynamic changes in angle of attack of the blade during a cycle. A time-stepping mechanism is introduced for the wake convection, and its effects on the aerodynamic forces on the blade are discussed. The focus of the study is to describe the effect of the trailing wakes on the upstream flow conditions and coefficient of performance of the turbines. Results show a decrease in Cp until the wake structure develops and assumes a quasi-steady behavior. A comparison with other models such as single and multiple streamtubes is discussed, and optimization of the blade pitch angle is performed to increase the instantaneous torque and hence the power output from the turbine.

  9. Prediction of multi-wake problems using an improved Jensen wake model

    DEFF Research Database (Denmark)

    Tian, Linlin; Zhu, Wei Jun; Shen, Wen Zhong

    2017-01-01

    The improved analytical wake model named as 2D_k Jensen model (which was proposed to overcome some shortcomes in the classical Jensen wake model) is applied and validated in this work for wind turbine multi-wake predictions. Different from the original Jensen model, this newly developed 2D_k Jensen...... model uses a cosine shape instead of the top-hat shape for the velocity deficit in the wake, and the wake decay rate as a variable that is related to the ambient turbulence as well as the rotor generated turbulence. Coupled with four different multi-wake combination models, the 2D_k Jensen model...... is assessed through (1) simulating two wakes interaction under full wake and partial wake conditions and (2) predicting the power production in the Horns Rev wind farm for different wake sectors around two different wind directions. Through comparisons with field measurements, results from Large Eddy...

  10. Potential load reductions on megawatt turbines exposed to wakes using individual-pitch wake compensator and trailing-edge flaps

    DEFF Research Database (Denmark)

    Markou, Helen; Andersen, Peter Bjørn; Larsen, Gunner Chr.

    2011-01-01

    that typically focus on either load or power prediction. As a consequence, the wake affected inflow field generated by the DWM formulation opens for control strategies for the individual turbine. Two different control approaches for load reduction on the individual turbines are implemented in the multi-body aero-servo-elastic...... tool HAWC2, developed at Risø-DTU in Denmark, and their potential load reduction capabilities compared: (1) full-blade ‘individual-pitch controllers’ acting as wake compensators and (2) controllers using trailing-edge flaps. Information on the wake inflow conditions, induced by upstream turbines...... for the loading conditions of the individual turbines in the farm. The dynamic wake meandering model (DWM) is believed to capture the essential physics of the wake problem, and thus, both load and production aspects can be predicted, which is contrary to the traditional engineering wake prediction methods...

  11. CFD three dimensional wake analysis in complex terrain

    Science.gov (United States)

    Castellani, F.; Astolfi, D.; Terzi, L.

    2017-11-01

    Even if wind energy technology is nowadays fully developed, the use of wind energy in very complex terrain is still challenging. In particular, it is challenging to characterize the combination effects of wind ow over complex terrain and wake interactions between nearby turbines and this has a practical relevance too, for the perspective of mitigating anomalous vibrations and loads as well improving the farm efficiency. In this work, a very complex terrain site has been analyzed through a Reynolds-averaged CFD (Computational Fluid Dynamics) numerical wind field model; in the simulation the inuence of wakes has been included through the Actuator Disk (AD) approach. In particular, the upstream turbine of a cluster of 4 wind turbines having 2.3 MW of rated power is studied. The objective of this study is investigating the full three-dimensional wind field and the impact of three-dimensionality on the evolution of the waked area between nearby turbines. A post-processing method of the output of the CFD simulation is developed and this allows to estimate the wake lateral deviation and the wake width. The reliability of the numerical approach is inspired by and crosschecked through the analysis of the operational SCADA (Supervisory Control and Data Acquisition) data of the cluster of interest.

  12. Conformal FDTD modeling wake fields

    Energy Technology Data Exchange (ETDEWEB)

    Jurgens, T.; Harfoush, F.

    1991-05-01

    Many computer codes have been written to model wake fields. Here we describe the use of the Conformal Finite Difference Time Domain (CFDTD) method to model the wake fields generated by a rigid beam traveling through various accelerating structures. The non- cylindrical symmetry of some of the problems considered here requires the use of a three dimensional code. In traditional FDTD codes, curved surfaces are approximated by rectangular steps. The errors introduced in wake field calculations by such an approximation can be reduced by increasing the mesh size, therefore increasing the cost of computing. Another approach, validated here, deforms Ampere and Faraday contours near a media interface so as to conform to the interface. These improvements of the FDTD method result in better accuracy of the fields at asymptotically no computational cost. This method is also capable of modeling thin wires as found in beam profile monitors, and slots and cracks as found in resistive wall motions. 4 refs., 5 figs.

  13. Multiple Turbine Wakes

    DEFF Research Database (Denmark)

    Machefaux, Ewan; Mann, Jakob

    and to obtain an estimate of the wake expansion in a fixed frame of reference. A comparison of selected datasets from the campaign showed good far wake agreements of mean wake expansion with Actuator Line CFD computations and simpler engineering models. An empirical relationship, relating maximum wake induction...... for modeling the resulting double wake deficit is only relevant at high turbine thrust coefficients. For high wind speed and low thrust coefficient, linear summation should be primarily used. The first iteration of a new engineering model capable of modeling the overlapped wake deficit is formulated and its...... measurement and simulation is seen in both the fixed and the meandering frame of reference. A benchmark of several wake accumulation models is performed as a basis for the subsequent development of an engineering model for wake interaction.Finally, the validated numerical CFD model is used as part...

  14. Power-Efficient Beacon Recognition Method Based on Periodic Wake-Up for Industrial Wireless Devices.

    Science.gov (United States)

    Song, Soonyong; Lee, Donghun; Jang, Ingook; Choi, Jinchul; Son, Youngsung

    2018-04-17

    Energy harvester-integrated wireless devices are attractive for generating semi-permanent power from wasted energy in industrial environments. The energy-harvesting wireless devices may have difficulty in their communication with access points due to insufficient power supply for beacon recognition during network initialization. In this manuscript, we propose a novel method of beacon recognition based on wake-up control to reduce instantaneous power consumption in the initialization procedure. The proposed method applies a moving window for the periodic wake-up of the wireless devices. For unsynchronized wireless devices, beacons are always located in the same positions within each beacon interval even though the starting offsets are unknown. Using these characteristics, the moving window checks the existence of the beacon associated withspecified resources in a beacon interval, checks again for neighboring resources at the next beacon interval, and so on. This method can reduce instantaneous power and generates a surplus of charging time. Thus, the proposed method alleviates the problems of power insufficiency in the network initialization. The feasibility of the proposed method is evaluated using computer simulations of power shortage in various energy-harvesting conditions.

  15. Automatic tracking of wake vortices using ground-wind sensor data

    Science.gov (United States)

    1977-01-03

    Algorithms for automatic tracking of wake vortices using ground-wind anemometer : data are developed. Methods of bad-data suppression, track initiation, and : track termination are included. An effective sensor-failure detection-and identification : ...

  16. Forecasting Behavior in Smart Homes Based on Sleep and Wake Patterns

    Science.gov (United States)

    Williams, Jennifer A.; Cook, Diane J.

    2017-01-01

    Background The goal of this research is to use smart home technology to assist people who are recovering from injuries or coping with disabilities to live independently. Objective We introduce an algorithm to model and forecast wake and sleep behaviors that are exhibited by the participant. Furthermore, we propose that sleep behavior is impacted by and can be modeled from wake behavior, and vice versa. Methods This paper describes the Behavior Forecasting (BF) algorithm. BF consists of 1) defining numeric values that reflect sleep and wake behavior, 2) forecasting wake and sleep values from past behavior, 3) analyzing the effect of wake behavior on sleep and vice versa, and 4) improving prediction performance by using both wake and sleep scores. Results The BF method was evaluated with data collected from 20 smart homes. We found that regardless of the forecasting method utilized, wake behavior and sleep behavior can be modeled with a minimum accuracy of 84%. Additionally, normalizing the wake and sleep scores drastically improves the accuracy to 99%. Conclusions The results show that we can effectively model wake and sleep behaviors in a smart environment. Furthermore, wake behaviors can be predicted from sleep behaviors and vice versa. PMID:27689555

  17. On AEP prediction and wake modelling at Anholt

    DEFF Research Database (Denmark)

    Pena Diaz, Alfredo; Hansen, Kurt Schaldemose; Volker, Patrick

    and direction. We show that the WRF model is able to reproduce such gradients relatively well by comparison to the wind farm’s SCADA. About 1.5 yr of such SCADA, further quality controlled and filtered, reveals an average wake loss of 3.87% only, whereas results from three wake models, Park, Larsen and FUGA......, show average wake losses of 3.46%, 3.69%, and 3.38%, respectively. We employ a bootstrap method to estimate the uncertainty of the wake models. As this is performed with reference to the SCADA, the results provide an idea of the uncertainty of the AEP prediction2. We find all wake models...

  18. Functional anatomy of the sleep-wakefulness cycle: wakefulness.

    Science.gov (United States)

    Reinoso-Suárez, Fernando; de Andrés, Isabel; Garzón, Miguel

    2011-01-01

    Sleep is a necessary, diverse, periodic, and an active condition circadian and homeostatically regulated and precisely meshed with waking time into the sleep-wakefulness cycle (SWC). Photic retinal stimulation modulates the suprachiasmatic nucleus, which acts as the pacemaker for SWC rhythmicity. Both the light period and social cues adjust the internal clock, making the SWC a circadian, 24-h period in the adult human. Bioelectrical and behavioral parameters characterize the different phases of the SWC. For a long time, lesions and electrical stimulation of brain structures, as well as connection studies, were the main methods used to decipher the foundations of the functional anatomy of the SWC. That is why the first section of this review presents these early historical studies to then discuss the current state of our knowledge based on our understanding of the functional anatomy of the structures underlying the SWC. Supported by this description, we then present a detailed review and update of the structures involved in the phase of wakefulness (W), including their morphological, functional, and chemical characteristics, as well as their anatomical connections. The structures for W generation are known as the "ascending reticular activating system", and they keep and maintain the "thalamo-cerebral cortex unit" awake. This system originates from the neuronal groups located within the brainstem, hypothalamus, and basal forebrain, which use known neurotransmitters and whose neurons are more active during W than during the other SWC states. Thus, synergies among several of these neurotransmitters are necessary to generate the cortical and thalamic activation that is characteristic of the W state, with all the plastic qualities and nuances present in its different behavioral circumstances. Each one of the neurotransmitters exerts powerful influences on the information and cognitive processes as well as attentional, emotional, motivational, behavioral, and arousal

  19. Bifurcation of space-charge wave in a plasma waveguide including the wake potential effect

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Myoung-Jae [Department of Physics and Research Institute for Natural Sciences, Hanyang University, Seoul 04763 (Korea, Republic of); Jung, Young-Dae, E-mail: ydjung@hanyang.ac.kr [Department of Applied Physics and Department of Bionanotechnology, Hanyang University, Ansan, Kyunggi-Do 15588, South Korea and Department of Physics, Applied Physics, and Astronomy, Rensselaer Polytechnic Institute, 110 8th Street, Troy, New York 12180-3590 (United States)

    2016-09-15

    The wake potential effects on the propagation of the space-charge dust ion-acoustic wave are investigated in a cylindrically bounded dusty plasma with the ion flow. The results show that the wake potential would generate the double frequency modes in a cylindrically bounded dusty plasma. It is found that the upper mode of the wave frequency with the root of higher-order is smaller than that with the root of lower-order in intermediate wave number domains. However, the lower mode of the scaled wave frequency with the root of higher-order is found to be greater than that with the root of lower-order. It is found that the influence in the order of the root of the Bessel function on the wave frequency of the space-charge dust-ion-acoustic wave in a cylindrically confined dusty plasma decreases with an increase in the propagation wave number. It is also found that the double frequency modes increase with increasing Mach number due to the ion flow in a cylindrical dusty plasma. In addition, it is found that the upper mode of the group velocity decreases with an increase in the scaled radius of the plasma cylinder. However, it is shown that the lower mode of the scaled group velocity of the space-charge dust ion acoustic wave increases with an increase in the radius of the plasma cylinder. The variation of the space-charge dust-ion-acoustic wave due to the wake potential and geometric effects is also discussed.

  20. Validation of the actuator line method using near wake measurements of the MEXICO rotor

    DEFF Research Database (Denmark)

    Nilsson, Karl; Shen, Wen Zhong; Sørensen, Jens Nørkær

    2015-01-01

    The purpose of the present work is to validate the capability of the actuator line method to compute vortex structures in the near wake behind the MEXICO experimental wind turbine rotor. In the MEXICO project/MexNext Annex, particle image velocimetry measurements have made it possible to determine...

  1. Comparing satellite SAR and wind farm wake models

    DEFF Research Database (Denmark)

    Hasager, Charlotte Bay; Vincent, P.; Husson, R.

    2015-01-01

    . These extend several tens of kilometres downwind e.g. 70 km. Other SAR wind maps show near-field fine scale details of wake behind rows of turbines. The satellite SAR wind farm wake cases are modelled by different wind farm wake models including the PARK microscale model, the Weather Research and Forecasting...... (WRF) model in high resolution and WRF with coupled microscale parametrization....

  2. Forecasting behavior in smart homes based on sleep and wake patterns.

    Science.gov (United States)

    Williams, Jennifer A; Cook, Diane J

    2017-01-01

    The goal of this research is to use smart home technology to assist people who are recovering from injuries or coping with disabilities to live independently. We introduce an algorithm to model and forecast wake and sleep behaviors that are exhibited by the participant. Furthermore, we propose that sleep behavior is impacted by and can be modeled from wake behavior, and vice versa. This paper describes the Behavior Forecasting (BF) algorithm. BF consists of 1) defining numeric values that reflect sleep and wake behavior, 2) forecasting wake and sleep values from past behavior, 3) analyzing the effect of wake behavior on sleep and vice versa, and 4) improving prediction performance by using both wake and sleep scores. The BF method was evaluated with data collected from 20 smart homes. We found that regardless of the forecasting method utilized, wake behavior and sleep behavior can be modeled with a minimum accuracy of 84%. Additionally, normalizing the wake and sleep scores drastically improves the accuracy to 99%. The results show that we can effectively model wake and sleep behaviors in a smart environment. Furthermore, wake behaviors can be predicted from sleep behaviors and vice versa.

  3. Actuator Line Modeling of Wind Turbine Wakes

    DEFF Research Database (Denmark)

    Troldborg, Niels

    2009-01-01

    This thesis contains a comprehensive 3D Navier-Stokes computational study of the characteristics of wakes of wind turbines operating in various flow conditions including interacting wakes between a row of turbines. The computations were carried out using the actuator line technique combined...

  4. Evaluation of Fast-Time Wake Vortex Models using Wake Encounter Flight Test Data

    Science.gov (United States)

    Ahmad, Nashat N.; VanValkenburg, Randal L.; Bowles, Roland L.; Limon Duparcmeur, Fanny M.; Gloudesman, Thijs; van Lochem, Sander; Ras, Eelco

    2014-01-01

    This paper describes a methodology for the integration and evaluation of fast-time wake models with flight data. The National Aeronautics and Space Administration conducted detailed flight tests in 1995 and 1997 under the Aircraft Vortex Spacing System Program to characterize wake vortex decay and wake encounter dynamics. In this study, data collected during Flight 705 were used to evaluate NASA's fast-time wake transport and decay models. Deterministic and Monte-Carlo simulations were conducted to define wake hazard bounds behind the wake generator. The methodology described in this paper can be used for further validation of fast-time wake models using en-route flight data, and for determining wake turbulence constraints in the design of air traffic management concepts.

  5. Vortex wakes of a flapping foil in a flowing soap film

    DEFF Research Database (Denmark)

    We present an experimental study of an oscillating, symmetric foil in a vertically flowing soap film. By varying frequency and amplitude of the oscillation we explore and visualize a variety of wake structures, including von K´arm´an wake, reverse von K´arm´an wake, 2P wake, and 2P+2S wake. We...

  6. International Survey on the Management of Wake-Up Stroke

    Directory of Open Access Journals (Sweden)

    Luís Henrique de Castro-Afonso

    2016-03-01

    Full Text Available Background: Patients who wake up having experienced a stroke while asleep represent around 20% of acute stroke admissions. According to international guidelines for the management of acute stroke, patients presenting with wake-up stroke are not currently eligible to receive revascularization treatments. In this study, we aimed to assess the opinions of stroke experts about the management of patients with wake-up stroke by using an international multicenter electronic survey. Method: This study consisted of 8 questions on wake-up stroke treatment. Results: Two hundred invitations to participate in the survey were sent by e-mail. Fifty-nine participants started the survey, 4 dropped out before completing it, and 55 completed the full questionnaire. We had 55 participants from 22 countries. Conclusions: In this study, most stroke experts recommended a recanalization treatment for wake-up stroke. However, there was considerable disagreement among experts regarding the best brain imaging method and the best recanalization treatment. The results of ongoing randomized trials on wake-up stroke are urgently needed.

  7. Characterization of wake region by using and emissive probe

    International Nuclear Information System (INIS)

    Jeong, Yong Ho

    1993-02-01

    An emissive probe was designed and manufactured to measure the floating and the space potentials of plasma in the wake region. The floating potential method' among various schemes was used for the measurement and analysis. To generate the wake, a plane artificial satellite with circular shape was introduced in a simply discharged argon plasma without the magnetic field. Potentials along the radial direction in and out of the wake regions of artificial satellite were measured, and plasma parameters were compared in the both regions. In the wake region, the floating potential was higher than that out of the wake, the space potential was approximately equal to that out of the wake, when the positive voltage was applied to artificial satellite, the floating and the space potentials were lower than that out of the wake and when the negative voltage was applied to artificial satellite, the floating potential was higher, the space potential was lower than that out of the wake

  8. Wake field accelerators

    International Nuclear Information System (INIS)

    Wilson, P.B.

    1986-02-01

    In a wake field accelerator a high current driving bunch injected into a structure or plasma produces intense induced fields, which are in turn used to accelerate a trailing charge or bunch. The basic concepts of wake field acceleration are described. Wake potentials for closed cavities and periodic structures are derived, as are wake potentials on a collinear path with a charge distribution. Cylindrically symmetric structures excited by a beam in the form of a ring are considered

  9. Numerical Analysis of the Unsteady Propeller Performance in the Ship Wake Modified By Different Wake Improvement Devices

    Directory of Open Access Journals (Sweden)

    Bugalski Tomasz

    2014-10-01

    Full Text Available The paper presents the summary of results of the numerical analysis of the unsteady propeller performance in the non-uniform ship wake modified by the different wake improvement devices. This analysis is performed using the lifting surface program DUNCAN for unsteady propeller analysis. Te object of the analysis is a 7000 ton chemical tanker, for which four different types of the wake improvement devices have been designed: two vortex generators, a pre-swirl stator, and a boundary layer alignment device. These produced five different cases of the ship wake structure: the original hull and hull equipped alternatively with four wake improvement devices. Two different propellers were analyzed in these five wake fields, one being the original reference propeller P0 and the other - a specially designed, optimized propeller P3. Te analyzed parameters were the pictures of unsteady cavitation on propeller blades, harmonics of pressure pulses generated by the cavitating propellers in the selected points and the fluctuating bearing forces on the propeller shaft. Some of the calculated cavitation phenomena were confronted with the experimental. Te objective of the calculations was to demonstrate the differences in the calculated unsteady propeller performance resulting from the application of different wake improvement devices. Te analysis and discussion of the results, together with the appropriate conclusions, are included in the paper.

  10. Wind turbine wake in atmospheric turbulence

    Energy Technology Data Exchange (ETDEWEB)

    Rethore, P -E

    2009-10-15

    This thesis describes the different steps needed to design a steady-state computational fluid dynamics (CFD) wind farm wake model. The ultimate goal of the project was to design a tool that could analyze and extrapolate systematically wind farm measurements to generate wind maps in order to calibrate faster and simpler engineering wind farm wake models. The most attractive solution was the actuator disc method with the steady state k-epsilon turbulence model. The first step to design such a tool is the treatment of the forces. This thesis presents a computationally inexpensive method to apply discrete body forces into the finite-volume flow solver with collocated variable treatment (EllipSys), which avoids the pressure-velocity decoupling issue. The second step is to distribute the body forces in the computational domain accordingly to rotor loading. This thesis presents a generic flexible method that associates any kind of shapes with the computational domain discretization. The special case of the actuator disc performs remarkably well in comparison with Conway's heavily loaded actuator disc analytical solution and a CFD full rotor computation, even with a coarse discretization. The third step is to model the atmospheric turbulence. The standard k-epsilon model is found to be unable to model at the same time the atmospheric turbulence and the actuator disc wake and performs badly in comparison with single wind turbine wake measurements. A comparison with a Large Eddy Simulation (LES) shows that the problem mainly comes from the assumptions of the eddy-viscosity concept, which are deeply invalidated in the wind turbine wake region. Different models that intent to correct the k-epsilon model's issues are investigated, of which none of them is found to be adequate. The mixing of the wake in the atmosphere is a deeply non-local phenomenon that is not handled correctly by an eddy-viscosity model such as k-epsilon. (author)

  11. Wind turbine wake in atmospheric turbulence

    Energy Technology Data Exchange (ETDEWEB)

    Rethore, P.-E.

    2009-10-15

    This thesis describes the different steps needed to design a steady-state computational fluid dynamics (CFD) wind farm wake model. The ultimate goal of the project was to design a tool that could analyze and extrapolate systematically wind farm measurements to generate wind maps in order to calibrate faster and simpler engineering wind farm wake models. The most attractive solution was the actuator disc method with the steady state k-epsilon turbulence model. The first step to design such a tool is the treatment of the forces. This thesis presents a computationally inexpensive method to apply discrete body forces into the finite-volume flow solver with collocated variable treatment (EllipSys), which avoids the pressure-velocity decoupling issue. The second step is to distribute the body forces in the computational domain accordingly to rotor loading. This thesis presents a generic flexible method that associates any kind of shapes with the computational domain discretization. The special case of the actuator disc performs remarkably well in comparison with Conway's heavily loaded actuator disc analytical solution and a CFD full rotor computation, even with a coarse discretization. The third step is to model the atmospheric turbulence. The standard k-epsilon model is found to be unable to model at the same time the atmospheric turbulence and the actuator disc wake and performs badly in comparison with single wind turbine wake measurements. A comparison with a Large Eddy Simulation (LES) shows that the problem mainly comes from the assumptions of the eddy-viscosity concept, which are deeply invalidated in the wind turbine wake region. Different models that intent to correct the k-epsilon model's issues are investigated, of which none of them is found to be adequate. The mixing of the wake in the atmosphere is a deeply non-local phenomenon that is not handled correctly by an eddy-viscosity model such as k-epsilon. (author)

  12. Boat, wake, and wave real-time simulation

    Science.gov (United States)

    Świerkowski, Leszek; Gouthas, Efthimios; Christie, Chad L.; Williams, Owen M.

    2009-05-01

    We describe the extension of our real-time scene generation software VIRSuite to include the dynamic simulation of small boats and their wakes within an ocean environment. Extensive use has been made of the programmabilty available in the current generation of GPUs. We have demonstrated that real-time simulation is feasible, even including such complexities as dynamical calculation of the boat motion, wake generation and calculation of an FFTgenerated sea state.

  13. Linearised CFD models for wakes

    Energy Technology Data Exchange (ETDEWEB)

    Ott, S.; Berg, J.; Nielsen, Morten

    2011-12-15

    This report describes the development of a fast and reasonably accurate model for the prediction of energy production in offshore wind farms taking wake effects into account. The model has been implemented as a windows application called Fuga which can run in batch mode or as a graphical user interface. Fuga is briefly described. The model is based on a linearization technique which is described in some detail, and linearized, governing equations are derived and written in a standard form based on a mixed-spectral formulation. A new solution method is used to solve the equations which involves intensive use of look-up tables for storage of intermediate results. Due to the linearity of the model, multiple wakes from many turbines can be constructed from the wake of a single, solitary turbine. These are in turn constructed from Fourier components by a fast Fourier integral transform of results derived from generic look-up tables. Three different models, based on three different closures, are examined: 1) the 'simple closure' using an unperturbed eddy viscosity kucentre dotz. 2) the mixing length closure. 3) the E-epsilon closure. Model results are evaluated against offshore wind farm production data from Horns Rev I and the Nysted wind farm, and a comparison with direct wake measurements in an onshore turbine (Nibe B) is also made. A very satisfactory agreement with data is found for the simple closure. The exception is the near wake, just behind the rotor, where all three linearized models fail. The mixing length closure underestimates wake effects in all cases. The E-epsilon closure overestimates wake losses in the offshore farms while it predicts a too shallow and too wide the wake in the onshore case. The simple closure performs distinctly better than the other two. Wind speed data from the the Horns rev met masts are used to further validate Fuga results with the 'simple' closure. Finally, Roedsand 1 and 2 are used as an example to illustrate

  14. Heat transfer behavior including thermal wake effects in forced air cooling of arrays of rectangular blocks

    International Nuclear Information System (INIS)

    Sridhar, S.; Faghri, M.; Lessmann, R.C.

    1990-01-01

    Experiments have been carried out to study thermal wake effects in arrays of rectangular blocks encountered in electronic equipment. Data were obtained for a series of channel heights and flow velocities. The temperature rise due to wake effects behind a single heated module was found to be fairly independent of the channel height and the position of the heated block, for a given approach velocity. The adiabatic temperature rise data for a module due to a heated element immediately upstream of it for different inter-module spacings were found to correlate well in terms of a new parameter called the surface packing density. This paper reports that it was reported by the authors in an earlier paper that both the adiabatic heat transfer coefficient nd pressure-drop data for regular in-line arrays correlated well in terms of a composite geometric parameter called the column packing density. These experiments have been extended to a higher Reynolds number. Empirical correlations are presented here for friction factor and Nusselt number in terms of the volume packing density, and for the thermal wake effects in terms of the surface packing density. Data from literature for arrays with widely different geometric parameters are shown to agree with these correlations

  15. Wake Conference 2017

    International Nuclear Information System (INIS)

    2017-01-01

    The 52 papers in this volume constitute the proceedings of the 2017 Wake Conference, held in Visby on the island of Gotland, Sweden. The Wake Conference series began in Visby, where it was held in 2009 and 2011. In 2013 the conference took place in Copenhagen where it was combined with the International Conference on Offshore Wind Energy and Ocean Energy. In 2015 it went back to where it started, Visby, and this time it once again takes place at Uppsala University’s Gotland campus, May 30 th - June 1 st . Modern wind turbines are today clustered in large farms with a total production capacity reaching those of a nuclear power plant. When placed in a wind farm, the turbines will be fully or partially influenced by the wake of upstream turbines. This wake interaction results in a decreased power production, caused by the lower kinetic energy in the wind, and an increase in the turbulence intensity. Therefore, understanding the physical nature of vortices and their dynamics in the wake of a turbine is important for the optimal design of wind farms. The increased importance and interest in the field of wake and wind farm aerodynamics can be seen in the increased number of scientific articles on the subject. For example, on the Web of Science citation index, the number citations on the topic ‘wind turbine wakes’ increased from about 50 in 2006 to more than 3800 in 2016. This citation growth essentially shows that the growth in the global production of electrical energy has become a scientific problem to be solved by scientists and engineers. In order to make a substantial impact on one of the most significant challenges of our time, global climate change, the wind industry’s growth must continue. A part of making this growth possible will require research into the physics of wind turbine wakes and wind farms. This conference is aimed at scientists and PhD students working in the field of wake dynamics. The conference covers the following subject areas: Wake and

  16. Comparing offshore wind farm wake observed from satellite SAR and wake model results

    Science.gov (United States)

    Bay Hasager, Charlotte

    2014-05-01

    Offshore winds can be observed from satellite synthetic aperture radar (SAR). In the FP7 EERA DTOC project, the European Energy Research Alliance project on Design Tools for Offshore Wind Farm Clusters, there is focus on mid- to far-field wind farm wakes. The more wind farms are constructed nearby other wind farms, the more is the potential loss in annual energy production in all neighboring wind farms due to wind farm cluster effects. It is of course dependent upon the prevailing wind directions and wind speed levels, the distance between the wind farms, the wind turbine sizes and spacing. Some knowledge is available within wind farm arrays and in the near-field from various investigations. There are 58 offshore wind farms in the Northern European seas grid connected and in operation. Several of those are spaced near each other. There are several twin wind farms in operation including Nysted-1 and Rødsand-2 in the Baltic Sea, and Horns Rev 1 and Horns Rev 2, Egmond aan Zee and Prinses Amalia, and Thompton 1 and Thompton 2 all in the North Sea. There are ambitious plans of constructing numerous wind farms - great clusters of offshore wind farms. Current investigation of offshore wind farms includes mapping from high-resolution satellite SAR of several of the offshore wind farms in operation in the North Sea. Around 20 images with wind farm wake cases have been retrieved and processed. The data are from the Canadian RADARSAT-1/-2 satellites. These observe in microwave C-band and have been used for ocean surface wind retrieval during several years. The satellite wind maps are valid at 10 m above sea level. The wakes are identified in the raw images as darker areas downwind of the wind farms. In the SAR-based wind maps the wake deficit is found as areas of lower winds downwind of the wind farms compared to parallel undisturbed flow in the flow direction. The wind direction is clearly visible from lee effects and wind streaks in the images. The wind farm wake cases

  17. Vortex wakes of a flapping foil in a flowing soap film

    Science.gov (United States)

    Schnipper, Teis; Andersen, Anders; Bohr, Tomas

    2008-11-01

    We present an experimental study of an oscillating, symmetric foil in a vertically flowing soap film. By varying frequency and amplitude of the oscillation we explore and visualize a variety of wake structures, including von Kármán wake, reverse von Kármán wake, 2P wake, and 2P+2S wake. We characterize the transition from the von Kármán wake (drag) to the reverse von Kármán wake (thrust) and discuss the results in relation to fish swimming. We visualize the time evolution of the vortex shedding in detail, identify the origins of the vortices comprising the wake, and propose a simple model to account for the transition from von Kármán like wakes to more exotic wake structures.

  18. NASA AVOSS Fast-Time Wake Prediction Models: User's Guide

    Science.gov (United States)

    Ahmad, Nash'at N.; VanValkenburg, Randal L.; Pruis, Matthew

    2014-01-01

    The National Aeronautics and Space Administration (NASA) is developing and testing fast-time wake transport and decay models to safely enhance the capacity of the National Airspace System (NAS). The fast-time wake models are empirical algorithms used for real-time predictions of wake transport and decay based on aircraft parameters and ambient weather conditions. The aircraft dependent parameters include the initial vortex descent velocity and the vortex pair separation distance. The atmospheric initial conditions include vertical profiles of temperature or potential temperature, eddy dissipation rate, and crosswind. The current distribution includes the latest versions of the APA (3.4) and the TDP (2.1) models. This User's Guide provides detailed information on the model inputs, file formats, and the model output. An example of a model run and a brief description of the Memphis 1995 Wake Vortex Dataset is also provided.

  19. Active Power Dispatch Method for a Wind Farm Central Controller Considering Wake Effect

    DEFF Research Database (Denmark)

    Tian, Jie; Su, Chi; N. Soltani, Mohsen

    2014-01-01

    With the increasing integration of the wind power into the power system, wind farm are required to be controlled as a single unit and have all the same control tasks as conventional power plants. The wind farm central controller receives control orders from Transmission System Operator (TSO), the...... Optimization (PSO) is used to obtain the optimal wind power for each wind turbine. A case study is carried out. The available wind power of the wind farm was compared between the traditional dispatch method and the proposed dispatch method with the consideration of the wake effect....

  20. Simulation of wind turbine wakes using the actuator line technique.

    Science.gov (United States)

    Sørensen, Jens N; Mikkelsen, Robert F; Henningson, Dan S; Ivanell, Stefan; Sarmast, Sasan; Andersen, Søren J

    2015-02-28

    The actuator line technique was introduced as a numerical tool to be employed in combination with large eddy simulations to enable the study of wakes and wake interaction in wind farms. The technique is today largely used for studying basic features of wakes as well as for making performance predictions of wind farms. In this paper, we give a short introduction to the wake problem and the actuator line methodology and present a study in which the technique is employed to determine the near-wake properties of wind turbines. The presented results include a comparison of experimental results of the wake characteristics of the flow around a three-bladed model wind turbine, the development of a simple analytical formula for determining the near-wake length behind a wind turbine and a detailed investigation of wake structures based on proper orthogonal decomposition analysis of numerically generated snapshots of the wake. © 2015 The Author(s) Published by the Royal Society. All rights reserved.

  1. On atmospheric stability in the dynamic wake meandering model

    DEFF Research Database (Denmark)

    Keck, Rolf-Erik; de Mare, Martin Tobias; Churchfield, Matthew J.

    2014-01-01

    The present study investigates a new approach for capturing the effects of atmospheric stability on wind turbine wake evolution and wake meandering by using the dynamic wake meandering model. The most notable impact of atmospheric stability on the wind is the changes in length and velocity scales...... spectra and applied to the dynamic wake meandering model to capture the correct wake meandering behaviour. The ambient turbulence in all stability classes is generated using the Mann turbulence model, where the effects of non-neutral atmospheric stability are approximated by the selection of input...... in the computational domain. The changes in the turbulent length scales due to the various atmospheric stability states impact the wake meandering characteristics and thus the power generation by the individual turbines. The proposed method is compared with results from both large-eddy simulation coupled...

  2. Sleep-Wake Patterns and Sleep Disturbance among Hong Kong Chinese Adolescents

    OpenAIRE

    Chung, Ka-Fai; Cheung, Miao-Miao

    2008-01-01

    STUDY OBJECTIVES: To determine sleep-wake patterns and evaluate sleep disturbance in Hong Kong adolescents; to identify factors that are associated with sleep disturbance; and to examine the relationship of sleep-wake variables and academic performance. DESIGN AND SETTING: A school-based cross-sectional survey. PARTICIPANTS: Sample included 1629 adolescents aged 12 to 19 years. MEASUREMENTS AND RESULTS: Self-report questionnaires, including sleep-wake habit questionnaire,...

  3. Simulation of wind turbine wakes using the actuator line technique

    DEFF Research Database (Denmark)

    Sørensen, Jens Nørkær; Mikkelsen, Robert Flemming; Henningson, Dan S.

    2015-01-01

    The actuator line technique was introduced as a numerical tool to be employed in combination with large eddy simulations to enable the study of wakes and wake interaction in wind farms. The technique is today largely used for studying basic features of wakes as well as for making performance...... predictions of wind farms. In this paper, we give a short introduction to the wake problem and the actuator line methodology and present a study in which the technique is employed to determine the near-wake properties of wind turbines. The presented results include a comparison of experimental results...

  4. Linearised CFD Models for Wakes

    DEFF Research Database (Denmark)

    Ott, Søren; Berg, Jacob; Nielsen, Morten

    This report describes the development of a fast and reasonably accurate model for the prediction of energy production in oshore wind farms taking wake eects into account. The model has been implemented as a windows application called Fuga which can run in batch mode or as a graphical user interface....... Fuga is brie y described. The model is based on alinearization technique which is described in some detail, and linearized, governing equations are derived and written in a standard form based on a mixed{spectral formulation. A new solution method is used to solve the equations which involves intensive...... use of look{up tables for storage of intermediate results. Due to the linearity of the model, multiple wakes from many turbines can be constructed from the wake of a single, solitary turbine. These are in turn constructed from Fourier components by a fast Fourier integral transform of results derived...

  5. Spectral coherence in windturbine wakes

    Energy Technology Data Exchange (ETDEWEB)

    Hojstrup, J. [Riso National Lab., Roskilde (Denmark)

    1996-12-31

    This paper describes an experiment at a Danish wind farm to investigate the lateral and vertical coherences in the nonequilibrium turbulence of a wind turbine wake. Two meteorological masts were instrumented for measuring profiles of mean speed, turbulence, and temperature. Results are provided graphically for turbulence intensities, velocity spectra, lateral coherence, and vertical coherence. The turbulence was somewhat influenced by the wake, or possibly from aggregated wakes further upstream, even at 14.5 diameters. Lateral coherence (separation 5m) seemed to be unaffected by the wake at 7.5 diameters, but the flow was less coherent in the near wake. The wake appeared to have little influence on vertical coherence (separation 13m). Simple, conventional models for coherence appeared to be adequate descriptions for wake turbulence except for the near wake situation. 3 refs., 7 figs., 1 tab.

  6. A simple stationary semi-analytical wake model

    DEFF Research Database (Denmark)

    Larsen, Gunner Chr.

    We present an idealized simple, but fast, semi-analytical algorithm for computation of stationary wind farm wind fields with a possible potential within a multi-fidelity strategy for wind farm topology optimization. Basically, the model considers wakes as linear perturbations on the ambient non......-linear. With each of these approached, a parabolic system are described, which is initiated by first considering the most upwind located turbines and subsequently successively solved in the downstream direction. Algorithms for the resulting wind farm flow fields are proposed, and it is shown that in the limit......-uniform mean wind field, although the modelling of the individual stationary wake flow fields includes non-linear terms. The simulation of the individual wake contributions are based on an analytical solution of the thin shear layer approximation of the NS equations. The wake flow fields are assumed...

  7. International Survey on the Management of Wake-Up Stroke.

    Science.gov (United States)

    de Castro-Afonso, Luís Henrique; Nakiri, Guilherme Seizem; Pontes-Neto, Octávio Marques; dos Santos, Antônio Carlos; Abud, Daniel Giansante

    2016-01-01

    Patients who wake up having experienced a stroke while asleep represent around 20% of acute stroke admissions. According to international guidelines for the management of acute stroke, patients presenting with wake-up stroke are not currently eligible to receive revascularization treatments. In this study, we aimed to assess the opinions of stroke experts about the management of patients with wake-up stroke by using an international multicenter electronic survey. This study consisted of 8 questions on wake-up stroke treatment. Two hundred invitations to participate in the survey were sent by e-mail. Fifty-nine participants started the survey, 4 dropped out before completing it, and 55 completed the full questionnaire. We had 55 participants from 22 countries. In this study, most stroke experts recommended a recanalization treatment for wake-up stroke. However, there was considerable disagreement among experts regarding the best brain imaging method and the best recanalization treatment. The results of ongoing randomized trials on wake-up stroke are urgently needed.

  8. Diffraction of an impulsive line source with wake

    International Nuclear Information System (INIS)

    Ayub, M; Naeem, A; Nawaz, Rab

    2010-01-01

    The problem of diffraction due to an impulse line source by an absorbing half-plane with wake using Myres' impedance condition (Myers 1980 J. Sound Vib. 71 429-34) in the presence of a subsonic fluid flow is studied. The time dependence of the field requires a temporal Fourier transform in addition to the spatial Fourier transform. The solution of the problem in the presence of wake is obtained by using Greens' function method, Fourier transform, the Wiener-Hopf technique and the modified stationary phase method. Expressions for the total far field for the trailing edge (wake present) situation are given. It is observed that the field produced by the Kutta-Joukowski condition will be substantially in excess of the field when this condition is ignored. Finally, a simple procedure is devised to calculate the inverse temporal Fourier transform. The solution for the leading edge situation can be obtained if the wake, and consequently a Kutta-Joukowski edge condition, is ignored. This can also be seen from the numerical results.

  9. Effects of Aircraft Wake Dynamics on Measured and Simulated NO(x) and HO(x) Wake Chemistry. Appendix B

    Science.gov (United States)

    Lewellen, D. C.; Lewellen, W. S.

    2001-01-01

    High-resolution numerical large-eddy simulations of the near wake of a B757 including simplified NOx and HOx chemistry were performed to explore the effects of dynamics on chemistry in wakes of ages from a few seconds to several minutes. Dilution plays an important basic role in the NOx-O3 chemistry in the wake, while a more interesting interaction between the chemistry and dynamics occurs for the HOx species. These simulation results are compared with published measurements of OH and HO2 within a B757 wake under cruise conditions in the upper troposphere taken during the Subsonic Aircraft Contrail and Cloud Effects Special Study (SUCCESS) mission in May 1996. The simulation provides a much finer grained representation of the chemistry and dynamics of the early wake than is possible from the 1 s data samples taken in situ. The comparison suggests that the previously reported discrepancy of up to a factor of 20 - 50 between the SUCCESS measurements of the [HO2]/[OH] ratio and that predicted by simplified theoretical computations is due to the combined effects of large mixing rates around the wake plume edges and averaging over volumes containing large species fluctuations. The results demonstrate the feasibility of using three-dimensional unsteady large-eddy simulations with coupled chemistry to study such phenomena.

  10. Wind turbine wake visualization and characteristics analysis by Doppler lidar.

    Science.gov (United States)

    Wu, Songhua; Liu, Bingyi; Liu, Jintao; Zhai, Xiaochun; Feng, Changzhong; Wang, Guining; Zhang, Hongwei; Yin, Jiaping; Wang, Xitao; Li, Rongzhong; Gallacher, Daniel

    2016-05-16

    Wind power generation is growing fast as one of the most promising renewable energy sources that can serve as an alternative to fossil fuel-generated electricity. When the wind turbine generator (WTG) extracts power from the wind, the wake evolves and leads to a considerable reduction in the efficiency of the actual power generation. Furthermore, the wake effect can lead to the increase of turbulence induced fatigue loads that reduce the life time of WTGs. In this work, a pulsed coherent Doppler lidar (PCDL) has been developed and deployed to visualize wind turbine wakes and to characterize the geometry and dynamics of wakes. As compared with the commercial off-the-shelf coherent lidars, the PCDL in this work has higher updating rate of 4 Hz and variable physical spatial resolution from 15 to 60 m, which improves its capability to observation the instantaneous turbulent wind field. The wind speed estimation method from the arc scan technique was evaluated in comparison with wind mast measurements. Field experiments were performed to study the turbulent wind field in the vicinity of operating WTGs in the onshore and offshore wind parks from 2013 to 2015. Techniques based on a single and a dual Doppler lidar were employed for elucidating main features of turbine wakes, including wind velocity deficit, wake dimension, velocity profile, 2D wind vector with resolution of 10 m, turbulence dissipation rate and turbulence intensity under different conditions of surface roughness. The paper shows that the PCDL is a practical tool for wind energy research and will provide a significant basis for wind farm site selection, design and optimization.

  11. Spectral function calculation of angle wakes, wake moments, and misalignment wakes for the SLAC Damped Detuned Structures (DDS)

    International Nuclear Information System (INIS)

    Jones, R.M.; Miller, R.H.; Kroll, N.M.

    1997-05-01

    Transverse wake functions so far reported for the SLAC DDS have been limited to those caused by uniform offset of the drive beam in a straight perfectly aligned structure. The complete description of the betatron oscillations of wake coupled bunches requires an array of wake functions, referred to as moments. Modifications of these arrays induced by structure misalignments are also of interest. In this paper we express the array elements in terms of a spectral function array. Examples are given based upon DDS1

  12. Conformal FDTD modeling of 3-D wake fields

    International Nuclear Information System (INIS)

    Jurgens, T.G.; Harfoush, F.A.

    1991-01-01

    Many computer codes have been written to model wake fields. Here the authors describe the use of the Conformal Finite Difference Time Domain (CFDTD) method to model the wake fields generated by a rigid beam traveling through various accelerating structures. The non-cylindrical symmetry of some of the problems considered here requires the use of a three dimensional code. In traditional FDTD codes, curved surfaces are approximated by rectangular steps. The errors introduced in wake field calculations by such an approximation can be reduced by increasing the mesh size, therefore increasing the cost of computing. Another approach, validated here, deforms Ampere and Faraday contours near a media interface so as to conform to the interface. These improvements so as to conform to the interface. These improvements to the FDTD method result in better accuracy of the fields at asymptotically no computational cost. This method is also capable of modeling thin wires as found in beam profile monitors, and slots and cracks as found in resistive wall monitors

  13. Aircraft Wake Vortex Deformation in Turbulent Atmosphere

    OpenAIRE

    Hennemann, Ingo; Holzaepfel, Frank

    2007-01-01

    Large-scale distortion of aircraft wake vortices appears to play a crucial role for aircraft safety during approach and landing. Vortex distortion is investigated based on large eddy simulations of wake vortex evolution in a turbulent atmosphere. A vortex identification method is developed that can be adapted to the vortex scales of interest. Based on the identified vortex center tracks, a statistics of vortex curvature radii is established. This statistics constitutes the basis for understan...

  14. Wind Turbines Wake Aerodynamics

    DEFF Research Database (Denmark)

    Vermeer, L.; Sørensen, Jens Nørkær; Crespo, A.

    2003-01-01

    The aerodynamics of horizontal axis wind turbine wakes is studied. The contents is directed towards the physics of power extraction by wind turbines and reviews both the near and the far wake region. For the near wake, the survey is restricted to uniform, steady and parallel flow conditions......, thereby excluding wind shear, wind speed and rotor setting changes and yawed conditions. The emphasis is put on measurements in controlled conditions.For the far wake, the survey focusses on both single turbines and wind farm effects, and the experimental and numerical work are reviewed; the main interest...... is to study how the far wake decays downstream, in order to estimate the effect produced in downstream turbines.The article is further restricted to horizontal axis wind turbines and excludes all other types of turbines....

  15. Wake effects on Middelgrund Windfarm

    DEFF Research Database (Denmark)

    Ejsing Jørgensen, Hans; Frandsen, S.; Vølund, P.

    2003-01-01

    This report describes the data analysis of the Middelgrund Wind Farm online collected data with the purpose of calculating the wake effects and turbulence intensities within the wind farm when maximum wake effects are present. The data are compared to themost commonly used wake model PARK...... decreasing wind speed through the array when the wind iscoming from north. The turbulence intensity is enhanced up to 0.3 due to the wake effects. The analysis has shown that this enhancement is nearly independent of the number of turbines involved in the wake creation....

  16. Why Does REM Sleep Occur? A Wake-up Hypothesis

    OpenAIRE

    Dr. W. R. eKlemm

    2011-01-01

    Brain activity differs in the various sleep stages and in conscious wakefulness. Awakening from sleep requires restoration of the complex nerve impulse patterns in neuronal network assemblies necessary to re-create and sustain conscious wakefulness. Herein I propose that the brain uses REM to help wake itself up after it has had a sufficient amount of sleep. Evidence suggesting this hypothesis includes the facts that, 1) when first going to sleep, the brain plunges into Stage N3 (formerly ca...

  17. Wake Field of the e-Cloud

    International Nuclear Information System (INIS)

    Heifets, Samuel A

    2001-01-01

    The wake field of the cloud is derived analytically taking into account the finite size of the cloud and nonlinearity of the electron motion. The analytic expression for the effective transverse wake field caused by the electron cloud in a positron storage ring is derived. The derivation includes the frequency spread in the cloud, which is the main effect of the nonlinearity of electron motion in the cloud. This approach allows calculation of the Q-factor and study the tune spread in a bunch

  18. Electron-Cloud Wake Fields

    CERN Document Server

    Rumolo, Giovanni

    2002-01-01

    The electron cloud gives rise to coherent and incoherent single-bunch wake fields, both in the longitudinal and in the transverse direction, and to coherent coupled-bunch wakes. These wake fields can be computed using the simulation programs ECLOUD and HEADTAIL developed at CERN. We present the wake fields simulated for the LHC beam in the CERN SPS and at injection into the LHC in different magnetic field configurations (field-free region, dipole, and solenoid), where the magnetic field affects both the elec-tron motion during a bunch passage and the overall electron distribution in the beam pipe.

  19. Daily rhythms of the sleep-wake cycle

    Directory of Open Access Journals (Sweden)

    Waterhouse Jim

    2012-03-01

    Full Text Available Abstract The amount and timing of sleep and sleep architecture (sleep stages are determined by several factors, important among which are the environment, circadian rhythms and time awake. Separating the roles played by these factors requires specific protocols, including the constant routine and altered sleep-wake schedules. Results from such protocols have led to the discovery of the factors that determine the amounts and distribution of slow wave and rapid eye movement sleep as well as to the development of models to determine the amount and timing of sleep. One successful model postulates two processes. The first is process S, which is due to sleep pressure (and increases with time awake and is attributed to a 'sleep homeostat'. Process S reverses during slow wave sleep (when it is called process S'. The second is process C, which shows a daily rhythm that is parallel to the rhythm of core temperature. Processes S and C combine approximately additively to determine the times of sleep onset and waking. The model has proved useful in describing normal sleep in adults. Current work aims to identify the detailed nature of processes S and C. The model can also be applied to circumstances when the sleep-wake cycle is different from the norm in some way. These circumstances include: those who are poor sleepers or short sleepers; the role an individual's chronotype (a measure of how the timing of the individual's preferred sleep-wake cycle compares with the average for a population; and changes in the sleep-wake cycle with age, particularly in adolescence and aging, since individuals tend to prefer to go to sleep later during adolescence and earlier in old age. In all circumstances, the evidence that sleep times and architecture are altered and the possible causes of these changes (including altered S, S' and C processes are examined.

  20. Improvements in ECN Wake Model

    Energy Technology Data Exchange (ETDEWEB)

    Versteeg, M.C. [University of Twente, Enschede (Netherlands); Ozdemir, H.; Brand, A.J. [ECN Wind Energy, Petten (Netherlands)

    2013-08-15

    Wind turbines extract energy from the flow field so that the flow in the wake of a wind turbine contains less energy and more turbulence than the undisturbed flow, leading to less energy extraction for the downstream turbines. In large wind farms, most turbines are located in the wake of one or more turbines causing the flow characteristics felt by these turbines differ considerably from the free stream flow conditions. The most important wake effect is generally considered to be the lower wind speed behind the turbine(s) since this decreases the energy production and as such the economical performance of a wind farm. The overall loss of a wind farm is very much dependent on the conditions and the lay-out of the farm but it can be in the order of 5-10%. Apart from the loss in energy production an additional wake effect is formed by the increase in turbulence intensity, which leads to higher fatigue loads. In this sense it becomes important to understand the details of wake behavior to improve and/or optimize a wind farm layout. Within this study improvements are presented for the existing ECN wake model which constructs the fundamental basis of ECN's FarmFlow wind farm wake simulation tool. The outline of this paper is as follows: first, the governing equations of the ECN wake farm model are presented. Then the near wake modeling is discussed and the results compared with the original near wake modeling and EWTW (ECN Wind Turbine Test Site Wieringermeer) data as well as the results obtained for various near wake implementation cases are shown. The details of the atmospheric stability model are given and the comparison with the solution obtained for the original surface layer model and with the available data obtained by EWTW measurements are presented. Finally the conclusions are summarized.

  1. Optimization Under Uncertainty for Wake Steering Strategies: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Quick, Julian [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Annoni, Jennifer [National Renewable Energy Laboratory (NREL), Golden, CO (United States); King, Ryan N [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Dykes, Katherine L [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Fleming, Paul A [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Ning, Andrew [Brigham Young University

    2017-05-01

    Wind turbines in a wind power plant experience significant power losses because of aerodynamic interactions between turbines. One control strategy to reduce these losses is known as 'wake steering,' in which upstream turbines are yawed to direct wakes away from downstream turbines. Previous wake steering research has assumed perfect information, however, there can be significant uncertainty in many aspects of the problem, including wind inflow and various turbine measurements. Uncertainty has significant implications for performance of wake steering strategies. Consequently, the authors formulate and solve an optimization under uncertainty (OUU) problem for finding optimal wake steering strategies in the presence of yaw angle uncertainty. The OUU wake steering strategy is demonstrated on a two-turbine test case and on the utility-scale, offshore Princess Amalia Wind Farm. When we accounted for yaw angle uncertainty in the Princess Amalia Wind Farm case, inflow-direction-specific OUU solutions produced between 0% and 1.4% more power than the deterministically optimized steering strategies, resulting in an overall annual average improvement of 0.2%. More importantly, the deterministic optimization is expected to perform worse and with more downside risk than the OUU result when realistic uncertainty is taken into account. Additionally, the OUU solution produces fewer extreme yaw situations than the deterministic solution.

  2. Stochastic Wake Modelling Based on POD Analysis

    Directory of Open Access Journals (Sweden)

    David Bastine

    2018-03-01

    Full Text Available In this work, large eddy simulation data is analysed to investigate a new stochastic modeling approach for the wake of a wind turbine. The data is generated by the large eddy simulation (LES model PALM combined with an actuator disk with rotation representing the turbine. After applying a proper orthogonal decomposition (POD, three different stochastic models for the weighting coefficients of the POD modes are deduced resulting in three different wake models. Their performance is investigated mainly on the basis of aeroelastic simulations of a wind turbine in the wake. Three different load cases and their statistical characteristics are compared for the original LES, truncated PODs and the stochastic wake models including different numbers of POD modes. It is shown that approximately six POD modes are enough to capture the load dynamics on large temporal scales. Modeling the weighting coefficients as independent stochastic processes leads to similar load characteristics as in the case of the truncated POD. To complete this simplified wake description, we show evidence that the small-scale dynamics can be captured by adding to our model a homogeneous turbulent field. In this way, we present a procedure to derive stochastic wake models from costly computational fluid dynamics (CFD calculations or elaborated experimental investigations. These numerically efficient models provide the added value of possible long-term studies. Depending on the aspects of interest, different minimalized models may be obtained.

  3. Kirchhoff's Integral Representation and a Cavity Wake Potential

    Energy Technology Data Exchange (ETDEWEB)

    Novokhatski, Alexander; /SLAC

    2012-02-17

    A method is proposed for the calculation of the short-range wake field potentials of an ultra-relativistic bunch passing near some irregularities in a beam pipe. The method is based on the space-time domain integration of Maxwell's equations using Kirchhoff's formulation. We demonstrate this method on two cases where we obtain the wake potentials for the energy loss of a bunch traversing an iris-collimator in a beam pipe and for a cavity. Likewise, formulas are derived for Green's functions that describe the transverse force action of wake fields. Simple formulas for the total energy loss of a bunch with a Gaussian charge density distribution are derived as well. The derived estimates are compared with computer results and predictions of other models.

  4. Large Eddy Simulation of Vertical Axis Wind Turbine wakes; Part I: from the airfoil performance to the very far wake

    Science.gov (United States)

    Chatelain, Philippe; Duponcheel, Matthieu; Caprace, Denis-Gabriel; Marichal, Yves; Winckelmans, Gregoire

    2017-11-01

    A vortex particle-mesh (VPM) method with immersed lifting lines has been developed and validated. Based on the vorticity-velocity formulation of the Navier-Stokes equations, it combines the advantages of a particle method and of a mesh-based approach. The immersed lifting lines handle the creation of vorticity from the blade elements and its early development. Large-eddy simulation (LES) of vertical axis wind turbine (VAWT) flows is performed. The complex wake development is captured in detail and over up to 15 diameters downstream: from the blades to the near-wake coherent vortices and then through the transitional ones to the fully developed turbulent far wake (beyond 10 rotor diameters). The statistics and topology of the mean flow are studied with respect to the VAWT geometry and its operating point. The computational sizes also allow insights into the detailed unsteady vortex dynamics and topological flow features, such as a recirculation region influenced by the tip speed ratio and the rotor geometry.

  5. Impact of bubble wakes on a developing bubble flow in a vertical pipe

    International Nuclear Information System (INIS)

    Tomiyama, A.; Makino, Y.; Miyoshi, K.; Tamai, H.; Serizawa, A.; Zun, I.

    1998-01-01

    Three-dimensional two-way bubble tracking simulation of single large air bubbles rising through a stagnant water filled in a vertical pipe was conducted to investigate the structures of bubble wakes. Spatial distributions of time-averaged liquid velocity field, turbulent intensity and Reynolds stress caused by bubble wakes were deduced from the calculated local instantaneous liquid velocities. It was confirmed that wake structures are completely different from the ones estimated by a conventional wake model. Then, we developed a simple wake model based on the predicted time-averaged wake velocity fields, and implemented it into a 3D one-way bubble tracking method to examine the impact of bubble wake structures on time-spatial evolution of a developing air-water bubble flow in a vertical pipe. As a results, we confirmed that the developed wake model can give better prediction for flow pattern evolution than a conventional wake model

  6. Wake field acceleration experiments

    International Nuclear Information System (INIS)

    Simpson, J.D.

    1988-01-01

    Where and how will wake field acceleration devices find use for other than, possibly, accelerators for high energy physics? I don't know that this can be responsibly answered at this time. What I can do is describe some recent results from an ongoing experimental program at Argonne which support the idea that wake field techniques and devices are potentially important for future accelerators. Perhaps this will spawn expanded interest and even new ideas for the use of this new technology. The Argonne program, and in particular the Advanced Accelerator Test Facility (AATF), has been reported in several fairly recent papers and reports. But because this is a substantially new audience for the subject, I will include a brief review of the program and the facility before describing experiments. 10 refs., 7 figs

  7. PREFACE: Wake Conference 2015

    Science.gov (United States)

    Barney, Andrew; Nørkær Sørensen, Jens; Ivanell, Stefan

    2015-06-01

    The 44 papers in this volume constitute the proceedings of the 2015 Wake Conference, held in Visby on the island of Gotland in Sweden. It is the fourth time this conference has been held. The Wake Conference series started in Visby, where it was held in 2009 and 2011. In 2013 it took place in Copenhagen where it was combined with the International Conference on Offshore Wind Energy and Ocean Energy. In 2015 it is back where it started in Visby, where it takes place at Uppsala University Campus Gotland, June 9th-11th. The global yearly production of electrical energy by wind turbines has grown tremendously in the past decade and it now comprises more than 3% of the global electrical power consumption. Today the wind power industry has a global annual turnover of more than 50 billion USD and an annual average growth rate of more than 20%. State-of-the-art wind turbines have rotor diameters of up to 150 m and 8 MW installed capacity. These turbines are often placed in large wind farms that have a total production capacity corresponding to that of a nuclear power plant. In order to make a substantial impact on one of the most significant challenges of our time, global warming, the industry's growth has to continue for a decade or two yet. This in turn requires research into the physics of wind turbine wakes and wind farms. Modern wind turbines are today clustered in wind farms in which the turbines are fully or partially influenced by the wake of upstream turbines. As a consequence, the wake behind the wind turbines has a lower mean wind speed and an increased turbulence level, as compared to the undisturbed flow outside the farm. Hence, wake interaction results in decreased total production of power, caused by lower kinetic energy in the wind, and an increase in the turbulence intensity. Therefore, understanding the physical nature of the vortices and their dynamics in the wake of a turbine is important for the optimal design of a wind farm. This conference is aimed

  8. Why Does Rem Sleep Occur? A Wake-Up Hypothesis 1

    OpenAIRE

    Klemm, W. R.

    2011-01-01

    Brain activity differs in the various sleep stages and in conscious wakefulness. Awakening from sleep requires restoration of the complex nerve impulse patterns in neuronal network assemblies necessary to re-create and sustain conscious wakefulness. Herein I propose that the brain uses rapid eye movement (REM) to help wake itself up after it has had a sufficient amount of sleep. Evidence suggesting this hypothesis includes the facts that, (1) when first going to sleep, the brain plunges into ...

  9. Unsteady Double Wake Model for the Simulation of Stalled Airfoils

    DEFF Research Database (Denmark)

    Ramos García, Néstor; Cayron, Antoine; Sørensen, Jens Nørkær

    2015-01-01

    In the present work, the recent developed Unsteady Double Wake Model, USDWM, is used to simulate separated flows past a wind turbine airfoil at high angles of attack. The solver is basically an unsteady two-dimensional panel method which uses the unsteady double wake technique to model flow separ...

  10. Wake structure and similar behavior of wake profiles downstream of a plunging airfoil

    Directory of Open Access Journals (Sweden)

    Ali R. DAVARI

    2017-08-01

    Full Text Available Very limited attention has already been paid to the velocity behavior in the wake region in unsteady aerodynamic problems. A series of tests has been performed on a flapping airfoil in a subsonic wind tunnel to study the wake structure for different sets of mean angle of attack, plunging amplitude and reduced frequency. In this study, the velocity profiles in the wake for various oscillation parameters have been measured using a wide shoulder rake, especially designed for the present experiments. The airfoil under consideration was a critical section of a 660 kW wind turbine. The results show that for a flapping airfoil the wake structure can be of drag producing type, thrust producing or neutral, depending on the mean angle of attack, oscillation amplitude and reduced frequency. In a thrust producing wake, a high-momentum high-velocity jet flow is formed in the core region of the wake instead of the conventional low-momentum flow. As a result, the drag force normally experienced by the body due to the momentum deficit would be replaced by a thrust force. According to the results, the momentum loss in the wake decreases as the reduced frequency increases. The thrust producing wake pattern for the flapping airfoil has been observed for sufficiently low angles of attack in the absence of the viscous effects. This phenomenon has also been observed for either high oscillation amplitudes or high reduced frequencies. According to the results, for different reduced frequencies and plunging amplitudes, such that the product of them be a constant, the velocity profiles exhibit similar behavior and coalesce on each other. This similarity parameter works excellently at small angles of attack. However, at near stall boundaries, the similarity is not as evident as before.

  11. An Aeroelastic Perspective of Floating Offshore Wind Turbine Wake Formation and Instability

    Science.gov (United States)

    Rodriguez, Steven N.; Jaworski, Justin W.

    2015-11-01

    The wake formation and wake stability of floating offshore wind turbines are investigated from an aeroelastic perspective. The aeroelastic model is composed of the Sebastian-Lackner free-vortex wake aerodynamic model coupled to the nonlinear Hodges-Dowell beam equations, which are extended to include the effects of blade profile asymmetry, higher-order torsional effects, and kinetic energy components associated with periodic rigid-body motions of floating platforms. Rigid-body platform motions are also assigned to the aerodynamic model as varying inflow conditions to emulate operational rotor-wake interactions. Careful attention is given to the wake formation within operational states where the ratio of inflow velocity to induced velocity is over 50%. These states are most susceptible to aerodynamic instabilities, and provide a range of states about which a wake stability analysis can be performed. In addition, the stability analysis used for the numerical framework is implemented into a standalone free-vortex wake aerodynamic model. Both aeroelastic and standalone aerodynamic results are compared to evaluate the level of impact that flexible blades have on the wake formation and wake stability.

  12. Simulation of Wake Vortex Radiometric Detection via Jet Exhaust Proxy

    Science.gov (United States)

    Daniels, Taumi S.

    2015-01-01

    This paper describes an analysis of the potential of an airborne hyperspectral imaging IR instrument to infer wake vortices via turbine jet exhaust as a proxy. The goal was to determine the requirements for an imaging spectrometer or radiometer to effectively detect the exhaust plume, and by inference, the location of the wake vortices. The effort examines the gas spectroscopy of the various major constituents of turbine jet exhaust and their contributions to the modeled detectable radiance. Initially, a theoretical analysis of wake vortex proxy detection by thermal radiation was realized in a series of simulations. The first stage used the SLAB plume model to simulate turbine jet exhaust plume characteristics, including exhaust gas transport dynamics and concentrations. The second stage used these plume characteristics as input to the Line By Line Radiative Transfer Model (LBLRTM) to simulate responses from both an imaging IR hyperspectral spectrometer or radiometer. These numerical simulations generated thermal imagery that was compared with previously reported wake vortex temperature data. This research is a continuation of an effort to specify the requirements for an imaging IR spectrometer or radiometer to make wake vortex measurements. Results of the two-stage simulation will be reported, including instrument specifications for wake vortex thermal detection. These results will be compared with previously reported results for IR imaging spectrometer performance.

  13. ASRS Reports on Wake Vortex Encounters

    Science.gov (United States)

    Connell, Linda J.; Taube, Elisa Ann; Drew, Charles Robert; Barclay, Tommy Earl

    2010-01-01

    ASRS is conducting a structured callback research project of wake vortex incidents reported to the ASRS at all US airports, as well as wake encounters in the enroute environment. This study has three objectives: (1) Utilize the established ASRS supplemental data collection methodology and provide ongoing analysis of wake vortex encounter reports; (2) Document event dynamics and contributing factors underlying wake vortex encounter events; and (3) Support ongoing FAA efforts to address pre-emptive wake vortex risk reduction by utilizing ASRS reporting contributions.

  14. Multi-stage wake-field accelerator

    International Nuclear Information System (INIS)

    Gai, Wei.

    1989-01-01

    In this paper we propose a multi-stage wake field acceleration scheme to overcome the low transformer ratio problem and still provide high accelerating gradients. The idea is very simple. We use a train of several electron bunches from a linear accelerator (main linac) with well defined separations between the bunches (tens of ns) to drive wake field devices. Here we have made the assumption that the wake field devices are available, whether plasma, iris-loaded metallic or dielectric wake field structures. 10 refs

  15. Optogenetic deconstruction of sleep-wake circuitry in the brain

    Directory of Open Access Journals (Sweden)

    Antoine Adamantidis

    2010-01-01

    Full Text Available How does the brain regulate the sleep-wake cycle? What are the temporal codes of sleep- and wake-promoting neural circuits? How do these circuits interact with each other across the light/dark cycle? Over the past few decades, many studies from a variety of disciplines have made substantial progress in answering these fundamental questions. For example, neurobiologists have identified multiple, redundant wake-promoting circuits in the brainstem, hypothalamus, and basal forebrain. Sleep-promoting circuits have been found in the preoptic area and hypothalamus. One of the greatest challenges in recent years has been to selectively record and manipulate these sleep-wake centers in vivo with high spatial and temporal resolution. Recent developments in microbial opsin-based neuromodulation tools, collectively referred to as “optogenetics,” have provided a novel method to demonstrate causal links between neural activity and specific behaviors. Here, we propose to use optogenetics as a fundamental tool to probe the necessity, sufficiency, and connectivity of defined neural circuits in the regulation of sleep and wakefulness.

  16. LES of an Advancing Helicopter Rotor, and Near to Far Wake Assessment

    Science.gov (United States)

    Caprace, Denis-Gabriel; Duponcheel, Matthieu; Chatelain, Philippe; Winckelmans, Grégoire

    2017-11-01

    Helicopter wake physics involve complex, unsteady vortical flows which have been only scarcely addressed in past studies. The present work focuses on LES of the wake flow behind an advancing rotor, to support the investigation of rotorcraft wake physics and decay mechanisms. A hybrid Vortex Particle-Mesh (VPM) method is employed to simulate the wake of an articulated four-bladed rotor in trimmed conditions, at an advance ratio of 0.41. The simulation domain extends to 30 rotor diameters downstream. The coarse scale aerodynamics of the blades are accounted for through enhanced immersed lifting lines. The vorticity generation mechanisms, the roll-up of the near wake and the resulting established far wake are described (i) qualitatively in terms of vortex dynamics using rotor polar plots and 3D visualizations; (ii) quantitatively using classical integral diagnostics. The power spectra measured by velocity probes in the wake are also presented. The analysis shows that the wake reaches a fully turbulent equilibrium state at a distance of about 30 diameters downstream. This work is supported by the Belgian french community F.R.S.-FNRS.

  17. Flow Structures within a Helicopter Rotor Hub Wake

    Science.gov (United States)

    Elbing, Brian; Reich, David; Schmitz, Sven

    2015-11-01

    A scaled model of a notional helicopter rotor hub was tested in the 48'' Garfield Thomas Water Tunnel at the Applied Research Laboratory Penn State. The measurement suite included total hub drag and wake velocity measurements (LDV, PIV, stereo-PIV) at three downstream locations. The main objective was to understand the spatiotemporal evolution of the unsteady wake between the rotor hub and the nominal location of the empennage (tail). Initial analysis of the data revealed prominent two- and four-per-revolution fluid structures linked to geometric hub features persisting into the wake far-field. In addition, a six-per-revolution fluid structure was observed in the far-field, which is unexpected due to the lack of any hub feature with the corresponding symmetry. This suggests a nonlinear interaction is occurring within the wake to generate these structures. This presentation will provide an overview of the experimental data and analysis with particular emphasis on these six-per-revolution structures.

  18. Influence of short rear end tapers on the wake of a simplified square-back vehicle: wake topology and rear drag

    Science.gov (United States)

    Perry, Anna-Kristina; Pavia, Giancarlo; Passmore, Martin

    2016-11-01

    As vehicle manufacturers work to reduce energy consumption of all types of vehicles, external vehicle aerodynamics has become increasingly important. Whilst production vehicle shape optimisation methods are well developed, the need to make further advances requires deeper understanding of the highly three-dimensional flow around bluff bodies. In this paper, the wake flow of a generic bluff body, the Windsor body, based on a square-back car geometry, was investigated by means of balance measurements, surface pressure measurements and 2D particle image velocimetry planes. Changes in the wake topology are triggered by the application of short tapers (4 % of the model length) to the top and bottom edges of the base, representing a shape optimisation that is realistic for many modern production vehicles. The base drag is calculated and correlated with the aerodynamic drag data. The results not only show the effectiveness of such small devices in modifying the time average topology of the wake but also shed some light on the effects produced by different levels of upwash and downwash on the bi-stable nature of the wake itself.

  19. Wake modeling and simulation

    DEFF Research Database (Denmark)

    Larsen, Gunner Chr.; Madsen Aagaard, Helge; Larsen, Torben J.

    We present a consistent, physically based theory for the wake meandering phenomenon, which we consider of crucial importance for the overall description of wind turbine loadings in wind farms. In its present version the model is confined to single wake situations. The model philosophy does, howev...... methodology has been implemented in the aeroelastic code HAWC2, and example simulations of wake situations, from the small Tjæreborg wind farm, have been performed showing satisfactory agreement between predictions and measurements...

  20. A simple atmospheric boundary layer model applied to large eddy simulations of wind turbine wakes

    DEFF Research Database (Denmark)

    Troldborg, Niels; Sørensen, Jens Nørkær; Mikkelsen, Robert Flemming

    2014-01-01

    A simple model for including the influence of the atmospheric boundary layer in connection with large eddy simulations of wind turbine wakes is presented and validated by comparing computed results with measurements as well as with direct numerical simulations. The model is based on an immersed...... boundary type technique where volume forces are used to introduce wind shear and atmospheric turbulence. The application of the model for wake studies is demonstrated by combining it with the actuator line method, and predictions are compared with field measurements. Copyright © 2013 John Wiley & Sons, Ltd....

  1. A Survey of the Scattering Characteristics and Detection of Aircraft Wake Vortices

    Directory of Open Access Journals (Sweden)

    Li Jianbing

    2017-12-01

    Full Text Available Aircraft wake vortex is a pair of strong counter-rotating vortices and has attracted considerable attention in various fields including aviation safety and atmospheric physics. The characteristics and detection of wake vortex act as the basis for both behavior prediction as well as hazard assessment. This paper provides a short survey of the characteristics and detection researches. Initially, the wake vortex is classified as clear-air wake vortex (i.e., wake turbulence and contrail and precipitation wake vortex (i.e., under rainy, foggy or snowy condition. Subsequently, the dynamics and scattering are introduced, and the main verdicts are: the radar (radio detection and ranging scattering of wake vortex is relatively weak under clear air conditions, but the Lidar (Light detection and ranging scattering is appreciable owing to the presence of particles such as aerosols. Wake vortices under precipitation conditions and contrails possess relatively good radar reflectivity owing the strong scattering characteristics of precipitation droplets and ice crystals. Furthermore, we have introduced a joint detection scheme of Lidar and radar for wake vortex along with parameter-retrieval algorithms. Finally, we have presented our conclusions and intended future research.

  2. Wake meandering under non-neutral atmospheric stability conditions – theory and facts

    DEFF Research Database (Denmark)

    Larsen, Gunner Chr.; Machefaux, Ewan; Chougule, Abhijit S.

    2015-01-01

    This paper deals with modelling of wake dynamics under influence of atmospheric stability conditions different from neutral. In particular, it is investigated how the basic split in turbulent scales, on which the Dynamic Wake Meandering model is based, can be utilized to include atmospheric...... stability effects in this model. This is done partly by analyzing a large number of turbulence spectra obtained from sonic measurements, partly by analyzing dedicated full-scale LiDAR measurements from which wake dynamics can be directly resolved. The theory behind generalizing the Dynamic Wake Meandering...

  3. CFD Study on Effective Wake of Conventional and Tip-modified Propellers

    DEFF Research Database (Denmark)

    Shin, K. W.; Andersen, Poul

    2016-01-01

    result and the effective wake fractions from integrating CFD velocity fields, 5-15% higher effective wake fractions of tip-modified propellers from the existing estimation method based on the open-water correlation at thrust or torque identity can be related mainly to the effects of Reynolds number...

  4. A new simulation method for turbines in wake - Applied to extreme response during operation

    DEFF Research Database (Denmark)

    Thomsen, K.; Aagaard Madsen, H.

    2005-01-01

    The work focuses on prediction of load response for wind turbines operating in wind forms using a newly developed aeroelostic simulation method The traditionally used concept is to adjust the free flow turbulence intensity to account for increased loads in wind farms-a methodology that might......, the resulting extremes might be erroneous. For blade loads the traditionally used simplified approach works better than for integrated rotor loads-where the instantaneous load gradient across the rotor disc is causing the extreme loads. In the article the new wake simulation approach is illustrated...

  5. On the Effects of Wind Turbine Wake Skew Caused by Wind Veer

    Energy Technology Data Exchange (ETDEWEB)

    Churchfield, Matthew J [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Sirnivas, Senu [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2018-01-12

    Because of Coriolis forces caused by the Earth's rotation, the structure of the atmospheric boundary layer often contains wind-direction change with height, also known as wind-direction veer. Under low turbulence conditions, such as in stably stratified atmospheric conditions, this veer can be significant, even across the vertical extent of a wind turbine's rotor disk. The veer then causes the wind turbine wake to skew as it advects downstream. This wake skew has been observed both experimentally and numerically. In this work, we attempt to examine the wake skewing process in some detail, and quantify how differently a skewed wake versus a non skewed wake affects a downstream turbine. We do this by performing atmospheric large-eddy simulations to create turbulent inflow winds with and without veer. In the veer case, there is a roughly 8 degree wind direction change across the turbine rotor. We then perform subsequent large-eddy simulations using these inflow data with an actuator line rotor model to create wakes. The turbine modeled is a large, modern, offshore, multimegawatt turbine. We examine the unsteady wake data in detail and show that the skewed wake recovers faster than the non skewed wake. We also show that the wake deficit does not skew to the same degree that a passive tracer would if subject to veered inflow. Last, we use the wake data to place a hypothetical turbine 9 rotor diameters downstream by running aeroelastic simulations with the simulated wake data. We see differences in power and loads if this downstream turbine is subject to a skewed or non skewed wake. We feel that the differences observed between the skewed and nonskewed wake are important enough that the skewing effect should be included in engineering wake models.

  6. Exploration of submarine wake and powering performance using CFD method

    International Nuclear Information System (INIS)

    Huizhi, Y.; Hongcui, S.; Nan, Z.; Renyou, Y.; Liangmei, Y.

    2005-01-01

    In response to the needs of better design and less time, Computational Fluid Dynamic(CFD) methods have become an impartible part in the ship design, especially in the earlier design phases. In this paper FLUENT software was used to predict the wake character and powering performance of submarine at model scale. By an effective combination of the block topology, grid, turbulence model and validation, the simulation scheme was developed and applied to the predictions of multiple designs and optimizations of the earlier submarine design iterations. The incompressible RANS equations with different turbulence models were solved. To handle the block interface between the propeller and submarine stern, sliding girds in multiple blocks were employed, unstructural grids were used in the block around the propeller. Submarine with/without stator and/or propeller were studied. The flow feature, forces and powering performance at various conditions were calculated. The results were compared with experimental data, and a good agreement was obtained. (author)

  7. Learning to classify wakes from local sensory information

    Science.gov (United States)

    Alsalman, Mohamad; Colvert, Brendan; Kanso, Eva; Kanso Team

    2017-11-01

    Aquatic organisms exhibit remarkable abilities to sense local flow signals contained in their fluid environment and to surmise the origins of these flows. For example, fish can discern the information contained in various flow structures and utilize this information for obstacle avoidance and prey tracking. Flow structures created by flapping and swimming bodies are well characterized in the fluid dynamics literature; however, such characterization relies on classical methods that use an external observer to reconstruct global flow fields. The reconstructed flows, or wakes, are then classified according to the unsteady vortex patterns. Here, we propose a new approach for wake identification: we classify the wakes resulting from a flapping airfoil by applying machine learning algorithms to local flow information. In particular, we simulate the wakes of an oscillating airfoil in an incoming flow, extract the downstream vorticity information, and train a classifier to learn the different flow structures and classify new ones. This data-driven approach provides a promising framework for underwater navigation and detection in application to autonomous bio-inspired vehicles.

  8. A new approach for evaluating measured wake data

    Energy Technology Data Exchange (ETDEWEB)

    Magnusson, Mikael [Uppsala Univ. (Sweden). Dept. of Meteorology

    1996-12-01

    Wind turbine wakes have been studied by analysing a large set of atmospheric data, from a wind farm with four turbines sited on a flat coastal area. The results obtained have ben generalized to allow tests against data from other full scale wind turbines as well as wind tunnel simulations. These comparisons are found to give very satisfactory results. The thrust coefficient is found to be a better parameter for description than wind speed, of wake characteristics because it implicitly includes the effect of regulation. It is also found that down-wind travel time is more convenient to use than down-wind distance in this context. The travel time to the end of the near wake region, i.e. to the point where a single velocity deficit peak first appears, is found to be inversely proportional to the rotational frequency of the turbine and to the turbulence intensity of the ambient air flow and proportional to the ratio of the wake radius and the hub height. For larger travel times, i.e. for the far wake region, it is found that the centre line relative velocity deficit decreases with the logarithm of the time traveled and is parametrically dependent on the time constant and the thrust coefficient. 3 refs, 5 figs

  9. Wake modelling combining mesoscale and microscale models

    DEFF Research Database (Denmark)

    Badger, Jake; Volker, Patrick; Prospathospoulos, J.

    2013-01-01

    In this paper the basis for introducing thrust information from microscale wake models into mesocale model wake parameterizations will be described. A classification system for the different types of mesoscale wake parameterizations is suggested and outlined. Four different mesoscale wake paramet...

  10. Uncovering the genetic landscape for multiple sleep-wake traits.

    Directory of Open Access Journals (Sweden)

    Christopher J Winrow

    Full Text Available Despite decades of research in defining sleep-wake properties in mammals, little is known about the nature or identity of genes that regulate sleep, a fundamental behaviour that in humans occupies about one-third of the entire lifespan. While genome-wide association studies in humans and quantitative trait loci (QTL analyses in mice have identified candidate genes for an increasing number of complex traits and genetic diseases, the resources and time-consuming process necessary for obtaining detailed quantitative data have made sleep seemingly intractable to similar large-scale genomic approaches. Here we describe analysis of 20 sleep-wake traits from 269 mice from a genetically segregating population that reveals 52 significant QTL representing a minimum of 20 genomic loci. While many (28 QTL affected a particular sleep-wake trait (e.g., amount of wake across the full 24-hr day, other loci only affected a trait in the light or dark period while some loci had opposite effects on the trait during the light vs. dark. Analysis of a dataset for multiple sleep-wake traits led to previously undetected interactions (including the differential genetic control of number and duration of REM bouts, as well as possible shared genetic regulatory mechanisms for seemingly different unrelated sleep-wake traits (e.g., number of arousals and REM latency. Construction of a Bayesian network for sleep-wake traits and loci led to the identification of sub-networks of linkage not detectable in smaller data sets or limited single-trait analyses. For example, the network analyses revealed a novel chain of causal relationships between the chromosome 17@29cM QTL, total amount of wake, and duration of wake bouts in both light and dark periods that implies a mechanism whereby overall sleep need, mediated by this locus, in turn determines the length of each wake bout. Taken together, the present results reveal a complex genetic landscape underlying multiple sleep-wake traits

  11. A comparison of actuator disc and BEM models in CFD simulations for the prediction of offshore wake losses

    International Nuclear Information System (INIS)

    Lavaroni, Luca; Cook, Malcolm J; Watson, Simon J; Dubal, Mark R

    2014-01-01

    In this paper computational fluid dynamics (CFD) simulations are performed using ANSYS CFX to compare wake interaction results obtained from two rotor modelling methodologies: the standard actuator disc and the blade element momentum model (BEM). The unsteady simulations embed Coriolis forces and neutral stability conditions in the surface layer and stable conditions in the free stream. The BEM method is implemented in the CFD code through a pre-processing set of files that employs look-up tables. The control system for the wind turbines is considered through look-up tables that are constructed based on operational wind farm data. Simulations using the actuator disc and BEM methodologies have been performed using a number of different turbulence models in order to compare the wind turbine wake structure results. The use of URANS and LES numerical methods, coupled with the two different methodologies of representing the turbine, enables an assessment to be made of the details required for varying degrees of accuracy in computing the wake structures. The findings stress the importance of including the rotation of the wake and the non-uniform load on the rotor in LES simulations to account for more accurate turbulence intensity levels in the near wake

  12. Airfoil wake and linear theory gust response including sub and superresonant flow conditions

    Science.gov (United States)

    Henderson, Gregory H.; Fleeter, Sanford

    1992-01-01

    The unsteady aerodynamic gust response of a high solidity stator vane row is examined in terms of the fundamental gust modeling assumptions with particular attention given to the effects near an acoustic resonance. A series of experiments was performed with gusts generated by rotors comprised of perforated plates and airfoils. It is concluded that, for both the perforated plate and airfoil wake generated gusts, the unsteady pressure responses do not agree with the linear-theory gust predictions near an acoustic resonance. The effects of the acoustic resonance phenomena are clearly evident on the airfoil surface unsteady pressure responses. The transition of the measured lift coefficients across the acoustic resonance from the subresonant regime to the superresonant regime occurs in a simple linear fashion.

  13. Vortex Particle-Mesh simulations of Vertical Axis Wind Turbine flows: from the blade aerodynamics to the very far wake

    Science.gov (United States)

    Chatelain, P.; Duponcheel, M.; Caprace, D.-G.; Marichal, Y.; Winckelmans, G.

    2016-09-01

    A Vortex Particle-Mesh (VPM) method with immersed lifting lines has been developed and validated. Based on the vorticity-velocity formulation of the Navier-Stokes equations, it combines the advantages of a particle method and of a mesh-based approach. The immersed lifting lines handle the creation of vorticity from the blade elements and its early development. LES of Vertical Axis Wind Turbine (VAWT) flows are performed. The complex wake development is captured in details and over very long distances: from the blades to the near wake coherent vortices, then through the transitional ones to the fully developed turbulent far wake (beyond 10 rotor diameters). The statistics and topology of the mean flow are studied. The computational sizes also allow insights into the detailed unsteady vortex dynamics, including some unexpected topological flow features.

  14. Vortex Particle-Mesh simulations of Vertical Axis Wind Turbine flows: from the blade aerodynamics to the very far wake

    International Nuclear Information System (INIS)

    Chatelain, P; Duponcheel, M; Caprace, D-G; Winckelmans, G; Marichal, Y

    2016-01-01

    A Vortex Particle-Mesh (VPM) method with immersed lifting lines has been developed and validated. Based on the vorticity-velocity formulation of the Navier-Stokes equations, it combines the advantages of a particle method and of a mesh-based approach. The immersed lifting lines handle the creation of vorticity from the blade elements and its early development. LES of Vertical Axis Wind Turbine (VAWT) flows are performed. The complex wake development is captured in details and over very long distances: from the blades to the near wake coherent vortices, then through the transitional ones to the fully developed turbulent far wake (beyond 10 rotor diameters). The statistics and topology of the mean flow are studied. The computational sizes also allow insights into the detailed unsteady vortex dynamics, including some unexpected topological flow features. (paper)

  15. Iodine Tagging Velocimetry in a Mach 10 Wake

    Science.gov (United States)

    Balla, Robert Jeffrey

    2013-01-01

    A variation on molecular tagging velocimetry (MTV) [1] designated iodine tagging velocimetry (ITV) is demonstrated. Molecular iodine is tagged by two-photon absorption using an Argon Fluoride (ArF) excimer laser. A single camera measures fluid displacement using atomic iodine emission at 206 nm. Two examples ofMTVfor cold-flowmeasurements areN2OMTV [2] and Femtosecond Laser Electronic Excitation Tagging [3]. These, like most MTV methods, are designed for atmospheric pressure applications. Neither can be implemented at the low pressures (0.1- 1 Torr) in typical hypersonic wakes. Of all the single-laser/singlecamera MTV approaches, only Nitric-Oxide Planar Laser Induced Fluorescence-based MTV [4] has been successfully demonstrated in a Mach 10 wake. Oxygen quenching limits transit times to 500 ns and accuracy to typically 30%. The present note describes the photophysics of the ITV method. Off-body velocimetry along a line is demonstrated in the aerothermodynamically important and experimentally challenging region of a hypersonic low-pressure near-wake in a Mach 10 air wind tunnel. Transit times up to 10 µs are demonstrated with conservative errors of 10%.

  16. The sleep-wake cycle and Alzheimer's disease: what do we know?

    Science.gov (United States)

    Lim, Miranda M; Gerstner, Jason R; Holtzman, David M

    2014-01-01

    Sleep-wake disturbances are a highly prevalent and often disabling feature of Alzheimer's disease (AD). A cardinal feature of AD includes the formation of amyloid plaques, associated with the extracellular accumulation of the amyloid-β (Aβ) peptide. Evidence from animal and human studies suggests that Aβ pathology may disrupt the sleep-wake cycle, in that as Aβ accumulates, more sleep-wake fragmentation develops. Furthermore, recent research in animal and human studies suggests that the sleep-wake cycle itself may influence Alzheimer's disease onset and progression. Chronic sleep deprivation increases amyloid plaque deposition, and sleep extension results in fewer plaques in experimental models. In this review geared towards the practicing clinician, we discuss possible mechanisms underlying the reciprocal relationship between the sleep-wake cycle and AD pathology and behavior, and present current approaches to therapy for sleep disorders in AD.

  17. Anisotropy of turbulence in wind turbine wakes

    Energy Technology Data Exchange (ETDEWEB)

    Gomez-Elvira, Rafael [Comision Nacional de Energia (Spain); Crespo, Antonio; Migoya, Emilio; Manuel, Fernando [Departamento de Ingenieria Energetica y Fluidomecanica, Escuela Tecnica Superior de Ingenieros Industriales, Universidad Politecnica de Madrid, Jose Gutierrez Abascal, 2. 28006 Madrid (Spain); Hernandez, Julio [Departamento de Mecanica, ETSII, Universidad Nacional de Educacion a Distancia, Ciudad Universitaria, 28040 Madrid (Spain)

    2005-10-01

    This work is mainly dedicated to the study of non-isotropic characteristics of turbulence in wind turbine wakes, specifically the shear layer of the near wake. A calculation method based on an explicit algebraic model for the components of the turbulent stress tensor is proposed, and the results are found to be in acceptable agreement with experimental results. Analytical expressions for the estimation of an upper limit of the global turbulence kinetic energy, k, and the individual contributions of each diagonal term in the turbulent stress tensor are proposed. Their predictions are compared with experimental results.

  18. Traumatic brain injury and disturbed sleep and wakefulness.

    Science.gov (United States)

    Baumann, Christian R

    2012-09-01

    Traumatic brain injury is a frequent condition worldwide, and sleep-wake disturbances often complicate the course after the injuring event. Current evidence suggests that the most common sleep-wake disturbances following traumatic brain injury include excessive daytime sleepiness and posttraumatic hypersomnia, that is, increased sleep need per 24 h. The neuromolecular basis of posttraumatic sleep pressure enhancement is not entirely clear. First neuropathological and clinical studies suggest that impaired hypocretin (orexin) signalling might contribute to sleepiness, but direct or indirect traumatic injury also to other sleep-wake modulating systems in the brainstem and the mesencephalon is likely. Posttraumatic insomnia may be less common than posttraumatic sleepiness, but studies on its frequency revealed conflicting results. Furthermore, insomnia is often associated with psychiatric comorbidities, and some patients with posttraumatic disruption of their circadian rhythm may be misdiagnosed as insomnia patients. The pathophysiology of posttraumatic circadian sleep disorders remains elusive; however, there is some evidence that reduced evening melatonin production due to traumatic brain damage may cause disruption of circadian regulation of sleep and wakefulness.

  19. Wind farm array wake losses

    Energy Technology Data Exchange (ETDEWEB)

    Baker, R.W. [Impact Weather, Washougal, WA (United States); McCarthy, E.F. [Wind Economics & Technology, Inc., Martinez, CA (United States)

    1997-12-31

    A wind turbine wake study was conducted in the summer of 1987 at an Altamont Pass wind electric generating facility. The wind speed deficits, turbulence, and power deficits from an array consisting of several rows of wind turbines is discussed. A total of nine different test configurations were evaluated for a downwind spacing ranging from 7 rotor diameters (RD) to 34 RD and a cross wind spacing of 1.3 RD and 2.7 RD. Wake power deficits of 15% were measured at 16 RD and power losses of a few percent were even measurable at 27 RD for the closer cross wind spacing. For several rows of turbines separated by 7-9 RD the wake zones overlapped and formed compound wakes with higher velocity deficits. The wind speed and direction turbulence in the wake was much higher than the ambient turbulence. The results from this study are compared to the findings from other similar field measurements.

  20. Wake fields in semiconductor plasmas

    International Nuclear Information System (INIS)

    Berezhiani, V.I.; Mahajan, S.M.

    1994-05-01

    It is shown that an intense short laser pulse propagating through a semiconductor plasma will generated longitudinal Langmuir waves in its wake. The measurable wake field can be used as a diagnostic to study nonlinear optical phenomena. For narrow gap semiconductors (for examples InSb) with Kane-type dispersion relation, the system can simulate, at currently available laser powers, the physics underlying wake-field accelerators. (author). 9 refs, 1 fig

  1. Classification of Rotor Induced Shearing Events in the Near Wake of a Wind Turbine Array Boundary Layer

    Science.gov (United States)

    Smith, Sarah; Viggiano, Bianca; Ali, Naseem; Cal, Raul Bayoan

    2017-11-01

    Flow perturbation induced by a turbine rotor imposes considerable turbulence and shearing effects in the near wake of a turbine, altering the efficiency of subsequent units within a wind farm array. Previous methods have characterized near wake vorticity of a turbine and recovery distance of various turbine array configurations. This study aims to build on previous analysis with respect to a turbine rotor within an array and develop a model to examine stress events and energy contribution in the near wake due to rotational effects. Hot wire anemometry was employed downstream of a turbine centrally located in the third row of a 3x3 array. Data considered points planar to the rotor and included simultaneous streamwise and wall-normal velocities as well as concurrent streamwise and transverse velocities. Conditional analysis of Reynolds stresses induced by the rotor agree with former near wake research, and examination of stresses in terms of streamwise and transverse velocity components depicts areas of significant rotational effects. Continued analysis includes spectral decomposition and conditional statistics to further characterize shearing events at various points considering the swept area of the rotor.

  2. Three-Phased Wake Vortex Decay

    Science.gov (United States)

    Proctor, Fred H.; Ahmad, Nashat N.; Switzer, George S.; LimonDuparcmeur, Fanny M.

    2010-01-01

    A detailed parametric study is conducted that examines vortex decay within turbulent and stratified atmospheres. The study uses a large eddy simulation model to simulate the out-of-ground effect behavior of wake vortices due to their interaction with atmospheric turbulence and thermal stratification. This paper presents results from a parametric investigation and suggests improvements for existing fast-time wake prediction models. This paper also describes a three-phased decay for wake vortices. The third phase is characterized by a relatively slow rate of circulation decay, and is associated with the ringvortex stage that occurs following vortex linking. The three-phased decay is most prevalent for wakes imbedded within environments having low-turbulence and near-neutral stratification.

  3. Wake Management Strategies for Reduction of Turbomachinery Fan Noise

    Science.gov (United States)

    Waitz, Ian A.

    1998-01-01

    The primary objective of our work was to evaluate and test several wake management schemes for the reduction of turbomachinery fan noise. Throughout the course of this work we relied on several tools. These include 1) Two-dimensional steady boundary-layer and wake analyses using MISES (a thin-shear layer Navier-Stokes code), 2) Two-dimensional unsteady wake-stator interaction simulations using UNSFLO, 3) Three-dimensional, steady Navier-Stokes rotor simulations using NEWT, 4) Internal blade passage design using quasi-one-dimensional passage flow models developed at MIT, 5) Acoustic modeling using LINSUB, 6) Acoustic modeling using VO72, 7) Experiments in a low-speed cascade wind-tunnel, and 8) ADP fan rig tests in the MIT Blowdown Compressor.

  4. Determination of Wind Turbine Near-Wake Length Based on Stability Analysis

    International Nuclear Information System (INIS)

    Sørensen, Jens N; Mikkelsen, Robert; Sarmast, Sasan; Ivanell, Stefan; Henningson, Dan

    2014-01-01

    A numerical study on the wake behind a wind turbine is carried out focusing on determining the length of the near-wake based on the instability onset of the trailing tip vortices shed from the turbine blades. The numerical model is based on large-eddy simulations (LES) of the Navier-Stokes equations using the actuator line (ACL) method. The wake is perturbed by applying stochastic or harmonic excitations in the neighborhood of the tips of the blades. The flow field is then analyzed to obtain the stability properties of the tip vortices in the wake of the wind turbine. As a main outcome of the study it is found that the amplification of specific waves (traveling structures) along the tip vortex spirals is responsible for triggering the instability leading to wake breakdown. The presence of unstable modes in the wake is related to the mutual inductance (vortex pairing) instability where there is an out-of-phase displacement of successive helix turns. Furthermore, using the non-dimensional growth rate, it is found that the pairing instability has a universal growth rate equal to π/2. Using this relationship, and the assumption that breakdown to turbulence occurs once a vortex has experienced sufficient growth, we provide an analytical relationship between the turbulence intensity and the stable wake length. The analysis leads to a simple expression for determining the length of the near wake. This expression shows that the near wake length is inversely proportional to thrust, tip speed ratio and the logarithmic of the turbulence intensity

  5. A prescribed wake rotor inflow and flow field prediction analysis, user's manual and technical approach

    Science.gov (United States)

    Egolf, T. A.; Landgrebe, A. J.

    1982-01-01

    A user's manual is provided which includes the technical approach for the Prescribed Wake Rotor Inflow and Flow Field Prediction Analysis. The analysis is used to provide the rotor wake induced velocities at the rotor blades for use in blade airloads and response analyses and to provide induced velocities at arbitrary field points such as at a tail surface. This analysis calculates the distribution of rotor wake induced velocities based on a prescribed wake model. Section operating conditions are prescribed from blade motion and controls determined by a separate blade response analysis. The analysis represents each blade by a segmented lifting line, and the rotor wake by discrete segmented trailing vortex filaments. Blade loading and circulation distributions are calculated based on blade element strip theory including the local induced velocity predicted by the numerical integration of the Biot-Savart Law applied to the vortex wake model.

  6. Wake effect in rocket observation

    International Nuclear Information System (INIS)

    Matsumoto, Haruya; Kaya, Nobuyuki; Yamanaka, Akira; Hayashi, Tomomasa

    1975-01-01

    The mechanism of the wake phenomena due to a probe and in rocket observation is discussed on the basis of experimental data. In the low energy electron measurement performed with the L-3H-5 rocket, the electron count rate changed synchronously with the rocket spin. This seems to be a wake effect. It is also conceivable that the probe itself generates the wake of ion beam. The latter problem is considered in the first part. Experiment was performed with laboratory plasma, in which a portion of the electron component of the probe current was counted with a CEM (a channel type multiplier). The change of probe voltage-count rate charactersitics due to the change of relative position of the ion source was observed. From the measured angular distributions of electron density and electron temperature around the probe, it is concluded that anisotropy exists around the probe, which seems to be a kinds of wake structure. In the second part, the wake effect due to a rocket is discussed on the basis of the measurement of leaking electrons with L-3H-5 rocket. Comparison between the theory of wake formation and the measured results is also shortly made in the final part. (Aoki, K.)

  7. Wake flow characteristics at high wind speed

    DEFF Research Database (Denmark)

    Aagaard Madsen, Helge; Larsen, Torben J.; Larsen, Gunner Chr.

    2016-01-01

    Wake flow characteristic at high wind speeds is the main subject of this paper. Although the wake losses decrease at high wind speeds it has been found in a recent study that for multiple wake inflow the increase in loading due to wake effects are substantial even at wind speeds well above rated ...

  8. Wake shed by an accelerating carangiform fish

    Science.gov (United States)

    Ting, Shang-Chieh; Yang, Jing-Tang

    2008-11-01

    We reveal an important fact that momentum change observed in the wake of an accelerating carangiform fish does not necessarily elucidate orientations of propulsive forces produced. An accelerating Crucian Carp (Carassius auratus) was found to shed a wake with net forward fluid momentum, which seemed drag-producing. Based on Newton's law, however, an accelerating fish is expected to shed a thrust wake with net rearward fluid momentum, rather than a drag wake. The unusual wake pattern observed is considered to be resulted primarily from the effect of pressure gradient created by accelerating movements of the fish. Ambient fluids tend to be sucked into low pressure zones behind an accelerating fish, resulting in forward orientations of jets recognizable in the wake. Accordingly, as to an accelerating fish, identifying force orientations from the wake requires considering also the effect of pressure gradient.

  9. Evaluation of a countermeasure against wake galloping using wire connection method; Wake galloping ni taisuru seishin wire no yukosei ni tsuite

    Energy Technology Data Exchange (ETDEWEB)

    Takeda, T.; Mukai, H.; Sano, N. [Kajima Corp., Tokyo (Japan)

    1994-10-31

    A plurality of parallel cables have been recently employed for long-span cable-stayed bridges. Use of such parallel cables thereupon leads to a special type of wind-induced vibration called wake galloping (simply referred to as WG.) owing to air turbulence caused by upstream cables. This paper attempts to evaluate measures against the WG using a wire connecting method, and identifies the most important influencing factor and the validity of the measures through wind tunnel tests. The following results are hereby clarified. Even if the deformation rigidity of the cables is increased, it is impossible to raise the wind velocity of the WG. The wind velocity of the WG can not be reduced from a wind tunnel wind velocity using non-dimensional wind velocity. The wire connecting method proves to be more effective for reducing the amplitude of the vibration. Provided cables are coupled into a multi-stage using the wire connection method, overall vibration with a greater amplitude can be restricted. To the factor of the restriction additional deformation rigidity of the cables more contributes compared with additional weight of the cables. 9 refs., 13 figs., 2 tabs.

  10. An overview of experimental results and dispersion modelling of nanoparticles in the wake of moving vehicles

    International Nuclear Information System (INIS)

    Carpentieri, Matteo; Kumar, Prashant; Robins, Alan

    2011-01-01

    Understanding the transformation of nanoparticles emitted from vehicles is essential for developing appropriate methods for treating fine scale particle dynamics in dispersion models. This article provides an overview of significant research work relevant to modelling the dispersion of pollutants, especially nanoparticles, in the wake of vehicles. Literature on vehicle wakes and nanoparticle dispersion is reviewed, taking into account field measurements, wind tunnel experiments and mathematical approaches. Field measurements and modelling studies highlighted the very short time scales associated with nanoparticle transformations in the first stages after the emission. These transformations strongly interact with the flow and turbulence fields immediately behind the vehicle, hence the need of characterising in detail the mixing processes in the vehicle wake. Very few studies have analysed this interaction and more research is needed to build a basis for model development. A possible approach is proposed and areas of further investigation identified. - Research highlights: → Nanoparticle emissions experience very short transformation time scales. → Vehicle wakes need to be characterised to analyse nanoparticle dispersion. → Fast response measurements of nanoparticle evolution in vehicle wakes are very rare. → Wind tunnel methodologies can be further improved to include nanoparticle dynamics. → A simple mathematical approach has been proposed for future development. - The transformation of nanoparticles and the flow characteristics in both the near and far wake regions must be understood in order to develop mathematical models.

  11. Real-Time Simulation of Coaxial Rotor Configurations with Combined Finite State Dynamic Wake and VPM

    OpenAIRE

    Zhao, Jinggen; He, Chengjian

    2017-01-01

    This paper describes a first-principle based finite state dynamic rotor wake model that addresses the complex aerodynamic interference inherent to coaxial rotor configurations in support of advanced vertical lift aircraft simulation, design, and analysis. The high fidelity rotor dynamic wake solution combines an enhanced real-time finite state dynamic wake model (DYW) with a first-principle based viscous Vortex Particle Method (VPM). The finite state dynamic wake model provides a state-spa...

  12. On the Effects of Wind Turbine Wake Skew Caused by Wind Veer: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Churchfield, Matthew J [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Sirnivas, Senu [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2018-03-01

    Because of Coriolis forces caused by the Earth's rotation, the structure of the atmospheric boundary layer often contains wind-direction change with height, also known as wind-direction veer. Under low turbulence conditions, such as in stably stratified atmospheric conditions, this veer can be significant, even across the vertical extent of a wind turbine's rotor disk. The veer then causes the wind turbine wake to skew as it advects downstream. This wake skew has been observed both experimentally and numerically. In this work, we attempt to examine the wake skewing process in some detail, and quantify how differently a skewed wake versus a non skewed wake affects a downstream turbine. We do this by performing atmospheric large-eddy simulations to create turbulent inflow winds with and without veer. In the veer case, there is a roughly 8 degree wind direction change across the turbine rotor. We then perform subsequent large-eddy simulations using these inflow data with an actuator line rotor model to create wakes. The turbine modeled is a large, modern, offshore, multimegawatt turbine. We examine the unsteady wake data in detail and show that the skewed wake recovers faster than the non skewed wake. We also show that the wake deficit does not skew to the same degree that a passive tracer would if subject to veered inflow. Last, we use the wake data to place a hypothetical turbine 9 rotor diameters downstream by running aeroelastic simulations with the simulated wake data. We see differences in power and loads if this downstream turbine is subject to a skewed or non skewed wake. We feel that the differences observed between the skewed and nonskewed wake are important enough that the skewing effect should be included in engineering wake models.

  13. A Prescribed-Wake Vortex Line Method for Aerodynamic Analysis and Optimization of Multi-Rotor Wind Turbines

    OpenAIRE

    Rosenberg, Aaron; Sharma, Anupam

    2015-01-01

    The objective of this paper is to extend the xed wake vortex lattice method (VLM), used to evaluate the performance of single-rotor wind turbines (SRWT), for use in analyzing dual-rotor wind turbines (DRWT). VLM models wind turbine blades as bound vortex laments with helical trailing vortices. Using the Biot-Savart law, it is possible to calculate the induction in the plane of rotation allowing for a computationally inexpensive, yet accurate, prediction of blade loading and power performance....

  14. The sleep–wake cycle and Alzheimer’s disease: what do we know?

    OpenAIRE

    Lim, Miranda M.; Gerstner, Jason R.; Holtzman, David M.

    2014-01-01

    Sleep–wake disturbances are a highly prevalent and often disabling feature of Alzheimer’s disease (AD). A cardinal feature of AD includes the formation of amyloid plaques, associated with the extracellular accumulation of the amyloid-β (Aβ) peptide. Evidence from animal and human studies suggests that Aβ pathology may disrupt the sleep–wake cycle, in that as Aβ accumulates, more sleep–wake fragmentation develops. Furthermore, recent research in animal and human studies suggests that the sleep...

  15. A coupled CFD and wake model simulation of helicopter rotor in hover

    Science.gov (United States)

    Zhao, Qinghe; Li, Xiaodong

    2018-03-01

    The helicopter rotor wake plays a dominant role since it affects the flow field structure. It is very difficult to predict accurately of the flow-field. The numerical dissipation is so excessive that it eliminates the vortex structure. A hybrid method of CFD and prescribed wake model was constructed by applying the prescribed wake model as much as possible. The wake vortices were described as a single blade tip vortex in this study. The coupling model is used to simulate the flow field. Both non-lifting and lifting cases have been calculated with subcritical and supercritical tip Mach numbers. Surface pressure distributions are presented and compared with experimental data. The calculated results agree well with the experimental data.

  16. Numerical study on wake characteristics of high-speed trains

    Science.gov (United States)

    Yao, Shuan-Bao; Sun, Zhen-Xu; Guo, Di-Long; Chen, Da-Wei; Yang, Guo-Wei

    2013-12-01

    Intensive turbulence exists in the wakes of high speed trains, and the aerodynamic performance of the trailing car could deteriorate rapidly due to complicated features of the vortices in the wake zone. As a result, the safety and amenity of high speed trains would face a great challenge. This paper considers mainly the mechanism of vortex formation and evolution in the train flow field. A real CRH2 model is studied, with a leading car, a middle car and a trailing car included. Different running speeds and cross wind conditions are considered, and the approaches of unsteady Reynold-averaged Navier-Stokes (URANS) and detached eddy simulation (DES) are utilized, respectively. Results reveal that DES has better capability of capturing small eddies compared to URANS. However, for large eddies, the effects of two approaches are almost the same. In conditions without cross winds, two large vortex streets stretch from the train nose and interact strongly with each other in the wake zone. With the reinforcement of the ground, a complicated wake vortex system generates and becomes strengthened as the running speed increases. However, the locations of flow separations on the train surface and the separation mechanism keep unchanged. In conditions with cross winds, three large vortices develop along the leeward side of the train, among which the weakest one has no obvious influence on the wake flow while the other two stretch to the tail of the train and combine with the helical vortices in the train wake. Thus, optimization of the aerodynamic performance of the trailing car should be aiming at reducing the intensity of the wake vortex system.

  17. Doppler lidar investigation of wind turbine wake characteristics and atmospheric turbulence under different surface roughness.

    Science.gov (United States)

    Zhai, Xiaochun; Wu, Songhua; Liu, Bingyi

    2017-06-12

    Four field experiments based on Pulsed Coherent Doppler Lidar with different surface roughness have been carried out in 2013-2015 to study the turbulent wind field in the vicinity of operating wind turbine in the onshore and offshore wind parks. The turbulence characteristics in ambient atmosphere and wake area was analyzed using transverse structure function based on Plane Position Indicator scanning mode. An automatic wake processing procedure was developed to determine the wake velocity deficit by considering the effect of ambient velocity disturbance and wake meandering with the mean wind direction. It is found that the turbine wake obviously enhances the atmospheric turbulence mixing, and the difference in the correlation of turbulence parameters under different surface roughness is significant. The dependence of wake parameters including the wake velocity deficit and wake length on wind velocity and turbulence intensity are analyzed and compared with other studies, which validates the empirical model and simulation of a turbine wake for various atmosphere conditions.

  18. Numerical investigations of wake interactions of two wind turbines in tandem

    Science.gov (United States)

    Qian, Yaoru; Wang, Tongguang

    2018-05-01

    Aerodynamic performance and wake interactions between two wind turbine models under different layouts are investigated numerically using large eddy simulation in conjunction with actuator line method based on the “Blind Test” series wind tunnel experiments from Norwegian University of Science and Technology. Numerical results of the power and thrust coefficients of the two rotors and wake characteristics are in good agreement with the experimental measurements. Extended investigations emphasizing the influence of different layout arrangements on the downstream rotor performance and wake development are conducted. Results show that layout arrangements have great influence on the power and thrust prediction of the downstream turbine.

  19. Coupled wake boundary layer model of windfarms

    Science.gov (United States)

    Stevens, Richard; Gayme, Dennice; Meneveau, Charles

    2014-11-01

    We present a coupled wake boundary layer (CWBL) model that describes the distribution of the power output in a windfarm. The model couples the traditional, industry-standard wake expansion/superposition approach with a top-down model for the overall windfarm boundary layer structure. Wake models capture the effect of turbine positioning, while the top-down approach represents the interaction between the windturbine wakes and the atmospheric boundary layer. Each portion of the CWBL model requires specification of a parameter that is unknown a-priori. The wake model requires the wake expansion rate, whereas the top-down model requires the effective spanwise turbine spacing within which the model's momentum balance is relevant. The wake expansion rate is obtained by matching the mean velocity at the turbine from both approaches, while the effective spanwise turbine spacing is determined from the wake model. Coupling of the constitutive components of the CWBL model is achieved by iterating these parameters until convergence is reached. We show that the CWBL model predictions compare more favorably with large eddy simulation results than those made with either the wake or top-down model in isolation and that the model can be applied successfully to the Horns Rev and Nysted windfarms. The `Fellowships for Young Energy Scientists' (YES!) of the Foundation for Fundamental Research on Matter supported by NWO, and NSF Grant #1243482.

  20. Evaluation of Fast-Time Wake Models Using Denver 2006 Field Experiment Data

    Science.gov (United States)

    Ahmad, Nash’at N.; Pruis, Matthew J.

    2015-01-01

    The National Aeronautics and Space Administration conducted a series of wake vortex field experiments at Denver in 2003, 2005, and 2006. This paper describes the lidar wake vortex measurements and associated meteorological data collected during the 2006 deployment, and includes results of recent reprocessing of the lidar data using a new wake vortex algorithm and estimates of the atmospheric turbulence using a new algorithm to estimate eddy dissipation rate from the lidar data. The configuration and set-up of the 2006 field experiment allowed out-of-ground effect vortices to be tracked in lateral transport further than any previous campaign and thereby provides an opportunity to study long-lived wake vortices in moderate to low crosswinds. An evaluation of NASA's fast-time wake vortex transport and decay models using the dataset shows similar performance as previous studies using other field data.

  1. Wind Farm Wake: The Horns Rev Photo Case

    Directory of Open Access Journals (Sweden)

    Pierre-Elouan Réthoré

    2013-02-01

    Full Text Available The aim of the paper is to examine the nowadays well-known wind farm wake photographs taken on 12 February 2008 at the offshore Horns Rev 1 wind farm. The meteorological conditions are described from observations from several satellite sensors quantifying clouds, surface wind vectors and sea surface temperature as well as ground-based information at and near the wind farm, including Supervisory Control and Data Acquisition (SCADA data. The SCADA data reveal that the case of fog formation occurred 12 February 2008 on the 10:10 UTC. The fog formation is due to very special atmospheric conditions where a layer of cold humid air above a warmer sea surface re-condensates to fog in the wake of the turbines. The process is fed by warm humid air up-drafted from below in the counter-rotating swirl generated by the clock-wise rotating rotors. The condensation appears to take place primarily in the wake regions with relatively high axial velocities and high turbulent kinetic energy. The wind speed is near cut-in and most turbines produce very little power. The rotational pattern of spiraling bands produces the large-scale structure of the wake fog.

  2. Vortex wakes of a flapping foil

    DEFF Research Database (Denmark)

    Schnipper, Teis; Andersen, Anders Peter; Bohr, Tomas

    2009-01-01

    We present an experimental study of a symmetric foil performing pitching oscillations in a vertically flowing soap film. By varying the frequency and amplitude of the oscillation we visualize a variety of wakes with up to 46 vortices per oscillation period, including von Karman vortex street...

  3. Field test of wake steering at an offshore wind farm

    Directory of Open Access Journals (Sweden)

    P. Fleming

    2017-05-01

    Full Text Available In this paper, a field test of wake-steering control is presented. The field test is the result of a collaboration between the National Renewable Energy Laboratory (NREL and Envision Energy, a smart energy management company and turbine manufacturer. In the campaign, an array of turbines within an operating commercial offshore wind farm in China have the normal yaw controller modified to implement wake steering according to a yaw control strategy. The strategy was designed using NREL wind farm models, including a computational fluid dynamics model, Simulator fOr Wind Farm Applications (SOWFA, for understanding wake dynamics and an engineering model, FLOw Redirection and Induction in Steady State (FLORIS, for yaw control optimization. Results indicate that, within the certainty afforded by the data, the wake-steering controller was successful in increasing power capture, by amounts similar to those predicted from the models.

  4. The effect of extended wake on postural control in young adults.

    Science.gov (United States)

    Smith, Simon S; Cheng, Tiffany; Kerr, Graham K

    2012-09-01

    The sleep-wake cycle is a major determinant of locomotor activity in humans, and the neural and physiological processes necessary for optimum postural control may be impaired by an extension of the wake period into habitual sleep time. There is growing evidence for such a contribution from sleep-related factors, but great inconsistency in the methods used to assess this contribution, particularly in control for circadian phase position. Postural control was assessed at hourly intervals across 14 h of extended wake in nine young adult participants. Force plate parameters of medio-lateral and anterior-posterior sway, centre of pressure (CoP) trace length, area, and velocity were assessed with eyes open and eyes closed over 3-min periods. A standard measure of psychomotor vigilance was assessed concurrently under constant routine conditions. After controlling for individual differences in circadian phase position, a significant effect of extended wake was found for anterior-posterior sway and for psychomotor vigilance. These data suggest that extended wake may increase the risk of a fall or other consequences of impaired postural control.

  5. Probes, Moons, and Kinetic Plasma Wakes

    Science.gov (United States)

    Hutchinson, I. H.; Malaspina, D.; Zhou, C.

    2017-10-01

    Nonmagnetic objects as varied as probes in tokamaks or moons in space give rise to flowing plasma wakes in which strong distortions of the ion and electron velocity distributions cause electrostatic instabilities. Non-linear phenomena such as electron holes are then produced. Historic probe theory largely ignores the resulting unstable character of the wake, but since we can now simulate computationally the non-linear wake phenomena, a timely challenge is to reassess the influence of these instabilities both on probe measurements and on the wakes themselves. Because the electron instability wavelengths are very short (typically a few Debye-lengths), controlled laboratory experiments face serious challenges in diagnosing them. That is one reason why they have long been neglected as an influence in probe interpretation. Space-craft plasma observations, by contrast, easily obtain sub-Debye-length resolution, but have difficulty with larger-scale reconstruction of the plasma spatial variation. In addition to surveying our developing understanding of wakes in magnetized plasmas, ongoing analysis of Artemis data concerning electron holes observed in the solar-wind lunar wake will be featured. Work partially supported by NASA Grant NNX16AG82G.

  6. Wake Island Tsunami Forecast Grids for MOST Model

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Wake Island Forecast Model Grids provides bathymetric data strictly for tsunami inundation modeling with the Method of Splitting Tsunami (MOST) model. MOST is a...

  7. Clinical Practice Guideline for the Treatment of Intrinsic Circadian Rhythm Sleep-Wake Disorders: Advanced Sleep-Wake Phase Disorder (ASWPD), Delayed Sleep-Wake Phase Disorder (DSWPD), Non-24-Hour Sleep-Wake Rhythm Disorder (N24SWD), and Irregular Sleep-Wake Rhythm Disorder (ISWRD). An Update for 2015

    Science.gov (United States)

    Auger, R. Robert; Burgess, Helen J.; Emens, Jonathan S.; Deriy, Ludmila V.; Thomas, Sherene M.; Sharkey, Katherine M.

    2015-01-01

    A systematic literature review and meta-analyses (where appropriate) were performed and the GRADE approach was used to update the previous American Academy of Sleep Medicine Practice Parameters on the treatment of intrinsic circadian rhythm sleep-wake disorders. Available data allowed for positive endorsement (at a second-tier degree of confidence) of strategically timed melatonin (for the treatment of DSWPD, blind adults with N24SWD, and children/ adolescents with ISWRD and comorbid neurological disorders), and light therapy with or without accompanying behavioral interventions (adults with ASWPD, children/adolescents with DSWPD, and elderly with dementia). Recommendations against the use of melatonin and discrete sleep-promoting medications are provided for demented elderly patients, at a second- and first-tier degree of confidence, respectively. No recommendations were provided for remaining treatments/ populations, due to either insufficient or absent data. Areas where further research is needed are discussed. Citation: Auger RR, Burgess HJ, Emens JS, Deriy LV, Thomas SM, Sharkey KM. Clinical practice guideline for the treatment of intrinsic circadian rhythm sleep-wake disorders: advanced sleep-wake phase disorder (ASWPD), delayed sleep-wake phase disorder (DSWPD), non-24-hour sleep-wake rhythm disorder (N24SWD), and irregular sleep-wake rhythm disorder (ISWRD). An update for 2015. J Clin Sleep Med 2015;11(10):1199–1236. PMID:26414986

  8. Performance and wake conditions of a rotor located in the wake of an obstacle

    Science.gov (United States)

    Naumov, I. V.; Kabardin, I. K.; Mikkelsen, R. F.; Okulov, V. L.; Sørensen, J. N.

    2016-09-01

    Obstacles like forests, ridges and hills can strongly affect the velocity profile in front of a wind turbine rotor. The present work aims at quantifying the influence of nearby located obstacles on the performance and wake characteristics of a downstream located wind turbine. Here the influence of an obstacle in the form of a cylindrical disk was investigated experimentally in a water flume. A model of a three-bladed rotor, designed using Glauert's optimum theory at a tip speed ratio λ = 5, was placed in the wake of a disk with a diameter close to the one of the rotor. The distance from the disk to the rotor was changed from 4 to 8 rotor diameters, with the vertical distance from the rotor axis varied 0.5 and 1 rotor diameters. The associated turbulent intensity of the incoming flow to the rotor changed 3 to '6% due to the influence of the disk wake. In the experiment, thrust characteristics and associated pulsations as a function of the incoming flow structures were measured by strain gauges. The flow condition in front of the rotor was measured with high temporal accuracy using LDA and power coefficients were determine as function of tip speed ratio for different obstacle positions. Furthermore, PIV measurements were carried out to study the development of the mean velocity deficit profiles of the wake behind the wind turbine model under the influence of the wake generated by the obstacle. By use of regression techniques to fit the velocity profiles it was possible to determine velocity deficits and estimate length scales of the wake attenuation.

  9. Endoplasmic reticulum stress in wake-active neurons progresses with aging.

    Science.gov (United States)

    Naidoo, Nirinjini; Zhu, Jingxu; Zhu, Yan; Fenik, Polina; Lian, Jie; Galante, Ray; Veasey, Sigrid

    2011-08-01

    Fragmentation of wakefulness and sleep are expected outcomes of advanced aging. We hypothesize that wake neurons develop endoplasmic reticulum dyshomeostasis with aging, in parallel with impaired wakefulness. In this series of experiments, we sought to more fully characterize age-related changes in wakefulness and then, in relevant wake neuronal populations, explore functionality and endoplasmic reticulum homeostasis. We report that old mice show greater sleep/wake transitions in the active period with markedly shortened wake periods, shortened latencies to sleep, and less wake time in the subjective day in response to a novel social encounter. Consistent with sleep/wake instability and reduced social encounter wakefulness, orexinergic and noradrenergic wake neurons in aged mice show reduced c-fos response to wakefulness and endoplasmic reticulum dyshomeostasis with increased nuclear translocation of CHOP and GADD34. We have identified an age-related unfolded protein response injury to and dysfunction of wake neurons. It is anticipated that these changes contribute to sleep/wake fragmentation and cognitive impairment in aging. © 2011 The Authors. Aging Cell © 2011 Blackwell Publishing Ltd/Anatomical Society of Great Britain and Ireland.

  10. Modeling wake effects in large wind farms in complex terrain: the problem, the methods and the issues

    DEFF Research Database (Denmark)

    Politis, E.S.; Prospathopoulos, J.; Cabezon, D.

    2012-01-01

    turbulence closures, are used. The wind turbines are modeled as momentum absorbers by means of their thrust coefficient through the actuator disk approach. Alternative methods for estimating the reference wind speed in the calculation of the thrust are tested. The work presented in this paper is part......Computational fluid dynamic (CFD) methods are used in this paper to predict the power production from entire wind farms in complex terrain and to shed some light into the wake flow patterns. Two full three-dimensional Navier–Stokes solvers for incompressible fluid flow, employing k - ε and k - ω...

  11. Analysis of turbulent wake behind a wind turbine

    DEFF Research Database (Denmark)

    Kermani, Nasrin Arjomand; Andersen, Søren Juhl; Sørensen, Jens Nørkær

    2013-01-01

    The aim of this study is to improve the classical analytical model for estimation of the rate of wake expansion and the decay of wake velocity deficit in the far wake region behind a wind turbine. The relations for a fully turbulent axisymmetric far wake were derived by applying the mass and mome...

  12. DIELECTRIC WAKE FIELD RESONATOR ACCELERATOR MODULE

    Energy Technology Data Exchange (ETDEWEB)

    Hirshfield, Jay L.

    2013-11-06

    Results are presented from experiments, and numerical analysis of wake fields set up by electron bunches passing through a cylindrical or rectangular dielectric-lined structure. These bunches excite many TM-modes, with Ez components of the wake fields sharply localized on the axis of the structure periodically behind the bunches. The experiment with the cylindrical structure, carried out at ATF Brookhaven National Laboratory, used up to three 50 MeV bunches spaced by one wake field period (21 cm) to study the superposition of wake fields by measuring the energy loss of each bunch after it passed through the 53-cm long dielectric element. The millimeter-wave spectrum of radiation excited by the passage of bunches is also studied. Numerical analysis was aimed not only to simulate the behavior of our device, but in general to predict dielectric wake field accelerator performance. It is shown that one needs to match the radius of the cylindrical dielectric channel with the bunch longitudinal rms-length to achieve optimal performance.

  13. THE NEUROBIOLOGY OF SLEEP AND WAKEFULNESS

    Science.gov (United States)

    Schwartz, Michael D.; Kilduff, Thomas S.

    2015-01-01

    SYNOPSIS Since the discovery of Rapid Eye Movement (REM) sleep in the late 1950s, identification of the neural circuitry underlying wakefulness, sleep onset and the alternation between REM and non-REM (NREM) sleep has been an active area of investigation. Synchronization and desynchronization of cortical activity as detected in the electroencephalogram (EEG) is due to a corticothalamocortical loop, intrinsic cortical oscillators, monoaminergic and cholinergic afferent input to the thalamus, and the basal forebrain cholinergic input directly to the cortex. The monoaminergic and cholinergic systems are largely wake-promoting; the brainstem cholinergic nuclei are also involved in REM sleep regulation. These wake-promoting systems receive excitatory input from the hypothalamic hypocretin/orexin system. Sleep-promoting nuclei are GABAergic in nature and found in the preoptic area, brainstem and lateral hypothalamus. Although the pons is critical for the expression of REM sleep, recent research has suggested that melanin-concentrating hormone/GABAergic cells in the lateral hypothalamus "gate" REM sleep. The temporal distribution of sleep and wakefulness is due to interaction between the circadian system and the sleep homeostatic system. Although the hypothalamic suprachiasmatic nuclei contain the circadian pacemaker, the neural circuitry underlying the sleep homeostat is less clear. Prolonged wakefulness results in the accumulation of extracellular adenosine, possibly from glial sources, which is an important feedback molecule for the sleep homeostatic system. Cortical neuronal nitric oxide (nNOS) neurons may also play a role in propagating slow waves through the cortex in NREM sleep. Several neuropeptides and other neurochemicals likely play important roles in sleep/wake control. Although the control of sleep and wakefulness seemingly involves multiple redundant systems, each of these systems provides a vulnerability that can result in sleep/wake dysfunction that may

  14. Wake Measurements in ECN's Scaled Wind Farm

    Energy Technology Data Exchange (ETDEWEB)

    Wagenaar, J.W.; Schepers, J.G. [ECN Wind Energy, Petten (Netherlands)

    2013-02-15

    In ECN's scaled wind farm the wake evolution is studied in two different situations. A single wake is studied at two different locations downstream of a turbine and a single wake is studied in conjunction with a triple wake. Here, the wake is characterized by the wind speed ratio, the turbulence intensity, the vertical wind speed and the turbulence (an)isotropy. Per situation all wake measurements are taken simultaneously together with the inflow conditions.

  15. Comparison of a Coupled Near and Far Wake Model With a Free Wake Vortex Code

    DEFF Research Database (Denmark)

    Pirrung, Georg; Riziotis, Vasilis; Aagaard Madsen, Helge

    2016-01-01

    to be updated during the computation. Further, the effect of simplifying the exponential function approximation of the near wake model to increase the computation speed is investigated in this work. A modification of the dynamic inflow weighting factors of the far wake model is presented that ensures good...... computations performed using a free wake panel code. The focus of the description of the aerodynamics model is on the numerical stability, the computation speed and the accuracy of 5 unsteady simulations. To stabilize the near wake model, it has to be iterated to convergence, using a relaxation factor that has...... and a BEM model is centered around the NREL 5 MW reference turbine. The response to pitch steps at different pitching speeds is compared. By means of prescribed vibration cases, the effect of the aerodynamic model on the predictions of the aerodynamic work is investigated. The validation shows that a BEM...

  16. NASA AVOSS Fast-Time Models for Aircraft Wake Prediction: User's Guide (APA3.8 and TDP2.1)

    Science.gov (United States)

    Ahmad, Nash'at N.; VanValkenburg, Randal L.; Pruis, Matthew J.; Limon Duparcmeur, Fanny M.

    2016-01-01

    NASA's current distribution of fast-time wake vortex decay and transport models includes APA (Version 3.8) and TDP (Version 2.1). This User's Guide provides detailed information on the model inputs, file formats, and model outputs. A brief description of the Memphis 1995, Dallas/Fort Worth 1997, and the Denver 2003 wake vortex datasets is given along with the evaluation of models. A detailed bibliography is provided which includes publications on model development, wake field experiment descriptions, and applications of the fast-time wake vortex models.

  17. Comparison of wind turbine wake properties in non‐sheared inflow predicted by different computational fluid dynamics rotor models

    DEFF Research Database (Denmark)

    Troldborg, Niels; Zahle, Frederik; Réthoré, Pierre-Elouan

    2015-01-01

    , which is characterized by much higher turbulence levels. In the simulations with turbulent inflow, the wake characteristics predicted by the three methods are in close agreement, indicating that the differences observed in uniform inflow do not play an important role if the inflow is turbulent...... both uniform and turbulent inflows, and the wake properties predicted by the three models are compared. In uniform inflow, the wake properties predicted by the actuator disc and line methods are found to be in very close agreement but differ significantly from the wake of the fully resolved rotor....... Copyright © 2014 John Wiley & Sons, Ltd....

  18. Wake and light therapy for moderate-to-severe depression - a randomized controlled trial

    DEFF Research Database (Denmark)

    Kragh, M; Martiny, K; Videbech, P

    2017-01-01

    Objective: To examine the efficacy of using wake and light therapy as a supplement to standard treatment of hospitalized patients with depression. Method: In this randomized, controlled study, 64 patients with moderate-to-severe depression were allocated to standard treatment or to the intervention......, which additionally consisted of three wake therapy sessions in one week, 30-min daily light treatment and sleep time stabilization over the entire nine-week study period. Results: Patients in the wake therapy group had a significant decrease in depressive symptoms in week one as measured by HAM-D17, 17...

  19. On-Demand Sensor Node Wake-Up Using Solar Panels and Visible Light Communication

    Directory of Open Access Journals (Sweden)

    Carolina Carrascal

    2016-03-01

    Full Text Available To significantly reduce, or eliminate completely, the energy waste caused by the standby (idle mode of wireless sensor nodes, we propose a novel on-demand wake-up system, which allows the nodes to be put into sleep mode unless their activation is truly necessary. Although there have been many studies proposing RF-based wake-up radio systems, in this work, we develop the first visible light communication (VLC-based wake-up system. The developed system can extend the existing VLC systems and can be exploited to derive new application areas such as VLC tags. The system uses an off-the-shell indoor solar panel as receptor device of the wake-up signal as well as for energy harvesting purposes, through which it is able to harvest enough energy for its autonomous work. The design, implementation details and the experimental evaluation results are presented, which include flickering characterization and wake-up range evaluations. The results show that the developed system achieve reasonable wake-up distances for indoor environments, mainly where the use of VLC systems are considered.

  20. On-Demand Sensor Node Wake-Up Using Solar Panels and Visible Light Communication.

    Science.gov (United States)

    Carrascal, Carolina; Demirkol, Ilker; Paradells, Josep

    2016-03-22

    To significantly reduce, or eliminate completely, the energy waste caused by the standby (idle) mode of wireless sensor nodes, we propose a novel on-demand wake-up system, which allows the nodes to be put into sleep mode unless their activation is truly necessary. Although there have been many studies proposing RF-based wake-up radio systems, in this work, we develop the first visible light communication (VLC)-based wake-up system. The developed system can extend the existing VLC systems and can be exploited to derive new application areas such as VLC tags. The system uses an off-the-shell indoor solar panel as receptor device of the wake-up signal as well as for energy harvesting purposes, through which it is able to harvest enough energy for its autonomous work. The design, implementation details and the experimental evaluation results are presented, which include flickering characterization and wake-up range evaluations. The results show that the developed system achieve reasonable wake-up distances for indoor environments, mainly where the use of VLC systems are considered.

  1. Wind Farm Wake

    DEFF Research Database (Denmark)

    Hasager, Charlotte Bay; Karagali, Ioanna; Volker, Patrick

    2017-01-01

    On 25 January 2016 at 12:45 UTC several photographs of the offshore wind farm Horns Rev 2 were taken by helicopter pilot Gitte Lundorff with an iPhone. A very shallow layer of fog covered the sea. The photos of the fog over the sea dramatically pictured the offshore wind farm wake. Researchers got...... together to investigate the atmospheric conditions at the time of the photos by analysing local meteorological observations and wind turbine information, satellite remote sensing and nearby radiosonde data. Two wake models and one mesoscale model were used to model the case and explain what was seen....

  2. Appraisal of ALM predictions of turbulent wake features

    Science.gov (United States)

    Rocchio, Benedetto; Cilurzo, Lorenzo; Ciri, Umberto; Salvetti, Maria Vittoria; Leonardi, Stefano

    2017-11-01

    Wind turbine blades create a turbulent wake that may persist far downstream, with significant implications on wind farm design and on its power production. The numerical representation of the real blade geometry would lead to simulations beyond the present computational resources. We focus our attention on the Actuator Line Model (ALM), in which the blade is replaced by a rotating line divided into finite segments with representative aerodynamic coefficients. The total aerodynamic force is projected along the computational axis and, to avoid numerical instabilities, it is distributed among the nearest grid points by using a Gaussian regularization kernel. The standard deviation of this kernel is a fundamental parameter that strongly affects the characteristics of the wake. We compare here the wake features obtained in direct numerical simulations of the flow around 2D bodies (a flat plate and an airfoil) modeled using the Immersed Boundary Method with the results of simulations in which the body is modeled by ALM. In particular, we investigate whether the ALM is able to reproduce the mean velocity field and the turbulent kinetic energy in the wake for the considered bodies at low and high angles of attack and how this depends on the choice of the ALM kernel. S. Leonardi was supported by the National Science Foundation, Grant No. 1243482 (the WINDINSPIRE project).

  3. Lagrangian transport and chaos in the near wake of the flow around an obstacle: a numerical implementation of lobe dynamics

    Directory of Open Access Journals (Sweden)

    J. Duan

    1997-01-01

    Full Text Available In this paper we study Lagrangian transport in the near wake of the flow around an obstacle, which we take to be a cylinder. In this case, for the range of Reynolds numbers investigated, the flow is two-dimensional and time periodic. We use ideas and methods from transport theory in dynamical systems to describe and quantify transport in the near wake. We numerically solve the Navier-Stokes equations for the velocity field and apply these methods to the resulting numerical representation of the velocity field. We show that the method of lobe dynamics can be used in conjunction with computational fluid dynamics methods to give very detailed and quantitative information about Lagrangian transport. In particular, we show how the stable and unstable manifolds of certain saddle-type stagnation points on the cylinder, and one in the wake, can be used to divide the flow into three distinct regions, an upper wake, a lower wake, and a wake cavity. The significance of the division using stable and unstable manifolds lies in the fact that these invariant manifolds form a template on which the transport occurs. Using this, we compute fluxes from the upper and lower wakes into the wake cavity using the associated turnstile lobes. We also compute escape time distributions as well as compare transport properties for two different Reynolds numbers.

  4. Detailed field test of yaw-based wake steering

    DEFF Research Database (Denmark)

    Fleming, P.; Churchfield, M.; Scholbrock, A.

    2016-01-01

    production. In the first phase, a nacelle-mounted scanning lidar was used to verify wake deflection of a misaligned turbine and calibrate wake deflection models. In the second phase, these models were used within a yaw controller to achieve a desired wake deflection. This paper details the experimental......This paper describes a detailed field-test campaign to investigate yaw-based wake steering. In yaw-based wake steering, an upstream turbine intentionally misaligns its yaw with respect to the inflow to deflect its wake away from a downstream turbine, with the goal of increasing total power...... design and setup. All data collected as part of this field experiment will be archived and made available to the public via the U.S. Department of Energy’s Atmosphere to Electrons Data Archive and Portal....

  5. Wind and Wake Sensing with UAV Formation Flight: System Development and Flight Testing

    Science.gov (United States)

    Larrabee, Trenton Jameson

    Wind turbulence including atmospheric turbulence and wake turbulence have been widely investigated; however, only recently it become possible to use Unmanned Aerial Vehicles (UAVs) as a validation tool for research in this area. Wind can be a major contributing factor of adverse weather for aircraft. More importantly, it is an even greater risk towards UAVs because of their small size and weight. Being able to estimate wind fields and gusts can potentially provide substantial benefits for both unmanned and manned aviation. Possible applications include gust suppression for improving handling qualities, a better warning system for high wind encounters, and enhanced control for small UAVs during flight. On the other hand, the existence of wind can be advantageous since it can lead to fuel savings and longer duration flights through dynamic soaring or thermal soaring. Wakes are an effect of the lift distribution across an aircraft's wing or tail. Wakes can cause substantial disturbances when multiple aircraft are moving through the same airspace. In fact, the perils from an aircraft flying through the wake of another aircraft is a leading cause of the delay between takeoff times at airports. Similar to wind, though, wakes can be useful for energy harvesting and increasing an aircraft's endurance when flying in formation which can be a great advantage to UAVs because they are often limited in flight time due to small payload capacity. Formation flight can most often be seen in manned aircraft but can be adopted for use with unmanned systems. Autonomous flight is needed for flying in the "sweet spot" of the generated wakes for energy harvesting as well as for thermal soaring during long duration flights. For the research presented here formation flight was implemented for the study of wake sensing and gust alleviation. The major contributions of this research are in the areas of a novel technique to estimate wind using an Unscented Kalman filter and experimental wake

  6. A simplified approach for simulation of wake meandering

    Energy Technology Data Exchange (ETDEWEB)

    Thomsen, Kenneth; Aagaard Madsen, H.; Larsen, Gunner; Juul Larsen, T.

    2006-03-15

    This fact-sheet describes a simplified approach for a part of the recently developed dynamic wake model for aeroelastic simulations for wind turbines operating in wake. The part described in this fact-sheet concern the meandering process only, while the other part of the simplified approach the wake deficit profile is outside the scope of the present fact-sheet. Work on simplified models for the wake deficit profile is ongoing. (au)

  7. Toward Development of a Stochastic Wake Model: Validation Using LES and Turbine Loads

    Directory of Open Access Journals (Sweden)

    Jae Sang Moon

    2017-12-01

    Full Text Available Wind turbines within an array do not experience free-stream undisturbed flow fields. Rather, the flow fields on internal turbines are influenced by wakes generated by upwind unit and exhibit different dynamic characteristics relative to the free stream. The International Electrotechnical Commission (IEC standard 61400-1 for the design of wind turbines only considers a deterministic wake model for the design of a wind plant. This study is focused on the development of a stochastic model for waked wind fields. First, high-fidelity physics-based waked wind velocity fields are generated using Large-Eddy Simulation (LES. Stochastic characteristics of these LES waked wind velocity field, including mean and turbulence components, are analyzed. Wake-related mean and turbulence field-related parameters are then estimated for use with a stochastic model, using Multivariate Multiple Linear Regression (MMLR with the LES data. To validate the simulated wind fields based on the stochastic model, wind turbine tower and blade loads are generated using aeroelastic simulation for utility-scale wind turbine models and compared with those based directly on the LES inflow. The study’s overall objective is to offer efficient and validated stochastic approaches that are computationally tractable for assessing the performance and loads of turbines operating in wakes.

  8. Estimating the wake deflection downstream of a wind turbine in different atmospheric stabilities: an LES study

    Directory of Open Access Journals (Sweden)

    L. Vollmer

    2016-09-01

    Full Text Available An intentional yaw misalignment of wind turbines is currently discussed as one possibility to increase the overall energy yield of wind farms. The idea behind this control is to decrease wake losses of downstream turbines by altering the wake trajectory of the controlled upwind turbines. For an application of such an operational control, precise knowledge about the inflow wind conditions, the magnitude of wake deflection by a yawed turbine and the propagation of the wake is crucial. The dependency of the wake deflection on the ambient wind conditions as well as the uncertainty of its trajectory are not sufficiently covered in current wind farm control models. In this study we analyze multiple sources that contribute to the uncertainty of the estimation of the wake deflection downstream of yawed wind turbines in different ambient wind conditions. We find that the wake shapes and the magnitude of deflection differ in the three evaluated atmospheric boundary layers of neutral, stable and unstable thermal stability. Uncertainty in the wake deflection estimation increases for smaller temporal averaging intervals. We also consider the choice of the method to define the wake center as a source of uncertainty as it modifies the result. The variance of the wake deflection estimation increases with decreasing atmospheric stability. Control of the wake position in a highly convective environment is therefore not recommended.

  9. Collinear wake field acceleration

    International Nuclear Information System (INIS)

    Bane, K.L.F.; Chen, P.; Wilson, P.B.

    1985-04-01

    In the Voss-Weiland scheme of wake field acceleration a high current, ring-shaped driving bunch is used to accelerate a low current beam following along on axis. In such a structure, the transformer ratio, i.e., the ratio of maximum voltage that can be gained by the on-axis beam and the voltage lost by the driving beam, can be large. In contrast, it has been observed that for an arrangement in which driving and driven bunches follow the same path, and where the current distribution of both bunches is gaussian, the transformer ratio is not normally greater than two. This paper explores some of the possibilities and limitations of a collinear acceleration scheme. In addition to its application to wake field acceleration in structures, this study is also of interest for the understanding of the plasma wake field accelerator. 11 refs., 4 figs

  10. The k-ε-fP model applied to double wind turbine wakes using different actuator disk force methods

    DEFF Research Database (Denmark)

    Laan, van der, Paul Maarten; Sørensen, Niels N.; Réthoré, Pierre-Elouan

    2015-01-01

    The newly developed k-ε-fP  eddy viscosity model is applied to double wind turbine wake configurations in a neutral atmospheric boundary layer, using a Reynolds-Averaged Navier–Stokes solver. The wind turbines are represented by actuator disks. A proposed variable actuator disk force method...... two methods overpredict it. The results of the k-ε-fP  eddy viscosity model are also compared with the original k-ε eddy viscosity model and large-eddy simulations. Compared to the large-eddy simulations-predicted velocity and power deficits, the k-ε-fP  is superior to the original k-ε model...

  11. Rotor cascade shape optimization with unsteady passing wakes using implicit dual time stepping method

    Science.gov (United States)

    Lee, Eun Seok

    2000-10-01

    An improved aerodynamics performance of a turbine cascade shape can be achieved by an understanding of the flow-field associated with the stator-rotor interaction. In this research, an axial gas turbine airfoil cascade shape is optimized for improved aerodynamic performance by using an unsteady Navier-Stokes solver and a parallel genetic algorithm. The objective of the research is twofold: (1) to develop a computational fluid dynamics code having faster convergence rate and unsteady flow simulation capabilities, and (2) to optimize a turbine airfoil cascade shape with unsteady passing wakes for improved aerodynamic performance. The computer code solves the Reynolds averaged Navier-Stokes equations. It is based on the explicit, finite difference, Runge-Kutta time marching scheme and the Diagonalized Alternating Direction Implicit (DADI) scheme, with the Baldwin-Lomax algebraic and k-epsilon turbulence modeling. Improvements in the code focused on the cascade shape design capability, convergence acceleration and unsteady formulation. First, the inverse shape design method was implemented in the code to provide the design capability, where a surface transpiration concept was employed as an inverse technique to modify the geometry satisfying the user specified pressure distribution on the airfoil surface. Second, an approximation storage multigrid method was implemented as an acceleration technique. Third, the preconditioning method was adopted to speed up the convergence rate in solving the low Mach number flows. Finally, the implicit dual time stepping method was incorporated in order to simulate the unsteady flow-fields. For the unsteady code validation, the Stokes's 2nd problem and the Poiseuille flow were chosen and compared with the computed results and analytic solutions. To test the code's ability to capture the natural unsteady flow phenomena, vortex shedding past a cylinder and the shock oscillation over a bicircular airfoil were simulated and compared with

  12. Unsteady wake of a rotating tire

    Science.gov (United States)

    Lombard, Jean-Eloi; Moxey, Dave; Xu, Hui; Sherwin, Spencer; Sherwin Lab Team

    2015-11-01

    For open wheel race-cars, such as IndyCar and Formula One, the wheels are responsible for 40% of the total drag. For road cars drag associated to the wheels and under-carriage can represent 60% of total drag at highway cruise speeds. Experimental observations have reported two or three pairs of counter rotating vortices, the relative importance of which still remains an open question, that interact to form a complex wake. Traditional RANS based methods are typically not well equipped to deal with such highly unsteady flows which motivates research into more physical, unsteady models. Leveraging a high-fidelity spectral/hp element based method a Large Eddy Simulation is performed to give further insight into unsteady characteristics of the wake. In particular the unsteady nature of both the jetting and top vortex pair is reported as well as the time and length scales associated with the vortex core trajectories. Correlation with experimentally obtained particle image velocimetry is presented. The authors acknowledge support from the United Kingdom Turbulence Consortium (UKTC) as well as from the Engineering and Physical Sciences Research Council (EPSRC) for access to ARCHER UK National Supercomputing Service.

  13. Sleep-wake patterns and sleep disturbance among Hong Kong Chinese adolescents.

    Science.gov (United States)

    Chung, Ka-Fai; Cheung, Miao-Miao

    2008-02-01

    To determine sleep-wake patterns and evaluate sleep disturbance in Hong Kong adolescents; to identify factors that are associated with sleep disturbance; and to examine the relationship of sleep-wake variables and academic performance. A school-based cross-sectional survey. Sample included 1629 adolescents aged 12 to 19 years. Self-report questionnaires, including sleep-wake habit questionnaire, Sleep Quality Index, Morningness/ Eveningness scale, Epworth Sleepiness Scale, Perceived Stress Scale, academic performance, and personal data were administered. The average school-night bedtime was 23:24, and total sleep time was 7.3 hr. During weekends, the average bedtime and rise time was delayed by 64 min and 195 min, respectively. The prevalence of sleep disturbances occurring > or = 3 days per week in the preceding 3 months were: difficulty falling asleep (5.6%), waking up during the night (7.2%), and waking up too early in the morning (10.4%). The prevalence of > or = 1 of these three symptoms was 19.1%. Stepwise regression analyses revealed that circadian phase preference was the most significant predictor for school night bedtime, weekend oversleep, and daytime sleepiness. Perceived stress was the most significant risk factor for sleep disturbance. Students with marginal academic performance reported later bedtimes and shorter sleep during school nights, greater weekend delays in bedtime, and more daytime sleepiness than those with better grades. The prevalence of sleep deprivation and sleep disturbance among Hong Kong adolescents is comparable to those found in other countries. An intervention program for sleep problems in adolescents should be considered.

  14. Analysis of the Induction and Wake Evolution of an Offshore Floating Wind Turbine

    Directory of Open Access Journals (Sweden)

    Matthew Lackner

    2012-04-01

    Full Text Available The degrees-of-freedom associated with offshore floating wind turbines (OFWTs result in a more dynamic flow field. The resulting aerodynamic loads may be significantly influenced by these motions via perturbations in the evolving wake. This is of great interest in terms of OFWT design, placement and simulation. This study presents free vortex wake method (FVM simulations of the NREL 5-MW wind turbine of a variety of platforms, operating in a range of wind speeds synthesized platform motion time series. Motion-induced wake perturbations are observed to affect induction. Transitions between windmill and propeller states are also observed.

  15. Efficient Turbulence Modeling for CFD Wake Simulations

    DEFF Research Database (Denmark)

    van der Laan, Paul

    Wind turbine wakes can cause 10-20% annual energy losses in wind farms, and wake turbulence can decrease the lifetime of wind turbine blades. One way of estimating these effects is the use of computational fluid dynamics (CFD) to simulate wind turbines wakes in the atmospheric boundary layer. Since...... this flow is in the high Reynolds number regime, it is mainly dictated by turbulence. As a result, the turbulence modeling in CFD dominates the wake characteristics, especially in Reynolds-averaged Navier-Stokes (RANS). The present work is dedicated to study and develop RANS-based turbulence models...... verified with a grid dependency study. With respect to the standard k-ε EVM, the k-ε- fp EVM compares better with measurements of the velocity deficit, especially in the near wake, which translates to improved power deficits of the first wind turbines in a row. When the CFD metholody is applied to a large...

  16. Dissipation of Turbulence in the Wake of a Wind Turbine

    Science.gov (United States)

    Lundquist, J. K.; Bariteau, L.

    2015-02-01

    The wake of a wind turbine is characterized by increased turbulence and decreased wind speed. Turbines are generally deployed in large groups in wind farms, and so the behaviour of an individual wake as it merges with other wakes and propagates downwind is critical in assessing wind-farm power production. This evolution depends on the rate of turbulence dissipation in the wind-turbine wake, which has not been previously quantified in field-scale measurements. In situ measurements of winds and turbulence dissipation from the wake region of a multi-MW turbine were collected using a tethered lifting system (TLS) carrying a payload of high-rate turbulence probes. Ambient flow measurements were provided from sonic anemometers on a meteorological tower located near the turbine. Good agreement between the tower measurements and the TLS measurements was established for a case without a wind-turbine wake. When an operating wind turbine is located between the tower and the TLS so that the wake propagates to the TLS, the TLS measures dissipation rates one to two orders of magnitude higher in the wake than outside of the wake. These data, collected between two and three rotor diameters downwind of the turbine, document the significant enhancement of turbulent kinetic energy dissipation rate within the wind-turbine wake. These wake measurements suggest that it may be useful to pursue modelling approaches that account for enhanced dissipation. Comparisons of wake and non-wake dissipation rates to mean wind speed, wind-speed variance, and turbulence intensity are presented to facilitate the inclusion of these measurements in wake modelling schemes.

  17. Performance evaluation of an automated single-channel sleep–wake detection algorithm

    Directory of Open Access Journals (Sweden)

    Kaplan RF

    2014-10-01

    Full Text Available Richard F Kaplan,1 Ying Wang,1 Kenneth A Loparo,1,2 Monica R Kelly,3 Richard R Bootzin3 1General Sleep Corporation, Euclid, OH, USA; 2Department of Electrical Engineering and Computer Science, Case Western Reserve University, Cleveland, OH, USA; 3Department of Psychology, University of Arizona, Tucson, AZ, USA Background: A need exists, from both a clinical and a research standpoint, for objective sleep measurement systems that are both easy to use and can accurately assess sleep and wake. This study evaluates the output of an automated sleep–wake detection algorithm (Z-ALG used in the Zmachine (a portable, single-channel, electroencephalographic [EEG] acquisition and analysis system against laboratory polysomnography (PSG using a consensus of expert visual scorers. Methods: Overnight laboratory PSG studies from 99 subjects (52 females/47 males, 18–60 years, median age 32.7 years, including both normal sleepers and those with a variety of sleep disorders, were assessed. PSG data obtained from the differential mastoids (A1–A2 were assessed by Z-ALG, which determines sleep versus wake every 30 seconds using low-frequency, intermediate-frequency, and high-frequency and time domain EEG features. PSG data were independently scored by two to four certified PSG technologists, using standard Rechtschaffen and Kales guidelines, and these score files were combined on an epoch-by-epoch basis, using a majority voting rule, to generate a single score file per subject to compare against the Z-ALG output. Both epoch-by-epoch and standard sleep indices (eg, total sleep time, sleep efficiency, latency to persistent sleep, and wake after sleep onset were compared between the Z-ALG output and the technologist consensus score files. Results: Overall, the sensitivity and specificity for detecting sleep using the Z-ALG as compared to the technologist consensus are 95.5% and 92.5%, respectively, across all subjects, and the positive predictive value and the

  18. CAS course on Plasma Wake Acceleration

    CERN Multimedia

    CERN Accelerator School

    2015-01-01

    The CERN Accelerator School (CAS) recently organised a specialised course on Plasma Wake Acceleration, held at CERN, Geneva, Switzerland, from 23 to 29 November 2014.    Following a number of introductory lectures on laser and plasma physics, as well as an overview of conventional accelerators and their limitations, the course covered a large number of aspects of plasma wake acceleration schemes: the creation of plasma by high power lasers or particle beams, a description of the plasma creation process through simulations and the characteristics of the accelerated particle beams, including results of the latest achievements. Lectures on beam diagnostics, the applications of plasma accelerated beams, and topical seminars completed the programme.  The course was very successful, with 109 students of 26 nationalities attending; most participants coming from European counties, but also from the US, Israel, India, South Korea, Russia and Ukraine. Feedback from the participants was...

  19. Evaluation of the wind direction uncertainty and its impact on wake modeling at the Horns Rev offshore wind farm

    DEFF Research Database (Denmark)

    Gaumond, M.; Réthoré, Pierre-Elouan; Ott, Søren

    2014-01-01

    of the wind direction inside the wind farm and the variability of the wind direction within the averaging period. The results show that the technique corrects the predictions of the models when the simulations and data are averaged over narrow wind direction sectors. In addition, the agreement of the shape...... of the power deficit in a single wake situation is improved. The robustness of the method is verified using the Jensen model, the Larsen model and Fuga, which are three different engineering wake models. The results indicate that the discrepancies between the traditional numerical simulations and power...... production data for narrow wind direction sectors are not caused by an inherent inaccuracy of the current wake models, but rather by the large wind direction uncertainty included in the dataset. The technique can potentially improve wind farm control algorithms and layout optimization because both...

  20. 风电场尾流分布计算及场内优化控制方法%Wake Distribution Calculation and Optimization Control Method for Wind Farms

    Institute of Scientific and Technical Information of China (English)

    顾波; 张洋; 任岩; 刘永前

    2017-01-01

    For existing wind farms,one goal of the wind farm optimization control is to reduce the wake effects and improve the overall power output.The coupling relationship between the variation of state parameters,power output and the wake distribution of wind turbines are analyzed.The calculation method of the intersection area between the wake and the wind rotor is presented.And a wake superposition model among multiple turbines is developed.A wake distribution calculation method is proposed for calculating the wind speed at each turbine location,which can be used to calculate the wind speed distribution of wind farms accurately and efficiently under varying wind speed and direction.Based on the wake distribution calculation model,the power output of overall wind farm is maximized with the axial induction factor of individual wind turbine as the adjustable parameter.The particle swarm optimization (PSO) algorithm is chosen as the optimization searching algorithm,and the wind farm optimal control model is developed.Wind farm Horns Rev in Denmark is selected as example,and the calculation results show that the wind farm wake distribution calculation method is able to accurately calculate the wake distribution,and the wind farm optimization control method will improve the overall power output.%对于已建风电场,减少尾流效应,提高风电场整体输出功率,是风电场优化控制的目标之一.文中分析了风电机组状态参数变化与输出功率、尾流分布间的耦合关系,建立了尾流与风轮交汇面积的计算方法,以及多台风电机组尾流的叠加模型.针对不同来流风向及来流风速下风电场尾流分布的不同,提出了一种风电场尾流分布计算方法,用于计算每台风电机组位置处的风速;基于该尾流分布计算方法,以风电场整体输出功率最大为目标函数,轴向诱导因子为优化参数,粒子群算法为优化算法,建立风电场优化控制模型.以丹麦Horns Rev风电场为研究对象,进行计算分析,结果表明:风电场尾流分布计算方法能够准确计算风电场尾流分布,风电场优化控制方法能够提高风电场整体输出功率.

  1. On the estimation of the wake potential for an ultrarelativistic charge in an accelerating structure

    International Nuclear Information System (INIS)

    Novokhatskij, A.V.

    1988-01-01

    The method to derive the analytic estimations for wake fields of an ultrarelativistic charge in an accelerating structure, that are valid in the range of distances smalller or compared to the effective structure dimensions. The method is based on the approximate space-time domain integrating of the maxwell equations in the Kirchhoff formulation. the method is demonstrated on the examples of obtaining the wake potentials for energy loss of a bunch traversing a scraper, a cavity or periodic iris-loaded structure. Likewise formulae are derived for Green functions that describe transverse force action of wake fields. Simple formulae for the total energy loss evaluation of a bunch with the Gaussian charge density distribution are derived as well. The derived estimations are compared with the computer results and predictions of other models

  2. Gas dynamics, optics and chemistry of an aircraft condensable wake

    Energy Technology Data Exchange (ETDEWEB)

    Grinats, E.S.; Kashevarov, A.V.; Stasenko, A.L. [Central Aerohydrodynamic Inst., Zhukovsky (Russian Federation)

    1997-12-31

    Prediction of the properties of a jet-and-vortex wake from an individual airplane is of great interest as the first step to assessment of the possible global changes in the atmosphere due to the world civil aviation. Several mathematical models of the different regions of an aircraft wake and corresponding numerical results are presented. The axisymmetric exhaust jet was simulated on the base of the well-known k-{epsilon} model of turbulence. Jet chemistry was investigated on the base of kinetic scheme of the gas phase reactions of enriched by including chemisorption by water droplets of several species and by taking into account of the photochemical processes. In the 3D far wake model, the numerical results for distribution of species exhausted by the engines and entrapped by the velocity field of two parallel vortices are shown. (R.P.) 7 refs.

  3. Gas dynamics, optics and chemistry of an aircraft condensable wake

    Energy Technology Data Exchange (ETDEWEB)

    Grinats, E S; Kashevarov, A V; Stasenko, A L [Central Aerohydrodynamic Inst., Zhukovsky (Russian Federation)

    1998-12-31

    Prediction of the properties of a jet-and-vortex wake from an individual airplane is of great interest as the first step to assessment of the possible global changes in the atmosphere due to the world civil aviation. Several mathematical models of the different regions of an aircraft wake and corresponding numerical results are presented. The axisymmetric exhaust jet was simulated on the base of the well-known k-{epsilon} model of turbulence. Jet chemistry was investigated on the base of kinetic scheme of the gas phase reactions of enriched by including chemisorption by water droplets of several species and by taking into account of the photochemical processes. In the 3D far wake model, the numerical results for distribution of species exhausted by the engines and entrapped by the velocity field of two parallel vortices are shown. (R.P.) 7 refs.

  4. Study on wake structure characteristics of a slotted micro-ramp with large-eddy simulation

    Energy Technology Data Exchange (ETDEWEB)

    Dong, Xiangrui; Chen, Yaohui; Dong, Gang; Liu, Yixin, E-mail: cyh873@163.com [National Key Laboratory of Transient Physics, Nanjing University of Science and Technology, Nanjing, 210094 (China)

    2017-06-15

    In this paper, a novel slotted ramp-type micro vortex generator (slotted micro-ramp) for flow separation control is simulated in the supersonic flow of Ma = 1.5, based on large eddy simulation combined with the finite volume method. The wake structure characteristics and control mechanisms of both slotted and standard micro-ramps are presented and discussed. The results show that the wake of standard micro-ramp includes a primary counter-rotating streamwise vortex pair, a train of vortex rings, and secondary vortices. The slotted micro-ramp has more complicated wake structures, which contain a confluent counter-rotating streamwise vortex pair and additional streamwise vortices, with the same rotation generated by slot and the vortex rings enveloping the vortex pair. The additional vortices generated by the slot of the micro-ramp can mix with the primary counter-rotating vortex pair, extend the life time, and strengthen the vortex intensity of primary vortex pair. Moreover, the slot can effectively alleviate, or even eliminate the backflow and decrease the profile drag induced by the standard micro-ramp, therefore improving the efficiency of separation control. (paper)

  5. Review of Idealized Aircraft Wake Vortex Models

    Science.gov (United States)

    Ahmad, Nashat N.; Proctor, Fred H.; Duparcmeur, Fanny M. Limon; Jacob, Don

    2014-01-01

    Properties of three aircraft wake vortex models, Lamb-Oseen, Burnham-Hallock, and Proctor are reviewed. These idealized models are often used to initialize the aircraft wake vortex pair in large eddy simulations and in wake encounter hazard models, as well as to define matched filters for processing lidar observations of aircraft wake vortices. Basic parameters for each vortex model, such as peak tangential velocity and circulation strength as a function of vortex core radius size, are examined. The models are also compared using different vortex characterizations, such as the vorticity magnitude. Results of Euler and large eddy simulations are presented. The application of vortex models in the postprocessing of lidar observations is discussed.

  6. Characterization of forced response of density stratified reacting wake

    Science.gov (United States)

    Pawar, Samadhan A.; Sujith, Raman I.; Emerson, Benjamin; Lieuwen, Tim

    2018-02-01

    The hydrodynamic stability of a reacting wake depends primarily on the density ratio [i.e., ratio of unburnt gas density (ρu) to burnt gas density (ρb)] of the flow across the wake. The variation of the density ratio from high to low value, keeping ρ u / ρ b > 1 , transitions dynamical characteristics of the reacting wake from a linearly globally stable (or convectively unstable) to a globally unstable mode. In this paper, we propose a framework to analyze the effect of harmonic forcing on the deterministic and synchronization characteristics of reacting wakes. Using the recurrence quantification analysis of the forced wake response, we show that the deterministic behaviour of the reacting wake increases as the amplitude of forcing is increased. Furthermore, for different density ratios, we found that the synchronization of the top and bottom branches of the wake with the forcing signal is dependent on whether the mean frequency of the natural oscillations of the wake (fn) is lesser or greater than the frequency of external forcing (ff). We notice that the response of both branches (top and bottom) of the reacting wake to the external forcing is asymmetric and symmetric for the low and high density ratios, respectively. Furthermore, we characterize the phase-locking behaviour between the top and bottom branches of the wake for different values of density ratios. We observe that an increase in the density ratio results in a gradual decrease in the relative phase angle between the top and bottom branches of the wake, which leads to a change in the vortex shedding pattern from a sinuous (anti-phase) to a varicose (in-phase) mode of the oscillations.

  7. Crosswind Shear Gradient Affect on Wake Vortices

    Science.gov (United States)

    Proctor, Fred H.; Ahmad, Nashat N.

    2011-01-01

    Parametric simulations with a Large Eddy Simulation (LES) model are used to explore the influence of crosswind shear on aircraft wake vortices. Previous studies based on field measurements, laboratory experiments, as well as LES, have shown that the vertical gradient of crosswind shear, i.e. the second vertical derivative of the environmental crosswind, can influence wake vortex transport. The presence of nonlinear vertical shear of the crosswind velocity can reduce the descent rate, causing a wake vortex pair to tilt and change in its lateral separation. The LES parametric studies confirm that the vertical gradient of crosswind shear does influence vortex trajectories. The parametric results also show that vortex decay from the effects of shear are complex since the crosswind shear, along with the vertical gradient of crosswind shear, can affect whether the lateral separation between wake vortices is increased or decreased. If the separation is decreased, the vortex linking time is decreased, and a more rapid decay of wake vortex circulation occurs. If the separation is increased, the time to link is increased, and at least one of the vortices of the vortex pair may have a longer life time than in the case without shear. In some cases, the wake vortices may never link.

  8. Performance and wake conditions of a rotor located in the wake of an obstacle

    DEFF Research Database (Denmark)

    Naumov, I. V.; Kabardin, I. K.; Mikkelsen, Robert Flemming

    2016-01-01

    and associated pulsations as a function of the incoming flow structures were measured by strain gauges. The flow condition in front of the rotor was measured with high temporal accuracy using LDA and power coefficients were determine as function of tip speed ratio for different obstacle positions. Furthermore......Obstacles like forests, ridges and hills can strongly affect the velocity profile in front of a wind turbine rotor. The present work aims at quantifying the influence of nearby located obstacles on the performance and wake characteristics of a downstream located wind turbine. Here the influence......, PIV measurements were carried out to study the development of the mean velocity deficit profiles of the wake behind the wind turbine model under the influence of the wake generated by the obstacle. By use of regression techniques to fit the velocity profiles it was possible to determine velocity...

  9. Field measurements in the wake of a model wind turbine

    International Nuclear Information System (INIS)

    Pol, Suhas; Taylor, Amelia; Doostalab, Ali; Novoa, Santiago; Castillo, Luciano; Bilbao, Argenis; Sheng, Jian; Giesselmann, Michael; Westergaard, Carsten; Hussain, Fazle; Ren, Beibei; Glauser, Mark

    2014-01-01

    As a first step to study the dynamics of a wind farm' we experimentally explored the flow field behind a single wind turbine of diameter 1.17 m at a hub height of 6.25 m. A 10 m tower upstream of the wind farm characterizes the atmospheric conditions and its influence on the wake evolution. A vertical rake of sonic anemometers is clustered around the hub height on a second tower' 6D downstream of the turbine. We present preliminary observations from a 1- hour block of data recorded in near-neutral atmospheric conditions. The ratio of the standard deviation of power to the inflow velocity is greater than three' revealing adverse effects of inflow turbulence on the power and load fluctuations. Furthermore' the wake defect and Reynolds stress and its gradient are pronounced at 6D. The flux of energy due to Reynolds stresses is similar to that reported in wind tunnel studies. The swirl and mixing produces a constant temperature wake which results in a density jump across the wake interface. Further field measurements will explore the dynamics of a model wind farm' including the effects of atmospheric variability

  10. Meteorological Controls on Wind Turbine Wakes

    DEFF Research Database (Denmark)

    Barthelmie, Rebecca J.; Hansen, Kurt Schaldemose; Pryor, S.C.

    2013-01-01

    , modeling, and predicting this complex and interdependent system is therefore critical to understanding and modeling wind farm power losses due to wakes, and to optimizing wind farm layout. This paper quantifies the impact of these variables on the power loss due to wakes using data from the large offshore......The primary control on the magnitude of the power losses induced by wind turbine wakes in large wind farms is the hub-height wind speed via its link to the turbine thrust coefficient. Hence, at low to moderate wind speeds (between cut-in and rated turbine wind speeds) when the thrust coefficient...

  11. Influence of obstacle aspect ratio on tripped cylinder wakes

    International Nuclear Information System (INIS)

    Araújo, Tiago B.; Sicot, Christophe; Borée, Jacques; Martinuzzi, Robert J.

    2012-01-01

    Highlights: ► Influence of a tripwire on wake properties of a surface-mounted circular cylinder. ► Height-to-diameter aspect ratios of 3 and 6 are considered. ► Critical positions for the tripwire lead to an abrupt change in the wake structure. ► Results further suggest that the tripwire can strengthen 2D wake properties. - Abstract: The influence of an asymmetrically mounted, single tripwire on the shedding and wake characteristics of a vertical, surface-mounted finite circular cylinder is investigated experimentally. Height-to-diameter aspect ratios of 3 and 6 are considered. It is shown that a critical position for the tripwire exists, which is characterised in an abrupt change in the shedding frequency and wake structure. Results further suggest that the tripwire can strengthen 2D wake properties. The influence of the aspect ratio is due to tip-wake flow interactions and thus differs fundamentally from two-dimensional geometries.

  12. Characterization of an Actively Controlled Three-Dimensional Turret Wake

    Science.gov (United States)

    Shea, Patrick; Glauser, Mark

    2012-11-01

    Three-dimensional turrets are commonly used for housing optical systems on airborne platforms. As bluff bodies, these geometries generate highly turbulent wakes that decrease the performance of the optical systems and the aircraft. The current experimental study looked to use dynamic suction in both open and closed-loop control configurations to actively control the turret wake. The flow field was characterized using dynamic pressure and stereoscopic PIV measurements in the wake of the turret. Results showed that the suction system was able to manipulate the wake region of the turret and could alter not only the spatial structure of the wake, but also the temporal behavior of the wake flow field. Closed-loop, feedback control techniques were used to determine a more optimal control input for the flow control. Similar control effects were seen for both the steady open-loop control case and the closed-loop feedback control configuration with a 45% reduction in the suction levels when comparing the closed-loop to the open-loop case. These results provide unique information regarding the development of the baseline three-dimensional wake and the wake with three different active flow control configurations.

  13. Sleep-Wake Differences in Relative Regional Cerebral Metabolic Rate for Glucose among Patients with Insomnia Compared with Good Sleepers

    Science.gov (United States)

    Kay, Daniel B.; Karim, Helmet T.; Soehner, Adriane M.; Hasler, Brant P.; Wilckens, Kristine A.; James, Jeffrey A.; Aizenstein, Howard J.; Price, Julie C.; Rosario, Bedda L.; Kupfer, David J.; Germain, Anne; Hall, Martica H.; Franzen, Peter L.; Nofzinger, Eric A.; Buysse, Daniel J.

    2016-01-01

    Study Objectives: The neurobiological mechanisms of insomnia may involve altered patterns of activation across sleep-wake states in brain regions associated with cognition, self-referential processes, affect, and sleep-wake promotion. The objective of this study was to compare relative regional cerebral metabolic rate for glucose (rCMRglc) in these brain regions across wake and nonrapid eye movement (NREM) sleep states in patients with primary insomnia (PI) and good sleeper controls (GS). Methods: Participants included 44 PI and 40 GS matched for age (mean = 37 y old, range 21–60), sex, and race. We conducted [18F]fluoro-2-deoxy-d-glucose positron emission tomography scans in PI and GS during both morning wakefulness and NREM sleep at night. Repeated measures analysis of variance was used to test for group (PI vs. GS) by state (wake vs. NREM sleep) interactions in relative rCMRglc. Results: Significant group-by-state interactions in relative rCMRglc were found in the precuneus/posterior cingulate cortex, left middle frontal gyrus, left inferior/superior parietal lobules, left lingual/fusiform/occipital gyri, and right lingual gyrus. All clusters were significant at Pcorrected sleep and wakefulness. Significant group-by-state interactions in relative rCMRglc suggest that insomnia is associated with impaired disengagement of brain regions involved in cognition (left frontoparietal), self-referential processes (precuneus/posterior cingulate), and affect (left middle frontal, fusiform/lingual gyri) during NREM sleep, or alternatively, to impaired engagement of these regions during wakefulness. Citation: Kay DB, Karim HT, Soehner AM, Hasler BP, Wilckens KA, James JA, Aizenstein HJ, Price JC, Rosario BL, Kupfer DJ, Germain A, Hall MH, Franzen PL, Nofzinger EA, Buysse DJ. Sleep-wake differences in relative regional cerebral metabolic rate for glucose among patients with insomnia compared with good sleepers. SLEEP 2016;39(10):1779–1794. PMID:27568812

  14. Wake field in electron-positron plasmas

    International Nuclear Information System (INIS)

    Avinash, K.; Berezhiani, V.I.

    1993-03-01

    We study the creation of wake field in cold electron positron plasma by electron bunches. In the resulting plasma inhomogeneity we study the propagation of short electromagnetic pulse. In is found that wake fields can change the frequency of the radiation substantially. (author). 7 refs, 1 fig

  15. Wake-vortex decay in external turbulence

    NARCIS (Netherlands)

    Kuczaj, Arkadiusz K.; Armenio, V.; Fröhlich, J.; Geurts, Bernardus J.

    2010-01-01

    Wake vortices that form behind a moving aircraft represent 11 safety COil cern for other aircraft.s that follow. These tornado-like wake structures may persist for several minutes, extending for many kilometers across the sky. This safety issue is particularly important close to major airports where

  16. Large-eddy simulation of shallow turbulent wakes behind a conical island

    Science.gov (United States)

    Ouro, Pablo; Wilson, Catherine A. M. E.; Evans, Paul; Angeloudis, Athanasios

    2017-12-01

    Large-Eddy Simulations (LESs) and experiments were employed to study the influence of water depth on the hydrodynamics in the wake of a conical island for emergent, shallow, and deeply submerged conditions. The Reynolds numbers based on the island's base diameter for these conditions range from 6500 to 8125. LES results from the two shallower conditions were validated against experimental measurements from an open channel flume and captured the characteristic flow structures around the cone, including the attached recirculation region, vortex shedding, and separated shear layers. The wake was impacted by the transition from emergent to shallow submerged flow conditions with more subtle changes in time-averaged velocity and instantaneous flow structures when the submergence increases further. Despite differences in the breakdown of the separated shear layers, vortex shedding, and the upward flow region on the leeward face (once the cone's apex is submerged), similar flow structures to cylinder flow were observed. These include an arch vortex tilted in the downstream direction and von Karman vortices in the far-wake. Spectra of velocity time series and the drag coefficient indicated that the vortex shedding was constrained by the overtopping flow layer, and thus the shedding frequency decreased as the cone's apex became submerged. Finally, the generalised flow structures in the wake of a submerged conical body are outlined.

  17. CFD modelling approaches against single wind turbine wake measurements using RANS

    International Nuclear Information System (INIS)

    Stergiannis, N; Lacor, C; Beeck, J V; Donnelly, R

    2016-01-01

    Numerical simulations of two wind turbine generators including the exact geometry of their blades and hub are compared against a simplified actuator disk model (ADM). The wake expansion of the upstream rotor is investigated and compared with measurements. Computational Fluid Dynamics (CFD) simulations have been performed using the open-source platform OpenFOAM [1]. The multiple reference frame (MRF) approach was used to model the inner rotating reference frames in a stationary computational mesh and outer reference frame for the full wind turbine rotor simulations. The standard k — ε and k — ω turbulence closure schemes have been used to solve the steady state, three dimensional Reynolds Averaged Navier- Stokes (RANS) equations. Results of near and far wake regions are compared with wind tunnel measurements along three horizontal lines downstream. The ADM under-predicted the velocity deficit at the wake for both turbulence models. Full wind turbine rotor simulations showed good agreement against the experimental data at the near wake, amplifying the differences between the simplified models. (paper)

  18. PIV and LDA measurements of the wake behind a wind turbine model

    Science.gov (United States)

    Naumov, I. V.; Mikkelsen, R. F.; Okulov, V. L.; Sørensen, J. N.

    2014-06-01

    In the present work we review the results of a series of measurements of the flow behind a model scale of a horizontal axis wind turbine rotor carried out at the water flume at Technical University of Denmark (DTU). The rotor is three-bladed and designed using Glauert theory for tip speed ratio λ =5 with a constant design lift coefficient along the span, CLdesign= 0.8. The measurements include dye visualization, Particle Image Velocimetry and Laser Doppler Anemometry. The wake instability has been studied in the range λ =3 - 9 at different cross-sections from the very near wake up to 10 rotor diameters downstream from the rotor. The initial flume flow was subject to a very low turbulence level with a uniform velocity profile, limiting the influence of external disturbances on the development of the inherent vortex instability. Using PIV measurements and visualizations, special attention was paid to detect and categorize different types of wake instabilities and the development of the flow in the near and the far wake. In parallel to PIV, LDA measurements provided data for various rotor regimes, revealing the existence of three main regular frequencies governing the development of different processes and instabilities in the rotor wake. In the far wake a constant frequency corresponding to the Strouhal number was found for the long-scale instabilities. This Strouhal number is in good agreement with the well-known constant that usually characterizes the oscillation in wakes behind bluff bodies. From associated visualizations and reconstructions of the flow field, it was found that the dynamics of the far wake is associated with the precession (rotation) of a helical vortex core. The data indicate that Strouhal number of this precession is independent of the rotor angular speed.

  19. PIV and LDA measurements of the wake behind a wind turbine model

    International Nuclear Information System (INIS)

    Naumov, I V; Okulov, V L; Mikkelsen, R F; Sørensen, J N

    2014-01-01

    In the present work we review the results of a series of measurements of the flow behind a model scale of a horizontal axis wind turbine rotor carried out at the water flume at Technical University of Denmark (DTU). The rotor is three-bladed and designed using Glauert theory for tip speed ratio λ =5 with a constant design lift coefficient along the span, C Ldesign = 0.8. The measurements include dye visualization, Particle Image Velocimetry and Laser Doppler Anemometry. The wake instability has been studied in the range λ =3 – 9 at different cross-sections from the very near wake up to 10 rotor diameters downstream from the rotor. The initial flume flow was subject to a very low turbulence level with a uniform velocity profile, limiting the influence of external disturbances on the development of the inherent vortex instability. Using PIV measurements and visualizations, special attention was paid to detect and categorize different types of wake instabilities and the development of the flow in the near and the far wake. In parallel to PIV, LDA measurements provided data for various rotor regimes, revealing the existence of three main regular frequencies governing the development of different processes and instabilities in the rotor wake. In the far wake a constant frequency corresponding to the Strouhal number was found for the long-scale instabilities. This Strouhal number is in good agreement with the well-known constant that usually characterizes the oscillation in wakes behind bluff bodies. From associated visualizations and reconstructions of the flow field, it was found that the dynamics of the far wake is associated with the precession (rotation) of a helical vortex core. The data indicate that Strouhal number of this precession is independent of the rotor angular speed

  20. Why Does Sleep Slow-Wave Activity Increase After Extended Wake? Assessing the Effects of Increased Cortical Firing During Wake and Sleep.

    Science.gov (United States)

    Rodriguez, Alexander V; Funk, Chadd M; Vyazovskiy, Vladyslav V; Nir, Yuval; Tononi, Giulio; Cirelli, Chiara

    2016-12-07

    During non-rapid eye movement (NREM) sleep, cortical neurons alternate between ON periods of firing and OFF periods of silence. This bi-stability, which is largely synchronous across neurons, is reflected in the EEG as slow waves. Slow-wave activity (SWA) increases with wake duration and declines homeostatically during sleep, but the underlying mechanisms remain unclear. One possibility is neuronal "fatigue": high, sustained firing in wake would force neurons to recover with more frequent and longer OFF periods during sleep. Another possibility is net synaptic potentiation during wake: stronger coupling among neurons would lead to greater synchrony and therefore higher SWA. Here, we obtained a comparable increase in sustained firing (6 h) in cortex by: (1) keeping mice awake by exposure to novel objects to promote plasticity and (2) optogenetically activating a local population of cortical neurons at wake-like levels during sleep. Sleep after extended wake led to increased SWA, higher synchrony, and more time spent OFF, with a positive correlation between SWA, synchrony, and OFF periods. Moreover, time spent OFF was correlated with cortical firing during prior wake. After local optogenetic stimulation, SWA and cortical synchrony decreased locally, time spent OFF did not change, and local SWA was not correlated with either measure. Moreover, laser-induced cortical firing was not correlated with time spent OFF afterward. Overall, these results suggest that high sustained firing per se may not be the primary determinant of SWA increases observed after extended wake. A long-standing hypothesis is that neurons fire less during slow-wave sleep to recover from the "fatigue" accrued during wake, when overall synaptic activity is higher than in sleep. This idea, however, has rarely been tested and other factors, namely increased cortical synchrony, could explain why sleep slow-wave activity (SWA) is higher after extended wake. We forced neurons in the mouse cortex to fire

  1. Volumetric LiDAR scanning of a wind turbine wake and comparison with a 3D analytical wake model

    Science.gov (United States)

    Carbajo Fuertes, Fernando; Porté-Agel, Fernando

    2016-04-01

    A correct estimation of the future power production is of capital importance whenever the feasibility of a future wind farm is being studied. This power estimation relies mostly on three aspects: (1) a reliable measurement of the wind resource in the area, (2) a well-established power curve of the future wind turbines and, (3) an accurate characterization of the wake effects; the latter being arguably the most challenging one due to the complexity of the phenomenon and the lack of extensive full-scale data sets that could be used to validate analytical or numerical models. The current project addresses the problem of obtaining a volumetric description of a full-scale wake of a 2MW wind turbine in terms of velocity deficit and turbulence intensity using three scanning wind LiDARs and two sonic anemometers. The characterization of the upstream flow conditions is done by one scanning LiDAR and two sonic anemometers, which have been used to calculate incoming vertical profiles of horizontal wind speed, wind direction and an approximation to turbulence intensity, as well as the thermal stability of the atmospheric boundary layer. The characterization of the wake is done by two scanning LiDARs working simultaneously and pointing downstream from the base of the wind turbine. The direct LiDAR measurements in terms of radial wind speed can be corrected using the upstream conditions in order to provide good estimations of the horizontal wind speed at any point downstream of the wind turbine. All this data combined allow for the volumetric reconstruction of the wake in terms of velocity deficit as well as turbulence intensity. Finally, the predictions of a 3D analytical model [1] are compared to the 3D LiDAR measurements of the wind turbine. The model is derived by applying the laws of conservation of mass and momentum and assuming a Gaussian distribution for the velocity deficit in the wake. This model has already been validated using high resolution wind-tunnel measurements

  2. Armodafinil in the treatment of sleep/wake disorders

    Directory of Open Access Journals (Sweden)

    Jonathan RL Schwartz

    2010-07-01

    Full Text Available Jonathan RL Schwartz1,Thomas Roth2, Chris Drake21INTEGRIS Sleep Disorders Center and University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA; 2Sleep Disorders and Research Center, Henry Ford Hospital, Detroit, MI, USAAbstract: Excessive sleepiness (ES is a major but underestimated public health concern associated with significant impairments in alertness/wakefulness and significant morbidity. The term ES has been used in the sleep medicine literature for years, but due to its nonspecific symptoms (ie tiredness or fatigue, it frequently goes unrecognized or is misdiagnosed in primary care. In some cases ES arises due to poor sleep habits or self-imposed sleep deprivation; however, ES is also a key component of a number of sleep/wake disorders and multiple medical and psychiatric disorders. Identification and treatment of ES is critical to improve the quality of life and well-being of patients and for the safety of the wider community. The inability of patients to recognize the nature, extent, and symptomatic profile of sleep/wake disorders requires vigilance on the part of healthcare professionals. Interventions to address ES and its associated impairments, treatment of the underlying sleep/wake disorder, and follow-up are a priority given the potential for serious consequences if left untreated. Wakefulness-promoting agents are available that treat ES associated with sleep/wake disorders. This review examines current approaches for managing this debilitating and potentially life-threatening condition, focusing on the place of armodafinil as a wakefulness-promoting agent.Keywords: excessive sleepiness, wakefulness, armodafinil, obstructive sleep apnea, narcolepsy, shift-work disorder

  3. Brain energetics during the sleep-wake cycle

    DEFF Research Database (Denmark)

    DiNuzzo, Mauro; Nedergaard, Maiken

    2017-01-01

    Brain activity during wakefulness is associated with high metabolic rates that are believed to support information processing and memory encoding. In spite of loss of consciousness, sleep still carries a substantial energy cost. Experimental evidence supports a cerebral metabolic shift taking place...... during sleep that suppresses aerobic glycolysis, a hallmark of environment-oriented waking behavior and synaptic plasticity. Recent studies reveal that glial astrocytes respond to the reduction of wake-promoting neuromodulators by regulating volume, composition and glymphatic drainage of interstitial...

  4. On the wake of a Darrieus turbine

    Science.gov (United States)

    Base, T. E.; Phillips, P.; Robertson, G.; Nowak, E. S.

    1981-01-01

    The theory and experimental measurements on the aerodynamic decay of a wake from high performance vertical axis wind turbine are discussed. In the initial experimental study, the wake downstream of a model Darrieus rotor, 28 cm diameter and a height of 45.5 cm, was measured in a Boundary Layer Wind Tunnel. The wind turbine was run at the design tip speed ratio of 5.5. It was found that the wake decayed at a slower rate with distance downstream of the turbine, than a wake from a screen with similar troposkein shape and drag force characteristics as the Darrieus rotor. The initial wind tunnel results indicated that the vertical axis wind turbines should be spaced at least forty diameters apart to avoid mutual power depreciation greater than ten per cent.

  5. 2014 CERN Accelerator Schools: Plasma Wake Acceleration

    CERN Multimedia

    2014-01-01

    A specialised school on Plasma Wake Acceleration will be held at CERN, Switzerland from 23-29 November, 2014.   This course will be of interest to staff and students in accelerator laboratories, university departments and companies working in or having an interest in the field of new acceleration techniques. Following introductory lectures on plasma and laser physics, the course will cover the different components of a plasma wake accelerator and plasma beam systems. An overview of the experimental studies, diagnostic tools and state of the art wake acceleration facilities, both present and planned, will complement the theoretical part. Topical seminars and a visit of CERN will complete the programme. Further information can be found at: http://cas.web.cern.ch/cas/PlasmaWake2014/CERN-advert.html http://indico.cern.ch/event/285444/

  6. Role of the locus coeruleus in the emergence of power law wake bouts in a model of the brainstem sleep-wake system through early infancy.

    Science.gov (United States)

    Patel, Mainak; Rangan, Aaditya

    2017-08-07

    Infant rats randomly cycle between the sleeping and waking states, which are tightly correlated with the activity of mutually inhibitory brainstem sleep and wake populations. Bouts of sleep and wakefulness are random; from P2-P10, sleep and wake bout lengths are exponentially distributed with increasing means, while during P10-P21, the sleep bout distribution remains exponential while the distribution of wake bouts gradually transforms to power law. The locus coeruleus (LC), via an undeciphered interaction with sleep and wake populations, has been shown experimentally to be responsible for the exponential to power law transition. Concurrently during P10-P21, the LC undergoes striking physiological changes - the LC exhibits strong global 0.3 Hz oscillations up to P10, but the oscillation frequency gradually rises and synchrony diminishes from P10-P21, with oscillations and synchrony vanishing at P21 and beyond. In this work, we construct a biologically plausible Wilson Cowan-style model consisting of the LC along with sleep and wake populations. We show that external noise and strong reciprocal inhibition can lead to switching between sleep and wake populations and exponentially distributed sleep and wake bout durations as during P2-P10, with the parameters of inhibition between the sleep and wake populations controlling mean bout lengths. Furthermore, we show that the changing physiology of the LC from P10-P21, coupled with reciprocal excitation between the LC and wake population, can explain the shift from exponential to power law of the wake bout distribution. To our knowledge, this is the first study that proposes a plausible biological mechanism, which incorporates the known changing physiology of the LC, for tying the developing sleep-wake circuit and its interaction with the LC to the transformation of sleep and wake bout dynamics from P2-P21. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Evolution of plasma wakes in density up- and down-ramps

    Science.gov (United States)

    Zhang, C. J.; Joshi, C.; Xu, X. L.; Mori, W. B.; Li, F.; Wan, Y.; Hua, J. F.; Pai, C. H.; Wang, J.; Lu, W.

    2018-02-01

    The time evolution of plasma wakes in density up- and down-ramps is examined through theory and particle-in-cell simulations. Motivated by observation of the reversal of a linear plasma wake in a plasma density upramp in a recent experiment (Zhang et al 2017 Phys. Rev. Lett. 119 064801) we have examined the behaviour of wakes in plasma ramps that always accompany any plasma source used for plasma-based acceleration. In the up-ramp case it is found that, after the passage of the drive pulse, the wavnumber/wavelength of the wake starts to decrease/increase with time until it eventually tends to zero/infinity, then the wake reverses its propagation direction and the wavenunber/wavelength of the wake begins to increase/shrink. The evolutions of the wavenumber and the phase velocity of the wake as functions of time are shown to be significantly different in the up-ramp and the down-ramp cases. In the latter case the wavenumber of the wake at a particular position in the ramp increases until the wake is eventually damped. It is also shown that the waveform of the wake at a particular time after being excited can be precisely controlled by tuning the initial plasma density profile, which may enable a new type of plasma-based ultrafast optics.

  8. Investigation of the effect of inflow turbulence on vertical axis wind turbine wakes

    International Nuclear Information System (INIS)

    Chatelain, P; Duponcheel, M; Buffin, S; Caprace, D-G; Winckelmans, G; Bricteux, L; Zeoli, S

    2017-01-01

    The aerodynamics of Vertical Axis Wind Turbines (VAWTs) is inherently unsteady, which leads to vorticity shedding mechanisms due to both the lift distribution along the blade and its time evolution. In this paper, we perform large-scale, fine-resolution Large Eddy Simulations of the flow past Vertical Axis Wind Turbines by means of a state-of-the-art Vortex Particle-Mesh (VPM) method combined with immersed lifting lines. Inflow turbulence with a prescribed turbulence intensity (TI) is injected at the inlet of the simulation either from a precomputed synthetic turbulence field obtained using the Mann algorithm [1] or generated on the-fly using time-correlated synthetic velocity planes. The wake of a standard, medium-solidity, H-shaped machine is simulated for several TI levels. The complex wake development is captured in details and over long distances: from the blades to the near wake coherent vortices, then through the transitional ones to the fully developed turbulent far wake. Mean flow and turbulence statistics are computed over more than 10 diameters downstream of the machine. The sensitivity of the wake topology and decay to the TI and to the operating conditions is then assessed. (paper)

  9. Investigation of the effect of inflow turbulence on vertical axis wind turbine wakes

    Science.gov (United States)

    Chatelain, P.; Duponcheel, M.; Zeoli, S.; Buffin, S.; Caprace, D.-G.; Winckelmans, G.; Bricteux, L.

    2017-05-01

    The aerodynamics of Vertical Axis Wind Turbines (VAWTs) is inherently unsteady, which leads to vorticity shedding mechanisms due to both the lift distribution along the blade and its time evolution. In this paper, we perform large-scale, fine-resolution Large Eddy Simulations of the flow past Vertical Axis Wind Turbines by means of a state-of-the-art Vortex Particle-Mesh (VPM) method combined with immersed lifting lines. Inflow turbulence with a prescribed turbulence intensity (TI) is injected at the inlet of the simulation either from a precomputed synthetic turbulence field obtained using the Mann algorithm [1] or generated on the-fly using time-correlated synthetic velocity planes. The wake of a standard, medium-solidity, H-shaped machine is simulated for several TI levels. The complex wake development is captured in details and over long distances: from the blades to the near wake coherent vortices, then through the transitional ones to the fully developed turbulent far wake. Mean flow and turbulence statistics are computed over more than 10 diameters downstream of the machine. The sensitivity of the wake topology and decay to the TI and to the operating conditions is then assessed.

  10. Measurement of potentials in the wake region of an unmagnetized plasma by using a DC-heated emissive probe

    International Nuclear Information System (INIS)

    Jung, Yong Ho; Chung, Kyu Sun

    1995-01-01

    An emissive probe was designed and manufactured to measure the floating and the space potentials of a plasma in the wake region. The 'floating potential method', among various schemes, was used for the measurement and analysis. To generate the wake, a plane artificial satellite with a circular shape was introduced into a simply discharged argon plasma without a magnetic field. Potentials along the radial direction in and out of the wake region of the artificial satellite were measured, and the plasma parameters were compared in both regions. In the wake region, the floating potential was higher than that out of the wake; the space potential was approximately equal to that out of the wake; when a positive voltage was applied to the artificial satellite, the floating and the space potentials were lower than those out of the wake; and when a negative voltage was applied to the artificial satellite, the floating potential was higher and the space potential was lower than the corresponding potentials out of the wake. (author)

  11. Validation of the Eddy Viscosity and Lange Wake Models using Measured Wake Flow Characteristics Behind a Large Wind Turbine Rotor

    Energy Technology Data Exchange (ETDEWEB)

    Jeon, Sang Hyeon; Kim, Bum Suk; Huh, Jong Chul [Jeju National Univ., Jeju (Korea, Republic of); Go, Young Jun [Hanjin Ind, Co., Ltd., Yangsan (Korea, Republic of)

    2016-01-15

    The wake effects behind wind turbines were investigated by using data from a Met Mast tower and the SCADA (Supervisory Control and Data Acquisition) system for a wind turbine. The results of the wake investigations and predicted values for the velocity deficit based on the eddy viscosity model were compared with the turbulence intensity from the Lange model. As a result, the velocity deficit and turbulence intensity of the wake increased as the free stream wind speed decreased. In addition, the magnitude of the velocity deficit for the center of the wake using the eddy viscosity model was overestimated while the turbulence intensity from the Lange model showed similarities with measured values.

  12. Large Eddy Simulation of Vertical Axis Wind Turbine Wakes

    Directory of Open Access Journals (Sweden)

    Sina Shamsoddin

    2014-02-01

    Full Text Available In this study, large eddy simulation (LES is combined with a turbine model to investigate the wake behind a vertical-axis wind turbine (VAWT in a three-dimensional turbulent flow. Two methods are used to model the subgrid-scale (SGS stresses: (a the Smagorinsky model; and (b the modulated gradient model. To parameterize the effects of the VAWT on the flow, two VAWT models are developed: (a the actuator swept-surface model (ASSM, in which the time-averaged turbine-induced forces are distributed on a surface swept by the turbine blades, i.e., the actuator swept surface; and (b the actuator line model (ALM, in which the instantaneous blade forces are only spatially distributed on lines representing the blades, i.e., the actuator lines. This is the first time that LES has been applied and validated for the simulation of VAWT wakes by using either the ASSM or the ALM techniques. In both models, blade-element theory is used to calculate the lift and drag forces on the blades. The results are compared with flow measurements in the wake of a model straight-bladed VAWT, carried out in the Institute de Méchanique et Statistique de la Turbulence (IMST water channel. Different combinations of SGS models with VAWT models are studied, and a fairly good overall agreement between simulation results and measurement data is observed. In general, the ALM is found to better capture the unsteady-periodic nature of the wake and shows a better agreement with the experimental data compared with the ASSM. The modulated gradient model is also found to be a more reliable SGS stress modeling technique, compared with the Smagorinsky model, and it yields reasonable predictions of the mean flow and turbulence characteristics of a VAWT wake using its theoretically-determined model coefficient.

  13. A CFD code comparison of wind turbine wakes

    DEFF Research Database (Denmark)

    Laan, van der, Paul Maarten; Storey, R. C.; Sørensen, Niels N.

    2014-01-01

    A comparison is made between the EllipSys3D and SnS CFD codes. Both codes are used to perform Large-Eddy Simulations (LES) of single wind turbine wakes, using the actuator disk method. The comparison shows that both LES models predict similar velocity deficits and stream-wise Reynolds-stresses fo...

  14. The sleep-wake-cycle: basic mechanisms.

    Science.gov (United States)

    Jones, B E

    1989-11-01

    The physiologic characteristics of the sleep-wake states have been well defined and some of the chemical and neuron systems that participate in the cyclic generation and maintenance of these states have been identified. The actual dynamic process by which these systems interact to generate the basic sleep-wake cycle, however, remains a mystery.

  15. Circadian Rhythm Sleep-Wake Disorders in Older Adults.

    Science.gov (United States)

    Kim, Jee Hyun; Duffy, Jeanne F

    2018-03-01

    The timing, duration, and consolidation of sleep result from the interaction of the circadian timing system with a sleep-wake homeostatic process. When aligned and functioning optimally, this allows wakefulness throughout the day and a long consolidated sleep episode at night. Mismatch between the desired timing of sleep and the ability to fall and remain asleep is a hallmark of the circadian rhythm sleep-wake disorders. This article discusses changes in circadian regulation of sleep with aging; how age influences the prevalence, diagnosis, and treatment of circadian rhythm sleep-wake disorders; and how neurologic diseases in older patients affect circadian rhythms and sleep. Copyright © 2017 Elsevier Inc. All rights reserved.

  16. Wind Wake Watcher v. 1.0

    Energy Technology Data Exchange (ETDEWEB)

    2017-10-03

    This software enables the user to produce Google Earth visualizations of turbine wake effects for wind farms. The visualizations are based on computations of statistical quantities that vary with wind direction and help quantify the effects on power production of upwind turbines on turbines in their wakes. The results of the software are plot images and kml files that can be loaded into Google Earth. The statistics computed are described in greater detail in the paper: S. Martin, C. H. Westergaard, and J. White (2016), Visualizing Wind Farm Wakes Using SCADA Data, in Wither Turbulence and Big Data in the 21st Century? Eds. A. Pollard, L. Castillo, L. Danaila, and M. Glauser. Springer, pgs. 231-254.

  17. Wake structure of a single vertical axis wind turbine

    International Nuclear Information System (INIS)

    Posa, Antonio; Parker, Colin M.; Leftwich, Megan C.; Balaras, Elias

    2016-01-01

    Highlights: • The wake structure of an isolated Vertical Axis Wind Turbine is studied by both Particle Imaging Velocimetry and Large Eddy Simulation. • The wake structure is investigated for two values of tip speed ratio, TSR_1=1.35 and TSR_2=2.21. • A displacement of the momentum deficit towards the windward side is verified in the wake. • Higher turbulence and coherence is observed on the leeward side of the wake, due to the upwind stall of the blades. • Coherence in the wake core, associated to the downwind stall, decays quickly downstream. - Abstract: The wake structure behind a vertical axis wind turbine (VAWT) is both measured in a wind tunnel using particle imaging velocimetry (PIV) and computed with large-eddy simulation (LES). Geometric and dynamic conditions are closely matched to typical applications of VAWTs (Re_D ∼ 1.8 × 10"5). The experiments and computations were highly coordinated with continuous two-way feedback to produce the most insightful results. Good qualitative agreement is seen between the computational and experimental results. The dependence of the wake structure on the tip speed ratio, TSR, is investigated, showing higher asymmetry and larger vortices at the lower rotational speed, due to stronger dynamic stall phenomena. Instantaneous, ensemble-averaged and phase-averaged fields are discussed, as well as the dynamics of coherent structures in the rotor region and downstream wake.

  18. Experimental study of boundary-layer transition on an airfoil induced by periodically passing wake

    Energy Technology Data Exchange (ETDEWEB)

    Jeon, W.P. [Center for Turbulence and Flow Control Research Institute of Advanced Machinery and Design, Seoul National University (Korea); Park, T.C.; Kang, S.H. [School of Mechanical and Aerospace Engineering, Seoul National University (Korea)

    2002-02-01

    Hot-wire measurements are performed in boundary-layer flows developing on a NACA 0012 airfoil over which wakes pass periodically. The periodic wakes are generated by rotating circular cylinders clockwise or counterclockwise around the airfoil. The time- and phase-averaged mean streamwise velocities and turbulence fluctuations are measured to investigate the phenomena of wake-induced transition. Especially, the phase-averaged wall shear stresses are evaluated using a computational Preston tube method. The passing wakes significantly change the pressure distribution on the airfoil, which has influence on the transition process of the boundary layer. The orientation of the passing wake alters the pressure distribution in a different manner. Due to the passing wake, the turbulent patches are generated inside the laminar boundary layer on the airfoil, and the boundary layer becomes temporarily transitional. The patches propagate downstream at a speed smaller than the free-stream velocity and merge together further downstream. Relatively high values of phase-averaged turbulence fluctuations in the outer part of the boundary layer indicate the possibility that breakdown occurs in the outer layer away from the wall. It is confirmed that the phase-averaged mean velocity profile has two dips in the outer region of the transitional boundary layer for each passing cycle. (orig.)

  19. Transient Resistive Wall Wake for Very Short Bunches

    International Nuclear Information System (INIS)

    Stupakov, G.; SLAC

    2005-01-01

    The catch up distance for the resistive wall wake in a round pipe is approximately equal to the square of the pipe radius divided by the bunch length. The standard formulae for this wake are applicable at distances much larger than the catch up distance. In this paper, we calculate the resistive wall wake at distances compared with the catch up distance assuming a constant wall conductivity

  20. Three-dimensional structure of wind turbine wakes as measured by scanning lidar

    Science.gov (United States)

    Bodini, Nicola; Zardi, Dino; Lundquist, Julie K.

    2017-08-01

    The lower wind speeds and increased turbulence that are characteristic of turbine wakes have considerable consequences on large wind farms: turbines located downwind generate less power and experience increased turbulent loads. The structures of wakes and their downwind impacts are sensitive to wind speed and atmospheric variability. Wake characterization can provide important insights for turbine layout optimization in view of decreasing the cost of wind energy. The CWEX-13 field campaign, which took place between June and September 2013 in a wind farm in Iowa, was designed to explore the interaction of multiple wakes in a range of atmospheric stability conditions. Based on lidar wind measurements, we extend, present, and apply a quantitative algorithm to assess wake parameters such as the velocity deficits, the size of the wake boundaries, and the location of the wake centerlines. We focus on wakes from a row of four turbines at the leading edge of the wind farm to explore variations between wakes from the edge of the row (outer wakes) and those from turbines in the center of the row (inner wakes). Using multiple horizontal scans at different elevations, a three-dimensional structure of wakes from the row of turbines can be created. Wakes erode very quickly during unstable conditions and can in fact be detected primarily in stable conditions in the conditions measured here. During stable conditions, important differences emerge between the wakes of inner turbines and the wakes of outer turbines. Further, the strong wind veer associated with stable conditions results in a stretching of the wake structures, and this stretching manifests differently for inner and outer wakes. These insights can be incorporated into low-order wake models for wind farm layout optimization or for wind power forecasting.

  1. Bifurcation and instability problems in vortex wakes

    DEFF Research Database (Denmark)

    Aref, Hassan; Brøns, Morten; Stremler, Mark A.

    2007-01-01

    A number of instability and bifurcation problems related to the dynamics of vortex wake flows are addressed using various analytical tools and approaches. We discuss the bifurcations of the streamline pattern behind a bluff body as a vortex wake is produced, a theory of the universal Strouhal......-Reynolds number relation for vortex wakes, the bifurcation diagram for "exotic" wake patterns behind an oscillating cylinder first determined experimentally by Williamson & Roshko, and the bifurcations in topology of the streamlines pattern in point vortex streets. The Hamiltonian dynamics of point vortices...... in a periodic strip is considered. The classical results of von Kármán concerning the structure of the vortex street follow from the two-vortices-in-a-strip problem, while the stability results follow largely from a four-vortices-in-a-strip analysis. The three-vortices-in-a-strip problem is argued...

  2. Brief wakeful resting can eliminate directed forgetting.

    Science.gov (United States)

    Schlichting, Andreas; Bäuml, Karl-Heinz T

    2017-02-01

    When cued to intentionally forget previously encoded memories, participants typically show reduced recall of the memories on a later recall test. We examined how such directed forgetting is affected by a brief period of wakeful resting between encoding and test. Encoding was followed by a "passive" wakeful resting period in which subjects heard emotionally neutral music or perceived neutral pictures, or it was followed by an "active" distraction period in which subjects were engaged in counting or calculation tasks. Whereas typical directed forgetting was present after active distraction, the forgetting was absent after wakeful resting. The findings indicate that the degree to which people can intentionally forget memories is influenced by the cognitive activity that people engage in shortly after learning takes place. The results provide first evidence on the interplay between wakeful resting and intentional forgetting.

  3. Sleep-wake disturbances after traumatic brain injury.

    Science.gov (United States)

    Ouellet, Marie-Christine; Beaulieu-Bonneau, Simon; Morin, Charles M

    2015-07-01

    Sleep-wake disturbances are extremely common after a traumatic brain injury (TBI). The most common disturbances are insomnia (difficulties falling or staying asleep), increased sleep need, and excessive daytime sleepiness that can be due to the TBI or other sleep disorders associated with TBI, such as sleep-related breathing disorder or post-traumatic hypersomnia. Sleep-wake disturbances can have a major effect on functional outcomes and on the recovery process after TBI. These negative effects can exacerbate other common sequelae of TBI-such as fatigue, pain, cognitive impairments, and psychological disorders (eg, depression and anxiety). Sleep-wake disturbances associated with TBI warrant treatment. Although evidence specific to patients with TBI is still scarce, cognitive-behavioural therapy and medication could prove helpful to alleviate sleep-wake disturbances in patients with a TBI. Copyright © 2015 Elsevier Ltd. All rights reserved.

  4. Circadian Sleep-Wake Rhythm of Older Adults with Intellectual Disabilities

    Science.gov (United States)

    Maaskant, Marijke; van de Wouw, Ellen; van Wijck, Ruud; Evenhuis, Heleen M.; Echteld, Michael A.

    2013-01-01

    The circadian sleep-wake rhythm changes with aging, resulting in a more fragmented sleep-wake pattern. In individuals with intellectual disabilities (ID), brain structures regulating the sleep-wake rhythm might be affected. The aims of this study were to compare the sleep-wake rhythm of older adults with ID to that of older adults in the general…

  5. Detecting wind turbine wakes with nacelle lidars

    DEFF Research Database (Denmark)

    Held, D. P.; Larvol, A.; Mann, Jakob

    2017-01-01

    variance is used as a detection parameter for wakes. A one month long measurement campaign, where a continuous-wave lidar on a turbine has been exposed to multiple wake situations, is used to test the detection capabilities. The results show that it is possible to identify situation where a downstream...... turbine is in wake by comparing the peak widths. The used lidar is inexpensive and brings instalments on every turbine within economical reach. Thus, the information gathered by the lidars can be used for improved control at wind farm level....

  6. Comparison of the Dynamic Wake Meandering Model, Large-Eddy Simulation, and Field Data at the Egmond aan Zee Offshore Wind Plant: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Churchfield, M. J.; Moriarty, P. J.; Hao, Y.; Lackner, M. A.; Barthelmie, R.; Lundquist, J.; Oxley, G. S.

    2014-12-01

    The focus of this work is the comparison of the dynamic wake meandering model and large-eddy simulation with field data from the Egmond aan Zee offshore wind plant composed of 36 3-MW turbines. The field data includes meteorological mast measurements, SCADA information from all turbines, and strain-gauge data from two turbines. The dynamic wake meandering model and large-eddy simulation are means of computing unsteady wind plant aerodynamics, including the important unsteady meandering of wakes as they convect downstream and interact with other turbines and wakes. Both of these models are coupled to a turbine model such that power and mechanical loads of each turbine in the wind plant are computed. We are interested in how accurately different types of waking (e.g., direct versus partial waking), can be modeled, and how background turbulence level affects these loads. We show that both the dynamic wake meandering model and large-eddy simulation appear to underpredict power and overpredict fatigue loads because of wake effects, but it is unclear that they are really in error. This discrepancy may be caused by wind-direction uncertainty in the field data, which tends to make wake effects appear less pronounced.

  7. Why Does REM Sleep Occur? A Wake-up Hypothesis

    Directory of Open Access Journals (Sweden)

    Dr. W. R. eKlemm

    2011-09-01

    Full Text Available Brain activity differs in the various sleep stages and in conscious wakefulness. Awakening from sleep requires restoration of the complex nerve impulse patterns in neuronal network assemblies necessary to re-create and sustain conscious wakefulness. Herein I propose that the brain uses REM to help wake itself up after it has had a sufficient amount of sleep. Evidence suggesting this hypothesis includes the facts that, 1 when first going to sleep, the brain plunges into Stage N3 (formerly called Stage IV, a deep abyss of sleep, and, as the night progresses, the sleep is punctuated by episodes of REM that become longer and more frequent toward morning, 2 conscious-like dreams are a reliable component of the REM state in which the dreamer is an active mental observer or agent in the dream, 3 the last awakening during a night’s sleep usually occurs in a REM episode during or at the end of a dream, 4 both REM and awake consciousness seem to arise out of a similar brainstem ascending arousal system 5 N3 is a functionally perturbed state that eventually must be corrected so that embodied brain can direct adaptive behavior, and 6 corticofugal projections to brainstem arousal areas provide a way to trigger increased cortical activity in REM to progressively raise the sleeping brain to the threshold required for wakefulness. This paper shows how the hypothesis conforms to common experience and has substantial predictive and explanatory power regarding the phenomenology of sleep in terms of ontogeny, aging, phylogeny, abnormal/disease states, cognition, and behavioral physiology. That broad range of consistency is not matched by competing theories, which are summarized herein. Specific ways to test this wake-up hypothesis are suggested. Such research could lead to a better understanding of awake consciousness.

  8. Why does rem sleep occur? A wake-up hypothesis.

    Science.gov (United States)

    Klemm, W R

    2011-01-01

    Brain activity differs in the various sleep stages and in conscious wakefulness. Awakening from sleep requires restoration of the complex nerve impulse patterns in neuronal network assemblies necessary to re-create and sustain conscious wakefulness. Herein I propose that the brain uses rapid eye movement (REM) to help wake itself up after it has had a sufficient amount of sleep. Evidence suggesting this hypothesis includes the facts that, (1) when first going to sleep, the brain plunges into Stage N3 (formerly called Stage IV), a deep abyss of sleep, and, as the night progresses, the sleep is punctuated by episodes of REM that become longer and more frequent toward morning, (2) conscious-like dreams are a reliable component of the REM state in which the dreamer is an active mental observer or agent in the dream, (3) the last awakening during a night's sleep usually occurs in a REM episode during or at the end of a dream, (4) both REM and awake consciousness seem to arise out of a similar brainstem ascending arousal system (5) N3 is a functionally perturbed state that eventually must be corrected so that embodied brain can direct adaptive behavior, and (6) cortico-fugal projections to brainstem arousal areas provide a way to trigger increased cortical activity in REM to progressively raise the sleeping brain to the threshold required for wakefulness. This paper shows how the hypothesis conforms to common experience and has substantial predictive and explanatory power regarding the phenomenology of sleep in terms of ontogeny, aging, phylogeny, abnormal/disease states, cognition, and behavioral physiology. That broad range of consistency is not matched by competing theories, which are summarized herein. Specific ways to test this wake-up hypothesis are suggested. Such research could lead to a better understanding of awake consciousness.

  9. Numerical challenges of short range wake field calculations

    Energy Technology Data Exchange (ETDEWEB)

    Lau, Thomas; Gjonaj, Erion; Weiland, Thomas [Technische Universitaet Darmstadt (Germany). Institut fuer Theorie Elektromagnetischer Felder (TEMF)

    2011-07-01

    For present and future accelerator projects with ultra short bunches the accurate and reliable calculation of short range wake fields is an important issue. However, the numerical calculation of short range wake fields is a numerical challenging task. The presentation gives an overview over the numerical challenges and techniques for short range wake field calculations. Finally, some simulation results obtained by the program PBCI developed at the TU Darmstadt are presented.

  10. Volumetric scans of wind turbine wakes performed with three simultaneous wind LiDARs under different atmospheric stability regimes

    International Nuclear Information System (INIS)

    Iungo, Giacomo Valerio; Porté-Agel, Fernando

    2014-01-01

    Aerodynamic optimization of wind farm layout is a crucial task to reduce wake effects on downstream wind turbines, thus to maximize wind power harvesting. However, downstream evolution and recovery of wind turbine wakes are strongly affected by the characteristics of the incoming atmospheric boundary layer (ABL) flow, such as wind shear and turbulence intensity, which are in turn affected by the ABL thermal stability. In order to characterize the downstream evolution of wakes produced by full-scale wind turbines under different atmospheric conditions, wind velocity measurements were performed with three wind LiDARs. The volumetric scans are performed by continuously sweeping azimuthal and elevation angles of the LiDARs in order to cover a 3D volume that includes the wind turbine wake. The minimum wake velocity deficit is then evaluated as a function of the downstream location for different atmospheric conditions. It is observed that the ABL thermal stability has a significant effect on the wake evolution, and the wake recovers faster under convective conditions

  11. Effect of wind turbine wakes on summer-time wind profiles in the US Great Plains

    Science.gov (United States)

    Rhodes, M. E.; Lundquist, J. K.; Aitken, M.

    2011-12-01

    Wind energy is steadily becoming a significant source of grid electricity in the United States, and the Midwestern United States provides one of the nation's richest wind resources. This study examines the effect of wind turbine wakes on the wind profile in central Iowa. Data were collected using a coherent Doppler LiDAR system located approximately 2.5 rotor diameters north of a row of modern multi-MW wind turbine generators. The prevailing wind direction was from the South allowing the LiDAR to capture wind turbine wake properties; however, a number of periods existed where the LiDAR captured undisturbed flow. The LiDAR system reliably obtained readings up to 200 m above ground level (AGL), spanning the entire rotor disk (~40 m to 120 m AGL) which far surpasses the information provided by traditional wind resource assessment instrumentation. We extract several relevant parameters from the lidar data including: horizontal wind speed, vertical velocity, horizontal turbulence intensity, wind shear, and turbulent kinetic energy (TKE). Each time period at a particular LiDAR measurement height was labeled "wake" or "undisturbed" based on the wind direction at that height. Wake and undisturbed data were averaged separately to create a time-height cross-section averaged day for each parameter. Significant differences between wake and undisturbed data emerge. During the day, wake conditions experience larger values of TKE within the altitudes of the turbine rotor disk while TKE values above the rotor disk are similar between waked and undisturbed conditions. Furthermore, the morning transition of TKE in the atmospheric boundary layer commences earlier during wake conditions than in undisturbed conditions, and the evening decay of TKE persists longer during wake conditions. Waked wind shear is consistently greater than undisturbed periods at the edges of the wind turbine rotor disk (40m & 120m AGL), but especially so during the night where wind shear values during wake

  12. Turbulent mass flux closure modeling for variable density turbulence in the wake of an air-entraining transom stern

    Science.gov (United States)

    Hendrickson, Kelli; Yue, Dick

    2016-11-01

    This work presents the development and a priori testing of closure models for the incompressible highly-variable density turbulent (IHVDT) flow in the near wake region of a transom stern. This complex, three-dimensional flow includes three regions with distinctly different flow behavior: (i) the convergent corner waves that originate from the body and collide on the ship center plane; (ii) the "rooster tail" that forms from the collision; and (iii) the diverging wave train. The characteristics of these regions involve violent free-surface flows and breaking waves with significant turbulent mass flux (TMF) at Atwood number At = (ρ2 -ρ1) / (ρ2 +ρ1) 1 for which there is little guidance in turbulence closure modeling for the momentum and scalar transport along the wake. Utilizing datasets from high-resolution simulations of the near wake of a canonical three-dimensional transom stern using conservative Volume-of-Fluid (cVOF), implicit Large Eddy Simulation (iLES), and Boundary Data Immersion Method (BDIM), we develop explicit algebraic turbulent mass flux closure models that incorporate the most relevant physical processes. Performance of these models in predicting the turbulent mass flux in all three regions of the wake will be presented. Office of Naval Research.

  13. Self-similarity and turbulence characteristics of wind turbine wakes via large-eddy simulation (Invited)

    Science.gov (United States)

    Xie, S.; Archer, C. L.

    2013-12-01

    and reaches its maximum at about x/D ~ 5, then it gradually decreases further downstream. In the far-wake, the added turbulence intensity is primarily dependent on the induction factor and the ambient turbulence: it increases with the induction factor and ambient turbulence and it decays exponentially downstream. An analysis of the added TKE budget shows that production by shear and advection by the mean flow dominate throughout the wake, whereas dissipation and turbulent transport are less important. In the near-wake, TKE is entrained from the upper regions of the annular shear layer into the center of the wake. The nacelle causes a significant increase of production, advection, and dissipation in the near-wake. Wind shear and momentum fluxes are reduced in the lower part of the wake, thus TKE production is reduced at the bottom-tip level. In summary, we find that the WiTTS model, although applied to a simplified case of neutral stability with a single wind turbine, was able to offer new insights into wake properties, including non-symmetric wake growth and reduced vertical mixing near the ground.

  14. Wind turbine wake characterization using long-range Doppler lidar

    Science.gov (United States)

    Aitken, M.; Lundquist, J. K.; Hestmark, K.; Banta, R. M.; Pichugina, Y.; Brewer, A.

    2012-12-01

    Wind turbines extract energy from the freestream flow, resulting in a waked region behind the rotor which is characterized by reduced wind speed and increased turbulence. The velocity deficit in the wake diminishes with distance, as faster-moving air outside is gradually entrained. In a concentrated group of turbines, then, downwind machines experience very different inflow conditions compared to those in the front row. As utility-scale turbines rarely exist in isolation, detailed knowledge of the mean flow and turbulence structure inside wakes is needed to correctly model both power production and turbine loading at modern wind farms. To this end, the Turbine Wake and Inflow Characterization Study (TWICS) was conducted in the spring of 2011 to determine the reduction in wind speeds downstream from a multi-MW turbine located at the National Renewable Energy Laboratory's National Wind Technology Center (NWTC) near Boulder, Colorado. Full-scale measurements of wake dynamics are hardly practical or even possible with conventional sensors, such as cup anemometers mounted on meteorological (met) masts. Accordingly, the High Resolution Doppler Lidar (HRDL) developed by the National Oceanic and Atmospheric Administration's Earth System Research Laboratory was employed to investigate the formation and propagation of wakes under varying levels of ambient wind speed, shear, atmospheric stability, and turbulence. HRDL remotely senses line-of-sight wind velocities and has been used in several previous studies of boundary layer aerodynamics. With a fully steerable beam and a maximum range up to about 5 km, depending on atmospheric conditions, HRDL performed a comprehensive survey of the wind flow in front of and behind the turbine to study the shape, meandering, and attenuation of wakes. Due in large part to limited experimental data availability, wind farm wake modeling is still subject to an unacceptable amount of uncertainty, particularly in complex terrain. Here, analytical

  15. VIRTUAL REALITY IN WAKING AND DREAMING CONSCIOUSNESS

    Directory of Open Access Journals (Sweden)

    Allan eHobson

    2014-10-01

    Full Text Available This article explores the notion that the brain is genetically endowed with an innate virtual reality generator that – through experience-dependent plasticity –becomes a generative or predictive model of the world. This model, which is most clearly revealed in rapid eye movement (REM sleep dreaming, may provide the theatre for conscious experience. Functional neuroimaging evidence for brain activations that are time-locked to rapid eye movements endorses the view that waking consciousness emerges from REM sleep – and dreaming lays the foundations for waking perception. In this view, the brain is equipped with a virtual model of the world that generates predictions of its sensations. This model is continually updated and entrained by sensory prediction errors in wakefulness to ensure veridical perception, but not in dreaming. In contrast, dreaming plays an essential role in maintaining and enhancing the capacity to model the world by minimizing model complexity and thereby maximizing both statistical and thermodynamic efficiency. This perspective suggests that consciousness corresponds to the embodied process of inference, realized through the generation of virtual realities (in both sleep and wakefulness. In short, our premise or hypothesis is that the waking brain engages with the sensorium to predict the causes of sensations, while in sleep the brain's generative model is actively refined so that it generates more efficient predictions during waking. We review the evidence in support of this hypothesis – evidence that grounds consciousness in biophysical computations whose neuronal and neurochemical infrastructure has been disclosed by sleep research.

  16. Generalized impedances and wakes in asymmetric structures

    International Nuclear Information System (INIS)

    Heifets, S.; Wagner, A.; Zotter, B.

    1998-01-01

    In rotationally structures, the dominant m = 0 longitudinal impedance does not depend on the offsets of either the leading or the trailing particles, while the dominant m = 1 transverse impedance is proportional to the offset of the leading particles, while it is still independent of the offsets of the trailing ones. This behavior is no longer true in rotationally non-symmetric structures, where in general all impedances depend on the offsets of both the leading and the trailing particles. The same behavior is shown by wake functions and wake potentials. The concept of generalized impedances or generalized wake functions must be used to calculate the effect of leading particles on trailing ones with different offsets, each described by two transverse coordinates. This dependence of wake potentials on four additional parameters (two for each offset) would make their use very cumbersome. Fortunately, it was found that the transverse wake potentials can be separated into superpositions of dipolar components, which are proportional to the offset of the leading bunch, and quadrupolar components, which are proportional to the offset of the trailing particles. Higher multipole components are much smaller, and can be neglected for most structures without rotational symmetry. In this report, the authors derive analytical expressions for these multipolar components, which permits estimates of the size of the neglected terms. In particular, when structures have one or two transverse symmetry planes, the expressions simplify and explain the behavior of wake potentials which had been computed for rotationally non-symmetric structures

  17. Cumulative Beam Breakup due to Resistive-Wall Wake

    International Nuclear Information System (INIS)

    Wang, J.-M.

    2004-01-01

    The cumulative beam breakup problem excited by the resistive-wall wake is formulated. An approximate analytic method of finding the asymptotic behavior for the transverse bunch displacement is developed and solved. Comparison between the asymptotic analytical expression and the direct numerical solution is presented. Good agreement is found. The criterion of using the asymptotic analytical expression is discussed

  18. Optimal Control to Increase Energy Production of Wind Farm Considering Wake Effect and Lifetime Estimation

    DEFF Research Database (Denmark)

    Tian, Jie; Zhou, Dao; Su, Chi

    2017-01-01

    as an example. Due to the small range of the effective wake area, it is found that the energy production is almost the same. Finally, the pitch angle curve and active power curve are optimized according to the Maximum Energy Production (MEP) of a wind farm. Upon considering and contrasting the MPPT method...... to maximize the energy production of wind farms by considering the wake effect and the lifetime of wind turbine. It starts with the analysis of the pitch angle curve and active power curve seen from the Maximum Power Point Tracking (MPPT) of individual wind turbines. Taking the wake effect into account......, the pitch angle curve and active power curve are optimized with the aim of Maximum Power Generation (MPG) of the wind farm. Afterwards, considering the lifetime of wind turbines, a comparison is offered between the MPPT method and the MPG method for energy production using a simplified two-turbine wind farm...

  19. Wake field in matched kicker magnet

    International Nuclear Information System (INIS)

    Miyahara, Y.

    1979-01-01

    Coherent transverse instability observed in KEK booster proton synchrotron has been reported previously. This instability is induced by the interaction of the beam with kicker magnet for the fast beam extraction. To understand the mechanism completely, it is necessary to know the wake field in detail. Here, the wake field or induced current in the kicker magnet which is terminated with matched resistance is considered

  20. Large Eddy Simulation of Vertical Axis Wind Turbine wakes; Part II: effects of inflow turbulence

    Science.gov (United States)

    Duponcheel, Matthieu; Chatelain, Philippe; Caprace, Denis-Gabriel; Winckelmans, Gregoire

    2017-11-01

    The aerodynamics of Vertical Axis Wind Turbines (VAWTs) is inherently unsteady, which leads to vorticity shedding mechanisms due to both the lift distribution along the blade and its time evolution. Large-scale, fine-resolution Large Eddy Simulations of the flow past Vertical Axis Wind Turbines have been performed using a state-of-the-art Vortex Particle-Mesh (VPM) method combined with immersed lifting lines. Inflow turbulence with a prescribed turbulence intensity (TI) is injected at the inlet of the simulation from a precomputed synthetic turbulence field obtained using the Mann algorithm. The wake of a standard, medium-solidity, H-shaped machine is simulated for several TI levels. The complex wake development is captured in details and over long distances: from the blades to the near wake coherent vortices, then through the transitional ones to the fully developed turbulent far wake. Mean flow and turbulence statistics are computed over more than 10 diameters downstream of the machine. The sensitivity of the wake topology and decay to the TI level is assessed.

  1. Wake-based ship route estimation in high-resolution SAR images

    Science.gov (United States)

    Graziano, M. Daniela; Rufino, Giancarlo; D'Errico, Marco

    2014-10-01

    This paper presents a novel algorithm for wake detection in Synthetic Aperture Radar images of the sea. The algorithm has been conceived as part of a ship traffic monitoring system, in charge of ship detection validation and to estimate ship route features, such as heading and ground speed. In addition, it has been intended to be adequate for inclusion in an automatic procedure without human operator supervision. The algorithm exploits the Radon transform to identify the images ship wake on the basis of the well known theoretical characteristics of the wakes' geometry and components, that are the turbulent wake, the narrow-V wakes, and the Kelvin arms, as well as the typical appearance of such components in Synthetic Aperture Radar images of the sea as bright or dark linear feature. Examples of application to high-resolution X-band Synthetic Aperture Radar products (COSMOSkymed and TerraSAR-X) are reported, both for wake detection and ship route estimation, showing the achieved quality and reliability of wake detection, adequacy to automatic procedures, as well as speed measure accuracy.

  2. Studies of Particle Wake Potentials in Plasmas

    Science.gov (United States)

    Ellis, Ian; Graziani, Frank; Glosli, James; Strozzi, David; Surh, Michael; Richards, David; Decyk, Viktor; Mori, Warren

    2011-10-01

    Fast Ignition studies require a detailed understanding of electron scattering, stopping, and energy deposition in plasmas with variable values for the number of particles within a Debye sphere. Presently there is disagreement in the literature concerning the proper description of these processes. Developing and validating proper descriptions requires studying the processes using first-principle electrostatic simulations and possibly including magnetic fields. We are using the particle-particle particle-mesh (PPPM) code ddcMD and the particle-in-cell (PIC) code BEPS to perform these simulations. As a starting point in our study, we examine the wake of a particle passing through a plasma in 3D electrostatic simulations performed with ddcMD and with BEPS using various cell sizes. In this poster, we compare the wakes we observe in these simulations with each other and predictions from Vlasov theory. Prepared by LLNL under Contract DE-AC52-07NA27344 and by UCLA under Grant DE-FG52-09NA29552.

  3. Children's night waking among toddlers: relationships with mothers' and fathers' parenting approaches and children's behavioural difficulties.

    Science.gov (United States)

    Zaidman-Zait, Anat; Hall, Wendy A

    2015-07-01

    To explore associations between children's sleep problems, and behavioural difficulties and parenting approaches. Children commonly have problematic night waking; however, relationships between parenting cognitions and behaviours and children's sleep problems are rarely examined. Longitudinal children's cohort study from 5-29 months post birth. Data were taken from the Quebec Longitudinal Study of Child Development (1998-2007) at three phases: 5, 17 and 29 months of age. Thousand four hundred and eighty-seven families were included in our study based on: participation from phase 1 (5-months old), both parents' reports on parenting cognitions/behaviours and child behavioural difficulties at 29 months, and mothers' reports of children's sleep at 29 months. In 2013, we conducted repeated measures anovas and manovas including children's gender. Extended night-time waking patterns (wakes of ≥20 minutes) were associated with mothers' and fathers' lower sense of parenting impact and higher overprotectiveness and mothers' lower self-efficacy and higher coerciveness for 29-month-old children. In the extended waking group, mothers consistently reported lower self-efficacy, higher overprotectiveness and lower parenting impact at 5, 17 and 29 months. For those children, fathers were only more overprotective at 5 and 29 months. Regarding 29-month-old children's behaviour, children in the extended night waking group had highest scores on externalizing and internalizing behaviours. Girls had higher scores on shyness/inhibition and boys had higher scores on aggression/hyperactivity. Mothers' and fathers' parenting cognitions and behaviours are affected by 29-month-old children's night waking patterns and night waking patterns are associated with children's behavioural problems. © 2015 John Wiley & Sons Ltd.

  4. CFD predictions of wake-stabilised jet flames in a cross-flow

    International Nuclear Information System (INIS)

    Lawal, Mohammed S.; Fairweather, Michael; Gogolek, Peter; Ingham, Derek B.; Ma, Lin; Pourkashanian, Mohamed; Williams, Alan

    2013-01-01

    This study describes an investigation into predicting the major flow properties in wake-stabilised jet flames in a cross flow of air using first- and second-order turbulence models, applied within a RANS (Reynolds-averaged Navier–Stokes) modelling framework. Standard and RNG (re-normalisation group) versions of the k-ε turbulence model were employed at the first-order level and the results compared with a second-moment closure, or RSM (Reynolds stress model). The combustion process was modelled using the laminar flamelet approach together with a thermal radiation model using the discrete ordinate method. The ability of the various turbulence models to reproduce experimentally established flame appearance, profiles of velocity and turbulence intensity, as well as the combustion efficiency of such flames is reported. The results show that all the turbulence models predict similar velocity profiles over the majority of the flow domain considered, except in the wake region, where the predictions of the RSM and RNG k-ε models are in closer agreement with experimental data. In contrast, the standard k-ε model over-predicts the peak turbulence intensity. Also, it is found that the RSM provides superior predictions of the planar recirculation and flame zones attached to the release pipe in the wake region. - Highlights: ► We investigated the prediction of the major properties in wake-stabilised methane jet flames in a cross flow. ► The ability of the various turbulence models to reproduce experimentally established flame parameters is reported. ► All the turbulence models considered predict similar velocity profiles, except in the wake region

  5. Oscillations, neural computations and learning during wake and sleep.

    Science.gov (United States)

    Penagos, Hector; Varela, Carmen; Wilson, Matthew A

    2017-06-01

    Learning and memory theories consider sleep and the reactivation of waking hippocampal neural patterns to be crucial for the long-term consolidation of memories. Here we propose that precisely coordinated representations across brain regions allow the inference and evaluation of causal relationships to train an internal generative model of the world. This training starts during wakefulness and strongly benefits from sleep because its recurring nested oscillations may reflect compositional operations that facilitate a hierarchical processing of information, potentially including behavioral policy evaluations. This suggests that an important function of sleep activity is to provide conditions conducive to general inference, prediction and insight, which contribute to a more robust internal model that underlies generalization and adaptive behavior. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Sleep/wake dependent changes in cortical glucose concentrations.

    Science.gov (United States)

    Dash, Michael B; Bellesi, Michele; Tononi, Giulio; Cirelli, Chiara

    2013-01-01

    Most of the energy in the brain comes from glucose and supports glutamatergic activity. The firing rate of cortical glutamatergic neurons, as well as cortical extracellular glutamate levels, increase with time spent awake and decline throughout non rapid eye movement sleep, raising the question whether glucose levels reflect behavioral state and sleep/wake history. Here chronic (2-3 days) electroencephalographic recordings in the rat cerebral cortex were coupled with fixed-potential amperometry to monitor the extracellular concentration of glucose ([gluc]) on a second-by-second basis across the spontaneous sleep-wake cycle and in response to 3 h of sleep deprivation. [Gluc] progressively increased during non rapid eye movement sleep and declined during rapid eye movement sleep, while during wake an early decline in [gluc] was followed by an increase 8-15 min after awakening. There was a significant time of day effect during the dark phase, when rats are mostly awake, with [gluc] being significantly lower during the last 3-4 h of the night relative to the first 3-4 h. Moreover, the duration of the early phase of [gluc] decline during wake was longer after prolonged wake than after consolidated sleep. Thus, the sleep/wake history may affect the levels of glucose available to the brain upon awakening. © 2012 The Authors Journal of Neurochemistry © 2012 International Society for Neurochemistry.

  7. Experimental study of a wake behind a barrier

    Science.gov (United States)

    Tomáš, Dufek; Katarína, Ratkovská

    2017-09-01

    This article describes in detail an experiment which was carried out on a wind tunnel in the Laboratory of the Department of Power Machines, Faculty of Mechanical Engineering, at the University of West Bohemia (UWB), using Particle Image Velocimetry and Stereo Particle Image Velocimetry. PIV is a non-invasive method that allows you to simultaneously measure the flow velocity across the entire field under investigation. In the experiment, the field was located behind the exit of the wind tunnel. The experiment dealt with the measurement of the wake behind a barrier. Measurement with Stereo PIV was carried out in several vertical parallel planes perpendicular to the axis of the tunnel. Conventional PIV method was then used for a horizontal plane passing through the axis of the tunnel at half the height of the barrier. The velocities in the measured plane are expressed by a vector map. In areas not affected by the wake, the speed in the w direction is about 16 m / s. The wake is formed behind the barrier. A shear layer is formed at the boundary between the flowing air and the braked air. A backflow occurs in the area just behind the barrier. The highest speed in the area is achieved in places just behind the exit of the tunnel, where the current is not affected by the barrier. In the direction from the axis and the obstacle, the speed gradually rises from the negative values of the return flow through the zero speed. In addition to the velocity fields, the output from the experimental measurement was also the distribution of the sum of variances, standard deviation and correlation coefficient in the measured planes.

  8. Rotor boundary layer development with inlet guide vane (IGV) wake impingement

    Science.gov (United States)

    Jia, Lichao; Zou, Tengda; Zhu, Yiding; Lee, Cunbiao

    2018-04-01

    This paper examines the transition process in a boundary layer on a rotor blade under the impingement of an inlet guide vane wake. The effects of wake strengths and the reduced frequency on the unsteady boundary layer development on a low-speed axial compressor were investigated using particle image velocimetry. The measurements were carried out at two reduced frequencies (fr = fIGVS0/U2i, fr = 1.35, and fr = 0.675) with the Reynolds number, based on the blade chord and the isentropic inlet velocity, being 97 500. At fr = 1.35, the flow separated at the trailing edge when the wake strength was weak. However, the separation was almost totally suppressed as the wake strength increased. For the stronger wake, both the wake's high turbulence and the negative jet behavior of the wake dominated the interaction between the unsteady wake and the separated boundary layer on the suction surface of the airfoil. The boundary layer displacement thickened first due to the negative jet effect. Then, as the disturbances developed underneath the wake, the boundary layer thickness reduced gradually. The high disturbance region convected downstream at a fraction of the free-stream velocity and spread in the streamwise direction. The separation on the suction surface was suppressed until the next wake's arrival. Because of the long recovery time at fr = 0.675, the boundary layer thickened gradually as the wake convected further downstream and finally separated due to the adverse pressure gradient. The different boundary layer states in turn affected the development of disturbances.

  9. Particle Entrainment in Spherical-Cap Wakes

    Energy Technology Data Exchange (ETDEWEB)

    Warncke, Norbert G W; Delfos, Rene; Ooms, Gijs; Westerweel, Jerry, E-mail: n.g.w.warncke@tudelft.nl [Laboratory for Aero- and Hydrodynamics, Delft University of Technology (Netherlands)

    2011-12-22

    In this work we study the preferential concentration of small particles in the turbulent wake behind a spherical-cap object. We present a model predicting the mean particle concentration in the near-wake as a function of the characteristic Stokes number of the problem, the turbulence level and the Froude number. We compare the model with our experimental results on this flow, measured in a vertical water tunnel.

  10. Application of staring lidars to study the dynamics of wind turbine wakes

    Directory of Open Access Journals (Sweden)

    Davide Trabucchi

    2015-11-01

    Full Text Available Standard anemometry or vertical profiling remote sensing are not always a convenient approach to study the dynamics of wind turbines wake. One or more lidar windscanner can be applied for this purpose. In this paper a measurement strategy is presented, which permits the characterization of the wake dynamics using two long range wind lidars operated in a stationary mode. In this approach two pulsed devices are staring with low elevation obliquely across the wake. The lidar beams are supposed to cross each other on the downstream axis of the wake to perform simultaneous measurements in the wake field from side to side. The deflection of the wake is identified fitting a model to the average data. Spectral analysis provide the frequency content of the measurements at different distances from the wake center. This setup was implemented in a full-field measurement campaign where the wake of a multi-MW wind turbine was analysed. The tracking of the wake centre was applied successfully to this measurement. Moreover the spectral analysis showed increased energy content close to the wake lateral edges. This can be connected both to the higher turbulence level due to the tip vorteces and to the large scale dynamics of the wake.

  11. Wake-field generation by the ponderomotive memory effect

    International Nuclear Information System (INIS)

    Wolf, U.; Schamel, H.

    1997-01-01

    An analytical and numerical investigation of the plasma response to an imposed high frequency wave packet with a slow explicit time-dependent envelope is presented. An underlying picture of ponderomotive effects is developed, which shows that the explicit time dependence forces us to treat the problem kinetically, and furthermore, that a wake field is generated by the ponderomotive memory effect. The latter supplements the well-known ponderomotive force and fake heating effect. Several perturbation schemes are compared showing that the influence of resonant particles, treated by the method of characteristics, has to be taken into account for Langmuir wave packets with kλ d ≥0.2, where k is the wave number and λ d the Debye length. A self-consistent Vlasov simulation shows the disappearance of the density depression in the case of immobile ions, whereas the wake-field pattern survives self-consistency. copyright 1997 The American Physical Society

  12. Surface Characteristics of Green Island Wakes from Satellite Imagery

    Science.gov (United States)

    Cheng, Kai-Ho; Hsu, Po-Chun; Ho, Chung-Ru

    2017-04-01

    Characteristics of an island wake induced by the Kuroshio Current flows pass by Green Island, a small island 40 km off southeast of Taiwan is investigated by the Moderate Resolution Imaging Spectroradiometer (MODIS) satellite imagery. The MODIS sea surface temperature (SST) and chlorophyll-a (chl-a) imagery is produced at 250-meter resolution from 2014 to 2015 using the SeaDAS software package which is developed by the National Aeronautics and Space Administration. The wake occurrence is 59% observed from SST images during the data span. The average cooling area is 190 km2, but the area is significantly changed with wind directions. The wake area is increased during southerly winds and is reduced during northerly winds. Besides, the average cooling SST was about 2.1 oC between the front and rear island. Comparing the temperature difference between the wake and its left side, the difference is 1.96 oC. In addition, the wakes have 1 3 times higher than normal in chlorophyll concentration. The results indicate the island mass effect makes the surface water of Green island wake colder and chl-a higher.

  13. Passive propulsion in vortex wakes

    Science.gov (United States)

    Beal, D. N.; Hover, F. S.; Triantafyllou, M. S.; Liao, J. C.; Lauder, G. V.

    A dead fish is propelled upstream when its flexible body resonates with oncoming vortices formed in the wake of a bluff cylinder, despite being well outside the suction region of the cylinder. Within this passive propulsion mode, the body of the fish extracts sufficient energy from the oncoming vortices to develop thrust to overcome its own drag. In a similar turbulent wake and at roughly the same distance behind a bluff cylinder, a passively mounted high-aspect-ratio foil is also shown to propel itself upstream employing a similar flow energy extraction mechanism. In this case, mechanical energy is extracted from the flow at the same time that thrust is produced. These results prove experimentally that, under proper conditions, a body can follow at a distance or even catch up to another upstream body without expending any energy of its own. This observation is also significant in the development of low-drag energy harvesting devices, and in the energetics of fish dwelling in flowing water and swimming behind wake-forming obstacles.

  14. Evolution and breakdown of helical vortex wakes behind a wind turbine

    International Nuclear Information System (INIS)

    Nemes, A; Jacono, D Lo; Sheridan, J; Blackburn, H M; Sherry, M

    2014-01-01

    The wake behind a three-bladed Glauert model rotor in a water channel was investigated. Planar particle image velocimetry was used to measure the velocity fields on the wake centre-line, with snapshots phase-locked to blade position of the rotor. Phase- locked averages of the velocity and vorticity fields are shown, with tip vortex interaction and entanglement of the helical filaments elucidated. Proper orthogonal decomposition and topology-based vortex identification are used to filter the PIV images for coherent structures and locate vortex cores. Application of these methods to the instantaneous data reveals unsteady behaviour of the helical filaments that is statistically quantifiable

  15. Canopy wake measurements using multiple scanning wind LiDARs

    Science.gov (United States)

    Markfort, C. D.; Carbajo Fuertes, F.; Iungo, V.; Stefan, H. G.; Porte-Agel, F.

    2014-12-01

    Canopy wakes have been shown, in controlled wind tunnel experiments, to significantly affect the fluxes of momentum, heat and other scalars at the land and water surface over distances of ˜O(1 km), see Markfort et al. (EFM, 2013). However, there are currently no measurements of the velocity field downwind of a full-scale forest canopy. Point-based anemometer measurements of wake turbulence provide limited insight into the extent and details of the wake structure, whereas scanning Doppler wind LiDARs can provide information on how the wake evolves in space and varies over time. For the first time, we present measurements of the velocity field in the wake of a tall patch of forest canopy. The patch consists of two uniform rows of 40-meter tall deciduous, plane trees, which border either side of the Allée de Dorigny, near the EPFL campus. The canopy is approximately 250 m long, and it is approximately 40 m wide, along the direction of the wind. A challenge faced while making field measurements is that the wind rarely intersects a canopy normal to the edge. The resulting wake flow may be deflected relative to the mean inflow. Using multiple LiDARs, we measure the evolution of the wake due to an oblique wind blowing over the canopy. One LiDAR is positioned directly downwind of the canopy to measure the flow along the mean wind direction and the other is positioned near the canopy to evaluate the transversal component of the wind and how it varies with downwind distance from the canopy. Preliminary results show that the open trunk space near the base of the canopy results in a surface jet that can be detected just downwind of the canopy and farther downwind dissipates as it mixes with the wake flow above. A time-varying recirculation zone can be detected by the periodic reversal of the velocity near the surface, downwind of the canopy. The implications of canopy wakes for measurement and modeling of surface fluxes will be discussed.

  16. Interaction of a Boundary Layer with a Turbulent Wake

    Science.gov (United States)

    Piomelli, Ugo

    2004-01-01

    The objective of this grant was to study the transition mechanisms on a flat-plate boundary layer interacting with the wake of a bluff body. This is a simplified configuration presented and designed to exemplify the phenomena that occur in multi-element airfoils, in which the wake of an upstream element impinges on a downstream one. Some experimental data is available for this configuration at various Reynolds numbers. The first task carried out was the implementation and validation of the immersed-boundary method. This was achieved by performing calculations of the flow over a cylinder at low and moderate Reynolds numbers. The low-Reynolds number results are discussed, which is enclosed as Appendix A. The high-Reynolds number results are presented in a paper in preparation for the Journal of Fluid Mechanics. We performed calculations of the wake-boundary-layer interaction at two Reynolds numbers, Re approximately equal to 385 and 1155. The first case is discussed and a comparison of the two calculations is reported. The simulations indicate that at the lower Reynolds number the boundary layer is buffeted by the unsteady Karman vortex street shed by the cylinder. This is shown: long streaky structures appear in the boundary layer in correspondence of the three-dimensionalities in the rollers. The fluctuations, however, cannot be self-sustained due to the low Reynolds-number, and the flow does not reach a turbulent state within the computational domain. In contrast, in the higher Reynolds-number case, boundary-layer fluctuations persist after the wake has decayed (due, in part, to the higher values of the local Reynolds number Re achieved in this case); some evidence could be observed that a self-sustaining turbulence generation cycle was beginning to be established. A third simulation was subsequently carried out at a higher Reynolds number, Re=3900. This calculation gave results similar to those of the Re=l155 case. Turbulence was established at fairly low

  17. Experimental investigation of main rotor wake

    Directory of Open Access Journals (Sweden)

    Stepanov Robert

    2017-01-01

    Full Text Available In this work, experimental results of rotor wake in hover mode are presented. The experiments were carried out with a rotor rig model in the T-1K wind tunnel in Kazan National Research Technical University (Kazan Aviation Institute. The rotor consisted of four identical blades. The Q-criterion was used to identify tip vortices for a 2D case. The results were then compared with two different wake models.

  18. Measurements of Wake-Riding Electrons in Antiproton-Carbon-Foil Collisions

    CERN Multimedia

    2002-01-01

    When a charged particle passes through dielectric media, e.g. a thin carbon foil, a ``wake'' is induced. The characteristic wake-potential shows an oscillatory behaviour, with a wavelength of about $ 2 \\pi v _{p} / \\omega _{p} _{l} $ where $ v _{p} $ is the projectile velocity and $ \\omega _{p} _{l} $ the plasmon energy of the target. This induced wake potential is superimposed on the Coulomb potential of the projectile, the latter leading to a pronounced ``cusp'' of electrons leaving the solid at $ v _{e} app v _{p} $ for positively charged projectiles in the MeV region. Correspondingly, an ``anti-cusp'' is expected for antiprotons. \\\\ \\\\ In the solid, the wake-potential leads to an attractive force on electrons, and a dynamic electronic state is predicted both for proton and antiproton projectiles. In the solid, the wake-riding electrons are travelling with the projectile speed $ v _{p} $ Upon exit of the foil, the electron released from the wake-riding state of an antiproton will suddenly find itself in th...

  19. Wake characteristics of wind turbines in utility-scale wind farms

    Science.gov (United States)

    Yang, Xiaolei; Foti, Daniel; Sotiropoulos, Fotis

    2017-11-01

    The dynamics of turbine wakes is affected by turbine operating conditions, ambient atmospheric turbulent flows, and wakes from upwind turbines. Investigations of the wake from a single turbine have been extensively carried out in the literature. Studies on the wake dynamics in utility-scale wind farms are relatively limited. In this work, we employ large-eddy simulation with an actuator surface or actuator line model for turbine blades to investigate the wake dynamics in utility-scale wind farms. Simulations of three wind farms, i.e., the Horns Rev wind farm in Denmark, Pleasant Valley wind farm in Minnesota, and the Vantage wind farm in Washington are carried out. The computed power shows a good agreement with measurements. Analysis of the wake dynamics in the three wind farms is underway and will be presented in the conference. This work was support by Xcel Energy (RD4-13). The computational resources were provided by National Renewable Energy Laboratory.

  20. Comparison of the lifting-line free vortex wake method and the blade-element-momentum theory regarding the simulated loads of multi-MW wind turbines

    International Nuclear Information System (INIS)

    Hauptmann, S; Bülk, M; Cheng, P W; Schön, L; Erbslöh, S; Boorsma, K; Grasso, F; Kühn, M

    2014-01-01

    Design load simulations for wind turbines are traditionally based on the blade- element-momentum theory (BEM). The BEM approach is derived from a simplified representation of the rotor aerodynamics and several semi-empirical correction models. A more sophisticated approach to account for the complex flow phenomena on wind turbine rotors can be found in the lifting-line free vortex wake method. This approach is based on a more physics based representation, especially for global flow effects. This theory relies on empirical correction models only for the local flow effects, which are associated with the boundary layer of the rotor blades. In this paper the lifting-line free vortex wake method is compared to a state- of-the-art BEM formulation with regard to aerodynamic and aeroelastic load simulations of the 5MW UpWind reference wind turbine. Different aerodynamic load situations as well as standardised design load cases that are sensitive to the aeroelastic modelling are evaluated in detail. This benchmark makes use of the AeroModule developed by ECN, which has been coupled to the multibody simulation code SIMPACK

  1. Comparison of the lifting-line free vortex wake method and the blade-element-momentum theory regarding the simulated loads of multi-MW wind turbines

    Science.gov (United States)

    Hauptmann, S.; Bülk, M.; Schön, L.; Erbslöh, S.; Boorsma, K.; Grasso, F.; Kühn, M.; Cheng, P. W.

    2014-12-01

    Design load simulations for wind turbines are traditionally based on the blade- element-momentum theory (BEM). The BEM approach is derived from a simplified representation of the rotor aerodynamics and several semi-empirical correction models. A more sophisticated approach to account for the complex flow phenomena on wind turbine rotors can be found in the lifting-line free vortex wake method. This approach is based on a more physics based representation, especially for global flow effects. This theory relies on empirical correction models only for the local flow effects, which are associated with the boundary layer of the rotor blades. In this paper the lifting-line free vortex wake method is compared to a state- of-the-art BEM formulation with regard to aerodynamic and aeroelastic load simulations of the 5MW UpWind reference wind turbine. Different aerodynamic load situations as well as standardised design load cases that are sensitive to the aeroelastic modelling are evaluated in detail. This benchmark makes use of the AeroModule developed by ECN, which has been coupled to the multibody simulation code SIMPACK.

  2. Controlled Wake of a Moving Axisymmetric Bluff Body

    Science.gov (United States)

    Lee, E.; Vukasinovic, B.; Glezer, A.

    2017-11-01

    The aerodynamic loads exerted on a wire-mounted axisymmetric bluff body in prescribed rigid motion are controlled by fluidic manipulation of its near wake. The body is supported by a six-degree of freedom eight-wire traverse and its motion is controlled using a dedicated servo actuator and inline load cell for each wire. The instantaneous aerodynamic forces and moments on the moving body are manipulated by controlled interactions of an azimuthal array of integrated synthetic jet actuators with the cross flow to induce localized flow attachment over the body's aft end and thereby alter the symmetry of the wake. The coupled interactions between the wake structure and the effected aerodynamic loads during prescribed time-periodic and transitory (gust like) motions are investigated with emphasis on enhancing or diminishing the loads for maneuver control, and decoupling the body's motion from its far wake.

  3. Self-similar potential in the near wake

    International Nuclear Information System (INIS)

    Diebold, D.; Hershkowitz, N.; Intrator, T.; Bailey, A.

    1987-01-01

    The plasma potential is measured near the edge of an electrically floating obstacle placed in a steady-state, supersonic, unmagnetized, neutral plasma flow. Equipotential contours show the sheath of the upstream side of the obstacle wrapping around the edge of the obstacle and fanning out into the near wake. Both fluid theory and the data find the near-wake plasma potential to be self-similar when ionization, charge exchange, and magnetic field can be neglected. The theory also finds that fluid velocity is self-similar, the near wake is nonneutral, and plasma density is not self-similar. Strong electric fields are found near the obstacle and equipotential contours are found to conform to all boundaries

  4. The resonant wake field transformer (RWT)-collider

    International Nuclear Information System (INIS)

    Weiland, T.; Holtkamp, N.; Schuett, P.; Wanzenberg, R.

    1990-01-01

    Future e + e - Linear Colliders with center of mass energies of 2 TeV need average accelerating gradients of 100 MeV/m to be built within a length of 20 km. The gradients required by colliders at this energy range can be economically provided by resonant Wake Field Transformers. At the Wake Field Experiment at DESY (Deutsches Elektronen-Synchrotron) a 20 cm long transformer section was investigated and the most recent results are presented. The second part gives a short overview of the present status of research concerning the proposed next stage of a multibunch driver linac with superconducting cavities and long Wake Field Transformer sections. (author) 9 refs.; 5 figs.; 1 tab

  5. A Free Wake Numerical Simulation for Darrieus Vertical Axis Wind Turbine Performance Prediction

    Science.gov (United States)

    Belu, Radian

    2010-11-01

    In the last four decades, several aerodynamic prediction models have been formulated for the Darrieus wind turbine performances and characteristics. We can identified two families: stream-tube and vortex. The paper presents a simplified numerical techniques for simulating vertical axis wind turbine flow, based on the lifting line theory and a free vortex wake model, including dynamic stall effects for predicting the performances of a 3-D vertical axis wind turbine. A vortex model is used in which the wake is composed of trailing stream-wise and shedding span-wise vortices, whose strengths are equal to the change in the bound vortex strength as required by the Helmholz and Kelvin theorems. Performance parameters are computed by application of the Biot-Savart law along with the Kutta-Jukowski theorem and a semi-empirical stall model. We tested the developed model with an adaptation of the earlier multiple stream-tube performance prediction model for the Darrieus turbines. Predictions by using our method are shown to compare favorably with existing experimental data and the outputs of other numerical models. The method can predict accurately the local and global performances of a vertical axis wind turbine, and can be used in the design and optimization of wind turbines for built environment applications.

  6. Wind Farm Wake: The Horns Rev Photo Case

    DEFF Research Database (Denmark)

    Hasager, Charlotte Bay; Rasmussen, Leif; Peña, Alfredo

    2013-01-01

    The aim of the paper is to examine the nowadays well-known wind farm wake photographs taken on 12 February 2008 at the offshore Horns Rev 1 wind farm. The meteorological conditions are described from observations from several satellite sensors quantifying clouds, surface wind vectors and sea surf...... in the wake regions with relatively high axial velocities and high turbulent kinetic energy. The wind speed is near cut-in and most turbines produce very little power. The rotational pattern of spiraling bands produces the large-scale structure of the wake fog....

  7. Dual Wake-up Low Power Listening for Duty Cycled Wireless Sensor Networks

    Directory of Open Access Journals (Sweden)

    Jongkeun Na

    2008-01-01

    Full Text Available Energy management is an interesting research area for wireless sensor networks. Relevant dutycycling (or sleep scheduling algorithm has been actively studied at MAC, routing, and application levels. Low power listening (LPL MAC is one of effective dutycycling techniques. This paper proposes a novel approach called dual wake-up LPL (DW-LPL. Existing LPL scheme uses a preamble detection method for both broadcast and unicast, thus suffers from severe overhearing problem at unicast transmission. DW-LPL uses a different wake-up method for unicast while using LPL-like method for broadcast; DW-LPL introduces a receiver-initiated method in which a sender waits a signal from receiver to start unicast transmission, which incurs some signaling overhead but supports flexible adaptive listening as well as overhearing removal effect. Through analysis and Mote (Telosb experiment, we show that DW-LPL provides more energy saving than LPL and our adaptive listening scheme is effective for energy conservation in practical network topologies and traffic patterns.

  8. Dual Wake-up Low Power Listening for Duty Cycled Wireless Sensor Networks

    Directory of Open Access Journals (Sweden)

    Lim Sangsoon

    2008-01-01

    Full Text Available Abstract Energy management is an interesting research area for wireless sensor networks. Relevant dutycycling (or sleep scheduling algorithm has been actively studied at MAC, routing, and application levels. Low power listening (LPL MAC is one of effective dutycycling techniques. This paper proposes a novel approach called dual wake-up LPL (DW-LPL. Existing LPL scheme uses a preamble detection method for both broadcast and unicast, thus suffers from severe overhearing problem at unicast transmission. DW-LPL uses a different wake-up method for unicast while using LPL-like method for broadcast; DW-LPL introduces a receiver-initiated method in which a sender waits a signal from receiver to start unicast transmission, which incurs some signaling overhead but supports flexible adaptive listening as well as overhearing removal effect. Through analysis and Mote (Telosb experiment, we show that DW-LPL provides more energy saving than LPL and our adaptive listening scheme is effective for energy conservation in practical network topologies and traffic patterns.

  9. Circadian Rhythm Sleep-Wake Disorders.

    Science.gov (United States)

    Abbott, Sabra M; Reid, Kathryn J; Zee, Phyllis C

    2015-12-01

    The circadian system regulates the timing and expression of nearly all biological processes, most notably, the sleep-wake cycle, and disruption of this system can result in adverse effects on both physical and mental health. The circadian rhythm sleep-wake disorders (CRSWDs) consist of 5 disorders that are due primarily to pathology of the circadian clock or to a misalignment of the timing of the endogenous circadian rhythm with the environment. This article outlines the nature of these disorders, the association of many of these disorders with psychiatric illness, and available treatment options. Copyright © 2015 Elsevier Inc. All rights reserved.

  10. Do trout swim better than eels? Challenges for estimating performance based on the wake of self-propelled bodies

    Science.gov (United States)

    Tytell, Eric D.

    Engineers and biologists have long desired to compare propulsive performance for fishes and underwater vehicles of different sizes, shapes, and modes of propulsion. Ideally, such a comparison would be made on the basis of either propulsive efficiency, total power output or both. However, estimating the efficiency and power output of self-propelled bodies, and particularly fishes, is methodologically challenging because it requires an estimate of thrust. For such systems traveling at a constant velocity, thrust and drag are equal, and can rarely be separated on the basis of flow measured in the wake. This problem is demonstrated using flow fields from swimming American eels, Anguilla rostrata, measured using particle image velocimetry (PIV) and high-speed video. Eels balance thrust and drag quite evenly, resulting in virtually no wake momentum in the swimming (axial) direction. On average, their wakes resemble those of self-propelled jet propulsors, which have been studied extensively. Theoretical studies of such wakes may provide methods for the estimation of thrust separately from drag. These flow fields are compared with those measured in the wakes of rainbow trout, Oncorhynchus mykiss, and bluegill sunfish, Lepomis macrochirus. In contrast to eels, these fishes produce wakes with axial momentum. Although the net momentum flux must be zero on average, it is neither spatially nor temporally homogeneous; the heterogeneity may provide an alternative route for estimating thrust. This review shows examples of wakes and velocity profiles from the three fishes, indicating challenges in estimating efficiency and power output and suggesting several routes for further experiments. Because these estimates will be complicated, a much simpler method for comparing performance is outlined, using as a point of comparison the power lost producing the wake. This wake power, a component of the efficiency and total power, can be estimated in a straightforward way from the flow

  11. Noise emission from wind turbines in wake. Project report

    Energy Technology Data Exchange (ETDEWEB)

    Dam Madsen, K.; Plovsing, B. (DELTA, Hoersholm (Denmark)); Soerensen, Thomas (EMD International A/S, Aalborg (Denmark)); Aagaard Madsen, H.; Bertagnolio, F. (Technical Univ. of Denmark, Risoe National Lab. for Sustainable Energy, Roskilde (Denmark))

    2011-03-15

    When installing wind turbines in clusters or wind farms the inflow conditions to the wind turbines can be disturbed due to wake effects from other wind turbines. The effect of wake on noise generation from wind turbines are described in this report. The work is based on measurements carried out on a M80 2 MW wind turbine. To investigate the relationship between the far field noise levels and the surface pressure and inflow angles measured by sensors on an instrumented wind turbine blade, a parabolic measurement system (PMMS) was designed and tested as part of this project. Based on the measurement results obtained with surface pressure sensors and results from the far field measurements using the PMMS it is concluded that: The variance of surface pressure at the trailing edge (TE) agrees with the theory with regard to variation of pressure spectra with varying inflow angle (AoA) to the blade. Low frequency TE surface pressure increases with increased AoA and high frequency surface pressure decreases with increased AoA. It seems that the TE surface pressure remains almost unaltered during wake operation. Results from the surface transducers at the leading edge (LE) and the inflow angles determined from the pitot tube indicates that the inflow at LE is more turbulent in wake for the same AoA and with a low frequency characteristic, thereby giving rise to more low frequency noise generated during wake operation. The far field measurements supports that on one hand there will be produced relative more low frequency noise due to a turbulent inflow to the blade and on the other hand there will be produced less noise in the broader frequency range/high frequency range due to a lower inflow angle caused by the wind deficit in the wake. The net effect of wake on the total noise level is unresolved. As a secondary result it is seen that noise observed from a position on the ground is related to directional effects of the noise radiated from the wind turbine blade. For an

  12. Wake Survey of a Marine Current Turbine Under Steady Conditions

    Science.gov (United States)

    Lust, Ethan; Luznik, Luksa; Flack, Karen

    2016-11-01

    A submersible particle image velocimetry (PIV) system was used to study the wake of a horizontal axis marine current turbine. The turbine was tested in a large tow tank facility at the United States Naval Academy. The turbine is a 1/25th scale model of the U.S. National Renewable Energy Laboratory's Reference Model 1 (RM1) tidal turbine. It is a two-bladed turbine measuring 0.8 m in diameter and featuring a NACA 63-618 airfoil cross section. Separate wind tunnel testing has shown the foil section used on the turbine to be Reynolds number independent with respect to lift at the experimental parameters of tow carriage speed (Utow = 1 . 68 m/s) and tip speed ratio (TSR = 7). The wake survey was conducted over an area extending 0.25D forward of the turbine tip path to 2.0D aft, and to a depth of 1.0D beneath the turbine output shaft in the streamwise plane. Each field of view was approximately 30 cm by 30 cm, and each overlapped the adjacent fields of view by 5 cm. The entire flow field was then reconstructed into a single field of investigation. Results include streamwise and vertical ensemble average velocity fields averaged over approximately 1,000 realizations, as well as higher-order statistics. Turbine tip vortex centers were identified and plotted showing increasing aperiodicity with wake age. keywords: horizontal axis marine current turbine, particle image velocimetry, towing tank, wake survey

  13. Fast particle tracking with wake fields

    Energy Technology Data Exchange (ETDEWEB)

    Dohlus, M.; Floettmann, K.; Henning, C.

    2012-01-15

    Tracking calculations of charged particles in electromagnetic fields require in principle the simultaneous solution of the equation of motion and of Maxwell's equations. In many tracking codes a simpler and more efficient approach is used: external fields like that of the accelerating structures are provided as field maps, generated in separate computations and for the calculation of self fields the model of a particle bunch in uniform motion is used. We describe how an externally computed wake function can be approximated by a table of Taylor coefficients and how the wake field kick can be calculated for the particle distribution in a tracking calculation. The integrated kick, representing the effect of a distributed structure, is applied at a discrete time. As an example, we use our approach to calculate the emittance growth of a bunch in an undulator beam pipe due to resistive wall wake field effects. (orig.)

  14. Airfoil-Wake Modification with Gurney Flap at Low Reynolds Number

    Science.gov (United States)

    Gopalakrishnan Meena, Muralikrishnan; Taira, Kunihiko; Asai, Keisuke

    2018-04-01

    The complex wake modifications produced by a Gurney flap on symmetric NACA airfoils at low Reynolds number are investigated. Two-dimensional incompressible flows over NACA 0000 (flat plate), 0006, 0012 and 0018 airfoils at a Reynolds number of $Re = 1000$ are analyzed numerically to examine the flow modifications generated by the flaps for achieving lift enhancement. While high lift can be attained by the Gurney flap on airfoils at high angles of attack, highly unsteady nature of the aerodynamic forces are also observed. Analysis of the wake structures along with the lift spectra reveals four characteristic wake modes (steady, 2S, P and 2P), influencing the aerodynamic performance. The effects of the flap over wide range of angles of attack and flap heights are considered to identify the occurrence of these wake modes, and are encapsulated in a wake classification diagram. Companion three-dimensional simulations are also performed to examine the influence of three-dimensionality on the wake regimes. The spanwise instabilities that appear for higher angles of attack are found to suppress the emergence of the 2P mode. The use of the wake classification diagram as a guidance for Gurney flap selection at different operating conditions to achieve the required aerodynamic performance is discussed.

  15. Measurements on the extended range of the wake

    International Nuclear Information System (INIS)

    Kumbartzki, G.J.; Kroesing, G; Neuburger, H.

    1981-01-01

    The Coulomb explosion of H 2 + -ions at 28 MeV is used to probe the wake over a range of about 400 A in Al. Preliminary results give food agreement with the wavelength prediction of the simple plasma oscillation wake model. (author)

  16. Altered sleep-wake patterns in blindness

    DEFF Research Database (Denmark)

    Aubin, S.; Gacon, C.; Jennum, P.

    2016-01-01

    discuss variability in the sleep–wake pattern between blind and normal-sighted individuals. Methods Thirty-day actigraphy recordings were collected from 11 blind individuals without residual light perception and 11 age- and sex-matched normal-sighted controls. From these recordings, we extracted...... the Pittsburgh Sleep Quality Index, and chronotype, using the Morningness-Eveningness Questionnaire. Results Although no group differences were found when averaging over the entire recording period, we found a greater variability throughout the 30-days in both sleep efficiency and timing of the night-time sleep...

  17. Self-similarity of far wake behind tandem of two disks

    DEFF Research Database (Denmark)

    Okulov, Valery; Litvinov, I. V.; Naumov, I. V.

    2017-01-01

    the wake ceased to differ from the background of natural turbulent fluctuations of the incident flow. It has been found that the position of the second disk in the tandem affects the energy loss in the wake due to its expansion but does not influence the decay. The revealed patterns in the wake development...

  18. Computational study of three-dimensional wake structure

    International Nuclear Information System (INIS)

    Himeno, R.; Shirayama, S.; Kamo, K.; Kuwahara, K.

    1986-01-01

    Three-dimensional wake structure is studied by numerically solving the incompressible Navier-Stokes equations. Results are visualized by a three-dimensional color graphic system. It was found that a pair of vortex tubes separated from a body plays the most important role in the wake. Near the body vortex tubes are rather stable, however, they gradually become unsteady as they flow down

  19. Next Generation Scanning LIDAR Systems for Optimizing Wake Turbulence Separation Minima

    Directory of Open Access Journals (Sweden)

    Ludovic Thobois

    2017-12-01

    Full Text Available Numerous studies have been performed to better understand the behavior of wake vortices with regards to aircraft characteristics and weather conditionsover the pastten years. These studies have led to the development of the aircraft RECATegorization (RECAT programs in Europe and in USA. Its phase one focused on redefining distance separation matrix with six static aircraft wake turbulence categories instead of three with the current International Civil Aviation Organization (ICAO regulations. In Europe, the RECAT-EU regulation is now entering under operational implementation atseveral key airports. As proven by several research projects in the past, LIght Detection And Ranging (LIDAR sensors are considered as the ground truth wake vortex measurements for assessing the safety impact of a new wake turbulence regulation at an airport in quantifying the risks given the local specificities. LIDAR’s can also be used to perform risk monitoring after the implementation. In this paper, the principle to measure wake vortices with scanning coherent Doppler LIDARs is described as well as its dedicated post-processing. Finally the use of WINDCUBELIDAR based solution for supporting the implementation of new wake turbulenceregulation is described along with satisfyingresults that have permitted the monitoring of the wake vortex encounter risk after the implementation of a new wake turbulence regulation.

  20. A review of recent wake vortex research for increasing airport capacity

    Science.gov (United States)

    Hallock, James N.; Holzäpfel, Frank

    2018-04-01

    This paper is a brief review of recent wake vortex research as it affects the operational problem of spacing aircraft to increase airport capacity and throughput. The paper addresses the questions of what do we know about wake vortices and what don't we know about wake vortices. The introduction of Heavy jets in the late 1960s stimulated the study of wake vortices for safety reasons and the use of pulsed lidars and the maturity of computational fluid dynamics in the last three decades have led to extensive data collection and analyses which are now resulting in the development and implementation of systems to safely decrease separations in the terminal environment. Although much has been learned about wake vortices and their behavior, there is still more to be learned about the phenomena of aircraft wake vortices.

  1. Wake meandering of a model wind turbine operating in two different regimes

    Science.gov (United States)

    Foti, Daniel; Yang, Xiaolei; Campagnolo, Filippo; Maniaci, David; Sotiropoulos, Fotis

    2018-05-01

    The flow behind a model wind turbine under two different turbine operating regimes (region 2 for turbine operating at optimal condition with the maximum power coefficient and 1.4-deg pitch angle and region 3 for turbine operating at suboptimal condition with a lower power coefficient and 7-deg pitch angle) is investigated using wind tunnel experiments and numerical experiments using large-eddy simulation (LES) with actuator surface models for turbine blades and nacelle. Measurements from the model wind turbine experiment reveal that the power coefficient and turbine wake are affected by the operating regime. Simulations with and without a nacelle model are carried out for each operating condition to study the influence of the operating regime and nacelle on the formation of the hub vortex and wake meandering. Statistics and energy spectra of the simulated wakes are in good agreement with the measurements. For simulations with a nacelle model, the mean flow field is composed of an outer wake, caused by energy extraction by turbine blades, and an inner wake directly behind the nacelle, while for the simulations without a nacelle model, the central region of the wake is occupied by a jet. The simulations with the nacelle model reveal an unstable helical hub vortex expanding outward toward the outer wake, while the simulations without a nacelle model show a stable and columnar hub vortex. Because of the different interactions of the inner region of the wake with the outer region of the wake, a region with higher turbulence intensity is observed in the tip shear layer for the simulation with a nacelle model. The hub vortex for the turbine operating in region 3 remains in a tight helical spiral and intercepts the outer wake a few diameters further downstream than for the turbine operating in region 2. Wake meandering, a low-frequency large-scale motion of the wake, commences in the region of high turbulence intensity for all simulations with and without a nacelle model

  2. PIV and LDA measurements of the wake behind a wind turbine model

    DEFF Research Database (Denmark)

    Naumov, I. V.; Mikkelsen, Robert Flemming; Okulov, Valery

    2014-01-01

    =5 with a constant design lift coefficient along the span, CLdesign= 0.8. The measurements include dye visualization, Particle Image Velocimetry and Laser Doppler Anemometry. The wake instability has been studied in the range λ =3 – 9 at different cross-sections from the very near wake up to 10 rotor...... diameters downstream from the rotor. The initial flume flow was subject to a very low turbulence level with a uniform velocity profile, limiting the influence of external disturbances on the development of the inherent vortex instability. Using PIV measurements and visualizations, special attention was paid...

  3. Radiative Forcing Over Ocean by Ship Wakes

    Science.gov (United States)

    Gatebe, Charles K.; Wilcox, E.; Poudyal, R.; Wang, J.

    2011-01-01

    Changes in surface albedo represent one of the main forcing agents that can counteract, to some extent, the positive forcing from increasing greenhouse gas concentrations. Here, we report on enhanced ocean reflectance from ship wakes over the Pacific Ocean near the California coast, where we determined, based on airborne radiation measurements that ship wakes can increase reflected sunlight by more than 100%. We assessed the importance of this increase to climate forcing, where we estimated the global radiative forcing of ship wakes to be -0.00014 plus or minus 53% Watts per square meter assuming a global distribution of 32331 ships of size of greater than or equal to 100000 gross tonnage. The forcing is smaller than the forcing of aircraft contrails (-0.007 to +0.02 Watts per square meter), but considering that the global shipping fleet has rapidly grown in the last five decades and this trend is likely to continue because of the need of more inter-continental transportation as a result of economic globalization, we argue that the radiative forcing of wakes is expected to be increasingly important especially in harbors and coastal regions.

  4. Disorders of the Sleep-Wake Cycle in Blindness | Odeo | West ...

    African Journals Online (AJOL)

    BACKGROUND: Alteration of the intensity of light reaching the pineal gland through the visual pathway affects the sleepwake cycle in humans. OBJECTIVE: To determine the prevalence, types and severity of sleep-wake disorders in the blind and their relation to the degree and cause of blindness. METHODS: One hundred ...

  5. Rotor Wake/Stator Interaction Noise Prediction Code Technical Documentation and User's Manual

    Science.gov (United States)

    Topol, David A.; Mathews, Douglas C.

    2010-01-01

    This report documents the improvements and enhancements made by Pratt & Whitney to two NASA programs which together will calculate noise from a rotor wake/stator interaction. The code is a combination of subroutines from two NASA programs with many new features added by Pratt & Whitney. To do a calculation V072 first uses a semi-empirical wake prediction to calculate the rotor wake characteristics at the stator leading edge. Results from the wake model are then automatically input into a rotor wake/stator interaction analytical noise prediction routine which calculates inlet aft sound power levels for the blade-passage-frequency tones and their harmonics, along with the complex radial mode amplitudes. The code allows for a noise calculation to be performed for a compressor rotor wake/stator interaction, a fan wake/FEGV interaction, or a fan wake/core stator interaction. This report is split into two parts, the first part discusses the technical documentation of the program as improved by Pratt & Whitney. The second part is a user's manual which describes how input files are created and how the code is run.

  6. Wake-up receiver based ultra-low-power WBAN

    CERN Document Server

    Lont, Maarten; Roermund, Arthur van

    2014-01-01

    This book presents the cross-layer design and optimization of wake-up receivers for wireless body area networks (WBAN), with an emphasis on low-power circuit design. This includes the analysis of medium access control (MAC) protocols, mixer-first receiver design, and implications of receiver impairments on wideband frequency-shift-keying (FSK) receivers. Readers will learn how the overall power consumption is reduced by exploiting the characteristics of body area networks. Theoretical models presented are validated with two different receiver implementations, in 90nm and 40nm CMOS technology.   • Provides an overview of wireless body area network design from the network layer to the circuit implementation, and an overview of the cross-layer design trade-offs; • Discusses design at both the network or MAC-layer and circuit-level, with an emphasis on circuit design; • Covers the design of low-power frequency shift keying (FSK) wake-up-receivers; • Validates theory presented with two different recei...

  7. TRANSVERSE MODES FOR FLAT INTER-BUNCH WAKES*

    CERN Document Server

    Burov, A

    2013-01-01

    If inter-bunch wake fields are flat, i.e. their variations over a bunch length can be neglected, all coherent modes have the same coupled-bunch structure, provided the bunches can be treated as identical by their inner qualities (train theorem). If a flat feedback is strong enough, the transverse modes are single-bunch, provided the inter-bunch wakes are also flat (damper theorem).

  8. A large-eddy simulation study of wake propagation and power production in an array of tidal-current turbines.

    Science.gov (United States)

    Churchfield, Matthew J; Li, Ye; Moriarty, Patrick J

    2013-02-28

    This paper presents our initial work in performing large-eddy simulations of tidal turbine array flows. First, a horizontally periodic precursor simulation is performed to create turbulent flow data. Then those data are used as inflow into a tidal turbine array two rows deep and infinitely wide. The turbines are modelled using rotating actuator lines, and the finite-volume method is used to solve the governing equations. In studying the wakes created by the turbines, we observed that the vertical shear of the inflow combined with wake rotation causes lateral wake asymmetry. Also, various turbine configurations are simulated, and the total power production relative to isolated turbines is examined. We found that staggering consecutive rows of turbines in the simulated configurations allows the greatest efficiency using the least downstream row spacing. Counter-rotating consecutive downstream turbines in a non-staggered array shows a small benefit. This work has identified areas for improvement. For example, using a larger precursor domain would better capture elongated turbulent structures, and including salinity and temperature equations would account for density stratification and its effect on turbulence. Additionally, the wall shear stress modelling could be improved, and more array configurations could be examined.

  9. Molecular Dynamic Studies of Particle Wake Potentials in Plasmas

    Science.gov (United States)

    Ellis, Ian; Graziani, Frank; Glosli, James; Strozzi, David; Surh, Michael; Richards, David; Decyk, Viktor; Mori, Warren

    2010-11-01

    Fast Ignition studies require a detailed understanding of electron scattering, stopping, and energy deposition in plasmas with variable values for the number of particles within a Debye sphere. Presently there is disagreement in the literature concerning the proper description of these processes. Developing and validating proper descriptions requires studying the processes using first-principle electrostatic simulations and possibly including magnetic fields. We are using the particle-particle particle-mesh (P^3M) code ddcMD to perform these simulations. As a starting point in our study, we examined the wake of a particle passing through a plasma. In this poster, we compare the wake observed in 3D ddcMD simulations with that predicted by Vlasov theory and those observed in the electrostatic PIC code BEPS where the cell size was reduced to .03λD.

  10. Determination of Wind Turbine Near-Wake Length Based on Stability Analysis

    DEFF Research Database (Denmark)

    Sørensen, Jens Nørkær; Mikkelsen, Robert Flemming; Sarmast, Sasan

    2014-01-01

    A numerical study on the wake behind a wind turbine is carried out focusing on determining the length of the near-wake based on the instability onset of the trailing tip vortices shed from the turbine blades. The numerical model is based on large-eddy simulations (LES) of the Navier-Stokes equati......A numerical study on the wake behind a wind turbine is carried out focusing on determining the length of the near-wake based on the instability onset of the trailing tip vortices shed from the turbine blades. The numerical model is based on large-eddy simulations (LES) of the Navier...... of the study it is found that the amplification of specific waves (traveling structures) along the tip vortex spirals is responsible for triggering the instability leading to wake breakdown. The presence of unstable modes in the wake is related to the mutual inductance (vortex pairing) instability where...

  11. CSR Wake for a Short Magnet in Ultra-Relativistic Limit

    International Nuclear Information System (INIS)

    Emma, Paul J

    2002-01-01

    Using results for the CSR wake in a short magnet [1] we obtain expressions for the wake in the limit of very large values of the relativistic factor γ, γ → ∞, for both the entrance and exit of the magnet. The analytical results are illustrated with numerical computation of the wakes, energy loss and energy spread for magnets of different lengths

  12. Near-wake flow structure downwind of a wind turbine in a turbulent boundary layer

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Wei; Markfort, Corey D. [University of Minnesota, Saint Anthony Falls Laboratory, Department of Civil Engineering, Minneapolis, MN (United States); Porte-Agel, Fernando [Ecole Polytechnique Federale de Lausanne (EPFL), ENAC-IIE-WIRE, Wind Engineering and Renewable Energy Laboratory (WIRE), Lausanne (Switzerland)

    2012-05-15

    Wind turbines operate in the surface layer of the atmospheric boundary layer, where they are subjected to strong wind shear and relatively high turbulence levels. These incoming boundary layer flow characteristics are expected to affect the structure of wind turbine wakes. The near-wake region is characterized by a complex coupled vortex system (including helicoidal tip vortices), unsteadiness and strong turbulence heterogeneity. Limited information about the spatial distribution of turbulence in the near wake, the vortex behavior and their influence on the downwind development of the far wake hinders our capability to predict wind turbine power production and fatigue loads in wind farms. This calls for a better understanding of the spatial distribution of the 3D flow and coherent turbulence structures in the near wake. Systematic wind-tunnel experiments were designed and carried out to characterize the structure of the near-wake flow downwind of a model wind turbine placed in a neutral boundary layer flow. A horizontal-axis, three-blade wind turbine model, with a rotor diameter of 13 cm and the hub height at 10.5 cm, occupied the lowest one-third of the boundary layer. High-resolution particle image velocimetry (PIV) was used to measure velocities in multiple vertical stream-wise planes (x-z) and vertical span-wise planes (y-z). In particular, we identified localized regions of strong vorticity and swirling strength, which are the signature of helicoidal tip vortices. These vortices are most pronounced at the top-tip level and persist up to a distance of two to three rotor diameters downwind. The measurements also reveal strong flow rotation and a highly non-axisymmetric distribution of the mean flow and turbulence structure in the near wake. The results provide new insight into the physical mechanisms that govern the development of the near wake of a wind turbine immersed in a neutral boundary layer. They also serve as important data for the development and

  13. The bestial feminine in Finnegans Wake

    OpenAIRE

    Lovejoy, Laura

    2017-01-01

    Female characters frequently appear as animals in the unstable universe of James Joyce’s a Finnegans Wake. What Kimberly Devlin terms “the male tendency to reduce women to the level of the beast” is manifest in Finnegans Wake on a large scale. From the hen pecking at a dung heap which we suppose is a manifestation of matriarch Anna Livia Plurabelle, to the often lascivious pig imagery (reminiscent of Bloom’s experience with brothel-keeper Bella in the “Circe” episode of Ulysses) associated wi...

  14. A free wake vortex lattice model for vertical axis wind turbines: Modeling, verification and validation

    International Nuclear Information System (INIS)

    Meng, Fanzhong; Schwarze, Holger; Vorpahl, Fabian; Strobel, Michael

    2014-01-01

    Since the 1970s several research activities had been carried out on developing aerodynamic models for Vertical Axis Wind Turbines (VAWTs). In order to design large VAWTs of MW scale, more accurate aerodynamic calculation is required to predict their aero-elastic behaviours. In this paper, a 3D free wake vortex lattice model for VAWTs is developed, verified and validated. Comparisons to the experimental results show that the 3D free wake vortex lattice model developed is capable of making an accurate prediction of the general performance and the instantaneous aerodynamic forces on the blades. The comparison between momentum method and the vortex lattice model shows that free wake vortex models are needed for detailed loads calculation and for calculating highly loaded rotors

  15. Ion-wake Field inside a Glass Box

    OpenAIRE

    Chen, Mudi; Dropmann, Michael; Zhang, Bo; Matthews, Lorin S.; Hyde, Truell W.

    2016-01-01

    The confinement provided by a glass box is proving ideal for the formation of vertically aligned structures and a convenient method for controlling the number of dust particles comprising these dust structures, as well as their size and shape. In this paper, the electronic confinement of the glass box is mapped and the particle interactions between the particle pairs inside the glass box are measured. The ion-wake field is shown to exist within the glass box and its vertical and horizontal ex...

  16. Fluid instabilities and wakes in a soap-film tunnel

    International Nuclear Information System (INIS)

    Vorobieff, P.; Ecke, R.E.

    1999-01-01

    We present a compact, low-budget two-dimensional hydrodynamic flow visualization system based on a tilted, gravity-driven soap film tunnel. This system is suitable for demonstrations and studies of a variety of fluid mechanics problems, including turbulent wakes past bluff bodies and lifting surfaces, Kelvin - Helmholtz instability, and grid turbulence. copyright 1999 American Association of Physics Teachers

  17. Cholinergic Neurons in the Basal Forebrain Promote Wakefulness by Actions on Neighboring Non-Cholinergic Neurons: An Opto-Dialysis Study.

    Science.gov (United States)

    Zant, Janneke C; Kim, Tae; Prokai, Laszlo; Szarka, Szabolcs; McNally, James; McKenna, James T; Shukla, Charu; Yang, Chun; Kalinchuk, Anna V; McCarley, Robert W; Brown, Ritchie E; Basheer, Radhika

    2016-02-10

    Understanding the control of sleep-wake states by the basal forebrain (BF) poses a challenge due to the intermingled presence of cholinergic, GABAergic, and glutamatergic neurons. All three BF neuronal subtypes project to the cortex and are implicated in cortical arousal and sleep-wake control. Thus, nonspecific stimulation or inhibition studies do not reveal the roles of these different neuronal types. Recent studies using optogenetics have shown that "selective" stimulation of BF cholinergic neurons increases transitions between NREM sleep and wakefulness, implicating cholinergic projections to cortex in wake promotion. However, the interpretation of these optogenetic experiments is complicated by interactions that may occur within the BF. For instance, a recent in vitro study from our group found that cholinergic neurons strongly excite neighboring GABAergic neurons, including the subset of cortically projecting neurons, which contain the calcium-binding protein, parvalbumin (PV) (Yang et al., 2014). Thus, the wake-promoting effect of "selective" optogenetic stimulation of BF cholinergic neurons could be mediated by local excitation of GABA/PV or other non-cholinergic BF neurons. In this study, using a newly designed opto-dialysis probe to couple selective optical stimulation with simultaneous in vivo microdialysis, we demonstrated that optical stimulation of cholinergic neurons locally increased acetylcholine levels and increased wakefulness in mice. Surprisingly, the enhanced wakefulness caused by cholinergic stimulation was abolished by simultaneous reverse microdialysis of cholinergic receptor antagonists into BF. Thus, our data suggest that the wake-promoting effect of cholinergic stimulation requires local release of acetylcholine in the basal forebrain and activation of cortically projecting, non-cholinergic neurons, including the GABAergic/PV neurons. Optogenetics is a revolutionary tool to assess the roles of particular groups of neurons in behavioral

  18. The role of serotonin and norepinephrine in sleep-waking activity.

    Science.gov (United States)

    Morgane, P J; Stern, W C

    1975-11-01

    A critical review of the evidences relating the biogenic amines serotonin and norepinephrine to the states of slow-wave and rapid eye movement (REM) sleep is presented. Various alternative explanations for specific chemical regulation of the individual sleep states, including the phasic events of REM sleep, are evaluated within the overall framework of the monoamine theory of sleep. Several critical neuropsychopharmacological studies relating to metabolsim of the amines in relation to sleep-waking behavior are presented. Models of the chemical neuronal circuitry involved in sleep-waking activity are derived and interactions between several brainstem nuclei, particularly the raphé complex and locus coeruleus, are discussed. Activity in these aminergic systems in relation to oscillations in the sleep-waking cycles is evaluated. In particular, the assessment of single cell activity in specific chemical systems in relations to chemical models of sleep is reviewed. Overall, it appears that the biogenic amines, especially serotonin and norepinephrine, play key roles in the generation and maintenance of the sleep states. These neurotransmitters participate in some manner in the "triggering" processes necessary for actuating each sleep phase and in regulating the transitions from sleep to waking activity. The biogenic amines are, however, probably not "sleep factors" or direct inducers of the sleep states. Rather, they appear to be components of a multiplicity of interacting chemical circuitry in the brain whose activity maintains various chemical balances in different brain regions. Shifts in these balances appear to be involved in the triggering and maintenance of the various states comprising the vigilance continuum.

  19. What I make up when I wake up: anti-experience views and narrative fabrication of dreams

    Science.gov (United States)

    Rosen, Melanie G.

    2013-01-01

    I propose a narrative fabrication thesis of dream reports, according to which dream reports are often not accurate representations of experiences that occur during sleep. I begin with an overview of anti-experience theses of Norman Malcolm and Daniel Dennett who reject the received view of dreams, that dreams are experiences we have during sleep which are reported upon waking. Although rejection of the first claim of the received view, that dreams are experiences that occur during sleep, is implausible, I evaluate in more detail the second assumption of the received view, that dream reports are generally accurate. I then propose a “narrative fabrication” view of dreams as an alternative to the received view. Dream reports are often confabulated or fabricated because of poor memory, bizarre dream content, and cognitive deficits. It is well documented that narratives can be altered between initial rapid eye movement sleep awakenings and subsequent reports. I argue that we have reason to suspect that initial reports are prone to inaccuracy. Experiments demonstrate that subjects rationalize strange elements in narratives, leaving out supernatural or bizarre components when reporting waking memories of stories. Inaccuracies in dream reports are exacerbated by rapid memory loss and bizarre dream content. Waking memory is a process of reconstruction and blending of elements, but unlike waking memory, we cannot reality-test for dream memories. Dream experiences involve imaginative elements, and dream content cannot be verified with external evidence. Some dreams may involve wake-like higher cognitive functions, such as lucid dreams. Such dreams are more likely to elicit accurate reports than cognitively deficient dreams. However, dream reports are generally less accurate than waking reports. I then propose methods which could verify the narrative fabrication view, and argue that although the theory cannot be tested with current methods, new techniques and technologies

  20. What I make up when I wake up: anti-experience views and narrative fabrication of dreams

    Directory of Open Access Journals (Sweden)

    Melanie Gillespie Rosen

    2013-08-01

    Full Text Available I propose a narrative fabrication thesis of dream reports, according to which dream reports are often not accurate representations of experiences that occur during sleep. I begin with an overview of anti-experience theses of Norman Malcolm and Daniel Dennett who reject the received view of dreams, that dreams are experiences we have during sleep which are reported upon waking. Although rejection of the first claim of the received view, that dreams are experiences that occur during sleep, is implausible, I evaluate in more detail the second assumption of the received view, that dream reports are generally accurate. I then propose a ‘narrative fabrication’ view of dreams as an alternative to the received view. Dream reports are often confabulated or fabricated because of poor memory, bizarre dream content and cognitive deficits. It is well documented that narratives can alter between initial REM sleep awakenings and subsequent reports. I argue that we have reason to suspect that initial reports are prone to inaccuracy. Experiments demonstrate that subjects rationalise strange elements in narratives, leaving out supernatural or bizarre components when reporting waking memories of stories. Inaccuracies in dream reports are exacerbated by rapid memory loss and bizarre dream content. Waking memory is a process of reconstruction and blending of elements, but unlike waking memory, we cannot reality-test for dream memories. Dream experiences involve imaginative elements, and dream content cannot be verified with external evidence. Some dreams may involve wake-like higher cognitive functions, such as lucid dreams. Such dreams more likely to elicit accurate reports than cognitively deficient dreams. However, dream reports are generally less accurate than waking reports. I then propose methods which could verify the narrative fabrication, and argue that although the theory cannot be tested with current methods, new techniques and technologies may be

  1. Wake High-Density Electroencephalographic Spatiospectral Signatures of Insomnia

    Science.gov (United States)

    Colombo, Michele A.; Ramautar, Jennifer R.; Wei, Yishul; Gomez-Herrero, Germán; Stoffers, Diederick; Wassing, Rick; Benjamins, Jeroen S.; Tagliazucchi, Enzo; van der Werf, Ysbrand D.; Cajochen, Christian; Van Someren, Eus J.W.

    2016-01-01

    Study Objectives: Although daytime complaints are a defining characteristic of insomnia, most EEG studies evaluated sleep only. We used high-density electroencephalography to investigate wake resting state oscillations characteristic of insomnia disorder (ID) at a fine-grained spatiospectral resolution. Methods: A case-control assessment during eyes open (EO) and eyes closed (EC) was performed in a laboratory for human physiology. Participants (n = 94, 74 female, 21–70 y) were recruited through www.sleepregistry.nl: 51 with ID, according to DSM-5 and 43 matched controls. Exclusion criteria were any somatic, neurological or psychiatric condition. Group differences in the spectral power topographies across multiple frequencies (1.5 to 40 Hz) were evaluated using permutation-based inference with Threshold-Free Cluster-Enhancement, to correct for multiple comparisons. Results: As compared to controls, participants with ID showed less power in a narrow upper alpha band (11–12.7 Hz, peak: 11.7 Hz) over bilateral frontal and left temporal regions during EO, and more power in a broad beta frequency range (16.3–40 Hz, peak: 19 Hz) globally during EC. Source estimates suggested global rather than cortically localized group differences. Conclusions: The widespread high power in a broad beta band reported previously during sleep in insomnia is present as well during eyes closed wakefulness, suggestive of a round-the-clock hyperarousal. Low power in the upper alpha band during eyes open is consistent with low cortical inhibition and attentional filtering. The fine-grained HD-EEG findings suggest that, while more feasible than PSG, wake EEG of short duration with a few well-chosen electrodes and frequency bands, can provide valuable features of insomnia. Citation: Colombo MA, Ramautar JR, Wei Y, Gomez-Herrero G, Stoffers D, Wassing R, Benjamins JS, Tagliazucchi E, van der Werf YD, Cajochen C, Van Someren EJW. Wake high-density electroencephalographic spatiospectral

  2. Estimation of unsteady aerodynamics in the wake of a freely flying European starling (Sturnus vulgaris.

    Directory of Open Access Journals (Sweden)

    Hadar Ben-Gida

    Full Text Available Wing flapping is one of the most widespread propulsion methods found in nature; however, the current understanding of the aerodynamics in bird wakes is incomplete. The role of the unsteady motion in the flow and its contribution to the aerodynamics is still an open question. In the current study, the wake of a freely flying European starling has been investigated using long-duration high-speed Particle Image Velocimetry (PIV in the near wake. Kinematic analysis of the wings and body of the bird has been performed using additional high-speed cameras that recorded the bird movement simultaneously with the PIV measurements. The wake evolution of four complete wingbeats has been characterized through reconstruction of the time-resolved data, and the aerodynamics in the wake have been analyzed in terms of the streamwise forces acting on the bird. The profile drag from classical aerodynamics was found to be positive during most of the wingbeat cycle, yet kinematic images show that the bird does not decelerate. It is shown that unsteady aerodynamics are necessary to satisfy the drag/thrust balance by approximating the unsteady drag term. These findings may shed light on the flight efficiency of birds by providing a partial answer to how they minimize drag during flapping flight.

  3. Fast wake measurements with LiDAR at Risø test field

    DEFF Research Database (Denmark)

    Bingöl, Ferhat; Trujillo, J.J.; Mann, Jakob

    2008-01-01

    . Downstream wind speed can be quantified spatially in one and two dimensions. Data analysis allows us to identify the wake transversal position, thus enabling us to quantify the wake meandering as well as the instantaneous wake expansion expressed in a meandering frame of reference. The experimental results...

  4. The relationship between sleep and wake habits and academic performance in medical students: a cross-sectional study

    OpenAIRE

    BaHammam Ahmed S; Alaseem Abdulrahman M; Alzakri Abdulmajeed A; Almeneessier Aljohara S; Sharif Munir M

    2012-01-01

    Abstract Background The relationship between the sleep/wake habits and the academic performance of medical students is insufficiently addressed in the literature. This study aimed to assess the relationship between sleep habits and sleep duration with academic performance in medical students. Methods This study was conducted between December 2009 and January 2010 at the College of Medicine, King Saud University, and included a systematic random sample of healthy medical students in the first ...

  5. Cylinder wakes in flowing soap films

    International Nuclear Information System (INIS)

    Vorobieff, P.; Ecke, R.E.; Vorobieff, P.

    1999-01-01

    We present an experimental characterization of cylinder wakes in flowing soap films. From instantaneous velocity and thickness fields, we find the vortex-shedding frequency, mean-flow velocity, and mean-film thickness. Using the empirical relationship between the Reynolds and Strouhal numbers obtained for cylinder wakes in three dimensions, we estimate the effective soap-film viscosity and its dependence on film thickness. We also compare the decay of vorticity with that in a simple Rankine vortex model with a dissipative term to account for air drag. copyright 1999 The American Physical Society

  6. Performance and wake predictions of HAWTs in wind farms

    Energy Technology Data Exchange (ETDEWEB)

    Leclerc, C.; Masson, C.; Paraschivoiu, I. [Ecole Polytechnique, Montreal (Canada)

    1997-12-31

    The present contribution proposes and describes a promising way towards performance prediction of an arbitrary array of turbines. It is based on the solution of the time-averaged, steady-state, incompressible Navier-Stokes equations with an appropriate turbulence closure model. The turbines are represented by distributions of momentum sources in the Navier-Stokes equations. In this paper, the applicability and viability of the proposed methodology is demonstrated using an axisymmetric implementation. The k-{epsilon} model has been chosen for the closure of the time-averaged, turbulent flow equations and the properties of the incident flow correspond to those of a neutral atmospheric boundary layer. The proposed mathematical model is solved using a Control-Volume Finite Element Method (CVFEM). Detailed results have been obtained using the proposed method for an isolated wind turbine and for two turbines one behind another. In the case of an isolated turbine, accurate wake velocity deficit predictions are obtained and an increase in power due to atmospheric turbulence is found in agreement with measurements. In the case of two turbines, the proposed methodology provides an appropriate modelling of the wind-turbine wake and a realistic prediction of the performance degradation of the downstream turbine.

  7. Age-related changes in sleep-wake rhythm in dog.

    Science.gov (United States)

    Takeuchi, Takashi; Harada, Etsumori

    2002-10-17

    To investigate a sleep-wake rhythm in aged dogs, a radio-telemetry monitoring was carried out for 24 h. Electrodes and telemetry device were surgically implanted in four aged dogs (16-18 years old) and four young dogs (3-4 years old). Electroencephalogram (EEG), electromyogram (EMG) and electrocardiogram (ECG) were recorded simultaneously as parameters to determine vigilance states and an autonomic nervous function. Wakefulness, slow wave sleep (SWS) and paradoxical sleep (PS) were identified according to the EEG and EMG pattern. We also examined whether absolute powers and the low frequency-to-high frequency ratio (LF/HF) derived from the heart rate variability power spectrum could detect shifts in autonomic balance correlated with aging. The aged dogs showed a marked reduction of PS and a fragmentation of wakefulness in the daytime and a sleep disruption in the night. The pattern of 24 h sleep and waking was dramatically altered in the aged dog. It was characterized by an increase in the total amount of time spent in SWS during the daytime followed by an increasing of time spent in wakefulness during the night. Furthermore, LF/HF ratio showed a very low amplitude of variance throughout the day in the aged dog. These results suggest that the aged dog is a useful model to investigate sleep disorders in human such as daytime drowsiness, difficulties in sleep maintenance. The abnormality in sleep-wake cycle might be reflected by the altered autonomic balance in the aged dogs.

  8. Accurate wind farm development and operation. Advanced wake modelling

    Energy Technology Data Exchange (ETDEWEB)

    Brand, A.; Bot, E.; Ozdemir, H. [ECN Unit Wind Energy, P.O. Box 1, NL 1755 ZG Petten (Netherlands); Steinfeld, G.; Drueke, S.; Schmidt, M. [ForWind, Center for Wind Energy Research, Carl von Ossietzky Universitaet Oldenburg, D-26129 Oldenburg (Germany); Mittelmeier, N. REpower Systems SE, D-22297 Hamburg (Germany))

    2013-11-15

    The ability is demonstrated to calculate wind farm wakes on the basis of ambient conditions that were calculated with an atmospheric model. Specifically, comparisons are described between predicted and observed ambient conditions, and between power predictions from three wind farm wake models and power measurements, for a single and a double wake situation. The comparisons are based on performance indicators and test criteria, with the objective to determine the percentage of predictions that fall within a given range about the observed value. The Alpha Ventus site is considered, which consists of a wind farm with the same name and the met mast FINO1. Data from the 6 REpower wind turbines and the FINO1 met mast were employed. The atmospheric model WRF predicted the ambient conditions at the location and the measurement heights of the FINO1 mast. May the predictability of the wind speed and the wind direction be reasonable if sufficiently sized tolerances are employed, it is fairly impossible to predict the ambient turbulence intensity and vertical shear. Three wind farm wake models predicted the individual turbine powers: FLaP-Jensen and FLaP-Ainslie from ForWind Oldenburg, and FarmFlow from ECN. The reliabilities of the FLaP-Ainslie and the FarmFlow wind farm wake models are of equal order, and higher than FLaP-Jensen. Any difference between the predictions from these models is most clear in the double wake situation. Here FarmFlow slightly outperforms FLaP-Ainslie.

  9. Wake flow control using a dynamically controlled wind turbine

    Science.gov (United States)

    Castillo, Ricardo; Wang, Yeqin; Pol, Suhas; Swift, Andy; Hussain, Fazle; Westergaard, Carsten; Texas Tech University Team

    2016-11-01

    A wind tunnel based "Hyper Accelerated Wind Farm Kinematic-Control Simulator" (HAWKS) is being built at Texas Tech University to emulate controlled wind turbine flow physics. The HAWKS model turbine has pitch, yaw and speed control which is operated in real model time, similar to that of an equivalent full scale turbine. Also, similar to that of a full scale wind turbine, the controls are developed in a Matlab Simulink environment. The current diagnostic system consists of power, rotor position, rotor speed measurements and PIV wake characterization with four cameras. The setup allows up to 7D downstream of the rotor to be mapped. The purpose of HAWKS is to simulate control strategies at turnaround times much faster than CFD and full scale testing. The fundamental building blocks of the simulator have been tested, and demonstrate wake steering for both static and dynamic turbine actuation. Parameters which have been studied are yaw, rotor speed and combinations hereof. The measured wake deflections for static yaw cases are in agreement with previously reported research implying general applicability of the HAWKS platform for the purpose of manipulating the wake. In this presentation the general results will be introduced followed by an analysis of the wake turbulence and coherent structures when comparing static and dynamic flow cases. The outcome of such studies could ultimately support effective wind farm wake flow control strategies. Texas Emerging Technology Fund (ETF).

  10. The DLR project Wirbelschleppe. Detecting, characterizing, controlling, attenuating, understanding, and predicting aircraft wake vortices

    Energy Technology Data Exchange (ETDEWEB)

    Holzaepfel, F. (ed.)

    2008-07-01

    This collection of reports presents an excerpt of the investigations that were performed in the framework of the DLR Projekt Wirbelschleppe. A similar sample of reports was presented as part of three dedicated wake vortex sessions accomplished at the 1{sup st} European Air and Space Conference (CEAS 2007) and Deutscher Luft- und Raumfahrtkongress 2007 in Berlin. The Projekt Wirbelschleppe was conducted in two phases in the time frame from 1999 to 2007 with the five contributing DLR Institutes: Institute of Atmospheric Physics, Institute of Aerodynamics and Flow Technology, Institute of Flight Systems, Institute of Flight Guidance, Institute of Robotics and Mechatronics and the Institute of Aeronautics and Astronautics of the University of Technology Berlin. The project unified a multitude of different aspects and disciplines of wake vortex research which can be characterized by four main themes: - minimization of wake vortices by measures at the aircraft; - development and demonstration of a system for wake vortex prediction and observation; - airborne wake vortex detection and active control; - integration of systems into air traffic control. The Projekt Wirbelschleppe greatly benefited from the European projects AWIATOR, ATC-Wake, Credos, C-Wake, Eurowake, FAR-Wake, FLYSAFE, I-Wake, S-Wake, WakeNet, WakeNet2-Europe, WakeNet3-Europe, and Wavenc. DLR's wake vortex activities will be continued in the Projekt Wetter and Fliegen (2008-2011): Because the current compilation represents only a limited extract of the accomplished work, it is completed by a list of references emerging from the project. (orig.)

  11. Sleep-Wake Actigraphy and Light Exposure During Spaceflight-Long

    Science.gov (United States)

    Czeisler, Charles A.; Barger, Laura K.; Wright, Kenneth P., Jr.; Ronda, Joseph

    2009-01-01

    Sleep-Wake Actigraphy and Light Exposure During Spaceflight-Long (Sleep-Long) will examine the effects of spaceflight and ambient light exposure on the sleep-wake cycles of the crew members during long-duration stays on the space station.

  12. Analysis of Numerically Generated Wake Structures

    DEFF Research Database (Denmark)

    Ivanell, S.; Sørensen, Jens Nørkær; Mikkelsen, Robert Flemming

    2009-01-01

    . In the actuator-line method, the blades are represented by lines along which body forces representing the loading are introduced. The body forces are determined by computing local angles of attack and using tabulated aerofoil coefficients. The advantage of using the actuator-line technique...... is that it is not needed to resolve blade boundary layers and instead the computational resources are devoted to simulating the dynamics of the flow structures. In the present study, approximately 5 million mesh points are used to resolve the wake structure in a 120-degree domain behind the turbine. The results from...

  13. Observation of high-resolution wind fields and offshore wind turbine wakes using TerraSAR-X imagery

    Science.gov (United States)

    Gies, Tobias; Jacobsen, Sven; Lehner, Susanne; Pleskachevsky, Andrey

    2014-05-01

    1. Introduction Numerous large-scale offshore wind farms have been built in European waters and play an important role in providing renewable energy. Therefore, knowledge of behavior of wakes, induced by large wind turbines and their impact on wind power output is important. The spatial variation of offshore wind turbine wake is very complex, depending on wind speed, wind direction, ambient atmospheric turbulence and atmospheric stability. In this study we demonstrate the application of X-band TerraSAR-X (TS-X) data with high spatial resolution for studies on wind turbine wakes in the near and far field of the offshore wind farm Alpha Ventus, located in the North Sea. Two cases which different weather conditions and different wake pattern as observed in the TS-X image are presented. 2. Methods The space-borne synthetic aperture radar (SAR) is a unique sensor that provides two-dimensional information on the ocean surface. Due to their high resolution, daylight and weather independency and global coverage, SARs are particularly suitable for many ocean and coastal applications. SAR images reveal wind variations on small scales and thus represent a valuable means in detailed wind-field analysis. The general principle of imaging turbine wakes is that the reduced wind speed downstream of offshore wind farms modulates the sea surface roughness, which in turn changes the Normalized Radar Cross Section (NRCS, denoted by σ0) in the SAR image and makes the wake visible. In this study we present two cases at the offshore wind farm Alpha Ventus to investigate turbine-induced wakes and the retrieved sea surface wind field. Using the wind streaks, visible in the TS-X image and the shadow behind the offshore wind farm, induced by turbine wake, the sea surface wind direction is derived and subsequently the sea surface wind speed is calculated using the latest generation of wind field algorithm XMOD2. 3. Case study alpha ventus Alpha Ventus is located approximately 45 km from the

  14. Dynamic Hybrid Simulation of the Lunar Wake During ARTEMIS Crossing

    Science.gov (United States)

    Wiehle, S.; Plaschke, F.; Angelopoulos, V.; Auster, H.; Glassmeier, K.; Kriegel, H.; Motschmann, U. M.; Mueller, J.

    2010-12-01

    The interaction of the highly dynamic solar wind with the Moon is simulated with the A.I.K.E.F. (Adaptive Ion Kinetic Electron Fluid) code for the ARTEMIS P1 flyby on February 13, 2010. The A.I.K.E.F. hybrid plasma simulation code is the improved version of the Braunschweig code. It is able to automatically increase simulation grid resolution in areas of interest during runtime, which greatly increases resolution as well as performance. As the Moon has no intrinsic magnetic field and no ionosphere, the solar wind particles are absorbed at its surface, resulting in the formation of the lunar wake at the nightside. The solar wind magnetic field is basically convected through the Moon and the wake is slowly filled up with solar wind particles. However, this interaction is strongly influenced by the highly dynamic solar wind during the flyby. This is considered by a dynamic variation of the upstream conditions in the simulation using OMNI solar wind measurement data. By this method, a very good agreement between simulation and observations is achieved. The simulations show that the stationary structure of the lunar wake constitutes a tableau vivant in space representing the well-known Friedrichs diagram for MHD waves.

  15. An LES study of vertical-axis wind turbine wakes aerodynamics

    Science.gov (United States)

    Abkar, Mahdi; Dabiri, John O.

    2016-11-01

    In this study, large-eddy simulation (LES) combined with a turbine model is used to investigate the structure of the wake behind a vertical-axis wind turbine (VAWT). In the simulations, a recently developed minimum dissipation model is used to parameterize the subgrid-scale stress tensor, while the turbine-induced forces are modeled with an actuator-line technique. The LES framework is first tested in the simulation of the wake behind a model straight-bladed VAWT placed in the water channel, and then used to study the wake structure downwind of a full-scale VAWT sited in the atmospheric boundary layer. In particular, the self-similarity of the wake is examined, and it is found that the wake velocity deficit is well characterized by a two-dimensional elliptical Gaussian distribution. By assuming a self-similar Gaussian distribution of the velocity deficit, and applying mass and momentum conservation, an analytical model is developed and tested to predict the maximum velocity deficit downwind of the turbine.

  16. Wake effect on a uniform flow behind wind-turbine model

    Science.gov (United States)

    Okulov, V. L.; Naumov, I. V.; Mikkelsen, R. F.; Sørensen, J. N.

    2015-06-01

    LDA experiments were carried out to study the development of mean velocity profiles of the very far wake behind a wind turbine model in a water flume. The model of the rotor is placed in a middle of the flume. The initial flume flow is subjected to a very low turbulence level, limiting the influence of external disturbances on the development of the inherent wake instability. The rotor is three-bladed and designed using Glauert's optimum theory at a tip speed ratio λ = 5 with a constant of the lift coefficient along the span, CL= 0.8. The wake development has been studied in the range of tip speed ratios from 3 to 9, and at different cross-sections from 10 to 100 rotor radii downstream from the rotor. By using regression techniques to fit the velocity profiles it was possible to obtain accurate velocity deficits and estimate length scales of the wake attenuation. The data are compared with different analytical models for wind turbine wakes.

  17. Robust lidar-based closed-loop wake redirection for wind farm control

    NARCIS (Netherlands)

    Raach, Steffen; Boersma, S.; van Wingerden, J.W.; Schlipf, David; Cheng, Po Wen; Dochain, Denis; Henrion, Didier; Peaucelle, Dimitri

    2017-01-01

    Wind turbine wake redirection is a promising concept for wind farm control to increase the total power of a wind farm. Further, the concept aims to avoid partial wake overlap on a downwind wind turbine and hence aims to decrease structural loads. Controller for wake redirection need to account

  18. Dynamics of plasma ions motion in ultra-intense laser-excited plasma wakes

    International Nuclear Information System (INIS)

    Zhou Suyun; Li Jing

    2013-01-01

    The effects of heavy ions and protons motion in an ultra-intense laser-driven plasma wake are compared by rebuilding a plasma wake model. It is shown that with the same laser and plasma background electron density n 0 , the heavy ions' motion suppresses wake-field resonant excitation less than the protons' motion in their own plasma wake. Though heavy ions obtain more kinetic energy from the plasma wake, its energy density is less than that of the protons due to the ion density being far less than the proton density. As a result, the total energy of heavy ions obtained from the wake-field is far less than that of protons. The dependence of the kinetic energy and the energy density of protons and heavy ions on n 0 is discussed. (paper)

  19. Empirical modeling of single-wake advection and expansion using full-scale pulsed lidar-based measurements

    DEFF Research Database (Denmark)

    Machefaux, Ewan; Larsen, Gunner Chr.; Troldborg, Niels

    2015-01-01

    In the present paper, single-wake dynamics have been studied both experimentally and numerically. The use of pulsed lidar measurements allows for validation of basic dynamic wake meandering modeling assumptions. Wake center tracking is used to estimate the wake advection velocity experimentally...... fairly well in the far wake but lacks accuracy in the outer region of the near wake. An empirical relationship, relating maximum wake induction and wake advection velocity, is derived and linked to the characteristics of a spherical vortex structure. Furthermore, a new empirical model for single...

  20. Joyce the Deconstructionist: Finnegans Wake in Context

    Directory of Open Access Journals (Sweden)

    Zangouei J.

    2012-01-01

    Full Text Available Had Finnegans Wake not been written, some seminal post-1950s innovations in the field of modern literary theory and criticism would have been impossible. James Joyce, who seems to have inspiringly influenced the entire sphere of modern literary theory and criticism greatly, is a pioneer of deconstruction too. His last novel, which reflects his deconstructive tendencies, has played a seminal role in the formation of 20th century deconstruction, and comprises an inchoate mass of implicit ideas on the subject. It was perhaps not until Jacques Derrida and his deconstruction techniques that the theory implied by Finnegans Wake really came into focus. This article seeks to delineate Derrida’s theory of deconstruction as well as Joyce's deconstructive aesthetics; and taking a diachronic approach to literary theory and criticism it glances at Finnegans Wake in the light of deconstruction.

  1. Modeling variable density turbulence in the wake of an air-entraining transom stern

    Science.gov (United States)

    Hendrickson, Kelli; Yue, Dick

    2015-11-01

    This work presents a priori testing of closure models for the incompressible highly-variable density turbulent (IHVDT) flows in the near wake region of a transom stern. This three-dimensional flow is comprised of convergent corner waves that originate from the body and collide on the ship center plane forming the ``rooster tail'' that then widens to form the divergent wave train. These violent free-surface flows and breaking waves are characterized by significant turbulent mass flux (TMF) at Atwood number At = (ρ2 -ρ1) / (ρ2 +ρ1) ~ 1 for which there is little guidance in turbulence closure modeling for the momentum and scalar transport along the wake. To whit, this work utilizes high-resolution simulations of the near wake of a canonical three-dimensional transom stern using conservative Volume-of-Fluid (cVOF), implicit Large Eddy Simulation (iLES), and Boundary Data Immersion Method (BDIM) to capture the turbulence and large scale air entrainment. Analysis of the simulation results across and along the wake for the TMF budget and turbulent anisotropy provide the physical basis of the development of multiphase turbulence closure models. Performance of isotropic and anisotropic turbulent mass flux closure models will be presented. Sponsored by the Office of Naval Research.

  2. Wake field of electron beam accelerated in a RF-gun of free electron laser 'ELSA'

    CERN Document Server

    Salah, W

    1999-01-01

    Wake field effects driven by a coasting relativistic charged particle beam have been studied for various cavity geometries. In the particular case of a cylindrical 'pill-box' cavity, an analytical expression of the (E, B)(x, t) map has been obtained as a development on the complete base cavity normal modes. We extend this method to the case of an accelerated beam, which leaves the downstream face of the cavity with a thermal velocity, and becomes relativistic in a few cm. This situation is very different from the classical wake of an ultrarelativistic beam for two reasons: (a) in the case of an ultrarelativistic beam, the field directly generated by beam particles in their wake can be neglected, and the so-called wake field is the electromagnetic linear response of the cavity to the exciting signal which is the beam. For a transrelativistic beam, the direct field must be taken into account and added to cavity response, which is no longer linear, except for low-intensity beam; (b) causality prevents any beam's...

  3. IEA-Task 31 WAKEBENCH: Towards a protocol for wind farm flow model evaluation. Part 2: Wind farm wake models

    Science.gov (United States)

    Moriarty, Patrick; Sanz Rodrigo, Javier; Gancarski, Pawel; Chuchfield, Matthew; Naughton, Jonathan W.; Hansen, Kurt S.; Machefaux, Ewan; Maguire, Eoghan; Castellani, Francesco; Terzi, Ludovico; Breton, Simon-Philippe; Ueda, Yuko

    2014-06-01

    Researchers within the International Energy Agency (IEA) Task 31: Wakebench have created a framework for the evaluation of wind farm flow models operating at the microscale level. The framework consists of a model evaluation protocol integrated with a web-based portal for model benchmarking (www.windbench.net). This paper provides an overview of the building-block validation approach applied to wind farm wake models, including best practices for the benchmarking and data processing procedures for validation datasets from wind farm SCADA and meteorological databases. A hierarchy of test cases has been proposed for wake model evaluation, from similarity theory of the axisymmetric wake and idealized infinite wind farm, to single-wake wind tunnel (UMN-EPFL) and field experiments (Sexbierum), to wind farm arrays in offshore (Horns Rev, Lillgrund) and complex terrain conditions (San Gregorio). A summary of results from the axisymmetric wake, Sexbierum, Horns Rev and Lillgrund benchmarks are used to discuss the state-of-the-art of wake model validation and highlight the most relevant issues for future development.

  4. IEA-Task 31 WAKEBENCH: Towards a protocol for wind farm flow model evaluation. Part 2: Wind farm wake models

    International Nuclear Information System (INIS)

    Moriarty, Patrick; Rodrigo, Javier Sanz; Gancarski, Pawel; Chuchfield, Matthew; Naughton, Jonathan W; Hansen, Kurt S; Machefaux, Ewan; Maguire, Eoghan; Castellani, Francesco; Terzi, Ludovico; Breton, Simon-Philippe; Ueda, Yuko

    2014-01-01

    Researchers within the International Energy Agency (IEA) Task 31: Wakebench have created a framework for the evaluation of wind farm flow models operating at the microscale level. The framework consists of a model evaluation protocol integrated with a web-based portal for model benchmarking (www.windbench.net). This paper provides an overview of the building-block validation approach applied to wind farm wake models, including best practices for the benchmarking and data processing procedures for validation datasets from wind farm SCADA and meteorological databases. A hierarchy of test cases has been proposed for wake model evaluation, from similarity theory of the axisymmetric wake and idealized infinite wind farm, to single-wake wind tunnel (UMN-EPFL) and field experiments (Sexbierum), to wind farm arrays in offshore (Horns Rev, Lillgrund) and complex terrain conditions (San Gregorio). A summary of results from the axisymmetric wake, Sexbierum, Horns Rev and Lillgrund benchmarks are used to discuss the state-of-the-art of wake model validation and highlight the most relevant issues for future development

  5. Oscillatory wake potential with exchange-correlation in plasmas

    Science.gov (United States)

    Khan, Arroj A.; Zeba, I.; Jamil, M.; Asif, M.

    2017-12-01

    The oscillatory wake potential of a moving test charge is studied in quantum dusty plasmas. The plasma system consisting of electrons, ions and negatively charged dust species is embedded in an ambient magnetic field. The modified equation of dispersion is derived using a Quantum Hydrodynamic Model for magnetized plasmas. The quantum effects are inculcated through Fermi degenerate pressure, the tunneling effect and exchange-correlation effects. The study of oscillatory wake is important to know the existence of silence zones in space and astrophysical objects as well as for crystal formation. The graphical description of the potential depicts the significance of the exchange and correlation effects arising through spin and other variables on the wake potential.

  6. A three states sleep-waking model

    International Nuclear Information System (INIS)

    Comte, J.C.; Schatzman, M.; Ravassard, P.; Luppi, P.H.; Salin, P.A.

    2006-01-01

    The mechanisms underlying the sleep-states periodicity in animals are a mystery of biology. Recent studies identified a new neuronal population activated during the slow wave sleep (SWS) in the ventral lateral preoptic area of the hypothalamus. Interactions between this neuronal population and the others populations implicated in the vigilance states (paradoxical sleep (PS) and wake (W)) dynamics are not determined. Thus, we propose here a sleep-waking theoretical model that depicts the potential interactions between the neuronal populations responsible for the three vigilance states. First, we pooled data from previous papers regarding the neuronal populations firing rate time course and characterized statistically the experimental hypnograms. Then, we constructed a nonlinear differential equations system describing the neuronal populations activity time course. A simple rule playing the firing threshold role applied to the model allows to construct a theoretical hypnogram. A random modulation of the neuronal activity, shows that theoretical hypnograms present a dynamics close to the experimental observations. Furthermore, we show that the wake promoting neurons activity can predict the next SWS episode duration

  7. Wind Turbine Wake-Redirection Control at the Fishermen's Atlantic City Windfarm: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Churchfield, M.; Fleming, P.; Bulder, B.; White, S.

    2015-05-06

    In this paper, we will present our work towards designing a control strategy to mitigate wind turbine wake effects by redirecting the wakes, specifically applied to the Fishermen’s Atlantic City Windfarm (FACW), proposed for deployment off the shore of Atlantic City, New Jersey. As wind turbines extract energy from the air, they create low-speed wakes that extend behind them. Full wake recovery Full wake recovery to the undisturbed wind speed takes a significant distance. In a wind energy plant the wakes of upstream turbines may travel downstream to the next row of turbines, effectively subjecting them to lower wind speeds, meaning these waked turbines will produce less power.

  8. A CFD code comparison of wind turbine wakes

    International Nuclear Information System (INIS)

    Van der Laan, M P; Sørensen, N N; Storey, R C; Cater, J E; Norris, S E

    2014-01-01

    A comparison is made between the EllipSys3D and SnS CFD codes. Both codes are used to perform Large-Eddy Simulations (LES) of single wind turbine wakes, using the actuator disk method. The comparison shows that both LES models predict similar velocity deficits and stream-wise Reynolds-stresses for four test cases. A grid resolution study, performed in EllipSys3D and SnS, shows that a minimal uniform cell spacing of 1/30 of the rotor diameter is necessary to resolve the wind turbine wake. In addition, the LES-predicted velocity deficits are also compared with Reynolds-Averaged Navier Stokes simulations using EllipSys3D for a test case that is based on field measurements. In these simulations, two eddy viscosity turbulence models are employed: the k-ε model and the k-ε-f p model. Where the k-ε model fails to predict the velocity deficit, the results of the k-ε-f P model show good agreement with both LES models and measurements

  9. An experimental and numerical study of the atmospheric stability impact on wind turbine wakes

    DEFF Research Database (Denmark)

    Machefaux, Ewan; Larsen, Gunner Chr.; Koblitz, Tilman

    2016-01-01

    campus test site. Wake measurements are averaged within a mean wind speed bin of 1 m s1 and classified according to atmospheric stability using three different metrics: the Obukhov length, the Bulk–Richardson number and the Froude number. Three test cases are subsequently defined covering various...... atmospheric conditions. Simulations are carried out using large eddy simulation and actuator disk rotor modeling. The turbulence properties of the incoming wind are adapted to the thermal stratification using a newly developed spectral tensor model that includes buoyancy effects. Discrepancies are discussed......In this paper, the impact of atmospheric stability on a wind turbine wake is studied experimentally and numerically. The experimental approach is based on full-scale (nacelle based) pulsed lidar measurements of the wake flow field of a stall-regulated 500 kW turbine at the DTU Wind Energy, Risø...

  10. Comparison of Wake models with data[Efficient Development of Offshore Windfarms

    Energy Technology Data Exchange (ETDEWEB)

    Rados, K. [Robert Gordon Univ., School of Engieering, Aberdeen, Scotland (United Kingdom); Larsen, G.; Barthelmie, R. [Risoe National Lab., Wind Energy Dept., Roskilde (Denmark); Schlez, W. [Garrad Hassan and Partners, Ltd., Bristol (United Kingdom); Lange, B. [Univ. of Oldenburg, Dept. of Energy and Semiconductor Research EHF, Oldenburg (Germany); Schepers, G.; Hegberg, T. [Netherlands Energy Research Foundation ECN, Solar and Wind Energy, Petten (NL); Magnusson, M. [Uppsala Univ., Dept. of Earth Sciences, Meterology, Uppsala (Sweden)

    2002-03-01

    A major objective of the ENDOW project is to evaluate the performance of wake models in offshore environments in order to ascertain the improvements required to enhance the prediction of power output within large offshore wind farms. The strategy for achieving this objective is to compare the performance of the models in a wide range of conditions which are expected to be encountered during turbine operation offshore. Six models of varying complexity have been evaluated initially against the Vindeby single wake data in where it was found that almost all of them overestimate the wake effects and also significant inconsistencies between the model predictions appeared in the near wake and turbulence intensity results. Based on the conclusions of that study, the wake modelling groups have already implemented a number of modifications to their original models. In the present paper, new single wake results are presented against experimental data at Vindeby and Bockstigen wind farms. Clearly, some of the model discrepancies previously observed in Vindeby cases have been smoothed and overall the performance is improved. (au)

  11. Vertical axis wind turbine wake in boundary layer flow in a wind tunnel

    Science.gov (United States)

    Rolin, Vincent; Porté-Agel, Fernando

    2016-04-01

    A vertical axis wind turbine is placed in a boundary layer flow in a wind tunnel, and its wake is investigated. Measurements are performed using an x-wire to measure two components of velocity and turbulence statistics in the wake of the wind turbine. The study is performed at various heights and crosswind positions in order to investigate the full volume of the wake for a range of tip speed ratios. The velocity deficit and levels of turbulence in the wake are related to the performance of the turbine. The asymmetric incoming boundary layer flow causes the rate of recovery in the wake to change as a function of height. Higher shear between the wake and unperturbed flow occurs at the top edge of the wake, inducing stronger turbulence and mixing in this region. The difference in flow relative to the blades causes the velocity deficit and turbulence level to change as a function of crosswind position behind the rotor. The relative difference diminishes with increasing tip speed ratio. Therefore, the wake becomes more homogeneous as tip speed ratio increases.

  12. Surface wake in the random-phase approximation

    International Nuclear Information System (INIS)

    Garcia de Abajo, F.J.; Echenique, P.M.

    1993-01-01

    The scalar-electric-potential distribution set up by an ion traveling in the vicinity of a plane solid-vacuum interface, that is, the surface-wake potential, is investigated with the specular-reflection model to describe the response of the surface and with the random-phase approximation for the dielectric function of the bulk material. This permits us to address the study of the low-velocity surface wake: the static potential is found to have a dip at the position of the ion; that dip is shifted towards the direction opposite to the velocity vector for velocities smaller than the threshold of creation of plasmons (∼1.3v F ). Extensive numerical calculations are presented for an ion both inside and outside aluminum. Comparison to the results obtained with the plasmon-pole dielectric function indicates excellent agreement for velocities larger than ∼1.3v F . On the other side, the possibility of surface-wake riding is suggested, by analogy with bulk-wake riding postulated in the past. In it, the electron would be bound in the first trough of the surface-wake potential set up when the ion describes a grazing trajectory. The main feature introduced by the surface with respect to the bulk consists of allowing the use of ions of higher charge, reducing in this way the relative importance of the electron self-energy, and in addition, giving rise to larger binding energies. When the ion beam is directed along a special direction of an oriented crystal surface, the mechanism of resonant coherent excitation could provide a way for experimentally detecting this phenomenon through the emission of the bound electron with well-defined energy and around a preferential direction

  13. Wake Characteristics of a Flapping Wing Optimized for both Aerial and Aquatic Flight

    Science.gov (United States)

    Izraelevitz, Jacob; Kotidis, Miranda; Triantafyllou, Michael

    2017-11-01

    Multiple aquatic bird species (including murres, puffins, and other auks) employ a single actuator to propel themselves in two different fluid media: both flying and swimming using primarily their flapping wings. This impressive design compromise could be adopted by engineered implementations of dual aerial/aquatic robotic platforms, as it offers an existence proof for favorable flow physics. We discuss one realization of a 3D flapping wing actuation system for use in both air and water. The wing oscillates by the root and employs an active in-line motion degree-of-freedom. An experiment-coupled optimization routine generates the wing trajectories, controlling the unsteady forces throughout each flapping cycle. We elucidate the wakes of these wing trajectories using dye visualization, correlating the wake vortex structures with simultaneous force measurements. After optimization, the wing generates the large force envelope necessary for propulsion in both fluid media, and furthermore, demonstrate improved control over the unsteady wake.

  14. Nonlinear Eddy Viscosity Models applied to Wind Turbine Wakes

    DEFF Research Database (Denmark)

    Laan, van der, Paul Maarten; Sørensen, Niels N.; Réthoré, Pierre-Elouan

    2013-01-01

    The linear k−ε eddy viscosity model and modified versions of two existing nonlinear eddy viscosity models are applied to single wind turbine wake simulations using a Reynolds Averaged Navier-Stokes code. Results are compared with field wake measurements. The nonlinear models give better results...

  15. Wakes behind wind turbines. Studies on tip vortex evolution and stability

    Energy Technology Data Exchange (ETDEWEB)

    Odemark, Ylva

    2012-07-01

    The increased fatigue loads and decreased power output of a wind turbine placed in the wake of another turbine is a well-known problem when building new wind power farms. In order to better estimate the total power output of a wind power farm, knowledge about the development and stability of wind turbine wakes is crucial. In the present thesis, the wake behind a small-scale model turbine was investigated experimentally in a wind tunnel. The velocity in the wake was measured with hot-wire anemometry, for different free stream velocities and tip speed ratios. To characterize the behaviour of the model turbine, the power output, thrust force and rotational frequency of the model were also measured. These results were then compared to calculations using the Blade Element Momentum (BEM) method. New turbine blades for the model was constructed using the same method, in order to get an estimate of the distribution of the lift and drag forces along the blades. This information is needed for comparisons with certain numerical simulations, which however remains to be performed.By placing the turbine at different heights in a turbulent boundary layer, the effects of forest turbulence on wind turbine outputs (power and thrust) could also be investigated.The evolution of the tip vortices shed from the turbine blades was studied by performing velocity measurements around the location of the tip vortex breakdown. The vortices' receptivity to disturbances was then studied by introducing a disturbance in the form of two pulsed jets, located in the rear part of the nacelle. In order to introduce a well-defined disturbance and perform phase-locked measurements, a new experimental setup was constructed and successfully tested for two different disturbance frequencies. The mean stream wise velocity and the stream wise turbulence intensity was found to scale well with the free stream velocity and the spreading of the wake was found to be proportional to the square root of the

  16. Data Driven Modelling of the Dynamic Wake Between Two Wind Turbines

    DEFF Research Database (Denmark)

    Knudsen, Torben; Bak, Thomas

    2012-01-01

    turbine. This paper establishes flow models relating the wind speeds at turbines in a farm. So far, research in this area has been mainly based on first principles static models and the data driven modelling done has not included the loading of the upwind turbine and its impact on the wind speed downwind......Wind turbines in a wind farm, influence each other through the wind flow. Downwind turbines are in the wake of upwind turbines and the wind speed experienced at downwind turbines is hence a function of the wind speeds at upwind turbines but also the momentum extracted from the wind by the upwind....... This paper is the first where modern commercial mega watt turbines are used for data driven modelling including the upwind turbine loading by changing power reference. Obtaining the necessary data is difficult and data is therefore limited. A simple dynamic extension to the Jensen wake model is tested...

  17. Improvement of a near wake model for trailing vorticity

    International Nuclear Information System (INIS)

    Pirrung, G R; Hansen, M H; Madsen, H A

    2014-01-01

    A near wake model, originally proposed by Beddoes, is further developed. The purpose of the model is to account for the radially dependent time constants of the fast aerodynamic response and to provide a tip loss correction. It is based on lifting line theory and models the downwash due to roughly the first 90 degrees of rotation. This restriction of the model to the near wake allows for using a computationally efficient indicial function algorithm. The aim of this study is to improve the accuracy of the downwash close to the root and tip of the blade and to decrease the sensitivity of the model to temporal discretization, both regarding numerical stability and quality of the results. The modified near wake model is coupled to an aerodynamics model, which consists of a blade element momentum model with dynamic inflow for the far wake and a 2D shed vorticity model that simulates the unsteady buildup of both lift and circulation in the attached flow region. The near wake model is validated against the test case of a finite wing with constant elliptical bound circulation. An unsteady simulation of the NREL 5 MW rotor shows the functionality of the coupled model

  18. Orexin/Hypocretin and Organizing Principles for a Diversity of Wake-Promoting Neurons in the Brain.

    Science.gov (United States)

    Schöne, Cornelia; Burdakov, Denis

    2017-01-01

    An enigmatic feature of behavioural state control is the rich diversity of wake-promoting neural systems. This diversity has been rationalized as 'robustness via redundancy', wherein wakefulness control is not critically dependent on one type of neuron or molecule. Studies of the brain orexin/hypocretin system challenge this view by demonstrating that wakefulness control fails upon loss of this neurotransmitter system. Since orexin neurons signal arousal need, and excite other wake-promoting neurons, their actions illuminate nonredundant principles of arousal control. Here, we suggest such principles by reviewing the orexin system from a collective viewpoint of biology, physics and engineering. Orexin peptides excite other arousal-promoting neurons (noradrenaline, histamine, serotonin, acetylcholine neurons), either by activating mixed-cation conductances or by inhibiting potassium conductances. Ohm's law predicts that these opposite conductance changes will produce opposite effects on sensitivity of neuronal excitability to current inputs, thus enabling orexin to differentially control input-output gain of its target networks. Orexin neurons also produce other transmitters, including glutamate. When orexin cells fire, glutamate-mediated downstream excitation displays temporal decay, but orexin-mediated excitation escalates, as if orexin transmission enabled arousal controllers to compute a time integral of arousal need. Since the anatomical and functional architecture of the orexin system contains negative feedback loops (e.g. orexin ➔ histamine ➔ noradrenaline/serotonin-orexin), such computations may stabilize wakefulness via integral feedback, a basic engineering strategy for set point control in uncertain environments. Such dynamic behavioural control requires several distinct wake-promoting modules, which perform nonredundant transformations of arousal signals and are connected in feedback loops.

  19. A baseband circuit for wake-up receivers with double-mode detection and enhanced sensitivity robustness

    International Nuclear Information System (INIS)

    Zhu Wenrui; Yang Haigang; Gao Tongqiang; Liu Fei; Cheng Xiaoyan; Zhang Dandan

    2013-01-01

    This paper proposes a baseband circuit for wake-up receivers with double-mode detection and enhanced sensitivity robustness for use in the electronic toll collection system. A double-mode detection method, including amplitude detection and frequency detection, is proposed to reject interference and reduce false wake-ups. An improved closed-loop band-pass filter and a DC offset cancellation technique are also newly introduced to enhance the sensitivity robustness. The circuit is fabricated in TSMC 0.18 μm 3.3 V CMOS technology with an area of 0.12 mm 2 . Measurement results show that the sensitivity is −54.5 dBm with only a ±0.95 dBm variation from the 1.8 to 3.3 V power supply, and that the temperature variation of the sensitivity is ±1.4 dBm from −50 to 100°C. The current consumption is 1.4 to 1.7 μA under a 1.8 to 3.3 V power supply. (semiconductor integrated circuits)

  20. Stellar Wakes from Dark Matter Subhalos.

    Science.gov (United States)

    Buschmann, Malte; Kopp, Joachim; Safdi, Benjamin R; Wu, Chih-Liang

    2018-05-25

    We propose a novel method utilizing stellar kinematic data to detect low-mass substructure in the Milky Way's dark matter halo. By probing characteristic wakes that a passing dark matter subhalo leaves in the phase-space distribution of ambient halo stars, we estimate sensitivities down to subhalo masses of ∼10^{7}  M_{⊙} or below. The detection of such subhalos would have implications for dark matter and cosmological models that predict modifications to the halo-mass function at low halo masses. We develop an analytic formalism for describing the perturbed stellar phase-space distributions, and we demonstrate through idealized simulations the ability to detect subhalos using the phase-space model and a likelihood framework. Our method complements existing methods for low-mass subhalo searches, such as searches for gaps in stellar streams, in that we can localize the positions and velocities of the subhalos today.

  1. Stellar Wakes from Dark Matter Subhalos

    Science.gov (United States)

    Buschmann, Malte; Kopp, Joachim; Safdi, Benjamin R.; Wu, Chih-Liang

    2018-05-01

    We propose a novel method utilizing stellar kinematic data to detect low-mass substructure in the Milky Way's dark matter halo. By probing characteristic wakes that a passing dark matter subhalo leaves in the phase-space distribution of ambient halo stars, we estimate sensitivities down to subhalo masses of ˜107 M⊙ or below. The detection of such subhalos would have implications for dark matter and cosmological models that predict modifications to the halo-mass function at low halo masses. We develop an analytic formalism for describing the perturbed stellar phase-space distributions, and we demonstrate through idealized simulations the ability to detect subhalos using the phase-space model and a likelihood framework. Our method complements existing methods for low-mass subhalo searches, such as searches for gaps in stellar streams, in that we can localize the positions and velocities of the subhalos today.

  2. Light detection and ranging measurements of wake dynamics. Part II: two-dimensional scanning

    DEFF Research Database (Denmark)

    Trujillo, Juan-José; Bingöl, Ferhat; Larsen, Gunner Chr.

    2011-01-01

    the instantaneous transversal wake position which is quantitatively compared with the prediction of the Dynamic Wake Meandering model. The results, shown for two 10-min time series, suggest that the conjecture of the wake behaving as a passive tracer is a fair approximation; this corroborates and expands...... the results of one-dimensional measurements already presented in the first part of this paper. Consequently, it is now possible to separate the deterministic and turbulent parts of the wake wind field, thus enabling capturing the wake in the meandering frame of reference. The results correspond, qualitatively...

  3. Neurological impairments and sleep-wake behaviour among the mentally retarded.

    Science.gov (United States)

    Lindblom, N; Heiskala, H; Kaski, M; Leinonen, L; Nevanlinna, A; Iivanainen, M; Laakso, M L

    2001-12-01

    The objective of the present study was to evaluate the relationship between the sleep-wake behaviour and neurological impairments among mentally retarded people. The sleep-wake behaviour of 293 mentally retarded subjects living in a rehabilitation center was studied by a standardized observation protocol carried out by trained staff members. The protocol consisted of brief check-ups of the subjects' sleep-wake status at 20-min intervals for five randomly chosen 24-h periods during 4 months. From the raw data five sleep-wake behaviour variables were formed. The data concerning the subject characteristics (age, body mass index (BMI), gender, degree of mental retardation, presence of locomotor disability, that of epilepsy, blindness or deafness and the usage of psychotropic medications) were collected from the medical records. Two main findings emerged: (1) severe locomotor disability, blindness and active epilepsy were found to be independent predictors of increased daytime sleep and increased number of wake-sleep transitions and (2) the subjects with a combination of two or all three of these impairments had a significantly more fragmented and abnormally distributed sleep than those with none or milder forms of these impairments. Age, BMI, degree of mental retardation and the studied medications played a minor role in the sleep disturbances of the study population. Finally, deafness was not found to be associated with any of the measured sleep-wake variables.

  4. Sensitivity Analysis to Control the Far-Wake Unsteadiness Behind Turbines

    Directory of Open Access Journals (Sweden)

    Esteban Ferrer

    2017-10-01

    Full Text Available We explore the stability of wakes arising from 2D flow actuators based on linear momentum actuator disc theory. We use stability and sensitivity analysis (using adjoints to show that the wake stability is controlled by the Reynolds number and the thrust force (or flow resistance applied through the turbine. First, we report that decreasing the thrust force has a comparable stabilising effect to a decrease in Reynolds numbers (based on the turbine diameter. Second, a discrete sensitivity analysis identifies two regions for suitable placement of flow control forcing, one close to the turbines and one far downstream. Third, we show that adding a localised control force, in the regions identified by the sensitivity analysis, stabilises the wake. Particularly, locating the control forcing close to the turbines results in an enhanced stabilisation such that the wake remains steady for significantly higher Reynolds numbers or turbine thrusts. The analysis of the controlled flow fields confirms that modifying the velocity gradient close to the turbine is more efficient to stabilise the wake than controlling the wake far downstream. The analysis is performed for the first flow bifurcation (at low Reynolds numbers which serves as a foundation of the stabilization technique but the control strategy is tested at higher Reynolds numbers in the final section of the paper, showing enhanced stability for a turbulent flow case.

  5. Four-dimensional characterization of inflow to and wakes from a multi-MW turbine: overview of the Turbine Wake and Inflow Characterization Study (TWICS2011)

    Science.gov (United States)

    Lundquist, J. K.; Banta, R. M.; Pichugina, Y.; Brewer, A.; Alvarez, R. J.; Sandberg, S. P.; Kelley, N. D.; Aitken, M.; Clifton, A.; Mirocha, J. D.

    2011-12-01

    To support substantial deployment of renewably-generated electricity from the wind, critical information about the variability of wind turbine wakes in the real atmosphere from multi-MW turbines is required. The assessment of the velocity deficit and turbulence associated with industrial-scale turbines is a major issue for wind farm design, particularly with respect to the optimization of the spacing between turbines. The significant velocity deficit and turbulence generated by upstream turbines can reduce the power production and produce harmful vibrations in downstream turbines, which can lead to excess maintenance costs. The complexity of wake effects depends on many factors arising from both hardware (turbine size, rotor speed, and blade geometry, etc.) and from meteorological considerations such as wind velocity, gradients of wind across the turbine rotor disk, atmospheric stability, and atmospheric turbulence. To characterize the relationships between the meteorological inflow and turbine wakes, a collaborative field campaign was designed and carried out at the Department of Energy's National Wind Technology Center (NREL/NWTC) in south Boulder, Colorado, in spring 2011. This site often experiences channeled flow with a consistent wind direction, enabling robust statistics of wake velocity deficits and turbulence enhancements. Using both in situ and remote sensing instrumentation, measurements upwind and downwind of multi-megawatt wind turbine in complex terrain quantified the variability of wind turbine inflow and wakes from an industrial-scale turbine. The turbine of interest has a rated power of 2.3 MW, a rotor diameter of 100m, and a hub height of 80m. In addition to several meteorological towers, one extending to hub height (80m) and another extending above the top of the rotor disk (135m), a Triton mini-sodar and a Windcube lidar characterized the inflow to the turbine and the variability across the site. The centerpiece instrument of the TWICS campaign

  6. Improvement of a near wake model for trailing vorticity

    DEFF Research Database (Denmark)

    Pirrung, Georg; Hansen, Morten Hartvig; Aagaard Madsen, Helge

    2014-01-01

    A near wake model, originally proposed by Beddoes, is further developed. The purpose of the model is to account for the radially dependent time constants of the fast aerodynamic response and to provide a tip loss correction. It is based on lifting line theory and models the downwash due to roughly...... the first 90 degrees of rotation. This restriction of the model to the near wake allows for using a computationally efficient indicial function algorithm. The aim of this study is to improve the accuracy of the downwash close to the root and tip of the blade and to decrease the sensitivity of the model...... to temporal discretization, both regarding numerical stability and quality of the results. The modified near wake model is coupled to an aerodynamics model, which consists of a blade element momentum model with dynamic inflow for the far wake and a 2D shed vorticity model that simulates the unsteady buildup...

  7. Experimental studies of plasma wake-field acceleration and focusing

    International Nuclear Information System (INIS)

    Rosenzweig, J.B.; Cole, B.; Ho, C.; Argonne National Lab., IL

    1989-01-01

    More than four years after the initial proposal of the Plasma Wake-field Accelerator (PWFA), it continues to be the object of much investigation, due to the promise of the ultra-high accelerating gradients that can exist in relativistic plasma waves driven in the wake of charged particle beams. These large amplitude plasma wake-fields are of interest in the laboratory, both for the wealth of basic nonlinear plasma wave phenomena which can be studied, as well as for the applications of acceleration of focusing of electrons and positrons in future linear colliders. Plasma wake-field waves are also of importance in nature, due to their possible role in direct cosmic ray acceleration. The purpose of the present work is to review the recent experimental advances made in PWFA research at Argonne National Laboratory, in which many interesting beam and plasma phenomena have been observed. Emphasis is given to discussion of the nonlinear aspects of the PWFA beam-plasma interaction. 29 refs., 13 figs

  8. Experimental investigation of an actively controlled three-dimensional turret wake

    Science.gov (United States)

    Shea, Patrick R.

    Hemispherical turrets are bluff bodies commonly used to house optical systems on airborne platforms. These bluff bodies develop complex, three-dimensional flow fields that introduce high mean and fluctuating loads to the turret as well as the airframe support structure which reduce the performance of both the optical systems and the aircraft. An experimental investigation of the wake of a three-dimensional, non-conformal turret was performed in a low-speed wind tunnel at Syracuse University to develop a better understanding of the fundamental flow physics associated with the turret wake. The flow field was studied at a diameter based Reynolds number of 550,000 using stereoscopic particle image velocimetry and dynamic pressure measurements both with and without active flow control. Pressure measurements were simultaneously sampled with the PIV measurements and taken on the surrounding boundary layer plate and at several locations on the turret geometry. Active flow control of the turret wake was performed around the leading edge of the turret aperture using dynamic suction in steady open-loop, unsteady open-loop, and simple closed-loop configurations. Analysis of the uncontrolled wake provided insight into the complex three-dimensional wake when evaluated spatially using PIV measurements and temporally using spectral analysis of the pressure measurements. Steady open-loop suction was found to significantly alter the spatial and temporal nature of the turret wake despite the control being applied locally to the aperture region of the turret. Unsteady open-loop and simple closed-loop control were found to provide similar levels of control to the steady open-loop forcing with a 45% reduction in the control input as calculated using the jet momentum coefficient. The data set collected provides unique information regarding the development of the baseline three-dimensional wake and the wake with three different active flow control configurations. These data can be used to

  9. Mast Wake Reduction by Shaping

    National Research Council Canada - National Science Library

    Beauchamp, Charles H

    2005-01-01

    The present invention relates to various mast shapes, in which the mast shapes minimize the production of visible, electro-optic, infrared and radar cross section wake signatures produced by water surface piercing masts...

  10. Wake interaction and power production of variable height model wind farms

    International Nuclear Information System (INIS)

    Vested, M H; Sørensen, J N; Hamilton, N; Cal, R B

    2014-01-01

    Understanding wake dynamics is an ongoing research topic in wind energy, since wakes have considerable effects on the power production when wind turbines are placed in a wind farm. Wind tunnel experiments have been conducted to study the wake to wake interaction in a model wind farm in tandem with measurements of the extracted power. The aim is to investigate how alternating mast height influences the interaction of the wakes and the power production. Via the use of stereo-particle image velocimetry, the flow field was obtained in the first and last rows of the wind turbine array as a basis of comparison. It was found that downstream of the exit row wind turbine, the power was increased by 25% in the case of a staggered height configuration. This is partly due to the fact that the taller turbines reach into a flow area with a softened velocity gradient. Another aspect is that the wake downstream of a tall wind turbine to some extent passes above the standard height wind turbine. Overall the experiments show that the velocity field downstream of the exit row changes considerably when the mast height is alternating

  11. Benchmarking of wind farm scale wake models in the EERA - DTOC project

    DEFF Research Database (Denmark)

    Réthoré, Pierre-Elouan; Hansen, Kurt Schaldemose; Barthelmie, R.J.

    2013-01-01

    -flow to combine wind farm (micro) and cluster (meso) scale wake models. For this purpose, a benchmark campaign is organized on the existing wind farm wake models available within the project, in order to identify which model would be the most appropriate for this coupling. A number of standardized wake cases......Designing offshore wind farms next to existing or planned wind farm clusters has recently become a common practice in the North Sea. These types of projects face unprecedented challenges in term of wind energy siting. The currently ongoing European project FP7 EERA - DTOC (Design Tool for Offshore...... wind farm Clusters) is aiming at providing a new type of model work-flow to address this issue. The wake modeling part of the EERA - DTOC project is to improve the fundamental understanding of wind turbine wakes and modeling. One of these challenges is to create a new kind of wake modeling work...

  12. Comparison of two LES codes for wind turbine wake studies

    DEFF Research Database (Denmark)

    Chivaee, Hamid Sarlak; Pierella, F.; Mikkelsen, Robert Flemming

    2014-01-01

    of this paper is to investigate on two CFD solvers, the DTU's in-house code, EllipSys3D and the open-sourse toolbox, OpenFoam, for a set of actuator line based LES computations. Two types of simulations are performed: the wake behind a signle rotor and the wake behind a cluster of three inline rotors. Results...... are compared in terms of velocity deficit, turbulence kinetic energy and eddy viscosity. It is seen that both codes predict similar near-wake flow structures with the exception of OpenFoam's simulations without the subgrid-scale model. The differences begin to increase with increasing the distance from...... of the wake structures and more homogenuous flow structures. It is finally observed that OpenFoam computations are more sensitive to the SGS models....

  13. Mild Traumatic Brain Injury Chronically Impairs Sleep- and Wake-Dependent Emotional Processing.

    Science.gov (United States)

    Mantua, Janna; Henry, Owen S; Garskovas, Nolan F; Spencer, Rebecca M C

    2017-06-01

    A single traumatic brain injury (TBI), even when mild (ie, concussion), can cause lasting consequences. Individuals with a history of chronic (>1-year prior) mild TBI have an increased risk of mood disturbances (eg, depression, suicide). This population also has lingering sleep alterations, including poor sleep quality and changes in sleep stage proportions. Given these sleep deficits, we aimed to test whether sleep-dependent emotional memory consolidation is reduced in this population. We utilized a mild TBI group (3.7 ± 2.9 years post injury) and an uninjured (non-TBI) population. Participants viewed negative and neutral images both before and after a 12-hour period containing sleep ("Sleep" group) or an equivalent period of time spent awake ("Wake" group). Participants rated images for valence/arousal at both sessions, and memory recognition was tested at session two. The TBI group had less rapid eye movement (REM), longer REM latency, and more sleep complaints. Sleep-dependent memory consolidation of nonemotional images was present in all participants. However, consolidation of negative images was only present in the non-TBI group. A lack of differentiation between the TBI Sleep and Wake groups was due to poor performance in the sleep group and, unexpectedly, enhanced performance in the wake group. Additionally, although the non-TBI participants habituated to negative images over a waking period, the TBI participants did not. We propose disrupted sleep- and wake-dependent emotional processing contributes to poor emotional outcomes following chronic, mild TBI. This work has broad implications, as roughly one-third of the US population will sustain a mild TBI during their lifetime. © Sleep Research Society 2017. Published by Oxford University Press on behalf of the Sleep Research Society. All rights reserved. For permissions, please e-mail journals.permissions@oup.com.

  14. Multisite accelerometry for sleep and wake classification in children.

    Science.gov (United States)

    Lamprecht, Marnie L; Bradley, Andrew P; Tran, Tommy; Boynton, Alison; Terrill, Philip I

    2015-01-01

    Actigraphy is a useful alternative to the gold standard polysomnogram for non-invasively measuring sleep and wakefulness. However, it is unable to accurately assess sleep fragmentation due to its inability to differentiate restless sleep from wakefulness and quiet wake from sleep. This presents significant limitations in the assessment of sleep-related breathing disorders where sleep fragmentation is a common symptom. We propose that this limitation may be caused by hardware constraints and movement representation techniques. Our objective was to determine if multisite tri-axial accelerometry improves sleep and wake classification. Twenty-four patients aged 6-15 years (median: 8 years, 16 male) underwent a diagnostic polysomnogram while simultaneously recording motion from the left wrist and index fingertip, upper thorax and left ankle and great toe using a custom accelerometry system. Movement was quantified using several features and two feature selection techniques were employed to select optimal features for restricted feature set sizes. A heuristic was also applied to identify movements during restless sleep. The sleep and wake classification performance was then assessed and validated against the manually scored polysomnogram using discriminant analysis. Tri-axial accelerometry measured at the wrist significantly improved the wake detection when compared to uni-axial accelerometry (specificity at 85% sensitivity: 71.3(14.2)% versus 55.2(24.7)%, p < 0.01). Multisite accelerometry significantly improved the performance when compared to the single wrist placement (specificity at 85% sensitivity: 82.1(12.5)% versus 71.3(14.2)%, p < 0.05). Our results indicate that multisite accelerometry offers a significant performance benefit which could be further improved by analysing movement in raw multisite accelerometry data.

  15. Consciousness in waking and dreaming: the roles of neuronal oscillation and neuromodulation in determining similarities and differences.

    Science.gov (United States)

    Kahn, D; Pace-Schott, E F; Hobson, J A

    1997-05-01

    State-dependent aspects of consciousness are explored with particular attention to waking and dreaming. First, those phenomenological differences between waking and dreaming that have been established through subjective reports are reviewed. These differences are robustly expressed in most aspects of consciousness including perception, attention, memory, emotion, orientation, and thought. Next, the roles of high frequency neuronal oscillation and neuromodulation are explored in waking and rapid eye movement sleep, the stage of sleep with which the most intense dreaming is associated. The high frequency neuronal oscillations serve similar functions in the wake and rapid eye movement states sleep but neuromodulation is very different in the two states. The collective high frequency oscillatory activity gives coherence to spatially separate neurons but, because of the different neuromodulation, the binding of sensory input in the wake state is very different from the binding of internally perceived input during rapid eye movement sleep. An explanatory model is presented which states that neuromodulation, as well as input source and brain activation level differentiate states of the brain, while the self-organized collective neuronal oscillations unify consciousness via long range correlations.

  16. Flow Phenomena in the Very Near Wake of a Flat Plate with a Circular Trailing Edge

    Science.gov (United States)

    Rai, Man Mohan

    2014-01-01

    The very near wake of a flat plate with a circular trailing edge, exhibiting pronounced shedding of wake vortices, is investigated with data from a direct numerical simulation. The separating boundary layers are turbulent and statistically identical thus resulting in a wake that is symmetric in the mean. The focus here is on the instability of the detached shear layers, the evolution of rib-vortex induced localized regions of reverse flow that detach from the main body of reverse flow in the trailing edge region and convect downstream, and phaseaveraged velocity statistics in the very near wake. The detached shear layers are found to exhibit unstable behavior intermittently, including the development of shear layer vortices as in earlier cylinder flow investigations with laminar separating boundary layers. Only a small fraction of the separated turbulent boundary layers undergo this instability, and form the initial shed vortices. Pressure spectra within the shear layers show a broadband peak at a multiple of shedding frequency. Phase-averaged intensity and shear stress distributions of the randomly fluctuating component of velocity are compared with those obtained in the near wake. The distributions of the production terms in the transport equations for the turbulent stresses are also provided.

  17. Comparison of the far wake behind dual rotor and dual disk configurations

    DEFF Research Database (Denmark)

    Okulov, Valery; Mikkelsen, Robert Flemming; Naumov, I. V.

    2016-01-01

    wake features for two rotors subjected to different operating and spatial conditions. As a part of this, a comparison with the wake development behind two disks replacing the rotor models was performed to determine the difference between the two wake systems.LDA and Stereo PIV experiments were carried...

  18. Wake of inertial waves of a horizontal cylinder in horizontal translation

    Science.gov (United States)

    Machicoane, Nathanaël; Labarre, Vincent; Voisin, Bruno; Moisy, Frédéric; Cortet, Pierre-Philippe

    2018-03-01

    We analyze theoretically and experimentally the wake behind a horizontal cylinder of diameter d horizontally translated at constant velocity U in a fluid rotating about the vertical axis at a rate Ω . Using particle image velocimetry measurements in the rotating frame, we show that the wake is stabilized by rotation for Reynolds number Re =U d /ν much larger than in a nonrotating fluid. Over the explored range of parameters, the limit of stability is Re ≃(275 ±25 )/Ro , with Ro =U /2 Ω d the Rossby number, indicating that the stabilizing process is governed by the Ekman pumping in the boundary layer. At low Rossby number, the wake takes the form of a stationary pattern of inertial waves, similar to the wake of surface gravity waves behind a ship. We compare this steady wake pattern to a model, originally developed by Johnson [E. R. Johnson, J. Fluid Mech. 120, 359 (1982), 10.1017/S0022112082002808], assuming a free-slip boundary condition and a weak streamwise perturbation. Our measurements show quantitative agreement with this model for Ro ≲0.3 . At larger Rossby number, the phase pattern of the wake is close to the prediction for an infinitely small line object. However, the wake amplitude and phase origin are not correctly described by the weak-streamwise-perturbation model, calling for an alternative model for the boundary condition at moderate rotation rate.

  19. Analyzing complex wake-terrain interactions and its implications on wind-farm performance.

    Science.gov (United States)

    Tabib, Mandar; Rasheed, Adil; Fuchs, Franz

    2016-09-01

    Rotating wind turbine blades generate complex wakes involving vortices (helical tip-vortex, root-vortex etc.).These wakes are regions of high velocity deficits and high turbulence intensities and they tend to degrade the performance of down-stream turbines. Hence, a conservative inter-turbine distance of up-to 10 times turbine diameter (10D) is sometimes used in wind-farm layout (particularly in cases of flat terrain). This ensures that wake-effects will not reduce the overall wind-farm performance, but this leads to larger land footprint for establishing a wind-farm. In-case of complex-terrain, within a short distance (say 10D) itself, the nearby terrain can rise in altitude and be high enough to influence the wake dynamics. This wake-terrain interaction can happen either (a) indirectly, through an interaction of wake (both near tip vortex and far wake large-scale vortex) with terrain induced turbulence (especially, smaller eddies generated by small ridges within the terrain) or (b) directly, by obstructing the wake-region partially or fully in its flow-path. Hence, enhanced understanding of wake- development due to wake-terrain interaction will help in wind farm design. To this end the current study involves: (1) understanding the numerics for successful simulation of vortices, (2) understanding fundamental vortex-terrain interaction mechanism through studies devoted to interaction of a single vortex with different terrains, (3) relating influence of vortex-terrain interactions to performance of a wind-farm by studying a multi-turbine wind-farm layout under different terrains. The results on interaction of terrain and vortex has shown a much faster decay of vortex for complex terrain compared to a flatter-terrain. The potential reasons identified explaining the observation are (a) formation of secondary vortices in flow and its interaction with the primary vortex and (b) enhanced vorticity diffusion due to increased terrain-induced turbulence. The implications of

  20. Wake-field studies on photonic band gap accelerator cavities

    International Nuclear Information System (INIS)

    Li, D.; Kroll, N.; Stanford Linear Accelerator Center, M/S 26, P.O. Box 4349, Stanford, California; Smith, D.R.; Schultz, S.

    1997-01-01

    We have studied the wake-field of several metal Photonic Band Gap (PBG) cavities which consist of either a square or a hexagonal array of metal cylinders, bounded on top and bottom by conducting or superconducting sheets, surrounded by placing microwave absorber at the periphery or by replacing outer rows of metal cylinders with lossy dielectric ones, or by metallic walls. A removed cylinder from the center of the array constitutes a site defect where a localized electromagnetic mode can occur. While both monopole and dipole wake-fields have been studied, we confine our attention here mainly to the dipole case. The dipole wake-field is produced by modes in the propagation bands which tend to fill the entire cavity more or less uniformly and are thus easy to damp selectively. MAFIA time domain simulation of the transverse wake-field has been compared with that of a cylindrical pill-box comparison cavity. Even without damping the wake-field of the metal PBG cavity is substantially smaller than that of the pill-box cavity and may be further reduced by increasing the size of the lattice. By introducing lossy material at the periphery we have been able to produce Q factors for the dipole modes in the 40 to 120 range without significantly degrading the accelerating mode. copyright 1997 American Institute of Physics

  1. Uncertainties and Wakes for Short-term Power Production of a Wind Farm

    DEFF Research Database (Denmark)

    Göçmen, Tuhfe; Giebel, Gregor

    2018-01-01

    Similar to the conventional power plants, the wind farms are expected to contribute to the grid stability and communicate with the system operators regarding the potential power production on much shorter time scales than AEP or even 10-min. Additionally, increasing interest to aerodynamic control...... of wind farms, both in the research community and in the industry, necessitates the wake models to be more accurate and reliable at shorter intervals. In this study, we discuss the uncertainties attached to an engineering wake model derived for 1-sec turbine data, and investigate the methods for reducing...... the uncertainty of such an application via further training the model for the wind farm and the time period in question using the historical data....

  2. CFD Wake Modelling with a BEM Wind Turbine Sub-Model

    Directory of Open Access Journals (Sweden)

    Anders Hallanger

    2013-01-01

    Full Text Available Modelling of wind farms using computational fluid dynamics (CFD resolving the flow field around each wind turbine's blades on a moving computational grid is still too costly and time consuming in terms of computational capacity and effort. One strategy is to use sub-models for the wind turbines, and sub-grid models for turbulence production and dissipation to model the turbulent viscosity accurately enough to handle interaction of wakes in wind farms. A wind turbine sub-model, based on the Blade Momentum Theory, see Hansen (2008, has been implemented in an in-house CFD code, see Hallanger et al. (2002. The tangential and normal reaction forces from the wind turbine blades are distributed on the control volumes (CVs at the wind turbine rotor location as sources in the conservation equations of momentum. The classical k-epsilon turbulence model of Launder and Spalding (1972 is implemented with sub-grid turbulence (SGT model, see Sha and Launder (1979 and Sand and Salvesen (1994. Steady state CFD simulations were compared with flow and turbulence measurements in the wake of a model scale wind turbine, see Krogstad and Eriksen (2011. The simulated results compared best with experiments when stalling (boundary layer separation on the wind turbine blades did not occur. The SGT model did improve turbulence level in the wake but seems to smear the wake flow structure. It should be noted that the simulations are carried out steady state not including flow oscillations caused by vortex shedding from tower and blades as they were in the experiments. Further improvement of the simulated velocity defect and turbulence level seems to rely on better parameter estimation to the SGT model, improvements to the SGT model, and possibly transient- instead of steady state simulations.

  3. Comparison of two LES codes for wind turbine wake studies

    International Nuclear Information System (INIS)

    Sarlak, H; Mikkelsen, R; Sørensen, J N; Pierella, F

    2014-01-01

    For the third time a blind test comparison in Norway 2013, was conducted comparing numerical simulations for the rotor C p and C t and wake profiles with the experimental results. As the only large eddy simulation study among participants, results of the Technical University of Denmark (DTU) using their in-house CFD solver, EllipSys3D, proved to be more reliable among the other models for capturing the wake profiles and the turbulence intensities downstream the turbine. It was therefore remarked in the workshop to investigate other LES codes to compare their performance with EllipSys3D. The aim of this paper is to investigate on two CFD solvers, the DTU's in-house code, EllipSys3D and the open-sourse toolbox, OpenFoam, for a set of actuator line based LES computations. Two types of simulations are performed: the wake behind a signle rotor and the wake behind a cluster of three inline rotors. Results are compared in terms of velocity deficit, turbulence kinetic energy and eddy viscosity. It is seen that both codes predict similar near-wake flow structures with the exception of OpenFoam's simulations without the subgrid-scale model. The differences begin to increase with increasing the distance from the upstream rotor. From the single rotor simulations, EllipSys3D is found to predict a slower wake recovery in the case of uniform laminar flow. From the 3-rotor computations, it is seen that the difference between the codes is smaller as the disturbance created by the downstream rotors causes break down of the wake structures and more homogenuous flow structures. It is finally observed that OpenFoam computations are more sensitive to the SGS models

  4. Maximum wind power plant generation by reducing the wake effect

    International Nuclear Information System (INIS)

    De-Prada-Gil, Mikel; Alías, César Guillén; Gomis-Bellmunt, Oriol; Sumper, Andreas

    2015-01-01

    Highlights: • To analyze the benefit of applying a new control strategy to maximise energy yield. • To operate some wind turbines at non-optimum points for reducing wake effects. • Single, partial and multiple wakes for any wind direction are taken into account. • Thrust coefficient is computed according to Blade Element Momentum (BEM) theory. - Abstract: This paper analyses, from a steady state point of view, the potential benefit of a Wind Power Plant (WPP) control strategy whose main objective is to maximise its total energy yield over its lifetime by taking into consideration that the wake effect within the WPP varies depending on the operation of each wind turbine. Unlike the conventional approach in which each wind turbine operation is optimised individually to maximise its own energy capture, the proposed control strategy aims to optimise the whole system by operating some wind turbines at sub-optimum points, so that the wake effect within the WPP is reduced and therefore the total power generation is maximised. The methodology used to assess the performance of both control approaches is presented and applied to two particular study cases. It contains a comprehensive wake model considering single, partial and multiple wake effects among turbines. The study also takes into account the Blade Element Momentum (BEM) theory to accurately compute both power and thrust coefficient of each wind turbine. The results suggest a good potential of the proposed concept, since an increase in the annual energy captured by the WPP from 1.86% up to 6.24% may be achieved (depending on the wind rose at the WPP location) by operating some specific wind turbines slightly away from their optimum point and reducing thus the wake effect

  5. Local Use-Dependent Sleep in Wakefulness Links Performance Errors to Learning.

    Science.gov (United States)

    Quercia, Angelica; Zappasodi, Filippo; Committeri, Giorgia; Ferrara, Michele

    2018-01-01

    Sleep and wakefulness are no longer to be considered as discrete states. During wakefulness brain regions can enter a sleep-like state (off-periods) in response to a prolonged period of activity (local use-dependent sleep). Similarly, during nonREM sleep the slow-wave activity, the hallmark of sleep plasticity, increases locally in brain regions previously involved in a learning task. Recent studies have demonstrated that behavioral performance may be impaired by off-periods in wake in task-related regions. However, the relation between off-periods in wake, related performance errors and learning is still untested in humans. Here, by employing high density electroencephalographic (hd-EEG) recordings, we investigated local use-dependent sleep in wake, asking participants to repeat continuously two intensive spatial navigation tasks. Critically, one task relied on previous map learning (Wayfinding) while the other did not (Control). Behaviorally awake participants, who were not sleep deprived, showed progressive increments of delta activity only during the learning-based spatial navigation task. As shown by source localization, delta activity was mainly localized in the left parietal and bilateral frontal cortices, all regions known to be engaged in spatial navigation tasks. Moreover, during the Wayfinding task, these increments of delta power were specifically associated with errors, whose probability of occurrence was significantly higher compared to the Control task. Unlike the Wayfinding task, during the Control task neither delta activity nor the number of errors increased progressively. Furthermore, during the Wayfinding task, both the number and the amplitude of individual delta waves, as indexes of neuronal silence in wake (off-periods), were significantly higher during errors than hits. Finally, a path analysis linked the use of the spatial navigation circuits undergone to learning plasticity to off periods in wake. In conclusion, local sleep regulation in

  6. Investigating fundamental properties of wind turbine wake structure using particle image velocimetry

    Energy Technology Data Exchange (ETDEWEB)

    Whale, J. [Univ. of Edinburgh, Dept. of Mechanical Engineering, Edinburgh (United Kingdom)

    1997-08-01

    Low Reynolds number flow visualization tests are often used for showing the flow pattern changes associated with changes in lift-coefficients at a higher Reynolds number. In wind turbine studies, analysis of measured wake structures at small scale may reveal fundamental properties of the wake which will offer wake modellers a more complete understanding of rotor flows. Measurements are presented from experiments on a model wind turbine rig conducted in a water channel. The laser-optics technique of Particle Image Velocimetry (PIV) is used to make simultaneous multi-point measurements of the wake flow behind small-scale rotors. Analysis of the PIV data shows trends in velocity and vorticity structure in the wake. Study of the flow close to the rotor plane reveals information on stalled flow and blade performance. (au)

  7. Engineering models for merging wakes in wind farm optimization applications

    DEFF Research Database (Denmark)

    Machefaux, Ewan; Larsen, Gunner Chr.; Murcia Leon, Juan Pablo

    2015-01-01

    The present paper deals with validation of 4 different engineering wake superposition approaches against detailed CFD simulations and covering different turbine interspacing, ambient turbulence intensities and mean wind speeds. The first engineering model is a simple linear superposition of wake ...

  8. Wakes behind surface-mounted obstacles: Impact of aspect ratio, incident angle, and surface roughness

    Science.gov (United States)

    Tobin, Nicolas; Chamorro, Leonardo P.

    2018-03-01

    The so-called wake-moment coefficient C˜h and lateral wake deflection of three-dimensional windbreaks are explored in the near and far wake. Wind-tunnel experiments were performed to study the functional dependence of C˜h with windbreak aspect ratio, incidence angle, and the ratio of the windbreak height and surface roughness (h /z0 ). Supported with the data, we also propose basic models for the wake deflection of the windbreak in the near and far fields. The near-wake model is based on momentum conservation considering the drag on the windbreak, whereas the far-wake counterpart is based on existing models for wakes behind surface-mounted obstacles. Results show that C˜h does not change with windbreak aspect ratios of 10 or greater; however, it may be lower for an aspect ratio of 5. C˜h is found to change roughly with the cosine of the incidence angle, and to depend strongly on h /z0 . The data broadly support the proposed wake-deflection models, though better predictions could be made with improved knowledge of the windbreak drag coefficient.

  9. Viscous wing theory development. Volume 1: Analysis, method and results

    Science.gov (United States)

    Chow, R. R.; Melnik, R. E.; Marconi, F.; Steinhoff, J.

    1986-01-01

    Viscous transonic flows at large Reynolds numbers over 3-D wings were analyzed using a zonal viscid-inviscid interaction approach. A new numerical AFZ scheme was developed in conjunction with the finite volume formulation for the solution of the inviscid full-potential equation. A special far-field asymptotic boundary condition was developed and a second-order artificial viscosity included for an improved inviscid solution methodology. The integral method was used for the laminar/turbulent boundary layer and 3-D viscous wake calculation. The interaction calculation included the coupling conditions of the source flux due to the wing surface boundary layer, the flux jump due to the viscous wake, and the wake curvature effect. A method was also devised incorporating the 2-D trailing edge strong interaction solution for the normal pressure correction near the trailing edge region. A fully automated computer program was developed to perform the proposed method with one scalar version to be used on an IBM-3081 and two vectorized versions on Cray-1 and Cyber-205 computers.

  10. Comparison study between wind turbine and power kite wakes

    Science.gov (United States)

    Haas, T.; Meyers, J.

    2017-05-01

    Airborne Wind Energy (AWE) is an emerging technology in the field of renewable energy that uses kites to harvest wind energy. However, unlike for conventional wind turbines, the wind environment in AWE systems has not yet been studied in much detail. We propose a simulation framework using Large Eddy Simulation to model the wakes of such kite systems and offer a comparison with turbine-like wakes. In order to model the kite effects on the flow, a lifting line technique is used. We investigate different wake configurations related to the operation modes of wind turbines and airborne systems in drag mode. In the turbine mode, the aerodynamic torque of the blades is directly added to the flow. In the kite drag mode, the aerodynamic torque of the wings is directly balanced by an opposite torque induced by on-board generators; this results in a total torque on the flow that is zero. We present the main differences in wake characteristics, especially flow induction and vorticity fields, for the depicted operation modes both with laminar and turbulent inflows.

  11. Electron holes observed in the Moon Plasma Wake

    Science.gov (United States)

    Hutchinson, I. H.; Malaspina, D.; Zhou, C.

    2017-10-01

    Electrostatic instabilities are predicted in the magnetized wake of plasma flowing past a non-magnetic absorbing object such as a probe or the moon. Analysis of the data from the Artemis satellites, now orbiting the moon at distances ten moon radii and less, shows very clear evidence of fast-moving isolated solitary potential structures causing bipolar electric field excursions as they pass the satellite's probes. These structures have all the hallmarks of electron holes: BGK solitons typically a few Debye-lengths in size, self-sustaining by a deficit of phase-space density on trapped orbits. Electron holes are now observed to be widespread in space plasmas. They have been observed in PIC simulations of the moon wake to be the non-linear consequence of the predicted electron instabilities. Simulations document hole prevalence, speed, length, and depth; and theory can explain many of these features from kinetic analysis. The solar wind wake is certainly the cause of the overwhelming majority of the holes observed by Artemis, because we observe almost all holes to be in or very near to the wake. We compare theory and simulation of the hole generation, lifetime, and transport mechanisms with observations. Work partially supported by NASA Grant NNX16AG82G.

  12. TR-PIV measurement of the wake behind a grooved cylinder at low Reynolds number

    Science.gov (United States)

    Liu, Ying Zheng; Shi, Liu Liu; Yu, Jun

    2011-04-01

    A comparative study of the wakes behind cylinders with grooved and smooth surfaces was performed with a view to understand the wake characteristics associated with the adult Saguaro cacti. A low-speed recirculation water channel was established for the experiment; the Reynolds number, based on the free-stream velocity and cylinder diameter (D), was kept at ReD=1500. State-of-the-art time-resolved particle image velocimetry (TR-PIV) was employed to measure a total of 20 480 realizations of the wake field at a frame rate of 250 Hz, enabling a comprehensive view of the time- and phase-averaged wake pattern. In comparison to the wake behind the smooth cylinder, the length of the recirculation zone behind the grooved cylinder was extended by nearly 18.2%, yet the longitudinal velocity fluctuation intensity was considerably weakened. A global view of the peaked spectrum of the longitudinal velocity component revealed that the intermediate region for the grooved cylinder, which approximately corresponds to the transition region where the shear layer vortices interact, merge and shed before the formation of the Karman-like vortex street, was much wider than that for the smooth one. The unsteady events near St=0.3-0.4 were detected in the intermediate region behind the grooved cylinder, but no such events were found in the smooth cylinder system. Although the formation of the Karman-like vortex street was delayed by about 0.6D downstream for the grooved cylinder, no prominent difference in the vortex street region was found in the far wake for both cylinders. The Proper Orthogonal Decomposition (POD) method was used extensively to decompose the vector and swirling strength fields, which gave a close-up view of the vortices in the near wake. The first two POD modes of the swirling strength clarified the spatio-temporal characteristics of the shear layer vortices behind the grooved cylinder. The small-scale vortices superimposed on the shear layers behind the grooved cylinder

  13. Wake Vortex Detection: Phased Microphone vs. Linear Infrasonic Array

    Science.gov (United States)

    Shams, Qamar A.; Zuckerwar, Allan J.; Sullivan, Nicholas T.; Knight, Howard K.

    2014-01-01

    Sensor technologies can make a significant impact on the detection of aircraft-generated vortices in an air space of interest, typically in the approach or departure corridor. Current state-of-the art sensor technologies do not provide three-dimensional measurements needed for an operational system or even for wake vortex modeling to advance the understanding of vortex behavior. Most wake vortex sensor systems used today have been developed only for research applications and lack the reliability needed for continuous operation. The main challenges for the development of an operational sensor system are reliability, all-weather operation, and spatial coverage. Such a sensor has been sought for a period of last forty years. Acoustic sensors were first proposed and tested by National Oceanic and Atmospheric Administration (NOAA) early in 1970s for tracking wake vortices but these acoustic sensors suffered from high levels of ambient noise. Over a period of the last fifteen years, there has been renewed interest in studying noise generated by aircraft wake vortices, both numerically and experimentally. The German Aerospace Center (DLR) was the first to propose the application of a phased microphone array for the investigation of the noise sources of wake vortices. The concept was first demonstrated at Berlins Airport Schoenefeld in 2000. A second test was conducted in Tarbes, France, in 2002, where phased microphone arrays were applied to study the wake vortex noise of an Airbus 340. Similarly, microphone phased arrays and other opto-acoustic microphones were evaluated in a field test at the Denver International Airport in 2003. For the Tarbes and Denver tests, the wake trajectories of phased microphone arrays and lidar were compared as these were installed side by side. Due to a built-in pressure equalization vent these microphones were not suitable for capturing acoustic noise below 20 Hz. Our group at NASA Langley Research Center developed and installed an

  14. CFD simulation on Kappel propeller with a hull wake field

    DEFF Research Database (Denmark)

    Shin, Keun Woo; Andersen, Poul; Møller Bering, Rasmus

    2013-01-01

    Marine propellers are designed not for the open-water operation, but for the operation behind a hull due to the inhomogeneous hull wake and thrust deduction. The adaptation for the hull wake is important for the propulsive efficiency and cavitation risk especially on single-screw ships. CFD...... simulations for a propeller with a hull model have showed acceptable agreement with a model test result in the thrust and torque (Larsson et al. 2010). In the current work, a measured hull wake is applied to the simulation instead of modelling a hull, because the hull geometry is mostly not available...... for propeller designers and the computational effort can be reduced by excluding the hull. The CFD simulation of a propeller flow with a hull wake is verified in order to use CFD as a propeller design tool. A Kappel propeller, which is an innovative tip-modified propeller, is handled. Kappel propellers...

  15. Short bunch wake potentials for a chain of TESLA cavities

    International Nuclear Information System (INIS)

    Novokhatski, Alexander; Mosnier, Alban

    2014-01-01

    The modification of wake fields from a single cavity to a quasi-periodic structure of cavities is of great concern, especially for applications using very short bunches. We extend our former study (Novokhatski, 1997 [1]). A strong modification of wake fields along a train of cavities was clearly found for bunch lengths lower than 1 mm. In particular, the wakes induced by the bunch, as it proceeds down the successive cavities, decrease in amplitude and become more linear around the bunch center, with a profile very close to the integral of the charge density. The loss factor, decreasing also with the number of cells, becomes independent of bunch length for very short bunches and tends asymptotically to a finite value. This nice behavior of wake fields for short bunches presents good opportunity for application of very short bunches in Linear Colliders and X-ray Free Electron Lasers

  16. Monitoring offshore wind farm power performance with SCADA data and an advanced wake model

    Directory of Open Access Journals (Sweden)

    N. Mittelmeier

    2017-03-01

    Full Text Available Wind farm underperformance can lead to significant losses in revenues. The efficient detection of wind turbines operating below their expected power output and immediate corrections help maximize asset value. The method, presented in this paper, estimates the environmental conditions from turbine states and uses pre-calculated lookup tables from a numeric wake model to predict the expected power output. Deviations between the expected and the measured power output ratio between two turbines are an indication of underperformance. The confidence of detected underperformance is estimated by a detailed analysis of the uncertainties of the method. Power normalization with reference turbines and averaging several measures performed by devices of the same type can reduce uncertainties for estimating the expected power. A demonstration of the method's ability to detect underperformance in the form of degradation and curtailment is given. An underperformance of 8 % could be detected in a triple-wake condition.

  17. Counter-rotating vortex pairs in the wake of a vertical axis wind turbine

    Science.gov (United States)

    Rolin, Vincent; Porté-Agel, Fernando

    2017-04-01

    Despite the rising popularity of vertical axis wind turbines, or VAWTs, the wakes behind these machines is much less well understood than those behind horizontal axis wind turbines, or HAWTs. A thorough understanding of wakes is important as they can cause turbines in wind farms to produce less power than anticipated and increase the fatigue loading on turbines due to vibrations. In order to gain a deeper understanding of the wake behind a vertical axis wind turbine in atmospheric flow stereo-PIV is implemented in a boundary-layer wind tunnel to produce snapshots of the 3-component velocity field in the wake at various downstream positions. The boundaries of the wake are readily observed due to the high velocity gradients and turbulence present here. Two pairs of counter-rotating vortices similar to those in the wake of yawed HAWTs are also observed. An examination of the momentum fluxes behind the turbine demonstrates that the mean flow induced by these vortices entrains a large quantity of momentum from the unperturbed boundary layer flow above the wake. This effect proves to play an even more significant role than turbulence in reintroducing momentum into the wake. In order to comprehend why the VAWT produces these vortices we modify the double-multiple stream-tube model typically used to predict VAWT performance to incorporate crosswind forces. The similarity between VAWT and yawed HAWT wakes is found not to be coincidental as both cases feature rotors which exert a lateral thrust on the incoming wind which leads to the creation of counter-rotating vortex pairs.

  18. Hypocretin and GABA interact in the pontine reticular formation to increase wakefulness.

    Science.gov (United States)

    Brevig, Holly N; Watson, Christopher J; Lydic, Ralph; Baghdoyan, Helen A

    2010-10-01

    Hypocretin-1/orexin A administered directly into the oral part of rat pontine reticular formation (PnO) causes an increase in wakefulness and extracellular gamma-aminobutyric acid (GABA) levels. The receptors in the PnO that mediate these effects have not been identified. Therefore, this study tested the hypothesis that the increase in wakefulness caused by administration of hypocretin-1 into the PnO occurs via activation of GABAA receptors and hypocretin receptors. Within/between subjects. University of Michigan. Twenty-three adult male Crl:CD*(SD) (Sprague Dawley) rats. Microinjection of hypocretin-1, bicuculline (GABAA receptor antagonist), SB-334867 (hypocretin receptor-1 antagonist), and Ringer solution (vehicle control) into the PnO. Hypocretin-1 caused a significant concentration-dependent increase in wakefulness and decrease in rapid eye movement (REM) sleep and non-REM (NREM) sleep. Coadministration of SB-334867 and hypocretin-1 blocked the hypocretin-1-induced increase in wakefulness and decrease in both the NREM and REM phases of sleep. Coadministration of bicuculline and hypocretin-1 blocked the hypocretin-1-induced increase in wakefulness and decrease in NREM sleep caused by hypocretin-1. The increase in wakefulness caused by administering hypocretin-1 to the PnO is mediated by hypocretin receptors and GABAA receptors in the PnO. These results show for the first time that hypocretinergic and GABAergic transmission in the PnO can interact to promote wakefulness.

  19. Sleep–Wake Transition in Narcolepsy and Healthy Controls Using a Support Vector Machine

    DEFF Research Database (Denmark)

    Jensen, Julie B; Sorensen, Helge B D; Kempfner, Jacob

    2014-01-01

    .0199) and healthy subjects (P = 0.0265). In addition, the sleep-wake transitions were elevated in hypocretin-deficient patients. It is concluded that the classifier shows high validity for identifying the sleep-wake transition. Narcolepsy with cataplexy patients have more sleep-wake transitions during night...

  20. Numerical simulation and experimental research on wake field of ships under off-design conditions

    Science.gov (United States)

    Guo, Chun-yu; Wu, Tie-cheng; Zhang, Qi; Gong, Jie

    2016-10-01

    Different operating conditions (e.g. design and off-design) may lead to a significant difference in the hydrodynamics performance of a ship, especially in the total resistance and wake field of ships. This work investigated the hydrodynamic performance of the well-known KRISO 3600 TEU Container Ship (KCS) under three different operating conditions by means of Particle Image Velocimetry (PIV) and Computational Fluid Dynamics (CFD). The comparison results show that the use of PIV to measure a ship's nominal wake field is an important method which has the advantages of being contactless and highly accurate. Acceptable agreements between the results obtained by the two different methods are achieved. Results indicate that the total resistances of the KCS model under two off-design conditions are 23.88% and 13.92% larger than that under the designed condition, respectively.

  1. Hybrid vortex simulations of wind turbines using a three-dimensional viscous-inviscid panel method

    DEFF Research Database (Denmark)

    Ramos García, Néstor; Hejlesen, Mads Mølholm; Sørensen, Jens Nørkær

    2017-01-01

    adirect calculation, whereas the contribution from the large downstream wake is calculated using a mesh-based method. Thehybrid method is first validated in detail against the well-known MEXICO experiment, using the direct filament method asa comparison. The second part of the validation includes a study......A hybrid filament-mesh vortex method is proposed and validated to predict the aerodynamic performance of wind turbinerotors and to simulate the resulting wake. Its novelty consists of using a hybrid method to accurately simulate the wakedownstream of the wind turbine while reducing...

  2. On wake modeling, wind-farm gradients and AEP predictions at the Anholt wind farm

    DEFF Research Database (Denmark)

    Pena Diaz, Alfredo; Hansen, Kurt Schaldemose; Ott, Søren

    2017-01-01

    of the mesoscale simulations and supervisory control and data acquisition (SCADA), we show that for westerly flow in particular, there is a clear horizontal wind-speed gradient over the wind farm. We also use the mesoscale simulations to derive the undisturbed inflow conditions that are coupled with three commonly....... When looking at westerly flow wake cases, where the impact of the horizontal wind-speed gradient on the power of the undisturbed turbines is largest, the wake models agree with the SCADA fairly well; when looking at a southerly flow case, where the wake losses are highest, the wake models tend...... to underestimate the wake loss. With the mesoscale-wake model setup, we are also able to estimate the capacity factor of the wind farm rather well when compared to that derived from the SCADA. Finally, we estimate the uncertainty of the wake models by bootstrapping the SCADA. The models tend to underestimate...

  3. Wake Component Detection in X-Band SAR Images for Ship Heading and Velocity Estimation

    Directory of Open Access Journals (Sweden)

    Maria Daniela Graziano

    2016-06-01

    Full Text Available A new algorithm for ship wake detection is developed with the aim of ship heading and velocity estimation. It exploits the Radon transform and utilizes merit indexes in the intensity domain to validate the detected linear features as real components of the ship wake. Finally, ship velocity is estimated by state-of-the-art techniques of azimuth shift and Kelvin arm wavelength. The algorithm is applied to 13 X-band SAR images from the TerraSAR-X and COSMO/SkyMed missions with different polarization and incidence angles. Results show that the vast majority of wake features are correctly detected and validated also in critical situations, i.e., when multiple wake appearances or dark areas not related to wake features are imaged. The ship route estimations are validated with truth-at-sea in seven cases. Finally, it is also verified that the algorithm does not detect wakes in the surroundings of 10 ships without wake appearances.

  4. Fourier spectral simulations for wake fields in conducting cavities

    International Nuclear Information System (INIS)

    Min, M.; Chin, Y.-H.; Fischer, P.F.; Chae, Y.-Chul; Kim, K.-J.

    2007-01-01

    We investigate Fourier spectral time-domain simulations applied to wake field calculations in two-dimensional cylindrical structures. The scheme involves second-order explicit leap-frogging in time and Fourier spectral approximation in space, which is obtained from simply replacing the spatial differentiation operator of the YEE scheme by the Fourier differentiation operator on nonstaggered grids. This is a first step toward investigating high-order computational techniques with the Fourier spectral method, which is relatively simple to implement.

  5. Cheyne-stokes respiration during wakefulness in patients with chronic heart failure.

    Science.gov (United States)

    Grimm, Wolfram; Kesper, Karl; Cassel, Werner; Timmesfeld, Nina; Hildebrandt, Olaf; Koehler, Ulrich

    2017-05-01

    Cheyne-Stokes respiration (CSR) during sleep has been studied extensively in patients with chronic heart failure (CHF). Prevalence and prognostic significance of CSR during wakefulness in CHF, however, are largely unknown. CSR during wakefulness with an apnea-hypopnea cut-off ≥5/h and moderate to severe CSR with an apnea-hypopnea cutoff ≥15/h were analyzed using polysomnographic recordings in 267 patients with stable CHF with reduced left ventricular (LV) ejection fraction at our institution. Primary endpoint during follow-up was heart transplant-free survival. Fifty of 267 patients (19%) had CSR during wakefulness and 73 of 267 patients (27%) had CSR during sleep. CSR during wakefulness was associated with advanced age, atrial fibrillation, decreased LV ejection fraction, increased LV end-diastolic diameter, brain natriuretic peptide, New York Heart Failure class, and CSR during sleep. During 43 months mean follow-up, 67 patients (25%) died and 4 patients (1%) underwent heart transplantation. Multivariate Cox analysis identified age, male gender, chronic kidney disease, and LV ejection fraction as predictors of reduced transplant-free survival. CSR during wakefulness with an apnea-hypopnea cutoff ≥5/h as well as moderate to severe CSR while awake using an apnea-hypopnea cutoff ≥15/h did not predict reduced transplant-free survival independently from confounding factors. CSR during wakefulness appears to be a marker of heart failure severity.

  6. Power-Production Diagnostic Tools for Low-Density Wind Farms with Applications to Wake Steering

    Science.gov (United States)

    Takle, E. S.; Herzmann, D.; Rajewski, D. A.; Lundquist, J. K.; Rhodes, M. E.

    2016-12-01

    Hansen (2011) provided guidelines for wind farm wake analysis with applications to "high density" wind farms (where average distance between turbines is less than ten times rotor diameter). For "low-density" (average distance greater than fifteen times rotor diameter) wind farms, or sections of wind farms we demonstrate simpler sorting and visualization tools that reveal wake interactions and opportunities for wind farm power prediction and wake steering. SCADA data from a segment of a large mid-continent wind farm, together with surface flux measurements and lidar data are subjected to analysis and visualization of wake interactions. A time-history animated visualization of a plan view of power level of individual turbines provides a quick analysis of wake interaction dynamics. Yaw-based sectoral histograms of enhancement/decline of wind speed and power from wind farm reference levels reveals angular width of wake interactions and identifies the turbine(s) responsible for the power reduction. Concurrent surface flux measurements within the wind farm allowed us to evaluate stability influence on wake loss. A one-season climatology is used to identify high-priority candidates for wake steering based on estimated power recovery. Typical clearing prices on the day-ahead market are used to estimate the added value of wake steering. Current research is exploring options for identifying candidate locations for wind farm "build-in" in existing low-density wind farms.

  7. Using High-Fidelity Computational Fluid Dynamics to Help Design a Wind Turbine Wake Measurement Experiment

    International Nuclear Information System (INIS)

    Churchfield, M; Wang, Q; Scholbrock, A; Herges, T; Mikkelsen, T; Sjöholm, M

    2016-01-01

    We describe the process of using large-eddy simulations of wind turbine wake flow to help design a wake measurement campaign. The main goal of the experiment is to measure wakes and wake deflection that result from intentional yaw misalignment under a variety of atmospheric conditions at the Scaled Wind Farm Technology facility operated by Sandia National Laboratories in Lubbock, Texas. Prior simulation studies have shown that wake deflection may be used for wind-plant control that maximizes plant power output. In this study, simulations are performed to characterize wake deflection and general behavior before the experiment is performed to ensure better upfront planning. Beyond characterizing the expected wake behavior, we also use the large-eddy simulation to test a virtual version of the lidar we plan to use to measure the wake and better understand our lidar scan strategy options. This work is an excellent example of a “simulation-in-the-loop” measurement campaign. (paper)

  8. Simulating Wake Vortex Detection with the Sensivu Doppler Wind Lidar Simulator

    Science.gov (United States)

    Ramsey, Dan; Nguyen, Chi

    2014-01-01

    In support of NASA's Atmospheric Environment Safety Technologies NRA research topic on Wake Vortex Hazard Investigation, Aerospace Innovations (AI) investigated a set of techniques for detecting wake vortex hazards from arbitrary viewing angles, including axial perspectives. This technical report describes an approach to this problem and presents results from its implementation in a virtual lidar simulator developed at AI. Threedimensional data volumes from NASA's Terminal Area Simulation System (TASS) containing strong turbulent vortices were used as the atmospheric domain for these studies, in addition to an analytical vortex model in 3-D space. By incorporating a third-party radiative transfer code (BACKSCAT 4), user-defined aerosol layers can be incorporated into atmospheric models, simulating attenuation and backscatter in different environmental conditions and altitudes. A hazard detection algorithm is described that uses a twocomponent spectral model to identify vortex signatures observable from arbitrary angles.

  9. Aeroelastic impact of above-rated wave-induced structural motions on the near-wake stability of a floating offshore wind turbine rotor

    Science.gov (United States)

    Rodriguez, Steven; Jaworski, Justin

    2017-11-01

    The impact of above-rated wave-induced motions on the stability of floating offshore wind turbine near-wakes is studied numerically. The rotor near-wake is generated using a lifting-line free vortex wake method, which is strongly coupled to a finite element solver for kinematically nonlinear blade deformations. A synthetic time series of relatively high-amplitude/high-frequency representative of above-rated conditions of the NREL 5MW referece wind turbine is imposed on the rotor structure. To evaluate the impact of these above-rated conditions, a linear stability analysis is first performed on the near wake generated by a fixed-tower wind turbine configuration at above-rated inflow conditions. The platform motion is then introduced via synthetic time series, and a stability analysis is performed on the wake generated by the floating offshore wind turbine at the same above-rated inflow conditions. The stability trends (disturbance modes versus the divergence rate of vortex structures) of the two analyses are compared to identify the impact that above-rated wave-induced structural motions have on the stability of the floating offshore wind turbine wake.

  10. A Neuron-Based Model of Sleep-Wake Cycles

    Science.gov (United States)

    Postnova, Svetlana; Peters, Achim; Braun, Hans

    2008-03-01

    In recent years it was discovered that a neuropeptide orexin/hypocretin plays a main role in sleep processes. This peptide is produced by the neurons in the lateral hypothalamus, which project to almost all brain areas. We present a computational model of sleep-wake cycles, which is based on the Hodgkin-Huxley type neurons and considers reciprocal glutaminergic projections between the lateral hypothalamus and the prefrontal cortex. Orexin is released as a neuromodulator and is required to keep the neurons firing, which corresponds to the wake state. When orexin is depleted the neurons are getting silent as observed in the sleep state. They can be reactivated by the circadian signal from the suprachiasmatic nucleus and/or external stimuli (alarm clock). Orexin projections to the thalamocortical neurons also can account for their transition from tonic firing activity during wakefulness to synchronized burst discharges during sleep.

  11. Acceleration of electrons by the wake field of proton bunches

    International Nuclear Information System (INIS)

    Ruggiero, A.G.

    1986-01-01

    This paper discusses a novel idea to accelerate low-intensity bunches of electrons (or positrons) by the wake field of intense proton bunches travelling along the axis of a cylindrical rf structure. Accelerating gradients in excess of 100 MeV/m and large ''transformer ratios'', which allow for acceleration of electrons to energies in the TeV range, are calculated. A possible application of the method is an electron-positron linear collider with luminosity of 10 33 cm -2 s -1 . The relatively low cost and power consumption of the method is emphasized

  12. Effects of viscoelasticity in the high Reynolds number cylinder wake

    KAUST Repository

    Richter, David

    2012-01-16

    At Re = 3900, Newtonian flow past a circular cylinder exhibits a wake and detached shear layers which have transitioned to turbulence. It is the goal of the present study to investigate the effects which viscoelasticity has on this state and to identify the mechanisms responsible for wake stabilization. It is found through numerical simulations (employing the FENE-P rheological model) that viscoelasticity greatly reduces the amount of turbulence in the wake, reverting it back to a state which qualitatively appears similar to the Newtonian mode B instability which occurs at lower Re. By focusing on the separated shear layers, it is found that viscoelasticity suppresses the formation of the Kelvin-Helmholtz instability which dominates for Newtonian flows, consistent with previous studies of viscoelastic free shear layers. Through this shear layer stabilization, the viscoelastic far wake is then subject to the same instability mechanisms which dominate for Newtonian flows, but at far lower Reynolds numbers. © Copyright Cambridge University Press 2012.

  13. Effects of viscoelasticity in the high Reynolds number cylinder wake

    KAUST Repository

    Richter, David; Iaccarino, Gianluca; Shaqfeh, Eric S. G.

    2012-01-01

    At Re = 3900, Newtonian flow past a circular cylinder exhibits a wake and detached shear layers which have transitioned to turbulence. It is the goal of the present study to investigate the effects which viscoelasticity has on this state and to identify the mechanisms responsible for wake stabilization. It is found through numerical simulations (employing the FENE-P rheological model) that viscoelasticity greatly reduces the amount of turbulence in the wake, reverting it back to a state which qualitatively appears similar to the Newtonian mode B instability which occurs at lower Re. By focusing on the separated shear layers, it is found that viscoelasticity suppresses the formation of the Kelvin-Helmholtz instability which dominates for Newtonian flows, consistent with previous studies of viscoelastic free shear layers. Through this shear layer stabilization, the viscoelastic far wake is then subject to the same instability mechanisms which dominate for Newtonian flows, but at far lower Reynolds numbers. © Copyright Cambridge University Press 2012.

  14. Turbulent wakes of fractal objects

    NARCIS (Netherlands)

    Staicu, A.D.; Mazzi, B.; Vassilicos, J.C.; Water, van de W.

    2003-01-01

    Turbulence of a windtunnel flow is stirred using objects that have a fractal structure. The strong turbulent wakes resulting from three such objects which have different fractal dimensions are probed using multiprobe hot-wire anemometry in various configurations. Statistical turbulent quantities are

  15. Ventilation of an hydrofoil wake

    Science.gov (United States)

    Arndt, Roger; Lee, Seung Jae; Monson, Garrett

    2013-11-01

    Ventilation physics plays a role in a variety of important engineering applications. For example, hydroturbine ventilation is used for control of vibration and cavitation erosion and more recently for improving the dissolved oxygen content of the flow through the turbine. The latter technology has been the focus of an ongoing study involving the ventilation of an hydrofoil wake to determine the velocity and size distribution of bubbles in a bubbly wake. This was carried out by utilizing particle shadow velocimetry (PSV). This technique is a non-scattering approach that relies on direct in-line volume illumination by a pulsed source such as a light-emitting diode (LED). The data are compared with previous studies of ventilated flow. The theoretical results of Hinze suggest that a scaling relationship is possible that can lead to developing appropriate design parameters for a ventilation system. Sponsored by ONR and DOE.

  16. Sleep can eliminate list-method directed forgetting.

    Science.gov (United States)

    Abel, Magdalena; Bäuml, Karl-Heinz T

    2013-05-01

    Recent work suggests a link between sleep and memory consolidation, indicating that sleep in comparison to wakefulness stabilizes memories. However, relatively little is known about how sleep affects forgetting. Here we examined whether sleep influences directed forgetting, the finding that people can intentionally forget obsolete memories when cued to do so. We applied the list-method directed forgetting task and assessed memory performance after 3 delay intervals. Directed forgetting was present after a short 20-min delay and after a 12-hr delay filled with diurnal wakefulness; in contrast, the forgetting was absent after a 12-hr delay that included regular nocturnal sleep. Successful directed forgetting after a delay thus can depend on whether sleep or wakefulness follows upon encoding: When wakefulness follows upon encoding, the forgetting can be successful; when sleep follows upon encoding, no forgetting may arise. Connections of the results to recent studies on the interplay between forgetting and sleep are discussed.

  17. [Melatonin, synthetic analogs, and the sleep/wake rhythm].

    Science.gov (United States)

    Escames, G; Acuña-Castroviejo, D

    Melatonin, a widespread hormone in the animal kingdom, is produced by several organs and tissues besides the pineal gland. Whilst extrapineal melatonin behaves as a cytoprotective molecule, the pineal produces the hormone in a rhythmic manner. The discovery of melatonin in 1958, and the characterization of its synthesis somewhat later, let to the description of its photoperiodic regulation and its relationship with the biological rhythms such as the sleep/wake rhythm. The suprachiasmatic nuclei are the anatomical seat of the biological clock, represented by the clock genes, which code for the period and frequency of the rhythms. The photoperiod synchronizes the activity of the auprachiasmatic biological clock, which in turn induces the melatonin's rhythm. The rhythm of melatonin, peaking at 2-3 am, acts as an endogenous synchronizer that translates the environmental photoperiodic signal in chemical information for the cells. The sleep/wake cycle is a typical biological rhythm synchronized by melatonin, and the sleep/wake cycle alterations of chronobiological origin, are very sensitive to melatonin treatment. Taking advantage of the chronobiotic and antidepressive properties of melatonin, a series of synthetic analogs of this hormone, with high interest in insomnia, are now available. Melatonin is a highly effective chronobiotic in the treatment of chronobiological alterations of the sleep/wake cycle. From a pharmacokinetic point of view, the synthetic drugs derived from melatonin are interesting tools in the therapy of these alterations.

  18. The Case of the Neutron Star With a Wayward Wake

    Science.gov (United States)

    2006-06-01

    star were outside the confines of the remnant, its inferred speed would be a sluggish 20,000 miles per hour. Also, the measured temperature of the neutron star matches that of one born at the same time of the supernova remnant. What then, could cause the misaligned, or wayward, neutron star wake? The authors speculate that perhaps the doomed progenitor star was moving at a high speed before it exploded, so that the explosion site was not at the observed center of the supernova remnant. Fast moving gusts of gas inside the supernova remnant have further pushed the neutron star's wake out of alignment. Observations of J0617 in the next 10 years should put this idea to the test. "If the neutron star was born off-center and if the wake is being pushed around by cross-winds, the neutron star should be moving close to vertically, away from the center of the supernova remnant. Now we wait and see," said Gaensler. Chandra X-ray Image of J0617 in IC 443 Chandra X-ray Image of J0617 in IC 443 Another group, led by Margarita Karovska, also of the CfA, has concentrated on other, previously unnoticed intriguing features of J0617. At a recent conference on neutron stars in London, England, they announced their findings, which include a thin filament of cooler gas that appears to extend from the neutron star along the long axis of its wake, and a second point-like feature embedded in the X-ray nebula around the neutron star. "There are a number of puzzling observational features associated with this system crying out for longer observations," said Karovska. Other members of the Gaensler team were S. Chatterjee and P. O. Slane (CfA), E. van der Swaluw (Royal Netherlands Meteorological Institute), F. Camilo (Columbia University), and J. P. Hughes (Rutgers University). Karovska's team included T. Clarke (Naval Research Laboratory), G. Pavlov (Penn State University), and M.C. Weisskopf and V. Zavlin of the Marshall Space Flight Center, Huntsville, Ala. which also manages the Chandra

  19. Attractive methods for tracking minibus taxis for public transport regulatory purposes

    CSIR Research Space (South Africa)

    Van Zyl, JE

    2008-07-01

    Full Text Available including a separated wake model, but uses a pressure panel method for lifting surfaces. This paper describes the development of an unsteady subsonic wing-body code based on the DLM, with a source panel representation of bodies, a separated wake flow... model based on the ZONA6 approach and an approximate method of images to model wing-body interference. This approach provides greater flexibility in body shapes that can be modeled while retaining the reliability of the DLM for lifting surfaces...

  20. Documentation of Atmospheric Conditions During Observed Rising Aircraft Wakes

    Science.gov (United States)

    Zak, J. Allen; Rodgers, William G., Jr.

    1997-01-01

    Flight tests were conducted in the fall of 1995 off the coast of Wallops Island, Virginia in order to determine characteristics of wake vortices at flight altitudes. A NASA Wallops Flight Facility C130 aircraft equipped with smoke generators produced visible wakes at altitudes ranging from 775 to 2225 m in a variety of atmospheric conditions, orientations (head wind, cross wind), and airspeeds. Meteorological and aircraft parameters were collected continuously from a Langley Research Center OV-10A aircraft as it flew alongside and through the wake vortices at varying distances behind the C130. Meteorological data were also obtained from special balloon observations made at Wallops. Differential GPS capabilities were on each aircraft from which accurate altitude profiles were obtained. Vortices were observed to rise at distances beyond a mile behind the C130. The maximum altitude was 150 m above the C130 in a near neutral atmosphere with significant turbulence. This occurred from large vertical oscillations in the wakes. There were several cases when vortices did not descend after a very short initial period and remained near generation altitude in a variety of moderately stable atmospheres and wind shears.

  1. Wind Farm Wake: The 2016 Horns Rev Photo Case

    Directory of Open Access Journals (Sweden)

    Charlotte Bay Hasager

    2017-03-01

    Full Text Available Offshore wind farm wakes were observed and photographed in foggy conditions at Horns Rev 2 on 25 January 2016 at 12:45 UTC. These new images show highly contrasting conditions regarding the wind speed, turbulence intensity, atmospheric stability, weather conditions and wind farm wake development as compared to the Horns Rev 1 photographs from 12 February 2008. The paper examines the atmospheric conditions from satellite images, radiosondes, lidar and wind turbine data and compares the observations to results from atmospheric meso-scale modelling and large eddy simulation. Key findings are that a humid and warm air mass was advected from the southwest over cold sea and the dew-point temperature was such that cold-water advection fog formed in a shallow layer. The flow was stably stratified and the freestream wind speed was 13 m/s at hub height, which means that most turbines produced at or near rated power. The wind direction was southwesterly and long, narrow wakes persisted several rotor diameters downwind of the wind turbines. Eventually mixing of warm air from aloft dispersed the fog in the far wake region of the wind farm.

  2. On the functional significance of c-fos induction during the sleep-waking cycle.

    Science.gov (United States)

    Cirelli, C; Tononi, G

    2000-06-15

    A striking finding in recent years has been that the transition from sleep to waking is accompanied in many brain regions by a widespread activation of c-fos and other immediate-early genes (IEGs). IEGs are induced by various electrical or chemical signals to which neural cells are exposed and their protein products act as transcription factors to regulate the expression of other genes. After a few hours of sleep, the expression of these transcription factors in the brain is absent or restricted to very few cells. However, after a few hours of spontaneous waking or sleep deprivation, the expression of c-fos and other IEGs is high in cerebral cortex, hypothalamus, septum, and several thalamic and brainstem nuclei. While cells expressing c-fos during waking are widely distributed, they represent only a subset of all neurons in any given area. These observations raise several questions: Why is c-fos expressed during waking and not during sleep? Is waking always accompanied by c-fos induction? Which subset of cells express c-fos during waking and why only a subset? Once c-fos has been induced, what are the functional consequences of its activation? In this review, we summarize our current understanding of the meaning of c-fos activation in the brain in relation to the sleep-waking cycle and suggest that c-fos induction in the cerebral cortex during waking might be related to the occurrence of plastic phenomena.

  3. Acoustic Wake-Up Receivers for Home Automation Control Applications

    Directory of Open Access Journals (Sweden)

    Amir Bannoura

    2016-01-01

    Full Text Available Automated home applications are to ease the use of technology and devices around the house. Most of the electronic devices, like shutters or entertainment products (Hifi, TV and even WiFi, are constantly in a standby mode, where they consume a considerable amount of energy. The standby mode is necessary to react to commands triggered by the user, but the time the device spends in a standby mode is considered long. In our work, we present a receiver that is attached to home appliances that allows the devices to be activated while they are completely turned off in order to reduce the energy consumed in the standby mode. The receiver contains a low power wake-up module that reacts to an addressable acoustic 20-kHz sound signal that controls home devices that are connected to it. The acoustic wake-up signal can be sent by any kind of speaker that is available in commercial smartphones. The smartphones will operate as transmitters to the signals. Our wake-up receiver consists of two parts: a low power passive circuit connected to a wake-up chip microcontroller and an active micro-electromechanical system (MEMS microphone that receives the acoustic signal. A duty cycle is required to reduce the power consumption of the receiver, because the signal reception occurs when the microphone is active. The current consumption was measured to be 15 μA in sleep mode and 140 μA in active mode. An average wake-up range of 10 m using a smartphone as a sender was achieved.

  4. Wake effect on a uniform flow behind wind-turbine model

    DEFF Research Database (Denmark)

    Okulov, Valery; Naumov, I. V.; Mikkelsen, Robert Flemming

    2015-01-01

    LDA experiments were carried out to study the development of mean velocity profiles of the very far wake behind a wind turbine model in a water flume. The model of the rotor is placed in a middle of the flume. The initial flume flow is subjected to a very low turbulence level, limiting...... speed ratios from 3 to 9, and at different cross-sections from 10 to 100 rotor radii downstream from the rotor. By using regression techniques to fit the velocity profiles it was possible to obtain accurate velocity deficits and estimate length scales of the wake attenuation. The data are compared...... with different analytical models for wind turbine wakes....

  5. Three-dimensional wake dynamics of a blunt and divergent trailing edge airfoil

    Energy Technology Data Exchange (ETDEWEB)

    El-Gammal, M. [Rowan Williams Davies and Irwin Inc. (RWDI), Guelph, ON (Canada); Hangan, H. [University of Western Ontario, Boundary Layer Wind Tunnel Laboratory, London, ON (Canada)

    2008-05-15

    The wake dynamics of an airfoil with a blunt and divergent trailing edge is investigated experimentally at relatively high Reynolds. The near wake topology is examined versus different levels of free stream turbulence FST and angles of attack, while the downstream wake evolution is characterized at various levels of FST. The FST is found to have a significant effect on the shapes of turbulence profiles and on the downstream location where the flow reaches its quasi-asymptotic behavior. Streamwise vortices (ribs) corresponding to spanwise variations of turbulence quantities are identified in the near wake region. Simultaneous multi-point hot-wire measurements indicate that their spatial arrangement is similar to Williamson's (Ann Rev Fluid Mech 29:477-539, 1996) mode B laminar wake flow topology. The results suggest that the statistical spanwise distribution of ribs is independent of FST effects and angle of attack as long as the vortex shedding Strouhal number remains approximately similar. (orig.)

  6. On the Turbulent Mixing in Horizontal Axis Wind Turbine Wakes

    NARCIS (Netherlands)

    Lignarolo, L.E.M.

    2016-01-01

    The wake flow of a horizontal axis wind turbine is characterised by lower wind speed and higher turbulence than the free-stream conditions. When clustered in large wind farms, wind turbines regularly operate inside the wake of one or more upstream machines. This is a major cause of energy production

  7. Axial electric wake field inside the induction gap exited by the intense electron beam

    International Nuclear Information System (INIS)

    Zhang Kaizhi; Zhang Huang; Long Jidong; Yang Guojun; He Xiaozhong; Wang Huacen

    2008-01-01

    While an intense electron beam passes through the accelerating gaps of a linear induction accelerator, a strong wake field will be excited. In this paper a relatively simple model is established based on the interaction between the transverse magnetic wake field and the electron beam, and the numerical calculation in succession generates a magnetic wake field distribution along the accelerator and along the beam pulse as well. The axial electric wake field is derived based on the relation between field components of a resonant mode. According to some principles in existence, the influence of this field on the high voltage properties of the induction gap is analyzed. The Dragon-I accelerator is taken as an example, and its maximum electric wake field is about 17 kV/cm, which means the effect of the wake field is noticeable. (authors)

  8. A modified wake oscillator model for predicting vortex induced vibration of heat exchanger tube

    International Nuclear Information System (INIS)

    Feng Zhipeng; Zang Fenggang; Zhang Yixiong; Ye Xianhui

    2014-01-01

    Base on the classical wake oscillator model, a new modified wake oscillator model is proposed, for predicting vortex induced vibration of heat exchanger tube in uniform current. The comparison between the new wake oscillator model and experimental show that the present model can simulate the characteristics of vortex induced vibration of tube. Firstly, the research shows that the coupled fluid-structure dynamical system should be modeled by combined displacement and acceleration mode. Secondly, the empirical parameter in wake oscillator model depends on the material properties of the structure, instead of being a universal constant. Lastly, the results are compared between modified wake oscillator model and fluid-structure interaction numerical model. It shows the present, predicted results are compared to the fluid-structure interaction numerical data. The new modified wake oscillator model can predict the vortex induced heat exchanger tube vibration feasibly. (authors)

  9. Wake topology of under-actuated rajiform batoid robots

    Science.gov (United States)

    Valdivia Y Alvarado, Pablo; Weymouth, Gabriel; Thekoodan, Dilip; Patrikalakis, Nicholas

    2011-11-01

    Under-actuated continuous soft robots are designed to have modes of vibration that match desired body motions using minimal actuation. The desired modes of vibration are enabled by flexible continuous bodies with heterogenous material distributions. Errors or intentional approximations in the manufactured material distributions alter the achieved body motions and influence the resulting locomotion performance. An under-actuated continuous soft robot designed to mimic rajiform batoids such as stingrays is used to investigate the influence that fin kinematics variations have on wake topology, and the trade-offs that simplifying the body material structure has on achievable swimming performance. Pectoral fin kinematics in rajiform batoids are defined by traveling waves along the fin cord with particular amplitude envelopes along both the fin cord and span. Digital particle image velocimetry (DPIV) analysis of a prototype's wake structure and immersed-boundary numerical simulations are used to clarify the role of traveling wave wavelength, fin flapping frequency, and amplitude envelope characteristics on the resulting wake topology and swimming performance.

  10. Vortex particle-mesh simulations of vertical axis wind turbine flows: from the airfoil performance to the very far wake

    Directory of Open Access Journals (Sweden)

    P. Chatelain

    2017-06-01

    Full Text Available A vortex particle-mesh (VPM method with immersed lifting lines has been developed and validated. Based on the vorticity–velocity formulation of the Navier–Stokes equations, it combines the advantages of a particle method and of a mesh-based approach. The immersed lifting lines handle the creation of vorticity from the blade elements and its early development. Large-eddy simulation (LES of vertical axis wind turbine (VAWT flows is performed. The complex wake development is captured in detail and over up to 15 diameters downstream: from the blades to the near-wake coherent vortices and then through the transitional ones to the fully developed turbulent far wake (beyond 10 rotor diameters. The statistics and topology of the mean flow are studied. The computational sizes also allow insights into the detailed unsteady vortex dynamics and topological flow features, such as a recirculation region influenced by the tip speed ratio and the rotor geometry.

  11. Wind Turbine Wake Characterization from Temporally Disjunct 3-D Measurements

    Directory of Open Access Journals (Sweden)

    Paula Doubrawa

    2016-11-01

    Full Text Available Scanning LiDARs can be used to obtain three-dimensional wind measurements in and beyond the atmospheric surface layer. In this work, metrics characterizing wind turbine wakes are derived from LiDAR observations and from large-eddy simulation (LES data, which are used to recreate the LiDAR scanning geometry. The metrics are calculated for two-dimensional planes in the vertical and cross-stream directions at discrete distances downstream of a turbine under single-wake conditions. The simulation data are used to estimate the uncertainty when mean wake characteristics are quantified from scanning LiDAR measurements, which are temporally disjunct due to the time that the instrument takes to probe a large volume of air. Based on LES output, we determine that wind speeds sampled with the synthetic LiDAR are within 10% of the actual mean values and that the disjunct nature of the scan does not compromise the spatial variation of wind speeds within the planes. We propose scanning geometry density and coverage indices, which quantify the spatial distribution of the sampled points in the area of interest and are valuable to design LiDAR measurement campaigns for wake characterization. We find that scanning geometry coverage is important for estimates of the wake center, orientation and length scales, while density is more important when seeking to characterize the velocity deficit distribution.

  12. The wake field acceleration using a cavity of elliptical cross section, part 1: WELL

    International Nuclear Information System (INIS)

    Chin, Yongho.

    1983-11-01

    A computer code WELL is developed for the calculation of the wake fields in a cavity of elliptical cross section. The method is basically an extention of that of BCI to the 3-dimensional computation, i.e., Maxwell's equations are solved in the time domain with boundary conditions. Open boundary conditions are used so as to simulate infinitely long beam pipes. Good agreements within a few percents are shown between the results of the computation by WELL and BCI in a cylindrically symmetrical structure. An example of computation in an elliptical structure gives a reasonable result and points out that the deflection of particles by the transverse wake field is severe. (author)

  13. Inviscid double wake model for stalled airfoils

    International Nuclear Information System (INIS)

    Marion, L; Ramos-García, N; Sørensen, J N

    2014-01-01

    An inviscid double wake model based on a steady two-dimensional panel method has been developed to predict aerodynamic loads of wind turbine airfoils in the deep stall region. The separated flow is modelled using two constant vorticity sheets which are released at the trailing edge and at the separation point. A calibration of the code through comparison with experiments has been performed using one set of airfoils. A second set of airfoils has been used for the validation of the calibrated model. Predicted aerodynamic forces for a wide range of angles of attack (0 to 90 deg) are in overall good agreement with wind tunnel measurements

  14. Experimental investigation on the wake interference among wind turbines sited in atmospheric boundary layer winds

    Institute of Scientific and Technical Information of China (English)

    W. Tian; A. Ozbay; X. D. Wang; H.Hu

    2017-01-01

    We examined experimentally the effects of incom-ing surface wind on the turbine wake and the wake interfer-ence among upstream and downstream wind turbines sited in atmospheric boundary layer (ABL) winds. The experi-ment was conducted in a large-scale ABL wind tunnel with scaled wind turbine models mounted in different incom-ing surface winds simulating the ABL winds over typical offshore/onshore wind farms. Power outputs and dynamic loadings acting on the turbine models and the wake flow char-acteristics behind the turbine models were quantified. The results revealed that the incoming surface winds significantly affect the turbine wake characteristics and wake interference between the upstream and downstream turbines. The velocity deficits in the turbine wakes recover faster in the incoming surface winds with relatively high turbulence levels. Varia-tions of the power outputs and dynamic wind loadings acting on the downstream turbines sited in the wakes of upstream turbines are correlated well with the turbine wakes charac-teristics. At the same downstream locations, the downstream turbines have higher power outputs and experience greater static and fatigue loadings in the inflow with relatively high turbulence level, suggesting a smaller effect of wake inter-ference for the turbines sited in onshore wind farms.

  15. Multi-Point Velocity Correlations in the Wake of a Three-Dimensional Bluff Body

    Science.gov (United States)

    Shea, Patrick; Glauser, Mark

    2013-11-01

    Three-dimensional bluff-bodies known as turrets are commonly used for housing optical systems on airborne platforms. These geometries generate highly turbulent wakes that decrease the performance of the optical systems and the aircraft. The current experimental study used dynamic suction in both open and closed-loop control configurations to actively control the wake turret. The experiments were carried out at a Reynolds number of 5 × 105, and the flow field was characterized using stereoscopic PIV measurements acquired in the wake of the turret. These data were processed using traditional single-point statistics which showed that the active control system was able to significantly alter the wake of the turret. Using multi-point correlations, turbulent characteristics such as the integral length scale can be calculated. For the turret wake, estimates of the integral length scales were found to be highly dependent upon the region of the flow that was evaluated, especially when comparing the shear layers to the center of the wake. With the application of the active control, the integral length scales were generally found to increase.

  16. Hypocretin (orexin regulation of sleep-to-wake transitions

    Directory of Open Access Journals (Sweden)

    Luis eDe Lecea

    2014-02-01

    Full Text Available The hypocretin (Hcrt, also known as orexin, peptides are essential for arousal stability. Here I discuss background information about the interaction of Hcrt with other neuromodulators, including norepinephrine and acetylcholine probed with optogenetics. I conclude that Hcrt neurons integrate metabolic, circadian and limbic inputs and convey this information to a network of neuromodulators, each of which has a different role on the dynamic of sleep-to-wake transitions. This model may prove useful to predict the effects of orexin receptor antagonists in sleep disorders and other conditions.

  17. PIV in a model wind turbine rotor wake

    DEFF Research Database (Denmark)

    Meyer, Knud Erik; Naumov, Igor; Karbadin, Ivan

    2013-01-01

    Stereoscopic particle image velocimetry (PIV) measurements of the flow in the wake of scale model of a horizontal axis wind turbine is presented Near the rotor, measurements are made in vertical planes intersecting the rotor axis These planes capture flow effect from the tip and root vortices...... perpendicular to the rotor axis is used to investigate the dynamics in the far wake Here, a precessing core is found and data indicate that the Strouhal number of the precessing is independent of the rotor speed...

  18. Chronic sleep curtailment, even without extended (>16-h) wakefulness, degrades human vigilance performance.

    Science.gov (United States)

    McHill, Andrew W; Hull, Joseph T; Wang, Wei; Czeisler, Charles A; Klerman, Elizabeth B

    2018-05-21

    Millions of individuals routinely remain awake for more than 18 h daily, which causes performance decrements. It is unknown if these functional impairments are the result of that extended wakefulness or from the associated shortened sleep durations. We therefore examined changes in objective reaction time performance and subjective alertness in a 32-d inpatient protocol in which participants were scheduled to wakefulness durations below 16 h while on a 20-h "day," with randomization into standard sleep:wake ratio (1:2) or chronic sleep restriction (CSR) ratio (1:3.3) conditions. This protocol allowed determination of the contribution of sleep deficiency independent of extended wakefulness, since individual episodes of wakefulness in the CSR condition were only 15.33 h in duration (less than the usual 16 h of wakefulness in a 24-h day) and sleep episodes were 4.67 h in duration each cycle. We found that chronic short sleep duration, even without extended wakefulness, doubled neurobehavioral reaction time performance and increased lapses of attention fivefold, yet did not uniformly decrease self-reported alertness. Further, these impairments in neurobehavioral performance were worsened during the circadian night and were not recovered during the circadian day, indicating that the deleterious effect from the homeostatic buildup of CSR is expressed even during the circadian promotion of daytime arousal. These findings reveal a fundamental aspect of human biology: Chronic insufficient sleep duration equivalent to 5.6 h of sleep opportunity per 24 h impairs neurobehavioral performance and self-assessment of alertness, even without extended wakefulness.

  19. On wake modeling, wind-farm gradients, and AEP predictions at the Anholt wind farm

    Directory of Open Access Journals (Sweden)

    A. Peña

    2018-04-01

    Full Text Available We investigate wake effects at the Anholt offshore wind farm in Denmark, which is a farm experiencing strong horizontal wind-speed gradients because of its size and proximity to land. Mesoscale model simulations are used to study the horizontal wind-speed gradients over the wind farm. From analysis of the mesoscale simulations and supervisory control and data acquisition (SCADA, we show that for westerly flow in particular, there is a clear horizontal wind-speed gradient over the wind farm. We also use the mesoscale simulations to derive the undisturbed inflow conditions that are coupled with three commonly used wake models: two engineering approaches (the Park and G. C. Larsen models and a linearized Reynolds-averaged Navier–Stokes approach (Fuga. The effect of the horizontal wind-speed gradient on annual energy production estimates is not found to be critical compared to estimates from both the average undisturbed wind climate of all turbines' positions and the undisturbed wind climate of a position in the middle of the wind farm. However, annual energy production estimates can largely differ when using wind climates at positions that are strongly influenced by the horizontal wind-speed gradient. When looking at westerly flow wake cases, where the impact of the horizontal wind-speed gradient on the power of the undisturbed turbines is largest, the wake models agree with the SCADA fairly well; when looking at a southerly flow case, where the wake losses are highest, the wake models tend to underestimate the wake loss. With the mesoscale-wake model setup, we are also able to estimate the capacity factor of the wind farm rather well when compared to that derived from the SCADA. Finally, we estimate the uncertainty of the wake models by bootstrapping the SCADA. The models tend to underestimate the wake losses (the median relative model error is 8.75 % and the engineering wake models are as uncertain as Fuga. These results are specific for

  20. Multiscale periodic structure in the Io wake

    Energy Technology Data Exchange (ETDEWEB)

    Smith, P R; Wright, A N

    1989-06-08

    The decametric radio emissions from Jupiter are known to be influenced by the Galilean satellite Io. It is believed that the structure in these emissions is associated with the Alfven-wave wake downstream of Io. However, recent studies have shown that the structure of the wake cannot be as simple as originally thought. Here we present preliminary results from an eigenmode synthesis of the Alfven waves launched by Io, and find that several important periodicities emerge. Observations of the decametric emissions reveal fine, medium-and large-scale structure. The simulation we present here can provide structure on each of these scales, unlike earlier models. (author).

  1. ECoG sleep-waking rhythms and bodily activity in the cerveau isolé rat.

    Science.gov (United States)

    Nakata, K; Kawamura, H

    1986-01-01

    In rats with a high mesencephalic transection, isolating both the locus coeruleus and raphe nuclei from the forebrain, Electrocorticogram (ECoG) and Electromyogram (EMG) of the neck muscles were continuously recorded. Normal sleep-waking ECoG changes with a significant circadian rhythm reappeared in 4 to 9 days after transection. Neck muscle EMG and bodily movements were independent of the ECoG changes and did not show any significant circadian rhythm. In these high mesencephalic rats with sleep-waking ECoG changes, large bilateral hypothalamic lesions were made by passing DC current either in the preoptic area or in the posterior hypothalamus. After the preoptic area lesions the amount of low voltage fast ECoG per day markedly increased, whereas after the posterior hypothalamic lesions, the total amount of low voltate fast wave per day decreased showing long-lasting slow wave sleep pattern. These results support an idea that the forebrain, especially in the hypothalamus including the preoptic area, a mechanism inducing sleep-waking ECoG changes is localized.

  2. Pharmacological profiling of zebrafish behavior using chemical and genetic classification of sleep-wake modifiers

    OpenAIRE

    Nishimura, Yuhei; Okabe, Shiko; Sasagawa, Shota; Murakami, Soichiro; Ashikawa, Yoshifumi; Yuge, Mizuki; Kawaguchi, Koki; Kawase, Reiko; Tanaka, Toshio

    2015-01-01

    Sleep-wake states are impaired in various neurological disorders. Impairment of sleep-wake states can be an early condition that exacerbates these disorders. Therefore, treating sleep-wake dysfunction may prevent or slow the development of these diseases. Although many gene products are likely to be involved in the sleep-wake disturbance, hypnotics and psychostimulants clinically used are limited in terms of their mode of action and are not without side effects. Therefore, there is a growing ...

  3. Investigation and Optimization of Blade Tip Winglets Using an Implicit Free Wake Vortex Method

    Science.gov (United States)

    Lawton, Stephen; Crawford, Curran

    2014-06-01

    Novel outer-blade geometries such as tip winglets can increase the aerodynamic power that can be extracted from the wind by tailoring the relative position and strengths of trailed vorticity. This design space is explored using both parameter studies and gradient-based optimization, with the aerodynamic analysis carried out using LibAero, a free wake vortex-based code introduced in previous work. The starting design is the NREL 5MW reference turbine, which allows comparison of the aerodynamic simulation for the unmodified blade with other codes. The code uses a Prandtl-Weissinger lifting line model to represent the blade, and vortex filaments as the flow elements. A fast multipole method is implemented to accelerate the influence calculations and reduce the computational cost. This results in higher fidelity aerodynamic simulations that can capture the effects of novel geometries while maintaining sufficiently fast run-times (on the order of an hour) to allow the use of optimization. Gradients of the objective function with respect to design variables are calculated using the complex step method which is accurate and efficient. Since the vortex structure behind the rotor is being resolved in detail, insight is also gained into the mechanisms by which these new blade designs affect performance. It is found that adding winglets can increase the power extracted from the wind by around 2%, with a similar increase in thrust. It is also possible to create a winglet that slightly lowers the thrust while maintaining very similar power compared to the standard straight blade.

  4. Investigation and Optimization of Blade Tip Winglets Using an Implicit Free Wake Vortex Method

    International Nuclear Information System (INIS)

    Lawton, Stephen; Crawford, Curran

    2014-01-01

    Novel outer-blade geometries such as tip winglets can increase the aerodynamic power that can be extracted from the wind by tailoring the relative position and strengths of trailed vorticity. This design space is explored using both parameter studies and gradient-based optimization, with the aerodynamic analysis carried out using LibAero, a free wake vortex-based code introduced in previous work. The starting design is the NREL 5MW reference turbine, which allows comparison of the aerodynamic simulation for the unmodified blade with other codes. The code uses a Prandtl-Weissinger lifting line model to represent the blade, and vortex filaments as the flow elements. A fast multipole method is implemented to accelerate the influence calculations and reduce the computational cost. This results in higher fidelity aerodynamic simulations that can capture the effects of novel geometries while maintaining sufficiently fast run-times (on the order of an hour) to allow the use of optimization. Gradients of the objective function with respect to design variables are calculated using the complex step method which is accurate and efficient. Since the vortex structure behind the rotor is being resolved in detail, insight is also gained into the mechanisms by which these new blade designs affect performance. It is found that adding winglets can increase the power extracted from the wind by around 2%, with a similar increase in thrust. It is also possible to create a winglet that slightly lowers the thrust while maintaining very similar power compared to the standard straight blade

  5. Comparative jet wake structure and swimming performance of salps.

    Science.gov (United States)

    Sutherland, Kelly R; Madin, Laurence P

    2010-09-01

    Salps are barrel-shaped marine invertebrates that swim by jet propulsion. Morphological variations among species and life-cycle stages are accompanied by differences in swimming mode. The goal of this investigation was to compare propulsive jet wakes and swimming performance variables among morphologically distinct salp species (Pegea confoederata, Weelia (Salpa) cylindrica, Cyclosalpa sp.) and relate swimming patterns to ecological function. Using a combination of in situ dye visualization and particle image velocimetry (PIV) measurements, we describe properties of the jet wake and swimming performance variables including thrust, drag and propulsive efficiency. Locomotion by all species investigated was achieved via vortex ring propulsion. The slow-swimming P. confoederata produced the highest weight-specific thrust (T=53 N kg(-1)) and swam with the highest whole-cycle propulsive efficiency (eta(wc)=55%). The fast-swimming W. cylindrica had the most streamlined body shape but produced an intermediate weight-specific thrust (T=30 N kg(-1)) and swam with an intermediate whole-cycle propulsive efficiency (eta(wc)=52%). Weak swimming performance variables in the slow-swimming C. affinis, including the lowest weight-specific thrust (T=25 N kg(-1)) and lowest whole-cycle propulsive efficiency (eta(wc)=47%), may be compensated by low energetic requirements. Swimming performance variables are considered in the context of ecological roles and evolutionary relationships.

  6. Offshore and onshore wind turbine wake meandering studied in an ABL wind tunnel

    DEFF Research Database (Denmark)

    Barlas, Emre; Buckingham, Sophia; Glabeke, Gertjan

    2015-01-01

    Scaled wind turbine models have been installed in the VKI L1-B atmospheric boundary layer wind tunnel at offshore and onshore conditions. Time-resolved measurements were carried out with three component hot wire anemometry and stereo-PIV in the middle vertical plane of the wake up to eleven turbine...... diameter downstream. The results show an earlier wake recovery for the onshore case. The effect of inflow conditions and the wind turbine’s working conditions on wake meandering was investigated. Wake meandering was detected by hot wire anemometry through a low frequency peak in the turbulent power...

  7. Novel method for evaluation of eye movements in patients with narcolepsy

    DEFF Research Database (Denmark)

    Christensen, Julie A E; Kempfner, Lykke; Leonthin, Helle L

    2017-01-01

    BACKGROUND: Narcolepsy causes abnormalities in the control of wake-sleep, non-rapid-eye-movement (non-REM) sleep and REM sleep, which includes specific eye movements (EMs). In this study, we aim to evaluate EM characteristics in narcolepsy as compared to controls using an automated detector....... RESULTS: NT1 patients had significantly less EMs during wake, N1, and N2 sleep and more EMs during REM sleep compared to clinical controls, and significantly less EMs during wake and N1 sleep compared to NT2 patients. Furthermore, NT1 patients showed less EMs during NREM sleep in the first sleep cycle....... METHODS: We developed a data-driven method to detect EMs during sleep based on two EOG signals recorded as part of a polysomnography (PSG). The method was optimized using the manually scored hypnograms from 36 control subjects. The detector was applied on a clinical sample with subjects suspected...

  8. A novel ship CFAR detection algorithm based on adaptive parameter enhancement and wake-aided detection in SAR images

    Science.gov (United States)

    Meng, Siqi; Ren, Kan; Lu, Dongming; Gu, Guohua; Chen, Qian; Lu, Guojun

    2018-03-01

    Synthetic aperture radar (SAR) is an indispensable and useful method for marine monitoring. With the increase of SAR sensors, high resolution images can be acquired and contain more target structure information, such as more spatial details etc. This paper presents a novel adaptive parameter transform (APT) domain constant false alarm rate (CFAR) to highlight targets. The whole method is based on the APT domain value. Firstly, the image is mapped to the new transform domain by the algorithm. Secondly, the false candidate target pixels are screened out by the CFAR detector to highlight the target ships. Thirdly, the ship pixels are replaced by the homogeneous sea pixels. And then, the enhanced image is processed by Niblack algorithm to obtain the wake binary image. Finally, normalized Hough transform (NHT) is used to detect wakes in the binary image, as a verification of the presence of the ships. Experiments on real SAR images validate that the proposed transform does enhance the target structure and improve the contrast of the image. The algorithm has a good performance in the ship and ship wake detection.

  9. Wind-tunnel modelling of the tip-speed ratio influence on the wake evolution

    Science.gov (United States)

    Stein, Victor P.; Kaltenbach, Hans-Jakob

    2016-09-01

    Wind-tunnel measurements on the near-wake evolution of a three bladed horizontal axis wind turbine model (HAWT) in the scale 1:O(350) operating in uniform flow conditions and within a turbulent boundary layer at different tip speed ratios are presented. Operational conditions are chosen to exclude Reynolds number effects regarding the turbulent boundary layer as well as the rotor performance. Triple-wire anemometry is used to measure all three velocity components in the mid-vertical and mid-horizontal plane, covering the range from the near- to the far-wake region. In order to analyse wake properties systematically, power and thrust coefficients of the turbine were measured additionally. It is confirmed that realistic modelling of the wake evolution is not possible in a low-turbulence uniform approach flow. Profiles of mean velocity and turbulence intensity exhibit large deviations between the low-turbulence uniform flow and the turbulent boundary layer, especially in the far-wake region. For nearly constant thrust coefficients differences in the evolution of the near-wake can be identified for tip speed ratios in the range from 6.5 to 10.5. It is shown that with increasing downstream distances mean velocity profiles become indistinguishable whereas for turbulence statistics a subtle dependency on the tip speed ratio is still noticeable in the far-wake region.

  10. About the effects of an oscillating miniflap upon the wake on an airfoil, all immersed in turbulent flow

    International Nuclear Information System (INIS)

    Delnero, J S; Marañón Di Leo, J; Colman, J; Camocardi, M; García Sainz, M; Muñoz, F

    2011-01-01

    The present research analyzes the asymmetry in the rolling up shear layers behind the blunt trailing edge of an airfoil 4412 with a miniflap acting as active flow control device and its wake organization. Experimental investigations relating the asymmetry of the vortex flow in the near wake region, able to distort the flow increasing the downwash of an airfoil, have been performed. All of these in a free upstream turbulent flow (1.8% intensity). We examine the near wake region characteristics of a wing model with a 4412 airfoil without and with a rotating miniflap located on the lower surface, near the trailing edge. The flow in the near wake, for 3 x-positions (along chord line) and 20 vertical points in each x-position, was explored, for three different rotating frequencies, in order to identify signs of asymmetry of the initial counter rotating vortex structures. Experimental evidence is presented showing that for typical lifting conditions the shear layer rollup process within the near wake is different for the upper and lower vortices: the shear layer separating from the pressure side of the airfoil begins its rollup immediately behind the trailing edge, creating a stronger vortex while the shear layer from the suction side begins its rollup more downstream creating a weaker vortex. The experimental data were processed by classical statistics methods. Aspects of a mechanism connecting the different evolution and pattern of these initial vortex structures with lift changes and wake alleviating processes, due to these miniflaps, will be studied in future works.

  11. About the effects of an oscillating miniflap upon the wake on an airfoil, all immersed in turbulent flow

    Energy Technology Data Exchange (ETDEWEB)

    Delnero, J S; Maranon Di Leo, J; Colman, J; Camocardi, M; Garcia Sainz, M; Munoz, F, E-mail: delnero@ing.unlp.edu.ar [LaCLyFA, Departamento Aeronautica, Facultad de Ingenieria, Universidad Nacional de La Plata (Argentina)

    2011-12-22

    The present research analyzes the asymmetry in the rolling up shear layers behind the blunt trailing edge of an airfoil 4412 with a miniflap acting as active flow control device and its wake organization. Experimental investigations relating the asymmetry of the vortex flow in the near wake region, able to distort the flow increasing the downwash of an airfoil, have been performed. All of these in a free upstream turbulent flow (1.8% intensity). We examine the near wake region characteristics of a wing model with a 4412 airfoil without and with a rotating miniflap located on the lower surface, near the trailing edge. The flow in the near wake, for 3 x-positions (along chord line) and 20 vertical points in each x-position, was explored, for three different rotating frequencies, in order to identify signs of asymmetry of the initial counter rotating vortex structures. Experimental evidence is presented showing that for typical lifting conditions the shear layer rollup process within the near wake is different for the upper and lower vortices: the shear layer separating from the pressure side of the airfoil begins its rollup immediately behind the trailing edge, creating a stronger vortex while the shear layer from the suction side begins its rollup more downstream creating a weaker vortex. The experimental data were processed by classical statistics methods. Aspects of a mechanism connecting the different evolution and pattern of these initial vortex structures with lift changes and wake alleviating processes, due to these miniflaps, will be studied in future works.

  12. Time to wake up: reactive countermeasures to sleep inertia.

    Science.gov (United States)

    Hilditch, Cassie J; Dorrian, Jillian; Banks, Siobhan

    2016-12-07

    Sleep inertia is the period of impaired performance and grogginess experienced after waking. This period of impairment is of concern to workers who are on-call, or nap during work hours, and need to perform safety-critical tasks soon after waking. While several studies have investigated the best sleep timing and length to minimise sleep inertia effects, few have focused on countermeasures -especially those that can be implemented after waking (i.e. reactive countermeasures). This structured review summarises current literature on reactive countermeasures to sleep inertia such as caffeine, light, and temperature and discusses evidence for the effectiveness and operational viability of each approach. Current literature does not provide a convincing evidence-base for a reactive countermeasure. Caffeine is perhaps the best option, although it is most effective when administered prior to sleep and is therefore not strictly reactive. Investigations into light and temperature have found promising results for improving subjective alertness; further research is needed to determine whether these countermeasures can also attenuate performance impairment. Future research in this area would benefit from study design features highlighted in this review. In the meantime, it is recommended that proactive sleep inertia countermeasures are used, and that safety-critical tasks are avoided immediately after waking.

  13. An Improved Wake Vortex Tracking Algorithm for Multiple Aircraft

    Science.gov (United States)

    Switzer, George F.; Proctor, Fred H.; Ahmad, Nashat N.; LimonDuparcmeur, Fanny M.

    2010-01-01

    The accurate tracking of vortex evolution from Large Eddy Simulation (LES) data is a complex and computationally intensive problem. The vortex tracking requires the analysis of very large three-dimensional and time-varying datasets. The complexity of the problem is further compounded by the fact that these vortices are embedded in a background turbulence field, and they may interact with the ground surface. Another level of complication can arise, if vortices from multiple aircrafts are simulated. This paper presents a new technique for post-processing LES data to obtain wake vortex tracks and wake intensities. The new approach isolates vortices by defining "regions of interest" (ROI) around each vortex and has the ability to identify vortex pairs from multiple aircraft. The paper describes the new methodology for tracking wake vortices and presents application of the technique for single and multiple aircraft.

  14. Femtosecond Planar Electron Beam Source for Micron-Scale Dielectric Wake Field Accelerator. Final report

    International Nuclear Information System (INIS)

    Hirshfield, Jay L.

    2006-01-01

    A new accelerator LACARA is under construction at ATF, Brookhaven National Laboratory. LACARA is to be powered by a 1 TW CO2 laser, and will utilize a 6-T 2-m long solenoidal magnetic field. For a 50 MeV injected electron bunch, LACARA is expected to produce a 100 MeV 1 ps gyrating beam with ∼ 3% energy spread. Beam electrons advance in phase at the laser frequency, executing one cycle each 35 fs. A beam stop with a small off-axis channel will transmit a short beam pulse every optical cycle, thereby producing a train of about 30, 3.5 fs, 1-3 pC microbunches for each laser pulse. One application for this train of microbunches obtained from a LACARA-type device involves focusing a portion of the beam using a magnetic quadrupole into a rectangular cross-section having a narrow dimension of a few microns and a height of a few hundred microns. These microbunches may be injected into a planar dielectric-lined waveguide where cumulative buildup of wake fields can lead to an accelerating gradient > 1 GV/m. This proposed vacuum-based wake field structure is mechanically rigid and capable of accurate microfabrication, factors important in staging a large number of accelerator modules. Furthermore, the accelerating gradients it promises are comparable with those for plasma accelerators. A LACARA unit for preparing suitable bunches at 500 MeV is described. Physics issues are discussed including bunch spreading and transport, bunch shaping, aperture radiation, dielectric breakdown, and bunch stability in the rectangular wake field structure. In appendices to this report, three supporting documents are attached. These include a set of drawings that show the layout of the beam line and optical line for LACARA at ATF-BNL; and two reprints of recent articles published in PRST-AB. The first article describes measurements of the coherent superposition of wake fields that arise from a periodic train of bunches, with supporting analysis. The second article presents theory that

  15. Near scale-free dynamics in neural population activity of waking/sleeping rats revealed by multiscale analysis.

    Directory of Open Access Journals (Sweden)

    Leonid A Safonov

    Full Text Available A neuron embedded in an intact brain, unlike an isolated neuron, participates in network activity at various spatial resolutions. Such multiple scale spatial dynamics is potentially reflected in multiple time scales of temporal dynamics. We identify such multiple dynamical time scales of the inter-spike interval (ISI fluctuations of neurons of waking/sleeping rats by means of multiscale analysis. The time scale of large non-Gaussianity in the ISI fluctuations, measured with the Castaing method, ranges up to several minutes, markedly escaping the low-pass filtering characteristics of neurons. A comparison between neural activity during waking and sleeping reveals that non-Gaussianity is stronger during waking than sleeping throughout the entire range of scales observed. We find a remarkable property of near scale independence of the magnitude correlations as the primary cause of persistent non-Gaussianity. Such scale-invariance of correlations is characteristic of multiplicative cascade processes and raises the possibility of the existence of a scale independent memory preserving mechanism.

  16. An overview of experimental results and dispersion modelling of nanoparticles in the wake of moving vehicles.

    Science.gov (United States)

    Carpentieri, Matteo; Kumar, Prashant; Robins, Alan

    2011-03-01

    Understanding the transformation of nanoparticles emitted from vehicles is essential for developing appropriate methods for treating fine scale particle dynamics in dispersion models. This article provides an overview of significant research work relevant to modelling the dispersion of pollutants, especially nanoparticles, in the wake of vehicles. Literature on vehicle wakes and nanoparticle dispersion is reviewed, taking into account field measurements, wind tunnel experiments and mathematical approaches. Field measurements and modelling studies highlighted the very short time scales associated with nanoparticle transformations in the first stages after the emission. These transformations strongly interact with the flow and turbulence fields immediately behind the vehicle, hence the need of characterising in detail the mixing processes in the vehicle wake. Very few studies have analysed this interaction and more research is needed to build a basis for model development. A possible approach is proposed and areas of further investigation identified. Copyright © 2010 Elsevier Ltd. All rights reserved.

  17. Numerical calculation of boundary layers and wake characteristics of high-speed trains with different lengths

    Science.gov (United States)

    Zhou, Dan; Niu, Jiqiang

    2017-01-01

    Trains with different numbers of cars running in the open air were simulated using the delayed detached-eddy simulation (DDES). The numbers of cars included in the simulation are 3, 4, 5 and 8. The aim of this study was to investigate how train length influences the boundary layer, the wake flow, the surface pressure, the aerodynamic drag and the friction drag. To certify the accuracy of the mesh and methods, the drag coefficients from numerical simulation of trains with 3 cars were compared with those from the wind tunnel test, and agreement was obtained. The results show that the boundary layer is thicker and the wake vortices are less symmetric as the train length increases. As a result, train length greatly affects pressure. The upper surface pressure of the tail car reduced by 2.9%, the side surface pressure of the tail car reduced by 8.3% and the underneath surface pressure of the tail car reduced by 19.7% in trains that included 3 cars to those including 8 cars. In addition, train length also has a significant effect on the friction drag coefficient and the drag coefficient. The friction drag coefficient of each car in a configuration decreases along the length of the train. In a comparison between trains consisting of 3 cars to those consisting of 8 cars, the friction drag coefficient of the tail car reduced by 8.6% and the drag coefficient of the tail car reduced by 3.7%. PMID:29261758

  18. Wake effects in Alsvik wind park: Comparison between measurements and predictions

    Energy Technology Data Exchange (ETDEWEB)

    Magnusson, Mikael [Uppsala Univ. (Sweden). Dept. of Meteorology; Rados, K.G.; Pothou, K.P. [National Technical Univ., Athen (Greece). Fluid section

    1996-12-01

    In this paper characteristic parameters in a wind turbine wake are studied. The data used are full-scale measurements from a wind farm in Sweden, Alsvik, and results from a numerical model calculated for the same site. The results are valid for neutral stratification. The model employs a particle-vortex approach at the rotor plane, a Navier-Stokes solver in the near wake and applies self preservation in the far wake. The parameters investigated are the relative velocity deficit at centre line and hub height, and the radial distribution of the turbulent kinetic energy. 6 refs, 9 figs

  19. 78 FR 14543 - Ward Transformer Superfund Site; Raleigh, Wake County, NC; Notice of Settlement

    Science.gov (United States)

    2013-03-06

    ... ENVIRONMENTAL PROTECTION AGENCY [FRL 9788-2; CERCLA-04-2013-3754] Ward Transformer Superfund Site... Ward Transformer Superfund Site located in Raleigh, Wake County, North Carolina. Under the terms of the.... Submit your comments by Site name Ward Transformer Superfund Site by one of the following methods: [[Page...

  20. Maternal Caffeine Consumption and Infant Nighttime Waking: Prospective Cohort Study

    Science.gov (United States)

    Santos, Iná S.; Matijasevich, Alicia

    2012-01-01

    OBJECTIVE: Coffee and other caffeinated beverages are commonly consumed in pregnancy. In adults, caffeine may interfere with sleep onset and have a dose-response effect similar to those seen during insomnia. In infancy, nighttime waking is a common event. With this study, we aimed to investigate if maternal caffeine consumption during pregnancy and lactation leads to frequent nocturnal awakening among infants at 3 months of age. METHODS: All children born in the city of Pelotas, Brazil, during 2004 were enrolled on a cohort study. Mothers were interviewed at delivery and after 3 months to obtain information on caffeine drinking consumption, sociodemographic, reproductive, and behavioral characteristics. Infant sleeping pattern in the previous 15 days was obtained from a subsample. Night waking was defined as an episode of infant arousal that woke the parents during nighttime. Multivariable analysis was performed by using Poisson regression. RESULTS: The subsample included 885 of the 4231 infants born in 2004. All but 1 mother consumed caffeine in pregnancy. Nearly 20% were heavy consumers (≥300 mg/day) during pregnancy and 14.3% at 3 months postpartum. Prevalence of frequent nighttime awakeners (>3 episodes per night) was 13.8% (95% confidence interval: 11.5%–16.0%). The highest prevalence ratio was observed among breastfed infants from mothers consuming ≥300 mg/day during the whole pregnancy and in the postpartum period (1.65; 95% confidence interval: 0.86–3.17) but at a nonsignificant level. CONCLUSIONS: Caffeine consumption during pregnancy and by nursing mothers seems not to have consequences on sleep of infants at the age of 3 months. PMID:22473365

  1. Sleep and Sleep-wake Rhythm in Older Adults with Intellectual Disabilities

    NARCIS (Netherlands)

    E. van de Wouw-Van Dijk (Ellen)

    2013-01-01

    textabstractEveryone who has experienced poor sleep knows how it affects daytime functioning and wellbeing. A good night’s rest and a stable sleep-wake rhythm are therefore very important. The sleep-wake rhythm is regulated by several brain structures. People with an intellectual disability (ID) all

  2. Effects of Chemistry on Blunt-Body Wake Structure

    Science.gov (United States)

    Dogra, Virendra K.; Moss, James N.; Wilmoth, Richard G.; Taylor, Jeff C.; Hassan, H. A.

    1995-01-01

    Results of a numerical study are presented for hypersonic low-density flow about a 70-deg blunt cone using direct simulation Monte Carlo (DSMC) and Navier-Stokes calculations. Particular emphasis is given to the effects of chemistry on the near-wake structure and on the surface quantities and the comparison of the DSMC results with the Navier-Stokes calculations. The flow conditions simulated are those experienced by a space vehicle at an altitude of 85 km and a velocity of 7 km/s during Earth entry. A steady vortex forms in the near wake for these freestream conditions for both chemically reactive and nonreactive air gas models. The size (axial length) of the vortex for the reactive air calculations is 25% larger than that of the nonreactive air calculations. The forebody surface quantities are less sensitive to the chemistry than the base surface quantities. The presence of the afterbody has no effect on the forebody flow structure or the surface quantities. The comparisons of DSMC and Navier-Stokes calculations show good agreement for the wake structure and the forebody surface quantities.

  3. Caffeine promotes wakefulness via dopamine signaling in Drosophila

    Science.gov (United States)

    Nall, Aleksandra H.; Shakhmantsir, Iryna; Cichewicz, Karol; Birman, Serge; Hirsh, Jay; Sehgal, Amita

    2016-01-01

    Caffeine is the most widely-consumed psychoactive drug in the world, but our understanding of how caffeine affects our brains is relatively incomplete. Most studies focus on effects of caffeine on adenosine receptors, but there is evidence for other, more complex mechanisms. In the fruit fly Drosophila melanogaster, which shows a robust diurnal pattern of sleep/wake activity, caffeine reduces nighttime sleep behavior independently of the one known adenosine receptor. Here, we show that dopamine is required for the wake-promoting effect of caffeine in the fly, and that caffeine likely acts presynaptically to increase dopamine signaling. We identify a cluster of neurons, the paired anterior medial (PAM) cluster of dopaminergic neurons, as the ones relevant for the caffeine response. PAM neurons show increased activity following caffeine administration, and promote wake when activated. Also, inhibition of these neurons abrogates sleep suppression by caffeine. While previous studies have focused on adenosine-receptor mediated mechanisms for caffeine action, we have identified a role for dopaminergic neurons in the arousal-promoting effect of caffeine. PMID:26868675

  4. Volitional components of consciousness vary across wakefulness, dreaming and lucid dreaming

    Directory of Open Access Journals (Sweden)

    Martin eDresler

    2014-01-01

    Full Text Available Consciousness is a multifaceted concept; its different aspects vary across species, vigilance states or health conditions. While basal aspects of consciousness like perceptions and emotions are present in many states and species, higher-order aspects like reflective or volitional capabilities seem to be most pronounced in awake humans. Here we assess the experience of volition across different states of consciousness: 10 frequent lucid dreamers rated different aspects of volition according to the Volitional Components Questionnaire for phases of normal dreaming, lucid dreaming and wakefulness. Overall, experienced volition was comparable for lucid dreaming and wakefulness, and rated significantly higher for both states compared to non-lucid dreaming. However, three subscales showed specific differences across states of consciousness: planning ability was most pronounced during wakefulness, intention enactment most pronounced during lucid dreaming, and self-determination most pronounced during both wakefulness and lucid dreaming. Our data confirm the multifaceted nature of consciousness: different higher-order aspects of consciousness are differentially expressed across different conscious states.

  5. Volitional components of consciousness vary across wakefulness, dreaming and lucid dreaming.

    Science.gov (United States)

    Dresler, Martin; Eibl, Leandra; Fischer, Christian F J; Wehrle, Renate; Spoormaker, Victor I; Steiger, Axel; Czisch, Michael; Pawlowski, Marcel

    2014-01-01

    Consciousness is a multifaceted concept; its different aspects vary across species, vigilance states, or health conditions. While basal aspects of consciousness like perceptions and emotions are present in many states and species, higher-order aspects like reflective or volitional capabilities seem to be most pronounced in awake humans. Here we assess the experience of volition across different states of consciousness: 10 frequent lucid dreamers rated different aspects of volition according to the Volitional Components Questionnaire for phases of normal dreaming, lucid dreaming, and wakefulness. Overall, experienced volition was comparable for lucid dreaming and wakefulness, and rated significantly higher for both states compared to non-lucid dreaming. However, three subscales showed specific differences across states of consciousness: planning ability was most pronounced during wakefulness, intention enactment most pronounced during lucid dreaming, and self-determination most pronounced during both wakefulness and lucid dreaming. Our data confirm the multifaceted nature of consciousness: different higher-order aspects of consciousness are differentially expressed across different conscious states.

  6. Wake-Field Wave Resonant Excitation in Magnetized Plasmas by Electromagnetic Pulse

    International Nuclear Information System (INIS)

    Milant'ev, V.P.; Turikov, V.A.

    2006-01-01

    In this paper the space charge wave excitation process at electromagnetic pulse propagation along external magnetic field in vicinity of electron cyclotron resonance. In hydrodynamic approach it is obtained an equation for plasma density under ponderomotive force action. With help of this equation we investigated a wake-field wave amplitude dependence from resonance detuning. The numerical simulation using a PIC method electromagnetic pulse propagation process in the resonant conditions was done

  7. 3D Lagrangian VPM: simulations of the near-wake of an actuator disc and horizontal axis wind turbine

    International Nuclear Information System (INIS)

    Berdowski, T; Ferreira, C; Walther, J

    2016-01-01

    The application of a 3-dimensional Lagrangian vortex particle method has been assessed for modelling the near-wake of an axisymmetrical actuator disc and 3-bladed horizontal axis wind turbine with prescribed circulation from the MEXICO (Model EXperiments In COntrolled conditions) experiment. The method was developed in the framework of the open- source Parallel Particle-Mesh library for handling the efficient data-parallelism on a CPU (Central Processing Unit) cluster, and utilized a O ( N log N )-type fast multipole method for computational acceleration. Simulations with the actuator disc resulted in a wake expansion, velocity deficit profile, and induction factor that showed a close agreement with theoretical, numerical, and experimental results from literature. Also the shear layer expansion was present; the Kelvin-Helmholtz instability in the shear layer was triggered due to the round-off limitations of a numerical method, but this instability was delayed to beyond 1 diameter downstream due to the particle smoothing. Simulations with the 3-bladed turbine demonstrated that a purely 3-dimensional flow representation is challenging to model with particles. The manifestation of local complex flow structures of highly stretched vortices made the simulation unstable, but this was successfully counteracted by the application of a particle strength exchange scheme. The axial and radial velocity profile over the near wake have been compared to that of the original MEXICO experiment, which showed close agreement between results. (paper)

  8. Memory for semantically related and unrelated declarative information: the benefit of sleep, the cost of wake.

    Directory of Open Access Journals (Sweden)

    Jessica D Payne

    Full Text Available Numerous studies have examined sleep's influence on a range of hippocampus-dependent declarative memory tasks, from text learning to spatial navigation. In this study, we examined the impact of sleep, wake, and time-of-day influences on the processing of declarative information with strong semantic links (semantically related word pairs and information requiring the formation of novel associations (unrelated word pairs. Participants encoded a set of related or unrelated word pairs at either 9 am or 9 pm, and were then tested after an interval of 30 min, 12 hr, or 24 hr. The time of day at which subjects were trained had no effect on training performance or initial memory of either word pair type. At 12 hr retest, memory overall was superior following a night of sleep compared to a day of wakefulness. However, this performance difference was a result of a pronounced deterioration in memory for unrelated word pairs across wake; there was no sleep-wake difference for related word pairs. At 24 hr retest, with all subjects having received both a full night of sleep and a full day of wakefulness, we found that memory was superior when sleep occurred shortly after learning rather than following a full day of wakefulness. Lastly, we present evidence that the rate of deterioration across wakefulness was significantly diminished when a night of sleep preceded the wake period compared to when no sleep preceded wake, suggesting that sleep served to stabilize the memories against the deleterious effects of subsequent wakefulness. Overall, our results demonstrate that 1 the impact of 12 hr of waking interference on memory retention is strongly determined by word-pair type, 2 sleep is most beneficial to memory 24 hr later if it occurs shortly after learning, and 3 sleep does in fact stabilize declarative memories, diminishing the negative impact of subsequent wakefulness.

  9. A Coupled Probabilistic Wake Vortex and Aircraft Response Prediction Model

    Science.gov (United States)

    Gloudemans, Thijs; Van Lochem, Sander; Ras, Eelco; Malissa, Joel; Ahmad, Nashat N.; Lewis, Timothy A.

    2016-01-01

    Wake vortex spacing standards along with weather and runway occupancy time, restrict terminal area throughput and impose major constraints on the overall capacity and efficiency of the National Airspace System (NAS). For more than two decades, the National Aeronautics and Space Administration (NASA) has been conducting research on characterizing wake vortex behavior in order to develop fast-time wake transport and decay prediction models. It is expected that the models can be used in the systems level design of advanced air traffic management (ATM) concepts that safely increase the capacity of the NAS. It is also envisioned that at a later stage of maturity, these models could potentially be used operationally, in groundbased spacing and scheduling systems as well as on the flight deck.

  10. Experimental Analysis and Evaluation of the Numerical Prediction of Wake Characteristics of Tidal Stream Turbine

    Directory of Open Access Journals (Sweden)

    Yuquan Zhang

    2017-12-01

    Full Text Available It is important to understand tidal stream turbine performance and flow field, if tidal energy is to advance. The operating condition of a tidal stream turbine with a supporting structure has a significant impact on its performance and wake recovery. The aim of this work is to provide an understanding of turbine submerged depth that governs the downstream wake structure and its recovery to the free-stream velocity profile. An experimentally validated numerical model, based on a computational fluid dynamics (CFD tool, was present to obtain longitudinal, transverse and vertical velocity profiles. Wake characteristics measurements have been carried out in an open channel at Hohai University. The results indicate that varying the turbine proximity to the water surface introduces differential mass flow rate around the rotor that could make the wake persist differently downstream. CFD shows the same predicted wake recovery tendency with the experiments, and an agreement from CFD and experiments is good in the far-wake region. The results presented demonstrate that CFD is a good tool to simulate the performance of tidal turbines particularly in the far-wake region and that the turbine proximity to the water surface has an effect on the wake recovery.

  11. A wind-tunnel investigation of wind-turbine wakes in different yawed and loading conditions

    Science.gov (United States)

    Bastankhah, Majid; Porté-Agel, Fernando

    2015-04-01

    Wind-turbine wakes have negative effects on wind-farm performance. They are associated with: (a) the velocity deficit, which reduces the generated power of downwind turbines; and (b) the turbulence level, which increases the fatigue loads on downwind turbines. Controlling the yaw angle of turbines can potentially improve the performance of wind farms by deflecting the wake away from downwind turbines. However, except for few studies, wakes of yawed turbines still suffer from the lack of systematic research. To fill this research gap, we performed wind-tunnel experiments in the recirculating boundary-layer wind tunnel at the WIRE Laboratory of EPFL to better understand the wakes of yawed turbines. High-resolution stereoscopic particle image-velocimetry (S-PIV) was used to measure three velocity components in a horizontal plane located downwind of a horizontal-axis, three-blade model turbine. A servo-controller was connected to the DC generator of the turbine, which allowed us to apply different loadings. The power and thrust coefficients of the turbine were also measured for each case. These power and thrust measurements together with the highly-resolved flow measurements enabled us to study different wake characteristics such as the energy entrainment from the outer flow into the wake, the wake deflection and the helicoidal tip vortices for yawed turbines.

  12. Neonatal Sleep-Wake Analyses Predict 18-month Neurodevelopmental Outcomes.

    Science.gov (United States)

    Shellhaas, Renée A; Burns, Joseph W; Hassan, Fauziya; Carlson, Martha D; Barks, John D E; Chervin, Ronald D

    2017-11-01

    The neurological examination of critically ill neonates is largely limited to reflexive behavior. The exam often ignores sleep-wake physiology that may reflect brain integrity and influence long-term outcomes. We assessed whether polysomnography and concurrent cerebral near-infrared spectroscopy (NIRS) might improve prediction of 18-month neurodevelopmental outcomes. Term newborns with suspected seizures underwent standardized neurologic examinations to generate Thompson scores and had 12-hour bedside polysomnography with concurrent cerebral NIRS. For each infant, the distribution of sleep-wake stages and electroencephalogram delta power were computed. NIRS-derived fractional tissue oxygen extraction (FTOE) was calculated across sleep-wake stages. At age 18-22 months, surviving participants were evaluated with Bayley Scales of Infant Development (Bayley-III), 3rd edition. Twenty-nine participants completed Bayley-III. Increased newborn time in quiet sleep predicted worse 18-month cognitive and motor scores (robust regression models, adjusted r2 = 0.22, p = .007, and 0.27, .004, respectively). Decreased 0.5-2 Hz electroencephalograph (EEG) power during quiet sleep predicted worse 18-month language and motor scores (adjusted r2 = 0.25, p = .0005, and 0.33, .001, respectively). Predictive values remained significant after adjustment for neonatal Thompson scores or exposure to phenobarbital. Similarly, an attenuated difference in FTOE, between neonatal wakefulness and quiet sleep, predicted worse 18-month cognitive, language, and motor scores in adjusted analyses (each p sleep-as quantified by increased time in quiet sleep, lower electroencephalogram delta power during that stage, and muted differences in FTOE between quiet sleep and wakefulness-may improve prediction of adverse long-term outcomes for newborns with neurological dysfunction. © Sleep Research Society 2017. Published by Oxford University Press on behalf of the Sleep Research Society. All rights reserved

  13. Accelerating field step-up transformer in wake-field accelerators

    International Nuclear Information System (INIS)

    Chojnacki, E.; Gai, W.; Schoessow, P.; Simpson, J.

    1991-01-01

    In the wake-field scheme of particle acceleration, a short, intense drive bunch of electrons passes through a slow-wave structure, leaving behind high rf power in its wake field. The axial accelerating electric field associated with the rf can be quite large, > 100 MeV/m, and is used to accelerate a much less intense ''witness'' beam to eventual energies > 1 TeV. The rf power is deposited predominantly in the fundamental mode of the structure, which, for dielectric-lined waveguide as used at Argonne, is the TM 01 mode. In all likelihood on the field amplitude will be limited only by rf breakdown of the dielectric material, the limit of which is currently unknown in the short time duration, high frequency regime of wake-field acceleration operation. To obtain such strong electric fields with given wake-field rf power, the dimensions of the dielectric-lined waveguide have to be fairly small, OD of the order of a cm and ID of a few mm, and this gives rise to the generation of strong deflection modes with beam misalignment. While a scheme exists to damp such deflection modes on a bunch-to-bunch time scale, head-tail beam deflection could still be a problem and BNS damping as well as FODO focusing are incomplete cures. Presented here are details of a scheme by which the rf power is generated by in a large-diameter wake-field tube, where deflection mode generation by the intense drive beam is tolerable, and then fed into a small-diameter acceleration tube where the less intense witness beam is accelerated by the greatly enhanced axial electric field. The witness beam generates little deflection-mode power itself, even in the small acceleration tube, thus a final high-quality, high-energy electron beam is produced

  14. Slow Activity in Focal Epilepsy During Sleep and Wakefulness

    DEFF Research Database (Denmark)

    Pellegrino, Giovanni; Tombini, Mario; Curcio, Giuseppe

    2017-01-01

    Introduction We aimed to test differences between healthy subjects and patients with respect to slow wave activity during wakefulness and sleep. Methods Fifteen patients affected by nonlesional focal epilepsy originating within temporal areas and fourteen matched controls underwent a 24-hour EEG....... The effect was widespread for alpha band and above, while localized over the affected hemisphere for delta (sleep cycle 1, P = .006; sleep cycle 2, P = .008; sleep cycle 3, P = .017). The analysis of interhemispheric differences showed that the only frequency band stronger over the affected regions...

  15. Longitudinal study of self-awakening and sleep/wake habits in adolescents

    Directory of Open Access Journals (Sweden)

    Ikeda H

    2012-09-01

    Full Text Available Hiroki Ikeda,1 Mitsuo Hayashi21Department of Adult Mental Health, National Institute of Mental Health, National Center of Neurology and Psychiatry, Tokyo; 2Department of Behavioral Sciences, Graduate School of Integrated Arts and Sciences, Hiroshima University, Hiroshima, JapanAbstract: Self-awakening is the ability to awaken without external assistance at a predetermined time. Cross-sectional studies reported that people who self-awaken have sleep/wake habits different from those of people who use external means to wake from sleep. However, no longitudinal study has examined self-awakening. The present study investigated self-awakening, both habitual and inconsistent, compared to awakening by external means in relation to sleep/wake schedules for five consecutive years in 362 students (starting at mean age 15.1 ± 0.3 years. Students who self-awakened consistently for five consecutive years (5% of all students went to bed earlier than those who inconsistently self-awakened (mixed group, 40% or consistently used forced awakening by external means (56%. Awakening during sleep was more frequent and sleep was lighter in the consistently self-awakened group than in the mixed and consistently forced-awakened groups. However, daytime dozing was less frequent and comfort immediately after awakening was greater for the consistently self-awakened group than for the mixed and consistently forced-awakened groups. These results indicate that the three groups have different sleep/wake habits. Previous studies of self-awakening using cross-sectional survey data may have confounded both consistent and inconsistent self-awakening habits. A longitudinal study is necessary to clarify the relationship between the self-awakening habit and sleep/wake patterns.Keywords: habitual self-awakening, sleep/wake pattern, adolescent

  16. Bedtime activities, sleep environment, and sleep/wake patterns of Japanese elementary school children.

    Science.gov (United States)

    Oka, Yasunori; Suzuki, Shuhei; Inoue, Yuich

    2008-01-01

    Bedtime activities, sleep environment, and their impact on sleep/wake patterns were assessed in 509 elementary school children (6-12 years of age; 252 males and 257 females). Television viewing, playing video games, and surfing the Internet had negative impact on sleep/wake parameters. Moreover, presence of a television set or video game in the child's bedroom increased their activity before bedtime. Time to return home later than 8 p.m. from after-school activity also had a negative impact on sleep/wake patterns. Health care practitioners should be aware of the potential negative impact of television, video games, and the Internet before bedtime, and also the possibility that late after-school activity can disturb sleep/wake patterns.

  17. Resistive-wall wake and impedance for nonultrarelativistic beams

    Directory of Open Access Journals (Sweden)

    Frank Zimmermann

    2004-04-01

    Full Text Available The usual formulas for the resistive-wall wake field are derived considering ultrarelativistic beams, traveling at the speed of light. This simplifies the calculation, and it leads to a cancellation between electric and magnetic fields. However, for proton beams below 10 GeV and for many heavy-ion beams, the velocities may significantly differ from the speed of light. In this paper, we compute the longitudinal and transverse wake fields for velocities smaller than c and examine under which conditions nonrelativistic effects become important. We illustrate our results by a few examples.

  18. Wake-up effects in Si-doped hafnium oxide ferroelectric thin films

    International Nuclear Information System (INIS)

    Zhou, Dayu; Xu, Jin; Li, Qing; Guan, Yan; Cao, Fei; Dong, Xianlin; Müller, Johannes; Schenk, Tony; Schröder, Uwe

    2013-01-01

    Hafnium oxide based ferroelectric thin films have shown potential as a promising alternative material for non-volatile memory applications. This work reports the switching stability of a Si-doped HfO 2 film under bipolar pulsed-field operation. High field cycling causes a “wake-up” in virgin “pinched” polarization hysteresis loops, demonstrated by an enhancement in remanent polarization and a shift of negative coercive voltage. The rate of wake-up is accelerated by either reducing the frequency or increasing the amplitude of the cycling field. We suggest de-pinning of domains due to reduction of the defect concentration at bottom electrode interface as origin of the wake-up

  19. The study of field and density cavity in the near wake region of a space vehicle

    International Nuclear Information System (INIS)

    Luo Qing; Wang Jing; Hu Taoping

    2011-01-01

    Under the static limit,using the method of Fourier transformation, the non-steady, nonlinear interactions between plasma and field in the near wake region of a space vehicle are investigated. Numerical calculations are performed and the results show that there are the formation of the electromagnetic soliton and density caviton in the near wake region of the space vehicle, which can be detected due to the collapse of electric field. Therefore, we can trace out the space vehicle by means of observing the structure and intensity of the density caviton and electromagnetic soliton although the space vehicle may be have a disguised characteristic. (authors)

  20. Femtosecond planar electron beam source for micron-scale dielectric wake field accelerator

    Directory of Open Access Journals (Sweden)

    T. C. Marshall

    2001-12-01

    Full Text Available A new accelerator, LACARA (laser-driven cyclotron autoresonance accelerator, under construction at the Accelerator Test Facility at Brookhaven National Laboratory, is to be powered by a 1 TW CO_{2} laser beam and a 50 MeV injected electron pulse. LACARA will produce inside a 2 m, 6 T solenoid a 100 MeV gyrating electron bunch, with ∼3% energy spread, approximately 1 psec in length with particles advancing in phase at the laser frequency, executing one cycle each 35 fsec. A beamstop with a small off axis channel will transmit a short beam pulse every optical cycle, thereby producing a train of about 30, 3.5 fsec long, 1–3 pC microbunches for each laser pulse. We describe here a novel accelerator, a micron-scale dielectric wake field accelerator driven by a 500 MeV LACARA-type injector that takes the output train of microbunches and transforms them into a near-rectangular cross section having a narrow dimension of ∼10 μm and height of ∼150 μm using a magnetic quadrupole; these bunches may be injected into a planar dielectric-lined waveguide (slightly larger than the bunch where cumulative buildup of wake fields can lead to an accelerating gradient >1 GV/m. This proposed vacuum-based wake field structure is physically rigid and capable of microfabrication accuracy, factors important in staging a large number of accelerator modules. Furthermore, the accelerating gradients it promises are comparable with those for plasma accelerators. A LACARA unit for preparing suitable bunches at 500 MeV is described. Physics issues are discussed, including bunch spreading and transport, bunch shaping, coherent diffraction radiation from the aperture, dielectric breakdown, and bunch stability in the rectangular wake field structure.

  1. Making Aircraft Vortices Visible to Radar by Spraying Water into the Wake

    Science.gov (United States)

    Shariff, Karim

    2016-01-01

    Aircraft trailing vortices pose a danger to following aircraft during take-off and landing. This necessitates spacing rules, based on aircraft type, to be enforced during approach in IFR (Instrument Flight Regulations) conditions; this can limit airport capacity. To help choose aircraft spacing based on the actual location and strength of the wake, it is proposed that wake vortices can be detected using conventional precipitation and cloud radars. This is enabled by spraying a small quantity water into the wake from near the wing. The vortex strength is revealed by the doppler velocity of the droplets. In the present work, droplet size distributions produced by nozzles used for aerial spraying are considered. Droplet trajectory and evaporation in the flow-field is numerically calculated for a heavy aircraft, followed by an evaluation of radar reflectivity at 6 nautical miles behind the aircraft. Small droplets evaporate away while larger droplets fall out of the wake. In the humid conditions that typically prevail during IFR, a sufficient number of droplets remain in the wake and give good signal-to-noise ratios (SNR). For conditions of average humidity, higher frequency radars combined with spectral processing gives good SNR.

  2. Effect of chord-to-diameter ratio on vertical-axis wind turbine wake development

    Science.gov (United States)

    Parker, Colin M.; Araya, Daniel B.; Leftwich, Megan C.

    2017-12-01

    The wake structure of a vertical-axis wind turbine (VAWT) is strongly dependent on the tip-speed ratio, λ, or the tangential speed of the turbine blade relative to the incoming wind speed. The geometry of a turbine can influence λ, but the precise relationship among VAWT geometric parameters and VAWT wake characteristics remains unknown. To investigate this relationship, we present the results of an experiment to characterize the wakes of three VAWTs that are geometrically similar except for the ratio of the turbine diameter ( D), to blade chord ( c), which was chosen to be D/c = 3, 6, and 9. For a fixed freestream Reynolds number based on the blade chord of Re_c = 1.6× 10^3, both two-component particle image velocimetry (PIV) and single-component hot-wire anemometer measurements are taken at the horizontal mid-plane in the wake of each turbine. PIV measurements are ensemble averaged in time and phase averaged with each rotation of the turbine. Hot-wire measurement points are selected to coincide with the edge of the shear layer of each turbine wake, as deduced from the PIV data, which allows for an analysis of the frequency content of the wake due to vortex shedding by the turbine.

  3. Cockpit-based Wake Vortex Visualization, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — To prevent aircraft accidents due to wake vortex hazards, FAA procedures specify the minimum separation required between different categories of aircraft. However, a...

  4. Sleep wake pattern analysis: Study of 131 medical students

    OpenAIRE

    Nita Ninama; Jaydeep Kangathara

    2012-01-01

    Objective:Sleep is part of the rhythm of life. Without a good sleep the mind is less adapts, mood is altered and the body loses the ability to refresh. The sleep wake cycle of the students is quite different and characterized by delayed onset, partial sleep deprivation, poor sleep quality, insufficient sleep duration and occurrence of napping episodes during the day The aim of the present study is to know sleep wake pattern in medical student, role of residence and individual characterization...

  5. Application of engineering models to predict wake deflection due to a tilted wind turbine

    DEFF Research Database (Denmark)

    Guntur, Srinivas; Troldborg, Niels; Gaunaa, Mac

    2012-01-01

    such a mechanism introduces control complications due to changing wind directions. Deflecting the wake in the vertical direction using tilt, on the other hand, overcomes this challenge. In this paper, the feasibility of steering wake is explored in a simple uniform inflow case. This is done by trying to model......It is a known fact that the power produced by wind turbines operating inside an array decreases due to the wake effects of the upstream turbines. It has been proposed previously to use the yaw mechanism as a potential means to steer the upstream wake away from downstream turbines, however...

  6. Tip Vortex and Wake Characteristics of a Counterrotating Open Rotor

    Science.gov (United States)

    VanZante, Dale E.; Wernet, Mark P.

    2012-01-01

    One of the primary noise sources for Open Rotor systems is the interaction of the forward rotor tip vortex and blade wake with the aft rotor. NASA has collaborated with General Electric on the testing of a new generation of low noise, counterrotating Open Rotor systems. Three-dimensional particle image velocimetry measurements were acquired in the intra-rotor gap of the Historical Baseline blade set. The velocity measurements are of sufficient resolution to characterize the tip vortex size and trajectory as well as the rotor wake decay and turbulence character. The tip clearance vortex trajectory is compared to results from previously developed models. Forward rotor wake velocity profiles are shown. Results are presented in a form as to assist numerical modeling of Open Rotor system aerodynamics and acoustics.

  7. Analytical formulas for short bunch wakes in a flat dechirper

    Energy Technology Data Exchange (ETDEWEB)

    Bane, Karl; Stupakov, Gennady [SLAC National Accelerator Laboratory, Menlo Park, CA (United States); Zgorodnov, Igor [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany)

    2016-03-15

    We develop analytical models of the longitudinal and transverse wakes, on and off axis for realistic structures, and then compare them with numerical calculations, and generally find good agreement. These analytical ''first order'' formulas approximate the droop at the origin of the longitudinal wake and of the slope of the transverse wakes; they represent an improvement in accuracy over earlier, ''zeroth order'' formulas. In example calculations for the RadiaBeam/LCLS dechirper using typical parameters, we find a 16% droop in the energy chirp at the bunch tail compared to simpler calculations. With the beam moved to 200 μm from one jaw in one dechirper section, one can achieve a 3 MV transverse kick differential over a 30 μm length.

  8. Analytical formulas for short bunch wakes in a flat dechirper

    International Nuclear Information System (INIS)

    Bane, Karl; Stupakov, Gennady; Zgorodnov, Igor

    2016-03-01

    We develop analytical models of the longitudinal and transverse wakes, on and off axis for realistic structures, and then compare them with numerical calculations, and generally find good agreement. These analytical ''first order'' formulas approximate the droop at the origin of the longitudinal wake and of the slope of the transverse wakes; they represent an improvement in accuracy over earlier, ''zeroth order'' formulas. In example calculations for the RadiaBeam/LCLS dechirper using typical parameters, we find a 16% droop in the energy chirp at the bunch tail compared to simpler calculations. With the beam moved to 200 μm from one jaw in one dechirper section, one can achieve a 3 MV transverse kick differential over a 30 μm length.

  9. Meteorological explanation of wake clouds at Horns Rev wind farm

    Energy Technology Data Exchange (ETDEWEB)

    Emeis, S. [Karlsruhe Institute of Technology (Germany). Inst. for Meteorology and Climate Research

    2010-08-15

    The occurrence of wake clouds at Horns Rev wind farm is explained as mixing fog. Mixing fog forms when two nearly saturated air masses with different temperature are mixed. Due to the non-linearity of the dependence of the saturation water vapour pressure on temperature, the mixed air mass is over-saturated and condensation sets in. On the day in February 2008, when the wake clouds were observed at Horns Rev, cold and very humid air was advected from the nearby land over the warmer North Sea and led to the formation of a shallow layer with sea smoke or fog close above the sea surface. The turbines mixed a much deeper layer and thus provoked the formation of cloud trails in the wakes of the turbines. (orig.)

  10. Night Waking in 6-Month-Old Infants and Maternal Depressive Symptoms

    Science.gov (United States)

    Karraker, Katherine Hildebrandt; Young, Marion

    2007-01-01

    Relations between night waking in infants and depressive symptoms in their mothers at 6 months postpartum were examined using the data from the National Institute for Child Health and Human Development Study of Early Child Care. Although more depressive symptoms were only weakly correlated with a higher frequency of infant waking, longer wake…

  11. Dispersion in the wake of a model industrial complex

    International Nuclear Information System (INIS)

    Hatcher, R.V.; Meroney, R.N.; Peterka, J.A.; Kothari, K.

    1977-06-01

    Models (1:200 scale) of the EOCR reactor building and surrounding silo and tank buildings at the Idaho National Engineering Laboratory, Idaho Falls, Idaho were put into the Meteorological Wind Tunnel at Colorado State University for the purpose of studying the effects of building wakes on dispersion. Flow visualization was done and concentration measurements were taken. The test program consisted of systematic releases from ground, building height, and stack height sources with no appreciable plume rise. The program was repeated for cases of moderately unstable, neutral, moderately stable, and stable conditions in the wind tunnel. Results show that the buildings significantly alter the dispersion patterns and the addition of any extra buildings or slight terrain change in the immediate vicinity of the building has a major effect. In the near wake region the effects of stratification were still evident causing slightly higher concentrations for stable conditions and slightly lower for unstable. Current dispersion models are discussed and evaluated that predict concentrations in the building wake region

  12. Relationship Between Meditation Depth and Waking Salivary Alpha-Amylase Secretion Among Long-Term MBSR Instructors.

    Science.gov (United States)

    Haslam, Alyson; Wirth, Michael D; Robb, Sara Wagner

    2017-08-01

    The purpose of this study was to characterize sympathetic activity by using waking salivary alpha-amylase (sAA) concentrations in a group of long-term meditation instructors and to examine the association between meditation (depth, dose and duration) and the waking alpha-amylase response. Salivary alpha-amylase samples were collected (immediately upon waking and at 15-min, 30-min and 45-min intervals after waking) from mindfulness-based stress reduction instructors to determine both the area under the curve and the awakening slope (difference in alpha-amylase concentrations between waking and 30-min post-waking). It was determined through general linear models that neither years of meditation nor meditation dose were associated with the awakening sAA slope, but higher scores for meditation depth (greater depth) was associated with a more negative (or steeper) awakening slope [Quartile (Q)1: -7 versus Q4: -21 U/mL; p = 0.06], in fully adjusted models. Older age (p = 0.04) and a later time of waking (p meditate more deeply. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  13. Statistical meandering wake model and its application to yaw-angle optimisation of wind farms

    International Nuclear Information System (INIS)

    Thøgersen, E; Tranberg, B; Greiner, M; Herp, J

    2017-01-01

    The wake produced by a wind turbine is dynamically meandering and of rather narrow nature. Only when looking at large time averages, the wake appears to be static and rather broad, and is then well described by simple engineering models like the Jensen wake model (JWM). We generalise the latter deterministic models to a statistical meandering wake model (SMWM), where a random directional deflection is assigned to a narrow wake in such a way that on average it resembles a broad Jensen wake. In a second step, the model is further generalised to wind-farm level, where the deflections of the multiple wakes are treated as independently and identically distributed random variables. When carefully calibrated to the Nysted wind farm, the ensemble average of the statistical model produces the same wind-direction dependence of the power efficiency as obtained from the standard Jensen model. Upon using the JWM to perform a yaw-angle optimisation of wind-farm power output, we find an optimisation gain of 6.7% for the Nysted wind farm when compared to zero yaw angles and averaged over all wind directions. When applying the obtained JWM-based optimised yaw angles to the SMWM, the ensemble-averaged gain is calculated to be 7.5%. This outcome indicates the possible operational robustness of an optimised yaw control for real-life wind farms. (paper)

  14. Statistical meandering wake model and its application to yaw-angle optimisation of wind farms

    Science.gov (United States)

    Thøgersen, E.; Tranberg, B.; Herp, J.; Greiner, M.

    2017-05-01

    The wake produced by a wind turbine is dynamically meandering and of rather narrow nature. Only when looking at large time averages, the wake appears to be static and rather broad, and is then well described by simple engineering models like the Jensen wake model (JWM). We generalise the latter deterministic models to a statistical meandering wake model (SMWM), where a random directional deflection is assigned to a narrow wake in such a way that on average it resembles a broad Jensen wake. In a second step, the model is further generalised to wind-farm level, where the deflections of the multiple wakes are treated as independently and identically distributed random variables. When carefully calibrated to the Nysted wind farm, the ensemble average of the statistical model produces the same wind-direction dependence of the power efficiency as obtained from the standard Jensen model. Upon using the JWM to perform a yaw-angle optimisation of wind-farm power output, we find an optimisation gain of 6.7% for the Nysted wind farm when compared to zero yaw angles and averaged over all wind directions. When applying the obtained JWM-based optimised yaw angles to the SMWM, the ensemble-averaged gain is calculated to be 7.5%. This outcome indicates the possible operational robustness of an optimised yaw control for real-life wind farms.

  15. Pharmacological profiling of zebrafish behavior using chemical and genetic classification of sleep-wake modifiers.

    Science.gov (United States)

    Nishimura, Yuhei; Okabe, Shiko; Sasagawa, Shota; Murakami, Soichiro; Ashikawa, Yoshifumi; Yuge, Mizuki; Kawaguchi, Koki; Kawase, Reiko; Tanaka, Toshio

    2015-01-01

    Sleep-wake states are impaired in various neurological disorders. Impairment of sleep-wake states can be an early condition that exacerbates these disorders. Therefore, treating sleep-wake dysfunction may prevent or slow the development of these diseases. Although many gene products are likely to be involved in the sleep-wake disturbance, hypnotics and psychostimulants clinically used are limited in terms of their mode of action and are not without side effects. Therefore, there is a growing demand for developing new hypnotics and psychostimulants with high efficacy and few side effects. Toward this end, animal models are indispensable for use in genetic and chemical screens to identify sleep-wake modifiers. As a proof-of-concept study, we performed behavioral profiling of zebrafish treated with chemical and genetic sleep-wake modifiers. We were able to demonstrate that behavioral profiling of zebrafish treated with hypnotics or psychostimulants from 9 to 10 days post-fertilization was sufficient to identify drugs with specific modes of action. We were also able to identify behavioral endpoints distinguishing GABA-A modulators and hypocretin (hcrt) receptor antagonists and between sympathomimetic and non-sympathomimetic psychostimulants. This behavioral profiling can serve to identify genes related to sleep-wake disturbance associated with various neuropsychiatric diseases and novel therapeutic compounds for insomnia and excessive daytime sleep with fewer adverse side effects.

  16. [THE CRITICAL INCIDENTS IN THE COMBINED ANESTHESIA DURING MAJOR ABDOMINAL SURGERY IN ELDERRY AND OLD PATIENTS: ROLE PREOPERATIVE LEVEL OF WAKEFULNESS.

    Science.gov (United States)

    Veyler, R V; Musaeva, T S; Trembach, N V; Zabolotskikh, I B

    2016-09-01

    to determine patterns during combined anesthesia andfrequency ofcritical incidents, depending on the initial level of wakefulness and patient age. 158 patients of planning operated under combined anesthesia for colon tumors were divided into two groups of elderly patients (n= 79) and old (n= 79). Each group was divided into 3 subgroups, depending on level of wakefulness, the estimatedfor level of direct current potential: low, optimum and high levels ofwakefulness. Relations of age and level ofwakefulness with afrequency of critical incidents. In the number of registered incidents included hemodynamic incidents: hypotension, hypertension, bradycardia, arrhythmia and tachycardia; respiratory incidents: hypoxemia, hypercapnia, the needfor prolonged postoperative mechanical ventilation; metabolic incidents: hypothermia, slow recovery of neuromuscular conduction, slow postoperative awakening has been studied. The most frequent incidents in our study were hemodynamic incidents, which prevailed in the structure of hypotension and hypertension. Among of the respiratory incidents dominated by hypoxia and hypercapnia. In the group of elderly patients the most incidents occurred in the subgroup with low level of wakefulness, while in the oldest patients statistically group significant differences between the groups were not found Conclusion. Frequency of critical incidents does not only depend from the age but also from a preoperative level of wakefulness; frequency was lower in elderly patients with an optimum level of wakefulness, and the low level of wakefulness - was high regardless of age.

  17. Large-Eddy Simulation of Waked Turbines in a Scaled Wind Farm Facility

    Science.gov (United States)

    Wang, J.; McLean, D.; Campagnolo, F.; Yu, T.; Bottasso, C. L.

    2017-05-01

    The aim of this paper is to present the numerical simulation of waked scaled wind turbines operating in a boundary layer wind tunnel. The simulation uses a LES-lifting-line numerical model. An immersed boundary method in conjunction with an adequate wall model is used to represent the effects of both the wind turbine nacelle and tower, which are shown to have a considerable effect on the wake behavior. Multi-airfoil data calibrated at different Reynolds numbers are used to account for the lift and drag characteristics at the low and varying Reynolds conditions encountered in the experiments. The present study focuses on low turbulence inflow conditions and inflow non-uniformity due to wind tunnel characteristics, while higher turbulence conditions are considered in a separate study. The numerical model is validated by using experimental data obtained during test campaigns conducted with the scaled wind farm facility. The simulation and experimental results are compared in terms of power capture, rotor thrust, downstream velocity profiles and turbulence intensity.

  18. Boosting long-term memory via wakeful rest: intentional rehearsal is not necessary, consolidation is sufficient.

    Science.gov (United States)

    Dewar, Michaela; Alber, Jessica; Cowan, Nelson; Della Sala, Sergio

    2014-01-01

    People perform better on tests of delayed free recall if learning is followed immediately by a short wakeful rest than by a short period of sensory stimulation. Animal and human work suggests that wakeful resting provides optimal conditions for the consolidation of recently acquired memories. However, an alternative account cannot be ruled out, namely that wakeful resting provides optimal conditions for intentional rehearsal of recently acquired memories, thus driving superior memory. Here we utilised non-recallable words to examine whether wakeful rest boosts long-term memory, even when new memories could not be rehearsed intentionally during the wakeful rest delay. The probing of non-recallable words requires a recognition paradigm. Therefore, we first established, via Experiment 1, that the rest-induced boost in memory observed via free recall can be replicated in a recognition paradigm, using concrete nouns. In Experiment 2, participants heard 30 non-recallable non-words, presented as 'foreign names in a bridge club abroad' and then either rested wakefully or played a visual spot-the-difference game for 10 minutes. Retention was probed via recognition at two time points, 15 minutes and 7 days after presentation. As in Experiment 1, wakeful rest boosted recognition significantly, and this boost was maintained for at least 7 days. Our results indicate that the enhancement of memory via wakeful rest is not dependent upon intentional rehearsal of learned material during the rest period. We thus conclude that consolidation is sufficient for this rest-induced memory boost to emerge. We propose that wakeful resting allows for superior memory consolidation, resulting in stronger and/or more veridical representations of experienced events which can be detected via tests of free recall and recognition.

  19. Mecanismos do ciclo sono-vigília Sleep-wake cycle mechanisms

    Directory of Open Access Journals (Sweden)

    Flávio Alóe

    2005-05-01

    Full Text Available Três sub-divisões hipotalâmicas são importantes no ciclo sono-vigília: o hipotálamo anterior (núcleos gabaérgicos e núcleos supraquiasmáticos, o hipotálamo posterior (núcleo túbero-mamilar histaminérgico e o hipotálamo lateral (sistema hipocretinas. O sistema gabaérgico inibitório do núcleo pré-óptico ventro-lateral (VLPO do hipotálamo anterior é responsável pelo início e manutenção do sono NREM. Os neurônios supraquiasmáticos (NSQs do hipotálamo anterior são responsáveis pelo ritmo circadiano do ciclo sono-vigília. Os núcleos aminérgicos, histaminérgicos, as hipocretinas e núcleos colinérgicos do prosencéfalo basal apresentam-se ativos durante a vigília, inibindo o núcleo pré-óptico ventro-lateral, promovendo a vigília. O processo de inibição-estimulação é a base do modelo da interação recíproca entre os grupos de células wake-off-sleep-on e células wake-off-sleep-on reguladores do ciclo sono-vigília. O modelo da interação recíproca também se aplica aos núcleos colinérgicos (células REM-on e aminérgicos (células REM-off do tronco cerebral no controle temporal do sono REM-NREM.Neurochemically distinct systems interact regulating sleep and wakefulness. Wakefulness is promoted by aminergic, acetylcholinergic brainstem and hypothalamic systems. Each of these arousal systems supports wakefulness and coordinated activity is required for alertness and EEG activation. Neurons in the pons and preoptic area control rapid eye movement and non-rapid eye movement sleep. Mutual inhibition between these wake- and sleep-regulating systems generate behavioral states. An up-to-date understanding of these systems should allow clinicians and researchers to better understand the effects of drugs, lesions, and neurologic disease on sleep and wakefulness.

  20. The Films at the Wake. Per un catalogo

    Directory of Open Access Journals (Sweden)

    Rinaldo Rinaldi

    2014-06-01

    Full Text Available Recently – particularly in the last few year – critics have highlighted the importance of cinema in James Joyce's works. We can think, for instance, of the evocative role of cinematographic techniques; in addition , being a cinephile, Joyce proves to know a wide variety of films. Finnegans Wake has not been much explored from this perspective. This article aims to highlight the presence of cinema and films (but also directors and actors in Joyce's last novel: this is a temporary and hypothetical catalogue, due to Finnegans Wake's multiple allusions and to its requiring an infinite patience and a qualified collaboration of all its readers.

  1. Three-dimensional structural representation of the sleep-wake adaptability.

    Science.gov (United States)

    Putilov, Arcady A

    2016-01-01

    Various characteristics of the sleep-wake cycle can determine the success or failure of individual adjustment to certain temporal conditions of the today's society. However, it remains to be explored how many such characteristics can be self-assessed and how they are inter-related one to another. The aim of the present report was to apply a three-dimensional structural representation of the sleep-wake adaptability in the form of "rugby cake" (scalene or triaxial ellipsoid) to explain the results of analysis of the pattern of correlations of the responses to the initial 320-item list of a new inventory with scores on the six scales designed for multidimensional self-assessment of the sleep-wake adaptability (Morning and Evening Lateness, Anytime and Nighttime Sleepability, and Anytime and Daytime Wakeability). The results obtained for sample consisting of 149 respondents were confirmed by the results of similar analysis of earlier collected responses of 139 respondents to the same list of 320 items and responses of 1213 respondents to the 72 items of one of the earlier established questionnaire tools. Empirical evidence was provided in support of the model-driven prediction of the possibility to identify items linked to as many as 36 narrow (6 core and 30 mixed) adaptabilities of the sleep-wake cycle. The results enabled the selection of 168 items for self-assessment of all these adaptabilities predicted by the rugby cake model.

  2. A 380pW Dual Mode Optical Wake-up Receiver with Ambient Noise Cancellation.

    Science.gov (United States)

    Lim, Wootaek; Jang, Taekwang; Lee, Inhee; Kim, Hun-Seok; Sylvester, Dennis; Blaauw, David

    2016-06-01

    We present a sub-nW optical wake-up receiver for wireless sensor nodes. The wake-up receiver supports dual mode operation for both ultra-low standby power and high data rates, while canceling ambient in-band noise. In 0.18µm CMOS the receiver consumes 380pW in always-on wake-up mode and 28.1µW in fast RX mode at 250kbps.

  3. Sleep-Wake Patterns of Adolescents with Borderline Personality Disorder and Bipolar Disorder.

    Science.gov (United States)

    Huỳnh, Christophe; Guilé, Jean-Marc; Breton, Jean-Jacques; Godbout, Roger

    2016-04-01

    Sleep-wake patterns are rarely examined in adolescents with borderline personality disorder (BPD) or bipolar disorder (BD). Within a developmental perspective, this study explores the sleep-wake cycle of adolescents aged 12-17 years with BPD or BD and healthy controls (HC) during periods with and without entrainment by school/work schedules. Eighteen euthymic BPD, six euthymic BD, and 20 HC adolescents wore wrist actigraphy during nine consecutive days to assess sleep-wake patterns. During school/work days, BPD adolescents spent more time awake when they were in bed compared to HC and BD adolescents (p = 0.039). On schedule-free days, BPD and BD youths spent more time in bed compared to HC adolescents (p = 0.015). BPD adolescents woke up over 1 h later compared to HC (p = 0.003). Total sleep time was more variable between nights in BPD adolescents compared to the HC group (p = 0.031). Future research should explore if sleep-wake pattern disruptions are a cause or a consequence of BPD symptomatology in adolescents. Addressing sleep-wake pattern during clinical assessment and treatment of BPD adolescents may potentially reduce their symptoms; this therapeutic effect still needs to be evaluated.

  4. Wake of a blunt planetary probe model under hypervelocity conditions

    Energy Technology Data Exchange (ETDEWEB)

    Kastell, D.; Hannemann, D.; Eitelberg, G. [DLR Deutsches Zentrum fuer Luft- und Raumfahrt e.V., Goettingen (Germany). Inst. fuer Stroemungsmechanik

    1998-12-31

    The flow in the wake of a planetary probe under hypervelocity re-entry conditions has two idiosyncrasies not present in the conventional (cold) hypersonic flows: the strong dissociation reaction occurring behind the bow shock wave, and the freezing of the chemical reactions of the flow by the rapid expansion at the shoulder of the probe. The aim of the present study was to both understand the relative importance of the two phenomena upon the total heat and pressure loads on a planetary probe and its possible payload as well as to provide experimental validation data for those developing numerical codes for planetary probe design and analysis. For the experimental study an instrumented blunted 140 cone was tested in the High Enthalpy Shock Tunnel in Goettingen (HEG). The numerical calculations were performed with a Thin-Layer Navier-Stokes code which is capable of simulating chemical and thermal nonequilibrium flows. For the forebody loads the prediction methods were very reliable and capable of accounting for the kinetic effects caused by the high specific enthalpy of the flow. On the other side considerable discrepancies between experimental and numerical results for the wake of the model have been observed. (orig.)

  5. Wake of a blunt planetary probe model under hypervelocity conditions

    Energy Technology Data Exchange (ETDEWEB)

    Kastell, D.; Hannemann, D.; Eitelberg, G. (DLR Deutsches Zentrum fuer Luft- und Raumfahrt e.V., Goettingen (Germany). Inst. fuer Stroemungsmechanik)

    1998-01-01

    The flow in the wake of a planetary probe under hypervelocity re-entry conditions has two idiosyncrasies not present in the conventional (cold) hypersonic flows: the strong dissociation reaction occurring behind the bow shock wave, and the freezing of the chemical reactions of the flow by the rapid expansion at the shoulder of the probe. The aim of the present study was to both understand the relative importance of the two phenomena upon the total heat and pressure loads on a planetary probe and its possible payload as well as to provide experimental validation data for those developing numerical codes for planetary probe design and analysis. For the experimental study an instrumented blunted 140 cone was tested in the High Enthalpy Shock Tunnel in Goettingen (HEG). The numerical calculations were performed with a Thin-Layer Navier-Stokes code which is capable of simulating chemical and thermal nonequilibrium flows. For the forebody loads the prediction methods were very reliable and capable of accounting for the kinetic effects caused by the high specific enthalpy of the flow. On the other side considerable discrepancies between experimental and numerical results for the wake of the model have been observed. (orig.)

  6. Experiences of wake and light therapy in patients with depression

    DEFF Research Database (Denmark)

    Kragh, Mette; Møller, Dorthe Norden; Wihlborg, Camilla Schultz

    2017-01-01

    week, 30 min of daily light treatment for the entire 9 weeks, and ongoing psychoeducation regarding good sleep hygiene. Patients kept a diary, and individual semistructured interviews were conducted. Data were analysed using qualitative content analysis. The participants' overall experience......Wake therapy can reduce depressive symptoms within days, and response rates are high. To sustain the effect, it is often combined with light therapy. Few studies have focussed on factors related to patients' adherence to the regime, and none has used qualitative methods to examine their experience...

  7. Dynamics of vortices in complex wakes: Modeling, analysis, and experiments

    Science.gov (United States)

    Basu, Saikat

    model results with experiments conducted in a owing soap film with an airfoil, which was imparted with forced oscillations, are satisfactory and validate the reduced order modeling framework. The experiments have been performed by a collaborator group at the Department of Physics and Fluid Dynamics at the Technical University of Denmark (DTU), led by Dr. Anders Andersen. Similar experiments have also been run at Virginia Tech as part of this dissertation and the preliminary results are included in this treatise. The thesis also employs the same dynamical systems techniques, which have been applied to study the 2P regime dynamics, to develop a mathematical model for the P+S mode vortex wakes, with three vortices present in each shedding cycle. The model results have also been compared favorably with an experiment and the predictions regarding the vortex circulation data match well with the previous results from literature. Finally, the thesis introduces a novel concept of clean and renewable energy extraction from vortex-induced vibrations of bluff bodies. The slow-moving currents in the off-shore marine environments and riverine flows are beyond the operational capabilities of the more established hydrokinetic energy converters and the discussed technology promises to be a significant tool to generate useful power from these copiously available but previously untapped sources.

  8. Wind Turbine Power Curve Design for Optimal Power Generation in Wind Farms Considering Wake Effect

    Directory of Open Access Journals (Sweden)

    Jie Tian

    2017-03-01

    Full Text Available In modern wind farms, maximum power point tracking (MPPT is widely implemented. Using the MPPT method, each individual wind turbine is controlled by its pitch angle and tip speed ratio to generate the maximum active power. In a wind farm, the upstream wind turbine may cause power loss to its downstream wind turbines due to the wake effect. According to the wake model, downstream power loss is also determined by the pitch angle and tip speed ratio of the upstream wind turbine. By optimizing the pitch angle and tip speed ratio of each wind turbine, the total active power of the wind farm can be increased. In this paper, the optimal pitch angle and tip speed ratio are selected for each wind turbine by the exhausted search. Considering the estimation error of the wake model, a solution to implement the optimized pitch angle and tip speed ratio is proposed, which is to generate the optimal control curves for each individual wind turbine off-line. In typical wind farms with regular layout, based on the detailed analysis of the influence of pitch angle and tip speed ratio on the total active power of the wind farm by the exhausted search, the optimization is simplified with the reduced computation complexity. By using the optimized control curves, the annual energy production (AEP is increased by 1.03% compared to using the MPPT method in a case-study of a typical eighty-turbine wind farm.

  9. Introduction to wakefields and wake potentials

    Energy Technology Data Exchange (ETDEWEB)

    Wilson, P.B.

    1989-01-01

    What are wakefields and wake potentials, and why are these concepts useful in the physics of linear accelerators and storage rings We approach this question by first reviewing the basic physical concepts which underlie the mathematical formalism. We then present a summary of the various techniques that have been developed to make detailed calculations of wake potentials. Finally, we give some applications to current problems of interest in accelerator physics. No attempt at completeness can be made in an introductory article of modest length. Rather, we try to give a broad overview and to list key references for more detailed study. It will also be apparent that the last chapter on this subject, with all the loose ends neatly tied up, has yet to be written. There are subtle points, there are controversial questions, and active calculations to resolve these questions are continuing at the time of this writing. 61 refs., 10 figs., 1 tab.

  10. Introduction to wakefields and wake potentials

    International Nuclear Information System (INIS)

    Wilson, P.B.

    1989-01-01

    What are wakefields and wake potentials, and why are these concepts useful in the physics of linear accelerators and storage rings? We approach this question by first reviewing the basic physical concepts which underlie the mathematical formalism. We then present a summary of the various techniques that have been developed to make detailed calculations of wake potentials. Finally, we give some applications to current problems of interest in accelerator physics. No attempt at completeness can be made in an introductory article of modest length. Rather, we try to give a broad overview and to list key references for more detailed study. It will also be apparent that the last chapter on this subject, with all the loose ends neatly tied up, has yet to be written. There are subtle points, there are controversial questions, and active calculations to resolve these questions are continuing at the time of this writing. 61 refs., 10 figs., 1 tab

  11. Analysis of the wake field effects in the PEP-II storage rings with extremely high currents

    Energy Technology Data Exchange (ETDEWEB)

    Novokhatski, A., E-mail: novo@slac.stanford.edu; Seeman, J.; Sullivan, M.

    2014-01-21

    We present the history and analysis of different wake field effects throughout the operational life of the PEP-II SLAC B-factory. Although the impedance of the high and low energy rings is small, the intense high-current beams generated a lot of power. The effects from these wake fields are: heating and damage of vacuum beam chamber elements like RF seals, vacuum valves, shielded bellows, BPM buttons and ceramic tiles; vacuum spikes, vacuum instabilities and high detector background; and beam longitudinal and transverse instabilities. We also discuss the methods used to eliminate these effects. Results of this analysis and the PEP-II experience may be very useful in the design of new storage rings and light sources.

  12. Sleep-wake patterns and their influence on school performance in Portuguese adolescents

    OpenAIRE

    Duarte, João; Nelas, Paula; Chaves, Cláudia; Ferreira, Manuela; Coutinho, Emília; Cunha, Madalena

    2014-01-01

    Objective: To characterise sleep-wake patterns and their influence on academic performance for a sample of Portuguese adolescents. Research design: Cross-sectional, analytical-explanatory, correlational epidemiological research. The protocol includes the composite morningness questionnaire (Barton et al, 1985 adapted by Silva et al, 1985), the Epworth Sleepiness Scale (Murray, 1991), chronic fatigue scale (Smith et al, 1995), the Pittsburgh Sleep Quality Index (Buysse, 1988), Educational A...

  13. Boosting long-term memory via wakeful rest: intentional rehearsal is not necessary, consolidation is sufficient.

    Directory of Open Access Journals (Sweden)

    Michaela Dewar

    Full Text Available People perform better on tests of delayed free recall if learning is followed immediately by a short wakeful rest than by a short period of sensory stimulation. Animal and human work suggests that wakeful resting provides optimal conditions for the consolidation of recently acquired memories. However, an alternative account cannot be ruled out, namely that wakeful resting provides optimal conditions for intentional rehearsal of recently acquired memories, thus driving superior memory. Here we utilised non-recallable words to examine whether wakeful rest boosts long-term memory, even when new memories could not be rehearsed intentionally during the wakeful rest delay. The probing of non-recallable words requires a recognition paradigm. Therefore, we first established, via Experiment 1, that the rest-induced boost in memory observed via free recall can be replicated in a recognition paradigm, using concrete nouns. In Experiment 2, participants heard 30 non-recallable non-words, presented as 'foreign names in a bridge club abroad' and then either rested wakefully or played a visual spot-the-difference game for 10 minutes. Retention was probed via recognition at two time points, 15 minutes and 7 days after presentation. As in Experiment 1, wakeful rest boosted recognition significantly, and this boost was maintained for at least 7 days. Our results indicate that the enhancement of memory via wakeful rest is not dependent upon intentional rehearsal of learned material during the rest period. We thus conclude that consolidation is sufficient for this rest-induced memory boost to emerge. We propose that wakeful resting allows for superior memory consolidation, resulting in stronger and/or more veridical representations of experienced events which can be detected via tests of free recall and recognition.

  14. Meteorology and Wake Vortex Influence on American Airlines FL-587 Accident

    Science.gov (United States)

    Proctor, Fred H.; Hamilton, David W.; Rutishauser, David K.; Switzer, George F.

    2004-01-01

    The atmospheric environment surrounding the crash of American Airlines Flight 587 is investigated. Examined are evidence for any unusual atmospheric conditions and the potential for encounters with aircraft wake vortices. Computer simulations are carried out with two different vortex prediction models and a Large Eddy Simulation model. Wind models are proposed for studying aircraft and pilot response to the wake vortex encounter.

  15. CRED REA Algal Assessments Wake Atoll, 2007

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Twelve quadrats were sampled along 2 consecutively-placed, 25m transect lines as part of Rapid Ecological Assessments conducted at 12 sites at Wake Atoll in April...

  16. Attachment and infant night waking: a longitudinal study from birth through the first year of life.

    Science.gov (United States)

    Beijers, Roseriet; Jansen, Jarno; Riksen-Walraven, Marianne; de Weerth, Carolina

    2011-11-01

    : Night wakings are common in infancy. Although a link between infant night wakings and attachment to the primary caregiver has been previously proposed, empirical support is limited so far. The aim of this longitudinal study was to examine the early history of night waking in infants who were later classified as securely or insecurely (avoidantly, resistantly, or disorganized) attached. : Participants in the study were 193 infants and their mothers. Information on infant night wakings was collected with the use of daily sleep diaries for the first 6 months of life and again for 2 weeks at 12 months of age. Infant-mother attachment was assessed using the Strange Situation (Ainsworth et al, Patterns of Attachment: A Psychological Study of the Strange Situation. New York: Hillsdale; 1978) when the infants were 12 months of age. : Longitudinal regression analyses showed that, after controlling for many covariates, infants with an insecure-resistant attachment at 12 months of age awoke more during the night in their first 6 months of life than the other infants. Furthermore, infants with different attachment classifications developed different patterns of night wakings over the first 6 months, with the insecure-avoidant infants waking the least toward the end of the 6 months. Hierarchical multiple regression analyses showed no associations between attachment and night wakings at 12 months of age. : This study is the first in showing that attachment at 12 months of age is related to infant night waking patterns in the first 6 months of life. Patterns of infant night wakings early in life apparently reflect the emerging attachment relationship.

  17. Why the Coriolis force turns a wind farm wake clockwise in the Northern Hemisphere

    Directory of Open Access Journals (Sweden)

    M. P. van der Laan

    2017-05-01

    Full Text Available The interaction between the Coriolis force and a wind farm wake is investigated by Reynolds-averaged Navier–Stokes simulations, using two different wind farm representations: a high roughness and 5 × 5 actuator disks. Surprisingly, the calculated wind farm wake deflection is the opposite in the two simulations. A momentum balance in the cross flow direction shows that the interaction between the Coriolis force and the 5 × 5 actuator disks is complex due to turbulent mixing of veered momentum from above into the wind farm, which is not observed for the interaction between the Coriolis force and a roughness change. When the wind farm simulations are performed with a horizontally constant Coriolis force in order to isolate the effect of the wind veer, the wind farm wake deflection of the 5 × 5 actuator disks simulation remains unchanged. This proves that the present wind veer deflects the wind farm wake and not the local changes in the Coriolis force in the wake deficit region. An additional simulation of a single actuator disk, operating in a shallow atmospheric boundary layer, confirms that the Coriolis force indirectly turns a wind turbine wake clockwise, as observed from above, due to the presence of a strong wind veer.

  18. The development of sleep-wake rhythms and the search for elemental circuits in the infant brain.

    Science.gov (United States)

    Blumberg, Mark S; Gall, Andrew J; Todd, William D

    2014-06-01

    Despite the predominance of sleep in early infancy, developmental science has yet to play a major role in shaping concepts and theories about sleep and its associated ultradian and circadian rhythms. Here we argue that developmental analyses help us to elucidate the relative contributions of the brainstem and forebrain to sleep-wake control and to dissect the neural components of sleep-wake rhythms. Developmental analysis also makes it clear that sleep-wake processes in infants are the foundation for those of adults. For example, the infant brainstem alone contains a fundamental sleep-wake circuit that is sufficient to produce transitions among wakefulness, quiet sleep, and active sleep. In addition, consistent with the requirements of a "flip-flop" model of sleep-wake processes, this brainstem circuit supports rapid transitions between states. Later in development, strengthening bidirectional interactions between the brainstem and forebrain contribute to the consolidation of sleep and wake bouts, the elaboration of sleep homeostatic processes, and the emergence of diurnal or nocturnal circadian rhythms. The developmental perspective promoted here critically constrains theories of sleep-wake control and provides a needed framework for the creation of fully realized computational models. Finally, with a better understanding of how this system is constructed developmentally, we will gain insight into the processes that govern its disintegration due to aging and disease.

  19. Wake Effects on Lifetime Distribution in DFIG-based Wind Farms

    DEFF Research Database (Denmark)

    Tian, Jie; Zhou, Dao; Su, Chi

    2017-01-01

    With the increasing size of the wind farms, the impact of the wake effect on the energy yields and lifetime consumption of wind turbine can no longer be neglected. In this paper, the affecting factors like the wind speed and wind direction are investigated in terms of the single wake and multiple...... wakes. As the power converter is the most fragile component among the turbine system, its lifetime estimation can be calculated seen from the thermal stress of the power semiconductor. On the basis of the relationship of the power converter in a 5 MW Doubly-Fed Induction Generator (DFIG) wind turbine...... system and the wind speed, the lifetime consumption of the individual turbine in a 10-turbine and an 80-turbine wind farms can be calculated by considering the real distributions of the wind speed and direction. It can be seen that there is significant lifetime difference among individual turbines...

  20. Stability of cognition across wakefulness and dreams in psychotic major depression.

    Science.gov (United States)

    Cavallotti, Simone; Castelnovo, Anna; Ranieri, Rebecca; D'agostino, Armando

    2014-04-30

    Cognitive bizarreness has been shown to be equally elevated in the dream and waking mentation of acutely symptomatic inpatients diagnosed with affective and non-affective psychoses. Although some studies have reported on dream content in non-psychotic depression, no study has previously measured this formal aspect of cognition in patients hospitalized for Psychotic Major Depression (PMD). Sixty-five dreams and 154 waking fantasy reports were collected from 11 PMD inpatients and 11 age- and sex-matched healthy controls. All narrative reports were scored by judges blind to diagnosis in terms of formal aspects of cognition (Bizarreness). Dream content was also scored (Hall/Van de Castle scoring system). Unlike controls, PMD patients had similar levels of cognitive bizarreness in their dream and waking mentation. Dreams of PMD patients also differed from those of controls in terms of content variables. In particular, Happiness, Apprehension and Dynamism were found to differ between the two groups. Whereas dream content reflects a sharp discontinuity with the depressive state, cognitive bizarreness adequately measures the stability of cognition across dreams and wakefulness in PMD inpatients. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.