WorldWideScience

Sample records for wake methods including

  1. Unsteady panel method for complex configurations including wake modeling

    CSIR Research Space (South Africa)

    Van Zyl, Lourens H

    2008-01-01

    Full Text Available The calculation of unsteady air loads is an essential step in any aeroelastic analysis. The subsonic doublet lattice method (DLM) is used extensively for this purpose due to its simplicity and reliability. The body models available with the popular...

  2. Some observations concerning blade-element-momentum (BEM) methods and vortex wake methods, including numerical experiments with a simple vortex model

    Energy Technology Data Exchange (ETDEWEB)

    Snel, H. [Netherlands Energy Research Foundation ECN, Renewable Energy, Wind Energy (Netherlands)

    1997-08-01

    Recently the Blade Element Momentum (BEM) method has been made more versatile. Inclusion of rotational effects on time averaged profile coefficients have improved its achievements for performance calculations in stalled flow. Time dependence as a result of turbulent inflow, pitching actions and yawed operation is now treated more correctly (although more improvement is needed) than before. It is of interest to note that adaptations in modelling of unsteady or periodic induction stem from qualitative and quantitative insights obtained from free vortex models. Free vortex methods and further into the future Navier Stokes (NS) calculations, together with wind tunnel and field experiments, can be very useful in enhancing the potential of BEM for aero-elastic response calculations. It must be kept in mind however that extreme caution must be used with free vortex methods, as will be discussed in the following chapters. A discussion of the shortcomings and the strength of BEM and of vortex wake models is given. Some ideas are presented on how BEM might be improved without too much loss of efficiency. (EG)

  3. Free wake models for vortex methods

    Energy Technology Data Exchange (ETDEWEB)

    Kaiser, K. [Technical Univ. Berlin, Aerospace Inst. (Germany)

    1997-08-01

    The blade element method works fast and good. For some problems (rotor shapes or flow conditions) it could be better to use vortex methods. Different methods for calculating a wake geometry will be presented. (au)

  4. Wake Vortex Avoidance System and Method

    Science.gov (United States)

    Shams, Qamar A. (Inventor); Zuckerwar, Allan J. (Inventor); Knight, Howard K. (Inventor)

    2017-01-01

    A wake vortex avoidance system includes a microphone array configured to detect low frequency sounds. A signal processor determines a geometric mean coherence based on the detected low frequency sounds. A display displays wake vortices based on the determined geometric mean coherence.

  5. Aerodynamic Characteristic Analysis of Multi-Rotors Using a Modified Free-Wake Method

    Science.gov (United States)

    Lee, Jaewon; Yee, Kwanjung; Oh, Sejong

    Much research is in progress to develop a next-generation rotor system for various aircrafts, including unmanned aerial vehicles (UAV) with multi-rotor systems, such as coaxial and tandem rotors. Development and design of such systems requires accurate estimation of rotor performance. The most serious problem encountered during analysis is wake prediction, because wake-wake and wake-rotor interactions make the problem very complex. This study analyzes the aerodynamic characteristics based on the free-wake method, which is both efficient and effective for predicting wake. This code is modified to include the effect of complex planforms as well as thickness by using an unsteady 3D panel method. A time-marching free-wake model is implemented based on the source-doublet panel method that assigns panels to the surface and analyzes them. The numerical wake instability, the most critical problem for analysis, is resolved by adopting slow start-up and by including viscous effects. Also, the instability due to wake interference in tandem rotor analysis is resolved by configuring the initial shapes of the multi-rotor wake as that of a single rotor wake trajectory. The developed code is verified by comparing with previous experimental data for coaxial and tandem rotors.

  6. Multimodel Ensemble Methods for Prediction of Wake-Vortex Transport and Decay Originating NASA

    Science.gov (United States)

    Korner, Stephan; Ahmad, Nashat N.; Holzapfel, Frank; VanValkenburg, Randal L.

    2017-01-01

    Several multimodel ensemble methods are selected and further developed to improve the deterministic and probabilistic prediction skills of individual wake-vortex transport and decay models. The different multimodel ensemble methods are introduced, and their suitability for wake applications is demonstrated. The selected methods include direct ensemble averaging, Bayesian model averaging, and Monte Carlo simulation. The different methodologies are evaluated employing data from wake-vortex field measurement campaigns conducted in the United States and Germany.

  7. Wake simulation for wind turbines with a free, prescribed- and hybrid-wake method

    Energy Technology Data Exchange (ETDEWEB)

    Bareiss, R.; Guidati, G.; Wagner, S. [Univ. Stuttgart, Inst. fuer Aerodynamik und Gasdynamik, Stuttgart (Germany)

    1997-08-01

    Calculations of the radial distribution and the time history of the induction factors have been performed with a number of different wake models implemented in a vortex-lattice method for tip-speed ratios in the range 1-13. The new models lead to a significant reduction of the computational effort down to 3-27% compared to a free-wake model with errors less than 5%. (au)

  8. Two improvements to the dynamic wake meandering model: including the effects of atmospheric shear on wake turbulence and incorporating turbulence build-up in a row of wind turbines

    DEFF Research Database (Denmark)

    Keck, Rolf-Erik; de Mare, Martin Tobias; Churchfield, Matthew J.

    2015-01-01

    agreement with the reference data. A quantitative comparison between the mean flow field of the DWM model with and without the suggested improvements, to that of the AL model, shows that the root-mean-square difference in terms of wind speed and turbulence intensity is reduced on the order of 30% and 40......%, respectively, by including the proposed corrections for a row of eight turbines. Furthermore, it is found that the root-mean-square difference between the AL model and the modified DWM model in terms of wind speed and turbulence intensity does not increase over a row of turbines compared with the root-mean-square...... shear on the wake deficit evolution by including a strain-rate contribution in the wake turbulence calculation. The method to account for the increased turbulence at a wake-affected turbine by basing the wake-added turbulence directly on the Reynolds stresses of the oncoming wake. This also allows...

  9. Aerodynamic optimization of wind turbine rotors using a blade element momentum method with corrections for wake rotation and expansion

    DEFF Research Database (Denmark)

    Døssing, Mads; Aagaard Madsen, Helge; Bak, Christian

    2012-01-01

    by the positive effect of wake rotation, which locally causes the efficiency to exceed the Betz limit. Wake expansion has a negative effect, which is most important at high tip speed ratios. It was further found that by using , it is possible to obtain a 5% reduction in flap bending moment when compared with BEM...... out using BEM as well. Validation of shows good agreement with the flow calculated using an advanced actuator disk method. The maximum power was found at a tip speed ratio of 7 using , and this is lower than the optimum tip speed ratio of 8 found for BEM. The difference is primarily caused......The blade element momentum (BEM) method is widely used for calculating the quasi-steady aerodynamics of horizontal axis wind turbines. Recently, the BEM method has been expanded to include corrections for wake expansion and the pressure due to wake rotation (), and more accurate solutions can now...

  10. A New Method to Optimize the Wake Flow of a Vehicle: The Leading Edge Rotating Cylinder

    Directory of Open Access Journals (Sweden)

    Nan Shao

    2017-01-01

    Full Text Available The wake flow of a vehicle significantly influences its aerodynamic performance and the stability during high-speed drive. Therefore, optimization of the vehicle wake flow is an effective way to improve its aerodynamic performance and further improve the handling stability and fuel economy. In this paper, a new method, the leading edge rotating cylinder, is used to optimize the wake flow of a vehicle. According to the results of simulations, this method can reduce the pressure drag, increase the negative lift force, and strengthen the stability of the vehicle under crosswind. Furthermore, this method optimizes not only the wake flow of the vehicle with rotating cylinders but also the interactive vehicles in the driving route in overtaking maneuvers or platoon driving. In conclusion, this method effectively optimizes the flow fields around the vehicles, and it significantly helps to improve the handling stability and fuel economy of the vehicle.

  11. Rotor wake and flow analysis using a coupled Eulerian–Lagrangian method

    Directory of Open Access Journals (Sweden)

    Yongjie Shi

    2016-01-01

    Full Text Available A coupled Eulerian–Lagrangian methodology was developed in this paper in order to provide an efficient and accurate tool for rotor wake and flow prediction. A Eulerian-based Reynolds-averaged Navier–Stokes (RANS solver was employed to simulate the grid-covered near-body zone, and a grid-free Lagrangian-based viscous wake method (VWM was implemented to model the complicated rotor-wake dynamics in the off-body wake zone. A carefully designed coupling strategy was developed to pass the flow variables between two solvers. A sample case of a forward flying rotor was performed first in order to show the capabilities of the VWM for wake simulations. Next, the coupled method was applied to rotors in several representative flight conditions. Excellent agreement regarding wake geometry, chordwise pressure distribution and sectional normal force with available experimental data demonstrated the validity of the method. In addition, a comparison with the full computational fluid dynamics (CFD method is presented to illustrate the efficiency and accuracy of the proposed coupled method.

  12. A new simulation method for turbines in wake - Applied to extreme response during operation

    DEFF Research Database (Denmark)

    Thomsen, K.; Aagaard Madsen, H.

    2005-01-01

    be suitable for fatigue load simulation. For extreme response during operation the success of this simplified approach depends significantly on the physical mechanism causing the extremes. If the physical mechanism creating increased loads in wake operation is different from an increased turbulence intensity...... and load response characteristics for these loads in wake conditions in good agreement with measurements. The results are compared with the traditionally used simplified method, and this approach seems conservative for some loads, e.g. the extreme blade moments, and non-conservative for others, e...

  13. Validation of the actuator line method using near wake measurements of the MEXICO rotor

    DEFF Research Database (Denmark)

    Nilsson, Karl; Shen, Wen Zhong; Sørensen, Jens Nørkær

    2015-01-01

    The purpose of the present work is to validate the capability of the actuator line method to compute vortex structures in the near wake behind the MEXICO experimental wind turbine rotor. In the MEXICO project/MexNext Annex, particle image velocimetry measurements have made it possible to determine...

  14. Multi-Model Ensemble Wake Vortex Prediction

    Science.gov (United States)

    Koerner, Stephan; Holzaepfel, Frank; Ahmad, Nash'at N.

    2015-01-01

    Several multi-model ensemble methods are investigated for predicting wake vortex transport and decay. This study is a joint effort between National Aeronautics and Space Administration and Deutsches Zentrum fuer Luft- und Raumfahrt to develop a multi-model ensemble capability using their wake models. An overview of different multi-model ensemble methods and their feasibility for wake applications is presented. The methods include Reliability Ensemble Averaging, Bayesian Model Averaging, and Monte Carlo Simulations. The methodologies are evaluated using data from wake vortex field experiments.

  15. Panel method for the wake effects on the aerodynamics of vertical-axis wind turbines

    Science.gov (United States)

    Goyal, Udit; Rempfer, Dietmar

    2011-11-01

    A formulation based on the panel method is implemented for studying the unsteady aerodynamics of straight-bladed vertical-axis wind turbines. A combination of source and vortex distributions is used to represent an airfoil in Darrieus type motion. Our approach represents a low-cost computational technique that takes into account the dynamic changes in angle of attack of the blade during a cycle. A time-stepping mechanism is introduced for the wake convection, and its effects on the aerodynamic forces on the blade are discussed. The focus of the study is to describe the effect of the trailing wakes on the upstream flow conditions and coefficient of performance of the turbines. Results show a decrease in Cp until the wake structure develops and assumes a quasi-steady behavior. A comparison with other models such as single and multiple streamtubes is discussed, and optimization of the blade pitch angle is performed to increase the instantaneous torque and hence the power output from the turbine.

  16. Numerical Analysis of Tip Cavitation on Marine Propeller with Wake Alignment Using a Simple Surface Panel Method “SQCM”

    Science.gov (United States)

    Kanemaru, T.; Ando, J.

    2015-12-01

    This paper presents the calculation method of tip cavitation with wake alignment. Tip cavitation consists of tip vortex cavitation and tip super cavitation which means the undeveloped and local super cavitation around blade tip. The feature of this study is that the method applies the wake alignment model in order to express the realistic phenomena of tip cavitation and predict the pressure fluctuation more accurately. In the present method, the wake sheet is deformed according to the induced velocity vector on the vortex lines. The singularity of the potential vortex can be removed by using the Rankine Vortex model. This paper shows the calculated results regarding cavitation pattern, pressure fluctuation etc. comparing with published experimental data and calculated results without wake alignment.

  17. Method for evaluating wind turbine wake effects on wind farm performance

    Science.gov (United States)

    Neustadter, H. E.; Spera, D. A.

    1985-01-01

    A method of testing the performance of a cluster of wind turbine units an data analysis equations are presented which together form a simple and direct procedure for determining the reduction in energy output caused by the wake of an upwind turbine. This method appears to solve the problems presented by data scatter and wind variability. Test data from the three-unit Mod-2 wind turbine cluster at Goldendale, Washington, are analyzed to illustrate the application of the proposed method. In this sample case the reduction in energy was found to be about 10 percent when the Mod-2 units were separated a distance equal to seven diameters and winds were below rated.

  18. Method for evaluating wind turbine wake effects on wind farm performance

    Science.gov (United States)

    Neustadter, H. E.; Spera, D. A.

    A method of testing the performance of a cluster of wind turbine units an data analysis equations are presented which together form a simple and direct procedure for determining the reduction in energy output caused by the wake of an upwind turbine. This method appears to solve the problems presented by data scatter and wind variability. Test data from the three-unit Mod-2 wind turbine cluster at Goldendale, Washington, are analyzed to illustrate the application of the proposed method. In this sample case the reduction in energy was found to be about 10 percent when the Mod-2 units were separated a distance equal to seven diameters and winds were below rated.

  19. Active Power Dispatch Method for a Wind Farm Central Controller Considering Wake Effect

    DEFF Research Database (Denmark)

    Tian, Jie; Su, Chi; N. Soltani, Mohsen

    2014-01-01

    Optimization (PSO) is used to obtain the optimal wind power for each wind turbine. A case study is carried out. The available wind power of the wind farm was compared between the traditional dispatch method and the proposed dispatch method with the consideration of the wake effect.......With the increasing integration of the wind power into the power system, wind farm are required to be controlled as a single unit and have all the same control tasks as conventional power plants. The wind farm central controller receives control orders from Transmission System Operator (TSO...... efficient of upstream wind turbines in the wind farm influences the downstream wind speed which determines the available wind power of the downstream wind turbine. Optimize the wind power production of each wind turbine in the wind farm by the optimization of the pitch angle and tip-speed-ratio of each...

  20. Modeling wake effects in large wind farms in complex terrain: the problem, the methods and the issues

    DEFF Research Database (Denmark)

    Politis, E.S.; Prospathopoulos, J.; Cabezon, D.

    2012-01-01

    Computational fluid dynamic (CFD) methods are used in this paper to predict the power production from entire wind farms in complex terrain and to shed some light into the wake flow patterns. Two full three-dimensional Navier–Stokes solvers for incompressible fluid flow, employing k - ε and k - ω...... of the work being undertaken within the UpWind Integrated Project that aims to develop the design tools for next generation of large wind turbines. In this part of UpWind, the performance of wind farm and wake models is being examined in complex terrain environment where there are few pre-existing relevant...... measurements. The focus of the work being carried out is to evaluate the performance of CFD models in large wind farm applications in complex terrain and to examine the development of the wakes in a complex terrain environment....

  1. A TURBULENT BOUNDARY-LAYER CALCULATION METHOD BASED ON THE LAW OF THE WALL AND THE LAW OF THE WAKE

    Science.gov (United States)

    The report presents the theoretical development of a method for calculating the incompressible turbulent boundary layer based on the ’ law of the wall...8217 and the ’ law of the wake.’ This development was carried out to provide a more rigorous solution of the boundary-layer equations for turbulent flow

  2. Account of ambient turbulence for turbine wakes using a Synthetic-Eddy-Method

    Science.gov (United States)

    Pinon, Grégory; Carlier, Clément; Fur, Arnaud; Gaurier, Benoît; Germain, Grégory; Rivoalen, Élie

    2017-05-01

    The present paper aims at describing the use of a Synthetic-Eddy-Method (SEM), initially proposed by Jarrin et al. [12], in the 3D Lagrangian Vortex method framework. The SEM method is used here in order to generate a far-field incoming flow with a prescribed ambient turbulence intensity. However, for the account of the diffusive term in the Navier-Stokes equations, a classical Particle Strength Exchange model with a LES eddy viscosity is used. Firstly, the general characteristics of the Synthetic-Eddy-Method will be presented together with its integration in the framework of the developed 3D unsteady Lagrangian Vortex software [27]. The capability of the ambient turbulence model to reproduce a perturbed flow that verifies any turbulence intensity I∞ and any anisotropic ratio (σu :σv :σw ) will be discussed and validated. Then, the capability of the presented ambient turbulence model to compute turbine wakes will also be presented together with first results. Finally, comparisons will be made between the obtained numerical results against experimental data [22, 23] for two levels of ambient turbulence, namely I∞ = 3% and I∞ = 15%. Although the present study was initially performed in the framework of tidal energy, its application to wind energy is straightforward.

  3. Reactive Power Dispatch Method in Wind Farms to Improve the Lifetime of Power Converter Considering Wake Effect

    DEFF Research Database (Denmark)

    Tian, Jie; Zhou, Dao; Su, Chi

    2017-01-01

    In Wind Farms (WF), the most popular and commonly implemented active power control method is the Maximum Power Point Tracking (MPPT). Due to the wake effect, the upstream Wind Turbine (WT) in WFs has more active power generation than the downstream WT at the wind directions and wind speeds...... DFIG WTs. It can be concluded that, compared with the traditional reactive power dispatch method, the proposed method can increase the lifetime of the upstream WT’s power converter....

  4. Multiple Turbine Wakes

    DEFF Research Database (Denmark)

    Machefaux, Ewan; Mann, Jakob

    lateral velocities, and thus inspired by the basic assumption behind the Dynamic Wake Meandering model.Secondly, the impact of the atmospheric stability on wind turbine wake deficit is studied experimentally and numerically. The measurements collected from the previous pulsed lidar campaign was reused...... wind are adapted to the thermal stratification using a newly developed spectral tensor, which includes buoyancy effects. Discrepancies are discussed as basis for future model development and improvement. Moreover, the impact of atmospheric stability and terrain on large/small scale wake flow...... and wake advection velocity, is derived and linked to the characteristics of a spherical vortex structure. Additionally, a new empirical model for single wake expansion is proposed based on an initial wake expansion in the pressure driven flow regime and a spatial gradient computed from the large scale...

  5. Wake investigations at onshore projects - a comparison of measured to modelled data

    Energy Technology Data Exchange (ETDEWEB)

    Comstock, Kim; Spalding, Taurin; VanLuvanee, David [DNV Canada (Canada)

    2011-07-01

    In recent years, North American wind projects have shown very poor performance. It was observed that wake losses turned out to be higher than expected. The objective of this study is to improve industry understanding of wake effects in onshore wind farms. Wake loss is the reduction in power of a downwind turbine due to the presence of one or more turbines upwind. Some wake models are discussed, such as the single turbine wake model, and combinations of methods. The inputs for these models typically include elements such as turbine layout, intensity, power, and thrust curves. A project is studied using the Windfarm software package and the results are given. A bar chart represents the results in wake loss percentages for measured versus modeled wakes. Data from reduced land-based projects are useful for quantifying wake effects despite certain complexities introduced by topography. It can be concluded that wake models are subject to error and are not performing well.

  6. Evaluation of a countermeasure against wake galloping using wire connection method; Wake galloping ni taisuru seishin wire no yukosei ni tsuite

    Energy Technology Data Exchange (ETDEWEB)

    Takeda, T.; Mukai, H.; Sano, N. [Kajima Corp., Tokyo (Japan)

    1994-10-31

    A plurality of parallel cables have been recently employed for long-span cable-stayed bridges. Use of such parallel cables thereupon leads to a special type of wind-induced vibration called wake galloping (simply referred to as WG.) owing to air turbulence caused by upstream cables. This paper attempts to evaluate measures against the WG using a wire connecting method, and identifies the most important influencing factor and the validity of the measures through wind tunnel tests. The following results are hereby clarified. Even if the deformation rigidity of the cables is increased, it is impossible to raise the wind velocity of the WG. The wind velocity of the WG can not be reduced from a wind tunnel wind velocity using non-dimensional wind velocity. The wire connecting method proves to be more effective for reducing the amplitude of the vibration. Provided cables are coupled into a multi-stage using the wire connection method, overall vibration with a greater amplitude can be restricted. To the factor of the restriction additional deformation rigidity of the cables more contributes compared with additional weight of the cables. 9 refs., 13 figs., 2 tabs.

  7. Comparison of Engineering Wake Models with CFD Simulations

    DEFF Research Database (Denmark)

    Andersen, Søren Juhl; Sørensen, Jens Nørkær; Ivanell, S.

    2014-01-01

    The engineering wake models by Jensen [1] and Frandsen et al. [2] are assessed for different scenarios simulated using Large Eddy Simulation and the Actuator Line method implemented in the Navier-Stokes equations. The scenarios include the far wake behind a single wind turbine, a long row...... of turbines in an atmospheric boundary layer, idealised cases of an infinitely long row of wind turbines and infinite wind farms with three different spacings. Both models include a wake expansion factor, which is calibrated to fit the simulated wake velocities. The analysis highlights physical deficiencies...

  8. Using Enquiry-Based Learning Methods to Teach "Finnegans Wake" to Undergraduates

    Science.gov (United States)

    Manista, Frank C.; Gillespie, Michael Patrick

    2011-01-01

    Many readers dismiss James Joyce's final novel as impossible to wade through, with its multilingual puns, songs, jokes, portmanteau words, allusions, scientific references, myths and legends. Given the kinetic elements of any reading experience, features particularly evident in "Finnegans Wake", reading inevitably becomes synonymous with…

  9. Dynamic wake meandering modeling

    Energy Technology Data Exchange (ETDEWEB)

    Larsen, Gunner C.; Aagaard Madsen, H.; Bingoel, F. (and others)

    2007-06-15

    We present a consistent, physically based theory for the wake meandering phenomenon, which we consider of crucial importance for the overall description of wind turbine loadings in wind farms. In its present version the model is confined to single wake situations. The model philosophy does, however, have the potential to include also mutual wake interaction phenomenons. The basic conjecture behind the dynamic wake meandering model is that wake transportation in the atmospheric boundary layer is driven by the large scale lateral- and vertical turbulence components. Based on this conjecture a stochastic model of the downstream wake meandering is formulated. In addition to the kinematic formulation of the dynamics of the 'meandering frame of reference', models characterizing the mean wake deficit as well as the added wake turbulence, described in the meandering frame of reference, are an integrated part the model complex. For design applications, the computational efficiency of wake deficit prediction is a key issue. Two computationally low cost models are developed for this purpose. The character of the added wake turbulence, generated by the up-stream turbine in the form of shed and trailed vorticity, has been approached by analytical as well as by numerical studies. The dynamic wake meandering philosophy has been verified by comparing model predictions with extensive full-scale measurements. These comparisons have demonstrated good agreement, both qualitatively and quantitatively, concerning both flow characteristics and turbine load characteristics. Contrary to previous attempts to model wake loading, the dynamic wake meandering approach opens for a unifying description in the sense that turbine power and load aspects can be treated simultaneously. This capability is a direct and attractive consequence of the model being based on the underlying physical process, and it potentially opens for optimization of wind farm topology, of wind farm operation as

  10. Multi-fidelity wake modelling based on Co-Kriging method

    DEFF Research Database (Denmark)

    Wang, Y. M.; Réthoré, Pierre-Elouan; van der Laan, Paul

    2016-01-01

    The article presents an approach to combine wake models of multiple levels of fidelity, which is capable of giving accurate predictions with only a small number of high fidelity samples. The G. C. Larsen and k-ε-fP based RANS models are adopted as ensemble members of low fidelity and high fidelity...... models, respectively. Both the univariate and multivariate based surrogate models are established by taking the local wind speed and wind direction as variables of the wind farm power efficiency function. Various multi-fidelity surrogate models are compared and different sampling schemes are discussed....... The analysis shows that the multi-fidelity wake models could tremendously reduce the high fidelity model evaluations needed in building an accurate surrogate....

  11. Modelling maintenance of wakefulness in rats: comparing potential non-invasive sleep-restriction methods and their effects on sleep and attentional performance.

    Science.gov (United States)

    Mccarthy, Andrew; Loomis, Sally; Eastwood, Brian; Wafford, Keith A; Winsky-Sommerer, Raphaëlle; Gilmour, Gary

    2017-04-01

    While several methods have been used to restrict the sleep of experimental animals, it is often unclear whether these different forms of sleep restriction have comparable effects on sleep-wake architecture or functional capacity. The present study compared four models of sleep restriction, using enforced wakefulness by rotation of cylindrical home cages over 11 h in male Wistar rats. These included an electroencephalographic-driven 'Biofeedback' method and three non-invasive methods where rotation was triggered according to a 'Constant', 'Decreasing' or random protocol based upon the 'Weibull' distribution fit to an archival Biofeedback dataset. Sleep-wake architecture was determined using polysomnography, and functional capacity was assessed immediately post-restriction with a simple response latency task, as a potential homologue of the human psychomotor vigilance task. All sleep restriction protocols resulted in sleep loss, behavioural task disengagement and rebound sleep, although no model was as effective as real-time electroencephalographic-Biofeedback. Decreasing and Weibull protocols produced greater recovery sleep than the Constant protocol, mirrored by comparably poorer simple response latency task performance. Increases in urinary corticosterone levels following Constant and Decreasing protocols suggested that stress levels may differ between protocols. Overall, these results provide insight into the value of choosing a specific sleep restriction protocol, not only from the perspective of animal welfare and the use of less invasive procedures, but also translational validity. A more considered choice of the physiological and functional effects of sleep-restriction protocols in rodents may improve correspondence with specific types of excessive daytime sleepiness in humans. © 2016 The Authors. Journal of Sleep Research published by John Wiley & Sons Ltd on behalf of European Sleep Research Society.

  12. Catalyst support structure, catalyst including the structure, reactor including a catalyst, and methods of forming same

    Science.gov (United States)

    Van Norman, Staci A.; Aston, Victoria J.; Weimer, Alan W.

    2017-05-09

    Structures, catalysts, and reactors suitable for use for a variety of applications, including gas-to-liquid and coal-to-liquid processes and methods of forming the structures, catalysts, and reactors are disclosed. The catalyst material can be deposited onto an inner wall of a microtubular reactor and/or onto porous tungsten support structures using atomic layer deposition techniques.

  13. Cerebral glucose utilization during sleep-wake cycle in man determined by positron emission tomography and [18F]2-fluoro-2-deoxy-D-glucose method.

    Science.gov (United States)

    Maquet, P; Dive, D; Salmon, E; Sadzot, B; Franco, G; Poirrier, R; von Frenckell, R; Franck, G

    1990-04-09

    Using the [18F]fluorodeoxyglucose method and positron emission tomography, we studied cerebral glucose utilization during sleep and wakefulness in 11 young normal subjects. Each of them was studied at least thrice: during wakefulness, slow wave sleep (SWS) and rapid eye movement sleep (REMS), at 1 week intervals. Four stage 3-4 SWS and 4 REMS fulfilled the steady state conditions of the model. The control population consisted of 9 normal age-matched subjects studied twice during wakefulness at, at least, 1 week intervals. Under these conditions, the average difference between the first and the second cerebral glucose metabolic rates (CMRGlu was: -7.91 +/- 15.46%, which does not differ significantly from zero (P = 0.13). During SWS, a significant decrease in CMRGlu was observed as compared to wakefulness (mean difference: -43.80 +/- 14.10%, P less than 0.01). All brain regions were equally affected but thalamic nuclei had significantly lower glucose utilization than the average cortex. During REMS, the CMRGlu were as high as during wakefulness (mean difference: 4.30 +/- 7.40%, P = 0.35). The metabolic pattern during REMS appeared more heterogeneous than at wake. An activation of left temporal and occipital areas is suggested. It is hypothetized that energy requirements for maintaining membrane polarity are reduced during SWS because of a decreased rate of synaptic events. During REMS, cerebral glucose utilization is similar to that of wakefulness, presumably because of reactivated neurotransmission and increased need for ion gradients maintenance.

  14. To include or not to include: The Impact of Gene Filtering on Species Tree Estimation Methods.

    Science.gov (United States)

    Molloy, Erin K; Warnow, Tandy

    2017-09-15

    With the increasing availability of whole genome data, many species trees are being constructed from hundreds to thousands of loci. Although concatenation analysis using maximum likelihood is a standard approach for estimating species trees, it does not account for gene tree heterogeneity, which can occur due to many biological processes, such as incomplete lineage sorting. Coalescent species tree estimation methods, many of which are statistically consistent in the presence of incomplete lineage sorting, include Bayesian methods that co-estimate the gene trees and the species tree, summary methods that compute the species tree by combining estimated gene trees, and site-based methods that infer the species tree from site patterns in the alignments of different loci. Due to concerns that poor quality loci will reduce the accuracy of estimated species trees, many recent phylogenomic studies have removed or filtered genes on the basis of phylogenetic signal and/or missing data prior to inferring species trees; little is known about the performance of species tree estimation methods when gene filtering is performed.We examine how incomplete lineage sorting, phylogenetic signal of individual loci, and missing data affect the absolute and the relative accuracy of species tree estimation methods and show how these properties affect methods' responses to gene filtering strategies. In particular, summary methods (ASTRAL-II, ASTRID, and MP-EST), a site-based coalescent method (SVDquartets within PAUP*), and an unpartitioned concatenation analysis using maximum likelihood (RAxML) were evaluated on a heterogeneous collection of simulated multi-locus datasets, and the following trends were observed. Filtering genes based on gene tree estimation error improved the accuracy of the summary methods when levels of incomplete lineage sorting were low to moderate but did not benefit the summary methods under higher levels of incomplete lineage sorting, unless gene tree estimation

  15. Microfluidic devices and methods including porous polymer monoliths

    Science.gov (United States)

    Hatch, Anson V; Sommer, Gregory J; Singh, Anup K; Wang, Ying-Chih; Abhyankar, Vinay V

    2014-04-22

    Microfluidic devices and methods including porous polymer monoliths are described. Polymerization techniques may be used to generate porous polymer monoliths having pores defined by a liquid component of a fluid mixture. The fluid mixture may contain iniferters and the resulting porous polymer monolith may include surfaces terminated with iniferter species. Capture molecules may then be grafted to the monolith pores.

  16. Wake Turbulence

    Science.gov (United States)

    1997-07-06

    THIS IS A SAFETY NOTICE. The guidance contained herein supersedes : the guidance provided in the current edition of Order 7110.65, Air Traffic Control, relating to selected wake turbulence separations and aircraft weight classifications. This Notice ...

  17. Methods of producing adsorption media including a metal oxide

    Science.gov (United States)

    Mann, Nicholas R; Tranter, Troy J

    2014-03-04

    Methods of producing a metal oxide are disclosed. The method comprises dissolving a metal salt in a reaction solvent to form a metal salt/reaction solvent solution. The metal salt is converted to a metal oxide and a caustic solution is added to the metal oxide/reaction solvent solution to adjust the pH of the metal oxide/reaction solvent solution to less than approximately 7.0. The metal oxide is precipitated and recovered. A method of producing adsorption media including the metal oxide is also disclosed, as is a precursor of an active component including particles of a metal oxide.

  18. A full potential rotor analysis with wake influence using an inner-outer domain technique

    Science.gov (United States)

    Egolf, T. A.; Sparks, S. P.

    1986-01-01

    A three-dimensional, quasi-steady, full potential flow solver was adapted to include realistic rotor wake influence for the aerodynamic analysis of helicopter rotors. The method uses an inner/outer domain technique to accommodate wake effects. Nonlinear flow is computed in the inner domain using a finite difference solution method. The wake is modeled using prescribed wake techniques to allow for the inclusion of realistic wake geometries. Portions of the wake passing inside the inner domain are treated using an embedded vortex technique. The procedure couples the wake influence with the inner domain solution in a consistent and efficient solution process. Correlation with measured lifting transonic data in hover and forward flight is shown which demonstrates the merits of the approach.

  19. A higher-order free-wake method for aerodynamic performance prediction of propeller-wing systems

    Science.gov (United States)

    Cole, Julia Ann

    A new higher-order free-wake (HOFW) method has been developed to enable conceptual design space explorations of propeller-wing systems. The method uses higher order vorticity elements to represent the wings and propeller blades as lifting surfaces. The higher order elements allow for better force resolution and more intrinsically computationally stable wakes than a comparable vortex-lattice method, while retaining the relative ease of geometric representation inherent to such methods. The propeller and wing surfaces and wakes are modeled within the same flow field, thus accounting for mutual interaction without the need for empirical models. The method was shown to be accurate through comparisons with other methods and experimental data. To ensure the method is capable of capturing an unsteady lift response, it was compared with a Kussner function approximation of the change in two-dimensional lift due to a sharp-edged gust. This study showed excellent agreement with an average error in the HOFW lift response of less than 3% from 0 to 10 semi-chords, but required high time and space resolution. The time-accurate lift response of a propeller-wing system as predicted with the HOFW method was then compared with fully unsteady CFD. These results showed that the HOFW method can identify the peak frequency and general amplitude of the lift oscillations at high resolution. Due to the high resolution requirements, this mode of analysis is not recommended for use in design studies. Time-averaged results found using the HOFW method were compared with experimental propeller, proprotor, and propeller-wing system data, along with two semi-empirical methods. The method matched experimental propeller efficiencies to within 4% for lightly loaded conditions. Increases in lift coefficient due to interaction with a propeller for a series of wings as analyzed with the HOFW method matched the average of those predicted with two semi-empirical methods with an average of 6.5% error for a

  20. An embedding method for bluff body flows: Interactions of two side-by-side cylinder wakes

    Energy Technology Data Exchange (ETDEWEB)

    Ravoux, J.F. [Center for BioDynamics, Boston University, 02215, Boston, MA (United States); Nadim, A. [Keck Graduate Institute and Claremont Graduate University, 91711, Claremont, CA (United States); Haj-Hariri, H. [Mechanical and Aerospace Engineering, University of Virginia, 22903, Charlottesville, VA (United States)

    2003-08-01

    We introduce a simple method for the numerical simulation of bluff body flows where the solid object is represented by a distributed body force in the Navier-Stokes equations. The body force density is found at every time step to reduce the velocity within the computational cells occupied by the rigid body to a prescribed value. The method combines certain ideas from the immersed boundary method which was developed to treat biofluid mechanical flows and the volume-of-fluid method for simulating flows with fluid-fluid interfaces. The main advantage of this embedding method is that the computations can be effected on a regular Cartesian grid, without the need to fit the grid to the bluff body surfaces. Thus, flow past several complex bodies can be treated as easily as flow past a single body. The method is validated by reproducing well-established results for vortex shedding from a stationary cylinder. The flow past two side-by-side cylinders is then investigated. When the distance between the cylinders is small, they are seen to shed vortices in-phase, whereas for larger distances, the shedding occurs in anti-phase. For intermediate distances, various shedding patterns are observed, including quasi-periodic, asymmetric and chaotic regimes. Mean values and phase portraits associated with the cylinder lift and drag coefficients, as well as spectral analysis of the same data, are used to describe the flow. A transition diagram that can be compared with experiments or models outlines the various dynamical regimes as a function of the distance between the cylinders and the Reynolds number. (orig.)

  1. Methods for Cavitation Prediction on Tip-Modified Propellers in Ship Wake Fields

    DEFF Research Database (Denmark)

    Shin, Keun Woo; Regener, Pelle Bo; Andersen, Poul

    2015-01-01

    Unsteady cavitation simulations on a tip-modified propellerin behind-hull condition are made by both BoundaryElement Method (BEM) and Computational FluidDynamics (CFD).As the hull geometry typically is not disclosed to thepropeller designer and thus cannot be included in thesimulation, other...... types of hullwake fields: One originating from model test measurementsand the other from a bare hull RANS simulation at thecavitation test Reynolds number. By comparing simulationresults, the different numerical approaches are evaluated foraccuracy of the unsteady cavitation prediction...... as a propellerdesign tool complementing the cavitation tunnel test....

  2. Computation of Rotorcraft Wake Geometry using NURBS

    NARCIS (Netherlands)

    Van Hoydonck, W.R.M.

    2013-01-01

    This thesis contains the results of research in the area of rotorcraft aerodynamics with a focus on method development related to the vortical wake generated by rotor blades. It is applied to a vortex tube representation of the wake (using a single NURBS surface) and a simplified filament wake model

  3. A three dimensional unsteady iterative panel method with vortex particle wakes and boundary layer model for bio-inspired multi-body wings

    Science.gov (United States)

    Dhruv, Akash; Blower, Christopher; Wickenheiser, Adam M.

    2015-03-01

    The ability of UAVs to operate in complex and hostile environments makes them useful in military and civil operations concerning surveillance and reconnaissance. However, limitations in size of UAVs and communication delays prohibit their operation close to the ground and in cluttered environments, which increase risks associated with turbulence and wind gusts that cause trajectory deviations and potential loss of the vehicle. In the last decade, scientists and engineers have turned towards bio-inspiration to solve these issues by developing innovative flow control methods that offer better stability, controllability, and maneuverability. This paper presents an aerodynamic load solver for bio-inspired wings that consist of an array of feather-like flaps installed across the upper and lower surfaces in both the chord- and span-wise directions, mimicking the feathers of an avian wing. Each flap has the ability to rotate into both the wing body and the inbound airflow, generating complex flap configurations unobtainable by traditional wings that offer improved aerodynamic stability against gusting flows and turbulence. The solver discussed is an unsteady three-dimensional iterative doublet panel method with vortex particle wakes. This panel method models the wake-body interactions between multiple flaps effectively without the need to define specific wake geometries, thereby eliminating the need to manually model the wake for each configuration. To incorporate viscous flow characteristics, an iterative boundary layer theory is employed, modeling laminar, transitional and turbulent regions over the wing's surfaces, in addition to flow separation and reattachment locations. This technique enables the boundary layer to influence the wake strength and geometry both within the wing and aft of the trailing edge. The results obtained from this solver are validated using experimental data from a low-speed suction wind tunnel operating at Reynolds Number 300,000. This method

  4. A400M Wake Flow Studies Based on RANS CFD Methods on Hybrid Meshes

    National Research Council Canada - National Science Library

    Doetter, F; Aumann, P; Acisu, I; Brodersen, O; Ronzheimer, A

    2006-01-01

    .... CFD methods used by Airbus and DLR allow valuable predictions of these conditions, taking into account the influence of flow deflectors, sponsons, open cargo hold doors/ramps, as well as propulsion slip-streams...

  5. A comparison of different planting methods, including hydrogels ...

    African Journals Online (AJOL)

    Whether AquasoilTM could replace the use of a granular fertilizer thus needed to be tested. Three field trials were implemented covering a range of soils, climates and eucalypt species to compare the effect of AquasoilTM together with various planting practices, including those of planting with, or without water, ...

  6. Wake Island Supplemental Environmental Assessment

    Science.gov (United States)

    2007-02-01

    and recreational purposes include groupers (Cephalapholis argus), porgy (Monotaxis grandoculis), and jacks (Carangidae). Sharks are abundant...Possibly Extinct on Wake Island Swiftlet, Guam; Yayaguak (Collecalia bartschi) Endangered Crow, Mariana; Aga (Corvus kubaryi) Endangered

  7. Membrane for distillation including nanostructures, methods of making membranes, and methods of desalination and separation

    KAUST Repository

    Lai, Zhiping

    2016-01-21

    In accordance with the purpose(s) of the present disclosure, as embodied and broadly described herein, embodiments of the present disclosure provide membranes, methods of making the membrane, systems including the membrane, methods of separation, methods of desalination, and the like.

  8. Analysis of Hypersonic Vehicle Wakes

    Science.gov (United States)

    2015-09-17

    research . The data is being included for the sake of completion. Figure 93 and Figure 94 depict the concentration of Diatomic Oxygen on the surface...reactions occurring in the wake region will enable an advancement of tracking hypersonic bodies. This research examined the wake region behind a...Acknowledgments I would like to express my sincere appreciation to my research advisor, Dr. Robert Greendyke, for his guidance and support throughout

  9. A stochastic wind turbine wake model based on new metrics for wake characterization: A stochastic wind turbine wake model based on new metrics for wake characterization

    Energy Technology Data Exchange (ETDEWEB)

    Doubrawa, Paula [Sibley School of Mechanical and Aerospace Engineering, Cornell University, Upson Hall Ithaca 14850 New York USA; Barthelmie, Rebecca J. [Sibley School of Mechanical and Aerospace Engineering, Cornell University, Upson Hall Ithaca 14850 New York USA; Wang, Hui [Sibley School of Mechanical and Aerospace Engineering, Cornell University, Upson Hall Ithaca 14850 New York USA; Churchfield, Matthew J. [National Renewable Energy Laboratory, Golden 80401 Colorado USA

    2016-08-04

    Understanding the detailed dynamics of wind turbine wakes is critical to predicting the performance and maximizing the efficiency of wind farms. This knowledge requires atmospheric data at a high spatial and temporal resolution, which are not easily obtained from direct measurements. Therefore, research is often based on numerical models, which vary in fidelity and computational cost. The simplest models produce axisymmetric wakes and are only valid beyond the near wake. Higher-fidelity results can be obtained by solving the filtered Navier-Stokes equations at a resolution that is sufficient to resolve the relevant turbulence scales. This work addresses the gap between these two extremes by proposing a stochastic model that produces an unsteady asymmetric wake. The model is developed based on a large-eddy simulation (LES) of an offshore wind farm. Because there are several ways of characterizing wakes, the first part of this work explores different approaches to defining global wake characteristics. From these, a model is developed that captures essential features of a LES-generated wake at a small fraction of the cost. The synthetic wake successfully reproduces the mean characteristics of the original LES wake, including its area and stretching patterns, and statistics of the mean azimuthal radius. The mean and standard deviation of the wake width and height are also reproduced. This preliminary study focuses on reproducing the wake shape, while future work will incorporate velocity deficit and meandering, as well as different stability scenarios.

  10. Wake potential of swift ion in amorphous carbon target

    Science.gov (United States)

    Al-Bahnam, Nabil janan; Ahmad, Khalid A.; Aboo Al-Numan, Abdullah Ibrahim

    2017-02-01

    The wake potential and wake phenomena for swift proton in an amorphous carbon target were studied by utilising various dielectric function formalisms, including the Drude dielectric function, the Drude-Lorentz dielectric function and quantum dielectric function. The Drude model results exhibited a damped oscillatory behaviour in the longitudinal direction behind the projectile; the pattern of these oscillations decreases exponentially in the transverse direction. In addition, the wake potential extends slightly ahead of the projectile which also depends on the proton coordinate and velocity. The effect of electron binding on the wake potential, characterised by the ratio ωp2/ω02 = 10 to 0.1, has been studied alongside the Drude-Lorentz dielectric function and quantum dielectric function formalisms; the results evidently show that the wake potential dip depth decreases with more oscillations when the electron density ratio ωp2/ω02 decreases from 10 to 0.1. One of the primary objectives of the present work is to construct a reasonably realistic procedure for simulating the response of target to swift ions by combining an expression for the induced wake potential along with several important dielectric function models; the aim of this research is to reduce computational complexity without sacrificing accuracy. This is regarded as being an efficient strategy in that it creates suitable computer simulation procedures which are relevant to actual solids. After comparing this method with other models, the main differences and similarities have been noted while the end results have proved encouraging.

  11. Optical Injection into Laser Wake Field Accelerators

    CERN Document Server

    Cary, John R; Esarey, Eric; Geddes, Cameron G R; Giacone, Rodolfo; Leemans, Wim; Nieter, Chet

    2005-01-01

    The accelerating gradient of laser-generated wake fields in plasmas can be orders of magnitude greater than the gradients obtainable in traditional, rf structures. One of the hurdles to overcome on the road to practical utilization of said plasma wake fields for production of high energy particles is the creation of quality beams having significant charge, low emittance, and narrow energy spread. To generate appropriate beams, various injection methods have been proposed. Injection by conventional means of beam prepartion using conventional technology is very difficult, as the accelerating buckets are only tens of microns long. Therefore, the field has turned to all-optical injection schemes, which include injection by colliding pulses, plasma ramps, wave breaking, and self-trapping through pulse evolution. This talk will review the various concepts proposed for injection, including plasma ramps, colliding pulses, and self trapping. The results of simulations and experiments will be discussed along with propo...

  12. Vortex wakes of a flapping foil in a flowing soap film

    DEFF Research Database (Denmark)

    We present an experimental study of an oscillating, symmetric foil in a vertically flowing soap film. By varying frequency and amplitude of the oscillation we explore and visualize a variety of wake structures, including von K´arm´an wake, reverse von K´arm´an wake, 2P wake, and 2P+2S wake. We...

  13. Conformal FDTD modeling wake fields

    Energy Technology Data Exchange (ETDEWEB)

    Jurgens, T.; Harfoush, F.

    1991-05-01

    Many computer codes have been written to model wake fields. Here we describe the use of the Conformal Finite Difference Time Domain (CFDTD) method to model the wake fields generated by a rigid beam traveling through various accelerating structures. The non- cylindrical symmetry of some of the problems considered here requires the use of a three dimensional code. In traditional FDTD codes, curved surfaces are approximated by rectangular steps. The errors introduced in wake field calculations by such an approximation can be reduced by increasing the mesh size, therefore increasing the cost of computing. Another approach, validated here, deforms Ampere and Faraday contours near a media interface so as to conform to the interface. These improvements of the FDTD method result in better accuracy of the fields at asymptotically no computational cost. This method is also capable of modeling thin wires as found in beam profile monitors, and slots and cracks as found in resistive wall motions. 4 refs., 5 figs.

  14. Wake up and Die

    DEFF Research Database (Denmark)

    Schubart, Rikke

    2013-01-01

    Anmeldelse af den colombianske gyserfilm Volver a morir (eng. titel Wake Up and Die) af Miguel Urrutia......Anmeldelse af den colombianske gyserfilm Volver a morir (eng. titel Wake Up and Die) af Miguel Urrutia...

  15. Evolution of Rotor Wake in Swirling Flow

    Science.gov (United States)

    El-Haldidi, Basman; Atassi, Hafiz; Envia, Edmane; Podboy, Gary

    2000-01-01

    A theory is presented for modeling the evolution of rotor wakes as a function of axial distance in swirling mean flows. The theory, which extends an earlier work to include arbitrary radial distributions of mean swirl, indicates that swirl can significantly alter the wake structure of the rotor especially at large downstream distances (i.e., for moderate to large rotor-stator spacings). Using measured wakes of a representative scale model fan stage to define the mean swirl and initial wake perturbations, the theory is used to predict the subsequent evolution of the wakes. The results indicate the sensitivity of the wake evolution to the initial profile and the need to have complete and consistent initial definition of both velocity and pressure perturbations.

  16. Numerical analysis of the scale effect of the nominal wake field of KCS

    Directory of Open Access Journals (Sweden)

    ZHANG Haipeng

    2017-01-01

    Full Text Available In order to study the scale effect of the nominal wake field, the viscous flow field of KCS is studied without considering the free surface effect, and the nominal wake fields of KCS at different scales including full scale are solved numerically using the RANS method and the SST k-ω turbulence model. By comprehensively comparing the computed results with experimental data, the scale effect of the nominal wake field is further investigated. This shows that the reciprocal of the mean axial wake fraction at each radius exhibits a near-linear dependence on the Reynolds number in a logarithmic scale; for the nominal wake field of the propeller disc of KCS without a propeller, two wake peaks exit, and the amplitude of the axial wake peak decreases with the increase of the Reynolds number, which is conducive to a decrease in propeller exciting force and propeller cavitation; the scale effect of the small scale model is more obvious, and the scale effect of the mean axial wake fraction in the inner area is stronger than it is in the outer area.

  17. Wind Turbines Wake Aerodynamics

    DEFF Research Database (Denmark)

    Vermeer, L.; Sørensen, Jens Nørkær; Crespo, A.

    2003-01-01

    The aerodynamics of horizontal axis wind turbine wakes is studied. The contents is directed towards the physics of power extraction by wind turbines and reviews both the near and the far wake region. For the near wake, the survey is restricted to uniform, steady and parallel flow conditions...

  18. Simulation of wind turbine wakes using the actuator line technique

    Science.gov (United States)

    Sørensen, Jens N.; Mikkelsen, Robert F.; Henningson, Dan S.; Ivanell, Stefan; Sarmast, Sasan; Andersen, Søren J.

    2015-01-01

    The actuator line technique was introduced as a numerical tool to be employed in combination with large eddy simulations to enable the study of wakes and wake interaction in wind farms. The technique is today largely used for studying basic features of wakes as well as for making performance predictions of wind farms. In this paper, we give a short introduction to the wake problem and the actuator line methodology and present a study in which the technique is employed to determine the near-wake properties of wind turbines. The presented results include a comparison of experimental results of the wake characteristics of the flow around a three-bladed model wind turbine, the development of a simple analytical formula for determining the near-wake length behind a wind turbine and a detailed investigation of wake structures based on proper orthogonal decomposition analysis of numerically generated snapshots of the wake. PMID:25583862

  19. Inverse wing design in transonic flow including viscous interaction

    Science.gov (United States)

    Carlson, Leland A.; Ratcliff, Robert R.; Gally, Thomas A.; Campbell, Richard L.

    1989-01-01

    Several inverse methods were compared and initial results indicate that differences in results are primarily due to coordinate systems and fuselage representations and not to design procedures. Further, results from a direct-inverse method that includes 3-D wing boundary layer effects, wake curvature, and wake displacement are represented. These results show that boundary layer displacements must be included in the design process for accurate results.

  20. CFD three dimensional wake analysis in complex terrain

    Science.gov (United States)

    Castellani, F.; Astolfi, D.; Terzi, L.

    2017-11-01

    Even if wind energy technology is nowadays fully developed, the use of wind energy in very complex terrain is still challenging. In particular, it is challenging to characterize the combination effects of wind ow over complex terrain and wake interactions between nearby turbines and this has a practical relevance too, for the perspective of mitigating anomalous vibrations and loads as well improving the farm efficiency. In this work, a very complex terrain site has been analyzed through a Reynolds-averaged CFD (Computational Fluid Dynamics) numerical wind field model; in the simulation the inuence of wakes has been included through the Actuator Disk (AD) approach. In particular, the upstream turbine of a cluster of 4 wind turbines having 2.3 MW of rated power is studied. The objective of this study is investigating the full three-dimensional wind field and the impact of three-dimensionality on the evolution of the waked area between nearby turbines. A post-processing method of the output of the CFD simulation is developed and this allows to estimate the wake lateral deviation and the wake width. The reliability of the numerical approach is inspired by and crosschecked through the analysis of the operational SCADA (Supervisory Control and Data Acquisition) data of the cluster of interest.

  1. Simulation and Prediction of Wakes and Wake Interaction in Wind Farms

    DEFF Research Database (Denmark)

    Andersen, Søren Juhl

    coupled with the flow solver. The numerical simulations include the study of the far wake behind a single turbine, three idealised cases of infinitely long rows of turbines and finally three infinite wind farm scenarios with different spacings. The flow characteristics between the turbines, turbine...... the basis for two proposed dynamic wake models of the turbulent wake deep inside large wind farms. The first model is based on a direct reconstruction using POD, while the other model (REDOMO) is based on an additional reduction by only including the most dominant frequencies. The flow fields derived from......The highly turbulent wake and the wake interaction of merging wakes between multiple wind turbines are modelled using Large Eddy Simulation (LES) in a general Navier-Stokes solver. The Actuator Line (AL) technique is employed to model the wind turbines, and the aeroelastic computations are fully...

  2. SIMULATION OF AIRCRAFT CONDENSATION TRAILS AND WAKE VORTICES INTERACTION

    Directory of Open Access Journals (Sweden)

    T. O. Aubakirov

    2015-01-01

    Full Text Available A technique of calculation of aircraft condensation trails (contrails and wake vortices interaction is described. The technique is based on a suitable for real-time applications mathematical model of far wake utilizes the method of discrete vortices. The technique is supplemented by account of the influence of axial velocities in the vortex nucleus on contrail and wake vortex location. Results of calculations of contrails and wake vortices interaction for Il-76 and B-747 aircraft are presented.

  3. Strongly Stratified Turbulence Wakes and Mixing Produced by Fractal Wakes

    Science.gov (United States)

    Dimitrieva, Natalia; Redondo, Jose Manuel; Chashechkin, Yuli; Fraunie, Philippe; Velascos, David

    2017-04-01

    -stationary dynamicss and structure of stratified fluid flows around a wedge were also studied based of the fundamental equations set using numerical modeling. Due to breaking of naturally existing background diffusion flux of stratifying agent by an impermeable surface of the wedge a complex multi-level vortex system of compensatory fluid motions is formed around the obstacle. The flow is characterized by a wide range of values of internal scales that are absent in a homogeneous liquid. Numerical solution of the fundamental system with the boundary conditions is constructed using a solver such as stratifiedFoam developed within the frame of the open source computational package OpenFOAM using the finite volume method. The computations were performed in parallel using computing resources of the Scientific Research Supercomputer Complex of MSU (SRCC MSU) and the technological platform UniHUB. The evolution of the flow pattern of the wedge by stratified flow has been demonstrated. The complex structure of the fields of physical quantities and their gradients has been shown. Observed in experiment are multiple flow components, including upstream disturbances, internal waves and the downstream wake with submerged transient vortices well reproduced. Structural elements of flow differ in size and laws of variation in space and time. Rich fine flow structure visualized in vicinity and far from the obstacle. The global efficiency of the mixing process is measured and compared with previous estimates of mixing efficiency.

  4. Comparing satellite SAR and wind farm wake models

    DEFF Research Database (Denmark)

    Hasager, Charlotte Bay; Vincent, P.; Husson, R.

    2015-01-01

    . These extend several tens of kilometres downwind e.g. 70 km. Other SAR wind maps show near-field fine scale details of wake behind rows of turbines. The satellite SAR wind farm wake cases are modelled by different wind farm wake models including the PARK microscale model, the Weather Research and Forecasting...

  5. Wake modeling and simulation

    DEFF Research Database (Denmark)

    Larsen, Gunner Chr.; Madsen Aagaard, Helge; Larsen, Torben J.

    We present a consistent, physically based theory for the wake meandering phenomenon, which we consider of crucial importance for the overall description of wind turbine loadings in wind farms. In its present version the model is confined to single wake situations. The model philosophy does, howev...... methodology has been implemented in the aeroelastic code HAWC2, and example simulations of wake situations, from the small Tjæreborg wind farm, have been performed showing satisfactory agreement between predictions and measurements...

  6. Qualitative analysis of wind-turbine wakes over hilly terrain

    Science.gov (United States)

    Hyvärinen, A.; Segalini, A.

    2017-05-01

    In this work, wind-turbine wakes are studied over flat and hilly terrains. Measurements made by using stereoscopic PIV are compared to data obtained from numerical simulations using RANS equations and an actuator-disc method. The numerical and experimental data show similar qualitative trends, indicating that the wind-turbine wake is perturbed by the presence of the hills. Additionally, a faster flow recovery at hub height is seen with the hilly terrain, indicating that the hills presence is beneficial for downstream turbines exposed to wake-interaction effects. The Jensen wake model is implemented over the hilly terrain and it is shown that this model cannot accurately capture the wake modulations induced by the hills. However, by superimposing a wind-turbine wake simulated over flat terrain on the hilly-terrain flow field, it is illustrated that the commonly-used wake-superposition technique can yield reasonable results if the used wake model has sufficient accuracy.

  7. Wake Expansion Models

    DEFF Research Database (Denmark)

    Branlard, Emmanuel Simon Pierre

    2017-01-01

    Different models of wake expansion are presented in this chapter: the 1D momentum theory model, the cylinder analog model and Theodorsen’s model. Far wake models such as the ones from Frandsen or Rathmann or only briefly mentioned. The different models are compared to each other. Results from thi...... this chapter are used in Chap. 16 to link near-wake and far-wake parameters and in Chap. 20 to study the influence of expansion on tip-losses....

  8. Linearised CFD models for wakes

    Energy Technology Data Exchange (ETDEWEB)

    Ott, S.; Berg, J.; Nielsen, Morten

    2011-12-15

    This report describes the development of a fast and reasonably accurate model for the prediction of energy production in offshore wind farms taking wake effects into account. The model has been implemented as a windows application called Fuga which can run in batch mode or as a graphical user interface. Fuga is briefly described. The model is based on a linearization technique which is described in some detail, and linearized, governing equations are derived and written in a standard form based on a mixed-spectral formulation. A new solution method is used to solve the equations which involves intensive use of look-up tables for storage of intermediate results. Due to the linearity of the model, multiple wakes from many turbines can be constructed from the wake of a single, solitary turbine. These are in turn constructed from Fourier components by a fast Fourier integral transform of results derived from generic look-up tables. Three different models, based on three different closures, are examined: 1) the 'simple closure' using an unperturbed eddy viscosity kucentre dotz. 2) the mixing length closure. 3) the E-epsilon closure. Model results are evaluated against offshore wind farm production data from Horns Rev I and the Nysted wind farm, and a comparison with direct wake measurements in an onshore turbine (Nibe B) is also made. A very satisfactory agreement with data is found for the simple closure. The exception is the near wake, just behind the rotor, where all three linearized models fail. The mixing length closure underestimates wake effects in all cases. The E-epsilon closure overestimates wake losses in the offshore farms while it predicts a too shallow and too wide the wake in the onshore case. The simple closure performs distinctly better than the other two. Wind speed data from the the Horns rev met masts are used to further validate Fuga results with the 'simple' closure. Finally, Roedsand 1 and 2 are used as an example to illustrate

  9. Wake bursting: A computational and experimental investigation for application to high-lift multielement airfoil design

    Science.gov (United States)

    Pomeroy, Brent William

    High-lift aerodynamic flowfields are complex, and the potentially-adverse wake development associated with these high-lift systems is not fully understood. Thus, an exhaustive investigation including both experimental and computational efforts is needed to gain an increased understanding of the flowfield. Previous work indicates the strong off-the-surface adverse pressure gradients created by flaps may cause the main-element wake to "separate" in an aerodynamic phenomena known as wake bursting. Previous experimental research efforts to study wake bursting over a multielement airfoil are lacking a detailed study of the burst wakes in a wide range of spatial coordinates. In addition, no thorough comparison between the experimentally-captured data and computational simulations of a high-lift multielement airfoil has been performed. A variety of different experimental and computational tools can be used to study the burst-wake flowfield. These experimental techniques include the standard aerodynamic-performance and flow-visualization techniques in addition to complex wake survey methods. These wake surveys can be executed with one of a variety of probes to capture unsteady or steady data such as pressures or velocities. Because all desired flowfield parameters cannot be captured by one probe, results from different probes must be carefully analyzed and compared to other data such that a full understanding of the flowfield can be gained. Computational methods to study the burst-wake flowfield must adequately solve both the inviscid and viscous regions of the flowfield. Computations can be performed with low-order coupled viscous/inviscid program in addition to more-robust Navier-Stokes solvers, such as Reynolds-averaged Navier-Stokes (RANS) programs. It is necessary to carefully compare the experimental and computational results such that the flowfield can be understood in greater detail. These comparisons will also yield insight into the effects of experimental testing

  10. Theoretical modelling of wakes from retractable flapping wings in forward flight.

    Science.gov (United States)

    Parslew, Ben; Crowther, William J

    2013-01-01

    A free-wake method is used to simulate the wake from retractable, jointed wings. The method serves to complement existing experimental studies that visualise flying animal wakes. Simulated wakes are shown to be numerically convergent for a case study of the Rock Pigeon in minimum power cruising flight. The free-wake model is robust in simulating wakes for a range of wing geometries and dynamics without requiring changes to the numerical method. The method is found to be useful for providing low order predictions of wake geometries. However, it is not well suited to reconstructing 3d flowfields as solutions are sensitive to the numerical mesh node locations.

  11. Theoretical modelling of wakes from retractable flapping wings in forward flight

    Directory of Open Access Journals (Sweden)

    Ben Parslew

    2013-07-01

    Full Text Available A free-wake method is used to simulate the wake from retractable, jointed wings. The method serves to complement existing experimental studies that visualise flying animal wakes. Simulated wakes are shown to be numerically convergent for a case study of the Rock Pigeon in minimum power cruising flight. The free-wake model is robust in simulating wakes for a range of wing geometries and dynamics without requiring changes to the numerical method. The method is found to be useful for providing low order predictions of wake geometries. However, it is not well suited to reconstructing 3d flowfields as solutions are sensitive to the numerical mesh node locations.

  12. Developments and Validations of Fully Coupled CFD and Practical Vortex Transport Method for High-Fidelity Wake Modeling in Fixed and Rotary Wing Applications

    Science.gov (United States)

    Anusonti-Inthra, Phuriwat

    2010-01-01

    A novel Computational Fluid Dynamics (CFD) coupling framework using a conventional Reynolds-Averaged Navier-Stokes (BANS) solver to resolve the near-body flow field and a Particle-based Vorticity Transport Method (PVTM) to predict the evolution of the far field wake is developed, refined, and evaluated for fixed and rotary wing cases. For the rotary wing case, the RANS/PVTM modules are loosely coupled to a Computational Structural Dynamics (CSD) module that provides blade motion and vehicle trim information. The PVTM module is refined by the addition of vortex diffusion, stretching, and reorientation models as well as an efficient memory model. Results from the coupled framework are compared with several experimental data sets (a fixed-wing wind tunnel test and a rotary-wing hover test).

  13. Composite materials and bodies including silicon carbide and titanium diboride and methods of forming same

    Science.gov (United States)

    Lillo, Thomas M.; Chu, Henry S.; Harrison, William M.; Bailey, Derek

    2013-01-22

    Methods of forming composite materials include coating particles of titanium dioxide with a substance including boron (e.g., boron carbide) and a substance including carbon, and reacting the titanium dioxide with the substance including boron and the substance including carbon to form titanium diboride. The methods may be used to form ceramic composite bodies and materials, such as, for example, a ceramic composite body or material including silicon carbide and titanium diboride. Such bodies and materials may be used as armor bodies and armor materials. Such methods may include forming a green body and sintering the green body to a desirable final density. Green bodies formed in accordance with such methods may include particles comprising titanium dioxide and a coating at least partially covering exterior surfaces thereof, the coating comprising a substance including boron (e.g., boron carbide) and a substance including carbon.

  14. Wind turbine wake visualization and characteristics analysis by Doppler lidar.

    Science.gov (United States)

    Wu, Songhua; Liu, Bingyi; Liu, Jintao; Zhai, Xiaochun; Feng, Changzhong; Wang, Guining; Zhang, Hongwei; Yin, Jiaping; Wang, Xitao; Li, Rongzhong; Gallacher, Daniel

    2016-05-16

    Wind power generation is growing fast as one of the most promising renewable energy sources that can serve as an alternative to fossil fuel-generated electricity. When the wind turbine generator (WTG) extracts power from the wind, the wake evolves and leads to a considerable reduction in the efficiency of the actual power generation. Furthermore, the wake effect can lead to the increase of turbulence induced fatigue loads that reduce the life time of WTGs. In this work, a pulsed coherent Doppler lidar (PCDL) has been developed and deployed to visualize wind turbine wakes and to characterize the geometry and dynamics of wakes. As compared with the commercial off-the-shelf coherent lidars, the PCDL in this work has higher updating rate of 4 Hz and variable physical spatial resolution from 15 to 60 m, which improves its capability to observation the instantaneous turbulent wind field. The wind speed estimation method from the arc scan technique was evaluated in comparison with wind mast measurements. Field experiments were performed to study the turbulent wind field in the vicinity of operating WTGs in the onshore and offshore wind parks from 2013 to 2015. Techniques based on a single and a dual Doppler lidar were employed for elucidating main features of turbine wakes, including wind velocity deficit, wake dimension, velocity profile, 2D wind vector with resolution of 10 m, turbulence dissipation rate and turbulence intensity under different conditions of surface roughness. The paper shows that the PCDL is a practical tool for wind energy research and will provide a significant basis for wind farm site selection, design and optimization.

  15. Site Suitability Assessment with Dynamic Wake Meandering Model. A Certification Point of View.

    Science.gov (United States)

    Tomas Bayo, Ricard; Parro, Gema

    2015-04-01

    Establishment of large wind farms requires enormous investments putting steadily greater emphasis on optimal topology design and control of these. This requires not only an optimization of the power output, but also the development of strategies to cope with the higher loading expected. The cornerstone of such strategies is a realistic characterization and modelling of the wake flow field inside the wind farm, beyond Frandsen's equivalent turbulence method. Whereas Frandsen model has been mostly considered in the industry so far, it has not proved completely satisfactory when facing current problems such as wake effects on turbines placed at short distances or consequences of half wake for turbine loading. The objective of the present work is to address these questions from a certification point of view within the framework of Risoe's Dynamic Wake Meandering (DWM) model. The DWM model is based on the combination of three parts: modeling of quasi-steady wake deficits, a stochastic model of the downwind wake meandering and an added or self-generated wake turbulence. The analysis carried out is two-fold: First, a comparative study of the wake effects generated in Frandsen model as well as in various realizations of the DWM model is performed. For this purpose wake-induced loads are calculated using two different aeroelastic codes: HAWC2 and Bladed. Second, the applicability of DWM for the assessment of wind turbines under site-specific conditions is discussed and the conclusions summarized in a Recommended Practice. Clear prescriptions are thereby provided for the use of DWMM for site suitability assessments, including the aforementioned extreme situations, along with the interpretation of the future version of the IEC 61400-1 standards.

  16. A consistent turbulence formulation for the dynamic wake meandering model in the atmospheric boundary layer

    DEFF Research Database (Denmark)

    Keck, Rolf-Erik; Veldkamp, Dick; Wedel-Heinen, Jens Jakob

    evolution 4. atmospheric stability effects on wake deficit evolution and meandering The conducted research is to a large extent based on detailed wake investigations and reference data generated through computational fluid dynamics simulations, where the wind turbine rotor has been represented...... as a standalone flow-solver for the velocity and turbulence distribution, and power production in a wind farm. The performance of the standalone implementation is validated against field data, higher-order computational fluid dynamics models, as well as the most common engineering wake models in the wind industry....... 2. The EllipSys3D actuator line model, including the synthetic methods used to model atmospheric boundary layer shear and turbulence, is verified for modelling the evolution of wind turbine wake turbulence by comparison to field data and wind tunnel experiments. 3. A two-dimensional eddy viscosity...

  17. Aircraft control in wake vortex wind shear

    Science.gov (United States)

    Wold, Gregory R.

    1995-01-01

    In the past, there have been a number of fatal incidents attributable to wake vortex encounters, involving both general aviation and commercial aircraft. In fact, the wake vortex hazard is considered to be the single dominant safety issue determining the aircraft spacing requirements at airports. As the amount of air traffic increases, the number of dangerous encounters is likely only to increase. It is therefore imperative that a means be found to reduce the danger. That is the purpose of this research: to use nonlinear inverse dynamic (NID) control methods in the design of an aircraft control system which can improve the safety margin in a wake vortex encounter.

  18. Numerical Acoustic Models Including Viscous and Thermal losses: Review of Existing and New Methods

    DEFF Research Database (Denmark)

    Andersen, Peter Risby; Cutanda Henriquez, Vicente; Aage, Niels

    2017-01-01

    This work presents an updated overview of numerical methods including acoustic viscous and thermal losses. Numerical modelling of viscothermal losses has gradually become more important due to the general trend of making acoustic devices smaller. Not including viscothermal acoustic losses...... in such numerical computations will therefore lead to inaccurate or even wrong results. Both, Finite Element Method (FEM) and Boundary Element Method (BEM), formulations are available that incorporate these loss mechanisms. Including viscothermal losses in FEM computations can be computationally very demanding, due...... and BEM method including viscothermal dissipation are compared and investigated....

  19. Status of wake and array loss research

    Energy Technology Data Exchange (ETDEWEB)

    Elliott, D.L.

    1991-09-01

    In recent years, many projects have evaluated wind turbine wake effects and resultant array losses in both Europe and the United States. This paper examines the status of current knowledge about wake effects and array losses and suggests future research. Single-turbine wake characteristics have been studied extensively and are generally described well by existing theoretical models. Field measurements of wake effects in wind turbine arrays are largely limited to small arrays, with 2 to 4 rows of turbines. Few data have been published on wake effects within large arrays. Measurements of wake deficits downwind of large arrays that deficits are substantially larger and extend farther downwind than expected. Although array design models have been developed, these models have been tested and verified using only limited data from a few rows of wind turbines in complex terrain, whereas some of the largest arrays have more than 40 rows of wind turbines. Planned cooperative efforts with the wind industry will obtain existing data relevant to analyzing energy deficits within large arrays and identifying data sets for potential use in array model verification efforts. Future research being considered include a cooperative research experiment to obtain more definitive data on wake deficits and turbulence within and downwind of large arrays. 16 refs., 9 figs., 1 tab.

  20. Wind Turbine Wake in Atmospheric Turbulence

    DEFF Research Database (Denmark)

    Rethore, Pierre-Elouan

    This thesis describes the different steps needed to design a steady-state computational fluid dynamics (CFD) wind farm wake model. The ultimate goal of the project was to design a tool that could analyze and extrapolate systematically wind farm measurements to generate wind maps in order...... to calibrate faster and simpler engineering wind farm wake models. The most attractive solution was the actuator disc method with the steady state k-ε turbulence model. The first step to design such a tool is the treatment of the forces. This thesis presents a computationally inexpensive method to apply......) shows that the problem mainly comes from the assumptions of the eddy-viscosity concept, which are deeply invalidated in the wind turbine wake region. Different models that intent to correct the k-ε model's issues are investigated, of which none of them is found to be adequate. The mixing of the wake...

  1. Wake dynamics in offshore wind farms

    DEFF Research Database (Denmark)

    de Mare, Martin Tobias

    Wind turbines within offshore wind farms spend considerable time operating in the wake of neighboring wind turbines. An important contribution to the loads on a wake-affected wind turbine is the slow movement of the wake from the upstream wind turbine across the rotor of the wake-affected wind...... to be uniquely determined by the friction velocity, the shear and the dissipation of turbulent kinetic energy, all of them physical properties of the flow. If local equilibrium between the turbulent kinetic energy produced by shear and the turbulent kinetic energy dissipated as heat is assumed, then, for neutral...... components of the cross-spectra at known shear, is proposed. Future work could also include investigating if a Rapid Distortion formulation that also includes a term for buoyancy effects is needed in order to make accurate predictions for non-neutral atmospheric stratification....

  2. Aircraft Wake Vortex Deformation in Turbulent Atmosphere

    OpenAIRE

    Hennemann, Ingo; Holzaepfel, Frank

    2007-01-01

    Large-scale distortion of aircraft wake vortices appears to play a crucial role for aircraft safety during approach and landing. Vortex distortion is investigated based on large eddy simulations of wake vortex evolution in a turbulent atmosphere. A vortex identification method is developed that can be adapted to the vortex scales of interest. Based on the identified vortex center tracks, a statistics of vortex curvature radii is established. This statistics constitutes the basis for understan...

  3. A simple stationary semi-analytical wake model

    DEFF Research Database (Denmark)

    Larsen, Gunner Chr.

    -uniform mean wind field, although the modelling of the individual stationary wake flow fields includes non-linear terms. The simulation of the individual wake contributions are based on an analytical solution of the thin shear layer approximation of the NS equations. The wake flow fields are assumed...... rotationally symmetric, and the rotor inflow fields are consistently assumed uniform. Expansion of stationary wake fields is believed to be significantly affected by meandering of wake deficits as e.g. described by the Dynamic Wake Meandering model. In the present context, this effect is approximately...... approximately linearly with the downstream distance. The link from a non-uniform wind farm wind field, consisting of linear perturbations on the ambient non-uniform mean wind field, to a fictitious uniform wake generating inflow field is established using two different averaging approaches – a linear and a non-linear...

  4. HARP PRIA- Wake

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This HARP was first deployed off of Wake Atoll in 2010. It has been recovered and redeployed multiple times (see time frames for information).

  5. Eye tracking, cortisol, and a sleep vs. wake consolidation delay: combining methods to uncover an interactive effect of sleep and cortisol on memory.

    Science.gov (United States)

    Bennion, Kelly A; Mickley Steinmetz, Katherine R; Kensinger, Elizabeth A; Payne, Jessica D

    2014-06-18

    Although rises in cortisol can benefit memory consolidation, as can sleep soon after encoding, there is currently a paucity of literature as to how these two factors may interact to influence consolidation. Here we present a protocol to examine the interactive influence of cortisol and sleep on memory consolidation, by combining three methods: eye tracking, salivary cortisol analysis, and behavioral memory testing across sleep and wake delays. To assess resting cortisol levels, participants gave a saliva sample before viewing negative and neutral objects within scenes. To measure overt attention, participants' eye gaze was tracked during encoding. To manipulate whether sleep occurred during the consolidation window, participants either encoded scenes in the evening, slept overnight, and took a recognition test the next morning, or encoded scenes in the morning and remained awake during a comparably long retention interval. Additional control groups were tested after a 20 min delay in the morning or evening, to control for time-of-day effects. Together, results showed that there is a direct relation between resting cortisol at encoding and subsequent memory, only following a period of sleep. Through eye tracking, it was further determined that for negative stimuli, this beneficial effect of cortisol on subsequent memory may be due to cortisol strengthening the relation between where participants look during encoding and what they are later able to remember. Overall, results obtained by a combination of these methods uncovered an interactive effect of sleep and cortisol on memory consolidation.

  6. Energy-autonomous wake-up receiver using solar panel and visible light communication

    OpenAIRE

    Sariol Ramos, Joyce

    2016-01-01

    One of the most promising energy-efficient communication methods is the use of wake-up receivers. In this work, we will develop a novel wake-up communication system that uses Visual Light Communication (VLC) and an indoor solar panel as the receiver of the wake-up signal. After the reception of the wake-up signal, an interrupt generated by the wake-up receiver wakes up the wireless device attached. The use of wake-up communication systems is a potential energy-efficient and low-cost soluti...

  7. Systems and Methods for Fabricating Objects Including Amorphous Metal Using Techniques Akin to Additive Manufacturing

    Science.gov (United States)

    Hofmann, Douglas (Inventor)

    2017-01-01

    Systems and methods in accordance with embodiments of the invention fabricate objects including amorphous metals using techniques akin to additive manufacturing. In one embodiment, a method of fabricating an object that includes an amorphous metal includes: applying a first layer of molten metallic alloy to a surface; cooling the first layer of molten metallic alloy such that it solidifies and thereby forms a first layer including amorphous metal; subsequently applying at least one layer of molten metallic alloy onto a layer including amorphous metal; cooling each subsequently applied layer of molten metallic alloy such that it solidifies and thereby forms a layer including amorphous metal prior to the application of any adjacent layer of molten metallic alloy; where the aggregate of the solidified layers including amorphous metal forms a desired shape in the object to be fabricated; and removing at least the first layer including amorphous metal from the surface.

  8. Systems and methods for producing metal clusters; functionalized surfaces; and droplets including solvated metal ions

    Science.gov (United States)

    Cooks, Robert Graham; Li, Anyin; Luo, Qingjie

    2017-08-01

    The invention generally relates to systems and methods for producing metal clusters; functionalized surfaces; and droplets including solvated metal ions. In certain aspects, the invention provides methods that involve providing a metal and a solvent. The methods additionally involve applying voltage to the solvated metal to thereby produce solvent droplets including ions of the metal containing compound, and directing the solvent droplets including the metal ions to a target. In certain embodiments, once at the target, the metal ions can react directly or catalyze reactions.

  9. Systems and Methods for Fabricating Structures Including Metallic Glass-Based Materials Using Ultrasonic Welding

    Science.gov (United States)

    Hofmann, Douglas C. (Inventor); Roberts, Scott N. (Inventor)

    2017-01-01

    Systems and methods in accordance with embodiments of the invention fabricate objects including metallic glass-based materials using ultrasonic welding. In one embodiment, a method of fabricating an object that includes a metallic glass-based material includes: ultrasonically welding at least one ribbon to a surface; where at least one ribbon that is ultrasonically welded to a surface has a thickness of less than approximately 150.mu.m; and where at least one ribbon that is ultrasonically welded to a surface includes a metallic glass-based material.

  10. A method for the computation of turbulent polymeric liquids including hydrodynamic interactions and chain entanglements

    Energy Technology Data Exchange (ETDEWEB)

    Kivotides, Demosthenes, E-mail: demosthenes.kivotides@strath.ac.uk

    2017-02-12

    An asymptotically exact method for the direct computation of turbulent polymeric liquids that includes (a) fully resolved, creeping microflow fields due to hydrodynamic interactions between chains, (b) exact account of (subfilter) residual stresses, (c) polymer Brownian motion, and (d) direct calculation of chain entanglements, is formulated. Although developed in the context of polymeric fluids, the method is equally applicable to turbulent colloidal dispersions and aerosols. - Highlights: • An asymptotically exact method for the computation of polymer and colloidal fluids is developed. • The method is valid for all flow inertia and all polymer volume fractions. • The method models entanglements and hydrodynamic interactions between polymer chains.

  11. PREFACE: Wake Conference 2015

    Science.gov (United States)

    Barney, Andrew; Nørkær Sørensen, Jens; Ivanell, Stefan

    2015-06-01

    The 44 papers in this volume constitute the proceedings of the 2015 Wake Conference, held in Visby on the island of Gotland in Sweden. It is the fourth time this conference has been held. The Wake Conference series started in Visby, where it was held in 2009 and 2011. In 2013 it took place in Copenhagen where it was combined with the International Conference on Offshore Wind Energy and Ocean Energy. In 2015 it is back where it started in Visby, where it takes place at Uppsala University Campus Gotland, June 9th-11th. The global yearly production of electrical energy by wind turbines has grown tremendously in the past decade and it now comprises more than 3% of the global electrical power consumption. Today the wind power industry has a global annual turnover of more than 50 billion USD and an annual average growth rate of more than 20%. State-of-the-art wind turbines have rotor diameters of up to 150 m and 8 MW installed capacity. These turbines are often placed in large wind farms that have a total production capacity corresponding to that of a nuclear power plant. In order to make a substantial impact on one of the most significant challenges of our time, global warming, the industry's growth has to continue for a decade or two yet. This in turn requires research into the physics of wind turbine wakes and wind farms. Modern wind turbines are today clustered in wind farms in which the turbines are fully or partially influenced by the wake of upstream turbines. As a consequence, the wake behind the wind turbines has a lower mean wind speed and an increased turbulence level, as compared to the undisturbed flow outside the farm. Hence, wake interaction results in decreased total production of power, caused by lower kinetic energy in the wind, and an increase in the turbulence intensity. Therefore, understanding the physical nature of the vortices and their dynamics in the wake of a turbine is important for the optimal design of a wind farm. This conference is aimed

  12. Solar cells, structures including organometallic halide perovskite monocrystalline films, and methods of preparation thereof

    KAUST Repository

    Bakr, Osman M.

    2017-03-02

    Embodiments of the present disclosure provide for solar cells including an organometallic halide perovskite monocrystalline film (see fig. 1.1B), other devices including the organometallic halide perovskite monocrystalline film, methods of making organometallic halide perovskite monocrystalline film, and the like.

  13. Optimization Under Uncertainty for Wake Steering Strategies

    Science.gov (United States)

    Quick, Julian; Annoni, Jennifer; King, Ryan; Dykes, Katherine; Fleming, Paul; Ning, Andrew

    2017-05-01

    Wind turbines in a wind power plant experience significant power losses because of aerodynamic interactions between turbines. One control strategy to reduce these losses is known as “wake steering,” in which upstream turbines are yawed to direct wakes away from downstream turbines. Previous wake steering research has assumed perfect information, however, there can be significant uncertainty in many aspects of the problem, including wind inflow and various turbine measurements. Uncertainty has significant implications for performance of wake steering strategies. Consequently, the authors formulate and solve an optimization under uncertainty (OUU) problem for finding optimal wake steering strategies in the presence of yaw angle uncertainty. The OUU wake steering strategy is demonstrated on a two-turbine test case and on the utility-scale, offshore Princess Amalia Wind Farm. When we accounted for yaw angle uncertainty in the Princess Amalia Wind Farm case, inflow-direction-specific OUU solutions produced between 0% and 1.4% more power than the deterministically optimized steering strategies, resulting in an overall annual average improvement of 0.2%. More importantly, the deterministic optimization is expected to perform worse and with more downside risk than the OUU result when realistic uncertainty is taken into account. Additionally, the OUU solution produces fewer extreme yaw situations than the deterministic solution.

  14. Force measuring valve assemblies, systems including such valve assemblies and related methods

    Science.gov (United States)

    DeWall, Kevin George [Pocatello, ID; Garcia, Humberto Enrique [Idaho Falls, ID; McKellar, Michael George [Idaho Falls, ID

    2012-04-17

    Methods of evaluating a fluid condition may include stroking a valve member and measuring a force acting on the valve member during the stroke. Methods of evaluating a fluid condition may include measuring a force acting on a valve member in the presence of fluid flow over a period of time and evaluating at least one of the frequency of changes in the measured force over the period of time and the magnitude of the changes in the measured force over the period of time to identify the presence of an anomaly in a fluid flow and, optionally, its estimated location. Methods of evaluating a valve condition may include directing a fluid flow through a valve while stroking a valve member, measuring a force acting on the valve member during the stroke, and comparing the measured force to a reference force. Valve assemblies and related systems are also disclosed.

  15. Electrode assemblies, plasma apparatuses and systems including electrode assemblies, and methods for generating plasma

    Science.gov (United States)

    Kong, Peter C; Grandy, Jon D; Detering, Brent A; Zuck, Larry D

    2013-09-17

    Electrode assemblies for plasma reactors include a structure or device for constraining an arc endpoint to a selected area or region on an electrode. In some embodiments, the structure or device may comprise one or more insulating members covering a portion of an electrode. In additional embodiments, the structure or device may provide a magnetic field configured to control a location of an arc endpoint on the electrode. Plasma generating modules, apparatus, and systems include such electrode assemblies. Methods for generating a plasma include covering at least a portion of a surface of an electrode with an electrically insulating member to constrain a location of an arc endpoint on the electrode. Additional methods for generating a plasma include generating a magnetic field to constrain a location of an arc endpoint on an electrode.

  16. Dynamic wake meandering modeling

    DEFF Research Database (Denmark)

    Larsen, Gunner Chr.; Madsen Aagaard, Helge; Bingöl, Ferhat

    , concerning both flow characteristics and turbine load characteristics. Contrary to previous attempts to model wake loading, the dynamic wake meandering approach opens for a unifying description in the sense that turbine power– and load aspects can be treated simultaneously. This capability is a direct...... and attractive consequence of the model being based on the underlying physical process, and it potentially opens for optimization of wind farm topology, of wind farm operation as well as of control strategies for the individual turbine. Implementation of the methodology with aeroelastic codes is straight forward...

  17. Wake Studies of Ornithopters

    Science.gov (United States)

    Juarez, Alfredo; Harlow, Jacob; Allen, James; Ferreira de Sousa, Paulo

    2006-11-01

    This paper details experiments using a mechanical ornithopter flying in a low speed wind tunnel. Experiments were conducted for a Strouhal number of 0.3 and Reynolds number of 2300, Particle Image Velocimetry (PIV) and flow visualization was used to develop quantitative and qualitative information about the nature of the wake. The data shows that the wake is made of a series of discrete vortex rings. The impulse of these rings has been estimated with PIV data and the results correlate well with the lift required to sustain the ornithopter in flight.

  18. Large-Eddy Simulation of turbine wake in complex terrain

    Science.gov (United States)

    Berg, J.; Troldborg, N.; Sørensen, N. N.; Patton, E. G.; Sullivan, P. P.

    2017-05-01

    We present Large-Eddy Simulation results of a turbine wake in realistic complex terrain with slopes above 0.5. By comparing simulations including and without the wind turbine we can estimate the induction factor, a, and we show how the presence of a strong recirculation zone in the terrain dictates the positioning of the wake. This last finding is in contrast to what would happen in gentle terrain with no substantial increase of turbulent kinetic energy in the terrain induced wakes.

  19. Implementation aspects of the Boundary Element Method including viscous and thermal losses

    DEFF Research Database (Denmark)

    Cutanda Henriquez, Vicente; Juhl, Peter Møller

    2014-01-01

    The implementation of viscous and thermal losses using the Boundary Element Method (BEM) is based on the Kirchhoff’s dispersion relation and has been tested in previous work using analytical test cases and comparison with measurements. Numerical methods that can simulate sound fields in fluids...... including losses are particularly interesting whenever small cavities and narrow passages are present, as is the case with many acoustic devices such as transducers and small audio appliances. The present paper describes current work aimed at improving the method by addressing some specific issues related...

  20. Including mixed methods research in systematic reviews: Examples from qualitative syntheses in TB and malaria control

    Science.gov (United States)

    2012-01-01

    Background Health policy makers now have access to a greater number and variety of systematic reviews to inform different stages in the policy making process, including reviews of qualitative research. The inclusion of mixed methods studies in systematic reviews is increasing, but these studies pose particular challenges to methods of review. This article examines the quality of the reporting of mixed methods and qualitative-only studies. Methods We used two completed systematic reviews to generate a sample of qualitative studies and mixed method studies in order to make an assessment of how the quality of reporting and rigor of qualitative-only studies compares with that of mixed-methods studies. Results Overall, the reporting of qualitative studies in our sample was consistently better when compared with the reporting of mixed methods studies. We found that mixed methods studies are less likely to provide a description of the research conduct or qualitative data analysis procedures and less likely to be judged credible or provide rich data and thick description compared with standalone qualitative studies. Our time-related analysis shows that for both types of study, papers published since 2003 are more likely to report on the study context, describe analysis procedures, and be judged credible and provide rich data. However, the reporting of other aspects of research conduct (i.e. descriptions of the research question, the sampling strategy, and data collection methods) in mixed methods studies does not appear to have improved over time. Conclusions Mixed methods research makes an important contribution to health research in general, and could make a more substantial contribution to systematic reviews. Through our careful analysis of the quality of reporting of mixed methods and qualitative-only research, we have identified areas that deserve more attention in the conduct and reporting of mixed methods research. PMID:22545681

  1. Comparison of different methods to include recycling in LCAs of aluminium cans and disposable polystyrene cups.

    Science.gov (United States)

    van der Harst, Eugenie; Potting, José; Kroeze, Carolien

    2016-02-01

    Many methods have been reported and used to include recycling in life cycle assessments (LCAs). This paper evaluates six widely used methods: three substitution methods (i.e. substitution based on equal quality, a correction factor, and alternative material), allocation based on the number of recycling loops, the recycled-content method, and the equal-share method. These six methods were first compared, with an assumed hypothetical 100% recycling rate, for an aluminium can and a disposable polystyrene (PS) cup. The substitution and recycled-content method were next applied with actual rates for recycling, incineration and landfilling for both product systems in selected countries. The six methods differ in their approaches to credit recycling. The three substitution methods stimulate the recyclability of the product and assign credits for the obtained recycled material. The choice to either apply a correction factor, or to account for alternative substituted material has a considerable influence on the LCA results, and is debatable. Nevertheless, we prefer incorporating quality reduction of the recycled material by either a correction factor or an alternative substituted material over simply ignoring quality loss. The allocation-on-number-of-recycling-loops method focusses on the life expectancy of material itself, rather than on a specific separate product. The recycled-content method stimulates the use of recycled material, i.e. credits the use of recycled material in products and ignores the recyclability of the products. The equal-share method is a compromise between the substitution methods and the recycled-content method. The results for the aluminium can follow the underlying philosophies of the methods. The results for the PS cup are additionally influenced by the correction factor or credits for the alternative material accounting for the drop in PS quality, the waste treatment management (recycling rate, incineration rate, landfilling rate), and the

  2. Including mixed methods research in systematic reviews: examples from qualitative syntheses in TB and malaria control.

    Science.gov (United States)

    Atkins, Salla; Launiala, Annika; Kagaha, Alexander; Smith, Helen

    2012-04-30

    Health policy makers now have access to a greater number and variety of systematic reviews to inform different stages in the policy making process, including reviews of qualitative research. The inclusion of mixed methods studies in systematic reviews is increasing, but these studies pose particular challenges to methods of review. This article examines the quality of the reporting of mixed methods and qualitative-only studies. We used two completed systematic reviews to generate a sample of qualitative studies and mixed method studies in order to make an assessment of how the quality of reporting and rigor of qualitative-only studies compares with that of mixed-methods studies. Overall, the reporting of qualitative studies in our sample was consistently better when compared with the reporting of mixed methods studies. We found that mixed methods studies are less likely to provide a description of the research conduct or qualitative data analysis procedures and less likely to be judged credible or provide rich data and thick description compared with standalone qualitative studies. Our time-related analysis shows that for both types of study, papers published since 2003 are more likely to report on the study context, describe analysis procedures, and be judged credible and provide rich data. However, the reporting of other aspects of research conduct (i.e. descriptions of the research question, the sampling strategy, and data collection methods) in mixed methods studies does not appear to have improved over time. Mixed methods research makes an important contribution to health research in general, and could make a more substantial contribution to systematic reviews. Through our careful analysis of the quality of reporting of mixed methods and qualitative-only research, we have identified areas that deserve more attention in the conduct and reporting of mixed methods research.

  3. Thermoelectric material including conformal oxide layers and method of making the same using atomic layer deposition

    Energy Technology Data Exchange (ETDEWEB)

    Cho, Jung Young; Ahn, Dongjoon; Salvador, James R.; Meisner, Gregory P.

    2016-06-07

    A thermoelectric material includes a substrate particle and a plurality of conformal oxide layers formed on the substrate particle. The plurality of conformal oxide layers has a total oxide layer thickness ranging from about 2 nm to about 20 nm. The thermoelectric material excludes oxide nanoparticles. A method of making the thermoelectric material is also disclosed herein.

  4. Methods of using structures including catalytic materials disposed within porous zeolite materials to synthesize hydrocarbons

    Science.gov (United States)

    Rollins, Harry W [Idaho Falls, ID; Petkovic, Lucia M [Idaho Falls, ID; Ginosar, Daniel M [Idaho Falls, ID

    2011-02-01

    Catalytic structures include a catalytic material disposed within a zeolite material. The catalytic material may be capable of catalyzing a formation of methanol from carbon monoxide and/or carbon dioxide, and the zeolite material may be capable of catalyzing a formation of hydrocarbon molecules from methanol. The catalytic material may include copper and zinc oxide. The zeolite material may include a first plurality of pores substantially defined by a crystal structure of the zeolite material and a second plurality of pores dispersed throughout the zeolite material. Systems for synthesizing hydrocarbon molecules also include catalytic structures. Methods for synthesizing hydrocarbon molecules include contacting hydrogen and at least one of carbon monoxide and carbon dioxide with such catalytic structures. Catalytic structures are fabricated by forming a zeolite material at least partially around a template structure, removing the template structure, and introducing a catalytic material into the zeolite material.

  5. Spectral coherence in windturbine wakes

    Energy Technology Data Exchange (ETDEWEB)

    Hojstrup, J. [Riso National Lab., Roskilde (Denmark)

    1996-12-31

    This paper describes an experiment at a Danish wind farm to investigate the lateral and vertical coherences in the nonequilibrium turbulence of a wind turbine wake. Two meteorological masts were instrumented for measuring profiles of mean speed, turbulence, and temperature. Results are provided graphically for turbulence intensities, velocity spectra, lateral coherence, and vertical coherence. The turbulence was somewhat influenced by the wake, or possibly from aggregated wakes further upstream, even at 14.5 diameters. Lateral coherence (separation 5m) seemed to be unaffected by the wake at 7.5 diameters, but the flow was less coherent in the near wake. The wake appeared to have little influence on vertical coherence (separation 13m). Simple, conventional models for coherence appeared to be adequate descriptions for wake turbulence except for the near wake situation. 3 refs., 7 figs., 1 tab.

  6. Complete Tangent Stiffness for eXtended Finite Element Method by including crack growth parameters

    DEFF Research Database (Denmark)

    Mougaard, J.F.; Poulsen, P.N.; Nielsen, L.O.

    2013-01-01

    The eXtended Finite Element Method (XFEM) is a useful tool for modeling the growth of discrete cracks in structures made of concrete and other quasi‐brittle and brittle materials. However, in a standard application of XFEM, the tangent stiffness is not complete. This is a result of not including...... within the same standard nonlinear iterations. This new solution strategy is believed to provide the modeling capabilities to deal with simultaneous growth of several cracks. A cohesive crack modeling is used. The method is applied to a partly cracked XFEM element of linear strain triangle type...... the crack geometry parameters, such as the crack length and the crack direction directly in the virtual work formulation. For efficiency, it is essential to obtain a complete tangent stiffness. A new method in this work is presented to include an incremental form the crack growth parameters on equal terms...

  7. Numerical computations of wind turbine wakes

    Energy Technology Data Exchange (ETDEWEB)

    Ivanell, Stefan S.A.

    2009-01-15

    Numerical simulations of the Navier-Stokes equations are performed to achieve a better understanding of the behaviour of wakes generated by wind turbines. The simulations are performed by combining the in-house developed computer code EllipSys3D with the actuator line and disc methodologies. In the actuator line and disc methods the blades are represented by a line or a disc on which body forces representing the loading are introduced. The body forces are determined by computing local angles of attack and using tabulated aerofoil coefficients. The advantage of using the actuator disc technique is that it is not necessary to resolve blade boundary layers. Instead the computational resources are devoted to simulating the dynamics of the flow structures. In the present study both the actuator line and disc methods are used. Between approximately six to fourteen million mesh points are used to resolve the wake structure in a range from a single turbine wake to wake interaction in a farm containing 80 turbines. These 80 turbines are however represented by 20 actuator discs due to periodicity because of numerical limitations. In step one of this project the objective was to find a numerical method suitable to study both the flow structures in the wake behind a single wind turbine and to simulate complicated interaction between a number of turbines. The study resulted in an increased comprehension of basic flow features in the wake, but more importantly in the use of a numerical method very suitable for the upcoming purpose. The second objective of the project was to study the basic mechanisms controlling the length of the wake to obtain better understanding of the stability properties of wakes generated by wind turbine rotors. The numerical model was based on large eddy simulations of the Navier-Stokes equations using the actuator line method to generate the wake and the tip vortices. To determine critical frequencies the flow is disturbed by inserting a harmonic

  8. Wake modelling combining mesoscale and microscale models

    DEFF Research Database (Denmark)

    Badger, Jake; Volker, Patrick; Prospathospoulos, J.

    2013-01-01

    In this paper the basis for introducing thrust information from microscale wake models into mesocale model wake parameterizations will be described. A classification system for the different types of mesoscale wake parameterizations is suggested and outlined. Four different mesoscale wake...

  9. Local experience-dependent changes in the wake EEG after prolonged wakefulness.

    Science.gov (United States)

    Hung, Ching-Sui; Sarasso, Simone; Ferrarelli, Fabio; Riedner, Brady; Ghilardi, M Felice; Cirelli, Chiara; Tononi, Giulio

    2013-01-01

    Prolonged wakefulness leads to a progressive increase in sleep pressure, reflected in a global increase in slow wave activity (SWA, 0.5-4.5 Hz) in the sleep electroencephalogram (EEG). A global increase in wake theta activity (5-9 Hz) also occurs. Recently, it was shown that prolonged wakefulness in rodents leads to signs of "local sleep" in an otherwise awake brain, accompanied by a slow/theta wave (2-6 Hz) in the local EEG that occurs at different times in different cortical areas. Compelling evidence in animals and humans also indicates that sleep is locally regulated by the amount of experience-dependent plasticity. Here, we asked whether the extended practice of tasks that involve specific brain circuits results in increased occurrence of local intermittent theta waves in the human EEG, above and beyond the global EEG changes previously described. Participants recorded with high-density EEG completed 2 experiments during which they stayed awake ≥ 24 h practicing a language task (audiobook listening [AB]) or a visuomotor task (driving simulator [DS]). Sleep laboratory. 16 healthy participants (7 females). Two extended wake periods. Both conditions resulted in global increases in resting wake EEG theta power at the end of 24 h of wake, accompanied by increased sleepiness. Moreover, wake theta power as well as the occurrence and amplitude of theta waves showed regional, task-dependent changes, increasing more over left frontal derivations in AB, and over posterior parietal regions in DS. These local changes in wake theta power correlated with similar local changes in sleep low frequencies including SWA. Extended experience-dependent plasticity of specific circuits results in a local increase of the wake theta EEG power in those regions, followed by more intense sleep, as reflected by SWA, over the same areas.

  10. In the Wake of Method

    Science.gov (United States)

    Cehan, Anca

    2014-01-01

    Related with the teaching profession and the Tool Box of the Language teacher, we dedicate this study to the debate on the issue of--To have or not to have a Learning and Instruction English language Methodology. The paper is a synthesis of the preoccupations of the English language teaching profession with the space created by the disappearance…

  11. Wind Farm Wake

    DEFF Research Database (Denmark)

    Hasager, Charlotte Bay; Karagali, Ioanna; Volker, Patrick

    2017-01-01

    On 25 January 2016 at 12:45 UTC several photographs of the offshore wind farm Horns Rev 2 were taken by helicopter pilot Gitte Lundorff with an iPhone. A very shallow layer of fog covered the sea. The photos of the fog over the sea dramatically pictured the offshore wind farm wake. Researchers got...

  12. Method for including operation and maintenance costs in the economic analysis of active solar energy systems

    Energy Technology Data Exchange (ETDEWEB)

    Short, W.D.

    1986-08-01

    For a developing technology such as solar energy, the costs for operation and maintenance (O and M) can be substantial. In the past, most economic analyses included these costs by simply assuming that an annual cost will be incurred that is proportional to the initial cost of the system. However, in assessing the economics of new systems proposed for further research and development, such a simplification can obscure the issues. For example, when the typical method for including O and M costs in an economic analysis is used, the O and M costs associated with a newly developed, more reliable, and slightly more expensive controller will be assumed to increase - an obvious inconsistency. The method presented in this report replaces this simplistic approach with a representation of the O and M costs that explicitly accounts for the uncertainties and risks inherent in the operation of any equipment. A detailed description of the data inputs required by the method is included as well as a summary of data sources and an example of the method as applied to an active solar heating system.

  13. Some Recent Advances of Ultrasonic Diagnostic Methods Applied to Materials and Structures (Including Biological Ones)

    Science.gov (United States)

    Nobile, Lucio; Nobile, Stefano

    This paper gives an overview of some recent advances of ultrasonic methods applied to materials and structures (including biological ones), exploring typical applications of these emerging inspection technologies to civil engineering and medicine. In confirmation of this trend, some results of an experimental research carried out involving both destructive and non-destructive testing methods for the evaluation of structural performance of existing reinforced concrete (RC) structures are discussed in terms of reliability. As a result, Ultrasonic testing can usefully supplement coring thus permitting less expensive and more representative evaluation of the concrete strength throughout the whole structure under examination.

  14. Doppler lidar investigation of wind turbine wake characteristics and atmospheric turbulence under different surface roughness.

    Science.gov (United States)

    Zhai, Xiaochun; Wu, Songhua; Liu, Bingyi

    2017-06-12

    Four field experiments based on Pulsed Coherent Doppler Lidar with different surface roughness have been carried out in 2013-2015 to study the turbulent wind field in the vicinity of operating wind turbine in the onshore and offshore wind parks. The turbulence characteristics in ambient atmosphere and wake area was analyzed using transverse structure function based on Plane Position Indicator scanning mode. An automatic wake processing procedure was developed to determine the wake velocity deficit by considering the effect of ambient velocity disturbance and wake meandering with the mean wind direction. It is found that the turbine wake obviously enhances the atmospheric turbulence mixing, and the difference in the correlation of turbulence parameters under different surface roughness is significant. The dependence of wake parameters including the wake velocity deficit and wake length on wind velocity and turbulence intensity are analyzed and compared with other studies, which validates the empirical model and simulation of a turbine wake for various atmosphere conditions.

  15. Interaction of a swept shock wave and a supersonic wake

    Science.gov (United States)

    He, G.; Zhao, Y. X.; Zhou, J.

    2017-09-01

    The interaction of a swept shock wave and a supersonic wake has been studied. The swept shock wave is generated by a swept compression sidewall, and the supersonic wake is generated by a wake generator. The flow field is visualized with the nanoparticle-based planar laser scattering method, and a supplementary numerical simulation is conducted by solving the Reynolds-averaged Navier-Stokes equations. The results show that the pressure rise induced by the swept shock wave can propagate upstream in the wake, which makes the location where vortices are generated move upstream, thickens the laminar section of the wake, and enlarges the generated vortices. The wake is swept away from the swept compression sidewall by the pressure gradient of the swept shock wave. This pressure gradient is not aligned with the density gradient of the supersonic wake, so the baroclinic torque generates streamwise vorticity and changes the distribution of the spanwise vorticity. The wake shock is curved, so the flow downstream of it is non-uniform, leaving the swept shock wave being distorted. A three-dimensional Mach disk structure is generated when the wake shock interacts with the swept shock wave.

  16. On actuator disc force fields generating wake vorticity

    NARCIS (Netherlands)

    Van Kuik, G.A.M.; Van Zuijlen, A.H.

    2009-01-01

    Actuator disc calculations can be divided in two categories: force models where, for a prescribed force field, the flow is calculated using a CFD method, and kinematic models, where the wake is calculated based on wake boundary conditions and the force field is known when the velocities are known.

  17. High-Order Numerical Simulations of Wind Turbine Wakes

    DEFF Research Database (Denmark)

    Kleusberg, E.; Mikkelsen, Robert Flemming; Schlatter, Philipp

    2017-01-01

    aspects on the prediction of the wind turbine wake structure and the wake interaction between two turbines. The spectral-element method enables an accurate representation of the vortical structures, with lower numerical dissipation than the more commonly used finite-volume codes. The wind-turbine blades...

  18. Simulation of wind turbine wakes using the actuator line technique.

    Science.gov (United States)

    Sørensen, Jens N; Mikkelsen, Robert F; Henningson, Dan S; Ivanell, Stefan; Sarmast, Sasan; Andersen, Søren J

    2015-02-28

    The actuator line technique was introduced as a numerical tool to be employed in combination with large eddy simulations to enable the study of wakes and wake interaction in wind farms. The technique is today largely used for studying basic features of wakes as well as for making performance predictions of wind farms. In this paper, we give a short introduction to the wake problem and the actuator line methodology and present a study in which the technique is employed to determine the near-wake properties of wind turbines. The presented results include a comparison of experimental results of the wake characteristics of the flow around a three-bladed model wind turbine, the development of a simple analytical formula for determining the near-wake length behind a wind turbine and a detailed investigation of wake structures based on proper orthogonal decomposition analysis of numerically generated snapshots of the wake. © 2015 The Author(s) Published by the Royal Society. All rights reserved.

  19. Wind turbine wake in atmospheric turbulence

    Energy Technology Data Exchange (ETDEWEB)

    Rethore, P.-E.

    2009-10-15

    This thesis describes the different steps needed to design a steady-state computational fluid dynamics (CFD) wind farm wake model. The ultimate goal of the project was to design a tool that could analyze and extrapolate systematically wind farm measurements to generate wind maps in order to calibrate faster and simpler engineering wind farm wake models. The most attractive solution was the actuator disc method with the steady state k-epsilon turbulence model. The first step to design such a tool is the treatment of the forces. This thesis presents a computationally inexpensive method to apply discrete body forces into the finite-volume flow solver with collocated variable treatment (EllipSys), which avoids the pressure-velocity decoupling issue. The second step is to distribute the body forces in the computational domain accordingly to rotor loading. This thesis presents a generic flexible method that associates any kind of shapes with the computational domain discretization. The special case of the actuator disc performs remarkably well in comparison with Conway's heavily loaded actuator disc analytical solution and a CFD full rotor computation, even with a coarse discretization. The third step is to model the atmospheric turbulence. The standard k-epsilon model is found to be unable to model at the same time the atmospheric turbulence and the actuator disc wake and performs badly in comparison with single wind turbine wake measurements. A comparison with a Large Eddy Simulation (LES) shows that the problem mainly comes from the assumptions of the eddy-viscosity concept, which are deeply invalidated in the wind turbine wake region. Different models that intent to correct the k-epsilon model's issues are investigated, of which none of them is found to be adequate. The mixing of the wake in the atmosphere is a deeply non-local phenomenon that is not handled correctly by an eddy-viscosity model such as k-epsilon. (author)

  20. Spine surgeon's kinematics during discectomy, part II: operating table height and visualization methods, including microscope.

    Science.gov (United States)

    Park, Jeong Yoon; Kim, Kyung Hyun; Kuh, Sung Uk; Chin, Dong Kyu; Kim, Keun Su; Cho, Yong Eun

    2014-05-01

    Surgeon spine angle during surgery was studied ergonomically and the kinematics of the surgeon's spine was related with musculoskeletal fatigue and pain. Spine angles varied depending on operation table height and visualization method, and in a previous paper we showed that the use of a loupe and a table height at the midpoint between the umbilicus and the sternum are optimal for reducing musculoskeletal loading. However, no studies have previously included a microscope as a possible visualization method. The objective of this study is to assess differences in surgeon spine angles depending on operating table height and visualization method, including microscope. We enrolled 18 experienced spine surgeons for this study, who each performed a discectomy using a spine surgery simulator. Three different methods were used to visualize the surgical field (naked eye, loupe, microscope) and three different operating table heights (anterior superior iliac spine, umbilicus, the midpoint between the umbilicus and the sternum) were studied. Whole spine angles were compared for three different views during the discectomy simulation: midline, ipsilateral, and contralateral. A 16-camera optoelectronic motion analysis system was used, and 16 markers were placed from the head to the pelvis. Lumbar lordosis, thoracic kyphosis, cervical lordosis, and occipital angle were compared between the different operating table heights and visualization methods as well as a natural standing position. Whole spine angles differed significantly depending on visualization method. All parameters were closer to natural standing values when discectomy was performed with a microscope, and there were no differences between the naked eye and the loupe. Whole spine angles were also found to differ from the natural standing position depending on operating table height, and became closer to natural standing position values as the operating table height increased, independent of the visualization method

  1. Local fixed pivot quadratue method of moment for bubble population balance equation including coalescence and breakage

    Science.gov (United States)

    Su, J. W.; Gu, Z. L.; Jiao, J. Y.; Xu, X. Y.

    2010-03-01

    Population balance equation as an essential tool to describe micro-behaviors and resulting bubble size distribution has received considerable attention in scientific and engineering fields. Numerical solution is the only choice in most cases due to its complexity. However, it is almost impossible for the existing numerical methods to predict both bubble size distribution and its moments exactly. In this work, a new numerical method basing on the idea of short time Fourier transformation, namely local fixed pivot quadrature method of moment, is proposed for bubble coalescence and breakage. A continuous summation of Dirac Delta function as trial functions in the local domain and monomials as the weighted functions to conserve the local moments were adopted. The moments and the bubble size distribution were constructed based on the moments in the local domain. Numerical tests including pure coalescence, pure breakage and coalescence and breakage combined processes showed that both the moments and bubble size distribution were predicted accurately. A special algorithm was used to solve the vandermonde linear system, with which the influence of the ill-conditioned feature of coefficient matrix on the numerical accuracy can be avoided. In theory any number of moments can be tracked with the new method. Moreover, with it one can solely track the bubble size distribution or the moments depending on the concrete application.

  2. Anisotropy of turbulence in wind turbine wakes

    Energy Technology Data Exchange (ETDEWEB)

    Gomez-Elvira, Rafael [Comision Nacional de Energia (Spain); Crespo, Antonio; Migoya, Emilio; Manuel, Fernando [Departamento de Ingenieria Energetica y Fluidomecanica, Escuela Tecnica Superior de Ingenieros Industriales, Universidad Politecnica de Madrid, Jose Gutierrez Abascal, 2. 28006 Madrid (Spain); Hernandez, Julio [Departamento de Mecanica, ETSII, Universidad Nacional de Educacion a Distancia, Ciudad Universitaria, 28040 Madrid (Spain)

    2005-10-01

    This work is mainly dedicated to the study of non-isotropic characteristics of turbulence in wind turbine wakes, specifically the shear layer of the near wake. A calculation method based on an explicit algebraic model for the components of the turbulent stress tensor is proposed, and the results are found to be in acceptable agreement with experimental results. Analytical expressions for the estimation of an upper limit of the global turbulence kinetic energy, k, and the individual contributions of each diagonal term in the turbulent stress tensor are proposed. Their predictions are compared with experimental results.

  3. Cladding material, tube including such cladding material and methods of forming the same

    Science.gov (United States)

    Garnier, John E.; Griffith, George W.

    2016-03-01

    A multi-layered cladding material including a ceramic matrix composite and a metallic material, and a tube formed from the cladding material. The metallic material forms an inner liner of the tube and enables hermetic sealing of thereof. The metallic material at ends of the tube may be exposed and have an increased thickness enabling end cap welding. The metallic material may, optionally, be formed to infiltrate voids in the ceramic matrix composite, the ceramic matrix composite encapsulated by the metallic material. The ceramic matrix composite includes a fiber reinforcement and provides increased mechanical strength, stiffness, thermal shock resistance and high temperature load capacity to the metallic material of the inner liner. The tube may be used as a containment vessel for nuclear fuel used in a nuclear power plant or other reactor. Methods for forming the tube comprising the ceramic matrix composite and the metallic material are also disclosed.

  4. Neutron monitoring systems including gamma thermometers and methods of calibrating nuclear instruments using gamma thermometers

    Science.gov (United States)

    Moen, Stephan Craig; Meyers, Craig Glenn; Petzen, John Alexander; Foard, Adam Muhling

    2012-08-07

    A method of calibrating a nuclear instrument using a gamma thermometer may include: measuring, in the instrument, local neutron flux; generating, from the instrument, a first signal proportional to the neutron flux; measuring, in the gamma thermometer, local gamma flux; generating, from the gamma thermometer, a second signal proportional to the gamma flux; compensating the second signal; and calibrating a gain of the instrument based on the compensated second signal. Compensating the second signal may include: calculating selected yield fractions for specific groups of delayed gamma sources; calculating time constants for the specific groups; calculating a third signal that corresponds to delayed local gamma flux based on the selected yield fractions and time constants; and calculating the compensated second signal by subtracting the third signal from the second signal. The specific groups may have decay time constants greater than 5.times.10.sup.-1 seconds and less than 5.times.10.sup.5 seconds.

  5. Actuator Line Modeling of Wind Turbine Wakes

    DEFF Research Database (Denmark)

    Troldborg, Niels

    2009-01-01

    This thesis contains a comprehensive 3D Navier-Stokes computational study of the characteristics of wakes of wind turbines operating in various flow conditions including interacting wakes between a row of turbines. The computations were carried out using the actuator line technique combined...... and it is shown that the turbines are subject to rather severe yaw moments, even in situations where the mean wind is oriented along the row. This observation is indicative of large scale dynamics of the wakes....... with the 3D Navier Stokes solver EllipSys3D and a LES turbulence model. Simple models, based on applying body forces in the computational domain, are developed for imposing sheared and turbulent infow and their validity is discussed. A few computations on stand alone turbines are compared to measurements...

  6. Local Experience-Dependent Changes in the Wake EEG after Prolonged Wakefulness

    Science.gov (United States)

    Hung, Ching-Sui; Sarasso, Simone; Ferrarelli, Fabio; Riedner, Brady; Ghilardi, M. Felice; Cirelli, Chiara; Tononi, Giulio

    2013-01-01

    Study Objectives: Prolonged wakefulness leads to a progressive increase in sleep pressure, reflected in a global increase in slow wave activity (SWA, 0.5-4.5 Hz) in the sleep electroencephalogram (EEG). A global increase in wake theta activity (5-9 Hz) also occurs. Recently, it was shown that prolonged wakefulness in rodents leads to signs of “local sleep” in an otherwise awake brain, accompanied by a slow/theta wave (2-6 Hz) in the local EEG that occurs at different times in different cortical areas. Compelling evidence in animals and humans also indicates that sleep is locally regulated by the amount of experience-dependent plasticity. Here, we asked whether the extended practice of tasks that involve specific brain circuits results in increased occurrence of local intermittent theta waves in the human EEG, above and beyond the global EEG changes previously described. Design: Participants recorded with high-density EEG completed 2 experiments during which they stayed awake ≥ 24 h practicing a language task (audiobook listening [AB]) or a visuomotor task (driving simulator [DS]). Setting: Sleep laboratory. Patients or Participants: 16 healthy participants (7 females). Interventions: Two extended wake periods. Measurements and Results: Both conditions resulted in global increases in resting wake EEG theta power at the end of 24 h of wake, accompanied by increased sleepiness. Moreover, wake theta power as well as the occurrence and amplitude of theta waves showed regional, task-dependent changes, increasing more over left frontal derivations in AB, and over posterior parietal regions in DS. These local changes in wake theta power correlated with similar local changes in sleep low frequencies including SWA. Conclusions: Extended experience-dependent plasticity of specific circuits results in a local increase of the wake theta EEG power in those regions, followed by more intense sleep, as reflected by SWA, over the same areas. Citation: Hung CS; Sarasso S

  7. Wake structure and hydrodynamic performance of flapping foils mimicking fish fin kinematics

    Directory of Open Access Journals (Sweden)

    Weixing Liu

    2017-09-01

    Full Text Available Numerical simulations are used to investigate the wake structure and hydrodynamic performance of bionic flapping foils. The study is motivated by the quest to understand the fluid dynamics of fish fins and use it in the underwater propulsion. The simulations employ an immersed boundary method that makes it possible to simulate flows with complex moving boundaries on fixed Cartesian grids. A detailed analysis of the vortex topology shows that the wake of flapping foils is dominated by two sets of complex shaped vortex rings that convect at oblique angles to the wake centerline. The wake of these flapping foils is characterized by two oblique jets. Simulations are also used to examine the wake vortex and hydrodynamic performance over a range of Strouhal numbers and maximum pitch angles and the connection between the foil kinematics, vortex dynamics and force production is discussed. The results show that the variety law of the hydrodynamic performance with kinematic parameters strongly depends on the flow dynamics underlying the force production, including the orientation, interconnection and dissipation rate of the vortex rings.

  8. Improved Riccati Transfer Matrix Method for Free Vibration of Non-Cylindrical Helical Springs Including Warping

    Directory of Open Access Journals (Sweden)

    A.M. Yu

    2012-01-01

    Full Text Available Free vibration equations for non-cylindrical (conical, barrel, and hyperboloidal types helical springs with noncircular cross-sections, which consist of 14 first-order ordinary differential equations with variable coefficients, are theoretically derived using spatially curved beam theory. In the formulation, the warping effect upon natural frequencies and vibrating mode shapes is first studied in addition to including the rotary inertia, the shear and axial deformation influences. The natural frequencies of the springs are determined by the use of improved Riccati transfer matrix method. The element transfer matrix used in the solution is calculated using the Scaling and Squaring method and Pad'e approximations. Three examples are presented for three types of springs with different cross-sectional shapes under clamped-clamped boundary condition. The accuracy of the proposed method has been compared with the FEM results using three-dimensional solid elements (Solid 45 in ANSYS code. Numerical results reveal that the warping effect is more pronounced in the case of non-cylindrical helical springs than that of cylindrical helical springs, which should be taken into consideration in the free vibration analysis of such springs.

  9. Vortex wakes of a flapping foil

    DEFF Research Database (Denmark)

    Schnipper, Teis; Andersen, Anders Peter; Bohr, Tomas

    2009-01-01

    We present an experimental study of a symmetric foil performing pitching oscillations in a vertically flowing soap film. By varying the frequency and amplitude of the oscillation we visualize a variety of wakes with up to 46 vortices per oscillation period, including von Karman vortex street...

  10. Engine including hydraulically actuated valvetrain and method of valve overlap control

    Science.gov (United States)

    Cowgill, Joel [White Lake, MI

    2012-05-08

    An exhaust valve control method may include displacing an exhaust valve in communication with the combustion chamber of an engine to an open position using a hydraulic exhaust valve actuation system and returning the exhaust valve to a closed position using the hydraulic exhaust valve actuation assembly. During closing, the exhaust valve may be displaced for a first duration from the open position to an intermediate closing position at a first velocity by operating the hydraulic exhaust valve actuation assembly in a first mode. The exhaust valve may be displaced for a second duration greater than the first duration from the intermediate closing position to a fully closed position at a second velocity at least eighty percent less than the first velocity by operating the hydraulic exhaust valve actuation assembly in a second mode.

  11. Flexible barrier film, method of forming same, and organic electronic device including same

    Science.gov (United States)

    Blizzard, John; Tonge, James Steven; Weidner, William Kenneth

    2013-03-26

    A flexible barrier film has a thickness of from greater than zero to less than 5,000 nanometers and a water vapor transmission rate of no more than 1.times.10.sup.-2 g/m.sup.2/day at 22.degree. C. and 47% relative humidity. The flexible barrier film is formed from a composition, which comprises a multi-functional acrylate. The composition further comprises the reaction product of an alkoxy-functional organometallic compound and an alkoxy-functional organosilicon compound. A method of forming the flexible barrier film includes the steps of disposing the composition on a substrate and curing the composition to form the flexible barrier film. The flexible barrier film may be utilized in organic electronic devices.

  12. Multirate Simulations of String Vibrations Including Nonlinear Fret-String Interactions Using the Functional Transformation Method

    Directory of Open Access Journals (Sweden)

    R. Rabenstein

    2004-06-01

    Full Text Available The functional transformation method (FTM is a well-established mathematical method for accurate simulations of multidimensional physical systems from various fields of science, including optics, heat and mass transfer, electrical engineering, and acoustics. This paper applies the FTM to real-time simulations of transversal vibrating strings. First, a physical model of a transversal vibrating lossy and dispersive string is derived. Afterwards, this model is solved with the FTM for two cases: the ideally linearly vibrating string and the string interacting nonlinearly with the frets. It is shown that accurate and stable simulations can be achieved with the discretization of the continuous solution at audio rate. Both simulations can also be performed with a multirate approach with only minor degradations of the simulation accuracy but with preservation of stability. This saves almost 80% of the computational cost for the simulation of a six-string guitar and therefore it is in the range of the computational cost for digital waveguide simulations.

  13. Torsional vibration analysis of bars including secondary torsional shear deformation effect by the boundary element method

    Science.gov (United States)

    Sapountzakis, E. J.; Tsipiras, V. J.; Argyridi, A. K.

    2015-10-01

    In this paper a boundary element method (BEM) is developed for the torsional vibration problem of bars of arbitrary doubly symmetric constant cross section, taking into account the nonuniform warping and secondary torsional shear deformation effects (STSDE). The bar is subjected to arbitrarily distributed or concentrated dynamic torsional loading along its length, while its edges are subjected to the most general torsional and warping boundary conditions. Apart from the angle of twist, the primary angle of twist per unit length is considered as an additional 1-D degree of freedom in order to account for the STSDE in the equations of motion of the bar. The warping shear stress distribution and the pertinent secondary torsional rigidity are computed by satisfying local equilibrium considerations under dynamic conditions without adhering to assumptions of Thin Tube Theory (TTT). By employing a distributed mass model system accounting for rotatory and warping inertia, an initial boundary value and two boundary value problems with respect to the variable along the bar time-dependent 1-D kinematical components, to the primary and secondary warping functions, respectively, are formulated. The latter are solved employing a pure BE method, requiring exclusively boundary discretization of the bar's cross section. The numerical solution of the aforementioned initial boundary value problem is performed through a BE method leading to a system of differential equations with displacement only unknowns, which is solved using an efficient direct time integration technique. Additionally, for the free vibrations case, a generalized eigenvalue problem is formulated through a similar BE technique. The accuracy and reliability of the results is assessed by FEM solutions employing solid or shell modelling. Both open- and closed-shaped cross section bars are examined and the necessity to include nonuniform torsional and STSD effects in the dynamic analysis of bars is demonstrated.

  14. Dose computation in conformal radiation therapy including geometric uncertainties: Methods and clinical implications

    Science.gov (United States)

    Rosu, Mihaela

    The aim of any radiotherapy is to tailor the tumoricidal radiation dose to the target volume and to deliver as little radiation dose as possible to all other normal tissues. However, the motion and deformation induced in human tissue by ventilatory motion is a major issue, as standard practice usually uses only one computed tomography (CT) scan (and hence one instance of the patient's anatomy) for treatment planning. The interfraction movement that occurs due to physiological processes over time scales shorter than the delivery of one treatment fraction leads to differences between the planned and delivered dose distributions. Due to the influence of these differences on tumors and normal tissues, the tumor control probabilities and normal tissue complication probabilities are likely to be impacted upon in the face of organ motion. In this thesis we apply several methods to compute dose distributions that include the effects of the treatment geometric uncertainties by using the time-varying anatomical information as an alternative to the conventional Planning Target Volume (PTV) approach. The proposed methods depend on the model used to describe the patient's anatomy. The dose and fluence convolution approaches for rigid organ motion are discussed first, with application to liver tumors and the rigid component of the lung tumor movements. For non-rigid behavior a dose reconstruction method that allows the accumulation of the dose to the deforming anatomy is introduced, and applied for lung tumor treatments. Furthermore, we apply the cumulative dose approach to investigate how much information regarding the deforming patient anatomy is needed at the time of treatment planning for tumors located in thorax. The results are evaluated from a clinical perspective. All dose calculations are performed using a Monte Carlo based algorithm to ensure more realistic and more accurate handling of tissue heterogeneities---of particular importance in lung cancer treatment planning.

  15. On AEP prediction and wake modelling at Anholt

    DEFF Research Database (Denmark)

    Pena Diaz, Alfredo; Hansen, Kurt Schaldemose; Volker, Patrick

    and direction. We show that the WRF model is able to reproduce such gradients relatively well by comparison to the wind farm’s SCADA. About 1.5 yr of such SCADA, further quality controlled and filtered, reveals an average wake loss of 3.87% only, whereas results from three wake models, Park, Larsen and FUGA......, show average wake losses of 3.46%, 3.69%, and 3.38%, respectively. We employ a bootstrap method to estimate the uncertainty of the wake models. As this is performed with reference to the SCADA, the results provide an idea of the uncertainty of the AEP prediction2. We find all wake models...

  16. Drone Based Experimental Investigation of Wind Turbine Wake Evolution

    Science.gov (United States)

    Subramanian, Balaji, , Dr.; Chokani, Ndaona, , Dr.; Abhari, Reza, Prof. _., Dr.

    2016-11-01

    The characteristics of the wake downstream of a wind turbine has an important bearing on the optimized micrositing of wind turbines in a given land area, as well as on the loads seen by downstream turbines. We use a novel measurement system to measure the flow field upstream and in the wake of a full-scale wind turbine. The system consists of a fast response aerodynamic probe, mounted on an autonomous drone that is equipped with a suite of sensors. These measurements detail, for the first time at full-scale Reynolds number conditions, the evolution and breakdown of tip vortices that are characteristic of the near wake, as well as the turbulent mixing and entrainment of more energised flow, which are distinctive in the far wake. A short-time Fourier transform (STFT) analysis method is used to derive time-localized TKE along the drone's trajectory. Detailed upstream and wake measurements are needed to understand the flow behavior, as it helps in developing and validating simplified wake models that can approximate the wake qualities. Comparisons of these measurements to recently developed wake prediction models highlights how these measurements can support further model development.

  17. TO THE STUDY OF WAKE VORTEX BEHIND THE AIRBUS-380 CHARACTERISTICS AT TAKEOFF AND LANDING

    Directory of Open Access Journals (Sweden)

    2016-01-01

    Full Text Available Every year new aircraft emerge in civil aviation (HA. The wide-body A-380 aircraft with a take-off weight of up to 560 t has come to operation recently. The wake vortex behind such plane poses a real threat for other planes. Such wake is especially dangerous during weak cross wind at take off and landing.Vortex wake behind the A 380 plane characteristics research using the developed copmuting software has been executed in this article. Design-software complex includes two mathematical models: the mathematical model of the close Wake vortex and the mathematical model of the distant Wake vortex. These mathematical models are based on the vortex method. A mathematical model of the close Wake vortex is based on the analytical-experimental approach. At cruising flight regimes it is a four vortex sys- tem Wake vortex, and at takeoff and landing regimes it is - six-or eight-vortex system. A mathematical model of the far Wake vortex is based on the exact solution of the Helmholtz equations. This allows taking into account the vortex diffusion and dissipation over time. The influence of the axial velocity in the mathematical model of the distant Wake vortex is given by placing it in the center of the vortex flow. Its intensity is found from the experimental data. Calculated fields are per-turbed velocities for the A-380 aircraft.Fields of the indignant speeds at a light cross wind of 0.5 m/s ÷ 1.5 m/s in varioustime points are presented. The moments at which there is a wing vortex lag of the A-380 plane over very center are runwayare shown. Calculation of aerodynamic characteristics of the MC-21-400 plane in the vortex trace of the A-380 plane is executed. It is shown when the MC-21-400 plane gets in to the center of a wings vortex, the arising moments of the roll are not parried.

  18. A state-space free-vortex hybrid wake model for helicopter rotors

    Science.gov (United States)

    Wasileski, Bryan J.

    This paper presents the development of a new hybrid wake model merging two distinctly different modeling approaches into a single, more comprehensive solution. The objective of the work was to leverage the strengths of each individual wake model creating a more flexible and extensible solution that could be used across the entire flight envelope of a helicopter. The results of the work indicate that the two wakes models can be successfully merged. The results also show that hybrid wake provides a mechanism by which finite-state wake imparts a level of stability on the free wake solution allowing the free wake to provide consistent, repeatable results from hover through high speed forward flight. While the new hybrid wake includes the geometric distortion needed for predicting the off-axis control response, the new model, as configured in this work, shows no sign of improvement in this area.

  19. Improvements in ECN Wake Model

    Energy Technology Data Exchange (ETDEWEB)

    Versteeg, M.C. [University of Twente, Enschede (Netherlands); Ozdemir, H.; Brand, A.J. [ECN Wind Energy, Petten (Netherlands)

    2013-08-15

    Wind turbines extract energy from the flow field so that the flow in the wake of a wind turbine contains less energy and more turbulence than the undisturbed flow, leading to less energy extraction for the downstream turbines. In large wind farms, most turbines are located in the wake of one or more turbines causing the flow characteristics felt by these turbines differ considerably from the free stream flow conditions. The most important wake effect is generally considered to be the lower wind speed behind the turbine(s) since this decreases the energy production and as such the economical performance of a wind farm. The overall loss of a wind farm is very much dependent on the conditions and the lay-out of the farm but it can be in the order of 5-10%. Apart from the loss in energy production an additional wake effect is formed by the increase in turbulence intensity, which leads to higher fatigue loads. In this sense it becomes important to understand the details of wake behavior to improve and/or optimize a wind farm layout. Within this study improvements are presented for the existing ECN wake model which constructs the fundamental basis of ECN's FarmFlow wind farm wake simulation tool. The outline of this paper is as follows: first, the governing equations of the ECN wake farm model are presented. Then the near wake modeling is discussed and the results compared with the original near wake modeling and EWTW (ECN Wind Turbine Test Site Wieringermeer) data as well as the results obtained for various near wake implementation cases are shown. The details of the atmospheric stability model are given and the comparison with the solution obtained for the original surface layer model and with the available data obtained by EWTW measurements are presented. Finally the conclusions are summarized.

  20. Rotating Wheel Wake

    Science.gov (United States)

    Lombard, Jean-Eloi; Xu, Hui; Moxey, Dave; Sherwin, Spencer

    2016-11-01

    For open wheel race-cars, such as Formula One, or IndyCar, the wheels are responsible for 40 % of the total drag. For road cars, drag associated to the wheels and under-carriage can represent 20 - 60 % of total drag at highway cruise speeds. Experimental observations have reported two, three or more pairs of counter rotating vortices, the relative strength of which still remains an open question. The near wake of an unsteady rotating wheel. The numerical investigation by means of direct numerical simulation at ReD =400-1000 is presented here to further the understanding of bifurcations the flow undergoes as the Reynolds number is increased. Direct numerical simulation is performed using Nektar++, the results of which are compared to those of Pirozzoli et al. (2012). Both proper orthogonal decomposition and dynamic mode decomposition, as well as spectral analysis are leveraged to gain unprecedented insight into the bifurcations and subsequent topological differences of the wake as the Reynolds number is increased.

  1. Synergistic Effects of Turbine Wakes and Atmospheric Stability on Power Production at an Onshore Wind Farm

    Energy Technology Data Exchange (ETDEWEB)

    Wharton, S; Lundquist, J K; Marjanovic, N

    2012-01-25

    This report examines the complex interactions between atmospheric stability and turbine-induced wakes on downwind turbine wind speed and power production at a West Coast North American multi-MW wind farm. Wakes are generated when the upwind flow field is distorted by the mechanical movement of the wind turbine blades. This has two consequences for downwind turbines: (1) the downwind turbine encounters wind flows with reduced velocity and (2) the downwind turbine encounters increased turbulence across multiple length scales via mechanical turbulence production by the upwind turbine. This increase in turbulence on top of ambient levels may increase aerodynamic fatigue loads on the blades and reduce the lifetime of turbine component parts. Furthermore, ambient atmospheric conditions, including atmospheric stability, i.e., thermal stratification in the lower boundary layer, play an important role in wake dissipation. Higher levels of ambient turbulence (i.e., a convective or unstable boundary layer) lead to higher turbulent mixing in the wake and a faster recovery in the velocity flow field downwind of a turbine. Lower levels of ambient turbulence, as in a stable boundary layer, will lead to more persistent wakes. The wake of a wind turbine can be divided into two regions: the near wake and far wake, as illustrated in Figure 1. The near wake is formed when the turbine structure alters the shape of the flow field and usually persists one rotor diameter (D) downstream. The difference between the air inside and outside of the near wake results in a shear layer. This shear layer thickens as it moves downstream and forms turbulent eddies of multiple length scales. As the wake travels downstream, it expands depending on the level of ambient turbulence and meanders (i.e., travels in non-uniform path). Schepers estimates that the wake is fully expanded at a distance of 2.25 D and the far wake region begins at 2-5 D downstream. The actual distance traveled before the wake

  2. National Coral Reef Monitoring Program: Stratified Random Surveys (StRS) of Reef Fish, including Benthic Estimate Data at Jarvis and Wake from 2017-04-02 to 2017-04-23 (NCEI Accession 0163747)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The stationary point count (SPC) method is used to conduct reef fish surveys in the Hawaiian and Mariana Archipelagos, American Samoa, and the Pacific Remote Island...

  3. Comparison of three intraocular pressure measurement methods including biomechanical properties of the cornea.

    Science.gov (United States)

    Smedowski, Adrian; Weglarz, Beata; Tarnawska, Dorota; Kaarniranta, Kai; Wylegala, Edward

    2014-02-04

    The aim of this study was to show the usefulness of three methods for measuring IOP: Goldmann applanation tonometry, rebound tonometry, and Ultra-High-Speed Scheimpflug technology. The examined group consisted of 96 patients (192 eyes), including 63 women and 33 men with a mean age of 59.3 ± 19.9 years. Together, 152 healthy eyes and 40 eyes with different pathologies were examined. Intraocular pressure was measured using the Goldmann applanation tonometer (GAT), the Icare Pro rebound tonometer (RT), and Ultra-High-Speed Scheimpflug technology (UHS ST; Corvis ST with pachymetry). Additionally, corneal pachymetry was conducted with a Scheimpflug camera (Pentacam) and an Ultrasound Pachymeter (A-scan Plus) as a comparison for Corvis ST pachymetry. The mean IOPs were 15.6 ± 3.75 mm Hg, 15.6 ± 3.5 mm Hg, and 16.1 ± 4.0 mm Hg when measured with the GAT, the RT, and the UHS ST, respectively. The mean central corneal thickness (CCT) was 543.7 ± 52.7 μm, 547.9 ± 54.0 μm, and 556.25 ± 38.8 μm as measured with the UHS ST, the Pentacam, and the Ultrasound Pachymeter, respectively. In comparison between devices, there was a significant difference between IOP values measured with the GAT and the RT versus the UHS ST (P < 0.001), and there was no significant difference between GAT and RT (P = 0.5). No significant differences were observed in CCT measured with the UHS ST, Pentacam, and Ultrasound Pachymeter. We showed that the RT Icare Pro ensures IOP measurements that are more comparable with the measurements obtained with the GAT than the measurements that are provided by UHS ST.

  4. Wake Island Tsunami Forecast Grids for MOST Model

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Wake Island Forecast Model Grids provides bathymetric data strictly for tsunami inundation modeling with the Method of Splitting Tsunami (MOST) model. MOST is a...

  5. Wind farm array wake losses

    Energy Technology Data Exchange (ETDEWEB)

    Baker, R.W. [Impact Weather, Washougal, WA (United States); McCarthy, E.F. [Wind Economics & Technology, Inc., Martinez, CA (United States)

    1997-12-31

    A wind turbine wake study was conducted in the summer of 1987 at an Altamont Pass wind electric generating facility. The wind speed deficits, turbulence, and power deficits from an array consisting of several rows of wind turbines is discussed. A total of nine different test configurations were evaluated for a downwind spacing ranging from 7 rotor diameters (RD) to 34 RD and a cross wind spacing of 1.3 RD and 2.7 RD. Wake power deficits of 15% were measured at 16 RD and power losses of a few percent were even measurable at 27 RD for the closer cross wind spacing. For several rows of turbines separated by 7-9 RD the wake zones overlapped and formed compound wakes with higher velocity deficits. The wind speed and direction turbulence in the wake was much higher than the ambient turbulence. The results from this study are compared to the findings from other similar field measurements.

  6. Effect of nacelle on wake meandering in a laboratory scale wind turbine using LES

    Science.gov (United States)

    Foti, Daniel; Yang, Xiaolei; Guala, Michele; Sotiropoulos, Fotis

    2015-11-01

    Wake meandering, large scale motion in the wind turbine wakes, has considerable effects on the velocity deficit and turbulence intensity in the turbine wake from the laboratory scale to utility scale wind turbines. In the dynamic wake meandering model, the wake meandering is assumed to be caused by large-scale atmospheric turbulence. On the other hand, Kang et al. (J. Fluid Mech., 2014) demonstrated that the nacelle geometry has a significant effect on the wake meandering of a hydrokinetic turbine, through the interaction of the inner wake of the nacelle vortex with the outer wake of the tip vortices. In this work, the significance of the nacelle on the wake meandering of a miniature wind turbine previously used in experiments (Howard et al., Phys. Fluid, 2015) is demonstrated with large eddy simulations (LES) using immersed boundary method with fine enough grids to resolve the turbine geometric characteristics. The three dimensionality of the wake meandering is analyzed in detail through turbulent spectra and meander reconstruction. The computed flow fields exhibit wake dynamics similar to those observed in the wind tunnel experiments and are analyzed to shed new light into the role of the energetic nacelle vortex on wake meandering. This work was supported by Department of Energy DOE (DE-EE0002980, DE-EE0005482 and DE-AC04-94AL85000), and Sandia National Laboratories. Computational resources were provided by Sandia National Laboratories and the University of Minnesota Supercomputing.

  7. A Review of External Pressure Testing Techniques for Shells including a Novel Volume-Control Method

    NARCIS (Netherlands)

    Mackay, J.R.; Van Keulen, F.

    2009-01-01

    A review of conventional testing methods for applying external hydrostatic pressure to buckling-critical shells is presented. A new “volume-control” pressure testing method, aimed at preventing catastrophic specimen failures and improving control of specimen deformation near the critical load, is

  8. Concordance among methods of nutritional assessment in patients included on the waiting list for liver transplantation

    Directory of Open Access Journals (Sweden)

    María Teresa García-Rodríguez

    2017-09-01

    Full Text Available Background: The aim of the present study was to determine the extent of malnutrition in patients waiting for a liver transplant. The agreement among the methods of nutritional assessment and their diagnostic validity were evaluated. Methods: Patients on the waiting list for liver transplantation (n = 110 were studied. The variables were: body mass index, analytical parameters, liver disease etiology, and complications. Liver dysfunction was evaluated using the Child–Pugh Scale. Nutritional state was studied using the Controlling Nutritional Status (CONUT, the Spanish Society of Parenteral and Enteral Nutrition (SENPE criteria, the Nutritional Risk Index (NRI, the Prognostic Nutritional Index (PNI-O, and the Subjective Global Assessment (SGA. Agreement was determined using the Kappa index. Area under receiver operator characteristic curves (AUCs, the Youden index (J, and likelihood ratios were computed. Results: Malnutrition varied depending on the method of evaluation. The highest value was detected using the CONUT (90.9% and the lowest using the SGA (50.9%. The pairwise agreement among the methods ranged from K = 0.041 to K = 0.826, with an overall agreement of each criteria with the remaining methods between K = 0.093 and K = 0.364. PNI-O was the method with the highest overall agreement. Taking this level of agreement into account, we chose the PNI-O as a benchmark method of comparison. The highest positive likelihood ratio for the diagnosis of malnutrition was obtained from the Nutritional Risk Index (13.56. Conclusions: Malnutrition prevalence is high and prevalence estimates vary according the method used, with low concordance among methods. PNI-O and NRI are the most consistent methods to identify malnutrition in these patients.

  9. Determination of Wind Turbine Near-Wake Length Based on Stability Analysis

    DEFF Research Database (Denmark)

    Sørensen, Jens Nørkær; Mikkelsen, Robert Flemming; Sarmast, Sasan

    2014-01-01

    -Stokes equations using the actuator line (ACL) method. The wake is perturbed by applying stochastic or harmonic excitations in the neighborhood of the tips of the blades. The flow field is then analyzed to obtain the stability properties of the tip vortices in the wake of the wind turbine. As a main outcome...... sufficient growth, we provide an analytical relationship between the turbulence intensity and the stable wake length. The analysis leads to a simple expression for determining the length of the near wake. This expression shows that the near wake length is inversely proportional to thrust, tip speed ratio...... and the logarithmic of the turbulence intensity....

  10. Concordance among methods of nutritional assessment in patients included on the waiting list for liver transplantation.

    Science.gov (United States)

    García-Rodríguez, María Teresa; López-Calviño, Beatriz; Piñón-Villar, María Del Carmen; Otero-Ferreiro, Alejandra; Suárez-López, Francisco; Gómez-Gutiérrez, Manuel; Pértega-Díaz, Sonia; Seoane-Pillado, María Teresa; Pita-Fernández, Salvador

    2017-10-01

    The aim of the present study was to determine the extent of malnutrition in patients waiting for a liver transplant. The agreement among the methods of nutritional assessment and their diagnostic validity were evaluated. Patients on the waiting list for liver transplantation (n = 110) were studied. The variables were: body mass index, analytical parameters, liver disease etiology, and complications. Liver dysfunction was evaluated using the Child-Pugh Scale. Nutritional state was studied using the Controlling Nutritional Status (CONUT), the Spanish Society of Parenteral and Enteral Nutrition (SENPE) criteria, the Nutritional Risk Index (NRI), the Prognostic Nutritional Index (PNI-O), and the Subjective Global Assessment (SGA). Agreement was determined using the Kappa index. Area under receiver operator characteristic curves (AUCs), the Youden index (J), and likelihood ratios were computed. Malnutrition varied depending on the method of evaluation. The highest value was detected using the CONUT (90.9%) and the lowest using the SGA (50.9%). The pairwise agreement among the methods ranged from K = 0.041 to K = 0.826, with an overall agreement of each criteria with the remaining methods between K = 0.093 and K = 0.364. PNI-O was the method with the highest overall agreement. Taking this level of agreement into account, we chose the PNI-O as a benchmark method of comparison. The highest positive likelihood ratio for the diagnosis of malnutrition was obtained from the Nutritional Risk Index (13.56). Malnutrition prevalence is high and prevalence estimates vary according the method used, with low concordance among methods. PNI-O and NRI are the most consistent methods to identify malnutrition in these patients. Copyright © 2017 The Authors. Production and hosting by Elsevier B.V. All rights reserved.

  11. A manual on methods for measuring primary production in aquatic environments: including a chapter on bacteria

    National Research Council Canada - National Science Library

    Vollenweider, Richard A; Talling, J. F; Westlake, D. F

    1969-01-01

    The present manual starts from methods used to assess standing crops of phytoplankton, periphyton and higher aquatic, and proceeds to techniques of rate measurement currently available for these three...

  12. Turbomachine combustor nozzle including a monolithic nozzle component and method of forming the same

    Energy Technology Data Exchange (ETDEWEB)

    Stoia, Lucas John; Melton, Patrick Benedict; Johnson, Thomas Edward; Stevenson, Christian Xavier; Vanselow, John Drake; Westmoreland, James Harold

    2016-02-23

    A turbomachine combustor nozzle includes a monolithic nozzle component having a plate element and a plurality of nozzle elements. Each of the plurality of nozzle elements includes a first end extending from the plate element to a second end. The plate element and plurality of nozzle elements are formed as a unitary component. A plate member is joined with the nozzle component. The plate member includes an outer edge that defines first and second surfaces and a plurality of openings extending between the first and second surfaces. The plurality of openings are configured and disposed to register with and receive the second end of corresponding ones of the plurality of nozzle elements.

  13. NASA AVOSS Fast-Time Wake Prediction Models: User's Guide

    Science.gov (United States)

    Ahmad, Nash'at N.; VanValkenburg, Randal L.; Pruis, Matthew

    2014-01-01

    The National Aeronautics and Space Administration (NASA) is developing and testing fast-time wake transport and decay models to safely enhance the capacity of the National Airspace System (NAS). The fast-time wake models are empirical algorithms used for real-time predictions of wake transport and decay based on aircraft parameters and ambient weather conditions. The aircraft dependent parameters include the initial vortex descent velocity and the vortex pair separation distance. The atmospheric initial conditions include vertical profiles of temperature or potential temperature, eddy dissipation rate, and crosswind. The current distribution includes the latest versions of the APA (3.4) and the TDP (2.1) models. This User's Guide provides detailed information on the model inputs, file formats, and the model output. An example of a model run and a brief description of the Memphis 1995 Wake Vortex Dataset is also provided.

  14. Method of extruding and packaging a thin sample of reactive material including forming the extrusion die

    Science.gov (United States)

    Lewandowski, Edward F.; Peterson, Leroy L.

    1985-01-01

    This invention teaches a method of cutting a narrow slot in an extrusion die with an electrical discharge machine by first drilling spaced holes at the ends of where the slot will be, whereby the oil can flow through the holes and slot to flush the material eroded away as the slot is being cut. The invention further teaches a method of extruding a very thin ribbon of solid highly reactive material such as lithium or sodium through the die in an inert atmosphere of nitrogen, argon or the like as in a glovebox. The invention further teaches a method of stamping out sample discs from the ribbon and of packaging each disc by sandwiching it between two aluminum sheets and cold welding the sheets together along an annular seam beyond the outer periphery of the disc. This provides a sample of high purity reactive material that can have a long shelf life.

  15. METHOD OF MANUFACTURING A COMPOSITE STRUCTURE INCLUDING A TEXTILE FABRIC ASSEMBLY

    DEFF Research Database (Denmark)

    2017-01-01

    of manufacturing a composite structure (10). The method may comprise providing a form (8) that has a shape corresponding to a desired shape of an internal cavity in the composite structure (10) to be manufactured. The textile fabric assembly (1) is arranged around the form (8), and a curable material (9) is filled......The invention relates to a textile fabric assembly (1) comprising at least two textile layers (2). The textile layers (2) are joined at a plurality of points (3) and/or along a plurality of lines (6) so that they form inner and outer walls, respectively. The invention also relates to a method...... into the at least one inner space (4) between the textile layers (2). The form (8) may be inflatable. Alternatively, the method may comprise arranging the textile fabric assembly (1) around an initial structure and/or mechanically fastened to a surface of an initial structure to be reinforced and then filling...

  16. A CFD model of the wake of an offshore wind farm: Using a prescribed wake inflow

    DEFF Research Database (Denmark)

    Réthoré, P.-E.; Bechmann, Andreas; Sørensen, Niels N.

    2007-01-01

      An CFD model of the wake of an offshore wind farm, expanding existing measurements is proposed. The method is based on solving the Navier Stokes equation in a large domain downstream an offshore wind farm. The inflow of the domain is estimated using existing met mast measurements from both free...

  17. Separation of Lift-Generated Vortex Wakes Into Two Diverging Parts

    Science.gov (United States)

    Rossow, Vernon J.; Brown, Anthony P.

    2010-01-01

    As part of an ongoing study of the spreading rate of lift-generated vortex wakes, the present investigation considers possible reasons as to why segments of lift-generated wakes sometimes depart from the main part of the wake to move rapidly in either an upward or downward direction. It is assumed that deficiencies or enhancements of the lift carry over across the fuselage-shrouded wing are the driving mechanism for departures of wake-segments. The computations presented first indicate that upwardly departing wake segments that were observed and photographed could have been produced by a deficiency in lift carryover across the fuselage-shrouded part of the wing. Computations made of idealized vortex wakes indicate that upward departure of a wake segment requires a centerline reduction in the span loading of 70% or more, whether the engines are at idle or robust thrust. Similarly, it was found that downward departure of wake segments is produced when the lift over the center part of the wing is enhanced. However, it was also found that downward departures do not occur without the presence of robust engine-exhaust streams (i.e., engines must NOT be at idle). In those cases, downward departures of a wake segment occurs when the centerline value of the loading is enhanced by any amount between about 10% to 100%. Observations of condensation trails indicate that downward departure of wake segments is rare. Upward departures of wake segments appears to be more common but still rare. A study to determine the part of the aircraft that causes wake departures has not been carried out. However, even though departures of wake segments rarely occur, some aircraft do regularly shed these wake structures. If aircraft safety is to be assured to a high degree of reliability, and a solution for eliminating them is not implemented, existing guidelines for the avoidance of vortex wakes [1,3] may need to be broadened to include possible increases in wake sizes caused by vertical

  18. Indication of Importance of Including Soil Microbial Characteristics into Biotope Valuation Method.

    Czech Academy of Sciences Publication Activity Database

    Trögl, J.; Pavlorková, Jana; Packová, P.; Seják, J.; Kuráň, P.; Kuráň, J.; Popelka, J.; Pacina, J.

    2016-01-01

    Roč. 8, č. 3 (2016), č. článku 253. ISSN 2071-1050 Institutional support: RVO:67985858 Keywords : biotope assessment * biotope valuation method * soil microbial communities Subject RIV: DJ - Water Pollution ; Quality Impact factor: 1.789, year: 2016

  19. Development of Extended Ray-tracing method including diffraction, polarization and wave decay effects

    Science.gov (United States)

    Yanagihara, Kota; Kubo, Shin; Dodin, Ilya; Nakamura, Hiroaki; Tsujimura, Toru

    2017-10-01

    Geometrical Optics Ray-tracing is a reasonable numerical analytic approach for describing the Electron Cyclotron resonance Wave (ECW) in slowly varying spatially inhomogeneous plasma. It is well known that the result with this conventional method is adequate in most cases. However, in the case of Helical fusion plasma which has complicated magnetic structure, strong magnetic shear with a large scale length of density can cause a mode coupling of waves outside the last closed flux surface, and complicated absorption structure requires a strong focused wave for ECH. Since conventional Ray Equations to describe ECW do not have any terms to describe the diffraction, polarization and wave decay effects, we can not describe accurately a mode coupling of waves, strong focus waves, behavior of waves in inhomogeneous absorption region and so on. For fundamental solution of these problems, we consider the extension of the Ray-tracing method. Specific process is planned as follows. First, calculate the reference ray by conventional method, and define the local ray-base coordinate system along the reference ray. Then, calculate the evolution of the distributions of amplitude and phase on ray-base coordinate step by step. The progress of our extended method will be presented.

  20. Method for including detailed evaluation of daylight levels in Be06

    DEFF Research Database (Denmark)

    Petersen, Steffen

    2008-01-01

    Good daylight conditions in office buildings have become an important issue due to new European regulatory demands which include energy consumption for electrical lighting in the building energy frame. Good daylight conditions in offices are thus in increased focus as an energy conserving measure....... In order to evaluate whether a certain design is good daylight design or not building designers must perform detailed evaluation of daylight levels, including the daylight performance of dynamic solar shadings, and include these in the energy performance evaluation. However, the mandatory national...... calculation tool in Denmark (Be06) for evaluating the energy performance of buildings is currently using a simple representation of available daylight in a room and simple assumptions regarding the control of shading devices. In a case example, this is leading to an overestimation of the energy consumption...

  1. Inviscid double wake model for stalled airfoils

    DEFF Research Database (Denmark)

    Marion, Lucas; Ramos García, Néstor; Sørensen, Jens Nørkær

    2014-01-01

    An inviscid double wake model based on a steady two-dimensional panel method has been developed to predict aerodynamic loads of wind turbine airfoils in the deep stall region. The separated flow is modelled using two constant vorticity sheets which are released at the trailing edge and at the sep......An inviscid double wake model based on a steady two-dimensional panel method has been developed to predict aerodynamic loads of wind turbine airfoils in the deep stall region. The separated flow is modelled using two constant vorticity sheets which are released at the trailing edge...... and at the separation point. A calibration of the code through comparison with experiments has been performed using one set of airfoils. A second set of airfoils has been used for the validation of the calibrated model. Predicted aerodynamic forces for a wide range of angles of attack (0 to 90 deg) are in overall good...

  2. Armodafinil-induced wakefulness in animals with ventrolateral preoptic lesions

    Directory of Open Access Journals (Sweden)

    Vetrivelan R

    2014-05-01

    Full Text Available Ramalingam Vetrivelan, Clifford B Saper, Patrick M Fuller Department of Neurology, Harvard Medical School and Beth Israel Deaconess Medical Center, Boston, MA, USA Abstract: Armodafinil is the pharmacologically active R-enantiomer of modafinil, a widely prescribed wake-promoting agent used to treat several sleep-related disorders including excessive daytime sleepiness associated with narcolepsy, shift work sleep disorder, and obstructive sleep apnea/hypopnea syndrome. Remarkably, however, the neuronal circuitry through which modafinil exerts its wake-promoting effects remains unresolved. In the present study, we sought to determine if the wake-promoting effects of armodafinil are mediated, at least in part, by inhibiting the sleep-promoting neurons of the ventrolateral preoptic (VLPO nucleus. To do so, we measured changes in waking following intraperitoneal administration of armodafinil (200 mg/kg or the psychostimulant methamphetamine (1 mg/kg in rats with cell-body specific lesion of the VLPO. Rats with histologically confirmed lesions of the VLPO demonstrated a sustained increase in wakefulness at baseline, but the increase in wakefulness following administration of both armodafinil and methamphetamine was similar to that of intact animals. These data suggest that armodafinil increases wakefulness by mechanisms that extend beyond inhibition of VLPO neurons. Keywords: EEG, sleep, orexin-saporin, methamphetamine

  3. Thick electrodes including nanoparticles having electroactive materials and methods of making same

    Science.gov (United States)

    Xiao, Jie; Lu, Dongping; Liu, Jun; Zhang, Jiguang; Graff, Gordon L.

    2017-02-21

    Electrodes having nanostructure and/or utilizing nanoparticles of active materials and having high mass loadings of the active materials can be made to be physically robust and free of cracks and pinholes. The electrodes include nanoparticles having electroactive material, which nanoparticles are aggregated with carbon into larger secondary particles. The secondary particles can be bound with a binder to form the electrode.

  4. Soil microbiome transfer method affects microbiome composition, including dominant microorganisms, in a novel environment.

    Science.gov (United States)

    Howard, Mia M; Bell, Terrence H; Kao-Kniffin, Jenny

    2017-06-15

    We show that choice of soil microbiome transfer method, i.e. direct soil transfers and a common soil wash procedure, dramatically influences the microbiome that develops in a new environment, using high-throughput amplicon sequencing of 16S rRNA genes and the fungal internal transcribed spacer (ITS) region. After 3 weeks of incubation in commercial potting mix, microbiomes were most similar to the source soil when a greater volume of initial soil was transferred (5% v/v transfer), and least similar when using a soil wash. Abundant operational taxonomic units were substantially affected by transfer method, suggesting that compounds transferred from the source soil, shifts in biotic interactions, or both, play an important role in their success. © FEMS 2017.

  5. Wake mode sidebands and instability in mode-locked lasers with slow saturable absorbers.

    Science.gov (United States)

    Wang, Shaokang; Droste, Stefan; Sinclair, Laura C; Coddington, Ian; Newbury, Nathan R; Carruthers, Thomas F; Menyuk, Curtis R

    2017-06-15

    Passively mode-locked lasers with semiconductor saturable absorption mirrors are attractive comb sources due to their simplicity, excellent self-starting properties, and their environmental robustness. These lasers, however, can have an increased noise level and wake mode instabilities. Here, we investigate the wake mode dynamics in detail using a combination of evolutionary and dynamical methods. We describe the mode-locked pulse generation from noise when a stable pulse exists and the evolution of the wake mode instability when no stable pulse exists. We then calculate the dynamical spectrum of the mode-locked pulse, and we show that it has six discrete eigenmodes, two of which correspond to wake modes. The wake modes are unstable when the wake mode eigenvalues have a positive real part. We also show that even when the laser is stable, the wake modes lead to experimentally observed sidebands.

  6. Sleep-wake functions and quality of life in patients with subthalamic deep brain stimulation for Parkinson’s disease

    Science.gov (United States)

    Eugster, Lukas; Oberholzer, Michael; Debove, Ines; Lachenmayer, M. Lenard; Mathis, Johannes; Pollo, Claudio; Schüpbach, W. M. Michael; Bassetti, Claudio L.

    2017-01-01

    Objectives Sleep-wake disturbances (SWD) are frequent in Parkinson’s disease (PD). The effect of deep brain stimulation (DBS) on SWD is poorly known. In this study we examined the subjective and objective sleep-wake profile and the quality of life (QoL) of PD patients in the context of subthalamic DBS. Patients and methods We retrospectively analyzed data from PD patients and candidates for DBS in the nucleus suthalamicus (STN). Pre-DBS, sleep-wake assessments included subjective and objective (polysomnography, vigilance tests and actigraphy) measures. Post-DBS, subjective measures were collected. QoL was assessed using the Parkinson’s Disease Questionnaire (PDQ-39) and the RAND SF-36-item Health Survey (RAND SF-36). Results Data from 74 PD patients (62% male, mean age 62.2 years, SD = 8.9) with a mean UPDRS-III (OFF) of 34.2 (SD = 14.8) and 11.8 (SD = 4.5) years under PD treatment were analyzed. Pre-DBS, daytime sleepiness, apathy, fatigue and depressive symptoms were present in 49%, 34%, 38% and 25% of patients respectively but not always as co-occurring symptoms. Sleep-wake disturbances were significantly correlated with QoL scores. One year after STN DBS, motor signs, QoL and sleepiness improved but apathy worsened. Changes in QoL were associated with changes in sleepiness and apathy but baseline sleep-wake functions were not predictive of STN DBS outcome. Conclusion In PD patients presenting for STN DBS, subjective and objective sleep-wake disturbances are common and have a negative impact on QoL before and after neurosurgery. Given the current preliminary evidence, prospective observational studies assessing subjective and objective sleep-wake variables prior to and after DBS are needed. PMID:29253029

  7. An improved method for including upper size range plasmids in metamobilomes.

    Directory of Open Access Journals (Sweden)

    Anders Norman

    Full Text Available Two recently developed isolation methods have shown promise when recovering pure community plasmid DNA (metamobilomes/plasmidomes, which is useful in conducting culture-independent investigations into plasmid ecology. However, both methods employ multiple displacement amplification (MDA to ensure suitable quantities of plasmid DNA for high-throughput sequencing. This study demonstrates that MDA greatly favors smaller circular DNA elements (10 Kbp. Throughout the study, we used two model plasmids, a 4.4 Kbp cloning vector (pBR322, and a 56 Kbp conjugative plasmid (pKJK10, to represent lower- and upper plasmid size ranges, respectively. Subjecting a mixture of these plasmids to the overall isolation protocol revealed a 34-fold over-amplification of pBR322 after MDA. To address this bias, we propose the addition of an electroelution step that separates different plasmid size ranges prior to MDA in order to reduce size-dependent competition during incubation. Subsequent analyses of metamobilome data from wastewater spiked with the model plasmids showed in silica recovery of pKJK10 to be very poor with the established method and a 1,300-fold overrepresentation of pBR322. Conversely, complete recovery of pKJK10 was enabled with the new modified protocol although considerable care must be taken during electroelution to minimize cross-contamination between samples. For further validation, non-spiked wastewater metamobilomes were mapped to more than 2,500 known plasmid genomes. This displayed an overall recovery of plasmids well into the upper size range (median size: 30 kilobases with the modified protocol. Analysis of de novo assembled metamobilome data also suggested distinctly better recovery of larger plasmids, as gene functions associated with these plasmids, such as conjugation, was exclusively encoded in the data output generated through the modified protocol. Thus, with the suggested modification, access to a large uncharacterized pool of

  8. A direct-inverse transonic wing-design method in curvilinear coordinates including viscous-interaction

    Science.gov (United States)

    Ratcliff, Robert R.; Carlson, Leland A.

    1989-01-01

    Progress in the direct-inverse wing design method in curvilinear coordinates has been made. A spanwise oscillation problem and proposed remedies are discussed. Test cases are presented which reveal the approximate limits on the wing's aspect ratio and leading edge wing sweep angle for a successful design, and which show the significance of spanwise grid skewness, grid refinement, viscous interaction, the initial airfoil section and Mach number-pressure distribution compatibility on the final design. Furthermore, preliminary results are shown which indicate that it is feasible to successfully design a region of the wing which begins aft of the leading edge and terminates prior to the trailing edge.

  9. A POWERFUL METHOD FOR INCLUDING GENOTYPE UNCERTAINTY IN TESTS OF HARDY-WEINBERG EQUILIBRIUM.

    Science.gov (United States)

    Beck, Andrew; Luedtke, Alexander; Liu, Keli; Tintle, Nathan

    2017-01-01

    The use of posterior probabilities to summarize genotype uncertainty is pervasive across genotype, sequencing and imputation platforms. Prior work in many contexts has shown the utility of incorporating genotype uncertainty (posterior probabilities) in downstream statistical tests. Typical approaches to incorporating genotype uncertainty when testing Hardy-Weinberg equilibrium tend to lack calibration in the type I error rate, especially as genotype uncertainty increases. We propose a new approach in the spirit of genomic control that properly calibrates the type I error rate, while yielding improved power to detect deviations from Hardy-Weinberg Equilibrium. We demonstrate the improved performance of our method on both simulated and real genotypes.

  10. Adhesive flexible barrier film, method of forming same, and organic electronic device including same

    Science.gov (United States)

    Blizzard, John Donald; Weidner, William Kenneth

    2013-02-05

    An adhesive flexible barrier film comprises a substrate and a barrier layer disposed on the substrate. The barrier layer is formed from a barrier composition comprising an organosilicon compound. The adhesive flexible barrier film also comprises an adhesive layer disposed on the barrier layer and formed from an adhesive composition. A method of forming the adhesive flexible barrier film comprises the steps of disposing the barrier composition on the substrate to form the barrier layer, disposing the adhesive composition on the barrier layer to form the adhesive layer, and curing the barrier layer and the adhesive layer. The adhesive flexible barrier film may be utilized in organic electronic devices.

  11. Numerical Analysis of the Unsteady Propeller Performance in the Ship Wake Modified By Different Wake Improvement Devices

    Directory of Open Access Journals (Sweden)

    Bugalski Tomasz

    2014-10-01

    Full Text Available The paper presents the summary of results of the numerical analysis of the unsteady propeller performance in the non-uniform ship wake modified by the different wake improvement devices. This analysis is performed using the lifting surface program DUNCAN for unsteady propeller analysis. Te object of the analysis is a 7000 ton chemical tanker, for which four different types of the wake improvement devices have been designed: two vortex generators, a pre-swirl stator, and a boundary layer alignment device. These produced five different cases of the ship wake structure: the original hull and hull equipped alternatively with four wake improvement devices. Two different propellers were analyzed in these five wake fields, one being the original reference propeller P0 and the other - a specially designed, optimized propeller P3. Te analyzed parameters were the pictures of unsteady cavitation on propeller blades, harmonics of pressure pulses generated by the cavitating propellers in the selected points and the fluctuating bearing forces on the propeller shaft. Some of the calculated cavitation phenomena were confronted with the experimental. Te objective of the calculations was to demonstrate the differences in the calculated unsteady propeller performance resulting from the application of different wake improvement devices. Te analysis and discussion of the results, together with the appropriate conclusions, are included in the paper.

  12. Wake up to fatigue risk management

    CSIR Research Space (South Africa)

    Schutte, PC

    2009-06-01

    Full Text Available of Occupational Hygiene II Wake up 0 t tgue rl k man P.C. SCHUTTE OCCUPATIONAL HEALTH & ERGONOMICS RESEARCH GROUP, CSIR NRE (MINING). PAPER PRESENTED AT SAFECONEX 2009, 12 -13 MARCH 2009, INDABA HOTEL & CONFERENCE CENTRE Abstract There have been several high... on pregnont women. Negative effects include an increased risk of Southern African Institute of Occupational Hygiene Ii miscarriage, low birth weight and a higher occurrence of premature births. 5. Fatigue management The management of fatigue...

  13. System and method for detecting components of a mixture including a valving scheme for competition assays

    Energy Technology Data Exchange (ETDEWEB)

    Koh, Chung-Yan; Piccini, Matthew E.; Singh, Anup K.

    2017-07-11

    Examples are described including measurement systems for conducting competition assays. A first chamber of an assay device may be loaded with a sample containing a target antigen. The target antigen in the sample may be allowed to bind to antibody-coated beads in the first chamber. A control layer separating the first chamber from a second chamber may then be opened to allow a labeling agent loaded in a first portion of the second chamber to bind to any unoccupied sites on the antibodies. A centrifugal force may then be applied to transport the beads through a density media to a detection region for measurement by a detection unit.

  14. Electromagnetic Radiation : Variational Methods, Waveguides and Accelerators Including seminal papers of Julian Schwinger

    CERN Document Server

    Milton, Kimball A

    2006-01-01

    This is a graduate level textbook on the theory of electromagnetic radiation and its application to waveguides, transmission lines, accelerator physics and synchrotron radiation. It has grown out of lectures and manuscripts by Julian Schwinger prepared during the war at MIT's Radiation Laboratory, updated with material developed by Schwinger at UCLA in the 1970s and 1980s, and by Milton at the University of Oklahoma since 1994. The book includes a great number of straightforward and challenging exercises and problems. It is addressed to students in physics, electrical engineering, and applied mathematics seeking a thorough introduction to electromagnetism with emphasis on radiation theory and its applications.

  15. Extended one-dimensional method for coherent synchrotron radiation including shielding

    Directory of Open Access Journals (Sweden)

    David Sagan

    2009-04-01

    Full Text Available Coherent synchrotron radiation can severely limit the performance of accelerators designed for high brightness and short bunch length. Examples include light sources based on energy recovery LINAC or free-electron lasers, and bunch compressors for linear colliders. In order to better simulate coherent synchrotron radiation, a one-dimensional formalism due to Saldin, Schneidmiller, and Yurkov has been implemented in the general beam dynamics code Bmad. Wide vacuum chambers are simulated by means of vertical image charges. Results from Bmad are here compared to analytical approximations, to numerical solutions of the Maxwell equations, and to the simulation code elegant and the code of Agoh and Yokoya.

  16. System and method for detecting components of a mixture including a valving scheme for competition assays

    Science.gov (United States)

    Koh, Chung-Yan; Piccini, Matthew E.; Singh, Anup K.

    2017-09-19

    Examples are described including measurement systems for conducting competition assays. A first chamber of an assay device may be loaded with a sample containing a target antigen. The target antigen in the sample may be allowed to bind to antibody-coated beads in the first chamber. A control layer separating the first chamber from a second chamber may then be opened to allow a labeling agent loaded in a first portion of the second chamber to bind to any unoccupied sites on the antibodies. A centrifugal force may then be applied to transport the beads through a density media to a detection region for measurement by a detection unit.

  17. Wake flow characteristics at high wind speed

    DEFF Research Database (Denmark)

    Aagaard Madsen, Helge; Larsen, Torben J.; Larsen, Gunner Chr.

    2016-01-01

    Wake flow characteristic at high wind speeds is the main subject of this paper. Although the wake losses decrease at high wind speeds it has been found in a recent study that for multiple wake inflow the increase in loading due to wake effects are substantial even at wind speeds well above rated ...

  18. An Improved Method for Including Upper Size Range Plasmids in Metamobilomes

    DEFF Research Database (Denmark)

    Norman, Anders; Riber, Leise; Luo, Wenting

    2014-01-01

    cloning vector (pBR322), and a 56 Kbp conjugative plasmid (pKJK10), to represent lower- and upper plasmid size ranges, respectively. Subjecting a mixture of these plasmids to the overall isolation protocol revealed a 34-fold over-amplification of pBR322 after MDA. To address this bias, we propose...... the addition of an electroelution step that separates different plasmid size ranges prior to MDA in order to reduce size-dependent competition during incubation. Subsequent analyses of metamobilome data from wastewater spiked with the model plasmids showed in silica recovery of pKJK10 to be very poor...... with the established method and a 1,300-fold overrepresentation of pBR322. Conversely, complete recovery of pKJK10 was enabled with the new modified protocol although considerable care must be taken during electroelution to minimize cross-contamination between samples. For further validation, non-spiked wastewater...

  19. Method and apparatus for smart battery charging including a plurality of controllers each monitoring input variables

    Science.gov (United States)

    Hammerstrom, Donald J.

    2013-10-15

    A method for managing the charging and discharging of batteries wherein at least one battery is connected to a battery charger, the battery charger is connected to a power supply. A plurality of controllers in communication with one and another are provided, each of the controllers monitoring a subset of input variables. A set of charging constraints may then generated for each controller as a function of the subset of input variables. A set of objectives for each controller may also be generated. A preferred charge rate for each controller is generated as a function of either the set of objectives, the charging constraints, or both, using an algorithm that accounts for each of the preferred charge rates for each of the controllers and/or that does not violate any of the charging constraints. A current flow between the battery and the battery charger is then provided at the actual charge rate.

  20. Irregular sleep-wake syndrome

    Science.gov (United States)

    ... total sleep time is normal, but the body clock loses its normal circadian cycle. People with changing ... least 3 abnormal sleep-wake episodes during a 24-hour period to be diagnosed with this problem. The ...

  1. Mast Wake Reduction by Shaping

    National Research Council Canada - National Science Library

    Beauchamp, Charles H

    2005-01-01

    The present invention relates to various mast shapes, in which the mast shapes minimize the production of visible, electro-optic, infrared and radar cross section wake signatures produced by water surface piercing masts...

  2. Estimating the wake deflection downstream of a wind turbine in different atmospheric stabilities: an LES study

    Directory of Open Access Journals (Sweden)

    L. Vollmer

    2016-09-01

    Full Text Available An intentional yaw misalignment of wind turbines is currently discussed as one possibility to increase the overall energy yield of wind farms. The idea behind this control is to decrease wake losses of downstream turbines by altering the wake trajectory of the controlled upwind turbines. For an application of such an operational control, precise knowledge about the inflow wind conditions, the magnitude of wake deflection by a yawed turbine and the propagation of the wake is crucial. The dependency of the wake deflection on the ambient wind conditions as well as the uncertainty of its trajectory are not sufficiently covered in current wind farm control models. In this study we analyze multiple sources that contribute to the uncertainty of the estimation of the wake deflection downstream of yawed wind turbines in different ambient wind conditions. We find that the wake shapes and the magnitude of deflection differ in the three evaluated atmospheric boundary layers of neutral, stable and unstable thermal stability. Uncertainty in the wake deflection estimation increases for smaller temporal averaging intervals. We also consider the choice of the method to define the wake center as a source of uncertainty as it modifies the result. The variance of the wake deflection estimation increases with decreasing atmospheric stability. Control of the wake position in a highly convective environment is therefore not recommended.

  3. Consensus for nonmelanoma skin cancer treatment: basal cell carcinoma, including a cost analysis of treatment methods.

    Science.gov (United States)

    Kauvar, Arielle N B; Cronin, Terrence; Roenigk, Randall; Hruza, George; Bennett, Richard

    2015-05-01

    Basal cell carcinoma (BCC) is the most common cancer in the US population affecting approximately 2.8 million people per year. Basal cell carcinomas are usually slow-growing and rarely metastasize, but they do cause localized tissue destruction, compromised function, and cosmetic disfigurement. To provide clinicians with guidelines for the management of BCC based on evidence from a comprehensive literature review, and consensus among the authors. An extensive review of the medical literature was conducted to evaluate the optimal treatment methods for cutaneous BCC, taking into consideration cure rates, recurrence rates, aesthetic and functional outcomes, and cost-effectiveness of the procedures. Surgical approaches provide the best outcomes for BCCs. Mohs micrographic surgery provides the highest cure rates while maximizing tissue preservation, maintenance of function, and cosmesis. Mohs micrographic surgery is an efficient and cost-effective procedure and remains the treatment of choice for high-risk BCCs and for those in cosmetically sensitive locations. Nonsurgical modalities may be used for low-risk BCCs when surgery is contraindicated or impractical, but the cure rates are lower.

  4. Wake Mitigation Strategies for Optimizing Wind Farm Power Production

    Science.gov (United States)

    Dilip, Deepu; Porté-Agel, Fernando

    2016-04-01

    Although wind turbines are designed individually for optimum power production, they are often arranged into groups of closely spaced turbines in a wind farm rather than in isolation. Consequently, most turbines in a wind farm do not operate in unobstructed wind flows, but are affected by the wakes of turbines in front of them. Such wake interference significantly reduces the overall power generation from wind farms and hence, development of effective wake mitigation strategies is critical for improving wind farm efficiency. One approach towards this end is based on the notion that the operation of each turbine in a wind farm at its optimum efficiency might not lead to optimum power generation from the wind farm as a whole. This entails a down regulation of individual turbines from its optimum operating point, which can be achieved through different methods such as pitching the turbine blades, changing the turbine tip speed ratio or yawing of the turbine, to name a few. In this study, large-eddy simulations of a two-turbine arrangement with the second turbine fully in the wake of the first are performed. Different wake mitigation techniques are applied to the upstream turbine, and the effects of these on its wake characteristics are investigated. Results for the combined power from the two turbines for each of these methods are compared to a baseline scenario where no wake mitigation strategies are employed. Analysis of the results shows the potential for improved power production from such wake control methods. It should be noted, however, that the magnitude of the improvement is strongly affected by the level of turbulence in the incoming atmospheric flow.

  5. Verifying the attenuation of earplugs in situ: method validation on human subjects including individualized numerical simulations.

    Science.gov (United States)

    Bockstael, Annelies; Van Renterghem, Timothy; Botteldooren, Dick; D'Haenens, Wendy; Keppler, Hannah; Maes, Leen; Philips, Birgit; Swinnen, Freya; Vinck, Bart

    2009-03-01

    The microphone in real ear (MIRE) protocol allows the assessment of hearing protector's (HPD) attenuation in situ by measuring the difference between the sound pressure outside and inside the ear canal behind the HPD. Custom-made earplugs have been designed with an inner bore to insert the MIRE probe containing two microphones, the reference microphone measuring the sound pressure outside and the measurement microphone registering the sound pressure behind the HPD. Previous research on a head and torso simulator reveals a distinct difference, henceforth called transfer function, between the sound pressure at the MIRE measurement microphone and the sound pressure of interest at the eardrum. In the current study, similar measurements are carried out on humans with an extra microphone to measure the sound pressure at the eardrum. The resulting transfer functions confirm the global frequency dependency found earlier, but also show substantial variability between the ears with respect to the exact frequency and amplitude of the transfer functions' extrema. In addition, finite-difference time-domain numerical models of an ear canal with earplug are developed for each individual ear by including its specific geometrical parameters. This approach leads to a good resemblance between the simulations and their corresponding measurements.

  6. Development method of Hybrid Energy Storage System, including PEM fuel cell and a battery

    Science.gov (United States)

    Ustinov, A.; Khayrullina, A.; Borzenko, V.; Khmelik, M.; Sveshnikova, A.

    2016-09-01

    Development of fuel cell (FC) and hydrogen metal-hydride storage (MH) technologies continuously demonstrate higher efficiency rates and higher safety, as hydrogen is stored at low pressures of about 2 bar in a bounded state. A combination of a FC/MH system with an electrolyser, powered with a renewable source, allows creation of an almost fully autonomous power system, which could potentially replace a diesel-generator as a back-up power supply. However, the system must be extended with an electro-chemical battery to start-up the FC and compensate the electric load when FC fails to deliver the necessary power. Present paper delivers the results of experimental and theoretical investigation of a hybrid energy system, including a proton exchange membrane (PEM) FC, MH- accumulator and an electro-chemical battery, development methodology for such systems and the modelling of different battery types, using hardware-in-the-loop approach. The economic efficiency of the proposed solution is discussed using an example of power supply of a real town of Batamai in Russia.

  7. WAKES: Wavelet Adaptive Kinetic Evolution Solvers

    Science.gov (United States)

    Mardirian, Marine; Afeyan, Bedros; Larson, David

    2016-10-01

    We are developing a general capability to adaptively solve phase space evolution equations mixing particle and continuum techniques in an adaptive manner. The multi-scale approach is achieved using wavelet decompositions which allow phase space density estimation to occur with scale dependent increased accuracy and variable time stepping. Possible improvements on the SFK method of Larson are discussed, including the use of multiresolution analysis based Richardson-Lucy Iteration, adaptive step size control in explicit vs implicit approaches. Examples will be shown with KEEN waves and KEEPN (Kinetic Electrostatic Electron Positron Nonlinear) waves, which are the pair plasma generalization of the former, and have a much richer span of dynamical behavior. WAKES techniques are well suited for the study of driven and released nonlinear, non-stationary, self-organized structures in phase space which have no fluid, limit nor a linear limit, and yet remain undamped and coherent well past the drive period. The work reported here is based on the Vlasov-Poisson model of plasma dynamics. Work supported by a Grant from the AFOSR.

  8. Forecasting Behavior in Smart Homes Based on Sleep and Wake Patterns

    Science.gov (United States)

    Williams, Jennifer A.; Cook, Diane J.

    2017-01-01

    Background The goal of this research is to use smart home technology to assist people who are recovering from injuries or coping with disabilities to live independently. Objective We introduce an algorithm to model and forecast wake and sleep behaviors that are exhibited by the participant. Furthermore, we propose that sleep behavior is impacted by and can be modeled from wake behavior, and vice versa. Methods This paper describes the Behavior Forecasting (BF) algorithm. BF consists of 1) defining numeric values that reflect sleep and wake behavior, 2) forecasting wake and sleep values from past behavior, 3) analyzing the effect of wake behavior on sleep and vice versa, and 4) improving prediction performance by using both wake and sleep scores. Results The BF method was evaluated with data collected from 20 smart homes. We found that regardless of the forecasting method utilized, wake behavior and sleep behavior can be modeled with a minimum accuracy of 84%. Additionally, normalizing the wake and sleep scores drastically improves the accuracy to 99%. Conclusions The results show that we can effectively model wake and sleep behaviors in a smart environment. Furthermore, wake behaviors can be predicted from sleep behaviors and vice versa. PMID:27689555

  9. CAS course on Plasma Wake Acceleration

    CERN Multimedia

    CERN Accelerator School

    2015-01-01

    The CERN Accelerator School (CAS) recently organised a specialised course on Plasma Wake Acceleration, held at CERN, Geneva, Switzerland, from 23 to 29 November 2014.    Following a number of introductory lectures on laser and plasma physics, as well as an overview of conventional accelerators and their limitations, the course covered a large number of aspects of plasma wake acceleration schemes: the creation of plasma by high power lasers or particle beams, a description of the plasma creation process through simulations and the characteristics of the accelerated particle beams, including results of the latest achievements. Lectures on beam diagnostics, the applications of plasma accelerated beams, and topical seminars completed the programme.  The course was very successful, with 109 students of 26 nationalities attending; most participants coming from European counties, but also from the US, Israel, India, South Korea, Russia and Ukraine. Feedback from the participants was...

  10. An Analytic Parameterization of Self-Gravity Wakes

    Science.gov (United States)

    Tiscareno, Matthew S.; Perrine, R. P.; Richardson, D. C.; Hedman, M. M.; Burns, J. A.; Weiss, J. W.; Porco, C. C.

    2008-09-01

    Saturn's dense A and B rings are pervaded by a microstructure dubbed "self-gravity wakes," which arise due to a rough balance between the clumping together of particles under their mutual self-gravity and their shearing apart again due to tidal forces (Julian and Toomre 1966; Salo 1995). This effect causes azimuthal variations in the rings' brightness as seen in images (Franklin et al. 1987; Dones and Porco 1989; Salo et al. 2004; Porco et al. 2008) and in the optical depth as probed by occultations (Colwell et al. 2006; Hedman et al. 2007). The latter papers explain the occultation observations with models that assume widely separated elongated structures that have an optical-depth dichotomy, with nearly-opaque wakes (with optical depth κwake) and a low but relatively constant optical depth in the spaces between the wakes (κgap). However, it is not known whether simulated wakes (not to mention real ones) can be so characterized, nor, if they can, how κwake and κgap respond to environmental parameters such as optical depth and coefficient of restitution. What do observed values of κgap (Colwell et al. 2006; Hedman et al. 2007) tell us about the conditions under which wakes occur? To this end, we determine the distribution of densities in simulated wake cells. Our method uses an adaptive bin size to simultaneously accommodate low-density regions, where particles are sparse (large bins required), and the sharp boundaries between high- and low-density regions (small bins required). The result is a histogram of the local densities within simulated patches of the ring. We apply this method to a suite of simulated wake cells, and will present our results. We further plan to use our results to address the question of whether local disruption of self-gravity wakes can explain the observed brightness of "propeller" structures (Tiscareno et al. 2008, AJ).

  11. Sleep/wake estimation using only anterior tibialis electromyography data

    Directory of Open Access Journals (Sweden)

    Hwang SuHwan

    2012-05-01

    Full Text Available Abstract Background In sleep efficiency monitoring system, actigraphy is the simplest and most commonly used device. However, low specificity to wakefulness of actigraphy was revealed in previous studies. In this study, we assumed that sleep/wake estimation using actigraphy and electromyography (EMG signals would show different patterns. Furthermore, each EMG pattern in two states (sleep, wake during sleep was analysed. Finally, we proposed two types of method for the estimation of sleep/wake patterns using only EMG signals from anterior tibialis muscles and the results were compared with PSG data. Methods Seven healthy subjects and five patients (2 obstructive sleep apnea, 3 periodic limb movement disorder participated in this study. Night time polysomnography (PSG recordings were conducted, and electrooculogram, EMG, electroencephalogram, electrocardiogram, and respiration data were collected. Time domain analysis and frequency domain analysis were applied to estimate the sleep/wake patterns. Each method was based on changes in amplitude or spectrum (total power of anterior tibialis electromyography signals during the transition from the sleep state to the wake state. To obtain the results, leave-one-out-cross-validation technique was adopted. Results Total sleep time of the each group was about 8 hours. For healthy subjects, the mean epoch-by-epoch results between time domain analysis and PSG data were 99%, 71%, 80% and 0.64 (sensitivity, specificity, accuracy and kappa value, respectively. For frequency domain analysis, the corresponding values were 99%, 73%, 81% and 0.67, respectively. Absolute and relative differences between sleep efficiency index from PSG and our methods were 0.8 and 0.8% (for frequency domain analysis. In patients with sleep-related disorder, our proposed methods revealed the substantial agreement (kappa > 0.61 for OSA patients and moderate or fair agreement for PLMD patients. Conclusions The results of our proposed

  12. Sleep-Wake Concordance in Couples Is Inversely Associated With Cardiovascular Disease Risk Markers.

    Science.gov (United States)

    Gunn, Heather E; Buysse, Daniel J; Matthews, Karen A; Kline, Christopher E; Cribbet, Matthew R; Troxel, Wendy M

    2017-01-01

    To determine whether interdependence in couples' sleep (sleep-wake concordance i.e., whether couples are awake or asleep at the same time throughout the night) is associated with two markers of cardiovascular disease (CVD) risk, ambulatory blood pressure (BP) and systemic inflammation. This community-based study is a cross-sectional analysis of 46 adult couples, aged 18-45 years, without known sleep disorders. Percent sleep-wake concordance, the independent variable, was calculated for each individual using actigraphy. Ambulatory BP monitors measured BP across 48 h. Dependent variables included mean sleep systolic BP (SBP) and diastolic BP (DBP), mean wake SBP and DBP, sleep-wake SBP and DBP ratios, and C-reactive protein (CRP). Mixed models were used and were adjusted for age, sex, education, race, and body mass index. Higher sleep-wake concordance was associated with lower sleep SBP (b = -.35, SE = .01) and DBP (b = -.22, SE = .10) and lower wake SBP (b = -.26, SE = .12; all p values sleep-wake concordance also had lower CRP values (b = -.15, SE = .03, p Sleep-wake concordance was not associated with wake DBP or sleep/wake BP ratios. Significant findings remained after controlling for individual sleep quality, duration, and wake after sleep onset. Sleep-wake concordance was associated with sleep BP, and this association was stronger for women. Higher sleep-wake concordance was associated with lower systemic inflammation for men and women. Sleep-wake concordance may be a novel mechanism by which marital relationships are associated with long-term CVD outcomes.

  13. Simulation of Wake Vortex Radiometric Detection via Jet Exhaust Proxy

    Science.gov (United States)

    Daniels, Taumi S.

    2015-01-01

    This paper describes an analysis of the potential of an airborne hyperspectral imaging IR instrument to infer wake vortices via turbine jet exhaust as a proxy. The goal was to determine the requirements for an imaging spectrometer or radiometer to effectively detect the exhaust plume, and by inference, the location of the wake vortices. The effort examines the gas spectroscopy of the various major constituents of turbine jet exhaust and their contributions to the modeled detectable radiance. Initially, a theoretical analysis of wake vortex proxy detection by thermal radiation was realized in a series of simulations. The first stage used the SLAB plume model to simulate turbine jet exhaust plume characteristics, including exhaust gas transport dynamics and concentrations. The second stage used these plume characteristics as input to the Line By Line Radiative Transfer Model (LBLRTM) to simulate responses from both an imaging IR hyperspectral spectrometer or radiometer. These numerical simulations generated thermal imagery that was compared with previously reported wake vortex temperature data. This research is a continuation of an effort to specify the requirements for an imaging IR spectrometer or radiometer to make wake vortex measurements. Results of the two-stage simulation will be reported, including instrument specifications for wake vortex thermal detection. These results will be compared with previously reported results for IR imaging spectrometer performance.

  14. Sleep-Wake Patterns and Sleep Disturbance among Hong Kong Chinese Adolescents

    OpenAIRE

    Chung, Ka-Fai; Cheung, Miao-Miao

    2008-01-01

    STUDY OBJECTIVES: To determine sleep-wake patterns and evaluate sleep disturbance in Hong Kong adolescents; to identify factors that are associated with sleep disturbance; and to examine the relationship of sleep-wake variables and academic performance. DESIGN AND SETTING: A school-based cross-sectional survey. PARTICIPANTS: Sample included 1629 adolescents aged 12 to 19 years. MEASUREMENTS AND RESULTS: Self-report questionnaires, including sleep-wake habit questionnaire,...

  15. Forecasting behavior in smart homes based on sleep and wake patterns.

    Science.gov (United States)

    Williams, Jennifer A; Cook, Diane J

    2017-01-01

    The goal of this research is to use smart home technology to assist people who are recovering from injuries or coping with disabilities to live independently. We introduce an algorithm to model and forecast wake and sleep behaviors that are exhibited by the participant. Furthermore, we propose that sleep behavior is impacted by and can be modeled from wake behavior, and vice versa. This paper describes the Behavior Forecasting (BF) algorithm. BF consists of 1) defining numeric values that reflect sleep and wake behavior, 2) forecasting wake and sleep values from past behavior, 3) analyzing the effect of wake behavior on sleep and vice versa, and 4) improving prediction performance by using both wake and sleep scores. The BF method was evaluated with data collected from 20 smart homes. We found that regardless of the forecasting method utilized, wake behavior and sleep behavior can be modeled with a minimum accuracy of 84%. Additionally, normalizing the wake and sleep scores drastically improves the accuracy to 99%. The results show that we can effectively model wake and sleep behaviors in a smart environment. Furthermore, wake behaviors can be predicted from sleep behaviors and vice versa.

  16. Towards a Wind Turbine Wake Reduced-Order Model

    Science.gov (United States)

    Hamilton, Nicholas; Viggiano, Bianca; Calaf, Marc; Tutkun, Murat; Cal, Raúl Bayoán

    2017-11-01

    A reduced-order model for a wind turbine wake is sought for prediction and control. Basis functions from the proper orthogonal decomposition (POD) represent the spatially coherent turbulence structures in the wake; eigenvalues delineate the turbulence kinetic energy associated with each mode. Back-projecting the POD modes onto the velocity snapshots produces coefficients that express the amplitude of each mode in time. A reduced-order model of the wind turbine wake (wakeROM) is defined through a series of polynomial parameters that quantify mode interaction and the evolution of each mode coefficient. Tikhonov regularization is employed to recalibrate the dynamical system, reducing error in the modeled mode coefficients and adding stability to the system. The wakeROM is periodically reinitialized by relating the incoming turbulent velocity to the POD mode coefficients. A high-level view of the wakeROM provides as a platform to discuss promising research direction, alternate processes that will enhance stability, and portability to control methods. NSF- ECCS-1032647, NSF-CBET-1034581, Research Council of Norway Project Number 231491.

  17. Uncovering the genetic landscape for multiple sleep-wake traits.

    Directory of Open Access Journals (Sweden)

    Christopher J Winrow

    Full Text Available Despite decades of research in defining sleep-wake properties in mammals, little is known about the nature or identity of genes that regulate sleep, a fundamental behaviour that in humans occupies about one-third of the entire lifespan. While genome-wide association studies in humans and quantitative trait loci (QTL analyses in mice have identified candidate genes for an increasing number of complex traits and genetic diseases, the resources and time-consuming process necessary for obtaining detailed quantitative data have made sleep seemingly intractable to similar large-scale genomic approaches. Here we describe analysis of 20 sleep-wake traits from 269 mice from a genetically segregating population that reveals 52 significant QTL representing a minimum of 20 genomic loci. While many (28 QTL affected a particular sleep-wake trait (e.g., amount of wake across the full 24-hr day, other loci only affected a trait in the light or dark period while some loci had opposite effects on the trait during the light vs. dark. Analysis of a dataset for multiple sleep-wake traits led to previously undetected interactions (including the differential genetic control of number and duration of REM bouts, as well as possible shared genetic regulatory mechanisms for seemingly different unrelated sleep-wake traits (e.g., number of arousals and REM latency. Construction of a Bayesian network for sleep-wake traits and loci led to the identification of sub-networks of linkage not detectable in smaller data sets or limited single-trait analyses. For example, the network analyses revealed a novel chain of causal relationships between the chromosome 17@29cM QTL, total amount of wake, and duration of wake bouts in both light and dark periods that implies a mechanism whereby overall sleep need, mediated by this locus, in turn determines the length of each wake bout. Taken together, the present results reveal a complex genetic landscape underlying multiple sleep-wake traits

  18. Optimization Under Uncertainty for Wake Steering Strategies: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Quick, Julian [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Annoni, Jennifer [National Renewable Energy Laboratory (NREL), Golden, CO (United States); King, Ryan N [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Dykes, Katherine L [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Fleming, Paul A [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Ning, Andrew [Brigham Young University

    2017-05-01

    Wind turbines in a wind power plant experience significant power losses because of aerodynamic interactions between turbines. One control strategy to reduce these losses is known as 'wake steering,' in which upstream turbines are yawed to direct wakes away from downstream turbines. Previous wake steering research has assumed perfect information, however, there can be significant uncertainty in many aspects of the problem, including wind inflow and various turbine measurements. Uncertainty has significant implications for performance of wake steering strategies. Consequently, the authors formulate and solve an optimization under uncertainty (OUU) problem for finding optimal wake steering strategies in the presence of yaw angle uncertainty. The OUU wake steering strategy is demonstrated on a two-turbine test case and on the utility-scale, offshore Princess Amalia Wind Farm. When we accounted for yaw angle uncertainty in the Princess Amalia Wind Farm case, inflow-direction-specific OUU solutions produced between 0% and 1.4% more power than the deterministically optimized steering strategies, resulting in an overall annual average improvement of 0.2%. More importantly, the deterministic optimization is expected to perform worse and with more downside risk than the OUU result when realistic uncertainty is taken into account. Additionally, the OUU solution produces fewer extreme yaw situations than the deterministic solution.

  19. The Structure of Cosmic String Wakes

    OpenAIRE

    Sornborger, A.; Brandenberger, R.; Fryxell, B.; Olson, K.

    1996-01-01

    The clustering of baryons and cold dark matter induced by a single moving string is analyzed numerically making use of a new three-dimensional Eulerian cosmological hydro code$^{1)}$ which is based on the PPM method to track the baryons and the PIC method to evolve the dark matter particles. A long straight string moving with a speed comparable to $c$ induces a planar overdensity (a``wake"). Since the initial perturbation is a velocity kick towards the plane behind the string and there is no ...

  20. Impact of tower modeling on wind turbine wakes

    Science.gov (United States)

    Kleusberg, Elektra; Schlatter, Philipp; Henningson, Dan

    2017-11-01

    Recent research suggests the importance of modeling the support structure (tower and nacelle) when investigating the wake development behind wind turbines. These investigations are however mostly limited to low ambient turbulence levels which seldomly occur in field conditions. We present numerical simulations of wind turbine wakes using the actuator line method under different inflow conditions including varying turbulence levels and sheared inflow. The wind turbine, which employs the NREL S826 airfoil, is modeled after experiments conducted at the Norwegian University of Science and Technology. The rotor is investigated when perpendicular to the inflow and at a yaw angle of 30 degrees. The support structure is modeled using lift and drag body forces based on tabulated data. The simulations are performed with the spectral-element code Nek5000. After discussing the setup of the numerical domain and the turbulent inflow boundary condition, the influence of the tower model is characterized under turbulent, sheared and uniform inflow and the impact on downstream turbines is evaluated.

  1. Assessing the Applicability of Currently Available Methods for Attributing Foodborne Disease to Sources, Including Food and Food Commodities

    DEFF Research Database (Denmark)

    Pires, Sara Monteiro

    2013-01-01

    illness caused by enteric, parasitic, and chemical foodborne hazards to the responsible sources; and renamed some of the approaches. The main objective was to make recommendations on the most appropriate method(s) to attribute human disease caused by different foodborne hazards. We concluded......Abstract A variety of approaches to attribute foodborne diseases to specific sources are available, including hazard occurrence analysis, epidemiological methods, intervention studies, and expert elicitations. The usefulness of each method to attribute disease caused by a foodborne hazard depends...... on the public health question being addressed, on the data requirements, on advantages and limitations of the method, and on the data availability of the country or region in question. Previous articles have described available methods for source attribution, but have focused only on foodborne microbiological...

  2. The k-ε-fP model applied to double wind turbine wakes using different actuator disk force methods

    DEFF Research Database (Denmark)

    Laan, van der, Paul Maarten; Sørensen, Niels N.; Réthoré, Pierre-Elouan

    2015-01-01

    is employed to estimate the power production of the interacting wind turbines, and the results are compared with two existing methods: a method based on tabulated airfoil data and a method based on the axial induction from 1D momentum theory. The proposed method calculates the correct power, while the other...... two methods overpredict it. The results of the k-ε-fP  eddy viscosity model are also compared with the original k-ε eddy viscosity model and large-eddy simulations. Compared to the large-eddy simulations-predicted velocity and power deficits, the k-ε-fP  is superior to the original k-ε model...

  3. Anesthesia Awareness (Waking Up) During Surgery

    Science.gov (United States)

    ... Resources About Policymakers Media ASA Member Toolkit Risks Anesthesia Awareness (Waking Up) During Surgery Explore this page: ... do you reduce the risk of anesthesia awareness? Anesthesia Awareness (Waking Up) During Surgery If you’re ...

  4. A Lagrangian approach to vortex identification in swimming and flying animal wakes.

    Science.gov (United States)

    Peng, Jifeng; Dabiri, John

    2006-11-01

    The fluid wakes of swimming and flying animals are generally time-dependent. The Eulerian velocity field, which can be measured by existing DPIV measurement techniques, does not directly indicate the flow geometry in this type of unsteady flows. In this study, a Lagrangian approach is developed to determine the Lagrangian Coherent Structures, which are physical boundaries separating flow regions with distinct dynamics, including vortices. The determination of morphology and kinematics of vortices is necessary in estimating time-dependent locomotive forces (Dabiri, J. Exp. Bio., 2006). It also provides information in studying fluid transport in animal swimming and flying. The application of the method is demonstrated by studying the wake of a bluegill sunfish pectoral fin and that of a free-swimming jellyfish.

  5. Control of sleep and wakefulness.

    Science.gov (United States)

    Brown, Ritchie E; Basheer, Radhika; McKenna, James T; Strecker, Robert E; McCarley, Robert W

    2012-07-01

    This review summarizes the brain mechanisms controlling sleep and wakefulness. Wakefulness promoting systems cause low-voltage, fast activity in the electroencephalogram (EEG). Multiple interacting neurotransmitter systems in the brain stem, hypothalamus, and basal forebrain converge onto common effector systems in the thalamus and cortex. Sleep results from the inhibition of wake-promoting systems by homeostatic sleep factors such as adenosine and nitric oxide and GABAergic neurons in the preoptic area of the hypothalamus, resulting in large-amplitude, slow EEG oscillations. Local, activity-dependent factors modulate the amplitude and frequency of cortical slow oscillations. Non-rapid-eye-movement (NREM) sleep results in conservation of brain energy and facilitates memory consolidation through the modulation of synaptic weights. Rapid-eye-movement (REM) sleep results from the interaction of brain stem cholinergic, aminergic, and GABAergic neurons which control the activity of glutamatergic reticular formation neurons leading to REM sleep phenomena such as muscle atonia, REMs, dreaming, and cortical activation. Strong activation of limbic regions during REM sleep suggests a role in regulation of emotion. Genetic studies suggest that brain mechanisms controlling waking and NREM sleep are strongly conserved throughout evolution, underscoring their enormous importance for brain function. Sleep disruption interferes with the normal restorative functions of NREM and REM sleep, resulting in disruptions of breathing and cardiovascular function, changes in emotional reactivity, and cognitive impairments in attention, memory, and decision making.

  6. Linearised CFD Models for Wakes

    DEFF Research Database (Denmark)

    Ott, Søren; Berg, Jacob; Nielsen, Morten

    This report describes the development of a fast and reasonably accurate model for the prediction of energy production in oshore wind farms taking wake eects into account. The model has been implemented as a windows application called Fuga which can run in batch mode or as a graphical user interfa...

  7. Teaching Methods in Biology Education and Sustainability Education Including Outdoor Education for Promoting Sustainability—A Literature Review

    Directory of Open Access Journals (Sweden)

    Eila Jeronen

    2016-12-01

    Full Text Available There are very few studies concerning the importance of teaching methods in biology education and environmental education including outdoor education for promoting sustainability at the levels of primary and secondary schools and pre-service teacher education. The material was selected using special keywords from biology and sustainable education in several scientific databases. The article provides an overview of 24 selected articles published in peer-reviewed scientific journals from 2006–2016. The data was analyzed using qualitative content analysis. Altogether, 16 journals were selected and 24 articles were analyzed in detail. The foci of the analyses were teaching methods, learning environments, knowledge and thinking skills, psychomotor skills, emotions and attitudes, and evaluation methods. Additionally, features of good methods were investigated and their implications for teaching were emphasized. In total, 22 different teaching methods were found to improve sustainability education in different ways. The most emphasized teaching methods were those in which students worked in groups and participated actively in learning processes. Research points toward the value of teaching methods that provide a good introduction and supportive guidelines and include active participation and interactivity.

  8. A Novel Energy Yields Calculation Method for Irregular Wind Farm Layout

    DEFF Research Database (Denmark)

    Hou, Peng; Hu, Weihao; Soltani, Mohsen

    2015-01-01

    for the energy yields in irregular wind farm considering wake effect would be difficult.In this paper, a mathematical model which includes the impacts of the variation of both wind direction and velocityon wake effect is established. Based on the wake model, a binary matrix method is proposed for the energy...... yields calculation forirregular wind farms.The results show that the proposed wake model is effective in calculating the wind speeddeficit. The calculation framework is applicable for energy yields calculation in irregular wind farms....

  9. Teaching Methods in Biology Education and Sustainability Education Including Outdoor Education for Promoting Sustainability--A Literature Review

    Science.gov (United States)

    Jeronen, Eila; Palmberg, Irmeli; Yli-Panula, Eija

    2017-01-01

    There are very few studies concerning the importance of teaching methods in biology education and environmental education including outdoor education for promoting sustainability at the levels of primary and secondary schools and pre-service teacher education. The material was selected using special keywords from biology and sustainable education…

  10. 40 CFR 2.203 - Notice to be included in EPA requests, demands, and forms; method of asserting business...

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 1 2010-07-01 2010-07-01 false Notice to be included in EPA requests, demands, and forms; method of asserting business confidentiality claim; effect of failure to assert claim at time of submission. 2.203 Section 2.203 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY...

  11. Classification of Rotor Induced Shearing Events in the Near Wake of a Wind Turbine Array Boundary Layer

    Science.gov (United States)

    Smith, Sarah; Viggiano, Bianca; Ali, Naseem; Cal, Raul Bayoan

    2017-11-01

    Flow perturbation induced by a turbine rotor imposes considerable turbulence and shearing effects in the near wake of a turbine, altering the efficiency of subsequent units within a wind farm array. Previous methods have characterized near wake vorticity of a turbine and recovery distance of various turbine array configurations. This study aims to build on previous analysis with respect to a turbine rotor within an array and develop a model to examine stress events and energy contribution in the near wake due to rotational effects. Hot wire anemometry was employed downstream of a turbine centrally located in the third row of a 3x3 array. Data considered points planar to the rotor and included simultaneous streamwise and wall-normal velocities as well as concurrent streamwise and transverse velocities. Conditional analysis of Reynolds stresses induced by the rotor agree with former near wake research, and examination of stresses in terms of streamwise and transverse velocity components depicts areas of significant rotational effects. Continued analysis includes spectral decomposition and conditional statistics to further characterize shearing events at various points considering the swept area of the rotor.

  12. ASRS Reports on Wake Vortex Encounters

    Science.gov (United States)

    Connell, Linda J.; Taube, Elisa Ann; Drew, Charles Robert; Barclay, Tommy Earl

    2010-01-01

    ASRS is conducting a structured callback research project of wake vortex incidents reported to the ASRS at all US airports, as well as wake encounters in the enroute environment. This study has three objectives: (1) Utilize the established ASRS supplemental data collection methodology and provide ongoing analysis of wake vortex encounter reports; (2) Document event dynamics and contributing factors underlying wake vortex encounter events; and (3) Support ongoing FAA efforts to address pre-emptive wake vortex risk reduction by utilizing ASRS reporting contributions.

  13. Nanocomposites for ultra high density information storage, devices including the same, and methods of making the same

    Science.gov (United States)

    Goyal, Amit; Shin, Junsoo

    2014-04-01

    A nanocomposite article that includes a single-crystal or single-crystal-like substrate and heteroepitaxial, phase-separated layer supported by a surface of the substrate and a method of making the same are described. The heteroepitaxial layer can include a continuous, non-magnetic, crystalline, matrix phase, and an ordered, magnetic magnetic phase disposed within the matrix phase. The ordered magnetic phase can include a plurality of self-assembled crystalline nanostructures of a magnetic material. The phase-separated layer and the single crystal substrate can be separated by a buffer layer. An electronic storage device that includes a read-write head and a nanocomposite article with a data storage density of 0.75 Tb/in.sup.2 is also described.

  14. An experimental investigation of bending wave instability modes in a generic four-vortex wake

    Energy Technology Data Exchange (ETDEWEB)

    Babie, Brian M.; Nelson, Robert C. [Department of Aerospace and Mechanical Engineering, University of Notre Dame, Notre Dame, Indiana 46556 (United States)

    2010-07-15

    An experimental study of a planar wake consisting of four vortices that simulate the trailing vortex wakes generated by transport airplanes in either takeoff or landing configurations is presented. The objective of this study was to examine naturally occurring wake instabilities. Specifically, the focus of the study was centered on bending wave instabilities of which the Crow instability represents a particular case. A unique method of generating a four-vortex wake was developed for this study. The four-vortex wake generating device permitted direct variation of the spacing between vortices as well as control over the vortex circulation strength. Two quantitative flow visualization experiments were instrumental in identifying wake configurations that were conducive to the rapid growth of bending wave modes and in the identification of the long-wavelength mode. Detailed experiments were also conducted to examine the flow structure in the near-field or roll-up region using a four sensor, hot-wire probe that could measure all three velocity components in the wake simultaneously. The results of both the flow visualization and hot-wire experiments indicate that the long-wavelength mode and the first short-wavelength mode likely dominate the far-field wake physics and may potentially be utilized in a wake control strategy.

  15. Method for assessment of stormwater treatment facilities – Synthetic road runoff addition including micro-pollutants and tracer

    DEFF Research Database (Denmark)

    Cederkvist, Karin; Jensen, Marina Bergen; Holm, Peter Engelund

    2017-01-01

    representative of runoff from roads is suggested, as well as relevant concentration ranges. The method was used for adding contaminants to three different STFs including a curbstone extension with filter soil, a dual porosity filter, and six different permeable pavements. Evaluation of the method showed...... that it is possible to add a well-defined mixture of contaminants despite different field conditions by having a flexibly system, mixing different stock-solutions on site, and use bromide tracer for correction of outlet concentrations. Bromide recovery ranged from only 12% in one of the permeable pavements to 97...

  16. Ship heading and velocity analysis by wake detection in SAR images

    Science.gov (United States)

    Graziano, Maria Daniela; D'Errico, Marco; Rufino, Giancarlo

    2016-11-01

    With the aim of ship-route estimation, a wake detection method is developed and applied to COSMO/SkyMed and TerraSAR-X Stripmap SAR images over the Gulf of Naples, Italy. In order to mitigate the intrinsic limitations of the threshold logic, the algorithm identifies the wake features according to the hydrodynamic theory. A post-detection validation phase is performed to classify the features as real wake structures by means of merit indexes defined in the intensity domain. After wake reconstruction, ship heading is evaluated on the basis of turbulent wake direction and ship velocity is estimated by both techniques of azimuth shift and Kelvin pattern wavelength. The method is tested over 34 ship wakes identified by visual inspection in both HH and VV images at different incidence angles. For all wakes, no missed detections are reported and at least the turbulent and one narrow-V wakes are correctly identified, with ship heading successfully estimated. Also, the azimuth shift method is applied to estimate velocity for the 10 ships having route with sufficient angular separation from the satellite ground track. In one case ship velocity is successfully estimated with both methods, showing agreement within 14%.

  17. 75 FR 81269 - Ward Transformer Superfund Site Raleigh, Wake County, NC; Notice of Settlements

    Science.gov (United States)

    2010-12-27

    ... AGENCY Ward Transformer Superfund Site Raleigh, Wake County, NC; Notice of Settlements AGENCY... Ward Transformer Superfund Site located in Raleigh, Wake County, North Carolina for publication. DATES... Superfund Site by one of the following methods: http://www.regulations.gov : Follow the on-line instructions...

  18. 78 FR 14543 - Ward Transformer Superfund Site; Raleigh, Wake County, NC; Notice of Settlement

    Science.gov (United States)

    2013-03-06

    ... AGENCY Ward Transformer Superfund Site; Raleigh, Wake County, NC; Notice of Settlement AGENCY... Agency has entered into a settlement at the Ward Transformer Superfund Site located in Raleigh, Wake... Superfund Site by one of the following methods: ] www.epa.gov/region4/superfund/programs/enforcement...

  19. An Aeroelastic Perspective of Floating Offshore Wind Turbine Wake Formation and Instability

    Science.gov (United States)

    Rodriguez, Steven N.; Jaworski, Justin W.

    2015-11-01

    The wake formation and wake stability of floating offshore wind turbines are investigated from an aeroelastic perspective. The aeroelastic model is composed of the Sebastian-Lackner free-vortex wake aerodynamic model coupled to the nonlinear Hodges-Dowell beam equations, which are extended to include the effects of blade profile asymmetry, higher-order torsional effects, and kinetic energy components associated with periodic rigid-body motions of floating platforms. Rigid-body platform motions are also assigned to the aerodynamic model as varying inflow conditions to emulate operational rotor-wake interactions. Careful attention is given to the wake formation within operational states where the ratio of inflow velocity to induced velocity is over 50%. These states are most susceptible to aerodynamic instabilities, and provide a range of states about which a wake stability analysis can be performed. In addition, the stability analysis used for the numerical framework is implemented into a standalone free-vortex wake aerodynamic model. Both aeroelastic and standalone aerodynamic results are compared to evaluate the level of impact that flexible blades have on the wake formation and wake stability.

  20. A Survey of the Scattering Characteristics and Detection of Aircraft Wake Vortices

    Directory of Open Access Journals (Sweden)

    Li Jianbing

    2017-12-01

    Full Text Available Aircraft wake vortex is a pair of strong counter-rotating vortices and has attracted considerable attention in various fields including aviation safety and atmospheric physics. The characteristics and detection of wake vortex act as the basis for both behavior prediction as well as hazard assessment. This paper provides a short survey of the characteristics and detection researches. Initially, the wake vortex is classified as clear-air wake vortex (i.e., wake turbulence and contrail and precipitation wake vortex (i.e., under rainy, foggy or snowy condition. Subsequently, the dynamics and scattering are introduced, and the main verdicts are: the radar (radio detection and ranging scattering of wake vortex is relatively weak under clear air conditions, but the Lidar (Light detection and ranging scattering is appreciable owing to the presence of particles such as aerosols. Wake vortices under precipitation conditions and contrails possess relatively good radar reflectivity owing the strong scattering characteristics of precipitation droplets and ice crystals. Furthermore, we have introduced a joint detection scheme of Lidar and radar for wake vortex along with parameter-retrieval algorithms. Finally, we have presented our conclusions and intended future research.

  1. Implementation of vortex wake control using SMA-actuated devices

    Science.gov (United States)

    Quackenbush, Todd R.; Bilanin, Alan J.; Batcho, P. F.; McKillip, Robert M., Jr.; Carpenter, Bernie F.

    1997-05-01

    Mitigation of the undesirable effects of trailing vortex wakes has been a long-standing priority for both reduction of submarine wake signature and alleviation of aircraft vortex wake hazard. A recent study established the feasibility of using relatively weak, secondary vortices with carefully selected unsteady amplitude and phasing to accelerate the breakup of the primary vortex system of a lifting surface, a technique denoted `vortex leveraging'. This paper will summarize progress on the development of SMA-actuated devices for implementing vortex leveraging for hydrodynamic applications. The methods being applied to the hydrodynamic design of these deformable Smart Vortex Leveraging Tabs (SVLTs) will be described, and the results of a preliminary assessment of SVLT performance in achieving wake breakup will be presented. Also, previous work on the design and testing of deformable control surfaces actuated via embedded SMA agonist wires will be reviewed and the design process being employed in the present applications will be discussed. Finally, the plans for near-term computational and experimental work to validate the use of SMA-driven devices for the wake mitigation task will be briefly outlined.

  2. Optogenetic deconstruction of sleep-wake circuitry in the brain

    Directory of Open Access Journals (Sweden)

    Antoine Adamantidis

    2010-01-01

    Full Text Available How does the brain regulate the sleep-wake cycle? What are the temporal codes of sleep- and wake-promoting neural circuits? How do these circuits interact with each other across the light/dark cycle? Over the past few decades, many studies from a variety of disciplines have made substantial progress in answering these fundamental questions. For example, neurobiologists have identified multiple, redundant wake-promoting circuits in the brainstem, hypothalamus, and basal forebrain. Sleep-promoting circuits have been found in the preoptic area and hypothalamus. One of the greatest challenges in recent years has been to selectively record and manipulate these sleep-wake centers in vivo with high spatial and temporal resolution. Recent developments in microbial opsin-based neuromodulation tools, collectively referred to as “optogenetics,” have provided a novel method to demonstrate causal links between neural activity and specific behaviors. Here, we propose to use optogenetics as a fundamental tool to probe the necessity, sufficiency, and connectivity of defined neural circuits in the regulation of sleep and wakefulness.

  3. Difference in target definition using three different methods to include respiratory motion in radiotherapy of lung cancer

    DEFF Research Database (Denmark)

    Sloth Møller, Ditte; Knap, Marianne Marquard; Nyeng, Tine Bisballe

    2017-01-01

    INTRODUCTION: Minimizing the planning target volume (PTV) while ensuring sufficient target coverage during the entire respiratory cycle is essential for free-breathing radiotherapy of lung cancer. Different methods are used to incorporate the respiratory motion into the PTV. MATERIAL AND METHODS......: Fifteen patients were analyzed. Respiration can be included in the target delineation process creating a respiratory GTV, denoted iGTV. Alternatively, the respiratory amplitude (A) can be measured based on the 4D-CT and A can be incorporated in the margin expansion. The GTV expanded by A yielded GTV......: PTVσ yields the smallest volumes but does not ensure coverage of tumor during the full respiratory motion due to tumor deformation. Incorporating the respiratory motion in the delineation (PTVdel) takes into account the entire respiratory cycle including deformation, but at the cost, however, of larger...

  4. Unsteady wake of a rotating tire

    Science.gov (United States)

    Lombard, Jean-Eloi; Moxey, Dave; Xu, Hui; Sherwin, Spencer; Sherwin Lab Team

    2015-11-01

    For open wheel race-cars, such as IndyCar and Formula One, the wheels are responsible for 40% of the total drag. For road cars drag associated to the wheels and under-carriage can represent 60% of total drag at highway cruise speeds. Experimental observations have reported two or three pairs of counter rotating vortices, the relative importance of which still remains an open question, that interact to form a complex wake. Traditional RANS based methods are typically not well equipped to deal with such highly unsteady flows which motivates research into more physical, unsteady models. Leveraging a high-fidelity spectral/hp element based method a Large Eddy Simulation is performed to give further insight into unsteady characteristics of the wake. In particular the unsteady nature of both the jetting and top vortex pair is reported as well as the time and length scales associated with the vortex core trajectories. Correlation with experimentally obtained particle image velocimetry is presented. The authors acknowledge support from the United Kingdom Turbulence Consortium (UKTC) as well as from the Engineering and Physical Sciences Research Council (EPSRC) for access to ARCHER UK National Supercomputing Service.

  5. Comparing offshore wind farm wake observed from satellite SAR and wake model results

    Science.gov (United States)

    Bay Hasager, Charlotte

    2014-05-01

    Offshore winds can be observed from satellite synthetic aperture radar (SAR). In the FP7 EERA DTOC project, the European Energy Research Alliance project on Design Tools for Offshore Wind Farm Clusters, there is focus on mid- to far-field wind farm wakes. The more wind farms are constructed nearby other wind farms, the more is the potential loss in annual energy production in all neighboring wind farms due to wind farm cluster effects. It is of course dependent upon the prevailing wind directions and wind speed levels, the distance between the wind farms, the wind turbine sizes and spacing. Some knowledge is available within wind farm arrays and in the near-field from various investigations. There are 58 offshore wind farms in the Northern European seas grid connected and in operation. Several of those are spaced near each other. There are several twin wind farms in operation including Nysted-1 and Rødsand-2 in the Baltic Sea, and Horns Rev 1 and Horns Rev 2, Egmond aan Zee and Prinses Amalia, and Thompton 1 and Thompton 2 all in the North Sea. There are ambitious plans of constructing numerous wind farms - great clusters of offshore wind farms. Current investigation of offshore wind farms includes mapping from high-resolution satellite SAR of several of the offshore wind farms in operation in the North Sea. Around 20 images with wind farm wake cases have been retrieved and processed. The data are from the Canadian RADARSAT-1/-2 satellites. These observe in microwave C-band and have been used for ocean surface wind retrieval during several years. The satellite wind maps are valid at 10 m above sea level. The wakes are identified in the raw images as darker areas downwind of the wind farms. In the SAR-based wind maps the wake deficit is found as areas of lower winds downwind of the wind farms compared to parallel undisturbed flow in the flow direction. The wind direction is clearly visible from lee effects and wind streaks in the images. The wind farm wake cases

  6. A new approach for evaluating measured wake data

    Energy Technology Data Exchange (ETDEWEB)

    Magnusson, Mikael [Uppsala Univ. (Sweden). Dept. of Meteorology

    1996-12-01

    Wind turbine wakes have been studied by analysing a large set of atmospheric data, from a wind farm with four turbines sited on a flat coastal area. The results obtained have ben generalized to allow tests against data from other full scale wind turbines as well as wind tunnel simulations. These comparisons are found to give very satisfactory results. The thrust coefficient is found to be a better parameter for description than wind speed, of wake characteristics because it implicitly includes the effect of regulation. It is also found that down-wind travel time is more convenient to use than down-wind distance in this context. The travel time to the end of the near wake region, i.e. to the point where a single velocity deficit peak first appears, is found to be inversely proportional to the rotational frequency of the turbine and to the turbulence intensity of the ambient air flow and proportional to the ratio of the wake radius and the hub height. For larger travel times, i.e. for the far wake region, it is found that the centre line relative velocity deficit decreases with the logarithm of the time traveled and is parametrically dependent on the time constant and the thrust coefficient. 3 refs, 5 figs

  7. Circadian and Wakefulness-Sleep Modulation of Cognition in Humans

    Directory of Open Access Journals (Sweden)

    Kenneth P Wright

    2012-04-01

    Full Text Available Cognitive and affective processes vary over the course of the 24 hour day. Time of day dependent changes in human cognition are modulated by an internal circadian timekeeping system with a near-24-hour period. The human circadian timekeeping system interacts with sleep-wakefulness regulatory processes to modulate brain arousal, neurocognitive and affective function. Brain arousal is regulated by ascending brain stem, basal forebrain and hypothalamic arousal systems and inhibition or disruption of these systems reduces brain arousal, impairs cognition, and promotes sleep. The internal circadian timekeeping system modulates cognition and affective function by projections from the master circadian clock, located in the hypothalamic suprachiasmatic nuclei, to arousal and sleep systems and via clock gene oscillations in brain tissues. Understanding the basic principles of circadian and wakefulness-sleep physiology can help to recognize how the circadian system modulates human cognition and influences learning, memory and emotion. Developmental changes in sleep and circadian processes and circadian misalignment in circadian rhythm sleep disorders have important implications for learning, memory and emotion. Overall, when wakefulness occurs at appropriate internal biological times, circadian clockwork benefits human cognitive and emotion function throughout the lifespan. Yet, when wakefulness occurs at inappropriate biological times because of environmental pressures (e.g., early school start times, long work hours that include work at night, shift work, jet lag or because of circadian rhythm sleep disorders, the resulting misalignment between circadian and wakefulness-sleep physiology leads to impaired cognitive performance, learning, emotion, and safety.

  8. Postoperative outcome of body core temperature rhythm and sleep-wake cycle in third ventricle craniopharyngiomas.

    Science.gov (United States)

    Zoli, Matteo; Sambati, Luisa; Milanese, Laura; Foschi, Matteo; Faustini-Fustini, Marco; Marucci, Gianluca; de Biase, Dario; Tallini, Giovanni; Cecere, Annagrazia; Mignani, Francesco; Sturiale, Carmelo; Frank, Giorgio; Pasquini, Ernesto; Cortelli, Pietro; Mazzatenta, Diego; Provini, Federica

    2016-12-01

    OBJECTIVE One of the more serious risks in the treatment of third ventricle craniopharyngiomas is represented by hypothalamic damage. Recently, many papers have reported the expansion of the indications for the endoscopic endonasal approach (EEA) to be used for these tumors as well. The aim of this study was to assess the outcome of sleep-wake cycle and body core temperature (BCT), both depending on hypothalamic control, in patients affected by craniopharyngiomas involving the third ventricle that were surgically treated via an EEA. METHODS All consecutive adult patients with craniopharyngiomas that were treated at one center via an EEA between 2014 and 2016 were prospectively included. Each patient underwent neuroradiological, endocrinological, and ophthalmological evaluation; 24-hour monitoring of the BCT rhythm; and the sleep-wake cycle before surgery and at follow-up of at least 6 months. RESULTS Ten patients were included in the study (male/female ratio 4:6, mean age 48.6 years, SD 15.9 years). Gross-total resection was achieved in 8 cases. Preoperative BCT rhythm was pathological in 6 patients. After surgery, these disturbances resolved in 2 cases, improved in another 3, and remained the same in 1 patient; also, 1 case of de novo onset was observed. Before surgery the sleep-wake cycle was pathological in 8 cases, and it was restored in 4 patients at follow-up. After surgery the number of patients reporting diurnal naps increased from 7 to 9. CONCLUSIONS The outcome of the sleep-wake cycle and BCT analyzed after EEA in this study is promising. Despite the short duration of the authors' experience, they consider these results encouraging; additional series are needed to confirm the preliminary findings.

  9. Slow Activity in Focal Epilepsy During Sleep and Wakefulness

    DEFF Research Database (Denmark)

    Pellegrino, Giovanni; Tombini, Mario; Curcio, Giuseppe

    2017-01-01

    Introduction We aimed to test differences between healthy subjects and patients with respect to slow wave activity during wakefulness and sleep. Methods Fifteen patients affected by nonlesional focal epilepsy originating within temporal areas and fourteen matched controls underwent a 24-hour EEG...... recording. We studied the EEG power spectral density during wakefulness and sleep in delta (1-4 Hz), theta (5-7 Hz), alpha (8-11 Hz), sigma (12-15 Hz), and beta (16-20 Hz) bands. Results During sleep, patients with focal epilepsy showed higher power from delta to beta frequency bands compared with controls...... was the delta band during the first 2 sleep cycles (sleep cycle 1, P = .014; sleep cycle 2, P = .002). During wakefulness, patients showed higher delta/theta activity over the affected regions compared with controls. Conclusions Patients with focal epilepsy showed a pattern of power increases characterized...

  10. Wake Management Strategies for Reduction of Turbomachinery Fan Noise

    Science.gov (United States)

    Waitz, Ian A.

    1998-01-01

    The primary objective of our work was to evaluate and test several wake management schemes for the reduction of turbomachinery fan noise. Throughout the course of this work we relied on several tools. These include 1) Two-dimensional steady boundary-layer and wake analyses using MISES (a thin-shear layer Navier-Stokes code), 2) Two-dimensional unsteady wake-stator interaction simulations using UNSFLO, 3) Three-dimensional, steady Navier-Stokes rotor simulations using NEWT, 4) Internal blade passage design using quasi-one-dimensional passage flow models developed at MIT, 5) Acoustic modeling using LINSUB, 6) Acoustic modeling using VO72, 7) Experiments in a low-speed cascade wind-tunnel, and 8) ADP fan rig tests in the MIT Blowdown Compressor.

  11. Gas dynamics, optics and chemistry of an aircraft condensable wake

    Energy Technology Data Exchange (ETDEWEB)

    Grinats, E.S.; Kashevarov, A.V.; Stasenko, A.L. [Central Aerohydrodynamic Inst., Zhukovsky (Russian Federation)

    1997-12-31

    Prediction of the properties of a jet-and-vortex wake from an individual airplane is of great interest as the first step to assessment of the possible global changes in the atmosphere due to the world civil aviation. Several mathematical models of the different regions of an aircraft wake and corresponding numerical results are presented. The axisymmetric exhaust jet was simulated on the base of the well-known k-{epsilon} model of turbulence. Jet chemistry was investigated on the base of kinetic scheme of the gas phase reactions of enriched by including chemisorption by water droplets of several species and by taking into account of the photochemical processes. In the 3D far wake model, the numerical results for distribution of species exhausted by the engines and entrapped by the velocity field of two parallel vortices are shown. (R.P.) 7 refs.

  12. High-Order Numerical Simulations of Wind Turbine Wakes

    Science.gov (United States)

    Kleusberg, E.; Mikkelsen, R. F.; Schlatter, P.; Ivanell, S.; Henningson, D. S.

    2017-05-01

    Previous attempts to describe the structure of wind turbine wakes and their mutual interaction were mostly limited to large-eddy and Reynolds-averaged Navier-Stokes simulations using finite-volume solvers. We employ the higher-order spectral-element code Nek5000 to study the influence of numerical aspects on the prediction of the wind turbine wake structure and the wake interaction between two turbines. The spectral-element method enables an accurate representation of the vortical structures, with lower numerical dissipation than the more commonly used finite-volume codes. The wind-turbine blades are modeled as body forces using the actuator-line method (ACL) in the incompressible Navier-Stokes equations. Both tower and nacelle are represented with appropriate body forces. An inflow boundary condition is used which emulates homogeneous isotropic turbulence of wind-tunnel flows. We validate the implementation with results from experimental campaigns undertaken at the Norwegian University of Science and Technology (NTNU Blind Tests), investigate parametric influences and compare computational aspects with existing numerical simulations. In general the results show good agreement between the experiments and the numerical simulations both for a single-turbine setup as well as a two-turbine setup where the turbines are offset in the spanwise direction. A shift in the wake center caused by the tower wake is detected similar to experiments. The additional velocity deficit caused by the tower agrees well with the experimental data. The wake is captured well by Nek5000 in comparison with experiments both for the single wind turbine and in the two-turbine setup. The blade loading however shows large discrepancies for the high-turbulence, two-turbine case. While the experiments predicted higher thrust for the downstream turbine than for the upstream turbine, the opposite case was observed in Nek5000.

  13. The relationship between sleep and wake habits and academic performance in medical students: a cross-sectional study

    OpenAIRE

    BaHammam Ahmed S; Alaseem Abdulrahman M; Alzakri Abdulmajeed A; Almeneessier Aljohara S; Sharif Munir M

    2012-01-01

    Abstract Background The relationship between the sleep/wake habits and the academic performance of medical students is insufficiently addressed in the literature. This study aimed to assess the relationship between sleep habits and sleep duration with academic performance in medical students. Methods This study was conducted between December 2009 and January 2010 at the College of Medicine, King Saud University, and included a systematic random sample of healthy medical students in the first ...

  14. Measuring bubbles in a bubbly wake flow

    Science.gov (United States)

    Lee, Seung-Jae; Kawakami, Ellison; Arndt, Roger E. A.

    2012-11-01

    This paper presents measurements of the velocity and size distribution of bubbles in a bubbly wake. This was carried out by utilizing particle shadow velocimetry (PSV). This technique is a non-scattering approach that relies on direct in-line volume illumination by a pulsed source such as a light-emitting diode (LED). A narrow depth-of-field (DoF) is required for imaging a 2-dimensional plane within a flow volume. Shadows of the bubbles were collected by a high-speed camera. Once a reference image, taken when no bubbles were present in the flow, was subtracted from the images, the image was segmented using an edge detection technique. The Canny algorithm was determined to be best suited for this application. A curvature profile method was employed to distinguish individual bubbles within a cluster of highly overlapping bubbles. The utilized algorithm was made to detect partly overlapping bubbles and reconstruct the missing parts. The movement of recognized individual bubbles was tracked on a two dimensional plane within a flow volume. In order to obtain quantitative results, the wake of a ventilated hydrofoil was investigated by applying the shadowgraphy technique and the described bubble detection algorithm. These experiments were carried out in the high speed cavitation tunnel at Saint Anthony Falls Laboratory (SAFL) of the University of Minnesota. This research is jointly sponsored by the Office of Naval Re- search, Dr. Ron Joslin, program manager, and the Department of Energy, Golden Field Office.

  15. Characterizing cylinder and hydrofoil wake dynamics

    Science.gov (United States)

    Kjeldsen, Morten; Seim, Bjarte G.; Arndt, Roger E. A.

    2009-11-01

    A number of high speed PIV measurements of wakes trailing a NACA 0015, c=0.081m, and a cylinder D= 0.0127m, in the speed range 2 through 9 m/s have been made in the high speed water tunnel at SAFL- UMN. The cylinder vortex shedding follows closely St=0.2, while that off the hydrofoil is more irregular. Although the hydrofoil shows a more irregular nature a measure for both shedding frequencies and vortex strength of is of great interest also for drag analysis. The direct approach mapping individual structures, e.g. vorticity based analysis, can be obscured by the quality of the measurements made, hence other methods to reveal frequency and strength are in demand. A study were the mapping of time variation of the main flow direction impulse flux integrated over the wake at, minimum two, downstream positions has been made. A cross-correlation analysis of the impulse flux can reveal structure transport speeds, the frequency spectrum will reflect the shedding frequency, while the temporal variation represents the strength. For the hydrofoil it's shown that a significant cross- correlation is present. In terms of spectra even the more structured shedding from cylinders are hard to capture, and finally the vortex strength found using the cited algorithm seems somewhat unreliable. A thorough comparison between the suggested measure and traditional measures is given.

  16. Impact of Neutral Boundary-Layer Turbulence on Wind-Turbine Wakes: A Numerical Modelling Study

    Science.gov (United States)

    Englberger, Antonia; Dörnbrack, Andreas

    2017-03-01

    The wake characteristics of a wind turbine in a turbulent boundary layer under neutral stratification are investigated systematically by means of large-eddy simulations. A methodology to maintain the turbulence of the background flow for simulations with open horizontal boundaries, without the necessity of the permanent import of turbulence data from a precursor simulation, was implemented in the geophysical flow solver EULAG. These requirements are fulfilled by applying the spectral energy distribution of a neutral boundary layer in the wind-turbine simulations. A detailed analysis of the wake response towards different turbulence levels of the background flow results in a more rapid recovery of the wake for a higher level of turbulence. A modified version of the Rankine-Froude actuator disc model and the blade element momentum method are tested as wind-turbine parametrizations resulting in a strong dependence of the near-wake wind field on the parametrization, whereas the far-wake flow is fairly insensitive to it. The wake characteristics are influenced by the two considered airfoils in the blade element momentum method up to a streamwise distance of 14 D ( D = rotor diameter). In addition, the swirl induced by the rotation has an impact on the velocity field of the wind turbine even in the far wake. Further, a wake response study reveals a considerable effect of different subgrid-scale closure models on the streamwise turbulent intensity.

  17. The Computer Code NOVO for the Calculation of Wake Potentials of the Very Short Ultra-relativistic Bunches

    Energy Technology Data Exchange (ETDEWEB)

    Novokhatski, Alexander; /SLAC

    2005-12-01

    The problem of electromagnetic interaction of a beam and accelerator elements is very important for linear colliders, electron-positron factories, and free electron lasers. Precise calculation of wake fields is required for beam dynamics study in these machines. We describe a method which allows computation of wake fields of the very short bunches. Computer code NOVO was developed based on this method. This method is free of unphysical solutions like ''self-acceleration'' of a bunch head, which is common to well known wake field codes. Code NOVO was used for the wake fields study for many accelerator projects all over the world.

  18. Studies of Particle Wake Potentials in Plasmas

    Science.gov (United States)

    Ellis, Ian; Graziani, Frank; Glosli, James; Strozzi, David; Surh, Michael; Richards, David; Decyk, Viktor; Mori, Warren

    2011-10-01

    Fast Ignition studies require a detailed understanding of electron scattering, stopping, and energy deposition in plasmas with variable values for the number of particles within a Debye sphere. Presently there is disagreement in the literature concerning the proper description of these processes. Developing and validating proper descriptions requires studying the processes using first-principle electrostatic simulations and possibly including magnetic fields. We are using the particle-particle particle-mesh (PPPM) code ddcMD and the particle-in-cell (PIC) code BEPS to perform these simulations. As a starting point in our study, we examine the wake of a particle passing through a plasma in 3D electrostatic simulations performed with ddcMD and with BEPS using various cell sizes. In this poster, we compare the wakes we observe in these simulations with each other and predictions from Vlasov theory. Prepared by LLNL under Contract DE-AC52-07NA27344 and by UCLA under Grant DE-FG52-09NA29552.

  19. Method of fabricating electrodes including high-capacity, binder-free anodes for lithium-ion batteries

    Energy Technology Data Exchange (ETDEWEB)

    Ban, Chunmei; Wu, Zhuangchun; Dillon, Anne C.

    2017-01-10

    An electrode (110) is provided that may be used in an electrochemical device (100) such as an energy storage/discharge device, e.g., a lithium-ion battery, or an electrochromic device, e.g., a smart window. Hydrothermal techniques and vacuum filtration methods were applied to fabricate the electrode (110). The electrode (110) includes an active portion (140) that is made up of electrochemically active nanoparticles, with one embodiment utilizing 3d-transition metal oxides to provide the electrochemical capacity of the electrode (110). The active material (140) may include other electrochemical materials, such as silicon, tin, lithium manganese oxide, and lithium iron phosphate. The electrode (110) also includes a matrix or net (170) of electrically conductive nanomaterial that acts to connect and/or bind the active nanoparticles (140) such that no binder material is required in the electrode (110), which allows more active materials (140) to be included to improve energy density and other desirable characteristics of the electrode. The matrix material (170) may take the form of carbon nanotubes, such as single-wall, double-wall, and/or multi-wall nanotubes, and be provided as about 2 to 30 percent weight of the electrode (110) with the rest being the active material (140).

  20. Large-Eddy Simulation of turbine wake in complex terrain

    DEFF Research Database (Denmark)

    Berg, Jacob; Troldborg, Niels; Sørensen, Niels N.

    2017-01-01

    We present Large-Eddy Simulation results of a turbine wake in realistic complex terrain with slopes above 0.5. By comparing simulations including and without the wind turbine we can estimate the induction factor, a, and we show how the presence of a strong recirculation zone in the terrain dictates...

  1. Association between seasonal affective disorder and subjective quality of the sleep/wake cycle in adolescents.

    Science.gov (United States)

    Tonetti, Lorenzo; Fabbri, Marco; Erbacci, Alex; Martoni, Monica; Natale, Vincenzo

    2014-03-30

    The relationship between seasonal affective disorder (SAD) and subjective quality of sleep/wake cycle in adolescents was explored. The Seasonal Pattern Assessment Questionnaire for Children and Adolescents (SPAQ-CA) and Mini Sleep Questionnaire (MSQ) were administered to 345 adolescents living in the city of Cesena (Emilia-Romagna region, Italy) (299 females; age range: 14-18 years), to determine SAD and perceived quality of the sleep/wake cycle. The response rate was 92% for females and 90.2% for males. The MSQ includes two factors, sleep and wake, with lower scores corresponding to a lower quality of sleep and wake. The MSQ includes cut-off criteria to detect a good or bad sleep and wake quality. Adolescents with SAD (16 ± 5.7) scored significantly lower than those not affected on wake factor (19.5 ± 4.3), while no effect has been observed on sleep factor. SAD was the only one significant predictor of good/bad wake quality, while it did not reach significant level with reference to good/bad sleep quality. Present results are indications of a possible influence of SAD on wake quality and further studies are necessary to confirm them. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  2. Applications of the conjugate gradient FFT method in scattering and radiation including simulations with impedance boundary conditions

    Science.gov (United States)

    Barkeshli, Kasra; Volakis, John L.

    1991-01-01

    The theoretical and computational aspects related to the application of the Conjugate Gradient FFT (CGFFT) method in computational electromagnetics are examined. The advantages of applying the CGFFT method to a class of large scale scattering and radiation problems are outlined. The main advantages of the method stem from its iterative nature which eliminates a need to form the system matrix (thus reducing the computer memory allocation requirements) and guarantees convergence to the true solution in a finite number of steps. Results are presented for various radiators and scatterers including thin cylindrical dipole antennas, thin conductive and resistive strips and plates, as well as dielectric cylinders. Solutions of integral equations derived on the basis of generalized impedance boundary conditions (GIBC) are also examined. The boundary conditions can be used to replace the profile of a material coating by an impedance sheet or insert, thus, eliminating the need to introduce unknown polarization currents within the volume of the layer. A general full wave analysis of 2-D and 3-D rectangular grooves and cavities is presented which will also serve as a reference for future work.

  3. Generation of transgenic mouse line expressing Kusabira Orange throughout body, including erythrocytes, by random segregation of provirus method.

    Science.gov (United States)

    Hamanaka, Sanae; Ooehara, Jun; Morita, Yohei; Ema, Hideo; Takahashi, Satoru; Miyawaki, Atsushi; Otsu, Makoto; Yamaguchi, Tomoyuki; Onodera, Masafumi; Nakauchi, Hiromitsu

    2013-06-14

    Fluorescent-protein transgenic mice are useful for obtaining marked somatic cells to study kinetics of development or differentiation. Fluorescence-marked hematopoietic stem cells in particular are commonly used for studying hematopoiesis. However, as far as we know, no transgenic mouse line is described in which a fluorescent protein is stably and constitutively expressed in all hematopoietic cells, including erythrocytes and platelets. Using the random segregation of provirus (RSP) method, we generated from retrovirally transduced mouse embryonic stem cells a transgenic mouse line expressing a red/orange fluorescent protein, Kusabira Orange (KuO). KuO transgenic mouse line cells carry only one proviral integration site and stably express KuO in all hematopoietic-lineage elements, including erythrocytes and platelets. Moreover, bone-marrow transplantation in KuO transgenic mice demonstrated normal hematopoieisis. KuO transgenic mice likely will prove useful for study of hematopoiesis that includes erythropoiesis and megakaryopoiesis. Copyright © 2013 Elsevier Inc. All rights reserved.

  4. Evaluation and comparison of multiple test methods, including real-time PCR, for Legionella detection in clinical specimens.

    Directory of Open Access Journals (Sweden)

    Adriana Peci

    2016-08-01

    Full Text Available Legionella is a gram-negative bacterium that can cause Pontiac fever, a mild upper respiratory infection and Legionnaire’s disease, a more severe illness. We aimed to compare the performance of urine antigen, culture and PCR test methods and to determine if sputum is an alternative to the use of more invasive bronchoalveolar lavage (BAL. Data for this study included specimens tested for Legionella at PHOL from January 1, 2010 to April 30, 2014, as part of routine clinical testing. We found sensitivity of UAT compared to culture to be 87%, specificity 94.7%, positive predictive value (PPV 63.8% and negative predictive value (NPV 98.5%. Sensitivity of UAT compared to PCR was 74.7%, specificity 98.3%, PPV 77.7% and NPV 98.1%. Of 146 patients who had a Legionella positive result by PCR, only 66(45.2% also had a positive result by culture. Sensitivity for culture was the same using either sputum or BAL (13.6%; sensitivity for PCR was 10.3% for sputum and 12.8% for BAL. Both sputum and BAL yield similar results despite testing methods (Fisher Exact p-values=1.0, for each test. In summary, all test methods have inherent weaknesses in identifying Legionella; thereforemore than one testing method should be used. Obtaining a single specimen type from patients with pneumonia limits the ability to diagnose Legionella, particularly when urine is the specimen type submitted. Given ease of collection, and similar sensitivity to BAL, clinicians are encouraged to submit sputum in addition to urine when BAL submission is not practical, from patients being tested for Legionella.

  5. Evaluation and Comparison of Multiple Test Methods, Including Real-time PCR, for Legionella Detection in Clinical Specimens

    Science.gov (United States)

    Peci, Adriana; Winter, Anne-Luise; Gubbay, Jonathan B.

    2016-01-01

    Legionella is a Gram-negative bacterium that can cause Pontiac fever, a mild upper respiratory infection and Legionnaire’s disease, a more severe illness. We aimed to compare the performance of urine antigen, culture, and polymerase chain reaction (PCR) test methods and to determine if sputum is an acceptable alternative to the use of more invasive bronchoalveolar lavage (BAL). Data for this study included specimens tested for Legionella at Public Health Ontario Laboratories from 1st January, 2010 to 30th April, 2014, as part of routine clinical testing. We found sensitivity of urinary antigen test (UAT) compared to culture to be 87%, specificity 94.7%, positive predictive value (PPV) 63.8%, and negative predictive value (NPV) 98.5%. Sensitivity of UAT compared to PCR was 74.7%, specificity 98.3%, PPV 77.7%, and NPV 98.1%. Out of 146 patients who had a Legionella-positive result by PCR, only 66 (45.2%) also had a positive result by culture. Sensitivity for culture was the same using either sputum or BAL (13.6%); sensitivity for PCR was 10.3% for sputum and 12.8% for BAL. Both sputum and BAL yield similar results regardless testing methods (Fisher Exact p-values = 1.0, for each test). In summary, all test methods have inherent weaknesses in identifying Legionella; therefore, more than one testing method should be used. Obtaining a single specimen type from patients with pneumonia limits the ability to diagnose Legionella, particularly when urine is the specimen type submitted. Given ease of collection and similar sensitivity to BAL, clinicians are encouraged to submit sputum in addition to urine when BAL submission is not practical from patients being tested for Legionella. PMID:27630979

  6. Wake characteristics of a model ornithopter

    Science.gov (United States)

    Juarez, Alfredo; Harlow, Jacob; Allen, James; Ferreira de Sousa, Paulo

    2006-03-01

    This paper details unsteady wake measurements from a model Ornithopther flying in a wind tunnel at representative flight conditions. Testing over a range of Strouhal number, 0.1-0.3, shows that the unsteady wake is composed of coherent vortical structures that resemble vortex rings. A single ring is formed in the wake of each wing during one wing beat. Momentum balance from velocity field measurements are reconciled with unsteady lift and drag measurements from a drag balance.

  7. Results of gait analysis including the Oxford foot model in children with clubfoot treated with the Ponseti method.

    Science.gov (United States)

    Mindler, Gabriel T; Kranzl, Andreas; Lipkowski, Charlotte A M; Ganger, Rudolf; Radler, Christof

    2014-10-01

    The aim of the study was to evaluate how clubfeet treated with the Ponseti method compare with control feet in gait analysis and whether additional information can be provided by the Oxford foot model. All patients with a minimum age of three years in our prospective database of clubfeet treated with the Ponseti method were considered for inclusion. Exclusion criteria were an associated syndrome or neurological disease, positional (slight) clubfoot, and presentation at an age of more than three months. Of the 125 patients with 199 clubfeet who satisfied the criteria, thirty-six (29%) agreed to participate in the study. Four of these were excluded because of insufficient gait analysis data, leaving thirty-two patients with fifty clubfeet for evaluation. Clinical examination and three-dimensional gait analysis including the Oxford foot model were performed, and a disease-specific questionnaire was administered. Kinetic and kinematic results were compared with those of an age-matched control group (n = 15). The mean score on the disease-specific questionnaire was 83.5. Gait analysis showed significantly decreased range of motion, plantar flexion, and power of the ankle compared with controls. The mean external foot progression angle of 5.7° in the Ponseti group was slightly less than that in the controls. Slight intoeing occurred in 24%, and 12% did not achieve a neutral position during swing phase. Slight compensation was observed, including external rotation of the hip in 28%. The Oxford foot model revealed differences in foot motion between the groups. Clubfoot treatment with the Ponseti method yielded good clinical results with high functional scores. Three-dimensional gait analysis demonstrated distinctive but slight deviations. Intoeing was less frequent and less severe compared with groups in the literature. We recommend the use of three-dimensional gait analysis, including a foot model, as an objective tool for evaluation of the results of clubfoot treatment

  8. A Physiologically Based Model of Orexinergic Stabilization of Sleep and Wake

    Science.gov (United States)

    Fulcher, Ben D.; Phillips, Andrew J. K.; Postnova, Svetlana; Robinson, Peter A.

    2014-01-01

    The orexinergic neurons of the lateral hypothalamus (Orx) are essential for regulating sleep-wake dynamics, and their loss causes narcolepsy, a disorder characterized by severe instability of sleep and wake states. However, the mechanisms through which Orx stabilize sleep and wake are not well understood. In this work, an explanation of the stabilizing effects of Orx is presented using a quantitative model of important physiological connections between Orx and the sleep-wake switch. In addition to Orx and the sleep-wake switch, which is composed of mutually inhibitory wake-active monoaminergic neurons in brainstem and hypothalamus (MA) and the sleep-active ventrolateral preoptic neurons of the hypothalamus (VLPO), the model also includes the circadian and homeostatic sleep drives. It is shown that Orx stabilizes prolonged waking episodes via its excitatory input to MA and by relaying a circadian input to MA, thus sustaining MA firing activity during the circadian day. During sleep, both Orx and MA are inhibited by the VLPO, and the subsequent reduction in Orx input to the MA indirectly stabilizes sustained sleep episodes. Simulating a loss of Orx, the model produces dynamics resembling narcolepsy, including frequent transitions between states, reduced waking arousal levels, and a normal daily amount of total sleep. The model predicts a change in sleep timing with differences in orexin levels, with higher orexin levels delaying the normal sleep episode, suggesting that individual differences in Orx signaling may contribute to chronotype. Dynamics resembling sleep inertia also emerge from the model as a gradual sleep-to-wake transition on a timescale that varies with that of Orx dynamics. The quantitative, physiologically based model developed in this work thus provides a new explanation of how Orx stabilizes prolonged episodes of sleep and wake, and makes a range of experimentally testable predictions, including a role for Orx in chronotype and sleep inertia. PMID

  9. A physiologically based model of orexinergic stabilization of sleep and wake.

    Directory of Open Access Journals (Sweden)

    Ben D Fulcher

    Full Text Available The orexinergic neurons of the lateral hypothalamus (Orx are essential for regulating sleep-wake dynamics, and their loss causes narcolepsy, a disorder characterized by severe instability of sleep and wake states. However, the mechanisms through which Orx stabilize sleep and wake are not well understood. In this work, an explanation of the stabilizing effects of Orx is presented using a quantitative model of important physiological connections between Orx and the sleep-wake switch. In addition to Orx and the sleep-wake switch, which is composed of mutually inhibitory wake-active monoaminergic neurons in brainstem and hypothalamus (MA and the sleep-active ventrolateral preoptic neurons of the hypothalamus (VLPO, the model also includes the circadian and homeostatic sleep drives. It is shown that Orx stabilizes prolonged waking episodes via its excitatory input to MA and by relaying a circadian input to MA, thus sustaining MA firing activity during the circadian day. During sleep, both Orx and MA are inhibited by the VLPO, and the subsequent reduction in Orx input to the MA indirectly stabilizes sustained sleep episodes. Simulating a loss of Orx, the model produces dynamics resembling narcolepsy, including frequent transitions between states, reduced waking arousal levels, and a normal daily amount of total sleep. The model predicts a change in sleep timing with differences in orexin levels, with higher orexin levels delaying the normal sleep episode, suggesting that individual differences in Orx signaling may contribute to chronotype. Dynamics resembling sleep inertia also emerge from the model as a gradual sleep-to-wake transition on a timescale that varies with that of Orx dynamics. The quantitative, physiologically based model developed in this work thus provides a new explanation of how Orx stabilizes prolonged episodes of sleep and wake, and makes a range of experimentally testable predictions, including a role for Orx in chronotype and

  10. A physiologically based model of orexinergic stabilization of sleep and wake.

    Science.gov (United States)

    Fulcher, Ben D; Phillips, Andrew J K; Postnova, Svetlana; Robinson, Peter A

    2014-01-01

    The orexinergic neurons of the lateral hypothalamus (Orx) are essential for regulating sleep-wake dynamics, and their loss causes narcolepsy, a disorder characterized by severe instability of sleep and wake states. However, the mechanisms through which Orx stabilize sleep and wake are not well understood. In this work, an explanation of the stabilizing effects of Orx is presented using a quantitative model of important physiological connections between Orx and the sleep-wake switch. In addition to Orx and the sleep-wake switch, which is composed of mutually inhibitory wake-active monoaminergic neurons in brainstem and hypothalamus (MA) and the sleep-active ventrolateral preoptic neurons of the hypothalamus (VLPO), the model also includes the circadian and homeostatic sleep drives. It is shown that Orx stabilizes prolonged waking episodes via its excitatory input to MA and by relaying a circadian input to MA, thus sustaining MA firing activity during the circadian day. During sleep, both Orx and MA are inhibited by the VLPO, and the subsequent reduction in Orx input to the MA indirectly stabilizes sustained sleep episodes. Simulating a loss of Orx, the model produces dynamics resembling narcolepsy, including frequent transitions between states, reduced waking arousal levels, and a normal daily amount of total sleep. The model predicts a change in sleep timing with differences in orexin levels, with higher orexin levels delaying the normal sleep episode, suggesting that individual differences in Orx signaling may contribute to chronotype. Dynamics resembling sleep inertia also emerge from the model as a gradual sleep-to-wake transition on a timescale that varies with that of Orx dynamics. The quantitative, physiologically based model developed in this work thus provides a new explanation of how Orx stabilizes prolonged episodes of sleep and wake, and makes a range of experimentally testable predictions, including a role for Orx in chronotype and sleep inertia.

  11. Sleep Pharmacogenetics: Personalized Sleep-Wake Therapy.

    Science.gov (United States)

    Holst, Sebastian C; Valomon, Amandine; Landolt, Hans-Peter

    2016-01-01

    Research spanning (genetically engineered) animal models, healthy volunteers, and sleep-disordered patients has identified the neurotransmitters and neuromodulators dopamine, serotonin, norepinephrine, histamine, hypocretin, melatonin, glutamate, acetylcholine, γ-amino-butyric acid, and adenosine as important players in the regulation and maintenance of sleep-wake-dependent changes in neuronal activity and the sleep-wake continuum. Dysregulation of these neurochemical systems leads to sleep-wake disorders. Most currently available pharmacological treatments are symptomatic rather than causal, and their beneficial and adverse effects are often variable and in part genetically determined. To evaluate opportunities for evidence-based personalized medicine with present and future sleep-wake therapeutics, we review here the impact of known genetic variants affecting exposure of and sensitivity to drugs targeting the neurochemistry of sleep-wake regulation and the pathophysiology of sleep-wake disturbances. Many functional polymorphisms modify drug response phenotypes relevant for sleep. To corroborate the importance of these and newly identified variants for personalized sleep-wake therapy, human sleep pharmacogenetics should be complemented with pharmacogenomic investigations, research about sleep-wake-dependent pharmacological actions, and studies in mice lacking specific genes. These strategies, together with future knowledge about epigenetic mechanisms affecting sleep-wake physiology and treatment outcomes, may lead to potent and safe novel therapies for the increasing number of sleep-disordered patients (e.g., in aged populations).

  12. Revolutionary Wake Hazard Assessment Tool Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Continuum Dynamics, Inc. (CDI) has developed a Multiple Aircraft Simulation Tool (MAST) that revolutionizes the ability to predict and assess wake interactions...

  13. Coupled wake boundary layer model of windfarms

    Science.gov (United States)

    Stevens, Richard; Gayme, Dennice; Meneveau, Charles

    2014-11-01

    We present a coupled wake boundary layer (CWBL) model that describes the distribution of the power output in a windfarm. The model couples the traditional, industry-standard wake expansion/superposition approach with a top-down model for the overall windfarm boundary layer structure. Wake models capture the effect of turbine positioning, while the top-down approach represents the interaction between the windturbine wakes and the atmospheric boundary layer. Each portion of the CWBL model requires specification of a parameter that is unknown a-priori. The wake model requires the wake expansion rate, whereas the top-down model requires the effective spanwise turbine spacing within which the model's momentum balance is relevant. The wake expansion rate is obtained by matching the mean velocity at the turbine from both approaches, while the effective spanwise turbine spacing is determined from the wake model. Coupling of the constitutive components of the CWBL model is achieved by iterating these parameters until convergence is reached. We show that the CWBL model predictions compare more favorably with large eddy simulation results than those made with either the wake or top-down model in isolation and that the model can be applied successfully to the Horns Rev and Nysted windfarms. The `Fellowships for Young Energy Scientists' (YES!) of the Foundation for Fundamental Research on Matter supported by NWO, and NSF Grant #1243482.

  14. Anisotropy in turbulence profiles of stratified wakes

    Science.gov (United States)

    Spedding, G. R.

    2001-08-01

    At sufficiently high values of the Reynolds number (Re⩾4.5×103) and internal Froude number (F⩾4), initially turbulent bluff body wakes evolve in the presence of a stable background density gradient with wake-averaged mean and turbulence length and velocity scales that are independent of Re and F for at least two orders of magnitude extension in both parameters. The way in which the initially three-dimensional motions transition to the characteristic (and Re- and F-independent) late wakes (where vertical velocities, w≪u,v) is both of great practical interest, and complex, hence somewhat unclear. Here, digital particle imaging velocimetry type measurements on towed-sphere wakes are described, so that the development of anisotropy can be measured by the time development of turbulence profiles in horizontal and vertical centerplanes. The observed anisotropies can be associated with energy transfer to internal wave modes, and suppression of other vertical displacements, that contrasts with sphere wakes at similar Re in a homogeneous fluid. Maximum Reynolds stresses occur at the boundary of a sinuous undulation of the wake, which increases in amplitude up to Nt≈60 (N is the buoyancy frequency that characterizes the strength of the stratification). Although an intrinsic wake profile instability cannot be excluded, the observed wake element spacings can be accounted for by known spiral and Kelvin-Helmholtz instabilities in the near wake.

  15. Wind turbine wake measurement in complex terrain

    DEFF Research Database (Denmark)

    Hansen, Kurt Schaldemose; Larsen, Gunner Chr.; Menke, Robert

    2016-01-01

    SCADA data from a wind farm and high frequency time series measurements obtained with remote scanning systems have been analysed with focus on identification of wind turbine wake properties in complex terrain. The analysis indicates that within the flow regime characterized by medium to large...... downstream distances (more than 5 diameters) from the wake generating turbine, the wake changes according to local atmospheric conditions e.g. vertical wind speed. In very complex terrain the wake effects are often “overruled” by distortion effects due to the terrain complexity or topology....

  16. Wake measurements for code validations

    DEFF Research Database (Denmark)

    Hansen, Kurt Schaldemose

    2009-01-01

    As part of the EU-TOPFARM project a large number of datasets have been identified for verification of wind farm climate models, aeroelastic load and production models of turbines subjected to three dimensional dynamic wake wind field and the aeroelastic production modeling of a whole wind farm de...... developed in the project. This report identifies a number of measurement datasets which is available for model validations in the EU-TOPFARM project. The datasets are presented with a very short summary of the test setup and a principle site layout illustration....

  17. The sleep–wake cycle and Alzheimer’s disease: what do we know?

    Science.gov (United States)

    Lim, Miranda M.; Gerstner, Jason R.; Holtzman, David M.

    2014-01-01

    SUMMARY Sleep–wake disturbances are a highly prevalent and often disabling feature of Alzheimer’s disease (AD). A cardinal feature of AD includes the formation of amyloid plaques, associated with the extracellular accumulation of the amyloid-β (Aβ) peptide. Evidence from animal and human studies suggests that Aβ pathology may disrupt the sleep–wake cycle, in that as Aβ accumulates, more sleep–wake fragmentation develops. Furthermore, recent research in animal and human studies suggests that the sleep–wake cycle itself may influence Alzheimer’s disease onset and progression. Chronic sleep deprivation increases amyloid plaque deposition, and sleep extension results in fewer plaques in experimental models. In this review geared towards the practicing clinician, we discuss possible mechanisms underlying the reciprocal relationship between the sleep–wake cycle and AD pathology and behavior, and present current approaches to therapy for sleep disorders in AD. PMID:25405649

  18. Wake meandering under non-neutral atmospheric stability conditions – theory and facts

    DEFF Research Database (Denmark)

    Larsen, Gunner Chr.; Machefaux, Ewan; Chougule, Abhijit S.

    2015-01-01

    This paper deals with modelling of wake dynamics under influence of atmospheric stability conditions different from neutral. In particular, it is investigated how the basic split in turbulent scales, on which the Dynamic Wake Meandering model is based, can be utilized to include atmospheric...... stability effects in this model. This is done partly by analyzing a large number of turbulence spectra obtained from sonic measurements, partly by analyzing dedicated full-scale LiDAR measurements from which wake dynamics can be directly resolved. The theory behind generalizing the Dynamic Wake Meandering...... model to non-neutral conditions are summarized and linked to the results of the full-scale experimental results. It is concluded that there is a qualitative match between the conjecture behind the Dynamic Wake Meandering model and the dependence of turbulence structure on atmospheric stability...

  19. The sleep-wake cycle and Alzheimer's disease: what do we know?

    Science.gov (United States)

    Lim, Miranda M; Gerstner, Jason R; Holtzman, David M

    2014-01-01

    Sleep-wake disturbances are a highly prevalent and often disabling feature of Alzheimer's disease (AD). A cardinal feature of AD includes the formation of amyloid plaques, associated with the extracellular accumulation of the amyloid-β (Aβ) peptide. Evidence from animal and human studies suggests that Aβ pathology may disrupt the sleep-wake cycle, in that as Aβ accumulates, more sleep-wake fragmentation develops. Furthermore, recent research in animal and human studies suggests that the sleep-wake cycle itself may influence Alzheimer's disease onset and progression. Chronic sleep deprivation increases amyloid plaque deposition, and sleep extension results in fewer plaques in experimental models. In this review geared towards the practicing clinician, we discuss possible mechanisms underlying the reciprocal relationship between the sleep-wake cycle and AD pathology and behavior, and present current approaches to therapy for sleep disorders in AD.

  20. Self-gravity wake structures in Saturn's a ring revealed by Cassini vims

    Science.gov (United States)

    Hedman, M.M.; Nicholson, P.D.; Salo, H.; Wallis, B.D.; Buratti, B.J.; Baines, K.H.; Brown, R.H.; Clark, R.N.

    2007-01-01

    During the summer of 2005, the Visual and Infrared Mapping Spectrometer onboard the Cassini spacecraft observed a series of occultations of the star o Ceti (Mira) by Saturn's rings. These observations revealed pronounced variations in the optical depth of the A ring with longitude, which can be attributed to oriented structures in the rings known as self-gravity wakes. While the wakes themselves are only tens of meters across and below the resolution of the measurements, we are able to obtain information about the orientation and shapes of these structures by comparing the observed transmission at different longitudes with predictions from a simple model. Our findings include the following: (1) The orientation of the wakes varies systematically with radius, trailing by between 64?? and 72?? relative to the local radial direction. (2) The maximum transmission peaks at roughly 8% for B = 3.45?? in the middle A ring (???129,000 km). (3) Both the wake orientation and maximum transmission vary anomalously in the vicinity of two strong density waves (Janus 5:4 and Mimas 5:3). (4) The ratio of the wake vertical thickness H to the wake pattern wavelength ?? (assuming infinite, straight, regularly-spaced wake structures) varies from 0.12 to 0.09 across the A ring. Gravitational instability theory predicts ?? ??? 60 m, which suggests that the wake structures in the A ring are only ???6 m thick. ?? 2007. The American Astronomical Society. All rights reserved.

  1. Method for contamination control and barrier apparatus with filter for containing waste materials that include dangerous particulate matter

    Science.gov (United States)

    Pinson, Paul A.

    1998-01-01

    A container for hazardous waste materials that includes air or other gas carrying dangerous particulate matter has incorporated in barrier material, preferably in the form of a flexible sheet, one or more filters for the dangerous particulate matter sealably attached to such barrier material. The filter is preferably a HEPA type filter and is preferably chemically bonded to the barrier materials. The filter or filters are preferably flexibly bonded to the barrier material marginally and peripherally of the filter or marginally and peripherally of air or other gas outlet openings in the barrier material, which may be a plastic bag. The filter may be provided with a backing panel of barrier material having an opening or openings for the passage of air or other gas into the filter or filters. Such backing panel is bonded marginally and peripherally thereof to the barrier material or to both it and the filter or filters. A coupling or couplings for deflating and inflating the container may be incorporated. Confining a hazardous waste material in such a container, rapidly deflating the container and disposing of the container, constitutes one aspect of the method of the invention. The chemical bonding procedure for producing the container constitutes another aspect of the method of the invention.

  2. Maximization of the annual energy production of wind power plants by optimization of layout and yaw-based wake control: Maximization of wind plant AEP by optimization of layout and wake control

    Energy Technology Data Exchange (ETDEWEB)

    Gebraad, Pieter [National Renewable Energy Laboratory, Golden CO USA; Thomas, Jared J. [Brigham Young University, Provo UT USA; Ning, Andrew [Brigham Young University, Provo UT USA; Fleming, Paul [National Renewable Energy Laboratory, Golden CO USA; Dykes, Katherine [National Renewable Energy Laboratory, Golden CO USA

    2016-05-24

    This paper presents a wind plant modeling and optimization tool that enables the maximization of wind plant annual energy production (AEP) using yaw-based wake steering control and layout changes. The tool is an extension of a wake engineering model describing the steady-state effects of yaw on wake velocity profiles and power productions of wind turbines in a wind plant. To make predictions of a wind plant's AEP, necessary extensions of the original wake model include coupling it with a detailed rotor model and a control policy for turbine blade pitch and rotor speed. This enables the prediction of power production with wake effects throughout a range of wind speeds. We use the tool to perform an example optimization study on a wind plant based on the Princess Amalia Wind Park. In this case study, combined optimization of layout and wake steering control increases AEP by 5%. The power gains from wake steering control are highest for region 1.5 inflow wind speeds, and they continue to be present to some extent for the above-rated inflow wind speeds. The results show that layout optimization and wake steering are complementary because significant AEP improvements can be achieved with wake steering in a wind plant layout that is already optimized to reduce wake losses.

  3. [The rehabilitative treatment of the patients presenting with chronic obstructive pulmonary disease including the application of the manual handling methods].

    Science.gov (United States)

    Ayrapetova, N S; Eremushkin, M A; Antonovich, I V; Kuznetsov, O F; Samorukov, A E; Budylin, S P; Tarasova, L Yu; Derevnina, N A

    2017-01-01

    The objective of the present study was to identify the peculiar features and advantages of different methods for the mechanical impact on the thoracic tissues of the patients presenting with chronic obstructive pulmonary disease (COPD) and to develop specific indications for their clinical applications. This randomized prospective comparative study included 137 patients with COPD. In accordance with the currently accepted classification (GOLD, 2013), all the patients had COPD of medium severity. The smoldering inflammatory process was diagnosed in 75 (54.7%) patients, grade I and II respiratory insufficiency in 80 (58.4%) and 57 (41.6%) patients, respectively. The external respiration function was evaluated by means of pneumotachometry techniques during the forced expiratory maneuver and by spirometry. The pulmonary hemodynamics and myocardial contractility of the right ventricle were studied with the use of rheopulmonography and central hemodynamics by tetrapolar thoracic rheography. The routine inflammatory and immune tests were employed. Investigations of the systemic circulation have demonstrated the prevalence of its hyperkinetic type (54,0%) over the hypokinetic and eukinetic ones (23,3% and 22,7% respectively). All the patients were divided into three group identical in terms of clinical and functional characteristics. The patients comprising group 1 (n=46) were prescribed the rehabilitative treatment in the form of classical chest massage, those of group 2 (n=47) were treated by means of intense massage of asymmetric chest zones, and the patients included in group 3 (n=44) underwent manual therapy. It was shown that intense massage produced the most pronounced beneficial effect. Classical massage also resulted in the reduction of the inflammatory manifestations but its effectiveness was significantly lower than that of the intense treatment (рManual therapy failed to cause any appreciable changes in the character and severity of the inflammatory process (

  4. Simulating microinjection experiments in a novel model of the rat sleep-wake regulatory network.

    Science.gov (United States)

    Diniz Behn, Cecilia G; Booth, Victoria

    2010-04-01

    This study presents a novel mathematical modeling framework that is uniquely suited to investigating the structure and dynamics of the sleep-wake regulatory network in the brain stem and hypothalamus. It is based on a population firing rate model formalism that is modified to explicitly include concentration levels of neurotransmitters released to postsynaptic populations. Using this framework, interactions among primary brain stem and hypothalamic neuronal nuclei involved in rat sleep-wake regulation are modeled. The model network captures realistic rat polyphasic sleep-wake behavior consisting of wake, rapid eye movement (REM) sleep, and non-REM (NREM) sleep states. Network dynamics include a cyclic pattern of NREM sleep, REM sleep, and wake states that is disrupted by simulated variability of neurotransmitter release and external noise to the network. Explicit modeling of neurotransmitter concentrations allows for simulations of microinjections of neurotransmitter agonists and antagonists into a key wake-promoting population, the locus coeruleus (LC). Effects of these simulated microinjections on sleep-wake states are tracked and compared with experimental observations. Agonist/antagonist pairs, which are presumed to have opposing effects on LC activity, do not generally induce opposing effects on sleep-wake patterning because of multiple mechanisms for LC activation in the network. Also, different agents, which are presumed to have parallel effects on LC activity, do not induce parallel effects on sleep-wake patterning because of differences in the state dependence or independence of agonist and antagonist action. These simulation results highlight the utility of formal mathematical modeling for constraining conceptual models of the sleep-wake regulatory network.

  5. Sleep–wake disturbances in cancer patients: narrative review of literature focusing on improving quality of life outcomes

    Directory of Open Access Journals (Sweden)

    Dickerson SS

    2014-07-01

    Full Text Available Suzanne S Dickerson, Laurie M Connors, Ameera Fayad, Grace E Dean School of Nursing, State University of New York, University at Buffalo, NY, USA Purpose: Evidence suggests a high prevalence of sleep–wake disturbances in patients with cancer, occurring at diagnosis, during treatment, and continuing to survivorship. Yet associations between sleep–wake disturbances and the impact on quality of life outcomes is less clear. The purpose of this narrative review of the literature is to evaluate sleep–wake disturbances in patients with cancer, to describe the influence of poor sleep on quality of life as an outcome, and to evaluate the evidence to recommend future interventions. Framework and methods: This review was guided by the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA approach. Four databases (CINAHL, MEDLINE, PsycINFO, and Embase were searched using terms "cancer OR neoplasm", "sleep, sleep disturbance, sleep disorders or insomnia", and "quality of life"; the search included all years, English language, and peer-reviewed articles on research studies. Studies included measurements of sleep and quality of life in cancer patients at a minimum of two time points and demonstrated relationships between sleep and quality of life. Data were collected on date, patient demographics, cancer type and treatment, timeframe, design, measurement, variables, and results. Results: This narrative review demonstrates that sleep–wake disturbance is a major problem/symptom in patients with cancer. Of the 18 studies included, measurement of sleep-related variables included objective and subjective measures; however, direct measurement of the associations between sleep and quality of life was not common. Cognitive behavioral therapy for insomnia and mind–body interventions demonstrated feasibility when implemented into cancer care settings. In addition, the majority of interventions exhibited moderate effectiveness in improving

  6. Daily rhythms of the sleep-wake cycle.

    Science.gov (United States)

    Waterhouse, Jim; Fukuda, Yumi; Morita, Takeshi

    2012-03-13

    The amount and timing of sleep and sleep architecture (sleep stages) are determined by several factors, important among which are the environment, circadian rhythms and time awake. Separating the roles played by these factors requires specific protocols, including the constant routine and altered sleep-wake schedules. Results from such protocols have led to the discovery of the factors that determine the amounts and distribution of slow wave and rapid eye movement sleep as well as to the development of models to determine the amount and timing of sleep. One successful model postulates two processes. The first is process S, which is due to sleep pressure (and increases with time awake) and is attributed to a 'sleep homeostat'. Process S reverses during slow wave sleep (when it is called process S'). The second is process C, which shows a daily rhythm that is parallel to the rhythm of core temperature. Processes S and C combine approximately additively to determine the times of sleep onset and waking. The model has proved useful in describing normal sleep in adults. Current work aims to identify the detailed nature of processes S and C. The model can also be applied to circumstances when the sleep-wake cycle is different from the norm in some way. These circumstances include: those who are poor sleepers or short sleepers; the role an individual's chronotype (a measure of how the timing of the individual's preferred sleep-wake cycle compares with the average for a population); and changes in the sleep-wake cycle with age, particularly in adolescence and aging, since individuals tend to prefer to go to sleep later during adolescence and earlier in old age. In all circumstances, the evidence that sleep times and architecture are altered and the possible causes of these changes (including altered S, S' and C processes) are examined.

  7. Daily rhythms of the sleep-wake cycle

    Directory of Open Access Journals (Sweden)

    Waterhouse Jim

    2012-03-01

    Full Text Available Abstract The amount and timing of sleep and sleep architecture (sleep stages are determined by several factors, important among which are the environment, circadian rhythms and time awake. Separating the roles played by these factors requires specific protocols, including the constant routine and altered sleep-wake schedules. Results from such protocols have led to the discovery of the factors that determine the amounts and distribution of slow wave and rapid eye movement sleep as well as to the development of models to determine the amount and timing of sleep. One successful model postulates two processes. The first is process S, which is due to sleep pressure (and increases with time awake and is attributed to a 'sleep homeostat'. Process S reverses during slow wave sleep (when it is called process S'. The second is process C, which shows a daily rhythm that is parallel to the rhythm of core temperature. Processes S and C combine approximately additively to determine the times of sleep onset and waking. The model has proved useful in describing normal sleep in adults. Current work aims to identify the detailed nature of processes S and C. The model can also be applied to circumstances when the sleep-wake cycle is different from the norm in some way. These circumstances include: those who are poor sleepers or short sleepers; the role an individual's chronotype (a measure of how the timing of the individual's preferred sleep-wake cycle compares with the average for a population; and changes in the sleep-wake cycle with age, particularly in adolescence and aging, since individuals tend to prefer to go to sleep later during adolescence and earlier in old age. In all circumstances, the evidence that sleep times and architecture are altered and the possible causes of these changes (including altered S, S' and C processes are examined.

  8. Numerical investigation of wake structures of slow-flying bats

    Science.gov (United States)

    Wang, Shizhao; Zhang, Xing; He, Guowei

    2010-11-01

    Recently, some unique features of wake structure in bat flight have been revealed by experiments. It is found that the flow structure of bat flight is more complex than that of bird. A conceptual wake model of bat flight has been "rebuilt" using 2D DPIV images, but there is some risk of missing the details regarding dynamics of 3D vortex structures. Detailed flow information is still needed to understand the unsteady flow in bat flying. In this work, we perform 3D simulation of bat flying at the Reynolds number of 1000 (based on upstream flow and mean chord length) using the immersed boundary method. The geometry and wing-beat kinematics of bat are taken from the work of Watts et al (2001). The topology and evolution of the wake structures are described. The variation of topology in wake structures with the flapping Strouhal number is investigated. Moreover, the link between the generation of high lift and leading edge vortex is also studied.

  9. Wake-vortex decay in external turbulence

    NARCIS (Netherlands)

    Kuczaj, Arkadiusz K.; Armenio, V.; Fröhlich, J.; Geurts, Bernardus J.

    2010-01-01

    Wake vortices that form behind a moving aircraft represent 11 safety COil cern for other aircraft.s that follow. These tornado-like wake structures may persist for several minutes, extending for many kilometers across the sky. This safety issue is particularly important close to major airports where

  10. Unified Aeroacoustics Analysis for High Speed Turboprop Aerodynamics and Noise. Volume 1; Development of Theory for Blade Loading, Wakes, and Noise

    Science.gov (United States)

    Hanson, D. B.

    1991-01-01

    A unified theory for the aerodynamics and noise of advanced turboprops are presented. Aerodynamic topics include calculation of performance, blade load distribution, and non-uniform wake flow fields. Blade loading can be steady or unsteady due to fixed distortion, counter-rotating wakes, or blade vibration. The aerodynamic theory is based on the pressure potential method and is therefore basically linear. However, nonlinear effects associated with finite axial induction and blade vortex flow are included via approximate methods. Acoustic topics include radiation of noise caused by blade thickness, steady loading (including vortex lift), and unsteady loading. Shielding of the fuselage by its boundary layer and the wing are treated in separate analyses that are compatible but not integrated with the aeroacoustic theory for rotating blades.

  11. Non-linear Plasma Wake Growth of Electron Holes

    CERN Document Server

    Hutchinson, I H; Zhou, C

    2015-01-01

    An object's wake in a plasma with small Debye length that drifts \\emph{across} the magnetic field is subject to electrostatic electron instabilities. Such situations include, for example, the moon in the solar wind wake and probes in magnetized laboratory plasmas. The instability drive mechanism can equivalently be considered drift down the potential-energy gradient or drift up the density-gradient. The gradients arise because the plasma wake has a region of depressed density and electrostatic potential into which ions are attracted along the field. The non-linear consequences of the instability are analysed in this paper. At physical ratios of electron to ion mass, neither linear nor quasilinear treatment can explain the observation of large-amplitude perturbations that disrupt the ion streams well before they become ion-ion unstable. We show here, however, that electron holes, once formed, continue to grow, driven by the drift mechanism, and if they remain in the wake may reach a maximum non-linearly stable...

  12. Wind Farm Wake: The Horns Rev Photo Case

    Directory of Open Access Journals (Sweden)

    Pierre-Elouan Réthoré

    2013-02-01

    Full Text Available The aim of the paper is to examine the nowadays well-known wind farm wake photographs taken on 12 February 2008 at the offshore Horns Rev 1 wind farm. The meteorological conditions are described from observations from several satellite sensors quantifying clouds, surface wind vectors and sea surface temperature as well as ground-based information at and near the wind farm, including Supervisory Control and Data Acquisition (SCADA data. The SCADA data reveal that the case of fog formation occurred 12 February 2008 on the 10:10 UTC. The fog formation is due to very special atmospheric conditions where a layer of cold humid air above a warmer sea surface re-condensates to fog in the wake of the turbines. The process is fed by warm humid air up-drafted from below in the counter-rotating swirl generated by the clock-wise rotating rotors. The condensation appears to take place primarily in the wake regions with relatively high axial velocities and high turbulent kinetic energy. The wind speed is near cut-in and most turbines produce very little power. The rotational pattern of spiraling bands produces the large-scale structure of the wake fog.

  13. Wake Survey of a Marine Current Turbine Under Steady Conditions

    Science.gov (United States)

    Lust, Ethan; Luznik, Luksa; Flack, Karen

    2016-11-01

    A submersible particle image velocimetry (PIV) system was used to study the wake of a horizontal axis marine current turbine. The turbine was tested in a large tow tank facility at the United States Naval Academy. The turbine is a 1/25th scale model of the U.S. National Renewable Energy Laboratory's Reference Model 1 (RM1) tidal turbine. It is a two-bladed turbine measuring 0.8 m in diameter and featuring a NACA 63-618 airfoil cross section. Separate wind tunnel testing has shown the foil section used on the turbine to be Reynolds number independent with respect to lift at the experimental parameters of tow carriage speed (Utow = 1 . 68 m/s) and tip speed ratio (TSR = 7). The wake survey was conducted over an area extending 0.25D forward of the turbine tip path to 2.0D aft, and to a depth of 1.0D beneath the turbine output shaft in the streamwise plane. Each field of view was approximately 30 cm by 30 cm, and each overlapped the adjacent fields of view by 5 cm. The entire flow field was then reconstructed into a single field of investigation. Results include streamwise and vertical ensemble average velocity fields averaged over approximately 1,000 realizations, as well as higher-order statistics. Turbine tip vortex centers were identified and plotted showing increasing aperiodicity with wake age. keywords: horizontal axis marine current turbine, particle image velocimetry, towing tank, wake survey

  14. Gap Winds and Wakes: SAR Observations and Numerical Simulations.

    Science.gov (United States)

    Pan, Feifei; Smith, Ronald B.

    1999-04-01

    The nature of terrain-induced gap winds and wakes in the atmosphere is examined using surface wind data from synthetic aperture radar (SAR) and the shallow water equations. The shallow water model is used to predict the types of wake-jet wind patterns that might occur behind an idealized pair of bell-shaped hills with a gap between them. A regime diagram is constructed based on the width of the gap and the upstream Froude number. Specific predictions of the model are found to compare moderately well with SAR data from four examples of airflow near Unimak Island in the Aleutian Chain. The model predicts the observed wakes and jets, including jets that exceed the upstream speed. Theoretical analysis considers the relative importance of rising terrain and narrowing valley walls in the acceleration of gap winds. Wind speeds in the wake region are controlled by the Bernoulli function and regional pressure. Gap winds therefore are streams of air that have avoided Bernoulli loss over the terrain by passing through gaps. The speed of gap winds can exceed the upstream speed only in ridgelike situations when the regional leeside pressure is lower than the upstream pressure.

  15. Flow Structures within a Helicopter Rotor Hub Wake

    Science.gov (United States)

    Elbing, Brian; Reich, David; Schmitz, Sven

    2015-11-01

    A scaled model of a notional helicopter rotor hub was tested in the 48'' Garfield Thomas Water Tunnel at the Applied Research Laboratory Penn State. The measurement suite included total hub drag and wake velocity measurements (LDV, PIV, stereo-PIV) at three downstream locations. The main objective was to understand the spatiotemporal evolution of the unsteady wake between the rotor hub and the nominal location of the empennage (tail). Initial analysis of the data revealed prominent two- and four-per-revolution fluid structures linked to geometric hub features persisting into the wake far-field. In addition, a six-per-revolution fluid structure was observed in the far-field, which is unexpected due to the lack of any hub feature with the corresponding symmetry. This suggests a nonlinear interaction is occurring within the wake to generate these structures. This presentation will provide an overview of the experimental data and analysis with particular emphasis on these six-per-revolution structures.

  16. Detecting wind turbine wakes with nacelle lidars

    Science.gov (United States)

    Held, D. P.; Larvol, A.; Mann, J.

    2017-05-01

    Because the horizontal homogeneity assumption is violated in wakes flows, lidars face difficulties when reconstructing wind fields. Further, small-scale turbulence which is prevalent in wake flows causes Doppler spectrum widths to be broader than in the free stream. In this study the Doppler peak variance is used as a detection parameter for wakes. A one month long measurement campaign, where a continuous-wave lidar on a turbine has been exposed to multiple wake situations, is used to test the detection capabilities. The results show that it is possible to identify situation where a downstream turbine is in wake by comparing the peak widths. The used lidar is inexpensive and brings instalments on every turbine within economical reach. Thus, the information gathered by the lidars can be used for improved control at wind farm level.

  17. Simulation and Analysis of Wind Turbine Wakes

    DEFF Research Database (Denmark)

    Sørensen, Jens Nørkær

    2017-01-01

    Modern wind turbines are often clustered in wind farms in which the turbines are fully or partially influenced by the wake of upstream located turbines. As a consequence, the wake behind the wind turbines has a lower mean wind speed and an increased turbulence level, as compared to the undisturbed...... flow outside the farm. Hence, wake interaction leads to a decreased total production of power, caused by lower kinetic energy in the wind, and an increase in the turbulence intensity. The turbulence created from wind turbine wakes is mainly due to the presence of the distinct tip and root vortices......, which eventually break down and forms small-scale turbulent structures. If a wind turbine is located in a wake consisting of tip and root vortices, the fatigue loading is more severe than in the case where the tip vortices have already broken down by instability mechanisms. Therefore, understanding...

  18. Measurements in Vortex Wakes Shed by Conventional and Modified Subsonic Aircraft

    Science.gov (United States)

    Rossow, Vernon J.

    1996-01-01

    A theoretical and experimental program is underway at NASA Ames Research Center to first obtain a better understanding of the hazard posed by the vortex wakes of subsonic transports, and then to develop methods on how to modify the wake-generating aircraft in order to make the vortices less hazardous. This paper summarizes results obtained in the 80- by 120-Foot Wind Tunnel at NASA Ames Research Center on the characteristics of the vortex wakes that trail from 0.03 scale models of a B-747 and of a DC-10. Measurements are first described that were taken in the wakes with a hot-film anemometer probe, and with wings that range in size from 0.2 to 1.0 times the span of the wake generating models at downstream distances of 81 ft and 162 ft. behind the wake-generating model; i.e., at scale distances of 0.5 and 1.0 mile. The data are then used to evaluate the accuracy of a vortex-lattice method for prediction of the loads induced on following wings by vortex wakes.

  19. An Optical Wake Vortex Detection System for Super-Density Airport Operation Project

    Data.gov (United States)

    National Aeronautics and Space Administration — OSI proposes to develop a wake vortex detection system including a group of double-ended and single-ended optical scintillometers properly deployed in the airfield...

  20. Large Eddy Simulation of Vertical Axis Wind Turbine Wakes

    Directory of Open Access Journals (Sweden)

    Sina Shamsoddin

    2014-02-01

    Full Text Available In this study, large eddy simulation (LES is combined with a turbine model to investigate the wake behind a vertical-axis wind turbine (VAWT in a three-dimensional turbulent flow. Two methods are used to model the subgrid-scale (SGS stresses: (a the Smagorinsky model; and (b the modulated gradient model. To parameterize the effects of the VAWT on the flow, two VAWT models are developed: (a the actuator swept-surface model (ASSM, in which the time-averaged turbine-induced forces are distributed on a surface swept by the turbine blades, i.e., the actuator swept surface; and (b the actuator line model (ALM, in which the instantaneous blade forces are only spatially distributed on lines representing the blades, i.e., the actuator lines. This is the first time that LES has been applied and validated for the simulation of VAWT wakes by using either the ASSM or the ALM techniques. In both models, blade-element theory is used to calculate the lift and drag forces on the blades. The results are compared with flow measurements in the wake of a model straight-bladed VAWT, carried out in the Institute de Méchanique et Statistique de la Turbulence (IMST water channel. Different combinations of SGS models with VAWT models are studied, and a fairly good overall agreement between simulation results and measurement data is observed. In general, the ALM is found to better capture the unsteady-periodic nature of the wake and shows a better agreement with the experimental data compared with the ASSM. The modulated gradient model is also found to be a more reliable SGS stress modeling technique, compared with the Smagorinsky model, and it yields reasonable predictions of the mean flow and turbulence characteristics of a VAWT wake using its theoretically-determined model coefficient.

  1. Using airborne and satellite SAR for wake mapping offshore

    Science.gov (United States)

    Christiansen, Merete B.; Hasager, Charlotte B.

    2006-09-01

    Offshore wind energy is progressing rapidly around Europe. One of the latest initiatives is the installation of multiple wind farms in clusters to share cables and maintenance costs and to fully exploit premium wind resource sites. For siting of multiple nearby wind farms, the wind turbine wake effect must be considered. Synthetic aperture radar (SAR) is an imaging remote sensing technique which offers a unique opportunity to describe spatial variations of wind speed offshore. For the first time an airborne SAR instrument was used for data acquisition over a large offshore wind farm. The aim was to identify the turbine wake effect from SAR-derived wind speed maps as a downstream region of reduced wind speed. The aircraft SAR campaign was conducted on 12 October 2003 over the wind farm at Horns Rev in the North Sea. Nearly simultaneous measurements were acquired over the area by the SAR on board the ERS-2 satellite. In addition, meteorological data were collected. Both aircraft and satellite SAR-derived wind speed maps showed significant velocity deficits downstream of the wind farm. Wind speed maps retrieved from aircraft SAR suggested deficits of up to 20% downstream of the last turbine, whereas satellite SAR-derived maps showed deficits of the order of 10%. The difference originated partly from the two different reference methods used for normalization of measured wind speeds. The detected region of reduced wind speed had the same width as the wind turbine array, indicating a low degree of horizontal wake dispersion. The downstream wake extent was approximately 10 km, which corresponds well with results from previous studies and with wake model predictions. Copyright

  2. Estimation of unsteady aerodynamics in the wake of a freely flying European starling

    OpenAIRE

    Hadar Ben-Gida; Adam Kirchhefer; Taylor, Zachary J.; Wayne Bezner-Kerr; Guglielmo, Christopher G.; Kopp, Gregory A.; Roi Gurka

    2013-01-01

    Wing flapping is one of the most widespread propulsion methods found in nature; however, the current understanding of the aerodynamics in bird wakes is incomplete. The role of the unsteady motion in the flow and its contribution to the aerodynamics is still an open question. In the current study, the wake of a freely flying European starling has been investigated using long-duration high-speed Particle Image Velocimetry (PIV) in the near wake. Kinematic analysis of the wings and body of the b...

  3. Analysis of the Induction and Wake Evolution of an Offshore Floating Wind Turbine

    Directory of Open Access Journals (Sweden)

    Matthew Lackner

    2012-04-01

    Full Text Available The degrees-of-freedom associated with offshore floating wind turbines (OFWTs result in a more dynamic flow field. The resulting aerodynamic loads may be significantly influenced by these motions via perturbations in the evolving wake. This is of great interest in terms of OFWT design, placement and simulation. This study presents free vortex wake method (FVM simulations of the NREL 5-MW wind turbine of a variety of platforms, operating in a range of wind speeds synthesized platform motion time series. Motion-induced wake perturbations are observed to affect induction. Transitions between windmill and propeller states are also observed.

  4. Why Does REM Sleep Occur? A Wake-up Hypothesis

    Directory of Open Access Journals (Sweden)

    Dr. W. R. eKlemm

    2011-09-01

    Full Text Available Brain activity differs in the various sleep stages and in conscious wakefulness. Awakening from sleep requires restoration of the complex nerve impulse patterns in neuronal network assemblies necessary to re-create and sustain conscious wakefulness. Herein I propose that the brain uses REM to help wake itself up after it has had a sufficient amount of sleep. Evidence suggesting this hypothesis includes the facts that, 1 when first going to sleep, the brain plunges into Stage N3 (formerly called Stage IV, a deep abyss of sleep, and, as the night progresses, the sleep is punctuated by episodes of REM that become longer and more frequent toward morning, 2 conscious-like dreams are a reliable component of the REM state in which the dreamer is an active mental observer or agent in the dream, 3 the last awakening during a night’s sleep usually occurs in a REM episode during or at the end of a dream, 4 both REM and awake consciousness seem to arise out of a similar brainstem ascending arousal system 5 N3 is a functionally perturbed state that eventually must be corrected so that embodied brain can direct adaptive behavior, and 6 corticofugal projections to brainstem arousal areas provide a way to trigger increased cortical activity in REM to progressively raise the sleeping brain to the threshold required for wakefulness. This paper shows how the hypothesis conforms to common experience and has substantial predictive and explanatory power regarding the phenomenology of sleep in terms of ontogeny, aging, phylogeny, abnormal/disease states, cognition, and behavioral physiology. That broad range of consistency is not matched by competing theories, which are summarized herein. Specific ways to test this wake-up hypothesis are suggested. Such research could lead to a better understanding of awake consciousness.

  5. A Numerical Model of an Acoustic Metamaterial Using the Boundary Element Method Including Viscous and Thermal Losses

    DEFF Research Database (Denmark)

    Cutanda Henriquez, Vicente; Andersen, Peter Risby; Jensen, Jakob Søndergaard

    2016-01-01

    In recent years, boundary element method (BEM) and finite element method (FEM) implementations of acoustics in fluids with viscous and thermal losses have been developed. They are based on the linearized Navier–Stokes equations with no flow. In this paper, such models with acoustic losses...

  6. A Numerical Model of an Acoustic Metamaterial Using the Boundary Element Method Including Viscous and Thermal Losses

    DEFF Research Database (Denmark)

    Cutanda Henriquez, Vicente; Andersen, Peter Risby; Jensen, Jakob Søndergaard

    2016-01-01

    In recent years, boundary element method (BEM) and finite element method (FEM) implementations of acoustics in fluids with viscous and thermal losses have been developed. They are based on the linearized Navier–Stokes equations with no flow. In this paper, such models with acoustic losses are app...

  7. Investigation of wake characteristics in wind farm varying turbulent inflow condition

    Science.gov (United States)

    Na, Jisung; Koo, Eunmo; Domingo, Munoz-Esparza; Jin, Emilia Kyung; Linn, Rodman; Lee, Joon Sang

    2016-11-01

    In this study, we investigate the wake characteristics in wind farm varying turbulent property at inlet condition. To solve the flow with wind turbines and its wake, we use large eddy simulation (LES) technique with actuator line method (ALM). The wake characteristics in wind farm is important mainly in performance of wind farm because non-fully recovered wake induced by upstream wind turbines interferes power generation at downstream wind turbines. Turbulent inflow which contains the information of turbulence in atmospheric boundary layer is one of the key factors for describing the wake in wind farm accurately. We perform the quantitative analysis of velocity deficit and turbulent intensity in whole cases. In the comparison between cases with and without turbulent inflow, we observe that wake in case with turbulent inflow is more diffused to span-wise direction. And we analyze the coherent structures behind wind turbines at each row. Through above-analysis, we reveal how the wake is interacted with performance of wind farm. This work was supported by the National Research Foundation of Korea (NRF) Grant funded by the Korean Government (MSIP) (No.2015R1A5A1037668).

  8. Evaluation, including effects of storage and repeated freezing and thawing, of a method for measurement of urinary creatinine

    DEFF Research Database (Denmark)

    Garde, A H; Hansen, Åse Marie; Kristiansen, J

    2003-01-01

    The aims of this study were to elucidate to what extent storage and repeated freezing and thawing influenced the concentration of creatinine in urine samples and to evaluate the method for determination of creatinine in urine. The creatinine method was based on the well-known Jaffe's reaction.......1 mmol/L), was 0.3 mmol/L, and the recovery of a certified reference material was 97%. The relative precision at 3.15 mmol/L was 2.3%. It was concluded that the method is appropriate for measurement of urinary creatinine....

  9. Wake fields and instabilities in linear accelerators

    CERN Document Server

    Ferrario, M; Palumbo, L

    2006-01-01

    A charged particle beam travelling across perfectly conducting structures whose boundaries do not have constant cross section, such as an RF cavity or bellows, generates longitudinal and transverse wake fields. We discuss in this lecture the general features of wake fields, and show a few simple examples in cylindrical geometry: perfectly conducting pipe and the resonant modes of an RF cavity. We then study the effect of wake fields on the dynamics of a beam in a linac, such as beam break-up instabilities and how to cure them.

  10. Detecting wind turbine wakes with nacelle lidars

    DEFF Research Database (Denmark)

    Held, D. P.; Larvol, A.; Mann, Jakob

    2017-01-01

    Because the horizontal homogeneity assumption is violated in wakes flows, lidars face difficulties when reconstructing wind fields. Further, small-scale turbulence which is prevalent in wake flows causes Doppler spectrum widths to be broader than in the free stream. In this study the Doppler peak...... turbine is in wake by comparing the peak widths. The used lidar is inexpensive and brings instalments on every turbine within economical reach. Thus, the information gathered by the lidars can be used for improved control at wind farm level....

  11. Lagrangian transport and chaos in the near wake of the flow around an obstacle: a numerical implementation of lobe dynamics

    Directory of Open Access Journals (Sweden)

    J. Duan

    1997-01-01

    Full Text Available In this paper we study Lagrangian transport in the near wake of the flow around an obstacle, which we take to be a cylinder. In this case, for the range of Reynolds numbers investigated, the flow is two-dimensional and time periodic. We use ideas and methods from transport theory in dynamical systems to describe and quantify transport in the near wake. We numerically solve the Navier-Stokes equations for the velocity field and apply these methods to the resulting numerical representation of the velocity field. We show that the method of lobe dynamics can be used in conjunction with computational fluid dynamics methods to give very detailed and quantitative information about Lagrangian transport. In particular, we show how the stable and unstable manifolds of certain saddle-type stagnation points on the cylinder, and one in the wake, can be used to divide the flow into three distinct regions, an upper wake, a lower wake, and a wake cavity. The significance of the division using stable and unstable manifolds lies in the fact that these invariant manifolds form a template on which the transport occurs. Using this, we compute fluxes from the upper and lower wakes into the wake cavity using the associated turnstile lobes. We also compute escape time distributions as well as compare transport properties for two different Reynolds numbers.

  12. Objective Investigation of the Sleep-Wake Cycle in Adults with Intellectual Disabilities and Autistic Spectrum Disorders

    Science.gov (United States)

    Hare, D. J.; Jones, S.; Evershed, K.

    2006-01-01

    Background: Disturbances in circadian rhythm functioning, as manifest in abnormal sleep-wake cycles, have been postulated to be present in people with autistic spectrum disorders (ASDs). To date, research into the sleep-wake cycle in people with ASDs has been primarily dependant on third-party data collection. Method: The utilization of…

  13. The role of turbulent mixing in wind turbine wake recovery and wind array performance

    Science.gov (United States)

    Fruh, Wolf-Gerrit; Creech, Angus; Maguire, Eoghan

    2014-05-01

    The effect of wind turbine wakes in large offshore wind energy arrays can be a substantial factor in affecting the performance of turbines inside the array. Turbulent mixing plays a key role in the wake recovery, having a significant effect on the length over which the wake is strong enough to affect the performance other turbines significantly. We aim to highlight how turbulence affects wind turbine wakes, first by examining a high resolution CFD model of a single turbine wake validated by LIDAR measurements [1], and secondly with a much larger CFD simulation of Lillgrund offshore wind farm, validated with SCADA data [2]. By comparing the decay rates behind single turbines in environments of different surrounding surface features, ranging from ideal free-slip wind tunnels to mixed-vegetation hills, we suggest that the decay rate of turbine wakes are enhanced by free-stream turbulence, created by topography and ground features. In the context of Lillgrund wind farm, observations and computational results suggest that the wakes created by the turbines in the leading row facing the wind decay much slower than those in second row, or further into the turbine array. This observation can be explained by the diffusive action of upwind turbulence breaking up the wake generated by a turbine rotor. Angus CW Creech, Wolf-Gerrit Früh, Peter Clive (2012). Actuator volumes and hradaptive methods for threedimensional simulation of wind turbine wakes and performance. Wind Energy Vol.15, 847 - 863. Angus C.W. Creech, Wolf-Gerrit Früh, A. Eoghan Maguire (2013). High-resolution CFD modelling of Lillgrund Wind farm. Renewable Energies and Power Quality Journal, Vol. 11

  14. Dynamics of sleep-wake cyclicity at night across the human lifespan

    Directory of Open Access Journals (Sweden)

    Hrönn Arnardóttir

    2010-12-01

    Full Text Available Studies in adult mammals (rats, cats, mice, and humans have revealed a surprising regularity in the duration of sleep and wake bouts. In particular, wake bout durations exhibit a power-law distribution whereas sleep bout durations exhibit an exponential distribution. Moreover, in rodents, sleep bouts exhibit an exponential distribution at all ages examined, whereas wake bout durations exhibit exponential distributions early in ontogeny with a clear power-law emerging only at the older ages. Thus, the data examined thus far suggests a similar developmental trajectory for a wide range of mammals which in turn may offer a novel metric to directly compare human and animal sleep-wake data. Therefore, we tested the generalizability of these findings by examining the distributions of sleep and wake bouts during the night in a healthy human sample – from premature infants to 70-year-olds. We find that sleep bouts elongate over the first years. At the same time wake bouts shorten but elongate again with increasing age. Moreover, sleep bout durations exhibit exponential distributions at all ages tested, except for the youngest (premature infants. Wake bouts exhibit a power-law distribution - but only during a restricted time window during adulthood. We conclude that the developmental trajectory of human sleep-wake cycles does not map well onto those of rodents; however, the method of characterizing sleep-wake cycles, using bout distribution, holds great promise for classifying sleep, its disorders, and tracking its developmental milestones across the life-span in humans.

  15. Comparison of a Coupled Near and Far Wake Model With a Free Wake Vortex Code

    DEFF Research Database (Denmark)

    Pirrung, Georg; Riziotis, Vasilis; Aagaard Madsen, Helge

    2016-01-01

    model can be improved by adding near wake trailed vorticity computation. For all prescribed vibration cases with high aerodynamic damping, results similar to those obtained by 15 the free wake model can be achieved in a small fraction of computation time with the proposed model. In the cases with low...... computations performed using a free wake panel code. The focus of the description of the aerodynamics model is on the numerical stability, the computation speed and the accuracy of 5 unsteady simulations. To stabilize the near wake model, it has to be iterated to convergence, using a relaxation factor that has...... induction modeling at slow time scales. Finally, the unsteady airfoil aerodynamics model is extended to provide the unsteady bound circulation for the near wake model and to improve 10 the modeling of the unsteady behavior of cambered airfoils. The model comparison with results from a free wake panel code...

  16. Self-consistent calculations within the Green's function method including particle-phonon coupling and the single-particle continuum

    Science.gov (United States)

    Lyutorovich, N.; Speth, J.; Avdeenkov, A.; Grümmer, F.; Kamerdzhiev, S.; Krewald, S.; Tselyaev, V. I.

    2008-09-01

    The Green’s function method in the Quasiparticle Time Blocking Approximation is applied to nuclear excitations in 132Sn and 208Pb. The calculations are performed self-consistently using a Skyrme interaction. The method combines the conventional RPA with an exact single-particle continuum treatment and considers in a consistent way the particle-phonon coupling. We reproduce not only the experimental values of low-and high-lying collective states but we also obtain fair agreement with the data of non-collective low-lying states that are strongly influenced by the particle-phonon coupling.

  17. A Wake Model for the Prediction of Propeller Performance at Low Advance Ratios

    Directory of Open Access Journals (Sweden)

    Ye Tian

    2012-01-01

    Full Text Available A low order panel method is used to predict the performance of propellers. A wake alignment model based on a pseudounsteady scheme is proposed and implemented. The results from this full wake alignment (FWA model are correlated with available experimental data, and results from RANS for some propellers at design and low advance ratios. Significant improvements have been found in the predicted integrated forces and pressure distributions.

  18. An overview of experimental results and dispersion modelling of nanoparticles in the wake of moving vehicles

    OpenAIRE

    Carpentieri, M.; Kumar, P.; Robins, A.

    2011-01-01

    Understanding the transformation of nanoparticles emitted from vehicles is essential for developing appropriate methods for treating fine scale particle dynamics in dispersion models. This article provides an overview of significant research work relevant to modelling the dispersion of pollutants, especially nanoparticles, in the wake of vehicles. Literature on vehicle wakes and nanoparticle dispersion is reviewed, taking into account field measurements, wind tunnel experiments and mathematic...

  19. Theory of linear physical systems theory of physical systems from the viewpoint of classical dynamics, including Fourier methods

    CERN Document Server

    Guillemin, Ernst A

    2013-01-01

    An eminent electrical engineer and authority on linear system theory presents this advanced treatise, which approaches the subject from the viewpoint of classical dynamics and covers Fourier methods. This volume will assist upper-level undergraduates and graduate students in moving from introductory courses toward an understanding of advanced network synthesis. 1963 edition.

  20. Automatic registration of pelvic computed tomography data and magnetic resonance scans including a full circle method for quantitative accuracy evaluation

    NARCIS (Netherlands)

    van Herk, M.; de Munck, J. C.; Lebesque, J. V.; Muller, S.; Rasch, C.; Touw, A.

    1998-01-01

    The purpose of this study is to develop a method for registration of CT and MR scans of the pelvis with minimal user interaction and to obtain a means for objective quantification of the registration accuracy of clinical data without markers. CT scans were registered with proton density MR scans

  1. Numerical calculation of boundary layers and wake characteristics of high-speed trains with different lengths.

    Directory of Open Access Journals (Sweden)

    Lirong Jia

    Full Text Available Trains with different numbers of cars running in the open air were simulated using the delayed detached-eddy simulation (DDES. The numbers of cars included in the simulation are 3, 4, 5 and 8. The aim of this study was to investigate how train length influences the boundary layer, the wake flow, the surface pressure, the aerodynamic drag and the friction drag. To certify the accuracy of the mesh and methods, the drag coefficients from numerical simulation of trains with 3 cars were compared with those from the wind tunnel test, and agreement was obtained. The results show that the boundary layer is thicker and the wake vortices are less symmetric as the train length increases. As a result, train length greatly affects pressure. The upper surface pressure of the tail car reduced by 2.9%, the side surface pressure of the tail car reduced by 8.3% and the underneath surface pressure of the tail car reduced by 19.7% in trains that included 3 cars to those including 8 cars. In addition, train length also has a significant effect on the friction drag coefficient and the drag coefficient. The friction drag coefficient of each car in a configuration decreases along the length of the train. In a comparison between trains consisting of 3 cars to those consisting of 8 cars, the friction drag coefficient of the tail car reduced by 8.6% and the drag coefficient of the tail car reduced by 3.7%.

  2. Numerical calculation of boundary layers and wake characteristics of high-speed trains with different lengths

    Science.gov (United States)

    Zhou, Dan; Niu, Jiqiang

    2017-01-01

    Trains with different numbers of cars running in the open air were simulated using the delayed detached-eddy simulation (DDES). The numbers of cars included in the simulation are 3, 4, 5 and 8. The aim of this study was to investigate how train length influences the boundary layer, the wake flow, the surface pressure, the aerodynamic drag and the friction drag. To certify the accuracy of the mesh and methods, the drag coefficients from numerical simulation of trains with 3 cars were compared with those from the wind tunnel test, and agreement was obtained. The results show that the boundary layer is thicker and the wake vortices are less symmetric as the train length increases. As a result, train length greatly affects pressure. The upper surface pressure of the tail car reduced by 2.9%, the side surface pressure of the tail car reduced by 8.3% and the underneath surface pressure of the tail car reduced by 19.7% in trains that included 3 cars to those including 8 cars. In addition, train length also has a significant effect on the friction drag coefficient and the drag coefficient. The friction drag coefficient of each car in a configuration decreases along the length of the train. In a comparison between trains consisting of 3 cars to those consisting of 8 cars, the friction drag coefficient of the tail car reduced by 8.6% and the drag coefficient of the tail car reduced by 3.7%. PMID:29261758

  3. Sighting optics including an optical element having a first focal length and a second focal length and methods for sighting

    Science.gov (United States)

    Crandall, David Lynn

    2011-08-16

    Sighting optics include a front sight and a rear sight positioned in a spaced-apart relation. The rear sight includes an optical element having a first focal length and a second focal length. The first focal length is selected so that it is about equal to a distance separating the optical element and the front sight and the second focal length is selected so that it is about equal to a target distance. The optical element thus brings into simultaneous focus for a user images of the front sight and the target.

  4. Compositions of graphene materials with metal nanostructures and microstructures and methods of making and using including pressure sensors

    KAUST Repository

    Chen, Ye

    2017-01-26

    Composition comprising at least one graphene material and at least one metal. The metal can be in the form of nanoparticles as well as microflakes, including single crystal microflakes. The metal can be intercalated in the graphene sheets. The composition has high conductivity and flexibility. The composition can be made by a one-pot synthesis in which a graphene material precursor is converted to the graphene material, and the metal precursor is converted to the metal. A reducing solvent or dispersant such as NMP can be used. Devices made from the composition include a pressure sensor which has high sensitivity. Two two- dimension materials can be combined to form a hybrid material.

  5. Measure Guideline: Summary of Interior Ducts in New Construction, Including an Efficient, Affordable Method to Install Fur-Down Interior Ducts

    Energy Technology Data Exchange (ETDEWEB)

    Beal, D. [BA-PIRC, Cocoa, FL (United States); McIlvaine, J. [BA-PIRC, Cocoa, FL (United States); Fonorow, K. [BA-PIRC, Cocoa, FL (United States); Martin, E. [BA-PIRC, Cocoa, FL (United States)

    2011-11-01

    This document illustrates guidelines for the efficient installation of interior duct systems in new housing, including the fur-up chase method, the fur-down chase method, and interior ducts positioned in sealed attics or sealed crawl spaces.

  6. 2014 CERN Accelerator Schools: Plasma Wake Acceleration

    CERN Multimedia

    2014-01-01

    A specialised school on Plasma Wake Acceleration will be held at CERN, Switzerland from 23-29 November, 2014.   This course will be of interest to staff and students in accelerator laboratories, university departments and companies working in or having an interest in the field of new acceleration techniques. Following introductory lectures on plasma and laser physics, the course will cover the different components of a plasma wake accelerator and plasma beam systems. An overview of the experimental studies, diagnostic tools and state of the art wake acceleration facilities, both present and planned, will complement the theoretical part. Topical seminars and a visit of CERN will complete the programme. Further information can be found at: http://cas.web.cern.ch/cas/PlasmaWake2014/CERN-advert.html http://indico.cern.ch/event/285444/

  7. Three-Phased Wake Vortex Decay

    Science.gov (United States)

    Proctor, Fred H.; Ahmad, Nashat N.; Switzer, George S.; LimonDuparcmeur, Fanny M.

    2010-01-01

    A detailed parametric study is conducted that examines vortex decay within turbulent and stratified atmospheres. The study uses a large eddy simulation model to simulate the out-of-ground effect behavior of wake vortices due to their interaction with atmospheric turbulence and thermal stratification. This paper presents results from a parametric investigation and suggests improvements for existing fast-time wake prediction models. This paper also describes a three-phased decay for wake vortices. The third phase is characterized by a relatively slow rate of circulation decay, and is associated with the ringvortex stage that occurs following vortex linking. The three-phased decay is most prevalent for wakes imbedded within environments having low-turbulence and near-neutral stratification.

  8. Bifurcation and instability problems in vortex wakes

    DEFF Research Database (Denmark)

    Aref, Hassan; Brøns, Morten; Stremler, Mark A.

    2007-01-01

    A number of instability and bifurcation problems related to the dynamics of vortex wake flows are addressed using various analytical tools and approaches. We discuss the bifurcations of the streamline pattern behind a bluff body as a vortex wake is produced, a theory of the universal Strouhal......-Reynolds number relation for vortex wakes, the bifurcation diagram for "exotic" wake patterns behind an oscillating cylinder first determined experimentally by Williamson & Roshko, and the bifurcations in topology of the streamlines pattern in point vortex streets. The Hamiltonian dynamics of point vortices...... in a periodic strip is considered. The classical results of von Kármán concerning the structure of the vortex street follow from the two-vortices-in-a-strip problem, while the stability results follow largely from a four-vortices-in-a-strip analysis. The three-vortices-in-a-strip problem is argued...

  9. Review of Idealized Aircraft Wake Vortex Models

    Science.gov (United States)

    Ahmad, Nashat N.; Proctor, Fred H.; Duparcmeur, Fanny M. Limon; Jacob, Don

    2014-01-01

    Properties of three aircraft wake vortex models, Lamb-Oseen, Burnham-Hallock, and Proctor are reviewed. These idealized models are often used to initialize the aircraft wake vortex pair in large eddy simulations and in wake encounter hazard models, as well as to define matched filters for processing lidar observations of aircraft wake vortices. Basic parameters for each vortex model, such as peak tangential velocity and circulation strength as a function of vortex core radius size, are examined. The models are also compared using different vortex characterizations, such as the vorticity magnitude. Results of Euler and large eddy simulations are presented. The application of vortex models in the postprocessing of lidar observations is discussed.

  10. Efficient Turbulence Modeling for CFD Wake Simulations

    DEFF Research Database (Denmark)

    van der Laan, Paul

    Wind turbine wakes can cause 10-20% annual energy losses in wind farms, and wake turbulence can decrease the lifetime of wind turbine blades. One way of estimating these effects is the use of computational fluid dynamics (CFD) to simulate wind turbines wakes in the atmospheric boundary layer. Since...... wind farm, the simulated results cannot be compared directly with wind farm measurements that have a high uncertainty in the measured reference wind direction. When this uncertainty is used to post-process the CFD results, a fairer comparison with measurements is achieved....... this flow is in the high Reynolds number regime, it is mainly dictated by turbulence. As a result, the turbulence modeling in CFD dominates the wake characteristics, especially in Reynolds-averaged Navier-Stokes (RANS). The present work is dedicated to study and develop RANS-based turbulence models...

  11. CRED REA Algal Assessments Wake Atoll, 2007

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Twelve quadrats were sampled along 2 consecutively-placed, 25m transect lines as part of Rapid Ecological Assessments conducted at 12 sites at Wake Atoll in April...

  12. CRED REA Algal Assessments Wake Atoll, 2005

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Twelve quadrats were sampled along 2 consecutively-placed, 25m transect lines as part of Rapid Ecological Assessments conducted at 14 sites at Wake Atoll in October...

  13. Secure Wake-Up Scheme for WBANs

    Science.gov (United States)

    Liu, Jing-Wei; Ameen, Moshaddique Al; Kwak, Kyung-Sup

    Network life time and hence device life time is one of the fundamental metrics in wireless body area networks (WBAN). To prolong it, especially those of implanted sensors, each node must conserve its energy as much as possible. While a variety of wake-up/sleep mechanisms have been proposed, the wake-up radio potentially serves as a vehicle to introduce vulnerabilities and attacks to WBAN, eventually resulting in its malfunctions. In this paper, we propose a novel secure wake-up scheme, in which a wake-up authentication code (WAC) is employed to ensure that a BAN Node (BN) is woken up by the correct BAN Network Controller (BNC) rather than unintended users or malicious attackers. The scheme is thus particularly implemented by a two-radio architecture. We show that our scheme provides higher security while consuming less energy than the existing schemes.

  14. Cockpit-based Wake Vortex Visualization Project

    Data.gov (United States)

    National Aeronautics and Space Administration — To prevent aircraft accidents due to wake vortex hazards, FAA procedures specify the minimum separation required between different categories of aircraft. However, a...

  15. On the wake of a Darrieus turbine

    Science.gov (United States)

    Base, T. E.; Phillips, P.; Robertson, G.; Nowak, E. S.

    1981-01-01

    The theory and experimental measurements on the aerodynamic decay of a wake from high performance vertical axis wind turbine are discussed. In the initial experimental study, the wake downstream of a model Darrieus rotor, 28 cm diameter and a height of 45.5 cm, was measured in a Boundary Layer Wind Tunnel. The wind turbine was run at the design tip speed ratio of 5.5. It was found that the wake decayed at a slower rate with distance downstream of the turbine, than a wake from a screen with similar troposkein shape and drag force characteristics as the Darrieus rotor. The initial wind tunnel results indicated that the vertical axis wind turbines should be spaced at least forty diameters apart to avoid mutual power depreciation greater than ten per cent.

  16. Validation of an extended method for the detection of the misuse of endogenous steroids in sports, including new hydroxylated metabolites.

    Science.gov (United States)

    Van Renterghem, P; Van Eenoo, P; Van Thuyne, W; Geyer, H; Schänzer, W; Delbeke, F T

    2008-12-15

    Endogenous steroids are amongst the most misused doping agents in sports. Their presence poses a major challenge for doping control laboratories. Current threshold levels do not allow for the detection of all endogenous steroid misuse due to great interindividual variations in urinary steroid concentrations. A method has been developed and validated to screen for traditionally monitored endogenous steroids in doping control as well as specific hydroxylated/oxygenated metabolites in order to enhance the detection capabilities for the misuse of endogenous steroids.

  17. Shining a light on LAMP assays--a comparison of LAMP visualization methods including the novel use of berberine.

    Science.gov (United States)

    Fischbach, Jens; Xander, Nina Carolin; Frohme, Marcus; Glökler, Jörn Felix

    2015-04-01

    The need for simple and effective assays for detecting nucleic acids by isothermal amplification reactions has led to a great variety of end point and real-time monitoring methods. Here we tested direct and indirect methods to visualize the amplification of potato spindle tuber viroid (PSTVd) by loop-mediated isothermal amplification (LAMP) and compared features important for one-pot in-field applications. We compared the performance of magnesium pyrophosphate, hydroxynaphthol blue (HNB), calcein, SYBR Green I, EvaGreen, and berberine. All assays could be used to distinguish between positive and negative samples in visible or UV light. Precipitation of magnesium-pyrophosphate resulted in a turbid reaction solution. The use of HNB resulted in a color change from violet to blue, whereas calcein induced a change from orange to yellow-green. We also investigated berberine as a nucleic acid-specific dye that emits a fluorescence signal under UV light after a positive LAMP reaction. It has a comparable sensitivity to SYBR Green I and EvaGreen. Based on our results, an optimal detection method can be chosen easily for isothermal real-time or end point screening applications.

  18. Methods for measuring maximal isometric grip strength during short and sustained contractions, including intra-rater reliability.

    Science.gov (United States)

    Lagerström, C; Nordgren, B

    1996-01-01

    The purposes of this study were to develop methods for measuring maximal isometric grip strength during short and sustained contractions in a laboratory setting, and to evaluate the test-retest reliability of these methods in short- and long-term perspectives. Eleven healthy men and women were assessed on four occasions. Maximal voluntary isometric grip strength (MVC) was measured in standardized and optional positions, and sustained maximal isometric strength (SMVC) in the standardized position. The results indicated that three trials in a session might be insufficient to obtain a true measure of MVC. The within-session and test-retest reliability of the described multi-trial procedure was considered satisfactory. The mean score of the last three trials tended to show the highest short-term and long-term variability. There were no clear differences between scores obtained in standardized and optional positions. The standardized position seemed more consistently to yield higher test-retest reliability and lower variability over time. The described method for measuring SMVC, expressed as area and peak score, had high test-retest reliability and an acceptable degree of short-term and long-term variability. The time taken to reach the peak score was not a reliable measure.

  19. Method for calculating carbon footprint of cattle feeds – including contribution from soil carbon changes and use of cattle manure

    DEFF Research Database (Denmark)

    Mogensen, Lisbeth; Kristensen, Troels; Nguyen, T Lan T

    2014-01-01

    Greenhouse gas emissions (GHG) related to feed production is one of the hotspots in livestock production. The aim of this paper was to estimate the carbon footprint of different feedstuffs for dairy cattle using life cycle assessment (LCA). The functional unit was ‘1 kg dry matter (DM) of feed...... fodder crop, an individual production scheme was set up as the basis for calculating the carbon footprint (CF). In the calculations, all fodder crops were fertilized by artificial fertilizer based on the assumption that the environmental burden of using manure is related to the livestock production...... ready to feed’. Included in the study were fodder crops that are grown in Denmark and typically used on Danish cattle farms. The contributions from the growing, processing and transport of feedstuffs were included, as were the changes in soil carbon (soil C) and from land use change (LUC). For each...

  20. MASTDISCS combi Carba plus, a simple method for discriminating carbapenemase-producing Enterobacteriaceae, including OXA-48-type producers.

    Science.gov (United States)

    Ohsaki, Yusuke; Kubo, Ryoichi; Hobson, Jonathan; Davies, Mya; Osaka, Shunsuke; Hayashi, Wataru; Taniguchi, Yui; Koide, Shota; Nagano, Yukiko; Nagano, Noriyuki

    2018-01-01

    Accurate and rapid detection of carbapenemases and identification of their types in Enterobacteriaceae are both still major challenges for clinical laboratories in attempting to prevent the intrusion and transmission of carbapenemase-producing Enterobacteriaceae. This study aimed to evaluate the performance of the MASTDISCS combi Carba plus disc system in identification of different carbapenemase types, including OXA-48-type carbapenemase, for which no specific enzyme inhibitors have so far been available. The simple disc system discriminates carbapenemases, including OXA-48-types exhibiting low carbapenem minimum inhibitory concentrations, by targeting Enterobacteriaceae isolates with a EUCAST meropenem screening cut-off of ≥0.25 mg/L. © 2017 The Societies and John Wiley & Sons Australia, Ltd.

  1. Hypersonic merged layer blunt body flows with wakes

    Science.gov (United States)

    Jain, Amolak C.; Dahm, Werner K.

    1991-01-01

    An attempt is made here to understand the basic physics of the flowfield with wake on a blunt body of revolution under hypersonic rarefied conditions. A merged layer model of flow is envisioned. Full steady-state Navier-Stokes equations in spherical polar coordinate system are computed from the surface with slip and temperature jump conditions to the free stream by the Accelerated Successive Replacement method of numerical integration. Analysis is developed for bodies of arbitrary shape, but actual computations have been carried out for a sphere and sphere-cone body. Particular attention is paid to set the limit of the onset of separation, wake closure, shear-layer impingement, formation and dissipation of the shocks in the flowfield. Validity of the results is established by comparing the present results for sphere with the corresponding results of the SOFIA code in the common region of their validity and with the experimental data.

  2. Probes, Moons, and Kinetic Plasma Wakes

    Science.gov (United States)

    Hutchinson, I. H.; Malaspina, D.; Zhou, C.

    2017-10-01

    Nonmagnetic objects as varied as probes in tokamaks or moons in space give rise to flowing plasma wakes in which strong distortions of the ion and electron velocity distributions cause electrostatic instabilities. Non-linear phenomena such as electron holes are then produced. Historic probe theory largely ignores the resulting unstable character of the wake, but since we can now simulate computationally the non-linear wake phenomena, a timely challenge is to reassess the influence of these instabilities both on probe measurements and on the wakes themselves. Because the electron instability wavelengths are very short (typically a few Debye-lengths), controlled laboratory experiments face serious challenges in diagnosing them. That is one reason why they have long been neglected as an influence in probe interpretation. Space-craft plasma observations, by contrast, easily obtain sub-Debye-length resolution, but have difficulty with larger-scale reconstruction of the plasma spatial variation. In addition to surveying our developing understanding of wakes in magnetized plasmas, ongoing analysis of Artemis data concerning electron holes observed in the solar-wind lunar wake will be featured. Work partially supported by NASA Grant NNX16AG82G.

  3. Suppression of wake's instabilities by optimal streaks

    Science.gov (United States)

    Del Guercio, Gerardo; Cossu, Carlo; Pujals, Gregory

    2014-11-01

    Wakes can sustain large transient energy growth. Optimal perturbations are computed for the cases of parallel, weakly non-parallel and the circular cylinder wakes. Streaks are found to be the optimal amplified structures produced by the non normal energy amplification. The level of energy increases with the spanwise wavelength of the perturbations except in the circular cylinder wake where the optimal is reached for λz ~ 6 D . In parallel wakes these streaks are shown to suppress the absolute instability. Furthermore the global instability of the weakly non-parallel and the circular cylinder wakes can be completely annihilate with moderate streaks amplitudes. The comparison of these spanwise periodic (3D) optimal perturbations with the spanwise uniform (2D) control showed that the energy required to stabilize the wake is always smaller for the 3D control. Moreover the sensitivity of the global mode growth rate is discovered to be quadratic for 3D perturbations while being linear for 2D ones meaning that usual first order sensitivity analysis is unable to predict their larger efficiency.

  4. VIRTUAL REALITY IN WAKING AND DREAMING CONSCIOUSNESS

    Directory of Open Access Journals (Sweden)

    Allan eHobson

    2014-10-01

    Full Text Available This article explores the notion that the brain is genetically endowed with an innate virtual reality generator that – through experience-dependent plasticity –becomes a generative or predictive model of the world. This model, which is most clearly revealed in rapid eye movement (REM sleep dreaming, may provide the theatre for conscious experience. Functional neuroimaging evidence for brain activations that are time-locked to rapid eye movements endorses the view that waking consciousness emerges from REM sleep – and dreaming lays the foundations for waking perception. In this view, the brain is equipped with a virtual model of the world that generates predictions of its sensations. This model is continually updated and entrained by sensory prediction errors in wakefulness to ensure veridical perception, but not in dreaming. In contrast, dreaming plays an essential role in maintaining and enhancing the capacity to model the world by minimizing model complexity and thereby maximizing both statistical and thermodynamic efficiency. This perspective suggests that consciousness corresponds to the embodied process of inference, realized through the generation of virtual realities (in both sleep and wakefulness. In short, our premise or hypothesis is that the waking brain engages with the sensorium to predict the causes of sensations, while in sleep the brain's generative model is actively refined so that it generates more efficient predictions during waking. We review the evidence in support of this hypothesis – evidence that grounds consciousness in biophysical computations whose neuronal and neurochemical infrastructure has been disclosed by sleep research.

  5. Iodine Tagging Velocimetry in a Mach 10 Wake

    Science.gov (United States)

    Balla, Robert Jeffrey

    2013-01-01

    A variation on molecular tagging velocimetry (MTV) [1] designated iodine tagging velocimetry (ITV) is demonstrated. Molecular iodine is tagged by two-photon absorption using an Argon Fluoride (ArF) excimer laser. A single camera measures fluid displacement using atomic iodine emission at 206 nm. Two examples ofMTVfor cold-flowmeasurements areN2OMTV [2] and Femtosecond Laser Electronic Excitation Tagging [3]. These, like most MTV methods, are designed for atmospheric pressure applications. Neither can be implemented at the low pressures (0.1- 1 Torr) in typical hypersonic wakes. Of all the single-laser/singlecamera MTV approaches, only Nitric-Oxide Planar Laser Induced Fluorescence-based MTV [4] has been successfully demonstrated in a Mach 10 wake. Oxygen quenching limits transit times to 500 ns and accuracy to typically 30%. The present note describes the photophysics of the ITV method. Off-body velocimetry along a line is demonstrated in the aerothermodynamically important and experimentally challenging region of a hypersonic low-pressure near-wake in a Mach 10 air wind tunnel. Transit times up to 10 µs are demonstrated with conservative errors of 10%.

  6. Sleep-wake changes and cognition in neurodegenerative disease.

    Science.gov (United States)

    Naismith, Sharon L; Lewis, Simon J G; Rogers, Naomi L

    2011-01-01

    With the increasing aging population, neurodegenerative disorders will become more common in clinical practice. These disorders involve multiple pathophysiological mechanisms that differentially affect cognition, mood, and physical functions. Possibly due to the involvement of common underlying neurobiological circuits, sleep and/or circadian (sleep-wake) changes are also common in this disease group. Of significance, sleep-wake changes are often a prodromal feature and are predictive of cognitive decline, psychiatric symptoms, quality of life, need for institutional care, and caregiver burden. Unfortunately, in neurodegenerative disease, few studies have included detailed polysomnography or neuropsychological assessments although some data indicate that sleep and neurocognitive features are related. Further studies are also required to address the effects of pharmacological and nonpharmacological treatments on cognitive functioning. Such research will hopefully lead to targeted early intervention approaches for cognitive decline in older people. Copyright © 2011 Elsevier B.V. All rights reserved.

  7. Stability of helical tip vortices in a rotor far wake

    DEFF Research Database (Denmark)

    Okulov, Valery; Sørensen, Jens Nørkær

    2007-01-01

    , corresponding to Rankine, Gaussian and Scully vortices, at radial extents ranging from the core radius of a tip vortex to several rotor radii. The analysis shows that the stability of tip vortices largely depends on the radial extent of the hub vorticity as well as on the type of vorticity distribution. As part......As a means of analysing the stability of the wake behind a multi-bladed rotor the stability of a multiplicity of helical vortices embedded in an assigned flow field is addressed. In the model the tip vortices in the far wake are approximated by infinitely long helical vortices with constant pitch...... and radius. The work is a further development of a model developed in Okulov (J. Fluid Mech., vol. 521, p. 319) in which the linear stability of N equally azimuthally spaced helical vortices was considered. In the present work the analysis is extended to include an assigned vorticity field due to root...

  8. Formation of vortex wakes at flow separation from plate

    Science.gov (United States)

    Gorelov, D. N.; Govorova, A. I.

    2017-05-01

    The plane nonlinear initial boundary value problem about the separated flow past a plate set in motion at a constant velocity from the state of rest has been considered. Results of a numerical experiment which have allowed us to trace in detail the vortex-wake formation process behind a vertical plate are reported. It is shown that, after the beginning of the plate motion, several stable vortical structures, including a Karman street, form in succession behind the plate. It is found that, on the emergence of the Karman street, there occurs a sharp and substantial growth of vortex-wake intensity and hydrodynamic drag force with a pulsating time behavior. A conclusion about the origination, in this regime, of self-sustained oscillations of the liquid in the vicinity of the plate is drawn.

  9. Molecular Dynamic Studies of Particle Wake Potentials in Plasmas

    Science.gov (United States)

    Ellis, Ian; Graziani, Frank; Glosli, James; Strozzi, David; Surh, Michael; Richards, David; Decyk, Viktor; Mori, Warren

    2010-11-01

    Fast Ignition studies require a detailed understanding of electron scattering, stopping, and energy deposition in plasmas with variable values for the number of particles within a Debye sphere. Presently there is disagreement in the literature concerning the proper description of these processes. Developing and validating proper descriptions requires studying the processes using first-principle electrostatic simulations and possibly including magnetic fields. We are using the particle-particle particle-mesh (P^3M) code ddcMD to perform these simulations. As a starting point in our study, we examined the wake of a particle passing through a plasma. In this poster, we compare the wake observed in 3D ddcMD simulations with that predicted by Vlasov theory and those observed in the electrostatic PIC code BEPS where the cell size was reduced to .03λD.

  10. Wing Kinematics and Wake Velocity Characteristics of Bat Flight

    Science.gov (United States)

    Swartz, Sharon

    2005-11-01

    Bats demonstrate unequalled flight characteristics and are capable of highly efficient flight as well as extreme maneuverability at high speeds. They have morphological properties that are unique in the animal world including jointed wings skeletons, elastic wing membranes and very complex wing motions. We report on a series of experiments on bats flying in a flight cage along both a straight path and through a 90-degree turn. Measurements of their kinematic wing motion (using high speed photography) and wake velocity structures (using stereo PIV) are reported. The live animal measurements are also interpreted with the help of a series of companion wind tunnel experiments using model structures that mimic some key features of bat flight mechanics. The results reveal a complex vortex wake structure which is compared and contrasted to that found in bird and insect flight.

  11. A large-eddy simulation study of wake propagation and power production in an array of tidal-current turbines.

    Science.gov (United States)

    Churchfield, Matthew J; Li, Ye; Moriarty, Patrick J

    2013-02-28

    This paper presents our initial work in performing large-eddy simulations of tidal turbine array flows. First, a horizontally periodic precursor simulation is performed to create turbulent flow data. Then those data are used as inflow into a tidal turbine array two rows deep and infinitely wide. The turbines are modelled using rotating actuator lines, and the finite-volume method is used to solve the governing equations. In studying the wakes created by the turbines, we observed that the vertical shear of the inflow combined with wake rotation causes lateral wake asymmetry. Also, various turbine configurations are simulated, and the total power production relative to isolated turbines is examined. We found that staggering consecutive rows of turbines in the simulated configurations allows the greatest efficiency using the least downstream row spacing. Counter-rotating consecutive downstream turbines in a non-staggered array shows a small benefit. This work has identified areas for improvement. For example, using a larger precursor domain would better capture elongated turbulent structures, and including salinity and temperature equations would account for density stratification and its effect on turbulence. Additionally, the wall shear stress modelling could be improved, and more array configurations could be examined.

  12. Multiscale approach including microfibril scale to assess elastic constants of cortical bone based on neural network computation and homogenization method

    CERN Document Server

    Barkaoui, Abdelwahed; Tarek, Merzouki; Hambli, Ridha; Ali, Mkaddem

    2014-01-01

    The complexity and heterogeneity of bone tissue require a multiscale modelling to understand its mechanical behaviour and its remodelling mechanisms. In this paper, a novel multiscale hierarchical approach including microfibril scale based on hybrid neural network computation and homogenisation equations was developed to link nanoscopic and macroscopic scales to estimate the elastic properties of human cortical bone. The multiscale model is divided into three main phases: (i) in step 0, the elastic constants of collagen-water and mineral-water composites are calculated by averaging the upper and lower Hill bounds; (ii) in step 1, the elastic properties of the collagen microfibril are computed using a trained neural network simulation. Finite element (FE) calculation is performed at nanoscopic levels to provide a database to train an in-house neural network program; (iii) in steps 2 to 10 from fibril to continuum cortical bone tissue, homogenisation equations are used to perform the computation at the higher s...

  13. Antioxidant activity of fish sauces including puffer (Lagocephalus wheeleri) fish sauce measured by the oxygen radical absorbance capacity method.

    Science.gov (United States)

    Harada, Kazuki; Maeda, Toshimichi; Hasegawa, Yoshiro; Tokunaga, Takushi; Tamura, Yoshiyuki; Koizumi, Takeo

    2010-01-01

    Fish sauces are fermented seasonings traditionally used throughout Asia, including Japan. Here, we report on the antioxidant activity of 30 fish sauces, among them a puffer fish sauce developed specifically for this study. To determine the antioxidant activity (i.e., the peroxyl radical elimination capacity) of the fish sauces, the oxygen radical absorbance capacity (ORAC) was measured. ORAC values ranged between 104 µmol (flatfish sauce 1) and 103 µmol (sandfish sauce) trolox equivalent (TE)/100 ml of fish sauce. Hydroxyl radical scavenging activity (IC50) was measured using electron spin resonance. IC50 values ranged between 0.081% (puffer fish sauce) and 0.653% (sardine fish sauce 7). Puffer fish sauce had a high ORAC value (8,365 µmol TE/100 ml) and the highest hydroxyl radical scavenging activity (0.081). The relationship between the ORAC and IC50 values of the 30 fish sauces was determined to be intermediate (r =-0.521, p=0.01).

  14. GPU Based Fast Free-Wake Calculations For Multiple Horizontal Axis Wind Turbine Rotors

    Science.gov (United States)

    Türkal, M.; Novikov, Y.; Üşenmez, S.; Sezer-Uzol, N.; Uzol, O.

    2014-06-01

    Unsteady free-wake solutions of wind turbine flow fields involve computationally intensive interaction calculations, which generally limit the total amount of simulation time or the number of turbines that can be simulated by the method. This problem, however, can be addressed easily using high-level of parallelization. Especially when exploited with a GPU, a Graphics Processing Unit, this property can provide a significant computational speed-up, rendering the most intensive engineering problems realizable in hours of computation time. This paper presents the results of the simulation of the flow field for the NREL Phase VI turbine using a GPU-based in-house free-wake panel method code. Computational parallelism involved in the free-wake methodology is exploited using a GPU, allowing thousands of similar operations to be performed simultaneously. The results are compared to experimental data as well as to those obtained by running a corresponding CPU-based code. Results show that the GPU based code is capable of producing wake and load predictions similar to the CPU- based code and in a substantially reduced amount of time. This capability could allow free- wake based analysis to be used in the possible design and optimization studies of wind farms as well as prediction of multiple turbine flow fields and the investigation of the effects of using different vortex core models, core expansion and stretching models on the turbine rotor interaction problems in multiple turbine wake flow fields.

  15. A method for modifying two-dimensional adaptive wind-tunnel walls including analytical and experimental verification

    Science.gov (United States)

    Everhart, J. L.

    1983-01-01

    The theoretical development of a simple and consistent method for removing the interference in adaptive-wall wind tunnels is reported. A Cauchy integral formulation of the velocities in an imaginary infinite extension of the real wind-tunnel flow is obtained and evaluated on a closed contour dividing the real and imaginary flow. The contour consists of the upper and lower effective wind-tunnel walls (wall plus boundary-layer displacement thickness) and upstream and downstream boundaries perpendicular to the axial tunnel flow. The resulting integral expressions for the streamwise and normal perturbation velocities on the contour are integrated by assuming a linear variation of the velocities between data-measurement stations along the contour. In an iterative process, the velocity components calculated on the upper and lower boundaries are then used to correct the shape of the wall to remove the interference. Convergence of the technique is shown numerically for the cases of a circular cylinder and a lifting and nonlifting NACA 0012 airfoil in incompressible flow. Experimental convergence at a transonic Mach number is demonstrated by using an NACA 0012 airfoil at zero lift.

  16. Direct numerical simulations and modeling of a spatially-evolving turbulent wake

    Science.gov (United States)

    Cimbala, John M.

    1994-12-01

    Understanding of turbulent free shear flows (wakes, jets, and mixing layers) is important, not only for scientific interest, but also because of their appearance in numerous practical applications. Turbulent wakes, in particular, have recently received increased attention by researchers at NASA Langley. The turbulent wake generated by a two-dimensional airfoil has been selected as the test-case for detailed high-resolution particle image velocimetry (PIV) experiments. This same wake has also been chosen to enhance NASA's turbulence modeling efforts. Over the past year, the author has completed several wake computations, while visiting NASA through the 1993 and 1994 ASEE summer programs, and also while on sabbatical leave during the 1993-94 academic year. These calculations have included two-equation (K-omega and K-epsilon) models, algebraic stress models (ASM), full Reynolds stress closure models, and direct numerical simulations (DNS). Recently, there has been mutually beneficial collaboration of the experimental and computational efforts. In fact, these projects have been chosen for joint presentation at the NASA Turbulence Peer Review, scheduled for September 1994. DNS calculations are presently underway for a turbulent wake at Re(sub theta) = 1000 and at a Mach number of 0.20. (Theta is the momentum thickness, which remains constant in the wake of a two dimensional body.) These calculations utilize a compressible DNS code written by M. M. Rai of NASA Ames, and modified for the wake by J. Cimbala. The code employs fifth-order accurate upwind-biased finite differencing for the convective terms, fourth-order accurate central differencing for the viscous terms, and an iterative-implicit time-integration scheme. The computational domain for these calculations starts at x/theta = 10, and extends to x/theta = 610. Fully developed turbulent wake profiles, obtained from experimental data from several wake generators, are supplied at the computational inlet, along with

  17. Large Eddy Simulation of Vertical Axis Wind Turbine wakes; Part I: from the airfoil performance to the very far wake

    Science.gov (United States)

    Chatelain, Philippe; Duponcheel, Matthieu; Caprace, Denis-Gabriel; Marichal, Yves; Winckelmans, Gregoire

    2017-11-01

    A vortex particle-mesh (VPM) method with immersed lifting lines has been developed and validated. Based on the vorticity-velocity formulation of the Navier-Stokes equations, it combines the advantages of a particle method and of a mesh-based approach. The immersed lifting lines handle the creation of vorticity from the blade elements and its early development. Large-eddy simulation (LES) of vertical axis wind turbine (VAWT) flows is performed. The complex wake development is captured in detail and over up to 15 diameters downstream: from the blades to the near-wake coherent vortices and then through the transitional ones to the fully developed turbulent far wake (beyond 10 rotor diameters). The statistics and topology of the mean flow are studied with respect to the VAWT geometry and its operating point. The computational sizes also allow insights into the detailed unsteady vortex dynamics and topological flow features, such as a recirculation region influenced by the tip speed ratio and the rotor geometry.

  18. Age correction in monitoring audiometry: method to update OSHA age-correction tables to include older workers.

    Science.gov (United States)

    Dobie, Robert A; Wojcik, Nancy C

    2015-07-13

    The US Occupational Safety and Health Administration (OSHA) Noise Standard provides the option for employers to apply age corrections to employee audiograms to consider the contribution of ageing when determining whether a standard threshold shift has occurred. Current OSHA age-correction tables are based on 40-year-old data, with small samples and an upper age limit of 60 years. By comparison, recent data (1999-2006) show that hearing thresholds in the US population have improved. Because hearing thresholds have improved, and because older people are increasingly represented in noisy occupations, the OSHA tables no longer represent the current US workforce. This paper presents 2 options for updating the age-correction tables and extending values to age 75 years using recent population-based hearing survey data from the US National Health and Nutrition Examination Survey (NHANES). Both options provide scientifically derived age-correction values that can be easily adopted by OSHA to expand their regulatory guidance to include older workers. Regression analysis was used to derive new age-correction values using audiometric data from the 1999-2006 US NHANES. Using the NHANES median, better-ear thresholds fit to simple polynomial equations, new age-correction values were generated for both men and women for ages 20-75 years. The new age-correction values are presented as 2 options. The preferred option is to replace the current OSHA tables with the values derived from the NHANES median better-ear thresholds for ages 20-75 years. The alternative option is to retain the current OSHA age-correction values up to age 60 years and use the NHANES-based values for ages 61-75 years. Recent NHANES data offer a simple solution to the need for updated, population-based, age-correction tables for OSHA. The options presented here provide scientifically valid and relevant age-correction values which can be easily adopted by OSHA to expand their regulatory guidance to

  19. Data Driven Modelling of the Dynamic Wake Between Two Wind Turbines

    DEFF Research Database (Denmark)

    Knudsen, Torben; Bak, Thomas

    2012-01-01

    turbine. This paper establishes flow models relating the wind speeds at turbines in a farm. So far, research in this area has been mainly based on first principles static models and the data driven modelling done has not included the loading of the upwind turbine and its impact on the wind speed downwind....... This paper is the first where modern commercial mega watt turbines are used for data driven modelling including the upwind turbine loading by changing power reference. Obtaining the necessary data is difficult and data is therefore limited. A simple dynamic extension to the Jensen wake model is tested...... without much success. The best model turns out to be non linear with upwind turbine loading and wind speed as inputs. Using a transformation of these inputs it is possible to obtain a linear model and use well proven system identification methods. Finally it is shown that including the upwind wind...

  20. Experiments in the wind turbine far wake for the evaluation of an analytical wake model

    Science.gov (United States)

    García, Luis; Vatn, Mari; Mühle, Franz; Sætran, Lars

    2017-05-01

    Nowadays, not only the size of single wind turbines but also the size of wind farms is increasing. Understanding the interaction between the turbines and especially the wakes formed behind them are getting more important to further improve such wind turbine arrays. Consequently, new issues in wind energy research arise. An experimental wind tunnel study was conducted, in order to analyze and understand the far wake of a wind turbine. The experimental results were used to test if an analytical wake model derived by H. Schilichting for blunt bodies can be used to describe the velocity and width development in the far wake of wind turbines. The results of the evaluation show that the wake of a wind turbine agrees fairly well with the model according to Schlichting. The velocity deficit as well as the width in the wake behind the turbine, are found to deviate with around only 2% from the results obtained applying the analytical model. Thus, it can be concluded that the analytical wake model by Schlichting is well suited to estimate the velocity deficit and the width in the far wake of a wind turbine.

  1. Linear instability in the wake of an elliptic wing

    Science.gov (United States)

    He, Wei; Tendero, Juan Ángel; Paredes, Pedro; Theofilis, Vassilis

    2017-12-01

    Linear global instability analysis has been performed in the wake of a low aspect ratio three-dimensional wing of elliptic cross section, constructed with appropriately scaled Eppler E387 airfoils. The flow field over the airfoil and in its wake has been computed by full three-dimensional direct numerical simulation at a chord Reynolds number of Rec=1750 and two angles of attack, {AoA}=0° and 5°. Point-vortex methods have been employed to predict the inviscid counterpart of this flow. The spatial BiGlobal eigenvalue problem governing linear small-amplitude perturbations superposed upon the viscous three-dimensional wake has been solved at several axial locations, and results were used to initialize linear PSE-3D analyses without any simplifying assumptions regarding the form of the trailing vortex system, other than weak dependence of all flow quantities on the axial spatial direction. Two classes of linearly unstable perturbations were identified, namely stronger-amplified symmetric modes and weaker-amplified antisymmetric disturbances, both peaking at the vortex sheet which connects the trailing vortices. The amplitude functions of both classes of modes were documented, and their characteristics were compared with those delivered by local linear stability analysis in the wake near the symmetry plane and in the vicinity of the vortex core. While all linear instability analysis approaches employed have delivered qualitatively consistent predictions, only PSE-3D is free from assumptions regarding the underlying base flow and should thus be employed to obtain quantitative information on amplification rates and amplitude functions in this class of configurations.

  2. Towards physics-based operational modeling of the unsteady wind turbine response to atmospheric and wake-induced turbulence

    Science.gov (United States)

    Marichal, Y.; De Visscher, I.; Chatelain, P.; Winckelmans, G.

    2017-05-01

    The objective of the present work is to develop a tool able to predict, in a computationally affordable way, the unsteady wind turbine power production and loads as well as its wake dynamics, as a function of the turbine dynamics and incoming wind conditions. Based on the lessons learned from a previous study about the characterization of the unsteady wake dynamics, the framework for an operational wake model is presented. The approach relies on an underlying vorticity-based skeleton consisting of different components, such as a regularized Vortex Sheet Tube (VST) and Vortex Dipole Line (VDL). Physically based evolution equations, accounting for the various flow phenomena occurring in the wake (such as advection, turbulent diffusion/core spreading, source/sink terms, etc.), are then derived. Once calibrated, the wake model is shown to be in good agreement with results of high-fidelity Large Eddy Simulations (LES) obtained using an Immersed Lifting Line-enabled Vortex Particle-Mesh method.

  3. Analysis of the Aerodynamic Performance of Counter-Rotating Propeller by Means of Vortex Lattice Method

    OpenAIRE

    Saito, Shigeru; Mizobuchi, Yasuhiro; 齊藤 茂; 溝渕, 泰寛

    1990-01-01

    Aerodynamic performance of a counter-rotating propeller has been calculated by means of Vortex Lattice Method. The new wake system of the each rotor was constructed using a prescribed wake model by Kocurek-Berkowitz-Harris, which is well known as an empirical wake system of helicopter rotor with low aspect ratio blade. The votex filaments including a blade tip vortex were treated as vortex tube with the finite vortex core in order to avoid the numerical divergence in the calculation. The calc...

  4. Design and analysis of small wind turbine blades with wakes similar to those of industrial scale turbines

    Science.gov (United States)

    Hassanzadeh, Arash; Naughton, Jonathan

    2016-11-01

    A new design approach has been developed for wind turbine blades to be used in wind tunnel experiments that study wind turbine wakes. The approach allows wakes of small scale (2 m diameter) wind turbine rotors to simulate the important physics of wakes generated by a "parent" industrial scale wind turbine rotor despite the difference in size. The design approach forces the normalized normal and tangential force distributions of the small scale wind turbine blades to match those of the "parent" industrial scale wind turbine blades. The wake arises from the interaction between the flow and the blade, which imparts a momentum deficit and rotation to the flow due to the forces created by the blade on the flow. In addition, the wake dynamics and stability are affected by the load distribution across the blade. Thus, it is expected that matching normalized force distributions should result in similar wake structure. To independently assess the blades designed using this approach, the "parent" industrial scale and small scale wind turbine rotors are modeled using a free vortex wake method to study the generation and evolution of the two wakes. This work was supported by the U.S. Department of Energy, Office of Science, Basic Energy Sciences, under Award # DE-SC0012671.

  5. Flow visualization of the wake of a transport aircraft model with lateral-control oscillations

    Science.gov (United States)

    Jordan, F. L., Jr.

    1983-01-01

    An exploratory flow visualization study conducted in the Langley Vortex Research Facility to investigate the effectiveness of lateral control surface oscillations as a potential method for wake vortex attenuation on a 0.03 scale model of a wide body jet transport aircraft is described. Effects of both asymmetric surface oscillation (control surfaces move as with normal lateral control inputs) and symmetric surface oscillation (control surfaces move in phase) are presented. The asymmetric case simulated a flight maneuver which was previously investigated on the transport aircraft during NASA/FAA flight tests and which resulted in substantial wake vortex attenuation. Effects on the model wake vortex systems were observed by propelling the model through a two dimensional smoke screen perpendicular to the model flight path. Results are presented as photographic time histories of the wake characteristics recorded with high speed still cameras. Effects of oscillation on the wake roll up are described in some detail, and the amount of vortex attenuation observed is discussed in comparative terms. Findings were consistent with flight test results in that only a small amount of rotation was observed in the wake for the asymmetric case. A possible aerodynamic mechanism contributing to this attenuation is suggested.

  6. Wake structure of axial-flow hydrokinetic turbines in tri-frame arrangement

    Science.gov (United States)

    Chawdhary, Saurabh; Yang, Xiaolei; Hill, Craig; Khosronejad, Ali; Guala, Michele; Sotiropoulos, Fotis

    2015-11-01

    Marine and hydro-kinetic (MHK) energy hold promise for future of sustainable energy generation. Tri-frame of turbines, three turbines mounted on vertices of a triangle, are an effective way to build a power producing array of hydrokinetic turbines in marine environment. Large eddy simulation (LES) is used to simulate the flow past a tri-frame and characterize its wake. Full geometry of all three turbines in the tri-frame is resolved using the Curvilinear Immersed Boundary (CURVIB) method of Kang et al. (2011). High fidelity solution of flow field is obtained owing to the inclusion of detailed geometry of the turbines. Excellent agreement is obtained with the experiments conducted in a flume at Saint Anthony Falls Laboratory (SAFL). The wake evolution of the three turbines is compared to that of an isolated single turbine. The differences in wake dynamics are highlighted to elucidate the importance of turbine wake interaction in an array. The simulations indicate lower levels of TKE and lower levels of momentum deficit in the wake of the upstream turbine of tri-frame compared to the other turbines. Analysis of the far wake recovery is useful for the optimal MHK array design. This work was supported by NSF grant IIP-1318201. The simulations were carried out at the Minnesota Supercomputing Institute.

  7. Wake structure of an oscillating cylinder in a flowing soap film

    Science.gov (United States)

    Stremler, Mark; Yang, Wenchao

    2016-11-01

    When a circular cylinder oscillates with respect to a uniform background flow, a variety of wake patterns can be observed in which multiple vortices are generated during each shedding cycle. Thorough investigations of the possible wake patterns behind a cylinder undergoing forced oscillations have been conducted by C.H.K. Williamson using two-dimensional characterization of a three-dimensional flow. Attempts to reproduce the structural bifurcations using two-dimensional computational models have been only moderately successful. A flowing soap film, an experimental system with quasi-two-dimensional flow, provides an alternative method for investigating the role of system dimensionality in the structure and dynamics of complex vortex wakes. Wake patterns are observed directly through interference fringes caused by thickness variations in the soap film. Such systems have been used for decades to visualize wake structure, but they have not previously been used to conduct an analog of Williamson's work. We will discuss the results of an ongoing parametric study of the wake structure produced by a circular cylinder undergoing forced oscillations transverse to the background flow in an inclined soap film system.

  8. DIELECTRIC WAKE FIELD RESONATOR ACCELERATOR MODULE

    Energy Technology Data Exchange (ETDEWEB)

    Hirshfield, Jay L.

    2013-11-06

    Results are presented from experiments, and numerical analysis of wake fields set up by electron bunches passing through a cylindrical or rectangular dielectric-lined structure. These bunches excite many TM-modes, with Ez components of the wake fields sharply localized on the axis of the structure periodically behind the bunches. The experiment with the cylindrical structure, carried out at ATF Brookhaven National Laboratory, used up to three 50 MeV bunches spaced by one wake field period (21 cm) to study the superposition of wake fields by measuring the energy loss of each bunch after it passed through the 53-cm long dielectric element. The millimeter-wave spectrum of radiation excited by the passage of bunches is also studied. Numerical analysis was aimed not only to simulate the behavior of our device, but in general to predict dielectric wake field accelerator performance. It is shown that one needs to match the radius of the cylindrical dielectric channel with the bunch longitudinal rms-length to achieve optimal performance.

  9. Effect of Wind Turbine Wakes on the Performance of a Real Case WRF-LES Simulation

    Science.gov (United States)

    Doubrawa, P.; Montornès, A.; Barthelmie, R. J.; Pryor, S. C.; Giroux, G.; Casso, P.

    2017-05-01

    The main objective of this work is to estimate how much of the discrepancy between measured and modeled flow parameters can be attributed to wake effects. The real case simulations were performed for a period of 15 days with the Weather Research and Forecasting (WRF) model and nested down to a Large-Eddy Simulation (LES) scale of ∼ 100 m. Beyond the coastal escarpment, the site is flat and homogeneous and the study focuses on a meteorological mast and a northern turbine subjected to the wake of a southern turbine. The observational data set collected during the Prince Edward Island Wind Energy Experiment (PEIWEE) includes a sonic anemometer at 60 m mounted onto the mast, and measurements from the two turbines. Wake versus free stream conditions are distinguished based on measured wind direction while assuming constant expansion for the wake of the southern turbine. During the period considered the mast and northern turbine were under the southern turbine wake ∼ 16% and ∼ 11% of the time, respectively. Under these conditions, the model overestimates the wind speed and underestimates the turbulence intensity at the mast but not at the northern turbine, where the effect of wakes on the model error is unclear and other model limitations are likely more important. The wind direction difference between the southern and northern turbines is slightly underestimated by the model regardless of whether free stream or wake conditions are observed, indicating that it may be due to factors unrelated to the wake development such as surface forcings. Finally, coupling an inexpensive wake model to the high-fidelity simulation as a post-processing tool drives the simulated wind speeds at the mast significantly closer to the observed values, but the opposite is true at the coastal turbine which is in the far wake. This indicates that the application of a post-processing wake correction should be performed with caution and may increase the wind speed errors when other important

  10. On-Demand Sensor Node Wake-Up Using Solar Panels and Visible Light Communication

    Directory of Open Access Journals (Sweden)

    Carolina Carrascal

    2016-03-01

    Full Text Available To significantly reduce, or eliminate completely, the energy waste caused by the standby (idle mode of wireless sensor nodes, we propose a novel on-demand wake-up system, which allows the nodes to be put into sleep mode unless their activation is truly necessary. Although there have been many studies proposing RF-based wake-up radio systems, in this work, we develop the first visible light communication (VLC-based wake-up system. The developed system can extend the existing VLC systems and can be exploited to derive new application areas such as VLC tags. The system uses an off-the-shell indoor solar panel as receptor device of the wake-up signal as well as for energy harvesting purposes, through which it is able to harvest enough energy for its autonomous work. The design, implementation details and the experimental evaluation results are presented, which include flickering characterization and wake-up range evaluations. The results show that the developed system achieve reasonable wake-up distances for indoor environments, mainly where the use of VLC systems are considered.

  11. The sleep-wakefulness cycle of Wistar rats with spontaneous absence-like epilepsy

    Directory of Open Access Journals (Sweden)

    Edison Sanfelice André

    2015-07-01

    Full Text Available Possible interactions between the sleep-wakefulness cycle and a new kind of spontaneous epilepsy, expressed as absence-like seizures and spike-wave bursts in FMUSP rats, are evaluated. The electro-oscillograms of some cortical and subcortical regions of the brain were recorded, as well as head, rostrum/vibrissae and eye movements. Recordings were performed uninterruptedly during 24 hours. The seizures were mostly concentrated in the wakefulness state but they could occur in any other phase, including paradoxical sleep. After the seizure, the rats usually returned to the same phase that was interrupted, although they often returned to wakefulness. There was an intense fragmentation of the sleep-wakefulness cycle. The incidence of each cycle phase was significantly reduced, except SIII of synchronized sleep and paradoxical sleep, thus maintaining the overall duration and architecture of the sleep-wakefulness cycle. The fragmentation of the cycle seems to be due to an impairment of the very processes that generate sleep and wakefulness. Electrophysiological and behavioral profiles of the FMUSP rats recommend accurate and comprehensive study of the animal model owing to its resemblance to seizures in humans and also to discrepancies with existing genetic or experimental epilepsy models.

  12. Wing-wake interaction destabilizes hover equilibrium of a flapping insect-scale wing.

    Science.gov (United States)

    Bluman, James; Kang, Chang-Kwon

    2017-06-15

    Wing-wake interaction is a characteristic nonlinear flow feature that can enhance unsteady lift in flapping flight. However, the effects of wing-wake interaction on the flight dynamics of hover are inadequately understood. We use a well-validated 2D Navier-Stokes equation solver and a quasi-steady model to investigate the role of wing-wake interaction on the hover stability of a fruit fly scale flapping flyer. The Navier-Stokes equations capture wing-wake interaction, whereas the quasi-steady models do not. Both aerodynamic models are tightly coupled to a flight dynamic model, which includes the effects of wing mass. The flapping amplitude, stroke plane angle, and flapping offset angle are adjusted in free flight for various wing rotations to achieve hover equilibrium. We present stability results for 152 simulations which consider different kinematics involving the pitch amplitude and pitch axis as well as the duration and timing of pitch rotation. The stability of all studied motions was qualitatively similar, with an unstable oscillatory mode present in each case. Wing-wake interaction has a destabilizing effect on the longitudinal stability, which cannot be predicted by a quasi-steady model. Wing-wake interaction increases the tendency of the flapping flyer to pitch up in the presence of a horizontal velocity perturbation, which further destabilizes the unstable oscillatory mode of hovering flight dynamics.

  13. On-Demand Sensor Node Wake-Up Using Solar Panels and Visible Light Communication.

    Science.gov (United States)

    Carrascal, Carolina; Demirkol, Ilker; Paradells, Josep

    2016-03-22

    To significantly reduce, or eliminate completely, the energy waste caused by the standby (idle) mode of wireless sensor nodes, we propose a novel on-demand wake-up system, which allows the nodes to be put into sleep mode unless their activation is truly necessary. Although there have been many studies proposing RF-based wake-up radio systems, in this work, we develop the first visible light communication (VLC)-based wake-up system. The developed system can extend the existing VLC systems and can be exploited to derive new application areas such as VLC tags. The system uses an off-the-shell indoor solar panel as receptor device of the wake-up signal as well as for energy harvesting purposes, through which it is able to harvest enough energy for its autonomous work. The design, implementation details and the experimental evaluation results are presented, which include flickering characterization and wake-up range evaluations. The results show that the developed system achieve reasonable wake-up distances for indoor environments, mainly where the use of VLC systems are considered.

  14. Detailed field test of yaw-based wake steering

    DEFF Research Database (Denmark)

    Fleming, P.; Churchfield, M.; Scholbrock, A.

    2016-01-01

    This paper describes a detailed field-test campaign to investigate yaw-based wake steering. In yaw-based wake steering, an upstream turbine intentionally misaligns its yaw with respect to the inflow to deflect its wake away from a downstream turbine, with the goal of increasing total power...... production. In the first phase, a nacelle-mounted scanning lidar was used to verify wake deflection of a misaligned turbine and calibrate wake deflection models. In the second phase, these models were used within a yaw controller to achieve a desired wake deflection. This paper details the experimental...

  15. The Montessori Method: The Origins of an Educational Innovation: Including an Abridged and Annotated Edition of Maria Montessori's The Montessori Method

    Science.gov (United States)

    Gutek, Gerald Lee

    2004-01-01

    An essential resource for all students and scholars of early childhood education, this book offers a rich array of material about Maria Montessori and the Montessori Method. Distinguished education scholar Gerald Gutek begins with an in-depth biography of Montessori, exploring how a determined young woman overcame the obstacles that blocked her…

  16. NASA AVOSS Fast-Time Models for Aircraft Wake Prediction: User's Guide (APA3.8 and TDP2.1)

    Science.gov (United States)

    Ahmad, Nash'at N.; VanValkenburg, Randal L.; Pruis, Matthew J.; Limon Duparcmeur, Fanny M.

    2016-01-01

    NASA's current distribution of fast-time wake vortex decay and transport models includes APA (Version 3.8) and TDP (Version 2.1). This User's Guide provides detailed information on the model inputs, file formats, and model outputs. A brief description of the Memphis 1995, Dallas/Fort Worth 1997, and the Denver 2003 wake vortex datasets is given along with the evaluation of models. A detailed bibliography is provided which includes publications on model development, wake field experiment descriptions, and applications of the fast-time wake vortex models.

  17. Joyce the Deconstructionist: Finnegans Wake in Context

    Directory of Open Access Journals (Sweden)

    Zangouei J.

    2012-01-01

    Full Text Available Had Finnegans Wake not been written, some seminal post-1950s innovations in the field of modern literary theory and criticism would have been impossible. James Joyce, who seems to have inspiringly influenced the entire sphere of modern literary theory and criticism greatly, is a pioneer of deconstruction too. His last novel, which reflects his deconstructive tendencies, has played a seminal role in the formation of 20th century deconstruction, and comprises an inchoate mass of implicit ideas on the subject. It was perhaps not until Jacques Derrida and his deconstruction techniques that the theory implied by Finnegans Wake really came into focus. This article seeks to delineate Derrida’s theory of deconstruction as well as Joyce's deconstructive aesthetics; and taking a diachronic approach to literary theory and criticism it glances at Finnegans Wake in the light of deconstruction.

  18. Fast particle tracking with wake fields

    Energy Technology Data Exchange (ETDEWEB)

    Dohlus, M.; Floettmann, K.; Henning, C.

    2012-01-15

    Tracking calculations of charged particles in electromagnetic fields require in principle the simultaneous solution of the equation of motion and of Maxwell's equations. In many tracking codes a simpler and more efficient approach is used: external fields like that of the accelerating structures are provided as field maps, generated in separate computations and for the calculation of self fields the model of a particle bunch in uniform motion is used. We describe how an externally computed wake function can be approximated by a table of Taylor coefficients and how the wake field kick can be calculated for the particle distribution in a tracking calculation. The integrated kick, representing the effect of a distributed structure, is applied at a discrete time. As an example, we use our approach to calculate the emittance growth of a bunch in an undulator beam pipe due to resistive wall wake field effects. (orig.)

  19. Vortex structure in the Venus plasma wake

    Science.gov (United States)

    Perez-de-Tejada, H.; Lundin, R. N. A.

    2016-12-01

    Measurements conducted with the ASPERA-4 instrument of the Venus Express spacecraft in orbit around Venus show velocity distributions of the H+ ions that describe a large scale vortex flow structure in the Venus wake (Lundin et al., GRL, 40, 1273, 2013). Such structure is in agreement with that reported from the early Pioneer Venus Orbiter plasma data (Pérez-de-Tejada et al., INTECH, ISBN 978-953-51-0880-1, p. 317, 2012) and suggests that the solar wind around the Venus ionosphere is forced back into the planet from the wake. Measurements also show that a vortex circulation flow rather than local magnetic forces is responsible for the deviated direction of motion of the solar wind in the Venus wake.

  20. Meteorological Controls on Wind Turbine Wakes

    DEFF Research Database (Denmark)

    Barthelmie, Rebecca J.; Hansen, Kurt Schaldemose; Pryor, S.C.

    2013-01-01

    is high, wake losses are proportionally larger and decrease to be virtually undetectable at wind speeds above rated wind speeds. Wind direction is also critical. Not only does it determine the effective spacing between turbines but also the wind speed distribution is primarily determined by synoptic......The primary control on the magnitude of the power losses induced by wind turbine wakes in large wind farms is the hub-height wind speed via its link to the turbine thrust coefficient. Hence, at low to moderate wind speeds (between cut-in and rated turbine wind speeds) when the thrust coefficient...... forcing and typically has a predominant direction from which wind speeds tend to be higher (from southwest for much of the central United States and northern Europe). Two other interlinked variables, turbulence intensity (TI), and atmospheric stability also dictate wake losses. Quantifying, understanding...

  1. Wakes in large offshore wind farms

    DEFF Research Database (Denmark)

    Berthelmie, Rebecca J.; Frandsen, Sten Tronæs; Rathmann, Ole

    2008-01-01

    Power losses due to wind turbine wakes are of the order of 10 and 20% of total power output in large wind farms. The focus of this research carried out within the EC funded UPWIND project is wind speed and turbulence modelling for large wind farms/wind turbines in complex terrain and offshore...... is for five turbines in flat terrain. Finally a complex terrain wind farm will be modelled and compared with observations. For offshore wind farms, the focus is on cases at the Horns Rev wind farm which indicate wind farm models require modification to reduce under-prediction of wake losses while CFD models...... in order to optimise wind farm layouts to reduce wake losses and loads. For complex terrain, a set of three evaluations is underway. The first is a model comparison for a Gaussian Hill where CFD models and wind farm models are being compared for the case of one hilltop wind turbine. The next case...

  2. Aircraft wake vortices in the atmosphere

    Science.gov (United States)

    Gerz, Thomas; Holzäpfel, Frank; Hofbauer, Thomas; Dörnbrack, Andreas; Frech, Michael

    The studies summarized here were motivated by the need to gain information (i) about the impact of aircraft emissions upon the atmosphere and the climate and (ii) about optimized separation distances between aircraft landing at an airport for possibly increasing its capacity. To this end, large-eddy simulations have been performed to learn about the behaviour of vortex wakes shed by cruising aircraft in the free atmosphere and in the atmospheric boundary layer close to the ground. Some results are best illustrated in animated form and may be found under http://www.pa.op.dlr.de/wirbelschleppe/WakeVortex.html.

  3. Cylinder wakes in flowing soap films.

    Science.gov (United States)

    Vorobieff, P; Ecke, R E

    1999-09-01

    We present an experimental characterization of cylinder wakes in flowing soap films. From instantaneous velocity and thickness fields, we find the vortex-shedding frequency, mean-flow velocity, and mean-film thickness. Using the empirical relationship between the Reynolds and Strouhal numbers obtained for cylinder wakes in three dimensions, we estimate the effective soap-film viscosity and its dependence on film thickness. We also compare the decay of vorticity with that in a simple Rankine vortex model with a dissipative term to account for air drag.

  4. On the application of the Jensen wake model using a turbulence-dependent wake decay coefficient: the Sexbierum case

    DEFF Research Database (Denmark)

    Pena Diaz, Alfredo; Réthoré, Pierre-Elouan; van der Laan, Paul

    2016-01-01

    and partly accounts for the uncertainty in the wind direction assuming that the same follows a Gaussian distribution. Simulations of the single and double wake measurements at the Sexbierum onshore wind farm are performed using a fast engineering wind farm wake model based on the Jensen wake model...... with the suggested post-processing. We show that the wake decay coefficient of the Jensen wake model must be decreased from the commonly used onshore value of 0.075 to 0.038, when applied to the Sexbierum cases, as wake decay is related to the height, roughness and atmospheric stability and, thus, to turbulence...

  5. Prediction of multi-wake problems using an improved Jensen wake model

    DEFF Research Database (Denmark)

    Tian, Linlin; Zhu, Wei Jun; Shen, Wen Zhong

    2017-01-01

    model uses a cosine shape instead of the top-hat shape for the velocity deficit in the wake, and the wake decay rate as a variable that is related to the ambient turbulence as well as the rotor generated turbulence. Coupled with four different multi-wake combination models, the 2D_k Jensen model...... Simulations (LES) as well as results from other commercial codes, it is found that the predictions obtained with the 2D_k Jensen model exhibit good to excellent agreements with experimental and LES data....

  6. Engineering models for merging wakes in wind farm optimization applications

    DEFF Research Database (Denmark)

    Machefaux, Ewan; Larsen, Gunner Chr.; Murcia Leon, Juan Pablo

    2015-01-01

    The present paper deals with validation of 4 different engineering wake superposition approaches against detailed CFD simulations and covering different turbine interspacing, ambient turbulence intensities and mean wind speeds. The first engineering model is a simple linear superposition of wake ...

  7. Children's night waking among toddlers: relationships with mothers' and fathers' parenting approaches and children's behavioural difficulties.

    Science.gov (United States)

    Zaidman-Zait, Anat; Hall, Wendy A

    2015-07-01

    To explore associations between children's sleep problems, and behavioural difficulties and parenting approaches. Children commonly have problematic night waking; however, relationships between parenting cognitions and behaviours and children's sleep problems are rarely examined. Longitudinal children's cohort study from 5-29 months post birth. Data were taken from the Quebec Longitudinal Study of Child Development (1998-2007) at three phases: 5, 17 and 29 months of age. Thousand four hundred and eighty-seven families were included in our study based on: participation from phase 1 (5-months old), both parents' reports on parenting cognitions/behaviours and child behavioural difficulties at 29 months, and mothers' reports of children's sleep at 29 months. In 2013, we conducted repeated measures anovas and manovas including children's gender. Extended night-time waking patterns (wakes of ≥20 minutes) were associated with mothers' and fathers' lower sense of parenting impact and higher overprotectiveness and mothers' lower self-efficacy and higher coerciveness for 29-month-old children. In the extended waking group, mothers consistently reported lower self-efficacy, higher overprotectiveness and lower parenting impact at 5, 17 and 29 months. For those children, fathers were only more overprotective at 5 and 29 months. Regarding 29-month-old children's behaviour, children in the extended night waking group had highest scores on externalizing and internalizing behaviours. Girls had higher scores on shyness/inhibition and boys had higher scores on aggression/hyperactivity. Mothers' and fathers' parenting cognitions and behaviours are affected by 29-month-old children's night waking patterns and night waking patterns are associated with children's behavioural problems. © 2015 John Wiley & Sons Ltd.

  8. Sleep Fragmentation Exacerbates Mechanical Hypersensitivity and Alters Subsequent Sleep-Wake Behavior in a Mouse Model of Musculoskeletal Sensitization

    Science.gov (United States)

    Sutton, Blair C.; Opp, Mark R.

    2014-01-01

    Study Objectives: Sleep deprivation, or sleep disruption, enhances pain in human subjects. Chronic musculoskeletal pain is prevalent in our society, and constitutes a tremendous public health burden. Although preclinical models of neuropathic and inflammatory pain demonstrate effects on sleep, few studies focus on musculoskeletal pain. We reported elsewhere in this issue of SLEEP that musculoskeletal sensitization alters sleep of mice. In this study we hypothesize that sleep fragmentation during the development of musculoskeletal sensitization will exacerbate subsequent pain responses and alter sleep-wake behavior of mice. Design: This is a preclinical study using C57BL/6J mice to determine the effect on behavioral outcomes of sleep fragmentation combined with musculoskeletal sensitization. Methods: Musculoskeletal sensitization, a model of chronic muscle pain, was induced using two unilateral injections of acidified saline (pH 4.0) into the gastrocnemius muscle, spaced 5 days apart. Musculoskeletal sensitization manifests as mechanical hypersensitivity determined by von Frey filament testing at the hindpaws. Sleep fragmentation took place during the consecutive 12-h light periods of the 5 days between intramuscular injections. Electroencephalogram (EEG) and body temperature were recorded from some mice at baseline and for 3 weeks after musculoskeletal sensitization. Mechanical hypersensitivity was determined at preinjection baseline and on days 1, 3, 7, 14, and 21 after sensitization. Two additional experiments were conducted to determine the independent effects of sleep fragmentation or musculoskeletal sensitization on mechanical hypersensitivity. Results: Five days of sleep fragmentation alone did not induce mechanical hypersensitivity, whereas sleep fragmentation combined with musculoskeletal sensitization resulted in prolonged and exacerbated mechanical hypersensitivity. Sleep fragmentation combined with musculoskeletal sensitization had an effect on

  9. Rotor Wake Vortex Definition: Initial Evaluation of 3-C PIV Results of the Hart-II Study

    Science.gov (United States)

    Burley, Casey L.; Brooks, Thomas F.; vanderWall, Berend; Richard, Hughes; Raffel, Markus; Beaumier, Philippe; Delrieux, Yves; Lim, Joon W.; Yu, Yung H.; Tung, Chee

    2002-01-01

    An initial evaluation is made of extensive three-component (3C) particle image velocimetry (PIV) measurements within the wake across a rotor disk plane. The model is a 40 percent scale BO-105 helicopter main rotor in forward flight simulation. This study is part of the HART II test program conducted in the German-Dutch Wind Tunnel (DNW). Included are wake vortex field measurements over the advancing and retreating sides of the rotor operating at a typical descent landing condition important for impulsive blade-vortex interaction (BVI) noise. Also included are advancing side results for rotor angle variations from climb to steep descent. Using detailed PIV vector maps of the vortex fields, methods of extracting key vortex parameters are examined and a new method was developed and evaluated. An objective processing method, involving a center-of-vorticity criterion and a vorticity 'disk' integration, was used to determine vortex core size, strength, core velocity distribution characteristics, and unsteadiness. These parameters are mapped over the rotor disk and offer unique physical insight for these parameters of importance for rotor noise and vibration prediction.

  10. Performance and wake conditions of a rotor located in the wake of an obstacle

    DEFF Research Database (Denmark)

    Naumov, I. V.; Kabardin, I. K.; Mikkelsen, Robert Flemming

    2016-01-01

    Obstacles like forests, ridges and hills can strongly affect the velocity profile in front of a wind turbine rotor. The present work aims at quantifying the influence of nearby located obstacles on the performance and wake characteristics of a downstream located wind turbine. Here the influence......, PIV measurements were carried out to study the development of the mean velocity deficit profiles of the wake behind the wind turbine model under the influence of the wake generated by the obstacle. By use of regression techniques to fit the velocity profiles it was possible to determine velocity...... of an obstacle in the form of a cylindrical disk was investigated experimentally in a water flume. A model of a three-bladed rotor, designed using Glauert's optimum theory at a tip speed ratio λ = 5, was placed in the wake of a disk with a diameter close to the one of the rotor. The distance from the disk...

  11. Benchmarking of Wind Turbine Wake Models in Large Offshore Windfarms

    DEFF Research Database (Denmark)

    Gaumond, M.; Réthoré, Pierre-Elouan; Bechmann, Andreas

    Quantifying accurately wind turbine wakes is a key aspect of wind farm economics in large wind farms. This research compares three engineering wake models with power production data from the Horns Rev and Lillgrund offshore wind farms. Single and multiple wake cases are investigated to verify...

  12. Simulation of wind turbine wakes using the actuator line technique

    DEFF Research Database (Denmark)

    Sørensen, Jens Nørkær; Mikkelsen, Robert Flemming; Henningson, Dan S.

    2015-01-01

    The actuator line technique was introduced as a numerical tool to be employed in combination with large eddy simulations to enable the study of wakes and wake interaction in wind farms. The technique is today largely used for studying basic features of wakes as well as for making performance...

  13. Coupled wake boundary layer model of wind-farms

    NARCIS (Netherlands)

    Stevens, Richard Johannes Antonius Maria; Gayme, Dennice F.; Meneveau, Charles

    2015-01-01

    We present and test a coupled wake boundary layer (CWBL) model that describes the distribution of the power output in a wind-farm. This model couples the traditional, industry-standard wake model approach with a “top-down” model for the overall wind-farm boundary layer structure. The wake model

  14. Validation of the dynamic wake meander model for loads and power production in the Egmond aan Zee wind farm

    DEFF Research Database (Denmark)

    Larsen, Torben J.; Aagaard Madsen, Helge; Larsen, Gunner Chr.

    2013-01-01

    fatigue and min–mean–max loads for blade root flap, tower yaw and tower bottom bending moments, respectively. Since the observed turbine is located deep inside a row of turbines, a new method on how to handle multiple wakes interaction is proposed. The agreement between measurements and simulations...... for two distinct wind directions—a free wind situation from the dominating southwest and a full wake situation from northwest, where the observed turbine is operating in wake from five turbines in a row with 7D spacing. The measurements have a very high quality, allowing for detailed comparison of both...

  15. Wake structure and similar behavior of wake profiles downstream of a plunging airfoil

    Directory of Open Access Journals (Sweden)

    Ali R. DAVARI

    2017-08-01

    Full Text Available Very limited attention has already been paid to the velocity behavior in the wake region in unsteady aerodynamic problems. A series of tests has been performed on a flapping airfoil in a subsonic wind tunnel to study the wake structure for different sets of mean angle of attack, plunging amplitude and reduced frequency. In this study, the velocity profiles in the wake for various oscillation parameters have been measured using a wide shoulder rake, especially designed for the present experiments. The airfoil under consideration was a critical section of a 660 kW wind turbine. The results show that for a flapping airfoil the wake structure can be of drag producing type, thrust producing or neutral, depending on the mean angle of attack, oscillation amplitude and reduced frequency. In a thrust producing wake, a high-momentum high-velocity jet flow is formed in the core region of the wake instead of the conventional low-momentum flow. As a result, the drag force normally experienced by the body due to the momentum deficit would be replaced by a thrust force. According to the results, the momentum loss in the wake decreases as the reduced frequency increases. The thrust producing wake pattern for the flapping airfoil has been observed for sufficiently low angles of attack in the absence of the viscous effects. This phenomenon has also been observed for either high oscillation amplitudes or high reduced frequencies. According to the results, for different reduced frequencies and plunging amplitudes, such that the product of them be a constant, the velocity profiles exhibit similar behavior and coalesce on each other. This similarity parameter works excellently at small angles of attack. However, at near stall boundaries, the similarity is not as evident as before.

  16. Comparison of the Dynamic Wake Meandering Model, Large-Eddy Simulation, and Field Data at the Egmond aan Zee Offshore Wind Plant: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Churchfield, M. J.; Moriarty, P. J.; Hao, Y.; Lackner, M. A.; Barthelmie, R.; Lundquist, J.; Oxley, G. S.

    2014-12-01

    The focus of this work is the comparison of the dynamic wake meandering model and large-eddy simulation with field data from the Egmond aan Zee offshore wind plant composed of 36 3-MW turbines. The field data includes meteorological mast measurements, SCADA information from all turbines, and strain-gauge data from two turbines. The dynamic wake meandering model and large-eddy simulation are means of computing unsteady wind plant aerodynamics, including the important unsteady meandering of wakes as they convect downstream and interact with other turbines and wakes. Both of these models are coupled to a turbine model such that power and mechanical loads of each turbine in the wind plant are computed. We are interested in how accurately different types of waking (e.g., direct versus partial waking), can be modeled, and how background turbulence level affects these loads. We show that both the dynamic wake meandering model and large-eddy simulation appear to underpredict power and overpredict fatigue loads because of wake effects, but it is unclear that they are really in error. This discrepancy may be caused by wind-direction uncertainty in the field data, which tends to make wake effects appear less pronounced.

  17. Wake models developed during the Wind Shadow Project

    DEFF Research Database (Denmark)

    Larsen, Søren Ejling; Ott, Søren; Pena Diaz, Alfredo

    The Wind Shadow project has developed and validated improved models for determining the wakes losses, and thereby the array efficiency of very large, closely packed wind farms. The rationale behind the project has been that the existing software has been covering these types of wind farms poorly......, both with respect to the densely packed turbines and the large fetches needed to describe the collective shadow effects of one farm to the next. Further the project has developed the necessary software for the use of the models. Guidelines with recommendations for the use of the models are included...... in the model deliverables....

  18. Capturing relativistic wake eld structures in plasmas using ultrashort high-energy electrons as a probe

    CERN Document Server

    Zhang, C J; Xu, X L; Li, F; Pai, C -H; Wan, Y; Wu, Y P; Gu, Y Q; Mori, W B; Joshi, C; Lu, W

    2016-01-01

    A new method capable of capturing coherent electric field structures propagating at nearly the speed of light in plasma with a time resolution as small as a few femtoseconds is proposed. This method uses a few femtoseconds long relativistic electron bunch to probe the wake produced in a plasma by an intense laser pulse or an ultra-short relativistic charged particle beam. As the probe bunch traverses the wake, its momentum is modulated by the electric field of the wake, leading to a density variation of the probe after free-space propagation. This variation of probe density produces a snapshot of the wake that can directly give many useful information of the wake structure and its evolution. Furthermore, this snapshot allows detailed mapping of the longitudinal and transverse components of the wakefield. We develop a theoretical model for field reconstruction and verify it using 3-dimensional particle-in-cell (PIC) simulations. This model can accurately reconstruct the wakefield structure in the linear regime...

  19. Identification of secondary instabilities in the near wake of a blunt trailing edge profiled body

    Science.gov (United States)

    Cruikshank, Ross; Zhao, Wenyi; Lavoie, Philippe

    2015-11-01

    Aerodynamic research into blunt trailing edge (BTE) airfoils is driven by their structural and aerodynamic advantages over sharp trailing edge airfoils. However, the wake of BTE airfoils is dominated by a vortex street, which causes increased drag. One method to reduce the spanwise coherence of the vortex street is to generate streamwise vorticity in the wake. Recent evidence suggests that the efficiency of this control method can be improved by forcing at the same wavelength as a secondary instability (SI) of the vortex street, present at Reynolds numbers (based on airfoil thickness, d) above 470. The objective of the present study was to investigate the variation of the SI wavelength at 2000 effect of forcing on the wake topology. The velocity field in the wake of a BTE profiled model was measured using particle image velocimetry, and proper orthogonal decomposition was applied as a filter for measurement noise. It was found that, for a laminar boundary layer, the SI wavelength decreased as Red increased. Following boundary layer transition to turbulence, the SI wavelength was insensitive to Red . This study will also examine the effect of forcing at different wavelengths on the dominant spanwise wavelength of the wake velocity field. The authors gratefully acknowledge the support of the Natural Sciences and Engineering Research Council of Canada.

  20. Waking-up to Science!

    Science.gov (United States)

    2007-03-01

    our genes", says Potočnik. "Unfortunately it tends to die away when we grow up. This is because the ways we raise and educate our children and the ways we work and live do not always support innovative thinking and doing. We cannot change this overnight. But I think it is worth making the effort to awaken this dormant passion and initiatives like Science on Stage can be a very effective alarm clock", he adds. The festival will close with the presentation of the European Science Teaching Awards. The teaching materials and methods voted to be the best in Europe will then be presented in the 'Science in School' magazine, distributed free of charge to 30,000 teachers in Europe. The festival is the climax of a two-year programme of events organised in virtually every European country and from which delegates have been selected for their outstanding projects for promoting science. The winners of ESO's Catch a Star! 2007 contest will also be announced during the Science on Stage festival. The event follows on from the hugely successful 'Physics on Stage' and 'Science on Stage' festivals organised by EIROforum in 2000, 2002, 2003 and 2005. Journalists are cordially invited to take part in this unique European event. Practical information, including the detailed festival programme, is available on the Science on Stage web site at http://www.ill.fr/scienceonstage2007. A detailed press kit is available at http://www.ill.fr/scienceonstage2007/fichiers/SOSpresskit.pdf

  1. Wake Influence on Dynamic Load Characteristics of Offshore Floating Wind Turbines

    DEFF Research Database (Denmark)

    Jeon, Minu; Lee, Soogab; Kim, Taeseong

    2016-01-01

    dynamic wake method, and unsteady vortex lattice method. The Offshore Code Comparison Collaboration Hywind model is chosen for offshore floating wind-turbine simulation. Results show that the blade-element momentum theory underestimates the rotor torque and speed. Moreover, although responses...

  2. Increasing length of wakefulness and modulation of hypocretin-1 in the wake-consolidated squirrel monkey.

    Science.gov (United States)

    Zeitzer, Jamie M; Buckmaster, Christine L; Lyons, David M; Mignot, Emmanuel

    2007-10-01

    The neuropeptides hypocretins (orexins), the loss of which results in the sleep disorder narcolepsy, are hypothesized to be involved in the consolidation of wakefulness and have been proposed to be part of the circadian-driven alertness signal. To elucidate the role of hypocretins in the consolidation of human wakefulness we examined the effect of wake extension on hypocretin-1 in squirrel monkeys, primates that consolidate wakefulness during the daytime as do humans. Wake was extended up to 7 h with hypocretin-1, cortisol, ghrelin, leptin, locomotion, and feeding, all being assayed. Hypocretin-1 (P sleep deprivation, while ghrelin (P = 0.79) and leptin (P = 1.00) did not change with sleep deprivation. Using cross-correlation and multivariate modeling of these potential covariates along with homeostatic pressure (a measure of time awake/asleep), we found that time of day and homeostatic pressure together explained 44% of the variance in the hypocretin-1 data (P sleep pressure. Concomitants of wakefulness that affect hypocretin-1 in polyphasic species, such as locomotion, food intake, and food deprivation, likely have a more minor role in monophasic species, such as humans.

  3. Actuator Line Simulation of Wake of Wind Turbine Operating in Turbulent Inflow

    DEFF Research Database (Denmark)

    Troldborg, Niels; Sørensen, Jens Nørkær; Mikkelsen, Robert Flemming

    2007-01-01

    The wake of a wind turbine operating in an atmospheric turbulent inflow without mean shear is simulated using a numerical method, which combines large eddy simulations with an actuator line technique. A turbulent inflow with the same spectral characteristics as the atmosphere is produced by intro......The wake of a wind turbine operating in an atmospheric turbulent inflow without mean shear is simulated using a numerical method, which combines large eddy simulations with an actuator line technique. A turbulent inflow with the same spectral characteristics as the atmosphere is produced...... by introducing time varying body forces in a plane upstream the rotor. The results of the simulation are compared to those obtained on a wind turbine in uniform inflow at the same mean wind speed and from this comparison a number of features of the influence of inflow turbulence on wake dynamics are deduced...

  4. Searching for DFT-based methods that include dispersion interactions to calculate the physisorption of H2 on benzene and graphene

    Science.gov (United States)

    Cabria, I.; López, M. J.; Alonso, J. A.

    2017-06-01

    Simulations of the hydrogen storage capacities of nanoporous carbons require an accurate treatment of the interaction of the hydrogen molecule with the graphite-like surfaces of the carbon pores, which is dominated by the dispersion forces. These interactions are described accurately by high level quantum chemistry methods, like the Coupled Cluster method with single and double excitations and a non-iterative correction for triple excitations (CCSD(T)), but those methods are computationally very expensive for large systems and for massive simulations. Density functional theory (DFT)-based methods that include dispersion interactions at different levels of complexity are less accurate, but computationally less expensive. In order to find DFT-methods that include dispersion interactions to calculate the physisorption of H2 on benzene and graphene, with a reasonable compromise between accuracy and computational cost, CCSD(T), Møller-Plesset second-order perturbation theory method, and several DFT-methods have been used to calculate the interaction energy curves of H2 on benzene and graphene. DFT calculations are compared with CCSD(T) calculations, in the case of H2 on benzene, and with experimental data, in the case of H2 on graphene. Among the DFT methods studied, the B97D, RVV10, and PBE+DCACP methods yield interaction energy curves of H2-benzene in remarkable agreement with the interaction energy curve obtained with the CCSD(T) method. With regards to graphene, the rev-vdW-DF2, PBE-XDM, PBE-D2, and RVV10 methods yield adsorption energies of the lowest level of H2 on graphene, very close to the experimental data.

  5. Ultradian Rhythmicity in Sleep-Wakefulness Is Related to Color in Nestling Barn Owls.

    Science.gov (United States)

    Scriba, Madeleine F; Henry, Isabelle; Vyssotski, Alexei L; Mueller, Jakob C; Rattenborg, Niels C; Roulin, Alexandre

    2017-10-01

    The possession of a rhythm is usually described as an important adaptation to regular changing environmental conditions such as the light-dark cycle. However, recent studies have suggested plasticity in the expression of a rhythm depending on life history and environmental factors. Barn owl ( Tyto alba) nestlings show variations in behavior and physiology in relation to the size of black feather spots, a trait associated with many behavioral and physiological phenotypes including the circadian expression of corticosterone and the regulation of body mass. This raises the possibility that individual spottiness could be associated with rhythmicity in sleep-wakefulness. Owlets showed ultradian rhythms in sleep-wakefulness, with a period length of 4.5 to 4.9 h. The period length of wakefulness and non-REM sleep was shorter in heavily compared to lightly spotted female nestlings, whereas in males, the opposite result was found. Furthermore, male and female nestlings displaying small black spots showed strong rhythmicity levels in wakefulness and REM sleep. This might be an advantage in a stable environment with predictable periodic changes in light, temperature, or social interactions. Heavily spotted nestlings displayed weak rhythms in wakefulness and REM sleep, which might enable them to be more flexible in reactions to unexpected events such as predation or might be a mechanism to save energy. These findings are consistent with previous findings showing that large-spotted nestlings switch more frequently between wakefulness and sleep, resulting in higher levels of vigilance compared to small-spotted conspecifics. Thus, nestlings with larger black feather spots might differently handle the trade-off between wakefulness and sleep, attention, and social interactions compared to nestlings with smaller black spots.

  6. Hub vortex instability and wake dynamics in axial flow wind turbines

    Science.gov (United States)

    Foti, Daniel; Howard, Kevin; Yang, Xiaolei; Guala, Michele; Sotiropoulos, Fotis

    2014-11-01

    The near wake region of an axial flow wind turbine has two distinct shear layers: an outer tip vortex shear layer, which rotates in the same direction as the rotor, and an inner counter-rotating hub vortex shear layer. Recent simulations (Kang et al., J. Fluid Mech. 744, 376 (2014)), corroborated with experiments (Chamorro et al., J. Fluid Mech. 716, 658 (2013)), showed that the hub vortex can undergo spiral vortex breakdown immediately downstream of the turbine. The precessing hub vortex core intercepts and interacts with the tip vortex shear layer causing the large-scale wake meandering motions in the far wake to intensify. These results were obtained for an axial flow hydrokinetic turbine in a turbulent open channel flow. Here we integrate high-resolution LES with experiments to show that a hub vortex instability also occurs in the near wake of a wind turbine in a wind tunnel. We show that the interactions of the hub vortex with the outer flow have significant effects on the wake meandering amplitude and frequency. Our results reinforce the conclusions of Kang et al. (2014) that the hub vortex must be included in wake models to simulate wake interactions at the power plant scale and optimize turbine siting for realistic terrain and wind conditions. This work was supported by DOE (DE-EE0002980, DE-EE0005482 and DE-AC04-94AL85000), the NSF (IIP-1318201), the IREE early career award (UMN) and NSF CAREER: Geophysical Flow Control (CBET-1351303). Computational resources were provided by MSI.

  7. Wind Speed Estimation and Wake model Re-calibration for Downregulated Offshore Wind Farms

    Science.gov (United States)

    Göçmen Bozkurt, Tuhfe; Giebel, Gregor; Kjølstad Poulsen, Niels; Réthoré, Pierre-Elouan; Mirzaei, Mahmood

    2014-05-01

    In recent years, the wind farm sizes have increased tremendously and with increasing installed capacity, the wind farms are requested to downregulate from their maximum possible power more frequently, especially in the offshore environment. Determination of the possible (or available) power is crucial not only because the reserve power has considerable market value but also for wind farm developers to be properly compensated for the loss during downregulation. While the available power calculation is straightforward for a single turbine, it gets rather complicated for the whole wind farm due to the change in the wake characteristics. In fact, the wake losses generated by the upstream turbine(s) decrease during downregulation and the downstream turbines therefore see more wind compared to the normal operation case. Currently, the Transmission System Operators (TSOs) have no real way to determine exactly the available power of a whole wind farm which is downregulated. Therefore, the PossPOW project aims to develop a verified and internationally accepted way to determine the possible power of a down-regulated offshore wind farm. The first phase of the project is to estimate the rotor effective wind speed. Since the nacelle anemometers are not readily available and are known to have reliability issues, the proposed method is to use power, pitch angle and rotational speed as inputs and combine it with a generic Cp model to estimate the wind speed. The performance of the model has been evaluated for both normal operation and downregulation periods using two different case studies: Horns Rev-I wind farm and NREL 5MW single turbine. During downregulation, the wake losses are not as severe and the velocity deficits at the downstream turbines are smaller as if also the wake is "downregulated". On the other hand, in order to calculate the available power, the wakes that would have been produced normally (if the turbines were not curtailed) are of importance, not the

  8. Alterations in regional cerebral glucose metabolism across waking and non-rapid eye movement sleep in depression.

    Science.gov (United States)

    Nofzinger, Eric A; Buysse, Daniel J; Germain, Anne; Price, Julie C; Meltzer, Carolyn C; Miewald, Jean M; Kupfer, David J

    2005-04-01

    Depression is associated with sleep disturbances, including alterations in non-rapid eye movement (NREM) sleep. Non-rapid eye movement sleep is associated with decreases in frontal, parietal, and temporal cortex metabolic activity compared with wakefulness. To show that depressed patients would have less of a decrease than controls in frontal metabolism between waking and NREM sleep and to show that during NREM sleep, they would have increased activity in structures that promote arousal. Subjects completed electroencephalographic sleep and regional cerebral glucose metabolism assessments during both waking and NREM sleep using [(18)F]fluoro-2-deoxy-D-glucose positron emission tomography. General clinical research center. The study included 29 unmedicated patients who met the Structured Clinical Interview for DSM-IV criteria for current major depression and who had a score of 15 or greater on a 17-item Hamilton Rating Scale for Depression and 28 medically healthy subjects of comparable age and sex who were free of mental disorders. Electroencephalographic sleep and regional cerebral metabolism during waking and NREM sleep. Depressed patients showed smaller decreases than healthy subjects in relative metabolism in broad regions of the frontal, parietal, and temporal cortex from waking to NREM sleep. Depressed patients showed larger decreases than healthy subjects in relative metabolism in the left amygdala, anterior cingulate cortex, cerebellum, parahippocampal cortex, fusiform gyrus, and occipital cortex. However, in post hoc analyses, depressed patients showed hypermetabolism in these areas during both waking and NREM sleep. The smaller decrease in frontal metabolism from waking to NREM sleep in depressed patients is further evidence for a dynamic sleep-wake alteration in prefrontal cortex function in depression. Hypermetabolism in a ventral emotional neural system during waking in depressed patients persists into NREM sleep.

  9. The vortex wake of blackcaps (Sylvia atricapilla L.) measured using high-speed digital particle image velocimetry (DPIV).

    Science.gov (United States)

    Johansson, L C; Hedenström, A

    2009-10-01

    Reconstructing the vortex wake of freely flying birds is challenging, but in the past few years, direct measurements of the wake circulation have become available for a number of species. Streamwise circulation has been measured at different positions along the span of the birds, but no measurements have been performed in the transverse plane. Recent findings from studies of bat wakes have pointed to the importance of transverse plane data for reconstructing the wake topology because important structures may be missed otherwise. We present results of high-speed DPIV measurements in the transverse plane behind freely flying blackcaps. We found novel wake structures previously not shown in birds, including wing root vortices of opposite as well as the same sign as the wing tip vortices. This suggests a more complex wake structure in birds than previously assumed and calls for more detailed studies of the flow over the wings and body, respectively. Based on measurements on birds with and without a tail we also tested hypotheses regarding the function of the tail during steady flight. We were unable to detect any differences in the wake pattern between birds with and without a tail. We conclude that the birds do not use their tail to exploit vortices shed at the wing root during the downstroke. Neither did we find support for the hypothesis that the tail should reduce the drag of the bird. The function of the tail during steady flight thus remains unclear and calls for further investigation in future studies.

  10. A quantitative comparison of bird and bat wakes

    OpenAIRE

    Johansson, L. Christoffer; Wolf, Marta; Hedenström, Anders

    2009-01-01

    Qualitative comparison of bird and bat wakes has demonstrated significant differences in the structure of the far wake. Birds have been found to have a unified vortex wake of the two wings, while bats have a more complex wake with gradients in the circulation along the wingspan, and with each wing generating its own vortex structure. Here, we compare quantitative measures of the circulation in the far wake of three bird and one bat species. We find that bats have a significantly stronger norm...

  11. Wake meandering and its relationship with the incoming wind characteristics: a statistical approach applied to long-term on-field observations

    Science.gov (United States)

    Torres Garcia, E.; Aubrun, S.; Boquet, M.; Royer, P.; Coupiac, O.; Girard, N.

    2017-05-01

    In several papers, the importance of the atmospheric flow in the wake development of wind turbines (WT) has been pointed out, making it clear that it is necessary to have long-term on-field observations for an appropriate description of the wake development, its structure and dynamics. This work presents a statistical approach to wake meandering, y w , and the relationship that this behavior has with the incoming wind conditions and neighboring wakes. The work was developed in the framework of the French project SMARTEOLE. The study is based on a 7-month measurement campaign in which a pulsed scanning LiDAR system was used. The ground based LiDAR, measures the flow field in a segment such that the wake of two wind turbines can be captured quasi-horizontally. The analysis filters the incoming wind conditions according to the thermal stability, wind direction and wind velocity at hub height; therefore, the wakes that are developed in periods with similar wind conditions are expected to be analogous, hence meandering can be tracked and statistically analyzed. A well-defined wake evolution was found and the uncertainty analysis made on the wake meandering uncovered some interesting characteristics, including the number of samples required to reach a statistical uncertainty on the mean wake position between 2 × 10-2 D and 8 × 10-2 D for a confidence interval of 95%.

  12. A single-array preprocessing method for estimating full-resolution raw copy numbers from all Affymetrix genotyping arrays including GenomeWideSNP 5 & 6.

    Science.gov (United States)

    Bengtsson, Henrik; Wirapati, Pratyaksha; Speed, Terence P

    2009-09-01

    High-resolution copy-number (CN) analysis has in recent years gained much attention, not only for the purpose of identifying CN aberrations associated with a certain phenotype, but also for identifying CN polymorphisms. In order for such studies to be successful and cost effective, the statistical methods have to be optimized. We propose a single-array preprocessing method for estimating full-resolution total CNs. It is applicable to all Affymetrix genotyping arrays, including the recent ones that also contain non-polymorphic probes. A reference signal is only needed at the last step when calculating relative CNs. As with our method for earlier generations of arrays, this one controls for allelic crosstalk, probe affinities and PCR fragment-length effects. Additionally, it also corrects for probe sequence effects and co-hybridization of fragments digested by multiple enzymes that takes place on the latest chips. We compare our method with Affymetrix's CN5 method and the dChip method by assessing how well they differentiate between various CN states at the full resolution and various amounts of smoothing. Although CRMA v2 is a single-array method, we observe that it performs as well as or better than alternative methods that use data from all arrays for their preprocessing. This shows that it is possible to do online analysis in large-scale projects where additional arrays are introduced over time.

  13. Modification of the BAX Salmonella test kit to include a hot start functionality (modification of AOAC Official Method 2003.09).

    Science.gov (United States)

    Wallace, F Morgan; DiCosimo, Deana; Farnum, Andrew; Tice, George; Andaloro, Bridget; Davis, Eugene; Burns, Frank R

    2011-01-01

    In 2010, the BAX System PCR assay for Salmonella was modified to include a hot start functionality designed to keep the reaction enzyme inactive until PCR begins. To validate the assay's Official Methods of Analysis status to include this procedure modification, an evaluation was conducted on four food types that were simultaneously analyzed with the BAX System and either the U.S. Food and Drug Administration's Bacteriological Analytical Manual or the U.S. Department of Agriculture-Food Safety and Inspection Service Microbiology Laboratory Guidebook reference method for detecting Salmonella. Identical performance between the BAX System method and the reference methods was observed. Additionally, lysates were analyzed using both the BAX System Classic and BAX System Q7 instruments with identical results using both platforms for all samples tested. Of the 100 samples analyzed, 34 samples were positive for both the BAX System and reference methods, and 66 samples were negative by both the BAX System and reference methods, demonstrating 100% correlation. No instrument platform variation was observed. Additional inclusivity and exclusivity testing using the modified test kit demonstrated the test kit to be 100% accurate in evaluation of test panels of 352 Salmonella strains and 46 non-Salmonella strains.

  14. Estimation of unsteady aerodynamics in the wake of a freely flying European starling (Sturnus vulgaris.

    Directory of Open Access Journals (Sweden)

    Hadar Ben-Gida

    Full Text Available Wing flapping is one of the most widespread propulsion methods found in nature; however, the current understanding of the aerodynamics in bird wakes is incomplete. The role of the unsteady motion in the flow and its contribution to the aerodynamics is still an open question. In the current study, the wake of a freely flying European starling has been investigated using long-duration high-speed Particle Image Velocimetry (PIV in the near wake. Kinematic analysis of the wings and body of the bird has been performed using additional high-speed cameras that recorded the bird movement simultaneously with the PIV measurements. The wake evolution of four complete wingbeats has been characterized through reconstruction of the time-resolved data, and the aerodynamics in the wake have been analyzed in terms of the streamwise forces acting on the bird. The profile drag from classical aerodynamics was found to be positive during most of the wingbeat cycle, yet kinematic images show that the bird does not decelerate. It is shown that unsteady aerodynamics are necessary to satisfy the drag/thrust balance by approximating the unsteady drag term. These findings may shed light on the flight efficiency of birds by providing a partial answer to how they minimize drag during flapping flight.

  15. Investigation of the effect of inflow turbulence on vertical axis wind turbine wakes

    Science.gov (United States)

    Chatelain, P.; Duponcheel, M.; Zeoli, S.; Buffin, S.; Caprace, D.-G.; Winckelmans, G.; Bricteux, L.

    2017-05-01

    The aerodynamics of Vertical Axis Wind Turbines (VAWTs) is inherently unsteady, which leads to vorticity shedding mechanisms due to both the lift distribution along the blade and its time evolution. In this paper, we perform large-scale, fine-resolution Large Eddy Simulations of the flow past Vertical Axis Wind Turbines by means of a state-of-the-art Vortex Particle-Mesh (VPM) method combined with immersed lifting lines. Inflow turbulence with a prescribed turbulence intensity (TI) is injected at the inlet of the simulation either from a precomputed synthetic turbulence field obtained using the Mann algorithm [1] or generated on the-fly using time-correlated synthetic velocity planes. The wake of a standard, medium-solidity, H-shaped machine is simulated for several TI levels. The complex wake development is captured in details and over long distances: from the blades to the near wake coherent vortices, then through the transitional ones to the fully developed turbulent far wake. Mean flow and turbulence statistics are computed over more than 10 diameters downstream of the machine. The sensitivity of the wake topology and decay to the TI and to the operating conditions is then assessed.

  16. Estimation of unsteady aerodynamics in the wake of a freely flying European starling

    CERN Document Server

    Ben-Gida, Hadar; Taylor, Zachary J; Bezner-Kerr, Wayne; Guglielmo, Christopher G; Kopp, Gregory A; Gurka, Roi

    2013-01-01

    Wing flapping is one of the most widespread propulsion methods found in nature; however, the current understanding of the aerodynamics in bird wakes is incomplete. The role of the unsteady motion in the flow and its contribution to the aerodynamics is still an open question. In the current study, the wake of a freely flying European starling has been investigated using long-duration high-speed Particle Image Velocimetry (PIV) in the near wake. Kinematic analysis of the wings and body of the bird has been performed using additional high-speed cameras that recorded the bird movement simultaneously with the PIV measurements. The wake evolution of four complete wingbeats has been characterized through reconstruction of the time resolved data, and the aerodynamics in the wake have been analyzed in terms of the streamwise forces acting on the bird. The profile drag from classical aerodynamics was found to be positive during most of the wingbeat cycle, yet kinematic images show that the bird does not decelerate. It ...

  17. Estimation of unsteady aerodynamics in the wake of a freely flying European starling (Sturnus vulgaris).

    Science.gov (United States)

    Ben-Gida, Hadar; Kirchhefer, Adam; Taylor, Zachary J; Bezner-Kerr, Wayne; Guglielmo, Christopher G; Kopp, Gregory A; Gurka, Roi

    2013-01-01

    Wing flapping is one of the most widespread propulsion methods found in nature; however, the current understanding of the aerodynamics in bird wakes is incomplete. The role of the unsteady motion in the flow and its contribution to the aerodynamics is still an open question. In the current study, the wake of a freely flying European starling has been investigated using long-duration high-speed Particle Image Velocimetry (PIV) in the near wake. Kinematic analysis of the wings and body of the bird has been performed using additional high-speed cameras that recorded the bird movement simultaneously with the PIV measurements. The wake evolution of four complete wingbeats has been characterized through reconstruction of the time-resolved data, and the aerodynamics in the wake have been analyzed in terms of the streamwise forces acting on the bird. The profile drag from classical aerodynamics was found to be positive during most of the wingbeat cycle, yet kinematic images show that the bird does not decelerate. It is shown that unsteady aerodynamics are necessary to satisfy the drag/thrust balance by approximating the unsteady drag term. These findings may shed light on the flight efficiency of birds by providing a partial answer to how they minimize drag during flapping flight.

  18. Large Eddy Simulation of Vertical Axis Wind Turbine wakes; Part II: effects of inflow turbulence

    Science.gov (United States)

    Duponcheel, Matthieu; Chatelain, Philippe; Caprace, Denis-Gabriel; Winckelmans, Gregoire

    2017-11-01

    The aerodynamics of Vertical Axis Wind Turbines (VAWTs) is inherently unsteady, which leads to vorticity shedding mechanisms due to both the lift distribution along the blade and its time evolution. Large-scale, fine-resolution Large Eddy Simulations of the flow past Vertical Axis Wind Turbines have been performed using a state-of-the-art Vortex Particle-Mesh (VPM) method combined with immersed lifting lines. Inflow turbulence with a prescribed turbulence intensity (TI) is injected at the inlet of the simulation from a precomputed synthetic turbulence field obtained using the Mann algorithm. The wake of a standard, medium-solidity, H-shaped machine is simulated for several TI levels. The complex wake development is captured in details and over long distances: from the blades to the near wake coherent vortices, then through the transitional ones to the fully developed turbulent far wake. Mean flow and turbulence statistics are computed over more than 10 diameters downstream of the machine. The sensitivity of the wake topology and decay to the TI level is assessed.

  19. The near wake of a freely flying European starling

    Science.gov (United States)

    Kirchhefer, Adam J.; Kopp, Gregory A.; Gurka, Roi

    2013-05-01

    The wake of a freely flying European starling (Sturnus vulgaris) has been measured using high speed, time-resolved, particle image velocimetry, simultaneously with high speed cameras which imaged the bird. These have been used to generate vector maps that can be associated with the bird's location and wing configuration in the wind tunnel. Time series of measurements have been expressed as composite wake plots which depict segments of the wing beat cycle for various spanwise locations in the wake. Measurements indicate that downwash is not produced during the upstroke, suggesting that the upstroke does not generate lift. As well, the wake velocities imply the presence of streamwise vortical structures, in addition to tip vortices. These two characteristics indicate similarities between the wake of a bird and the wake of a bat, which may be general features of the wakes of flapping wings.

  20. Local properties of vigilance states: EMD analysis of EEG signals during sleep-waking states of freely moving rats.

    Directory of Open Access Journals (Sweden)

    Rupesh Kumar

    Full Text Available Understanding the inherent dynamics of the EEG associated to sleep-waking can provide insights into its basic neural regulation. By characterizing the local properties of the EEG using power spectrum, empirical mode decomposition (EMD and Hilbert-spectral analysis, we can examine the dynamics over a range of time-scales. We analyzed rat EEG during wake, NREMS and REMS using these methods. The average instantaneous phase, power spectral density (PSD of intrinsic mode functions (IMFs and the energy content in various frequency bands show characteristic changes in each of the vigilance states. The 2nd and 7th IMFs show changes in PSD for wake and REMS, suggesting that those modes may carry wake- and REMS-associated cognitive, conscious and behavior-specific information of an individual even though the EEG may appear similar. The energy content in θ2 (6 Hz-9 Hz band of the 1st IMF for REMS is larger than that of wake. The decrease in the phase function of IMFs from wake to REMS to NREMS indicates decrease of the mean frequency in these states, respectively. The rate of information processing in waking state is more in the time scale described by the first three IMFs than in REMS state. However, for IMF5-IMF7, the rate is more for REMS than that for wake. We obtained Hilbert-Huang spectral entropy, which is a suitable measure of information processing in each of these state-specific EEG. It is possible to evaluate the complex dynamics of the EEG in each of the vigilance states by applying measures based on EMD and Hilbert-transform. Our results suggest that the EMD based nonlinear measures of the EEG can provide useful estimates of the information possessed by various oscillations associated with the vigilance states. Further, the EMD-based spectral measures may have implications in understanding anatamo-physiological correlates of sleep-waking behavior and clinical diagnosis of sleep-pathology.

  1. Local properties of vigilance states: EMD analysis of EEG signals during sleep-waking states of freely moving rats.

    Science.gov (United States)

    Kumar, Rupesh; Ramaswamy, Ram; Nath Mallick, Birendra

    2013-01-01

    Understanding the inherent dynamics of the EEG associated to sleep-waking can provide insights into its basic neural regulation. By characterizing the local properties of the EEG using power spectrum, empirical mode decomposition (EMD) and Hilbert-spectral analysis, we can examine the dynamics over a range of time-scales. We analyzed rat EEG during wake, NREMS and REMS using these methods. The average instantaneous phase, power spectral density (PSD) of intrinsic mode functions (IMFs) and the energy content in various frequency bands show characteristic changes in each of the vigilance states. The 2nd and 7th IMFs show changes in PSD for wake and REMS, suggesting that those modes may carry wake- and REMS-associated cognitive, conscious and behavior-specific information of an individual even though the EEG may appear similar. The energy content in θ2 (6 Hz-9 Hz) band of the 1st IMF for REMS is larger than that of wake. The decrease in the phase function of IMFs from wake to REMS to NREMS indicates decrease of the mean frequency in these states, respectively. The rate of information processing in waking state is more in the time scale described by the first three IMFs than in REMS state. However, for IMF5-IMF7, the rate is more for REMS than that for wake. We obtained Hilbert-Huang spectral entropy, which is a suitable measure of information processing in each of these state-specific EEG. It is possible to evaluate the complex dynamics of the EEG in each of the vigilance states by applying measures based on EMD and Hilbert-transform. Our results suggest that the EMD based nonlinear measures of the EEG can provide useful estimates of the information possessed by various oscillations associated with the vigilance states. Further, the EMD-based spectral measures may have implications in understanding anatamo-physiological correlates of sleep-waking behavior and clinical diagnosis of sleep-pathology.

  2. Efficient methods for including quantum effects in Monte Carlo calculations of large systems: extension of the displaced points path integral method and other effective potential methods to calculate properties and distributions.

    Science.gov (United States)

    Mielke, Steven L; Dinpajooh, Mohammadhasan; Siepmann, J Ilja; Truhlar, Donald G

    2013-01-07

    We present a procedure to calculate ensemble averages, thermodynamic derivatives, and coordinate distributions by effective classical potential methods. In particular, we consider the displaced-points path integral (DPPI) method, which yields exact quantal partition functions and ensemble averages for a harmonic potential and approximate quantal ones for general potentials, and we discuss the implementation of the new procedure in two Monte Carlo simulation codes, one that uses uncorrelated samples to calculate absolute free energies, and another that employs Metropolis sampling to calculate relative free energies. The results of the new DPPI method are compared to those from accurate path integral calculations as well as to results of two other effective classical potential schemes for the case of an isolated water molecule. In addition to the partition function, we consider the heat capacity and expectation values of the energy, the potential energy, the bond angle, and the OH distance. We also consider coordinate distributions. The DPPI scheme performs best among the three effective potential schemes considered and achieves very good accuracy for all of the properties considered. A key advantage of the effective potential schemes is that they display much lower statistical sampling variances than those for accurate path integral calculations. The method presented here shows great promise for including quantum effects in calculations on large systems.

  3. Performance and wake predictions of HAWTs in wind farms

    Energy Technology Data Exchange (ETDEWEB)

    Leclerc, C.; Masson, C.; Paraschivoiu, I. [Ecole Polytechnique, Montreal (Canada)

    1997-12-31

    The present contribution proposes and describes a promising way towards performance prediction of an arbitrary array of turbines. It is based on the solution of the time-averaged, steady-state, incompressible Navier-Stokes equations with an appropriate turbulence closure model. The turbines are represented by distributions of momentum sources in the Navier-Stokes equations. In this paper, the applicability and viability of the proposed methodology is demonstrated using an axisymmetric implementation. The k-{epsilon} model has been chosen for the closure of the time-averaged, turbulent flow equations and the properties of the incident flow correspond to those of a neutral atmospheric boundary layer. The proposed mathematical model is solved using a Control-Volume Finite Element Method (CVFEM). Detailed results have been obtained using the proposed method for an isolated wind turbine and for two turbines one behind another. In the case of an isolated turbine, accurate wake velocity deficit predictions are obtained and an increase in power due to atmospheric turbulence is found in agreement with measurements. In the case of two turbines, the proposed methodology provides an appropriate modelling of the wind-turbine wake and a realistic prediction of the performance degradation of the downstream turbine.

  4. Nonlinear analysis of heart rate variability within independent frequency components during the sleep-wake cycle.

    Science.gov (United States)

    Vigo, Daniel E; Dominguez, Javier; Guinjoan, Salvador M; Scaramal, Mariano; Ruffa, Eduardo; Solernó, Juan; Siri, Leonardo Nicola; Cardinali, Daniel P

    2010-04-19

    Heart rate variability (HRV) is a complex signal that results from the contribution of different sources of oscillation related to the autonomic nervous system activity. Although linear analysis of HRV has been applied to sleep studies, the nonlinear dynamics of HRV underlying frequency components during sleep is less known. We conducted a study to evaluate nonlinear HRV within independent frequency components in wake status, slow-wave sleep (SWS, stages III or IV of non-rapid eye movement sleep), and rapid-eye-movement sleep (REM). The sample included 10 healthy adults. Polysomnography was performed to detect sleep stages. HRV was studied globally during each phase and then very low frequency (VLF), low frequency (LF) and high frequency (HF) components were separated by means of the wavelet transform algorithm. HRV nonlinear dynamics was estimated with sample entropy (SampEn). A higher SampEn was found when analyzing global variability (Wake: 1.53+/-0.28, SWS: 1.76+/-0.32, REM: 1.45+/-0.19, p=0.005) and VLF variability (Wake: 0.13+/-0.03, SWS: 0.19+/-0.03, REM: 0.14+/-0.03, p<0.001) at SWS. REM was similar to wake status regarding nonlinear HRV. We propose nonlinear HRV is a useful index of the autonomic activity that characterizes the different sleep-wake cycle stages. 2009 Elsevier B.V. All rights reserved.

  5. Sleep-wake difficulties in community-dwelling cancer patients receiving palliative care: subjective and objective assessment.

    Science.gov (United States)

    Bernatchez, Marie Solange; Savard, Josée; Savard, Marie-Hélène; Aubin, Michèle; Ivers, Hans

    2017-09-21

    Prevalence rates of sleep difficulties in advanced cancer patients have varied widely across studies (12 to 96%), and none of these employed a diagnostic interview to distinguish different types of sleep-wake disorders. Moreover, very limited information is available on subjective and objective sleep parameters in this population. Our study was conducted in palliative cancer patients and aimed to assess rates of sleep-wake disorders and subsyndromal symptoms and to document subjective and objective sleep-wake parameters across various types of sleep-wake difficulties. The sample was composed of 51 community-dwelling cancer patients receiving palliative care and having an Eastern Cooperative Oncology Group score of 2 or 3. Relevant sections of the Duke Interview for Sleep Disorders were administered over the phone. An actigraphic recording and a daily sleep diary were completed for 7 consecutive days. Overall, 68.6% of the sample had at least one type of sleep-wake difficulty (disorder or symptoms): 31.4% had insomnia and 29.4% had hypersomnolence as their main sleep-wake problem. Participants with insomnia as their main sleep difficulty had greater disruptions of subjective sleep parameters, while objectively-assessed sleep was more disrupted in patients with hypersomnolence comorbid with another sleep-wake difficulty. Significance of the Results: The high rates of sleep-wake difficulties found in this study indicate a need to screen more systematically for sleep-wake disorders, including insomnia and hypersomnolence, in both palliative care research and clinical practice, and to develop effective nonpharmacological interventions specifically adapted to this population.

  6. Sleep-wake profiles and circadian rhythms of core temperature and melatonin in young people with affective disorders.

    Science.gov (United States)

    Carpenter, Joanne S; Robillard, Rébecca; Hermens, Daniel F; Naismith, Sharon L; Gordon, Christopher; Scott, Elizabeth M; Hickie, Ian B

    2017-11-01

    While disturbances of the sleep-wake cycle are common in people with affective disorders, the characteristics of these disturbances differ greatly between individuals. This heterogeneity is likely to reflect multiple underlying pathophysiologies, with different perturbations in circadian systems contributing to the variation in sleep-wake cycle disturbances. Such disturbances may be particularly relevant in adolescents and young adults with affective disorders as circadian rhythms undergo considerable change during this key developmental period. This study aimed to identify profiles of sleep-wake disturbance in young people with affective disorders and investigate associations with biological circadian rhythms. Fifty young people with affective disorders and 19 control participants (aged 16-31 years) underwent actigraphy monitoring for approximately two weeks to derive sleep-wake cycle parameters, and completed an in-laboratory assessment including evening dim-light saliva collection for melatonin assay and overnight continuous core body temperature measurement. Cluster analysis based on sleep-wake cycle parameters identified three distinct patient groups, characterised by 'delayed sleep-wake', 'disrupted sleep', and 'long sleep' respectively. The 'delayed sleep-wake' group had both delayed melatonin onset and core temperature nadir; whereas the other two cluster groups did not differ from controls on these circadian markers. The three groups did not differ on clinical characteristics. These results provide evidence that only some types of sleep-wake disturbance in young people with affective disorders are associated with fundamental circadian perturbations. Consequently, interventions targeting endogenous circadian rhythms to promote a phase shift may be particularly relevant in youth with affective disorders presenting with delayed sleep-wake cycles. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Dynamics of tethered versus free-swimming animals: A wake structure comparison in jellyfish

    Science.gov (United States)

    Katija, Kakani; Dabiri, John O.

    2006-11-01

    Previous research has shown that jellyfish utilize the formation and shedding of vortices to help feed and move the animal. Laboratory experiments often require restricting the motion of an animal by tethering/fluming to allow for repeatable results. However, past research has not addressed the differences that arise when the motion of an animal is restricted/confined. This presentation will attend to this issue by comparing the wake structure of a tethered and free-swimming Aurelia aurita. Digital Particle Image Velocimetry is used to collect measurements of the velocity field surrounding an animal that is either tethered or swimming freely. Dynamical systems methods are used to compute Lagrangian coherent structures (LCS), which is used to identify the geometries of structures in the wake of the animal. Using LCS, a comparison between the wake of a tethered and free-swimming animal can be made. This research provides a quantitative measure of the differences between a tethered and freely moving jellyfish.

  8. Wind Turbine Power Curve Design for Optimal Power Generation in Wind Farms Considering Wake Effect

    DEFF Research Database (Denmark)

    Tian, Jie; Zhou, Dao; Su, Chi

    2017-01-01

    In modern wind farms, maximum power point tracking (MPPT) is widely implemented. Using the MPPT method, each individual wind turbine is controlled by its pitch angle and tip speed ratio to generate the maximum active power. In a wind farm, the upstream wind turbine may cause power loss to its...... downstream wind turbines due to the wake effect. According to the wake model, downstream power loss is also determined by the pitch angle and tip speed ratio of the upstream wind turbine. By optimizing the pitch angle and tip speed ratio of each wind turbine, the total active power of the wind farm can...... be increased. In this paper, the optimal pitch angle and tip speed ratio are selected for each wind turbine by the exhausted search. Considering the estimation error of the wake model, a solution to implement the optimized pitch angle and tip speed ratio is proposed, which is to generate the optimal control...

  9. A free wake vortex lattice model for vertical axis wind turbines: Modeling, verification and validation

    Science.gov (United States)

    Meng, Fanzhong; Schwarze, Holger; Vorpahl, Fabian; Strobel, Michael

    2014-12-01

    Since the 1970s several research activities had been carried out on developing aerodynamic models for Vertical Axis Wind Turbines (VAWTs). In order to design large VAWTs of MW scale, more accurate aerodynamic calculation is required to predict their aero-elastic behaviours. In this paper, a 3D free wake vortex lattice model for VAWTs is developed, verified and validated. Comparisons to the experimental results show that the 3D free wake vortex lattice model developed is capable of making an accurate prediction of the general performance and the instantaneous aerodynamic forces on the blades. The comparison between momentum method and the vortex lattice model shows that free wake vortex models are needed for detailed loads calculation and for calculating highly loaded rotors.

  10. An overview of experimental results and dispersion modelling of nanoparticles in the wake of moving vehicles.

    Science.gov (United States)

    Carpentieri, Matteo; Kumar, Prashant; Robins, Alan

    2011-03-01

    Understanding the transformation of nanoparticles emitted from vehicles is essential for developing appropriate methods for treating fine scale particle dynamics in dispersion models. This article provides an overview of significant research work relevant to modelling the dispersion of pollutants, especially nanoparticles, in the wake of vehicles. Literature on vehicle wakes and nanoparticle dispersion is reviewed, taking into account field measurements, wind tunnel experiments and mathematical approaches. Field measurements and modelling studies highlighted the very short time scales associated with nanoparticle transformations in the first stages after the emission. These transformations strongly interact with the flow and turbulence fields immediately behind the vehicle, hence the need of characterising in detail the mixing processes in the vehicle wake. Very few studies have analysed this interaction and more research is needed to build a basis for model development. A possible approach is proposed and areas of further investigation identified. Copyright © 2010 Elsevier Ltd. All rights reserved.

  11. Dynamics of vortices in complex wakes: Modeling, analysis, and experiments

    Science.gov (United States)

    Basu, Saikat

    model results with experiments conducted in a owing soap film with an airfoil, which was imparted with forced oscillations, are satisfactory and validate the reduced order modeling framework. The experiments have been performed by a collaborator group at the Department of Physics and Fluid Dynamics at the Technical University of Denmark (DTU), led by Dr. Anders Andersen. Similar experiments have also been run at Virginia Tech as part of this dissertation and the preliminary results are included in this treatise. The thesis also employs the same dynamical systems techniques, which have been applied to study the 2P regime dynamics, to develop a mathematical model for the P+S mode vortex wakes, with three vortices present in each shedding cycle. The model results have also been compared favorably with an experiment and the predictions regarding the vortex circulation data match well with the previous results from literature. Finally, the thesis introduces a novel concept of clean and renewable energy extraction from vortex-induced vibrations of bluff bodies. The slow-moving currents in the off-shore marine environments and riverine flows are beyond the operational capabilities of the more established hydrokinetic energy converters and the discussed technology promises to be a significant tool to generate useful power from these copiously available but previously untapped sources.

  12. Measure Guideline: Summary of Interior Ducts in New Construction, Including an Efficient, Affordable Method to Install Fur-Down Interior Ducts

    Energy Technology Data Exchange (ETDEWEB)

    Beal, D.; McIlvaine , J.; Fonorow, K.; Martin, E.

    2011-11-01

    This document illustrates guidelines for the efficient installation of interior duct systems in new housing, including the fur-up chase method, the fur-down chase method, and interior ducts positioned in sealed attics or sealed crawl spaces. This document illustrates guidelines for the efficient installation of interior duct systems in new housing. Interior ducts result from bringing the duct work inside a home's thermal and air barrier. Architects, designers, builders, and new home buyers should thoroughly investigate any opportunity for energy savings that is as easy to implement during construction, such as the opportunity to construct interior duct work. In addition to enhanced energy efficiency, interior ductwork results in other important advantages, such as improved indoor air quality, increased system durability and increased homeowner comfort. While the advantages of well-designed and constructed interior duct systems are recognized, the implementation of this approach has not gained a significant market acceptance. This guideline describes a variety of methods to create interior ducts including the fur-up chase method, the fur-down chase method, and interior ducts positioned in sealed attics or sealed crawl spaces. As communication of the intent of an interior duct system, and collaboration on its construction are paramount to success, this guideline details the critical design, planning, construction, inspection, and verification steps that must be taken. Involved in this process are individuals from the design team; sales/marketing team; and mechanical, insulation, plumbing, electrical, framing, drywall and solar contractors.

  13. The Sleep/Wake Cycle is Directly Modulated by Changes in Energy Balance.

    OpenAIRE

    Collet Tinh-Hai; van, der Klaauw Agatha A; Henning Elana; Keogh Julia M.; Suddaby Diane; Dachi Sekesai V; Dunbar Síle; Kelway Sarah; Dickson Suzanne L; Farooqi I. Sadaf; Schmid Sebastian M

    2016-01-01

    STUDY OBJECTIVES:The rise in obesity has been paralleled by a decline in sleep duration in epidemiological studies. However the potential mechanisms linking energy balance and the sleep/wake cycle are not well understood. We aimed to examine the effects of manipulating energy balance on the sleep/wake cycle. METHODS:Twelve healthy normal weight men were housed in a clinical research facility and studied at three time points: baseline after energy balance was disrupted by 2 days of caloric re...

  14. Method Of Bonding A Metal Connection To An Electrode Including A Core Having A Fiber Or Foam Type Structure For An Electrochemical Cell, An

    Science.gov (United States)

    Loustau, Marie-Therese; Verhoog, Roelof; Precigout, Claude

    1996-09-24

    A method of bonding a metal connection to an electrode including a core having a fiber or foam-type structure for an electrochemical cell, in which method at least one metal strip is pressed against one edge of the core and is welded thereto under compression, wherein, at least in line with the region in which said strip is welded to the core, which is referred to as the "main core", a retaining core of a type analogous to that of the main core is disposed prior to the welding.

  15. A three states sleep-waking model

    Energy Technology Data Exchange (ETDEWEB)

    Comte, J.C. [Laboratoire de Physiopathologie des Reseaux Neuronaux du Cycle Veille-Sommeil, UMR 5167, CNRS/Universite Claude Bernard Lyon1, Faculte de Medecine RTH Laennec 7, Rue Guillaume Paradin 69372 Lyon Cedex 08 (France)]. E-mail: comtejc@gmail.com; Schatzman, M. [MAPLY, Laboratoire de Mathematiques appliquees de Lyon, UMR5585, CNRS/Universite Claude Bernard Lyon1, 21, Avenue Claude Bernard, 69622 Villeurbanne Cedex (France); Ravassard, P. [Laboratoire de Physiopathologie des Reseaux Neuronaux du Cycle Veille-Sommeil, UMR 5167, CNRS/Universite Claude Bernard Lyon1, Faculte de Medecine RTH Laennec 7, Rue Guillaume Paradin 69372 Lyon Cedex 08 (France); Luppi, P.H. [Laboratoire de Physiopathologie des Reseaux Neuronaux du Cycle Veille-Sommeil, UMR 5167, CNRS/Universite Claude Bernard Lyon1, Faculte de Medecine RTH Laennec 7, Rue Guillaume Paradin 69372 Lyon Cedex 08 (France); Salin, P.A. [Laboratoire de Physiopathologie des Reseaux Neuronaux du Cycle Veille-Sommeil, UMR 5167, CNRS/Universite Claude Bernard Lyon1, Faculte de Medecine RTH Laennec 7, Rue Guillaume Paradin 69372 Lyon Cedex 08 (France)

    2006-08-15

    The mechanisms underlying the sleep-states periodicity in animals are a mystery of biology. Recent studies identified a new neuronal population activated during the slow wave sleep (SWS) in the ventral lateral preoptic area of the hypothalamus. Interactions between this neuronal population and the others populations implicated in the vigilance states (paradoxical sleep (PS) and wake (W)) dynamics are not determined. Thus, we propose here a sleep-waking theoretical model that depicts the potential interactions between the neuronal populations responsible for the three vigilance states. First, we pooled data from previous papers regarding the neuronal populations firing rate time course and characterized statistically the experimental hypnograms. Then, we constructed a nonlinear differential equations system describing the neuronal populations activity time course. A simple rule playing the firing threshold role applied to the model allows to construct a theoretical hypnogram. A random modulation of the neuronal activity, shows that theoretical hypnograms present a dynamics close to the experimental observations. Furthermore, we show that the wake promoting neurons activity can predict the next SWS episode duration.

  16. Targeting the orexinergic system: Mainly but not only for sleep-wakefulness therapies

    Directory of Open Access Journals (Sweden)

    Abdelaziz Ghanemi

    2015-12-01

    Full Text Available Orexin receptors belong to the big family of G protein coupled receptors (GPCRs that constitute the main targets in the modern pharmacological approaches. Although the orexinergic system is involved in a variety of processes, treating sleep-wakefulness disorders such as narcolepsy and insomnia, remains the main therapeutic implication of targeting orexinergic receptors. After novel advances, such as the description of the binding pockets, and ligand developments, more researchers are focusing on orexin receptors as promising targets. Furthermore, targeting these receptors may provide therapeutic solutions for some health problems, other than sleep-wakefulness disorders including some psychiatric disorders and neurodegenerative diseases. Within this paper, we put a spotlight on the orexins’ physiology, pathophysiology and pharmacology of mainly sleep-wakefulness. We have also reviewed examples about other orexinergic system-related disorders. We further illustrated recent development in orexin receptors’ agonists and antagonists. In addition, we discussed selected progresses in orexinergic receptors’ ligands.

  17. Wake Characteristics of a Flapping Wing Optimized for both Aerial and Aquatic Flight

    Science.gov (United States)

    Izraelevitz, Jacob; Kotidis, Miranda; Triantafyllou, Michael

    2017-11-01

    Multiple aquatic bird species (including murres, puffins, and other auks) employ a single actuator to propel themselves in two different fluid media: both flying and swimming using primarily their flapping wings. This impressive design compromise could be adopted by engineered implementations of dual aerial/aquatic robotic platforms, as it offers an existence proof for favorable flow physics. We discuss one realization of a 3D flapping wing actuation system for use in both air and water. The wing oscillates by the root and employs an active in-line motion degree-of-freedom. An experiment-coupled optimization routine generates the wing trajectories, controlling the unsteady forces throughout each flapping cycle. We elucidate the wakes of these wing trajectories using dye visualization, correlating the wake vortex structures with simultaneous force measurements. After optimization, the wing generates the large force envelope necessary for propulsion in both fluid media, and furthermore, demonstrate improved control over the unsteady wake.

  18. Determination of wind-turbine-wake centerline for the analysis of the wake-meandering phenomenon

    Science.gov (United States)

    Coudou, Nicolas; Chatelain, Philippe; van Beeck, Jeroen; Bricteux, Laurent

    2017-11-01

    The oscillatory motion of wind turbine wakes, also known as wake meandering, is crucial in wind farms as it increases unsteady loading, in particular yawing moments, on downstream turbines. The study of this phenomenon requires, as a first step, the determination of the position of the wake. Therefore, the aim of this work is to compare different techniques to detect the wake centerline based on the velocity/momentum deficit inside the wake or on the estimation of azimuthal vorticity centroids. These techniques are applied to the data obtained from Large-Eddy simulations of the NREL 5-MW wind turbine. The computations were performed with a vortex-particle mesh code with the wind turbine rotor modeled by means of immersed lifting lines. This study constitutes a first step towards the understanding of meandering mechanisms and its accurate operational modeling. Nicolas Coudou is funded by the ``Fonds pour la Formation - la Recherche dans l'Industrie et dans l'Agriculture'' (FRIA), Belgium.

  19. PIV and LDA measurements of the wake behind a wind turbine model

    DEFF Research Database (Denmark)

    Naumov, I. V.; Mikkelsen, Robert Flemming; Okulov, Valery

    2014-01-01

    =5 with a constant design lift coefficient along the span, CLdesign= 0.8. The measurements include dye visualization, Particle Image Velocimetry and Laser Doppler Anemometry. The wake instability has been studied in the range λ =3 – 9 at different cross-sections from the very near wake up to 10 rotor...... diameters downstream from the rotor. The initial flume flow was subject to a very low turbulence level with a uniform velocity profile, limiting the influence of external disturbances on the development of the inherent vortex instability. Using PIV measurements and visualizations, special attention was paid...

  20. A sensitive multi-residue method for the determination of 35 micropollutants including pharmaceuticals, iodinated contrast media and pesticides in water.

    Science.gov (United States)

    Valls-Cantenys, Carme; Scheurer, Marco; Iglesias, Mònica; Sacher, Frank; Brauch, Heinz-Jürgen; Salvadó, Victoria

    2016-09-01

    A sensitive, multi-residue method using solid-phase extraction followed by liquid chromatography-tandem mass spectrometry (LC-MS/MS) was developed to determine a representative group of 35 analytes, including corrosion inhibitors, pesticides and pharmaceuticals such as analgesic and anti-inflammatory drugs, five iodinated contrast media, β-blockers and some of their metabolites and transformation products in water samples. Few other methods are capable of determining such a broad range of contrast media together with other analytes. We studied the parameters affecting the extraction of the target analytes, including sorbent selection and extraction conditions, their chromatographic separation (mobile phase composition and column) and detection conditions using two ionisation sources: electrospray ionisation (ESI) and atmospheric pressure chemical ionisation (APCI). In order to correct matrix effects, a total of 20 surrogate/internal standards were used. ESI was found to have better sensitivity than APCI. Recoveries ranging from 79 to 134 % for tap water and 66 to 144 % for surface water were obtained. Intra-day precision, calculated as relative standard deviation, was below 34 % for tap water and below 21 % for surface water, groundwater and effluent wastewater. Method quantification limits (MQL) were in the low ng L(-1) range, except for the contrast agents iomeprol, amidotrizoic acid and iohexol (22, 25.5 and 17.9 ng L(-1), respectively). Finally, the method was applied to the analysis of 56 real water samples as part of the validation procedure. All of the compounds were detected in at least some of the water samples analysed. Graphical Abstract Multi-residue method for the determination of micropollutants including pharmaceuticals, iodinated contrast media and pesticides in waters by LC-MS/MS.

  1. Modelling and measurements of power losses and turbulence intensity in wind turbine wakes at Middelgrunden offshore wind farm

    DEFF Research Database (Denmark)

    Barthelmie, Rebecca Jane; Frandsen, Sten Tronæs; Nielsen, Niels Morten

    2007-01-01

    Understanding of power losses and turbulence increase due to wind turbine wake interactions in large offshore wind forms is crucial to optimizing wind farm design. Power losses and turbulence increase due to wakes are quantified based on observations from Middel-grunden and state-of-the-art models....... Observed power losses due solely to wakes are approximately 10% on average. These are relatively high for a single line of wind turbines due in part to the close spacing of the wind farm. The wind form model Wind Analysis and Application Program (WAsP) is shown to capture wake losses despite operating...... beyond its specifications for turbine spacing. The paper describes two methods of estimating turbulence intensity. one based on the mean and standard deviation (SD) of wind speed from the nacelle anemometer, the other from mean power output and its SD. Observations from the nacelle anemometer indicate...

  2. Envelope periodic solutions for a discrete network with the Jacobi elliptic functions and the alternative (G'/G)-expansion method including the generalized Riccati equation

    Science.gov (United States)

    Tala-Tebue, E.; Tsobgni-Fozap, D. C.; Kenfack-Jiotsa, A.; Kofane, T. C.

    2014-06-01

    Using the Jacobi elliptic functions and the alternative ( G'/ G-expansion method including the generalized Riccati equation, we derive exact soliton solutions for a discrete nonlinear electrical transmission line in (2+1) dimension. More precisely, these methods are general as they lead us to diverse solutions that have not been previously obtained for the nonlinear electrical transmission lines. This study seeks to show that it is not often necessary to transform the equation of the network into a well-known differential equation before finding its solutions. The solutions obtained by the current methods are generalized periodic solutions of nonlinear equations. The shape of solutions can be well controlled by adjusting the parameters of the network. These exact solutions may have significant applications in telecommunication systems where solitons are used to codify or for the transmission of data.

  3. Preface of "The Second Symposium on Border Zones Between Experimental and Numerical Application Including Solution Approaches By Extensions of Standard Numerical Methods"

    Science.gov (United States)

    Ortleb, Sigrun; Seidel, Christian

    2017-07-01

    In this second symposium at the limits of experimental and numerical methods, recent research is presented on practically relevant problems. Presentations discuss experimental investigation as well as numerical methods with a strong focus on application. In addition, problems are identified which require a hybrid experimental-numerical approach. Topics include fast explicit diffusion applied to a geothermal energy storage tank, noise in experimental measurements of electrical quantities, thermal fluid structure interaction, tensegrity structures, experimental and numerical methods for Chladni figures, optimized construction of hydroelectric power stations, experimental and numerical limits in the investigation of rain-wind induced vibrations as well as the application of exponential integrators in a domain-based IMEX setting.

  4. Disorders of the Sleep-Wake Cycle in Blindness | Odeo | West ...

    African Journals Online (AJOL)

    BACKGROUND: Alteration of the intensity of light reaching the pineal gland through the visual pathway affects the sleepwake cycle in humans. OBJECTIVE: To determine the prevalence, types and severity of sleep-wake disorders in the blind and their relation to the degree and cause of blindness. METHODS: One hundred ...

  5. Wake and light therapy for moderate-to-severe depression - a randomized controlled trial

    DEFF Research Database (Denmark)

    Kragh, M; Martiny, K; Videbech, P

    2017-01-01

    Objective: To examine the efficacy of using wake and light therapy as a supplement to standard treatment of hospitalized patients with depression. Method: In this randomized, controlled study, 64 patients with moderate-to-severe depression were allocated to standard treatment or to the intervention...

  6. and wavy-wall confinement on wake characteristics of flow past ...

    Indian Academy of Sciences (India)

    R Deepakkumar

    Keywords. Bluff body; wake; flow separation; wavy-wall confinement; CFD simulation; finite volume method. 1. Introduction. The flow across cross-confined circular cylinder plays a significant role in many engineering systems such as wind structure interaction of civil engineering industries, tube banks of heat exchanger in ...

  7. Narcolepsy: regional cerebral blood flow during sleep and wakefulness

    Energy Technology Data Exchange (ETDEWEB)

    Sakai, F.; Meyer, J.S.; Karacan, I.; Yamaguchi, F.; Yamamoto, M.

    1979-01-01

    Serial measurements of regional cerebral blood flow were made by the 135Xe inhalation method during the early stages of sleep and wakefulness in eight normal volunteers and 12 patients with narcolepsy. Electroencephalogram, electro-oculogram, and submental electromyogram were recorded simultaneously. In normals, mean hemispheric gray matter blood flow (Fg) during stages I and II sleep was significantly less than waking values. Maximum regional blood flow decreases during sleep occurred in the brainstem-cerebellar, right inferior temporal, and bilateral frontal regions. In patients with narcolepsy, mean hemispheric Fg while awake was 80.5 +- 13 ml per 100 gm brain per minute. During REM sleep, mean hemispheric Fg increased concurrently with large increases in brainstem-cerebellar region flow. During stages I and II sleep without REM, there were significant increases in mean hemispheric Fg and brainstem-cerebellar Fg, just the opposite of changes in normals. In narcolepsy, there appears to be a reversal of normal cerebral deactivation patterns, particularly involving the brainstem, during stages I and II sleep.

  8. Ramadan fasting, mental health and sleep-wake pattern

    Directory of Open Access Journals (Sweden)

    Mohsen Khoshniat Nikoo

    2012-06-01

    Full Text Available Background: Life style Changes during Ramadan month could possibly affect sleep-related behaviors such as total daily sleep time, sleep and wake up time and brain waves. In addition, Spirituality and religiosity have a marvelous influence on mental health and effective solutions against stress are being religious and believe in God. This review discusses the results of all related studies about possible effects of Ramadan fasting on various aspects of sleep pattern and mental health. Methods: Keywords such as ‘Ramadan’, ‘Ramadan Fasting’, ‘Islamic Fasting’, ‘Fasting in Ramadan’ and Fasting along Sleep, Chronotype, Sleep Latency, REM, NREM, Brain Wave, Psychology, Mental health, Religion, Mood, Depression, Social interaction, Depressive illness, Psychomotor performances, Bipolar disorders, Accident, Mania, Anxiety and Stress were searched via PubMed database, Scientific Information Datebas (SID and also some local journals, hence, 103 related articles from 1972 until 2010 were studied. Results: The results of studies about the effects of Ramadan fasting on sleep pattern is not similar and these differences could be due to cultural and life style discrepancy in several countries. Fasting during Ramadan could lead to delay in sleep-wake cycle, decrease in deep sleep and lack of awareness during the day. Conclusion: There are various reasons such as dietary pattern, hormonal changes and also stress which could alter the quantity and quality of sleep during Ramadan. Also, according to the available information, there is a relationship between fasting and mental health.

  9. Quantitative electroencephalography within sleep/wake states differentiates GABAA modulators eszopiclone and zolpidem from dual orexin receptor antagonists in rats.

    Science.gov (United States)

    Fox, Steven V; Gotter, Anthony L; Tye, Spencer J; Garson, Susan L; Savitz, Alan T; Uslaner, Jason M; Brunner, Joseph I; Tannenbaum, Pamela L; McDonald, Terrence P; Hodgson, Robert; Yao, Lihang; Bowlby, Mark R; Kuduk, Scott D; Coleman, Paul J; Hargreaves, Richard; Winrow, Christopher J; Renger, John J

    2013-11-01

    Dual orexin receptor antagonists (DORAs) induce sleep by blocking orexin 1 and orexin 2 receptor-mediated activities responsible for regulating wakefulness. DORAs represent a potential alternative mechanism to the current standard of care that includes the γ-aminobutyric acid (GABA)A receptor-positive allosteric modulators, eszopiclone and zolpidem. This work uses an innovative method to analyze electroencephalogram (EEG) spectral frequencies within sleep/wake states to differentiate the effects of GABAA modulators from DORA-22, an analog of the DORA MK-6096, in Sprague-Dawley rats. The effects of low, intermediate, and high doses of eszopiclone, zolpidem, and DORA-22 were examined after first defining each compound's ability to promote sleep during active-phase dosing. The EEG spectral frequency power within specific sleep stages was calculated in 1-Hz intervals from 1 to 100 Hz within each sleep/wake state for the first 4 h after the dose. Eszopiclone and zolpidem produced marked, dose-responsive disruptions in sleep stage-specific EEG spectral profiles compared with vehicle treatment. In marked contrast, DORA-22 exhibited marginal changes in the spectral profile, observed only during rapid eye movement sleep, and only at the highest dose tested. Moreover, while eszopiclone- and zolpidem-induced changes were evident in the inactive period, the EEG spectral responses to DORA-22 were absent during this phase. These results suggest that DORA-22 differs from eszopiclone and zolpidem whereby DORA-22 promotes somnolence without altering the neuronal network EEG activity observed during normal sleep.

  10. The relationship between sleep and wake habits and academic performance in medical students: a cross-sectional study

    Directory of Open Access Journals (Sweden)

    BaHammam Ahmed S

    2012-08-01

    Full Text Available Abstract Background The relationship between the sleep/wake habits and the academic performance of medical students is insufficiently addressed in the literature. This study aimed to assess the relationship between sleep habits and sleep duration with academic performance in medical students. Methods This study was conducted between December 2009 and January 2010 at the College of Medicine, King Saud University, and included a systematic random sample of healthy medical students in the first (L1, second (L2 and third (L3 academic levels. A self-administered questionnaire was distributed to assess demographics, sleep/wake schedule, sleep habits, and sleep duration. Daytime sleepiness was evaluated using the Epworth Sleepiness Scale (ESS. School performance was stratified as “excellent” (GPA ≥3.75/5 or “average” (GPA Results The final analysis included 410 students (males: 67%. One hundred fifteen students (28% had “excellent” performance, and 295 students (72% had “average” performance. The “average” group had a higher ESS score and a higher percentage of students who felt sleepy during class. In contrast, the “excellent” group had an earlier bedtime and increased TST during weekdays. Subjective feeling of obtaining sufficient sleep and non-smoking were the only independent predictors of “excellent” performance. Conclusion Decreased nocturnal sleep time, late bedtimes during weekdays and weekends and increased daytime sleepiness are negatively associated with academic performance in medical students.

  11. Analytical and experimental studies of wakes behind circularly capped bubbles

    Science.gov (United States)

    Bessler, W. F.

    The wakes behind circularly capped bubbles are examined by means of an experimental and analytical study. A single two-inch diameter bubble is injected into a six by three foot fluid column, one half inch thick, producing an essentially two-dimensional flow. Aspirin powder placed in the fluid column just prior to bubble release highlights the structure of the flow field before dissolving. High speed film and sequenced photographs are taken to document the observed results. Pressure-time measurements are made with sensitive capacitive transducers mounted in the rear column wall and are synchronized with photographs using a high speed clock. Experimental fluids, prepared by mixing water and glycerine in varying proportions, are used to study the effects of viscosity on bubble shape and wake structure. Testing is performed over a range of Reynolds numbers from 14 to 29,655 which includes the transition from circularly capped to ellipsoidal bubble shape. Experimental data is reduced and summarized in convenient dimensionless form to permit comparison with analytical predictions.

  12. Wake-up receiver based ultra-low-power WBAN

    CERN Document Server

    Lont, Maarten; Roermund, Arthur van

    2014-01-01

    This book presents the cross-layer design and optimization of wake-up receivers for wireless body area networks (WBAN), with an emphasis on low-power circuit design. This includes the analysis of medium access control (MAC) protocols, mixer-first receiver design, and implications of receiver impairments on wideband frequency-shift-keying (FSK) receivers. Readers will learn how the overall power consumption is reduced by exploiting the characteristics of body area networks. Theoretical models presented are validated with two different receiver implementations, in 90nm and 40nm CMOS technology.   • Provides an overview of wireless body area network design from the network layer to the circuit implementation, and an overview of the cross-layer design trade-offs; • Discusses design at both the network or MAC-layer and circuit-level, with an emphasis on circuit design; • Covers the design of low-power frequency shift keying (FSK) wake-up-receivers; • Validates theory presented with two different recei...

  13. Performance and wake conditions of a rotor located in the wake of an obstacle

    Science.gov (United States)

    Naumov, I. V.; Kabardin, I. K.; Mikkelsen, R. F.; Okulov, V. L.; Sørensen, J. N.

    2016-09-01

    Obstacles like forests, ridges and hills can strongly affect the velocity profile in front of a wind turbine rotor. The present work aims at quantifying the influence of nearby located obstacles on the performance and wake characteristics of a downstream located wind turbine. Here the influence of an obstacle in the form of a cylindrical disk was investigated experimentally in a water flume. A model of a three-bladed rotor, designed using Glauert's optimum theory at a tip speed ratio λ = 5, was placed in the wake of a disk with a diameter close to the one of the rotor. The distance from the disk to the rotor was changed from 4 to 8 rotor diameters, with the vertical distance from the rotor axis varied 0.5 and 1 rotor diameters. The associated turbulent intensity of the incoming flow to the rotor changed 3 to '6% due to the influence of the disk wake. In the experiment, thrust characteristics and associated pulsations as a function of the incoming flow structures were measured by strain gauges. The flow condition in front of the rotor was measured with high temporal accuracy using LDA and power coefficients were determine as function of tip speed ratio for different obstacle positions. Furthermore, PIV measurements were carried out to study the development of the mean velocity deficit profiles of the wake behind the wind turbine model under the influence of the wake generated by the obstacle. By use of regression techniques to fit the velocity profiles it was possible to determine velocity deficits and estimate length scales of the wake attenuation.

  14. An improved k-ε model applied to a wind turbine wake in atmospheric turbulence

    DEFF Research Database (Denmark)

    Laan, van der, Paul Maarten; Sørensen, Niels N.; Réthoré, Pierre-Elouan

    2015-01-01

    An improved k-ε turbulence model is developed and applied to a single wind turbine wake in a neutral atmospheric boundary layer using a Reynolds averaged Navier–Stokes solver. The proposed model includes a flow-dependent Cμ that is sensitive to high velocity gradients, e.g., at the edge of a wind...

  15. Submesoscale tidal eddies in the wake of coral islands and reefs : Satellite data and numerical modelling

    NARCIS (Netherlands)

    Delandmeter, Philippe; Lambrechts, Jonathan; Marmorino, George O.; Legat, Vincent; Wolanski, E.; Remacle, Jean-François; Chen, Wei; Deleersnijder, E.L.C.

    2017-01-01

    Interaction of tidal flow with a complex topography and bathymetry including headlands, islands, coral reefs and shoals create a rich submesoscale field of tidal jets, vortices, unsteady wakes, lee eddies and free shear layers, all of which impact marine ecology. A unique and detailed view of the

  16. Analysis of Mixing and Dynamics Associated with the Dissolution of Hurricane-Induced Cold Wakes

    Science.gov (United States)

    2013-09-30

    thermohaline circulation and the global climate. RELATED PROJECTS Observations of Energy Dissipation in the Wake of a Western Pacific Typhoon, L. St...mixing and sea surface temperature variability. It should be noted that including Langmuir circulation and an idealized wave field made little

  17. A coupled near and far wake model for wind turbine aerodynamics

    DEFF Research Database (Denmark)

    Pirrung, Georg R.; Aagaard Madsen, Helge; Kim, Taeseong

    2016-01-01

    In this paper, an aerodynamic model consisting of a lifting line-based trailed vorticity model and a blade element momentum (BEM) model is described. The focus is on the trailed vorticity model, which is based on the near wake model (NWM) by Beddoes and has been extended to include the effects...

  18. Size of Self-Gravity Wakes from Cassini UVIS Tracking Occultations and Ring Transparency Statistics

    Science.gov (United States)

    Esposito, Larry W.; Rehnberg, Morgan; Colwell, Joshua E.; Sremcevic, Miodrag

    2017-10-01

    We compare two methods for determining the size of self-gravity wakes in Saturn’s rings. Analysis of gaps seen in UVIS occultations gives a power law distribution from 10-100m (Rehnberg etal 2017). Excess variance from UVIS occultations can be related to characteristic clump widths, a method which extends the work of Showalter and Nicholson (1990) to more arbitrary shadow distributions. In the middle A ring, we use results from Colwell etal (2017) for the variance and results from Jerousek etal (2016) for the relative size of gaps and wakes to estimate the wake width consistent with the excess variance observed there. Our method gives:W= sqrt (A) * E/T2 * (1+ S/W)Where A is the area observed by UVIS in an integration period, E is the measured excess variance above Poisson statistics, T is the mean transparency, and S and W are the separation and width of self-gravity wakes in the granola bar model of Colwell etal (2006). We find:W ~ 10m and infer the wavelength of the fastest growing instabilityLambda(TOOMRE) = S + W ~ 30m.This is consistent with the calculation of the Toomre wavelength from the surface mass density of the A ring, and with the highest resolution UVIS star occultations.

  19. Full-Scale Field Test of Wake Steering

    Science.gov (United States)

    Fleming, Paul; Annoni, Jennifer; Scholbrock, Andrew; Quon, Eliot; Dana, Scott; Schreck, Scott; Raach, Steffen; Haizmann, Florian; Schlipf, David

    2017-05-01

    Wind farm control, in which turbine controllers are coordinated to improve farmwide performance, is an active field of research. One form of wind farm control is wake steering, in which a turbine is yawed to the inflow to redirect its wake away from downstream turbines. Wake steering has been studied in depth in simulations as well as in wind tunnels and scaled test facilities. This work performs a field test of wake steering on a full-scale turbine. In the campaign, the yaw controller of the turbine has been set to track different yaw misalignment set points while a nacelle-mounted lidar scans the wake at several ranges downwind. The lidar measurements are combined with turbine data, as well as measurements of the inflow made by a highly instrumented meteorological mast. These measurements are then compared to the predictions of a wind farm control-oriented model of wakes.

  20. Sleep-wake differences in heart rate variability during a 105-day simulated mission to Mars.

    Science.gov (United States)

    Vigo, Daniel E; Ogrinz, Barbara; Wan, Li; Bersenev, Evgeny; Tuerlinckx, Francis; Van Den Bergh, Omer; Aubert, André E

    2012-02-01

    In prolonged spaceflights the effect of long-term confinement on the autonomic regulation of the heart is difficult to separate from the effect of prolonged exposure to microgravity or other space-related stressors. Our objective was to investigate whether the sleep-wake variations in the autonomic control of the heart are specifically altered by long-term confinement during the 105-d pilot study of the Earth-based Mars500 project. Before (pre), during (T1: 30, T2: 70, andT3: 100 d), and after (post) confinement, 24-h EKG records were obtained from the six crewmembers that participated in the mission. Sleep and wake periods were determined by fitting a square wave to the data. Autonomic activity was evaluated through time and frequency domain indexes of heart rate variability (HRV) analysis during wake and sleep periods. During confinement, wake HRV showed decreased mean heart rate and increased amplitude at all frequency levels, particularly in the very low (pre: 13.3 +/- 0.2; T1: 13.9 +/- 0.3; T2: 13.9 +/- 0.2; T3: 13.9 +/- 0.2; post: 13.2 +/- 0.2) and high (pre: 7.6 +/- 0.4; T1: 8.3 +/- 0.5; T2: 8.2 +/- 0.4; T3: 8.1 +/- 0.4; post: 7.6 +/- 0.3) frequency components (values expressed as mean +/- SE of wavelet power coefficients). Sleep HRV remained constant, while sleep-wake high frequency HRV differences diminished. The observed autonomic changes during confinement reflect an increase in parasympathetic activity during wake periods. Several factors could account for this observation, including reduced daylight exposure related to the confinement situation.

  1. An LC-MS/MS method to quantify acylcarnitine species including isomeric and odd-numbered forms in plasma and tissues[S

    Science.gov (United States)

    Giesbertz, Pieter; Ecker, Josef; Haag, Alexander; Spanier, Britta; Daniel, Hannelore

    2015-01-01

    Acylcarnitines are intermediates of fatty acid and amino acid oxidation found in tissues and body fluids. They are important diagnostic markers for inherited diseases of peroxisomal and mitochondrial oxidation processes and were recently described as biomarkers of complex diseases like the metabolic syndrome. Quantification of acylcarnitine species can become challenging because various species occur as isomers and/or have very low concentrations. Here we describe a new LC-MS/MS method for quantification of 56 acylcarnitine species with acyl-chain lengths from C2 to C18. Our method includes amino acid-derived positional isomers, like methacrylyl-carnitine (2-M-C3:1-CN) and crotonyl-carnitine (C4:1-CN), and odd-numbered carbon species, like pentadecanoyl-carnitine (C15:0-CN) and heptadecanoyl-carnitine (C17:0-CN), occurring at very low concentrations in plasma and tissues. Method validation in plasma and liver samples showed high sensitivity and excellent accuracy and precision. In an application to samples from streptozotocin-treated diabetic mice, we identified significantly increased concentrations of acylcarnitines derived from branched-chain amino acid degradation and of odd-numbered straight-chain species, recently proposed as potential biomarkers for the metabolic syndrome. In conclusion, the LC-MS/MS method presented here allows robust quantification of isomeric acylcarnitine species and extends the palette of acylcarnitines with diagnostic potential derived from fatty acid and amino acid metabolism. PMID:26239049

  2. 'Unfallable encyclicing': Finnegans Wake and the Encyclopedia Britannica

    OpenAIRE

    Platt, Len

    2009-01-01

    This essay aims to develop our knowledge about why the 'Encyclopedia Britannica' ('EB') is of such importance to 'Finnegans Wake' and to establish the general nature of what is an extraordinary example of literary intertextuality. While it incorporates 'EB' articles in various ways, the 'Wake' also sets up a specific riposte to the encyclopedic idea. Engaging at a fundamental level with the principles that underline the 'EB', the 'Wake' swallows or 'digests' vast amounts of conventional reaso...

  3. Detection and Behavior of Pan Wakes in Saturn's A Ring

    Science.gov (United States)

    Horn, L. J.; Showalter, M. R.; Russell, C. T.

    1996-01-01

    Six previously unseen Pan wakes are found interior and exterior to the Encke gap in Saturn's A ring, one in the Voyager 2 photopolarimeter (PPS) stellar occultation data and five in the Voyager 1 radio science (RSS) Earth occultation data. Pan orbits at the center of the Encke gap and maintains it...The detection of Pan wakes at longitudes greater than 360(deg) demonstrates that wakes persist for much longer than originally hypothesized and may interact with one another.

  4. Time to wake up: reactive countermeasures to sleep inertia

    OpenAIRE

    HILDITCH, Cassie J.; DORRIAN, Jillian; BANKS, Siobhan

    2016-01-01

    Sleep inertia is the period of impaired performance and grogginess experienced after waking. This period of impairment is of concern to workers who are on-call, or nap during work hours, and need to perform safety-critical tasks soon after waking. While several studies have investigated the best sleep timing and length to minimise sleep inertia effects, few have focused on countermeasures -especially those that can be implemented after waking (i.e. reactive countermeasures). This structured r...

  5. Wind Farm Wake: The 2016 Horns Rev Photo Case

    DEFF Research Database (Denmark)

    Hasager, Charlotte Bay; Nygaard, Nicolai Gayle; Volker, Patrick

    2017-01-01

    Offshore wind farm wakes were observed and photographed in foggy conditions at Horns Rev 2 on 25 January 2016 at 12:45 UTC. These new images show highly contrasting conditions regarding the wind speed, turbulence intensity, atmospheric stability, weather conditions and wind farm wake development...... rated power. The wind direction was southwesterly and long, narrow wakes persisted several rotor diameters downwind of the wind turbines. Eventually mixing of warm air from aloft dispersed the fog in the far wake region of the wind farm....

  6. Study of Passive Flow Control for Ship Air Wakes

    Science.gov (United States)

    2013-05-10

    electronically scanned pressure NAVAIR……………Naval Air Systems Command USNA………………. United States Naval Academy WISP ………………..wake interactive survey probe...Figure 8. YP coordinate system 2.3.2 Instrumentation This experiment used the Wake Interactive Survey Probe ( WISP ) system to survey the ship...air wake. The WISP system allows a flow probe to be moved through the air wake according to a pre-determined grid pattern. For this investigation

  7. Near wake features of a flying European Starling

    Science.gov (United States)

    Kirchhefer, Adam; Kopp, Gregory; Gurka, Roi

    2013-11-01

    A great deal of research focusing on flapping wings has been motivated by their high performance capabilities, especially in low Reynolds number configurations where static wing performance typically suffers. The approaches to studying flapping wings have taken different forms. One form has been the systematic investigation of the parameters that influence the relationship between flapping wings and their wake. The other form, and the approach used in the present work, is the investigation of flapping wings in nature. While the earliest work on the flapping wings of animals consists of observations of bird flight by Leonardo DaVinci, advances in technology have allowed for quantitative measurements of the wake. The near wake of a freely flying European starling has been measured using high speed, time-resolved, particle image velocimetry, simultaneously with high speed cameras which imaged the bird. These have been used to measure the near wake two-dimensional velocity field that can be associated with the bird's location and wing configuration in an avian wind tunnel. Time series of the velocities have been expressed as composite wake plots, which depict segments of the wing beat cycle for various spanwise locations in the wake. Measurements indicate that downwash is not produced during the upstroke, suggesting that the upstroke does not generate lift. As well, the wake velocities imply the presence of streamwise vortical structures, in addition to tip vortices. These two characteristics indicate similarities between the wake of a bird and the wake of a bat.

  8. Similarity and Decay Laws of Momentumless Wakes.

    Science.gov (United States)

    1977-05-26

    Naval Sea Systems Command , Code NSEA—03133. -‘ F 9 —2— 26 May 1977 SN : j ep SIMILARITY AND DECAY LAWS OF MOMENTUI’ILESS WAKE S by Samuel Ilassid...and this neg lect will have to be justified a posteriori. Now, one seeks self-similar solutions of the type: k = Xh(ri) c = Ee(n) Ud = UDf (n) ~ = where...0 9x r 3r L6 c Again, seeking self-similar solutions of the type: k = Kh(ti) c = Ee(ri) Ud = UDf (n) r~ = (6.4) and letting 2 2 = 1 (6.5)E L one

  9. Near-wake flow structure downwind of a wind turbine in a turbulent boundary layer

    Science.gov (United States)

    Zhang, Wei; Markfort, Corey D.; Porté-Agel, Fernando

    2012-05-01

    Wind turbines operate in the surface layer of the atmospheric boundary layer, where they are subjected to strong wind shear and relatively high turbulence levels. These incoming boundary layer flow characteristics are expected to affect the structure of wind turbine wakes. The near-wake region is characterized by a complex coupled vortex system (including helicoidal tip vortices), unsteadiness and strong turbulence heterogeneity. Limited information about the spatial distribution of turbulence in the near wake, the vortex behavior and their influence on the downwind development of the far wake hinders our capability to predict wind turbine power production and fatigue loads in wind farms. This calls for a better understanding of the spatial distribution of the 3D flow and coherent turbulence structures in the near wake. Systematic wind-tunnel experiments were designed and carried out to characterize the structure of the near-wake flow downwind of a model wind turbine placed in a neutral boundary layer flow. A horizontal-axis, three-blade wind turbine model, with a rotor diameter of 13 cm and the hub height at 10.5 cm, occupied the lowest one-third of the boundary layer. High-resolution particle image velocimetry (PIV) was used to measure velocities in multiple vertical stream-wise planes ( x- z) and vertical span-wise planes ( y- z). In particular, we identified localized regions of strong vorticity and swirling strength, which are the signature of helicoidal tip vortices. These vortices are most pronounced at the top-tip level and persist up to a distance of two to three rotor diameters downwind. The measurements also reveal strong flow rotation and a highly non-axisymmetric distribution of the mean flow and turbulence structure in the near wake. The results provide new insight into the physical mechanisms that govern the development of the near wake of a wind turbine immersed in a neutral boundary layer. They also serve as important data for the development and

  10. Wake Sensor Evaluation Program and Results of JFK-1 Wake Vortex Sensor Intercomparisons

    Science.gov (United States)

    Barker, Ben C., Jr.; Burnham, David C.; Rudis, Robert P.

    1997-01-01

    The overall approach should be to: (1) Seek simplest, sufficiently robust, integrated ground based sensor systems (wakes and weather) for AVOSS; (2) Expand all sensor performance cross-comparisons and data mergings in on-going field deployments; and (3) Achieve maximal cost effectiveness through hardware/info sharing. An effective team is in place to accomplish the above tasks.

  11. New CE-ESI-MS analytical method for the separation, identification and quantification of seven phenolic acids including three isomer compounds in virgin olive oil.

    Science.gov (United States)

    Nevado, Juan José Berzas; Peñalvo, Gregorio Castañeda; Robledo, Virginia Rodríguez; Martínez, Gabriela Vargas

    2009-10-15

    A sensitive and expeditious CE-ESI-MS analytical method for the separation, identification and determination of seven selected antioxidants (cinnamic and benzoic acids), including three isomers of coumaric acid (ortho-, meta- and para-) has been developed. In order to obtain the analytical separation, capillary electrophoresis and CE-MS interface parameters (e.g., buffer pH and composition, sheath liquid and gas flow rates, sheath liquid composition, electrospray voltage, etc.) were carefully optimized. The polar fraction containing the selected phenolic acids was obtained using a previously optimized SPE pretreatment. An MS detector in order to extract structural information about the target compounds and facilitate their qualitative analysis was used in the negative ion mode. The proposed off-line SPE CE-ESI-MS method was validated by assessing its precision, LODs and LOQs, linearity range and accuracy. The optimized and validated method was used in order to quantify the selected antioxidants in various samples of virgin olive oil and extra-virgin olive oil obtained from the main olive varieties cropped in Castilla-La Mancha, Spain. Salicylic acid was used as internal standard throughout in order to ensure reproducibility in the quantitative analysis of the oil samples. The results confirmed the presence of hydroxyphenyl acetic, p-coumaric, ferulic and vanillic acids in substantial amounts (microg g(-1) level) in all samples.

  12. Including non-additive genetic effects in Bayesian methods for the prediction of genetic values based on genome-wide markers

    Directory of Open Access Journals (Sweden)

    Reinsch Norbert

    2011-08-01

    Full Text Available Abstract Background Molecular marker information is a common source to draw inferences about the relationship between genetic and phenotypic variation. Genetic effects are often modelled as additively acting marker allele effects. The true mode of biological action can, of course, be different from this plain assumption. One possibility to better understand the genetic architecture of complex traits is to include intra-locus (dominance and inter-locus (epistasis interaction of alleles as well as the additive genetic effects when fitting a model to a trait. Several Bayesian MCMC approaches exist for the genome-wide estimation of genetic effects with high accuracy of genetic value prediction. Including pairwise interaction for thousands of loci would probably go beyond the scope of such a sampling algorithm because then millions of effects are to be estimated simultaneously leading to months of computation time. Alternative solving strategies are required when epistasis is studied. Methods We extended a fast Bayesian method (fBayesB, which was previously proposed for a purely additive model, to include non-additive effects. The fBayesB approach was used to estimate genetic effects on the basis of simulated datasets. Different scenarios were simulated to study the loss of accuracy of prediction, if epistatic effects were not simulated but modelled and vice versa. Results If 23 QTL were simulated to cause additive and dominance effects, both fBayesB and a conventional MCMC sampler BayesB yielded similar results in terms of accuracy of genetic value prediction and bias of variance component estimation based on a model including additive and dominance effects. Applying fBayesB to data with epistasis, accuracy could be improved by 5% when all pairwise interactions were modelled as well. The accuracy decreased more than 20% if genetic variation was spread over 230 QTL. In this scenario, accuracy based on modelling only additive and dominance effects was

  13. A chromatography/tandem mass spectrometry method for the simultaneous profiling of ten endogenous steroids, including progesterone, adrenal precursors, androgens and estrogens, using low serum volume.

    Science.gov (United States)

    Caron, Patrick; Turcotte, Véronique; Guillemette, Chantal

    2015-12-01

    Measurement of a large set of sex steroids in clinical epidemiology and laboratory research with reliable methods providing low quantification limits and using a limited volume of blood sample represents a significant challenge. We report a new validated gas chromatography selected reaction monitoring - tandem mass spectrometry assay (GC-MS/MS) for the simultaneous quantification of ten endogenous steroids including progesterone (PROG), dehydroepiandrosterone (DHEA), androstenediol (5-diol), androstenedione (4-dione), testosterone (T), dihydrotestosterone (DHT), androsterone (ADT), 5alpha-androstan-3beta-17beta-diol (3β-diol), estrone (E1) and estradiol (E2). After addition of stable isotope internal standards, the approach involved the combination of liquid-liquid extraction, derivatization and solid-phase extraction for injection into the GC system and multiple reaction monitoring (MRM). The method presents high reproducibility for all analytical parameters in 250 μl serum samples. The lower limit of quantification (LLOQ) were of 100 pg/ml for DHEA, 50 pg/ml for PROG, 5-diol, 4-dione and ADT, 30 pg/ml for T, 10 pg/ml for 3β-diol and DHT, 5 pg/ml for E1, and 1 pg/ml for E2. The applicability of the validated method to determine the concentrations of these 10 steroids was successfully tested on serum from men (n=15), premenopausal (n=10) and postmenopausal women (n=20), and is currently used for larger cancer-related epidemiology studies. One of the most considerable advantages over existing methods is the simultaneous determination of ten steroids in a limited volume of serum that will help conserve important clinical samples from existing biobanks. Copyright © 2015 Elsevier Inc. All rights reserved.

  14. Validation of the Eddy Viscosity and Lange Wake Models using Measured Wake Flow Characteristics Behind a Large Wind Turbine Rotor

    Energy Technology Data Exchange (ETDEWEB)

    Jeon, Sang Hyeon; Kim, Bum Suk; Huh, Jong Chul [Jeju National Univ., Jeju (Korea, Republic of); Go, Young Jun [Hanjin Ind, Co., Ltd., Yangsan (Korea, Republic of)

    2016-01-15

    The wake effects behind wind turbines were investigated by using data from a Met Mast tower and the SCADA (Supervisory Control and Data Acquisition) system for a wind turbine. The results of the wake investigations and predicted values for the velocity deficit based on the eddy viscosity model were compared with the turbulence intensity from the Lange model. As a result, the velocity deficit and turbulence intensity of the wake increased as the free stream wind speed decreased. In addition, the magnitude of the velocity deficit for the center of the wake using the eddy viscosity model was overestimated while the turbulence intensity from the Lange model showed similarities with measured values.

  15. Three case studies of three high school teachers' definitions, beliefs, and implementation practices of inquiry-based science method including barriers to and facilitators of successful implementation

    Science.gov (United States)

    Blackburn-Morrison, Kimberly D.

    This study involved three teachers in various stages of implementation of inquiry-based science method. The cases were chosen because one participant was a novice in using inquiry-based science method, one participant was in her second year of implementation, and the third participant was experienced with inquiry-based science method. The cases were set in a rural high school in three different science classrooms. One of the classrooms was a regular biology class. One of the classrooms was an honors oceanography class and another was an advanced placement environmental science classroom. Data sources included interviews, observations, and document collection. Interviews, observations, and document collection were used to triangulate data. Each classroom was observed five times. Interviews were conducted at the beginning of the semester with each participant and at the end of the semester. Follow-up interviews were conducted after each observation. Documents were collected such as each teacher's lesson plans, student work, and assignments. Data was initially organized according to the research areas of teacher's definition, teacher's beliefs, teacher's barriers to implementation, and teacher's enablers to implementation. Then, patterns emerging from each of these cases were organized. Lastly, patterns emerging across cases were compared in a cross-case analysis. Patterns shared between cases were: Participants related inquiry-based science method with hands-on learning activities. Participants saw students as the center of the learning process. Participants had positive beliefs about constructivist learning practices that were strengthened after implementation of inquiry-based teaching. Facilitators of successful implementation of inquiry-based science method were positive student motivation, students' retention of knowledge, and a positive experience for lower level students. Barriers to successful implementation were teachers not having complete control of the

  16. Sleep–wake and melatonin pattern in craniopharyngioma patients

    DEFF Research Database (Denmark)

    Pickering, Line; Jennum, Poul; Gammeltoft, Steen

    2014-01-01

    controls. In this study, 24-h salivary melatonin and cortisol were measured. Sleep-wake patterns were characterised by actigraphy and sleep diaries recorded for 2 weeks. Sleepiness, fatigue, sleep quality and general health were assessed by Multidimensional Fatigue Inventory, Pittsburgh Sleep Quality Index.......03) and a tendency for increased sleepiness, impaired sleep quality and physical health. Midnight melatonin remained independently related to sleep time after adjustment for cortisol. Three different patterns of melatonin profiles were observed; normal (n=6), absent midnight peak (n=6) and phase-shifted peak (n=2......OBJECTIVE: To assess the influence of craniopharyngioma or consequent surgery on melatonin secretion, and the association with fatigue, sleepiness, sleep pattern and sleep quality. DESIGN: Cross-sectional study. METHODS: A total of 15 craniopharyngioma patients were individually matched to healthy...

  17. A CFD code comparison of wind turbine wakes

    DEFF Research Database (Denmark)

    Laan, van der, Paul Maarten; Storey, R. C.; Sørensen, Niels N.

    2014-01-01

    A comparison is made between the EllipSys3D and SnS CFD codes. Both codes are used to perform Large-Eddy Simulations (LES) of single wind turbine wakes, using the actuator disk method. The comparison shows that both LES models predict similar velocity deficits and stream-wise Reynolds...... simulations using EllipSys3D for a test case that is based on field measurements. In these simulations, two eddy viscosity turbulence models are employed: the k- (ε) model and the k- (ε)-fp model. Where the k- (ε) model fails to predict the velocity deficit, the results of the k- (ε)-fP model show good...

  18. Experiences of wake and light therapy in patients with depression

    DEFF Research Database (Denmark)

    Kragh, Mette; Møller, Dorthe Norden; Schultz Wihlborg, Camilla

    2017-01-01

    with the treatment was positive. Some experienced a remarkable and rapid antidepressant effect, whereas others described more long-term benefits (e.g. improved sleep and diurnal rhythm). Yet recovery was fragile, and patients were only cautiously optimistic. Social support was important for maintaining......Wake therapy can reduce depressive symptoms within days, and response rates are high. To sustain the effect, it is often combined with light therapy. Few studies have focussed on factors related to patients' adherence to the regime, and none has used qualitative methods to examine their experience...... week, 30 min of daily light treatment for the entire 9 weeks, and ongoing psychoeducation regarding good sleep hygiene. Patients kept a diary, and individual semistructured interviews were conducted. Data were analysed using qualitative content analysis. The participants' overall experience...

  19. Evolution of poor reporting and inadequate methods over time in 20 920 randomised controlled trials included in Cochrane reviews: research on research study.

    Science.gov (United States)

    Dechartres, Agnes; Trinquart, Ludovic; Atal, Ignacio; Moher, David; Dickersin, Kay; Boutron, Isabelle; Perrodeau, Elodie; Altman, Douglas G; Ravaud, Philippe

    2017-06-08

    Objective  To examine how poor reporting and inadequate methods for key methodological features in randomised controlled trials (RCTs) have changed over the past three decades. Design  Mapping of trials included in Cochrane reviews. Data sources  Data from RCTs included in all Cochrane reviews published between March 2011 and September 2014 reporting an evaluation of the Cochrane risk of bias items: sequence generation, allocation concealment, blinding, and incomplete outcome data. Data extraction  For each RCT, we extracted consensus on risk of bias made by the review authors and identified the primary reference to extract publication year and journal. We matched journal names with Journal Citation Reports to get 2014 impact factors. Main outcomes measures  We considered the proportions of trials rated by review authors at unclear and high risk of bias as surrogates for poor reporting and inadequate methods, respectively. Results  We analysed 20 920 RCTs (from 2001 reviews) published in 3136 journals. The proportion of trials with unclear risk of bias was 48.7% for sequence generation and 57.5% for allocation concealment; the proportion of those with high risk of bias was 4.0% and 7.2%, respectively. For blinding and incomplete outcome data, 30.6% and 24.7% of trials were at unclear risk and 33.1% and 17.1% were at high risk, respectively. Higher journal impact factor was associated with a lower proportion of trials at unclear or high risk of bias. The proportion of trials at unclear risk of bias decreased over time, especially for sequence generation, which fell from 69.1% in 1986-1990 to 31.2% in 2011-14 and for allocation concealment (70.1% to 44.6%). After excluding trials at unclear risk of bias, use of inadequate methods also decreased over time: from 14.8% to 4.6% for sequence generation and from 32.7% to 11.6% for allocation concealment. Conclusions  Poor reporting and inadequate methods have decreased over time, especially for sequence generation

  20. Wake potentials of the ILC Interaction Region

    Energy Technology Data Exchange (ETDEWEB)

    Novokhatski, A.; /SLAC

    2011-08-16

    The vacuum chamber of the ILC Interaction Region (IR) is optimized for best detector performance. It has special shaping to minimize additional backgrounds due to the metal part of the chamber. Also, for the same reason this thin vacuum chamber does not have water cooling. Therefore, small amounts of power, which may be deposited in the chamber, can be enough to raise the chamber to a high temperature. One of the sources of 'heating' power is the electromagnetic field of the beam. This field diffracts by non-regularities of the beam pipe and excites free-propagating fields, which are then absorbed by the pipe wall. In addition we have a heating power of the image currents due to finite conductivity of the metallic wall. We will discuss these effects as updating the previous results. The conclusions of this report are: (1) The amount of the beam energy loss in IR is almost equal to the energy loss in one ILC (TESLA) accelerating cryo-module; (2) Addition energy spread at IR is very small; (3) Spectrum of the wake fields is limited 300 GHz; (4) Average power of the wake fields excited in IR is 30 W for nominal ILC parameters; and (5) Pulse power in this case is 6 kilowatts.

  1. Optimization Under Uncertainty for Wake Steering Strategies

    Energy Technology Data Exchange (ETDEWEB)

    Quick, Julian [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Annoni, Jennifer [National Renewable Energy Laboratory (NREL), Golden, CO (United States); King, Ryan N [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Dykes, Katherine L [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Fleming, Paul A [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Ning, Andrew [Brigham Young University

    2017-08-03

    Offsetting turbines' yaw orientations from incoming wind is a powerful tool that may be leveraged to reduce undesirable wake effects on downstream turbines. First, we examine a simple two-turbine case to gain intuition as to how inflow direction uncertainty affects the optimal solution. The turbines are modeled with unidirectional inflow such that one turbine directly wakes the other, using ten rotor diameter spacing. We perform optimization under uncertainty (OUU) via a parameter sweep of the front turbine. The OUU solution generally prefers less steering. We then do this optimization for a 60-turbine wind farm with unidirectional inflow, varying the degree of inflow uncertainty and approaching this OUU problem by nesting a polynomial chaos expansion uncertainty quantification routine within an outer optimization. We examined how different levels of uncertainty in the inflow direction effect the ratio of the expected values of deterministic and OUU solutions for steering strategies in the large wind farm, assuming the directional uncertainty used to reach said OUU solution (this ratio is defined as the value of the stochastic solution or VSS).

  2. Brain mechanisms that control sleep and waking

    Science.gov (United States)

    Siegel, Jerome

    This review paper presents a brief historical survey of the technological and early research that laid the groundwork for recent advances in sleep-waking research. A major advance in this field occurred shortly after the end of World War II with the discovery of the ascending reticular activating system (ARAS) as the neural source in the brain stem of the waking state. Subsequent research showed that the brain stem activating system produced cortical arousal via two pathways: a dorsal route through the thalamus and a ventral route through the hypothalamus and basal forebrain. The nuclei, pathways, and neurotransmitters that comprise the multiple components of these arousal systems are described. Sleep is now recognized as being composed of two very different states: rapid eye movements (REMs) sleep and non-REM sleep. The major findings on the neural mechanisms that control these two sleep states are presented. This review ends with a discussion of two current views on the function of sleep: to maintain the integrity of the immune system and to enhance memory consolidation.

  3. Rainfall-enhanced blooming in typhoon wakes

    Science.gov (United States)

    Lin, Y.; Oey, L. Y.

    2016-12-01

    Strong phytoplankton blooming in tropical-cyclone (TC) wakes over the oligotrophic oceans potentially contributes to long-term changes in global biogeochemical cycles. Yet blooming has traditionally been discussed using anecdotal events and its biophysical mechanics remain poorly understood. Here we identify dominant blooming patterns using 16 years of ocean-color data in the wakes of 141 typhoons in western North Pacific. We observe right-side asymmetric blooming shortly after the storms, attributed previously to sub-mesoscale re-stratification, but thereafter a left-side asymmetry which coincides with the left-side preference in rainfall due to the large-scale wind shear. Biophysical model experiments and observations demonstrate that heavier rainfall freshens the near-surface water, leading to stronger stratification, decreased turbulence and enhanced blooming. Our results suggest that rainfall plays a previously unrecognized, critical role in TC-induced blooming, with potentially important implications for global biogeochemical cycles especially in view of the recent and projected increases in TC-intensity that harbingers stronger mixing and heavier rain under the storm.

  4. Effect of Sleep/Wake Cycle on Autonomic Regulation.

    Science.gov (United States)

    Jabeen, Surriya

    2015-06-01

    To evaluate the association between irregular sleep/wake cycle in shift workers and autonomic regulation. Cross-sectional, analytical study. Dow University Hospital, Karachi, from August to November 2013. All healthcare providers working in rotating shifts making a total (n=104) were included. Instrument was an integrated questionnaire applied to assess autonomic regulation, taken from Kröz et al. on scoring criteria, ranging from 18 - 54, where higher rating signifies strong autonomic regulation, indicating a stable Autonomic Nervous System (ANS) and vice versa. Participants were interviewed and their response was recorded by the investigator. Influence of sleep misalignment was measured quantitatively to extract index of autonomic activity. There was a reduced trend in autonomic strength amongst shift workers. The mean score obtained on the Autonomic Scale was 37.8 ± 5.9. Circadian misalignment has an injurious influence on ANS which might be valuable in controlling autonomic dysfunction that leads to fatal triggers in rotating shift workers.

  5. Wake models developed during the Wind Shadow project

    Energy Technology Data Exchange (ETDEWEB)

    Larsen, S.; Ott, S.; Pena, A.; Berg, J.; Nielsen, M.; Rathmann, O.; Joergensen, H.

    2011-11-15

    The Wind Shadow project has developed and validated improved models for determining the wakes losses, and thereby the array efficiency of very large, closely packed wind farms. The rationale behind the project has been that the existing software has been covering these types of wind farms poorly, both with respect to the densely packed turbines and the large fetches needed to describe the collective shadow effects of one farm to the next. Further the project has developed the necessary software for the use of the models. Guidelines with recommendations for the use of the models are included in the model deliverables. The project has been carried out as a collaborative project between Risoe DTU, DONG, Vattenfall, DNV and VESTAS, and it has been financed by energinet.dk grant no. 10086. (Author)

  6. Optimal Control to Increase Energy Production of Wind Farm Considering Wake Effect and Lifetime Estimation

    DEFF Research Database (Denmark)

    Tian, Jie; Zhou, Dao; Su, Chi

    2017-01-01

    In a wind farm, the upstream wind turbine may cause power loss to the downstream wind turbines due to the wake effect. Meanwhile, the energy production is determined by the power generation and the lifetime of the wind turbine. In this paper, an optimal active power control method is proposed......, the pitch angle curve and active power curve are optimized with the aim of Maximum Power Generation (MPG) of the wind farm. Afterwards, considering the lifetime of wind turbines, a comparison is offered between the MPPT method and the MPG method for energy production using a simplified two-turbine wind farm...... as an example. Due to the small range of the effective wake area, it is found that the energy production is almost the same. Finally, the pitch angle curve and active power curve are optimized according to the Maximum Energy Production (MEP) of a wind farm. Upon considering and contrasting the MPPT method...

  7. The influence of sociodemographic factors and hospital characteristics on the method of breast reconstruction, including microsurgery: a U.S. population-based study.

    Science.gov (United States)

    Albornoz, Claudia R; Bach, Peter B; Pusic, Andrea L; McCarthy, Colleen M; Mehrara, Babak J; Disa, Joseph J; Cordeiro, Peter G; Matros, Evan

    2012-05-01

    Microsurgical breast reconstruction has gained popularity because of associations with decreased abdominal morbidity and high satisfaction. Nationwide use of these procedures is unknown. Although many factors can influence the method of breast reconstruction, sociodemographic and hospital characteristics have not been specifically evaluated. The authors studied the importance of microsurgical flaps among the techniques available for breast reconstruction and evaluated the effect of sociodemographic and hospital characteristics on the technique chosen. A cross-sectional study of breast reconstructions was performed using the Nationwide Inpatient Sample database for 2008. National estimates of breast reconstructive procedures including microsurgery were obtained. Impact of variables on reconstructive method was analyzed using logistic regression. Among women undergoing breast reconstruction in 2008, implants were the most common procedure (60.5 percent), followed by pedicled flaps (34 percent) and microsurgical flaps (5.5 percent). Multivariable analysis showed that women aged 50 to 59 years, treated at teaching hospitals, with private insurance, or undergoing delayed reconstruction were more likely to have autologous than implant reconstruction. Implant use was associated with young patients, Caucasians, Asians, higher income, and all regions except the Northeast. Analysis of autologous reconstructions showed the likelihood for a microsurgical versus a pedicle flap was greater in teaching hospitals, private insurance carriers, and delayed reconstructions. Microsurgical techniques are currently used in only a minority of reconstructions. Sociodemographic variables and teaching hospital status influence the method of breast reconstruction. The presence of disparities in care suggests that current decision making for breast reconstruction is not based solely on patient preference or anatomical features.

  8. Behavior and Distribution of Heavy Metals Including Rare Earth Elements, Thorium, and Uranium in Sludge from Industry Water Treatment Plant and Recovery Method of Metals by Biosurfactants Application

    Science.gov (United States)

    Gao, Lidi; Kano, Naoki; Sato, Yuichi; Li, Chong; Zhang, Shuang; Imaizumi, Hiroshi

    2012-01-01

    In order to investigate the behavior, distribution, and characteristics of heavy metals including rare earth elements (REEs), thorium (Th), and uranium (U) in sludge, the total and fractional concentrations of these elements in sludge collected from an industry water treatment plant were determined and compared with those in natural soil. In addition, the removal/recovery process of heavy metals (Pb, Cr, and Ni) from the polluted sludge was studied with biosurfactant (saponin and sophorolipid) elution by batch and column experiments to evaluate the efficiency of biosurfactant for the removal of heavy metals. Consequently, the following matters have been largely clarified. (1) Heavy metallic elements in sludge have generally larger concentrations and exist as more unstable fraction than those in natural soil. (2) Nonionic saponin including carboxyl group is more efficient than sophorolipid for the removal of heavy metals in polluted sludge. Saponin has selectivity for the mobilization of heavy metals and mainly reacts with heavy metals in F3 (the fraction bound to carbonates) and F5 (the fraction bound to Fe-Mn oxides). (3) The recovery efficiency of heavy metals (Pb, Ni, and Cr) reached about 90–100% using a precipitation method with alkaline solution. PMID:22693485

  9. Sleep/Wake Dynamics Changes during Maturation in Rats.

    Directory of Open Access Journals (Sweden)

    Gideon Gradwohl

    Full Text Available Conventional scoring of sleep provides little information about the process of transitioning between vigilance states. We applied the state space technique (SST using frequency band ratios to follow normal maturation of different sleep/wake states, velocities of movements, and transitions between states of juvenile (postnatal day 34, P34 and young adult rats (P71.24-h sleep recordings of eight P34 and nine P71 were analyzed using conventional scoring criteria and SST one week following implantation of telemetric transmitter. SST is a non-categorical approach that allows novel quantitative and unbiased examination of vigilance-states dynamics and state transitions. In this approach, behavioral changes are described in a 2-dimensional state space that is derived from spectral characteristics of the electroencephalography.With maturation sleep intensity declines, the duration of deep slow wave sleep (DSWS and light slow wave sleep (LSWS decreases and increases, respectively. Vigilance state determination, as a function of frequency, is not constant; there is a substantial shift to higher ratio 1 in all vigilance states except DSWS. Deep slow wave sleep decreases in adult relative to juvenile animals at all frequencies. P71 animals have 400% more trajectories from Wake to LSWS (p = 0.005 and vice versa (p = 0.005, and 100% more micro-arousals (p = 0.021, while trajectories from LSWS to DSWS (p = 0.047 and vice versa (p = 0.033 were reduced by 60%. In both juvenile and adult animals, no significant changes were found in sleep velocity at all regions of the 2-dimensional state space plot; suggesting that maturation has a partial effect on sleep stability.Here, we present novel and original evidence that SST enables visualization of vigilance-state intensity, transitions, and velocities that were not evident by traditional scoring methods. These observations provide new perspectives in sleep state dynamics and highlight the usefulness of this technique

  10. Influence of turbulence on the wake of a marine current turbine simulator.

    Science.gov (United States)

    Blackmore, T; Batten, W M J; Bahaj, A S

    2014-10-08

    Marine current turbine commercial prototypes have now been deployed and arrays of multiple turbines under design. The tidal flows in which they operate are highly turbulent, but the characteristics of the inflow turbulence have not being considered in present design methods. This work considers the effects of inflow turbulence on the wake behind an actuator disc representation of a marine current turbine. Different turbulence intensities and integral length scales were generated in a large eddy simulation using a gridInlet, which produces turbulence from a grid pattern on the inlet boundary. The results highlight the significance of turbulence on the wake profile, with a different flow regime occurring for the zero turbulence case. Increasing the turbulence intensity reduced the velocity deficit and shifted the maximum deficit closer to the turbine. Increasing the integral length scale increased the velocity deficit close to the turbine due to an increased production of turbulent energy. However, the wake recovery was increased due to the higher rate of turbulent mixing causing the wake to expand. The implication of this work is that marine current turbine arrays could be further optimized, increasing the energy yield of the array when the site-specific turbulence characteristics are considered.

  11. On the Production of Flat Electron Bunches for Laser Wake Field Acceleration

    Energy Technology Data Exchange (ETDEWEB)

    Kando, M.; Fukuda, Y.; Kotaki, H.; Koga, J.; Bulanov, S.V.; Tajima, T.; /JAERI, Kyoto; Chao, A.; Pitthan, R.; /SLAC; Schuler, K.-P.; /DESY; Zhidkov, A.G.; /CRIEPI, Tokyo; Nemoto, K.; /CRIEPI, Tokyo

    2006-06-27

    We suggest a novel method for injection of electrons into the acceleration phase of particle accelerators, producing low emittance beams appropriate even for the demanding high energy Linear Collider specifications. In this paper we work out the injection into the acceleration phase of the wake field in a plasma behind a high intensity laser pulse, taking advantage of the laser polarization and focusing. With the aid of catastrophe theory we categorize the injection dynamics. The scheme uses the structurally stable regime of transverse wake wave breaking, when electron trajectory self-intersection leads to the formation of a flat electron bunch. As shown in three-dimensional particle-in-cell simulations of the interaction of a laser pulse in a line-focus with an underdense plasma, the electrons, injected via the transverse wake wave breaking and accelerated by the wake wave, perform betatron oscillations with different amplitudes and frequencies along the two transverse coordinates. The polarization and focusing geometry lead to a way to produce relativistic electron bunches with asymmetric emittance (flat beam). An approach for generating flat laser accelerated ion beams is briefly discussed.

  12. Thrust generation and wake structure for flow across a pitching ...

    Indian Academy of Sciences (India)

    In this work, we present detailed particle image velocimetry (PIV) based investigation of wake structure of a pitching airfoil. PIV measurements have been carried out for NACA0015 airfoil at Re = 2900 with reduced frequency range of 1.82–10.92 and pitching angle of 5°. Two different wake structures (reverse Kármán ...

  13. Nonlinear Eddy Viscosity Models applied to Wind Turbine Wakes

    DEFF Research Database (Denmark)

    Laan, van der, Paul Maarten; Sørensen, Niels N.; Réthoré, Pierre-Elouan

    2013-01-01

    The linear k−ε eddy viscosity model and modified versions of two existing nonlinear eddy viscosity models are applied to single wind turbine wake simulations using a Reynolds Averaged Navier-Stokes code. Results are compared with field wake measurements. The nonlinear models give better results...

  14. Bubble wake dynamics in liquids and liquid-solid suspensions

    CERN Document Server

    Fan, Liang-Shih; Brenner, Howard

    1990-01-01

    This book is devoted to a fundamental understanding of the fluid dynamic nature of a bubble wake, more specifically the primary wake, in liquids and liquid-solid suspensions, an dto the role it plays in various important flow phenomena of multiphase systems. Examples of these phenomena are liquid/solids mixing, bubble coalescence and disintergration, particle entrainment to the freeboard, and bed contraction.

  15. Review of computational fluid dynamics for wind turbine wake aerodynamics

    NARCIS (Netherlands)

    B. Sanderse (Benjamin); S.P. van der Pijl (Sander); B. Koren (Barry)

    2011-01-01

    textabstractThis article reviews the state-of-the-art numerical calculation of wind turbine wake aerodynamics. Different computational fluid dynamics techniques for modeling the rotor and the wake are discussed. Regarding rotor modeling, recent advances in the generalized actuator approach and the

  16. Highly resolved Large-Eddy Simulation of wind turbine wakes

    NARCIS (Netherlands)

    Benard, P.; Bricteux, L; Moureau, V.; Lartigue, G.; Beaudet, L.; Laine, R.; Viré, A.C.

    2017-01-01

    An horizontal axis wind turbine placed in a free stream develops a wake behind its rotor. Inside this wake, complex vortical instabilities are developing and can lead to turbulent structures generation1 . In order to predict performances and loads of wind turbines in wind farms, it is essential to

  17. Variations of the wake height over the Bolund escarpment

    DEFF Research Database (Denmark)

    Lange, Julia; Mann, Jakob; Angelou, Nikolas

    2015-01-01

    with distance from the escarpment, with the wake height depending strongly on the wind direction, such that the minimum height appears when the flow is perpendicular to the escarpment. The wake increases by 10% to 70% when the wind direction deviates ± 15 from perpendicular depending on the distance to the edge...

  18. Recent developments in rotor wake modeling for helicopter noise prediction

    Science.gov (United States)

    Poling, D.; Dadone, L.; Althoff, S.

    1991-01-01

    A preliminary test/theory correlation evaluation is conducted for wake measurement test results obtained by LDV for a B360 helicopter rotor, at conditions critical to the understanding of wake-rollup and blade-vortex interaction phenomena. The LDV data were complemented by acoustic, blade pressure, rotor performance, and blade/control load measurements.

  19. Whole-Body PET/MR Imaging: Quantitative Evaluation of a Novel Model-Based MR Attenuation Correction Method Including Bone.

    Science.gov (United States)

    Paulus, Daniel H; Quick, Harald H; Geppert, Christian; Fenchel, Matthias; Zhan, Yiqiang; Hermosillo, Gerardo; Faul, David; Boada, Fernando; Friedman, Kent P; Koesters, Thomas

    2015-07-01

    In routine whole-body PET/MR hybrid imaging, attenuation correction (AC) is usually performed by segmentation methods based on a Dixon MR sequence providing up to 4 different tissue classes. Because of the lack of bone information with the Dixon-based MR sequence, bone is currently considered as soft tissue. Thus, the aim of this study was to evaluate a novel model-based AC method that considers bone in whole-body PET/MR imaging. The new method ("Model") is based on a regular 4-compartment segmentation from a Dixon sequence ("Dixon"). Bone information is added using a model-based bone segmentation algorithm, which includes a set of prealigned MR image and bone mask pairs for each major body bone individually. Model was quantitatively evaluated on 20 patients who underwent whole-body PET/MR imaging. As a standard of reference, CT-based μ-maps were generated for each patient individually by nonrigid registration to the MR images based on PET/CT data. This step allowed for a quantitative comparison of all μ-maps based on a single PET emission raw dataset of the PET/MR system. Volumes of interest were drawn on normal tissue, soft-tissue lesions, and bone lesions; standardized uptake values were quantitatively compared. In soft-tissue regions with background uptake, the average bias of SUVs in background volumes of interest was 2.4% ± 2.5% and 2.7% ± 2.7% for Dixon and Model, respectively, compared with CT-based AC. For bony tissue, the -25.5% ± 7.9% underestimation observed with Dixon was reduced to -4.9% ± 6.7% with Model. In bone lesions, the average underestimation was -7.4% ± 5.3% and -2.9% ± 5.8% for Dixon and Model, respectively. For soft-tissue lesions, the biases were 5.1% ± 5.1% for Dixon and 5.2% ± 5.2% for Model. The novel MR-based AC method for whole-body PET/MR imaging, combining Dixon-based soft-tissue segmentation and model-based bone estimation, improves PET quantification in whole-body hybrid PET/MR imaging, especially in bony tissue and

  20. Activity of a long-acting echinocandin, CD101, determined using CLSI and EUCAST reference methods, against Candida and Aspergillus spp., including echinocandin- and azole-resistant isolates.

    Science.gov (United States)

    Pfaller, Michael A; Messer, Shawn A; Rhomberg, Paul R; Jones, Ronald N; Castanheira, Mariana

    2016-10-01

    The objective of this study was to evaluate the in vitro activity of CD101, a novel echinocandin with a long serum elimination half-life, and comparator (anidulafungin and caspofungin) antifungal agents against a collection of Candida and Aspergillus spp. isolates. CD101 and comparator agents were tested against 106 Candida spp. and 67 Aspergillus spp. isolates, including 27 isolates of Candida harbouring fks hotspot mutations and 12 itraconazole non-WT Aspergillus, using CLSI and EUCAST reference susceptibility broth microdilution (BMD) methods. Against WT and fks mutant Candida albicans, Candida glabrata and Candida tropicalis, the activity of CD101 [MIC90 = 0.06, 0.12 and 0.03 mg/L, respectively (CLSI method values)] was comparable to that of anidulafungin (MIC90 = 0.03, 0.12 and 0.03 mg/L, respectively) and caspofungin (MIC90 = 0.12, 0.25 and 0.12 mg/L, respectively). WT Candida krusei isolates were very susceptible to CD101 (MIC = 0.06 mg/L). CD101 activity (MIC50/90 = 1/2 mg/L) was comparable to that of anidulafungin (MIC50/90 = 2/2 mg/L) against Candida parapsilosis. CD101 (MIC mode = 0.06 mg/L for C. glabrata) was 2- to 4-fold more active against fks hotspot mutants than caspofungin (MIC mode = 0.5 mg/L). CD101 was active against Aspergillus fumigatus, Aspergillus terreus, Aspergillus niger and Aspergillus flavus (MEC90 range = ≤0.008-0.03 mg/L). The essential agreement between CLSI and EUCAST methods for CD101 was 92.0%-100.0% among Candida spp. and 95.0%-100.0% among Aspergillus spp. The activity of CD101 is comparable to that of other members of the echinocandin class for the prevention and treatment of serious fungal infections. Similar results for CD101 activity versus Candida and Aspergillus spp. may be obtained with either CLSI or EUCAST BMD methods. © The Author 2016. Published by Oxford University Press on behalf of the British Society for Antimicrobial Chemotherapy.

  1. Velocity field and coherent structures in the near wake of a utility-scale wind turbine

    Science.gov (United States)

    Hong, Jiarong; Dasari, Teja; Wu, Yue; Liu, Yun

    2017-11-01

    Super-large-scale particle image velocity (SLPIV) and the associated flow visualization technique using natural snowfall have been shown as an effective tool to probe turbulent velocity field and coherent structures around utility-scale wind turbines (Hong et al. Nature Comm. 2014). Here we present a follow-up study using the data collected during multiple deployments from 2014 to 2016 around the 2.5 MW turbine at EOLOS field station. The data include SLPIV measurements in the near wake of the turbine in a field of view of 120 m (height) x 60 m (width), and the visualization of tip vortex behavior near the bottom blade tip over a broad range of turbine operational conditions. SLPIV results indicate a highly intermittent flow field in the near wake, consisting of both intense wake expansion and contraction events. Such intermittent states of the near wake are shown to be influenced by both the incoming wind conditions and the turbine operation. The visualization of tip vortex behavior demonstrates the presence of the state of consistent vortex formation as well as various types of disturbed vortex states. The occurrence of these states is statistically analyzed and is shown to be correlated with turbine operational and response parameters under different field conditions. National Science Foundation Fluid Dynamics Program.

  2. CFD simulation on Kappel propeller with a hull wake field

    DEFF Research Database (Denmark)

    Shin, Keun Woo; Andersen, Poul; Møller Bering, Rasmus

    2013-01-01

    for propeller designers and the computational effort can be reduced by excluding the hull. The CFD simulation of a propeller flow with a hull wake is verified in order to use CFD as a propeller design tool. A Kappel propeller, which is an innovative tip-modified propeller, is handled. Kappel propellers....... It is investigated how the accuracy is improved, as the wake field is modelled more precisely. The thrust variation and pressure distribution on the blade from the CFD simulation with the hull wake model are also analyzed.......Marine propellers are designed not for the open-water operation, but for the operation behind a hull due to the inhomogeneous hull wake and thrust deduction. The adaptation for the hull wake is important for the propulsive efficiency and cavitation risk especially on single-screw ships. CFD...

  3. [About evolution of sleep-wakefulness cycle in vertebrates].

    Science.gov (United States)

    Oganesian, G A; Aristakesian, E A; Vataev, S I

    2012-10-01

    Data about behavioral, somato-vegetative and neurophysiological parameters of sleep and wakefulness in insects, cold- and warm-blooded vertebrates are provided. Hypotheses existing now about evolutionary formation of separate sleep phases and stages in vertebrates are considered. In the review are shown the data about correlations of quantitative characteristics of sleep and wake in some mammals with basic metabolic rate, lifestyle, environmental habits. The original experimental results at formation of neurophysiological characteristics of sleep and wake in vertebrates, phylogeny and in ontogeny of mature and immature mammals are provided in detail. On the basis of own concepts about evolutionary development of sleep-wakefulness cycle in vertebrates the interactions of telencephalic, diencephalic and rhombencepalic parts of brain in the processes of cycle wakefulness cycle integration are discussed.

  4. Sleep-wake patterns and sleep disturbance among Hong Kong Chinese adolescents.

    Science.gov (United States)

    Chung, Ka-Fai; Cheung, Miao-Miao

    2008-02-01

    To determine sleep-wake patterns and evaluate sleep disturbance in Hong Kong adolescents; to identify factors that are associated with sleep disturbance; and to examine the relationship of sleep-wake variables and academic performance. A school-based cross-sectional survey. Sample included 1629 adolescents aged 12 to 19 years. Self-report questionnaires, including sleep-wake habit questionnaire, Sleep Quality Index, Morningness/ Eveningness scale, Epworth Sleepiness Scale, Perceived Stress Scale, academic performance, and personal data were administered. The average school-night bedtime was 23:24, and total sleep time was 7.3 hr. During weekends, the average bedtime and rise time was delayed by 64 min and 195 min, respectively. The prevalence of sleep disturbances occurring > or = 3 days per week in the preceding 3 months were: difficulty falling asleep (5.6%), waking up during the night (7.2%), and waking up too early in the morning (10.4%). The prevalence of > or = 1 of these three symptoms was 19.1%. Stepwise regression analyses revealed that circadian phase preference was the most significant predictor for school night bedtime, weekend oversleep, and daytime sleepiness. Perceived stress was the most significant risk factor for sleep disturbance. Students with marginal academic performance reported later bedtimes and shorter sleep during school nights, greater weekend delays in bedtime, and more daytime sleepiness than those with better grades. The prevalence of sleep deprivation and sleep disturbance among Hong Kong adolescents is comparable to those found in other countries. An intervention program for sleep problems in adolescents should be considered.

  5. Stability Impact on Wake Development in Moderately Complex Terrain

    Science.gov (United States)

    Infield, D.; Zorzi, G.

    2017-05-01

    This paper uses a year of SCADA data from Whitelee Wind Farm near Glasgow to investigate wind turbine wake development in moderately complex terrain. Atmospheric stability measurements in terms of Richardson number from a met mast at an adjoining site have been obtained and used to assess the impact of stability on wake development. Considerable filtering of these data has been undertaken to ensure that all turbines are working normally and are well aligned with the wind direction. A group of six wind turbines, more or less in a line, have been selected for analysis, and winds within a 2 degree direction sector about this line are used to ensure, as far as possible, that all the turbines investigated are fully immersed in the wake/s of the upstream turbine/s. Results show how the terrain effects combine with the wake effects, with both being of comparable importance for the site in question. Comparison has been made with results from two commercial CFD codes for neutral stability, and reasonable agreement is demonstrated. Richardson number has been plotted against wind shear and turbulence intensity at a met mast on the wind farm that for the selected wind direction is not in the wake of any turbines. Good correlations are found indicating that the Richardson numbers obtained are reliable. The filtered data used for wake analysis were split according to Richardson number into two groups representing slightly stable to neutral, and unstable conditions. Very little difference in wake development is apparent. A greater difference can be observed when the data are separated simply by turbulence intensity, suggesting that, although turbulence intensity is correlated with stability, of the two it is the parameter that most directly impacts on wake development through mixing of ambient and wake flows.

  6. Characteristics of proton velocity distribution functions in the near-lunar wake from Chandrayaan-1/SWIM observations

    Science.gov (United States)

    Dhanya, M. B.; Bhardwaj, Anil; Futaana, Yoshifumi; Barabash, Stas; Alok, Abhinaw; Wieser, Martin; Holmström, Mats; Wurz, Peter

    2016-06-01

    Due to the high absorption of solar wind plasma on the lunar dayside, a large scale wake structure is formed downstream of the Moon. However, recent in-situ observations have revealed the presence of protons in the near-lunar wake (100 km to 200 km from the surface). The solar wind, either directly or after interaction with the lunar surface (including magnetic anomalies), is the source of these protons in the near-wake region. Using the entire data from the SWIM sensor of the SARA experiment onboard Chandrayaan-1, we analyzed the velocity distribution of the protons observed in the near-lunar wake. The average velocity distribution functions, computed in the solar wind rest frame, were further separated based on the angle between the upstream solar wind velocity and the IMF. Although the protons enter the wake parallel as well as perpendicular to the IMF, the velocity distribution were not identical for the different IMF orientations, indicating the control of IMF in the proton entry processes. Several proton populations were identified from the velocity distribution and their possible entry mechanism were inferred based on the characteristics of the velocity distribution. These entry mechanisms include (i) diffusion of solar wind protons into the wake along IMF, (ii) the solar wind protons with finite gyro-radii that are aided by the wake boundary electric field, (iii) solar wind protons with gyro-radii larger than lunar radii from the tail of the solar wind velocity distribution, and (iv) scattering of solar wind protons from the dayside lunar surface or from magnetic anomalies. In order to gain more insight into the entry mechanisms associated with different populations, backtracing is carried out for each of these populations. For most of the populations, the source of the protons obtained from backtracing is found to be in agreement with that inferred from the velocity distribution. There are few populations that could not be explained by the known mechanisms

  7. In the wake of the economic crisis

    DEFF Research Database (Denmark)

    Komp, Katrin; Starke, Peter; van Hooren, Franca

    The economic crisis of 2008 is a global phenomenon with far-ranging impact. Its effects reach beyond the economic sphere, impacting the lives of individuals. When confronted with job loss and financial hardship, people look for new income sources, change their world views and attitudes, and remodel...... their interaction with each other. As a result, societies change. Families grow closer together, and tensions between generations and between migrants and non-migrants increase. Governments have to consolidate their finances while reacting to the increasing need for welfare state intervention. In doing so......, they take different approaches that reflect the country-specific history and welfare state institutions. This working paper gives an overview of social change and welfare state reform in the wake of the economic crisis. For this purpose, it presents discussions and findings from two classes that were taught...

  8. Finnegans Wake & embodied cognition. A joycean reading

    Directory of Open Access Journals (Sweden)

    Simone Rebora

    2014-06-01

    Full Text Available This contribution proposes an interpretation of the language theory in Finnegans Wake, identifying its potential matches with the embodied cognition thesis. First, are revised critical texts about the relations between joycean writings, the sciences of the mind and the evolution of technology and informatics. Then, through the close analysis of four excerpt, are outlined the traits of joycean poetics closer to the recent acquisitions in the cognitive sciences. In particular: the bodily roots of the formation of language and the inexhaustible process of interpretation. The first convergence is detected in neurosciences, with reference to the recent proposals of Vittorio Gallese, about “embodiment of language comprehension.” The second convergence is identified in the studies on Artificial Life, referring to the writings of Christopher Langton and the Research Group of Los Alamos.

  9. Sleep-wake transitions in premature neonates predict early development.

    Science.gov (United States)

    Weisman, Omri; Magori-Cohen, Reuma; Louzoun, Yoram; Eidelman, Arthur I; Feldman, Ruth

    2011-10-01

    To identify patterns of sleep-wake transitions in the neonatal period that might differentiate premature infants who would show better or worse outcomes in multiple developmental domains across the first 5 years of life. Participants were 143 low birth weight premature infants (mean birth weight: 1482 g; mean gestational age [GA]: 31.82 weeks). Sleep states were observed at a GA of 37 weeks in 10-second epochs over 4 consecutive evening hours and were analyzed through mathematical clustering. Neurobehavioral maturation was evaluated with the Neonatal Behavior Assessment Scale at discharge, emotional regulation was assessed during infant-mother and infant-father interactions at 3 and 6 months, cognitive development was measured at 6, 12, and 24 months, and verbal IQ, executive functions, and symbolic competence were tested at 5 years. Three types of state-transition patterns were identified, and no differences in birth weight, GA, or medical risk between the 3 groups were found. Infants whose sleep-state transitions were mainly characterized by shifts between quiet sleep and wakefulness exhibited the best development, including greater neonatal neuromaturation, less negative emotionality, better cognitive development, and better verbal, symbolic, and executive competences at 5 years. In comparison, infants who cycled mainly between states of high arousal, such as active sleep and cry, or between short episodes of active and quiet sleep showed poorer outcomes. Defining sleep organization on the basis of transitions between states proved useful for identifying risk and resilience indicators in neonatal behavior to predict trajectories of neurobehavioral, emotional, and cognitive growth.

  10. Maternal caffeine consumption and infant nighttime waking: prospective cohort study.

    Science.gov (United States)

    Santos, Iná S; Matijasevich, Alicia; Domingues, Marlos R

    2012-05-01

    Coffee and other caffeinated beverages are commonly consumed in pregnancy. In adults, caffeine may interfere with sleep onset and have a dose-response effect similar to those seen during insomnia. In infancy, nighttime waking is a common event. With this study, we aimed to investigate if maternal caffeine consumption during pregnancy and lactation leads to frequent nocturnal awakening among infants at 3 months of age. All children born in the city of Pelotas, Brazil, during 2004 were enrolled on a cohort study. Mothers were interviewed at delivery and after 3 months to obtain information on caffeine drinking consumption, sociodemographic, reproductive, and behavioral characteristics. Infant sleeping pattern in the previous 15 days was obtained from a subsample. Night waking was defined as an episode of infant arousal that woke the parents during nighttime. Multivariable analysis was performed by using Poisson regression. The subsample included 885 of the 4231 infants born in 2004. All but 1 mother consumed caffeine in pregnancy. Nearly 20% were heavy consumers (≥300 mg/day) during pregnancy and 14.3% at 3 months postpartum. Prevalence of frequent nighttime awakeners (>3 episodes per night) was 13.8% (95% confidence interval: 11.5%-16.0%). The highest prevalence ratio was observed among breastfed infants from mothers consuming ≥300 mg/day during the whole pregnancy and in the postpartum period (1.65; 95% confidence interval: 0.86-3.17) but at a nonsignificant level. Caffeine consumption during pregnancy and by nursing mothers seems not to have consequences on sleep of infants at the age of 3 months.

  11. How hard can it be to include research evidence and evaluation in local health policy implementation? Results from a mixed methods study

    Directory of Open Access Journals (Sweden)

    Evans Bridie Angela

    2013-02-01

    Full Text Available Abstract Background Although an evidence-based approach is the ideal model for planning and delivering healthcare, barriers exist to using research evidence to implement and evaluate service change. This paper aims to inform policy implementation and evaluation by understanding the role of research evidence at the local level through implementation of a national chronic conditions management policy. Methods We conducted a national email survey of health service commissioners at the most devolved level of decision-making in Wales (Local Health Boards – LHBs followed by in-depth interviews with representatives of LHBs, purposively selecting five to reflect geographic and economic characteristics. Survey data were analysed descriptively; we used thematic analysis for interview data. Results All LHBs (n = 22 completed questionnaires. All reported they routinely assessed the research literature before implementing interventions, but free-text answers revealed wide variation in approach. Most commonly reported information sources included personal contacts, needs assessments, information or research databases. No consistent approach to evaluation was reported. Frequently reported challenges were: insufficient staff capacity (17/22; limited skills, cost, limited time, competing priorities (16/22; availability and quality of routine data (15/22. Respondents reported they would value central guidance on evaluation. Five interviews were held with managers from the five LHBs contacted. Service delivery decisions were informed by Welsh Government initiatives and priorities, budgets, perceived good practice, personal knowledge, and local needs, but did not include formal research evidence, they reported. Decision making was a collaborative process including clinical staff, patient representatives, and partner organization managers with varying levels of research experience. Robust evaluation data were required, but they were constrained by a lack of skills

  12. The Near Wake of Bluff Bodies in Stratified Fluids and the Emergence of Late Wake Characteristics

    Science.gov (United States)

    2010-10-29

    to as being "separated." These two particular cases of boundary layer behavior dependent on the Reynolds number provide an opportunity to discuss...turbulence in the near wake region." There is then an opportunity to explicitly account for the sphere within the computational domain and provide...The Physics of Fluids, 20:187-191, 1977. [39] L. Prandtl. Uber ttiissigkeitsbewegimg bei sehr kleiuer reibung. Int. Math. Kongr. Heidelberg, pages

  13. TR-PIV measurement of the wake behind a grooved cylinder at low Reynolds number

    Science.gov (United States)

    Liu, Ying Zheng; Shi, Liu Liu; Yu, Jun

    2011-04-01

    A comparative study of the wakes behind cylinders with grooved and smooth surfaces was performed with a view to understand the wake characteristics associated with the adult Saguaro cacti. A low-speed recirculation water channel was established for the experiment; the Reynolds number, based on the free-stream velocity and cylinder diameter (D), was kept at ReD=1500. State-of-the-art time-resolved particle image velocimetry (TR-PIV) was employed to measure a total of 20 480 realizations of the wake field at a frame rate of 250 Hz, enabling a comprehensive view of the time- and phase-averaged wake pattern. In comparison to the wake behind the smooth cylinder, the length of the recirculation zone behind the grooved cylinder was extended by nearly 18.2%, yet the longitudinal velocity fluctuation intensity was considerably weakened. A global view of the peaked spectrum of the longitudinal velocity component revealed that the intermediate region for the grooved cylinder, which approximately corresponds to the transition region where the shear layer vortices interact, merge and shed before the formation of the Karman-like vortex street, was much wider than that for the smooth one. The unsteady events near St=0.3-0.4 were detected in the intermediate region behind the grooved cylinder, but no such events were found in the smooth cylinder system. Although the formation of the Karman-like vortex street was delayed by about 0.6D downstream for the grooved cylinder, no prominent difference in the vortex street region was found in the far wake for both cylinders. The Proper Orthogonal Decomposition (POD) method was used extensively to decompose the vector and swirling strength fields, which gave a close-up view of the vortices in the near wake. The first two POD modes of the swirling strength clarified the spatio-temporal characteristics of the shear layer vortices behind the grooved cylinder. The small-scale vortices superimposed on the shear layers behind the grooved cylinder

  14. Theta waves in children's waking electroencephalogram resemble local aspects of sleep during wakefulness.

    Science.gov (United States)

    Fattinger, Sara; Kurth, Salome; Ringli, Maya; Jenni, Oskar G; Huber, Reto

    2017-09-11

    Vyazovskiy and colleagues found in rats' multi-unit recordings brief periods of silence (off-states) in local populations of cortical neurons during wakefulness which closely resembled the characteristic off-states during sleep. These off-states became more global and frequent with increasing sleep pressure and were associated with the well-known increase of theta activity under sleep deprivation in the surface EEG. Moreover, the occurrence of such off-states was related to impaired performance. While these animal experiments were based on intracranial recordings, we aimed to explore whether the human surface EEG may also provide evidence for such a local sleep-like intrusion during wakefulness. Thus, we analysed high-density wake EEG recordings during an auditory attention task in the morning and evening in 12 children. We found that, theta waves became more widespread in the evening and the occurrence of widespread theta waves was associated with slower reaction times in the attention task. These results indicate that widespread theta events measured on the scalp might be markers of local sleep in humans. Moreover, such markers of local sleep, seem to be related to the well described performance decline under high sleep pressure.

  15. Statistical Study of the Lunar Plasma Wake Outer Boundary

    Science.gov (United States)

    Ames, W. F.; Brain, D. A.; Poppe, A.; Halekas, J. S.; McFadden, J. P.; Glassmeier, K.; Angelopoulos, V.

    2012-12-01

    The Moon does not have an intrinsic magnetic field and lacks the conductivity necessary to develop an induced magnetosphere. Therefore, the interaction of the Moon with the solar wind is dominated by impact absorption of solar wind particles on the day side and the generation of a plasma wake on the night side. A plasma density gradient forms between the flowing solar wind and the plasma wake, causing solar wind plasma to gradually refill the wake region. Electrons fill the wake first, pulling ions in after them via ambi-polar diffusion. Despite the existence of comprehensive new plasma measurements of the lunar wake region, relatively little attention has been devoted to the shape and variability in location of its outer boundary. Improved knowledge of this boundary condition for the physical processes associated with wake refilling would provide useful tests for simulations and theoretical models of the lunar plasma interaction. The ARTEMIS (Acceleration, Reconnection, Turbulence, and Electrodynamics of the Moon's Interaction with the Sun) spacecraft mission is a two-probe lunar mission derived from the THEMIS (Time History of Events and Macroscale Interactions During Substorms) mission, repurposed to study the lunar space and planetary environment. Over the course of the mission there have been numerous passes of the ARTEMIS spacecraft through the lunar wake, at distances of up to seven lunar radii from the Moon. They have occurred for a variety of external conditions. We present a statistical study of tens of selected wake-crossing events of the ARTEMIS probes in 2011, using data primarily from the ARTEMIS fluxgate magnetometers (FGMs) and electrostatic analyzers (ESAs) to identify when the spacecraft entered and exited the wake. We study the shape of the outer wake boundary and its response to external conditions using two different techniques: one defines the wake boundary by a sharp decrease in ion density, the other by a decrease in magnetic field magnitude

  16. Comparison of wind turbine wake properties in non‐sheared inflow predicted by different computational fluid dynamics rotor models

    DEFF Research Database (Denmark)

    Troldborg, Niels; Zahle, Frederik; Réthoré, Pierre-Elouan

    2015-01-01

    The wake of the 5MW reference wind turbine designed by the National Renewable Energy Laboratory (NREL) is simulated using computational fluid dynamics with a fully resolved rotor geometry, an actuator line method and an actuator disc method, respectively. Simulations are carried out prescribing...

  17. Evidence for cortical structural plasticity in humans after a day of waking and sleep deprivation.

    Science.gov (United States)

    Elvsåshagen, Torbjørn; Zak, Nathalia; Norbom, Linn B; Pedersen, Per Ø; Quraishi, Sophia H; Bjørnerud, Atle; Alnæs, Dag; Doan, Nhat Trung; Malt, Ulrik F; Groote, Inge R; Westlye, Lars T

    2017-08-01

    Sleep is an evolutionarily conserved process required for human health and functioning. Insufficient sleep causes impairments across cognitive domains, and sleep deprivation can have rapid antidepressive effects in mood disorders. However, the neurobiological effects of waking and sleep are not well understood. Recently, animal studies indicated that waking and sleep are associated with substantial cortical structural plasticity. Here, we hypothesized that structural plasticity can be observed after a day of waking and sleep deprivation in the human cerebral cortex. To test this hypothesis, 61 healthy adult males underwent structural magnetic resonance imaging (MRI) at three time points: in the morning after a regular night's sleep, the evening of the same day, and the next morning, either after total sleep deprivation (N=41) or a night of sleep (N=20). We found significantly increased right prefrontal cortical thickness from morning to evening across all participants. In addition, pairwise comparisons in the deprived group between the two morning scans showed significant thinning of mainly bilateral medial parietal cortices after 23h of sleep deprivation, including the precuneus and posterior cingulate cortex. However, there were no significant group (sleep vs. sleep deprived group) by time interactions and we can therefore not rule out that other mechanisms than sleep deprivation per se underlie the bilateral medial parietal cortical thinning observed in the deprived group. Nonetheless, these cortices are thought to subserve wakefulness, are among the brain regions with highest metabolic rate during wake, and are considered some of the most sensitive cortical regions to a variety of insults. Furthermore, greater thinning within the left medial parietal cluster was associated with increased sleepiness after sleep deprivation. Together, these findings add to a growing body of data showing rapid structural plasticity within the human cerebral cortex detectable with

  18. Administration of URB597, oleoylethanolamide or palmitoylethanolamide increases waking and dopamine in rats.

    Directory of Open Access Journals (Sweden)

    Eric Murillo-Rodríguez

    Full Text Available BACKGROUND: Oleoylethanolamide (OEA and palmitoylethanolamide (PEA are amides of fatty acids and ethanolamine named N-acylethanolamines or acylethanolamides. The hydrolysis of OEA and PEA is catalyzed by the fatty acid amide hydrolase (FAAH. A number of FAAH inhibitors that increase the levels of OEA and PEA in the brain have been developed, including URB597. In the present report, we examined whether URB597, OEA or PEA injected into wake-related brain areas, such as lateral hypothalamus (LH or dorsal raphe nuclei (DRN would promote wakefulness (W in rats. METHODOLOGY AND PRINCIPAL FINDINGS: Male Wistar rats (250-300 g were implanted for sleep studies with electrodes to record the electroencephalogram and electromyogram as well as a cannulae aimed either into LH or into DRN. Sleep stages were scored to determine W, slow wave sleep (SWS and rapid eye movement sleep (REMS. Power spectra bands underly neurophysiological mechanisms of the sleep-wake cycle and provide information about quality rather than quantity of sleep, thus fast Fourier transformation analysis was collected after the pharmacological trials for alpha (for W; α = 8-12 Hz, delta (for SWS; δ = 0.5-4.0 Hz and theta (for REMS; θ = 6.0-12.0 Hz. Finally, microdialysis samples were collected from a cannula placed into the nucleus accumbens (AcbC and the levels of dopamine (DA were determined by HPLC means after the injection of URB597, OEA or PEA. We found that microinjection of compounds (10, 20, 30 µg/1 µL; each into LH or DRN during the lights-on period increased W and decreased SWS as well as REMS and enhanced DA extracellular levels. CONCLUSIONS: URB597, OEA or PEA promoted waking and enhanced DA if injected into LH or DRN. The wake-promoting effects of these compounds could be linked with the enhancement in levels of DA and indirectly mediated by anandamide.

  19. Administration of URB597, oleoylethanolamide or palmitoylethanolamide increases waking and dopamine in rats.

    Science.gov (United States)

    Murillo-Rodríguez, Eric; Palomero-Rivero, Marcela; Millán-Aldaco, Diana; Arias-Carrión, Oscar; Drucker-Colín, René

    2011-01-01

    Oleoylethanolamide (OEA) and palmitoylethanolamide (PEA) are amides of fatty acids and ethanolamine named N-acylethanolamines or acylethanolamides. The hydrolysis of OEA and PEA is catalyzed by the fatty acid amide hydrolase (FAAH). A number of FAAH inhibitors that increase the levels of OEA and PEA in the brain have been developed, including URB597. In the present report, we examined whether URB597, OEA or PEA injected into wake-related brain areas, such as lateral hypothalamus (LH) or dorsal raphe nuclei (DRN) would promote wakefulness (W) in rats. Male Wistar rats (250-300 g) were implanted for sleep studies with electrodes to record the electroencephalogram and electromyogram as well as a cannulae aimed either into LH or into DRN. Sleep stages were scored to determine W, slow wave sleep (SWS) and rapid eye movement sleep (REMS). Power spectra bands underly neurophysiological mechanisms of the sleep-wake cycle and provide information about quality rather than quantity of sleep, thus fast Fourier transformation analysis was collected after the pharmacological trials for alpha (for W; α = 8-12 Hz), delta (for SWS; δ = 0.5-4.0 Hz) and theta (for REMS; θ = 6.0-12.0 Hz). Finally, microdialysis samples were collected from a cannula placed into the nucleus accumbens (AcbC) and the levels of dopamine (DA) were determined by HPLC means after the injection of URB597, OEA or PEA. We found that microinjection of compounds (10, 20, 30 µg/1 µL; each) into LH or DRN during the lights-on period increased W and decreased SWS as well as REMS and enhanced DA extracellular levels. URB597, OEA or PEA promoted waking and enhanced DA if injected into LH or DRN. The wake-promoting effects of these compounds could be linked with the enhancement in levels of DA and indirectly mediated by anandamide.

  20. Why Does Rem Sleep Occur? A Wake-Up Hypothesis1

    Science.gov (United States)

    Klemm, W. R.

    2011-01-01

    Brain activity differs in the various sleep stages and in conscious wakefulness. Awakening from sleep requires restoration of the complex nerve impulse patterns in neuronal network assemblies necessary to re-create and sustain conscious wakefulness. Herein I propose that the brain uses rapid eye movement (REM) to help wake itself up after it has had a sufficient amount of sleep. Evidence suggesting this hypothesis includes the facts that, (1) when first going to sleep, the brain plunges into Stage N3 (formerly called Stage IV), a deep abyss of sleep, and, as the night progresses, the sleep is punctuated by episodes of REM that become longer and more frequent toward morning, (2) conscious-like dreams are a reliable component of the REM state in which the dreamer is an active mental observer or agent in the dream, (3) the last awakening during a night's sleep usually occurs in a REM episode during or at the end of a dream, (4) both REM and awake consciousness seem to arise out of a similar brainstem ascending arousal system (5) N3 is a functionally perturbed state that eventually must be corrected so that embodied brain can direct adaptive behavior, and (6) cortico-fugal projections to brainstem arousal areas provide a way to trigger increased cortical activity in REM to progressively raise the sleeping brain to the threshold required for wakefulness. This paper shows how the hypothesis conforms to common experience and has substantial predictive and explanatory power regarding the phenomenology of sleep in terms of ontogeny, aging, phylogeny, abnormal/disease states, cognition, and behavioral physiology. That broad range of consistency is not matched by competing theories, which are summarized herein. Specific ways to test this wake-up hypothesis are suggested. Such research could lead to a better understanding of awake consciousness. PMID:21922003