Sample records for wabamun area co2

  1. Reservoir analysis of the Wabamun Play using seismic data : Parkland Field

    Energy Technology Data Exchange (ETDEWEB)

    Walia, R.; Mojesky, T.; Melnychyn, J.; Xu, R. [CGG Canda Services Ltd., Calgary, AB (Canada)


    CGG Canda Services acquired 3D seismic data from the Parkland Wabamun A gas pool in North East British Columbia in the Peace River Block which was discovered in 1956. The pool has an in-place-volume of more than 225 Bcf of which more than 100 Bcf have already been produced. Production is from porous Devonian Wabamun carbonates at a depth of about 3300 m. The 3D seismic data was originally processed in 1991. The objective was to try to explain the anomalous production behaviour exhibited by the pool. A stratigraphic inversion was also conducted to template the area in early 1999. The inversion scheme was constrained by the stratigraphy and did not require explicit log data. Four low impedance thin layers were mapped around a well, but only 2 thin layers of lower porosity were found which explains the significant difference in production. In addition, a clear definition of a collapse feature was seen. These thin layers and variation of absolute impedance within them may be used to develop a detailed porosity model for reservoir analysis. 4 refs., 13 figs.

  2. Comparison of Surface and Column Variations of CO2 Over Urban Areas for Future Active Remote CO2 Sensors (United States)

    Choi, Yonghoon; Yang, Melissa; Kooi, Susan; Browell, Edward


    High resolution in-situ CO2 measurements were recorded onboard the NASA P-3B during the DISCOVER-AQ (Deriving Information on Surface Conditions from Column and Vertically Resolved Observations Relevant to Air Quality) Field Campaign, to investigate the ability of space-based observations to accurately assess near surface conditions related to air quality. This campaign includes, Washington DC/Baltimore, MD (July 2011), San Joaquin Valley, CA (January - February 2013), Houston, TX (September 2013), and Denver, CO (July-August 2014). Each of these campaigns consisted of missed approaches and approximately two hundred vertical soundings of CO2 within the lower troposphere (surface to about 5 km). In this study, surface (0 - 1 km) and column-averaged (0 - 3.5 km) CO2 mixing ratio values from the vertical soundings in the four geographically different urban areas are used to investigate the temporal and spatial variability of CO2 within the different urban atmospheric emission environments. Tracers such as CO, CH2O, NOx, and NMHCs are used to identify the source of CO2 variations in the urban sites. Additionally, we apply nominal CO2 column weighting functions for potential future active remote CO2 sensors operating in the 1.57-microns and 2.05-microns measurement regions to convert the in situ CO2 vertical mixing ratio profiles to variations in CO2 column optical depths, which is what the active remote sensors actually measure. Using statistics calculated from the optical depths at each urban site measured during the DISCOVER-AQ field campaign and for each nominal weighting function, we investigate the natural variability of CO2 columns in the lower troposphere; relate the CO2 column variability to the urban surface emissions; and show the measurement requirements for the future ASCENDS (Active Sensing of CO2 Emissions over Nights, Days, and Seasons) in the continental U.S. urban areas.

  3. Peculiarities of CO2 sequestration in the Permafrost area (United States)

    Guryeva, Olga; Chuvilin, Evgeny; Moudrakovski, Igor; Lu, Hailong; Ripmeester, John; Istomin, Vladimir


    Natural gas and gas-condensate accumulations in North of Western Siberia contain an admixture of CO2 (about 0.5-1.0 mol.%). Recently, the development and transportation of natural gas in the Yamal peninsula has become of interest to Russian scientists. They suggest liquifaction of natural gas followed by delivery to consumers using icebreaking tankers. The technique of gas liquefaction requires CO2 to be absent from natural gas, and therefore the liquefaction technology includes the amine treatment of gas. This then leads to a problem with utilization of recovered CO2. It is important to note, that gas reservoirs in the northern part of Russia are situated within the Permafrost zone. The thickness of frozen sediment reaches 500 meters. That is why one of the promising places for CO2 storage can be gas-permeable collectors in under-permafrost horizons. The favorable factors for preserving CO2 in these places are as follows: low permeability of overlying frozen sediments, low temperatures, the existence of a CO2 hydrate stability zone, and the possibility of sequestration at shallow depths (less then 800-1000 meters). When CO2 (in liquid or gas phase) is pumped into the under-permafrost collectors it is possible that some CO2 migrates towards the hydrate stability zone and hydrate-saturated horizons can be formed. This can result on the one hand in the increase of effective capacity of the collector, and on the other hand, in the increase of isolating properties of cap rock. Therefore, CO2 injection sometimes can be performed without a good cap rock. In connection with the abovementioned, to elaborate an effective technology for CO2 injection it is necessary to perform a comprehensive experimental investigation with computer simulation of different utilization schemes, including the process of CO2 hydrate formation in porous media. There are two possible schemes of hydrate formation in pore medium of sediments: from liquid CO2 or the gas. The pore water in the

  4. Wind Turbines on CO2 Neutral Luminaries in Urban Areas

    DEFF Research Database (Denmark)

    Skrzypinski, Witold Robert; Bak, Christian; Beller, Christina


    In the present work, an overview of three different wind turbines used in hybrid luminaries is presented. The turbines are: vertical-axis twisted Savonius, three-blade horizontal-axis, and vertical-axis three-blade helical H-rotor. The considered luminaries are also equipped with photovoltaic...... buildings. A new vertical-axis twisted Savonius rotor is proposed for a luminary being designed for such a district within the “Development of CO2 neutral urban luminary” project....

  5. Wind Turbines on CO2 Neutral Luminaries in Urban Areas

    DEFF Research Database (Denmark)

    In the present work, an overview of three different wind turbines used in hybrid luminaries is presented. The turbines are: vertical-axis twisted Savonius, three-blade horizontal-axis, and vertical-axis three-blade helical H-rotor. The considered luminaries are also equipped with photovoltaic...... buildings. A new vertical-axis twisted Savonius rotor is proposed for a luminary being designed for such a district within the “Development of CO2 neutral urban luminary” project....

  6. Fate of liquid CO2 discharged from the hydrothermal area in the Okinawa Trough (United States)

    Shitashima, K.; Maeda, Y.


    Deep-sea hydrothermal systems are suitable for the on-site field analysis of a high CO2 environment in the ocean. Hydrothermal fluids are highly enriched in CO2 and show lower pH (about pH2-3) relative to seawater. The observation of the hydrothermal CO2 would provide the opportunity for understanding the physic-chemical behavior and diffusion process of CO2 in the ocean. Furthermore, the information on the hydrothermal ecosystem in the high CO2 environment is important for an environment impact assessment of the CO2 ocean sequestration. The observation of behavior of natural CO2 droplets (8-10?, 0.5ml) was carried out in the deep-sea hydrothermal system at the Okinawa Trough. The natural CO2 droplet contains CO2 of 95-98%, H2S of 2-3% and other gas species. The rising CO2 droplets were tracked by an ROV, and depth, temperature, salinity, pH and pCO2 in seawater near the CO2 droplets were measured during their ascent by using CTD and in-situ pH/pCO2 sensor. The behavior of the rising CO2 droplets was observed with an HDTV camera on an ROV. Mapping survey (400m X 400m, 3 layers) of low pH distribution was performed on the natural CO2 venting area by the grid navigation of the ROV that installed a pH/pCO2 sensor. The droplet size and the rise rate of CO2 droplets decreased during their ascent in water column (from 1470m to 900m depth). The CO2 droplets dissolved gradually and became small CO2 clathrate while rising, and the rising clathrate materials were found to disappear at 918m depth (552m above the bottom). Although the pH just above the sea floor CO2 vents showed pH 5, the pH depression in seawater surrounding the rising CO2 droplets was not observed. The results of pH mapping survey showed only localized pH depression at the CO2 venting site.

  7. Decomposition of Net CO2 Emission in the Wuhan Metropolitan Area of Central China

    Directory of Open Access Journals (Sweden)

    Xin Yang


    Full Text Available Policy-makers have been sharing growing concerns that climate change has significant impacts on human society and economic activates. Knowledge of the influencing factors of CO2 emission is the crucial step to reduce it. In this paper, both CO2 emission and CO2 sink on a city-level of the nine cities in Wuhan Metropolitan Area are calculated using the Intergovernmental Panel on Climate Change approach. Moreover, the logarithmic mean Divisia index (LMDI model was employed to decompose the net CO2 emission from 2001 to 2009. Results showed that (1 the largest amount of CO2 emission comes from energy while the largest amount CO2 sink comes from cropland; (2 economic level (S was the largest positive driving factor for net CO2 emission growth in the Wuhan Metropolitan Area, population (P also played a positive driving role, but with very weak contribution; and as negative inhibiting factors, energy structure (E and energy efficiency (C significantly reduced the net CO2 emission.

  8. CO2-rich geothermal areas in Iceland as natural analogues for geologic carbon sequestration (United States)

    Thomas, D.; Maher, K.; Bird, D. K.; Brown, G. E.; Arnorsson, S.


    Geologic CO2 sequestration into mafic rocks via silicate mineral dissolution and carbonate precipitation has been suggested as a way to mitigate industrial CO2 emissions by storing CO2 in a stable form. Experimental observations of irreversible reaction of basalt with supercritical or gaseous and aqueous CO2 have resulted in carbonate precipitation, but there are no universal trends linking the extent of mineralization and type of reaction products to the bulk rock composition, glass percentage or mineralogy of the starting material. Additionally, concern exists that CO2 leakage from injection sites and migration through the subsurface may induce mineral dissolution and desorption of trace elements, potentially contaminating groundwater. This study investigates low-temperature (≤180°C) basaltic geothermal areas in Iceland with an anomalously high input of magmatic CO2 as natural analogues of the geochemical processes associated with the injection of CO2 into mafic rocks and possible leakage. Fluids that contain >4 mmol/kg total CO2 are common along the divergent Snæfellsnes Volcanic Zone in western Iceland and within the South Iceland Seismic Zone in southwest Iceland. The meteorically derived waters contain up to 80 mmol/kg dissolved inorganic carbonate (DIC). The aqueous concentration of major cations and trace elements is greater than that in Icelandic surface and groundwater and increases with DIC and decreasing pH. Concentrations of As and Ni in some samples are several times the World Health Organization (WHO) guidelines for safe drinking water. Thermodynamic modeling indicates that waters approach saturation with respect to calcite and/or aragonite, kaolinite and amorphous silica, and are undersaturated with respect to plagioclase feldspar, clinozoisite and Ca-zeolites. Petrographic study of drill cuttings from wells that intersect the CO2-rich areas indicates that the sites have undergone at least two stages of hydrothermal alteration: initial high

  9. Does Size Matter? Scaling of CO2 Emissions and U.S. Urban Areas (United States)

    Fragkias, Michail; Lobo, José; Strumsky, Deborah; Seto, Karen C.


    Urban areas consume more than 66% of the world’s energy and generate more than 70% of global greenhouse gas emissions. With the world’s population expected to reach 10 billion by 2100, nearly 90% of whom will live in urban areas, a critical question for planetary sustainability is how the size of cities affects energy use and carbon dioxide (CO2) emissions. Are larger cities more energy and emissions efficient than smaller ones? Do larger cities exhibit gains from economies of scale with regard to emissions? Here we examine the relationship between city size and CO2 emissions for U.S. metropolitan areas using a production accounting allocation of emissions. We find that for the time period of 1999–2008, CO2 emissions scale proportionally with urban population size. Contrary to theoretical expectations, larger cities are not more emissions efficient than smaller ones. PMID:23750213

  10. High-surface-area carbon molecular sieves for selective CO(2) adsorption. (United States)

    Wahby, Anass; Ramos-Fernández, José M; Martínez-Escandell, Manuel; Sepúlveda-Escribano, Antonio; Silvestre-Albero, Joaquín; Rodríguez-Reinoso, Francisco


    A series of carbon molecular sieves (CMSs) has been prepared, either as powders or monoliths, from petroleum pitch using potassium hydroxide as the activating agent. The CMS monoliths are prepared without the use of a binder based on the self-sintering ability of the mesophase pitch. Characterization results show that these CMSs combine a large apparent surface area (up to ca. 3100 m(2) g(-1)) together with a well-developed narrow microporosity (V(n) up to ca. 1.4 cm(3) g(-1)). The materials exhibit high adsorption capacities for CO(2) at 1 bar and 273 K (up to ca. 380 mg CO(2) g sorbent(-1)). To our knowledge, this is the best result obtained for CO(2) adsorption using carbon-based materials. Furthermore, although the CO(2) adsorption capacity for activated carbons has usually been considered lower than that of zeolites, the reported values exceed the total amount adsorbed on traditional 13X and 5A zeolites (ca. 230 mg and 180 mg CO(2) g sorbent(-1), respectively), under identical experimental conditions. Additionally, the narrow pore openings found in the CMS samples (ca. 0.4 nm) allows for the selective adsorption of CO(2) from molecules of similar dimensions (e.g., CH(4) and N(2)).

  11. CO2 sequestration in two mediterranean dune areas subjected to a different level of anthropogenic disturbance (United States)

    Bonito, Andrea; Ricotta, Carlo; Iberite, Mauro; Gratani, Loretta; Varone, Laura


    Coastal sand dunes are among the most threatened habitats, especially in the Mediterranean Basin, where the high levels of human pressure impair the presence of plant species, putting at risk the maintenance of the ecosystem services, such as CO2 sequestration provided by these habitats. The aim of this study was to analyze how disturbance-induced changes in plant species abundance patterns account for variations in annual CO2 sequestration flow (CS) of Mediterranean sand dune areas. Two sites characterized by a high (site HAD) and a lower (site LAD) anthropogenic disturbance level were selected. At both sites, plant species number, cover, height and CS based on net photosynthesis measurements were sampled. At the plant species level, our results highlighted that Ammophila arenaria and Pancratium maritimum, had a key role in CS. Moreover, the results revealed a patchy species assemblage in both sites. In particular, HAD was characterized by a higher extension of the anthropogenic aphytoic zone (64% of the total transect length) than LAD. In spite of the observed differences in plant species composition, there were not significant differences between HAD and LAD in structural and functional traits, such as plant height and net photosynthesis. As a consequence, HAD and LAD had a similar CS (443 and 421 Mg CO2 ha-1 y-1, respectively). From a monetary point of view, our estimates based on the social costs of carbon revealed that the flow of sequestered CO2 valued on an average 3181 ± 114 ha-1 year-1 (mean value for the two sites). However, considering also the value of the CO2 negative flow related to loss of vegetated area, the annual net benefit arising from CO2 sequestration amounted to 1641 and 1772 for HAD and LAD, respectively. Overall, the results highlighted the importance to maximize the efforts to preserve dune habitats by applying an effective management policy, which could allow maintaining also a regulatory ecosystem service such as CO2 sequestration.

  12. Meteorological factors controlling soil gases and indoor CO2 concentration: a permanent risk in degassing areas. (United States)

    Viveiros, Fátima; Ferreira, Teresa; Silva, Catarina; Gaspar, João L


    Furnas volcano is one of the three quiescent central volcanoes of São Miguel Island (Azores Archipelago, Portugal). Its present activity is marked by several degassing manifestations, including fumarolic fields, thermal and cold CO2 springs and soil diffuse degassing areas. One of the most important soil diffuse degassing areas extends below Furnas village, located inside the volcano caldera. A continuous gas geochemistry programme was started at Furnas volcano in October 2001 with the installation of a permanent soil CO2 efflux station that has coupled meteorological sensors to measure barometric pressure, rain, air and soil temperature, air humidity, soil water content and wind speed and direction. Spike-like oscillations are observed on the soil CO2 efflux time series and are correlated with low barometric pressure and heavy rainfall periods. Stepwise multiple regression analysis, applied to the time series obtained, verified that the meteorological variables explain 43.3% of the gas efflux variations. To assess the impact of these influences in inhabited zones a monitoring test was conducted in a Furnas village dwelling placed where soil CO2 concentration is higher than 25 vol.%. Indoor CO2 air concentration measurements at the floor level reached values as higher as 20.8 vol.% during stormy weather periods. A similar test was performed in another degassing area, Mosteiros village, located on the flank of Sete Cidades volcano (S. Miguel Island), showing the same kind of relation between indoor CO2 concentrations and barometric pressure. This work shows that meteorological conditions alone increase the gas exposure risk for populations living in degassing areas.

  13. Decadal fCO2 trends in global ocean margins and adjacent boundary current-influenced areas (United States)

    Wang, Hongjie; Hu, Xinping; Cai, Wei-Jun; Sterba-Boatwright, Blair


    Determination of the rate of change of sea surface CO2 fugacity (fCO2) is important, as the fCO2 gradient between the atmosphere and the ocean determines the direction of CO2 flux and hence the fate of this greenhouse gas. Using a newly available, community-based global CO2 database (Surface Ocean CO2 Atlas Version 3 coastal data set) and a newly developed statistical method, we report that the global ocean margins (within 400 km offshore, 30°S-70°N) fCO2 temporal trends on decadal time scales (1.93 ± 1.59 μatm yr-1) closely follow the atmospheric fCO2 increase rate (1.90 ± 0.06 μatm yr-1) in the Northern Hemisphere but are lower (1.35 ± 0.55 μatm yr-1) in the Southern Hemisphere, reflecting dominant atmospheric forcing in conjunction with different warming rates in the two hemispheres. In addition to the atmospheric fCO2 forcing, a direct warming effect contributes more to fCO2 increase in the western boundary current-influenced areas, while intensified upwelling contributes more to fCO2 increase in eastern boundary current-influenced areas.

  14. Anthropogenic CO2 in a dense water formation area of the Mediterranean Sea (United States)

    Ingrosso, Gianmarco; Bensi, Manuel; Cardin, Vanessa; Giani, Michele


    There is growing evidence that the on-going ocean acidification of the Mediterranean Sea could be favoured by its active overturning circulation. The areas of dense water formation are, indeed, preferential sites for atmospheric carbon dioxide absorption and through them the ocean acidification process can quickly propagate into the deep layers. In this study we estimated the concentration of anthropogenic CO2 (Cant) in the dense water formation areas of the middle and southern Adriatic Sea. Using the composite tracer TrOCA (Tracer combining Oxygen, inorganic Carbon, and total Alkalinity) and carbonate chemistry data collected throughout March 2013, our results revealed that a massive amount of Cant has invaded all the identified water masses. High Cant concentration was detected at the bottom layer of the Pomo Pit (middle Adriatic, 96.8±9.7 μmol kg-1) and Southern Adriatic Pit (SAP, 85.2±9.4 μmol kg-1), associated respectively with the presence of North Adriatic Dense Water (NAdDW) and Adriatic Dense Water (AdDW). This anthropogenic contamination was clearly linked to the dense water formation events, which govern strong CO2 flux from the atmosphere to the sea and the sinking of dense, CO2-rich surface waters to the deep sea. However, a very high Cant level (94.5±12.5 μmol kg-1) was also estimated at the intermediate layer, as a consequence of a recent vertical mixing that determined the physical and biogeochemical modification of the water of Levantine origin (i.e. Modified Levantine Intermediate Water, MLIW) and favoured the atmospheric CO2 intrusion. The penetration of Cant in the Adriatic Sea determined a significant pH reduction since the pre-industrial era (- 0.139±0.019 pH units on average). This estimation was very similar to the global Mediterranean Sea acidification, but it was again more pronounced at the bottom of the Pomo Pit, within the layer occupied by NAdDW (- 0.157±0.018 pH units), and at the intermediate layer of the recently formed MLIW

  15. Modelling plant responses to elevated CO2: how important is leaf area index?

    NARCIS (Netherlands)

    Ewert, F.


    Background and Aims The problem of increasing CO2 concentration [CO2] and associated climate change has [CO2] on plants. While variation in growth and productivity is generated much interest in modelling effects of closely related to the amount of intercepted radiation, largely determined by leaf

  16. Preliminary study of a potential CO2 reservoir area in Hungary (United States)

    Sendula, Eszter; Király, Csilla; Szabó, Zsuzsanna; Falus, György; Szabó, Csaba; Kovács, István; Füri, Judit; Kónya, Péter; Páles, Mariann; Forray, Viktória


    CO2 storage environment. From the potential reservoir rock samples (sandstone) thin sections were prepared to determine the mineral composition, pore distribution, pore geometry and grain size. The volume ratio of the minerals was calculated using pixel counter. To have more accurate mineral composition, petrographic observation and SEM analyzes have been carried out. The caprock samples involved in the study can be divided into mudstone and aleurolite samples. To determine the mineral composition of these samples, XRD, DTA, FTIR, SEM analysis has been carried out. To obtain a picture about the geochemical behavior of the potential CO2 storage system, geochemical models were made for the reservoir rocks. For the equilibrium geochemical model, PHREEQC 3.0 was used applying LLNL database. The data used in the model are real pore water compositions from the studied area and an average mineral composition based on petrographic microscope and SEM images. In the model we considered the cation-anion ratio (<10%) and the partial pressure of CO2. First of all, we were interested in the direction of the geochemical reactions during an injection process. Present work is focused on the mineralogy of the most potential storage rock and its caprock, and their expectable geochemical reactions for the effect of scCO2.

  17. Strategies for satellite-based monitoring of CO2 from distributed area and point sources (United States)

    Schwandner, Florian M.; Miller, Charles E.; Duren, Riley M.; Natraj, Vijay; Eldering, Annmarie; Gunson, Michael R.; Crisp, David


    Atmospheric CO2 budgets are controlled by the strengths, as well as the spatial and temporal variabilities of CO2 sources and sinks. Natural CO2 sources and sinks are dominated by the vast areas of the oceans and the terrestrial biosphere. In contrast, anthropogenic and geogenic CO2 sources are dominated by distributed area and point sources, which may constitute as much as 70% of anthropogenic (e.g., Duren & Miller, 2012), and over 80% of geogenic emissions (Burton et al., 2013). Comprehensive assessments of CO2 budgets necessitate robust and highly accurate satellite remote sensing strategies that address the competing and often conflicting requirements for sampling over disparate space and time scales. Spatial variability: The spatial distribution of anthropogenic sources is dominated by patterns of production, storage, transport and use. In contrast, geogenic variability is almost entirely controlled by endogenic geological processes, except where surface gas permeability is modulated by soil moisture. Satellite remote sensing solutions will thus have to vary greatly in spatial coverage and resolution to address distributed area sources and point sources alike. Temporal variability: While biogenic sources are dominated by diurnal and seasonal patterns, anthropogenic sources fluctuate over a greater variety of time scales from diurnal, weekly and seasonal cycles, driven by both economic and climatic factors. Geogenic sources typically vary in time scales of days to months (geogenic sources sensu stricto are not fossil fuels but volcanoes, hydrothermal and metamorphic sources). Current ground-based monitoring networks for anthropogenic and geogenic sources record data on minute- to weekly temporal scales. Satellite remote sensing solutions would have to capture temporal variability through revisit frequency or point-and-stare strategies. Space-based remote sensing offers the potential of global coverage by a single sensor. However, no single combination of orbit

  18. Mesoscale Assessment of CO2 Storage Potential and Geological Suitability for Target Area Selection in the Sichuan Basin

    Directory of Open Access Journals (Sweden)

    Yujie Diao


    Full Text Available In China, south of the Yangtze River, there are a large number of carbon sources, while the Sichuan Basin is the largest sedimentary basin; it makes sense to select the targets for CO2 geological storage (CGUS early demonstration. For CO2 enhanced oil and gas, coal bed methane recovery (CO2-EOR, EGR, and ECBM, or storage in these depleted fields, the existing oil, gas fields, or coal seams could be the target areas in the mesoscale. This paper proposed a methodology of GIS superimposed multisource information assessment of geological suitability for CO2 enhanced water recovery (CO2-EWR or only storage in deep saline aquifers. The potential per unit area of deep saline aquifers CO2 storage in Central Sichuan is generally greater than 50 × 104 t/km2 at P50 probability level, with Xujiahe group being the main reservoir. CO2 storage potential of depleted gas fields is 53.73 × 108 t, while it is 33.85 × 108 t by using CO2-EGR technology. This paper recommended that early implementation of CGUS could be carried out in the deep saline aquifers and depleted gas fields in the Sichuan Basin, especially that of the latter because of excellent traps, rich geological data, and well-run infrastructures.

  19. CO2-Brine-Iron-bearing Clay Mineral Interactions: Surface Area Changes and Fracture-Filling Potentials in Geologic CO2 Sequestration (United States)

    Jun, Y.; Hu, Y.


    Geologic carbon dioxide sequestration (GCS) is a promising option to reduce anthropogenic CO2 emission from coal-fired power plants. The injected CO2 in GCS sites can induce dissolution of rocks and secondary mineral formation, potentially change the physical properties of the geological formations, and thus influence the transport and injectivity of CO2. However, most of the relevant studies are based on hydrological transport, using simulation models rather than studying actual interfacial chemical reactions. The mechanisms and kinetics of interfacial reactions among supercritical CO2 (scCO2)-saline water-rock surfaces at the molecular scale and their impacts on CO2 leakage have not been well understood. This research investigated the effects of various environmental factors (such as temperature, pressure, salinity, and different metal ion and organic-containing brine) on the dissolution and surface morphological changes of clay minerals. In this work, iron-bearing clay mineral, biotite [K(Mg,Fe)3AlSi3O10(OH,F)2], was used for model clay minerals in potential GCS sites. Both fluid/solid chemistry analysis and interfacial topographic studies were conducted to investigate the dissolution/precipitation on clay mineral surfaces under GCS conditions in high salinity systems. Using atomic force microscopy (AFM) and scanning electron microscopy (SEM), the interfacial surface morphology changes were observed. Shortly after a CO2 pressure of 102 atm is applied at 95oC, in situ pH of solutions was 3.15 ± 0.10. The early intrinsic dissolution rates of biotite were 8.4 ± 2.8 × 10-13 and 11.2 ± 3.0 × 10-13 mol Si m-2s-1 in water and NaCl solution, respectively. At the early stage of reaction, fast growth of fibrous illite on biotite basal planes was observed. After 22-70 h reaction, the biotite basal surface cracked, resulting in illite detaching from the surfaced. Later, the cracked surface layer was released into solution, thus the inner layer was exposed as a renewed

  20. Advanced Reservoir Characterization and Evaluation of CO2 Gravity Drainage in the Naturally Fractured Spraberry Trend Area, Class III

    Energy Technology Data Exchange (ETDEWEB)

    Knight, Bill; Schechter, David S.


    The goal of this project was to assess the economic feasibility of CO2 flooding the naturally fractured Spraberry Trend Area in west Texas. This objective was accomplished through research in four areas: (1) extensive characterization of the reservoirs, (2) experimental studies of crude oil/brine/rock (COBR) interactions in the reservoirs, (3) reservoir performance analysis, and (4) experimental investigations on CO2 gravity drainage in Spraberry whole cores. This provides results of the final year of the six-year project for each of the four areas.

  1. High-Surface-Area CO2 Sponge: High Performance CO2 Scrubbing Based on Hollow Fiber-Supported Designer Ionic Liquid Sponges

    Energy Technology Data Exchange (ETDEWEB)



    IMPACCT Project: The team from ORNL and Georgia Tech is developing a new technology that will act like a sponge, integrating a new, alcohol-based ionic liquid into hollow fibers (magnified image, right) to capture CO2 from the exhaust produced by coal-fired power plants. Ionic liquids, or salts that exist in liquid form, are promising materials for carbon capture and storage, but their tendency to thicken when combined with CO2 limits their efficiency and poses a challenge for their development as a cost-effective alternative to current-generation solutions. Adding alcohol to the mix limits this tendency to thicken in the presence of CO2 but can also make the liquid more likely to evaporate, which would add significantly to the cost of CO2 capture. To solve this problem, ORNL is developing new classes of ionic liquids with high capacity for absorbing CO2. ORNL’s sponge would reduce the cost associated with the energy that would need to be diverted from power plants to capture CO2 and release it for storage.

  2. CO2 Laser-Mediated Apically Positioned Flap in Areas Lacking Keratinized Gingiva. (United States)

    Zeinoun, Toni; Majzoub, Zeina; Khoury, Carlos; Nammour, Samir


    Autogenous gingival grafts are considered the "gold standard" for gingival augmentation, however they require a second surgical site for graft harvesting. Apically positioned flaps (APFs) represent an alternative method in soft tissue augmentation procedures. Limited information is available relative to the effectiveness of laser-mediated APF in augmenting keratinized gingiva (KG). The aim of this paper is to evaluate soft tissues changes following APF using CO2 laser in mandibular incisors with minimal KG and high labial frenum attachment. A total of 20 patients with minimal amount of KG (APF consisting of a single superficial horizontal incision just coronal to the mucogingival junction using CO2 laser, elevation of a split-thickness flap, and suturing of the flap to the periosteum in an apical position was performed. The apico-coronal height of KG was measured at baseline, and at 3, 6 and 12 months postoperatively. Uneventful healing was observed in all patients and an increase in KG of 2-3 mm was obtained. Most patients rated the procedure and the postoperative course as non painful. CO2 laser-assisted APF procedure is a minimally invasive treatment modality associated with reduced risk of bleeding and predictable increase in the height of KG.

  3. Temporal dynamics and spatial variability in the enhancement of canopy leaf area under elevated atmospheric CO2 (United States)

    Heather R. McCarthy; Ram Oren; Adrien C. Finzi; David S. Ellsworth; Hyun-Seok Kim; Kurt H. Johnsen; Bonnie Millar


    Increased canopy leaf area (L) may lead to higher forest productivity and alter processes such as species dynamics and ecosystem mass and energy fluxes. Few CO2enrichment studies have been conducted in closed canopy forests and none have shown a sustained enhancement of L. We reconstructed 8 years (1996–2003) of L at Duke’s Free Air CO...

  4. The Windvan pulsed CO2 Doppler lidar wide-area wind sensor (United States)

    Lawrence, Rhidian


    Wind sensing using a Doppler lidar is achieved by sensing the Doppler content of narrow frequency laser light backscattered by the ambient atmospheric aerosols. The derived radial wind components along several directions are used to generate wind vectors, typically using the Velocity Azimuth Display (VAD) method described below. Range resolved information is obtained by range gating the continuous scattered return. For a CO2 laser (10.6 mu) the Doppler velocity scaling factor is 188 kHz/ms(exp -1). In the VAD scan method the zenith angle of the pointing direction is fixed and its azimuth is continuously varied through 2 pi. A spatially uniform wind field at a particular altitude yields a sinusoidal variation of the radial component vs. azimuth. The amplitude, phase and dc component of this sinusoid yield the horizontal wind speed, direction and vertical component of the wind respectively. In a nonuniform wind field the Fourier components of the variation yields the required information.

  5. Elevated CO2 alters distribution of nodal leaf area and enhances nitrogen uptake contributing to yield increase of soybean cultivars grown in Mollisols. (United States)

    Jin, Jian; Li, Yansheng; Liu, Xiaobing; Wang, Guanghua; Tang, Caixian; Yu, Zhenhua; Wang, Xiaojuan; Herbert, Stephen J


    Understanding how elevated CO2 affects dynamics of nodal leaf growth and N assimilation is crucial for the construction of high-yielding canopy via breeding and N management to cope with the future climate change. Two soybean cultivars were grown in two Mollisols differing in soil organic carbon (SOC), and exposed to ambient CO2 (380 ppm) or elevated CO2 (580 ppm) throughout the growth stages. Elevated CO2 induced 4-5 more nodes, and nearly doubled the number of branches. Leaf area duration at the upper nodes from R5 to R6 was 4.3-fold greater and that on branches 2.4-fold higher under elevated CO2 than ambient CO2, irrespective of cultivar and soil type. As a result, elevated CO2 markedly increased the number of pods and seeds at these corresponding positions. The yield response to elevated CO2 varied between the cultivars but not soils. The cultivar-specific response was likely attributed to N content per unit leaf area, the capacity of C sink in seeds and N assimilation. Elevated CO2 did not change protein concentration in seeds of either cultivar. These results indicate that elevated CO2 increases leaf area towards the upper nodes and branches which in turn contributes yield increase.

  6. Angiosperms evolved a higher mesophyll surface area per volume to maximize exchange surface under a low CO2 world (United States)

    Théroux-Rancourt, Guillaume; Mason Earles, J.; Gilbert, Matthew E.; Zwieniecki, Maciej A.; Boyce, C. Kevin; McElrone, Andrew; Brodersen, Craig


    Variation in leaf mesophyll structure strongly affects CO2 diffusion and photosynthetic rates. One key trait is the surface of mesophyll cells exposed to intercellular airspace (Sm) which increases mesophyll conductance. Consequently, Sm is a key control of CO2 diffusion among species and genotypes. Using Sm values from the literature (> 200 species with 500 data points) and from our high-resolution X-ray computed tomography (μCT) dataset (currently 117 species), Sm shows little variation from pteridophytes to early angiosperms, while eudicots show the greatest structural diversity. However, Sm increases with total thickness of the mesophyll. By considering the exposed surface of the mesophyll to the intercellular air space (IAS) on a leaf or mesophyll volume (Ames/V mes) rather than leaf area basis (Sm), we demonstrate that angiosperms, and most specifically commelinids and non-basal eudicots, have constructed leaves with more surface per volume, while gymnosperms keep a constant Ames/V mes ratio. Thus, this strong phylogenetic signal suggests that angiosperms have developed IAS properties favoring leaves with higher surface to volume ratio, trait that allowed for the potential of high productivity even as atmospheric CO2 declined over the Cenozoic.

  7. Boom and bust: rapid feedback responses between insect outbreak dynamics and canopy leaf area impacted by rainfall and CO2. (United States)

    Gherlenda, Andrew N; Esveld, Jessica L; Hall, Aidan A G; Duursma, Remko A; Riegler, Markus


    Frequency and severity of insect outbreaks in forest ecosystems are predicted to increase with climate change. How this will impact canopy leaf area in future climates is rarely tested. Here, we document function of insect outbreaks that fortuitously and rapidly occurred in an ecosystem under free-air CO2 enrichment. Over the first 2 years of CO2 fumigation of a naturally established mature Eucalyptus woodland, we continuously assessed population responses of three sap-feeding insect species of the psyllid genera Cardiaspina, Glycaspis and Spondyliaspis for up to ten consecutive generations. Concurrently, we quantified changes in the canopy leaf area index (LAI). Large and rapid shifts in psyllid community composition were recorded between species with either flush (Glycaspis) or senescence-inducing (Cardiaspina, Spondyliaspis) feeding strategies. Within the second year, two psyllid species experienced significant and rapid population build-up resulting in two consecutive outbreaks: first, rainfall stimulated Eucalyptus leaf production increasing LAI, which supported population growth of flush-feeding Glycaspis without impacting LAI. Glycaspis numbers then crashed and were followed by the outbreak of senescence-feeding Cardiaspina fiscella that led to significant defoliation and reduction in LAI. For all three psyllid species, the abundance of lerps, protective coverings excreted by the sessile nymphs, decreased at e[CO2 ]. Higher lerp weight at e[CO2 ] for Glycaspis but not the other psyllid species provided evidence for compensatory feeding by the flush feeder but not the two senescence feeders. Our study demonstrates that rainfall drives leaf phenology, facilitating the rapid boom-and-bust succession of psyllid species, eventually leading to significant defoliation due to the second but not the first outbreaking psyllid species. In contrast, e[CO2 ] may impact psyllid abundance and feeding behaviour, with psyllid species-specific outcomes for defoliation

  8. Determination of Priority Study Areas for Coupling CO2 Storage and CH4 Gas Hydrates Recovery in the Portuguese Offshore Area

    Directory of Open Access Journals (Sweden)

    Luís Bernardes


    Full Text Available Gas hydrates in sub-seabed sediments is an unexploited source of energy with estimated reserves larger than those of conventional oil. One of the methods for recovering methane from gas hydrates involves injection of Carbon Dioxide (CO2, causing the dissociation of methane and storing CO2. The occurrence of gas hydrates offshore Portugal is well known associated to mud volcanoes in the Gulf of Cadiz. This article presents a determination of the areas with conditions for the formation of biogenic gas hydrates in Portugal’s mainland geological continental margin and assesses their overlap with CO2 hydrates stability zones defined in previous studies. The gas hydrates stability areas are defined using a transfer function recently published by other authors and takes into account the sedimentation rate, the particulate organic carbon content and the thickness of the gas hydrate stability zone. An equilibrium equation for gas hydrates, function of temperature and pressure, was adjusted using non-linear regression and the maximum stability zone thickness was found to be 798 m. The gas hydrates inventory was conducted in a Geographic Information System (GIS environment and a full compaction scenario was adopted, with localized vertical flow assumed in the accrecionary wedge where mud volcanoes occur. Four areas where temperature and pressure conditions may exist for formation of gas hydrates were defined at an average of 60 km from Portugal’s mainland coastline. Two of those areas coincide with CO2 hydrates stability areas previously defined and should be the subject of further research to evaluate the occurrence of gas hydrate and the possibility of its recovery coupled with CO2 storage in sub-seabed sediments.

  9. Sensitivity of burned area in Europe to climate change, atmospheric CO2 levels, and demography

    DEFF Research Database (Denmark)

    Wu, Minchao; Knorr, Wolfgang; Thonicke, Kirsten


    Global environmental changes and human activity influence wildland fires worldwide, but the relative importance of the individual factors varies regionally and their interplay can be difficult to disentangle. Here we evaluate projected future changes in burned area at the European and sub-Europea...

  10. Reduction of CO2 emission from transportation activities in the area of Pasar Besar in Malang City (United States)

    Sari, K. E.; Sulistyo, D. E.; Utomo, D. M.


    The number of vehicles increases every year. Where vehicles are the largest contributor to air pollution up to 70%-80%, while 20%-30% caused by industrial activities. The increasing number of vehicles which perform movements will result in more emissions of vehicles in the free air of the city. Traffic is also influenced by the presence of land use. One of the types of land use that have considerable influence against the movement of traffic is trade. Along with the development of transport activities in the area of Pasar Besar Malang city (the Biggest Traditional Market in Malang), it will cause problems such as traffic jam and air pollution. Therefore, the need for proper handling of the problem of traffic jam and air pollution in the area of Pasar Besar that is to identify the performance of road traffic around area of Pasar Besar and calculate the quantity of CO2 emissions based on the footprint of transport on the area of Pasar Besar. Where is produced that level of service roads on its way around area of Pasar Besar have an average value between LOS A and B, while the quantity of CO2 emissions is based on the footprint of transport on area of Pasar Besar that is amounting to 4,551.42 tons/year. The magnitude of the emissions have exceeded the standard of composition in the air so that the need for recommendations. Recommendations in this research is in the form of simulated users of private vehicle redirects to public transportation based on the level of willingness to switch by the users of private vehicles. The selected simulation that is the second of four simulations with the output of emissions amounting to 3,952.91 tons/year in which can reduce emissions amounting to 598.51 tons/year or approximately 13.15%.

  11. Spatial and Temporal Variability of Carbon Dioxide Using Structure Functions in Urban Areas: Insights for Future Active Remote CO2 Sensors (United States)

    Choi, Yonghoon; Yang, Melissa; Kooi, Susan A.; Browell, Edward V.; DiGangi, Joshua P.


    High resolution in-situ CO2 measurements were recorded onboard the NASA P-3B during the DISCOVER-AQ (Deriving Information on Surface Conditions from Column and Vertically Resolved Observations Relevant to Air Quality) Field Campaigns during July 2011 over Washington DC/Baltimore, MD; January-February 2013 over the San Joaquin Valley, CA; September 2013 over Houston, TX; and July-August 2014 over Denver, CO. Each of these campaigns have approximately two hundred vertical soundings of CO2 within the lower troposphere (surface to about 5 kilometers) at 6-8 different sites in each of the urban areas. In this study, we used structure function analysis, which is a useful way to quantify spatial and temporal variability, by displaying differences with average observations, to evaluate the variability of CO2 in the 0-2 kilometers range (representative of the planetary boundary layer). These results can then be used to provide guidance in the development of science requirements for the future ASCENDS (Active Sensing of CO2 Emissions over Nights, Days, and Seasons) mission to measure near-surface CO2 variability in different urban areas. We also compare the observed in-situ CO2 variability with the variability of the CO2 column-averaged optical depths in the 0-1 kilometer and 0-3.5 kilometers altitude ranges in the four geographically different urban areas, using vertical weighting functions for potential future ASCENDS lidar CO2 sensors operating in the 1.57 and 2.05 millimeter measurement regions. In addition to determining the natural variability of CO2 near the surface and in the column, radiocarbon method using continuous CO2 and CO measurements are used to examine the variation of emission quantification between anthropogenic and biogenic sources in the DC/Maryland urban site.

  12. Permeability, porosity, and mineral surface area changes in basalt cores induced by reactive transport of CO2-rich brine (United States)

    Luhmann, Andrew J.; Tutolo, Benjamin M.; Bagley, Brian C.; Mildner, David F. R.; Seyfried, William E.; Saar, Martin O.


    Four reactive flow-through laboratory experiments (two each at 0.1 mL/min and 0.01 mL/min flow rates) at 150°C and 150 bar (15 MPa) are conducted on intact basalt cores to assess changes in porosity, permeability, and surface area caused by CO2-rich fluid-rock interaction. Permeability decreases slightly during the lower flow rate experiments and increases during the higher flow rate experiments. At the higher flow rate, core permeability increases by more than one order of magnitude in one experiment and less than a factor of two in the other due to differences in preexisting flow path structure. X-ray computed tomography (XRCT) scans of pre- and post-experiment cores identify both mineral dissolution and secondary mineralization, with a net decrease in XRCT porosity of ˜0.7%-0.8% for the larger pores in all four cores. (Ultra) small-angle neutron scattering ((U)SANS) data sets indicate an increase in both (U)SANS porosity and specific surface area (SSA) over the ˜1 nm to 10 µm scale range in post-experiment basalt samples, with differences due to flow rate and reaction time. Net porosity increases from summing porosity changes from XRCT and (U)SANS analyses are consistent with core mass decreases. (U)SANS data suggest an overall preservation of the pore structure with no change in mineral surface roughness from reaction, and the pore structure is unique in comparison to previously published basalt analyses. Together, these data sets illustrate changes in physical parameters that arise due to fluid-basalt interaction in relatively low pH environments with elevated CO2 concentration, with significant implications for flow, transport, and reaction through geologic formations.

  13. Continued CO2 outgassing in an upwelling area off northern Chile during the development phase of El Niño 1997-1998 (July 1997) (United States)

    Torres, Rodrigo; Turner, David R.; Rutllant, José; LefèVre, Nathalie


    Carbonate system parameters were measured in the upper 200 m of the water column during July 1997 in an upwelling area off northern Chile (22.6°-24°S), and the CO2 fluxes were estimated. At this time (during the onset of El Niño 1997-1998), the water column that feeds the coastal upwelling was less dense, warmer, and saltier than in non-El Niño winters. Nevertheless, the major vertical gradients in pH, total inorganic carbon (CT), carbon dioxide fugacity (fCO2), and apparent oxygen utilization (AOU) remained confined to the upper 100 m of the water column, so that the active upwelling forced by southerly winds caused the upwelling of CO2-rich water leading a CO2 flux from the ocean to the atmosphere. However, these fluxes were found to be highly variable. Grid surveys 2 weeks apart show a change in CO2 flux from +3.9 mol C m-2 yr-1 to +0.4 mol C m-2 yr-1: the change is thought to be associated with a pulsed upwelling forcing in combination with an active biological uptake of CO2. This high short-term variability of CO2 fluxes makes it difficult to assess the interannual variability of CO2 outgassing in this area based on low-frequency direct CO2 observations. The fact that the oxycline, whose location usually coincides with the carboncline, also remained within the upper 100 m during the remarkably warm 1972 and 1983 El Niño winters seems to imply that the CO2 outgassing during those warm periods can be as strong as we report for 1997 under similar upwelling favorable winds.

  14. Leaf area index drives soil water availability and extreme drought-related mortality under elevated CO2 in a temperate grassland model system. (United States)

    Manea, Anthony; Leishman, Michelle R


    The magnitude and frequency of climatic extremes, such as drought, are predicted to increase under future climate change conditions. However, little is known about how other factors such as CO2 concentration will modify plant community responses to these extreme climatic events, even though such modifications are highly likely. We asked whether the response of grasslands to repeat extreme drought events is modified by elevated CO2, and if so, what are the underlying mechanisms? We grew grassland mesocosms consisting of 10 co-occurring grass species common to the Cumberland Plain Woodland of western Sydney under ambient and elevated CO2 and subjected them to repeated extreme drought treatments. The 10 species included a mix of C3, C4, native and exotic species. We hypothesized that a reduction in the stomatal conductance of the grasses under elevated CO2 would be offset by increases in the leaf area index thus the retention of soil water and the consequent vulnerability of the grasses to extreme drought would not differ between the CO2 treatments. Our results did not support this hypothesis: soil water content was significantly lower in the mesocosms grown under elevated CO2 and extreme drought-related mortality of the grasses was greater. The C4 and native grasses had significantly higher leaf area index under elevated CO2 levels. This offset the reduction in the stomatal conductance of the exotic grasses as well as increased rainfall interception, resulting in reduced soil water content in the elevated CO2 mesocosms. Our results suggest that projected increases in net primary productivity globally of grasslands in a high CO2 world may be limited by reduced soil water availability in the future.

  15. Leaf area index drives soil water availability and extreme drought-related mortality under elevated CO2 in a temperate grassland model system.

    Directory of Open Access Journals (Sweden)

    Anthony Manea

    Full Text Available The magnitude and frequency of climatic extremes, such as drought, are predicted to increase under future climate change conditions. However, little is known about how other factors such as CO2 concentration will modify plant community responses to these extreme climatic events, even though such modifications are highly likely. We asked whether the response of grasslands to repeat extreme drought events is modified by elevated CO2, and if so, what are the underlying mechanisms? We grew grassland mesocosms consisting of 10 co-occurring grass species common to the Cumberland Plain Woodland of western Sydney under ambient and elevated CO2 and subjected them to repeated extreme drought treatments. The 10 species included a mix of C3, C4, native and exotic species. We hypothesized that a reduction in the stomatal conductance of the grasses under elevated CO2 would be offset by increases in the leaf area index thus the retention of soil water and the consequent vulnerability of the grasses to extreme drought would not differ between the CO2 treatments. Our results did not support this hypothesis: soil water content was significantly lower in the mesocosms grown under elevated CO2 and extreme drought-related mortality of the grasses was greater. The C4 and native grasses had significantly higher leaf area index under elevated CO2 levels. This offset the reduction in the stomatal conductance of the exotic grasses as well as increased rainfall interception, resulting in reduced soil water content in the elevated CO2 mesocosms. Our results suggest that projected increases in net primary productivity globally of grasslands in a high CO2 world may be limited by reduced soil water availability in the future.

  16. Development of a low cost and low power consumption system for monitoring CO_{2} soil concentration in volcanic areas. (United States)

    Awadallah Estévez, Shadia; Moure-García, David; Torres-González, Pedro; Acosta Sánchez, Leopoldo; Domínguez Cerdeña, Itahiza


    Volatiles dissolved in magma are released as gases when pressure or stress conditions change. H2O, CO2, SO2 and H2S are the most abundant gases involved in volcanic processes. Emission rates are related to changes in the volcanic activity. Therefore, in order to predict possible eruptive events, periodic measurements of CO2 concentrations from the soil should be carried out. In the last years, CO2 monitoring has been widespread for many reasons. A direct relationship between changes in volcanic activity and variations in concentration, diffuse flux and isotope ratios of this gas, have been observed prior to some eruptions or unrest processes. All these factors have pointed out the fact that CO2 emission data are crucial in volcanic monitoring programs. In addition, relevant instrumentation development has also taken place: improved accuracy, cost reduction and portability. Considering this, we propose a low cost and a low power consumption system for measuring CO2 concentration in the soil based on Arduino. Through a perforated pick-axe buried at a certain depth, gas samples are periodically taken with the aid of a piston. These samples are injected through a pneumatic circuit in the spectrometer, which measures the CO2 concentration. Simultaneously, the system records the following meteorological parameters: atmospheric pressure, precipitation, relative humidity and air and soil temperature. These parameters are used to correct their possible influence in the CO2 soil concentration. Data are locally stored (SD card) and transmitted via GPRS or WIFI to a data analysis center.

  17. Delta13C values of grasses as a novel indicator of pollution by fossil-fuel-derived greenhouse gas CO2 in urban areas. (United States)

    Lichtfouse, Eric; Lichtfouse, Michel; Jaffrézic, Anne


    A novel fossil fuel pollution indicator based on the 13C/12C isotopic composition of plants has been designed. This bioindicator is a promising tool for future mapping of the sequestration of fossil fuel CO2 into urban vegetation. Theoretically, plants growing in fossil-fuel-CO2-contaminated areas, such as major cities, industrial centers, and highway borders, should assimilate a mixture of global atmospheric CO2 of delta13C value of -8.02 per thousand and of fossil fuel CO2 of average delta13C value of -27.28 per thousand. This isotopic difference should, thus, be recorded in plant carbon. Indeed, this study reveals that grasses growing near a major highway in Paris, France, have strikingly depleted delta13C values, averaging at -35.08 per thousand, versus rural grasses that show an average delta13C value of -30.59 per thousand. A simple mixing model was used to calculate the contributions of fossil-fuel-derived CO2 to the plant tissue. Calculation based on contaminated and noncontaminated isotopic end members shows that urban grasses assimilate up to 29.1% of fossil-fuel-CO2-derived carbon in their tissues. The 13C isotopic composition of grasses thus represents a promising new tool for the study of the impact of fossil fuel CO2 in major cities.

  18. Soil and crop residue CO2-C emission under tillage systems in sugarcane-producing areas of southern Brazil

    Directory of Open Access Journals (Sweden)

    Luís Gustavo Teixeira


    Full Text Available Appropriate management of agricultural crop residues could result in increases on soil organic carbon (SOC and help to mitigate gas effect. To distinguish the contributions of SOC and sugarcane (Saccharum spp. residues to the short-term CO2-C loss, we studied the influence of several tillage systems: heavy offset disk harrow (HO, chisel plow (CP, rotary tiller (RT, and sugarcane mill tiller (SM in 2008, and CP, RT, SM, moldboard (MP, and subsoiler (SUB in 2009, with and without sugarcane residues relative to no-till (NT in the sugarcane producing region of Brazil. Soil CO2-C emissions were measured daily for two weeks after tillage using portable soil respiration systems. Daily CO2-C emissions declined after tillage regardless of tillage system. In 2008, total CO2-C from SOC and/or residue decomposition was greater for RT and lowest for CP. In 2009, emission was greatest for MP and CP with residues, and smallest for NT. SOC and residue contributed 47 % and 41 %, respectively, to total CO2-C emissions. Regarding the estimated emissions from sugarcane residue and SOC decomposition within the measurement period, CO2-C factor was similar to sugarcane residue and soil organic carbon decomposition, depending on the tillage system applied. Our approach may define new emission factors that are associated to tillage operations on bare or sugarcane-residue-covered soils to estimate the total carbon loss.

  19. Evasion of CO2 and dissolved carbon in river waters of three small catchments in an area occupied by small family farms in the eastern Amazon

    Directory of Open Access Journals (Sweden)

    Maria Beatriz Silva da Rosa


    Full Text Available CO2 effluxes from streams and rivers have been hypothesized to be a critical pathway of carbon flow from the biosphere back to the atmosphere. This study was conducted in three small Amazonian catchments to evaluate carbon evasion and dynamics, where land-use change has occurred on small family-farms. Monthly field campaigns were conducted from June 2006 to May 2007 in the Cumaru (CM, Pachibá (PB and São João (SJ streams. Electrical conductivity, pH, temperature, and dissolved oxygen measurements were done in situ, while water samples were collected to determine dissolved organic carbon (DOC and dissolved inorganic carbon (DIC concentrations, as well as carbon dioxide partial pressures (pCO2 and CO2 evasion fluxes. Instantaneous discharge measured by a current meter was used to calculate DOC fluxes. Considering all the sites, DOC, DIC, pCO2, and CO2 flux measurements ranged as follows, respectively: 0.27 - 12.13 mg L-1; 3.5 - 38.9 mg L-1; 2,265 - 26,974 ppm; and 3.39 - 75.35 μmol m-2 s-1. DOC annual flux estimates for CM, SJ and PB were, respectively, 281, 245, and 169 kg C ha-1. CO2 evasion fluxes had an average of 22.70 ± 1.67 μmol m-2 s-1. These CO2 evasion fluxes per unit area were similar to those measured for major Amazonian rivers, thus confirming our hypothesis that small streams can evade substantial quantities of CO2. As secondary vegetation is abundant as a result of family farming management in the region, we conclude that this vegetation can be a major driver of an abundant carbon cycle.

  20. Measurements and modeling of CH4 and CO2 in the Boston Metro area and Northeastern Megalopolis (United States)

    Wofsy, S. C.; McKain, K.; Chen, J.; Levi, P.; Gottlieb, E.; Hutyra, L.; Raciti, S. M.; Phillips, N. G.; Callahan, W.; Decola, P.; Jones, T.; Hegarty, J. D.; Nehrkorn, T.; Mountain, M.; Eluszkiewicz, J.; Henderson, J.; Budney, J.; Sweeney, C.


    We describe a multiscale measurement network and model-data analysis framework for the Boston Metro region, with extension to the mid-Atlantic urban corridor. Observations include a network of automated concentrations of CO2 and CH4 inside and outside the urban domain, near the surface, on towers and tall buildings, total column measurements using the sun as a source, aerosol lidar data defining atmospheric structure, and meteorological data. The model-data analysis framework includes high resolution WRF fields for meteorology, detailed representation of surface sources down to the street and building level, the STILT Lagrangian Particle Dispersion model, and an inversion framework. We show examples of data and discuss considerations of sampling design for the observation network, including extension to the NE urban corridor. We also present examples of inverse analysis assessing anthropogenic emission rates for CH4 and CO2 in the urban region of metro Boston and along the urban-rural gradient.

  1. [Variations of CO2 concentration and δ13C and influencing factors of Quercus variabilis plantation in low hilly area of North China]. (United States)

    Sun, Shou-jia; Meng, Ping; Zhang, Jin-Song; Zheng, Ning; He, Chun-xia; Li, Yan-quan


    The off-axis integrated cavity output spectroscopy technique was used to measure air CO2 concentration and stable carbon isotope ratio (δ13C) above (11 m) and at the bottom (6 m) of canopy of a Quercus variabilis plantation in a low hilly area of North China. The variations of CO2 concentration and δ13C value in Q. variabilis plantation canopy and the influencing factors were analyzed at hourly timescale. The results showed that diurnal variation in the CO2 concentration had a trend, while there was no obvious similar tendency in the diurnal change of δ13C value. Daytime atmosphere stability frequency during the experiment time was 70.2%. With the combined effects of photosynthesis and turbulent in the canopy, CO2 concentration at the bottom of canopy was 1.70 μmol · mol(-1) higher than that above the canopy, while the δ13C value was 0.81 per thousand lower than that above the canopy. Atmosphere stability frequency was 76.2% at night. The CO2 from leaf was not easy to move because of weak turbulent. Thus, CO2 concentration at the bottom of canopy was 1.24 μmol · mol(-1) higher than that above canopy, while the δ13C value was 0.58 per thousand lower than that above canopy. The difference of CO2 concentration between above and at the bottom of the canopy was strongly correlated with their δ13C difference both in daytime and at nighttime. Stepwise regression analysis indicated that solar radiation and relative humidity in daytime were the main environmental factors causing CO2 concentration and δ13C difference between above and at the bottom of the canopy, whereas at nighttime temperature was a key environmental factor influencing δ13C value. The above environmental factors strongly influenced CO2 concentration and δ13C value in air above and at the bottom of Q. variabilis plantation canopy by increasing or decreasing photosynthesis and respiration.

  2. Five-years of microenvironment data along an urban-rural transect; temperature and CO2 concentrations in urban area at levels expected globally with climate change.

    Energy Technology Data Exchange (ETDEWEB)

    George, Kate; Ziska, Lewis H; Bunce, James A; Quebedeaux, Bruno


    The heat island effect and the high use of fossil fuels in large city centers is well documented, but by how much fossil fuel consumption is elevating atmospheric CO2 concentrations and whether elevations in both atmospheric CO2 and air temperature are consistent from year to year are less well known. Our aim was to record atmospheric CO2 concentrations, air temperature and other environmental variables in an urban area and compare it to suburban and rural sites to see if urban sites are experiencing climates expected globally in the future with climate change. A transect was established from Baltimore city center (Urban site), to the outer suburbs of Baltimore (suburban site) and out to an organic farm (rural site). At each site a weather station was set-up to monitor environmental variables annually for five years. Atmospheric CO2 was significantly increased on average by 66 ppm from the rural to the urban site over the five years of the study. Air temperature was significantly higher at the urban site (14.8 oC) compared to the suburban (13.6 oC) and rural (12.7 oC) sites. Relative humidity was not different between sites but vapor pressure deficit (VPD) was significantly higher at the urban site compared to the suburban and rural sites. During wet years relative humidity was significantly increased and VPD significantly reduced. Increased nitrogen deposition at the rural site (2.1 % compared to 1.8 and 1.2 % at the suburban and urban sites) was small enough not to affect soil nitrogen content. Dense urban areas with large populations and high vehicular traffic have significantly different microclimates compared to outlying suburban and rural areas. The increases in atmospheric CO2 and air temperature are similar to changes predicted in the short term with global climate change, therefore providing an environment suitable for studying future effects of climate change on terrestrial ecosystems.

  3. High air-sea CO2 uptake rates in nearshore and shelf areas of Southern Greenland: Temporal and spatial variability

    DEFF Research Database (Denmark)

    Rysgaard, S.; Mortensen, J.; Juul-Pedersen, T.


    The present study is based on hourly samplings of wind speed, monthly sampling sessions of temperature, salinity, dissolved inorganic carbon, alkalinity, nutrients, primary productivity and vertical export in the outer sill region (station GF3) of a sub-arctic SW Greenland fjord (Godthabsfjord...... productivity of 76-106 g C m(-2) yr(-1). Furthermore, the estimated vertical export of phytoplankton carbon to depths below 60 m of 38-89 g C m(-2) suggests that a large fraction of the mineralization (release of CO2) occurs in deeper waters in the outer sill region of the fjord. However...

  4. Reservoir Characterization for CO2 Sequestration: Assessing the Potential of the Devonian Carbonate Nisku Formation of Central Alberta Caractérisation de réservoir en vue du stockage géologique de CO2 : évaluation du potentiel offert par les carbonates dévoniens de la formation de Nisku, en Alberta central

    Directory of Open Access Journals (Sweden)

    Eisinger C.


    Full Text Available The Wabamun Lake area of Central Alberta, Canada includes several large CO2 point source emitters, collectively producing more than 30 Mt annually. Previous studies established that deep saline aquifers beneath the Wabamun Lake area have good potential for the large-scale injection and storage of CO2. This study reports on the characterization of the Devonian carbonate Nisku Formation for evaluation as a CO2 repository. Major challenges for characterization included sparse well and seismic data, poor quality flow tests, and few modern measurements. Wireline porosity measurements were present in only one-third of the wells, so porosity and flow capacity (permeability-thickness were estimated using wireline electrical measurements. The Archie cementation factor appears to vary between 2 and 3, creating uncertainty when predicting porosity using the electrical measurements; however, high-porosity zones could be identified. The electrically-based flow capacity predictions showed more favorable values using a correlation with core than the relation based on drill stem and production tests. This behavior is expected, since the flow test flow capacities are less influenced by local occurrences of very permeable vuggy and moldic rocks. Facies distributions were modeled using both pixel and object methods. The object models, using dimensions obtained from satellite imaging of modern day environments, gave results that were more consistent with the geological understanding of the Nisku and showed greater large-scale connectivity than the pixel model. Predicted volumes show considerable storage capacity in the Nisku, but flow simulations suggest injection capacities are below an initial 20 Mt/year target using vertical wells. More elaborate well designs, including fracture stimulation or multi-lateral wells may allow this goal to be reached or surpassed. Plusieurs gros émetteurs de CO2, totalisant 30 Mt annuels, sont localisés dans la région du Lac

  5. A young afforestation area in Iceland was a moderate sink to CO2 only a decade after scarification and establishment

    Directory of Open Access Journals (Sweden)

    B. D. Sigurdsson


    Full Text Available This study reports on three years (2004–2006 of measurements of net ecosystem exchange (NEE over a young Siberian larch plantation in Iceland established on previously grazed heathland pasture that had been scarified prior to planting. The study evaluated the variation of NEE and its component fluxes, gross primary production (GPP and ecosystem respiration (Re, with the aim to clarify how climatic factors controlled the site's carbon balance. The young plantation acted as a relatively strong sink for CO2 during all of the three years, with an annual net sequestration of −102, −154, and −67 g C m−2 for 2004, 2005, and 2006, respectively. This variation was more related to variation in carbon efflux (Re than carbon uptake (GPP. The abiotic factors that showed the strongest correlation to Re were air temperature during the growing season and soil water potential. The GPP mostly followed the seasonal pattern in irradiance, except in 2005, when the plantation experienced severe spring frost damage that set the GPP back to zero. It was not expected that the rather slow-growing Siberian larch plantation would be such a strong sink for atmospheric CO2 only twelve years after site preparation and afforestation.

  6. Transient changes in transpiration, and stem and soil CO2 efflux in longleaf pine (Pinus palustris Mill.) following fire-induced leaf area reduction (United States)

    Barton Clinton; Chris Maier; Chelcy Ford; Robert Mitchell


    In 20-year-old longleaf pine, we examined short-term effects of reduced live leaf area (A L) via canopy scorching on sap flow (Q; kg H2O h−1), transpiration per unit leaf area (E L; mm day−1), stem CO2 efflux (R stem; μmol m−2 s−1) and soil CO2 efflux (R soil; μmol m−2 s−1) over a 2-week period during early summer. R stem and Q were measured at two positions (1.3-m or...

  7. CO2 blood test (United States)

    Bicarbonate test; HCO3-; Carbon dioxide test; TCO2; Total CO2; CO2 test - serum; Acidosis - CO2; Alkalosis - CO2 ... The CO2 test is most often done as part of an electrolyte or basic metabolic panel. Changes in your ...

  8. CO2-Neutral Fuels

    NARCIS (Netherlands)

    Goede, A.; van de Sanden, M. C. M.


    Mimicking the biogeochemical cycle of System Earth, synthetic hydrocarbon fuels are produced from recycled CO2 and H2O powered by renewable energy. Recapturing CO2 after use closes the carbon cycle, rendering the fuel cycle CO2 neutral. Non-equilibrium molecular CO2 vibrations are key to high energy

  9. FY 2000 report on the results of the project on the R and D of the global environmental industry technology. R and D of the technology for predicting environmental effects associated with the CO2 ocean sequestration (Development of the technology for predicting environmental effects in the area around the CO2 discharge point and survey for supporting study); 2000 nendo chikyu kankyo sangyo gijutsu kenkyu kaihatsu jigyo. Nisanka tanso no kaiyo kakuri ni tomonau kankyo eikyo yosoku gijutsu kenkyu kaihatsu (CO2 horyuten shuhen'iki no kankyo eikyo yosoku gijutsu no kaihatsu narabini kenkyu shien chosa)

    Energy Technology Data Exchange (ETDEWEB)



    To obtain the technical outlook for CO2 ocean sequestration by CO2 discharge into the intermediate layer, the R and D was conducted of the technology for predicting environmental effects in the area around the CO2 discharge point, and the FY 2000 results were summed up. In the elucidation study of the behavior at the time of discharging liquid CO2, the melting process of CO2 droplets discharged/dispersed into the seawater of the intermediate layer was observed, and the specific phenomenon of hydrate formation in the process of CO2 droplet formation was grasped. As to the technology for sending CO2 into the ocean and diluting it, experimental study was made of CO2 transportation technology from on the sea to the intermediate layer, technology for rapid dilution immediately after discharge, etc. About the indoor experiment on the CO2 influence on marine organisms, experiment on the CO2 influence was carried out using shells, sea urchin, red sea bream, etc. In the developmental study of models for predicting environmental effects in the area around the CO2 discharge point, the 3D two-phase flow LES model was developed as a model for predicting the CO2 behavior, and the simulation of the liquid CO2 discharge was made at the planned experimental site. The model for evaluation of the biological influence was also made which can consider the interaction between two kinds of organisms. (NEDO)

  10. CO2NNIE

    DEFF Research Database (Denmark)

    Krogh, Benjamin Bjerre; Andersen, Ove; Lewis-Kelham, Edwin


    We propose a system for calculating the personalized annual fuel consumption and CO2 emissions from transportation. The system, named CO2NNIE, estimates the fuel consumption on the fastest route between the frequent destinations of the user. The travel time and fuel consumption estimated are based......% of the actual fuel consumption (4.6% deviation on average). We conclude, that the system provides new detailed information on CO2 emissions and fuel consumption for any make and model....

  11. Devices and methods to measure H2 and CO2 concentrations in gases released from soils and low temperature fumaroles in volcanic areas (United States)

    di Martino, R. M. R.; Camarda, M.; Gurrieri, S.; Valenza, M.


    Hydrogen solubility and diffusion have a great relevance to change the redox state of magmas, usually expressed by oxygen fugacity. This influences many chemical and physical properties, such as oxidation state of multivalent elements, kind and abundance of minerals and gas species. These processes change the phase ratios into the volcanic system and so the magma movement capability toward the earth surface and the eruptive dynamics. In past studies several authors (Carapezza et al., 1980; Sato et al., 1982; Sato and McGee, 1985; Wakita et al., 1980) proposed the application of the fuel cells in order to measure reducing capacity of volcanic gases. Their found some clear correlations between variation peaks and volcanic activity but a few reducing capacity changes showed no correlation with it. In this study we characterize a fuel cell device designed to measure hydrogen concentration in a gas mixture. We present test results obtained in laboratory and in field trip, carried out to verify the major interferences of others reducing gas species, commonly present in volcanic emissions, in the measurement carried out with a hydrogen fuel cell sensor. Tests were performed at controlled temperature ad pressure conditions and at air saturated pressure vapour in the cell cathode. A new device to measure simultaneously hydrogen (H2) and carbon dioxide (CO2) concentrations in soil and in low temperature fumaroles in volcanic areas was proposed. The H2-detector is a hydrogen fuel cell, whereas CO2 is measured using an I.R. spectrometer. To build a continuous monitoring station of volcanic activity both sensors were put in a case together with a data logger. Our device has 0.2 mV ppm-1 sensitivity, accuracy of ± 5 ppm and about 10 ppm resolution whit respect to the hydrogen concentration. These instrumental characteristics were obtained applying a 500 ohm resistor to the external circuit that represents the best compromise between sensitivity, resolution, instrumental

  12. CO2 laser resurfacing. (United States)

    Fitzpatrick, R E


    The CO2 Laser offers a variety of unique features in resurfacing facial photodamage and acne scarring. These include hemostasis, efficient removal of the epidermis in a single pass, thermally induced tissue tightening, and safe, predictable tissue interaction. Knowledge of these mechanisms will result in the capability of using the CO2 laser effectively and safely whether the goal is superficial or deep treatment.

  13. CO2 uit buitenlucht

    NARCIS (Netherlands)

    Weel, van P.A.; Vanthoor, B.H.E.


    The supply of additional CO2 in a greenhouse will be restricted in the future. The concentration in outside air has risen above 400 ppm. This may open the possibility to blow this air through the canopy to increase growth. In this project, the vertical CO2 concentration was measured in a vertical

  14. Development of low-CO2-emission vehicles and utilization of local renewable energy for the vitalization of rural areas in Japan

    Directory of Open Access Journals (Sweden)

    Kenji Amagai


    Full Text Available Most of Japan's energy supply depends on imports from foreign countries, making the independence ratio of energy in Japan very low. The Fukushima nuclear power plant accident triggered by the Great East Japan Earthquake and Tsunami led to a mass shutdown of all the nuclear plants in Japan, a stoppage that is still in effect. In this paper, we review the energy supply situation and some social problems faced by rural areas in Japan. Given that lifestyles in rural Japan are reliant on automobiles, there is significant demand for the establishment of a sustainable mobility society. Furthermore, Japan is now entering an aging society ahead of other countries. In order to enhance the vitalization of rural areas and accelerate the establishment of sustainable society, our project developed low-CO2-emission vehicles (i.e., a single-driver EV [micro-EV] and a low-speed E-bus for elderly people and tourists through the cooperation of regional industries, a local university, and a city office. This paper also reports some trial test results on renewable energy utilization as the driving energy supply for these low-emission vehicles.

  15. Outsourcing CO2 Emissions (United States)

    Davis, S. J.; Caldeira, K. G.


    CO2 emissions from the burning of fossil fuels are the primary cause of global warming. Much attention has been focused on the CO2 directly emitted by each country, but relatively little attention has been paid to the amount of emissions associated with consumption of goods and services in each country. This consumption-based emissions inventory differs from the production-based inventory because of imports and exports of goods and services that, either directly or indirectly, involved CO2 emissions. Using the latest available data and reasonable assumptions regarding trans-shipment of embodied carbon through third-party countries, we developed a global consumption-based CO2 emissions inventory and have calculated associated consumption-based energy and carbon intensities. We find that, in 2004, 24% of CO2 emissions are effectively outsourced to other countries, with much of the developed world outsourcing CO2 emissions to emerging markets, principally China. Some wealthy countries, including Switzerland and Sweden, outsource over half of their consumption-based emissions, with many northern Europeans outsourcing more than three tons of emissions per person per year. The United States is both a big importer and exporter of emissions embodied in trade, outsourcing >2.6 tons of CO2 per person and at the same time as >2.0 tons of CO2 per person are outsourced to the United States. These large flows indicate that CO2 emissions embodied in trade must be taken into consideration when considering responsibility for increasing atmospheric greenhouse gas concentrations.

  16. CO2 clearance by membrane lungs. (United States)

    Sun, Liqun; Kaesler, Andreas; Fernando, Piyumindri; Thompson, Alex J; Toomasian, John M; Bartlett, Robert H


    Commercial membrane lungs are designed to transfer a specific amount of oxygen per unit of venous blood flow. Membrane lungs are much more efficient at removing CO2 than adding oxygen, but the range of CO2 transfer is rarely reported. Commercial membrane lungs were studied with the goal of evaluating CO2 removal capacity. CO2 removal was measured in 4 commercial membrane lungs under standardized conditions. CO2 clearance can be greater than 4 times that of oxygen at a given blood flow when the gas to blood flow ratio is elevated to 4:1 or 8:1. The CO2 clearance was less dependent on surface area and configuration than oxygen transfer. Any ECMO system can be used for selective CO2 removal.

  17. Atmospheric methane emissions coupled to a CO2-sink at an Arctic shelf seep area offshore NW Svalbard: Introducing the "Seep-Fertilization Hypothesis" (United States)

    Greinert, Jens; Pohlman, John; Silyakova, Anna; Mienert, Jürgen; Ruppel, Carolyn; Casso, Michael


    a base of 100km2 shows that coastal CH4-fluxes are higher than the seep-infested shelf. With fluxes of 10.2 kg d-1 of 100km2 of coastal area compared to 8.4 kg d-1 of the seeping shelf, both fluxes are limited. In sheep-equivalents (SE, one sheep releases about 15g CH4 into the atmosphere a day), the studied seeping shelf of 187 km2 equals 1100 SE. Even more surprising, we found a clear correlation between CH4 supersaturation and CO2 undersaturation in surface waters of the shallow seep. First budget calculations show that the seep area, like the coastal zone, is a net greenhouse gas sink. We hypothesize that an as yet unknown product or process associated with the emanation of methane from the seafloor stimulates primary production that leads to enhanced CO2 undersaturation in the vicinity of the seep. Upcoming studies are planned to test this 'Seep Fertilization Hypothesis' and consider the fate and cycling of other components of the seep-associated carbon cycle.

  18. Responses of growth, photosynthesis and VOC emissions of Pinus tabulaeformis Carr. Exposure to elevated CO2 and/or elevated O3 in an urban area. (United States)

    Xu, Sheng; Chen, Wei; Huang, Yanqing; He, Xingyuan


    Responses of growth, photosynthesis and emission of volatile organic compounds of Pinus tabulaeformis exposed to elevated CO(2) (700 ppm) and O(3) (80 ppb) were studied in open top chambers. Elevated CO(2) increased growth, but it did not significantly (p > 0.05) affect net photosynthetic rate, stomatal conductance, chlorophyll content, the maximum quantum yield of photosystem II, or the effective quantum yield of photosystem II electron transport after 90 d of gas exposure. Elevated O(3) decreased growth (by 42.2% in needle weight and 25.8% in plant height), net photosynthetic rate and stomatal conductance after 90 d of exposure, but its negative effects were alleviated by elevated CO(2). Elevated O(3) significantly (p < 0.05) increased the emission rate of volatile organic compounds, which may be a helpful response to protect photosynthetic apparatus against O(3) damage.

  19. Capnography: monitoring CO2. (United States)

    Casey, Georgina


    MONITORING RESPIRATORY and metabolic function by using capnography to measure end tidal carbon dioxide is standard practice in anaesthesia. It is also becoming more common in intensive care units and during procedural sedation. End tidal carbon dioxide (EtCO2) monitoring may also be used to assess effectiveness of cardiopulmonary resuscitation. Capnography is now emerging in general medical and surgical wards to monitor respiratory depression in patients using opioid analgesics. Using EtCO2 to monitor respiratory function offers many benefits over pulse oximetry. It is important to understand the differences between these two monitoring methods, and why capnography is increasingly favoured in many situations. An understanding of the physiological processes involved in CO2 excretion allows nurses to use capnography in a safe and meaningful way, while monitoring at-risk patients in acute care.

  20. CO2-strategier

    DEFF Research Database (Denmark)

    Jørgensen, Michael Søgaard


    I 2007 henvendte Lyngby-Taarbæk kommunens Agenda 21 koordinator sig til Videnskabsbutikken og spurgte om der var interesse for at samarbejde om CO2-strategier. Da Videnskabsbutikken DTU er en åben dør til DTU for borgerne og deres organisationer, foreslog Videnskabsbutikken DTU at Danmarks...... Naturfredningsforening’s lokalkomité for Lyngby blev en del af samarbejdet for at få borgerne i kommunen involveret i arbejdet med at udvikle strategier for reduktion af CO2. Siden sommeren 2007 har Videnskabsbutikken DTU, Lyngby-Taarbæk kommune og Danmarks Naturfredningsforening i Lyngby-Taarbæk samarbejdet om analyse...... og innovation i forhold til CO2-strategier....

  1. CO2 cycle (United States)

    Titus, Timothy N.; Byrne, Shane; Colaprete, Anthony; Forget, Francois; Michaels, Timothy I.; Prettyman, Thomas H.


    This chapter discusses the use of models, observations, and laboratory experiments to understand the cycling of CO2 between the atmosphere and seasonal Martian polar caps. This cycle is primarily controlled by the polar heat budget, and thus the emphasis here is on its components, including solar and infrared radiation, the effect of clouds (water- and CO2-ice), atmospheric transport, and subsurface heat conduction. There is a discussion about cap properties including growth and regression rates, albedos and emissivities, grain sizes and dust and/or water-ice contamination, and curious features like cold gas jets and araneiform (spider-shaped) terrain. The nature of the residual south polar cap is discussed as well as its long-term stability and ability to buffer atmospheric pressures. There is also a discussion of the consequences of the CO2 cycle as revealed by the non-condensable gas enrichment observed by Odyssey and modeled by various groups.

  2. Characterizing CH4, CO2 and N2O emission from barn feeding Tibetan sheep in Tibetan alpine pastoral area in cold season (United States)

    Xu, Tianwei; Zhao, Na; Hu, Linyong; Xu, Shixiao; Liu, Hongjin; Ma, Li; Zhao, Xinquan


    Herein, methane (CH4), carbon dioxide (CO2) and nitrous oxide (N2O) emission from different aged barn feeding Tibetan sheep were characterized using a respiration chamber in combination with gas chromatograph method in cold season of 2013. This work was based on measuring the increase of gas concentration inside respiration chamber by the means of gas chromatograph. Results indicated that diurnal CH4 emission patterns for barn feeding Tibetan sheep were driven by feeding schedule, diurnal CO2 emission patterns were relatively stable with two slight emission peaks, diurnal N2O emission patterns were driven by the variation of temperature inside chamber. Diurnal CH4 emission rates were 17.65, 19.49 and 21.06 g sheep-1 d-1 for yearling, two-year and three-year barn feeding Tibetan sheep, account for 6.15%, 5.76% and 5.45% of their daily gross energy intakes, respectively. Diurnal CO2 emission rates were 526.88, 588.43 and 640.66 g sheep-1 d-1 for yearling, two-year and three-year barn feeding Tibetan sheep, respectively. Diurnal N2O emission rates were 1.64, 1.25 and 1.05 mg sheep-1 d-1 for yearling, two-year and three-year barn feeding Tibetan sheep, respectively. Three-year barn feeding Tibetan sheep released more CO2-eq on per unit BW and BW0.75 gain basis.

  3. CO2NSL (Datalogger)

    DEFF Research Database (Denmark)

    Andersen, Sune Sick

    ,1500 street lamps around Copenhagen will be changed for light sources with low power consumption. Technical and Environmental turn down the energy as a part of Copenhagen goal of reducing the citys CO2 emissions by 20 percent by the end of year 2015. But how much power will the new lamps comsume? And can...

  4. CO2-neutral fuels

    Directory of Open Access Journals (Sweden)

    Goede A. P. H.


    Full Text Available The need for storage of renewable energy (RE generated by photovoltaic, concentrated solar and wind arises from the fact that supply and demand are ill-matched both geographically and temporarily. This already causes problems of overcapacity and grid congestion in countries where the fraction of RE exceeds the 20% level. A system approach is needed, which focusses not only on the energy source, but includes conversion, storage, transport, distribution, use and, last but not least, the recycling of waste. Furthermore, there is a need for more flexibility in the energy system, rather than relying on electrification, integration with other energy systems, for example the gas network, would yield a system less vulnerable to failure and better adapted to requirements. For example, long-term large-scale storage of electrical energy is limited by capacity, yet needed to cover weekly to seasonal demand. This limitation can be overcome by coupling the electricity net to the gas system, considering the fact that the Dutch gas network alone has a storage capacity of 552 TWh, sufficient to cover the entire EU energy demand for over a month. This lecture explores energy storage in chemicals bonds. The focus is on chemicals other than hydrogen, taking advantage of the higher volumetric energy density of hydrocarbons, in this case methane, which has an approximate 3.5 times higher volumetric energy density. More importantly, it allows the ready use of existing gas infrastructure for energy storage, transport and distribution. Intermittent wind electricity generated is converted into synthetic methane, the Power to Gas (P2G scheme, by splitting feedstock CO2 and H2O into synthesis gas, a mixture of CO and H2. Syngas plays a central role in the synthesis of a range of hydrocarbon products, including methane, diesel and dimethyl ether. The splitting is accomplished by innovative means; plasmolysis and high-temperature solid oxygen electrolysis. A CO2-neutral fuel

  5. CO2-neutral fuels (United States)

    Goede, A. P. H.


    The need for storage of renewable energy (RE) generated by photovoltaic, concentrated solar and wind arises from the fact that supply and demand are ill-matched both geographically and temporarily. This already causes problems of overcapacity and grid congestion in countries where the fraction of RE exceeds the 20% level. A system approach is needed, which focusses not only on the energy source, but includes conversion, storage, transport, distribution, use and, last but not least, the recycling of waste. Furthermore, there is a need for more flexibility in the energy system, rather than relying on electrification, integration with other energy systems, for example the gas network, would yield a system less vulnerable to failure and better adapted to requirements. For example, long-term large-scale storage of electrical energy is limited by capacity, yet needed to cover weekly to seasonal demand. This limitation can be overcome by coupling the electricity net to the gas system, considering the fact that the Dutch gas network alone has a storage capacity of 552 TWh, sufficient to cover the entire EU energy demand for over a month. This lecture explores energy storage in chemicals bonds. The focus is on chemicals other than hydrogen, taking advantage of the higher volumetric energy density of hydrocarbons, in this case methane, which has an approximate 3.5 times higher volumetric energy density. More importantly, it allows the ready use of existing gas infrastructure for energy storage, transport and distribution. Intermittent wind electricity generated is converted into synthetic methane, the Power to Gas (P2G) scheme, by splitting feedstock CO2 and H2O into synthesis gas, a mixture of CO and H2. Syngas plays a central role in the synthesis of a range of hydrocarbon products, including methane, diesel and dimethyl ether. The splitting is accomplished by innovative means; plasmolysis and high-temperature solid oxygen electrolysis. A CO2-neutral fuel cycle is

  6. CO2 capture, transport, storage and utilisation

    NARCIS (Netherlands)

    Brouwer, J.H.


    Reducing CO2 emissions requires an integrated CO2 management approach. The dependency between the different industry sectors is higher than commonly acknowledged and covers all areas; capture, transport, storage and utilisation. TNO is one of Europe’s largest independent research organisations and

  7. CO2 capture in different carbon materials. (United States)

    Jiménez, Vicente; Ramírez-Lucas, Ana; Díaz, José Antonio; Sánchez, Paula; Romero, Amaya


    In this work, the CO(2) capture capacity of different types of carbon nanofibers (platelet, fishbone, and ribbon) and amorphous carbon have been measured at 26 °C as at different pressures. The results showed that the more graphitic carbon materials adsorbed less CO(2) than more amorphous materials. Then, the aim was to improve the CO(2) adsorption capacity of the carbon materials by increasing the porosity during the chemical activation process. After chemical activation process, the amorphous carbon and platelet CNFs increased the CO(2) adsorption capacity 1.6 times, whereas fishbone and ribbon CNFs increased their CO(2) adsorption capacity 1.1 and 8.2 times, respectively. This increase of CO(2) adsorption capacity after chemical activation was due to an increase of BET surface area and pore volume in all carbon materials. Finally, the CO(2) adsorption isotherms showed that activated amorphous carbon exhibited the best CO(2) capture capacity with 72.0 wt % of CO(2) at 26 °C and 8 bar.

  8. [Differences and sources of CO2 concentration, carbon and oxygen stable isotope composition between inside and outside of a green space system and influencing factors in an urban area]. (United States)

    Sun, Shou-jia; Meng, Ping; Zhang, Jin-song; Shu, Jian-hua; Zheng, Ning


    The off-axis integrated cavity output spectroscopy technique was used to measure air CO2 concentration, stable carbon (δ13C) and oxygen (δ18C) isotope ratios on the Fourth Ring Road (FRR) and in the green space system of Beijing Institute of Landscape Architecture (BILA) in summer and winter seasons. The variations of CO2 concentration, δ13C value, δ18C value and the differences of them between the FRR and the BILA, which were correlated with traffic volume and meteorological factors, were analyzed at half-hour timescale. The results showed that traffic volume on the FRR was large both in summer and winter with obvious morning and evening rush hours, and more than 150 thousands vehicles were observed everyday during the observation periods. Diurnal variation of the CO2 concentration showed a two-peak curve both on the FRR and in the green space system of the BILA. In contrast, diurnal variation of δ13C value was a two-trough curve while diurnal variation of δ18O value was a single-trough curve. The differences of CO2 concentration, δ13C value and δ18O value between the FRR and the green space system of BILA in summer were greater than those in winter. The carbon isotope partitioning results showed that in summer vehicle exhaust contributed 64.9% to total atmospheric CO2 of the FRR during measurement time, while heterotrophic respiration contributed 56.3% to total atmospheric CO2 of the green space system in BILA. However, in winter atmospheric CO2 from both the FRR and green space system mostly came from vehicle exhaust. Stepwise regression analysis indicated that differences of CO2 concentration between the FRR and green space system were significantly related to vehicle volume and solar radiation at half-hour timescale, while solar radiation and relative humidity were the main meteorological factors causing δ13 and δ18O differences between the FRR and green space system. Plants in the green space system strongly assimilated CO2 from fossil fuel burning

  9. CO2 sensing and CO2 regulation of stomatal conductance: advances and open questions (United States)

    Engineer, Cawas; Hashimoto-Sugimoto, Mimi; Negi, Juntaro; Israelsson-Nordstrom, Maria; Azoulay-Shemer, Tamar; Rappel, Wouter-Jan; Iba, Koh; Schroeder, Julian


    Guard cells form epidermal stomatal gas exchange valves in plants and regulate the aperture of stomatal pores in response to changes in the carbon dioxide (CO2) concentration in leaves. Moreover, the development of stomata is repressed by elevated CO2 in diverse plant species. Evidence suggests that plants can sense CO2 concentration changes via guard cells and via mesophyll tissues in mediating stomatal movements. We review new discoveries and open questions on mechanisms mediating CO2-regulated stomatal movements and CO2 modulation of stomatal development, which together function in CO2-regulation of stomatal conductance and gas exchange in plants. Research in this area is timely in light of the necessity of selecting and developing crop cultivars which perform better in a shifting climate. PMID:26482956

  10. Incorporation of digestate selectively affects physical, chemical and biochemical properties along with CO2 emissions in two contrasting agricultural soils in the Mediterranean area. (United States)

    Badagliacca, Giuseppe; Petrovičová, Beatrix; Zumbo, Antonino; Romeo, Maurizio; Gullì, Tommaso; Martire, Luigi; Monti, Michele; Gelsomino, Antonio


    Soil incorporation of digestate represents a common practice to dispose the solid residues from biogas producing plants. Although the digestate constitutes a residual biomass rich in partially decomposed organic matter and nutrients, whose content is often highly variable and unbalanced, its potential fertilizer value can vary considerably depending on the recipient soil properties. The aim of the work was to assess short-term changes in the fertility status of two contrasting agricultural soils in Southern Italy (Calabria), olive grove on a clay acid soil (Typic Hapludalfs) and citrus grove on a sandy loam slightly calcareous soil (Typic Xerofluvents), respectively located along the Tyrrhenian or the Ionian coast. An amount of 30 t ha-1 digestate was incorporated into the soil by ploughing. Unamended tilled soil was used as control. The following soil physical, chemical and biochemical variables were monitored during the experimental period: aggregate stability, pH, electrical conductivity, organic C, total N, Olsen-P, N-NH4+, N-NO3-, microbial biomass carbon (MBC), microbial biomass nitrogen (MBN) and the mineralization quotient (qM). Moreover, in the olive grove soil CO2 emissions have been continuously measured at field scale for 5 months after digestate incorporation. Digestate application in both site exerted a significant positive effect on soil aggregate stability with a greater increase in clay than in sandy loam soil. Over the experimental period, digestate considerably affected the nutrient availability, namely Olsen-P, N-NH4+, N-NO3-, along with the electrical conductivity. The soil type increased significantly the soil N-NH4+ content, which was always higher in the olive than in citrus grove soil. N-NO3- content was markedly increased soon after the organic amendment, followed by a seasonal decline more evident in the sandy loam soil. Moreover, soil properties as CaCO3 content and the pH selectively affected the Olsen-P dynamics. No appreciable

  11. A cost effective CO2 strategy

    DEFF Research Database (Denmark)

    In January 2008 the Danish Government decided to prepare a strategy for reducing CO2 from the transport sector in Denmark. The decision to prepare the strategy was part of the follow-up to the national Infrastructure Commission report of January 2008. The preparations have been chaired...... by the Ministry of Transport, with the Technical University of Denmark as one of the main contributors. The CO2-strategy was to be based on the principle of cost-effectiveness. A model was set up to assist in the assessment. The model consists of a projection of CO2-emissions from road and rail modes from 2020......, a scenario-part and a cost-benefit part. Air and sea modes are not analyzed. The model adopts a bottom-up approach to allow a detailed assessment of transport policy measures. Four generic areas of intervention were identified and the likely effect on CO2 emissions, socioeconomic efficiency and other...

  12. Forecasting global atmospheric CO2 (United States)

    Agustí-Panareda, A.; Massart, S.; Chevallier, F.; Boussetta, S.; Balsamo, G.; Beljaars, A.; Ciais, P.; Deutscher, N. M.; Engelen, R.; Jones, L.; Kivi, R.; Paris, J.-D.; Peuch, V.-H.; Sherlock, V.; Vermeulen, A. T.; Wennberg, P. O.; Wunch, D.


    A new global atmospheric carbon dioxide (CO2) real-time forecast is now available as part of the pre-operational Monitoring of Atmospheric Composition and Climate - Interim Implementation (MACC-II) service using the infrastructure of the European Centre for Medium-Range Weather Forecasts (ECMWF) Integrated Forecasting System (IFS). One of the strengths of the CO2 forecasting system is that the land surface, including vegetation CO2 fluxes, is modelled online within the IFS. Other CO2 fluxes are prescribed from inventories and from off-line statistical and physical models. The CO2 forecast also benefits from the transport modelling from a state-of-the-art numerical weather prediction (NWP) system initialized daily with a wealth of meteorological observations. This paper describes the capability of the forecast in modelling the variability of CO2 on different temporal and spatial scales compared to observations. The modulation of the amplitude of the CO2 diurnal cycle by near-surface winds and boundary layer height is generally well represented in the forecast. The CO2 forecast also has high skill in simulating day-to-day synoptic variability. In the atmospheric boundary layer, this skill is significantly enhanced by modelling the day-to-day variability of the CO2 fluxes from vegetation compared to using equivalent monthly mean fluxes with a diurnal cycle. However, biases in the modelled CO2 fluxes also lead to accumulating errors in the CO2 forecast. These biases vary with season with an underestimation of the amplitude of the seasonal cycle both for the CO2 fluxes compared to total optimized fluxes and the atmospheric CO2 compared to observations. The largest biases in the atmospheric CO2 forecast are found in spring, corresponding to the onset of the growing season in the Northern Hemisphere. In the future, the forecast will be re-initialized regularly with atmospheric CO2 analyses based on the assimilation of CO2 products retrieved from satellite measurements and

  13. Differential Absorption Lidar (DIAL) in Alberta: A New Remote Sensing Tool for Wide Area Measurement of Particulates, CO2, and CH4 Emissions from Energy Extraction and Production Sites (United States)

    Wojcik, M.; Lemon, R.; Crowther, B. G.; Valupadas, P.; Fu, L.; Yang, Z.; Huda, Q.; Leung, B.; Chambers, A.


    Alberta Environmental Monitoring, Evaluation and Reporting Agency (AEMERA) in cooperation with the Space Dynamics Laboratory (SDL) of Utah State University, have developed a mobile DIAL sensor designed specifically for particle, CO2 and CH4 emissions measurement. Rapid expansion of the oil and gas industry in Alberta, including the oil sands, has challenged the Alberta Government to keep pace in its efforts to monitor and mitigate the environmental impacts of development. The limitations of current monitoring systems has pushed the provincial government to seek out advanced sensing technologies such as differential absorption lidar (DIAL) to help assess the impact of energy development and industrial operations. This instrument is housed inside a 36' trailer and can be quickly staged and used to characterize source emissions and to locate fugitive leaks. DIAL is capable of measuring concentrations for carbon dioxide (CO2) and methane (CH4) at ranges of up to 3 km with a spatial resolution of 1.5 m. DIAL can map both CO2 and CH4, as well as particulate matter (PM) in a linear fashion; by scanning the laser beam in both azimuth and elevation, DIAL can create images of emissions concentrations and ultimately can be used to determine emission factors, locate fugitive leaks, assess plume dispersion and confirm air dispersion modeling. The DIAL system has been deployed at a landfill, a coal-fired power plant, and an oil sands production area. A system overview of the DIAL instrument and recent results will be discussed.

  14. Changing retail business models and the impact on CO2 emissions from transport : e-commerce deliveries in urban and rural areas. (United States)


    While researchers have found relationships between passenger vehicle travel and smart growth development patterns, : similar relationships have not been extensively studied between urban form and goods movement trip making patterns. In : rural areas,...

  15. CO2 as a refrigerant

    CERN Document Server


    A first edition, the IIR guide “CO2 as a Refrigerant” highlights the application of carbon dioxide in supermarkets, industrial freezers, refrigerated transport, and cold stores as well as ice rinks, chillers, air conditioning systems, data centers and heat pumps. This guide is for design and development engineers needing instruction and inspiration as well as non-technical experts seeking background information on a specific topic. Written by Dr A.B. Pearson, a well-known expert in the field who has considerable experience in the use of CO2 as a refrigerant. Main topics: Thermophysical properties of CO2 – Exposure to CO2, safety precautions – CO2 Plant Design – CO2 applications – Future prospects – Standards and regulations – Bibliography.

  16. The Li–CO2 battery: a novel method for CO2 capture and utilization

    KAUST Repository

    Xu, Shaomao


    We report a novel primary Li-CO2 battery that consumes pure CO2 gas as its cathode. The battery exhibits a high discharge capacity of around 2500 mA h g-1 at moderate temperatures. At 100 °C the discharge capacity is close to 1000% higher than that at 40 °C, and the temperature dependence is significantly weaker for higher surface area carbon cathodes. Ex-situ FTIR and XRD analyses convincingly show that lithium carbonate (Li2CO3) is the main component of the discharge product. The feasibility of similar primary metal-CO2 batteries based on earth abundant metal anodes, such as Al and Mg, is demonstrated. The metal-CO2 battery platform provides a novel approach for simultaneous capturing of CO2 emissions and producing electrical energy. © 2013 The Royal Society of Chemistry.

  17. CO2 efflux from cleared mangrove peat.

    Directory of Open Access Journals (Sweden)

    Catherine E Lovelock

    Full Text Available BACKGROUND: CO(2 emissions from cleared mangrove areas may be substantial, increasing the costs of continued losses of these ecosystems, particularly in mangroves that have highly organic soils. METHODOLOGY/PRINCIPAL FINDINGS: We measured CO(2 efflux from mangrove soils that had been cleared for up to 20 years on the islands of Twin Cays, Belize. We also disturbed these cleared peat soils to assess what disturbance of soils after clearing may have on CO(2 efflux. CO(2 efflux from soils declines from time of clearing from ∼10,600 tonnes km(-2 year(-1 in the first year to 3000 tonnes km(2 year(-1 after 20 years since clearing. Disturbing peat leads to short term increases in CO(2 efflux (27 umol m(-2 s(-1, but this had returned to baseline levels within 2 days. CONCLUSIONS/SIGNIFICANCE: Deforesting mangroves that grow on peat soils results in CO(2 emissions that are comparable to rates estimated for peat collapse in other tropical ecosystems. Preventing deforestation presents an opportunity for countries to benefit from carbon payments for preservation of threatened carbon stocks.

  18. Understanding and predicting trends in north Atlantic CO2 uptake (United States)

    Halloran, Paul; Lebehot, Alice; Watson, Andy; McNeall, Doug; Ford, David; Schuster, Ute


    To determine the maximum carbon dioxide (CO2) emissions society must commit to, to remain below a given atmospheric CO2 threshold, the scientific community must robustly quantify what proportion of human emitted CO2 will be taken up by the land and marine carbon reservoirs. The North Atlantic Ocean is the most intense marine sink of anthropogenic CO2 on the planet, accounting for about a fifth of the global oceanic anthropogenic CO2 uptake, despite covering just 15% of the global ocean area. Carefully assessing uncertainties, we quantify the real-world trend in North Atlantic CO2 uptake over the past two decades. Comparing this to results from state-of-the-art climate models, we find that models are systematically underestimating the observed CO2 uptake trend. By performing a set of targeted climate model simulations, we diagnose and account for this bias, and produce the first set of observation-informed future ocean CO2 uptake predictions.

  19. Atmospheric measurement of point source fossil fuel CO2 emissions (United States)

    Turnbull, J. C.; Keller, E. D.; Baisden, W. T.; Brailsford, G.; Bromley, T.; Norris, M.; Zondervan, A.


    We use the Kapuni Gas Treatment Plant to examine methodologies for atmospheric monitoring of point source fossil fuel CO2 (CO2ff) emissions. The Kapuni plant, located in rural New Zealand, removes CO2 from locally extracted natural gas and vents that CO2 to the atmosphere, at a rate of ~0.1 Tg carbon per year. The plant is located in a rural dairy farming area, with no other significant CO2ff sources nearby, but large, diurnally varying, biospheric CO2 fluxes from the surrounding highly productive agricultural grassland. We made flask measurements of CO2 and 14CO2 (from which we derive the CO2ff component) and in situ measurements of CO2 downwind of the Kapuni plant, using a Helikite to sample transects across the emission plume from the surface up to 100 m a.g.l. We also determined the surface CO2ff content averaged over several weeks from the 14CO2 content of grass samples collected from the surrounding area. We use the WindTrax plume dispersion model to compare the atmospheric observations with the emissions reported by the Kapuni plant, and to determine how well atmospheric measurements can constrain the emissions. The model has difficulty accurately capturing the fluctuations and short-term variability in the Helikite samples, but does quite well in representing the observed CO2ff in 15 min averaged surface flask samples and in ~1 week integrated CO2ff averages from grass samples. In this pilot study, we found that using grass samples, the modeled and observed CO2ff emissions averaged over one week agreed to within 30%. The results imply that greater verification accuracy may be achieved by including more detailed meteorological observations and refining 14CO2 sampling strategies.

  20. Background Air Mass Can Impact U.S. Northeastern Corridor Urban GHG Emission Analysis: A Study to Isolate Incoming CO2 Air Mass with Tower Measurements in the Washington DC/Baltimore Area (United States)

    Mueller, K. L.; Lopez-Coto, I.; Yadav, V.


    City governments worldwide have made commitments to cut over 3GtCO2e above their respective national government's Nationally Determined Contributions (NDCs). To help assess the progress of such activities, atmospheric GHG observations may be vital as they contain true emission signatures. Since GHG observations contain the sum of city, regional and global sources and sinks, the city emission signal must first be isolated in the observations to render them useful for evaluating urban mitigation policies. This is especially true for regions that are downwind from large sources and sinks, such as the U.S. Northeastern corridor (NEC). Regional and global signals are generally removed through the use of tower locations that observe "background" air masses. To site these background tower locations, many urban studies use average wind directions which may not be suitable for cities in the NEC. In this work, we focus on the Washington DC/Baltimore urban area. We assume a 12 tower network that is currently being installed to quantify CO2 emissions. Using the Weather Research Forecasting model coupled to the Stochastic Time-Inverted Lagrangian Transport Model, we create synthetic observations at these 12 locations using Vulcan model sources and Carbon Tracker sinks for a 500km radius area around Washington DC/Baltimore during February and July 2013. Using these observations, we assess the impact of regional and local sources and sinks on network measurements. We then identify possible background tower locations and generate synthetic data at these sites. Using a statistical model, we select four background towers that have the greatest likelihood of capturing incoming CO2 air mass. This works shows that CO2 emission estimates for Washington DC/Baltimore will be significantly biased if the background air masses are not isolated properly. We also show that the NEC observations can be impacted by both intermediate and far field sources and sinks. The additional variability in

  1. Enzymes in CO2 Capture

    DEFF Research Database (Denmark)

    Fosbøl, Philip Loldrup; Gladis, Arne; Thomsen, Kaj

    The enzyme Carbonic Anhydrase (CA) can accelerate the absorption rate of CO2 into aqueous solutions by several-fold. It exist in almost all living organisms and catalyses different important processes like CO2 transport, respiration and the acid-base balances. A new technology in the field...... of carbon capture is the application of enzymes for acceleration of typically slow ternary amines or inorganic carbonates. There is a hidden potential to revive currently infeasible amines which have an interesting low energy consumption for regeneration but too slow kinetics for viable CO2 capture. The aim...... of this work is to discuss the measurements of kinetic properties for CA promoted CO2 capture solvent systems. The development of a rate-based model for enzymes will be discussed showing the principles of implementation and the results on using a well-known ternary amine for CO2 capture. Conclusions...

  2. CO2 Sequestration short course

    Energy Technology Data Exchange (ETDEWEB)

    DePaolo, Donald J. [Lawrence Berkeley National Laboratory; Cole, David R [The Ohio State University; Navrotsky, Alexandra [University of California-Davis; Bourg, Ian C [Lawrence Berkeley National Laboratory


    Given the public’s interest and concern over the impact of atmospheric greenhouse gases (GHGs) on global warming and related climate change patterns, the course is a timely discussion of the underlying geochemical and mineralogical processes associated with gas-water-mineral-interactions encountered during geological sequestration of CO2. The geochemical and mineralogical processes encountered in the subsurface during storage of CO2 will play an important role in facilitating the isolation of anthropogenic CO2 in the subsurface for thousands of years, thus moderating rapid increases in concentrations of atmospheric CO2 and mitigating global warming. Successful implementation of a variety of geological sequestration scenarios will be dependent on our ability to accurately predict, monitor and verify the behavior of CO2 in the subsurface. The course was proposed to and accepted by the Mineralogical Society of America (MSA) and The Geochemical Society (GS).

  3. Structural controls on fluid circulation at the Caviahue-Copahue Volcanic Complex (CCVC) geothermal area (Chile-Argentina), revealed by soil CO2 and temperature, self-potential, and helium isotopes (United States)

    Roulleau, Emilie; Bravo, Francisco; Pinti, Daniele L.; Barde-Cabusson, Stéphanie; Pizarro, Marcela; Tardani, Daniele; Muñoz, Carlos; Sanchez, Juan; Sano, Yuji; Takahata, Naoto; de la Cal, Federico; Esteban, Carlos; Morata, Diego


    Natural geothermal systems are limited areas characterized by anomalously high heat flow caused by recent tectonic or magmatic activity. The heat source at depth is the result of the emplacement of magma bodies, controlled by the regional volcano-tectonic setting. In contrast, at a local scale a well-developed fault-fracture network favors the development of hydrothermal cells, and promotes the vertical advection of fluids and heat. The Southern Volcanic Zone (SVZ), straddling Chile and Argentina, has an important, yet unexplored and undeveloped geothermal potential. Studies on the lithological and tectonic controls of the hydrothermal circulation are therefore important for a correct assessment of the geothermal potential of the region. Here, new and dense self-potential (SP), soil CO2 and temperature (T) measurements, and helium isotope data measured in fumaroles and thermal springs from the geothermal area located in the north-eastern flank of the Copahue volcanic edifice, within the Caviahue Caldera (the Caviahue-Copahue Volcanic Complex - CCVC) are presented. Our results allowed to the constraint of the structural origin of the active thermal areas and the understanding of the evolution of the geothermal system. NE-striking faults in the area, characterized by a combination of SP, CO2, and T maxima and high 3He/4He ratios (up to 8.16 ± 0.21Ra, whereas atmospheric Ra is 1.382 × 10- 6), promote the formation of vertical permeability preferential pathways for fluid circulation. WNW-striking faults represent low-permeability pathways for hydrothermal fluid ascent, but promote infiltration of meteoric water at shallow depths, which dilute the hydrothermal input. The region is scattered with SP, CO2, and T minima, representing self-sealed zones characterized by impermeable altered rocks at depth, which create local barriers for fluid ascent. The NE-striking faults seem to be associated with the upflowing zones of the geothermal system, where the boiling process

  4. CO2 dispersion modelling over Paris region within the CO2-MEGAPARIS project

    Directory of Open Access Journals (Sweden)

    C. Lac


    Full Text Available Accurate simulation of the spatial and temporal variability of tracer mixing ratios over urban areas is a challenging and interesting task needed to be performed in order to utilise CO2 measurements in an atmospheric inverse framework and to better estimate regional CO2 fluxes. This study investigates the ability of a high-resolution model to simulate meteorological and CO2 fields around Paris agglomeration during the March field campaign of the CO2-MEGAPARIS project. The mesoscale atmospheric model Meso-NH, running at 2 km horizontal resolution, is coupled with the Town Energy Balance (TEB urban canopy scheme and with the Interactions between Soil, Biosphere and Atmosphere CO2-reactive (ISBA-A-gs surface scheme, allowing a full interaction of CO2 modelling between the surface and the atmosphere. Statistical scores show a good representation of the urban heat island (UHI with stronger urban–rural contrasts on temperature at night than during the day by up to 7 °C. Boundary layer heights (BLH have been evaluated on urban, suburban and rural sites during the campaign, and also on a suburban site over 1 yr. The diurnal cycles of the BLH are well captured, especially the onset time of the BLH increase and its growth rate in the morning, which are essential for tall tower CO2 observatories. The main discrepancy is a small negative bias over urban and suburban sites during nighttime (respectively 45 m and 5 m, leading to a few overestimations of nocturnal CO2 mixing ratios at suburban sites and a bias of +5 ppm. The diurnal CO2 cycle is generally well captured for all the sites. At the Eiffel tower, the observed spikes of CO2 maxima occur every morning exactly at the time at which the atmospheric boundary layer (ABL growth reaches the measurement height. At suburban ground stations, CO2 measurements exhibit maxima at the beginning and at the end of each night, when the ABL is fully contracted, with a strong spatio-temporal variability. A

  5. Research on the physical properties of supercritical CO2 and the log evaluation of CO2-bearing volcanic reservoirs (United States)

    Pan, Baozhi; Lei, Jian; Zhang, Lihua; Guo, Yuhang


    CO2-bearing reservoirs are difficult to distinguish from other natural gas reservoirs during gas explorations. Due to the lack of physical parameters for supercritical CO2, particularly neutron porosity, at present a hydrocarbon gas log evaluation method is used to evaluate CO2-bearing reservoirs. The differences in the physical properties of hydrocarbon and CO2 gases have led to serious errors. In this study, the deep volcanic rock of the Songliao Basin was the research area. In accordance with the relationship between the density and acoustic velocity of supercritical CO2 and temperature and pressure, the regularity between the CO2 density and acoustic velocity, and the depth of the area was established. A neutron logging simulation was completed based on a Monte Carlo method. Through the simulation of the wet limestone neutron logging, the relationship between the count rate ratio of short and long space detectors and the neutron porosity was acquired. Then, the nature of the supercritical CO2 neutron moderation was obtained. With consideration given to the complexity of the volcanic rock mineral composition, a volcanic rock volume model was established, and the matrix neutron and density parameters were acquired using the ECS log. The properties of CO2 were applied in the log evaluation of the CO2-bearing volcanic reservoirs in the southern Songliao Basin. The porosity and saturation of CO2 were obtained, and a reasonable application was achieved in the CO2-bearing reservoir.

  6. Connecting CO2. Feasibility study CO2 network Southwest Netherlands; Connecting CO2. Haalbaarheidsstudie CO2-netwerk Zuidwest-Nederland

    Energy Technology Data Exchange (ETDEWEB)

    Rutten, M.


    An overview is given of supply and demand of CO2 in the region Southwest Netherlands and the regions Antwerp and Gent in Belgium. Also attention is paid to possible connections between these regions [Dutch] Een inventarisatie wordt gegeven van vraag en aanbod van CO2 in de regio Zuidwest- Nederland en de regios Antwerpen en Gent in Belgie. Ook worden mogelijke koppelingen tussen de regios besproken.

  7. Atmospheric measurement of point source fossil CO2 emissions (United States)

    Turnbull, J. C.; Keller, E. D.; Baisden, T.; Brailsford, G.; Bromley, T.; Norris, M.; Zondervan, A.


    We use the Kapuni Gas Treatment Plant to examine methodologies for atmospheric monitoring of point source fossil fuel CO2 (CO2ff) emissions. The Kapuni plant, located in rural New Zealand, removes CO2 from locally extracted natural gas and vents that CO2 to the atmosphere, at a rate of ~0.1 Tg carbon per year. The plant is located in a rural dairy farming area, with no other significant CO2ff sources nearby, but large, diurnally varying, biospheric CO2 fluxes from the surrounding highly productive agricultural grassland. We made flask measurements of CO2 and 14CO2 (from which we derive the CO2ff component) and in situ measurements of CO2 downwind of the Kapuni plant, using a Helikite to sample transects across the emission plume from the surface up to 100 m above ground level. We also determined the surface CO2ff content averaged over several weeks from the 14C content of grass samples collected from the surrounding area. We use the WindTrax plume dispersion model to compare the atmospheric observations with the emissions reported by the Kapuni plant, and to determine how well atmospheric measurements can constrain the emissions. The model has difficulty accurately capturing the fluctuations and short-term variability in the Helikite samples, but does quite well in representing the observed CO2ff in 15 min averaged surface flask samples and in ~ one week integrated CO2ff averages from grass samples. In this pilot study, we found that using grass samples, the modeled and observed CO2ff emissions averaged over one week agreed to within 30%. The results imply that greater verification accuracy may be achieved by including more detailed meteorological observations and refining 14C sampling strategies.

  8. Use of sediment CO2 by submersed rooted plants. (United States)

    Winkel, Anders; Borum, Jens


    Submersed plants have different strategies to overcome inorganic carbon limitation. It is generally assumed that only small rosette species (isoetids) are able to utilize the high sediment CO(2) availability. The present study examined to what extent five species of submersed freshwater plants with different morphology and growth characteristics (Lobelia dortmanna, Lilaeopsis macloviana, Ludwigia repens, Vallisneria americana and Hydrocotyle verticillata) are able to support photosynthesis supplied by uptake of CO(2) from the sediment. Gross photosynthesis was measured in two-compartment split chambers with low inorganic carbon availability in leaf compartments and variable CO(2) availability (0 to >8 mmol L(-1)) in root compartments. Photosynthetic rates based on root-supplied CO(2) were compared with maximum rates obtained at saturating leaf CO(2) availability, and (14)C experiments were conducted for two species to localize bottlenecks for utilization of sediment CO(2). All species except Hydrocotyle were able to use sediment CO(2), however, with variable efficiency, and with the isoetid, Lobelia, as clearly the most effective and the elodeid, Ludwigia, as the least efficient. At a water column CO(2) concentration in equilibrium with air, Lobelia, Lilaeopsis and Vallisneria covered >75% of their CO(2) requirements by sediment uptake, and sediment CO(2) contributed substantially to photosynthesis at water CO(2) concentrations up to 1000 micromol L(-1). For all species except Ludwigia, the shoot to root ratio on an areal basis was the single factor best explaining variability in the importance of sediment CO(2). For Ludwigia, diffusion barriers limited uptake or transport from roots to stems and transport from stems to leaves. Submersed plants other than isoetids can utilize sediment CO(2), and small and medium sized elodeids with high root to shoot area in particular may benefit substantially from uptake of sediment CO(2) in low alkaline lakes.

  9. CO2 Sink/Source in the Indonesian Seas

    KAUST Repository

    Kartadikaria, Aditya R.


    Two distinct CO2 sink/source characteristics appeared from the compiled observed data 1984-2013 in the tropical Indonesian seas. The western part persistently emits CO2 to the atmosphere, while the eastern is rather dynamic which emits and absorbs smaller amount of CO2 to and from atmosphere, respectively. The segregation is proximal to the virtual Wallace line, where in the continental shelf is located. Lower salinity and higher silicate condition in the western part influenced the higher pCO2 condition in Java Sea. Temperature is found to have a limited influence to control different characteristic in the west and east, but SST change of 2.0 0C during La Ninã condition effectively reduced the source amount of CO2 by 50% compared to Normal year condition. Yet, during La Ninã, higher wind speed increases CO2 flux twice compared to Normal year. In the continental shelf area where CO2 sink area is found, 29 years data showed that pCO2 trend is increasing ±0.6-3.8 μatm/year. From this study, the overall areas have a significant source of CO2 of approximately 10 - 24 μatm.

  10. The CO2nnect activities (United States)

    Eugenia, Marcu


    Climate change is one of the biggest challenges we face today. A first step is the understanding the problem, more exactly what is the challenge and the differences people can make. Pupils need a wide competencies to meet the challenges of sustainable development - including climate change. The CO2nnect activities are designed to support learning which can provide pupils the abilities, skills, attitudes and awareness as well as knowledge and understanding of the issues. The project "Together for a clean and healthy world" is part of "The Global Educational Campaign CO2nnect- CO2 on the way to school" and it was held in our school in the period between February and October 2009. It contained a variety of curricular and extra-curricular activities, adapted to students aged from 11 to 15. These activities aimed to develop in students the necessary skills to understanding man's active role in improving the quality of the environment, putting an end to its degrading process and to reducing the effects of climate changes caused by the human intervention in nature, including transport- a source of CO2 pollution. The activity which I propose can be easily adapted to a wide range of age groups and linked to the curricula of many subjects: - Investigate CO2 emissions from travel to school -Share the findings using an international database -Compare and discuss CO2 emissions -Submit questions to a climate- and transport expert -Partner with other schools -Meet with people in your community to discuss emissions from transport Intended learning outcomes for pupils who participate in the CO2nnect campaign are: Understanding of the interconnected mobility- and climate change issue climate change, its causes and consequences greenhouse-gas emissions from transport and mobility the interlinking of social, environmental, cultural and economic aspects of the local transport system how individual choices and participation can contribute to creating a more sustainable development

  11. Natural analogue study of CO2 storage monitoring using probability statistics of CO2-rich groundwater chemistry (United States)

    Kim, K. K.; Hamm, S. Y.; Kim, S. O.; Yun, S. T.


    For confronting global climate change, carbon capture and storage (CCS) is one of several very useful strategies as using capture of greenhouse gases like CO2 spewed from stacks and then isolation of the gases in underground geologic storage. CO2-rich groundwater could be produced by CO2 dissolution into fresh groundwater around a CO2 storage site. As consequence, natural analogue studies related to geologic storage provide insights into future geologic CO2 storage sites as well as can provide crucial information on the safety and security of geologic sequestration, the long-term impact of CO2 storage on the environment, and field operation and monitoring that could be implemented for geologic sequestration. In this study, we developed CO2 leakage monitoring method using probability density function (PDF) by characterizing naturally occurring CO2-rich groundwater. For the study, we used existing data of CO2-rich groundwaters in different geological regions (Gangwondo, Gyeongsangdo, and Choongchungdo provinces) in South Korea. Using PDF method and QI (quantitative index), we executed qualitative and quantitative comparisons among local areas and chemical constituents. Geochemical properties of groundwater with/without CO2 as the PDF forms proved that pH, EC, TDS, HCO3-, Ca2+, Mg2+, and SiO2 were effective monitoring parameters for carbonated groundwater in the case of CO2leakage from an underground storage site. KEY WORDS: CO2-rich groundwater, CO2 storage site, monitoring parameter, natural analogue, probability density function (PDF), QI_quantitative index Acknowledgement This study was supported by the "Basic Science Research Program through the National Research Foundation of Korea (NRF), which is funded by the Ministry of Education (NRF-2013R1A1A2058186)" and the "R&D Project on Environmental Management of Geologic CO2 Storage" from KEITI (Project number: 2014001810003).

  12. Sensitivity analysis of the impacts of operational and geologic conditions on Area of Review (AOR, Post Injection Site Care (PISC and Risk associated with CO2 Sequestration in South-region of United States

    Directory of Open Access Journals (Sweden)

    Danilo Andrés Arcentales Bastidas


    Full Text Available For anthropogenic carbon dioxide (CO2 capture is important to consider: gas storage’s formation capacity, saturation and pressure plume size after injection; including the risks associated with CO2 leakage and faults reactivation. A formation with a reasonable pore volume would be a good candidate for CO2 storage, however, not all high porosity formations have the ability to store large amounts of gas over a long period of time. That's the biggest concern when it refers to CO2 capture. Saturation and pressure plume size during CO2 injection as well as site monitoring after injection were simulated in this research, using CRD field reservoir models. The application of Pareto diagrams and surface responses allowed us to determine the most important parameters that affected the saturation and pressure plume, quantifying the correlation between different parameters of adjusted and dimensioned historical models.

  13. Reducing cement's CO2 footprint (United States)

    van Oss, Hendrik G.


    The manufacturing process for Portland cement causes high levels of greenhouse gas emissions. However, environmental impacts can be reduced by using more energy-efficient kilns and replacing fossil energy with alternative fuels. Although carbon capture and new cements with less CO2 emission are still in the experimental phase, all these innovations can help develop a cleaner cement industry.

  14. Effective Use of Natural CO2-RICH Systems for Stakeholder Communication: CO2FACTS.ORG (United States)

    Olson, H. C.; Romanak, K.; Osborne, V.; Hovorka, S. D.; Clift, S.; Castner, A.


    by showing examples with the correct parallels, ranging from scientists working in areas of natural CO2 systems, to experts conducting scientific investigations of CO2 injection and storage sites (e.g., Kerr Site Investigation, Saskatchewan, Canada). Our goal is to enhance and enlarge the website, and thereby the stakeholder conversation, to include examples of scientists conducting research on a variety of natural systems from around the world, as well as those leading scientific projects related to CO2 injection and storage sites. By reducing environmental fear, drawing proper parallels between natural systems and CO2 storage, creating relationships with scientific experts and promoting trust in the scientific research and investigation process, we are working to help stakeholders have a better understanding of the challenges and solutions that are part of CO2 injection and storage technology.

  15. Mechanochemical synthesis and characterization of pure Co2B ...

    Indian Academy of Sciences (India)

    Cobalt boride (Co 2 B) is a significant transition metal boride having a wide range of usage area due to its high oxidation, abrasion and corrosion resistance as well as its superior electrochemical, magnetic and anisotropicproperties. In this study, pure Co2B nanocrystals were synthesized with Co, B 2 O 3 and Mg as starting ...

  16. A practical CO2 flux remote sensing technique (United States)

    Queisser, Manuel; Burton, Mike


    An accurate quantification of CO2 flux from both natural and anthropogenic sources is of great interest in various areas of the Earth, environmental and atmospheric sciences. As emitted excess CO2 quickly dilutes into the 400 ppm ambient CO2 concentration and degassing often occurs diffusively, measuring CO2 fluxes is challenging. Therefore, fluxes are usually derived from grids of in-situ measurements, which are labour intensive measurements. Other than a safe measurement distance, remote sensing offers quick, spatially integrated and thus a more thorough measurement of gas fluxes. Active remote sensing combines these merits with operation independent of sunlight or clear sky conditions. Due to their weight and size, active remote sensing platforms for CO2, such as LIDAR, cannot easily be applied in the field or transported overseas. Moreover, their complexity requires a rather lengthy setup procedure to be undertaken by skilled personal. To meet the need for a rugged, practical CO2 remote sensing technique to scan volcanic plumes, we have developed the CO2 LIDAR. It measures 1-D column densities of CO2 with sufficient sensitivity to reveal the contribution of magmatic CO2. The CO2 LIDAR has been mounted inside a small aircraft and used to measure atmospheric column CO2 concentrations between the aircraft and the ground. It was further employed on the ground, measuring CO2 emissions from mud volcanism. During the measurement campaign the CO2 LIDAR demonstrated reliability, portability, quick set-up time (10 to 15 min) and platform independence. This new technique opens the possibility of rapid, comprehensive surveys of point source, open-vent CO2 emissions, as well as emissions from more diffuse sources such as lakes and fumarole fields. Currently, within the proof-of-concept ERC project CarbSens, a further reduction in size, weight and operational complexity is underway with the goal to commercialize the platform. Areas of potential applications include fugitive

  17. Simultaneous in situ CO2 soil flux and isotopic analysis in a high CO2 flux environment at Mammoth Mountain, CA (United States)

    Bogue, R. R.; Oze, C.; Horton, T. W.; Defliese, W.


    Areas proximal to Mammoth Mountain, CA, have been emitting anomalously high CO2 for nearly three decades. High CO2 flux rates in these areas have resulted in tree kills and are potentially attributed to a large shallow CO2 reservoir fed by the breakdown of metasedimentary rocks and/or degassing from a mid-crustal magma body. Previous studies have focused largely on providing estimates of total CO2 efflux and the origin of CO2 release in the area. However, the nature and complexity of the interface between high CO2 flux and adjacent ecosystem have not been explored. Here we assess the spatial and temporal transition of the high CO2 flux zone and tree kill area into the adjacent forest ecosystem. In June and July 2016 extensive in situ diffuse soil CO2 flux and 13CO2 isotope measurements were conducted with a coupled West Systems/LICOR and Picarro. Additionally, gas samples were collected for Δ47 clumped isotope analyses. Compared to previous studies, areas of high CO2 flux have progressed northeast into a forest ecosystem, with some of the highest flux areas less than 20 meters from live trees. 13CO2 values primarily mirror areas of high CO2 flux with 13CO2 magmatic signatures; however, magmatic 13CO2 values are present in low CO2 flux and heavily forested areas. Δ47 values are depleted relative to equilibrium at ambient air and soil temperatures, indicating a high-temperature source. Young trees were also observed growing in areas that were part of the initial tree kill, providing tangible evidence of the impact of the movement of the high CO2 flux areas.

  18. Saturated CO2 inhibits microbial processes in CO2-vented deep-sea sediments

    Directory of Open Access Journals (Sweden)

    D. de Beer


    Full Text Available This study focused on biogeochemical processes and microbial activity in sediments of a natural deep-sea CO2 seepage area (Yonaguni Knoll IV hydrothermal system, Japan. The aim was to assess the influence of the geochemical conditions occurring in highly acidic and CO2 saturated sediments on sulfate reduction (SR and anaerobic methane oxidation (AOM. Porewater chemistry was investigated from retrieved sediment cores and in situ by microsensor profiling. The sites sampled around a sediment-hosted hydrothermal CO2 vent were very heterogeneous in porewater chemistry, indicating a complex leakage pattern. Near the vents, droplets of liquid CO2 were observed emanating from the sediments, and the pH reached approximately 4.5 in a sediment depth > 6 cm, as determined in situ by microsensors. Methane and sulfate co-occurred in most sediment samples from the vicinity of the vents down to a depth of 3 m. However, SR and AOM were restricted to the upper 7–15 cm below seafloor, although neither temperature, low pH, nor the availability of methane and sulfate could be limiting microbial activity. We argue that the extremely high subsurface concentrations of dissolved CO2 (1000–1700 mM, which disrupt the cellular pH homeostasis, and lead to end-product inhibition. This limits life to the surface sediment horizons above the liquid CO2 phase, where less extreme conditions prevail. Our results may have to be taken into consideration in assessing the consequences of deep-sea CO2 sequestration on benthic element cycling and on the local ecosystem state.

  19. Aridity under conditions of increased CO2 (United States)

    Greve, Peter; Roderick, Micheal L.; Seneviratne, Sonia I.


    A string of recent of studies led to the wide-held assumption that aridity will increase under conditions of increasing atmospheric CO2 concentrations and associated global warming. Such results generally build upon analyses of changes in the 'aridity index' (the ratio of potential evaporation to precipitation) and can be described as a direct thermodynamic effect on atmospheric water demand due to increasing temperatures. However, there is widespread evidence that contradicts the 'warmer is more arid' interpretation, leading to the 'global aridity paradox' (Roderick et al. 2015, WRR). Here we provide a comprehensive assessment of modeled changes in a broad set of dryness metrics (primarily based on a range of measures of water availability) over a large range of realistic atmospheric CO2 concentrations. We use an ensemble of simulations from of state-of-the-art climate models to analyse both equilibrium climate experiments and transient historical simulations and future projections. Our results show that dryness is, under conditions of increasing atmospheric CO2 concentrations and related global warming, generally decreasing at global scales. At regional scales we do, however, identify areas that undergo changes towards drier conditions, located primarily in subtropical climate regions and the Amazon Basin. Nonetheless, the majority of regions, especially in tropical and mid- to northern high latitudes areas, display wetting conditions in a warming world. Our results contradict previous findings and highlight the need to comprehensively assess all aspects of changes in hydroclimatological conditions at the land surface. Roderick, M. L., P. Greve, and G. D. Farquhar (2015), On the assessment of aridity with changes in atmospheric CO2, Water Resour. Res., 51, 5450-5463

  20. Fang CO2 med Aminosyrer

    DEFF Research Database (Denmark)

    Lerche, Benedicte Mai


    Med såkaldte “carbon capture-teknikker” er det muligt at rense røgen fra kulfyrede kraftværker, således at den er næsten helt fri for drivhusgassen CO2. Kunsten er at gøre processen tilstrækkeligt billig. Et lovende fangstredskab i denne proces er aminosyrer.......Med såkaldte “carbon capture-teknikker” er det muligt at rense røgen fra kulfyrede kraftværker, således at den er næsten helt fri for drivhusgassen CO2. Kunsten er at gøre processen tilstrækkeligt billig. Et lovende fangstredskab i denne proces er aminosyrer....

  1. Outsourcing CO2 within China. (United States)

    Feng, Kuishuang; Davis, Steven J; Sun, Laixiang; Li, Xin; Guan, Dabo; Liu, Weidong; Liu, Zhu; Hubacek, Klaus


    Recent studies have shown that the high standard of living enjoyed by people in the richest countries often comes at the expense of CO2 emissions produced with technologies of low efficiency in less affluent, developing countries. Less apparent is that this relationship between developed and developing can exist within a single country's borders, with rich regions consuming and exporting high-value goods and services that depend upon production of low-cost and emission-intensive goods and services from poorer regions in the same country. As the world's largest emitter of CO2, China is a prominent and important example, struggling to balance rapid economic growth and environmental sustainability across provinces that are in very different stages of development. In this study, we track CO2 emissions embodied in products traded among Chinese provinces and internationally. We find that 57% of China's emissions are related to goods that are consumed outside of the province where they are produced. For instance, up to 80% of the emissions related to goods consumed in the highly developed coastal provinces are imported from less developed provinces in central and western China where many low-value-added but high-carbon-intensive goods are produced. Without policy attention to this sort of interprovincial carbon leakage, the less developed provinces will struggle to meet their emissions intensity targets, whereas the more developed provinces might achieve their own targets by further outsourcing. Consumption-based accounting of emissions can thus inform effective and equitable climate policy within China.

  2. CO2 flux geothermometer for geothermal exploration (United States)

    Harvey, M. C.; Rowland, J. V.; Chiodini, G.; Rissmann, C. F.; Bloomberg, S.; Fridriksson, T.; Oladottir, A. A.


    A new geothermometer (TCO2 Flux) is proposed based on soil diffuse CO2 flux and shallow temperature measurements made on areas of steam heated, thermally altered ground above active geothermal systems. This CO2 flux geothermometer is based on a previously reported CO2 geothermometer that was designed for use with fumarole analysis. The new geothermometer provides a valuable additional exploration tool for estimating subsurface temperatures in high-temperature geothermal systems. Mean TCO2 Flux estimates fall within the range of deep drill hole temperatures at Wairakei (New Zealand), Tauhara (New Zealand), Rotokawa (New Zealand), Ohaaki (New Zealand), Reykjanes (Iceland) and Copahue (Argentina). The spatial distribution of geothermometry estimates is consistent with the location of major upflow zones previously reported at the Wairakei and Rotokawa geothermal systems. TCO2 Flux was also evaluated at White Island (New Zealand) and Reporoa (New Zealand), where limited sub-surface data exists. Mode TCO2 Flux at White Island is high (320 °C), the highest of the systems considered in this study. However, the geothermometer relies on mineral-water equilibrium in neutral pH reservoir fluids, and would not be reliable in such an active and acidic environment. Mean TCO2 Flux at Reporoa (310 °C) is high, which indicates Reporoa has a separate upflow from the nearby Waiotapu geothermal system; an outflow from Waiotapu would not be expected to have such high temperature.

  3. Correlation between plant physiology and CO2 removable (United States)

    Leman, A. M.; Shamsuri, Mohd Mahathir Suhaimi; Hariri, Azian; Kadir, Aeslina Abdul; Idris, Ahmad Fu'ad; Afandi, Azizi


    Certain plants that are able to live in the building are known as indoor plants. Plants have tolerance with indoor environment in order to survive. Usually these plants are able to improve indoor air quality (IAQ). Absorption of carbon dioxide (CO2) by plants is one of the indicators that plants are still alive during photosynthesis process. The possibility of plants structure (plant physiology) to affect CO2 absorption had been the concerns of former researchers. This research intends to study the significant of plant structure (leaf area, fresh weight, and dry weight) that leads to reducing the concentration of CO2 by seven plant species (Anthurium, Dumb Cane, Golden Pothos, Kadaka Fern, Prayer Plants, Spider Plants, and Syngonium). The data of CO2 reduction by plants has been obtained from previous studies. Based on results show that, the leaf area is the most contributing the significant effect to the plant absorb CO2 compare to fresh weight and dry weight. It can be prove by Pearson Correlation, where only the value of leaf area is more than 0.5 for every four conditions. This study can be conclude that the leaf area is quite plays an important role to the plant treat air from CO2, while concentration of light and CO2 will become catalytic factor for the plants improve their photosynthesis process.

  4. Report on achievements in fiscal 1998. Research and development of a technology to forecast environmental effect in association with isolation of carbon dioxide in oceans. (Surveys on development and research support on a technology to forecast environmental effect in areas in the vicinity of CO2 discharging points); 1998 nendo nisanka tanso no kaiyo kakuri ni tomonau kankyo eikyo yosoku gijutsu kenkyu kaihatsu seika hokokusho. CO{sub 2} horyuten shuhen'iki no kankyo eikyo yosoku gijutsu no kaihatsu narabini kenkyu shien chosa

    Energy Technology Data Exchange (ETDEWEB)



    Atmospheric concentration of CO2 is increasing, and discussions are urged on measures to suppress emission of CO2 into atmosphere. While different CO2 fixing technologies may be conceived, there is a technology to utilize CO2 absorbing capability of ocean by discharging and dissolving CO2 artificially into middle layer of the ocean to separate CO2 from atmosphere. This technology is one of the technologies which are promising in the aspects of technology, economic performance, and possible amount of CO2 reduction. However, it is difficult to say that scientific and technological discussions have been given sufficiently on behavior of CO2 discharged into the ocean, effect of the discharge on environments, and CO2 separation capability of the ocean. Therefore, in the present research and development, a 'technology to forecast environmental effect in areas in the vicinity of CO2 discharging points' is developed to serve for acquiring technological prospect on the feasibility to realize the CO2 ocean separation by discharging CO2 into the middle layer of the ocean. The present fiscal year has performed researches on the following research and development items: elucidation of behavior of liquefied CO2 when discharged into the ocean, CO2 feeding and diluting technologies, indoor experiments on the effects of CO2 on ocean living organisms, and development of a model to forecast environments in areas in the vicinity of CO2 discharging points. (NEDO)


    Directory of Open Access Journals (Sweden)

    Zofia LUBAŃSKA

    Full Text Available Z pojęciem ochrony środowiska wiąże się bardzo szeroko w ostatnim czasie omawiane zagadnienie dotyczące ograniczenia emisji CO2. Konsekwencją globalnych zmian klimatu wywołanego przez ludzi jest wzrost stężenia atmosferycznego gazów cieplarnianych, które powodują nasilający się efekt cieplarniany. Wzrasta na świecie liczba ludności, a co za tym idzie wzrasta konsumpcja na jednego mieszkańca, szczególnie w krajach szeroko rozwiniętych gospodarczo. Protokół z Kioto ściśle określa działania jakie należy podjąć w celu zmniejszenia stężenia dwutlenku węgla w atmosferze. Pomimo maksymalnej optymalizacji procesu spalania paliw kopalnianych wykorzystywanych do produkcji energii, zastosowania odnawialnych źródeł energii zmiana klimatu jest nieunikniona i konsekwentnie będzie postępować przez kolejne dekady. Prognozuje się, że duże znaczenie odegra nowoczesna technologia, która ma za zadanie wychwycenie CO2 a następnie składowanie go w odpowiednio wybranych formacjach geologicznych (CCS- Carbon Capture and Storage. Eksperci są zgodni, że ta technologia w niedalekiej przyszłości stanie się rozwiązaniem pozwalającym ograniczyć ogromną ilość emisji CO2 pochodzącą z procesów wytwarzania energii z paliw kopalnych. Z analiz Raportu IPCC wynika, iż technologia CSS może się przyczynić do ok. 20% redukcji emisji dwutlenku węgla przewidzianej do 2050 roku [3]. Zastosowanie jej napotyka na wiele barier, nie tylko technologicznych i ekonomicznych, ale także społecznych. Inną metodą dającą ujemne źródło emisji CO2 jest możliwość wykorzystania obszarów leśnych o odpowiedniej strukturze drzewostanu. Środkiem do tego celu, oprócz ograniczenia zużycia emisjogennych paliw kopalnych (przy zachowaniu zasad zrównoważonego rozwoju może być intensyfikacja zalesień. Zwiększanie lesistości i prawidłowa gospodarka leśna należy do najbardziej efektywnych sposobów kompensowania

  6. Canopy CO2 exchange of sugar beet under different CO2 concentrations and nitrogen supply: results from a free-air CO2 enrichment study. (United States)

    Burkart, S; Manderscheid, R; Weigel, H-J


    Sugar beet (Beta vulgaris ssp. altissima Döll) was grown in the field under free-air CO(2) enrichment (FACE, 550 ppm) and different nitrogen (N) supply (2001: 126 (N100) and 63 kg.ha(-1) (N50); 2004: 156 (N100) and 75 kg.ha(-1)) during two crop rotations. Canopy CO(2) exchange rates (CCER) were measured during the main growth phase (leaf area index > or =2) using a dynamic chamber system. Canopy CO(2) exchange data were analysed with respect to treatment effects on seasonal means and light use efficiency and light response characteristics. CO(2) enrichment enhanced CCER throughout the season. However, in both years, CCER declined after the second half of August independent of radiation and [CO(2)]. Elevated [CO(2)] strongly stimulated CCER on a seasonal basis, whereas the reduction of CCER caused by low N was below 10% and not significant. There were no effects of N on daily radiation use efficiency of carbon gain calculated from CCER data, but a strong enhancement by CO(2) enrichment. CCER closely tracked diurnal variations in incident photosynthetic photon flux density (PPFD, mumol.m(-2).s(-1)). The relationship between CCER and incident PPFD was curvilinear. In both seasons, initial slopes and maximum rates (CCER(max)) were determined from two 6-day periods using these relationships. The first period was measured after canopy closure (first half of July) and the second in the second half of August. In the first period, elevated [CO(2)] increased the initial slopes. Low N supply affected neither the initial slopes nor their response to elevated [CO(2)] in either period. In contrast to initial slopes, N stress limited the [CO(2)] response of CCER(max) in the first period. In the second period, however, this interaction of [CO(2)] and N on CCER(max) was completely dominated by a general decline of CCER(max) whereas no general decline of the initial slopes occurred in the second period. This response of light response parameters to [CO(2)] and N suggests that, in

  7. Effects of explicit atmospheric convection at high CO2. (United States)

    Arnold, Nathan P; Branson, Mark; Burt, Melissa A; Abbot, Dorian S; Kuang, Zhiming; Randall, David A; Tziperman, Eli


    The effect of clouds on climate remains the largest uncertainty in climate change predictions, due to the inability of global climate models (GCMs) to resolve essential small-scale cloud and convection processes. We compare preindustrial and quadrupled CO2 simulations between a conventional GCM in which convection is parameterized and a "superparameterized" model in which convection is explicitly simulated with a cloud-permitting model in each grid cell. We find that the global responses of the two models to increased CO2 are broadly similar: both simulate ice-free Arctic summers, wintertime Arctic convection, and enhanced Madden-Julian oscillation (MJO) activity. Superparameterization produces significant differences at both CO2 levels, including greater Arctic cloud cover, further reduced sea ice area at high CO2, and a stronger increase with CO2 of the MJO.

  8. Interfacial phenomena at the compressed co2-water interface

    Directory of Open Access Journals (Sweden)

    B. Bharatwaj


    Full Text Available Compressed CO2 is considered to be a viable alternative to toxic volatile organic solvents with potential applications in areas including separation reactions, and materials formation processes. Thus an interest in CO2 stems from the fact that it is very inexpensive, has low toxicity, and is not a regulated. However, compressed CO2 has a zero dipole moment and weak van der Waals forces and thus is a poor solvent for both polar and most high molecular weight solutes, characteristics that severely restrict its applicability. In order to overcome this inherent inability, surfactant-stabilized organic and aqueous dispersions in CO2 have been proposed. This work will discuss fundamentals and recent advances in the design of amphiphiles for the novel CO2-water interface.

  9. Annual CO2 budget and seasonal CO2 exchange signals at a High Arctic permafrost site on Spitsbergen, Svalbard archipelago (United States)

    Lüers, J.; Westermann, S.; Piel, K.; Boike, J.


    The annual variability of CO2 exchange in most ecosystems is primarily driven by the activities of plants and soil microorganisms. However, little is known about the carbon balance and its controlling factors outside the growing season in arctic regions dominated by soil freeze/thaw-processes, long-lasting snow cover, and several months of darkness. This study presents a complete annual cycle of the CO2 net ecosystem exchange (NEE) dynamics for a High Arctic tundra area on the west coast of Svalbard based on eddy-covariance flux measurements. The annual cumulative CO2 budget is close to zero grams carbon per square meter per year, but shows a very strong seasonal variability. Four major CO2 exchange seasons have been identified. (1) During summer (ground snow-free), the CO2 exchange occurs mainly as a result of biological activity, with a predominance of strong CO2 assimilation by the ecosystem. (2) The autumn (ground snow-free or partly snow-covered) is dominated by CO2 respiration as a result of biological activity. (3) In winter and spring (ground snow-covered), low but persistent CO2 release occur, overlain by considerable CO2 exchange events in both directions associated with changes of air masses and air and atmospheric CO2 pressure. (4) The snow melt season (pattern of snow-free and snow-covered areas), where both, meteorological and biological forcing, resulting in a visible carbon uptake by the high arctic ecosystem. Data related to this article are archived under:

  10. The effect of CO2 laser treatment on skin tissue. (United States)

    Baleg, Sana Mohammed Anayb; Bidin, Noriah; Suan, Lau Pik; Ahmad, Muhammad Fakarruddin Sidi; Krishnan, Ganesan; Johari, Abd Rahman; Hamid, Asma


    The aim of this study was to evaluate the effects of multiple pulses on the depth of injury caused by CO2 laser in an in vivo rat model. A 10 600-nm CO2 laser was applied to rat skin, with one side of the rat dorsal skin being exposed, leaving the other side as a control. All of the various laser pulses tested led to gradual loss of epidermal thickness as well as a dramatic increase in thermal damage depth. Collagen coagulation was most effective with ten pulses of CO2 laser, while the strength of irradiated skin tissue increased as the influence of the laser increased. Fundamental laser-skin interaction effects were studied using a CO2 laser. The photodamaged areas obtained from laser interaction were recorded via couple charge device video camera and analyzed via ImageJ software. Photodamage induced by CO2 laser is due to photothermal effects, which involve burning and vaporizing mechanisms to ablate the epidermis layer. The burning area literally expands and penetrates deep into the dermis layer, subsequently causing collagen coagulation. This fundamental study shows in detail the effect of CO2 laser interaction with skin. The CO2 attributed severe burning, producing deep coagulation, and induced strength to treated skin. © 2015 Wiley Periodicals, Inc.

  11. Passive CO2 concentration in higher plants. (United States)

    Sage, Rowan F; Khoshravesh, Roxana


    Photorespiratory limitations on C3 photosynthesis are substantial in warm, low CO2 conditions. To compensate, certain plants evolved mechanisms to actively concentrate CO2 around Rubisco using ATP-supported CO2 pumps such as C4 photosynthesis. Plants can also passively accumulate CO2 without additional ATP expenditure by localizing the release of photorespired and respired CO2 around Rubisco that is diffusively isolated from peripheral air spaces. Passive accumulation of photorespired CO2 occurs when glycine decarboxylase is localized to vascular sheath cells in what is termed C2 photosynthesis, and through forming sheaths of chloroplasts around the periphery of mesophyll cells. The peripheral sheaths require photorespired CO2 to re-enter chloroplasts where it can be refixed. Passive accumulation of respiratory CO2 is common in organs such as stems, fruits and flowers, due to abundant heterotrophic tissues and high diffusive resistance along the organ periphery. Chloroplasts within these organs are able to exploit this high CO2 to reduce photorespiration. CO2 concentration can also be enhanced passively by channeling respired CO2 from roots and rhizomes into photosynthetic cells of stems and leaves via lacunae, aerenchyma and the xylem stream. Through passive CO2 concentration, C3 species likely improved their carbon economy and maintained fitness during episodes of low atmospheric CO2. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. The CO2 emission registries; De CO2 registers

    Energy Technology Data Exchange (ETDEWEB)

    De Witt Wijnen, H.R. [De Brauw Blackstone Westbroek, Den Haag (Netherlands)


    The European Commission has made a first draft available of the Regulation for a standardized and secured system of CO2 -emissions registries. Transactions under the European emissions trading scheme will be settled in accordance with the rules of this Regulation. This article gives a summary of the Regulation and describes the way emissions transactions are going to take place. Any person can open an account in an emissions register. The relation between the Kyoto Protocol and the Regulation is discussed, such as the role of the Commitment Period Reserve. Emission Reductions will not qualify as registered goods under Dutch law, as information on individual accounts will not be made public. [Dutch] Begin november van het vorig jaar heeft de Europese Commissie een concept voor commentaar laten circuleren van een verordening inzake een gestandaardiseerd en beveiligd stelsel van registers (de 'Register Verordening'). Aangezien er op dit moment hard gewerkt wordt aan een wijziging van de Wet milieubeheer in verband met de invoering van een hoofdstuk inzake de handel in emissierechten, lijkt het nuttig om de Register Verordening thans al te bespreken. De Wet milieubeheer zal de Register Verordening hebben te volgen. Bovendien zal kennismaking met de Register Verordening het begrip voor de beoogde werking van de toekomstige Europese emissiehandel vergroten. In dit artikel is mede gebruik gemaakt van wetenswaardigheden opgedaan tijdens een bijeenkomst met de opstellers van de Register Verordening in november 2003.

  13. The ins and outs of CO2

    National Research Council Canada - National Science Library

    Raven, John A; Beardall, John


    ...; this article examines what is known and where there are gaps in knowledge. Irreversible decarboxylases produce CO2, and CO2 is the substrate/product of enzymes that act as carboxylases and decarboxylases...

  14. ISLSCP II Globalview: Atmospheric CO2 Concentrations (United States)

    National Aeronautics and Space Administration — The GlobalView Carbon Dioxide (CO2) data product contains synchronized and smoothed time series of atmospheric CO2 concentrations at selected sites that were created...

  15. CO2 Capture for Cement Technology

    DEFF Research Database (Denmark)

    Pathi, Sharat Kumar

    Production of cement is an energy intensive process and is the source of considerable CO2emissions. Itis estimated that the cement industry contributes around 8% of total global CO2emissions. CO2is oneof the major greenhouse gases. In the atmosphere, the CO2concentration has increased from 310...... ppmvin 1960 to 390 ppmv in 2012, probably due to human activity. A lot of research is being carried out forreducing CO2emissions from large stationary sources. Ofwhich, the carbonate looping process is anew process and has the potential to reduce CO2emissions with lower energy penalties. Most of thework...... performed recently has focused on CO2capture from fossil fuel-based power plants. Inherently,this process is especially suitablefor cement plants, as CaO used for CO2capture is also a majoringredient for clinker production. Thus, a detailed investigation was carried outto study the applicationof...

  16. CO2 Virtual Science Data Environment API (United States)

    National Aeronautics and Space Administration — The CO2 Virtual Data Environment is a comprehensive effort at bringing together the models, data, and tools necessary to perform research on atmospheric CO2.This...

  17. ISLSCP II Globalview: Atmospheric CO2 Concentrations (United States)

    National Aeronautics and Space Administration — ABSTRACT: The GlobalView Carbon Dioxide (CO2) data product contains synchronized and smoothed time series of atmospheric CO2 concentrations at selected sites that...

  18. Synthesis of mesoporous cerium compound for CO2 capture (United States)

    Liu, Guiqing; Tatsuda, Kou; Yoneyama, Yoshiharu; Tsubaki, Noritatsu


    A mesoporous adsorbent was simply synthesized by adding alkaline substances to cerium(III) nitric hydrate. The surface characteristics of the synthesized cerium compound were determined with BET, XRD and TEM analysis. It was found that although the specific surface areas of the synthesized cerium compounds were among about 120-200m2 per gram (BET area) which were smaller than the common used zeolite 13X (BET area 743 m2/g) and activated carbon (BET area 1079 m2/g), but the cerium compounds had excellent performances for CO2 adsorption as well as the CO2 desorption.

  19. Carbon Dioxide (CO2) in Blood (United States)

    ... Carbon Dioxide (CO2) in Blood To use the sharing features on ... please enable JavaScript. What is a Carbon Dioxide (CO2) Blood Test? Carbon dioxide (CO2) is an odorless, ...

  20. Prognose CO2-emissie glastuinbouw 2020

    NARCIS (Netherlands)

    Velden, van der Nico; Smit, Pepijn


    The greenhouse horticulture sector and government agreed in a covenant on a CO2 emission budget
    for 2020. It appeared that the 2014 CO2 emissions were considerably lower than this CO2 emission
    budget. The covenant signatories also agreed that an interim evaluation would be carried out

  1. A Synthesized Model-Observation Approach to Constraining Gross Urban CO2 Fluxes Using 14CO2 and carbonyl sulfide (United States)

    LaFranchi, B. W.; Campbell, J. E.; Cameron-Smith, P. J.; Bambha, R.; Michelsen, H. A.


    Urbanized regions are responsible for a disproportionately large percentage (30-40%) of global anthropogenic greenhouse gas (GHG) emissions, despite covering only 2% of the Earth's surface area [Satterthwaite, 2008]. As a result, policies enacted at the local level in these urban areas can, in aggregate, have a large global impact, both positive and negative. In order to address the scientific questions that are required to drive these policy decisions, methods are needed that resolve gross CO2 flux components from the net flux. Recent work suggests that the critical knowledge gaps in CO2 surface fluxes could be addressed through the combined analysis of atmospheric carbonyl sulfide (COS) and radiocarbon in atmospheric CO2 (14CO2) [e.g. Campbell et al., 2008; Graven et al., 2009]. The 14CO2 approach relies on mass balance assumptions about atmospheric CO2 and the large differences in 14CO2 abundance between fossil and natural sources of CO2 [Levin et al., 2003]. COS, meanwhile, is a potentially transformative tracer of photosynthesis because its variability in the atmosphere has been found to be influenced primarily by vegetative uptake, scaling linearly will gross primary production (GPP) [Kettle et al., 20027]. Taken together, these two observations provide constraints on two of the three main components of the CO2 budget at the urban scale: photosynthesis and fossil fuel emissions. The third component, respiration, can then be determined by difference if the net flux is known. Here we present a general overview of our synthesized model-observation approach for improving surface flux estimates of CO2 for the upwind fetch of a ~30m tower located in Livermore, CA, USA, a suburb (pop. ~80,000) at the eastern edge of the San Francisco Bay Area. Additionally, we will present initial results from a one week observational intensive, which includes continuous CO2, CH4, CO, SO2, NOx, and O3 observations in addition to measurements of 14CO2 and COS from air samples

  2. Forest succession at elevated CO2

    Energy Technology Data Exchange (ETDEWEB)

    Clark, James S.; Schlesinger, William H.


    We tested hypotheses concerning the response of forest succession to elevated CO2 in the FACTS-1 site at the Duke Forest. We quantified growth and survival of naturally recruited seedlings, tree saplings, vines, and shrubs under ambient and elevated CO2. We planted seeds and seedlings to augment sample sites. We augmented CO2 treatments with estimates of shade tolerance and nutrient limitation while controlling for soil and light effects to place CO2 treatments within the context of natural variability at the site. Results are now being analyzed and used to parameterize forest models of CO2 response.

  3. CO2 capture by Li-functionalized silicene

    KAUST Repository

    Zhu, Jiajie


    CO2 capture and storage technology is of key importance to reduce the greenhouse effect. By its large surface area and sp3 hybridization, Li-functionalized silicene is demonstrated to be a promising CO2 absorbent that is stable up to at least 500 K and has a very high storage capacity of 28.6 mol/kg (55.7 wt%). The adsorption energy of CO2 on Li-functionalized silicene is enhanced as compared to pristine silicene, to attain an almost ideal value that still facilitates easy release. In addition, the band gap is found to change sensitively with the CO2 coverage. (© 2016 WILEY-VCH Verlag GmbH &Co. KGaA, Weinheim). © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim

  4. Effect of Mineral Dissolution/Precipitation and CO2 Exsolution on CO2 transport in Geological Carbon Storage. (United States)

    Xu, Ruina; Li, Rong; Ma, Jin; He, Di; Jiang, Peixue


    injected through the core. The MRI results indicate dissolution of the carbonates during the experiments since the porosity has been increased after the core-flooding experiments. The mineral dissolution changes the pore structure by enlarging the throat diameters and decreasing the pore specific surface areas, resulting in lower CO2/water capillary pressures and changes in the relative permeability. When the reservoir pressure decreases, the CO2 exsolution occurs due to the reduction of solubility. The CO2 bubbles preferentially grow toward the larger pores instead of toward the throats or the finer pores during the depressurization. After exsolution, the exsolved CO2 phase shows low mobility due to the highly dispersed pore-scale morphology, and the well dispersed small bubbles tend to merge without interface contact driven by the Ostwald ripening mechanism. During depressurization, the dissolved carbonate could also precipitate as a result of increasing pH. There is increasing formation water flow resistance and low mobility of the CO2 in the presence of CO2 exsolution and carbonate precipitation. These effects produce a self-sealing mechanism that may reduce unfavorable CO2 migration even in the presence of sudden reservoir depressurization.

  5. Extraction of stevia glycosides with CO2 + water, CO2 + ethanol, and CO2 + water + ethanol

    Directory of Open Access Journals (Sweden)

    A. Pasquel


    Full Text Available Stevia leaves are an important source of natural sugar substitute. There are some restrictions on the use of stevia extract because of its distinctive aftertaste. Some authors attribute this to soluble material other than the stevia glycosides, even though it is well known that stevia glycosides have to some extent a bitter taste. Therefore, the purpose of this work was to develop a process to obtain stevia extract of a better quality. The proposed process includes two steps: i Pretreatment of the leaves by SCFE; ii Extraction of the stevia glycosides by SCFE using CO2 as solvent and water and/or ethanol as cosolvent. The mean total yield for SCFE pretreatment was 3.0%. The yields for SCFE with cosolvent of stevia glycosides were below 0.50%, except at 120 bar, 16°C, and 9.5% (molar of water. Under this condition, total yield was 3.4%. The quality of the glycosidic fraction with respect to its capacity as sweetener was better for the SCFE extract as compared to extract obtained by the conventional process. The overall extraction curves were well described by the Lack extended model.

  6. Effects of atmospheric CO2 concentration, irradiance, and soil nitrogen availability on leaf photosynthetic traits of Polygonum sachalinense around natural CO2 springs in northern Japan. (United States)

    Osada, Noriyuki; Onoda, Yusuke; Hikosaka, Kouki


    Long-term exposure to elevated CO2 concentration will affect the traits of wild plants in association with other environmental factors. We investigated multiple effects of atmospheric CO2 concentration, irradiance, and soil N availability on the leaf photosynthetic traits of a herbaceous species, Polygonum sachalinense, growing around natural CO2 springs in northern Japan. Atmospheric CO2 concentration and its interaction with irradiance and soil N availability affected several leaf traits. Leaf mass per unit area increased and N per mass decreased with increasing CO2 and irradiance. Leaf N per area increased with increasing soil N availability at higher CO2 concentrations. The photosynthetic rate under growth CO2 conditions increased with increasing irradiance and CO2, and with increasing soil N at higher CO2 concentrations. The maximal velocity of ribulose 1,5-bisphosphate carboxylation (V (cmax)) was affected by the interaction of CO2 and soil N, suggesting that down-regulation of photosynthesis at elevated CO2 was more evident at lower soil N availability. The ratio of the maximum rate of electron transport to V (cmax) (J (max)/V (cmax)) increased with increasing CO2, suggesting that the plants used N efficiently for photosynthesis at high CO2 concentrations by changes in N partitioning. To what extent elevated CO2 influenced plant traits depended on other environmental factors. As wild plants are subject to a wide range of light and nutrient availability, our results highlight the importance of these environmental factors when the effects of elevated CO2 on plants are evaluated.

  7. Diffuse soil CO_2 degassing from Linosa island

    Directory of Open Access Journals (Sweden)

    Dario Cellura


    Full Text Available Normal 0 14 false false false MicrosoftInternetExplorer4 Normal 0 14 false false false IT X-NONE X-NONE MicrosoftInternetExplorer4 Herein, we present and discuss the result of 148 measurements of soil CO2 flux performed for the first time in Linosa island (Sicily Channel, Italy, a Plio-Pleistocene volcanic complex no longer active but still of interest owing to its location within a seismically active portion of the Sicily Channel rift system. The main purpose of this survey was to assess the occurrence of CO2 soil degassing, and compare flux estimations from this island with data of soil degassing from worldwide active volcanic as well as non-volcanic areas. To this aim soil CO2 fluxes were measured over a surface of about 4.2 km2 covering ~80% of the island. The soil CO2 degassing was observed to be mainly concentrated in the eastern part of the island likely due to volcano-tectonic lineaments, the presence of which is in good agreement with the known predominant regional faults system. Then, the collected data were interpreted using sequential Gaussian simulation that allowed estimating the total CO2 emissions of the island. Results show low levels of CO2 emissions from the soil of the island (~55 ton d-1 compared with CO2 emissions of currently active volcanic areas, such as Miyakejima (Japan and Vulcano (Italy. Results from this study suggest that soil degassing in Linosa is mainly fed by superficial organic activity with a moderate contribution of a deep CO2 likely driven by NW-SE trending active tectonic structures in the eastern part of the island.

  8. Public Acceptance for Geological CO2-Storage (United States)

    Schilling, F.; Ossing, F.; Würdemann, H.; Co2SINK Team


    Public acceptance is one of the fundamental prerequisites for geological CO2 storage. In highly populated areas like central Europe, especially in the vicinity of metropolitan areas like Berlin, underground operations are in the focus of the people living next to the site, the media, and politics. To gain acceptance, all these groups - the people in the neighbourhood, journalists, and authorities - need to be confident of the security of the planned storage operation as well as the long term security of storage. A very important point is to show that the technical risks of CO2 storage can be managed with the help of a proper short and long term monitoring concept, as well as appropriate mitigation technologies e.g adequate abandonment procedures for leaking wells. To better explain the possible risks examples for leakage scenarios help the public to assess and to accept the technical risks of CO2 storage. At Ketzin we tried the following approach that can be summed up on the basis: Always tell the truth! This might be self-evident but it has to be stressed that credibility is of vital importance. Suspiciousness and distrust are best friends of fear. Undefined fear seems to be the major risk in public acceptance of geological CO2-storage. Misinformation and missing communication further enhance the denial of geological CO2 storage. When we started to plan and establish the Ketzin storage site, we ensured a forward directed communication. Offensive information activities, an information centre on site, active media politics and open information about the activities taking place are basics. Some of the measures were: - information of the competent authorities through meetings (mayor, governmental authorities) - information of the local public, e.g. hearings (while also inviting local, regional and nation wide media) - we always treated the local people and press first! - organizing of bigger events to inform the public on site, e.g. start of drilling activities (open

  9. CO2 laser therapy of rhinophyma (United States)

    Voigt, Peggy; Jovanovic, Sergije; Sedlmaier, Benedikt W.


    Laser treatment of skin changes has become common practice in recent years. High absorption of the CO2 laser wavelength in water is responsible for its low penetration dpt in biological tissue. Shortening the tissue exposure time minimizes thermic side effects of laser radiation such as carbonization and coagulation. This can be achieved with scanner systems that move the focused laser beam over a defined area by microprocessor-controlled rapidly rotating mirrors. This enables controlled and reliable removal of certain dermal lesions, particularly hypertrophic scar/span>s, scars after common acne, wrinkles and rhinophyma. Laser ablation of rhinophyma is a stress-minimizing procedure for the surgeon and the patient, since it is nearly bloodless and can be performed under local anaesthesia. Cosmetically favorable reepithelization of the lasered surfaces is achieved within a very short period of time.

  10. Smart Transportation CO2 Emission Reduction Strategies (United States)

    Tarulescu, S.; Tarulescu, R.; Soica, A.; Leahu, C. I.


    Transport represents the sector with the fastest growing greenhouse gas emissions around the world. The main global objective is to reduce energy usage and associated greenhouse gas emissions from the transportation sector. For this study it was analyzed the road transportation system from Brasov Metropolitan area. The study was made for the transportation route that connects Ghimbav city to the main surrounding objectives. In this study ware considered four optimization measures: vehicle fleet renewal; building the detour belt for the city; road increasing the average travel speed; making bicycle lanes; and implementing an urban public transport system for Ghimbav. For each measure it was used a mathematical model to calculate the energy consumption and carbon emissions from the road transportation sector. After all four measures was analyzed is calculated the general energy consumption and CO2 reduction if this are applied from year 2017 to 2020.

  11. CO2 flux from Javanese mud volcanism (United States)

    Queißer, M.; Burton, M. R.; Arzilli, F.; Chiarugi, A.; Marliyani, G. I.; Anggara, F.; Harijoko, A.


    Studying the quantity and origin of CO2 emitted by back-arc mud volcanoes is critical to correctly model fluid-dynamical, thermodynamical, and geochemical processes that drive their activity and to constrain their role in the global geochemical carbon cycle. We measured CO2 fluxes of the Bledug Kuwu mud volcano on the Kendeng Fold and thrust belt in the back arc of Central Java, Indonesia, using scanning remote sensing absorption spectroscopy. The data show that the expelled gas is rich in CO2 with a volume fraction of at least 16 vol %. A lower limit CO2 flux of 1.4 kg s-1 (117 t d-1) was determined, in line with the CO2 flux from the Javanese mud volcano LUSI. Extrapolating these results to mud volcanism from the whole of Java suggests an order of magnitude total CO2 flux of 3 kt d-1, comparable with the expected back-arc efflux of magmatic CO2. After discussing geochemical, geological, and geophysical evidence we conclude that the source of CO2 observed at Bledug Kuwu is likely a mixture of thermogenic, biogenic, and magmatic CO2, with faulting controlling potential pathways for magmatic fluids. This study further demonstrates the merit of man-portable active remote sensing instruments for probing natural gas releases, enabling bottom-up quantification of CO2 fluxes.

  12. CO2 flux from Javanese mud volcanism. (United States)

    Queißer, M; Burton, M R; Arzilli, F; Chiarugi, A; Marliyani, G I; Anggara, F; Harijoko, A


    Studying the quantity and origin of CO2 emitted by back-arc mud volcanoes is critical to correctly model fluid-dynamical, thermodynamical, and geochemical processes that drive their activity and to constrain their role in the global geochemical carbon cycle. We measured CO2 fluxes of the Bledug Kuwu mud volcano on the Kendeng Fold and thrust belt in the back arc of Central Java, Indonesia, using scanning remote sensing absorption spectroscopy. The data show that the expelled gas is rich in CO2 with a volume fraction of at least 16 vol %. A lower limit CO2 flux of 1.4 kg s-1 (117 t d-1) was determined, in line with the CO2 flux from the Javanese mud volcano LUSI. Extrapolating these results to mud volcanism from the whole of Java suggests an order of magnitude total CO2 flux of 3 kt d-1, comparable with the expected back-arc efflux of magmatic CO2. After discussing geochemical, geological, and geophysical evidence we conclude that the source of CO2 observed at Bledug Kuwu is likely a mixture of thermogenic, biogenic, and magmatic CO2, with faulting controlling potential pathways for magmatic fluids. This study further demonstrates the merit of man-portable active remote sensing instruments for probing natural gas releases, enabling bottom-up quantification of CO2 fluxes.

  13. Porous Organic Polymers for CO2 Capture

    KAUST Repository

    Teng, Baiyang


    Carbon dioxide (CO2) has long been regarded as the major greenhouse gas, which leads to numerous negative effects on global environment. The capture and separation of CO2 by selective adsorption using porous materials proves to be an effective way to reduce the emission of CO2 to atmosphere. Porous organic polymers (POPs) are promising candidates for this application due to their readily tunable textual properties and surface functionalities. The objective of this thesis work is to develop new POPs with high CO2 adsorption capacities and CO2/N2 selectivities for post-combustion effluent (e.g. flue gas) treatment. We will also exploit the correlation between the CO2 capture performance of POPs and their textual properties/functionalities. Chapters Two focuses on the study of a group of porous phenolic-aldehyde polymers (PPAPs) synthesized by a catalyst-free method, the CO2 capture capacities of these PPAPs exceed 2.0 mmol/g at 298 K and 1 bar, while keeping CO2/N2 selectivity of more than 30 at the same time. Chapter Three reports the gas adsorption results of different hyper-cross-linked polymers (HCPs), which indicate that heterocyclo aromatic monomers can greatly enhance polymers’ CO2/N2 selectivities, and the N-H bond is proved to the active CO2 adsorption center in the N-contained (e.g. pyrrole) HCPs, which possess the highest selectivities of more than 40 at 273 K when compared with other HCPs. Chapter Four emphasizes on the chemical modification of a new designed polymer of intrinsic microporosity (PIM) with high CO2/N2 selectivity (50 at 273 K), whose experimental repeatability and chemical stability prove excellent. In Chapter Five, we demonstrate an improvement of both CO2 capture capacity and CO2/N2 selectivity by doping alkali metal ions into azo-polymers, which leads a promising method to the design of new porous organic polymers.

  14. Metal-Organic Framework-Stabilized CO2/Water Interfacial Route for Photocatalytic CO2Conversion. (United States)

    Luo, Tian; Zhang, Jianling; Li, Wei; He, Zhenhong; Sun, Xiaofu; Shi, Jinbiao; Shao, Dan; Zhang, Bingxing; Tan, Xiuniang; Han, Buxing


    Here, we propose a CO 2 /water interfacial route for photocatalytic CO 2 conversion by utilizing a metal-organic framework (MOF) as both an emulsifier and a catalyst. The CO 2 reduction occurring at the CO 2 /water interface produces formate with remarkably enhanced efficiency as compared with that in conventional solvent. The route is efficient, facile, adjustable, and environmentally benign, which is applicable for the CO 2 transformation photocatalyzed by different kinds of MOFs.

  15. Physical Activation of Oil Palm Empty Fruit Bunch via CO2 Activation Gas for CO2 Adsorption (United States)

    Joseph, C. G.; Quek, K. S.; Daud, W. M. A. W.; Moh, P. Y.


    In this study, different parameters for the preparation of activated carbon were investigated for their yield and CO2 capture capabilities. The activated carbon was prepared from Oil Palm Empty Fruit Bunch (OPEFB) via a 2-step physical activation process. The OPEFB was pyrolyzed under inert conditions at 500 °C and activated via CO2. A 2-factorial design was employed and the effects of activation temperature, activation dwell time and gas flow rate on yield and CO2 capture capabilities were compared and studied. The yield obtained ranged from between 20 - 26, whereby the temperature was determined to be the most significant factor in influencing CO2 uptake. The CO2 capture capacity was determined using Temperature Programmed Desorption (TPD) technique. The CO2 uptake of EFB activated carbon achieved was between 1.85 - 2.09 mmol/g. TPD analysis has shown that the surface of AC were of basic nature. AC was found to be able to withhold the CO2 up to 663°C before maximum desorption occurs. The surface area and pore size of OPEFB obtained from BET analysis is 2.17 m2 g-1 and 0.01 cm3 g-1. After activation, both surface area and pore size increased with a maximum observed surface area and pore size of 548.07 m2 g-1 and 0.26 cm3 g-1. Surface morphology, functional groups, pore size and surface area were analyzed using SEM, FT-IR, TPD and BET.

  16. Urine as a CO2 absorbent. (United States)

    Aguilar, Manuel Jiménez


    The aim of this work was to investigate the effect of urine on the absorption of greenhouse gases such as CO(2). Human urine diluted with olive-oil-mill wastewaters (OMW) could be used to capture CO(2) from flue gas of coal-fired power plant and convert CO(2) emissions into valuable fertilizers (mainly, NH(4)HCO(3)) that can enhance CO(2) sequestration into soil and subsoil layers. Thus, the CO(2) emissions could be reduced between 0.1 and 1%. The proposed strategy requires further research to increase CO(2) absorption and assess the risks associated with wastewater reuse and xenobiotics in the agroecological environment. Copyright © 2012 Elsevier B.V. All rights reserved.

  17. CO2 Capture by Cement Raw Meal

    DEFF Research Database (Denmark)

    Pathi, Sharat Kumar; Lin, Weigang; Illerup, Jytte Boll


    The cement industry is one of the major sources of CO2 emissions and is likely to contribute to further increases in the near future. The carbonate looping process has the potential to capture CO2 emissions from the cement industry, in which raw meal for cement production could be used...... as the sorbent. Cyclic experiments were carried out in a TGA apparatus using industrial cement raw meal and synthetic raw meal as sorbents, with limestone as the reference. The results show that the CO2 capture capacities of the cement raw meal and the synthetic raw meal are comparable to those of pure limestone....... The CO2 capture capacity of limestone in the raw meal is lower than for pure limestone. The difference in the CO2 capture capacity decreases with an increase in cycle number. The calcination conditions and composition are major factors that influence the CO2 capture capacity of limestone. At 850 °C in N2...

  18. Advanced technology development reducing CO2 emissions

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Dong Sup


    Responding to Korean government policies on green growth and global energy/ environmental challenges, SK energy has been developing new technologies to reduce CO2 emissions by 1) CO2 capture and utilization, 2) efficiency improvement, and 3) Li-ion batteries. The paper introduces three advanced technologies developed by SK energy; GreenPol, ACO, and Li-ion battery. Contributing to company vision, a more energy and less CO2, the three technologies are characterized as follows. GreenPol utilizes CO2 as a feedstock for making polymer. Advanced Catalytic Olefin (ACO) reduces CO2 emission by 20% and increase olefin production by 17%. Li-ion Batteries for automotive industries improves CO2 emission.

  19. CO2 Hydration Shell Structure and Transformation. (United States)

    Zukowski, Samual R; Mitev, Pavlin D; Hermansson, Kersti; Ben-Amotz, Dor


    The hydration-shell of CO2 is characterized using Raman multivariate curve resolution (Raman-MCR) spectroscopy combined with ab initio molecular dynamics (AIMD) vibrational density of states simulations, to validate our assignment of the experimentally observed high-frequency OH band to a weak hydrogen bond between water and CO2. Our results reveal that while the hydration-shell of CO2 is highly tetrahedral, it is also occasionally disrupted by the presence of entropically stabilized defects associated with the CO2-water hydrogen bond. Moreover, we find that the hydration-shell of CO2 undergoes a temperature-dependent structural transformation to a highly disordered (less tetrahedral) structure, reminiscent of the transformation that takes place at higher temperatures around much larger oily molecules. The biological significance of the CO2 hydration shell structural transformation is suggested by the fact that it takes place near physiological temperatures.

  20. Bosch - An alternate CO2 reduction technology (United States)

    Heppner, D. B.; Hallick, T. M.; Clark, D. C.; Quattrone, P. D.


    The Bosch process is the most promising CO2 reduction concept for future prolonged space missions. The paper presents the design of a three-person-capacity preprototype B-CRS (Bosch-based CO2 Reduction Subsystem). It is sized to reduce 3.0 kg/d CO2 generated by the crew and to supply the product water to an O2 generation subsystem to obtain O2. The design supports future development of the B-CRS as an alternative CO2 reduction subsystem to the Sabatier-based process presently under test at NASA. The discussion covers the Bosch CO2 reduction concept, process and hardware description, performance parameters, design specifications, subsystem schematic and operation, mechanical subsystem summary, control/monitor instrumentation, and subsystem packaging. A B-CRS with a proven technological base is an attractive CO2 reduction subsystem that eliminates overboard venting.

  1. High-Density Nanosharp Microstructures Enable Efficient CO2 Electroreduction. (United States)

    Saberi Safaei, Tina; Mepham, Adam; Zheng, Xueli; Pang, Yuanjie; Dinh, Cao-Thang; Liu, Min; Sinton, David; Kelley, Shana O; Sargent, Edward H


    Conversion of CO2 to CO powered by renewable electricity not only reduces CO2 pollution but also is a means to store renewable energy via chemical production of fuels from CO. However, the kinetics of this reaction are slow due its large energetic barrier. We have recently reported CO2 reduction that is considerably enhanced via local electric field concentration at the tips of sharp gold nanostructures. The high local electric field enhances CO2 concentration at the catalytic active sites, lowering the activation barrier. Here we engineer the nucleation and growth of next-generation Au nanostructures. The electroplating overpotential was manipulated to generate an appreciably increased density of honed nanoneedles. Using this approach, we report the first application of sequential electrodeposition to increase the density of sharp tips in CO2 electroreduction. Selective regions of the primary nanoneedles are passivated using a thiol SAM (self-assembled monolayer), and then growth is concentrated atop the uncovered high-energy planes, providing new nucleation sites that ultimately lead to an increase in the density of the nanosharp structures. The two-step process leads to a new record in CO2 to CO reduction, with a geometric current density of 38 mA/cm2 at -0.4 V (vs reversible hydrogen electrode), and a 15-fold improvement over the best prior reports of electrochemical surface area (ECSA) normalized current density.

  2. CO2 Activation over Catalytic Surfaces. (United States)

    Álvarez, Andrea; Borges, Marta; Corral-Pérez, Juan José; Olcina, Joan Giner; Hu, Lingjun; Cornu, Damien; Huang, Rui; Stoian, Dragos; Urakawa, Atsushi


    This article describes the main strategies to activate and convert carbon dioxide (CO2 ) into valuable chemicals over catalytic surfaces. Coherent elements such as common intermediates are identified in the different strategies and concisely discussed based on the reactivity of CO2 with the aim to understand the decisive factors for selective and efficient CO2 conversion. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. CO2 Allowance and Electricity Price Interaction

    Energy Technology Data Exchange (ETDEWEB)



    With the introduction of CO2 emission constraints on power generators in the European Union, climate policy is starting to have notable effects on energy markets. This paper sheds light on the links between CO2 prices, electricity prices, and electricity costs to industry. It is based on a series of interviews with industrial and electricity stakeholders, as well as a rich literature seeking to estimate the exact effect of CO2 prices on electricity prices.

  4. Modeling Silicate Weathering for Elevated CO2 and Temperature (United States)

    Bolton, E. W.


    A reactive transport model (RTM) is used to assess CO2 drawdown by silicate weathering over a wide range of temperature, pCO2, and infiltration rates for basalts and granites. Although RTM's have been used extensively to model weathering of basalts and granites for present-day conditions, we extend such modeling to higher CO2 that could have existed during the Archean and Proterozoic. We also consider a wide range of surface temperatures and infiltration rates. We consider several model basalt and granite compositions. We normally impose CO2 in equilibrium with the various atmospheric ranges modeled and CO2 is delivered to the weathering zone by aqueous transport. We also consider models with fixed CO2 (aq) throughout the weathering zone as could occur in soils with partial water saturation or with plant respiration, which can strongly influence pH and mineral dissolution rates. For the modeling, we use Kinflow: a model developed at Yale that includes mineral dissolution and precipitation under kinetic control, aqueous speciation, surface erosion, dynamic porosity, permeability, and mineral surface areas via sub-grid-scale grain models, and exchange of volatiles at the surface. Most of the modeling is done in 1D, but some comparisons to 2D domains with heterogeneous permeability are made. We find that when CO2 is fixed only at the surface, the pH tends toward higher values for basalts than granites, in large part due to the presence of more divalent than monovalent cations in the primary minerals, tending to decrease rates of mineral dissolution. Weathering rates increase (as expected) with increasing CO2 and temperature. This modeling is done with the support of the Virtual Planetary Laboratory.

  5. Global Mapping of CO2 on Enceladus (United States)

    McCord, T. B.; Combe, J. P.; Matson, D.; Johnson, T. V.


    We present the first global map of CO2 on Enceladus. The purpose is to determine whether CO2 is associated to fractures and eruptions, and if it formed recently. Cassini observed tectonic features and plumes on Enceladus, which could be caused by a warm subsurface ocean containing dissolved gases. CO2 should be one of these gases (Postberg F. et al., Nature, 2009), and some of it should be erupted and condensed onto the surface (Matson et al., Icarus, 2012). Validation of this hypothesis could be done by determining the amount, location and molecular state of the CO2. Free CO2 ice and complexed CO2 were reported on Enceladus (Brown et al., Science, 2006; Hansen, LPSC, 2010) from analysis of Cassini Visual and Infrared Mapping Spectrometer (VIMS) data, and on other Saturn icy satellites (Cruikshank et al., Icarus, 2010 ; Filacchione et al., Icarus, 2010). Complexed CO2 has also been found from Galileo Near-Infrared Mapping Spectrometer (NIMS) spectra on the icy Galilean satellites (McCord et al., Science, 1997 and JGR, 1998), apparently due to both interior outgassing and radiation processing. CO2 has an asymmetric stretching mode that creates an absorption band, the wavelength position of which is sensitive to the nature of molecular associations between CO2 and their neighbors. Free CO2 ice absorbs at 4.268 μm for (Sandford and Allamandola, 1990) and CO2 complexed with other molecules absorbs at shorter wavelengths, around 4.25 μm or shorter (Chaban et al., Icarus, 2007). In VIMS spectra of Enceladus, this stretching mode absorption band is near the instrument detection limit. We utilized all VIMS data sets available that had significant spatial resolution to increase the statistics of the observations for any given location and improve the signal to noise. CO2 has also a smaller absorption at 2.7 μm, although it occurs in a range of wavelength that has higher signal-to-noise ratio by several magnitudes, because the surface of Enceladus (mostly H2O ice) has

  6. CO2-induced photosynthetic and stoichiometric responses to phosphorus limitation (United States)

    de Boer, Hugo; di Lallo, Giacomo; van Dijk, Jerry


    Carbon fertilisation from rising atmospheric CO2 concentrations increases the productivity of plants globally. Meanwhile, the global cycles of Nitrogen (N) and Phosphorus (P) are also altered due to anthropogenic emissions. In general, the additional supply of N is expected to exceed that of P, leading to an increase in P limitation in natural ecosystems. Although the direct carbon fertilisation effect and the interaction with available N is relatively well understood, it remains uncertain how carbon fertilisation is confounded by the availability of P. It is hypothesised that (i) the photosynthetic P-use efficiency increases at elevated CO2 owing to a direct increase in photosynthesis and (ii) the photosynthetic maximum carboxylation rate (Vcmax) and electron transport rate (Jmax) are down-regulated in response to a combination of elevated CO2 and P-limitation via a coordinated reduction of leaf N and P content per unit leaf area. In this study we examined the hypothesised effects of P limitation and CO2 fertilisation on the photosynthetic and stoichiometric responses of three plant species: Holcus lanatus (C3 grass), Panicum miliaceum (C4 grass) and Solanum dulcamara (C3 herb). Individuals of these species were grown at sub-ambient (150 ppm), modern (450 ppm) and elevated CO2 concentrations (800 ppm) and exposed to an N:P treatment consisting of either severe nitrogen limitation at an N:P ratio of 1:1, or severe P limitation at an N:P ratio of 45:1, with a similar supply rate of N. Our results show significant effects of growth CO2 and P supply on Vcmax and Jmax, as well as the whole-plant biomass at the point of harvest. Interaction effects between growth CO2 and P supply were observed for the light-saturated photosynthesis rate, stomatal conductance, leaf P content, and the N:P ratio of the leaf. No significant change in the leaf N content was observed across treatments. These results suggest that limited availability of P constrains the biochemical potential

  7. Experimental Ion Mobility measurements in Ne-CO$_2$ and CO$_2$-N$_2$ mixtures

    CERN Document Server

    Encarnação, P.M.C.C.; Veenhof, R.; Neves, P.N.B.; Santos, F.P.; Trindade, A.M.F.; Borges, F.I.G.M.; Conde, C.A.N.


    In this paper we present the experimental results for the mobility, K0, of ions in neon-carbon dioxide (Ne-CO2) and carbon dioxide-nitrogen (CO2-N2) gaseous mixtures for total pressures ranging from 8–12 Torr, reduced electric fields in the 10–25 Td range, at room temperature. Regarding the Ne-CO2 mixture only one peak was observed for CO2 concentrations above 25%, which has been identified as an ion originated in CO2, while below 25% of CO2 a second-small peak appears at the left side of the main peak, which has been attributed to impurities. The mobility values for the main peak range between 3.51 ± 0.05 and 1.07 ± 0.01 cm2V−1s−1 in the 10%-99% interval of CO2, and from 4.61 ± 0.19 to 3.00 ± 0.09 cm2V−1s−1 for the second peak observed (10%–25% of CO2). For the CO2-N2, the time-of-arrival spectra displayed only one peak for CO2 concentrations above 10%, which was attributed to ions originated in CO2, namely CO2+(CO2), with a second peak appearing for CO2 concentrations below 10%. This secon...

  8. Increasing CO2 flux at Pisciarelli, Campi Flegrei, Italy

    Directory of Open Access Journals (Sweden)

    M. Queißer


    Full Text Available The Campi Flegrei caldera is located in the metropolitan area of Naples (Italy and has been undergoing different stages of unrest since 1950, evidenced by episodes of significant ground uplift followed by minor subsidence, increasing and fluctuating emission strengths of water vapor and CO2 from fumaroles, and periodic seismic crises. We deployed a scanning laser remote-sensing spectrometer (LARSS that measured path-integrated CO2 concentrations in the Pisciarelli area in May 2017. The resulting mean CO2 flux is 578 ± 246 t d−1. Our data suggest a significant increase in CO2 flux at this site since 2015. Together with recent geophysical observations, this suggests a greater contribution of the magmatic source to the degassing and/or an increase in permeability at shallow levels. Thanks to the integrated path soundings, LARSS may help to give representative measurements from large regions containing different CO2 sources, including fumaroles, low-temperature vents, and degassing soils, helping to constrain the contribution of deep gases and their migration mechanisms towards the surface.

  9. Increasing CO2 flux at Pisciarelli, Campi Flegrei, Italy (United States)

    Queißer, Manuel; Granieri, Domenico; Burton, Mike; Arzilli, Fabio; Avino, Rosario; Carandente, Antonio


    The Campi Flegrei caldera is located in the metropolitan area of Naples (Italy) and has been undergoing different stages of unrest since 1950, evidenced by episodes of significant ground uplift followed by minor subsidence, increasing and fluctuating emission strengths of water vapor and CO2 from fumaroles, and periodic seismic crises. We deployed a scanning laser remote-sensing spectrometer (LARSS) that measured path-integrated CO2 concentrations in the Pisciarelli area in May 2017. The resulting mean CO2 flux is 578 ± 246 t d-1. Our data suggest a significant increase in CO2 flux at this site since 2015. Together with recent geophysical observations, this suggests a greater contribution of the magmatic source to the degassing and/or an increase in permeability at shallow levels. Thanks to the integrated path soundings, LARSS may help to give representative measurements from large regions containing different CO2 sources, including fumaroles, low-temperature vents, and degassing soils, helping to constrain the contribution of deep gases and their migration mechanisms towards the surface.

  10. Transcritical CO2-booster installations for supermarkets; Transkritische CO2-boosterinstallaties bij supermarkten

    Energy Technology Data Exchange (ETDEWEB)

    Berger, M. [ECR Nederland, Hoofddorp (Netherlands); Jongejans, D. [Assumburg Koeltechniek, Uitgeest (Netherlands)


    To meet the demand for CO2 installations, Assumburg Refrigeration cooperates with a Swedish partner (Green and Cool), which provides complete CO2 packs, including well-developed software. At the moment Green and Cool now has about one hundred and fifty stores equipped with a transcritical CO2 system. [Dutch] Om aan de vraag naar CO2-installaties te kunnen voldoen, werkt Assumburg Koeltechniekdaar samen met een Zweedse partner (Green and Cool), die complete CO2-packs levert, inclusief goed ontwikkelde software. Green and Cool heeft op dit moment al zo'n honderdvijftig winkels voorzien van een transkritische CO2-installatie.


    Directory of Open Access Journals (Sweden)

    Laily Agustina Rahmawati


    optimalisasi lahan sangat optimal (tutupan vegetasi 90% pada lahan pekarangan untuk rumah tangga KEB.   ABSTRACT Households with all its activities contributed to CO2 emissions that lead to global warming. Therefore, based on the polluter pays principle (pollutant pay principle, households may be held responsible for the emissions produced in the form of land conservation. The study aims to analyze the average emissions and the average sequestration, to determine the minimum area of land to be conserved each household group Economy Class Upper (Power KEA- ≥ 1300 VA, Economy Class Intermediate (back Power 900 VA, Down Economy Class (KEA- Power 450 VA in the village of Sinduadi, Mlati subdistrict, Sleman, Yogyakarta. CO2 emissions are calculated based on household activities related to electricity consumption, fuel consumption for transportation, fuel consumption for cooking, waste production and water consumption taps, obtained from the questionnaire were subsequently multiplied by the conversion of CO2 emissions tersesedia. CO2 sequestration is calculated based biomass is retained by households on their vegetated land (yards, fields, gardens. Biomass estimation obtained through the method of Brown (1997 and Hairiah (2007, by nested qudrat sampling on each type of vegetated land owned by households. And the minimum area of land optimization, CO2 emissions are calculated based on the number of households and biomass per m2 of land. Based on the survey results revealed, households had an average Sinduadi emissions and sequestration, and the minimum area of land consecutively for: 7098.98 kgCO2 / th, 267.34 kgCO2 / th, and 178.11 m2 with a very level land optimization optimal (vegetation cover 90% in their yards for household KEA; 3785.9 kgCO2 / th, 632.61 kgCO2 / th, and 1551.37 m2 yard area with the optimization level is optimal land (vegetation cover 90% in their yards for household KEM; 1973.3 kgCO2 / th, 780.21 kgCO2 / th, and 898.91 m2 with very optimal level of

  12. Recent development of capture of CO2

    CERN Document Server

    Chavez, Rosa Hilda


    "Recent Technologies in the capture of CO2" provides a comprehensive summary on the latest technologies available to minimize the emission of CO2 from large point sources like fossil-fuel power plants or industrial facilities. This ebook also covers various techniques that could be developed to reduce the amount of CO2 released into the atmosphere. The contents of this book include chapters on oxy-fuel combustion in fluidized beds, gas separation membrane used in post-combustion capture, minimizing energy consumption in CO2 capture processes through process integration, characterization and application of structured packing for CO2 capture, calcium looping technology for CO2 capture and many more. Recent Technologies in capture of CO2 is a valuable resource for graduate students, process engineers and administrative staff looking for real-case analysis of pilot plants. This eBook brings together the research results and professional experiences of the most renowned work groups in the CO2 capture field...

  13. CO2 Capture with Enzyme Synthetic Analogue

    Energy Technology Data Exchange (ETDEWEB)

    Cordatos, Harry


    Overview of an ongoing, 2 year research project partially funded by APRA-E to create a novel, synthetic analogue of carbonic anhydrase and incorporate it into a membrane for removal of CO2 from flue gas in coal power plants. Mechanism background, preliminary feasibility study results, molecular modeling of analogue-CO2 interaction, and program timeline are provided.

  14. Membrane Technologies for CO2 Capture

    NARCIS (Netherlands)

    Simons-Fischbein, K.


    This thesis investigates the potential of membrane technology for the effective CO2/CH4 separation. The work focuses on two different membrane processes to accomplish the separation: 1) The use of a gas-liquid membrane contactor for the selective absorption of CO2 from CH4 2) The use of thin, dense

  15. CO2 capture research in the Netherlands

    NARCIS (Netherlands)

    Meerman, J.C.; Kuramochi, T.; Egmond, S. van


    The global climate is changing due to human activities. This human‑induced climate change is mainly caused by global emissions of carbon dioxide (CO2) into the atmosphere. Most scientists agree that in order to mitigate climate change, by 2050, global CO2 emissions must be reduced by at least 50%

  16. Iconic CO2 Time Series at Risk

    Energy Technology Data Exchange (ETDEWEB)

    Houweling, S. [SRON Netherlands Institute for Space Research, 3584 CA, Utrecht (Netherlands); Badawy, B. [Max-Planck-Institute for Biogeochemistry, 07745, Jena (Germany); Vermeulen, A.T. [Energieonderzoek Centrum Nederland ECN, 1755 ZG Petten (Netherlands)] [and others


    The Mauna Loa CO2 time series is iconic evidence of the effect of human-caused fossil fuel and land-use change emissions on the atmospheric increase of CO2. The continuity of such records depends critically on having stable funding, which is currently threatened by the financial crisis.

  17. Photocatalytic CO2 Activation by Water

    NARCIS (Netherlands)

    Yang, Chieh-Chao


    Photocatalytic activation of CO2 and water has potential for producing fuels by conversion of photon energy. However, the low productivity still limits practical application. In this study, the goal was to gain more fundamental insight in CO2 activation, and to provide guidelines for rational design

  18. Toxic emissions and devalued CO2-neutrality

    DEFF Research Database (Denmark)

    Czeskleba-Dupont, Rolf

    friendly effects of substituting wood burning for fossil fuels. With reference to Bent Sørensen's classical work on 'Renewable Energy' the assumption of CO2-neutrality regarding incineration is problematised when applied to plants with long rotation periods as trees. Registered CO2-emissions from wood...

  19. Options for CO2 sequestration in Kuwait

    NARCIS (Netherlands)

    Neele, F.; Vandeweijer, V.; Mayyan, H.; Sharma, S.R.; Kamal, D.


    In preparation for future requirements to abate CO2 emission levels, a CO2 storage feasibility study was carried out for the country of Kuwait. At present, no definite plans exist to install capture facilities at the larger emission points in the country; the study presented is one of the first

  20. Monitoring Options for CO2 Storage

    NARCIS (Netherlands)

    Arts, R.; Winthaegen, P.


    This chapter provides an overview of various monitoring techniques for CO2 storage that is structured into three categories-instrumentation in a well (monitoring well); instrumentation at the (near) surface (surface geophysical methods); and sampling at the (near) surface measuring CO2

  1. Aqueous ethylenediamine for CO(2) capture. (United States)

    Zhou, Shan; Chen, Xi; Nguyen, Thu; Voice, Alexander K; Rochelle, Gary T


    Aqueous ethylenediamine (EDA) has been investigated as a solvent for CO(2) capture from flue gas. EDA can be used at 12 M (mol kg(-1) H(2)O) with an acceptable viscosity of 16 cP (1 cP=10(-3) Pa s) with 0.48 mol CO(2) per equivalent of EDA. Similar to monoethanolamine (MEA), EDA can be used up to 120 degrees C in a stripper without significant thermal degradation. Inhibitor A will effectively eliminate oxidative degradation. Above 120 degrees C, loaded EDA degrades with the production of its cyclic urea and other related compounds. Unlike piperazine, when exposed to oxidative degradation, EDA does not result in excessive foaming. Over much of the loading range, the CO(2) absorption rate with 12 M EDA is comparable to 7 M MEA. However, at typical rich loading, 12 M EDA absorbs CO(2) 2 times slower than 7 M MEA. The capacity of 12 M EDA is 0.72 mol CO(2)/(kg H(2)O+EDA) (for P(CO(2) )=0.5 to 5 kPa at 40 degrees C), which is about double that of MEA. The apparent heat of CO(2) desorption in EDA solution is 84 kJ mol(-1) CO(2); greater than most other amine systems.

  2. CO2 fluxes near a forest edge

    DEFF Research Database (Denmark)

    Sogachev, Andrey; Leclerc, Monique Y.; Zhang, Gensheng


    In contrast with recent advances on the dynamics of the flow at a forest edge, few studies have considered its role on scalar transport and, in particular, on CO2 transfer. The present study addresses the influence of the abrupt roughness change on forest atmosphere CO2 exchange and contrasts...... the concentration and flux fields against those of a uniform forested surface. We use an atmospheric boundary layer two-equation closure model that accounts for the flow dynamics and vertical divergence of CO2 sources/sinks within a plant canopy. This paper characterizes the spatial variation of CO2 fluxes...... as a function of both sources/sinks distribution and the vertical structure of the canopy. Results suggest that the ground source plays a major role in the formation of wave-like vertical CO2 flux behavior downwind of a forest edge, despite the fact that the contribution of foliage sources/sinks changes...

  3. Thermodynamic modeling of CO2 mixtures

    DEFF Research Database (Denmark)

    Bjørner, Martin Gamel

    Knowledge of the thermodynamic properties and phase equilibria of mixtures containing carbon dioxide (CO2) is important in several industrial processes such as enhanced oil recovery, carbon capture and storage, and supercritical extractions, where CO2 is used as a solvent. Despite this importance......, accurate predictions of the thermodynamic properties and phase equilibria of mixtures containing CO2 are challenging with classical models such as the Soave-Redlich-Kwong (SRK) equation of state (EoS). This is believed to be due to the fact, that CO2 has a large quadrupole moment which the classical models...... complicated due to parameter identifiability issues. In an attempt to quantify and illustrate these issues, the uncertainties in the pure compound parameters of CO2 were investigated using qCPA as well as different CPA approaches. The approaches employ between three and five parameters. The uncertainties...

  4. Underwater CO2 Sequestration Program in Korea (United States)

    Kang, S.; Park, Y.; Choi, S.; Kim, Y.; Hwang, J.; Lee, J.


    In Korea an interdisciplinary project on underwater CO2 sequestration has been started. One of the main potential sites for the sequestration is the "DolGoRae (Dolphin)" gas field located over the southwestern part of the East/Japan Sea. We plan to deliver CO2 captured from the largest steel company in Korea (POSCO) to this site through pipe lines. To meet this end, chemical engineers study the behavior of CO2 hydrates, mechanical engineers design the pipe lines and injection systems, geologists and geological engineers survey the geological structure of the potential sites, and oceanographers assess the environmental effects. From a preliminary study, we find that we can store captured CO2 to the gas filed safely. In case the CO2 leaks from the storage site it would move to the north along the Korean coast on the average.

  5. Zinc depolarized electrochemical CO2 concentration (United States)

    Woods, R. R.; Marshall, R. D.; Schubert, F. H.


    Two zinc depolarized electrochemical carbon dioxide concentrator concepts were analytically and experimentally evaluated for portable life support system carbon dioxide (CO2) removal application. The first concept, referred to as the zinc hydrogen generator electrochemical depolarized CO2 concentrator, uses a ZHG to generate hydrogen for direct use in an EDC. The second concept, referred to as the zinc/electrochemical depolarized concentrator, uses a standard EDC cell construction modified for use with the Zn anode. The Zn anode is consumed and subsequently regenerated, thereby eliminating the need to supply H2 to the EDC for the CO2 removal process. The evaluation was based primarily on an analytical evaluation of the two ZnDCs at projected end item performance and hardware design levels. Both ZnDC concepts for PLSS CO2 removal application were found to be noncompetitive in both total equivalent launch weight and individual extravehicular activity mission volume when compared to other candidate regenerable PLSS CO2 scrubbers.

  6. Inverse modeling of fossil fuel CO2 emissions at urban scale using OCO-2 retrievals of total column CO2 (United States)

    Ye, X.; Lauvaux, T.; Kort, E. A.; Lin, J. C.; Oda, T.; Yang, E.; Wu, D.


    Rapid economic development has given rise to a steady increase of global carbon emissions, which have accumulated in the atmosphere for the past 200 years. Urbanization has concentrated about 70% of the global fossil-fuel CO2 emissions in large metropolitan areas distributed around the world, which represents the most significant anthropogenic contribution to climate change. However, highly uncertain quantifications of urban CO2 emissions are commonplace for numerous cities because of poorly-documented inventories of energy consumption. Therefore, accurate estimates of carbon emissions from global observing systems are a necessity if mitigation strategies are meant to be implemented at global scales. Space-based observations of total column averaged CO2 concentration (XCO2) provide a very promising and powerful tool to quantify urban CO2 fluxes. For the first time, measurements from the Orbiting Carbon Observatory 2 (OCO-2) mission are assimilated in a high resolution inverse modeling system to quantify fossil-fuel CO2 emissions of multiple cities around the globe. The Open-source Data Inventory for Anthropogenic CO2 (ODIAC) emission inventory is employed as a first guess, while the atmospheric transport is simulated using the WRF-Chem model at 1-km resolution. Emission detection and quantification is performed with an Ensemble Kalman Filter method. We demonstrate here the potential of the inverse approach for assimilating thousands of OCO-2 retrievals along tracks near metropolitan areas. We present the detection potential of the system with real-case applications near power plants and present inverse emissions using actual OCO-2 measurements on various urban landscapes. Finally, we will discuss the potential of OCO-2-like satellite instruments for monitoring temporal variations of fossil-fuel CO2 emissions over multiple years, which can provide valuable insights for future satellite observation strategies.

  7. The ins and outs of CO2. (United States)

    Raven, John A; Beardall, John


    It is difficult to distinguish influx and efflux of inorganic C in photosynthesizing tissues; this article examines what is known and where there are gaps in knowledge. Irreversible decarboxylases produce CO2, and CO2 is the substrate/product of enzymes that act as carboxylases and decarboxylases. Some irreversible carboxylases use CO2; others use HCO3(-). The relative role of permeation through the lipid bilayer versus movement through CO2-selective membrane proteins in the downhill, non-energized, movement of CO2 is not clear. Passive permeation explains most CO2 entry, including terrestrial and aquatic organisms with C3 physiology and biochemistry, terrestrial C4 plants and all crassulacean acid metabolism (CAM) plants, as well as being part of some mechanisms of HCO3(-) use in CO2 concentrating mechanism (CCM) function, although further work is needed to test the mechanism in some cases. However, there is some evidence of active CO2 influx at the plasmalemma of algae. HCO3(-) active influx at the plasmalemma underlies all cyanobacterial and some algal CCMs. HCO3(-) can also enter some algal chloroplasts, probably as part of a CCM. The high intracellular CO2 and HCO3(-) pools consequent upon CCMs result in leakage involving CO2, and occasionally HCO3(-). Leakage from cyanobacterial and microalgal CCMs involves up to half, but sometimes more, of the gross inorganic C entering in the CCM; leakage from terrestrial C4 plants is lower in most environments. Little is known of leakage from other organisms with CCMs, though given the leakage better-examined organisms, leakage occurs and increases the energetic cost of net carbon assimilation. © The Author 2015. Published by Oxford University Press on behalf of the Society for Experimental Biology.

  8. The ins and outs of CO2 (United States)

    Raven, John A.; Beardall, John


    It is difficult to distinguish influx and efflux of inorganic C in photosynthesizing tissues; this article examines what is known and where there are gaps in knowledge. Irreversible decarboxylases produce CO2, and CO2 is the substrate/product of enzymes that act as carboxylases and decarboxylases. Some irreversible carboxylases use CO2; others use HCO3 –. The relative role of permeation through the lipid bilayer versus movement through CO2-selective membrane proteins in the downhill, non-energized, movement of CO2 is not clear. Passive permeation explains most CO2 entry, including terrestrial and aquatic organisms with C3 physiology and biochemistry, terrestrial C4 plants and all crassulacean acid metabolism (CAM) plants, as well as being part of some mechanisms of HCO3 – use in CO2 concentrating mechanism (CCM) function, although further work is needed to test the mechanism in some cases. However, there is some evidence of active CO2 influx at the plasmalemma of algae. HCO3 – active influx at the plasmalemma underlies all cyanobacterial and some algal CCMs. HCO3 – can also enter some algal chloroplasts, probably as part of a CCM. The high intracellular CO2 and HCO3 – pools consequent upon CCMs result in leakage involving CO2, and occasionally HCO3 –. Leakage from cyanobacterial and microalgal CCMs involves up to half, but sometimes more, of the gross inorganic C entering in the CCM; leakage from terrestrial C4 plants is lower in most environments. Little is known of leakage from other organisms with CCMs, though given the leakage better-examined organisms, leakage occurs and increases the energetic cost of net carbon assimilation. PMID:26466660

  9. Gas condensate reservoir characterisation for CO2 geological storage (United States)

    Ivakhnenko, A. P.


    During oil and gas production hydrocarbon recovery efficiency is significantly increased by injecting miscible CO2 gas in order to displace hydrocarbons towards producing wells. This process of enhanced oil recovery (EOR) might be used for the total CO2 storage after complete hydrocarbon reservoir depletion. This kind of potential storage sites was selected for detailed studies, including generalised development study to investigate the applicability of CO2 for storages. The study is focused on compositional modelling to predict the miscibility pressures. We consider depleted gas condensate field in Kazakhstan as important target for CO2 storage and EOR. This reservoir being depleted below the dew point leads to retrograde condensate formed in the pore system. CO2 injection in the depleted gas condensate reservoirs may allow enhanced gas recovery by reservoir pressurisation and liquid re-vaporisation. In addition a number of geological and petrophysical parameters should satisfy storage requirements. Studied carbonate gas condensate and oil field has strong seal, good petrophysical parameters and already proven successful containment CO2 and sour gas in high pressure and high temperature (HPHT) conditions. The reservoir is isolated Lower Permian and Carboniferous carbonate platform covering an area of about 30 km. The reservoir contains a gas column about 1.5 km thick. Importantly, the strong massive sealing consists of the salt and shale seal. Sour gas that filled in the oil-saturated shale had an active role to form strong sealing. Two-stage hydrocarbon saturation of oil and later gas within the seal frame were accompanied by bitumen precipitation in shales forming a perfect additional seal. Field hydrocarbon production began three decades ago maintaining a strategy in full replacement of gas in order to maintain pressure of the reservoir above the dew point. This was partially due to the sour nature of the gas with CO2 content over 5%. Our models and

  10. Analysis of Microbial Communities in the Oil Reservoir Subjected to CO2-Flooding by Using Functional Genes as Molecular Biomarkers for Microbial CO2 Sequestration

    Directory of Open Access Journals (Sweden)

    Jin-Feng eLiu


    Full Text Available Sequestration of CO2 in oil reservoirs is considered to be one of the feasible options for mitigating atmospheric CO2 building up and also for the in situ potential bioconversion of stored CO2 to methane. However, the information on these functional microbial communities and the impact of CO2 storage on them is hardly available. In this paper a comprehensive molecular survey was performed on microbial communities in production water samples from oil reservoirs experienced CO2-flooding by analysis of functional genes involved in the process, including cbbM, cbbL, fthfs, [FeFe]-hydrogenase and mcrA. As a comparison, these functional genes in the production water samples from oil reservoir only experienced water-flooding in areas of the same oil bearing bed were also analyzed. It showed that these functional genes were all of rich diversity in these samples, and the functional microbial communities and their diversity were strongly affected by a long-term exposure to injected CO2. More interestingly, microorganisms affiliated with members of the genera Methanothemobacter, Acetobacterium and Halothiobacillus as well as hydrogen producers in CO2 injected area either increased or remained unchanged in relative abundance compared to that in water-flooded area, which implied that these microorganisms could adapt to CO2 injection and, if so, demonstrated the potential for microbial fixation and conversion of CO2 into methane in subsurface oil reservoirs.

  11. A usage of CO2 hydrate: convenient method to increase CO2 concentration in culturing algae. (United States)

    Nakano, Sho; Chang, Kwang-Hyeon; Shijima, Atsushi; Miyamoto, Hiroyuki; Sato, Yukio; Noto, Yuji; Ha, Jin-Yong; Sakamoto, Masaki


    The addition of CO2 to algal culture systems can increase algal biomass effectively. Generally, gas bubbling is used to increase CO2 levels in culture systems; however, it is difficult to quantitatively operate to control the concentration using this method. In this study, we tested the usability of CO2 hydrate for phytoplankton culture. Specifically, green algae Pseudokirchneriella subcapitata were cultured in COMBO medium that contained dissolved CO2 hydrate, after which its effects were evaluated. The experiment was conducted according to a general bioassay procedure (OECD TG201). CO2 promoted algae growth effectively (about 2-fold relative to the control), and the decrease in pH due to dissolution of the CO2 in water recovered soon because of photosynthesis. Since the CO2 hydrate method can control a CO2 concentration easily and quantitatively, it is expected to be useful in future applications. Copyright © 2014 Elsevier Ltd. All rights reserved.

  12. Dynamics of CO2 fluxes and concentrations during a shallow subsurface CO2 release

    Energy Technology Data Exchange (ETDEWEB)

    Lewicki, J.L.; Hilley, G.E.; Dobeck, L.; Spangler, L.


    A field facility located in Bozeman, Montana provides the opportunity to test methods to detect, locate, and quantify potential CO2 leakage from geologic storage sites. From 9 July to 7 August 2008, 0.3 t CO2 d{sup -1} were injected from a 100-m long, {approx}2.5 m deep horizontal well. Repeated measurements of soil CO2 fluxes on a grid characterized the spatio-temporal evolution of the surface leakage signal and quantified the surface leakage rate. Infrared CO2 concentration sensors installed in the soil at 30 cm depth at 0 to 10 m from the well and at 4 cm above the ground at 0 and 5 m from the well recorded surface breakthrough of CO2 leakage and migration of CO2 leakage through the soil. Temporal variations in CO2 concentrations were correlated with atmospheric and soil temperature, wind speed, atmospheric pressure, rainfall, and CO2 injection rate.

  13. Epoxy based oxygen enriched porous carbons for CO2 capture (United States)

    Tiwari, Deepak; Bhunia, Haripada; Bajpai, Pramod K.


    Oxygen enriched carbon adsorbents were successfully synthesized for the first time from template zeolite and epoxy resin as precursor using a nanocasting technique. Carbonization and CO2 activation were performed at various temperatures (500-800 °C) to prepare different carbon structure adsorbents. Several characterization techniques were used to characterize the textural structure, oxygen content and surface functional groups of the adsorbents. The carbon adsorbents show high oxygen content (47.51%), highest surface area (SBET = 686.37 m2 g-1) and pore volume (0.60 cm3 g-1), respectively. The materials were evaluated thermogravimetrically at different adsorption temperatures (30-100 °C) and CO2 concentrations (6-100%). Adsorbent prepared at 700 °C exhibited highest CO2 uptake of 0.91 mmol g-1 due to high surface basicity. Further, regeneration studies of adsorbent exhibited easy regenerability and stability over four multiple adsorptions-desorption cycles. Kinetic models for CO2 adsorption at various CO2 concentrations and temperatures were studied and it was found that the fractional order provided best fitting for the adsorption behavior with an error of less than 3%. The experimental data for CO2 adsorption were analyzed using different isothermal models and found that the Freundlich isothermal model presented perfect fit among all isotherm models depicting heterogeneous adsorbent surface. The isosteric heat of adsorption was estimated to be 11.75 kJ mol-1, indicating physiosorption process. Overall, the above results suggested that the synthesized adsorbent using nanocasting technique provides a feasible way for CO2 capture from point source due to their environmentally benign nature, low cost and stable adsorption capacity.

  14. Mechanochemical synthesis and characterization of pure Co2B ...

    Indian Academy of Sciences (India)

    3Department of Industrial Design Engineering, Gazi University, Ankara 06500, Turkey. MS received 5 January 2016; accepted 2 February 2016. Abstract. Cobalt boride (Co2B) is a significant transition metal boride having a wide range of usage area due to its high oxidation, abrasion and corrosion resistance as well as its ...

  15. Mesoporous amine-bridged polysilsesquioxane for CO2 capture

    KAUST Repository

    Qi, Genggeng


    A novel class of amine-supported sorbents based on amine-bridged mesoporous polysilsesquioxane was developed via a simple one-pot sol-gel process. The new sorbent allows the incorporation of a large amount of active groups without sacrificing surface area or pore volume available for CO2 capture, leading to a CO2 capture capacity of 3.2 mmol g−1 under simulated flue gas conditions. The sorbent is readily regenerated at 100°C and exhibits good stability over repetitive adsorption-desorption cycling.

  16. Electrocatalytic Alloys for CO2 Reduction. (United States)

    He, Jingfu; Johnson, Noah J J; Huang, Aoxue; Berlinguette, Curtis P


    Electrochemically reducing CO2 using renewable energy is a contemporary global challenge that will only be met with electrocatalysts capable of efficiently converting CO2 into fuels and chemicals with high selectivity. Although many different metals and morphologies have been tested for CO2 electrocatalysis over the last several decades, relatively limited attention has been committed to the study of alloys for this application. Alloying is a promising method to tailor the geometric and electric environments of active sites. The parameter space for discovering new alloys for CO2 electrocatalysis is particularly large because of the myriad products that can be formed during CO2 reduction. In this Minireview, mixed-metal electrocatalyst compositions that have been evaluated for CO2 reduction are summarized. A distillation of the structure-property relationships gleaned from this survey are intended to help in the construction of guidelines for discovering new classes of alloys for the CO2 reduction reaction. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Assessing the potential impact of the CO2 performance ladder on CO2 emission reduction

    NARCIS (Netherlands)

    Kornelis Blok; dr. Martijn Rietbergen


    The aim of this research is to assess the potential impact of the CO2 Performance Ladder on CO2 emission reduction. The CO2 Performance Ladder is a new green procurement scheme that has been adopted by several public authorities in the Netherlands; it is a staged certification scheme for energy and

  18. Regenerable Sorbent for CO2 Removal (United States)

    Alptekin, Gokhan; Jayaraman, Ambal


    A durable, high-capacity regenerable sorbent can remove CO2 from the breathing loop under a Martian atmosphere. The system design allows near-ambient temperature operation, needs only a small temperature swing, and sorbent regeneration takes place at or above 8 torr, eliminating the potential for Martian atmosphere to leak into the regeneration bed and into the breathing loop. The physical adsorbent can be used in a metabolic, heat-driven TSA system to remove CO2 from the breathing loop of the astronaut and reject it to the Martian atmosphere. Two (or more) alternating sorbent beds continuously scrub and reject CO2 from the spacesuit ventilation loop. The sorbent beds are cycled, alternately absorbing CO2 from the vent loop and rejecting the adsorbed material into the environment at a high CO2 partial pressure (above 8 torr). The system does not need to run the adsorber at cryogenic temperatures, and uses a much smaller temperature swing. The sorbent removes CO2 via a weak chemical interaction. The interaction is strong enough to enable CO2 adsorption even at 3 to 7.6 torr. However, because the interaction between the surface adsorption sites and the CO2 is relatively weak, the heat input needed to regenerate the sorbent is much lower than that for chemical absorbents. The sorbent developed in this project could potentially find use in a large commercial market in the removal of CO2 emissions from coal-fired power plants, if regulations are put in place to curb carbon emissions from power plants.

  19. Modification of land-atmosphere interactions by CO2 effects (United States)

    Lemordant, Leo; Gentine, Pierre


    Plant stomata couple the energy, water and carbon cycles. Increased CO2 modifies the seasonality of the water cycle through stomatal regulation and increased leaf area. As a result, the water saved during the growing season through higher water use efficiency mitigates summer dryness and the impact of potential heat waves. Land-atmosphere interactions and CO2 fertilization together synergistically contribute to increased summer transpiration. This, in turn, alters the surface energy budget and decreases sensible heat flux, mitigating air temperature rise. Accurate representation of the response to higher CO2 levels, and of the coupling between the carbon and water cycles are therefore critical to forecasting seasonal climate, water cycle dynamics and to enhance the accuracy of extreme event prediction under future climate.

  20. CO2 (dry ice) cleaning system (United States)

    Barnett, Donald M.


    Tomco Equipment Company has participated in the dry ice (solid carbon dioxide, CO2) cleaning industry for over ten years as a pioneer in the manufacturer of high density, dry ice cleaning pellet production equipment. For over four years Tomco high density pelletizers have been available to the dry ice cleaning industry. Approximately one year ago Tomco introduced the DI-250, a new dry ice blast unit making Tomco a single source supplier for sublimable media, particle blast, cleaning systems. This new blast unit is an all pneumatic, single discharge hose device. It meters the insertion of 1/8 inch diameter (or smaller), high density, dry ice pellets into a high pressure, propellant gas stream. The dry ice and propellant streams are controlled and mixed from the blast cabinet. From there the mixture is transported to the nozzle where the pellets are accelerated to an appropriate blasting velocity. When directed to impact upon a target area, these dry ice pellets have sufficient energy to effectively remove most surface coatings through dry, abrasive contact. The meta-stable, dry ice pellets used for CO2 cleaning, while labeled 'high density,' are less dense than alternate, abrasive, particle blast media. In addition, after contacting the target surface, they return to their equilibrium condition: a superheated gas state. Most currently used grit blasting media are silicon dioxide based, which possess a sharp tetrahedral molecular structure. Silicon dioxide crystal structures will always produce smaller sharp-edged replicas of the original crystal upon fracture. Larger, softer dry ice pellets do not share the same sharp-edged crystalline structures as their non-sublimable counterparts when broken. In fact, upon contact with the target surface, dry ice pellets will plastically deform and break apart. As such, dry ice cleaning is less harmful to sensitive substrates, workers and the environment than chemical or abrasive cleaning systems. Dry ice cleaning system

  1. Energy Balance of Global CO_2 Recycling and Amounts of Reduction of CO_2 Emission


    Hashimoto, K; Akiyama, E.; Habazaki, H.; Kawashima, A.; Komori, M.; SHIMAMURA, K.; Kumagai, N.


    On the basis of tailoring of amorphous alloy electrodes for seawater electrolysis to form H_2 and amorphous alloy catalysts for conversion of CO_2 to CH_4, we are proposing global CO_2 recycling : At deserts; power generation by solar energy, at coasts close to the deserts; production of H_2 by electrolysis of seawater, production of CH_4 by the reaction of H_2 and CO_2 transported, and at energy consuming districts; combustion of CH_4, recovery of CO_2 and transportation of liquefied CO_2 to...

  2. Annual soil CO_{2} production in Moscow Botanical Garden (Russia). (United States)

    Udovenko, Maria; Goncharova, Olga; Matyshak, Georgy


    Soil respiration is an essential component of the carbon cycle, determining 25-40 % of carbon dioxide in the atmosphere. Urban soils are subject to significant anthropogenic influences. Anthropogenic impact affects both the plants and the soil microbiota. So, soil CO2 efflux and soil profile CO2 concentration probably differ in urban and natural soils. Influence of abiotic factors on soil carbon dioxide production is explored insufficiently. The research of their impact on soil carbon dioxide production is necessary to predict soil response to anthropogenic climate change. The aim of this study was estimation of annual soil CO2 production and the impact of climatic factors on it. The research took place in Moscow State University Botanical Garden Arboretum (southern taiga). Investigations were carried out at two sites: the areas planted with Picea obovata and Carpinus betulus. The study was conducted with 1-2 weeks intervals between November 2014 and December 2015. Emission measurement were carried out by closed chamber technique, profile concentration were measured by soil air sampling tubes method. Annual carbon dioxide soil surface efflux of soil planted with Picea obovata was 1370 gCO2/(m2 * year), soil planted with Carpinus betulus - 1590 gCO2/(m2 * year). Soil CO2 concentration increased with depth in average of 3300 to 12000 ppm (at 80 cm depth). Maximum concentration values are confined to the end of vegetation period (high biological activity) and to beginning of spring (spring ice cover of soil prevents CO2 emission). Soil CO2 efflux depends on soil temperature at 10 cm depth (R = 0.89; p <0.05), in a less degree it correlate with soil surface temperature and with soil temperature at 20 cm depth (r=0.88; p<0.05). Soil moisture has a little effect on CO2 efflux in the annual cycle (r=-0.16; p<0.05). However in vegetation period efflux of carbon dioxide largely depends on soil moisture, due to the fact, that soil moisture is limiting factor for soil

  3. The ATLAS IBL CO2 Cooling System

    CERN Document Server

    Verlaat, Bartholomeus; The ATLAS collaboration


    The Atlas Pixel detector has been equipped with an extra B-layer in the space obtained by a reduced beam pipe. This new pixel detector called the ATLAS Insertable B-Layer (IBL) is installed in 2014 and is operational in the current ATLAS data taking. The IBL detector is cooled with evaporative CO2 and is the first of its kind in ATLAS. The ATLAS IBL CO2 cooling system is designed for lower temperature operation (<-35⁰C) than the previous developed CO2 cooling systems in High Energy Physics experiments. The cold temperatures are required to protect the pixel sensors for the high expected radiation dose up to 550 fb^-1 integrated luminosity. This paper describes the design, development, construction and commissioning of the IBL CO2 cooling system. It describes the challenges overcome and the important lessons learned for the development of future systems which are now under design for the Phase-II upgrade detectors.

  4. Sustainable Process Networks for CO2 Conversion

    DEFF Research Database (Denmark)

    Frauzem, Rebecca; Kongpanna, P.; Pavarajam, V.

    that are thermodynamically feasible, including the co-reactants, catalysts, operating conditions and reactions. Research has revealed that there are a variety of reactions that fulfill the aforementioned criteria. The products that are formed fall into categories: fuels, bulk chemicals and specialty chemicals. While fuels...... the emissions is the conversion of CO2 into useful products, such as methanol [3]. In this work, through a computer-aided framework for process network synthesis-design, a network of feasible conversion processes that all use emitted CO2 is investigated. CO2 is emitted into the environment from various sources......, such as methanol (MeOH) have the largest market, this network will include a variety of thermodynamically feasible conversion paths [4]. From reviews of work previously done, there are ranges of possible products that are formed from CO2 and another co-reactant directly. Methanol, dimethyl ether, dimethyl...

  5. CO2 Removal from Mars EMU Project (United States)

    National Aeronautics and Space Administration — CO2 control for during ExtraVehicular Activity (EVA) on mars is challenging. Lithium hydroxide (LiOH) canisters have impractical logistics penalties, and regenerable...

  6. Compact, High Accuracy CO2 Monitor Project (United States)

    National Aeronautics and Space Administration — This Small Business Innovative Research Phase I proposal seeks to develop a low cost, robust, highly precise and accurate CO2 monitoring system. This system will...

  7. Compact, High Accuracy CO2 Monitor Project (United States)

    National Aeronautics and Space Administration — This Small Business Innovative Research Phase II proposal seeks to develop a low cost, robust, highly precise and accurate CO2 monitoring system. This system will...

  8. CO2 emissions in the steel industry

    Directory of Open Access Journals (Sweden)

    M. Kundak


    Full Text Available Global CO2 emissions caused by the burning of fossil fuels over the past century are presented. Taking into consideration the total world production of more than 1,3 billion tons of steel, the steel industry produces over two billion tons of CO2. Reductions in CO2 emissions as a result of technological improvements and structural changes in steel production in industrialized countries during the past 40 years are described. Substantial further reductions in those emissions will not be possible using conventional technologies. Instead, a radical cutback may be achieved if, instead of carbon, hydrogen is used for direct iron ore reduction. The cost and the ensuing CO2 generation in the production of hydrogen as a reducing agent from various sources are analysed.

  9. Photocatalytic Conversion of CO2 on Mars (United States)

    Meier, Annie; Hare, Bryan


    Light on Mars shows potential for providing the energy means necessary for enhanced In-Situ Resource Utilization (ISRU). Through photocatalysis, the energy barrier required to convert CO2 is lowered and CH4 production is favorable.

  10. CO2 Removal from Mars EMU Project (United States)

    National Aeronautics and Space Administration — A practical CO2 control system for ExtraVehicular Activity (EVA) on Mars have not yet been developed. TDA Research, Inc. proposes to develop a durable,...

  11. Conversion of CO2 into biomass by microalgae: how realistic a contribution may it be to significant CO2 removal? (United States)

    Acién Fernández, F Gabriel; González-López, C V; Fernández Sevilla, J M; Molina Grima, E


    Microalgae have been proposed as a CO(2) removal option to contribute to climate change avoidance and problems coming from the use of fossil fuels. However, even though microalgae can be used to fix CO(2) from air or flue gases, they do not permit long-term CO(2) storage because they are easily decomposed. On the other hand, microalgae can contribute to an enhancement in human sustainability by producing biofuels as an alternative to fossil fuels in addition to the production of other useful chemicals and commodities. Moreover, microalgae can contribute to enhancing the sustainability of waste treatment processes, reducing the energy consumed, and improving the recycling of nutrients contained within them. This paper reviews the potential contribution of these processes and the existing knowledge in these areas.

  12. [Dissertations 25 years after date 29. CO2 laser surgery of leukoplakia of the oral mucosa]. (United States)

    Roodenburg, J L N


    With a CO2 laser superficial lesions of the oral mucosa can be removed by evaporation. During CO2 laser evaporation there is minimal damage to the surrounding tissue, resulting in minimal scarring after healing. Therefore the CO2 laser seems to be a modality which is appropriate for the treatment of leukoplakia of the oral mucosa. In 1985, the effect of CO2 laser light on mucosa and the healing after CO2 laser evaporation was studied. In addition, clinical research was carried out concerning the effectiveness of CO2 laser evaporation in the treatment of 103 cases of leukoplakia of the oral mucosa The cure-rate was 91% and no malignant degenerations were seen in the treated area. The group was expanded (282) and evaluated again, with a cure-rate of 90%. In 1% of the cases, malignant degenerations were seen. CO2 laser evaporation seems the modality of choice for the treatment of leukoplakia of the oral mucosa.

  13. CO2 binding in the (quinoline-CO2)- anionic complex (United States)

    Graham, Jacob D.; Buytendyk, Allyson M.; Wang, Yi; Kim, Seong K.; Bowen, Kit H.


    We have studied the (quinoline-CO2)- anionic complex by a combination of mass spectrometry, anion photoelectron spectroscopy, and density functional theory calculations. The (quinoline-CO2)- anionic complex has much in common with previously studied (N-heterocycle-CO2)- anionic complexes both in terms of geometric structure and covalent bonding character. Unlike the previously studied N-heterocycles, however, quinoline has a positive electron affinity, and this provided a pathway for determining the binding energy of CO2 in the (quinoline-CO2)- anionic complex. From the theoretical calculations, we found CO2 to be bound within the (quinoline-CO2)- anionic complex by 0.6 eV. We also showed that the excess electron is delocalized over the entire molecular framework. It is likely that the CO2 binding energies and excess electron delocalization profiles of the previously studied (N-heterocycle-CO2)- anionic complexes are quite similar to that of the (quinoline-CO2)- anionic complex. This class of complexes may have a role to play in CO2 activation and/or sequestration.

  14. Udvikling af CO2 neutralt byrumsarmatur

    DEFF Research Database (Denmark)

    Poulsen, Peter Behrensdorff; Dam-Hansen, Carsten; Corell, Dennis Dan

    Denne rapport indeholder en beskrivelse af arbejdet udført i og resultaterne af forsknings- og udviklingsprojektet ” Udvikling af CO2 neutralt byrumsarmatur” og udgør slutrapportering for dette projekt.......Denne rapport indeholder en beskrivelse af arbejdet udført i og resultaterne af forsknings- og udviklingsprojektet ” Udvikling af CO2 neutralt byrumsarmatur” og udgør slutrapportering for dette projekt....

  15. Bifunctional Catalysts for CO2 Reduction (United States)


    product distribution as a function of catalyst composition (ligand, metal ions), electrolyte, acid and CO2 pressure. 4. Examine reaction chemistry ...alternative ligand platforms to seek transition metal complexes that would feature inner-sphere reduction chemistry with CO2 and promote the desired multi...into these polyamine based-ligands typically involves a transamination reaction with metal-amide or organometallic starting materials (e.g., M2(N

  16. Density of aqueous solutions of CO2


    Garcia, Julio E.


    In this report, we present a numerical representation for the partial molar volume of CO2 in water and the calculation of the corresponding aqueous solution density. The motivation behind this work is related to the importance of having accurate representations for aqueous phase properties in the numerical simulation of carbon dioxide disposal into aquifers as well as in geothermal applications. According to reported experimental data the density of aqueous solutions of CO2 can be as mu...

  17. Photoacoustic CO2-Sensor for Automotive Applications


    Huber, J; C. Weber; Eberhardt, A.; Wöllenstein, J.


    We present a field-tested miniaturized spectroscopic CO2 sensor which is based on the photoacoustic effect. The sensor is developed for automotive applications and considers the requirements for the usage in vehicles. The sensor measures two measurement ranges simultaneously: The monitoring of the indoor air quality and the detection of possible leakages of the coolant in CO2 air-conditioning systems. The sensor consists of a miniaturized innovative photoacoustic sensor unit with integrated e...

  18. Combustion of hythane diluted with CO2

    Directory of Open Access Journals (Sweden)

    Hraiech Ibtissem


    Full Text Available With increasing concern about energy shortage and environmental protection, improving engine fuel economy and reducing exhaust emissions have become major research topics in combustion and engine development. Hythane (a blend of hydrogen H2 and natural gas NG has generated a significant interest as an alternative fuel for the future. This paper describes an experimental study of the effects of CO2 addition on the stability of a turbulent jet diffusion NG-H2 flame. The mole fraction of hydrogen (% H2 in NG-H2 mixture was varied from 0% to 50%. The equivalence ratio of the hythane/CO2/air mixture was kept at stoichiometry. The results show that the lift-off height increases with the addition of CO2 at various % H2 content in hythane. However, we observe that with 20% H2, we can obtain a stable flame diluted with 40% CO2, while for 0% H2, the flame is blown out above 20% CO2. This means that the limits of flame blowing out are pushed with the additions of H2. Moreover, the results show that for %H2 content in NG-H2 fuel up to 10%, the addition of CO2 could produce lifted flame if the % CO2 is low. At higher % CO2 dilution, flame would remain attached until blow-out. This is mainly due to the fact that the dilution leads to ejection velocities very high but reactivity of the mixture does not change so the flame tends to stretch.

  19. Density of aqueous solutions of CO2

    Energy Technology Data Exchange (ETDEWEB)

    Garcia, Julio E.


    In this report, we present a numerical representation for the partial molar volume of CO2 in water and the calculation of the corresponding aqueous solution density. The motivation behind this work is related to the importance of having accurate representations for aqueous phase properties in the numerical simulation of carbon dioxide disposal into aquifers as well as in geothermal applications. According to reported experimental data the density of aqueous solutions of CO2 can be as much as 2-3% higher than pure water density. This density variation might produce an influence on the groundwater flow regime. For instance, in geologic sequestration of CO2, convective transport mixing might occur when, several years after injection of carbon dioxide has stopped, the CO2-rich gas phase is concentrated at the top of the formation, just below an overlaying caprock. In this particular case the heavier CO2 saturated water will flow downward and will be replaced by water with a lesser CO2 content.

  20. Anthropogenic CO2 in the ocean

    Directory of Open Access Journals (Sweden)

    Tsung-Hung Peng


    Full Text Available The focus of this review article is on the anthropogenic CO2 taken up by the ocean. There are several methods of identifying the anthropogenic CO2 signal and quantifying its inventory in the ocean. The ?C* method is most frequently used to estimate the global distribution of anthropogenic CO2 in the ocean. Results based on analysis of the dataset obtained from the comprehensive surveys of inorganic carbon distribution in the world oceans in the 1990s are given. These surveys were jointly conducted during the World Ocean Circulation Experiment (WOCE and the Joint Global Ocean Flux Study (JGOFS. This data set consists of 9618 hydrographic stations from a total of 95 cruises, which represents the most accurate and comprehensive view of the distribution of inorganic carbon in the global ocean available today. The increase of anthropogenic CO2 in the ocean during the past few decades is also evaluated using direct comparison of results from repeat surveys and using statistical method of Multi-parameter Linear Regression (MLR. The impact of increasing oceanic anthropogenic CO2 on the calcium carbonate system in the ocean is reviewed briefly as well. Extensive studies of CaCO3 dissolution as a result of increasing anthropogenic CO2 in the ocean have revealed several distinct oceanic regions where the CaCO3 undersaturation zone has expanded.

  1. Monitoring CO2 in shock states. (United States)

    Danin, Pierre-Eric; Siegenthaler, Nils; Levraut, Jacques; Bernardin, Gilles; Dellamonica, Jean; Bendjelid, Karim


    The primary end point when treating acute shock is to restore blood circulation, mainly by reaching macrocirculatory parameters. However, even if global haemodynamic goals can be achieved, microcirculatory perfusion may remain impaired, leading to cellular hypoxia and organ damage. Interestingly, few methods are currently available to measure the adequacy of organ blood flow and tissue oxygenation. The rise in tissue partial pressure of carbon dioxide (CO2) has been observed when tissue perfusion is decreased. In this regard, tissue partial pressure of CO2 has been proposed as an early and reliable marker of tissue hypoxia even if the mechanisms of tissue partial pressure in CO2 rise during hypoperfusion remain unclear. Several technologies allow the estimation of CO2 content from different body sites: vascular, tissular (in hollow organs, mucosal or cutaneous), and airway. These tools remain poorly evaluated, and some are used but are not widely used in clinical practice. The present review clarifies the physiology of increasing tissue CO2 during hypoperfusion and underlines the specificities of the different technologies that allow bedside estimation of tissue CO2 content.

  2. Advanced CO2 Removal and Reduction System (United States)

    Alptekin, Gokhan; Dubovik, Margarita; Copeland, Robert J.


    An advanced system for removing CO2 and H2O from cabin air, reducing the CO2, and returning the resulting O2 to the air is less massive than is a prior system that includes two assemblies . one for removal and one for reduction. Also, in this system, unlike in the prior system, there is no need to compress and temporarily store CO2. In this present system, removal and reduction take place within a single assembly, wherein removal is effected by use of an alkali sorbent and reduction is effected using a supply of H2 and Ru catalyst, by means of the Sabatier reaction, which is CO2 + 4H2 CH4 + O2. The assembly contains two fixed-bed reactors operating in alternation: At first, air is blown through the first bed, which absorbs CO2 and H2O. Once the first bed is saturated with CO2 and H2O, the flow of air is diverted through the second bed and the first bed is regenerated by supplying it with H2 for the Sabatier reaction. Initially, the H2 is heated to provide heat for the regeneration reaction, which is endothermic. In the later stages of regeneration, the Sabatier reaction, which is exothermic, supplies the heat for regeneration.

  3. CO2 plume management in saline reservoir sequestration (United States)

    Frailey, S.M.; Finley, R.J.


    A significant difference between injecting CO2 into saline aquifers for sequestration and injecting fluids into oil reservoirs or natural gas into aquifer storage reservoirs is the availability and use of other production and injection wells surrounding the primary injection well(s). Of major concern for CO2 sequestration using a single well is the distribution of pressure and CO2 saturation within the injection zone. Pressure is of concern with regards to caprock integrity and potential migration of brine or CO2 outside of the injection zone, while CO2 saturation is of interest for storage rights and displacement efficiency. For oil reservoirs, the presence of additional wells is intended to maximize oil recovery by injecting CO2 into the same hydraulic flow units from which the producing wells are withdrawing fluids. Completing injectors and producers in the same flow unit increases CO2 throughput, maximizes oil displacement efficiency, and controls pressure buildup. Additional injectors may surround the CO2 injection well and oil production wells in order to provide external pressure to these wells to prevent the injected CO2 from migrating from the pattern between two of the producing wells. Natural gas storage practices are similar in that to reduce the amount of "cushion" gas and increase the amount of cycled or working gas, edge wells may be used for withdrawal of gas and center wells used for gas injection. This reduces loss of gas to the formation via residual trapping far from the injection well. Moreover, this maximizes the natural gas storage efficiency between the injection and production wells and reduces the areal extent of the natural gas plume. Proposed U.S. EPA regulations include monitoring pressure and suggest the "plume" may be defined by pressure in addition to the CO2 saturated area. For pressure monitoring, it seems that this can only be accomplished by injection zone monitoring wells. For pressure, these wells would not need to be very


    National Research Council Canada - National Science Library

    Carla Maria Abido Valentini; Mariano Martínez Espinosa; Sérgio Roberto de Paulo


    .... Considering that soil CO2 efflux is the greater component of the carboncycle of the biosphere, this work found an equation for estimating the soil CO2 efflux of an area of the Transition Forest...

  5. CO2 Emission Factors for Coals

    Directory of Open Access Journals (Sweden)

    P. Orlović-Leko


    Full Text Available Emission factors are used in greenhouse gas inventories to estimate emissions from coal combustion. In the absence of direct measures, emissions factors are frequently used as a quick, low cost way to estimate emissions values. Coal combustion has been a major contributor to the CO2 flux into the atmosphere. Nearly all of the fuel carbon (99 % in coal is converted to CO2 during the combustion process. The carbon content is the most important coal parameter which is the measure of the degree of coalification (coal rank. Coalification is the alteration of vegetation to form peat, succeeded by the transformation of peat through lignite, sub-bituminous, bituminous to anthracite coal. During the geochemical or metamorphic stage, the progressive changes that occur within the coal are an increase in the carbon content and a decrease in the hydrogen and oxygen content resulting in a loss of volatiles. Heterogeneous composition of coal causes variation in CO2 emission from different coals. The IPCC (Intergovernmental Panel on Climate Change has produced guidelines on how to produce emission inventories which includes emission factors. Although 2006 IPCC Guidelines provided the default values specified according to the rank of the coal, the application of country-specific emission factors was recommended when estimating the national greenhouse gas emissions. This paper discusses the differences between country-specific emission factors and default IPCC CO2 emission factors, EF(CO2, for coals. Also, this study estimated EF(CO2 for two different types of coals and peat from B&H, on the basis fuel analyses. Carbon emission factors for coal mainly depend on the carbon content of the fuel and vary with both rank and geographic origin, which supports the idea of provincial variation of carbon emission factors. Also, various other factors, such as content of sulphur, minerals and macerals play an important role and influence EF(CO2 from coal. Carbonate minerals

  6. Quantifying the "chamber effect" in CO2 flux measurements (United States)

    Vihermaa, Leena; Childs, Amy; Long, Hazel; Waldron, Susan


    The significance of aquatic CO2 emissions has received attention in recent years. For example annual aquatic emissions in the Amazon basin have been estimated as 500 Mt of carbon1. Methods for determining the flux rates include eddy covariance flux tower measurements, flux estimates calculated from partial pressure of CO2 (pCO2) in water and the use floating flux chambers connected to an infra-red gas analyser. The flux chamber method is often used because it is portable, cheaper and allows smaller scale measurements. It is also a direct method and hence avoids problems related to the estimation of the gas transfer coefficient that is required when fluxes are calculated from pCO2. However, the use of a floating chamber may influence the flux measurements obtained. The chamber shields the water underneath from effects of wind which could lead to lower flux estimates. Wind increases the flux rate by i) causing waves which increase the surface area for efflux, and ii) removing CO2 build up above the water surface, hence maintaining a higher concentration gradient. Many floating chambers have an underwater extension of the chamber below the float to ensure better seal to water surface and to prevent any ingress of atmospheric air when waves rock the chamber. This extension may cause additional turbulence in flowing water and hence lead to overestimation of flux rates. Some groups have also used a small fan in the chamber headspace to ensure thorough mixing of air in the chamber. This may create turbulence inside the chamber which could increase the flux rate. Here we present results on the effects of different chamber designs on the detected flux rates. 1Richey et al. 2002. Outgassing from Amazonian rivers and wetlands as a large tropical source of atmospheric CO2. Nature 416: 617-620.

  7. CARBON DIOXIDE - PARTIAL PRESSURE (pCO2) - SEA and Other Data from MULTIPLE SHIPS From TOGA Area - Pacific (30 N to 30 S) from 19890101 to 19891231 (NODC Accession 9500075) (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Sea/air gas ratios data was collected in TOGA Area - Pacific (30 N to 30 S) between January 1, 1989 and December 31, 1989 during cruises conducted using ships...

  8. CO2-Water-Rock Wettability: Variability, Influencing Factors, and Implications for CO2Geostorage. (United States)

    Iglauer, Stefan


    Carbon geosequestration (CGS) has been identified as a key technology to reduce anthropogenic greenhouse gas emissions and thus significantly mitigate climate change. In CGS, CO 2 is captured from large point-source emitters (e.g., coal fired power stations), purified, and injected deep underground into geological formations for disposal. However, the CO 2 has a lower density than the resident formation brine and thus migrates upward due to buoyancy forces. To prevent the CO 2 from leaking back to the surface, four trapping mechanisms are used: (1) structural trapping (where a tight caprock acts as a seal barrier through which the CO 2 cannot percolate), (2) residual trapping (where the CO 2 plume is split into many micrometer-sized bubbles, which are immobilized by capillary forces in the pore network of the rock), (3) dissolution trapping (where CO 2 dissolves in the formation brine and sinks deep into the reservoir due to a slight increase in brine density), and (4) mineral trapping (where the CO 2 introduced into the subsurface chemically reacts with the formation brine or reservoir rock or both to form solid precipitates). The efficiency of these trapping mechanisms and the movement of CO 2 through the rock are strongly influenced by the CO 2 -brine-rock wettability (mainly due to the small capillary-like pores in the rock which form a complex network), and it is thus of key importance to rigorously understand CO 2 -wettability. In this context, a substantial number of experiments have been conducted from which several conclusions can be drawn: of prime importance is the rock surface chemistry, and hydrophilic surfaces are water-wet while hydrophobic surfaces are CO 2 -wet. Note that CO 2 -wet surfaces dramatically reduce CO 2 storage capacities. Furthermore, increasing pressure, salinity, or dissolved ion valency increases CO 2 -wettability, while the effect of temperature is not well understood. Indeed theoretical understanding of CO 2 -wettability and the

  9. Carbon Dioxide Clusters: (CO_2)_6 to (CO_2)13 (United States)

    McKellar, A. R. W.; Oliaee, J. Norooz; Dehghany, M.; Moazzen-Ahmadi, N.


    We recenty reported assignments of specific infrared bands in the CO_2 νb{3} region (˜2350 wn) to (CO_2)_6, (CO_2)_7, (CO_2)_9, (CO_2)10, (CO_2)11, (CO_2)12, and (CO_2)13. Spectra are obtained by direct absorption using a rapid-scan tuneable diode laser spectrometer to probe a pulsed supersonic slit-jet expansion and assignments are facilitated by recent calculations of Takeuchi based on the Murthy potential. (CO_2)_6 is a symmetric top with S_6 point group symmetry which can be thought of as a stack of two planar cyclic trimers. (CO_2)13 is also an S_6 symmetric top, and consists of a single CO_2 monomer surrounded by an slightly distorted icosahedral cage. The remaining clusters are asymmetric tops without symmetry. Here we report additional CO_2 cluster results. Calculations based on the SAPT-s potential indicate that the structure of (CO_2)10 may be slightly different from that given by Takeuchi/Murthy. An additional band is observed for each of (CO_2)13 and (CO_2)10. A feature observed at 2378.2 wn is assigned as a (CO_2)_6 parallel combination band involving the sum of a fundamental and a low-lying intermolecular vibration. Most significantly, two bands are assigned to a second isomer of (CO_2)_6. This is also a symmetric top, but now with S_4 symmetry. The two symmetric hexamer isomers observed spectroscopically correspond well with the lowest energy structures given by both the SAPT-s and Murthy intermolecular potentials. [1] J. Norooz Oliaee, M. Dehgany, N. Moazzen-Ahmadi, and A.R.W. McKellar, Phys. Chem. Chem. Phys. 13, 1297 (2011). [2] H. Takeuchi, J. Phys. Chem. A 107, 5703 (2008); C.S. Murthy, S.F. O'Shea, and I.R. McDonald, Mol. Phys. 50, 531 (1983). [3] R. Bukowski, J. Sadlej, B. Jeziorski, P. Jankowski, K. Szalewicz, S.A. Kucharski, H.L. Williams, and B.M. Rice, J. Chem. Phys. 110, 3785 (1999)

  10. The CO2 tracer clock for the Tropical Tropopause Layer

    Directory of Open Access Journals (Sweden)

    R.-S. Gao


    Full Text Available Observations of CO2 were made in the upper troposphere and lower stratosphere in the deep tropics in order to determine the patterns of large-scale vertical transport and age of air in the Tropical Tropopause Layer (TTL. Flights aboard the NASA WB-57F aircraft over Central America and adjacent ocean areas took place in January and February, 2004 (Pre-AURA Validation Experiment, Pre-AVE and 2006 (Costa Rice AVE, CR-AVE, and for the same flight dates of 2006, aboard the Proteus aircraft from the surface to 15 km over Darwin, Australia (Tropical Warm Pool International Cloud Experiment, TWP-ICE. The data demonstrate that the TTL is composed of two layers with distinctive features: (1 the lower TTL, 350–360 K (potential temperature(θ; approximately 12–14 km, is subject to inputs of convective outflows, as indicated by layers of variable CO2 concentrations, with air parcels of zero age distributed throughout the layer; (2 the upper TTL, from θ=~360 K to ~390 K (14–18 km, ascends slowly and ages uniformly, as shown by a linear decline in CO2 mixing ratio tightly correlated with altitude, associated with increasing age. This division is confirmed by ensemble trajectory analysis. The CO2 concentration at the level of 360 K was 380.0(±0.2 ppmv, indistinguishable from surface site values in the Intertropical Convergence Zone (ITCZ for the flight dates. Values declined with altitude to 379.2(±0.2 ppmv at 390 K, implying that air in the upper TTL monotonically ages while ascending. In combination with the winter slope of the CO2 seasonal cycle (+10.8±0.4 ppmv/yr, the vertical gradient of –0.78 (±0.09 ppmv gives a mean age of 26(±3 days for the air at 390 K and a mean ascent rate of 1.5(±0.3 mm s−1. The TTL near 360 K in the Southern Hemisphere over Australia is very close in CO2 composition to the TTL in the Northern Hemisphere over Costa Rica, with strong contrasts emerging at lower altitudes (<360 K. Both Pre-AVE and CR-AVE CO2 observed

  11. Syngas Production from CO2 Reforming and CO2-steam Reforming of Methane over Ni/Ce-SBA-15 Catalyst (United States)

    Tan, J. S.; Danh, H. T.; Singh, S.; Truong, Q. D.; Setiabudi, H. D.; Vo, D.-V. N.


    This study compares the catalytic performance of mesoporous 10 Ni/Ce-SBA-15 catalyst for CO2 reforming and CO2-steam reforming of methane reactions in syngas production. The catalytic performance of 10 Ni/Ce-SBA-15 catalyst for CO2 reforming and CO2-steam reforming of methane was evaluated in a temperature-controlled tubular fixed-bed reactor at stoichiometric feed composition, 1023 K and atmospheric pressure for 12 h on-stream with gas hourly space velocity (GHSV) of 36 L gcat -1 h-1. The 10 Ni/Ce-SBA-15 catalyst possessed a high specific BET surface area and average pore volume of 595.04 m2 g-1. The XRD measurement revealed the presence of NiO phase with crystallite dimension of about 13.60 nm whilst H2-TPR result indicates that NiO phase was completely reduced to metallic Ni0 phase at temperature beyond 800 K and the reduction temperature relied on different degrees of metal-support interaction associated with the location and size of NiO particles. The catalytic reactivity was significantly enhanced with increasing H2O/CO2 feed ratio. Interestingly, the H2/CO ratio for CO2-steam reforming of methane varied between 1 and 3 indicated the occurrence of parallel reactions, i.e., CH4 steam reforming giving a H2/CO of 3 whilst reverse water-gas shift (RWGS) reaction consuming H2 to produce CO gaseous product.

  12. Direct CO2-Methanation of flue gas (United States)

    Müller, Klaus; Fleige, Michael; Rachow, Fabian; Israel, Johannes; Schmeißer, Dieter


    Already discovered by Paul Sabatier in 1902 the Hydrogenation according to CO2 + 4H2 ->CH4 + 2H2O nowadays is discussed in the course of the "Power-to-Gas" approach to utilize excess energy from renewable electricity generation in times of oversupply of electricity. We investigate the behavior of this process in a simulated flue gas atmosphere of conventional base load power plants, which could be used as constant sources of the reactant CO2. In relation to an approach related to carbon capture and cycling, the conversion of CO2 directly from the flue gas of a conventional power plant is a new aspect and has several advantages: The conversion of CO2 into methane could be integrated directly into the combustion process. Even older power plants could be upgraded and used as a possible source for CO2, in the same sense as the amine cleaning of flue gas, as a post combustion process. Further, waste heat of the power plant could be used as process energy for the catalytic reaction. Therefore the influence of different flue gas compositions such as varying contents of nitrogen and residual oxygen are tested in a laboratory scale. The heterogeneous catalysis process is investigated with regard to conversion rates, yield and selectivity and long-term stability of the Ni-catalyst. Also the influence of typical contaminations like SO2 is investigated and will be presented.

  13. CO2 and CO simulations and their source signature indicated by CO/CO2 (United States)

    Kawa, S. R.; Bian, H.


    Three years (2000-2002) atmospheric CO2 and CO fields are simulated by a Chemistry Transport Model driven by the assimilated meteorological fields from GEOS_4. The simulated CO2 and CO are evaluated by measurements from surface (CMDL), satellite (MOPITT/CO), and aircraft. The model-observation comparisons indicate reasonable agreement in both source and remote regions, and in the lower and upper troposphere. The simulation also captures the seasonality of CO2 and CO variations. The ratios of CO/CO2 are analyzed over different representative regions to identify the source signature, since the anthropogenic CO comes from the same combustion processes as CO2. This work enables us to improve satellite inversion estimates of CO2 sources and sinks by simultaneously using satellite CO measurement.

  14. CO2-Switchable Membranes Prepared by Immobilization of CO2-Breathing Microgels. (United States)

    Zhang, Qi; Wang, Zhenwu; Lei, Lei; Tang, Jun; Wang, Jianli; Zhu, Shiping


    Herein, we report the development of a novel CO 2 -responsive membrane system through immobilization of CO 2 -responsive microgels into commercially available microfiltration membranes using a method of dynamic adsorption. The microgels, prepared from soap-free emulsion polymerization of CO 2 -responsive monomer 2-(diethylamino)ethyl methacrylate (DEA), can be reversibly expanded and shrunken upon CO 2 /N 2 alternation. When incorporated into the membranes, this switching behavior was preserved and further led to transformation between microfiltration and ultrafiltration membranes, as indicated from the dramatic changes on water flux and BSA rejection results. This CO 2 -regulated performance switching of membranes was caused by the changes of water transportation channel, as revealed from the dynamic water contact angle tests and SEM observation. This work represents a simple yet versatile strategy for making CO 2 -responsive membranes.

  15. CO2 and CO Simulations and Their Source Signature Indicated by CO/CO2 (United States)

    Kawa, Randy; Huisheng, Bian


    Three years (2000-2002) atmospheric CO2 and CO fields are simulated by a Chemistry Transport Model driven by the assimilated meteorological fields from GEOS-4. The simulated CO2 and CO are evaluated by measurements from surface (CMDL), satellite (MOPITT/CO), and aircraft. The model-observation comparisons indicate reasonable agreement in both source and remote regions, and in the lower and upper troposphere. The simulation also captures the seasonality of CO2 and CO variations. The ratios of CO/CO2 are analyzed over different representative regions to identify the source signature, since the anthropogenic CO comes fiom the same combustion processes as CO2. This work enables us to improve satellite inversion estimates of CO2 sources and sinks by simultaneously using satellite CO measurement.

  16. Seasonal soil CO2 flux under big sagebrush (Artemisia tridentata Nutt.) (United States)

    Michael C. Amacher; Cheryl L. Mackowiak


    Soil respiration is a major contributor to atmospheric CO2, but accurate landscape-scale estimates of soil CO2 flux for many ecosystems including shrublands have yet to be established. We began a project to measure, with high spatial and temporal resolution, soil CO2 flux in a stand (11 x 25 m area) of big sagebrush (Artemisia tridentata Nutt.) at the Logan, Utah,...

  17. Preparation Methods of Metal Organic Frameworks and Their Capture of CO2 (United States)

    Zhang, Linjian; Liand, Fangqin; Luo, Liangfei


    The increasingly serious greenhouse effect makes people pay more attention to the capture and storage technology of CO2. Metal organic frameworks (MOFs) have the advantages of high specific surface area, porous structure and controllable structure, and become the research focus of CO2 emission reduction technology in recent years. In this paper, the characteristics, preparation methods and application of MOFs in the field of CO2 adsorption and separation are discussed, especially the application of flue gas environment in power plants.

  18. Numerical modeling of cold magmatic CO2 flux measurements for the exploration of hidden geothermal systems (United States)

    Peiffer, Loïc.; Wanner, Christoph; Pan, Lehua


    The most accepted conceptual model to explain surface degassing of cold magmatic CO2 in volcanic-geothermal systems involves the presence of a gas reservoir. In this study, numerical simulations using the TOUGH2-ECO2N V2.0 package are performed to get quantitative insights into how cold CO2 soil flux measurements are related to reservoir and fluid properties. Although the modeling is based on flux data measured at a specific geothermal site, the Acoculco caldera (Mexico), some general insights have been gained. Both the CO2 fluxes at the surface and the depth at which CO2 exsolves are highly sensitive to the dissolved CO2 content of the deep fluid. If CO2 mainly exsolves above the reservoir within a fracture zone, the surface CO2 fluxes are not sensitive to the reservoir size but depend on the CO2 dissolved content and the rock permeability. For gas exsolution below the top of the reservoir, surface CO2 fluxes also depend on the gas saturation of the deep fluid as well as the reservoir size. The absence of thermal anomalies at the surface is mainly a consequence of the low enthalpy of CO2. The heat carried by CO2 is efficiently cooled down by heat conduction and to a certain extent by isoenthalpic volume expansion depending on the temperature gradient. Thermal anomalies occur at higher CO2 fluxes (>37,000 g m-2 d-1) when the heat flux of the rising CO2 is not balanced anymore. Finally, specific results are obtained for the Acoculco area (reservoir depth, CO2 dissolved content, and gas saturation state).

  19. Metal-CO2 Batteries on the Road: CO2 from Contamination Gas to Energy Source. (United States)

    Xie, Zhaojun; Zhang, Xin; Zhang, Zhang; Zhou, Zhen


    Rechargeable nonaqueous metal-air batteries attract much attention for their high theoretical energy density, especially in the last decade. However, most reported metal-air batteries are actually operated in a pure O2 atmosphere, while CO2 and moisture in ambient air can significantly impact the electrochemical performance of metal-O2 batteries. In the study of CO2 contamination on metal-O2 batteries, it has been gradually found that CO2 can be utilized as the reactant gas alone; namely, metal-CO2 batteries can work. On the other hand, investigations on CO2 fixation are in focus due to the potential threat of CO2 on global climate change, especially for its steadily increasing concentration in the atmosphere. The exploitation of CO2 in energy storage systems represents an alternative approach towards clean recycling and utilization of CO2 . Here, the aim is to provide a timely summary of recent achievements in metal-CO2 batteries, and inspire new ideas for new energy storage systems. Moreover, critical issues associated with reaction mechanisms and potential directions for future studies are discussed. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Measuring Nitrous Oxide Mass Transfer into Non-Aqueous CO2BOL CO2 Capture Solvents

    Energy Technology Data Exchange (ETDEWEB)

    Whyatt, Greg A.; Freeman, Charles J.; Zwoster, Andy; Heldebrant, David J.


    This paper investigates CO2 absorption behavior in CO2BOL solvents by decoupling the physical and chemical effects using N2O as a non-reactive mimic. Absorption measurements were performed using a wetted-wall contactor. Testing was performed using a “first generation” CO2 binding organic liquid (CO2BOL), comprised of an independent base and alcohol. Measurements were made with N2O at a lean (0.06 mol CO2/mol BOL) and rich (0.26 mol CO2/mol BOL) loading, each at three temperatures (35, 45 and 55 °C). Liquid-film mass transfer coefficients (kg') were calculated by subtracting the gas film resistance – determined from a correlation from literature – from the overall mass transfer measurement. The resulting kg' values for N2O in CO2BOLs were found to be higher than that of 5 M aqueous MEA under comparable conditions, which is supported by published measurements of Henry’s coefficients for N2O in various solvents. These results suggest that the physical solubility contribution for CO2 absorption in CO2BOLs is greater than that of aqueous amines, an effect that may pertain to other non-aqueous solvents.



    Hara, H.; Fujisawa, A.


    A high-gain CO2 laser is described in which vibrationally excited N2 gas and cold CO2 gas are mixed effectively by means of the diffusion of CO2 gas into N2 gas. By using different types of mixing techniques, a maximum gain of 11 m-1 was obtained when CO2 gas was injected parallel to the expanding N2 gas flow. An output power of 4 W was obtained from an 1.2 cm active length. In addition, He gas addition to the N2 gas flow was found to decrease the small-signal gain with increasing He gas flow...

  2. Investigation into Optimal CO2 Concentration for CO2 Capture from Aluminium Production


    Mathisen, Anette; Sørensen, Henriette; Melaaen, Morten; Müller, Gunn-Iren


    Capture of CO2 from aluminum production has been simulated using Aspen Plus and Aspen Hysys. The technology used for aluminum production is the Hall-Héroult and the current cell design necessitates that large amounts of false air is supplied to the cells. This results in a CO2 concentration in the process gas at around 1 vol%, which is considered uneconomical for CO2 capture. Therefore, the aim of this investigation is to evaluate the CO2 capture from aluminum production when the process gas ...

  3. Behavior of CO2/water flow in porous media for CO2geological storage. (United States)

    Jiang, Lanlan; Yu, Minghao; Liu, Yu; Yang, Mingjun; Zhang, Yi; Xue, Ziqiu; Suekane, Tetsuya; Song, Yongchen


    A clear understanding of two-phase fluid flow properties in porous media is of importance to CO 2 geological storage. The study visually measured the immiscible and miscible displacement of water by CO 2 using MRI (magnetic resonance imaging), and investigated the factor influencing the displacement process in porous media which were filled with quartz glass beads. For immiscible displacement at slow flow rates, the MR signal intensity of images increased because of CO 2 dissolution; before the dissolution phenomenon became inconspicuous at flow rate of 0.8mLmin -1 . For miscible displacement, the MR signal intensity decreased gradually independent of flow rates, because supercritical CO 2 and water became miscible in the beginning of CO 2 injection. CO 2 channeling or fingering phenomena were more obviously observed with lower permeable porous media. Capillary force decreases with increasing particle size, which would increase permeability and allow CO 2 and water to invade into small pore spaces more easily. The study also showed CO 2 flow patterns were dominated by dimensionless capillary number, changing from capillary finger to stable flow. The relative permeability curve was calculated using Brooks-Corey model, while the results showed the relative permeability of CO 2 slightly decreases with the increase of capillary number. Copyright © 2016 Elsevier Inc. All rights reserved.

  4. The Abundance of Atmospheric CO2 in Ocean Exoplanets: a Novel CO2 Deposition Mechanism (United States)

    Levi, A.; Sasselov, D.; Podolak, M.


    We consider super-Earth sized planets which have a water mass fraction large enough to form an external mantle composed of high-pressure water-ice polymorphs and also lack a substantial H/He atmosphere. We consider such planets in their habitable zone, so that their outermost condensed mantle is a global, deep, liquid ocean. For these ocean planets, we investigate potential internal reservoirs of CO2, the amount of CO2 dissolved in the ocean for the various saturation conditions encountered, and the ocean-atmosphere exchange flux of CO2. We find that, in a steady state, the abundance of CO2 in the atmosphere has two possible states. When wind-driven circulation is the dominant CO2 exchange mechanism, an atmosphere of tens of bars of CO2 results, where the exact value depends on the subtropical ocean surface temperature and the deep ocean temperature. When sea-ice formation, acting on these planets as a CO2 deposition mechanism, is the dominant exchange mechanism, an atmosphere of a few bars of CO2 is established. The exact value depends on the subpolar surface temperature. Our results suggest the possibility of a negative feedback mechanism, unique to water planets, where a reduction in the subpolar temperature drives more CO2 into the atmosphere to increase the greenhouse effect.

  5. Decoupling of CO2 emissions and GDP

    Directory of Open Access Journals (Sweden)

    Yves Rocha de Salles Lima


    Full Text Available The objetive of this work is to analyze the variation of CO2 emissions and GDP per capita throughout the years and identify the possible interaction between them. For this purpose, data from the International Energy Agency was collected on two countries, Brazil and the one with the highest GDP worldwide, the United States. Thus, the results showed that CO2 emissions have been following the country’s economic growth for many years. However, these two indicators have started to decouple in the US in 2007 while in Brazil the same happened in 2011. Furthermore, projections for CO2 emissions are made until 2040, considering 6 probable scenarios. These projections showed that even if the oil price decreases, the emissions will not be significantly affected as long as the economic growth does not decelerate.

  6. Chilled Ammonia Process for CO2 Capture

    DEFF Research Database (Denmark)

    Darde, Victor Camille Alfred; Thomsen, Kaj; Well, Willy J.M. van


    The chilled ammonia process absorbs the CO2 at low temperature (2–10°C). The heat of absorption of carbon dioxide by ammonia is significantly lower than for amines. In addition, degradation problems can be avoided and a high carbon dioxide capacity is achieved. Hence, this process shows good...... perspectives for decreasing the heat requirement. However, a scientific understanding of the processes is required. The thermodynamic properties of the NH3–CO2–H2O system were described using the extended UNIQUAC electrolyte model developed by Thomsen and Rasmussen in a temperature range from 0 to 110°C...... and pressure up to 100bars. The results show that solid phases consisting of ammonium carbonate and bicarbonate are formed in the absorber. The heat requirements in the absorber and in the desorber have been studied. The enthalpy calculations show that a heat requirement for the desorber lower than 2GJ/ton CO2...

  7. The ATLAS IBL CO2 Cooling System

    CERN Document Server

    AUTHOR|(INSPIRE)INSPIRE-00237783; The ATLAS collaboration; Zwalinski, L.; Bortolin, C.; Vogt, S.; Godlewski, J.; Crespo-Lopez, O.; Van Overbeek, M.; Blaszcyk, T.


    The ATLAS Pixel detector has been equipped with an extra B-layer in the space obtained by a reduced beam pipe. This new pixel detector called the ATLAS Insertable B-Layer (IBL) is installed in 2014 and is operational in the current ATLAS data taking. The IBL detector is cooled with evaporative CO2 and is the first of its kind in ATLAS. The ATLAS IBL CO2 cooling system is designed for lower temperature operation (<-35⁰C) than the previous developed CO2 cooling systems in High Energy Physics experiments. The cold temperatures are required to protect the pixel sensors for the high expected radiation dose up to 550 fb^-1 integrated luminosity.

  8. CW CO2 Laser Induced Chemical Reactions (United States)

    Pola, Joseph


    CW CO2 laser driven reactions between sulfur hexafluoride and carbon oxide, carbon suboxide, carbonyl sulfide and carbon disulfide proceed at subatmospheric pressures and yield fluorinated carbon compounds and sulfur tetrafluoride. CW CO2 laser driven reactions of organic compounds in the presence of energy-conveying sulfur hexafluoride show reaction course different from that normally observed due to elimination of reactor hot surface effects. The examples concern the decomposition of polychlorohydrocarbons, 2-nitropropane, tert.-butylamine, allyl chloride, spirohexane, isobornyl acetate and the oxidation of haloolefins. CW CO2 laser induced fragmentation of 1-methyl-l-silacyclobutanes and 4-silaspiro(3.4)octane in the presence of sulfur hexafluoride is an effective way for preparation and deposition of stable organosilicon polymers.

  9. CO2 utilization: Developments in conversion processes

    Directory of Open Access Journals (Sweden)

    Erdogan Alper


    The potential utilization of CO2, captured at power plants, should also been taken into consideration for sustainability. This CO2 source, which is potentially a raw material for the chemical industry, will be available at sufficient quality and at gigantic quantity upon realization of on-going tangible capture projects. Products resulting from carboxylation reactions are obvious conversions. In addition, provided that enough supply of energy from non-fossil resources, such as solar [1], is ensured, CO2 reduction reactions can produce several valuable commodity chemicals including multi-carbon compounds, such as ethylene and acrylic acid, in addition to C1 chemicals and polymers. Presently, there are only few developing technologies which can find industrial applications. Therefore, there is a need for concerted research in order to assess the viability of these promising exploratory technologies rationally.

  10. The Idea of Global CO2 Trade

    DEFF Research Database (Denmark)

    Svendsen, Gert Tinggaard


    The US has been criticized for wanting to earn a fortune on a global CO2 market. However, compared to the situation without trade and provided that such a market is designed so that it does not pay to cheat, a global CO2 market may provide the world with an epoch-making means of cost......-effective control which can solve future global environmental problems. The economic gains from 'hot air' distributions of permits and CO2 trade make the system politically attractive to potential participants. For example, vital financial subsidies from the EU to Eastern Europe are to be expected. It will probably...... not pay to cheat if quotas are renewed periodically by the UN. Cheating countries are then to be excluded from further profitable trade. Also, a periodical renewal of permits makes it possible to tighten target levels in the future....

  11. The Idea of Global CO2 Trade

    DEFF Research Database (Denmark)

    Svendsen, Gert Tinggaard


    The US has been criticized for wanting to earn a fortune on a global CO2 market. However, compared to the situation without trade and provided that such a market is designed so that it does not pay to cheat, a global CO2 market may provide the world with an epoch-making means of cost......-effective control which can solve future global environmental problems. The gains from CO2 trade may give vital financial subsidies from the EU to Eastern Europe, for example, and it will probably not pay to cheat if quotas are renewed periodically by the UN. Cheating countries are then to be excluded from further...... profitable trade. Also, a periodical renewal of permits makes it possible to tighten target levels in the future....

  12. Membraneless water filtration using CO2 (United States)

    Shin, Sangwoo; Shardt, Orest; Warren, Patrick B.; Stone, Howard A.


    Water purification technologies such as microfiltration/ultrafiltration and reverse osmosis utilize porous membranes to remove suspended particles and solutes. These membranes, however, cause many drawbacks such as a high pumping cost and a need for periodic replacement due to fouling. Here we show an alternative membraneless method for separating suspended particles by exposing the colloidal suspension to CO2. Dissolution of CO2 into the suspension creates solute gradients that drive phoretic motion of particles. Due to the large diffusion potential generated by the dissociation of carbonic acid, colloidal particles move either away from or towards the gas-liquid interface depending on their surface charge. Using the directed motion of particles induced by exposure to CO2, we demonstrate a scalable, continuous flow, membraneless particle filtration process that exhibits low energy consumption, three orders of magnitude lower than conventional microfiltration/ultrafiltration processes, and is essentially free from fouling.

  13. Cutting weeds with a CO2 laser

    DEFF Research Database (Denmark)

    Heisel, T.; Schou, Jørgen; Christensen, S.


    Stems of Chenopodium album. and Sinapis arvensis. and leaves of Lolium perenne. were cut with a CO2 laser or with a pair of scissors. Treatments were carried out on greenhouse-grown pot plants at three different growth stages and at two heights. Plant dry matter was measured 2 to 5 weeks after...... treatment. The relationship between dry weight and laser energy was analysed using a non-linear dose-response regression model. The regression parameters differed significantly between the weed species. At all growth stages and heights S. arvensis was more difficult to cut with a CO2 laser than C. album....... When stems were cut below the meristems, 0.9 and 2.3 J mm(-1) of CO2 laser energy dose was sufficient to reduce by 90% the biomass of C. album and S. arvensis respectively. Regrowth appeared when dicotyledonous plant stems were cut above meristems, indicating that it is important to cut close...

  14. Equilibrium Solubility of CO2 in Alkanolamines

    DEFF Research Database (Denmark)

    Waseem Arshad, Muhammad; Fosbøl, Philip Loldrup; von Solms, Nicolas


    Equilibrium solubility of CO2 were measured in aqueous solutions of Monoethanolamine (MEA) and N,N-diethylethanolamine(DEEA). Equilibrium cells are generally used for these measurements. In this study, the equilibrium data were measured from the calorimetry. For this purpose a reaction calorimeter...... (model CPA 122 from ChemiSens AB, Sweden) was used. The advantage of this method is being the measurement of both heats of absorption and equilibrium solubility data of CO2 at the same time. The measurements were performed for 30 mass % MEA and 5M DEEA solutions as a function of CO2 loading at three...... different temperatures 40, 80 and 120 ºC. The measured 30 mass % MEA and 5M DEEA data were compared with the literature data obtained from different equilibrium cells which validated the use of calorimeters for equilibrium solubility measurements....

  15. Oxygen isotope fractionation in stratospheric CO2 (United States)

    Thiemens, M. H.; Jackson, T.; Mauersberger, K.; Schueler, B.; Morton, J.


    A new cryogenic collection system has been flown on board a balloon gondola to obtain separate samples of ozone and carbon dioxide without entrapping major atmospheric gases. Precision laboratory isotopic analysis of CO2 samples collected between 26 and 35.5 km show a mass-independent enrichment in both O-17 and O-18 of about 11 per mil above tropospheric values. Ozone enrichment in its heavy isotopes was 9 to 16 percent in O3-50 and 8 to 11 percent in O3-49, respectively (Schueler et al., 1990). A mechanism to explain the isotope enrichment in CO2 has been recently proposed by Yung et al. (1991). The model is based on the isotope exchange between CO2 and O3 via O(1D), resulting in a transfer of the ozone isotope enrichment to carbon dioxide. Predicted enrichment and measured values agree well.

  16. Effect of Defocused CO2 Laser on Equine Tissue Perfusion

    Directory of Open Access Journals (Sweden)

    Bergh A


    Full Text Available Treatment with defocused CO2 laser can have a therapeutic effect on equine injuries, but the mechanisms involved are unclear. A recent study has shown that laser causes an increase in equine superficial tissue temperature, which may result in an increase in blood perfusion and a stimulating effect on tissue regeneration. However, no studies have described the effects on equine tissue perfusion. The aim of the present study was to investigate the effect of defocused CO2 laser on blood perfusion and to correlate it with temperature in skin and underlying muscle in anaesthetized horses. Differences between clipped and unclipped haircoat were also assessed. Eight horses and two controls received CO2 laser treatment (91 J/cm2 in a randomised order, on a clipped and unclipped area of the hamstring muscles, respectively. The significant increase in clipped skin perfusion and temperature was on average 146.3 ± 33.4 perfusion units (334% and 5.5 ± 1.5°C, respectively. The significant increase in perfusion and temperature in unclipped skin were 80.6 ± 20.4 perfusion units (264% and 4.8 ± 1.4°C. No significant changes were seen in muscle perfusion or temperature. In conclusion, treatment with defocused CO2 laser causes a significant increase in skin perfusion, which is correlated to an increase in skin temperature.

  17. Defocused CO2 laser on equine skin: a histological examination. (United States)

    Bergh, A; Ridderstråle, Y; Ekman, S


    No studies have been published on effects of treatment with a defocused beam carbon dioxide (CO2) laser on equine skin histology. A better understanding of this will help to define how lasers should be used, in order to reduce potential side effects. To describe the acute effects of different doses of defocused CO2 laser, ranging from therapeutic to surgical levels, on equine skin. Defocused CO2 laser was administered to the skin in the hamstrings (91 J/cm2), fetlock (137 J/cm2) and loin (450 J/cm2) areas of 13 Standardbred horses. The acute effects on skin histology were examined 90 min after the end of therapy. Mild changes with focal spongiosis and subepidermal clefts were found after 91 J/cm2 irradiation and more severe changes with diffuse subepidermal clefts after the 137 J/cm2 dose. A homogeneous eosinophilic acellular zone of dermis and destruction of adnexal structures, and significant thinning of the epidermis was observed after the 450 J/cm2 dose. The present study indicates acute dose-dependent changes in equine skin histology after laser treatment Severe tissue damage was induced using a 450 J/cm2 dose. To reduce the potential side effects of defocused CO2 laser treatment, the laser parameters must be carefully evaluated. Caution should be taken if doses higher than 91 J/cm2 (16 W, 4 min, and 42 cm2) are used in irradiation of equine skin.

  18. Formation and decomposition of siderite for CO2 treatment (United States)

    Y Mora, E.; Sarmiento, A.; Vera, E.; Drozd, V.; Durigyn, A.; Saxena, S.


    In this research work, we studied the conditions for formation and decomposition of siderite FeCO3 from hematite Fe2O3 along with carbon dioxide CO2 at suitable thermodynamic conditions. As reductant agents were used mixtures of two elements, metallic iron and graphite. Best levels of carbonation were found in mixtures with bigger amounts of metallic iron. It was demonstrated that CO2 capture capacity by hematite depends of temperature, CO2 pressure, and reaction time. Temperatures between 100 and 150°C, pressures between 10 and 30bar and reaction times between 1 and 4h were adjusted for analyse the carbonation behaviour; siderite formation was improved by increases of these three variables. There was no carbonation without water in the mixtures, due to kinetic limitations. CO2 capture capacity was calculated from Rietveld refinement results. Using vacuum system and Dielectric Barrier Discharge, DBD plasma, the siderite was decomposed at 300°C, and 320°C respectively. Techniques as X-ray diffraction, and surface area analysis were employed to study the material.

  19. Kronikken: Handel og handling med CO2

    DEFF Research Database (Denmark)

    Andersen, M. S.


    De fleksible mekanismer i Kyoto-aftalen fortjener indgående overvejelser, ikke kun fordi de giver mulighed for en rabat på CO2-reduktionen, men også fordi de rummer globale og sikkerhedspolitiske dimensioner som er essentielle.......De fleksible mekanismer i Kyoto-aftalen fortjener indgående overvejelser, ikke kun fordi de giver mulighed for en rabat på CO2-reduktionen, men også fordi de rummer globale og sikkerhedspolitiske dimensioner som er essentielle....

  20. Do Tree Stems Recapture Respired CO2? (United States)

    Hilman, B.; Angert, A.


    Tree stem respiration is an important, yet not well understood, component of the terrestrial carbon cycle. Predicting how trees as whole organisms respond to changes in climate and atmospheric CO2 requires understanding of the variability in the fraction of assimilated carbon allocated to respiration, versus the allocation to growth, damage repair, and to rhizosphere symbionts. Here we used the ratio of CO2 efflux/O2 influx (Apparent Respiratory Quotient, ARQ) to study stem respiration. The ARQ in trees stems is predicted to be 1.0, as a result of carbohydrates metabolism. Lower than 1.0 ARQ values may indicate a local assimilation of respired CO2, or dissolution and transport of CO2 in the xylem stream. We measured stems ARQ in 16 tree species at tropical, Mediterranean and temperate ecosystems using stem chambers and in-vitro incubations. The CO2 and O2 were measured by a system we developed, which is based on an IRGA and a Fuel-cell O2 analyzer (Hilman and Angert 2016). We found typical values of ARQ in the range of 0.4-0.8. Since incubations of detach stem tissues yielded similar ARQ values, and since the influence of natural variations in the transpiration stream on ARQ was found to be small, we conclude that the removal of the respired CO2 is not via dissolution in the xylem stream. Using 13C labeling, dark fixation of stem tissues was detected, which is most probably phosphoenolpyruvate carboxylase (PEPC) mediated. Hence, we suggest that in-stem dark fixation of respired CO2 to organic acids (e.g. malate) affects the outgoing efflux. Further research should determine if these organic acids are transported to the canopy, stored in the stem, or transported to the roots to serve as exudates. Hilman B, Angert A (2016) Measuring the ratio of CO2 efflux to O2 influx in tree stem respiration. Tree Physiol 2016, doi: 10.1093/treephys/tpw057

  1. 10 MW Supercritical CO2 Turbine Test

    Energy Technology Data Exchange (ETDEWEB)

    Turchi, Craig


    The Supercritical CO2 Turbine Test project was to demonstrate the inherent efficiencies of a supercritical carbon dioxide (s-CO2) power turbine and associated turbomachinery under conditions and at a scale relevant to commercial concentrating solar power (CSP) projects, thereby accelerating the commercial deployment of this new power generation technology. The project involved eight partnering organizations: NREL, Sandia National Laboratories, Echogen Power Systems, Abengoa Solar, University of Wisconsin at Madison, Electric Power Research Institute, Barber-Nichols, and the CSP Program of the U.S. Department of Energy. The multi-year project planned to design, fabricate, and validate an s-CO2 power turbine of nominally 10 MWe that is capable of operation at up to 700°C and operates in a dry-cooled test loop. The project plan consisted of three phases: (1) system design and modeling, (2) fabrication, and (3) testing. The major accomplishments of Phase 1 included: Design of a multistage, axial-flow, s-CO2 power turbine; Design modifications to an existing turbocompressor to provide s-CO2 flow for the test system; Updated equipment and installation costs for the turbomachinery and associated support infrastructure; Development of simulation tools for the test loop itself and for more efficient cycle designs that are of greater commercial interest; Simulation of s-CO2 power cycle integration into molten-nitrate-salt CSP systems indicating a cost benefit of up to 8% in levelized cost of energy; Identification of recuperator cost as a key economic parameter; Corrosion data for multiple alloys at temperatures up to 650ºC in high-pressure CO2 and recommendations for materials-of-construction; and Revised test plan and preliminary operating conditions based on the ongoing tests of related equipment. Phase 1 established that the cost of the facility needed to test the power turbine at its full power and temperature would exceed the planned funding for Phases 2 and 3. Late

  2. Modelling the Martian CO2 Ice Clouds (United States)

    Listowski, Constantino; Määttänen, A.; Montmessin, F.; Lefèvre, F.


    Martian CO2 ice cloud formation represents a rare phenomenon in the Solar System: the condensation of the main component of the atmosphere. Moreover, on Mars, condensation occurs in a rarefied atmosphere (large Knudsen numbers, Kn) that limits the growth efficiency. These clouds form in the polar winter troposphere and in the mesosphere near the equator. CO2 ice cloud modeling has turned out to be challenging: recent efforts (e.g. [1]) fail in explaining typical small sizes (80 nm-130 nm) observed for mesospheric clouds [2]. Supercold pockets (TWood, S. E., (1999), Ph.D. thesis, UCLA [6] Young, J. B., J. Geophys. Res., 36, 294-2956, 1993

  3. CO2 flux from Javanese mud volcanism


    Quei?er, M.; Burton, M.; Arzilli, F.; Chiarugi, A.; Marliyani, G.I; Anggara, F.; Harijoko, A.


    Abstract Studying the quantity and origin of CO2 emitted by back?arc mud volcanoes is critical to correctly model fluid?dynamical, thermodynamical, and geochemical processes that drive their activity and to constrain their role in the global geochemical carbon cycle. We measured CO2 fluxes of the Bledug Kuwu mud volcano on the Kendeng Fold and thrust belt in the back arc of Central Java, Indonesia, using scanning remote sensing absorption spectroscopy. The data show that the expelled gas is r...

  4. Toxic emissions and devaluated CO2-neutrality

    DEFF Research Database (Denmark)

    Czeskleba-Dupont, Rolf

    Environmental, energy and climate policies need fresh reflections. In order to evaluate toxics reduction policies the Stockholm Convention on Persistent Organic Pollutants is mandatory. Denmark's function as lead country for dioxin research in the context of the OSPAR Convention is contrasted...... with a climate policy whose goals of CO2-reduction were made operational by green-wash. Arguments are given for the devaluation of CO2- neutrality in case of burning wood. Alternative practices as storing C in high quality wood products and/or leaving wood in the forest are recommended. A counter...

  5. Leak Path Development in CO2 Wells (United States)

    Torsater, M.; Todorovic, J.; Opedal, N.; Lavrov, A.


    Wells have in numerous scientific works been denoted the "weak link" of safe and cost-efficient CO2 Capture and Storage (CCS). Whether they are active or abandoned, all wells are man-made intrusions into the storage reservoir with sealing abilities depending on degradable materials like steel and cement. If dense CO2 is allowed to expand (e.g. due to leakage) it will cool down its surroundings and cause strong thermal and mechanical loading on the wellbore. In addition, CO2 reacts chemically with rock, cement and steel. To ensure long-term underground containment, it is therefore necessary to study how, why, where and when leakage occurs along CO2wells. If cement bonding to rock or casing is poor, leak paths can form already during drilling and completion of the well. In the present work, we have mapped the bonding quality of cement-rock and cement-steel interfaces - and measured their resistance towards CO2 flow. This involved a large experimental matrix including different rocks, steels, cement types and well fluids. The bonding qualities were measured on composite cores using micro computed tomography (µ-CT), and CO2 was flooded through the samples to determine leakage rates. These were further compared to numerical simulations of leakage through the digitalized µ-CT core data, and CO2chemical interactions with the materials were mapped using electron microscopy. We also present a new laboratory set-up for measuring how well integrity is affected by downhole temperature variations - and we showcase some initial results. Our work concludes that leak path development in CO2 wells depends critically on the drilling fluids and presflushes/spacers chosen already during drilling and completion of a well. Fluid films residing on rock and casing surfaces strongly degrade the quality of cement bonding. The operation of the well is also important, as even slight thermal cycling (between 10°C and 95°C on casing) leads to significant de-bonding of the annular cement.

  6. Aircraft observations of the urban CO2 dome in London and calculated daytime CO2 fluxes at the urban-regional scale (United States)

    Font, Anna; Morgui, Josep Anton; Grimmond, Sue; Barratt, Benjamin


    Traffic, industry and energy production and consumption within urban boundaries emit great amounts of CO2 into the atmosphere, creating an urban increment of CO2 mixing ratios compared to the surrounding rural atmosphere. Monitoring CO2 within these 'urban domes' has been proposed as a means to evaluate the effectiveness of policies aiming to mitigate and reduce CO2 urban emissions (CMEGGE, 2010). London is the biggest urban conurbation in Western Europe with more than 8 million inhabitants, and it emitted roughly 45000 ktn CO2 in 2010 (DECC, 2012). In order to develop and implement observational strategies to measure the contribution of urban areas into the global carbon cycle, two airborne surveys were deployed using the Natural and Environment Research Council - Airborne Research and Survey Facility (NERC-ARSF). High frequency measurements of atmospheric CO2, O3, particles and meteorological variables were taken over London in October 2011 and July 2012. CO2 mixing ratios were measured by a Non-Dispersive IR instrument developed by AOS. In July 2012, a Cavity Ring-Down Spectroscopy (CDRS) instrument developed by PICARRO was deployed measuring CO2, CH4 and water vapour at 1Hz resolution. The objectives of the campaigns were to measure the CO2 dome over London and to calculate CO2 emissions at the urban-regional-scale. London was crossed by two transects (SW-NE and SSE-NNW) at an altitude of 360 m and vertical profiles up to 2000 m were carried out to characterize the structure of the atmosphere. Aircraft measurements allowed observation on how CO2 domes were shaped by meteorological conditions. In October 2011, the mean CO2 mixing ratio measured in London was on average 2 ppmv higher than the suburban measurements within the boundary layer. However, under low wind speeds, the CO2 mixing ratio in the urban mixing ratio peaked in central London (>10 ppmv) and decreased towards the city boundaries. Under windy conditions, the structure of the urban dome was

  7. The impact of CO2 emissions on economic growth: evidence from selected higher CO2 emissions economies. (United States)

    Azam, Muhammad; Khan, Abdul Qayyum; Bin Abdullah, Hussin; Qureshi, Muhammad Ejaz


    The main purpose of this work is to analyze the impact of environmental degradation proxied by CO2 emissions per capita along with some other explanatory variables namely energy use, trade, and human capital on economic growth in selected higher CO2 emissions economies namely China, the USA, India, and Japan. For empirical analysis, annual data over the period spanning between 1971 and 2013 are used. After using relevant and suitable tests for checking data properties, the panel fully modified ordinary least squares (FMOLS) method is employed as an analytical technique for parameter estimation. The panel group FMOLS results reveal that almost all variables are statistically significant, whereby test rejects the null hypotheses of non cointegration, demonstrating that all variables play an important role in affecting the economic growth role across countries. Where two regressors namely CO2 emissions and energy use show significantly negative impacts on economic growth, for trade and human capital, they tend to show the significantly positive impact on economic growth. However, for the individual analysis across countries, the panel estimate suggests that CO2 emissions have a significant positive relationship with economic growth for China, Japan, and the USA, while it is found significantly negative in case of India. The empirical findings of the study suggest that appropriate and prudent policies are required in order to control pollution emerging from areas other than liquefied fuel consumption. The ultimate impact of shrinking pollution will help in supporting sustainable economic growth and maturation as well as largely improve society welfare.

  8. Comparison of volatiles and mosquito capture efficacy for three carbohydrate sources in a yeast-fermentation CO2 generator (United States)

    Mosquito surveillance in remote areas with limited access to canisters of CO2 or dry ice will benefit from an effective alternative CO2 source. In this study, we document the differences in mosquito and non-mosquito capture rates from CO2 baited (dry ice or yeast fermentation of carbohydrates) CDC t...

  9. Sustained effects of atmospheric [CO2] and nitrogen availability on forest soil CO2 efflux (United States)

    A. Christopher Oishi; Sari Palmroth; Kurt H. Johnsen; Heather R. McCarthy; Ram. Oren


    Soil CO2 efflux (Fsoil) is the largest source of carbon from forests and reflects primary productivity as well as how carbon is allocated within forest ecosystems. Through early stages of stand development, both elevated [CO2] and availability of soil nitrogen (N; sum of mineralization, deposition, and fixation) have been shown to increase gross primary productivity,...

  10. Uncertainties in the CO2 buget associated to boundary layer dynamics and CO2-advection

    NARCIS (Netherlands)

    Kaikkonen, J.P.; Pino, D.; Vilà-Guerau de Arellano, J.


    The relationship between boundary layer dynamics and carbon dioxide (CO2) budget in the convective boundary layer (CBL) is investigated by using mixed-layer theory. We derive a new set of analytical relations to quantify the uncertainties on the estimation of the bulk CO2 mixing ratio and the

  11. Review of supercritical CO2 power cycle technology and current status of research and development

    Directory of Open Access Journals (Sweden)

    Yoonhan Ahn


    Full Text Available The supercritical CO2 (S-CO2 Brayton cycle has recently been gaining a lot of attention for application to next generation nuclear reactors. The advantages of the S-CO2 cycle are high efficiency in the mild turbine inlet temperature region and a small physical footprint with a simple layout, compact turbomachinery, and heat exchangers. Several heat sources including nuclear, fossil fuel, waste heat, and renewable heat sources such as solar thermal or fuel cells are potential application areas of the S-CO2 cycle. In this paper, the current development progress of the S-CO2 cycle is introduced. Moreover, a quick comparison of various S-CO2 layouts is presented in terms of cycle performance.

  12. Heterotrophic fixation of CO2 in soil

    Czech Academy of Sciences Publication Activity Database

    Šantrůčková, Hana; Bird, M. I.; Elhottová, Dana; Novák, Jaroslav; Picek, T.; Šimek, Miloslav; Tykva, Richard


    Roč. 49, č. 2 (2005), s. 218-225 ISSN 0095-3628 R&D Projects: GA ČR(CZ) GA206/02/1036; GA AV ČR(CZ) IAA6066901 Institutional research plan: CEZ:AV0Z60660521 Keywords : heterotrophic fixation * CO2 * soil Subject RIV: EH - Ecology, Behaviour Impact factor: 2.674, year: 2005

  13. Carbon dioxide (CO2) utilizing strain database

    African Journals Online (AJOL)



    Oct 17, 2011 ... Culling of excess carbon dioxide from our environment is one of the major challenges to scientific communities. Many physical, chemical and biological methods have been practiced to overcome this problem. The biological means of CO2 fixation using various microorganisms is gaining importance.

  14. 76 FR 15249 - Deferral for CO2 (United States)


    ... From the Federal Register Online via the Government Publishing Office ENVIRONMENTAL PROTECTION AGENCY 40 CFR Parts 51, 52, 70, and 71 RIN 2060-AQ79 Deferral for CO2 Emissions From Bioenergy and Other Biogenic Sources Under the Prevention of Significant Deterioration (PSD) and Title V Programs: Proposed...

  15. Artificial photosynthesis - CO2 towards methanol (United States)

    Nazimek, D.; Czech, B.


    The new insight into the problem of carbon dioxide utilization into valuable compound - methanol and then its transformation into fuel is presented. Because the highly endothermic requirements of the reaction of CO2 hydrogenation a photocatalytic route is applied. Combining of the two reactions: water splitting and CO2 hydrogenation using H2O as a source of hydrogen at the same time and place are proposed. The studies over modified TiO2 catalysts supported on Al2O3 were conducted in a self-designed circulated photocatalytic reaction system under at room temperature and constant pressure. Experimental results indicated that the highest yield of the photoreduction of CO2 with H2O were obtained using TiO2 with the active anatase phase modified by Ru and WO3 addition. The conversion was very high - almost 97% of CO2 was transformed mainly into methanol (14%vol.) and into small amount of formic and acetic acid and ester.

  16. Iconic CO2 Time Series at Risk

    NARCIS (Netherlands)

    Houweling, S.; Badawy, B.; Basu, S.; Krol, M.C.; Röckmann, T.; Vermeulen, A.


    THE STEADY RISE IN ATMOSPHERIC LONGlived greenhouse gas concentrations is the main driver of contemporary climate change. The Mauna Loa CO2 time series (1, 2), started by C. D. Keeling in 1958 and maintained today by the Scripps Institution of Oceanography and the Earth System Research Laboratory

  17. Bosch CO2 Reduction System Development (United States)

    Holmes, R. F.; King, C. D.; Keller, E. E.


    Development of a Bosch process CO2 reduction unit was continued, and, by means of hardware modifications, the performance was substantially improved. Benefits of the hardware upgrading were demonstrated by extensive unit operation and data acquisition in the laboratory. This work was accomplished on a cold seal configuration of the Bosch unit.

  18. Harvesting Energy from CO2 Emissions

    NARCIS (Netherlands)

    Hamelers, H.V.M.; Schaetzle, O.; Paz-García, J.M.; Biesheuvel, P.M.; Buisman, C.J.N.


    When two fluids with different compositions are mixed, mixing energy is released. This holds true for both liquids and gases, though in the case of gases, no technology is yet available to harvest this energy source. Mixing the CO2 in combustion gases with air represents a source of energy with a

  19. Leaf Photosynthesis and Respiration of High CO2-Grown Tobacco Plants Selected for Survival under CO2 Compensation Point Conditions 1 (United States)

    Delgado, Esteban; Azcón-Bieto, Joaquim; Aranda, Xavier; Palazón, Javier; Medrano, Hipólito


    Four self-pollinated, doubled-haploid tobacco, (Nicotiana tabacum L.) lines (SP422, SP432, SP435, and SP451), selected as haploids by survival in a low CO2 atmosphere, and the parental cv Wisconsin-38 were grown from seed in a growth room kept at high CO2 levels (600-700 parts per million). The selected plants were much larger (especially SP422, SP432, and SP451) than Wisconsin-38 nine weeks after planting. The specific leaf dry weight and the carbon (but not nitrogen and sulfur) content per unit area were also higher in the selected plants. However, the chlorophyll, carotenoid, and alkaloid contents and the chlorophyll a/b ratio varied little. The net CO2 assimilation rate per unit area measured in the growth room at high CO2 was not higher in the selected plants. The CO2 assimilation rate versus intercellular CO2 curve and the CO2 compensation point showed no substantial differences among the different lines, even though these plants were selected for survival under CO2 compensation point conditions. Adult leaf respiration rates were similar when expressed per unit area but were lower in the selected lines when expressed per unit dry weight. Leaf respiration rates were negatively correlated with specific leaf dry weight and with the carbon content per unit area and were positively correlated with nitrogen and sulfur content of the dry matter. The alternative pathway was not involved in respiration in the dark in these leaves. The better carbon economy of tobacco lines selected for low CO2 survival was not apparently related to an improvement of photosynthesis rate but could be related, at least partially, to a significantly reduced respiration (mainly cytochrome pathway) rate per unit carbon. ImagesFigure 1 PMID:16668769

  20. Surface Water pCO2 Variations and Sea-Air CO2 Fluxes During Summer in the Eastern Canadian Arctic (United States)

    Burgers, T. M.; Miller, L. A.; Thomas, H.; Else, B. G. T.; Gosselin, M.; Papakyriakou, T.


    Based on a 2 year data set, the eastern Canadian Arctic Archipelago and Baffin Bay appear to be a modest summertime sink of atmospheric CO2. We measured surface water CO2 partial pressure (pCO2), salinity, and temperature throughout northern Baffin Bay, Nares Strait, and Lancaster Sound from the CCGS Amundsen during its 2013 and 2014 summer cruises. Surface water pCO2 displayed considerable variability (144-364 μatm) but never exceeded atmospheric concentrations, and average calculated CO2 fluxes in 2013 and 2014 were -12 and -3 mmol C m-2 d-1 (into the ocean), respectively. Ancillary measurements of chlorophyll a reveal low summertime productivity in surface waters. Based on total alkalinity and stable oxygen isotopes (δ18O) data, a strong riverine signal in northern Nares Strait coincided with relatively high surface pCO2, whereas areas of sea-ice melt occur with low surface pCO2. Further assessments, extending the seasonal observation period, are needed to properly constrain both seasonal and annual CO2 fluxes in this region.

  1. Total (fumarolic + diffuse soil) CO2output from Furnas volcano. (United States)

    Pedone, M; Viveiros, F; Aiuppa, A; Giudice, G; Grassa, F; Gagliano, A L; Francofonte, V; Ferreira, T

    Furnas volcano, in São Miguel island (Azores), being the surface expression of rising hydrothermal steam, is the site of intense carbon dioxide (CO 2 ) release by diffuse degassing and fumaroles. While the diffusive CO 2 output has long (since the early 1990s) been characterized by soil CO 2 surveys, no information is presently available on the fumarolic CO 2 output. Here, we performed (in August 2014) a study in which soil CO 2 degassing survey was combined for the first time with the measurement of the fumarolic CO 2 flux. The results were achieved by using a GasFinder 2.0 tunable diode laser. Our measurements were performed in two degassing sites at Furnas volcano (Furnas Lake and Furnas Village), with the aim of quantifying the total (fumarolic + soil diffuse) CO 2 output. We show that, within the main degassing (fumarolic) areas, the soil CO 2 flux contribution (9.2 t day -1 ) represents a minor (~15 %) fraction of the total CO 2 output (59 t day -1 ), which is dominated by the fumaroles (~50 t day -1 ). The same fumaroles contribute to ~0.25 t day -1 of H 2 S, based on a fumarole CO 2 /H 2 S ratio of 150 to 353 (measured with a portable Multi-GAS). However, we also find that the soil CO 2 contribution from a more distal wider degassing structure dominates the total Furnas volcano CO 2 budget, which we evaluate (summing up the CO 2 flux contributions for degassing soils, fumarolic emissions and springs) at ~1030 t day -1 .

  2. Growth, yield and photosynthesis of Panicum maximum and Stylosanthes hamata under elevated CO2. (United States)

    Bhatt, R K; Baig, M J; Tiwari, H S; Roy, Sharmila


    Plant height, biomass production, assimilatory functions and chlorophyll accumulation of Panicum maximum and Stylosanthes hamata in intercropping systems was influenced significantly under elevated CO2 (600 +/- 50 ppm) in open top chambers (OTCs). The plant height increased by 32.0 and 49.0% over the control in P. maximum and S. hamata respectively in intercropping system under elevated CO2 over open field grown crops (Ca). P. maximum and S. hamata produced 67 and 85% higher fresh and dry biomass respectively under elevated CO2. Rates of photosynthesis and stomatal conductance increased in both the crop species in intercropping systems under elevated CO2. The canopy photosynthesis (photosynthesis x leaf area index) of these crop species increased significantly under elevated CO2 over the open grown crops. The chlorophyll a and b accumulation were also higher in the leaves of both the crop species as grown in OTC with elevated CO2. The increased chlorophyll content, leaf area index and canopy photosynthesis led to higher growth and biomass production in these crop species under elevated CO2. The total carbon sequestration in crop biomass and soils during the three years was 21.53 Mg C/ha under elevated CO2. The data revealed that P. maximum and S. hamata intercropping system is the potential as a sink for the increasing level of CO2 in the atmosphere in the semi-arid tropics.

  3. Extraction of lipids from microalgae using CO2-expanded methanol and liquid CO2. (United States)

    Paudel, Ashok; Jessop, Michael J; Stubbins, Spencer H; Champagne, Pascale; Jessop, Philip G


    The use of CO2-expanded methanol (cxMeOH) and liquid carbon dioxide (lCO2) is proposed to extract lipids from Botryococcus braunii. When compressed CO2 dissolves in methanol, the solvent expands in volume, decreases in polarity and so increases in its selectivity for biodiesel desirable lipids. Solid phase extraction of the algal extract showed that the cxMeOH extracted 21 mg of biodiesel desirable lipids per mL of organic solvent compared to 3mg/mL using either neat methanol or chloroform/methanol mixture. The non-polar lCO2 showed a high affinity for non-polar lipids. Using lCO2, it is possible to extract up to 10% neutral lipids relative to the mass of dry algae. Unlike extractions using conventional solvents, these new methods require little to no volatile, flammable, or chlorinated organic solvents. Copyright © 2014 Elsevier Ltd. All rights reserved.

  4. Flash scanning the CO2 laser: a revival of the CO2 laser in plastic surgery (United States)

    Lach, Elliot


    The CO2 laser has broad clinical application yet also presents a number of practical disadvantages. These drawbacks have limited the success and utilization of this laser in plastic surgery. Flashscanner technology has recently been used for char-free CO2 laser surgery of the oropharynx, the external female genital tract, and perirectal mucosa. A commercially available optomechanical flashscanner unit `Swiftlase,' was adapted to a CO2 laser and used for treatment in numerous plastic surgical applications. Conditions and situations that were treated in this study included generalized neurofibromatosis, tuberous sclerosis, rhinophyma, viral warts, breast reconstruction, and deepithelialization prior to microsurgery or local flap transfer and/or skin graft placement. There were no significant wound healing complications. Some patients previously sustained undue scarring from conventional CO2 laser surgery. Conservative, primarily ablative CO2 laser surgery with the Swiftlase has usefulness for treatment of patients in plastic surgery including those that were previously unsuccessfully treated.

  5. Unraveling the dynamics of magmatic CO2 degassing at Mammoth Mountain, California (United States)

    Peiffer, Loïc; Wanner, Christoph; Lewicki, Jennifer L.


    The accumulation of magmatic CO2 beneath low-permeability barriers may lead to the formation of CO2-rich gas reservoirs within volcanic systems. Such accumulation is often evidenced by high surface CO2 emissions that fluctuate over time. The temporal variability in surface degassing is believed in part to reflect a complex interplay between deep magmatic degassing and the permeability of degassing pathways. A better understanding of the dynamics of CO2 degassing is required to improve monitoring and hazards mitigation in these systems. Owing to the availability of long-term records of CO2 emissions rates and seismicity, Mammoth Mountain in California constitutes an ideal site towards such predictive understanding. Mammoth Mountain is characterized by intense soil CO2 degassing (up to ∼1000 t d-1) and tree kill areas that resulted from leakage of CO2 from a CO2-rich gas reservoir located in the upper ∼4 km. The release of CO2-rich fluids from deeper basaltic intrusions towards the reservoir induces seismicity and potentially reactivates faults connecting the reservoir to the surface. While this conceptual model is well-accepted, there is still a debate whether temporally variable surface CO2 fluxes directly reflect degassing of intrusions or variations in fault permeability. Here, we report the first large-scale numerical model of fluid and heat transport for Mammoth Mountain. We discuss processes (i) leading to the initial formation of the CO2-rich gas reservoir prior to the occurrence of high surface CO2 degassing rates and (ii) controlling current CO2 degassing at the surface. Although the modeling settings are site-specific, the key mechanisms discussed in this study are likely at play at other volcanic systems hosting CO2-rich gas reservoirs. In particular, our model results illustrate the role of convection in stripping a CO2-rich gas phase from a rising hydrothermal fluid and leading to an accumulation of a large mass of CO2 (∼107-108 t) in a shallow

  6. Microbial electrolysis cells for production of methane from CO2: long-term performance and perspectives

    NARCIS (Netherlands)

    Eerten-Jansen, van M.C.A.A.; Heijne, ter A.; Buisman, C.J.N.; Hamelers, H.V.M.


    A methane-producing microbial electrolysis cell (MEC) is a technology to convert CO2 into methane, using electricity as an energy source and microorganisms as the catalyst. A methane-producing MEC provides the possibility to increase the fuel yield per hectare of land area, when the CO2 produced in

  7. Review of CO2 as a Euthanasia Agent for Laboratory Rats and Mice (United States)

    Boivin, Gregory P; Hickman, Debra L; Creamer-Hente, Michelle A; Pritchett-Corning, Kathleen R; Bratcher, Natalie A


    Selecting an appropriate, effective euthanasia agent is controversial. Several recent publications provide clarity on the use of CO2 in laboratory rats and mice. This review examines previous studies on CO2 euthanasia and presents the current body of knowledge on the subject. Potential areas for further investigation and recommendations are provided. PMID:28903819

  8. Rapid CO2 permeation across biological membranes: implications for CO2 venting from tissue. (United States)

    Hulikova, Alzbeta; Swietach, Pawel


    The degree to which cell membranes are barriers to CO2 transport remains controversial. Proteins, such as aquaporins and Rh complex, have been proposed to facilitate CO2 transport, implying that the nonchannel component of membranes must have greatly reduced CO2 permeability. To determine whether membrane CO2 permeation is rate limiting for gas transport, the spread of CO2 across multicellular tissue growths (spheroids) was measured using intracellular pH as a spatial readout. Colorectal HCT116 cells have basal water and NH3 permeability, indicating the functional absence of aquaporins and gas channels. However, CO2 diffusivity in HCT116 spheroids was only 24 ± 4% lower than in pure water, which can be accounted for fully by volume exclusion due to proteins. Diffusivity was unaffected by blockers of aquaporins and Rh complex (Hg(2+), p-chloromercuribenzoic acid, and 4,4'-diisothiocyano-2,2'-stilbene-disulfonic acid) but decreased under hypertonic conditions (by addition of 300 mOsm mannitol), which increases intracellular protein crowding. Similar CO2 diffusivity was measured in spheroids of T47D breast cells (basal water permeability) and NHDF-Ad fibroblasts (aquaporin-facilitated water permeability). In contrast, diffusivity of NH3, a smaller but less lipophilic gas, was considerably slower than in pure water, as expected from rate-limiting membrane permeation. In conclusion, membranes, even in the functional absence of proposed gas channels, do not restrict CO2 venting from tissue growths.-Hulikova, A., Swietach, P. Rapid CO2 permeation across biological membranes: implications for CO2 venting from tissue. © FASEB.

  9. Isolation of microorganisms from CO2 sequestration sites through enrichments under high pCO2 (United States)

    Peet, K. C.; Freedman, A. J.; Boreham, C.; Thompson, J. R.


    Carbon Capture and Storage (CCS) in geologic formations has the potential to reduce greenhouse gas emissions from fossil fuel processing and combustion. However, little is known about the effects that CO2 may have on biological activity in deep earth environments. To understand microorganisms associated with these environments, we have developed a simple high-pressure enrichment methodology to cultivate organisms capable of growth under supercritical CO2 (scCO2). Growth media targeting different subsurface functional metabolic groups is added to sterilized 316 stainless steel tubing sealed with quarter turn plug valves values and pressurized to 120-136 atm using a helium-padded CO2 tank, followed by incubation at 37 °C to achieve the scCO2 state. Repeated passages of crushed subsurface rock samples and growth media under supercritical CO2 headspaces are assessed for growth via microscopic enumeration. We have utilized this method to survey sandstone cores for microbes capable of growth under scCO2 from two different geologic sites targeted for carbon sequestration activities. Reproducible growth of microbial biomass under high pCO2 has been sustained from each site. Cell morphologies consist of primarily 1-2 μm rods and oval spores, with densities from 1E5-1E7 cells per ml of culture. We have purified and characterized a bacterial strain most closely related to Bacillus subterraneus (99% 16S rRNA identity) capable of growth under scCO2. Preliminary physiological characterization of this strain indicates it is a spore-forming facultative anaerobe able to grow in 0.5 to 50 ppt salinity. Genome sequencing and analysis currently in progress will help reveal genetic mechanisms of acclimation to high pCO2 conditions associated with geologic carbon sequestration.

  10. The Role of the CO2 Laser and Fractional CO2 Laser in Dermatology. (United States)

    Omi, Tokuya; Numano, Kayoko


    Tremendous advances have been made in the medical application of the laser in the past few decades. Many diseases in the dermatological field are now indications for laser treatment that qualify for reimbursement by many national health insurance systems. Among laser types, the carbon dioxide (CO2) laser remains an important system for the dermatologist. The lasers used in photosurgery have wavelengths that differ according to their intended use and are of various types, but the CO2 laser is one of the most widely used lasers in the dermatology field. With its wavelength in the mid-infrared at 10,600 nm, CO2 laser energy is wellabsorbed in water. As skin contains a very high water percentage, this makes the CO2 laser ideal for precise, safe ablation with good hemostasis. In addition to its efficacy in ablating benign raised lesions, the CO2 laser has been reported to be effective in the field of esthetic dermatology in the revision of acne scars as well as in photorejuvenation. With the addition of fractionation of the beam of energy into myriad microbeams, the fractional CO2 laser has offered a bridge between the frankly full ablative indications and the nonablative skin rejuvenation systems of the 2000s in the rejuvenation of photoaged skin on and off the face. The CO2 laser remains an efficient, precise and safe system for the dermatologist. Technological advances in CO2 laser construction have meant smaller spot sizes and greater precision for laser surgery, and more flexibility in tip sizes and protocols for fractional CO2 laser treatment. The range of dermatological applications of the CO2 laser is expected to continue to increase in the future.

  11. When CO2 kills: effects of magmatic CO2 flux on belowground biota at Mammoth Mountain, CA (United States)

    McFarland, J.; Waldrop, M. P.; Mangan, M.


    concomitant with a relative increase in bacterial and archaeal contributions to microbial community structure. Root tip analyses among lodgepole seedlings recolonizing the kill zone area demonstrated a significant reduction in the overall diversity of fungal symbionts, as well as a distinct shift in fungal assemblages. In particular, within elevated CO2 areas, we observed a high infection level for the ascomycetous fungi, Wilcoxina spp., which appear particularly well-adapted for colonization in disturbed environments. It remains unclear whether dominance by ascomycetes among seedlings in elevated CO2 areas represents a coordinated shift orchestrated by the plant in response to physiological stress, or whether these fungi are simply more opportunistic than their basdiomycetous counterparts. Our results demonstrate the impact of large-scale disturbances on plant-microbial interactions and belowground processes in previously forested ecosystems.

  12. Membrane contactors for CO2 capture processes - critical review (United States)

    Nogalska, Adrianna; Trojanowska, Anna; Garcia-Valls, Ricard


    The use of membrane contactor in industrial processes is wide, and lately it started to be used in CO2 capture process mainly for gas purification or to reduce the emission. Use of the membrane contactor provides high contact surface area so the size of the absorber unit significantly decreases, which is an important factor for commercialization. The research has been caried out regarding the use of novel materials for the membrane production and absorbent solution improvements. The present review reveals the progress in membrane contactor systems for CO2 capture processes concerning solution for ceramic membrane wetting, comparison study of different polymers used for fabrication and methods of enzyme immobilization for biocomposite membrane. Also information about variety of absorbent solutions is described.

  13. Application of CO2 laser for electronic components soldering (United States)

    Mascorro-Pantoja, J.; Soto-Bernal, J. J.; Nieto-Pérez, M.; Gonzalez-Mota, R.; Rosales-Candelas, I.


    Laser provides a high controllable and localized spot for soldering joint formation and this is a valuable tool in Sn/Pb Soldering process on electronic industry, in recent years, laser beam welding has become an emerging welding technique, the use of laser in welding area is a high efficiency method. A 60 Watts CO2 continuous laser was used on this study, during welding experimental results indicated the laser could significantly improve speed and weld quality. In this work, the welding interactions of CO2 laser with Sn/Pb wire have been investigated in details through varying the energy ratios of laser. And at the same time, the effect of distance from laser spot to material.

  14. CO2-helium and CO2-neon mixtures at high pressures. (United States)

    Mallick, B; Ninet, S; Le Marchand, G; Munsch, P; Datchi, F


    The properties of mixtures of carbon dioxide with helium or neon have been investigated as a function of CO(2) concentration and pressure up to 30 GPa at room temperature. The binary phase diagrams of these mixtures are determined over the full range of CO(2) concentrations using visual observations and Raman scattering measurements. Both diagrams are of eutectic type, with a fluid-fluid miscibility gap for CO(2) concentrations in the range [5, 75] mol. % for He and [8, 55] mol. % for Ne, and a complete separation between the two components in the solid phase. The absence of alloys or stoichiometric compounds for these two binary systems is consistent with the Hume-Rothery rules of hard sphere mixtures. The Raman spectra and x-ray diffraction patterns of solid CO(2) embedded in He or Ne for various initial concentrations have been measured up to 30 GPa and 12 GPa, respectively. The frequencies of the Raman modes and the volume of solid phase I are identical, within error bars, to those reported for 100% CO(2) samples, thus confirming the total immiscibility of CO(2) with He and Ne in the solid phase. These results demonstrate the possibility to perform high-pressure experiments on solid CO(2) under (quasi-)hydrostatic conditions using He or Ne as pressure transmitting medium.

  15. Root-derived CO2 efflux via xylem stream rivals soil CO2 efflux.

    Energy Technology Data Exchange (ETDEWEB)

    Aubrey, Doug, P.; Teskey, Robert, O.


    • Respiration consumes a large portion of annual gross primary productivity in forest ecosystems and is dominated by belowground metabolism. Here, we present evidence of a previously unaccounted for internal CO2 flux of large magnitude from tree roots through stems. If this pattern is shown to persist over time and in other forests, it suggests that belowground respiration has been grossly underestimated. • Using an experimental Populus deltoides plantation as a model system, we tested the hypothesis that a substantial portion of the CO2 released from belowground autotrophic respiration remains within tree root systems and is transported aboveground through the xylem stream rather than diffusing into the soil atmosphere. • On a daily basis, the amount of CO2 that moved upward from the root system into the stem via the xylem stream (0.26 mol CO2 m-2 d-1) rivalled that which diffused from the soil surface to the atmosphere (0.27 mol CO2 m-2 d-1). We estimated that twice the amount of CO2 derived from belowground autotrophic respiration entered the xylem stream as diffused into the soil environment. • Our observations indicate that belowground autotrophic respiration consumes substantially more carbohydrates than previously recognized and challenge the paradigm that all root-respired CO2 diffuses into the soil atmosphere.

  16. Global CO2 fluxes estimated from GOSAT retrievals of total column CO2

    Directory of Open Access Journals (Sweden)

    S. Basu


    Full Text Available We present one of the first estimates of the global distribution of CO2 surface fluxes using total column CO2 measurements retrieved by the SRON-KIT RemoTeC algorithm from the Greenhouse gases Observing SATellite (GOSAT. We derive optimized fluxes from June 2009 to December 2010. We estimate fluxes from surface CO2 measurements to use as baselines for comparing GOSAT data-derived fluxes. Assimilating only GOSAT data, we can reproduce the observed CO2 time series at surface and TCCON sites in the tropics and the northern extra-tropics. In contrast, in the southern extra-tropics GOSAT XCO2 leads to enhanced seasonal cycle amplitudes compared to independent measurements, and we identify it as the result of a land–sea bias in our GOSAT XCO2 retrievals. A bias correction in the form of a global offset between GOSAT land and sea pixels in a joint inversion of satellite and surface measurements of CO2 yields plausible global flux estimates which are more tightly constrained than in an inversion using surface CO2 data alone. We show that assimilating the bias-corrected GOSAT data on top of surface CO2 data (a reduces the estimated global land sink of CO2, and (b shifts the terrestrial net uptake of carbon from the tropics to the extra-tropics. It is concluded that while GOSAT total column CO2 provide useful constraints for source–sink inversions, small spatiotemporal biases – beyond what can be detected using current validation techniques – have serious consequences for optimized fluxes, even aggregated over continental scales.

  17. Vertical variations in wood CO2 efflux for live emergent trees in a Bornean tropical rainforest. (United States)

    Katayama, Ayumi; Kume, Tomonori; Komatsu, Hikaru; Ohashi, Mizue; Matsumoto, Kazuho; Ichihashi, Ryuji; Kumagai, Tomo'omi; Otsuki, Kyoichi


    Difficult access to 40-m-tall emergent trees in tropical rainforests has resulted in a lack of data related to vertical variations in wood CO2 efflux, even though significant variations in wood CO2 efflux are an important source of errors when estimating whole-tree total wood CO2 efflux. This study aimed to clarify vertical variations in wood CO2 efflux for emergent trees and to document the impact of the variations on the whole-tree estimates of stem and branch CO2 efflux. First, we measured wood CO2 efflux and factors related to tree morphology and environment for seven live emergent trees of two dipterocarp species at four to seven heights of up to ∼ 40 m for each tree using ladders and a crane. No systematic tendencies in vertical variations were observed for all the trees. Wood CO2 efflux was not affected by stem and air temperature, stem diameter, stem height or stem growth. The ratios of wood CO2 efflux at the treetop to that at breast height were larger in emergent trees with relatively smaller diameters at breast height. Second, we compared whole-tree stem CO2 efflux estimates using vertical measurements with those based on solely breast height measurements. We found similar whole-tree stem CO2 efflux estimates regardless of the patterns of vertical variations in CO2 efflux because the surface area in the canopy, where wood CO2 efflux often differed from that at breast height, was very small compared with that at low stem heights, resulting in little effect of the vertical variations on the estimate. Additionally, whole-tree branch CO2 efflux estimates using measured wood CO2 efflux in the canopy were considerably different from those measured using only breast height measurements. Uncertainties in wood CO2 efflux in the canopy did not cause any bias in stem CO2 efflux scaling, but affected branch CO2 efflux. © The Author 2014. Published by Oxford University Press. All rights reserved.

  18. A Review of Human Health and Ecological Risks due to CO2 Exposure (United States)

    Hepple, R. P.; Benson, S. M.


    Nyos in Cameroon, Mammoth Mountain in California, Dieng Volcanic Complex in Java, Indonesia, and industrial accidents with CO2 fire suppression systems teach that slow leakage rates and effective dilution must be proven to ensure human and environmental safety. Monitoring CO2 levels in occupational settings is done with reliable IR sensors. Remote sensing of low levels of CO2 over long distances cannot be done easily yet, although LIDAR, an airborne laser technique under development, may have good potential. The environmental impacts of elevated CO2 levels on vegetation are being investigated now in free-air CO2 enrichment studies. In general, persistent elevated CO2 levels cause a change in species composition, favoring C3 plants over C4 or CAM. The ecological effects of catastrophic releases are severe but depend upon (a) release rate and amount, (b) surface topography and rate of atmospheric mixing (c) exposure concentrations and duration, (d) the respiratory mechanism of the form of life under discussion, (e) its tolerance for oxygen deprivation, and (f) its ability to maintain homeostatic pH levels. Suppression of root respiration due to elevated soil-gas CO2 concentrations and acidifiction of the root zone are known mechanisms of tree-kill. Soil-gas CO2 in the tree-kill areas at Mammoth Mountain exceeded 20-30% at 15 cm depth. Surface masses of concentrated CO2 probably smother the canopy through oxygen deprivation, but the precise mechanism is not known. Lake Nyos and Mammoth Mountain reveal that catastrophic releases can result in complete dead zones.

  19. On CO2 Behavior in the Subsurface, Following Leakage from aGeologic Storage Reservoir

    Energy Technology Data Exchange (ETDEWEB)

    Pruess, Karsten


    The amounts of CO2 that would need to be injected intogeologic storage reservoirs to achieve a significant reduction ofatmospheric emissions are very large. A 1000 MWe coal-fired power plantemits approximately 30,000 tonnes of CO2 per day, 10 Mt per year(Hitchon, 1996). When injected underground over a typical lifetime of 30years of such a plant, the CO2 plume may occupy a large area of order 100km2 or more, and fluid pressure increase in excess of 1 bar(corresponding to 10 m water head) may extend over an area of more than2,500 km2 (Pruess, et al., 2003). The large areal extent expected for CO2plumes makes it likely that caprock imperfections will be encountered,such as fault zones or fractures, which may allow some CO2 to escape fromthe primary storage reservoir. Under most subsurface conditions oftemperature and pressure, CO2 is buoyant relative to groundwaters. If(sub-)vertical pathways are available, CO2 will tend to flow upward and,depending on geologic conditions, may eventually reach potablegroundwater aquifers or even the land surface. Leakage of CO2 could alsooccur along wellbores, including pre-existing and improperly abandonedwells, or wells drilled in connection with the CO2 storage operations.The pressure increases accompanying CO2 injection will give rise tochanges in effective stress that could cause movement along faults,increasing permeability and potential for leakage.Escape of CO2 from aprimary geologic storage reservoir and potential hazards associated withits discharge at the land surface raise a number of concerns, including(1) acidification of groundwater resources, (2) asphyxiation hazard whenleaking CO2 is discharged at the land surface, (3) increase inatmospheric concentrations of CO2, and (4) damage from a high-energy,eruptive discharge (if such discharge is physically possible). In orderto gain public acceptance for geologic storage as a viable technology forreducing atmospheric emissions of CO2, it is necessary to address theseissues

  20. Effects of CO2 on stomatal conductance: do stomata open at very high CO2 concentrations? (United States)

    Wheeler, R. M.; Mackowiak, C. L.; Yorio, N. C.; Sager, J. C.


    Potato and wheat plants were grown for 50 d at 400, 1000 and 10000 micromoles mol-1 carbon dioxide (CO2). and sweetpotato and soybean were grown at 1000 micromoles mol-1 CO2 in controlled environment chambers to study stomatal conductance and plant water use. Lighting was provided with fluorescent lamps as a 12 h photoperiod with 300 micromoles m-2 s-1 PAR. Mid-day stomatal conductances for potato were greatest at 400 and 10000 micromoles mol-1 and least at 1000 micromoles mol-1 CO2. Mid-day conductances for wheat were greatest at 400 micromoles mol-1 and least at 1000 and 10000 micromoles mol-1 CO2. Mid-dark period conductances for potato were significantly greater at 10000 micromoles mol-1 than at 400 or 1000 micromoles mol-1, whereas dark conductance for wheat was similar in all CO2 treatments. Temporarily changing the CO2 concentration from the native 1000 micromoles mol-1 to 400 micromoles mol-1 increased mid-day conductance for all species, while temporarily changing from 1000 to 10000 micromoles mol-1 also increased conductance for potato and sweetpotato. Temporarily changing the dark period CO2 from 1000 to 10000 micromoles mol-1 increased conductance for potato, soybean and sweetpotato. In all cases, the stomatal responses were reversible, i.e. conductances returned to original rates following temporary changes in CO2 concentration. Canopy water use for potato was greatest at 10000, intermediate at 400, and least at 1000 micromoles mol-1 CO2, whereas canopy water use for wheat was greatest at 400 and similar at 1000 and 10000 micromoles mol-1 CO2. Elevated CO2 treatments (i.e. 1000 and 10000 micromoles mol-1) resulted in increased plant biomass for both wheat and potato relative to 400 micromoles mol-1, and no injurious effects were apparent from the 10000 micromoles mol-1 treatment. Results indicate that super-elevated CO2 (i.e. 10000 micromoles mol-1) can increase stomatal conductance in some species, particularly during the dark period, resulting in

  1. Streamer parameters and breakdown in CO2 (United States)

    Seeger, M.; Avaheden, J.; Pancheshnyi, S.; Votteler, T.


    CO2 is a promising gas for the replacement of SF6 in high-voltage transmission and distribution networks due to its lower environmental impact. The insulation properties of CO2 are, therefore, of great interest. For this, the properties of streamers are important, since they determine the initial discharge propagation and possibly the transition to a leader. The present experimental investigation addresses the streamer inception and propagation at ambient temperature in the pressure range 0.05-0.5 MPa at both polarities. Streamer parameters, namely the stability field, radius and velocity, were deduced in uniform and in strongly non-uniform background fields. The measured breakdown fields can then be understood by streamer propagation and streamer-to-leader transition.

  2. Parameterization of atmosphere–surface exchange of CO2 over sea ice

    DEFF Research Database (Denmark)

    Sørensen, Lise Lotte; Jensen, Bjarne; Glud, Ronnie


    We suggest the application of a flux parameterization commonly used over terrestrial areas for calculation of CO2 fluxes over sea ice surfaces. The parameterization is based on resistance analogy.We present a concept for parameterization of the CO2 fluxes over sea ice suggesting to use properties...... of the atmosphere and sea ice surface that can be measured or calculated on a routine basis. Parameters, which can be used in the conceptual model, are analysed based on data sampled from a seasonal fast-ice area, and the different variables influencing the exchange of CO2 between the atmosphere and ice...... chemistry in the ice are essential to estimate the partial pressure of pCO2 and CO2 flux. Further investigations of surface structure and snow cover and driving parameters such as heat flux, radiation, ice temperature and brine processes are required to adequately parameterize the surface resistance....

  3. CO2-DISSOLVED and Aqueous Gas Separation


    Gorensek, Maximillian; Hamm, Luther; Blount, Gerald; Kervévan, Christophe; O'Neil, Kathleen


    International audience; CO2-DISSOLVED (Kervévan et al, 2014) is a multinational project funded by the French National Research Agency (ANR) with Phase II funded as one of the first Geodenergies projects. Geodenergies is a French industry-driven initiative grouping 18 companies and research organizations aiming at: (1) structuring a community of expertise to promote subsurface energy technologies that are key to a global energy transition; (2) cross-fertilizing to develop 3 emerging industrial...

  4. Continuous CO2 extractor and methods

    Energy Technology Data Exchange (ETDEWEB)

    None listed


    The purpose of this CRADA was to assist in technology transfer from Russia to the US and assist in development of the technology improvements and applications for use in the U.S. and worldwide. Over the period of this work, ORNL has facilitated design, development and demonstration of a low-pressure liquid extractor and development of initial design for high-pressure supercritical CO2 fluid extractor.

  5. CO2 dynamics on three habitats of mangrove ecosystem in Bintan Island, Indonesia (United States)

    Dharmawan, I. W. E.


    Atmospheric carbon dioxide (CO2) has increased over time, implied on global warming and climate change. Blue carbon is one of interesting options to reduce CO2 concentration in the atmosphere. Indonesia has the largest mangrove area in the world which would be potential to mitigate elevated CO2 concentrations. A quantitative study on CO2 dynamic was conducted in the habitat-variable and pristine mangrove of Bintan island. The study was aimed to estimate CO2 flux on three different mangrove habitats, i.e., lagoon, oceanic and riverine. Even though all habitats were dominated by Rhizophora sp, they were significantly differed one another by species composition, density, and soil characteristics. Averagely, CO2 dynamics had the positive budget by ∼0.668 Mmol/ha (82.47%) which consisted of sequestration, decomposition, and soil efflux at 0.810 Mmol/ha/y, -0.125 Mmol/ha/y and -0.017 Mmol/ha/y, respectively. The study found that the fringing habitat had the highest CO2 capturing rate and the lowest rate of litter decomposition which was contrast to the riverine site. Therefore, oceanic mangrove was more efficient in controlling CO2 dynamics due to higher carbon storage on their biomass. A recent study also found that soil density and organic matter had a significant impact on CO2 dynamics.

  6. Cocatalysts in Semiconductor-based Photocatalytic CO2 Reduction: Achievements, Challenges, and Opportunities. (United States)

    Ran, Jingrun; Jaroniec, Mietek; Qiao, Shi-Zhang


    Ever-increasing fossil-fuel combustion along with massive CO2 emissions has aroused a global energy crisis and climate change. Photocatalytic CO2 reduction represents a promising strategy for clean, cost-effective, and environmentally friendly conversion of CO2 into hydrocarbon fuels by utilizing solar energy. This strategy combines the reductive half-reaction of CO2 conversion with an oxidative half reaction, e.g., H2 O oxidation, to create a carbon-neutral cycle, presenting a viable solution to global energy and environmental problems. There are three pivotal processes in photocatalytic CO2 conversion: (i) solar-light absorption, (ii) charge separation/migration, and (iii) catalytic CO2 reduction and H2 O oxidation. While significant progress is made in optimizing the first two processes, much less research is conducted toward enhancing the efficiency of the third step, which requires the presence of cocatalysts. In general, cocatalysts play four important roles: (i) boosting charge separation/transfer, (ii) improving the activity and selectivity of CO2 reduction, (iii) enhancing the stability of photocatalysts, and (iv) suppressing side or back reactions. Herein, for the first time, all the developed CO2 -reduction cocatalysts for semiconductor-based photocatalytic CO2 conversion are summarized, and their functions and mechanisms are discussed. Finally, perspectives in this emerging area are provided. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. A test of sensitivity to convective transport in a global atmospheric CO2 simulation (United States)

    Bian, H.; Kawa, S. R.; Chin, M.; Pawson, S.; Zhu, Z.; Rasch, P.; Wu, S.


    Two approximations to convective transport have been implemented in an offline chemistry transport model (CTM) to explore the impact on calculated atmospheric CO2 distributions. Global CO2 in the year 2000 is simulated using the CTM driven by assimilated meteorological fields from the NASA's Goddard Earth Observation System Data Assimilation System, Version 4 (GEOS-4). The model simulates atmospheric CO2 by adopting the same CO2 emission inventory and dynamical modules as described in Kawa et al. (convective transport scheme denoted as Conv1). Conv1 approximates the convective transport by using the bulk convective mass fluxes to redistribute trace gases. The alternate approximation, Conv2, partitions fluxes into updraft and downdraft, as well as into entrainment and detrainment, and has potential to yield a more realistic simulation of vertical redistribution through deep convection. Replacing Conv1 by Conv2 results in an overestimate of CO2 over biospheric sink regions. The largest discrepancies result in a CO2 difference of about 7.8 ppm in the July NH boreal forest, which is about 30% of the CO2 seasonality for that area. These differences are compared to those produced by emission scenario variations constrained by the framework of Intergovernmental Panel on Climate Change (IPCC) to account for possible land use change and residual terrestrial CO2 sink. It is shown that the overestimated CO2 driven by Conv2 can be offset by introducing these supplemental emissions.

  8. CO2 cooling for HEP experiments

    CERN Document Server

    Verlaat; Van Lysebetten, A


    The new generation silicon detectors require more efficient cooling of the front-end electronics and the silicon sensors themselves. To minimize reverse annealing of the silicon sensors the cooling temperatures need to be reduced. Other important requirements of the new generation cooling systems are a reduced mass and a maintenance free operation of the hardware inside the detector. Evaporative CO2 cooling systems are ideal for this purpose as they need smaller tubes than conventional systems. The heat transfer capability of evaporative CO2 is high. CO2 is used as cooling fluid for the LHCb-VELO and the AMS-Tracker cooling systems. A special method for the fluid circulation is developed at Nikhef to get a very stable temperature of both detectors without any active components like valves or heaters inside. This method is called 2-phase Accumulator Controlled Loop (2PACL) and is a good candidate technology for the design of the future cooling systems for the Atlas and CMS upgrades.

  9. Electrochemical CO2 Reduction: A Classification Problem. (United States)

    Bagger, Alexander; Ju, Wen; Varela, Ana Sofia; Strasser, Peter; Rossmeisl, Jan


    In this work, we propose four non-coupled binding energies of intermediates as descriptors, or "genes", for predicting the product distribution in CO2 electroreduction. Simple reactions can be understood by the Sabatier principle (catalytic activity vs. one descriptor), while more complex reactions tend to give multiple very different products and consequently the product selectivity is a more complex property to understand. We approach this, as a logistical classification problem, by grouping metals according to their major experimental product from CO2 electroreduction: H2 , CO, formic acid and beyond CO* (hydrocarbons or alcohols). We compare the groups in terms of multiple binding energies of intermediates calculated by density functional theory. Here, we find three descriptors to explain the grouping: the adsorption energies of H*, COOH*, and CO*. To further classify products beyond CO*, we carry out formaldehyde experiments on Cu, Ag, and Au and combine these results with the literature to group and differentiate alcohol or hydrocarbon products. We find that the oxygen binding (adsorption energy of CH3 O*) is an additional descriptor to explain the alcohol formation in reduction processes. Finally, the adsorption energy of the four intermediates, H*, COOH*, CO*, and CH3 O*, can be used to differentiate, group, and explain products in electrochemical reduction processes involving CO2 , CO, and carbon-oxygen compounds. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Improved ventilation-perfusion matching by abdominal insufflation (pneumoperitoneum) with CO2 but not with air. (United States)

    Strang, C M; Ebmeyer, U; Maripuu, E; Hachenberg, T; Hedenstierna, G


    Pneumoperitoneum (PP) by CO2-insufflation causes atelectasis however with maintained or even improved oxygenation. We studied the effect of abdominal insufflation by carbon dioxide (CO2) and air on gas exchange during PP. Twenty-seven anesthetized pigs were studied during PP with insufflations to 12 mmHg by either 1/CO2, 2/ air or 3/CO2 during intravenous nitroprusside infusion (SNP) (N.=9 in each group). In 3 pigs in each group, gamma camera technique (SPECT) was used to study ventilation and perfusion distributions, in another 6 pigs an inert-gas technique (MIGET) was used for assessing ventilation-perfusion matching (VA/Q). Measurements were made during anesthesia before and after 60 minutes of PP. CO2-PP caused a shift of blood flow away from dependent, non-ventilated (atelectatic) to ventilated regions. Air-PP caused smaller, and SNP-PP even less shift of lung blood flow. Shunt decreased during CO2-PP (6 ± 1% compared to baseline 9 ± 2%, P<0.05), did not change during Air-PP (10 ± 2%) and increased during SNP-PP (16 ± 2%, P<0.05). PaO2 increased from baseline 35 ± 2 to 41 ± 3 kPa during CO2-PP and decreased to 32 ± 3 kPa during Air-PP and to 27 ± 3 kPa during SNP-PP (P<0.05 for all three comparisons). PaCO2 increased during CO2- and SNP-PP. CO2-PP enhanced the shift of blood flow towards better ventilated areas of the lung compared to Air-PP and SNP blunted the effects seen with CO2-PP. SNP may thus have blunted and CO2 potentiated vasoconstriction, by hypoxic pulmonary vasoconstriction or another mechanism.

  11. The effects of CO2 on growth and transpiration of radish (Raphanus sativus) in hypobaria (United States)

    Gohil, H. L.; Bucklin, R. A.; Correll, M. J.


    Plants grown on long-term space missions will likely be grown in low pressure environments (i.e., hypobaria). However, in hypobaria the transpiration rates of plants can increase and may result in wilting if the water is not readily replaced. It is possible to reduce transpiration by increasing the partial pressure of CO2 (pCO2), but the effects of pCO2 at high levels (>120 Pa) on the growth and transpiration of plants in hypobaria are not known. Therefore, the effects of pCO2 on the growth and transpiration of radish (Raphanus sativus var. Cherry Bomb II) in hypobaria were studied. The fresh weight (FW), leaf area, dry weight (DW), CO2 assimilation rates (CA), dark respiration rates (DR), and transpiration rates from 26 day-old radish plants that were grown for an additional seven days at different total pressures (33, 66 or 101 kPa) and pCO2 (40 Pa, 100 Pa and 180 Pa) were measured. In general, the dry weight of plants increased with CO2 enrichment and with lower total pressure. In limiting pCO2 (40 Pa) conditions, the transpiration for plants grown at 33 kPa was approximately twice that of controls (101 kPa total pressure with 40 Pa pCO2). Increasing the pCO2 from 40 Pa to 180 Pa reduced the transpiration rates for plants grown in hypobaria and in standard atmospheric pressures. However, for plants grown in hypobaria and high pCO2 (180 Pa) leaf damage was evident. Radish growth can be enhanced and transpiration reduced in hypobaria by enriching the gas phase with CO2 although at high levels leaf damage may occur.

  12. From the low past to the high future: Plant growth across CO2 levels (United States)

    Temme, Andries; Cornwell, Will; Cornelissen, Hans; Aerts, Rien


    In today's atmosphere fossil fuel emissions and land use change since the industrial revolution have increased atmospheric CO2 concentration from 280 ppm to nearly 400 ppm, a value not experienced by plants for over 10 million years. In contrast, over the same period atmospheric CO2 levels have been much lower than preindustrial levels. Plants' recent evolutionary history has thus been under carbon starvation while over the next 90 years atmospheric CO2 is expected to rise to a bountiful ~800 ppm. Plants' response to this rapid increase is likely influenced by their long evolution in low CO2, but this has been hardly studied at all. Very little is known about how plant traits drove carbon cycling in the past and how these relationships may shift going from past to future CO2.In a climate chamber experiment we germinated and grew seedlings of 30 species (C3, C4, woody, herbaceous) at past low CO2 (150ppm), ambient CO2, and future high CO2(750ppm). Our aim was to understand how plant traits are affected by CO2 and if and why winners and losers in terms of growth performance shift going from past to future CO2 concentrations. Results show a great effect of low and high CO2 on specific leaf area, biomass and allocation shifts above and belowground but mixed results in patterns between species and plant types. Ongoing work focuses on leaf level chemistry and photosynthesis and the interaction between CO2 and drought stress with promising initial results.

  13. Impact of elevated CO2 concentration under three soil water levels on growth of Cinnamomum camphora * (United States)

    Zhao, Xing-Zheng; Wang, Gen-Xuan; Shen, Zhu-Xia; Zhang, Hao; Qiu, Mu-Qing


    Forest plays very important roles in global system with about 35% land area producing about 70% of total land net production. It is important to consider both elevated CO2 concentrations and different soil moisture when the possible effects of elevated CO2 concentration on trees are assessed. In this study, we grew Cinnamomum camphora seedlings under two CO2 concentrations (350 μmol/mol and 500 μmol/mol) and three soil moisture levels [80%, 60% and 40% FWC (field water capacity)] to focus on the effects of exposure of trees to elevated CO2 on underground and aboveground plant growth, and its dependence on soil moisture. The results indicated that high CO2 concentration has no significant effects on shoot height but significantly impacts shoot weight and ratio of shoot weight to height under three soil moisture levels. The response of root growth to CO2 enrichment is just reversed, there are obvious effects on root length growth, but no effects on root weight growth and ratio of root weight to length. The CO2 enrichment decreased 20.42%, 32.78%, 20.59% of weight ratio of root to shoot under 40%, 60% and 80% FWC soil water conditions, respectively. And elevated CO2 concentration significantly increased the water content in aboveground and underground parts. Then we concluded that high CO2 concentration favours more tree aboveground biomass growth than underground biomass growth under favorable soil water conditions. And CO2 enrichment enhanced lateral growth of shoot and vertical growth of root. The responses of plants to elevated CO2 depend on soil water availability, and plants may benefit more from CO2 enrichment with sufficient water supply. PMID:16532530

  14. Phosphorus supply drives nonlinear responses of cottonwood (Populus deltoides) to increases in CO2 concentration from glacial to future concentrations. (United States)

    Lewis, James D; Ward, Joy K; Tissue, David T


    *Despite the importance of nutrient availability in determining plant responses to climate change, few studies have addressed the interactive effects of phosphorus (P) supply and rising atmospheric CO(2) concentration ([CO(2)]) from glacial to modern and future concentrations on tree seedling growth. *The objective of our study was to examine interactive effects across a range of P supply (six concentrations from 0.004 to 0.5 mM) and [CO(2)] (200 (glacial), 350 (modern) and 700 (future) ppm) on growth, dry mass allocation, and light-saturated photosynthesis (A(sat)) in Populus deltoides (cottonwood) seedlings grown in well-watered conditions. *Increasing [CO(2)] from glacial to modern concentrations increased growth by 25% across P treatments, reflecting reduced [CO(2)] limitations to photosynthesis and increased A(sat). Conversely, the growth response to future [CO(2)] was very sensitive to P supply. Future [CO(2)] increased growth by 80% in the highest P supply but only by 7% in the lowest P supply, reflecting P limitations to A(sat), leaf area and leaf area ratio (LAR), compared with modern [CO(2)]. *Our results suggest that future [CO(2)] will minimally increase cottonwood growth in low-P soils, but in high-P soils may stimulate production to a greater extent than predicted based on responses to past increases in [CO(2)]. Our results indicate that the capacity for [CO(2)] stimulation of cottonwood growth does not decline as [CO(2)] rises from glacial to future concentrations.

  15. Interaction Between CO2-Rich Sulfate Solutions and Carbonate Reservoir Rocks from Atmospheric to Supercritical CO2 Conditions: Experiments and Modeling (United States)

    Cama, J.; Garcia-Rios, M.; Luquot, L.; Soler Matamala, J. M.


    A test site for CO2 geological storage is situated in Hontomín (Spain) with a reservoir rock that is mainly composed of limestone. During and after CO2 injection, the resulting CO2-rich acid brine gives rise to the dissolution of carbonate minerals (calcite and dolomite) and gypsum (or anhydrite at depth) may precipitate since the reservoir brine contains sulfate. Experiments using columns filled with crushed limestone or dolostone were conducted under different P-pCO2 conditions (atmospheric: 1-10-3.5 bar; subcritical: 10-10 bar; and supercritical: 150-34 bar), T (25, 40 and 60 ºC) and input solution compositions (gypsum-undersaturated and gypsum-equilibrated solutions). We evaluated the effect of these parameters on the coupled reactions of calcite/dolomite dissolution and gypsum/anhydrite precipitation. The CrunchFlow and PhreeqC (v.3) numerical codes were used to perform reactive transport simulations of the experiments. Under the P-pCO2-T conditions, the volume of precipitated gypsum was smaller than the volume of dissolved carbonate minerals, yielding an increase in porosity (Δporosity up to ≈ 4%). A decrease in T favored limestone dissolution regardless of pCO2 owing to increasing undersaturation with decreasing temperature. However, gypsum precipitation was favored at high T and under atmospheric pCO2 conditions but not at high T and under 10 bar of pCO2 conditions. The increase in limestone dissolution with pCO2 was directly attributed to pH, which was more acidic at higher pCO2. Increasing pCO2, carbonate dissolution occurred along the column whereas it was localized in the very inlet under atmospheric conditions. This was due to the buffer capacity of the carbonic acid, which maintains pH at around 5 and keeps the solution undersaturated with respect to calcite and dolomite along the column. 1D reactive transport simulations reproduced the experimental data (carbonate dissolution and gypsum precipitation for different P-pCO2-T conditions). Drawing

  16. CO2 induced growth response in a diatom dominated phytoplankton community from SW Bay of Bengal coastal water (United States)

    Biswas, Haimanti; Shaik, Aziz Ur Rahman; Bandyopadhyay, Debasmita; Chowdhury, Neha


    The ongoing increase in surface seawater CO2 level could potentially impact phytoplankton primary production in coastal waters; however, CO2 sensitivity studies on tropical coastal phytoplankton assemblages are rare. The present study investigated the interactive impacts of variable CO2 level, light and zinc (Zn) addition on the diatom dominated phytoplankton assemblages from the western coastal Bay of Bengal. Increased CO2 supply enhanced particulate organic matter (POC) production; a concomitant depletion in δ13CPOM values at elevated CO2 suggested increased CO2 diffusive influx inside the cell. Trace amount of Zn added under low CO2 level accelerated growth probably by accelerating Zn-Carbonic Anhydrase activity which helps in converting bicarbonate ion to CO2. Almost identical values of δ13CPOM in the low CO2 treated cells grown with and without Zn indicated a low discrimination between 13C and 12C probably due to bicarbonate uptake. These evidences collectively indicated the existence of the carbon concentration mechanisms (CCMs) at low CO2. A minimum growth rate was observed at low CO2 and light limited condition indicating light dependence of CCMs activity. Upon the increase of light and CO2 level, growth response was maximum. The cells grown in the low CO2 levels showed higher light stress (higher values of both diatoxanthin index and the ratio of photo-protective to light-harvesting pigments) that was alleviated by both increasing CO2 supply and Zn addition (probably by efficient light energy utilization in presence of adequate CO2). This is likely that the diatom dominated phytoplankton communities benefited from the increasing CO2 supply and thus may enhance primary production in response to any further increase in coastal water CO2 levels and can have large biogeochemical consequences in the study area.

  17. Biosequestration of atmospheric CO2 and flue gas-containing CO2 by microalgae. (United States)

    Cheah, Wai Yan; Show, Pau Loke; Chang, Jo-Shu; Ling, Tau Chuan; Juan, Joon Ching


    The unceasing rise of greenhouse gas emission has led to global warming and climate change. Global concern on this phenomenon has put forward the microalgal-based CO2 sequestration aiming to sequester carbon back to the biosphere, ultimately reducing greenhouse effects. Microalgae have recently gained enormous attention worldwide, to be the valuable feedstock for renewable energy production, due to their high growth rates, high lipid productivities and the ability to sequester carbon. The photosynthetic process of microalgae uses atmospheric CO2 and CO2 from flue gases, to synthesize nutrients for their growth. In this review article, we will primarily discuss the efficiency of CO2 biosequestration by microalgae species, factors influencing microalgal biomass productions, microalgal cultivation systems, the potential and limitations of using flue gas for microalgal cultivation as well as the bio-refinery approach of microalgal biomass. Copyright © 2014 Elsevier Ltd. All rights reserved.

  18. Integration of the electrochemical depolorized CO2 concentrator with the Bosch CO2 reduction subsystem (United States)

    Schubert, F. H.; Wynveen, R. A.; Hallick, T. M.


    Regenerative processes for the revitalization of spacecraft atmospheres require an Oxygen Reclamation System (ORS) for the collection of carbon dioxide and water vapor and the recovery of oxygen from these metabolic products. Three life support subsystems uniquely qualified to form such an ORS are an Electrochemical CO2 Depolarized Concentrator (EDC), a CO2 Reduction Subsystem (BRS) and a Water Electrolysis Subsystem (WES). A program to develop and test the interface hardware and control concepts necessary for integrated operation of a four man capacity EDC with a four man capacity BRS was successfully completed. The control concept implemented proved successful in operating the EDC with the BRS for both constant CO2 loading as well as variable CO2 loading, based on a repetitive mission profile of the Space Station Prototype (SSP).

  19. Air sea CO2 exchange in the coastal ocean near Barrow Alaska (United States)

    Ikawa, H.; Oechel, W.


    The air sea CO2 exchange rate of a coastal sea in Barrow Alaska was evaluated with the eddy covariance technique and pCO2 measurements during summer 2008. The study area included the Chukchi Sea, the Beaufort Sea, and Elson Lagoon. The eddy covariance measurements were performed from June to August from a beach adjacent to the Beaufort Sea. A large draw down of CO2 was observed during the absence of fast ice. A shore based pCO2 measurement was performed from a beach adjacent to the Chukchi Sea. Dissolved oxygen, salinity and water temperature were measured toghether with pCO2. Chlorophyll and pH were measured periodically. Very low pThe air sea CO2 exchange rate of a coastal sea in Barrow Alaska was evaluated with the eddy covariance technique and pCO2 measurements during summer 2008. THe study area included the Chukchi Sea, the Beaufort Sea, and Elson Lagoon. The eddy covariance measurements were performed from June to August from a beach adjacent to the Beaufort Sea. A large draw down of CO2 was observed during the absence of fast ice. A shore based pCO2 measurement was performed from a beach adjacent to the Chukchi Sea. Dissolved oxygen, salinity and water temperature were measured toghether with pCO2. Chlorophyll and pH were measured periodically. Very low pCO2 (-60 ppm) was observed in early summer with pCO2 values gradually increasing until the end of the field season. On the contrary, dissolved oxygen and chlorophyll concentrations were higher at the beginning of the summer and gradually decreased toward the end of the field campaign. There was no obvious seasonal trend in pH and sea water temperature. After fast ice sheets melted on July 7th, pCO2 measurements were performed on a boat cruise along the coast of Elson Lagoon, the Beaufort Sea, and the Chukchi Sea. A distinct difference in pCO2 was observed between the three seas. THe Chukchi Sea had lower pCO2 than Elson Lagoon and the Beaufort Sea except in late August. There was no consistent relationship

  20. Natural Analogues of CO2 Geological Storage; Analogos Naturales del Almacenamiento Geologico de CO2

    Energy Technology Data Exchange (ETDEWEB)

    Perez del Villar, L.; Pelayo, M.; Recreo, F.


    Geological storage of carbon dioxide is nowadays, internationally considered as the most effective method for greenhouse gas emission mitigation, in order to minimize the global climate change universally accepted. Nevertheless, the possible risks derived of this long-term storage have a direct influence on its public acceptance. Among the favourable geological formations to store CO2, depleted oil and gas fields, deep saline reservoirs, and unamiable coal seams are highlighted. One of the most important objectives of the R and D projects related to the CO2 geological storage is the evaluation of the CO2 leakage rate through the above mentioned geological formations. Therefore, it is absolutely necessary to increase our knowledge on the interaction among CO2, storage and sealing formations, as well as on the flow paths and the physical resistance of the sealing formation. The quantification of the CO2 leakage rate is essential to evaluate the effects on the human and animal health, as well as for the ecosystem and water quality. To achieve these objectives, the study of the natural analogues is very useful in order to know the natural leakage rate to the atmosphere, its flow paths, the physical, chemical and mineralogical modifications due to the long term interaction processes among the CO2 and the storage and sealing formations, as well as the effects on the groundwaters and ecosystems. In this report, we have tried to summarise the main characteristics of the natural reservoirs and surficial sources of CO2, which are both natural analogues of the geological storage and CO2 leakage, studied in EEUU, Europe and Australia. The main objective of this summary is to find the possible applications for long-term risk prediction and for the performance assessment by means of conceptual and numerical modelling, which will allow to validate the predictive models of the CO2 storage behaviour, to design and develop suitable monitoring techniques to control the CO2 behaviour

  1. Application of Space Borne CO2 and Fluorescence Measurements to Detect Urban CO2 Emissions and Anthropogenic Influence on Vegetation (United States)

    Paetzold, Johannes C.; Chen, Jia; Ruisinger, Veronika


    The Orbiting Carbon Observatory 2 (OCO-2) is a NASA satellite mission dedicated to make global, space-based observations of atmospheric, column-averaged carbon dioxide (XCO2). In addition, the OCO-2 also measures Solar Induced Chlorophyll Fluorescence (SIF). In our research we have studied the combination of OCO-2's XCO2 and SIF measurements for numerous urban areas on the different continents. Applying GIS and KML visualization techniques as well as statistical approaches we are able to reliably detect anthropogenic CO2 emissions in CO2 column concentration enhancements over urban areas. Moreover, we detect SIF decreases over urban areas compared to their rural vicinities. We are able to obtain those findings for urban areas on different continents, of diverse sizes, dissimilar topographies and urban constructions. Our statistical analysis finds robust XCO2 enhancements of up to 3 ppm for urban areas in Europe, Asia and North America. Furthermore, the analysis of SIF indicates that urban construction, population density and seasonality influence urban vegetation, which can be observed from space. Additionally, we find that OCO-2's SIF measurements have the potential to identify and approximate green areas within cities. For Berlin's Grunewald Forest as well as Mumbai's Sanjay Gandhi and Tungareshwar National Parks we observe enhancements in SIF measurements at sub-city scales.

  2. CO2-Responsive Polymer-Functionalized Au Nanoparticles for CO2 Sensor. (United States)

    Ma, Ying; Promthaveepong, Kittithat; Li, Nan


    Metallic nanoparticles (NPs) coated with stimuli-responsive polymers (SRPs) exhibit tunable optical properties responding to external stimuli and show promising sensing applications. We present a new CO2-responsive polymer, poly(N-(3-amidino)-aniline) (PNAAN), coated gold NPs (AuNPs) synthesized by directly reducing HAuCl4 with a CO2-responsive monomer N-(3-amidino)-aniline (NAAN). The amidine group of PNAAN can be protonated into a hydrophilic amidinium group by dissolved CO2 (dCO2). This induces the PNAAN to swell and detach from the AuNP surface, resulting in AuNP aggregation and color change. By monitoring the UV absorbance change of AuNPs, a sensitive dCO2 sensor with a linear range of 0.0132 to 0.1584 hPa and a limit of detection (LOD) of 0.0024 hPa is developed. This method shows dramatic improvement in sensitivity and convenience of sample preparation compared with the previously reported dCO2 sensor.

  3. Recycling CO 2 ? Computational Considerations of the Activation of CO 2 with Homogeneous Transition Metal Catalysts

    KAUST Repository

    Drees, Markus


    Faced with depleting fossil carbon sources, the search for alternative energy carriers and energy storage possibilities has become an important issue. Nature utilizes carbon dioxide as starting material for storing sun energy in plant hydrocarbons. A similar approach, storing energy from renewable sources in chemical bonds with CO 2 as starting material, may lead to partial recycling of CO 2 created by human industrial activities. Unfortunately, currently available routes for the transformation of CO 2 involve high temperatures and are often not selective. With the development of more sophisticated methods and better software, theoretical studies have become both increasingly widespread and useful. This concept article summarizes theoretical investigations of the current state of the feasibility of CO 2 activation with molecular transition metal catalysts, highlighting the most promising reactions of CO 2 with olefins to industrially relevant acrylic acid/acrylates, and the insertion of CO 2 into metal-element bonds, particularly for the synthesis of cyclic carbonates and polymers. Rapidly improving computational power and methods help to increase the importance and accuracy of calculations continuously and make computational chemistry a useful tool helping to solve some of the most important questions for the future. © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Neural Control of Breathing and CO2 Homeostasis. (United States)

    Guyenet, Patrice G; Bayliss, Douglas A


    Recent advances have clarified how the brain detects CO2 to regulate breathing (central respiratory chemoreception). These mechanisms are reviewed and their significance is presented in the general context of CO2/pH homeostasis through breathing. At rest, respiratory chemoreflexes initiated at peripheral and central sites mediate rapid stabilization of arterial PCO2 and pH. Specific brainstem neurons (e.g., retrotrapezoid nucleus, RTN; serotonergic) are activated by PCO2 and stimulate breathing. RTN neurons detect CO2 via intrinsic proton receptors (TASK-2, GPR4), synaptic input from peripheral chemoreceptors and signals from astrocytes. Respiratory chemoreflexes are arousal state dependent whereas chemoreceptor stimulation produces arousal. When abnormal, these interactions lead to sleep-disordered breathing. During exercise, central command and reflexes from exercising muscles produce the breathing stimulation required to maintain arterial PCO2 and pH despite elevated metabolic activity. The neural circuits underlying central command and muscle afferent control of breathing remain elusive and represent a fertile area for future investigation. Copyright © 2015 Elsevier Inc. All rights reserved.

  5. The BErkeley Atmospheric CO2 Observation Network: initial evaluation (United States)

    Shusterman, Alexis A.; Teige, Virginia E.; Turner, Alexander J.; Newman, Catherine; Kim, Jinsol; Cohen, Ronald C.


    With the majority of the world population residing in urban areas, attempts to monitor and mitigate greenhouse gas emissions must necessarily center on cities. However, existing carbon dioxide observation networks are ill-equipped to resolve the specific intra-city emission phenomena targeted by regulation. Here we describe the design and implementation of the BErkeley Atmospheric CO2 Observation Network (BEACO2N), a distributed CO2 monitoring instrument that utilizes low-cost technology to achieve unprecedented spatial density throughout and around the city of Oakland, California. We characterize the network in terms of four performance parameters - cost, reliability, precision, and systematic uncertainty - and find the BEACO2N approach to be sufficiently cost-effective and reliable while nonetheless providing high-quality atmospheric observations. First results from the initial installation successfully capture hourly, daily, and seasonal CO2 signals relevant to urban environments on spatial scales that cannot be accurately represented by atmospheric transport models alone, demonstrating the utility of high-resolution surface networks in urban greenhouse gas monitoring efforts.

  6. Spatiotemporal variations of fCO2 in the North Sea

    Directory of Open Access Journals (Sweden)

    H. Thomas


    Full Text Available Data from two Voluntary Observing Ship (VOS (2005–2007 augmented with data subsets from ten cruises (1987–2005 were used to investigate the spatiotemporal variations of the CO2 fugacity in seawater (fCO2sw in the North Sea at seasonal and inter-annual time scales. The observed seasonal fCO2sw variations were related to variations in sea surface temperature (SST, biology plus mixing, and air-sea CO2 exchange. Over the study period, the seasonal amplitude in fCO2sw induced by SST changes was 0.4–0.75 times those resulting from variations in biology plus mixing. Along a meridional transect, fCO2sw normally decreased northwards (−12 μatm per degree latitude, but the gradient disappeared/reversed during spring as a consequence of an enhanced seasonal amplitude of fCO2sw in southern parts of the North Sea. Along a zonal transect, a weak gradient (−0.8 μatm per degree longitude was observed in the annual mean fCO2sw. Annually and averaged over the study area, surface waters of the North Sea were CO2 undersaturated and, thus, a sink of atmospheric CO2. However, during summer, surface waters in the region 55.5–54.5° N were CO2 supersaturated and, hence, a source for atmospheric CO2. Comparison of fCO2sw data acquired within two 1°×1° regions in the northern and southern North Sea during different years (1987, 2001, 2002, and 2005–2007 revealed large interannual variations, especially during spring and summer when year-to-year fCO2sw differences (≈160–200 μatm approached seasonal changes (≈200–250 μatm. The springtime variations resulted from changes in magnitude and timing of the phytoplankton bloom, whereas changes in SST, wind speed and total alkalinity may have contributed to the summertime interannual fCO2sw differences. The lowest interannual variation (10–50 μatm was observed during fall and early winter. Comparison with data reported in October 1967 suggests that the fCO2sw growth rate in the central North Sea was

  7. [Study on the change of dune CO2 concentration in the autumn at Minqin in Tengger desert]. (United States)

    Shao, Tian-Jie; Zhao, Jing-Bo; Yu, Ke-Ke; Dong, Zhi-Bao


    In order to find out the CO2 concentration of the desert area, the influence of it on the CO2 in the atmosphere and the role that it played on the global carbon cycle, the research team utilized in September 2009 infrared CO2 monitor to observe the CO2 concentration of the 12 drill holes day and night in Minqin desert area in the Tengger desert. The difference of various observation spots' CO2 concentration of the desert area in the Tengger desert area is relatively big. The CO2 concentration at night is low but high in the daytime and the CO2 concentration at each observation spot changes from 310 x 10(-6) to 2 630 x 10(-6). The CO2 concentration is also obviously different in depth and the CO2 concentration at different depths in order of size is as follows: 4 m(3m) > 2 m > 1m. Compared with Xi' an area where is in the temperate and semi-humid region, the CO2 concentration of the desert area in Tengger desert is very low. The diurnal variation of CO2 concentration of the desert area in Tengger desert is obvious, and from the day 09:00 am to 09:00 am the next day, the CO2 concentrations at different depths which rang from 1 m to 4 m present the regularity that it changes from low to high, and then from high to low. The diurnal variation in temperature is the main reason that causes the change of the CO2 concentration in the sand layer, both of which have the positive correlation. The sand layer's CO2 concentration with higher water content is obviously higher than that with lower water content. The moisture content of sand layer is the main factor of the CO2 concentration. The CO2 concentration above 4m in the desert area is higher than that above the surface, which maybe indicates that the CO2 from the highest desert area is also the resource of CO2 in the atmosphere.

  8. Metabolic effects of Carbon Dioxide (CO 2 ) insufflation during ...

    African Journals Online (AJOL)

    Metabolic effects of Carbon Dioxide (CO 2 ) insufflation during laparoscopic surgery: changes in pH, arterial partial Pressure of Carbon Dioxide (PaCo 2 ) and End Tidal Carbon Dioxide (EtCO ... EtCO2 is still a good non-invasive monitor for estimation of PaCO2 during low tidal volume ventilation during pneumoperitoneum.

  9. In silico screening of zeolite membranes for CO2 capture

    NARCIS (Netherlands)

    Krishna, R.; van Baten, J.M.


    The separation of CO2/H-2, CO2/CH4, and CO2/N-2 mixtures is of practical importance for CO2 capture and other applications in the processing industries. Use of membranes with microporous layers of zeolites, metal-organic frameworks (MOFs), and zeolitic imidazolate frameworks (ZIFs) offer

  10. Interactive effects of elevated CO2 and drought on nocturnal water fluxes in Eucalyptus saligna. (United States)

    Zeppel, Melanie J B; Lewis, James D; Medlyn, Belinda; Barton, Craig V M; Duursma, Remko A; Eamus, Derek; Adams, Mark A; Phillips, Nathan; Ellsworth, David S; Forster, Michael A; Tissue, David T


    Nocturnal water flux has been observed in trees under a variety of environmental conditions and can be a significant contributor to diel canopy water flux. Elevated atmospheric CO(2) (elevated [CO(2)]) can have an important effect on day-time plant water fluxes, but it is not known whether it also affects nocturnal water fluxes. We examined the effects of elevated [CO(2)] on nocturnal water flux of field-grown Eucalyptus saligna trees using sap flux through the tree stem expressed on a sapwood area (J(s)) and leaf area (E(t)) basis. After 19 months growth under well-watered conditions, drought was imposed by withholding water for 5 months in the summer, ending with a rain event that restored soil moisture. Reductions in J(s) and E(t) were observed during the severe drought period in the dry treatment under elevated [CO(2)], but not during moderate- and post-drought periods. Elevated [CO(2)] affected night-time sap flux density which included the stem recharge period, called 'total night flux' (19:00 to 05:00, J(s,r)), but not during the post-recharge period, which primarily consisted of canopy transpiration (23:00 to 05:00, J(s,c)). Elevated [CO(2)] wet (EW) trees exhibited higher J(s,r) than ambient [CO(2)] wet trees (AW) indicating greater water flux in elevated [CO(2)] under well-watered conditions. However, under drought conditions, elevated [CO(2)] dry (ED) trees exhibited significantly lower J(s,r) than ambient [CO(2)] dry trees (AD), indicating less water flux during stem recharge under elevated [CO(2)]. J(s,c) did not differ between ambient and elevated [CO(2)]. Vapour pressure deficit (D) was clearly the major influence on night-time sap flux. D was positively correlated with J(s,r) and had its greatest impact on J(s,r) at high D in ambient [CO(2)]. Our results suggest that elevated [CO(2)] may reduce night-time water flux in E. saligna when soil water content is low and D is high. While elevated [CO(2)] affected J(s,r), it did not affect day-time water

  11. Photocatalytic Reduction of CO2 to Methane on Pt/TiO2 Nanosheet Porous Film

    National Research Council Canada - National Science Library

    Li Qiu-ye; Zong Lan-lan; Li Chen; Cao Yu-hui; Wang Xiao-dong; Yang Jian-jun


    .... They showed an excellent photocatalytic activity for CO2 photoreduction to methane, which should be related to their special porous structure and large Brunauer-Emmett-Teller (BET) surface area...

  12. Carbon Sequestration: Hydrogenation of CO2 to Formic Acid

    Directory of Open Access Journals (Sweden)

    Upadhyay Praveenkumar


    Full Text Available The concentration CO2 gas has become a great worldwide challenge because CO2 is considered as an important counterpart of greenhouse gases. The tremendous increase in the concentration of CO2 gas, elevated the worldwide temperature as well as it altered the climatic changes. Various physiochemical approached have been reported to trap the CO2 gas and the chemical conversion of CO2 to useful chemicals is one of them. This review covers the conversion of CO2 gas to formic acid. In this CO2 hydrogenation reaction, both the homogeneous as well as heterogeneous catalytic systems were discussed along with the effect of solvent systems on reaction kinetics.

  13. CO2 Sink/Source Characteristics in the Tropical Indonesian Seas

    KAUST Repository

    Kartadikaria, Aditya R.


    Two distinct CO2 sink/source characteristics are found in the tropical Indonesian seas from the compilation of observed data for the period 1984-2013. The western region persistently emits CO2 to the atmosphere, whereas the eastern region is dynamic and acts either as a small source or sink of CO2 to the atmosphere, depending on sites. The segregation is proximal to the Makassar Strait, which is located over the continental shelf and is one of the main routes of the Indonesian Throughflow (ITF). Lower salinity and higher silicate were found in the western region, suggesting a terrestrial influence in this area. Temperature has a limited influence in controlling different CO2 sink/source characteristics in the west and east. However, an SST change of -2.0°C during La Niña events effectively reduces the pCO2 difference between the atmosphere and surface seawater by 50% compared to normal year conditions. During La Niña events, higher wind speeds double the CO2 flux from the ocean to the atmosphere compared to that of a normal year. In the continental shelf area where the CO2 sink area was found, data of over 29 years show that the seawater pCO2 increased by 0.6-3.8 μatm yr−1. Overall, the seawater pCO2 of the Indonesian Seas is supersaturated relative to the atmosphere by 15.9 ± 8.6 μatm and thus acts as a source of CO2 to the atmosphere. This article is protected by copyright. All rights reserved.

  14. Air-sea CO2 fluxes along the coast of Chile: From CO2 outgassing in central northern upwelling waters to CO2 uptake in southern Patagonian fjords (United States)

    Torres, Rodrigo; Pantoja, Silvio; Harada, Naomi; GonzáLez, Humberto E.; Daneri, Giovanni; Frangopulos, MáXimo; Rutllant, José A.; Duarte, Carlos M.; Rúiz-Halpern, Sergio; Mayol, Eva; Fukasawa, Masao


    Carbon system parameters measured during several expeditions along the coast of Chile (23°S-56°S) have been used to show the main spatial and temporal trends of air-sea CO2 fluxes in the coastal waters of the eastern South Pacific. Chilean coastal waters are characterized by strong pCO2 gradients between the atmosphere and the surface water, with high spatial and temporal variability. On average, the direction of the carbon flux changes from CO2 outgassing at the coastal upwelling region to CO2 sequestering at the nonupwelling fjord region in Chilean Patagonia. Estimations of surface water pCO2 along the Patagonian fjord region showed that, while minimum pCO2 levels (strong CO2 undersaturation) occurs during the spring and summer period, maximum levels (including CO2 supersaturation) occur during the austral winter. CO2 uptake in the Patagonia fjord region during spring-summer is within the order of -5 mol C m-2 yr-1, indicating a significant regional sink of atmospheric CO2 during that season. We suggest that the CO2 sink at Patagonia most probably exceeds the CO2 source exerted by the coastal upwelling system off central northern Chile.


    Energy Technology Data Exchange (ETDEWEB)

    Edward N. Steadman; Daniel J. Daly; Lynette L. de Silva; John A. Harju; Melanie D. Jensen; Erin M. O' Leary; Wesley D. Peck; Steven A. Smith; James A. Sorensen


    During the period of October 1, 2003, through September 30, 2005, the Plains CO2 Reduction (PCOR) Partnership, identified geologic and terrestrial candidates for near-term practical and environmentally sound carbon dioxide (CO2) sequestration demonstrations in the heartland of North America. The PCOR Partnership region covered nine states and three Canadian provinces. The validation test candidates were further vetted to ensure that they represented projects with (1) commercial potential and (2) a mix that would support future projects both dependent and independent of CO2 monetization. This report uses the findings contained in the PCOR Partnership's two dozen topical reports and half-dozen fact sheets as well as the capabilities of its geographic information system-based Decision Support System to provide a concise picture of the sequestration potential for both terrestrial and geologic sequestration in the PCOR Partnership region based on assessments of sources, sinks, regulations, deployment issues, transportation, and capture and separation. The report also includes concise action plans for deployment and public education and outreach as well as a brief overview of the structure, development, and capabilities of the PCOR Partnership. The PCOR Partnership is one of seven regional partnerships under Phase I of the U.S. Department of Energy National Energy Technology Laboratory's Regional Carbon Sequestration Partnership program. The PCOR Partnership, comprising 49 public and private sector members, is led by the Energy & Environmental Research Center at the University of North Dakota. The international PCOR Partnership region includes the Canadian provinces of Alberta, Saskatchewan, and Manitoba and the states of Montana (part), Wyoming (part), North Dakota, South Dakota, Nebraska, Missouri, Iowa, Minnesota, and Wisconsin.

  16. Method for tracing simulated CO2 leak in terrestrial environment with a 13CO2 tracer (United States)

    Moni, Christophe; Rasse, Daniel


    Facilities for the geological storage of carbon dioxide (CO2) as part of carbon capture and storage (CCS) schemes will be designed to prevent any leakage from the defined 'storage complex'. However, developing regulations and guidance throughout the world (e.g. the EC Directive and the USEPA Vulnerability Evaluation Framework) recognize the importance of assessing the potential for environmental impacts from CO2 storage. RISCS, a European (FP7) project, aims to improve understanding of those impacts that could plausibly occur in the hypothetical case that unexpected leakage occurs. As part of the RISCS project the potential impacts that an unexpected CO2 leaks might have on a cropland ecosystems was investigated. A CO2 exposure field experiment based on CO2 injection at 85 cm depth under an oats culture was designed. To facilitate the characterization of the simulated leaking zone the gas used for injection was produced from natural gas and had a δ13C of -46‰. The aim of the present communication is to depict how the injected gas was traced within the soil-vegetation-atmosphere continuum using 13CO2 continuous cavity ring-down spectrometry (CRDS). Four subsurface experimental injection plots (6m x 3m) were set up. In order to test the effects of different intensity of leakage, the field experiment was designed as to create a longitudinal CO2 gradient for each plot. For this purpose gas supply pipes were inserted at one extremity of each plot at the base of a 45 cm thick layer of sand buried 40 cm below the surface under the clayey plough layer of Norwegian moraine soils. Soil CO2 concentration and isotopic signature were punctually recorded: 1) in the soil at 20 cm depth at 6 positions distributed on the central transect, 2) at the surface following a (50x50 cm) grid sampling pattern, and 3) in the canopy atmosphere at 10, 20, 30 cm along three longitudinal transects (seven sampling point per transect). Soil CO2 fluxes and isotopic signature were finally

  17. Upscaling of enzyme enhanced CO2 capture

    DEFF Research Database (Denmark)

    Gladis, Arne Berthold

    Fossil fuels are the backbone of the energy generation in the coming decades for USA, China, India and Europe, hence high greenhouse gas emissions are expected in future. Carbon capture and storage technology (CCS) is the only technology that can mitigate greenhouse gas emissions from fossil fuel...... fired power by selectively capturing CO2 from flue gases. High capital and high operational costs of this process are the major obstacles of industrial implementation. In the field of CCS the chemical absorption process is the most mature technology. The use of kinetic rate promoters that enhance...

  18. Chilled ammonia process for CO2 capture

    DEFF Research Database (Denmark)

    Darde, Victor Camille Alfred; Thomsen, Kaj; van Well, Willy J. M


    The chilled ammonia process absorbs the CO2 at low temperature (2-10 degrees C). The heat of absorption of carbon dioxide by ammonia is significantly lower than for amines. In addition, degradation problems can be avoided and a high carbon dioxide capacity is achieved. Hence, this process shows...... C and pressure up to 100 bars [1]. The results show that solid phases consisting of ammonium carbonate and bicarbonate are formed in the absorber. The energy requirements in the absorber and in the desorber have been studied. The enthalpy calculations show that an energy requirement for the desorber...

  19. Choice of satellite-based CO2 product (XCO¬2, vertical profile) alters surface CO2 flux estimate (United States)

    Liu, J.; Bowman, K. W.; Lee, M.; Henze, D. K.; Fisher, J. B.; Frankenberg, C.; Polhamus, A.


    The ACOS (Atmospheric CO2 Observations from Space) algorithm provides column-averaged CO2 products in units of dry-air mole fraction (XCO2) based on GOSAT radiances. However, XCO2 is derived from a linear transformation of the CO2 vertical profiles estimated from the ACOS retrieval algorithm. In theory, XCO2 vertical columns should provide no more information than the original CO2 profiles. However, the different sensitivities of either CO2 profiles or XCO2 to transport errors can significantly alter surface CO2 flux estimates. Though it has been argued that XCO2 may be less sensitive to transport error than CO2 vertical profiles, there is no study so far investigating the actual impact on surface CO2 flux estimation due to the choice of observation format, which could have significant impact on future satellite CO2 profile mission concepts. In this presentation, we will present the sensitivity of surface CO2 flux estimation to a suite of CO2 observation products, which includes CO2 vertical profiles, XCO2, and the lowest 3 levels of CO2 from CO2 vertical profiles. The CO2 observations are ACOS products covering from July 2009 to June 2010. We will present both OSSE and real observation experiments. In the OSSE experiments, we will present both perfect model experiments and experiments with model errors that are introduced by changing the planetary boundary height. In the real observations, we will show the annual and seasonal CO2 flux as function of regions from using the three observation products. The accuracy of CO2 flux estimation will be examined by comparing CO2 concentrations forced by posterior CO2 flux to independent CO2 observations. The surface CO2 flux estimation framework is based on GEOS-Chem adjoint model that is developed by the Carbon Monitoring Study flux pilot project.

  20. Techno-Economic Assessment of Four CO2 Storage Sites

    Directory of Open Access Journals (Sweden)

    Gruson J.-F.


    features that explain the high estimated costs. For the Italian site, the short duration of CO2 injection associated with a low injection rate makes the CO2 project comparable to a demo project. The Norwegian site is an offshore site located in a virgin area with high infrastructure costs and a combination of injection duration and injection rate that makes the derived costs very sensitive to the discount rate. Table 1. Summary of the cost range in Euro per tonne (discount rate at 8% €/t CO2 Equivalent storage cost at 8% DR Injectivity (Mt CO2/year Injection duration (year Base case Base case Base case UK 11.4 5 20 Denmark 3.2 1.5 40 Norway 26.6 1 40 Italy 29 1 10 The results for both UK and Danish sites confirm therefore the value range calculated by the European Technology Platform for Zero Emission Fossil Fuel Power Plants (ZEP. The main uncertainties in the costs are linked both to the choice of economic parameters (e.g. injected quantities, contingencies and to the technical choice of operations. This has been studied by sensitivity analyses: for example, if an injection rate is halved and the injection duration is doubled, the Equivalent Storage Cost (ESC increases by 23% (UK case at 8% DR. Introducing a water production well and water treatment facilities also increases the ESC by 23%, at least on an onshore site. Techno-economic assessments were basically carried out using an 8% discount rate. For projects of long lifetime such a rate severely discounts the late cash flow, especially after 40 years, so that a discount rate of around 4% more in logic of public investment. Compared to other studies, it has to be noted that the scope of the SiteChar analysis does not consider compression and pumping cost, nor transportation cost. This simplifies the techno-economic evaluation but it may not adequately reflect the specific conditions of the individual developments and, hence, distort the comparison between different cases. Lastly, techno-economic evaluation poses

  1. Partitioning of Urban CO2ff Emissions By Source Sector: Results from the Influx Project (United States)

    Turnbull, J. C.; Karion, A.; Sweeney, C.; Newberger, T.; Lehman, S.; Davis, K. J.; Lauvaux, T.; Miles, N. L.; Richardson, S.; Shepson, P. B.; Cambaliza, M. O. L.; Gurney, K. R.; Patarasuk, R.; Whetstone, J. R.


    Urban areas contribute ~75% of fossil fuel CO2 (CO2ff) emissions, and city governments are often leading the way in emission reduction efforts. As emissions are regulated and assigned a price, there is an increasing need to independently evaluate the reported bottom-up emissions and to attribute them to specific source sectors (e.g. electricity production, industry, vehicles). We demonstrate how multispecies atmospheric observations can be used to achieve this. The Indianapolis Flux Experiment (INFLUX) aims to develop and evaluate methods for detection and attribution of urban GHG fluxes. The INFLUX observation network includes twelve towers measuring in situ CO2 and CO and flask measurements of another 50 species. 14CO2 measurements have shown that in winter, the total CO2 enhancement over Indianapolis approximates the CO2ff added. This somewhat surprising result allows us to use the wintertime in situ total CO2 and CO measurements to determine the observed CO:CO2ff ratio (RCO) at high resolution. First, we demonstrate that the USEPA CO inventory for Indianapolis overestimates CO emissions by a factor of about 2.5. Then we use the Hestia bottom-up CO2ff data product and revised characteristic RCO values for each CO2ff source sector to predict the diurnal cycle in RCO for Indianapolis. The tower observations and bottom-up RCO estimates are consistent during the daytime, but the observed RCO is significantly higher than the bottom-up estimate during the night. We show how the bottom-up and top-down methods can be used together to determine the cause of this discrepancy and improve CO2ff estimates from both methods.

  2. Eutrophic lakes as CO2 sinks - A survey of 19 lakes in India (United States)

    Singh, G.


    Inland waters emit a substantial amount of CO2 every year, most recent syntheses estimate (Raymond et al. 2013, IPCC 2013). However, eutrophic water bodies, which constitute the majority of inland waters, are underrepresented in these syntheses and may absorb rather than emit CO2 because of their high productivity (Balmer and Downing 2011, Pacheco et al. 2013). We did a survey of 19 urban and peri-urban lakes in India across a wide range of climates and with varying levels of eutrophication to get a snapshot of lake air-water CO2 exchange. A majority of the lakes (12 out of 19) were undersaturated with CO2 during daytime. Surface water pCO2 varied from 26 to 4600 ppm. Using estimates of gas transfer velocity from two different methods, we found the average daytime flux of CO2 in these lakes to vary from -3.11 mg C m-2d-1 to 36 mg C m-2 d-1. Weighted-averages of pCO2 and flux using lake area were 692 ppm and 2.33 mg C m-2 d-1, respectively. However, these values were dominated by one large coastal lake that was saturated with CO2. The other 18 lakes yielded averages pCO2 and flux of 282 ppm and -0.65 mg C m-2 d-1. Eutrophication is one the biggest contemporary threats to the global freshwater supply, and is particularly severe in developing countries. This study, despite its limited scope, provides strong support to the fact that eutrophic lakes may act as CO2 sinks rather than sources. Follow-up studies on the diurnal and seasonal pCO2 trends and the metabolic characteristics of these lakes will reveal the determinants of their carbon metabolism.

  3. Toward Solar-Driven Photocatalytic CO2 Reduction Using Water as an Electron Donor. (United States)

    Sato, Shunsuke; Arai, Takeo; Morikawa, Takeshi


    Developing a system for the production of organic chemicals via CO2 reduction is an important area of research that has the potential to address global warming and fossil fuel consumption. In addition, CO2 reduction promotes carbon source recycling. Solar energy is the largest exploitable resource among renewable energy resources, providing more energy to Earth per hour than the total energy consumed by humans in 1 year. This report describes the advantages and disadvantages of the available CO2 reduction and H2O oxidation photocatalysts and the conjugation of photocatalytic CO2 reduction with H2O oxidation for the creation of an artificial photosynthesis system. In this system, CO2 photoreduction and H2O photooxidation proceeded simultaneously within one system under sunlight irradiation using a hybrid of semiconductors and molecular metal-complex catalysts.

  4. Comparison of Ultrasonic and CO2 Laser Pretreatment Methods on Enzyme Digestibility of Corn Stover

    Directory of Open Access Journals (Sweden)

    Li-Li Zuo


    Full Text Available To decrease the cost of bioethanol production, biomass recalcitrance needs to be overcome so that the conversion of biomass to bioethanol becomes more efficient. CO2 laser irradiation can disrupt the lignocellulosic physical structure and reduce the average size of fiber. Analyses with Fourier transform infrared spectroscopy, specific surface area, and the microstructure of corn stover were used to elucidate the enhancement mechanism of the pretreatment process by CO2 laser irradiation. The present work demonstrated that the CO2 laser had potential to enhance the bioconversion efficiency of lignocellulosic waste to renewable bioethanol. The saccharification rate of the CO2 laser pretreatment was significantly higher than ultrasonic pretreatment, and reached 27.75% which was 1.34-fold of that of ultrasonic pretreatment. The results showed the impact of CO2 laser pretreatment on corn stover to be more effective than ultrasonic pretreatment.

  5. CO2 uptake potential due to concrete carbonation: A case study

    Directory of Open Access Journals (Sweden)

    Edna Possan


    Full Text Available The cement manufacturing process accounts for about 5% CO2 (carbon dioxide released into the atmosphere. However, during its life cycle, concrete may capture CO2 through carbonation, in order to, partially, offset the impact of its production. Thus, this paper aims at studying the CO2 uptake potential of the Itaipu Dam due to concrete carbonation of such material. So, 155 cores were extracted from the concrete dam in different points to measure carbonation depth. In order to evaluate its influence on carbonation, the measurement of internal moisture distribution in concrete was also carried out. The results have shown that carbonation takes part of the whole dam area, indicating CO2 uptake potential. Up to the present moment, 13,384 tons of CO2 have been absorbed by concrete carbonation of the Itaipu Dam.

  6. Graphene-Based Photocatalysts for CO2 Reduction to Solar Fuel. (United States)

    Low, Jingxiang; Yu, Jiaguo; Ho, Wingkei


    Recently, photocatalytic CO2 reduction for solar fuel production has attracted much attention because of its potential for simultaneously solving energy and global warming problems. Many studies have been conducted to prepare novel and efficient photocatalysts for CO2 reduction. Graphene, a two-dimensional material, has been increasingly used in photocatalytic CO2 reduction. In theory, graphene shows several remarkable properties, including excellent electronic conductivity, good optical transmittance, large specific surface area, and superior chemical stability. Attributing to these advantages, fabrication of graphene-based materials has been known as one of the most feasible strategies to improve the CO2 reduction performance of photocatalysts. This Perspective mainly focuses on the recent important advances in the fabrication and application of graphene-based photocatalysts for CO2 reduction to solar fuels. The existing challenges and difficulties of graphene-based photocatalysts are also discussed for future application.

  7. Effect of urban parks on CO2 concentrations in Toluca, Mexico (United States)

    Vieyra Gómez, J. A.; González Sosa, E.; Mastachi-Loza, C. A.; Cervantes, M.; Martínez Valdéz, H.


    Despite green areas are used for amusement, they have several benefits such as: microclimate regulation, groundwater recharge, noise abatement, oxygen production and CO2 capture. The last one has a notable importance, as CO2 is considered to be one of the most pollutant gases of the greenhouse effect. The city of Toluca, has a considerable urban growth. However, there are few studies aimed to assess the importance of the green areas in urban locations. About this, it is estimated than only 4m2/hab of vegetal coverage is found in big cities, which means a 50% deficit according to the international standards.The aim of this study was to assess the urban parks impact in Toluca, as regulators of CO2 means through measurements in autumn-winter seasonal period, 2012-2013.It was performed 20 measurements in 4 local parks (Urawa, Alameda, Municipal and Metropolitano), in order to evaluate the possible effect of urban parks on CO2 concentrations. Transects were made inside and outside the parks and the CO2 concentrations were registered by a portable quantifier (GMP343).The data analysis allowed the separation of the parks based on CO2 concentrations; however, it was perceived a decreasing of CO2 inside the parks (370ppm), between 10 and 40 ppm less than those areas with traffic and pedestrians (399 ppm).

  8. CO2 acclimation impacts leaf isoprene emissions: evidence from past to future CO2 levels (United States)

    de Boer, Hugo; van der Laan, Annick; Dekker, Stefan; Holzinger, Rupert


    Isoprene is emitted by many plant species as a side-product of photosynthesis. Once in the atmosphere, isoprene exhibits climate forcing through various feedback mechanisms. In order to quantify the climate feedbacks of biogenic isoprene emission it is crucial to establish how isoprene emissions are effected by plant acclimation to rising atmospheric CO2 levels. A promising development for modelling CO2-induced changes in isoprene emissions is the Leaf-Energetic-Status model (referred to as LES-model hereafter, see Harrison et al., 2013 and Morfopoulos et al., 2014). This model simulates isoprene emissions based on the hypothesis that isoprene biosynthesis depends on the imbalance between the photosynthetic electron supply of reducing power and the electron demands of carbon fixation. The energetic imbalance is critically related to the photosynthetic electron transport capacity (Jmax) and the maximum carboxylation capacity of Rubisco (Vcmax). Here we compare predictions of the LES-model with observed isoprene emission responses of Quercus robur (pedunculate oak) specimen that acclimated to CO2 growth conditions representative of the last glacial, the present and the end of this century (200, 400 and 800 ppm, respectively) for two growing seasons. These plants were grown in walk-in growth chambers with tight control of light, temperature, humidity and CO2 concentrations. Photosynthetic biochemical parameters Vcmax and Jmax were determined with a Licor LI-6400XT photosynthesis system. The relationship between photosynthesis and isoprene emissions was measured by coupling the photosynthesis system with a Proton-Transfer Reaction Time-of-Flight Mass Spectrometer. Our empirical results support the LES-model and show that the fractional allocation of carbon to isoprene biosynthesis is reduced in response to both short-term and long-term CO2 increases. In the short term, an increase in CO2 stimulates photosynthesis through an increase in the leaf interior CO2

  9. Global CO2 emissions from cement production (United States)

    Andrew, Robbie M.


    The global production of cement has grown very rapidly in recent years, and after fossil fuels and land-use change, it is the third-largest source of anthropogenic emissions of carbon dioxide. The required data for estimating emissions from global cement production are poor, and it has been recognised that some global estimates are significantly inflated. Here we assemble a large variety of available datasets and prioritise official data and emission factors, including estimates submitted to the UNFCCC plus new estimates for China and India, to present a new analysis of global process emissions from cement production. We show that global process emissions in 2016 were 1.45±0.20 Gt CO2, equivalent to about 4 % of emissions from fossil fuels. Cumulative emissions from 1928 to 2016 were 39.3±2.4 Gt CO2, 66 % of which have occurred since 1990. Emissions in 2015 were 30 % lower than those recently reported by the Global Carbon Project. The data associated with this article can be found at" target="_blank">

  10. Effect of CO2 partial pressure and different CO2 phases on carbon steel corrosion (United States)

    Mahlobo, MGR; Premlall, K.; Olubambi, PA


    Carbon capture and storage (CCS) is the recent promising technology aimed at reducing greenhouse gas emission. Like many other developed technologies, CCS is faced with great challenges such as pipeline transportation failure due to corrosion. There are many factors contributing to steel corrosion during the pipeline transportation of carbon dioxide (CO2). This study focuses on CO2 partial pressure and different phases of CO2 as some of the factors contributing to steel corrosion. Carbon steel was used as a testing specimen. High pressure reactor was used in this study to compress CO2 from low to high pressures ultimately changing the CO2 from gaseous phase to gas/liquid phase (subcritical) and to dense phase (supercritical). Weight loss method was employed to determine the corrosion rate while scanning electron microscopy (SEM) and X-Ray diffraction (XRD) were used to study the carbon steel morphology and phase analysis. Using low magnification digital camera, the type of corrosion that took place on the carbon steel surface was identified.

  11. Atmospheric Fossil Fuel CO2 Tracing By 14C In Some Chinese Cities (United States)

    Zhou, W.; Niu, Z.; Zhu, Y., Sr.


    CO2 plays an important role in global climate as a primary greenhouse gas in the atmosphere. Moreover, it has been shown that more than 70% of global fossil fuel CO2 (CO2ff) emissions are concentrated in urban areas (Duren and Miller, 2012). Our study focuses on atmospheric CO2ff concentrations in 15 Chinese cities using accelerator mass spectrometer (AMS) to measure 14C. Our objectives are: (1) to document atmospheric CO2ff concentrations in a variety of urban environments, (2) to differentiate the spatial-temporal variations in CO2ff among these cities, and (3) to ascertain the factors that control the observed variations. For about two years (winter 2014 to winter 2016), the CO2ff concentrations we observed from all sites varied from 5.1±4.5 ppm to 65.8±39.0 ppm. We observed that inland cities display much higher CO2ff concentrations and overall temporal variations than coastal cities in winter, and that northern cities have higher CO2ff concentrations than those of southern cities in winter. For inland cities relatively high CO2ff values are observed in winter and low values in summer; while seasonal variations are not distinct in the coastal cities. No significant (p > 0.05) differences in CO2ff values are found between weekdays and weekends as was shown previously in Xi'an (Zhou et al., 2014). Diurnal CO2ff variations are plainly evident, with high values between midnight and 4:00 am, and during morning and afternoon rush hours (Niu et al., 2016). The high CO2ff concentrations in northern inland cities in winter results mainly from the substantial consumption of fossil fuels for heating. The high CO2ff concentrations seen in diurnal measurements result mainly from variations in atmospheric dispersion, and from vehicle emissions related to traffic flows. The inter-annual variations in CO2ff in cities could provide a useful reference for local governments to develop policy around the effect of energy conservation and emission reduction strategies.

  12. Plant responses to atmospheric CO2 enrichment with emphasis on roots and the rhizosphere. (United States)

    Rogers, H H; Runion, G B; Krupa, S V


    (2). Root biomass is known to increase but, with few exceptions, detailed studies of root growth and function are lacking. Potential enhancement of root growth could translate into greater rhizodeposition, which, in turn, could lead to shifts in the rhizosphere itself. Some of the direct effects of CO(2) on vegetation have been reasonably well-studied, but for others work has been inadequate. Among these neglected areas are plant roots and the rhizosphere. Therefore, experiments on root and rhizosphere response in plants grown in CO(2)-enriched atmospheres will be reviewed and, where possible, collectively integrated. To this will be added data which have recently been collected by us. Having looked at the available data base, we will offer a series of hypotheses which we consider as priority targets for future research.

  13. Interactive effects of elevated CO2 and warming on soil respiration in a mountain grassland (United States)

    Reinthaler, David; Gstir, Claudia; Herndl, Markus; Pötsch, Erich; Bahn, Michael


    Soil respiration is the largest source of CO2 emitted from terrestrial ecosystems to the atmosphere. In grasslands, which cover over 30% of the global land area and around 70% of the world's agricultural acreage, the contribution of soil respiration to total ecosystem respiration is particularly high. The ClimGrass experiment aims to understand individual and combined effects of multi-level changes in temperature and atmospheric CO2 concentrations and of extreme drought on the biogeochemical cycles of a managed C3 grassland typical for European mountain regions. The ClimGrass experiment, based at AREC Raumberg Gumpenstein in Central Austria, comprises a total of 54 plots subjected to different combinations of experimental warming (ambient, +1.5°C, +3°C) and elevated CO2 (ambient, +150°C, +300 ppm), as well as extreme drought and heatwave. Here, we present first results concerning the interactive effects of warming and elevated CO2 on soil respiration. For this study we combined measurements of an automated system (LiCor 8100) with manual measurements of soil respiration (PP-Systems EGM4), in plots exposed to ambient and elevated CO2, both under ambient temperature conditions and +3°C warming. Our results from the first year of treatment indicate a significant increase of soil CO2 efflux caused by warming and a decrease under elevated CO2, with a strong interactive effect leading to a dampened warming effect under elevated CO2. Interestingly, elevated CO2 had stronger indirect than direct effects on soil respiration, mediated by altered soil moisture under elevated CO2. In the second and third year, however, all treatments increased soil CO2 efflux, with higher flux rates under elevated CO2 than under warming. Overall, elevated CO2 and warming had additive effects on soil moisture, but non-additive effects on soil respiration. Analyses of isotopic signatures of soil respired CO2, of the contribution of the heterotrophic component to total soil respiration and of

  14. Refining the alkenone-pCO2 method: The role of algal growth conditions (United States)

    Pearson, A.; Zhang, Y.; Huybers, P. J.; Pagani, M.


    The alkenone-pCO2 method based on carbon isotope fractionation during growth of haptophyte algae is one of the most widely used approaches to reconstruct atmospheric CO2 level in the Cenozoic. Based on the fractionation of stable carbon isotopes between dissolved CO2 and phytoplankton biomass, as represented by alkenone lipid biomarkers, this relationship (known as ɛp37:2) scales inversely with growth rate and cell volume to surface area ratio, and positively with CO2. Recently-published estimates for late Pleistocene CO2 levels, however, are poorly correlated with ice core CO2 records, suggesting that alkenone paleobarometry needs to be refined. Here we compiled published records over recent glacial-interglcial (G-IG) cycles and revised the relationship between algal growth rate, as expressed by the physiological parameter 'b', and dissolved phosphate concentration. We further show that the magnitude of change in ɛp37:2 over glacial-interglacial cycles at different sites is dependent on local nutrient conditions, highlighting the importance of constraining b for accurate CO2 estimates. The correlation between GDGT-2/3 ratio and back-calculated b at Ceara Rise (ODP Site 925) suggests that archaeal lipids could be used as proxies to calibrate b. Application of our variable-b method to reported data yields pCO2 estimates that are similar in both trends and magnitude to ice core-derived records.

  15. CO2-induced decrease of canopy stomatal conductance of mature conifer and broadleaved trees (United States)

    Tor-ngern, P.; Oren, R.; Ward, E. J.; Palmroth, S.; McCarthy, H. R.; domec, J.


    Together with canopy leaf area, mean canopy stomatal conductance (GS) controls forest-atmosphere exchanges of energy and mass. Expectations for stomatal response to elevated atmospheric [CO2] (CO2E) based on seedling studies range from large decreases of conductance in foliage of broadleaved species to little or no response in conifers. These responses are not directly translatable to forest canopies, and their underlying mechanisms are ill-defined. The uncertainty of canopy-scale stomatal response to CO2E reduces confidence in modeled predictions of future forest productivity and carbon sequestration, and of partitioning of net radiation between latent and sensible heat flux. Thus, debates on the potential effects of CO2E-induced stomatal closure continue. We used a Free-Air CO2 Enrichment (FACE) experiment in a 27-year-old, 25 m tall forest, to generate a whole-canopy CO2-response and test whether canopy-scale GS response to CO2E of widely distributed, fast growing shade-intolerant species, Pinus taeda (L.) and co-occurring broadleaved species dominated by Liquidambar styraciflua (L.), was indirectly affected by slow changes such as hydraulic adjustments and canopy development, as opposed to quickly responding to CO2 concentrations in the leaf-internal air space. Our results show indirect CO2E-induced reductions of GS of 10% and 30%, respectively, and no signs of a direct stomatal response even as CO2E was pushed to 685 μmol mol-1 (~1.8 of ambient). Modeling the effect of CO2E on the water, energy and carbon cycles of forests must consider slow-response indirect mechanisms producing large variation in the reduction of GS, such as the previously observed inconsistent CO2E effect on canopy leaf area and plant hydraulics. Moreover, the new generation of CO2E studies in forests must allow indirect effects caused by, e.g., hydraulic adjustments and canopy development, to play out. Such acclimation will be particularly prolonged in slowly developing ecosystems, such

  16. Intermittent Water Injection on Top of Continuous CO2 Injection to Co-Optimize Oil Recovery and CO2-Storage


    Pranoto, Arif


    Master's thesis in Petroleum engineering The objective of this project is to maximize oil recovery and the CO2 stored during CO2-EOR. To reach that goal there are two important things to be achieved: gas production rate reduction and the oil production rate improvement. To attain the co-optimization, the following CO2 injection approaches were compared: CO2 continuous injection, WAG, Continuous water injection over continuous CO2 injection, and intermittent water injection over continuous ...

  17. Spatial variability of surface pCO2 and air-sea CO2 flux in the Amundsen Sea Polynya, Antarctica

    Directory of Open Access Journals (Sweden)

    L. Mu


    Full Text Available Abstract Partial pressure of CO2 (pCO2 and dissolved oxygen (DO in the surface waters of the Amundsen Sea Polynya (ASP were measured during austral summer 2010–2011 on the Amundsen Sea Polynya International Research Expedition (ASPIRE. Surface pCO2 in the central polynya was as low as 130 µatm, mainly due to strong net primary production. Comparing saturation states of pCO2 and DO distinguished dominant factors (biological activity, temperature, upwelling, and ice melt controlling pCO2 across regions. Air-sea CO2 flux, estimated using average shipboard winds, showed high spatial variability (-52 to 25 mmol C m-2 d-1 related to these factors. The central region exhibited a high flux of -36 ± 8.4 mmol C m-2 d-1, which is ∼ 50% larger than that reported for the peak of the bloom in the well-studied Ross Sea, comparable to high rates reported for the Chukchi Sea, and significantly higher than reported for most continental shelves around the world. This central region (∼ 20,000 km2 accounted for 85% of the CO2 uptake for the entire open water area. Margins with lower algal biomass accounted for ∼ 15% of regional carbon uptake, likely resulting from pCO2 reductions by sea ice melt. During ASPIRE we also observed pCO2 up to 490 µatm in a small region near the Dotson Ice Shelf with an efflux of 11 ± 5.4 mmol C m-2 d-1 that offset about 3% of the uptake in the much larger central region. Overall, the 2010–2011 ASP was a large net sink for atmospheric CO2 with a spatially averaged flux density of -18 ± 14 mmol C m-2 d-1. This high flux suggests a disproportionate influence on the uptake of CO2 by the Southern Ocean. Since the region has experienced a significant increase in open water duration (1979–2013, we speculate about whether this CO2 sink will increase with future climate-driven change.

  18. The Influence of CO2 Solubility in Brine on Simulation of CO2 Injection into Water Flooded Reservoir and CO2 WAG

    DEFF Research Database (Denmark)

    Yan, Wei; Stenby, Erling Halfdan


    Injection of CO2 into depleted oil reservoirs is not only a traditional way to enhance oil recovery but also a relatively cheaper way to sequester CO2 underground since the increased oil production can offset some sequestration cost. CO2 injection process is often applied to water flooded...... reservoirs and in many situations alternating injection of water and CO2 is required to stabilize the injection front. Both scenarios involve a large amount of water, making CO2 solubility in brine, which is around ten times higher than methane solubility, a non-negligible factor in the relevant reservoir...... simulations. In our previous study, a 1-D slimtube simulator, which rigorously accounts for both CO2 solubility in brine and water content in hydrocarbon phases using the Peng-Robinson EoS modified by Soreide and Whitson, has been used to investigate the influence of CO2 solubility on the simulation...

  19. Field demonstration of CO2 leakage detection in potable aquifers with a pulselike CO2-release test. (United States)

    Yang, Changbing; Hovorka, Susan D; Delgado-Alonso, Jesus; Mickler, Patrick J; Treviño, Ramón H; Phillips, Straun


    This study presents two field pulselike CO2-release tests to demonstrate CO2 leakage detection in a shallow aquifer by monitoring groundwater pH, alkalinity, and dissolved inorganic carbon (DIC) using the periodic groundwater sampling method and a fiber-optic CO2 sensor for real-time in situ monitoring of dissolved CO2 in groundwater. Measurements of groundwater pH, alkalinity, DIC, and dissolved CO2 clearly deviated from their background values, showing responses to CO2 leakage. Dissolved CO2 observed in the tests was highly sensitive in comparison to groundwater pH, DIC, and alkalinity. Comparison of the pulselike CO2-release tests to other field tests suggests that pulselike CO2-release tests can provide reliable assessment of geochemical parameters indicative of CO2 leakage. Measurements by the fiber-optic CO2 sensor, showing obvious leakage signals, demonstrated the potential of real-time in situ monitoring of dissolved CO2 for leakage detection at a geologic carbon sequestration (GCS) site. Results of a two-dimensional reactive transport model reproduced the geochemical measurements and confirmed that the decrease in groundwater pH and the increases in DIC and dissolved CO2 observed in the pulselike CO2-release tests were caused by dissolution of CO2 whereas alkalinity was likely affected by carbonate dissolution.

  20. CO2 Emissions from Fuel Combustion - 2012 Highlights

    Energy Technology Data Exchange (ETDEWEB)



    How much CO2 are countries emitting? Where is it coming from? In the lead-up to the UN climate negotiations in Doha, the latest information on the level and growth of CO2 emissions, their source and geographic distribution will be essential to lay the foundation for a global agreement. To provide input to and support for the UN process the IEA is making available for free download the 'Highlights' version of CO2 Emissions from Fuel Combustion. This annual publication contains: estimates of CO2 emissions by country from 1971 to 2010; selected indicators such as CO2/GDP, CO2/capita, CO2/TPES and CO2/kWh; and CO2 emissions from international marine and aviation bunkers, and other relevant information.

  1. Photocatalytic Reduction of Low Concentration of CO2. (United States)

    Nakajima, Takuya; Tamaki, Yusuke; Ueno, Kazuki; Kato, Eishiro; Nishikawa, Tetsuya; Ohkubo, Kei; Yamazaki, Yasuomi; Morimoto, Tatsuki; Ishitani, Osamu


    A novel molecular photocatalytic system with not only high reduction ability of CO2 but also high capture ability of CO2 has been developed using a Ru(II)-Re(I) dinuclear complex as a photocatalyst. By using this photocatalytic system, CO2 of 10% concentration could be selectively converted to CO with almost same photocatalysis to that under a pure CO2 atmosphere (TONCO > 1000, ΦCO > 0.4). Even 0.5% concentration of CO2 was reduced with 60% initial efficiency of CO formation by using the same system compared to that using pure CO2 (TONCO > 200). The Re(I) catalyst unit in the photocatalyst can efficiently capture CO2, which proceeds CO2 insertion to the Re-O bond, and then reduce the captured CO2 by using an electron supplied from the photochemically reduced Ru photosensitizer unit.

  2. CO(2) Inhibits Respiration in Leaves of Rumex crispus L. (United States)

    Amthor, J S; Koch, G W; Bloom, A J


    Curly dock (Rumex crispus L.) was grown from seed in a glasshouse at an ambient CO(2) partial pressure of about 35 pascals. Apparent respiration rate (CO(2) efflux in the dark) of expanded leaves was then measured at ambient CO(2) partial pressure of 5 to 95 pascals. Calculated intercellular CO(2) partial pressure was proportional to ambient CO(2) partial pressure in these short-term experiments. The CO(2) level strongly affected apparent respiration rate: a doubling of the partial pressure of CO(2) typically inhibited respiration by 25 to 30%, whereas a decrease in CO(2) elicited a corresponding increase in respiration. These responses were readily reversible. A flexible, sensitive regulatory interaction between CO(2) (a byproduct of respiration) and some component(s) of heterotrophic metabolism is indicated.

  3. CO2 Emissions from Fuel Combustion 2011: Highlights

    Energy Technology Data Exchange (ETDEWEB)



    How much CO2 are countries emitting? Where is it coming from? In the lead-up to the UN climate negotiations in Durban, the latest information on the level and growth of CO2 emissions, their source and geographic distribution will be essential to lay the foundation for a global agreement. To provide input to and support for the UN process the IEA is making available for free download the 'Highlights' version of CO2 Emissions from Fuel Combustion. This annual publication contains: - estimates of CO2 emissions by country from 1971 to 2009; - selected indicators such as CO2/GDP, CO2/capita, CO2/TPES and CO2/kWh; - CO2 emissions from international marine and aviation bunkers, and other relevant information. These estimates have been calculated using the IEA energy databases and the default methods and emission factors from the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories.

  4. Reducing CO2 from shipping – do non-CO2 effects matter?

    Directory of Open Access Journals (Sweden)

    M. S. Eide


    Full Text Available Shipping is a growing sector in the global economy, and it contributions to global CO2 emissions are expected to increase. CO2 emissions from the world shipping fleet will likely be regulated in the near future, and studies have shown that significant emission reductions can be achieved at low cost. Regulations are being discussed for both existing ships as well as for future additions to the fleet. In this study a plausible CO2 emission reduction inventory is constructed for the cargo fleet existing in 2010, as well as for container ships, bulk ships and tankers separately. In the reduction inventories, CO2 emissions are reduced by 25–32% relative to baseline by applying 15 technical and operational emission reduction measures in accordance with a ship-type-specific cost-effectiveness criterion, and 9 other emission compounds are changed as a technical implication of reducing CO2. The overall climate and environmental effects of the changes to all 10 emission components in the reduction inventory are assessed using a chemical transport model, radiative forcing (RF models and a simple climate model. We find substantial environmental and health benefits with up to 5% reduction in surface ozone levels, 15% reductions in surface sulfate and 10% reductions in wet deposition of sulfate in certain regions exposed to heavy ship traffic. The major ship types show distinctly different contributions in specific locations. For instance, the container fleet contributes 50% of the sulfate decline on the west coast of North America. The global radiative forcing from a 1 yr emission equal to the difference between baseline and reduction inventory shows an initial strong positive forcing from non-CO2 compounds. This warming effect is due to reduced cooling by aerosols and methane. After approximately 25 yr, the non-CO2 forcing is balanced by the CO2 forcing. For the global mean temperature change, we find a shift from warming to cooling after approximately 60

  5. Supercritical CO2 as a substitute of volatile hydrocarbons; Superkritisch CO2 vervangt vluchtige koolwaterstoffen

    Energy Technology Data Exchange (ETDEWEB)

    Folkerts, G. (ed.)


    In many cases supercritical carbon dioxide can replace volatile hydrocarbons in extraction processes. Currently gaseous or liquid CO2 is already used for industrial purification processes, extraction of caffeine from coffee and as a solvent for paint. Although supercritical extraction s a batch process the technique can be applied as a continuous process. [Dutch] In processen waar vluchtige koolwaterstoffen worden ingezet om stoffen te extraheren, biedt superkritisch CO2 een milieuvriendelijk alternatief. Het koolzuur dat zowel in de vloeistof- als gasfase zit, wordt dan ook steeds meer ingezet in extractieprocessen.

  6. Responses of soil CO2 efflux to changes in plant CO2 uptake and transpiration (United States)

    Balogh, János; de Luca, Giulia; Mészáros, Ádám; Trieber, Júlia; Gecse, Bernadett; Fóti, Szilvia; Pintér, Krisztina; Nagy, Zoltán


    Biotic drivers of soil respiration represent a significant supply-side (plant) control of the process. Those biotic drivers that integrate over longer time periods are useful in describing the phenological changes and physiological state of the vegetation, but they are not suitable to explain the diel variability of soil respiration. Two plant physiological processes, acting in opposite directions, could be relevant at diel timescale: (1) photosynthesis, and (2) transpiration. Firstly, it was recently found that photosynthesis has a time-lagged (a few hours) positive effect on the respiration of roots and root-associated microbes. This can be explainedby an increase in easily accessible non-structural hydrocarbon sources for the roots and root-associated organisms within this period. Secondly, it was found that the effect of transpiration could reduce root respiration due to CO2 transport through the transpiration stream, and this effect is expected to be immediate. Removing the effect of the abiotic drivers from the soil efflux signal could help to clarify the role of other driving variables. In the present study, we conducted manipulation measurements in lab environment to be able to detect the effects of the plant physiological variables (CO2 uptake, transpiration) on soil CO2 efflux. Plant individuals were planted into field soil samples in small pots. Transpiration manipulation was done by regulating vapour pressure of the air around the plant canopy and by inhibitors. Photosynthesis manipulation consisted of programmed absence of light. Isotopic signatures of soil respiration were used for estimating the contribution of the autotrophic and heterotrophic soil respiration components. 13CO2 concentration of the CO2 efflux of the different soil components was measured continuously in open system by cavity ring-down spectroscopy (Picarro G1101-i gas analyser). Keeling-plot approach was also used to calculate the isotopic signals of the sources. According to the

  7. CO2 flux studies of different hemiboreal forest ecosystems (United States)

    Krasnova, Alisa; Krasnov, Dmitrii; Noe, Steffen M.; Uri, Veiko; Mander, Ülo; Niinemets, Ülo; Soosaar, Kaido


    Hemiboreal zone is a transition between boreal and temperate zones characterized by the combination of climatic and edaphic conditions inherent in both zones. Hemiboreal forests are typically presented by mixed forests types with different ratios of deciduous and conifer tree species. Dominating tree species composition affects the functioning of forest ecosystem and its influence on biogeochemical cycles. We present the result of ecosystem scale CO2 eddy-covariance fluxes research conducted in 4 ecosystems (3 forests sites and 1 clear-cut area) of hemiboreal zone in Estonia. All 4 sites were developing under similar climatic conditions, but different forest management practices resulted in different composition of dominating tree species: pine forest with spruce trees as a second layer (Soontaga site); spruce/birch forest with single alder trees (Liispõllu site); forest presented by sectors of pine, spruce, birch and clearcut areas (SMEAR Estonia site); 5-years old clearcut area (Kõnnu site).

  8. Can the envisaged reductions of fossil fuel CO2 emissions be detected by atmospheric observations? (United States)

    Levin, Ingeborg; Rödenbeck, Christian


    The lower troposphere is an excellent receptacle, which integrates anthropogenic greenhouse gases emissions over large areas. Therefore, atmospheric concentration observations over populated regions would provide the ultimate proof if sustained emissions changes have occurred. The most important anthropogenic greenhouse gas, carbon dioxide (CO(2)), also shows large natural concentration variations, which need to be disentangled from anthropogenic signals to assess changes in associated emissions. This is in principle possible for the fossil fuel CO(2) component (FFCO(2)) by high-precision radiocarbon ((14)C) analyses because FFCO(2) is free of radiocarbon. Long-term observations of (14)CO(2) conducted at two sites in south-western Germany do not yet reveal any significant trends in the regional fossil fuel CO(2) component. We rather observe strong inter-annual variations, which are largely imprinted by changes of atmospheric transport as supported by dedicated transport model simulations of fossil fuel CO(2). In this paper, we show that, depending on the remoteness of the site, changes of about 7-26% in fossil fuel emissions in respective catchment areas could be detected with confidence by high-precision atmospheric (14)CO(2) measurements when comparing 5-year averages if these inter-annual variations were taken into account. This perspective constitutes the urgently needed tool for validation of fossil fuel CO(2) emissions changes in the framework of the Kyoto protocol and successive climate initiatives.

  9. Plasma Arc Augmented CO2 laser welding

    DEFF Research Database (Denmark)

    Bagger, Claus; Andersen, Mikkel; Frederiksen, Niels


    In order to reduce the hardness of laser beam welded 2.13 mm medium strength steel CMn 250, a plasma arc has been used simultaneously with a 2.6 kW CO2 laser source. In a number of systematic laboratory tests, the plasma arc current, plasma gas flow and distance to the laser source were varied...... with all laser parameters fixed. The welds were quality assessed and hardness measured transversely to the welding direction in the top, middle and root of the seam. In the seams welded by laser alone, hardness values between 275 and 304 HV1 were measured, about the double of the base material, 150 HV1...

  10. High gain, multiatmosphere CO2 laser amplifier (United States)

    Stuart, G. C.; Houtman, H.; Meyer, J.


    A novel TE discharge, 15-mm aperture, multiatmosphere, CO2 laser amplifier is described, with measured electrical characteristics and gain measurements on the 9.294-micron, 9R (16) line. The electrical circuit used in this amplifier is a realistic alternative to the Marx bank or conventional LC inversion circuit and, similarly, it would be useful for excitation of other gas lasers as well. This automatically preionized, double-sided, fourfold LC inversion circuit uses only one spark gap, and it is shown to provide small-signal gains of 5.7 percent/cm, at 120 J/l atm and 10 atm. The generalization to an n-stage device, which would be suitable for higher pressures, and larger apertures, is discussed.

  11. Enhanced Molecular Sieve CO2 Removal Evaluation (United States)

    Rose, Susan; ElSherif, Dina; MacKnight, Allen


    The objective of this research is to quantitatively characterize the performance of two major types of molecular sieves for two-bed regenerative carbon dioxide removal at the conditions compatible with both a spacesuit and station application. One sorbent is a zeolite-based molecular sieve that has been substantially improved over the materials used in Skylab. The second sorbent is a recently developed carbon-based molecular sieve. Both molecular sieves offer the potential of high payoff for future manned missions by reducing system complexity, weight (including consumables), and power consumption in comparison with competing concepts. The research reported here provides the technical data required to improve CO2 removal systems for regenerative life support systems for future IVA and EVA missions.

  12. Phase Locking of CO(2) Lasers. (United States)

    Weingartner, W; Schröder, K; Schuöcker, D


    A method of phase locking two CO(2) lasers by radiation exchange is presented. This phase-locking was achieved by use of a copper prism as a beam folding device in the resonators and extraction of the output radiation by a common output coupler. Energy exchange led to a phase-locked state if several locking conditions were fulfilled. The amount of radiation injected from one resonator to the second cavity could be adjusted by movement of the prism. The influence of the strength of coupling on the locking range was studied. The beat signal between the two unlocked lasers could be measured, whereas in the case of phase-locked operation twice the intensity was detected. Despite the inclusion of several assumptions, a simplified mathematical model delivered good agreement between calculated and experimental results.

  13. Experimental Investigations into CO2 Interactions with Injection Well Infrastructure for CO2 Storage (United States)

    Syed, Amer; Shi, Ji-Quan; Durucan, Sevket; Nash, Graham; Korre, Anna


    Wellbore integrity is an essential requirement to ensure the success of a CO2 Storage project as leakage of CO2 from the injection or any other abandoned well in the storage complex, could not only severely impede the efficiency of CO2 injection and storage but also may result in potential adverse impact on the surrounding environment. Early research has revealed that in case of improper well completions and/or significant changes in operating bottomhole pressure and temperature could lead to the creation of microannulus at cement-casing interface which may constitute a preferential pathway for potential CO2 leakage during and post injection period. As a part of a European Commission funded CO2CARE project, the current research investigates the sealing behaviour of such microannulus at the cement-casing interface under simulated subsurface reservoir pressure and temperature conditions and uses the findings to develop a methodology to assess the overall integrity of CO2 storage. A full scale wellbore experimental test set up was constructed for use under elevated pressure and temperature conditions as encountered in typical CO2 storage sites. The wellbore cell consists of an assembly of concentric elements of full scale casing (Diameter= 0.1524m), cement sheath and an outer casing. The stainless steel outer ring is intended to simulate the stiffness offered by the reservoir rock to the displacement applied at the wellbore. The Central Loading Mechanism (CLM) consists of four case hardened shoes that can impart radial load onto the well casing. The radial movement of the shoes is powered through the synchronised movement of four precision jacks controlled hydraulically which could impart radial pressures up to 15 MPa. The cell body is a gas tight enclosure that houses the wellbore and the central loading mechanism. The setup is enclosed in a laboratory oven which acts both as temperature and safety enclosure. Prior to a test, cement mix is set between the casing and

  14. CO2 como refrigerante: del pasado al futuro CO2 as refrigerant: from the past to future

    Directory of Open Access Journals (Sweden)

    Juan Manuel Belman Flores


    Full Text Available En años recientes y debido a la problemática que ha originado el calentamiento mundial, en el campo de la refrigeración y climatización se ha incrementado el interés por utilizar refrigerantes naturales e hidrocarburos con bajo potencial de calentamiento mundial, este es el caso de la utilización del CO2 como fluido frigorígeno que ha sido visto como una alter­nativa adecuada a los actuales refrigerantes en la comunidad científica. Hoy en día, el CO2 cada vez está retomando presencia en el campo de la refrigeración y climatización a nivel internacional, así pues, el presente trabajo tiene la finalidad de dar a conocer su potencial como refrigerante natural, las causas por las cuales este fluido fue relevado momentánea­mente por refrigerantes clorofluorocarbonados y su renacer en pleno siglo XXI. Además, se plantea su aplicación en la generación de frío en nuestro país mediante la tecnología de compresión de vapor basado en ciclo transcrítico.  In recent years, and due to problems resulting from global warming, interest has grown in the fields of refrigeration and air conditioning, specifically regarding the use of natural refrigerants and hydrocarbons with low potential for global warming. Such is the case of the use of CO2 as a cold fluid, which has been considered in the scientific community as an adequate alternative to common refrigerants. Nowadays, the use of CO2 in the areas of refrigeration and air conditioning has been recognized at international levels. Therefore, this work aims to show its potential as a natural refrigerant, the causes why this fluid was temporarily replaced by chlorofluorocarbon refrigerants, and its reappearance in the XXI century. It also proposes the use of CO2 in air conditioning in our country by using vapor compression technology, based on the transcritical cycle.

  15. Encapsulated Ionic Liquids for CO2 Capture: Using 1-Butyl-methylimidazolium Acetate for Quick and Reversible CO2 Chemical Absorption. (United States)

    Moya, Cristian; Alonso-Morales, Noelia; Gilarranz, Miguel A; Rodriguez, Juan J; Palomar, Jose


    The potential advantages of applying encapsulated ionic liquid (ENIL) to CO2 capture by chemical absorption with 1-butyl-3-methylimidazolium acetate [bmim][acetate] are evaluated. The [bmim][acetate]-ENIL is a particle material with solid appearance and 70 % w/w in ionic liquid (IL). The performance of this material as CO2 sorbent was evaluated by gravimetric and fixed-bed sorption experiments at different temperatures and CO2 partial pressures. ENIL maintains the favourable thermodynamic properties of the neat IL regarding CO2 absorption. Remarkably, a drastic increase of CO2 sorption rates was achieved using ENIL, related to much higher contact area after discretization. In addition, experiments demonstrate reversibility of the chemical reaction and the efficient ENIL regeneration, mainly hindered by the unfavourable transport properties. The common drawback of ILs as CO2 chemical absorbents (low absorption rate and difficulties in solvent regeneration) are overcome by using ENIL systems. © 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. The BErkeley Atmospheric CO2 Observation Network: design, calibration, and initial evaluation of a high-density CO2 surface network (United States)

    Shusterman, A.; Teige, V.; Turner, A. J.; Newman, C.; Kim, J.; Cohen, R. C.


    Conventionally, ground-based carbon dioxide monitoring efforts rely on a small handful of costly instruments scattered thinly across large domains. While well characterizing total integrated emissions originating from a given metropolitan area, such approaches are ill suited to resolve the heterogeneous patterns of urban CO2 sources occurring within the domain, despite the fact that these sources are often regulated individually and independently of the regional total. To better observe said heterogeneities, we present the BErkeley Atmospheric CO2 Observation Network (BEACO2N), an ensemble of 28 moderate-cost CO2 and air quality sensing "nodes" distributed across and around the city of Oakland, California at 2 km intervals, constituting what is, to our knowledge, the highest density CO2 monitoring network to date. We evaluate the network on the basis of four performance parameters (cost, reliability, precision, and bias) and derive various post hoc mathematical treatments to compensate for the deleterious effects of meteorological variability, temporal drift, and uncharacterized atemporal biases on the sensor data. We find our approach to dependably provide observations of sufficient quality to faithfully represent intra-city phenomena while nonetheless remaining cost-competitive with sparser networks of more expensive instruments. Furthermore, preliminary analyses of the first three years of observations reveal small scale variability in CO2 concentrations that cannot be accurately captured by current mesoscale modeling techniques, reinforcing the importance of such high resolution top-down observational methodologies to our understanding of urban CO2 on the actual scales of emission and regulation.

  17. Artificial photosynthesis: semiconductor photocatalytic fixation of CO2 to afford higher organic compounds. (United States)

    Hoffmann, Michael R; Moss, John A; Baum, Marc M


    Carbon dioxide is an appealing renewable feedstock for industrial chemical processes. This does not mean, however, that all chemical processes using CO(2) are environmentally-friendly. Perspectives on the sustainability of CO(2) utilization and artificial photosynthesis are provided. The discussions focus on the photocatalytic production of C(x) (x≥ 2) compounds, where all the carbon in the products is derived from CO(2). This area of research, while promising, has received far less attention than analogous systems leading to C(1) products.

  18. Long-term surface pCO2 trends from observations and models

    Directory of Open Access Journals (Sweden)

    Jerry F. Tjiputra


    Full Text Available We estimate regional long-term surface ocean pCO2 growth rates using all available underway and bottled biogeochemistry data collected over the past four decades. These observed regional trends are compared with those simulated by five state-of-the-art Earth system models over the historical period. Oceanic pCO2 growth rates faster than the atmospheric growth rates indicate decreasing atmospheric CO2 uptake, while ocean pCO2 growth rates slower than the atmospheric growth rates indicate increasing atmospheric CO2 uptake. Aside from the western subpolar North Pacific and the subtropical North Atlantic, our analysis indicates that the current observation-based basin-scale trends may be underestimated, indicating that more observations are needed to determine the trends in these regions. Encouragingly, good agreement between the simulated and observed pCO2 trends is found when the simulated fields are subsampled with the observational coverage. In agreement with observations, we see that the simulated pCO2 trends are primarily associated with the increase in surface dissolved inorganic carbon (DIC associated with atmospheric carbon uptake, and in part by warming of the sea surface. Under the RCP8.5 future scenario, DIC continues to be the dominant driver of pCO2 trends, with little change in the relative contribution of SST. However, the changes in the hydrological cycle play an increasingly important role. For the contemporary (1970–2011 period, the simulated regional pCO2 trends are lower than the atmospheric growth rate over 90% of the ocean. However, by year 2100 more than 40% of the surface ocean area has a higher oceanic pCO2 trend than the atmosphere, implying a reduction in the atmospheric CO2 uptake rate. The fastest pCO2 growth rates are projected for the subpolar North Atlantic, while the high-latitude Southern Ocean and eastern equatorial Pacific have the weakest growth rates, remaining below the atmospheric pCO2 growth rate. Our work

  19. Hydrogeological characterization of shallow-depth zone for CO2 injection and leak test at a CO2 environmental monitoring site in Korea (United States)

    Lee, S. S.; Kim, T. W.; Kim, H. H.; Ha, S. W.; Jeon, W. T.; Lee, K. K.


    The main goal of the this study is to evaluate the importance of heterogeneities in controlling the field-scale transport of CO2 are originated from the CO2 injected at saturated zone below the water table for monitoring and prediction of CO2 leakage from a reservoir. Hydrogeological and geophysical data are collected to characterize the site, prior to conducting CO2 injection experiment at the CO2 environmental monitoring site at Eumseong, Korea. The geophysical data were acquired from borehole electromagnetic flowmeter tests, while the hydraulic data were obtained from pumping tests, slug tests, and falling head permeability tests. Total of 13 wells to perform hydraulic and geophysical test are established along groundwater flow direction in regular sequence, revealed by the results of borehole electromagnetic flowmeter test. The results of geophysical tests indicated that hydraulic gradient is not identical with the topographic gradient. Groundwater flows toward the uphill direction in the study area. Then, the hydraulic tests were conducted to identify the hydraulic properties of the study site. According to the results of pumping and slug tests at the study site, the hydraulic conductivity values show ranges between 4.75 x 10-5 cm/day and 9.74 x 10-5 cm/day. In addition, a portable multi-level sampling and monitoring packer device which remains inflated condition for a long period developed and used to isolate designated depths to identify vertical distribution of hydrogeological characteristics. Hydrogeological information obtained from this study will be used to decide the injection test interval of CO2-infused water and gaseous CO2. Acknowledgement: Financial support was provided by "R&D Project on Environmental Mangement of Geologic CO2 Storage" from the KEITI (Project Number: 2014001810003).

  20. Sustained photosynthetic performance of Coffea spp. under long-term enhanced [CO2]. (United States)

    Ramalho, José C; Rodrigues, Ana P; Semedo, José N; Pais, Isabel P; Martins, Lima D; Simões-Costa, Maria C; Leitão, António E; Fortunato, Ana S; Batista-Santos, Paula; Palos, Isabel M; Tomaz, Marcelo A; Scotti-Campos, Paula; Lidon, Fernando C; DaMatta, Fábio M


    Coffee is one of the world's most traded agricultural products. Modeling studies have predicted that climate change will have a strong impact on the suitability of current cultivation areas, but these studies have not anticipated possible mitigating effects of the elevated atmospheric [CO2] because no information exists for the coffee plant. Potted plants from two genotypes of Coffea arabica and one of C. canephora were grown under controlled conditions of irradiance (800 μmol m(-2) s(-1)), RH (75%) and 380 or 700 μL CO2 L(-1) for 1 year, without water, nutrient or root development restrictions. In all genotypes, the high [CO2] treatment promoted opposite trends for stomatal density and size, which decreased and increased, respectively. Regardless of the genotype or the growth [CO2], the net rate of CO2 assimilation increased (34-49%) when measured at 700 than at 380 μL CO2 L(-1). This result, together with the almost unchanged stomatal conductance, led to an instantaneous water use efficiency increase. The results also showed a reinforcement of photosynthetic (and respiratory) components, namely thylakoid electron transport and the activities of RuBisCo, ribulose 5-phosphate kinase, malate dehydrogenase and pyruvate kinase, what may have contributed to the enhancements in the maximum rates of electron transport, carboxylation and photosynthetic capacity under elevated [CO2], although these responses were genotype dependent. The photosystem II efficiency, energy driven to photochemical events, non-structural carbohydrates, photosynthetic pigment and membrane permeability did not respond to [CO2] supply. Some alterations in total fatty acid content and the unsaturation level of the chloroplast membranes were noted but, apparently, did not affect photosynthetic functioning. Despite some differences among the genotypes, no clear species-dependent responses to elevated [CO2] were observed. Overall, as no apparent sign of photosynthetic down-regulation was found, our

  1. Enhanced transport phenomena in CO2 sequestration and CO2 EOR

    NARCIS (Netherlands)

    Farajzadeh, R.


    The results of this thesis give insight into the (mass)-transfer during flow of gases, especially CO2, in various gas-liquid systems. A number of experiments was performed to investigate the transport phenomena through interfaces with and without surfactant monolayers. The observed phenomena have

  2. Root-derived CO2 efflux via xylem stream rivals soil CO2 efflux (United States)

    Doug P. Aubrey; Robert O. Teskey


    Respiration consumes a large portion of annual gross primary productivity in forest ecosystems and is dominated by belowground metabolism. Here, we present evidence of a previously unaccounted for internal CO2 flux of large magnitude from tree roots through stems. If this pattern is shown to persist over time and in other forests, it suggests...


    Directory of Open Access Journals (Sweden)

    Nediljka Gaurina-Međimurec


    Full Text Available Migration risk assessment of the injected CO2 is one of the fi rst and indispensable steps in determining locations for the implementation of projects for carbon dioxide permanent disposal in depleted hydrocarbon reservoirs. Within the phase of potential storage characterization and assessment, it is necessary to conduct a quantitative risk assessment, based on dynamic reservoir models that predict the behaviour of the injected CO2, which requires good knowledge of the reservoir conditions. A preliminary risk assessment proposed in this paper can be used to identify risks of CO2 leakage from the injection zone and through wells by quantifying hazard probability (likelihood and severity, in order to establish a risk-mitigation plan and to engage prevention programs. Here, the proposed risk assessment for the injection well is based on a quantitative risk matrix. The proposed assessment for the injection zone is based on methodology used to determine a reservoir probability in exploration and development of oil and gas (Probability of Success, abbr. POS, and modifi ed by taking into account hazards that may lead to CO2 leakage through the cap rock in the atmosphere or groundwater. Such an assessment can eliminate locations that do not meet the basic criteria in regard to short-term and long-term safety and the integrity of the site

  4. CO2-ECBM and CO2 Sequestration in Polish Coal Seam – Experimental Study

    Directory of Open Access Journals (Sweden)

    Paweł Baran


    Originality/value: The results indicate successful sorption of carbon dioxide in each experiment. This provides the rationale to study the application of the coal tested to obtain methane genetic origin genetic methane with the use of the CO2 injection.

  5. Can seasonal and interannual variation in landscape CO2 fluxes be detected by atmospheric observations of CO2 concentrations made at a tall tower? (United States)

    Smallman, T. L.; Williams, M.; Moncrieff, J. B.


    The Weather Research and Forecasting (WRF) meteorological model has been coupled to the Soil Plant Atmosphere (SPA) terrestrial ecosystem model, hereafter known as WRF-SPA. SPA generates realistic land-atmosphere exchanges through fully coupled hydrological, carbon and energy cycles. Here we have used WRF-SPA to investigate regional scale observations of atmospheric CO2 concentrations made over a multi-annual period from a tall tower in Scotland. WRF-SPA realistically models both seasonal and daily cycles, predicting CO2 at the tall tower (R2 = 0.67, RMSE = 3.5 ppm, bias = 0.58 ppm), indicating realistic transport, and appropriate source sink distribution and magnitude of CO2 exchange. We have highlighted a consistent post harvest increase in model-observation residuals in atmospheric CO2 concentrations. This increase in model-observation residuals post harvest is likely related to a lack of an appropriate representation of uncultivated components (~ 36% of agricultural holding in Scotland) of agricultural land (e.g., hedgerows and forest patches) which continue to photosynthesise after the crop has been harvested. Through the use of ecosystem specific CO2 tracers we have shown that tall tower observations here do not detect a representative fraction of Scotland's ecosystem CO2 uptake. Cropland CO2 uptake is the dominant ecosystem signal detected at the tall tower, consistent with the dominance of cropland in the area surrounding the tower. However cropland is over-represented in the atmospheric CO2 concentrations simulated to be at the tall tower, relative to the simulated surface cropland CO2 uptake. Observations made at the tall tower were able to detect seasonal variation in ecosystem CO2 uptake, however a majority of variation was only detected for croplands. We have found evidence that interannual variation in weather has a greater impact than interannual variation of the simulated land surface CO2 exchange on tall tower observations for the simulated years

  6. Four years of CO2 and meteorological measurements in Mataró (Catalonia, Spain). An example of the CO2 diurnal cycles in a Mediterranean coastal city. (United States)

    Curcoll Masanes, Roger; Font, Anna; Comerma, Marta; Morguí, Josep-Anton; Àgueda, Alba; Batet, Oscar; Cañas, Lidia; Grossi, Claudia; Nofuentes, Manel; Occhipinti, Paola; Rodó, Xavier


    Since November 2009, in collaboration with the science section of the Mataró Museum, IC3 is measuring CO2 concentration in the roof of this museum using a calibrated infrared (IR) analyzer (GMP343 Vaisala Carbocap®). The measurements began within the frame of the CarboSchools project (EU Science in Society programme). Meteorological variables (ambient temperature, relative humidity, precipitation, barometric pressure, wind direction and wind speed) are also measured with a Davis Vantage Pro2 Station. The Mataró Museum is located in the Mediterranean coastal city of Mataró (41.540174° N, 2.445486° E), 25 Km north-east of Barcelona. The in-situ meteorological data (pressure, temperature and humidity) is used to adjust the settings of the GMP343 every minute to calculate CO2 concentration. From late 2009 to 2012 CO2 data was calibrated using integrated discrete flask samples that were collected fortnightly and then measured using an optical analyzer (Licor-7000). From 2013 onwards CO2 GMP343 data has been calibrated by data inter-comparison with a Picarro G2301. Both the Picarro G2301 and the Licor-7000 analyzers were calibrated and referred to the International Scale using a scale strategy with seven NOAA reference cylinders. The dataset shows that CO2 signal in the coastal city of Mataró is regulated by the periodic land-sea breezes and the local emissions. The CO2 variability along the year (diurnal and seasonal CO2 signal) responds to the variability of the influence of the sea-land breezes, the contribution of the land and the sea ecosystems in the CO2 cycle and the variability of anthropogenic emissions Finally the CO2 data from Mataró is compared with the CO2 time series from other stations which have the same equipment but are located in different ecosystems. The other stations presented here are (1) DEC3: Located at the Ebre River Delta in a coastal and agricultural area. This station is also provided with GC and Picarro instrumentation and is part of

  7. Novel Long-Term CO2 Removal System Project (United States)

    National Aeronautics and Space Administration — Current Technology for CO2 removal from enclosed air of spacecraft utilizes LiOH canisters for CO2 absorption. This absorption is irreversible so longer flights...

  8. Framework for Assessing Biogenic CO2 Emissions from Stationary Sources (United States)

    This revision of the 2011 report, Accounting Framework for Biogenic CO2 Emissions from Stationary Sources, evaluates biogenic CO2 emissions from stationary sources, including a detailed study of the scientific and technical issues associated with assessing biogenic carbon dioxide...

  9. Comparison of regional and ecosystem CO2 fluxes

    DEFF Research Database (Denmark)

    Gryning, Sven-Erik; Søgaard, Henrik; Batchvarova, Ekaterina


    A budget method to derive the regional surface flux of CO2 from the evolution of the boundary layer is presented and applied. The necessary input for the method can be deduced from a combination of vertical profile measurements of CO2 concentrations by i.e. an airplane, successive radio......-soundings and standard measurements of the CO2 concentration near the ground. The method was used to derive the regional flux of CO2 over an agricultural site at Zealand in Denmark during an experiment on 12–13 June 2006. The regional fluxes of CO2 represent a combination of agricultural and forest surface conditions....... It was found that the regional flux of CO2 in broad terms follows the behavior of the flux of CO2 at the agricultural (grassland) and the deciduous forest station. The regional flux is comparable not only in size but also in the diurnal (daytime) cycle of CO2 fluxes at the two stations....

  10. Non-CO2 Greenhouse Gases: International Emissions and Projections (United States)

    EPA August 2011 report on global non-CO2 emissions projections (1990-2030) for emissions of non-CO2 greenhouse gases (methane, nitrous oxide, and fluorinated greenhouse gases) from more than twenty emissions sources.

  11. Chemical reduction of CO2 facilitated by C-nucleophiles. (United States)

    Janes, Trevor; Yang, Yanxin; Song, Datong


    The abundance of atmospheric CO2 presents both an opportunity and a challenge for synthetic chemists to transform CO2 into value-added products. A promising strategy involves CO2 reduction driven by the energy stored in chemical bonds and promoted by molecules containing nucleophilic carbon sites. This approach allows the synthesis of new C-C or C-H bonds from CO2-derived carbon. The first part of this Feature article deals with uncatalyzed reductions of CO2 such as insertion into metal-carbon bonds and reactivity towards multidentate actor ligands and metal-free compounds. The second part covers catalytic reduction of CO2 in which a nucleophilic C-site is involved. This review brings together two general approaches in the chemical CO2 reduction field, showing how the discovery of fundamental reactivity of CO2 leads to synthetic applications, and proposes directions for further development.

  12. Forest response to elevated CO2 is conserved across a broad range of productivity (United States)

    Norby, Richard J.; DeLucia, Evan H.; Gielen, Birgit; Calfapietra, Carlo; Giardina, Christian P.; King, John S.; Ledford, Joanne; McCarthy, Heather R.; Moore, David J. P.; Ceulemans, Reinhart; De Angelis, Paolo; Finzi, Adrien C.; Karnosky, David F.; Kubiske, Mark E.; Lukac, Martin; Pregitzer, Kurt S.; Scarascia-Mugnozza, Giuseppe E.; Schlesinger, William H.; Oren, Ram


    Climate change predictions derived from coupled carbon-climate models are highly dependent on assumptions about feedbacks between the biosphere and atmosphere. One critical feedback occurs if C uptake by the biosphere increases in response to the fossil-fuel driven increase in atmospheric [CO2] (“CO2 fertilization”), thereby slowing the rate of increase in atmospheric [CO2]. Carbon exchanges between the terrestrial biosphere and atmosphere are often first represented in models as net primary productivity (NPP). However, the contribution of CO2 fertilization to the future global C cycle has been uncertain, especially in forest ecosystems that dominate global NPP, and models that include a feedback between terrestrial biosphere metabolism and atmospheric [CO2] are poorly constrained by experimental evidence. We analyzed the response of NPP to elevated CO2 (≈550 ppm) in four free-air CO2 enrichment experiments in forest stands. We show that the response of forest NPP to elevated [CO2] is highly conserved across a broad range of productivity, with a stimulation at the median of 23 ± 2%. At low leaf area indices, a large portion of the response was attributable to increased light absorption, but as leaf area indices increased, the response to elevated [CO2] was wholly caused by increased light-use efficiency. The surprising consistency of response across diverse sites provides a benchmark to evaluate predictions of ecosystem and global models and allows us now to focus on unresolved questions about carbon partitioning and retention, and spatial variation in NPP response caused by availability of other growth limiting resources. PMID:16330779

  13. Supercritical CO2 impregnation of polyethylene components for medical purposes

    Directory of Open Access Journals (Sweden)

    Gamse Thomas


    Full Text Available Modem hip and knee endoprosthesis are produced in titanium and to reduce the friction at the contact area polymer parts, mainly ultra-high molecular weight polyethylene (UHMW-PE, are installed. The polyethylene is impregnated with a-tocopherol (vitamin E before processing for remarkable decrease of oxidative degradation. Cross linked UHMW-PE offers much higher stability, but a-tocopherol cannot be added before processing, because a-tocopherol hinders the cross linking process accompanied by a heavy degradation of the vitamin. The impregnation of UHMW-PE with a-tocopherol has to be performed after the cross linking process and an accurate concentration has to be achieved over the cross section of the whole material. In the first tests UHMW-PE-cubes were stored in pure a-tocopherol under inert atmosphere at temperatures from 100 to 150 °C resulting in a high mass fraction of a-tocopherol in the edge zones and no constant concentration over the cross section. For better distribution and for regulating the mass fraction of a-tocopherol in the cross linked UHMW-PE material supercritical CO2 impregnation tests were investigated. Again UHMW-PE-cubes were impregnated in an autoclave with a-tocopherol dissolved in supercritical CO2 at different pressures and temperatures with variable impregnation times and vitamin E concentrations. Based on the excellent results of supercritical CO2 impregnation standard hip and knee cups were stabilized nearly homogeneously with varying mass fraction of a-tocopherol.

  14. Network of photonic sensors for CO2 exchange rate measurement in forests (United States)

    Sobotka, Piotr; Bieda, Marcin S.; Lesiak, Piotr; Woliński, Tomasz R.


    A network of photonic CO2 sensors based on distributed sensing elements that are spread around the tested ecosystem area is proposed. Each of the sensing elements is connected to a wireless network with adjacent sensing elements and a base station that collects, archives, and analyzes results of measurements. The sensing element includes a CO2 sensor module for data transmission as well as power supply module that analyzes speed and direction of flow of the air mass within the specified measurement point.

  15. Geologic Carbon Sequestration: Mitigating Climate Change by Injecting CO2 Underground (LBNL Summer Lecture Series)

    Energy Technology Data Exchange (ETDEWEB)

    Oldenburg, Curtis M [LBNL Earth Sciences Division


    Summer Lecture Series 2009: Climate change provides strong motivation to reduce CO2 emissions from the burning of fossil fuels. Carbon dioxide capture and storage involves the capture, compression, and transport of CO2 to geologically favorable areas, where its injected into porous rock more than one kilometer underground for permanent storage. Oldenburg, who heads Berkeley Labs Geologic Carbon Sequestration Program, will focus on the challenges, opportunities, and research needs of this innovative technology.

  16. Potassium Starvation Limits Soybean Growth More than the Photosynthetic Processes across CO2 Levels

    Directory of Open Access Journals (Sweden)

    Shardendu K. Singh


    Full Text Available Elevated carbon dioxide (eCO2 often enhances plant photosynthesis, growth, and productivity. However, under nutrient-limited conditions the beneficial effects of high CO2 are often diminished. To evaluate the combined effects of potassium (K deficiency and eCO2 on soybean photosynthesis, growth, biomass partitioning, and yields, plants were grown under controlled environment conditions with an adequate (control, 5.0 mM and two deficient (0.50 and 0.02 mM levels of K under ambient CO2 (aCO2; 400 μmol mol−1 and eCO2 (800 μmol mol−1. Results showed that K deficiency limited soybean growth traits more than photosynthetic processes. An ~54% reduction in leaf K concentration under 0.5 mM K vs. the control caused about 45% less leaf area, biomass, and yield without decreasing photosynthetic rate (Pnet. In fact, the steady photochemical quenching, efficiency, and quantum yield of photosystem II, chlorophyll concentration (TChl, and stomatal conductance under 0.5 mM K supported the stable Pnet. Biomass decline was primarily attributed to the reduced plant size and leaf area, and decreased pod numbers and seed yield in K-deficient plants. Under severe K deficiency (0.02 mM K, photosynthetic processes declined concomitantly with growth and productivity. Increased specific leaf weight, biomass partitioning to the leaves, decreased photochemical quenching and TChl, and smaller plant size to reduce the nutrient demands appeared to be the means by which plants adjusted to the severe K starvation. Increased K utilization efficiency indicated the ability of K-deficient plants to better utilize the tissue-available K for biomass accumulation, except under severe K starvation. The enhancement of soybean growth by eCO2 was dependent on the levels of K, leading to a K × CO2 interaction for traits such as leaf area, biomass, and yield. A lack of eCO2-mediated growth and photosynthesis stimulation under severe K deficiency underscored the importance of optimum

  17. Can elevated CO(2) improve salt tolerance in olive trees? (United States)

    Melgar, Juan Carlos; Syvertsen, James P; García-Sánchez, Francisco


    We compared growth, leaf gas exchange characteristics, water relations, chlorophyll fluorescence, and Na(+) and Cl(-) concentration of two cultivars ('Koroneiki' and 'Picual') of olive (Olea europaea L.) trees in response to high salinity (NaCl 100mM) and elevated CO(2) (eCO(2)) concentration (700microLL(-1)). The cultivar 'Koroneiki' is considered to be more salt sensitive than the relatively salt-tolerant 'Picual'. After 3 months of treatment, the 9-month-old cuttings of 'Koroneiki' had significantly greater shoot growth, and net CO(2) assimilation (A(CO(2))) at eCO(2) than at ambient CO(2), but this difference disappeared under salt stress. Growth and A(CO(2)) of 'Picual' did not respond to eCO(2) regardless of salinity treatment. Stomatal conductance (g(s)) and leaf transpiration were decreased at eCO(2) such that leaf water use efficiency (WUE) increased in both cultivars regardless of saline treatment. Salt stress increased leaf Na(+) and Cl(-) concentration, reduced growth and leaf osmotic potential, but increased leaf turgor compared with non-salinized control plants of both cultivars. Salinity decreased A(CO(2)), g(s), and WUE, but internal CO(2) concentrations in the mesophyll were not affected. eCO(2) increased the sensitivity of PSII and chlorophyll concentration to salinity. eCO(2) did not affect leaf or root Na(+) or Cl(-) concentrations in salt-tolerant 'Picual', but eCO(2) decreased leaf and root Na(+) concentration and root Cl(-) concentration in the more salt-sensitive 'Koroneiki'. Na(+) and Cl(-) accumulation was associated with the lower water use in 'Koroneiki' but not in 'Picual'. Although eCO(2) increased WUE in salinized leaves and decreased salt ion uptake in the relatively salt-tolerant 'Koroneiki', growth of these young olive trees was not affected by eCO(2).

  18. [Effects of plastic film mulching on soil CO2 efflux and CO2 concentration in an oasis cotton field]. (United States)

    Yu, Yong-xiang; Zhao, Cheng-yi; Jia, Hong-tao; Yu, Bo; Zhou, Tian-he; Yang, Yu-guang; Zhao, Hua


    A field study was conducted to compare soil CO2 efflux and CO2 concentration between mulched and non-mulched cotton fields by using closed chamber method and diffusion chamber technique. Soil CO2 efflux and CO2 concentration exhibited a similar seasonal pattern, decreasing from July to October. Mulched field had a lower soil CO2 efflux but a higher CO2 concentration, compared to those of non-mulched fields. Over the measurement period, cumulative CO2 efflux was 1871.95 kg C . hm-2 for mulched field and 2032.81 kg C . hm-2 for non-mulched field. Soil CO2 concentration was higher in mulched field (ranging from 5137 to 25945 µL . L-1) than in non- mulched field (ranging from 2165 to 23986 µL . L-1). The correlation coefficients between soil CO2 concentrations at different depths and soil CO2 effluxes were 0.60 to 0.73 and 0.57 to 0.75 for the mulched and non-mulched fields, indicating that soil CO2 concentration played a crucial role in soil CO2 emission. The Q10 values were 2.77 and 2.48 for the mulched and non-mulched fields, respectively, suggesting that CO2 efflux in mulched field was more sensitive to the temperature.

  19. A liquid CO2-compatible hydrocarbon surfactant: experiment and modelling

    NARCIS (Netherlands)

    Banerjee, S.; Kleijn, J.M.; Cohen Stuart, M.A.; Leermakers, F.A.M.


    Surfactants soluble in liquid CO2 are rare and knowledge on interfacial and self-assembly behaviour is fragmented. We found that polyoxyethylene (5) isooctylphenyl ether is interfacially active at the water–liquid CO2 interface. Water–liquid CO2 interfacial tension was measured at various surfactant

  20. Activation of CO2 by phosphinoamide hafnium complexes. (United States)

    Sgro, Michael J; Stephan, Douglas W


    Hf-phosphinoamide cation complexes behave as metal-based frustrated Lewis pairs and bind one or two equivalent of CO2 and in as well can activate CO2 in a bimetallic fashion to give a pseudo-tetrahedral P2CO2 fragment linking two Hf centres.

  1. CO2-laserchirurgie van leukoplakie van het mondslijmvlies

    NARCIS (Netherlands)

    Roodenburg, Johannes Leendert Nicolaas


    The purpose of this investigation is: 1. to gain an insight into the direct effect of CO2-laserlight on oral mucosa; 2. to study the healing of oral mucosa after being damaged by CO2-laserlight; 3. to evaluate the CO2-laserevaporataion as a treatment modality for oral leukoplakia. ... Zie: Summary

  2. Impacts: economic trade-offs for CO2 impurity specification

    NARCIS (Netherlands)

    Eickhoff, C.; Neele, F.P.; Hammer, M.; DiBiagio, M.; Hofstee, C.; Koenen, M.; Fischer, S.; Isaenko, A.; Brown, A.; Kovacs, T.


    The IMPACTS project has a stated broad objective to develop the knowledge base of CO2 quality required for establishing norms and regulations to ensure safe and reliable design, construction and operation of CO2 pipelines and injection equipment, and safe long-term geological storage of CO2. More

  3. Thermogravimetric and model-free kinetic studies on CO2 ...

    Indian Academy of Sciences (India)

    Coal gasification with CO 2 has emerged as a cleaner and more efficient way for the production of energy, and it offers the advantages of CO 2 mitigation policies through simultaneous CO 2 sequestration. In the present investigation, a feasibility study on the gasification of three low-quality, high-sulphur coals fromthe ...

  4. Ventilation in Sewers Quantified by Measurements of CO2

    DEFF Research Database (Denmark)

    Fuglsang, Emil Dietz; Vollertsen, Jes; Nielsen, Asbjørn Haaning


    H, alkalinity and sewer-air CO2 concentrations. An intercepting sewer was studied and an average sewer-air retention time of approximately 1.5-2.5 hours was found at CO2 levels around 4-6 times the natural background. Also an upstream sub-catchment was studied. In this part of the sewer system the level of CO2...

  5. Designing an oscillating CO2 concentration experiment for field chambers (United States)

    Questions have arisen about photosynthetic response to fluctuating carbon dioxide (CO2), which might affect yield in free-air CO2 enrichment (FACE) systems and in open top chambers. A few studies have been conducted based on CO2 controlled to cycles of fixed time-periods and fixed, large amplitude....

  6. Designing an oscillating CO2 concentration experiment for fild chambers (United States)

    Questions have arisen about photosynthetic response to fluctuating carbon dioxide (CO2), which might affect yield in free-air CO2 enrichment (FACE) systems and in open top chambers. A few studies have been conducted based on CO2 controlled to cycles of fixed time-periods and fixed, large amplitude....

  7. End tidal CO2 versus arterial CO2 monitoring in patients undergoing coronary artery bypass graft

    Directory of Open Access Journals (Sweden)

    Hassani E


    Full Text Available "n Normal 0 false false false EN-US X-NONE AR-SA MicrosoftInternetExplorer4 /* Style Definitions */ table.MsoNormalTable {mso-style-name:"Table Normal"; mso-tstyle-rowband-size:0; mso-tstyle-colband-size:0; mso-style-noshow:yes; mso-style-priority:99; mso-style-qformat:yes; mso-style-parent:""; mso-padding-alt:0in 5.4pt 0in 5.4pt; mso-para-margin:0in; mso-para-margin-bottom:.0001pt; mso-pagination:widow-orphan; font-size:11.0pt; font-family:"Calibri","sans-serif"; mso-ascii-font-family:Calibri; mso-ascii-theme-font:minor-latin; mso-fareast-font-family:"Times New Roman"; mso-fareast-theme-font:minor-fareast; mso-hansi-font-family:Calibri; mso-hansi-theme-font:minor-latin; mso-bidi-font-family:Arial; mso-bidi-theme-font:minor-bidi;} Background: Measuring end tidal carbon dioxide (ETCo2 is one of the methods used for estimating arterial carbon dioxide (PaCo2 during general anesthesia. ETCo2 measurements maybe obviate the need for repeating arterial puncture for determination of arterial PaCo2. This study performed to determine the accuracy of ETCo2 levels as a measure of PaCo2 levels in patients undergoing coronary artery bypass graft and also to evaluate variation of the gradient between PaCo2 and ETCo2, peri- cardiopulmonary bypass operation."n"nMethods: In a prospective, cross-sectional study, a total of 40 patients with age 57±11 (35-73 years old undergoing coronary artery bypass graft were enrolled. ETCo2 levels (mmHg were recorded using side stream capnography at the time of arterial blood gas sampling, before (T0 and after (T1 cardiopulmonary bypass."n"nResults: Mean P(a-ETCo2 at T0 was 4.3±4.4mmHg, with the mean PaCo2, 33±6mmHg and mean ETCo2, 29±5mmHg and these values at T1 were 4.5±4.1mmHg, 33±5mmHg and 29±2mmHg respectively. There was no variation of the mean gradient (PaCo2-PETCo2 during, before and after cardiopulmonary bypass (p>0.870. Significant correlation was found between ETCo2 and PaCo2 at T0 and T1 (r=0.754 and 0

  8. Mass transport modelling for the electroreduction of CO2 on Cu nanowires (United States)

    Raciti, David; Mao, Mark; Wang, Chao


    Mass transport plays an important role in CO2 reduction electrocatalysis. Albeit being more pronounced on nanostructured electrodes, the studies of mass transport for CO2 reduction have yet been limited to planar electrodes. We report here the development of a mass transport model for the electroreduction of CO2 on Cu nanowire electrodes. Fed with the experimental data from electrocatalytic studies, the local concentrations of CO2, {{{{HCO}}}3}-,{{{{CO}}}3}2- and OH‑ on the nanostructured electrodes are calculated by solving the diffusion equations with spatially distributed electrochemical reaction terms incorporated. The mass transport effects on the catalytic activity and selectivity of the Cu nanowire electrocatalysts are thus discussed by using the local pH as the descriptor. The established correlations between the electrocatalytic performance and the local pH shows that, the latter does not only determine the acid-base reaction equilibrium, but also regulates the mass transport and reaction kinetics. Based on these findings, the optimal range of local pH for CO2 reduction is discussed in terms of a fine balance among the suppression of hydrogen evolution, improvement of C2 product selectivity and limitation of CO2 supply. Our work highlights the importance of understanding the mass transport effects in interpretation of CO2 reduction electrocatalysis on high-surface-area catalysts.

  9. Development of a Coherent Differential Absorption Lidar for Range Resolved Atmospheric CO2 Measurements (United States)

    Yu, Jirong; Petros, Mulgueta; Chen, Songsheng; Bai, Yingxin; Petzar, Paul J.; Trieu, Bo. C.; Koch, Grady J.; Beyon, Jeffery J.; Singh, Upendra N.


    A pulsed, 2-m coherent Differential Absorption Lidar (DIAL) / Integrated Path Differential Absorption (IPDA) transceiver, developed under the Laser Risk Reduction Program (LRRP) at NASA, is integrated into a fully functional lidar instrument. This instrument will measure atmospheric CO2 profiles (by DIAL) initially from a ground platform, and then be prepared for aircraft installation to measure the atmospheric CO2 column densities in the atmospheric boundary layer (ABL) and lower troposphere. The airborne prototype CO2 lidar can measure atmospheric CO2 column density in a range bin of 1km with better than 1.5% precision at horizontal resolution of less than 50km. It can provide the image of the pooling of CO2 in lowlying areas and performs nighttime mass balance measurements at landscape scale. This sensor is unique in its capability to study the vertical ABL-free troposphere exchange of CO2 directly. It will allow the investigators to pursue subsequent in science-driven deployments, and provides a unique tool for Active Sensing of CO2 Emissions over Night, Days, and Seasons (ASCENDS) validation that was strongly advocated in the recent ASCENDS Workshop.

  10. Modeling some long-term implications of CO2 fertilization for global forests and forest industries

    Directory of Open Access Journals (Sweden)

    Joseph Buongiorno


    Full Text Available Background This paper explored the long-term, ceteris-paribus effects of potential CO 2 fertilization on the global forest sector. Based on the findings of Norby et al. (PNAS 2005, 102(50 about forest response to elevated [CO 2 ]. Methods Forest productivity was increased in the Global Forest Products Model (GFPM in proportion to the rising [CO 2 ] projected in the IPCC scenario A1B, A2, and B2. Projections of the forest area and forest stock and of the production, consumption, prices, and trade of products ranging from fuelwood to paper and paperboard were obtained with the GFPM for each scenario, with and without CO 2 fertilization beginning in 2011 and up to 2065. Results CO2 fertilization increased wood supply, leading to lower wood prices which in turn induced modest lower prices of end products and higher global consumption. However, production and value added in industries decreased in some regions due to the relative competitive advantages and to the varying regional effects of CO 2 fertilization. Conclusion The main effect of CO 2 fertilization was to raise the level of the world forest stock in 2065 by 9 to 10 % for scenarios A2 and B2 and by 20 % for scenario A1B. The rise in forest stock induced by fertilization was in part counteracted by its stimulation of the wood supply which resulted in lower wood prices and increased harvests.

  11. Recalibrating the Ginkgo Stomatal Index Proxy for Past CO2 with Herbarium Specimens (United States)

    Conde, G. D.; Retallack, G.


    The stomatal index of plant cuticles is inversely related to atmospheric CO2 concentrations, as calibrated from greenhouse experiments and herbarium specimens. Such calibration data for Ginkgo biloba are available for the ongoing rise in atmospheric CO2 and for high levels of CO2 anticipated in the future, but lacking for low CO2 levels of preindustrial and glacial ages. The oldest modern specimen that we have been able to obtain consists of leaf fragments collected in 1829 and provided by Arne Anderberg from the Swedish Natural History Museum. The specimen was labeled "Argentina", but also "Hortus Botanicus Augustinus", a garden founded in 1638 in Amsterdam, Netherlands. Ginkgo has a very thin cuticle that is difficult to prepare, but images very similar to cuticular preparation can be obtained by backscatter SEM imagery. We also obtained secondary SEM images of the same areas and counted 13 images with 6,184 cells from five leaf fragments. Our analyses yield a stomatal index of 10.9 ± 0.9 % for an atmospheric CO2 of 286 ppm, as determined by ice core data from Ciais and Sabine for IPCC-2013. This value is lower than from previous calibration curves for this level of CO2 and changes their curvature. With additional late nineteenth, twentieth and twenty-first century leaves, we can improve both the precision and lower limits of the transfer function for atmospheric CO2 from Ginkgo stomatal index last revised in 2009.

  12. Growth reduction after defoliation is independent of CO2 supply in deciduous and evergreen young oaks. (United States)

    Schmid, Sandra; Palacio, Sara; Hoch, Günter


    Reduced productivity of trees after defoliation might be caused by limited carbon (C) availability. We investigated the combined effect of different atmospheric CO2 concentrations (160, 280 and 560 ppm) and early season defoliation on the growth and C reserves (nonstructural carbohydrates (NSC)) of saplings of two oak species with different leaf habits (deciduous Quercus petraea and evergreen Quercus ilex). In both species, higher CO2 supply significantly enhanced growth. Defoliation had a strong negative impact on growth (stronger for Q. ilex), but the relative reduction of growth caused by defoliation within each CO2 treatment was very similar across all three CO2 concentrations. Low CO2 and defoliation led to decreased NSC tissue concentrations mainly in the middle of the growing season in Q. ilex, but not in Q. petraea. However, also in Q. ilex, NSC increased in woody tissues in defoliated and low-CO2 saplings towards the end of the growing season. Although the saplings were C limited under these specific experimental conditions, growth reduction after defoliation was not directly caused by C limitation. Rather, growth of trees followed a strong allometric relationship between total leaf area and conductive woody tissue, which did not change across species, CO2 concentrations and defoliation treatments. © 2017 The Authors. New Phytologist © 2017 New Phytologist Trust.

  13. Sensory Transduction of the CO2 Response of Guard Cells

    Energy Technology Data Exchange (ETDEWEB)

    Dr. Eduardo Zeiger


    Stomata have a key role in the regulation of gas exchange and intercellular CO2 concentrations of leaves. Guard cells sense internal and external signals in the leaf environment and transduce these signals into osmoregulatory processes that control stomatal apertures. This research proposal addresses the characterization of the sensory transduction of the CO2 signal in guard cells. Recent studies have shown that in Vicia leaves kept at constant light and temperature in a growth chamber, changes in ambient CO2 concentrations cause large changes in guard cell zeaxanthin that are linear with CO2-dependent changes in stomatal apertures. Research proposed here will test the hypothesis that zeaxanthin function as a transducer of CO2 signals in guard cells. Three central aspects of this hypothesis will be investigated: CO2 sensing by the carboxylation reaction of Rubisco in the guard cell chloroplast, which would modulate zeaxanthin concentrations via changes in lumen pH; transduction of the CO2 signal by zeaxanthin via a transducing cascade that controls guard cell osmoregulation; and blue light dependence of the CO2 signal transduction by zeaxanthin, required for the formation of an isomeric form of zeaxanthin that is physiologically active as a transducer. The role of Rubisco in CO2 sensing will be investigated in experiments characterizing the stomatal response to CO2 in the Arabidopsis mutants R100 and rca-, which have reduced rates of Rubisco-dependent carboxylation. The role of zeaxanthin as a CO2 transducer will be studied in npq1, a zeaxanthin-less mutant. The blue light-dependence of CO2 sensing will be studied in experiments characterizing the stomatal response to CO2 under red light. Arabidopsis mutants will also be used in further studies of an acclimation of the stomatal response to CO2, and a possible role of the xanthophyll cycle of the guard cell chloroplast in acclimations of the stomatal response to CO2. Studies on the osmoregulatory role of sucrose in

  14. Temporal variations in air-sea CO2 exchange near large kelp beds near San Diego, California (United States)

    Ikawa, Hiroki; Oechel, Walter C.


    This study presents nearly continuous air-sea CO2 flux for 7 years using the eddy covariance method for nearshore water near San Diego, California, as well as identifying environmental processes that appear to control temporal variations in air-sea CO2 flux at different time scales using time series decomposition. Monthly variations in CO2 uptake are shown to be positively influenced by photosynthetically active photon flux density (PPFD) and negatively related to wind speeds. In contrast to the monthly scale, wind speeds often influenced CO2 uptake positively on an hourly scale. Interannual variations in CO2 flux were not correlated with any independent variables, but did reflect surface area of the adjacent kelp bed in the following year. Different environmental influences on CO2 flux at different temporal scales suggest the importance of long-term flux monitoring for accurately identifying important environmental processes for the coastal carbon cycle. Overall, the study area was a strong CO2 sink into the sea (CO2 flux of ca. -260 g C m-2 yr-1). If all coastal areas inhabited by macrophytes had a similar CO2 uptake rate, the net CO2 uptake from these areas alone would roughly equal the net CO2 sink estimated for the entire global coastal ocean to date. A similar-strength CO2 flux, ranging between -0.09 and -0.01 g C m-2 h-1, was also observed over another kelp bed from a pilot study of boat-based eddy covariance measurements.

  15. A Highly Stable Microporous Covalent Imine Network Adsorbent for Natural Gas Upgrading and Flue Gas CO2 Capture

    KAUST Repository

    Das, Swapan Kumar


    The feasible capture and separation of CO2 and N2 from CH4 is an important task for natural gas upgrading and the control of greenhouse gas emissions. Here, we studied the microporous covalent imine networks (CIN) material prepared through Schiff base condensation and exhibited superior chemical robustness under both acidic and basic conditions and high thermal stability. The material possesses a relatively uniform nanoparticle size of approximately 70 to 100 nm. This network featured permanent porosity with a high surface area (722 m2g-1) and micropores. A single-component gas adsorption study showed enhanced CO2 and CH4 uptakes of 3.32 mmol/g and 1.14 mmol/g, respectively, at 273 K and 1 bar, coupled with high separation selectivities for CO2/CH4, CH4/N2, and CO2/N2 of 23, 11.8 and 211, respectively. The enriched Lewis basicity in the porous skeletons favours the interaction of quadrupolar CO2 and polarizable CH4, resulting in enhanced CH4 and CO2 uptake and high CH4/N2, CO2/CH4 and CO2/N2 selectivities. Breakthrough experiments showed high CO2/CH4, CH4/N2 and CO2/N2 selectivities of 7.29, 40 and 125, respectively, at 298 K and 1 bar. High heats of adsorption for CH4 and CO2 (QstCH4; 32.61 kJ mol-1 and QstCO2; 42.42 kJ mol-1) provide the ultimate validation for the high selectivity. To the best of our knowledge, such a versatile adsorbent material that displays both enhanced uptake and selectivity for a variety of binary gas mixtures, including CO2/ CH4, CO2/N2 and CH4/N2, has not been extensively explored.


    Franklin, O.


    INTRODUCTION Soil N availability is of particular importance for the response of forests to elevated CO2 (eCO2) because it often limits tree growth responses to eCO2 and changes C allocation among foliage, wood and root systems. Clearly, understanding the interactive effects of eCO2 and soil N availability is essential for accurate projections of forest responses to rising atmospheric CO2. HYPOTHESIS Plants acclimate to soil N availability and atmospheric CO2 by maximizing net growth through three nested optimizations operating on different time scales: short term - vertical canopy N distribution, medium term - Leaf area index (LAI) for a given total canopy N (Nc) and longer term - Nc and root allocation. N uptake is a function of root exploration for N (fine root production) and soil N availability. RESULTS The model explained a range of observed forest CO2 responses of productivity and LAI in FACE experiments (Franklin et al. 2009) (Franklin 2007). N use efficiency increased with soil N availability, which is in line with recent findings regarding resource use efficiency, but contrasts with some earlier conceptual models. The model gives rise to a relationship between root production and total plant N demand, which implies that root production and N uptake is always increased by eCO2 (fig. 1). The increased N uptake associated with increased demand for fine-root production may lead to declining soil N availability (progressive N limitation), which was observed in the ORNL FACE experiment. The principle of maximization of net growth to control allocation could serve as a basis for simplification and generalization of foliage/stem/root allocation in larger scale forest models. REFERENCES Franklin O. (2007) Optimal nitrogen allocation controls tree responses to elevated CO 2. New Phytologist, 174, 811-822 Franklin O., McMurtrie R.E., Iversen C.M., Crous K.Y., Finzi A.C., Tissue D.T., Ellsworth D.S., Oren R. & Norby R.J. (2009) Forest fine-root production and

  17. First regional vertical profiles of CO2: Can we verify reported emissions? (United States)

    Lindenmaier, R.; Hase, F.; Dubey, M.; Lee, S.; Costigan, K. R.; Henderson, B. G.


    CO2 is known as the most important greenhouse gas (GHG), its rising levels in the Earth's atmosphere resulting in global warming. Both atmospheric CO2 and climate change are accelerating, urging scientists to find solutions to stabilize CO2 and other GHGs. Power plants are the largest contributors to the manmade CO2 emissions. Remote observations of CO2 provide a method to verify CO2 emissions for an enforceable climate treaty. Column CO2 measurements are made routinely by the Total Carbon Column Observing Network (TCCON) and satellites. The column CO2 signals of power plants are typically small 1-10 ppm that are much smaller than the signals in the boundary layer (20-100 ppm). We resolve the vertical profile of CO2 in a power plant dominated area for the first time. We directly interrogate the power plant plume and see large signals in the lower troposphere. We demonstrate that in addition to the total columns, CO2 vertical profiles determined from ground-based Fourier transform infrared (FTIR) spectra can be used to detect the enhancement of CO2 in the boundary layer. Measurements were made at the Four Corners site, in the San Juan Basin, an arid region with two large coal-fired power plants that emit approximately 30 Mton CO2/year. We used the PROFFIT profile retrieval software to show that the power plants' signatures are visible in our CO2 profiles. We also compare the results with the World Research and Forecasting-Chemistry (WRF-Chem) model driven with real time emissions monitored in the stack of the power plants. The measured profiles indicate the presence of the power plant plume within the first 7 km, and are in good agreement with the modeled profiles. We show that the model simulations are found to be within 4% of the measurements, demonstrating that we can verify emissions to better than 5%. Results from a preliminary exploration of the compact low-resolution mini FTS will be also presented. This new robust off-the shelf instrument permits the study

  18. Photovoltaic Parks' Impact On Soil CO2 Releasing (United States)

    Bodea, Larisa; Popescu, Iustina; Gabriela, Dorobantu; Deák, Gyorgy


    The sun provides a tremendous source for generating green and sustainable energy without any greenhouse gases (GHG) emissions. Even though photovoltaic energy is a promising alternative to fossil fuel-based energy, its development poses new environmental questions and potential threats. Due to its no GHG emissions property, photovoltaic energy grew at an unprecedented rate at global level, expanding by 50 % per year over the last decade. Unfortunately, there is still a knowledge gap on the long-term effects of photovoltaic parks on habitat loss, on soil quality, and hence on soil carbon dynamics. This subject should draw scientists' attention due to the occurred land use changes, possible soil compaction, potential alteration of drainage channels, increased runoff and erosion, use of herbicides which may leach to groundwater, but mainly due to the soil probability to lose the storing capacity of organic C, leading to CO2 emissions. Soil capacity of storing organic C emission may be affected by photovoltaic parks construction as follows: soil temperature increase due to poor ventilation, changes in precipitation and evapotranspiration processes, the balance of direct and diffuse radiation, climate induced changes in plant and soil microbial community composition and activity, but not only. Anyhow, studies reported by other authors showed that CO2 emission led by removal of vegetation followed by photovoltaic parks construction is high, total organic C remained 30 % lower than on undisturbed areas. The aim of this study was to perform an in-depth analysis of photovoltaic parks development in Romania and to assess their potential impact on below-ground organic C pools regarding the increasing of C release back into the atmosphere as CO2. The study showed that the photovoltaic parks constructed in Romania reached, until the January 2014, a total installed power of 1022 MW, some of them being installed on arable land, thus changing land use and posing a risk to soil

  19. CO2 Condensation Models for Mars (United States)

    Colaprete, A.; Haberle, R.


    During the polar night in both hemispheres of Mars, regions of low thermal emission, frequently referred to as "cold spots", have been observed by Mariner 9, Viking and Mars Global Surveyor (MGS) spacecraft. These cold spots vary in time and appear to be associated with topographic features suggesting that they are the result of a spectral-emission effect due to surface accumulation of fine-grained frost or snow. Presented here are simulations of the Martian polar night using the NASA Ames General Circulation Cloud Model. This cloud model incorporates all the microphysical processes of carbon dioxide cloud formation, including nucleation, condensation and sedimentation and is coupled to a surface frost scheme that includes both direct surface condensation and precipitation. Using this cloud model we simulate the Mars polar nights and compare model results to observations from the Thermal Emission Spectrometer (TES) and the Mars Orbiter Laser Altimeter (MOLA). Model predictions of "cold spots" compare well with TES observations of low emissivity regions, both spatially and as a function of season. The model predicted frequency of CO2 cloud formation also agrees well with MOLA observations of polar night cloud echoes. Together the simulations and observations in the North indicate a distinct shift in atmospheric state centered about Ls 270 which we believe may be associated with the strength of the polar vortex.

  20. Removing extra CO2 in COPD patients. (United States)

    Lund, Laura W; Federspiel, William J


    For patients experiencing acute respiratory failure due to a severe exacerbation of chronic obstructive pulmonary disease (COPD), noninvasive positive pressure ventilation has been shown to significantly reduce mortality and hospital length of stay compared to respiratory support with invasive mechanical ventilation. Despite continued improvements in the administration of noninvasive ventilation (NIV), refractory hypercapnia and hypercapnic acidosis continue to prevent its successful use in many patients. Recent advances in extracorporeal gas exchange technology have led to the development of systems designed to be safer and simpler by focusing on the clinical benefits of partial extracorporeal carbon dioxide removal (ECCO2R), as opposed to full cardiopulmonary support. While the use of ECCO2R has been studied in the treatment of acute respiratory distress syndrome (ARDS), its use for acute hypercapnic respiratory during COPD exacerbations has not been evaluated until recently. This review will focus on literature published over the last year on the use of ECCO2R for removing extra CO2 in patients experiencing an acute exacerbation of COPD.

  1. Determining CO2 storage potential during miscible CO2 enhanced oil recovery: Noble gas and stable isotope tracers (United States)

    Shelton, Jenna L.; McIntosh, Jennifer C.; Hunt, Andrew; Beebe, Thomas L; Parker, Andrew D; Warwick, Peter D.; Drake, Ronald; McCray, John E.


    Rising atmospheric carbon dioxide (CO2) concentrations are fueling anthropogenic climate change. Geologic sequestration of anthropogenic CO2 in depleted oil reservoirs is one option for reducing CO2 emissions to the atmosphere while enhancing oil recovery. In order to evaluate the feasibility of using enhanced oil recovery (EOR) sites in the United States for permanent CO2 storage, an active multi-stage miscible CO2flooding project in the Permian Basin (North Ward Estes Field, near Wickett, Texas) was investigated. In addition, two major natural CO2 reservoirs in the southeastern Paradox Basin (McElmo Dome and Doe Canyon) were also investigated as they provide CO2 for EOR operations in the Permian Basin. Produced gas and water were collected from three different CO2 flooding phases (with different start dates) within the North Ward Estes Field to evaluate possible CO2 storage mechanisms and amounts of total CO2retention. McElmo Dome and Doe Canyon were sampled for produced gas to determine the noble gas and stable isotope signature of the original injected EOR gas and to confirm the source of this naturally-occurring CO2. As expected, the natural CO2produced from McElmo Dome and Doe Canyon is a mix of mantle and crustal sources. When comparing CO2 injection and production rates for the CO2 floods in the North Ward Estes Field, it appears that CO2 retention in the reservoir decreased over the course of the three injections, retaining 39%, 49% and 61% of the injected CO2 for the 2008, 2010, and 2013 projects, respectively, characteristic of maturing CO2 miscible flood projects. Noble gas isotopic composition of the injected and produced gas for the flood projects suggest no active fractionation, while δ13CCO2 values suggest no active CO2dissolution into formation water, or mineralization. CO2 volumes capable of dissolving in residual formation fluids were also estimated along with the potential to store pure-phase supercritical CO2. Using a combination

  2. Seaweed community response to a massive CO2 input (United States)

    Sangil, Carlos; Clemente, Sabrina; Brito, Alberto; Rodríguez, Adriana; Balsalobre, Marc; Mendoza, José Carlos; Martínez, David; Hernández, José Carlos


    Changes in the structure of seaweed communities were examined following a massive CO2 input caused by a submarine eruption near the coast of El Hierro island (Canary Islands, Spain). The event lasted almost five months (October 2011-March 2012) and created a significant pH gradient. Specifically, we compared three different zones: highly affected with extreme low pH (6.7-7.3), affected with low pH (7.6-7.8), and unaffected ambient pH zone (∼8.1) according to the pH gradient generated by the predominate currents and waves in the south of the island. Studies were carried out before, during and after the CO2 input event in each zone. We found community-wide effects on seaweed communities during the eruption; these included changes in species abundance and changes in the diversity. However, changes in all these community traits were only evident in the highly affected zone, where there were major shifts in the seaweed community, with a replacement of Lobophora variegata by ephemeral seaweeds. Lobophora variegata dropped in cover from 87-94 to 27% while ephemeral seaweeds increased 6-10 to 29%. When the impact ended Lobophora variegata began to recover reaching a cover higher than 60%. In the moderate affected area the Lobophora variegata canopies maintained their integrity avoiding phase shifts to turfs. Here the only significant changes were the reduction of the cover of the crustose and geniculate coralline algae.

  3. Low density, non-ablative fractional CO2 laser rejuvenation. (United States)

    Christiansen, Kaare; Bjerring, Peter


    Fractional skin rejuvenation has gained increased interest since its introduction in 2003. Both non-ablative and ablative lasers as well as different treatment techniques have been devised. Recent clinical studies indicate that a paradigm of low spot density combined with high fluences tend to produce better clinical results and less risk of post-inflammatory hyperpigmentation in darker skin types. The present study is focused on investigations of the clinical outcome by non-ablative fractional CO(2) treatments with a single pass with low spot density. A CO(2) laser was equipped with a scanner enabling it to perform fractional treatments with 36, 64 or 100 microthermal zones (MTZ)/cm(2). Twelve patients participated in the study. The perioral area was treated three times with 1-month intervals using a spot density of 64 MTZ/cm(2), a spot diameter of 0.5 mm, a micro-beam energy of 36-60 mJ, and a pulse duration of 3-5 milliseconds. Follow-up was performed 3 months after the last treatment. At the 3-month follow-up 72.7% of the volunteers had obtained improvement in ultrasonographically determined dermal density, and the average improvement was 40.2% (SD: 48.0%). This improvement was statistically significant (Plaser treatments.

  4. Continuous measurements of net CO2 exchange by vegetation and soils in a suburban landscape (United States)

    Peters, Emily B.; McFadden, Joseph P.


    In a suburban neighborhood of Minneapolis-Saint Paul, Minnesota, USA, we simultaneously measured net CO2 exchange of trees using sap flow and leaf gas exchange measurements, net CO2exchange of a turfgrass lawn using eddy covariance from a portable tower, and total surface-atmosphere CO2 fluxes (FC) using an eddy covariance system on a tall tower. Two years of continuous measurements showed that net CO2exchange varied among vegetation types, with the largest growing-season (Apr-Nov) net CO2 uptake on a per cover area basis from evergreen needleleaf trees (-603 g C m-2), followed by deciduous broadleaf trees (-216 g C m-2), irrigated turfgrass (-211 g C m-2), and non-irrigated turfgrass (-115 g C m-2). Vegetation types showed seasonal patterns of CO2exchange similar to those observed in natural ecosystems. Scaled-up net CO2 exchange from vegetation and soils (FC(VegSoil)) agreed closely with landscape FC measurements from the tall tower at times when fossil fuel emissions were at a minimum. Although FC(VegSoil) did not offset fossil fuel emissions on an annual basis, the temporal pattern of FC(VegSoil) did significantly alter the seasonality of FC. Total growing season FC(VegSoil)in recreational land-use areas averaged -165 g C m-2 and was dominated by turfgrass CO2 exchange (representing 77% of the total), whereas FC(VegSoil) in residential areas averaged -124 g C m-2 and was dominated by trees (representing 78% of the total). Our results suggest urban vegetation types can capture much of the variability required to predict seasonal patterns and differences in FC(VegSoil) that could result from changes in land use or vegetation composition in temperate cities.

  5. How can mountaintop CO2 observations be used to constrain regional carbon fluxes? (United States)

    Lin, John C.; Mallia, Derek V.; Wu, Dien; Stephens, Britton B.


    Despite the need for researchers to understand terrestrial biospheric carbon fluxes to account for carbon cycle feedbacks and predict future CO2 concentrations, knowledge of these fluxes at the regional scale remains poor. This is particularly true in mountainous areas, where complex meteorology and lack of observations lead to large uncertainties in carbon fluxes. Yet mountainous regions are often where significant forest cover and biomass are found - i.e., areas that have the potential to serve as carbon sinks. As CO2 observations are carried out in mountainous areas, it is imperative that they are properly interpreted to yield information about carbon fluxes. In this paper, we present CO2 observations at three sites in the mountains of the western US, along with atmospheric simulations that attempt to extract information about biospheric carbon fluxes from the CO2 observations, with emphasis on the observed and simulated diurnal cycles of CO2. We show that atmospheric models can systematically simulate the wrong diurnal cycle and significantly misinterpret the CO2 observations, due to erroneous atmospheric flows as a result of terrain that is misrepresented in the model. This problem depends on the selected vertical level in the model and is exacerbated as the spatial resolution is degraded, and our results indicate that a fine grid spacing of ˜ 4 km or less may be needed to simulate a realistic diurnal cycle of CO2 for sites on top of the steep mountains examined here in the American Rockies. In the absence of higher resolution models, we recommend coarse-scale models to focus on assimilating afternoon CO2 observations on mountaintop sites over the continent to avoid misrepresentations of nocturnal transport and influence.

  6. Quantifying CO2 Degassing from Volcanoes - Recent major advancements and future challenges (United States)

    Werner, C. A.; Burton, M. R.; Chiodini, G.; Aiuppa, A.; Fischer, T. P.; Lowenstern, J. B.; Carn, S. A.


    The quantitative understanding of CO2 output from magmatic sources on Earth has progressed dramatically in the last 15 years with advances in technology and new initiatives. However, unique challenges exist for measurement of CO2 emissions from active volcanic and magmatic regions due to the large areas of degassing sources, relatively low volcanic CO2 concentrations in ambient air, and the remoteness of many volcanoes. Degassing from active volcanoes is a major focus of the Deep Carbon Observatory's DECADE initiative where pairing the NOVAC network remote measurements of SO2 with direct plume measurements of C/S ratios has led to the first long-term time-series of CO2 degassing at some of the most prodigiously degassing volcanoes (Masaya, Turrialba, Poas, Villarica, Nevado del Ruiz and others ). Likewise, pairing eruptive SO2 emission measurements from satellite data with direct CO2/SO2 measurements suggests that large volcanic eruptions might contribute 20% to global volcanic CO2 budgets. The global significance of diffuse CO2 degassing in areas of magma intrusion and underplating in caldera settings and regions of high seismicity is being realized with more extensive studies, and these sources will likely continue to grow in relative significance as more areas are investigated globally. Finally, the role of pre-eruptive or deep degassing of subsurface magmas will also likely continue to impact our understanding of global budgets as this invisible and subtle source is discovered through more intensive monitoring. Here we present examples of recent advances quantifying CO2 degassing from volcanic and magmatic sources and offer a vision for future opportunities.

  7. Thermodynamic Properties of CO2 Mixtures and Their Applications in Advanced Power Cycles with CO2 Capture Processes


    Li, Hailong


    The thermodynamic properties of CO2-mixtures are essential for the design and operation of CO2 Capture and Storage (CCS) systems. A better understanding of the thermodynamic properties of CO2 mixtures could provide a scientific basis to define a proper guideline of CO2 purity and impure components for the CCS processes according to technical, safety and environmental requirements. However the available accurate experimental data cannot cover the whole operation conditions of CCS processes. In...

  8. Greenhouse gas capture. Norwegian test facility for CO2-technology; Broeikasgasvangers. Noors testcentrum voor CO2-technologie

    Energy Technology Data Exchange (ETDEWEB)

    Van Velzen, T.


    In Norway a large research center on the capture of CO2 will be opened in the spring of 2012: the CO2 Technology Centre Mongstad. It allows companies to test concepts for CCS (carbon dioxide capture and storage) [Dutch] In Noorwegen wordt in de lente van 2012 een groot centrum voor onderzoek naar het afvangen van CO2 geopend: het CO2 Technology Centre Mongstad. Daar kunnen bedrijven hun concepten voor CCS beproeven.

  9. Soil air CO2 concentration as an integrative parameter of soil structure (United States)

    Ebeling, Corinna; Gaertig, Thorsten; Fründ, Heinz-Christian


    The assessment of soil structure is an important but difficult issue and normally takes place in the laboratory. Typical parameters are soil bulk density, porosity, water or air conductivity or gas diffusivity. All methods are time-consuming. The integrative parameter soil air CO2 concentration ([CO2]) can be used to assess soil structure in situ and in a short time. Several studies highlighted that independent of soil respiration, [CO2] in the soil air increases with decreasing soil aeration. Therefore, [CO2] is a useful indicator of soil aeration. Embedded in the German research project RÜWOLA, which focus on soil protection at forest sites, we investigated soil compaction and recovery of soil structure after harvesting. Therefore, we measured soil air CO2 concentrations continuously and in single measurements and compared the results with the measurements of bulk density, porosity and gas diffusivity. Two test areas were investigated: At test area 1 with high natural regeneration potential (clay content approx. 25 % and soil-pH between 5 and 7), solid-state CO2-sensors using NDIR technology were installed in the wheel track of different aged skidding tracks in 5 and 10 cm soil depths. At area 2 (acidic silty loam, soil-pH between 3.5 and 4), CO2-sensors and water-tension sensors (WatermarkR) were installed in 6 cm soil depth. The results show a low variance of [CO2] in the undisturbed soil with a long term mean from May to June 2014 between 0.2 and 0.5 % [CO2] in both areas. In the wheel tracks [CO2] was consistently higher. The long term mean [CO2] in the 8-year-old-wheel track in test area 1 is 5 times higher than in the reference soil and shows a high variation (mean=2.0 %). The 18-year-old wheel track shows a long-term mean of 1.2 % [CO2]. Furthermore, there were strong fluctuations of [CO2] in the wheel tracks corresponding to precipitation and humidity. Similar results were yielded with single measurements during the vegetation period using a portable

  10. CO2 niet meer dan genoeg: Teelt van Tomaat in 2012 bij Improvement Centre met lichtafhankelijk doseren van CO2

    NARCIS (Netherlands)

    Gelder, de A.; Warmenhoven, M.G.; Dieleman, J.A.; Klapwijk, P.; Baar, van P.H.


    Wageningen UR Glastuinbouw heeft met financiering van Kas als Energiebron en Samenwerken aan Vaardigheden onderzoek gedaan naar efficienter gebruik van CO2. In een kasproef bij GreenQ/Improvement Centre is een CO2 doseerstrategie getest, waarbij iets meer CO2 wordt gegeven dan er op basis van de

  11. Detection of CO2 leaks from carbon capture and storage sites with combined atmospheric CO2 and O-2 measurements

    NARCIS (Netherlands)

    van Leeuwen, Charlotte; Meijer, Harro A. J.


    This paper presents a transportable instrument that simultaneously measures the CO2 and (relative) O-2 concentration of the atmosphere with the purpose to aid in the detection of CO2 leaks from CCS sites. CO2 and O-2 are coupled in most processes on earth (e.g., photosynthesis, respiration and

  12. The effects of CO2-differentiated vehicle tax systems on car choice, CO2 emissions and tax revenues

    NARCIS (Netherlands)

    Kok, R.


    This paper assesses the impacts of a CO2-differentiated tax policy designed to influence car purchasing trends towards lower CO2 emitting vehicles in the Netherlands. Since 2009, gasoline and diesel cars up to 110 and 95 gram CO2 per km are exempted from the vehicle registration tax (VRT). In

  13. Monitoring Surface CO2 Leaks Using Hyperspectral Plant Signatures During the 2008 and 2009 ZERT Shallow Subsurface CO2 Release Experiment in Bozeman, MT (United States)

    Male, E. J.; Pickles, W.; Silver, E. A.; Hoffmann, G. D.; Lewicki, J. L.; Apple, M. E.; Repasky, K. S.; Dobeck, L.; Burton, E. A.


    Hyperspectral plant signatures can be a powerful tool in the monitoring, verification, and accounting (MVA) of geologic carbon sequestration fields. They can be used to ensure safe and effective sequestration of carbon on short term, as well as on long term timescales. A compromised sequestration field could release CO2 to the surface, where it can negatively impact overlying vegetation. Plant stress caused by a CO2 leak can be observed as changes in the visible to near-infrared reflectance spectra of vegetation. We tested this technique during two controlled shallow CO2 injections during the summers of 2008 and 2009, with each injection lasting for approximately 4 weeks. CO2 gas was released through a 100-meter long horizontal injection well, at a flow rate of 300 kg/day in 2008, and 200 kg/day in 2009. In both years, overlying vegetation comprised various short and tall grasses, alfalfa, and dandelions. During the spring of 2009, following the 2008 experiment, a species of short grass, Kentucky Bluegrass (Poa pratensis), grew predominately in areas where high CO2 fluxes were previously measured, suggesting long term changes to the site as a result of the CO2 leaks. We used a “FieldSpec Pro” spectrometer by Analytical Spectral Devices (ASD, Inc.) to monitor plant health by measuring spectral signatures nearly daily for both experiments. We measured plants located directly over the injection well to10 m away from the well. Acquiring data both inside and outside of the CO2 leak zones allowed us to normalize our measurements to seasonal changes and other environmental factors that affected the vegetation. In both the 2008 and 2009 experiments, we began to observe plant stress within approximately 4 days of the start of each injection. The measured plant stress each year was located within zones of high CO2 flux from the injections. This correlation was also seen in aerial hyperspectral imagery acquired in 2008 by Resonon Inc. of Bozeman, MT using their self

  14. Application of ammonia and CO2 in supermarkets; Toepassing van ammoniak en CO2 in supermarkten

    Energy Technology Data Exchange (ETDEWEB)

    Stoecker, W.F.; Hrnjak, P.J. [University of Illinois, Urbana-Champaign, IL (United States); Infante Ferreiria, C.A. [Technische Universiteit Delft, Delft (Netherlands)


    The application of microchannel condensers in ammonia installations makes it possible to go down as far as 18 g NH3 per kW refrigeration. The use of ammonia in combination with CO2 contributes to economic effective and energy efficient solutions for supermarket applications. In this article also the experiences in Sweden, Denmark and Italy with indirect, cascade and transcritical supermarket refrigeration systems with carbon dioxide are described. 8 refs.

  15. Recent global CO2 flux inferred from atmospheric CO2 observations and its regional analyses

    Directory of Open Access Journals (Sweden)

    J. M. Chen


    Full Text Available The net surface exchange of CO2 for the years 2002–2007 is inferred from 12 181 atmospheric CO2 concentration data with a time-dependent Bayesian synthesis inversion scheme. Monthly CO2 fluxes are optimized for 30 regions of the North America and 20 regions for the rest of the globe. Although there have been many previous multiyear inversion studies, the reliability of atmospheric inversion techniques has not yet been systematically evaluated for quantifying regional interannual variability in the carbon cycle. In this study, the global interannual variability of the CO2 flux is found to be dominated by terrestrial ecosystems, particularly by tropical land, and the variations of regional terrestrial carbon fluxes are closely related to climate variations. These interannual variations are mostly caused by abnormal meteorological conditions in a few months in the year or part of a growing season and cannot be well represented using annual means, suggesting that we should pay attention to finer temporal climate variations in ecosystem modeling. We find that, excluding fossil fuel and biomass burning emissions, terrestrial ecosystems and oceans absorb an average of 3.63 ± 0.49 and 1.94 ± 0.41 Pg C yr−1, respectively. The terrestrial uptake is mainly in northern land while the tropical and southern lands contribute 0.62 ± 0.47, and 0.67 ± 0.34 Pg C yr−1 to the sink, respectively. In North America, terrestrial ecosystems absorb 0.89 ± 0.18 Pg C yr−1 on average with a strong flux density found in the south-east of the continent.

  16. Improved Efficiency of Miscible CO2 Floods and Enhanced Prospects for CO2 Flooding Heterogeneous Reservoirs

    Energy Technology Data Exchange (ETDEWEB)

    Grigg, Reid B.; Schechter, David S.


    The goal of this project is to improve the efficiency of miscible CO2 floods and enhance the prospects for flooding heterogeneous reservoirs. This report provides results of the second year of the three-year project that will be exploring three principles: (1) Fluid and matrix interactions (understanding the problems). (2) Conformance control/sweep efficiency (solving the problems. 3) Reservoir simulation for improved oil recovery (predicting results).

  17. Development of a cost-effective CO2 adsorbent from petroleum coke via KOH activation (United States)

    Jang, Eunji; Choi, Seung Wan; Hong, Seok-Min; Shin, Sangcheol; Lee, Ki Bong


    The capture of CO2 via adsorption is considered an effective technology for decreasing global warming issues; hence, adsorbents for CO2 capture have been actively developed. Taking into account cost-effectiveness and environmental concerns, the development of CO2 adsorbents from waste materials is attracting considerable attention. In this study, petroleum coke (PC), which is the carbon residue remaining after heavy oil upgrading, was used to produce high-value-added porous carbon for CO2 capture. Porous carbon materials were prepared by KOH activation using different weight ratios of KOH/PC (1:1, 2:1, 3:1, and 4:1) and activation temperatures (600, 700, and 800 °C). The specific surface area and total pore volume of resulting porous carbon materials increased with KOH amount, reaching up to 2433 m2/g and 1.11 cm3/g, respectively. The sample prepared under moderate conditions with a KOH/PC weight ratio of 2:1 and activation temperature of 700 °C exhibited the highest CO2 adsorption uptake of 3.68 mmol/g at 25 °C and 1 bar. Interestingly, CO2 adsorption uptake was linearly correlated with the volume of micropores less than 0.8 nm, indicating that narrow micropore volume is crucial for CO2 adsorption. The prepared porous carbon materials also exhibited good selectivity for CO2 over N2, rapid adsorption, facile regeneration, and stable adsorption-desorption cyclic performance, demonstrating potential as a candidate for CO2 capture.

  18. Strategies for CO2 Sequestration in Geologic Formations and the Role of Geophysics (United States)

    Klara, S. M.; Cohen, K.; Byrer, C.; Srivastava, R. D.


    Among proposed options for CO2 emissions mitigation, capture and sequestration is a promising solution that has the advantage of being able to cope with the large volume of CO2 involved, which will increase because of a growing energy demand. Consequently, an important component of the United States Department of Energy's (DOE) research and development program is dedicated to reducing CO2 emissions from power plants by developing technologies for capturing CO2 and for subsequent utilization and/or sequestration. Capture technologies target novel, low-cost approaches for separation and capture of CO2 from energy production and conversion facilities. Injection of CO2 into geologic formations is being practiced today by the petroleum industry for enhanced oil recovery, but it is not yet possible to predict with confidence storage volume, formation integrity and storage permanence over long time periods. Many important issues dealing with geologic storage, monitoring, and verification of fluids (including CO2) in underground oil and gas reservoirs, coal beds, and saline formations are now being addressed. Preliminary field tests are being conducted to confirm practical considerations, such as economics, safety, stability, permanence, and public acceptance. This paper presents an overview of DOE's research program in the area of CO2 sequestration and storage in geologic formations and specifically addresses the status of new knowledge, improved tools and enhanced technology for cost optimization, monitoring, modeling and capacity estimation. This paper also highlights those fundamental and applied studies, including field tests, sponsored by DOE that are measuring the degree to which CO2 can be injected and remain safely and permanently sequestered in geologic formations while concurrently assuring no adverse long term ecological impacts. Field geophysical techniques are playing a major role in these demonstrations, such as the Weyburn project in North Dakota and Canada

  19. Carbon flow from volcanic CO2 into soil microbial communities of a wetland mofette. (United States)

    Beulig, Felix; Heuer, Verena B; Akob, Denise M; Viehweger, Bernhard; Elvert, Marcus; Herrmann, Martina; Hinrichs, Kai-Uwe; Küsel, Kirsten


    Effects of extremely high carbon dioxide (CO2) concentrations on soil microbial communities and associated processes are largely unknown. We studied a wetland area affected by spots of subcrustal CO2 degassing (mofettes) with focus on anaerobic autotrophic methanogenesis and acetogenesis because the pore gas phase was largely hypoxic. Compared with a reference soil, the mofette was more acidic (ΔpH ∼0.8), strongly enriched in organic carbon (up to 10 times), and exhibited lower prokaryotic diversity. It was dominated by methanogens and subdivision 1 Acidobacteria, which likely thrived under stable hypoxia and acidic pH. Anoxic incubations revealed enhanced formation of acetate and methane (CH4) from hydrogen (H2) and CO2 consistent with elevated CH4 and acetate levels in the mofette soil. (13)CO2 mofette soil incubations showed high label incorporations with ∼512 ng (13)C g (dry weight (dw)) soil(-1) d(-1) into the bulk soil and up to 10.7 ng (13)C g (dw) soil(-1) d(-1) into almost all analyzed bacterial lipids. Incorporation of CO2-derived carbon into archaeal lipids was much lower and restricted to the first 10 cm of the soil. DNA-SIP analysis revealed that acidophilic methanogens affiliated with Methanoregulaceae and hitherto unknown acetogens appeared to be involved in the chemolithoautotrophic utilization of (13)CO2. Subdivision 1 Acidobacteriaceae assimilated (13)CO2 likely via anaplerotic reactions because Acidobacteriaceae are not known to harbor enzymatic pathways for autotrophic CO2 assimilation. We conclude that CO2-induced geochemical changes promoted anaerobic and acidophilic organisms and altered carbon turnover in affected soils.

  20. Point-source CO2 emission estimation from airborne sampled CO2 mass density: a case study for an industrial plant in Biganos, Southern France. (United States)

    Carotenuto, Federico; Gioli, Beniamino; Toscano, Piero; Zaldei, Alessandro; Miglietta, Franco


    One interesting aspect in the airborne sampling of ground emissions of all types (from CO2 to particulate matter) is the ability to understand the source from which these emissions originated and, therefore, obtain an estimation of that ground source's strength. Recently an aerial campaign has been conducted in order to sample emissions coming from a paper production plant in Biganos (France). The campaign made use of a Sky Arrow ERA (Environmental Research Aircraft) equipped with a mobile flux platform system. This latter system couples (among the various instrumentation) a turbulence probe (BAT) and a LICOR 7500 open-path infra-red gas analyzer that also enables the estimation of high-resolution fluxes of different scalars via the spatial-integrated eddy-covariance technique. Aircraft data showed a marked increase in CO2 mass density downwind the industrial area, while vertical profiles samplings showed that concentrations were changing with altitude. The estimation of the CO2 source was obtained using a simple mass balance approach, that is, by integrating the product of CO2 concentration and the mass flow rate through a cross-sectional area downwind of the point source. The results were compared with those obtained by means of a "forward-mode" Lagrangian dispersion model operated iteratively. CO2 source strength were varied at each iteration to obtain an optimal convergence between the modeled atmospheric concentrations and the concentration data observed by the aircraft. The procedure makes use of wind speed and atmospheric turbulence data which are directly measured by the BAT probe at different altitudes. The two methods provided comparable estimates of the CO2 source thus providing a substantial validation of the model-based iterative dispersion procedure. We consider that this data-model integration approach involving aircraft surveys and models may substantially enhance the estimation of point and area sources of any scalar, even in more complex

  1. The Influence of CO2 Solubility in Brine on Simulation of CO2 Injection into Water Flooded Reservoir and CO2 WAG

    DEFF Research Database (Denmark)

    Yan, Wei; Stenby, Erling Halfdan


    simulations. In our previous study, a 1-D slimtube simulator, which rigorously accounts for both CO2 solubility in brine and water content in hydrocarbon phases using the Peng-Robinson EoS modified by Soreide and Whitson, has been used to investigate the influence of CO2 solubility on the simulation...

  2. Effects of elevated CO2 and increased nitrogen deposition on photosynthesis and growth of understory plants in spruce model ecosystems. (United States)

    Hättenschwiler, Stephan; Körner, Christian


    We studied the effects of atmospheric CO2 enrichment (280, 420 and 560 μl CO2 l-1) and increased N deposition (0,30 and 90 kg ha-1 year-1) on the spruce-forest understory species Oxalis acetosella, Homogyne alpina and Rubus hirtus. Clones of these species formed the ground cover in nine 0.7 m2 model ecosystems with 5-year-old Picea abies trees (leaf area index of approx 2.2). Communities grew on natural forest soil in a simulated montane climate. Independently of N deposition, the rate of light-saturated net photosynthesis of leaves grown and measured at 420 μl CO2 l-1 was higher in Oxalis and in Homogyne, but was not significantly different in Rubus compared to leaves grown and measured at the pre-industrial CO2 concentration of 280 μl l-1. Remarkably, further CO2 enrichment to 560 μl l-1 caused no additional increase of CO2 uptake. With increasing CO2 supply concentrations of non-structural carbohydrates in leaves increased and N concentrations decreased in all species, whereas N deposition had no significant effect on these traits. Above-ground biomass and leaf area production were not significantly affected by elevated CO2 in the more vigorously growing species O. acetosella and R. hirtus, but the "slow growing" H. alpina produced almost twice as much biomass and 50% more leaf area per plant under 420 μl CO2 l-1 compared to 280 μl l-1 (again no further stimulation at 560 μl l-1). In contrast, increased N addition stimulated growth in Oxalis and Rubus but had no effect on Homogyne. In Oxalis (only) biomass per plant was positively correlated with microhabitat quantum flux density at low CO2, but not at high CO2 indicating carbon saturation. On the other hand, the less shade-tolerant Homogyne profited from CO2 enrichment at all understory light levels facilitating its spread into more shady micro-habitats under elevated CO2. These species-specific responses to CO2 and N deposition will affect community structure. The non-linear responses to elevated CO2 of

  3. A biogenic CO2 flux adjustment scheme for the mitigation of large-scale biases in global atmospheric CO2 analyses and forecasts

    Directory of Open Access Journals (Sweden)

    A. Agustí-Panareda


    Full Text Available Forecasting atmospheric CO2 daily at the global scale with a good accuracy like it is done for the weather is a challenging task. However, it is also one of the key areas of development to bridge the gaps between weather, air quality and climate models. The challenge stems from the fact that atmospheric CO2 is largely controlled by the CO2 fluxes at the surface, which are difficult to constrain with observations. In particular, the biogenic fluxes simulated by land surface models show skill in detecting synoptic and regional-scale disturbances up to sub-seasonal time-scales, but they are subject to large seasonal and annual budget errors at global scale, usually requiring a posteriori adjustment. This paper presents a scheme to diagnose and mitigate model errors associated with biogenic fluxes within an atmospheric CO2 forecasting system. The scheme is an adaptive scaling procedure referred to as a biogenic flux adjustment scheme (BFAS, and it can be applied automatically in real time throughout the forecast. The BFAS method generally improves the continental budget of CO2 fluxes in the model by combining information from three sources: (1 retrospective fluxes estimated by a global flux inversion system, (2 land-use information, (3 simulated fluxes from the model. The method is shown to produce enhanced skill in the daily CO2 10-day forecasts without requiring continuous manual intervention. Therefore, it is particularly suitable for near-real-time CO2 analysis and forecasting systems.

  4. MgO-based adsorbents for CO2adsorption: Influence of structural and textural properties on the CO2adsorption performance. (United States)

    Elvira, Gutiérrez-Bonilla; Francisco, Granados-Correa; Víctor, Sánchez-Mendieta; Alberto, Morales-Luckie Raúl


    A series of MgO-based adsorbents were prepared through solution-combustion synthesis and ball-milling process. The prepared MgO-based powders were characterized using X-ray diffraction, scanning electron microscopy, N 2 physisorption measurements, and employed as potential adsorbents for CO 2 adsorption. The influence of structural and textural properties of these adsorbents over the CO 2 adsorption behaviour was also investigated. The results showed that MgO-based products prepared by solution-combustion and ball-milling processes, were highly porous, fluffy, nanocrystalline structures in nature, which are unique physico-chemical properties that significantly contribute to enhance their CO 2 adsorption. It was found that the MgO synthesized by solution combustion process, using a molar ratio of urea to magnesium nitrate (2:1), and treated by ball-milling during 2.5hr (MgO-BM2.5h), exhibited the maximum CO 2 adsorption capacity of 1.611mmol/g at 25°C and 1atm, mainly via chemisorption. The CO 2 adsorption behaviour on the MgO-based adsorbents was correlated to their improved specific surface area, total pore volume, pore size distribution and crystallinity. The reusability of synthesized MgO-BM2.5h was confirmed by five consecutive CO 2 adsorption-desorption times, without any significant loss of performance, that supports the potential of MgO-based adsorbent. The results confirmed that the special features of MgO prepared by solution-combustion and treated by ball-milling during 2.5hr are favorable to be used as effective MgO-based adsorbent in post-combustion CO 2 capture technologies. Copyright © 2016. Published by Elsevier B.V.

  5. Sequestering CO2 in the Built Environment (United States)

    Constantz, B. R.


    Calera’s Carbonate Mineralization by Aqueous Precipitation (CMAP) technology with beneficial reuse has been called, “game-changing” by Carl Pope, Director of the Sierra Club. Calera offers a solution to the scale of the carbon problem. By capturing carbon into the built environment through carbonate mineralization, Calera provides a sound and cost-effective alternative to Geologic Sequestration and Terrestrial Sequestration. The CMAP technology permanently converts carbon dioxide into a mineral form that can be stored above ground, or used as a building material. The process produces a suite of carbonate-containing minerals of various polymorphic forms. Calera product can be substituted into blends with ordinary Portland cements and used as aggregate to produce concrete with reduced carbon, carbon neutral, or carbon negative footprints. For each ton of product produced, approximately half a ton of carbon dioxide can be sequestered using the Calera process. Coal and natural gas are composed of predominately istopically light carbon, as the carbon in the fuel is plant-derived. Thus, power plant CO2 emissions have relatively low δ13C values.The carbon species throughout the CMAP process are identified through measuring the inorganic carbon content, δ13C values of the dissolved carbonate species, and the product carbonate minerals. Measuring δ13C allows for tracking the flue gas CO2 throughout the capture process. Initial analysis of the capture of propane flue gas (δ13C ˜ -25 ‰) with seawater (δ13C ˜ -10 ‰) and industrial brucite tailings from a retired magnesium oxide plant in Moss Landing, CA (δ13C ˜ -7 ‰ from residual calcite) produced carbonate mineral products with a δ13C value of ˜ -20 ‰. This isotopically light carbon, transformed from flue gas to stable carbonate minerals, can be transferred and tracked through the capture process, and finally to the built environment. CMAP provides an economical solution to global warming by producing

  6. Carbon flow from volcanic CO2 into soil microbial communities of a wetland mofette

    DEFF Research Database (Denmark)

    Beulig, Felix


    hypoxia and acidic pH. Anoxic incubations revealed enhanced formation of acetate and methane (CH4) from hydrogen (H2) and CO2 consistent with elevated CH4 and acetate levels in the mofette soil. 13CO2 mofette soil incubations showed high label incorporations with ~512 ng 13C g (dry weight (dw)) soil−1 d−1......Effects of extremely high carbon dioxide (CO2) concentrations on soil microbial communities and associated processes are largely unknown. We studied a wetland area affected by spots of subcrustal CO2 degassing (mofettes) with focus on anaerobic autotrophic methanogenesis and acetogenesis because...... the pore gas phase was largely hypoxic. Compared with a reference soil, the mofette was more acidic (ΔpH ~0.8), strongly enriched in organic carbon (up to 10 times), and exhibited lower prokaryotic diversity. It was dominated by methanogens and subdivision 1 Acidobacteria, which likely thrived under stable...

  7. Experimental and CFD modelling for thermal comfort and CO2 concentration in office building (United States)

    Kabrein, H.; Hariri, A.; Leman, A. M.; Yusof, M. Z. M.; Afandi, A.


    Computational fluid dynamic CFD was used for simulating air flow, indoor air distribution and contamination concentration. Gases pollution and thermal discomfort affected occupational health and productivity of work place. The main objectives of this study are to investigate the impact of air change rate in CO2 concentration and to estimate the profile of CO2 concentration in the offices building. The thermal comfort and gases contamination are investigated by numerical analysis CFD which was validated by experiment. Thus the air temperature, air velocity and CO2 concentration were measured at several points in the chamber with four occupants. Comparing between experimental and numerical results showed good agreement. In addition, the CO2 concentration around human recorded high, compared to the other area. Moreover, the thermal comfort in this study is within the ASHRAE standard 55-2004.

  8. Adsorption of CH4 and CO2 on Zr-metal organic frameworks. (United States)

    Abid, Hussein Rasool; Pham, Gia Hung; Ang, Ha-Ming; Tade, Moses O; Wang, Shaobin


    Zirconium-metal organic frameworks (Zr-MOFs) were synthesized with or without ammonium hydroxide as an additive in the synthesis process. It was found that addition of ammonium hydroxide would change the textural structure of Zr-MOF. The BET surface area, pore volume, and crystal size of Zr-MOF were reduced after addition of ammonium hydroxide. However, the crystalline structure and thermal stability were maintained and no functional groups were formed. Adsorption tests showed that Zr-MOF presented much higher CO(2) adsorption than CH(4). Zr-MOF exhibited CO(2) and CH(4) adsorption of 8.1 and 3.6 mmol/g, respectively, at 273 K, 988 kPa. The addition of ammonium hydroxide resulted in the Zr-MOF with a slight lower adsorption of CO(2) and CH(4), however, the selectivity of CO(2)/CH(4) is significantly enhanced. Copyright © 2011 Elsevier Inc. All rights reserved.

  9. Characterization of Qatar's surface carbonates for CO2 capture and thermochemical energy storage (United States)

    Kakosimos, Konstantinos E.; Al-Haddad, Ghadeer; Sakellariou, Kyriaki G.; Pagkoura, Chrysa; Konstandopoulos, Athanasios G.


    Samples of surface carbonates were collected from three different areas of the Qatar peninsula. We employed material characterization techniques to examine the morphology and composition of the samples, while their CO2 capture capacity was assessed via multiple successive calcination-carbonation cycles. Our samples were mainly calcite and dolomite based. Calcite samples showed higher initial capacity of around 11 mmol CO2 g-1 which decayed rapidly to less than 2 mmol CO2 g-1. On the other hand, dolomite samples showed an excellent stability (˜15 cycles) with a capacity of 6 mmol CO2 g-1. The performance of the dolomite samples is better compared to other similar natural samples, from literature. A promising result for future studies towards improving their performance by physical and chemical modification.

  10. Monitoring and Modeling CO2 Dynamics in the Vadose Zone near an Abandoned Historic Oil Well: Implications for Detecting CO2 Leakage at Geological CO2 Sequestration Sites (United States)

    Yang, C.; Romanak, K.; Hovorka, S.; Reedy, R. C.; Trevino, R.; Scanlon, B. R.


    Soil-gas monitoring is proposed for detecting CO2 leakage at geological CO2 sequestration sites. At the Cranfield oil field, about 25 km east of Natchez, Mississippi, an integrated near-surface monitoring program is being implemented where supercritical CO2 is being injected for enhanced oil recovery (EOR). The purpose of the study is to understand how natural factors may affect soil CO2 monitoring at geologic carbon storage sites. A near-surface observatory, constructed on an engineered well pad near a 1950’s era open pit and plugged and abandoned well, was used to monitor atmospheric parameters such as air temperature, relative humility, barometric pressure, wind speed and direction, solar radiation, and precipitation. Soil temperature, soil CO2 concentrations, water content, and matric potential were also monitored at various depths to a maximum of 5 m in the vadose zone. The integrated monitoring system was installed in September 2009 and continued collecting data each half hour for about 240 days. CO2 concentrations measured at 1.5 m depth are about two times that of atmospheric CO2 concentrations and show daily fluctuations. However, CO2 concentrations measured at 3 m depth decreased from 11% in November 2009 to 9% in January 2010, then gradually increased to 10.5% in June 2010. There should be no CO2 contribution from root respiration because the engineered pad is bare of vegetation. Monitored CO2 in the vadose zone at this site most likely is derived from oxidation of methane with a suspected source related to the 1950’s era plugged and abandoned well. A 1-D numerical model was also used to simulate variably saturated water flow, CO2 transport, CH4 oxidation for understanding mechanisms that dominate CO2 transport at this site. Results of this study suggest that CO2 transport in the vadose zone is very complicated and can be affected by many factors including precipitation, barometric pressure, soil temperature, oxidation of methane, and therefore may

  11. Soil CO 2 Flux in Hövsgöl National Park, Northern Mongolia

    Directory of Open Access Journals (Sweden)

    Avirmed Otgonsuren


    Full Text Available We investigated soil CO 2 fl ux and bare soil respiration in grasslands that are located at the southern edge of the Siberian boreal forest in Northern Mongolia. The study area has warmed by almost 1.8 o C over the last 40 years, and the soil and vegetation covers have been changed due to intense nomadic grazing pressure. Bare soil respiration is decreased with increasing grazing pressure, but there was no consistent pattern of total soil CO 2 fl ux under three distinct grazing levels. Bare soil respiration and soil CO 2 fl ux were higher on north-facing slopes than on south-facing slopes, due to high organic matter accumulation and the presence of permafrost. Both bare soil respiration and soil CO 2 fl ux were signi fi cantly higher in riparian areas compared with the lower and upper portions of the south-facing slope. Topography has a stronger effect on variability of soil CO 2 fl ux and bare soil respiration than variability induced by grazing. Inter-annual variability in soil CO 2 fl ux and bare soil respiration was very high, because of high variability in climate conditions.

  12. Sensitive indicators of Stipa bungeana response to precipitation under ambient and elevated CO2 concentration (United States)

    Shi, Yaohui; Zhou, Guangsheng; Jiang, Yanling; Wang, Hui; Xu, Zhenzhu


    Precipitation is a primary environmental factor in the semiarid grasslands of northern China. With increased concentrations of atmospheric greenhouse gases, precipitation regimes will change, and high-impact weather events may be more common. Currently, many ecophysiological indicators are known to reflect drought conditions, but these indicators vary greatly among species, and few studies focus on the applicability of these drought indicators under high CO2 conditions. In this study, five precipitation levels (- 30%, - 15%, control, + 15%, and + 30%) were used to simulate the effects of precipitation change on 18 ecophysiological characteristics in Stipa bungeana, including leaf area, plant height, leaf nitrogen (N), and chlorophyll content, among others. Two levels of CO2 concentration (ambient, 390 ppm; 550 ppm) were used to simulate the effects of elevated CO2 on these drought indicators. Using gray relational analysis and phenotypic plasticity analysis, we found that total leaf area or leaf number (morphology), leaf water potential or leaf water content (physiology), and aboveground biomass better reflected the water status of S. bungeana under ambient and elevated CO2 than the 13 other analyzed variables. The sensitivity of drought indicators changed under the elevated CO2 condition. By quantifying the relationship between precipitation and the five most sensitive indicators, we found that the thresholds of precipitation decreased under elevated CO2 concentration. These results will be useful for objective monitoring and assessment of the occurrence and development of drought events in S. bungeana grasslands.

  13. Production of activated carbon by waste tire thermochemical degradation with CO2. (United States)

    Betancur, Mariluz; Martínez, Juan Daniel; Murillo, Ramón


    The thermochemical degradation of waste tires in a CO(2) atmosphere without previous treatment of devolatilization (pyrolysis) in order to obtain activated carbons with good textural properties such as surface area and porosity was studied. The operating variables studied were CO(2) flow rate (50 and 150 mL/min), temperature (800 and 900 degrees C) and reaction time (1, 1.5, 2, 2.5 and 3h). Results show a considerable effect of the temperature and the reaction time in the porosity development. Kinetic measurements showed that the reactions involved in the thermochemical degradation of waste tire with CO(2), are similar to those developed in the pyrolysis process carried out under N(2) atmosphere and temperatures below 760 degrees C, for particles sizes of 500 microm and heating rate of 5 degrees C/min. For temperatures higher than 760 degrees C the CO(2) starts to oxidize the remaining carbon black. Activated carbon with a 414-m(2)/g surface area at 900 degrees C of temperature, 150 mL/min of CO(2) volumetric flow and 180 min of reaction time was obtained. In this work it is considering the no reactivity of CO(2) for devolatilization of the tires (up to 760 degrees C), and also the partial oxidation of residual char at high temperature for activation (>760 degrees C). It is confirmed that there are two consecutive stages (devolatilization and activation) developed from the same process.

  14. Synthesis of porous polymer based solid amine adsorbent: Effect of pore size and amine loading on CO2 adsorption. (United States)

    Liu, Fenglei; Chen, Shuixia; Gao, Yanting


    A series of porous polymers was synthesized by a suspension polymerization of divinylbenzene (DVB) and ethylene glycol dimethyl acrylate (EGDMA), which was further functionalized with polyethyleneimine (PEI) for CO2 capture. The results showed that the synthesized DVB and EGDMA (DE) copolymers were an effective support for loading PEI because of its larger pore size and specific surfaces area. It was found that DE (30, 10) loaded with 30wt% PEI exhibited a higher CO2 adsorption amount of 3.28mmol/g at 25°C under dry condition. The CO2 adsorption capacity would decline gradually as the temperature continuously raised, for the reaction between CO2 and amine groups was an exothermic reaction. The kinetics study showed that Avrami kinetic model could accurately describe the whole CO2 adsorption process, suggesting that both physical adsorption and chemical adsorption were involved with the CO2 adsorption process. The intraparticle diffusion and Boyd's film diffusion models were applied to investigate the CO2 diffusion mechanism, the intraparticle diffusion model could well distinguish the rate-limiting step during CO2 adsorption process. This solid amine adsorbent could be regenerated with nitrogen stream at 75°C, and it kept stable CO2 adsorption capacity after eight adsorption-desorption cycles. All these features indicated that this porous polymer based adsorbent has a high potential for CO2 capture and separation from flue gas. Copyright © 2017 Elsevier Inc. All rights reserved.

  15. Subsurface oxide plays a critical role in CO2activation by Cu(111) surfaces to form chemisorbed CO2, the first step in reduction of CO2. (United States)

    Favaro, Marco; Xiao, Hai; Cheng, Tao; Goddard, William A; Yano, Junko; Crumlin, Ethan J


    A national priority is to convert CO 2 into high-value chemical products such as liquid fuels. Because current electrocatalysts are not adequate, we aim to discover new catalysts by obtaining a detailed understanding of the initial steps of CO 2 electroreduction on copper surfaces, the best current catalysts. Using ambient pressure X-ray photoelectron spectroscopy interpreted with quantum mechanical prediction of the structures and free energies, we show that the presence of a thin suboxide structure below the copper surface is essential to bind the CO 2 in the physisorbed configuration at 298 K, and we show that this suboxide is essential for converting to the chemisorbed CO 2 in the presence of water as the first step toward CO 2 reduction products such as formate and CO. This optimum suboxide leads to both neutral and charged Cu surface sites, providing fresh insights into how to design improved carbon dioxide reduction catalysts.

  16. Drought × CO2 interactions in trees: a test of the low-intercellular CO2 concentration (Ci ) mechanism. (United States)

    Kelly, Jeff W G; Duursma, Remko A; Atwell, Brian J; Tissue, David T; Medlyn, Belinda E


    Models of tree responses to climate typically project that elevated atmospheric CO2 concentration (eCa ) will reduce drought impacts on forests. We tested one of the mechanisms underlying this interaction, the 'low Ci effect', in which stomatal closure in drought conditions reduces the intercellular CO2 concentration (Ci ), resulting in a larger relative enhancement of photosynthesis with eCa , and, consequently, a larger relative biomass response. We grew two Eucalyptus species of contrasting drought tolerance at ambient and elevated Ca for 6-9 months in large pots maintained at 50% (drought) and 100% field capacity. Droughted plants did not have significantly lower Ci than well-watered plants, which we attributed to long-term changes in leaf area. Hence, there should not have been an interaction between eCa and water availability on biomass, and we did not detect one. The xeric species did have higher Ci than the mesic species, indicating lower water-use efficiency, but both species exhibited similar responses of photosynthesis and biomass to eCa , owing to compensatory differences in the photosynthetic response to Ci . Our results demonstrate that long-term acclimation to drought, and coordination among species traits may be important for predicting plant responses to eCa under low water availability. © 2015 The Authors. New Phytologist © 2015 New Phytologist Trust.

  17. Occurrence of Volcanic CO2 by Groundwater Flow Systems in the Eifel Mountains, Germany (United States)

    Weyer, K.; May, F.; Ellis, J. C.


    Weyer (2010) showed why and how discharge areas of regional groundwater flow systems are also discharge points of natural and stored CO2. As groundwater flow systems reach to great depth by penetrating aquitards and caprocks any successful design of on-shore geological carbon storage must regard the migration effects groundwater flow systems exert on stored CO2. Eventually all of the CO2 will be dissolved by groundwater and migrate to the discharge areas of these flow systems. By implication there will rarely be the anticipated permanent storage of CO2 in the subsurface. Instead the deep ground water flow will transport the dissolved CO2 into surface waters. A telling example of such a system is the Green River in Utah with its natural discharge points of volcanic CO2 and the artificial discharge point Crystal Geyser, a flowing abandoned well located at the bank of the Green River. The advantage of this situation is that there have been hydrogeological tools developed which allow the determination of the flow path of the groundwater flow systems and their approximate time scale to reach their groundwater discharge areas. These time spans may be as large as 50,000 to 100,000 years. In any case residence times of a thousand years and more would suffice in mitigating the atmospheric effect of CO2 discharge. The above concepts have so far not created much resonance in the scientific and practical world of geologic CO2 storage. Therefore the investigation of groundwater dynamics at areas with natural discharge of volcanic CO2 provides a test for the effect groundwater flow systems will exert on the geologic storage of CO2. The Eifel Mountains in Germany present such a natural laboratory as it contains over a hundred known Tertiary and Quaternary volcanoes. Its discharge points of water carrying CO2 are well-known as they have been used for generations for the production of carbonated mineral waters. For the western part of the Eifel-Mountains, May (2002) listed all

  18. Unraveling the dynamics of magmatic CO2 degassing at Mammoth Mountain, California (United States)

    Pfeiffer, Loic; Wanner, Christoph; Lewicki, Jennifer L.


    The accumulation of magmatic CO2 beneath low-permeability barriers may lead to the formation of CO2-rich gas reservoirs within volcanic systems. Such accumulation is often evidenced by high surface CO2 emissions that fluctuate over time. The temporal variability in surface degassing is believed in part to reflect a complex interplay between deep magmatic degassing and the permeability of degassing pathways. A better understanding of the dynamics of CO2 degassing is required to improve monitoring and hazards mitigation in these systems. Owing to the availability of long-term records of CO2 emissions rates and seismicity, Mammoth Mountain in California constitutes an ideal site towards such predictive understanding. Mammoth Mountain is characterized by intense soil CO2 degassing (up to ∼1000 t d−1) and tree kill areas that resulted from leakage of CO2 from a CO2-rich gas reservoir located in the upper ∼4 km. The release of CO2-rich fluids from deeper basaltic intrusions towards the reservoir induces seismicity and potentially reactivates faults connecting the reservoir to the surface. While this conceptual model is well-accepted, there is still a debate whether temporally variable surface CO2 fluxes directly reflect degassing of intrusions or variations in fault permeability. Here, we report the first large-scale numerical model of fluid and heat transport for Mammoth Mountain. We discuss processes (i) leading to the initial formation of the CO2-rich gas reservoir prior to the occurrence of high surface CO2 degassing rates and (ii) controlling current CO2 degassing at the surface. Although the modeling settings are site-specific, the key mechanisms discussed in this study are likely at play at other volcanic systems hosting CO2-rich gas reservoirs. In particular, our model results illustrate the role of convection in stripping a CO2-rich gas phase from a rising hydrothermal fluid and leading to an accumulation of a large mass of CO2 (∼107–108

  19. Dynamics of soil CO 2 efflux under varying atmospheric CO 2 concentrations reveal dominance of slow processes (United States)

    Dohyoung Kim; Ram Oren; James S. Clark; Sari Palmroth; A. Christopher Oishi; Heather R. McCarthy; Chris A. Maier; Kurt Johnsen


    We evaluated the effect on soil CO2 efflux (FCO2) of sudden changes in photosynthetic rates by altering CO2 concentration in plots subjected to +200 ppmv for 15 years. Five-day intervals of exposure to elevated CO2 (eCO2) ranging 1.0–1.8 times ambient did not affect FCO2. FCO2 did not decrease until 4 months after termination of the long-term eCO2 treatment, longer...

  20. Large CO2 and CH4 release from a flooded formerly drained fen (United States)

    Sachs, T.; Franz, D.; Koebsch, F.; Larmanou, E.; Augustin, J.


    Drained peatlands are usually strong carbon dioxide (CO2) sources. In Germany, up to 4.5 % of the national CO2 emissions are estimated to be released from agriculturally used peatlands and for some peatland-rich northern states, such as Mecklenburg-Western Pomerania, this share increases to about 20%. Reducing this CO2 source and restoring the peatlands' natural carbon sink is one objective of large-scale nature protection and restoration measures, in which 37.000 ha of drained and degraded peatlands in Mecklenburg-Western Pomerania are slated for rewetting. It is well known, however, that in the initial phase of rewetting, a reduction of the CO2 source strength is usually accompanied by an increase in CH4 emissions. Thus, whether and when the intended effects of rewetting with regard to greenhouse gases are achieved, depends on the balance of CO2 and CH4 fluxes and on the duration of the initial CH4 emission phase. In 2013, a new Fluxnet site went online at a flooded formerly drained river valley fen site near Zarnekow, NE Germany (DE-Zrk), to investigate the combined CO2 and CH4 dynamics at such a heavily degraded and rewetted peatland. The site is dominated by open water with submerged and floating vegetation and surrounding Typha latifolia.Nine year after rewetting, we found large CH4 emissions of 53 g CH4 m-2 a-1 from the open water area, which are 4-fold higher than from the surrounding vegetation zone (13 g CH4 m-2 a-1). Surprisingly, both the open water and the vegetated area were net CO2 sources of 158 and 750 g CO2 m-2 a-1, respectively. Unusual meteorological conditions with a warm and dry summer and a mild winter might have facilitated high respiration rates, particularly from temporally non-inundated organic mud in the vegetation zone.

  1. Geochemical monitoring for detection of CO_{2} leakage from subsea storage sites (United States)

    García-Ibáñez, Maribel I.; Omar, Abdirahman M.; Johannessen, Truls


    Carbon Capture and Storage (CCS) in subsea geological formations is a promising large-scale technology for mitigating the increases of carbon dioxide (CO2) in the atmosphere. However, detection and quantification of potential leakage of the stored CO2 remains as one of the main challenges of this technology. Geochemical monitoring of the water column is specially demanding because the leakage CO2 once in the seawater may be rapidly dispersed by dissolution, dilution and currents. In situ sensors capture CO2 leakage signal if they are deployed very close to the leakage point. For regions with vigorous mixing and/or deep water column, and for areas far away from the leakage point, a highly sensitive carbon tracer (Cseep tracer) was developed based on the back-calculation techniques used to estimate anthropogenic CO2 in the water column. Originally, the Cseep tracer was computed using accurate discrete measurements of total dissolved inorganic carbon (DIC) and total alkalinity (AT) in the Norwegian Sea to isolate the effect of natural submarine vents in the water column. In this work we assess the effect of measurement variables on the performance of the method by computing the Cseep tracer twice: first using DIC and AT, and second using partial pressure of CO2 (pCO2) and pH. The assessment was performed through the calculation of the signal to noise ratios (STNR). We found that the use of the Cseep tracer increases the STNR ten times compared to the raw measurement data, regardless of the variables used. Thus, while traditionally the pH-pCO2 pair generates the greatest uncertainties in the oceanic CO2 system, it seems that the Cseep technique is insensitive to that issue. On the contrary, the use of the pCO2-pH pair has the highest CO2 leakage detection and localization potential due to the fact that both pCO2 and pH can currently be measured at high frequency and in an autonomous mode.

  2. Development of a stable MnCo2O4 cocatalyst for photocatalytic CO2 reduction with visible light. (United States)

    Wang, Sibo; Hou, Yidong; Wang, Xinchen


    The synthesis of uniform MnCo2O4 microspheres and their cooperation with a visible light harvester to achieve efficient photocatalytic CO2 reduction under ambient conditions are reported here. The MnCo2O4 materials were prepared by a facile two-step solvothermal-calcination method and were characterized by XRD, SEM, TEM, EDX, XPS, elemental mapping, and N2 adsorption measurements. By using the MnCo2O4 microspheres as a heterogeneous cocatalyst, the photocatalytic performance of the CO2-to-CO conversion catalysis was remarkably enhanced, and no decrease in the promotional effect of the cocatalyst was observed after repeatedly operating the reaction for six cycles. (13)CO2 isotope tracer experiments verified that the CO product originated from the CO2 reactant. The effect of synthetic conditions and various reaction parameters on the photocatalytic activity of the system were investigated and optimized. The stability of the MnCo2O4 cocatalyst in the CO2 reduction system was confirmed by several techniques. Moreover, a possible mechanism for MnCo2O4-cocatalyzed CO2 photoreduction catalysis is proposed.

  3. Climate, CO2, and demographic impacts on global wildfire emissions (United States)

    Knorr, W.; Jiang, L.; Arneth, A.


    Wildfires are by far the largest contributor to global biomass burning and constitute a large global source of atmospheric traces gases and aerosols. Such emissions have a considerable impact on air quality and constitute a major health hazard. Biomass burning also influences the radiative balance of the atmosphere and is thus not only of societal, but also of significant scientific interest. There is a common perception that climate change will lead to an increase in emissions as hot and dry weather events that promote wildfire will become more common. However, even though a few studies have found that the inclusion of CO2 fertilization of photosynthesis and changes in human population patterns will tend to somewhat lower predictions of future wildfire emissions, no such study has included full ensemble ranges of both climate predictions and population projections, including the effect of different degrees of urbanisation. Here, we present a series of 124 simulations with the LPJ-GUESS-SIMFIRE global dynamic vegetation - wildfire model, including a semi-empirical formulation for the prediction of burned area based on fire weather, fuel continuity and human population density. The simulations comprise Climate Model Intercomparison Project 5 (CMIP5) climate predictions from eight Earth system models using two Representative Concentration Pathways (RCPs) and five scenarios of future human population density based on the series of Shared Socioeconomic Pathways (SSPs), sensitivity tests for the effect of climate and CO2, as well as a sensitivity analysis using two alternative parameterisations of the semi-empirical burned-area model. Contrary to previous work, we find no clear future trend of global wildfire emissions for the moderate emissions and climate change scenario based on the RCP 4.5. Only historical population change introduces a decline by around 15 % since 1900. Future emissions could either increase for low population growth and fast urbanisation, or

  4. Extreme CO2 disturbance and the resilience of soil microbial communities (United States)

    McFarland, Jack W.; Waldrop, Mark P.; Haw, Monica


    Carbon capture and storage (CSS) technology has the potential to inadvertently release large quantities of CO2 through geologic substrates and into surrounding soils and ecosystems. Such a disturbance has the potential to not only alter the structure and function of plant and animal communities, but also soils, soil microbial communities, and the biogeochemical processes they mediate. At Mammoth Mountain, we assessed the soil microbial community response to CO2 disturbance (derived from volcanic ‘cold’ CO2) that resulted in localized tree kill; soil CO2 concentrations in our study area ranged from 0.6% to 60%. Our objectives were to examine how microbial communities and their activities are restructured by extreme CO2 disturbance, and assess the response of major microbial taxa to the reintroduction of limited plant communities following an extensive period (15–20 years) with no plants. We found that CO2-induced tree kill reduced soil carbon (C) availability along our sampling transect. In response, soil microbial biomass decreased by an order of magnitude from healthy forest to impacted areas. Soil microorganisms were most sensitive to changes in soil organic C, which explained almost 60% of the variation for microbial biomass C (MBC) along the CO2gradient. We employed phospholipid fatty acid analysis and quantitative PCR (qPCR) to determine compositional changes among microbial communities in affected areas and found substantial reductions in microbial biomass linked to the loss of soil fungi. In contrast, archaeal populations responded positively to the CO2 disturbance, presumably due to reduced competition of bacteria and fungi, and perhaps unique adaptations to energy stress. Enzyme activities important in the cycling of soil C, nitrogen (N), and phosphorus (P) declined with increasing CO2, though specific activities (per unit MBC) remained stable or increased suggesting functional redundancy among restructured communities. We conclude that both the

  5. Microbial growth under a high-pressure CO2 environment (United States)

    Thompson, J. R.; Hernandez, H. H.


    Carbon capture and storage (CCS) of CO2 has the potential to significantly reduce the emission of greenhouse gasses associated with fossil fuel combustion. The largest potential for storing captured CO2 in the United Sates is in deep geologic saline formations. Currently, little is known about the effects of CO2 storage on biologically active microbial communities found in the deep earth biosphere. Therefore, to investigate how deep earth microbial communities will be affected by the storage of CO2, we have built a high-pressure microbial growth system in which microbial samples are subjected to a supercritical CO2 (scCO2) environment. Recently we have isolated a microbial consortium that is capable of growth and extracellular matrix production in nutrient media under a supercritical CO2 headspace. This consortium was cultivated from hydrocarbon residues associated with saline formation waters and includes members of the gram-positive Bacillus genus. The cultivation of actively growing cells in an environment containing scCO2 is unexpected based on previous experimental evidence of microbial sterilization attributed to the acidic, desiccating, and solvent-like properties of scCO2. Such microbial consortia have potential for development as (i) biofilm barriers for geological carbon-dioxide sequestration, and as (ii) agents of biocatalysis in environmentally-friendly supercritical (sc) CO2 solvent systems. The discovery that microbes can remain biologically active, and grow, in these environments opens new frontiers for the use of self-regenerating biological systems in engineering applications.

  6. Metal-Free Carbon Materials for CO2 Electrochemical Reduction. (United States)

    Duan, Xiaochuan; Xu, Jiantie; Wei, Zengxi; Ma, Jianmin; Guo, Shaojun; Wang, Shuangyin; Liu, Huakun; Dou, Shixue


    The rapid increase of the CO2 concentration in the Earth's atmosphere has resulted in numerous environmental issues, such as global warming, ocean acidification, melting of the polar ice, rising sea level, and extinction of species. To search for suitable and capable catalytic systems for CO2 conversion, electrochemical reduction of CO2 (CO2 RR) holds great promise. Emerging heterogeneous carbon materials have been considered as promising metal-free electrocatalysts for the CO2 RR, owing to their abundant natural resources, tailorable porous structures, resistance to acids and bases, high-temperature stability, and environmental friendliness. They exhibit remarkable CO2 RR properties, including catalytic activity, long durability, and high selectivity. Here, various carbon materials (e.g., carbon fibers, carbon nanotubes, graphene, diamond, nanoporous carbon, and graphene dots) with heteroatom doping (e.g., N, S, and B) that can be used as metal-free catalysts for the CO2 RR are highlighted. Recent advances regarding the identification of active sites for the CO2 RR and the pathway of reduction of CO2 to the final product are comprehensively reviewed. Additionally, the emerging challenges and some perspectives on the development of heteroatom-doped carbon materials as metal-free electrocatalysts for the CO2 RR are included. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Waste benefits of CO2 policies in Japan. (United States)

    Gielen, D J; Moriguchi, Y


    A linear programming model REAP (Regional Environmental strategy Analysis Program) has been developed for the analysis of the consequences of a CO2 tax for petrochemical products such as plastics (CO2, carbon dioxide, is the most important greenhouse gas). Special attention has been paid to the impacts on waste management. The results suggest that a 10,000 Y t(-1) CO2 tax would result in a significant reduction of CO2 emissions in the petrochemical life cycle, ranging from 40 Mt in 2015 to 70 Mt CO2 in later decades (more than 50% emission reduction). Waste quantities will be reduced simultaneously. The CO2 tax results in an 18% reduction of plastic waste weight in 2015 (3 Mt waste). Lower tax levels that may be politically more acceptable would result in proportionally lower environmental benefits. CO2 benefits and waste benefits of a CO2 tax are of equal importance in policy terms. Apart from changes in waste volume, CO2 taxes would affect the cost-effectiveness of waste handling technologies. Energy recovery in industrial kilns may replace conventional waste incineration. Recycling constitutes half of the total waste treatment. Given these results, current investments in new incineration capacity may suffer from insufficient waste availability during the next two decades in case CO2 taxes are introduced. A third effect of a CO2 tax is a significant increase of waste transportation. The results show that this increase is concentrated in the central part of Honshu (Kinki, Chubu & Kanto). Such transportation can result in new local environmental impacts that should be analysed in more detail. Given the strong impact of CO2 taxes on waste quantities and waste treatment it is recommended to co-ordinate CO2 policies and solid waste policies.

  8. Forecasting CO2 emissions in the Persian Gulf States

    Directory of Open Access Journals (Sweden)

    F.A. Olabemiwo


    Full Text Available The Persian Gulf States (Bahrain. Iran, Iraq, Qatar, Saudi Arabia, Kuwait and United Arab Emirate have dominated the oil and gas sector since the discovery of oil in the region. They are the world largest producers of crude oil, producing about 35 and 25 percent of the world natural gas and crude oil respectively. The use of fossil fuels is directly linked to the release of CO2 into the environment. CO2 accounts for 58.8 percent of all greenhouse gases released via human activities, consequently, presenting a malign impact on the environment through climate change, global warming, biodiversity, acid rain and desertification among others. Due to its importance, the data on CO2 emission obtained from US EIA from 1980 – 2010 was regressed using least square techniques and projections were made to the year 2050. Results indicated that each country’s p-value was less than 0.05 which implies that the models can be used for predicting CO2 emissions into the future. The data shows the emission of CO2 by countries from the highest to the lowest in 2016 as: Iran (590.72 Mtonnes; 7.58 tonnes of CO2/person > Saudi Arabia (471.82 Mtonnes; 18 tonnes of CO2/person > UAE (218.58 Mtonnes; 41.31 tonnes of CO2/person > Iraq (114.01 Mtonees; 3.71 tonnes of CO2/person > Kuwait (92.58 Mtonnes; 36.31 tonnes of CO2/person > Qatar (68.26 Mtonnes; 37 tonnes of CO2/person > Bahrain (33.16 Mtonnes; 27.5 tonnes of CO2/person". The sequence from the country with highest emission (Iran to the country with lowest emission (Bahrain will remain the same until 2050. A projection depicting a 7.7 percent yearly increase in CO2 emission in the Persian Gulf States.

  9. Diffuse CO2 fluxes from Santiago and Congro volcanic lakes (São Miguel, Azores archipelago) (United States)

    Andrade, César; Cruz, José; Viveiros, Fátima; Branco, Rafael


    Diffuse CO2 degassing occurring in Santiago and Congro lakes, both located in depressions associated to maars from São Miguel Island (Azores, Portugal), was studied through detailed flux measurements. Four sampling campaigns were developed between 2013 and 2016 in each water body, split by the cold and wet seasons. São Miguel has an area of 744.6 km2, being the largest island of the archipelago. The geology of the island is dominated by three quiescent central volcanoes (Sete Cidades, Fogo and Furnas), linked by volcanic fissural zones (Picos and Congro Fissural Volcanic systems). The oldest volcanic systems of the island are located in its eastern part (Povoação-Nordeste). Santiago lake, with a surface area of 0.26 km2 and a depth of 30.5 m, is located inside a maar crater in the Sete Cidades volcano at an altitude of 355 m. The watershed of the lake has an area of 0.97 km2 and a surface flow estimated as 1.54x10 m3/a. A total of 1612 CO2 flux measurements using the accumulation chamber method were made at Santiago lake, 253 in the first campaign (November 2013), and 462, 475 and 422 in the three other campaigns, respectively, in April 2014, September 2016 and December 2016. The total CO2 flux estimated for this lake varies between 0.4 t d-1 and 0.59 t d-1, for the surveys performed, respectively, in November 2013 and September 2016; higher CO2 outputs of 1.57 and 5.87 t d-1 were calculated for the surveys carried out in April 2014 and December 2016. These higher CO2 emissions were associated with a period without water column stratification. Similarly to Santiago lake, Congro lake is located inside a maar, in the Congro Fissural Volcanic system, and has a surface area of 0.04 km2 with 18.5 m depth and a storage of about 2.4x105 m3/a. The lake, located at an altitude of 420 m, is fed by a watershed with an area of 0.33 km2 and a runoff estimated as about 8x104 m3/a. In Congro lake a total of 713 CO2 flux measurements were performed during four surveys from

  10. Environmental Assessment for Potential Impacts of Ocean CO2 Storage on Marine Biogeochemical Cycles (United States)

    Yamada, N.; Tsurushima, N.; Suzumura, M.; Shibamoto, Y.; Harada, K.


    Ocean CO2 storage that actively utilizes the ocean potential to dissolve extremely large amounts of CO2 is a useful option with the intent of diminishing atmospheric CO2 concentration. CO2 storage into sub-seabed geological formations is also considered as the option which has been already put to practical reconnaissance in some projects. Direct release of CO2 in the ocean storage and potential CO2 leakage from geological formations into the bottom water can alter carbonate system as well as pH of seawater. It is essential to examine to what direction and extent chemistry change of seawater induced by CO2 can affect the marine environments. Previous studies have shown direct and acute effects by increasing CO2 concentrations on physiology of marine organisms. It is also a serious concern that chemistry change can affect the rates of chemical, biochemical and microbial processes in seawater resulting in significant influences on marine biogeochemical cycles of the bioelements including carbon, nutrients and trace metals. We, AIST, have conducted a series of basic researches to assess the potential impacts of ocean CO2 storage on marine biogeochemical processes including CaCO3 dissolution, and bacterial and enzymatic decomposition of organic matter. By laboratory experiments using a special high pressure apparatus, the improved empirical equation was obtained for CaCO3 dissolution rate in the high CO2 concentrations. Based on the experimentally obtained kinetics with a numerical simulation for a practical scenario of oceanic CO2 sequestration where 50 Mton CO2 per year is continuously injected to 1,000-2,500 m depth within 100 x 333 km area for 30 years, we could illustrate precise 3-D maps for the predicted distributions of the saturation depth of CaCO3, in situ Ω value and CaCO3 dissolution rate in the western North Pacific. The result showed no significant change in the bathypelagic CaCO3 flux due to chemistry change induced by ocean CO2 sequestration. Both

  11. Biofiksasi CO2 Oleh Mikroalga Chlamydomonas sp dalam Photobioreaktor Tubular

    Directory of Open Access Journals (Sweden)

    Hadiyanto Hadiyanto


    Full Text Available Mikroalga memiliki potensi dalam membiofiksasi CO2 dan dapat dimanfaatkan untuk mengurangi kadar CO2 dalam gas pencemar. Pertumbuhan mikroalga sangat dipengaruhi oleh konsentrasi gas CO2 di dalam gas pencemar. Tujuan penelitian ini adalah untuk mengeetahui kemampuan mikroalga Chlamydomonas sp yang dikultivasi dalam photobioreaktor tubular dalam penyerapan gas CO2 serta untuk mengetahui konsentrasi maksimum gas CO2 dalam umpan untuk memproduksi biomasa mikroalga yang optimal. Percobaan dilakukan dnegan memvariasi laju alir dari 0.03 -0.071 L/menit dan konsentrasi CO2 dalam umpan 10-30%. Hasil penelitian menunjukkan bahwa biomasa mikroalga dapat diproduksi dengan maksimal dengan konsentrasi gas CO2 20% dengan laju alir 0.07 L/min. Semakin tinggi laju alir maka produksi biomasa alga semakin besar. Kecepatan pertumbuhan alga maksimum terjadi pada 0.31 /hari. Pada konsentrasi gas CO2 30%, terjadi substrate inhibition yang disebabkan carbon dalam bentuk ion bicarbonate tidak dapat dikonsumsi lagi di dalam kultur alga. Kata kunci : Mikroalga, chlamydomonas sp, biofiksasi CO2, biogas Abstract Microalgae have a potential for CO2 biofixation and therefore can be used to reduce the CO2 concentration in the gas pollutants. Moreover, microalgae growth is strongly affected by the concentration of CO2 in the exhaust gas pollutants. The objective of this research was to investigate the ability of microalgae Chlamydomonas sp which was cultivated in a tubular photobioreactor for CO2 absorption as well as to determine the maximum concentration of CO2 in the feed gas to obtain optimum microalgae biomass. The experiments were performed by varying the gas flow rate of 0.03 -0.071 L / min and the concentration of CO2 in the feed of 10-30%. The results showed that the maximum biomass of microalgae can be produced with CO2 concentration of 20% vol with a flow rate of 0.07 L / min. The result also showed that increasing the gas flow rate, the greater of the production of

  12. Air-sea CO2 fluxes along the coast of Chile: From CO2 outgassing in central northern upwelling waters to CO2 uptake in southern Patagonian fjords


    Torres, Rodrigo; Duarte, Carlos M.; Ruiz-Halpern, Sergio; Fukasawa, Masao


    Carbon system parameters measured during several expeditions along the coast of Chile (23°S-56°S) have been used to show the main spatial and temporal trends of air-sea CO2 fluxes in the coastal waters of the eastern South Pacific. Chilean coastal waters are characterized by strong pCO2 gradients between the atmosphere and the surface water, with high spatial and temporal variability. On average, the direction of the carbon flux changes from CO2 outgassing at the coastal upwelling region to C...

  13. Recent enlightening strategies for co2 capture: a review