WorldWideScience

Sample records for waals forces accounts

  1. Evaluation of a density functional with account of van der Waals forces using experimental data of H2 physisorption on Cu(111)

    DEFF Research Database (Denmark)

    Lee, Kyuho; Kelkkanen, Kari André; Berland, Kristian

    2011-01-01

    Detailed experimental data for physisorption potential-energy curves of H2 on low-indexed faces of Cu challenge theory. Recently, density-functional theory has been developed to also account for nonlocal correlation effects, including van der Waals forces. We show that one functional, denoted vd...

  2. The van der Waals force and gravitational force in matter

    CERN Document Server

    Zhang, Lei

    2013-01-01

    It was thought that the van der Waals force and gravitational force were distinct. Now a model is used to describe the attraction between macroscopic objects according to van der Waals interaction. The force between two objects with thermal equilibrium deviates from the law of universal gravitation slightly, and the gravity on the earth is explained approximately. We argue that the gravitational force is the van der Waals force actually. In other words, the gravitational force and mass are related to the quantum fluctuations of electron clouds in atoms, and these parameters are dictated by dielectric susceptibility.

  3. Van der Waals forces and spatial dispersion

    OpenAIRE

    2009-01-01

    A version of the Green's functions theory of the Van der Waals forces which can be conveniently used in the presence of spatial dispersion is presented. The theory is based on the fluctuation-dissipation theorem and is valid for interacting bodies, separated by vacuum. Objections against theories acounting for the spatial dispersion are discussed.

  4. Van der Waals forces in pNRQED

    Energy Technology Data Exchange (ETDEWEB)

    Shtabovenko, Vladyslav [Physik-Department, Technische Universität München, James-Franck-Str. 1, 85748 Garching (Germany)

    2016-01-22

    We report on the calculation of electromagnetic van der Waals forces [1] between two hydrogen atoms using non-relativistic effective field theories (EFTs) of QED for large and small momentum transfers with respect to the intrinsic energy scale of the hydrogen atom. Our results reproduce the well known London and Casimir-Polder forces.

  5. The Economics of van der Waals Force Engineering

    Science.gov (United States)

    Pinto, Fabrizio

    2008-01-01

    As micro-electro-mechanical system (MEMS) fabrication continues on an ever-decreasing scale, new technological challenges must be successfully negotiated if Moore's Law is to be an even approximately valid model of the future of device miniaturization. Among the most significant obstacles is the existence of strong surface forces related to quantum mechanical van der Waals interatomic interactions, which rapidly diverge as the distance between any two neutral boundaries decreases. The van der Waals force is a contributing factor in several device failures and limitations, including, for instance, stiction and oscillator non-linearities. In the last decade, however, it has been conclusively shown that van der Waals forces are not just a MEMS limitation but can be engineered in both magnitude and sign so as to enable classes of proprietary inventions which either deliver novel capabilities or improve upon existing ones. The evolution of van der Waals force research from an almost exclusively theoretical field in quantum-electro-dynamics to an enabling nanotechnology discipline represents a useful example of the ongoing paradigm shift from government-centered to private-capital funded R&D in cutting-edge physics leading to potentially profitable products. In this paper, we discuss the reasons van der Waals force engineering may lead to the creation of thriving markets both in the short and medium terms by highlighting technical challenges that can be competitively addressed by this novel approach. We also discuss some notable obstacles to the cultural transformation of the academic research community required for the emergence of a functional van der Waals force engineering industry worldwide.

  6. Van der Waals Force Assisted Heat Transfer

    Science.gov (United States)

    Sasihithlu, K.; Pendry, J. B.; Craster, R. V.

    2017-02-01

    Phonons (collective atomic vibrations in solids) are more effective in transporting heat than photons. This is the reason why the conduction mode of heat transport in nonmetals (mediated by phonons) is dominant compared to the radiation mode of heat transport (mediated by photons). However, since phonons are unable to traverse a vacuum gap (unlike photons), it is commonly believed that two bodies separated by a gap cannot exchange heat via phonons. Recently, a mechanism was proposed [J. B. Pendry, K. Sasihithlu, and R. V. Craster, Phys. Rev. B 94, 075414 (2016)] by which phonons can transport heat across a vacuum gap - through the Van der Waals interaction between two bodies with gap less than the wavelength of light. Such heat transfer mechanisms are highly relevant for heating (and cooling) of nanostructures; the heating of the flying heads in magnetic storage disks is a case in point. Here, the theoretical derivation for modelling phonon transmission is revisited and extended to the case of two bodies made of different materials separated by a vacuum gap. Magnitudes of phonon transmission, and hence the heat transfer, for commonly used materials in the micro- and nano-electromechanical industry are calculated and compared with the calculation of conduction heat transfer through air for small gaps as well as the heat transfer calculation due to photon exchange.

  7. Variations of the Lifshitz-van der Waals force between metals immersed in liquids

    CERN Document Server

    Esquivel-Sirvent, R

    2010-01-01

    We present a theoretical calculation of the Lifshitz-van der Waals force between two metallic slabs embedded in a fluid, taking into account the change of the Drude parameters of the metals when in contact with liquids of different index of refraction. For the three liquids considered in this work, water, $CCl_3F$ and $ CBr_3F$ the change in the Drude parameters of the metal imply a difference of up to 15% in the determination of the force at short separations. These variations in the force is bigger for liquids with a higher index of refraction.

  8. Influence of van der Waals forces on the adsorption structure of benzene on silicon

    CERN Document Server

    Johnston, Karen; Lundqvist, Bengt I; Nieminen, Risto M

    2008-01-01

    Two different adsorption configurations of benzene on the Si(001)-(2x1) surface, the tight-bridge and butterfly structures, were studied using density functional theory. Several exchange and correlation functionals were used, including the recently developed vdW-DF functional, which accounts for the effect of van der Waals forces. In contrast to the PBE, revPBE and other GGA functionals, the vdW-DF functional finds that, for most coverages, the adsorption energy of the butterfly structure is greater than that of the tight-bridge structure.

  9. Strong Van der Waals force in the hadron physics

    CERN Document Server

    Sawada, T

    2000-01-01

    Possible strong Van der Waals interaction between hadrons is searched in the P-wave amplitude of the pi-pi scattering by removing the cut of the two-pion exchange spectrum as well as the unitarity cut.

  10. Kinetic Roughening and Material Optical Properties Influence on Van der Waals/Casimir Forces

    NARCIS (Netherlands)

    van Zwol, P. J.; Palasantzas, G.

    Atomic force microscopy measurements and force theory calculations using the Lifshitz theory show that van der Waals/Casimir dispersive forces have a strong dependence on surface roughness and material optical properties. It is found that at separations below 100 nm the roughness effect is

  11. Density-functional calculation of van der Waals forces for free-electron-like surfaces

    DEFF Research Database (Denmark)

    Hult, E.; Hyldgaard, P.; Rossmeisl, Jan;

    2001-01-01

    A recently proposed general density functional for asymptotic van der Waals forces is used to calculate van der Waals coefficients and reference-plane positions for realistic low-indexed Al surfaces. Results are given for a number of atoms and molecules outside the surfaces, as well as for the in......A recently proposed general density functional for asymptotic van der Waals forces is used to calculate van der Waals coefficients and reference-plane positions for realistic low-indexed Al surfaces. Results are given for a number of atoms and molecules outside the surfaces, as well...... as for the interaction between the surfaces themselves. The densities and static image-plane positions that are needed as input in the van der Waals functional are calculated self-consistently within density-functional theory using the generalized-gradient approximation, pseudopotentials, and plane waves. This study...... shows that the van der Waals density functional is applicable to realistic surfaces. The need for physically correct surface models, especially for open surfaces, is also illustrated. Finally the parameters for the anisotropic interaction of O-2 with Al are calculated....

  12. Non-additivity of molecule-surface van der Waals potentials from force measurements.

    Science.gov (United States)

    Wagner, Christian; Fournier, Norman; Ruiz, Victor G; Li, Chen; Müllen, Klaus; Rohlfing, Michael; Tkatchenko, Alexandre; Temirov, Ruslan; Tautz, F Stefan

    2014-11-26

    Van der Waals (vdW) forces act ubiquitously in condensed matter. Despite being weak on an atomic level, they substantially influence molecular and biological systems due to their long range and system-size scaling. The difficulty to isolate and measure vdW forces on a single-molecule level causes our present understanding to be strongly theory based. Here we show measurements of the attractive potential between differently sized organic molecules and a metal surface using an atomic force microscope. Our choice of molecules and the large molecule-surface separation cause this attraction to be purely of vdW type. The experiment allows testing the asymptotic vdW force law and its validity range. We find a superlinear growth of the vdW attraction with molecular size, originating from the increased deconfinement of electrons in the molecules. Because such non-additive vdW contributions are not accounted for in most first-principles or empirical calculations, we suggest further development in that direction.

  13. Competition of van der Waals and chemical forces on gold–sulfur surfaces and nanoparticles

    DEFF Research Database (Denmark)

    Reimers, Jeffrey R.; Ford, Michael J.; Marcuccio, Sebastian M.

    2017-01-01

    Chemists generally believe that covalent and ionic bonds form much stronger links between atoms than the van der Waals force does. However, this is not always so. We present cases in which van der Waals dispersive forces introduce new competitive bonding possibilities rather than just modulating...... traditional bonding scenarios. Although the new possibilities could arise from any soft–soft chemical interaction, we focus on bonding between gold atoms and alkyl or arylsulfur ligands, RS. Consideration of all the interactions at play in sulfur-protected gold surfaces and gold nanoparticles is necessary...

  14. Van der Waals interaction torque and force between dielectrically anisotropic layered media

    CERN Document Server

    Lu, Bing-Sui

    2016-01-01

    We analyse the van der Waals interaction for a pair of dielectrically anisotropic plane-layered media interacting across a dielectrically isotropic medium. We investigate the van der Waals torque and force for the following cases: (i) a pair of single anisotropic layers, (ii) a single anisotropic layer interacting with a multilayered slab consisting of alternating anisotropic and isotropic layers, and (iii) a pair of multilayered slabs each consisting of alternating anisotropic and isotropic layers, looking at the cases where the optical axes lie parallel and/or perpendicular to the plane of the layers. For the first case, the optical axes of the oppositely facing anisotropic layers of the two interacting slabs generally have an angular mismatch, and within each multilayered slab the optical axes may either be the same, or undergo constant angular increments across the anisotropic layers. In particular, we examine how the behaviors of the van der Waals torque and force can be "tuned" by adjusting the layer th...

  15. Influence of dielectric properties on van der Waals/Casimir forces in solid-liquid systems

    NARCIS (Netherlands)

    van Zwol, P. J.; Palasantzas, G.; De Hosson, J. Th. M.

    In this paper, we present calculations of van der Waals/Casimir forces, described by Lifshitz theory, for the solid-liquid-solid system using measured dielectric functions of all involved materials for the wavelength range from millimeters down to subnanometers. It is shown that even if the

  16. Theoretical investigation of van der Waals forces between solid surfaces at nanoscales

    NARCIS (Netherlands)

    Kudryavtsev, Y.V.; Gelinck, E.R.M.; Fischer, H.R.

    2009-01-01

    A theoretical investigation of van der Waals forces acting between two solid silicon surfaces at separations from zero to approximately 20 nm is presented. We focused our efforts on the analysis of different factors that can cause deviations from the classical pressure-distance dependence p ∼ 1/D3.

  17. Influence of ultrathin water layer on the van der Waals/Casimir force between gold surfaces

    NARCIS (Netherlands)

    Palasantzas, G.; Svetovoy, V. B.; van Zwol, P. J.

    In this paper we investigate the influence of ultrathin water layer (similar to 1-1.5 nm) on the van der Waals/Casimir force between gold surfaces. Adsorbed water is inevitably present on gold surfaces at ambient conditions as jump-up-to contact during adhesion experiments demonstrate. Calculations

  18. Theoretical investigation of van der Waals forces between solid surfaces at nanoscales

    NARCIS (Netherlands)

    Kudryavtsev, Y.V.; Gelinck, E.R.M.; Fischer, H.R.

    2009-01-01

    A theoretical investigation of van der Waals forces acting between two solid silicon surfaces at separations from zero to approximately 20 nm is presented. We focused our efforts on the analysis of different factors that can cause deviations from the classical pressure-distance dependence p ∼ 1/D3.

  19. Underwater adhesion of abalone: The role of van der Waals and capillary forces

    Energy Technology Data Exchange (ETDEWEB)

    Lin, A.Y.M., E-mail: albertlin22@yahoo.com [Materials Science and Engineering Program, University of California, San Diego, La Jolla, CA 92093 (United States); Brunner, R. [Department of Mechanical and Aerospace Engineering, University of California, San Diego, La Jolla, CA 92093 (United States)] [Department of Nanoengineering, University of California, San Diego, La Jolla, CA 92093 (United States); Chen, P.Y. [Materials Science and Engineering Program, University of California, San Diego, La Jolla, CA 92093 (United States); Talke, F.E. [Department of Mechanical and Aerospace Engineering, University of California, San Diego, La Jolla, CA 92093 (United States)] [Center for Magnetic Recording Research, University of California, San Diego, La Jolla, CA 92093 (United States); Meyers, M.A. [Department of Mechanical and Aerospace Engineering, University of California, San Diego, La Jolla, CA 92093 (United States)] [Department of Nanoengineering, University of California, San Diego, La Jolla, CA 92093 (United States)] [Materials Science and Engineering Program, University of California, San Diego, La Jolla, CA 92093 (United States)

    2009-08-15

    The observation of the pedal foot of the red abalone Haliotis rufescens reveals the presence of micrometer-scaled setae terminating in nanometer-sized cylindrical fibrils, with some resemblance to those found on the gecko foot. Atomic force microscopy (AFM) pull-off force measurements on a single seta are compared with theoretical estimates for van der Waals attraction obtained through the Johnson-Kendall-Roberts (JKR) equation, approximately 600 nN, and show agreement. The use of the JKR equation is justified through an analysis of the shape of the fibril extremities (parabolic) as well as their diameter ({approx}200 nm). Measurements under varying humidity conditions indicate that additional capillary interactions play a role, since the pull-off force increases with humidity. It is proposed that both van der Waals and capillary forces play a role in the attachment mechanism of H. rufescens, effectively enabling suction to reach its theoretical limit. Bulk pull-off force measurements on entire live animals yield an average detachment stress of 115 kPa, consistent with theoretical estimates. The setae and nanoscale fibril terminations enable compliance to surfaces with a variety of roughnesses, effectively sealing the interface, in addition to providing capillary and van der Waals forces.

  20. Effects of the van der Waals Force on the Dynamics Performance for a Micro Resonant Pressure Sensor

    Directory of Open Access Journals (Sweden)

    Lizhong Xu

    2016-01-01

    Full Text Available The micro resonant pressure sensor outputs the frequency signals where the distortion does not take place in a long distance transmission. As the dimensions of the sensor decrease, the effects of the van der Waals forces should be considered. Here, a coupled dynamic model of the micro resonant pressure sensor is proposed and its coupled dynamic equation is given in which the van der Waals force is considered. By the equation, the effects of the van der Waals force on the natural frequencies and vibration amplitudes of the micro resonant pressure sensor are investigated. Results show that the natural frequency and the vibrating amplitudes of the micro resonant pressure sensor are affected significantly by van der Waals force for a small clearance between the film and the base plate, a small initial tension stress of the film, and some other conditions.

  1. Cl-intercalated graphene on SiC: Influence of van der Waals forces

    KAUST Repository

    Cheng, Yingchun

    2013-01-01

    The atomic and electronic structures of Cl-intercalated epitaxial graphene on SiC are studied by first-principles calculations. By increasing the Cl concentration, doping levels from n-type to slightly p-type are achieved on the SiC(0001) surface, while a wider range of doping levels is possible on the SiC(0001̄) surface. We find that the Cl atoms prefer bonding to the substrate rather than to the graphene. By varying the Cl concentration the doping level can be tailored. Consideration of van der Waals forces improves the distance between the graphene and the substrate as well as the binding energy, but it is not essential for the formation energy. For understanding the doping mechanism the introduction of non-local van der Waals contributions to the exchange correlation functional is shown to be essential. Copyright © EPLA, 2013.

  2. Van der Waals force: a dominant factor for reactivity of graphene.

    Science.gov (United States)

    Lee, Jong Hak; Avsar, Ahmet; Jung, Jeil; Tan, Jun You; Watanabe, K; Taniguchi, T; Natarajan, Srinivasan; Eda, Goki; Adam, Shaffique; Castro Neto, Antonio H; Özyilmaz, Barbaros

    2015-01-14

    Reactivity control of graphene is an important issue because chemical functionalization can modulate graphene's unique mechanical, optical, and electronic properties. Using systematic optical studies, we demonstrate that van der Waals interaction is the dominant factor for the chemical reactivity of graphene on two-dimensional (2D) heterostructures. A significant enhancement in the chemical stability of graphene is achieved by replacing the common SiO2 substrate with 2D crystals such as an additional graphene layer, WS2, MoS2, or h-BN. Our theoretical and experimental results show that its origin is a strong van der Waals interaction between the graphene layer and the 2D substrate. This results in a high resistive force on graphene toward geometric lattice deformation. We also demonstrate that the chemical reactivity of graphene can be controlled by the relative lattice orientation with respect to the substrates and thus can be used for a wide range of applications including hydrogen storage.

  3. Nonlinear oscillation of nanoelectro-mechanical resonators using energy balance method: considering the size effect and the van der Waals force

    Science.gov (United States)

    Ghalambaz, Mohammad; Ghalambaz, Mehdi; Edalatifar, Mohammad

    2016-03-01

    The energy balance method is utilized to analyze the oscillation of a nonlinear nanoelectro-mechanical system resonator. The resonator comprises an electrode, which is embedded between two substrates. Two types of clamped-clamped and cantilever nano-resonators are studied. The effects of the van der Waals attractions, Casimir force, the small size, the fringing field, the mid-plane stretching, and the axial load are taken into account. The governing partial differential equation of the resonator is reduced using the Galerkin method. The energy method is applied to obtain an analytical solution without considering any linearization or small parameter. The results of the present study are compared with the results available in the literature. In addition, the results of the present analytical solution are compared with the Runge-Kutta numerical results. An excellent agreement between the present analytical solution, numerical solution, and the results available in the literature was found. The influences of the van der Waals force, Casimir force, size effect, and fringing field effect on the oscillation frequency of resonators are studied. The results indicate that the presence of the intermolecular forces (van der Waals), Casimir force, and fringing field effect decreases the oscillation frequency of the resonator. In contrast, the presence of the size effect increases the oscillation frequency of the resonator.

  4. Protein Adsorption into Mesopores: A Combination of Electrostatic Interaction, Counterion Release and van der Waals Forces

    CERN Document Server

    Moerz, Sebastian T

    2015-01-01

    Bovine heart cytochrome c has been immobilized into the mesoporous silica host material SBA-15 in both its native folded and urea-unfolded state. The comparison of the two folding states' behavior casts doubt on the commonly used explanation of cytochrome c adsorption, i.e. the electrostatic interaction model. A detailed investigation of the protein binding as a function of pH and ionic strength of the buffer solution reveals the complex nature of the protein-silica interaction. Electrostatic interaction, van der Waals forces and entropic contributions by counterion release each contribute to adsorption on the silica pore walls.

  5. Microwave probes Dipole Blockade and van der Waals Forces in a Cold Rydberg Gas

    CERN Document Server

    Teixeira, R Celistrino; Nguyen, Thanh Long; Cantat-Moltrecht, T; Raimond, Jean-Michel; Haroche, S; Gleyzes, S; Brune, M

    2015-01-01

    We show that microwave spectroscopy of a dense Rydberg gas trapped on a superconducting atom chip in the dipole blockade regime reveals directly the dipole-dipole many-body interaction energy spectrum. We use this method to investigate the expansion of the Rydberg cloud under the effect of repulsive van der Waals forces and the breakdown of the frozen gas approximation. This study opens a promising route for quantum simulation of many-body systems and quantum information transport in chains of strongly interacting Rydberg atoms.

  6. Droplet spreading driven by van der Waals force: a molecular dynamics study

    Energy Technology Data Exchange (ETDEWEB)

    Wu Congmin [Department of Mathematics, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon (Hong Kong); Qian Tiezheng [Department of Mathematics and Joint KAUST-HKUST Micro/Nanofluidics Laboratory, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon (Hong Kong); Sheng Ping, E-mail: maqian@ust.h [Department of Physics and William Mong Institute of Nano Science and Technology, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon (Hong Kong)

    2010-08-18

    The dynamics of droplet spreading is investigated by molecular dynamics simulations for two immiscible fluids of equal density and viscosity. All the molecular interactions are modeled by truncated Lennard-Jones potentials and a long-range van der Waals force is introduced to act on the wetting fluid. By gradually increasing the coupling constant in the attractive van der Waals interaction between the wetting fluid and the substrate, we observe a transition in the initial stage of spreading. There exists a critical value of the coupling constant, above which the spreading is pioneered by a precursor film. In particular, the dynamically determined critical value quantitatively agrees with that determined by the energy criterion that the spreading coefficient equals zero. The latter separates partial wetting from complete wetting. In the regime of complete wetting, the radius of the spreading droplet varies with time as R(t){approx}{radical}t, a behavior also found in molecular dynamics simulations where the wetting dynamics is driven by the short-range Lennard-Jones interaction between liquid and solid.

  7. Droplet spreading driven by van der Waals force: a molecular dynamics study

    KAUST Repository

    Wu, Congmin

    2010-07-07

    The dynamics of droplet spreading is investigated by molecular dynamics simulations for two immiscible fluids of equal density and viscosity. All the molecular interactions are modeled by truncated Lennard-Jones potentials and a long-range van der Waals force is introduced to act on the wetting fluid. By gradually increasing the coupling constant in the attractive van der Waals interaction between the wetting fluid and the substrate, we observe a transition in the initial stage of spreading. There exists a critical value of the coupling constant, above which the spreading is pioneered by a precursor film. In particular, the dynamically determined critical value quantitatively agrees with that determined by the energy criterion that the spreading coefficient equals zero. The latter separates partial wetting from complete wetting. In the regime of complete wetting, the radius of the spreading droplet varies with time as R(t) ∼ √t, a behavior also found in molecular dynamics simulations where the wetting dynamics is driven by the short-range Lennard-Jones interaction between liquid and solid. © 2010 IOP Publishing Ltd.

  8. Image method in the calculation of the van der Waals force between an atom and a conducting surface

    CERN Document Server

    Souza, Reinaldo de Melo e; Sigaud, C; Farina, C

    2012-01-01

    Initially, we make a detailed historical survey of van der Waals forces, collecting the main references on the subject. Then, we review a method recently proposed by Eberlein and Zietal to compute the dispersion van der Waals interaction between a neutral but polarizable atom and a perfectly conducting surface of arbitrary shape. This method has the advantage of relating the quantum problem to a corresponding classical one in electrostatics so that all one needs is to compute an appropriate Green function. We show how the image method of electrostatics can be conveniently used together with the Eberlein and Zietal mehtod (when the problem admits an image solution). We then illustrate this method in a couple of simple but important cases, including the atom-sphere system. Particularly, in our last example, we present an original result, namely, the van der Waals force between an atom and a boss hat made of a grounded conducting material.

  9. Image method in the calculation of the van der Waals force between an atom and a conducting surface

    Science.gov (United States)

    de Melo e Souza, Reinaldo; Kort-Kamp, W. J. M.; Sigaud, C.; Farina, C.

    2013-05-01

    After a brief survey of van der Waals forces, we review a method recently proposed by Eberlein and Zietal to compute the dispersion van der Waals interaction between a neutral but polarizable atom and a perfectly conducting surface of arbitrary shape. This method has the advantage of relating the quantum problem to a corresponding classical one in electrostatics in an enlightening way so that all one needs is to compute an appropriate Green function. We show how the image method of electrostatics can be conveniently used together with the Eberlein and Zietal method (when the image solution is known). We then illustrate this method in some simple but important cases, including the atom-sphere system. Finally, we present an original result for the van der Waals force between an atom and a boss hat made of a grounded conducting material.

  10. Analytical modeling of static behavior of electrostatically actuated nano/micromirrors considering van der Waals forces

    Institute of Scientific and Technical Information of China (English)

    Hamid Moeenfard; Mohammad Taghi Ahmadian

    2012-01-01

    In this paper,the effect of van der Waals (vdW)force on the pull-in behavior of electrostatically actuated nano/micromirrors is investigated.First,the minimum potential energy principle is utilized to find the equation governing the static behavior of nano/microminror under electrostatic and vdW forces.Then,the stability of static equilibrium points is analyzed using the energy method.It is found that when there exist two equilibrium points,the smaller one is stable and the larger one is unstable.The effects of different design parameters on the mirror's pull-in angle and pull-in voltage are studied and it is found that vdW force can considerably reduce the stability limit of the mirror.At the end,the nonlinear equilibrium equation is solved numerically and analytically using homotopy perturbation method (HPM).It is observed that a sixth order perturbation approximation can precisely model the mirror's behavior.The resuits of this paper can be used for stable operation design and safe fabrication of torsional nano/micro actuators.

  11. Stabilization of thin liquid films by repulsive van der waals force

    KAUST Repository

    Li, Erqiang

    2014-05-13

    Using high-speed video recording of bubble rise experiments, we study the stability of thin liquid films trapped between a rising bubble and a surfactant-free liquid-liquid meniscus interface. Using different combinations of nonpolar oils and water that are all immiscible, we investigate the extent to which film stability can be predicted by attractive and repulsive van der Waals (vdW) interactions that are indicated by the relative magnitude of the refractive indices of the liquid combinations, for example, water (refractive index, n = 1.33), perfluorohexane (n = 1.23), and tetradecane (n = 1.43). We show that, when the film-forming phase was oil (perfluorohexane or tetradecane), the stability of the film could always be predicted from the sign of the vdW interaction, with a repulsive vdW force resulting in a stable film and an attractive vdW force resulting in film rupture. However, if aqueous electrolyte is the film-forming bulk phase between the rising air bubble and the upper oil phase, the film always ruptured, even when a repulsive vdW interaction was predicted. We interpret these results as supporting the hypothesis that a short-ranged hydrophobic attraction determines the stability of the thin water film formed between an air phase and a nonpolar oil phase. © 2014 American Chemical Society.

  12. Evaluating dispersion forces for optimization of van der Waals complexes using a non-empirical functional.

    Science.gov (United States)

    Arabi, Alya A

    2016-11-13

    Modelling dispersion interactions with traditional density functional theory (DFT) is a challenge that has been extensively addressed in the past decade. The exchange-dipole moment (XDM), among others, is a non-empirical add-on dispersion correction model in DFT. The functional PW86+PBE+XDM for exchange, correlation and dispersion, respectively, compromises an accurate functional for thermochemistry and for van der Waals (vdW) complexes at equilibrium and non-equilibrium geometries. To use this functional in optimizing vdW complexes, rather than computing single point energies, it is necessary to evaluate accurate forces. The purpose of this paper is to validate that, along the potential energy surface, the distance at which the energy is minimum is commensurate with the distance at which the forces vanish to zero. This test was validated for 10 rare gas diatomic molecules using various integration grids and different convergence criteria. It was found that the use of either convergence criterion, 10(-6) or 10(-8), in Gaussian09, does not affect the accuracy of computed optimal distances and binding energies. An ultra-fine grid needs to be used when computing accurate energies using generalized gradient approximation functionals.This article is part of the themed issue 'Multiscale modelling at the physics-chemistry-biology interface'. © 2016 The Author(s).

  13. Stabilization of thin liquid films by repulsive van der Waals force.

    Science.gov (United States)

    Li, Er Qiang; Vakarelski, Ivan U; Chan, Derek Y C; Thoroddsen, Sigurdur T

    2014-05-13

    Using high-speed video recording of bubble rise experiments, we study the stability of thin liquid films trapped between a rising bubble and a surfactant-free liquid-liquid meniscus interface. Using different combinations of nonpolar oils and water that are all immiscible, we investigate the extent to which film stability can be predicted by attractive and repulsive van der Waals (vdW) interactions that are indicated by the relative magnitude of the refractive indices of the liquid combinations, for example, water (refractive index, n = 1.33), perfluorohexane (n = 1.23), and tetradecane (n = 1.43). We show that, when the film-forming phase was oil (perfluorohexane or tetradecane), the stability of the film could always be predicted from the sign of the vdW interaction, with a repulsive vdW force resulting in a stable film and an attractive vdW force resulting in film rupture. However, if aqueous electrolyte is the film-forming bulk phase between the rising air bubble and the upper oil phase, the film always ruptured, even when a repulsive vdW interaction was predicted. We interpret these results as supporting the hypothesis that a short-ranged hydrophobic attraction determines the stability of the thin water film formed between an air phase and a nonpolar oil phase.

  14. Evaluating dispersion forces for optimization of van der Waals complexes using a non-empirical functional

    Science.gov (United States)

    Arabi, Alya A.

    2016-11-01

    Modelling dispersion interactions with traditional density functional theory (DFT) is a challenge that has been extensively addressed in the past decade. The exchange-dipole moment (XDM), among others, is a non-empirical add-on dispersion correction model in DFT. The functional PW86+PBE+XDM for exchange, correlation and dispersion, respectively, compromises an accurate functional for thermochemistry and for van der Waals (vdW) complexes at equilibrium and non-equilibrium geometries. To use this functional in optimizing vdW complexes, rather than computing single point energies, it is necessary to evaluate accurate forces. The purpose of this paper is to validate that, along the potential energy surface, the distance at which the energy is minimum is commensurate with the distance at which the forces vanish to zero. This test was validated for 10 rare gas diatomic molecules using various integration grids and different convergence criteria. It was found that the use of either convergence criterion, 10-6 or 10-8, in Gaussian09, does not affect the accuracy of computed optimal distances and binding energies. An ultra-fine grid needs to be used when computing accurate energies using generalized gradient approximation functionals. This article is part of the themed issue 'Multiscale modelling at the physics-chemistry-biology interface'.

  15. van der Waals forces in density functional theory: a review of the vdW-DF method.

    Science.gov (United States)

    Berland, Kristian; Cooper, Valentino R; Lee, Kyuho; Schröder, Elsebeth; Thonhauser, T; Hyldgaard, Per; Lundqvist, Bengt I

    2015-06-01

    A density functional theory (DFT) that accounts for van der Waals (vdW) interactions in condensed matter, materials physics, chemistry, and biology is reviewed. The insights that led to the construction of the Rutgers-Chalmers van der Waals density functional (vdW-DF) are presented with the aim of giving a historical perspective, while also emphasizing more recent efforts which have sought to improve its accuracy. In addition to technical details, we discuss a range of recent applications that illustrate the necessity of including dispersion interactions in DFT. This review highlights the value of the vdW-DF method as a general-purpose method, not only for dispersion bound systems, but also in densely packed systems where these types of interactions are traditionally thought to be negligible.

  16. Optimizing Protein-Protein van der Waals Interactions for the AMBER ff9x/ff12 Force Field.

    Science.gov (United States)

    Chapman, Dail E; Steck, Jonathan K; Nerenberg, Paul S

    2014-01-14

    The quality of molecular dynamics (MD) simulations relies heavily on the accuracy of the underlying force field. In recent years, considerable effort has been put into developing more accurate dihedral angle potentials for MD force fields, but relatively little work has focused on the nonbonded parameters, many of which are two decades old. In this work, we assess the accuracy of protein-protein van der Waals interactions in the AMBER ff9x/ff12 force field. Across a test set of 44 neat organic liquids containing the moieties present in proteins, we find root-mean-square (RMS) errors of 1.26 kcal/mol in enthalpy of vaporization and 0.36 g/cm(3) in liquid densities. We then optimize the van der Waals radii and well depths for all of the relevant atom types using these observables, which lowers the RMS errors in enthalpy of vaporization and liquid density of our validation set to 0.59 kcal/mol (53% reduction) and 0.019 g/cm(3) (46% reduction), respectively. Limitations in our parameter optimization were evident for certain atom types, however, and we discuss the implications of these observations for future force field development.

  17. The influence of van der Waals forces on the waveguide deformation and power limit of nanoscale optomechanical systems

    CERN Document Server

    Xu, Fei; Luo, WEi; Lu, Yan-qing

    2014-01-01

    The ultra-short range force, van der Waals force (VWF), will rise rapidly when one nanoscale waveguide is close to another one, and be stronger than the external transverse gradient force (TGF). We theoretically investigate the giant influence of the VWF on the device performance in a typical optomechanical system consisting of a suspended silicon waveguide and a silica substrate including waveguide deformation stiction and failure mechanism. The device shows unique optically-activated plastic/elastic behaviors and stiction due to the VWF. When the input optical power is above the critical power, the waveguide is sticking to the substrate and the deformation is plastic and unrecoverable, even though the total force is less than the yield strength of the waveguide material. This is important and helpful for the design and applications of optomechanical devices.

  18. Formation of a cyclic dimer containing two mirror image monomers in the solid state controlled by van der Waals forces.

    Science.gov (United States)

    Zhang, Zibin; Yu, Guocan; Han, Chengyou; Liu, Jiyong; Ding, Xia; Yu, Yihua; Huang, Feihe

    2011-09-16

    Two new copillar[5]arenes were prepared. They are arranged in two completely different motifs, a cyclic dimer containing two monomers with two different conformations that are mirror images of each other and linear supramolecular polymers in the solid state. Not only has it been shown that to form this kind of dimer is a unique feature associated with pillar[5]arene macrocycles but also it was demonstrated that weak van der Waals forces can be used to control the self-organization of monomers during their supramolecular polymerization process.

  19. Spooky correlations and unusual van der Waals forces between gapless and near-gapless molecules

    CERN Document Server

    Dobson, John F; Angyan, Janos G; Liu, Ru-Fen

    2016-01-01

    We consider the zero-temperature van der Waals interaction between two molecules, each of which has a zero or near-zero electronic gap between a groundstate and the first excited state, using a toy model molecule ( equilateral H3) as an example. We show that the van der Waals energy between two groundstate molecules falls off as D^(-3) instead of the usual D^(-6) dependence, when the molecules are separated by distance D: We show that this is caused by perfect "spooky" correlation between the two fluctuating electric dipoles. The phenomenon is related to, but not the same as, the "resonant" interaction between an electronically excited and a groundstate molecule introduced by Eisenschitz and London in 1930. It is also an example of "type C van der Waals non- additivity" recently introduced by one of us ( Int. J. Quantum Chem. 114, 1157 (2014)). Our toy molecule H3 is not stable, but symmetry considerations suggest that a similar vdW phenomenon may be observable, despite Jahn-Teller effects, in molecules with ...

  20. Spooky correlations and unusual van der Waals forces between gapless and near-gapless molecules

    Science.gov (United States)

    Dobson, John F.; Savin, Andreas; Ángyán, János G.; Liu, Ru-Fen

    2016-11-01

    We consider the zero-temperature van der Waals (vdW) interaction between two molecules, each of which has a zero or near-zero electronic gap between a ground state and the first excited state, using a toy model molecule (equilateral H3) as an example. We show that the van der Waals energy between two ground state molecules falls off as D-3 instead of the usual D-6 dependence, when the molecules are separated by distance D. We show that this is caused by a perfect "spooky" correlation between the two fluctuating electric dipoles. The phenomenon is related to, but not the same as, the "resonant" interaction between an electronically excited and a ground state molecule introduced by Eisenschitz and London in 1930. It is also an example of "type C van der Waals non-additivity" recently introduced by one of us [J. F. Dobson, Int. J. Quantum Chem. 114, 1157 (2014)]. Our toy molecule H3 is not stable, but symmetry considerations suggest that a similar vdW phenomenon may be observable, despite Jahn-Teller effects, in molecules with a discrete rotational symmetry and broken inversion symmetry, such as certain metal atom clusters. The motion of the nuclei will need to be included for a definitive analysis of such cases, however.

  1. Effect of van der Waals forces on thermal conductance at the interface of a single-wall carbon nanotube array and silicon

    Science.gov (United States)

    Feng, Ya; Zhu, Jie; Tang, Dawei

    2014-12-01

    Molecular dynamics simulations are performed to evaluate the effect of van der Waals forces among single-wall carbon nanotubes (SWNTs) on the interfacial thermal conductance between a SWNT array and silicon substrate. First, samples of SWNTs vertically aligned on silicon substrate are simulated, where both the number and arrangement of SWNTs are varied. Results reveal that the interfacial thermal conductance of a SWNT array/Si with van der Waals forces present is higher than when they are absent. To better understand how van der Waals forces affect heat transfer through the interface between SWNTs and silicon, further constructs of one SWNT surrounded by different numbers of other ones are studied, and the results show that the interfacial thermal conductance of the central SWNT increases with increasing van der Waals forces. Through analysis of the covalent bonds and vibrational density of states at the interface, we find that heat transfer across the interface is enhanced with a greater number of chemical bonds and that improved vibrational coupling of the two sides of the interface results in higher interfacial thermal conductance. Van der Waals forces stimulate heat transfer at the interface.

  2. Effect of van der Waals forces on thermal conductance at the interface of a single-wall carbon nanotube array and silicon

    Directory of Open Access Journals (Sweden)

    Ya Feng

    2014-12-01

    Full Text Available Molecular dynamics simulations are performed to evaluate the effect of van der Waals forces among single-wall carbon nanotubes (SWNTs on the interfacial thermal conductance between a SWNT array and silicon substrate. First, samples of SWNTs vertically aligned on silicon substrate are simulated, where both the number and arrangement of SWNTs are varied. Results reveal that the interfacial thermal conductance of a SWNT array/Si with van der Waals forces present is higher than when they are absent. To better understand how van der Waals forces affect heat transfer through the interface between SWNTs and silicon, further constructs of one SWNT surrounded by different numbers of other ones are studied, and the results show that the interfacial thermal conductance of the central SWNT increases with increasing van der Waals forces. Through analysis of the covalent bonds and vibrational density of states at the interface, we find that heat transfer across the interface is enhanced with a greater number of chemical bonds and that improved vibrational coupling of the two sides of the interface results in higher interfacial thermal conductance. Van der Waals forces stimulate heat transfer at the interface.

  3. Combined Effect of Surface Tension, Gravity and van der Waals Force Induced by a Non-Contact Probe Tip on the Shape of Liquid Surface

    Institute of Scientific and Technical Information of China (English)

    LIU Nan; BAI Yi-Long; XIA Meng-Fen; KE Fu-Jiu

    2005-01-01

    @@ Aiming at understanding how a liquid film on a substrate affects the atomic force microscopic image in experiments, we present an analytical representation of the shape of liquid surface under van der Waals interaction induced by a non-contact probe tip. The analytical expression shows good consistence with the corresponding numerical results. According to the expression, we find that the vertical scale of the liquid dome is mainly gov erned by a combination of van der Waals force, surface tension and probe tip radius, and is weekly related to gravity. However, its horizontal extension is determined by the capillary length.

  4. Role of Lewis basicity and van der Waals forces in adhesion of silica MFI zeolites (010) with polyimides.

    Science.gov (United States)

    Lee, Jung-Hyun; Thio, Beng Joo Reginald; Bae, Tae-Hyun; Meredith, J Carson

    2009-08-18

    Adhesion between zeolites and polymers is a central factor in achieving defect-free mixed-matrix membranes for energy-efficient gas separations. In this work, atomic force microscopy (AFM) was used to measure adhesion forces between a pure silica MFI (ZSM-5: Zeolite Socony Mobil-Five) (010) zeolite probe and a series of polyimide (Matrimid 5218, 6FDA-DAM, 6FDA-6FpDA, and 6FDA-DAM:DABA (3:2)) and polyetherimide (Ultem 1000) polymers in air. Combined with measurements of surface energy of the polymer surfaces, the dependence of adhesion on polymer structure was determined. Adhesion force was strongly dependent on the Lewis basicity component of polymer surface energy and was less dependent on van der Waals (VDW) components, by a factor of about 6. Hydrogen bonding likely occurs between the acidic (electron acceptor) component of the zeolite surface (silanols or adsorbed water) and the basic (electron donor) component of the polymer surface. Adhesion force was strongly correlated with the mole fraction of carbonyls per monomer. We conclude that differences in adhesion as a function of polymer structure were primarily controlled by the polymer's Lewis basicity, contributed primarily by carbonyl groups.

  5. Van der Waals forces and electron-electron interactions in two strained graphene layers

    Science.gov (United States)

    Sharma, Anand; Harnish, Peter; Sylvester, Alexander; Kotov, Valeri N.

    2014-03-01

    We evaluate the van der Waals (vdW) interaction energy at T=0 between two undoped graphene layers which are separated by a finite distance. Our study is carried out within the Random Phase Approximation and the interaction energy is obtained for variation in the strength of effective Coulomb interaction and anisotropy due to applied uniaxial strain. We consider the following three models for the anisotropic case: a) where one of the two layers is uniaxially strained, b) the two layers are strained in the same direction, and c) one of the layers is strained in the perpendicular direction. We find that for all the three models and any given value of the coupling, the vdW interaction energy increases with increasing anisotropy. The effect is most striking for the case when both the layers are strained in the parallel direction where we observe up to an order of magnitude increase in the strained graphene relative to the unstrained case. We also investigate the effect of intra-layer electron-electron interactions in the region of large separation between the strained graphene layers. We conclude that the many-body contributions to the correlation energy are non-negligible and the vdW interaction energy decreases as a function of increasing distance between the layers. Alexander Sylvester acknowledges financial assistance from the Research Experiences for Undergraduates (REU) Program of the National Science Foundation (NSF) focussing on complex materials.

  6. Perspective: Advances and challenges in treating van der Waals dispersion forces in density functional theory.

    Science.gov (United States)

    Klimeš, Jirí; Michaelides, Angelos

    2012-09-28

    Electron dispersion forces play a crucial role in determining the structure and properties of biomolecules, molecular crystals, and many other systems. However, an accurate description of dispersion is highly challenging, with the most widely used electronic structure technique, density functional theory (DFT), failing to describe them with standard approximations. Therefore, applications of DFT to systems where dispersion is important have traditionally been of questionable accuracy. However, the last decade has seen a surge of enthusiasm in the DFT community to tackle this problem and in so-doing to extend the applicability of DFT-based methods. Here we discuss, classify, and evaluate some of the promising schemes to emerge in recent years. A brief perspective on the outstanding issues that remain to be resolved and some directions for future research are also provided.

  7. Influence of van der Waals forces on the adsorption structure of benzene on silicon studied using density functional theory

    DEFF Research Database (Denmark)

    Johnston, Karen; Kleis, Jesper; Lundqvist, Bengt

    2008-01-01

    Two different adsorption configurations of benzene on the Si(001)-(2×1) surface, the tight-bridge and butterfly structures, were studied using density functional theory. Several exchange and correlation functionals were used, including the recently developed van der Waals density functional (vdW-...

  8. 24 CFR 1003.509 - Force account construction.

    Science.gov (United States)

    2010-04-01

    ... Development (Continued) OFFICE OF ASSISTANT SECRETARY FOR PUBLIC AND INDIAN HOUSING, DEPARTMENT OF HOUSING AND URBAN DEVELOPMENT COMMUNITY DEVELOPMENT BLOCK GRANTS FOR INDIAN TRIBES AND ALASKA NATIVE VILLAGES Grant... 24 Housing and Urban Development 4 2010-04-01 2010-04-01 false Force account construction. 1003...

  9. Effects of combination modes of favorable growth unit of Al(OH)3 crystals precipitating on Van der Waals and chemical bond force

    Institute of Scientific and Technical Information of China (English)

    WU Zheng-ping; CHEN Qi-yuan; YIN Zhou-lan; LI Jie

    2005-01-01

    The dipole moment, total energy, atomic charge, orbital population and orbital energy of four representative combination models of the favorable growth unit Al6 (OH)18 (H2O)6 of Al(OH)3 crystals precipitating are calculated by ab initio at RHF/STO-3G, RHF/3-21G, RHF/6-31G levels and DFT at RB3LYP/STO-3G, RB3LYP/3-21G, RB3LYP/6-31G levels with Dipole & Sphere solvent model. The effect of various combination models on Van der Waals force is analyzed using dipole moment and molecular radius, and that on chemical bond force is analyzed using total energy, orbital population and orbital energy.

  10. Capillary and van der Waals interactions on CaF2 crystals from amplitude modulation AFM force reconstruction profiles under ambient conditions

    Directory of Open Access Journals (Sweden)

    Annalisa Calò

    2015-03-01

    Full Text Available There has been much interest in the past two decades to produce experimental force profiles characteristic of the interaction between nanoscale objects or a nanoscale object and a plane. Arguably, the advent of the atomic force microscope AFM was instrumental in driving such efforts because, in principle, force profiles could be recovered directly. Nevertheless, it has taken years before techniques have developed enough as to recover the attractive part of the force with relatively low noise and without missing information on critical ranges, particularly under ambient conditions where capillary interactions are believed to dominate. Thus a systematic study of the different profiles that may arise in such situations is still lacking. Here we employ the surfaces of CaF2, on which nanoscale water films form, to report on the range and force profiles that might originate by dynamic capillary interactions occurring between an AFM tip and nanoscale water patches. Three types of force profiles were observed under ambient conditions. One in which the force decay resembles the well-known inverse-square law typical of van der Waals interactions during the first 0.5–1 nm of decay, a second one in which the force decays almost linearly, in relatively good agreement with capillary force predicted by the constant chemical potential approximation, and a third one in which the attractive force is almost constant, i.e., forms a plateau, up to 3–4 nm above the surface when the formation of a capillary neck dominates the tip–sample interaction.

  11. 25 CFR 170.605 - When may BIA use force account methods in the IRR Program?

    Science.gov (United States)

    2010-04-01

    ... 25 Indians 1 2010-04-01 2010-04-01 false When may BIA use force account methods in the IRR Program... § 170.605 When may BIA use force account methods in the IRR Program? BIA may use force account methods... before using a force account under this situation. The applicable FAR and Federal law apply to BIA...

  12. Influence of curvature strain and Van der Waals force on the inter-layer vibration mode of WS2 nanotubes: A confocal micro-Raman spectroscopic study

    Science.gov (United States)

    Wang, Xiao Hu; Zheng, Chang Cheng; Ning, Ji Qiang

    2016-09-01

    Transition-metal dichalcogenides (TMDs) nanostructures including nanotubes and monolayers have attracted great interests in materials science, chemistry to condensed matter physics. We present an interesting study of the vibration modes in multi-walled tungsten sulfide (WS2) nanotubes prepared via sulfurizing tungsten oxide (WO3) nanowires which are investigated by confocal micro-Raman spectroscopy. The inter-layer vibration mode of WS2 nanotubes, A1g, is found to be sensitive to the diameter and curvature strain, while the in-plane vibration mode, E12g, is not. A1g mode frequency shows a redshift by 2.5 cm-1 for the multi-layered nanotubes with small outer-diameters, which is an outcome of the competition between the Van der Waals force stiffening and the curvature strain softening. We also show that the Raman peak intensity ratio is significantly different between the 1-2 wall layered nanotubes and monolayer flat sheets.

  13. van der Waals torque

    Science.gov (United States)

    Esquivel-Sirvent, Raul; Schatz, George

    2014-03-01

    The theory of generalized van der Waals forces by Lifshtz when applied to optically anisotropic media predicts the existence of a torque. In this work we present a theoretical calculation of the van der Waals torque for two systems. First we consider two isotropic parallel plates where the anisotropy is induced using an external magnetic field. The anisotropy will in turn induce a torque. As a case study we consider III-IV semiconductors such as InSb that can support magneto plasmons. The calculations of the torque are done in the Voigt configuration, that occurs when the magnetic field is parallel to the surface of the slabs. The change in the dielectric function as the magnetic field increases has the effect of decreasing the van der Waals force and increasing the torque. Thus, the external magnetic field is used to tune both the force and torque. The second example we present is the use of the torque in the non retarded regime to align arrays of nano particle slabs. The torque is calculated within Barash and Ginzburg formalism in the nonretarded limit, and is quantified by the introduction of a Hamaker torque constant. Calculations are conducted between anisotropic slabs of materials including BaTiO3 and arrays of Ag nano particles. Depending on the shape and arrangement of the Ag nano particles the effective dielectric function of the array can be tuned as to make it more or less anisotropic. We show how this torque can be used in self assembly of arrays of nano particles. ref. R. Esquivel-Sirvent, G. C. Schatz, Phys. Chem C, 117, 5492 (2013). partial support from DGAPA-UNAM.

  14. Investigation of the range of validity of the pairwise summation method applied to the calculation of the surface roughness correction to the van der Waals force

    Science.gov (United States)

    Gusso, André; Burnham, Nancy A.

    2016-09-01

    It has long been recognized that stochastic surface roughness can considerably change the van der Waals (vdW) force between interacting surfaces and particles. However, few analytical expressions for the vdW force between rough surfaces have been presented in the literature. Because they have been derived using perturbative methods or the proximity force approximation the expressions are valid when the roughness correction is small and for a limited range of roughness parameters and surface separation. In this work, a nonperturbative approach, the effective density method (EDM) is proposed to circumvent some of these limitations. The method simplifies the calculations of the roughness correction based on pairwise summation (PWS), and allows us to derive simple expressions for the vdW force and energy between two semispaces covered with stochastic rough surfaces. Because the range of applicability of PWS and, therefore, of our results, are not known a priori, we compare the predictions based on the EDM with those based on the multilayer effective medium model, whose range of validity can be defined more properly and which is valid when the roughness correction is comparatively large. We conclude that the PWS can be used for roughness characterized by a correlation length of the order of its rms amplitude, when this amplitude is of the order of or smaller than a few nanometers, and only for typically insulating materials such as silicon dioxide, silicon nitride, diamond, and certain glasses, polymers and ceramics. The results are relevant for the correct modeling of systems where the vdW force can play a significant role such as micro and nanodevices, for the calculation of the tip-sample force in atomic force microscopy, and in problems involving adhesion.

  15. Surface Roughness and Material Optical Properties Influence on Casimir/van der Waals and Capillary Surface Forces

    NARCIS (Netherlands)

    Zwol, P.J. van; Palasantzas, G.

    2010-01-01

    Theory calculations using the Lifshitz theory and atomic force microscopy force measurements show that Casimir/van der Weals dispersive forces have a strong dependence on material optical properties and surface roughness. At separations below 100 nm the roughness effect is manifested through a

  16. Binding and Release between Polymeric Carrier and Protein Drug: pH-Mediated Interplay of Coulomb Forces, Hydrogen Bonding, van der Waals Interactions, and Entropy.

    Science.gov (United States)

    De Luca, Sergio; Chen, Fan; Seal, Prasenjit; Stenzel, Martina H; Smith, Sean C

    2017-10-02

    The accelerating search for new types of drugs and delivery strategies poses challenge to understanding the mechanism of delivery. To this end, a detailed atomistic picture of binding between the drug and carrier is quintessential. Although many studies focus on the electrostatics of drug-vector interactions, it has also been pointed out that entropic factors relating to water and counterions can play an important role. By carrying out extensive molecular dynamics simulations and subsequently validating with experiments, we shed light herein on the binding in aqueous solution between a protein drug and polymeric carrier. We examined the complexation between the polymer poly(ethylene glycol) methyl ether acrylate-b-poly(carboxyethyl acrylate (PEGMEA-b-PCEA) and the protein egg white lysozyme, a system that acts as a model for polymer-vector/protein-drug delivery systems. The complexation has been visualized and characterized using contact maps and hydrogen bonding analyses for five independent simulations of the complex, each running over 100 ns. Binding at physiological pH is, as expected, mediated by Coulombic attraction between the positively charged protein and negatively charged carboxylate groups on the polymer. However, we find that consideration of electrostatics alone is insufficient to explain the complexation behavior at low pH. Intracomplex hydrogen bonds, van der Waals interactions, as well as water-water interactions dictate that the polymer does not release the protein at pH 4.8 or indeed at pH 3.2 even though the Coulombic attractions are largely removed as carboxylate groups on the polymer become titrated. Experiments in aqueous solution carried out at pH 7.0, 4.5, and 3.0 confirm the veracity of the computed binding behavior. Overall, these combined simulation and experimental results illustrate that coulomb interactions need to be complemented with consideration of other entropic forces, mediated by van der Waals interactions and hydrogen bonding

  17. Density functional for van der Waals forces accounts for hydrogen bond in benchmark set of water hexamers

    DEFF Research Database (Denmark)

    Kelkkanen, Kari André; Lundqvist, Bengt; Nørskov, Jens Kehlet

    2009-01-01

    A recent extensive study has investigated how various exchange-correlation (XC) functionals treat hydrogen bonds in water hexamers and has shown traditional generalized gradient approximation and hybrid functionals used in density-functional (DF) theory to give the wrong dissociation-energy trend...

  18. Reflections on a Seminal Force in International Accounting

    Science.gov (United States)

    Cascini, Karen T.

    2007-01-01

    Accounting is a manifestation of several important environmental factors within a country, including economic, educational and political, and, as such, is evolutionary in accordance with those changing social structures. Because of the major impact that international accounting has had on countries' internal accounting systems, it is important to…

  19. Investigating the Role of Ferromagnetic Materials on the Casimir Force & Investigation of the Van Der Waals/Casimir Force with Graphene

    Energy Technology Data Exchange (ETDEWEB)

    Mohideen, Umar [Univ. of California, Riverside, CA (United States)

    2015-04-14

    Duration of award was from 4/15/10-4/14/15. In this grant period our contributions to the field of VdW/Casimir forces are 24 refereed publications in journals such as Physical Review Letters (4) [1-4], Physical Review B (10) [5-14], Physical Review D (2) [15,16], Applied Physics Letters (1) [17], Review of Scientific Instruments (1) [18] and the International Journal of Modern Physics A (5) [19-23] and B(1) (invited review article [24]). We presented 2 plenary conference talks, 3 lectures at the Pan American School on Frontiers in Casimir Physics, 2 conferences, 1 colloquium and 11 APS talks. If publications are restricted to only those with direct connection to the aims proposed in the prior grant period, then it will be a total of 12: Physical Review Letters (3) [2-4], Physical Review B (6) [6-8,12,13,25], Review of Scientific Instruments (1) [18], International Journal of Modern Physics A (1) [19] and B(1) [169]. A brief aggregated description of the directly connected accomplishments is below. The following topics are detailed: dispersion force measurements with graphene, dispersion force from ferromagnetic metals, conclusion on role of electrostatic patches, UV radiation induced modification of the Casimir force, low temperature measurement of the Casimir force, and Casimir force from thin fluctuating membranes.

  20. Forces of Accountability? The Power of Poor Parents in NCLB

    Science.gov (United States)

    Rogers, John

    2006-01-01

    Parental involvement is mentioned more than one hundred times in the No Child Left Behind Act (NCLB). In this article, John Rogers argues that President Bush and former U.S. secretary of education Rod Paige have promoted policy narratives of test accountability, choice, and parental involvement that describe how poor parents can spur educators to…

  1. Understanding the nanoscale local buckling behavior of vertically aligned MWCNT arrays with van der Waals interactions

    Science.gov (United States)

    Li, Yupeng; Kim, Hyung-Ick; Wei, Bingqing; Kang, Junmo; Choi, Jae-Boong; Nam, Jae-Do; Suhr, Jonghwan

    2015-08-01

    The local buckling behavior of vertically aligned carbon nanotubes (VACNTs) has been investigated and interpreted in the view of a collective nanotube response by taking van der Waals interactions into account. To the best of our knowledge, this is the first report on the case of collective VACNT behavior regarding van der Waals force among nanotubes as a lateral support effect during the buckling process. The local buckling propagation and development of VACNTs were experimentally observed and theoretically analyzed by employing finite element modeling with lateral support from van der Waals interactions among nanotubes. Both experimental and theoretical analyses show that VACNTs buckled in the bottom region with many short waves and almost identical wavelengths, indicating a high mode buckling. Furthermore, the propagation and development mechanism of buckling waves follow the wave damping effect.The local buckling behavior of vertically aligned carbon nanotubes (VACNTs) has been investigated and interpreted in the view of a collective nanotube response by taking van der Waals interactions into account. To the best of our knowledge, this is the first report on the case of collective VACNT behavior regarding van der Waals force among nanotubes as a lateral support effect during the buckling process. The local buckling propagation and development of VACNTs were experimentally observed and theoretically analyzed by employing finite element modeling with lateral support from van der Waals interactions among nanotubes. Both experimental and theoretical analyses show that VACNTs buckled in the bottom region with many short waves and almost identical wavelengths, indicating a high mode buckling. Furthermore, the propagation and development mechanism of buckling waves follow the wave damping effect. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr03581c

  2. Accounting for electronic polarization in nonpolarizable force fields

    CERN Document Server

    Leontyev, Igor

    2015-01-01

    The issues of electronic polarizability in molecular dynamics simulations are discussed. We argue that the charges of ionized groups in proteins, and charges of ions in conventional non-polarizable force fields such as CHARMM, AMBER, GROMOS, etc should be scaled by a factor about 0.7. Our model explains why a neglect of electronic solvation energy, which typically amounts to about a half of total solvation energy, in non-polarizable simulations with un-scaled charges can produce a correct result; however, the correct solvation energy of ions does not guarantee the correctness of ion-ion pair interactions in many non-polarizable simulations. The inclusion of electronic screening for charged moieties is shown to result in significant changes in protein dynamics and can give rise to new qualitative results compared with the traditional non-polarizable force field simulations. The model also explains the striking difference between the value of water dipole $\\mu$~3D reported in recent ab initio and experimental s...

  3. On Correlation Effect of the Van-der-Waals and Intramolecular Forces for the Nucleotide Chain - Metallic Nanoparticles - Carbon Nanotube Binding

    Science.gov (United States)

    Khusenov, M.A.; Dushanov, E.B.; Kholmurodov, Kh.T; Zaki, M.M.; Sweilam, N.H.

    2016-01-01

    Background: The tertiary system of nucleotide chain (NC) - gold nanoparticles (NPs) - carbon nanotube (CNT) represents a great interest in the modern research and application of the bio-nano-technologies. The application aspects include, for example, the development of electronic mobile diagnostic facilities, nanorobotic design for a drug delivery inside living cell, and so on. The small NC chain represents an important stage in the understanding of the interaction mechanism of a full DNA or RNA molecule with NP and CNT. In this regard, one has to mention the development of the DNA-CNT devices for the purposes of diagnostic applications in the chemical or drug delivery. Methods: For the NC-NP-CNT system, we have built up a series of the molecular dynamics (MD) models with different NC-NP configurations and performed their MD analysis. The entire system (the NC chain, gold NPs and CNT) was allowed to interact with each other by the only VdW forces. The Lennard-Jones short-ranged interaction was assumed between the NC, NP and CNT. For the CNT a many body Tersoff potential having a quantum-chemistry nature was used. So far, the so-called hybrid MD approach was realized, where the quantum-chemistry potential in combination with a classical trajectory calculation applied . Results: The peculiarities of the NC-NP interaction and bond formation inside of a CNT matrix were investigated along with the structural and dynamical behavior. The correlation effects between the weak Van der Waals (VdW) forces and intramolecular vibrations were enlighten for the molecular system consisting of a small nucleotide chain (NC), gold nanoparticles (NPs) and carbon nanotube (CNT) using molecular dynamics (MD) simulation method. Conclusion: The NC intermolecular motions were estimated from MD data thereby building the distance distributions, the angular and dihedral (torsional) bond energy graphs versus simulation time at different temperatures from T=100 K up to 300 K. The MD simulation

  4. Accounting for electronic polarization in non-polarizable force fields

    Science.gov (United States)

    Leontyev, Igor; Stuchebrukhov, Alexei

    The issues of electronic polarizability in molecular dynamics simulations are discussed. We argue that the charges of ionized groups in proteins, and charges of ions in conventional non-polarizable force fields such as CHARMM, AMBER, GROMOS, etc should be scaled by a factor about 0.7. Our model explains why a neglect of electronic solvation energy, which typically amounts to about a half of total solvation energy, in non-polarizable simulations with un-scaled charges can produce a correct result; however, the correct solvation energy of ions does not guarantee the correctness of ion-ion pair interactions in many non-polarizable simulations. The inclusion of electronic screening for charged moieties is shown to result in significant changes in protein dynamics and can give rise to new qualitative results compared with the traditional non-polarizable force field simulations. The model also explains the striking difference between the value of water dipole $\\mu$~3D reported in recent ab initio and experimental studies with the value $\\mu_{eff}$~2.3D typically used in the empirical potentials, such as TIP3P or SPC/E. It is shown that the effective dipole of water can be understood as a scaled value $\\mu_{eff}=\\mu/\\sqrt{\\epsilon_{el}}$, where $\\epsilon_{el}$=1.78 is the electronic (high-frequency) dielectric constant of water. This simple theoretical framework provides important insights into the nature of the effective parameters, which is crucial when the computational models of liquid water are used for simulations in different environments, such as proteins, or for interaction with solutes.

  5. Sign change in the net force in sphere-plate and sphere-sphere systems immersed in nonpolar critical fluid due to the interplay between the critical Casimir and dispersion van der Waals forces

    Science.gov (United States)

    Valchev, Galin; Dantchev, Daniel

    2017-08-01

    We study systems in which both long-ranged van der Waals and critical Casimir interactions are present. The latter arise as an effective force between bodies when immersed in a near-critical medium, say a nonpolar one-component fluid or a binary liquid mixture. They are due to the fact that the presence of the bodies modifies the order parameter profile of the medium between them as well as the spectrum of its allowed fluctuations. We study the interplay between these forces, as well as the total force (TF) between a spherical colloid particle and a thick planar slab and between two spherical colloid particles. We do that using general scaling arguments and mean-field-type calculations utilizing the Derjaguin and the surface integration approaches. They both are based on data of the forces between two parallel slabs separated at a distance L from each other, confining the fluctuating fluid medium characterized by its temperature T and chemical potential μ . The surfaces of the colloid particles and the slab are coated by thin layers exerting strong preference to the liquid phase of the fluid, or one of the components of the mixture, modeled by strong adsorbing local surface potentials, ensuring the so-called (+,+) boundary conditions. On the other hand, the core region of the slab and the particles influence the fluid by long-ranged competing dispersion potentials. We demonstrate that for a suitable set of colloids-fluid, slab-fluid, and fluid-fluid coupling parameters, the competition between the effects due to the coatings and the core regions of the objects involved result, when one changes T , μ , or L , in sign change of the Casimir force (CF) and the TF acting between the colloid and the slab, as well as between the colloids. This can be used for governing the behavior of objects, say colloidal particles, at small distances, say in colloid suspensions for preventing flocculation. It can also provide a strategy for solving problems with handling, feeding

  6. The Army Did Not Properly Account For and Manage Force Provider Equipment in Afghanistan

    Science.gov (United States)

    2014-07-31

    July 31, 2014 MEMORANDUM FOR AUDITOR GENERAL, DEPARTMENT OF THE ARMY SUBJECT: The Army Did Not Properly Account For and Manage Force Provider...transferred to another unit during unit rotations . Finally, the unit uses TPE planner in PBUSE to determine the disposition of their FP equipment

  7. Examining Officer and Citizen Accounts of Police Use-of-Force Incidents

    Science.gov (United States)

    Rojek, Jeff; Alpert, Geoffrey P.; Smith, Hayden P.

    2012-01-01

    This study contributes to the body of knowledge of police-citizen contacts by investigating perceptions and behaviors during encounters that result in physical resistance and force. The authors use the accounts literature as a way to understand police-citizen interactions. The data include interviews with citizens who resisted or were accused of…

  8. Materials perspective on Casimir and van der Waals interactions

    Science.gov (United States)

    Woods, L. M.; Dalvit, D. A. R.; Tkatchenko, A.; Rodriguez-Lopez, P.; Rodriguez, A. W.; Podgornik, R.

    2016-10-01

    Interactions induced by electromagnetic fluctuations, such as van der Waals and Casimir forces, are of universal nature present at any length scale between any types of systems. Such interactions are important not only for the fundamental science of materials behavior, but also for the design and improvement of micro- and nanostructured devices. In the past decade, many new materials have become available, which has stimulated the need for understanding their dispersive interactions. The field of van der Waals and Casimir forces has experienced an impetus in terms of developing novel theoretical and computational methods to provide new insights into related phenomena. The understanding of such forces has far reaching consequences as it bridges concepts in materials, atomic and molecular physics, condensed-matter physics, high-energy physics, chemistry, and biology. This review summarizes major breakthroughs and emphasizes the common origin of van der Waals and Casimir interactions. Progress related to novel ab initio modeling approaches and their application in various systems, interactions in materials with Dirac-like spectra, force manipulations through nontrivial boundary conditions, and applications of van der Waals forces in organic and biological matter are examined. The outlook of the review is to give the scientific community a materials perspective of van der Waals and Casimir phenomena and stimulate the development of experimental techniques and applications.

  9. On the Transition from Bulk to Ordered Form of Water: A Theoretical Model to Calculate Adhesion Force Due to Capillary and van der Waals Interaction

    NARCIS (Netherlands)

    Yaqoob, M.A.; Rooij, de M.B.; Schipper, D.J.

    2013-01-01

    The adhesion force due to capillary interaction between two hydrophilic surfaces is strongly dependent on the partial pressure of water and is often calculated using the Kelvin equation. The validity of the Kelvin equation is questionable at low relative humidity (RH) of water, like in high vacuum a

  10. Critical and near-critical phase behavior and interplay between the thermodynamic Casimir and van der Waals forces in a confined nonpolar fluid medium with competing surface and substrate potentials

    Science.gov (United States)

    Valchev, Galin; Dantchev, Daniel

    2015-07-01

    We study, using general scaling arguments and mean-field type calculations, the behavior of the critical Casimir force and its interplay with the van der Waals force acting between two parallel slabs separated at a distance L from each other, confining some fluctuating fluid medium, say a nonpolar one-component fluid or a binary liquid mixture. The surfaces of the slabs are coated by thin layers exerting strong preference to the liquid phase of the fluid, or one of the components of the mixture, modeled by strong adsorbing local surface potentials ensuring the so-called (+,+) boundary conditions. The slabs, on the other hand, influence the fluid by long-range competing dispersion potentials, which represent irrelevant interactions in renormalization-group sense. Under such conditions, one usually expects attractive Casimir force governed by universal scaling function, pertinent to the extraordinary surface universality class of Ising type systems, to which the dispersion potentials provide only corrections to scaling. We demonstrate, however, that below a given threshold thickness of the system Lcrit for a suitable set of slabs-fluid and fluid-fluid coupling parameters the competition between the effects due to the coatings and the slabs can result in sign change of the Casimir force acting between the surfaces confining the fluid when one changes the temperature T , the chemical potential of the fluid μ , or L . The last implies that by choosing specific materials for the slabs, coatings, and the fluid for L ≲Lcrit one can realize repulsive Casimir force with nonuniversal behavior which, upon increasing L , gradually turns into an attractive one described by a universal scaling function, depending only on the relevant scaling fields related to the temperature and the excess chemical potential, for L ≫Lcrit . We present arguments and relevant data for specific substances in support of the experimental feasibility of the predicted behavior of the force. It can

  11. LABOUR FORCE EFFECTS TO CURRENT ACCOUNT MOVEMENT OF ASEAN + 6 COUNTRIES

    Directory of Open Access Journals (Sweden)

    NI PUTU WIWIN SETYARI

    2016-12-01

    Full Text Available Heckscher-Ohlin-Mundell framework suggests that if a country has unexpectedly increased the permanent labour force, there will be a change in the production structure. Increases in the relative proportion of labour-intensive product demand occur and, hence, decrease the need for investment relative to domestic saving, and encourage the current account surplus. This paper tries to fill the empirical studies gap on the effects of the labour force, especially its utilization in the data panel of ASEAN + 6 countries using the generalized method of moments (GMM used to capture the unobserved heterogeneity and endogeneity across countries that often arise in a panel data model. The estimation result shows that the labour force has an asymmetric shock and it only affects the country of origin, even when the financial institution deepening as a control variable is included. The analysis also indicates that labour regulations in these countries tend to be rigid because the speed with which the current account adjusts is relatively slow.

  12. The Search for an International Accounting Standard for Insurance: Report to the Accountancy Task Force of the Geneva Association

    OpenAIRE

    Gerry Dickinson

    2003-01-01

    This paper seeks to provide an understanding of the background to the search for an international standard for insurance contracts, which was initiated by the International Accounting Standards Committee (IASC) in 1997 and is still proceeding under its successor, the International Accounting Standard Board (IASB). To do this the paper traces the evolution of the fair value initiative of the IASC/IASB which at the outset was envisaged for all financial instruments, but over time has been amend...

  13. Simulations of cardiovascular blood flow accounting for time dependent deformational forces

    Science.gov (United States)

    Peters Randles, Amanda; Melchionna, Simone; Latt, Jonas; Succi, Sauro; Kaxiras, Efthimios

    2012-02-01

    Cardiovascular disease is currently the leading cause of death in the United States, and early detection is critical. Despite advances in imaging technology, 50% of these deaths occur suddenly and with no prior symptoms. The development and progression of coronary diseases such as atherosclerosis has been linked to prolonged areas of low endothelial shear stress (ESS); however, there is currently no way to measure ESS in vivo. We will present a patient specific fluid simulation that applies the Lattice Boltzmann equation to model the blood flow in the coronary arteries whose geometries are derived from computed tomography angiography data. Using large-scale supercomputers up to 294,912 processors, we can model a full heartbeat at the resolution of the red blood cells. We are investigating the time dependent deformational forces exerted on the arterial flows from the movement of the heart. The change in arterial curvature that occurs over a heartbeat has been shown to have significant impact on flow velocity and macroscopic quantities like shear stress. We will discuss a method for accounting for these resulting forces by casting them into a kinetic formalism via a Gauss-Hermite projection and their impact on ESS while maintaining the static geomtry obtained from CTA data.

  14. Real-space phase-field simulation of piezoresponse force microscopy accounting for stray electric fields

    Science.gov (United States)

    Yang, Lun; Dayal, Kaushik

    2012-04-01

    Piezoresponse force microscopy (PFM) is a powerful scanning-probe technique used to characterize important aspects of the microstructure in ferroelectrics. It has been widely applied to understand domain patterns, domain nucleation and the structure of domain walls. In this paper, we apply a real-space phase-field model to consistently simulate various PFM configurations. We model the PFM tip as a charged region that is external to the ferroelectric, and implement a boundary element method to efficiently and accurately account for the external stray fields that mediate the interactions between the tip and the ferroelectric. Our phase-field model and the solution method together are able to account for the electrical fields both within the specimen as well as those outside, and also consistently solve for the resulting electromechanical response with the same phase-field model. We apply this to various problems: first, the effect of crystal lattice orientation on the induced tip displacement and rotation; second, PFM scanning of a 90° domain wall that emerges at a free surface; third, the effect of closure domain microstructure on PFM response; fourth, the effect of surface modulations on PFM response; and fifth, the effect of surface charge compensation on PFM response.

  15. Molecular interactions in particular Van der Waals nanoclusters

    Energy Technology Data Exchange (ETDEWEB)

    Jungclas, Hartmut; Schmidt, Lothar [Marburg Univ. (Germany). Chemistry Dept.; Komarov, Viacheslav V.; Popova, Anna M. [Marburg Univ. (Germany). Chemistry Dept.; Lomonosov Moscow State Univ. (Russian Federation). Skobeltzin Inst. of Nuclear Physics

    2017-04-01

    A method is presented to analyse the interaction energies in a nanocluster, which is consisting of three neutral molecules bound by non-covalent long range Van der Waals forces. One of the molecules (M{sub 0}) in the nanocluster has a permanent dipole moment, whereas the two other molecules (M{sub 1} and M{sub 2}) are non-polar. Analytical expressions are obtained for the numerical calculation of the dispersion and induction energies of the molecules in the considered nanocluster. The repulsive forces at short intermolecular distances are taken into account by introduction of damping functions. Dispersion and induction energies are calculated for a nanocluster with a definite geometry, in which the polar molecule M{sub 0} is a linear hydrocarbon molecule C{sub 5}H{sub 10} and M{sub 1} and M{sub 2} are pyrene molecules. The calculations are done for fixed distances between the two pyrene molecules. The results show that the induction energies in the considered three-molecular nanocluster are comparable with the dispersion energies. Furthermore, the sum of induction energies in the substructure (M{sub 0}, M{sub 1}) of the considered nanocluster is much higher than the sum of induction energies in a two-molecular nanocluster with similar molecules (M{sub 0}, M{sub 1}) because of the absence of an electrostatic field in the latter case. This effect can be explained by the essential intermolecular induction in the three-molecular nanocluster.

  16. van der Waals Heterostructures Grown by MBE

    Science.gov (United States)

    Hinkle, Christopher

    In this work, we demonstrate the high-quality MBE heterostructure growth of various layered 2D materials by van der Waals epitaxy (VDWE). The coupling of different types of van der Waals materials including transition metal dichalcogenide thin films (e.g., WSe2, WTe2, HfSe2) , insulating hexagonal boron nitride (h-BN), and topological insulators (e.g., Bi2Se3) allows for the fabrication of novel electronic devices that take advantage of unique quantum confinement and spin-based characteristics. The relaxed lattice-matching criteria of van der Waals epitaxy has allowed for high-quality heterostructure growth with atomically abrupt interfaces, allowing us to couple these materials based primarily on their band alignment and electronic properties. We will discuss the impact of sample preparation, surface reactivity, and lattice mismatch of various substrates (sapphire, graphene, TMDs, Bi2Se3) on the growth mode and quality of the films and will discuss our studies of substrate temperature and flux rates on the resultant growth and grain size. Structural and chemical characterization was conducted via reflection high energy electron diffraction (RHEED, X-ray diffraction (XRD), transmission electron microscopy (TEM), scanning tunneling microscopy/spectroscopy (STM/S), atomic force microscopy (AFM), X-ray photoelectron spectroscopy (XPS), and Raman spectroscopy. Experimentally determined band alignments have been determined and compared with first-principles calculations allowing the design of novel low-power logic and magnetic memory devices. Initial results from the electrical characterization of these grown thin films and some simple devices will also be presented. These VDWE grown layered 2D materials show significant potential for fabricating novel heterostructures with tunable band alignments and magnetic properties for a variety of nanoelectronic and optoelectronic applications.

  17. Use of the Sacramento Soil Moisture Accounting Model in Areas with Insufficient Forcing Data

    Science.gov (United States)

    Kuzmin, V.

    2009-04-01

    The Sacramento Soil Moisture Accounting model (SAC-SMA) is known as a very reliable and effective hydrological model. It is widely used by the U.S. National Weather Service (NWS) and many organizations in other countries for operational forecasting of flash floods. As a purely conceptual model, the SAC-SMA requires a periodic re-calibration. However, this procedure is not trivial in watersheds with little or no historical data, in areas with changing watershed properties, in a changing climate environment, in regions with low quality and low spatial resolution forcing data etc. In such cases, so-called physically based models with measurable parameters also may not be an alternative, because they usually require high quality forcing data and, hence, are quite expensive. Therefore, this type of models can not be implemented in countries with scarce surface observation data. To resolve this problem, we offer using a very fast and efficient automatic calibration algorithm, a Stepwise Line Search (SLS), which has been implementing in NWS since 2005, and also its modifications that were developed especially for automated operational forecasting of flash floods in regions where high resolution and high quality forcing data are not available. The SLS-family includes several simple yet efficient calibration algorithms: 1) SLS-F, which supposes simultaneous natural smoothing of the response surface by quasi-local estimation of F-indices, what allows finding the most stable and reliable parameters that can be different from "global" optima in usual sense. (Thus, this method slightly transforms the original objective function); 2) SLS-2L (Two-Loop SLS), which is suitable for basins where hydraulic properties of soil are unknown; 3) SLS-2LF, which represents a conjunction of the SLS-F and SLS-2L algorithms and allows obtaining the SAC-SMA parameters that can be transferred to ungauged catchments; 4) SLS-E, which also supposes stochastic filtering of the model input through

  18. Van der Waals interaction between two crossed carbon nanotubes

    OpenAIRE

    Zhbanov, Alexander I.; Pogorelov, Evgeny G.; Chang, Yia-Chung

    2008-01-01

    The analytical expressions for the van der Waals potential energy and force between two crossed carbon nanotubes are presented. The Lennard-Jones potential for two carbon atoms and the method of the smeared out approximation suggested by L.A. Girifalco were used. The exact formula is expressed in terms of rational and elliptical functions. The potential and force for carbon nanotubes were calculated. The uniform potential curves for single- and multi- wall nanotubes were plotted. The equilibr...

  19. Accurate treatment of nanoelectronics through improved description of van der Waals Interactions

    DEFF Research Database (Denmark)

    Kelkkanen, Kari André

    W-DF functional are too small, as the exchange approximation used is too repulsive. With the vdW-DF and other functionals that account for vdW forces, the total isomer energies are minimized in molecular configurations, which are compact, and in which many hydrogen bonds (HBs) can be described as distorted......This thesis emerges from a patented idea to utilize intentionally structured sur- faces and differences in adsorption strengths to self-assemble some source mate- rial into nanoelectronic components, and ends up in the heated debate regarding structure of ambient water . It investigates the role...... and relevance of van der Waals (vdW) forces in molecular surface adsorption and water through density- functional theory (DFT), using the exchange-correlation functional vdW-DF [Dion et al., Phys. Rev. Lett. 92, 246401 (2004)] and developments based on it. Results are first computed for adsorption with vd...

  20. Five-body van der Waals interactions

    Science.gov (United States)

    Han, Jianing

    2017-06-01

    We report on the five-body repulsive and attractive van der Waals interactions between the strongly dipole-dipole coupled Rydberg states. Compared to four-body van der Waals interactions, five-body van der Waals interactions show more energy levels and more potential wells caused by avoided crossings. This research bridges the few-body physics and many-body physics. Other disciplines, such as chemistry, biology, and medical fields, will also benefit from better understanding van der Waals interactions.

  1. Cosmological models described by a mixture of van der Waals fluid and dark energy

    CERN Document Server

    Kremer, G M

    2003-01-01

    The Universe is modeled as a binary mixture whose constituents are described by a van der Waals fluid and by a dark energy density. The dark energy density is considered either as the quintessence or as the Chaplygin gas. The irreversible processes concerning the energy transfer between the van der Waals fluid and the gravitational field are taken into account. This model can simulate: (a) an inflationary period where the acceleration grows exponentially and the van der Waals fluid behaves like an inflaton; (b) an inflationary period where the acceleration is positive but it decreases and tends to zero whereas the energy density of the van der Waals fluid decays; (c) a decelerated period which corresponds to a matter dominated period with a non-negative pressure; and (d) a present accelerated period where the dark energy density outweighs the energy density of the van der Waals fluid.

  2. Van der Waals black hole

    Directory of Open Access Journals (Sweden)

    Aruna Rajagopal

    2014-10-01

    Full Text Available In the context of extended phase space, where the negative cosmological constant is treated as a thermodynamic pressure in the first law of black hole thermodynamics, we find an asymptotically AdS metric whose thermodynamics matches exactly that of the Van der Waals fluid. We show that as a solution of Einstein's equations, the corresponding stress energy tensor obeys (at least for certain range of metric parameters all three weak, strong, and dominant energy conditions.

  3. Van der Waals interaction between two crossed carbon nanotubes.

    Science.gov (United States)

    Zhbanov, Alexander I; Pogorelov, Evgeny G; Chang, Yia-Chung

    2010-10-26

    The analytical expressions for the van der Waals potential energy and force between two crossed carbon nanotubes are presented. The Lennard-Jones potential between pairs of carbon atoms and the smeared-out approximation suggested by L. A. Girifalco (J. Phys. Chem. 1992, 96, 858) were used. The exact formula is expressed in terms of rational and elliptical functions. The potential and force for carbon nanotubes were calculated. The uniform potential curves for single- and multiwall nanotubes were plotted. The equilibrium distance, maximal attractive force, and potential energy have been evaluated.

  4. Van der Waals interactions and Photoelectric Effect in Noncommutative Quantum Mechanics

    Institute of Scientific and Technical Information of China (English)

    LI Kang; CHAMOUN Nidal

    2007-01-01

    We calculate the long-range Van der Waals force and the photoelectric cross section in a noncommutative setup. It is argued that non-commutativity effects could not be discerned for the Van der Waals interactions. The result for the photoelectric effect shows deviation from the usual commutative one, which in principle can be used to put bounds on the space-space non-commutativity parameter.

  5. Accounting for radiative forcing from albedo change in future global land-use scenarios

    Energy Technology Data Exchange (ETDEWEB)

    Jones, Andrew D. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Calvin, Katherine V. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Collins, William D. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Univ. of California, Berkeley, CA (United States); Edmonds, James A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2015-08-01

    We demonstrate the effectiveness of a new method for quantifying radiative forcing from land use and land cover change (LULCC) within an integrated assessment model, the Global Change Assessment Model (GCAM). The method relies on geographically differentiated estimates of radiative forcing from albedo change associated with major land cover transitions derived from the Community Earth System Model. We find that conversion of 1 km² of woody vegetation (forest and shrublands) to non-woody vegetation (crops and grassland) yields between 0 and –0.71 nW/m² of globally averaged radiative forcing determined by the vegetation characteristics, snow dynamics, and atmospheric radiation environment characteristic within each of 151 regions we consider globally. Across a set of scenarios designed to span a range of potential future LULCC, we find LULCC forcing ranging from –0.06 to –0.29 W/m² by 2070 depending on assumptions regarding future crop yield growth and whether climate policy favors afforestation or bioenergy crops. Inclusion of this previously uncounted forcing in the policy targets driving future climate mitigation efforts leads to changes in fossil fuel emissions on the order of 1.5 PgC/yr by 2070 for a climate forcing limit of 4.5 Wm–2, corresponding to a 12–67 % change in fossil fuel emissions depending on the scenario. Scenarios with significant afforestation must compensate for albedo-induced warming through additional emissions reductions, and scenarios with significant deforestation need not mitigate as aggressively due to albedo-induced cooling. In all scenarios considered, inclusion of albedo forcing in policy targets increases forest and shrub cover globally.

  6. Delinquent Medical Service Accounts at David Grant Air Force Medical Center Need Additional Management Oversight

    Science.gov (United States)

    2015-09-24

    17 counties. DGMC Uniform Business Office (UBO) uses MSAs to record billing and fee collection for medical and dental services from Uniformed...personnel processed new accounts, the process used by DGMC did not manage or prioritize the aging MSAs or alert clerks of delinquent accounts...have been applied to other valid requirements such as administrative, operating, and equipment costs; readiness training; or trauma consortium

  7. Van der Waals interactions and the limits of isolated atom models at interfaces.

    Science.gov (United States)

    Kawai, Shigeki; Foster, Adam S; Björkman, Torbjörn; Nowakowska, Sylwia; Björk, Jonas; Canova, Filippo Federici; Gade, Lutz H; Jung, Thomas A; Meyer, Ernst

    2016-05-13

    Van der Waals forces are among the weakest, yet most decisive interactions governing condensation and aggregation processes and the phase behaviour of atomic and molecular matter. Understanding the resulting structural motifs and patterns has become increasingly important in studies of the nanoscale regime. Here we measure the paradigmatic van der Waals interactions represented by the noble gas atom pairs Ar-Xe, Kr-Xe and Xe-Xe with a Xe-functionalized tip of an atomic force microscope at low temperature. Individual rare gas atoms were fixed at node sites of a surface-confined two-dimensional metal-organic framework. We found that the magnitude of the measured force increased with the atomic radius, yet detailed simulation by density functional theory revealed that the adsorption induced charge redistribution strengthened the van der Waals forces by a factor of up to two, thus demonstrating the limits of a purely atomic description of the interaction in these representative systems.

  8. Force field development for actinyl ions via quantum mechanical calculations: an approach to account for many body solvation effects.

    Science.gov (United States)

    Rai, Neeraj; Tiwari, Surya P; Maginn, Edward J

    2012-09-06

    Advances in computational algorithms and methodologies make it possible to use highly accurate quantum mechanical calculations to develop force fields (pair-wise additive intermolecular potentials) for condensed phase simulations. Despite these advances, this approach faces numerous hurdles for the case of actinyl ions, AcO2(n+) (high-oxidation-state actinide dioxo cations), mainly due to the complex electronic structure resulting from an interplay of s, p, d, and f valence orbitals. Traditional methods use a pair of molecules (“dimer”) to generate a potential energy surface (PES) for force field parametrization based on the assumption that many body polarization effects are negligible. We show that this is a poor approximation for aqueous phase uranyl ions and present an alternative approach for the development of actinyl ion force fields that includes important many body solvation effects. Force fields are developed for the UO2(2+) ion with the SPC/Fw, TIP3P, TIP4P, and TIP5P water models and are validated by carrying out detailed molecular simulations on the uranyl aqua ion, one of the most characterized actinide systems. It is shown that the force fields faithfully reproduce available experimental structural data and hydration free energies. Failure to account for solvation effects when generating PES leads to overbinding between UO2(2+) and water, resulting in incorrect hydration free energies and coordination numbers. A detailed analysis of arrangement of water molecules in the first and second solvation shell of UO2(2+) is presented. The use of a simple functional form involving the sum of Lennard-Jones + Coulomb potentials makes the new force field compatible with a large number of available molecular simulation engines and common force fields.

  9. The United States Air Force in Southeast Asia, 1961-1973: An Illustrated Account,

    Science.gov (United States)

    1984-01-01

    Jr. 1. R. Frank Futrell ~ William Greenhaigh J. C.Hopkins L i William B. Karstetter DI Robert R. Kntt ELECTE Doris E. KrudenerD Kenneth L. Patchiri...and Doris A. Krudener Expanding the Radar Net.................................................... 223 The EC-1 21 Task Force...same period-between 8 defeated Hubert H. Humphrey in the May and 2 July 1969-the enemy 1968 presidential elections. During the launched an intensive

  10. Government Accountability Office Bid Protests in Air Force Source Selections: Evidence and Options

    Science.gov (United States)

    2012-01-01

    Participants in development of Acquisition Improvement Plan –  Participants in CSAR-X, KC-X source selections –  Stewards of PACTS database...for the pro- tester. This GAO policy tends to push any cost-benefit calculus toward supporting a protest if an offeror believes that it has a...benefit calculus still further toward supporting a protest. In the face of this threat from sophisticated protesters, the Air Force has a simple and

  11. Understanding and Accounting for National Will in Strategies that Use Military Forces

    Science.gov (United States)

    2015-05-23

    it to be lost and lead to strategic failure . 15. SUBJECT TERMS Strategy; Military Strategy; Use of Force; National Will; National Interests...Director, Graduate Degree Programs Robert F. Baumann, PhD The opinions and conclusions expressed herein are...those of the student author and do not necessarily represent the views of the US Army Command and General Staff College or any other government agency

  12. Van der Waals explosion of cold Rydberg clusters

    CERN Document Server

    Faoro, R; Archimi, M; Masella, G; Valado, M M; Arimondo, E; Mannella, R; Ciampini, D; Morsch, O

    2015-01-01

    We report on the direct measurement in real space of the effect of the van der Waals forces between individual Rydberg atoms on their external degrees of freedom. Clusters of Rydberg atoms with inter-particle distances of around 5 {\\mu}m are created by first generating a small number of seed excitations in a magneto-optical trap, followed by off-resonant excitation that leads to a chain of facilitated excitation events. After a variable expansion time the Rydberg atoms are field ionized, and from the arrival time distributions the size of the Rydberg cluster after expansion is calculated. Our experimental results agree well with a numerical simulation of the van der Waals explosion.

  13. Van der Waals Interactions in Pyridine and Pyridine-like Molecular Crystals: An ab initio Molecular Dynamics Study

    Science.gov (United States)

    Ko, Hsin-Yu; Distasio, Robert A., Jr.; Santra, Biswajit; Car, Roberto

    2014-03-01

    Pyridine has recently been investigated as a potentially effective material for use in artificial light harvesting.In this work, we propose the use of ab initio molecular dynamics (AIMD) to gain valuable physical insight into the artificial photosynthetic processes occurring in condensed-phase pyridine, the study of which has been limited to semi-empirical force fields to date.For this purpose, we introduce an accurate and efficient AIMD method, based on density functional theory (DFT) and a self-consistent pairwise description of van der Waals (vdW) interactions, for use in finite temperature and pressure (NPT) simulations on pyridine and several pyridine-like molecular crystals (PLMCs). Utilizing this approach, we demonstrate that vdW forces play a crucial role in the theoretical prediction of the structure and density of pyridine and PLMCs, and therefore must be accounted for in studies of these potential alternative energy materials. DOE: DE-SC0008626, NSF: DMS-1065894.

  14. Provider accountability as a driving force towards physician–hospital integration: a systematic review

    Directory of Open Access Journals (Sweden)

    Jeroen Trybou

    2015-04-01

    Full Text Available Background: Hospitals and physicians lie at the heart of our health care delivery system. In general, physicians provide medical care and hospitals the resources to deliver health care. In the past two decades many countries have adopted reforms in which provider financial risk bearing is increased. By making providers financially accountable for the delivered care integrated care delivery is stimulated. Purpose: To assess the evidence base supporting the relationship between provider financial risk bearing and physician–hospital integration and to identify the different types of methods used to measure physician–hospital integration to evaluate the functional value of these integrative models. Results: Nine studies met the inclusion criteria. The evidence base is mixed and inconclusive. Our methodological analysis of previous research shows that previous studies have largely focused on the formal structures of physician–hospital arrangements as an indicator of physician–hospital integration. Conclusion: The link between provider financial risk bearing and physician–hospital integration can at this time be supported merely on the basis of theoretical insights of agency theory rather than empirical research. Physician–hospital integration measurement has concentrated on the prevalence of contracting vehicles that enables joint bargaining in a managed care environment but without realizing integration and cooperation between hospital and physicians. Therefore, we argue that these studies fail to shed light on the impact of risk shifting on the hospital–physician relationship accurately.

  15. Provider accountability as a driving force towards physician–hospital integration: a systematic review

    Directory of Open Access Journals (Sweden)

    Jeroen Trybou

    2015-04-01

    Full Text Available Background: Hospitals and physicians lie at the heart of our health care delivery system. In general, physicians provide medical care and hospitals the resources to deliver health care. In the past two decades many countries have adopted reforms in which provider financial risk bearing is increased. By making providers financially accountable for the delivered care integrated care delivery is stimulated.Purpose: To assess the evidence base supporting the relationship between provider financial risk bearing and physician–hospital integration and to identify the different types of methods used to measure physician–hospital integration to evaluate the functional value of these integrative models.Results: Nine studies met the inclusion criteria. The evidence base is mixed and inconclusive. Our methodological analysis of previous research shows that previous studies have largely focused on the formal structures of physician–hospital arrangements as an indicator of physician–hospital integration.Conclusion: The link between provider financial risk bearing and physician–hospital integration can at this time be supported merely on the basis of theoretical insights of agency theory rather than empirical research. Physician–hospital integration measurement has concentrated on the prevalence of contracting vehicles that enables joint bargaining in a managed care environment but without realizing integration and cooperation between hospital and physicians. Therefore, we argue that these studies fail to shed light on the impact of risk shifting on the hospital–physician relationship accurately.

  16. Scaling Laws for van der Waals Interactions in Nanostructured Materials

    Science.gov (United States)

    Gobre, Vivekanand; Tkatchenko, Alexandre

    2014-03-01

    Van der Waals (vdW) forces originate from interactions between fluctuating multipoles in matter and play a significant role in the structure and stability of nanostructured materials. Many models used to describe vdW interactions in nanomaterials are based on a simple pairwise-additive approximation, neglecting the strong electrodynamic response effects caused by long-range fluctuations in matter. We develop and utilize an efficient microscopic method to demonstrate that vdW interactions in nanomaterials act at distances greater than typically assumed, and can be characterized by different scaling laws depending on the dimensionality and size of the system. Specifically, we study the behaviour of vdW interactions in single-layer and multilayer graphene, fullerenes of varying size, single-wall carbon nanotubes and graphene nanoribbons. As a function of nanostructure size, the van der Waals coefficients follow unusual trends for all of the considered systems, and deviate significantly from the conventionally employed pairwise-additive picture. We propose that the peculiar van der Waals interactions in nanostructured materials could be exploited to control their self-assembly.

  17. Van der Waals Interactions and Exciton Condensation

    Science.gov (United States)

    Handel, P. H.; Kittel, C.

    1971-01-01

    It is shown that the van der Waals interaction can lead at low temperatures to a condensed state of excitons with properties in qualitative agreement with the observations of exciton droplets. Our calculation gives a binding energy of the correct sign and magnitude for the exciton condensate. In a diclectric medium, the strong enhancement of the exciton polarizability leads to a giant van der Waals interaction, and this interaction appears to make possible a condensed exciton phase. PMID:16591958

  18. Van der Waals interaction between a microparticle and a single-wall carbon nanotube

    CERN Document Server

    Blagov, E V; Mostepanenko, V M

    2007-01-01

    The Lifshitz-type formulas describing the free energy and the force of the van der Waals interaction between an atom (molecule) and a single-wall carbon nanotube are obtained. The single-wall nanotube is considered as a cylindrical sheet carrying a two-dimensional free electron gas with appropriate boundary conditions on the electromagnetic field. The obtained formulas are used to calculate the van der Waals free energy and force between a hydrogen atom (molecule) and single-wall carbon nanotubes of different radia. Comparison studies of the van der Waals interaction of hydrogen atoms with single- and multi-wall carbon nanotubes show that depending on atom-nanotube separation distance the idealization of graphite dielectric permittivity is already applicable to nanotubes with only two or three walls.

  19. EDITORIAL: Van der Waals interactions in advanced materials, in memory of David C Langreth Van der Waals interactions in advanced materials, in memory of David C Langreth

    Science.gov (United States)

    Hyldgaard, Per; Rahman, Talat S.

    2012-10-01

    The past decade has seen a dramatic rise in interest in exploring the role that van der Waals (vdW) or dispersion forces play in materials and in material behavior. Part of this stems from the obvious fact that vdW interactions (and other weak forces, such as Casimir) underpin molecular recognition, i.e., nature's approach to search for a match between genes and anti-genes and hence enable biological function. Less obvious is the recognition that vdW interactions affect a multitude of properties of a vast variety of materials in general, some of which also have strong technological applications. While for two atom- or orbital-sized material fragments the dispersive contributions to binding are small compared to those from the better known forms (ionic, covalent, metallic), those between sparse materials (spread over extended areas) can be of paramount importance. For example, an understanding of binding in graphite cannot arise solely from a study of the graphene layers individually, but also requires insight from inter-sheet graphene vdW bonding. It is the extended-area vdW bonding that provides sufficient cohesion to make graphite a robust, naturally occurring material. In fact, it is the vdW-bonded graphite, and not the all-covalently bonded diamond, that is the preferred form of pure carbon under ambient conditions. Also important is the understanding that vdW attraction can attain a dramatic relevance even if the material fragments, the building blocks, are not necessarily parallel from the outset or smooth when viewed in isolation (such as a graphene sheet or a carbon nanotube). This can happen if the building blocks have some softness and flexibility and allow an internal relative alignment to emerge. The vdW forces can then cause increasingly larger parts of the interacting fragments to line up at sub-nanometer separations and thus beget more areas with a sizable vdW bonding contribution. The gecko can scale a wall because it can bring its flexible hairs

  20. Spherical and hyperspherical harmonics representation of van der Waals aggregates

    Science.gov (United States)

    Lombardi, Andrea; Palazzetti, Federico; Aquilanti, Vincenzo; Grossi, Gaia; Albernaz, Alessandra F.; Barreto, Patricia R. P.; Cruz, Ana Claudia P. S.

    2016-12-01

    The representation of the potential energy surfaces of atom-molecule or molecular dimers interactions should account faithfully for the symmetry properties of the systems, preserving at the same time a compact analytical form. To this aim, the choice of a proper set of coordinates is a necessary precondition. Here we illustrate a description in terms of hyperspherical coordinates and the expansion of the intermolecular interaction energy in terms of hypersherical harmonics, as a general method for building potential energy surfaces suitable for molecular dynamics simulations of van der Waals aggregates. Examples for the prototypical case diatomic-molecule-diatomic-molecule interactions are shown.

  1. Property Accountability Task Force

    Science.gov (United States)

    1978-06-30

    O’rF AdrTHURITY APPLY EOUALLY-TaO c OMAND ERS Ofj ftt$ TA LLAI UN S OVial UNS ANDO SEPARATE BRIGADES?: CLARIFICATIO.N IS RECUIRLD SINLL THt ARMY...i2IS35L MAY 781 SAB. ATTENDEE AT SLEJiCI C(NF~f-ECE Fii., Tk-.E 820 AIRBORNE DIVISION WILL BE CPT DAVID J. ECiLEF, Z55-16-4cbZ, COMI ANDERr COI’PANY A

  2. Dynamics of Gold Nanoparticles on Carbon Nanostructures Driven by van der Waals and Electrostatic Interactions.

    Science.gov (United States)

    La Torre, Alessandro; Gimenez-Lopez, Maria del Carmen; Fay, Michael W; Lucas, Carlos Herreros; Brown, Paul D; Khlobystov, Andrei N

    2015-06-01

    Transmission electron microscopy studies on the assembly and growth of gold nanoparticles on carbon nanotubes supported on few-layer graphene and amorphous carbon reveal a competition between van der Waals forces and electrostatic interactions, enabling controlled positioning and sizing of adsorbed nanoparticles at the nanochannels formed between the carbon nanotube and the few-layer graph-ene surface.

  3. Molecular interpretation of nonclassical gas dynamics of dense vapors under the van der Waals model

    NARCIS (Netherlands)

    Colonna, P.; Guardone, A.

    2006-01-01

    The van der Waals polytropic gas model is used to investigate the role of attractive and repulsive intermolecular forces and the influence of molecular complexity on the possible nonclassical gas dynamic behavior of vapors near the liquid-vapor saturation curve. The decrease of the sound speed upon

  4. Molecular interpretation of nonclassical gas dynamics of dense vapors under the van der Waals model

    NARCIS (Netherlands)

    Colonna, P.; Guardone, A.

    2006-01-01

    The van der Waals polytropic gas model is used to investigate the role of attractive and repulsive intermolecular forces and the influence of molecular complexity on the possible nonclassical gas dynamic behavior of vapors near the liquid-vapor saturation curve. The decrease of the sound speed upon

  5. Force

    CERN Document Server

    Graybill, George

    2007-01-01

    Forces are at work all around us. Discover what a force is, and different kinds of forces that work on contact and at a distance. We use simple language and vocabulary to make this invisible world easy for students to ""see"" and understand. Examine how forces ""add up"" to create the total force on an object, and reinforce concepts and extend learning with sample problems.

  6. Integrable extended van der Waals model

    Science.gov (United States)

    Giglio, Francesco; Landolfi, Giulio; Moro, Antonio

    2016-10-01

    Inspired by the recent developments in the study of the thermodynamics of van der Waals fluids via the theory of nonlinear conservation laws and the description of phase transitions in terms of classical (dissipative) shock waves, we propose a novel approach to the construction of multi-parameter generalisations of the van der Waals model. The theory of integrable nonlinear conservation laws still represents the inspiring framework. Starting from a macroscopic approach, a four parameter family of integrable extended van der Waals models is indeed constructed in such a way that the equation of state is a solution to an integrable nonlinear conservation law linearisable by a Cole-Hopf transformation. This family is further specified by the request that, in regime of high temperature, far from the critical region, the extended model reproduces asymptotically the standard van der Waals equation of state. We provide a detailed comparison of our extended model with two notable empirical models such as Peng-Robinson and Soave's modification of the Redlich-Kwong equations of state. We show that our extended van der Waals equation of state is compatible with both empirical models for a suitable choice of the free parameters and can be viewed as a master interpolating equation. The present approach also suggests that further generalisations can be obtained by including the class of dispersive and viscous-dispersive nonlinear conservation laws and could lead to a new type of thermodynamic phase transitions associated to nonclassical and dispersive shock waves.

  7. Observation of scalar nuclear spin-spin coupling in van der Waals molecules

    CERN Document Server

    Ledbetter, Micah; Bagno, Alessandro; Tran, Nhan; Romalis, Michael

    2011-01-01

    Scalar couplings between covalently bound nuclear spins are a ubiquitous feature in nuclear magnetic resonance (NMR) experiments, imparting valuable information to NMR spectra regarding molecular structure and conformation. Such couplings arise due to a second-order hyperfine interaction, and, in principle, the same mechanism should lead to scalar couplings between nuclear spins in unbound van der Waals complexes. Here, we report the first observation of scalar couplings between nuclei in van der Waals molecules. Our measurements are performed in a solution of hyperpolarized ${\\rm ^{129}Xe}$ and pentane, using superconducting quantum interference devices to detect NMR in 10 mG fields, and are in good agreement with calculations based on density functional theory. van der Waals forces play an important role in many physical phenomena, and hence the techniques presented here may provide a new method for probing such interactions.

  8. Measurement of van-der-Waals interaction by atom trajectory imaging

    CERN Document Server

    Thaicharoen, N; Raithel, G

    2015-01-01

    We study the repulsive van der Waals interaction of cold rubidium $70S_{1/2}$ Rydberg atoms by analysis of time-delayed pair correlation functions. After excitation, Rydberg atoms are allowed to accelerate under the influence of the van der Waals force. Their positions are then measured using a single-atom imaging technique. From the average pair correlation function of the atom positions we obtain the initial atom-pair separation and the terminal velocity, which yield the van der Waals interaction coefficient $C_{6}$. The measured $C_{6}$ value agrees well with calculations. The experimental method has been validated by simulations. The data hint at anisotropy in the overall expansion, caused by the shape of the excitation volume. Our measurement implies that the interacting entities are individual Rydberg atoms, not groups of atoms that coherently share a Rydberg excitation.

  9. Effects of van der Waals Interactions in the Adsorption of Isooctane and Ethanol on Fe(100) Surfaces.

    Science.gov (United States)

    Bedolla, Pedro O; Feldbauer, Gregor; Wolloch, Michael; Eder, Stefan J; Dörr, Nicole; Mohn, Peter; Redinger, Josef; Vernes, András

    2014-08-07

    van der Waals (vdW) forces play a fundamental role in the structure and behavior of diverse systems. Because of development of functionals that include nonlocal correlation, it is possible to study the effects of vdW interactions in systems of industrial and tribological interest. Here we simulated within the framework of density functional theory (DFT) the adsorption of isooctane (2,2,4-trimethylpentane) and ethanol on an Fe(100) surface, employing various exchange-correlation functionals to take vdW forces into account. In particular, this paper discusses the effect of vdW forces on the magnitude of adsorption energies, equilibrium geometries, and their role in the binding mechanism. According to our calculations, vdW interactions increase the adsorption energies and reduce the equilibrium distances. Nevertheless, they do not influence the spatial configuration of the adsorbed molecules. Their effect on the electronic density is a nonisotropic, delocalized accumulation of charge between the molecule and the slab. In conclusion, vdW forces are essential for the adsorption of isooctane and ethanol on a bcc Fe(100) surface.

  10. Cluster ions and van der Waals molecules

    CERN Document Server

    Smirnov, Boris M

    1992-01-01

    This review discusses current ideas in the physics and chemistry of cluster ions and Van der Waals molecules as well as presenting numerical data on their parameters and the processes involving them. It is also a detailed reference on basic data relating to many species.

  11. Selection of option of pregame warm-up in handball taking into account features of force of the nervous system of sportsmen

    Directory of Open Access Journals (Sweden)

    Helen Gant

    2016-06-01

    Full Text Available Purpose: to develop recommendations about the organization of warm-up for handball players of 13–14 years old taking into account force of the nervous system (NS of players. Material & Methods: 28 handball players of 13–14 years old of Kharkov and Ternovka took part in the research; methods were used: analysis of scientific and methodical literature, technique of "Tapping-test". Results: need of the search of new ways of the increase of efficiency of the competitive activity of young handball players is proved theoretically. Psychological characteristics of handball players of 13–14 years old with a different force of the nervous system are provided. Practical recommendations about the organization of pregame warm-up of handball players of 13–14 years old taking into account force of nervous system of sportsmen are developed. Conclusions: handball players of 13–14 years old can be divided into five groups, concerning force of their nervous system by the results of the conducted research: strong NS (28,57%, average (21,43%, weak (17,86% and average and weak (14,29%, average and strong (17,86%. Recommendations about the organization and carrying out pregame warm-up of handball players of 13–14 years old, taking into account force of the nervous system of sportsmen were developed, considering the results of the psychological research of sportsmen.

  12. van der Waals Density Functional Theory vdW-DFq for Semihard Materials

    Science.gov (United States)

    Peng, Qing; de, Suvranu

    There are a large number of materials with mild stiffness, which are not as soft as tissues and not as strong as metals. These semihard materials includes energetic materials, molecular crystals, layered materials, and van der Waals crystals. The integrity and mechanical stability are mainly determined by the interactions between instantaneously induced dipoles, the so called London dispersion force or van der Waals force. It is challenging to accurately model the structural and mechanical properties of these semihard materials in the frame of density functional theory where the non-local correlation functionals are not well known. Here we propose a van der Waals density functional named vdW-DFq to accurately model the density and geometry of semihard materials. Using β-cyclotetramethylene tetranitramine as a prototype, we adjust the enhancement factor of the exchange energy functional with generalized gradient approximations. We find this method to be simple and robust over a wide tuning range when calibrating the functional on-demand with experimental data. With a calibrated value q = 1 . 05 , the proposed vdW-DFq method shows good performance in predicting the geometries of 11 common energetic material molecular crystals and 3 typical layered van der Waals crystals. The authors would like to acknowledge the generous financial support from the Defense Threat Reduction Agency (DTRA) Grant # HDTRA1-13-1-0025.

  13. Forces between hydrophobic solids in concentrated aqueous salt solution.

    Science.gov (United States)

    Mastropietro, Dean J; Ducker, William A

    2012-03-09

    Much research has focused on the discovery and description of long-ranged forces between hydrophobic solids immersed in water. Here we show that the force between high contact-angle solids in concentrated salt solution (1 M KCl) agrees very well with van der Waals forces calculated from Lifshitz theory for separations greater than 5 nm. The hydrophobic solids are octadecyltrichlorosilane-coated glass, with an advancing contact angle of 108°. Thus, in 1 M salt solution, it is unnecessary to invoke the presence of a hydrophobic force at separations greater than 5 nm. Through measurement in salt solution, we avoid the necessity of accounting for large electrostatic forces that frequently occur in pure water and may obscure resolution of other forces.

  14. Analysis of Government Accountability Office Bid Protests in Air Force Source Selections over the Past Two Decades

    Science.gov (United States)

    2012-01-01

    ALCs) include Oklahoma City ALC, Tinker AFB ; Ogden ALC, Hill AFB ; Warner Robins ALC, Robins AFB ; and, before 2001, Sacramento ALC, McClellan AFB ...she had worked with in the past. Megan McKeever was always ready to provide helpful administrative support. xvii Abbreviations AFB Air Force base...are Langley Air Force Base ( AFB ), Air Combat Command; Peterson AFB , Air Force Space Command; Scott AFB , Air Mobility Command; Ramstein Air Base

  15. Thermodynamics of Van der Waals Fluids with quantum statistics

    CERN Document Server

    Redlich, Krzysztof

    2016-01-01

    We consider thermodynamics of the van der Waals fluid of quantum systems. We derive general relations of thermodynamic functions and parameters of any ideal gas and the corresponding van der Waals fluid. This provides unambiguous generalization of the classical van der Waals theory to quantum statistical systems. As an example, we apply the van der Waals fluid with fermi statistics to characterize the liquid-gas critical point in nuclear matter. We also introduce the Bose-Einstein condensation in the relativistic van der Waals boson gas, and argue, that it exhibits two-phase structure separated in space.

  16. Van der Waals effect in weak adsorption affecting trends in adsorption, reactivity, and the view of substrate nobility

    DEFF Research Database (Denmark)

    Kelkkanen, Kari André; Lundqvist, Bengt; Nørskov, Jens Kehlet

    2011-01-01

    The ubiquitous van der Waals (vdW) force, particularly discernible in weak adsorption, is studied on noble and transition metals. In calculations with the vdW density functional (DF) [ M. Dion et al., Phys. Rev. Lett. 92, 246401 (2004)], the atomic structure near the adsorption site is systematic......The ubiquitous van der Waals (vdW) force, particularly discernible in weak adsorption, is studied on noble and transition metals. In calculations with the vdW density functional (DF) [ M. Dion et al., Phys. Rev. Lett. 92, 246401 (2004)], the atomic structure near the adsorption site...

  17. Interaction of boron with graphite: A van der Waals density functional study

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Juan; Wang, Chen [Beijing Key Lab of Fine Ceramics, Institute of Nuclear and New Energy Technology, Tsinghua University, Beijing 100084 (China); Liang, Tongxiang, E-mail: txliang@tsinghua.edu.cn [State Key Lab of New Ceramic and Fine Processing, Tsinghua University, Beijing 100084 (China); Lai, Wensheng [Advanced Material Laboratory, School of Materials Science & Engineering, Tsinghua University, Beijing, 100084 (China)

    2016-08-30

    Highlights: • A van der Waals density-functional approach is applied to study the interaction of boron with graphite. • VdW-DF functionals give fair agreement of crystal parameters with experiments. • The π electron approaches boron while adsorbing on graphite surface. • The hole introduced by boron mainly concentrates on boron and the nearest three carbon atoms. • PBE cannot describe the interstitial boron in graphite because of the ignoring binding of graphite sheets. - Abstract: Boron doping has been widely investigated to improve oxidation resistance of graphite. In this work the interaction of boron with graphite is investigated by a van der Waals density-functional approach (vdW-DF). The traditional density-functional theory (DFT) is well accounted for the binding in boron-substituted graphite. However, to investigate the boron atom on graphite surface and the interstitial impurities require use of a description of graphite interlayer binding. Traditional DFT cannot describe the vdW physics, for instance, GGA calculations show no relevant binding between graphite sheets. LDA shows some binding, but they fail to provide an accurate account of vdW forces. In this paper, we compare the calculation results of graphite lattice constant and cohesive energy by several functionals, it shows that vdW-DF such as two optimized functionals optB88-vdW and optB86b-vdW give much improved results than traditional DFT. The vdW-DF approach is then applied to study the interaction of boron with graphite. Boron adsorption, substitution, and intercalation are discussed in terms of structural parameters and electronic structures. When adsorbing on graphite surface, boron behaves as π electron acceptor. The π electron approaches boron atom because of more electropositive of boron than carbon. For substitution situation, the hole introduced by boron mainly concentrates on boron and the nearest three carbon atoms. The B-doped graphite system with the hole has less

  18. A crossover in anisotropic nanomechanochemistry of van der Waals crystals

    Energy Technology Data Exchange (ETDEWEB)

    Shimamura, Kohei [Department of Physics, Kumamoto University, Kumamoto 860-8555 (Japan); Collaboratory for Advanced Computing and Simulations, Department of Physics and Astronomy, Department of Computer Science, Department of Chemical Engineering and Materials Science, University of Southern California, Los Angeles, California 90089-0242 (United States); Graduate School of System Informatics, Kobe University, Kobe 657-8501 (Japan); Misawa, Masaaki [Department of Physics, Kumamoto University, Kumamoto 860-8555 (Japan); Collaboratory for Advanced Computing and Simulations, Department of Physics and Astronomy, Department of Computer Science, Department of Chemical Engineering and Materials Science, University of Southern California, Los Angeles, California 90089-0242 (United States); Li, Ying [Argonne Leadership Computing Facility, Argonne National Laboratory, Argonne, Illinois 60439 (United States); Kalia, Rajiv K.; Nakano, Aiichiro; Vashishta, Priya [Collaboratory for Advanced Computing and Simulations, Department of Physics and Astronomy, Department of Computer Science, Department of Chemical Engineering and Materials Science, University of Southern California, Los Angeles, California 90089-0242 (United States); Shimojo, Fuyuki [Department of Physics, Kumamoto University, Kumamoto 860-8555 (Japan)

    2015-12-07

    In nanoscale mechanochemistry, mechanical forces selectively break covalent bonds to essentially control chemical reactions. An archetype is anisotropic detonation of layered energetic molecular crystals bonded by van der Waals (vdW) interactions. Here, quantum molecular dynamics simulations reveal a crossover of anisotropic nanomechanochemistry of vdW crystal. Within 10{sup −13} s from the passage of shock front, lateral collision produces NO{sub 2} via twisting and bending of nitro-groups and the resulting inverse Jahn-Teller effect, which is mediated by strong intra-layer hydrogen bonds. Subsequently, as we transition from heterogeneous to homogeneous mechanochemical regimes around 10{sup −12} s, shock normal to multilayers becomes more reactive, producing H{sub 2}O assisted by inter-layer N-N bond formation. These time-resolved results provide much needed atomistic understanding of nanomechanochemistry that underlies a wider range of technologies.

  19. Thermal response in van der Waals heterostructures

    Science.gov (United States)

    Naidu Gandi, Appala; Alshareef, Husam N.; Schwingenschlögl, Udo

    2017-01-01

    We solve numerically the Boltzmann transport equations of the phonons and electrons to understand the thermoelectric response in heterostructures of M2CO2 (M: Ti, Zr, Hf) MXenes with transition metal dichalcogenide monolayers. Low frequency optical phonons are found to occur as a consequence of the van der Waals bonding, contribute significantly to the thermal transport, and compensate for the reduced contributions of the acoustic phonons (increased scattering cross-sections in heterostructures), such that the thermal conductivities turn out to be similar to those of the bare MXenes. Our results indicate that the important superlattice design approach of thermoelectrics (to reduce the thermal conductivity) may be effective for two-dimensional van der Waals materials when used in conjunction with intercalation.

  20. Thermal response in van der Waals heterostructures

    KAUST Repository

    Gandi, Appala

    2016-11-21

    We solve numerically the Boltzmann transport equations of the phonons and electrons to understand the thermoelectric response in heterostructures of M2CO2 (M: Ti, Zr, Hf) MXenes with transition metal dichalcogenide monolayers. Low frequency optical phonons are found to occur as a consequence of the van der Waals bonding, contribute significantly to the thermal transport, and compensate for the reduced contributions of the acoustic phonons (increased scattering cross-sections in heterostructures), such that the thermal conductivities turn out to be similar to those of the bare MXenes. Our results indicate that the important superlattice design approach of thermoelectrics (to reduce the thermal conductivity) may be effective for two-dimensional van der Waals materials when used in conjunction with intercalation. © 2016 IOP Publishing Ltd.

  1. Universal curves for the van der Waals interaction between single-walled carbon nanotubes.

    Science.gov (United States)

    Pogorelov, Evgeny G; Zhbanov, Alexander I; Chang, Yia-Chung; Yang, Sung

    2012-01-17

    We report very simple and accurate algebraic expressions for the van der Waals (VDW) potentials and the forces between two parallel and crossed carbon nanotubes. The Lennard-Jones potential for two carbon atoms and the method of the smeared-out approximation suggested by Girifalco were used. It is found that the interaction between parallel and crossed tubes is described by two universal curves for parallel and crossed configurations that do not depend on the van der Waals constants, the angle between tubes, and the surface density of atoms and their nature but only on the dimensionless distance. The explicit functions for equilibrium VDW distances, well depths, and maximal attractive forces have been given. These results may be used as a guide for the analysis of experimental data to investigate the interaction between nanotubes of various natures.

  2. van der Waals binding and band structure effects in graphene overlayers and graphane multilayers

    Science.gov (United States)

    Hyldgaard, Per; Rohrer, Jochen

    2011-03-01

    We study graphene formation (by selective Si evaporation) and adhesion on SiC surfaces as well as stacking and binding of graphane multilayers using a number of versions of the van der Waals Density Functional (vdW-DF) method and plane-wave density functional theory calculations. For the graphene/SiC systems and for the graphane multilayers we document that the bonding is entirely dominated by van der Waals (vdW) forces. At the same time we find that dispersive forces acting on the layers produce significant modifications in the graphene and graphane band structure. We interpret the changes and discuss a competition between wave function hybridization and interaction with the charge enhancement (between the layers) that results from density overlap. Supported by Svenska Vetenskapsrådet VR #621-2008-4346.

  3. Van der Waals and Casimir interactions between atoms and carbon nanotubes

    OpenAIRE

    Klimchitskaya, G. L.(Central Astronomical Observatory at Pulkovo of the Russian Academy of Sciences, 196140, St. Petersburg, Russia); Blagov, E. V.; Mostepanenko, V. M.

    2008-01-01

    The van der Waals and Casimir interactions of a hydrogen atom (molecule) with a single-walled and a multiwalled carbon nanotubes are compared. It is shown that the macroscopic concept of graphite dielectric permittivity is already applicable for nanotubes with only two or three walls. The absorption of hydrogen atoms by a nanotube at separations below one nanometer is considered. The lateral force due to exchange repulsion moves the atom to a position above the cell center, where it is absorb...

  4. Interaction of boron with graphite: A van der Waals density functional study

    Science.gov (United States)

    Liu, Juan; Wang, Chen; Liang, Tongxiang; Lai, Wensheng

    2016-08-01

    Boron doping has been widely investigated to improve oxidation resistance of graphite. In this work the interaction of boron with graphite is investigated by a van der Waals density-functional approach (vdW-DF). The traditional density-functional theory (DFT) is well accounted for the binding in boron-substituted graphite. However, to investigate the boron atom on graphite surface and the interstitial impurities require use of a description of graphite interlayer binding. Traditional DFT cannot describe the vdW physics, for instance, GGA calculations show no relevant binding between graphite sheets. LDA shows some binding, but they fail to provide an accurate account of vdW forces. In this paper, we compare the calculation results of graphite lattice constant and cohesive energy by several functionals, it shows that vdW-DF such as two optimized functionals optB88-vdW and optB86b-vdW give much improved results than traditional DFT. The vdW-DF approach is then applied to study the interaction of boron with graphite. Boron adsorption, substitution, and intercalation are discussed in terms of structural parameters and electronic structures. When adsorbing on graphite surface, boron behaves as π electron acceptor. The π electron approaches boron atom because of more electropositive of boron than carbon. For substitution situation, the hole introduced by boron mainly concentrates on boron and the nearest three carbon atoms. The B-doped graphite system with the hole has less ability to offer electrons to oxygen, ultimately resulted in the inhibition of carbon oxidation. For interstitial doping, vdW-DFs show more accurate formation energy than LDA. PBE functional cannot describe the interstitial boron in graphite reasonably because of the ignoring binding of graphite sheets. The investigation of electron structures of boron doped graphite will play an important role in understanding the oxidation mechanism in further study.

  5. Extension of the hard-sphere particle-wall collision model to account for particle deposition.

    Science.gov (United States)

    Kosinski, Pawel; Hoffmann, Alex C

    2009-06-01

    Numerical simulations of flows of fluids with granular materials using the Eulerian-Lagrangian approach involve the problem of modeling of collisions: both between the particles and particles with walls. One of the most popular techniques is the hard-sphere model. This model, however, has a major drawback in that it does not take into account cohesive or adhesive forces. In this paper we develop an extension to a well-known hard-sphere model for modeling particle-wall interactions, making it possible to account for adhesion. The model is able to account for virtually any physical interaction, such as van der Waals forces or liquid bridging. In this paper we focus on the derivation of the new model and we show some computational results.

  6. Evaluation of intermolecular forces in a circulating system.

    Science.gov (United States)

    Guo, Qiuquan; Liu, Mei; Yang, Jun

    2011-11-01

    Intercellular interactions, which are mediated by a variety of complex intercellular molecules through the processes of formation and dissociation of molecular bonds, play a critical role in regulating cellular functions in biological systems. Various approaches are applied to evaluate intercellular or molecular bonding forces. To quantify the intermolecular interaction forces, flow chamber has become a meaningful technique as it can ultimately mimic the cellular microenvironment in vivo under physiological flow conditions. Hydrodynamic forces are usually used to predict the intercellular forces down to the single molecular level. However, results show that only using hydrodynamic force will overestimate up to 30% of the receptor-ligand strength when the non-specific forces such as Derjaguin-Landau-Verway-Overbeek (DLVO) forces become un-neglected. Due to the nature of high ion concentration in the physiological condition, electrostatic force is largely screened which will cause DLVO force unbalanced. In this study, we propose to take account of the DLVO force, including van der Waals (VDW) force and electrostatic force, to predict the intermolecular forces of a cell doublet and cell-substrate model in a circulating system. Results also show that the DLVO force has a nonlinear effect as the cell-cell or cell-substrate distance changes. In addition, we used the framework of high accuracy hydrodynamic theories proved in colloidal systems. It is concluded that DLVO force could not be ignored in quantitative studies of molecular interaction forces in circulating system. More accurate prediction of intercellular forces needs to take account of both hydrodynamic force and DLVO force.

  7. Bonded Paths and van der Waals Interactions in Orpiment, As2S3

    Energy Technology Data Exchange (ETDEWEB)

    Gibbs, Gerald V.; Wallace, Adam F.; Zallen, Richard; Downs, R. T.; Ross, Nancy L.; Cox, David F.; Rosso, Kevin M.

    2010-06-17

    Bond critical properties and bond paths have been calculated for the thioarsenide molecular crystal orpiment, As2S3. In addition to the intramolecular As-S bond paths and van der Waals As-S and S-S bond paths within the layers, intermolecular S-S, As-S and As-As van der Waals paths exist between the layers. The S-S bond paths between the layers are identified with the main interlayer restoring forces responsible for the vibrational internal-mode splitting and the low frequency rigid layer modes previously documented in infrared and Raman studies of orpiment. These S-S bond paths are comparable with those calculated for orthorhombic native sulfur and the As4Sn (n = 3,4,5) molecules for several arsenide molecular crystals. The As-S bond paths show that the two nonequivalent arsenic atoms are each coordinated by a highly distorted octahedral array of sulfur atoms. The octahedra consist of three As-S intramolecular bonded interactions and three longer van der Waals interactions (two intramolecular and one intermolecular). One of the arsenic atoms is also coordinated by an arsenic atom in an interlayer As-As bonded interaction. Laplacian isosurface envelopes calculated for the arsenic and sulfur atoms are comparable with those calculated for native arsenic and orthorhombic sulfur. The intermolecular As-S bond paths connect Lewis acid domains on arsenic and an Lewis base domains on sulfur. Van der Waals interactions are traditionally defined as attractive interactions other than those ascribed to bond formation. However, theoretical evidence and arguments, as well as the connection between the bond paths and the vibrational spectra, indicate that the van der Waals interactions in orpiment are directed bonded interactions in the Slater sense. The experimental bond lengths for the As-S and S-S bonded interactions decrease nonlinearly with the increasing value of the electron density at the bond critical point, concomitant with a decrease in the bonded radii of arsenic and

  8. MEASUREMENT OF ADHESION FORCES IN AIR WITH THE VIBRATION METHOD

    Institute of Scientific and Technical Information of China (English)

    Siegfried Ripperger; Konrad Hein

    2005-01-01

    The vibration method represents a practical method for the measurement of adhesion forces and adhesion force distributions. This method causes sinusoidally altemating stresses and yields detachment and contact forces between particles and substrate of the same order of magnitude. Alternating contact forces of the vibration method can cause an adhesion force intensification through flattening of asperities. The measuring principle of the vibration method and the analysis of experimental results are described in the article. Normal adhesion forces (pull-off forces) are measured using the vibration method and the colloidal probe technique. The results of both methods show good agreement for small particle sizes. The influence of the detachment force direction is shown by comparing tangential and normal adhesion forces measured using particle reentrainment in a turbulent air flow and the vibration method, respectively. The surface roughness of the substrate and the relative humidity are shown to significantly influence the measured adhesion forces. For the calculation of the adhesion forces, an approach by Rabinovich was combined with approximations of plastic micro asperity flattening. The Rabinovich approach accounts for roughness effects on the van der Waals force by incorporating the rms roughness of the interacting surfaces. rms-values of the particles and substrates were measured with atomic force microscopy at different scanning areas.

  9. Van der Waals interaction between microparticle and uniaxial crystal with application to hydrogen atoms and multiwall carbon nanotubes

    CERN Document Server

    Blagov, E V; Mostepanenko, V M

    2005-01-01

    The Lifshitz theory of the van der Waals force is extended for the case of an atom (molecule) interacting with a plane surface of an uniaxial crystal or with a long solid cylinder or cylindrical shell made of isotropic material or uniaxial crystal. For a microparticle near a semispace or flat plate made of an uniaxial crystal the exact expressions for the free energy of the van der Waals and Casimir-Polder interaction are presented. An approximate expression for the free energy of microparticle- cylinder interaction is obtained which becomes precise for microparticle-cylinder separations much smaller than cylinder radius. The obtained expressions are used to investigate the van der Waals interaction between hydrogen atoms (molecules) and graphite plates or multiwall carbon nanotubes. To accomplish this the behavior of graphite dielectric permittivities along the imaginary frequency axis is found using the optical data for the complex refractive index of graphite for the ordinary and extraordinary rays. It is ...

  10. Study of van der Waals bonding and interactions in metal organic framework materials.

    Science.gov (United States)

    Zuluaga, Sebastian; Canepa, Pieremanuele; Tan, Kui; Chabal, Yves J; Thonhauser, Timo

    2014-04-02

    Metal organic framework (MOF) materials have attracted a lot of attention due to their numerous applications in fields such as hydrogen storage, carbon capture and gas sequestration. In all these applications, van der Waals forces dominate the interaction between the small guest molecules and the walls of the MOFs. In this review article, we describe how a combined theoretical and experimental approach can successfully be used to study those weak interactions and elucidate the adsorption mechanisms important for various applications. On the theory side, we show that, while standard density functional theory is not capable of correctly describing van der Waals interactions, functionals especially designed to include van der Waals forces exist, yielding results in remarkable agreement with experiment. From the experimental point of view, we show examples in which IR adsorption and Raman spectroscopy are essential to study molecule/MOF interactions. Importantly, we emphasize throughout this review that a combination of theory and experiment is crucial to effectively gain further understanding. In particular, we review such combined studies for the adsorption mechanism of small molecules in MOFs, the chemical stability of MOFs under humid conditions, water cluster formation inside MOFs, and the diffusion of small molecules into MOFs. The understanding of these phenomena is critical for the rational design of new MOFs with desired properties.

  11. A Novel Approach for Deriving Force Field Torsion Angle Parameters Accounting for Conformation-Dependent Solvation Effects.

    Science.gov (United States)

    Zgarbová, Marie; Luque, F Javier; Šponer, Jiří; Otyepka, Michal; Jurečka, Petr

    2012-09-11

    A procedure for deriving force field torsion parameters including certain previously neglected solvation effects is suggested. In contrast to the conventional in vacuo approaches, the dihedral parameters are obtained from the difference between the quantum-mechanical self-consistent reaction field and Poisson-Boltzmann continuum solvation models. An analysis of the solvation contributions shows that two major effects neglected when torsion parameters are derived in vacuo are (i) conformation-dependent solute polarization and (ii) solvation of conformation-dependent charge distribution. Using the glycosidic torsion as an example, we demonstrate that the corresponding correction for the torsion potential is substantial and important. Our approach avoids double counting of solvation effects and provides parameters that may be used in combination with any of the widely used nonpolarizable discrete solvent models, such as TIPnP or SPC/E, or with continuum solvent models. Differences between our model and the previously suggested solvation models are discussed. Improvements were demonstrated for the latest AMBER RNA χOL3 parameters derived with inclusion of solvent effects in a previous publication (Zgarbova et al. J. Chem. Theory Comput.2011, 7, 2886). The described procedure may help to provide consistently better force field parameters than the currently used parametrization approaches.

  12. Measuring the thermal boundary resistance of van der Waals contacts using an individual carbon nanotube.

    Science.gov (United States)

    Hirotani, Jun; Ikuta, Tatsuya; Nishiyama, Takashi; Takahashi, Koji

    2013-01-16

    Interfacial thermal transport via van der Waals interaction is quantitatively evaluated using an individual multi-walled carbon nanotube bonded on a platinum hot-film sensor. The thermal boundary resistance per unit contact area was obtained at the interface between the closed end or sidewall of the nanotube and platinum, gold, or a silicon dioxide surface. When taking into consideration the surface roughness, the thermal boundary resistance at the sidewall is found to coincide with that at the closed end. A new finding is that the thermal boundary resistance between a carbon nanotube and a solid surface is independent of the materials within the experimental errors, which is inconsistent with a traditional phonon mismatch model, which shows a clear material dependence of the thermal boundary resistance. Our data indicate the inapplicability of existing phonon models when weak van der Waals forces are dominant at the interfaces.

  13. Finite-size nanowire at a surface: Unconventional power laws of the van der Waals interaction

    Science.gov (United States)

    Makhnovets, K. A.; Kolezhuk, A. K.

    2017-09-01

    We study the van der Waals interaction of a metallic or narrow-gap semiconducting nanowire with a surface, in the regime of intermediate wire-surface distances (vF/c )L ≪d ≪L or L ≪d ≪(c /vF)L , where L is the nanowire length, d is the distance to the surface, and vF is the characteristic velocity of nanowire electrons (for a metallic wire, it is the Fermi velocity). Our approach, based on the Luttinger liquid framework, allows one to analyze the dependence of the interaction on the interplay between the nanowire length, wire-surface distance, and characteristic length scales related to the spectral gap and temperature. We show that this interplay leads to nontrivial modifications of the power law that governs van der Waals forces, in particular to a nonmonotonic dependence of the power-law exponent on the wire-surface separation.

  14. Interpretation of van der Waal density functionals

    CERN Document Server

    Hyldgaard, Per; Schröder, Elsebeth

    2014-01-01

    The nonlocal correlation energy in the van der Waals density functional (vdW-DF) method [Phys. Rev. Lett. 92, 246401 (2004); Phys. Rev. B 76, 125112 (2007); Phys. Rev. B 89, 035412 (2014)] can be interpreted in terms of a coupling of zero-point energies of characteristic modes of semilocal exchange-correlation (xc) holes. These xc holes reflect the internal functional in the framework of the vdW-DF method [Phys. Rev. B 82, 081101(2010)]. We explore the internal xc hole components, showing that they share properties with those of the generalized-gradient approximation. We use these results to illustrate the nonlocality in the vdW-DF description and analyze the vdW-DF formulation of nonlocal correlation.

  15. Orbital motion in generalized static fields of FELs accounting for axial magnetic field, beam forces, undulator and external focusing

    Energy Technology Data Exchange (ETDEWEB)

    Papadichev, V.A. [Lebedev Physical Institute, Moscow (Russian Federation)

    1995-12-31

    Various types of undulators with or without axial magnetic field are used in FELs. Supplementary beam focusing can be applied by wedging, inclining or profiling pole faces of plan undulators or superposing external focusing magnetic fields in addition to undulator own focusing. Space-charge forces influence significantly particle motion in high-current, low-energy electron beams. Finally, one can use simultaneously two or more different undulators for some specific purpose: more efficient and selective higher harmonics generation, changing polarization types and direction, gain enhancement in double-period undulator etc. All these cases can be treated by solving the generalized equations of transverse orbital motion in a linear approximation, which is widely used for orbit calculation, gives sufficient accuracy for practical purposes and allows to consider many variants and optimize the chosen one. The undulator field is described as a field of two plane undulators with mutually orthogonal fields and an arbitrary axial (phase) shift between them. Various values of the phase shift correspond to right- or left-handed helical undulators, plane undulator of different polarization etc. The general formulae are reduced to forms that allow easier examination of particular cases: planar or helical undulator combined with axial magnetic field or without it, gyroresonance, limiting beam current, polarization etc.

  16. Combining a polarizable force-field and a coarse-grained polarizable solvent model. II. Accounting for hydrophobic effects.

    Science.gov (United States)

    Masella, Michel; Borgis, Daniel; Cuniasse, Philippe

    2011-09-01

    A revised and improved version of our efficient polarizable force-field/coarse grained solvent combined approach (Masella, Borgis, and Cuniasse, J. Comput. Chem. 2008, 29, 1707) is described. The polarizable pseudo-particle solvent model represents the macroscopic solvent polarization by induced dipoles placed on mobile pseudo-particles. In this study, we propose a new formulation of the energy term handling the nonelectrostatic interactions among the pseudo-particles. This term is now able to reproduce the energetic and structural response of liquid water due to the presence of a hydrophobic spherical cavity. Accordingly, the parameters of the energy term handling the nonpolar solute/solvent interactions have been refined to reproduce the free-solvation energy of small solutes, based on a standard thermodynamic integration scheme. The reliability of this new approach has been checked for the properties of solvated methane and of the solvated methane dimer, as well as by performing 10 × 20 ns molecular dynamics (MD) trajectories for three solvated proteins. A long-time stability of the protein structures along the trajectories is observed. Moreover, our method still provides a measure of the protein solvation thermodynamic at the same accuracy as standard Poisson-Boltzman continuum methods. These results show the relevance of our approach and its applicability to massively coupled MD schemes to accurately and intensively explore solvated macromolecule potential energy surfaces.

  17. The van der Waals fluid and its role in cosmology

    Science.gov (United States)

    Jantsch, Rudinei C. S.; Christmann, Marcus H. B.; Kremer, Gilberto M.

    2016-01-01

    We analyze the properties of a generic cosmological fluid described by the van der Waals equation-of-state. Exact solutions for the energy-density evolution are found as implicit functions of the scale factor for a flat Friedmann-Robertson-Walker (FRW) spacetime. The possible values of the free parameter in the van der Waals equation are selected a posteriori, in accordance with asymptotic behaviors that are physically relevant. The stability of the model against small perturbations is studied through the hydrodynamic perturbations of the fluid for the relevant cases. It is found that a van der Waals fluid seems appropriate to describe noneternal inflationary scenarios.

  18. The van der Waals fluid and its role in cosmology

    CERN Document Server

    Jantsch, Rudinei C S; Kremer, Gilberto M

    2016-01-01

    We analyze the properties of a generic cosmological fluid described by the van der Waals equation of state. Exact solutions for the energy density evolution are found as implicit functions of the scale factor for a flat Friedmann-Robertson-Walker space-time. The possible values of the free parameter in the van der Waals equation are selected \\emph{a posteriori}, in accordance with asymptotic behaviors that are physically relevant. The stability of the model against small perturbations is studied through the hydrodynamic perturbations of the fluid for the relevant cases. It is found that a van der Waals fluid seems appropriate to describe non-eternal inflationary scenarios.

  19. Quasi-1D van der Waals materials as high current-density local interconnects (Conference Presentation)

    Science.gov (United States)

    Stolyarov, Maxim; Aytan, Ece; Bloodgood, Matthew; Salguero, Tina T.; Balandin, Alexander A.

    2016-09-01

    The continuous downscaling of interconnect dimensions in combination with the introduction of low-k dielectrics has increased the number of heat dissipation, integration and reliability challenges in modern electronics. As a result, there is a strong need for new materials that have high current-carrying capacity for applications as nanoscale interconnects. In this presentation, we show that quasi-one-dimensional (1D) van der Waals metals such as TaSe3 have excellent breakdown current density exceeding that of 5 MA/cm2. This value is above that currently achievable in conventional copper or aluminum wires. The quasi-1D van der Waals materials are characterized by strong bonds along one dimension and weak van der Waals bonds along two other dimensions. The material for this study was grown by the chemical vapor transport (CVT) method. Both mechanical and chemical exfoliation methods were used to fabricate nanowires with lateral dimensions below 100 nm. The dimensions of the quasi-1D nanowires were verified with scanning electron microscopy (SEM) and atomic force microscopy (AFM). The metal (Ti/Au) contacts for the electrical characterization were deposited using electron beam evaporation (EBE). The measurements were conducted on a number of prototype interconnects with multiple electric contacts to ensure reproducibility. The obtained results suggest that quasi-1D van der Waals metals present a feasible alternative to conventional copper interconnects in terms of the current-carrying capacity and the breakdown current-density. This work was supported, in part, by the SRC and DARPA through STARnet Center for Function Accelerated nanoMaterial Engineering (FAME).

  20. Dynamical and non-additive atomic van der Waals phases

    CERN Document Server

    Impens, François; Neto, Paulo A Maia

    2013-01-01

    We investigate dynamical corrections to the van der Waals phase induced by the non-unitary evolution of atomic waves propagating near a perfectly conducting surface. These corrections reflect the interplay between field retardation effects and the dynamics of the external atomic degrees of freedom. The dynamical atom-surface interaction phase shift contains both local and non-local contributions. We derive the local contributions and show that they are equivalent to coarse-graining the instantaneous van der Waals potential over the time scale corresponding to the round-trip travel time of light between atom and surface. We show that the non-local phase contributions are non-additive, and propose to use this property in a multiple-path van der Waals interferometer in order to isolate them from the standard (and much larger) quasi-static van der Waals phase.

  1. Van der Waals Interactions in Aspirin

    Science.gov (United States)

    Reilly, Anthony; Tkatchenko, Alexandre

    2015-03-01

    The ability of molecules to yield multiple solid forms, or polymorphs, has significance for diverse applications ranging from drug design and food chemistry to nonlinear optics and hydrogen storage. In particular, aspirin has been used and studied for over a century, but has only recently been shown to have an additional polymorphic form, known as form II. Since the two observed solid forms of aspirin are degenerate in terms of lattice energy, kinetic effects have been suggested to determine the metastability of the less abundant form II. Here, first-principles calculations provide an alternative explanation based on free-energy differences at room temperature. The explicit consideration of many-body van der Waals interactions in the free energy demonstrates that the stability of the most abundant form of aspirin is due to a subtle coupling between collective electronic fluctuations and quantized lattice vibrations. In addition, a systematic analysis of the elastic properties of the two forms of aspirin rules out mechanical instability of form II as making it metastable.

  2. Lifshitz theory of van der Waals pressure in dissipative media

    CERN Document Server

    Zheng, Yi

    2010-01-01

    We derive a first--principles method of determining the van der Waals or Casimir pressure in a dissipative and dispersive planar multilayered system by calculating the Maxwell stress tensor in a fictitious layer of vacuum, that is eventually made to vanish, introduced in the structure. This is illustrated by calculating the van der Waals pressure in a thin film with dissipative properties embedded between two semi--infinite media.

  3. Nano Electronics on Atomically Controlled van der Waals Quantum Heterostructures

    Science.gov (United States)

    2015-03-30

    Final 3. DATES COVERED (From - To) 14 Aug 13 to 13 Feb 15 4. TITLE AND SUBTITLE Nano Electronics on Atomically Controlled van der Waals...OMB control number. 1. REPORT DATE 14 MAY 2015 2. REPORT TYPE Final 3. DATES COVERED 14-08-2013 to 13-02-2015 4. TITLE AND SUBTITLE Nano ...AOARD Grant 134122 “ Nano Electronics on Atomically Controlled van der Waals Quantum Heterostructures” 3/30/2015 Name of Principal

  4. Bond paths and van der Waals interactions in orpiment, As2S3.

    Science.gov (United States)

    Gibbs, G V; Wallace, A F; Zallen, R; Downs, R T; Ross, N L; Cox, D F; Rosso, K M

    2010-06-17

    The calculated electron density distribution for orpiment, As(2)S(3), reveals that As-S, S-S, and As-As bond paths are associated with the experimental interlayer directed bonded interactions detected in a combined infrared and Raman study. The successful modeling of the infrared- and Raman-determined interlayer bonded interactions together with bond paths and the structuralization of a variety of inorganic molecules in terms of "key-lock" bond path mainstays support the argument that van der Waals forces in inorganic molecular crystals are directional.

  5. van der Waals interactions between nanotubes and nanoparticles for controlled assembly of composite nanostructures.

    Science.gov (United States)

    Rance, Graham A; Marsh, Dan H; Bourne, Stephen J; Reade, Thomas J; Khlobystov, Andrei N

    2010-08-24

    We have demonstrated that ubiquitous van der Waals forces are significant in controlling the interactions between nanoparticles and nanotubes. The adsorption of gold nanoparticles (AuNPs) on nanotubes (MWNTs) obeys a simple quadratic dependence on the nanotube surface area, regardless of the source of AuNPs and MWNTs. Changes in the geometric parameters of the components have pronounced effects on the affinity of nanoparticles for nanotubes, with larger, more polarizable nanostructures exhibiting stronger attractive interactions, the impact of which changes in the following order MWNT diameter > AuNP diameter > MWNT length.

  6. Modified Van der Waals equation and law of corresponding states

    Science.gov (United States)

    Zhong, Wei; Xiao, Changming; Zhu, Yongkai

    2017-04-01

    It is well known that the Van der Waals equation is a modification of the ideal gas law, yet it can be used to describe both gas and liquid, and some important messages can be obtained from this state equation. However, the Van der Waals equation is not a precise state equation, and it does not give a good description of the law of corresponding states. In this paper, we expand the Van der Waals equation into its Taylor's series form, and then modify the fourth order expansion by changing the constant Virial coefficients into their analogous ones. Via this way, a more precise result about the law of corresponding states has been obtained, and the law of corresponding states can then be expressed as: in terms of the reduced variables, all fluids should obey the same equation with the analogous Virial coefficients. In addition, the system of 3 He with quantum effects has also been taken into consideration with our modified Van der Waals equation, and it is found that, for a normal system without quantum effect, the modification on ideal gas law from the Van der Waals equation is more significant than the real case, however, for a system with quantum effect, this modification is less significant than the real case, thus a factor is introduced in this paper to weaken or strengthen the modification of the Van der Waals equation, respectively.

  7. Droplet evaporation in one-component fluids: Dynamic van der Waals theory

    OpenAIRE

    Teshigawara, Ryohei; Onuki, Akira

    2008-01-01

    In a one-component fluid, we investigate evaporation of a small axysymmetric liquid droplet in the partial wetting condition on a heated wall at $T\\sim 0.9 T_c$. In the dynamic van der Waals theory (Phys. Rev. E {\\bf 75}, 036304 (2007)), we take into account the latent heat transport from liquid to gas upon evaporation. Along the gas-liquid interface, the temperature is nearly equal to the equilibrium coexisting temperature away from the substrate, but it rises sharply to the wall temperature...

  8. Evolutionary design of interfacial phase change van der Waals heterostructures.

    Science.gov (United States)

    Kalikka, Janne; Zhou, Xilin; Behera, Jitendra; Nannicini, Giacomo; Simpson, Robert E

    2016-10-27

    We use an evolutionary algorithm to explore the design space of hexagonal Ge2Sb2Te5; a van der Waals layered two dimensional crystal heterostructure. The Ge2Sb2Te5 structure is more complicated than previously thought. Predominant features include layers of Ge3Sb2Te6 and Ge1Sb2Te4 two dimensional crystals that interact through Te-Te van der Waals bonds. Interestingly, (Ge/Sb)-Te-(Ge/Sb)-Te alternation is a common feature for the most stable structures of each generation's evolution. This emergent rule provides an important structural motif that must be included in the design of high performance Sb2Te3-GeTe van der Waals heterostructure superlattices with interfacial atomic switching capability. The structures predicted by the algorithm agree well with experimental measurements on highly oriented, and single crystal Ge2Sb2Te5 samples. By analysing the evolutionary algorithm optimised structures, we show that diffusive atomic switching is probable by Ge atoms undergoing a transition at the van der Waals interface from layers of Ge3Sb2Te6 to Ge1Sb2Te4 thus producing two blocks of Ge2Sb2Te5. Evolutionary methods present an efficient approach to explore the enormous multi-dimensional design parameter space of van der Waals bonded heterostructure superlattices.

  9. On the accuracy of van der Waals inclusive density-functional theory exchange-correlation functionals for ice at ambient and high pressures

    Science.gov (United States)

    Santra, Biswajit; Klimeš, Jiří; Tkatchenko, Alexandre; Alfè, Dario; Slater, Ben; Michaelides, Angelos; Car, Roberto; Scheffler, Matthias

    2013-10-01

    Density-functional theory (DFT) has been widely used to study water and ice for at least 20 years. However, the reliability of different DFT exchange-correlation (xc) functionals for water remains a matter of considerable debate. This is particularly true in light of the recent development of DFT based methods that account for van der Waals (vdW) dispersion forces. Here, we report a detailed study with several xc functionals (semi-local, hybrid, and vdW inclusive approaches) on ice Ih and six proton ordered phases of ice. Consistent with our previous study [B. Santra, J. Klimeš, D. Alfè, A. Tkatchenko, B. Slater, A. Michaelides, R. Car, and M. Scheffler, Phys. Rev. Lett. 107, 185701 (2011)] which showed that vdW forces become increasingly important at high pressures, we find here that all vdW inclusive methods considered improve the relative energies and transition pressures of the high-pressure ice phases compared to those obtained with semi-local or hybrid xc functionals. However, we also find that significant discrepancies between experiment and the vdW inclusive approaches remain in the cohesive properties of the various phases, causing certain phases to be absent from the phase diagram. Therefore, room for improvement in the description of water at ambient and high pressures remains and we suggest that because of the stern test the high pressure ice phases pose they should be used in future benchmark studies of simulation methods for water.

  10. Determining Factors of the Level of Disclosure of Information on Business Combinations with the Entry into Force of the Accounting Standard CPC 15

    Directory of Open Access Journals (Sweden)

    Wilson Kazumi Nakayama

    2014-12-01

    Full Text Available This paper aimed to investigate information disclosure on business combination transactions that took place in Brazil in 2010, when the Accounting Standard CPC 15 entered into force, and evaluate which were the determining factors of the level of disclosure of information related to it. To evaluate the disclosure level, a disclosure index of business combinations (INDCOMB was prepared, having the disclosure index developed by Shalev (2009 as a basis. We evaluated, in the light of the literature on disclosure and business combinations, whether the following factors influenced on the disclosure level: acquiring company size, recognized percentage of overprice for expected future profitability in relation to the transaction value, dispersion of capital of the acquiring company, audit firm size, and participation of the acquiring company in American Depositary Receipts (ADRs programs. The control variables used were listing of the acquiring company in the various segments of BM&FBOVESPA, operation sector, origin (state, private company with national capital or private company with foreign capital, and relative acquired company size in relation to the acquiring company. We analyzed business combination transactions that took place in 2010, reported by 40 open capital companies involved in 76 transactions. We conclude that the audit firm size and the relative acquired company size were factors that influenced on the level of disclosure of information regarding business combinations in 2010. The other factors showed no conclusive results.

  11. Modeling noncontact atomic force microscopy resolution on corrugated surfaces

    Directory of Open Access Journals (Sweden)

    Kristen M. Burson

    2012-03-01

    Full Text Available Key developments in NC-AFM have generally involved atomically flat crystalline surfaces. However, many surfaces of technological interest are not atomically flat. We discuss the experimental difficulties in obtaining high-resolution images of rough surfaces, with amorphous SiO2 as a specific case. We develop a quasi-1-D minimal model for noncontact atomic force microscopy, based on van der Waals interactions between a spherical tip and the surface, explicitly accounting for the corrugated substrate (modeled as a sinusoid. The model results show an attenuation of the topographic contours by ~30% for tip distances within 5 Å of the surface. Results also indicate a deviation from the Hamaker force law for a sphere interacting with a flat surface.

  12. Brane cosmology with a van der Waals equation of state

    CERN Document Server

    Kremer, G M

    2004-01-01

    The evolution of a Universe confined onto a 3-brane embedded in a five-dimensional space-time is investigated where the cosmological fluid on the brane is modeled by the van der Waals equation of state. It is shown that the Universe on the brane evolves in such a manner that three distinct periods concerning its acceleration field are attained: (a) an initial accelerated epoch where the van der Waals fluid behaves like a scalar field with a negative pressure; (b) a past decelerated period which has two contributions, one of them is related to the van der Waals fluid which behaves like a matter field with a positive pressure, whereas the other contribution comes from a term of the Friedmann equation on the brane which is inversely proportional to the scale factor to the fourth power and can be interpreted as a radiation field, and (c) a present accelerated phase due to a cosmological constant on the brane.

  13. A cartography of the van der Waals territories.

    Science.gov (United States)

    Alvarez, Santiago

    2013-06-28

    The distribution of distances from atoms of a particular element E to a probe atom X (oxygen in most cases), both bonded and intermolecular non-bonded contacts, has been analyzed. In general, the distribution is characterized by a maximum at short E···X distances corresponding to chemical bonds, followed by a range of unpopulated distances--the van der Waals gap--and a second maximum at longer distances--the van der Waals peak--superimposed on a random distribution function that roughly follows a d(3) dependence. The analysis of more than five million interatomic "non-bonded" distances has led to the proposal of a consistent set of van der Waals radii for most naturally occurring elements, and its applicability to other element pairs has been tested for a set of more than three million data, all of them compared to over one million bond distances.

  14. Empathy's purity, sympathy's complexities; De Waal, Darwin and Adam Smith.

    Science.gov (United States)

    van der Weele, Cor

    2011-07-01

    Frans de Waal's view that empathy is at the basis of morality directly seems to build on Darwin, who considered sympathy as the crucial instinct. Yet when we look closer, their understanding of the central social instinct differs considerably. De Waal sees our deeply ingrained tendency to sympathize (or rather: empathize) with others as the good side of our morally dualistic nature. For Darwin, sympathizing was not the whole story of the "workings of sympathy"; the (selfish) need to receive sympathy played just as central a role in the complex roads from sympathy to morality. Darwin's understanding of sympathy stems from Adam Smith, who argued that the presence of morally impure motives should not be a reason for cynicism about morality. I suggest that De Waal's approach could benefit from a more thorough alignment with the analysis of the workings of sympathy in the work of Darwin and Adam Smith.

  15. Chemical sensing by band modulation of a black phosphorus/molybdenum diselenide van der Waals hetero-structure

    Science.gov (United States)

    Feng, Zhihong; Chen, Buyun; Qian, Shuangbei; Xu, Linyan; Feng, Liefeng; Yu, Yuanyuan; Zhang, Rui; Chen, Jiancui; Li, Qianqian; Li, Quanning; Sun, Chongling; Zhang, Hao; Liu, Jing; Pang, Wei; Zhang, Daihua

    2016-09-01

    We report on a new chemical sensor based on black phosphorus/molybdenum diselenide van der Waals hetero-junctions. Due to the atomically thin nature of two-dimensional (2D) materials, surface adsorption of gas molecules can effectively modulate the band alignment at the junction interface, making the device a highly sensitive detector for chemical adsorptions. Compared to sensors made of homogeneous nanomaterials, the hetero-junction demonstrates considerably lower detection limit and higher sensitivity toward nitrogen dioxide. Kelvin probe force microscopy and finite element simulations have provided experimental and theoretical explanations for the enhanced performance, proving that chemical adsorption can induce significant changes in band alignment and carrier transport behaviors. The study demonstrates the potential of van der Waals hetero-junction as a new platform for sensing applications, and provides more insights into the interaction between gaseous molecules and 2D hetero-structures.

  16. Higher-accuracy van der Waals density functional

    DEFF Research Database (Denmark)

    Lee, Kyuho; Murray, Éamonn D.; Kong, Lingzhu

    2010-01-01

    We propose a second version of the van der Waals density functional of Dion et al. [Phys. Rev. Lett. 92, 246401 (2004)], employing a more accurate semilocal exchange functional and the use of a large-N asymptote gradient correction in determining the vdW kernel. The predicted binding energy...

  17. Graphene on metals: A van der Waals density functional study

    DEFF Research Database (Denmark)

    Vanin, Marco; Mortensen, Jens Jørgen; Kelkkanen, Kari André;

    2010-01-01

    We use density functional theory (DFT) with a recently developed van der Waals density functional (vdW-DF) to study the adsorption of graphene on Co, Ni, Pd, Ag, Au, Cu, Pt, and Al(111) surfaces. In contrast to the local-density approximation (LDA) which predicts relatively strong binding for Ni...

  18. New perspectives on van der Waals-London interactions of materials. From planar interfaces to carbon nanotubes

    Energy Technology Data Exchange (ETDEWEB)

    Rajter, R F [Department of Materials Science and Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue Room 13-5034, Cambridge MA 02139 (United States); French, R H [DuPont Co. Central Research, Exp. Sta. E400-5207, Wilmington DE, 19880-0400 (United States)], E-mail: rickrajter@alum.mit.edu, E-mail: roger.h.french@usa.dupont.com

    2008-01-15

    The drive towards nanoscale assembly necessitates an accurate understanding of all the fundamental forces present in a given system to ensure the greatest chance of success. The van der Waals - London dispersion (vdW-Ld) interaction is the universal, long range, interaction that is present in all materials systems. However, scientists and engineers often either ignore or crudely approximate the vdW-Ld interactions because the calculations often appear impractical due to the 1) lack of the required full spectra optical properties and 2) lack of the proper geometrical formulation to give meaningful results. These two barriers are being actively eliminated by the introduction of robust ab initiocodes that can calculate anisotropic full spectral optical properties and by proper extensions to the Lifshitz vdW-Ld formulation that take into account anisotropic spectral optical properties as well as novel geometries. These new capabilities are of broad utility, especially in the biological community, because of the difficulty in experimental determination of full spectral optical properties of nanoscale, liquid phase biomolecules. Here we compare 3 levels of complexity of vdW-Ld interactions (optically isotropic planar, optically anisotropic planar, and optically anisotropic solid cylinder) as well as calculate and compare a variety of Hamaker coefficients relevant to these systems. For the latter two, more complex, cases, we use the ab initiooptical properties of single wall carbon nanotubes (SWCNTs). Our results show the effects of strong optical anisotropy upon the overall vdW-Ld interaction strength as well as the presence of strong dispersion-driven torques in both anisotropic cases, which can play a role in CNT alignment with other CNTs and also preferred CNT alignment directions with optically anisotropic substrates.

  19. Understanding corrosion inhibition with van der Waals DFT methods: the case of benzotriazole.

    Science.gov (United States)

    Gattinoni, Chiara; Michaelides, Angelos

    2015-01-01

    The corrosion of materials is an undesirable and costly process affecting many areas of technology and everyday life. As such, considerable effort has gone into understanding and preventing it. Organic molecule based coatings can in certain circumstances act as effective corrosion inhibitors. Although they have been used to great effect for more than sixty years, how they function at the atomic-level is still a matter of debate. In this work, computer simulation approaches based on density functional theory are used to investigate benzotriazole (BTAH), one of the most widely used and studied corrosion inhibitors for copper. In particular, the structures formed by protonated and deprotonated BTAH molecules on Cu(111) have been determined and linked to their inhibiting properties. It is found that hydrogen bonding, van der Waals interactions and steric repulsions all contribute in shaping how BTAH molecules adsorb, with flat-lying structures preferred at low coverage and upright configurations preferred at high coverage. The interaction of the dehydrogenated benzotriazole molecule (BTA) with the copper surface is instead dominated by strong chemisorption via the azole moiety with the aid of copper adatoms. Structures of dimers or chains are found to be the most stable structures at all coverages, in good agreement with scanning tunnelling microscopy results. Benzotriazole thus shows a complex phase behaviour in which van der Waals forces play an important role and which depends on coverage and on its protonation state and all of these factors feasibly contribute to its effectiveness as a corrosion inhibitor.

  20. Van der Waals and resonance interactions between accelerated atoms in vacuum and the Unruh effect

    Science.gov (United States)

    Lattuca, M.; Marino, J.; Noto, A.; Passante, R.; Rizzuto, L.; Spagnolo, S.; Zhou, W.

    2017-08-01

    We discuss different physical effects related to the uniform acceleration of atoms in vacuum, in the framework of quantum electrodynamics. We first investigate the van der Waals/Casimir-Polder dispersion and resonance interactions between two uniformly accelerated atoms in vacuum. We show that the atomic acceleration significantly affects the van der Waals force, yielding a different scaling of the interaction with the interatomic distance and an explicit time dependence of the interaction energy. We argue how these results could allow for an indirect detection of the Unruh effect through dispersion interactions between atoms. We then consider the resonance interaction between two accelerated atoms, prepared in a correlated Bell-type state, and interacting with the electromagnetic field in the vacuum state, separating vacuum fluctuations and radiation reaction contributions, both in the free-space and in the presence of a perfectly reflecting plate. We show that nonthermal effects of acceleration manifest in the resonance interaction, yielding a change of the distance dependence of the resonance interaction energy. This suggests that the equivalence between temperature and acceleration does not apply to all radiative properties of accelerated atoms. To further explore this aspect, we evaluate the resonance interaction between two atoms in non inertial motion in the coaccelerated (Rindler) frame and show that in this case the assumption of an Unruh temperature for the field is not required for a complete equivalence of locally inertial and coaccelerated points of views.

  1. An introduction to the Dieterici Equation and the van der Waal Equation

    Science.gov (United States)

    Sheldon, John

    2003-11-01

    The derivation of the ideal gas law by using the kinetic theory of gases is usually presented in an undergraduate physics thermodynamics texts and physical chemistry texts. Following these derivations is the introduction of nonideal effects and the empirical equations of state: the van der Waals equation and the Dieterici equation. These are sometimes are simply given without comment as to the origin of the terms in them. An introduction to a "derivation" of these equations, appropriate for the undergraduate thermodynamics course, is given herein. Empirical equations are not rigorously derived, but rather they are invented, the so-called derivation simply serves to make the empirical terms appear reasonable.The barometric equation is exploited to get an expression for the effective attractive molecular forces. The differential form of the barometric is derived using kinetic theory, then from the barometric equation we get the Dieterici Equation an expansion of the Dieterici Equation, yields the van der Waals Equation of state. The relationship between the empirical constants is also discussed

  2. INVESTIGATION OF THE DYNAMIC BUCKLING OF DOUBLEWALLED CARBON NANOTUBE SUBJECTED TO AXIAL PERIODIC DISTURBING FORCES

    Institute of Scientific and Technical Information of China (English)

    SHA Feng-huan; ZHAO Long-mao; YANG Gui-tong

    2005-01-01

    The dynamic response of a double-walled carbon nanotube embedded in elastic medium subjected to periodic disturbing forces is investigated. Investigation of the dynamic buckling of a double-walled carbon nanotube develops continuum model. The effect of the van der Waals forces between two tubes and the surrounding elastic medium for axial dynamic buckling are considered. The buckling model subjected to periodic disturbing forces and the critical axial strain and the critical frequencies are given. It is found that the critical axial strain of the embedded multi-walled carbon nanotube due to the intertube van der Waals forces is lower than that of an embedded single-walled carbon nanotube. The van der Waals forces and the surrounding elastic medium affect region of dynamic instability. The van der Waals forces increase the critical frequencies of a double-walled carbon nanotube. The effect of the surrounding elastic medium for the critical frequencies is small.

  3. Attractive particle interaction forces and packing density of fine glass powders.

    Science.gov (United States)

    Parteli, Eric J R; Schmidt, Jochen; Blümel, Christina; Wirth, Karl-Ernst; Peukert, Wolfgang; Pöschel, Thorsten

    2014-09-02

    We study the packing of fine glass powders of mean particle diameter in the range (4-52) μm both experimentally and by numerical DEM simulations. We obtain quantitative agreement between the experimental and numerical results, if both types of attractive forces of particle interaction, adhesion and non-bonded van der Waals forces are taken into account. Our results suggest that considering only viscoelastic and adhesive forces in DEM simulations may lead to incorrect numerical predictions of the behavior of fine powders. Based on the results from simulations and experiments, we propose a mathematical expression to estimate the packing fraction of fine polydisperse powders as a function of the average particle size.

  4. Process Accounting

    OpenAIRE

    Gilbertson, Keith

    2002-01-01

    Standard utilities can help you collect and interpret your Linux system's process accounting data. Describes the uses of process accounting, standard process accounting commands, and example code that makes use of process accounting utilities.

  5. Multiple critical points and liquid-liquid equilibria from the van der Waals like equations of state

    Energy Technology Data Exchange (ETDEWEB)

    Artemenko, Sergey; Lozovsky, Taras; Mazur, Victor [Thermodynamics Department, Academy of Refrigeration, 65082 Odessa (Ukraine)

    2008-06-18

    The principal aim of this work is a comprehensive analysis of the phase diagram of water via the van der Waals like equations of state (EoSs) which are considered as superpositions of repulsive and attractive forces. We test more extensively the modified van der Waals EoS (MVDW) proposed by Skibinski et al (2004 Phys. Rev. E 69 061206) and refine this model by introducing instead of the classical van der Waals repulsive term a very accurate hard sphere EoS over the entire stable and metastable regions (Liu 2006 Preprint cond-mat/0605392). It was detected that the simplest form of MVDW EoS displays a complex phase behavior, including three critical points, and identifies four fluid phases (gas, low density liquid (LDL), high density liquid (HDL), and very high density liquid (VHDL)). Moreover the experimentally observed (Mallamace et al 2007 Proc. Natl Acad. Sci. USA 104 18387) anomalous behavior of the density of water in the deeply supercooled region (a density minimum) is reproduced by the MWDW EoS. An improvement of the repulsive part does not change the topological picture of the phase behavior of water in the wide range of thermodynamic variables. The new parameters set for second and third critical points are recognized by thorough analysis of experimental data for the loci of thermodynamic response function extrema.

  6. Combinations of coupled cluster, density functionals, and the random phase approximation for describing static and dynamic correlation, and van der Waals interactions

    CERN Document Server

    Garza, Alejandro J; Alencar, Ana G Sousa; Sun, Jianwei; Perdew, John P; Scuseria, Gustavo E

    2015-01-01

    Contrary to standard coupled cluster doubles (CCD) and Brueckner doubles (BD), singlet-paired analogues of CCD and BD (denoted here as CCD0 and BD0) do not break down when static correlation is present, but neglect substantial amounts of dynamic correlation. In fact, CCD0 and BD0 do not account for any contributions from multielectron excitations involving only same-spin electrons at all. We exploit this feature to add---without introducing double counting, self-interaction, or increase in cost---the missing correlation to these methods via meta-GGA density functionals (TPSS and SCAN). Furthermore, we improve upon these CCD0+DFT blends by invoking range separation: the short- and long-range correlations absent in CCD0/BD0 are evaluated with DFT and the direct random phase approximation (dRPA), respectively. This corrects the description of long-range van der Waals forces. Comprehensive benchmarking shows that the combinations presented here are very accurate for weakly correlated systems, while also providing...

  7. Efficient implementation of a van der Waals density functional: application to double-wall carbon nanotubes.

    Science.gov (United States)

    Román-Pérez, Guillermo; Soler, José M

    2009-08-28

    We present an efficient implementation of the van der Waals density functional of Dion et al. [Phys. Rev. Lett. 92, 246401 (2004)], which expresses the nonlocal correlation energy as a double spatial integral. We factorize the integration kernel and use fast Fourier transforms to evaluate the self-consistent potential, total energy, and atomic forces, in O(NlogN) operations. The resulting overhead, for medium and large systems, is a small fraction of the total computational cost, representing a dramatic speedup over the O(N(2)) evaluation of the double integral. This opens the realm of first-principles simulations to the large systems of interest in soft matter and biomolecular problems. We apply the method to calculate the binding energies and the barriers for relative translation and rotation in double-wall carbon nanotubes.

  8. How van der Waals interactions determine the unique properties of water

    CERN Document Server

    Morawietz, Tobias; Dellago, Christoph; Behler, Jörg

    2016-01-01

    While the interactions between water molecules are dominated by strongly directional hydrogen bonds (HBs), it was recently proposed that relatively weak, isotropic van der Waals (vdW) forces are essential for understanding the properties of liquid water and ice. This insight was derived from ab initio computer simulations, which provide an unbiased description of water at the atomic level and yield information on the underlying molecular forces. However, the high computational cost of such simulations prevents the systematic investigation of the influence of vdW forces on the thermodynamic anomalies of water. Here we develop efficient ab initio-quality neural network potentials and use them to demonstrate that vdW interactions are crucial for the formation of water's density maximum and its negative volume of melting. Both phenomena can be explained by the flexibility of the HB network, which is the result of a delicate balance of weak vdW forces, causing e.g. a pronounced contraction of the second solvation ...

  9. The influence of van der Waals interactions on a bubble moving in a tube

    CERN Document Server

    Hammoud, Naima; Howell, Peter D; Stone, Howard A

    2016-01-01

    We consider the unsteady thin-film dynamics of a long bubble of negligible viscosity that advances at a uniform speed in a cylindrical capillary tube. The bubble displaces a viscous non-wetting fluid, creating a thin film between its interface and the tube walls. The film is considered thin enough that intermolecular forces in the form of van der Waals attractions are significant and thin-film rupture is possible. In the absence of intermolecular forces, the bubble has a steady-state where a film of uniform thickness is deposited in the annular region between the bubble interface and the tube walls. However, once intermolecular forces are present, the bubble interface is perturbed out of its steady-state and either (i) the perturbation grows sufficiently before reaching the rear meniscus of the bubble such that rupture occurs; or (ii) the perturbation remains small due to weak intermolecular forces until it leaves the bubble interface through the rear meniscus. We obtain, both numerically and asymptotically, ...

  10. Electromagnetically induced transparency with controlled van der Waals interaction

    CERN Document Server

    Wu, Huaizhi; Shen, Li-Tuo; Chen, Rong-Xin; Yang, Zhen-Biao; Zheng, Shi-Biao

    2014-01-01

    The transmission of light through cold Rydberg atoms controlled by a second laser beam under the condition of the electromagnetically induced transparency (EIT) has been shown to exhibit highly optical nonlinearity. Here we study this effect with two individually addressed Rydberg atoms under the influence of the interatomic van der Waals interaction. We derive an effectively atomic Raman transition model that can potentially overcome the limits of applications for EIT with atoms of the ladder-type level configuration. By probing one of the atoms, we observe four doublets of absorption induced by the Autler-Townes (AT) splitting and van der Waals interaction. In particular, we find that the EIT center keeps unshifted compared with the case of interatomic interaction free, which demonstrated that the interference among the multiple transition channels is basically destructive. The EIT with controlled Rydberg-Rydberg interaction among few atoms provides a versatile tool for engineering the propagation dynamics ...

  11. Poisson-Boltzmann Calculations: van der Waals or Molecular Surface?

    Science.gov (United States)

    Pang, Xiaodong; Zhou, Huan-Xiang

    2013-01-01

    The Poisson-Boltzmann equation is widely used for modeling the electrostatics of biomolecules, but the calculation results are sensitive to the choice of the boundary between the low solute dielectric and the high solvent dielectric. The default choice for the dielectric boundary has been the molecular surface, but the use of the van der Waals surface has also been advocated. Here we review recent studies in which the two choices are tested against experimental results and explicit-solvent calculations. The assignment of the solvent high dielectric constant to interstitial voids in the solute is often used as a criticism against the van der Waals surface. However, this assignment may not be as unrealistic as previously thought, since hydrogen exchange and other NMR experiments have firmly established that all interior parts of proteins are transiently accessible to the solvent.

  12. Persistent hysteresis in graphene-mica van der Waals heterostructures.

    Science.gov (United States)

    Mohrmann, Jens; Watanabe, Kenji; Taniguchi, Takashi; Danneau, Romain

    2015-01-09

    We report the study of electronic transport in graphene-mica van der Waals heterostructures. We have designed various graphene field-effect devices in which mica is utilized as a substrate and/or gate dielectric. When mica is used as a gate dielectric we observe a very strong positive gate voltage hysteresis of the resistance, which persists in samples that were prepared in a controlled atmosphere down to even millikelvin temperatures. In a double-gated mica-graphene-hBN van der Waals heterostructure, we found that while a strong hysteresis occurred when mica was used as a substrate/gate dielectric, the same graphene sheet on mica substrate no longer showed hysteresis when the charge carrier density was tuned through a second gate with the hBN dielectric. While this hysteretic behavior could be useful for memory devices, our findings confirm that the environment during sample preparation has to be controlled strictly.

  13. Van der Waals interactions of parallel and concentric nanotubes

    OpenAIRE

    Schroder, Elsebeth; Hyldgaard, Per

    2003-01-01

    For sparse materials like graphitic systems and carbon nanotubes the standard density functional theory (DFT) faces significant problems because it cannot accurately describe the van der Waals interactions that are essential to the carbon-nanostructure materials behavior. While standard implementations of DFT can describe the strong chemical binding within an isolated, single-walled carbon nanotube, a new and extended DFT implementation is needed to describe the binding between nanotubes. We ...

  14. Dynamic changes of phase in a van der Waals fluid

    Science.gov (United States)

    Hagan, R.; Serrin, J.

    1984-03-01

    This paper gives sufficient conditions to guarantee the existence of a shock layer solution connecting two different equilibrium states in a van der Waals fluid. In particular, the equilibrium states can belong to two different phases of the fluid. The constitutive laws come from a modified Korteweg theory which is compatible with the Clausius Duhem inequality. The Clausius Duhem inequality in turn gives rise to a Liapunov function. The main mathematical tool is the LaSalle invariance principle.

  15. Van der Waals and Casimir-Polder interactions between neutrons

    Directory of Open Access Journals (Sweden)

    Babb James F.

    2016-01-01

    Full Text Available We investigate the van der Waals interaction between neutrons using the theory of Casimir and Polder, wherein the potential for asymptotically large separations falls off as the inverse seventh power, and compare it to the similar interaction between a neutron and a proton, for which the asymptotic interaction falls off as the inverse fourth power. Modifications of the formalism to extend the validity to smaller separations using dynamic electric and magnetic dipole polarizability data are discussed.

  16. Structure and dynamics of small van der Waals complexes

    Energy Technology Data Exchange (ETDEWEB)

    Loreau, J. [Service de Chimie Quantique et Photophysique, Université Libre de Bruxelles (ULB) CP 160/09, 1050 Brussels (Belgium)

    2014-10-06

    We illustrate computational aspects of the calculation of the potential energy surfaces of small (up to five atoms) van der Waals complexes with high-level quantum chemistry techniques such as the CCSD(T) method with extended basis sets. We discuss the compromise between the required accuracy and the computational time. Further, we show how these potential energy surfaces can be fitted and used in dynamical calculations such as non-reactive inelastic scattering.

  17. Formation of van der Waals molecules in buffer-gas-cooled magnetic traps [corrected].

    Science.gov (United States)

    Brahms, N; Tscherbul, T V; Zhang, P; Kłos, J; Sadeghpour, H R; Dalgarno, A; Doyle, J M; Walker, T G

    2010-07-16

    We predict that a large class of helium-containing cold polar molecules form readily in a cryogenic buffer gas, achieving densities as high as 10(12)  cm(-3). We explore the spin relaxation of these molecules in buffer-gas-loaded magnetic traps and identify a loss mechanism based on Landau-Zener transitions arising from the anisotropic hyperfine interaction. Our results show that the recently observed strong T(-6) thermal dependence of the spin-change rate of silver (Ag) trapped in dense (3)He is accounted for by the formation and spin change of Ag(3)He van der Waals molecules, thus providing indirect evidence for molecular formation in a buffer-gas trap.

  18. Isobaric first-principles molecular dynamics of liquid water with nonlocal van der Waals interactions

    CERN Document Server

    Miceli, Giacomo; Pasquarello, Alfredo

    2016-01-01

    We investigate the structural properties of liquid water at near ambient conditions using first-principles molecular dynamics simulations based on a semilocal density functional augmented with nonlocal van der Waals interactions. The adopted scheme offers the advantage of simulating liquid water at essentially the same computational cost of standard semilocal functionals. Applied to the water dimer and to ice Ih, we find that the hydrogen-bond energy is only slightly enhanced compared to a standard semilocal functional. We simulate liquid water through molecular dynamics in the NpH statistical ensemble allowing for fluctuations of the system density. The structure of the liquid departs from that found with a semilocal functional leading to more compact structural arrangements. This indicates that the directionality of the hydrogen-bond interaction has a diminished role as compared to the overall attractions, as expected when dispersion interactions are accounted for. This is substantiated through a detailed a...

  19. A reoptimized GROMOS force field for hexopyranose-based carbohydrates accounting for the relative free energies of ring conformers, anomers, epimers, hydroxymethyl rotamers, and glycosidic linkage conformers.

    Science.gov (United States)

    Hansen, Halvor S; Hünenberger, Philippe H

    2011-04-30

    This article presents a reoptimization of the GROMOS 53A6 force field for hexopyranose-based carbohydrates (nearly equivalent to 45A4 for pure carbohydrate systems) into a new version 56A(CARBO) (nearly equivalent to 53A6 for non-carbohydrate systems). This reoptimization was found necessary to repair a number of shortcomings of the 53A6 (45A4) parameter set and to extend the scope of the force field to properties that had not been included previously into the parameterization procedure. The new 56A(CARBO) force field is characterized by: (i) the formulation of systematic build-up rules for the automatic generation of force-field topologies over a large class of compounds including (but not restricted to) unfunctionalized polyhexopyranoses with arbritrary connectivities; (ii) the systematic use of enhanced sampling methods for inclusion of experimental thermodynamic data concerning slow or unphysical processes into the parameterization procedure; and (iii) an extensive validation against available experimental data in solution and, to a limited extent, theoretical (quantum-mechanical) data in the gas phase. At present, the 56A(CARBO) force field is restricted to compounds of the elements C, O, and H presenting single bonds only, no oxygen functions other than alcohol, ether, hemiacetal, or acetal, and no cyclic segments other than six-membered rings (separated by at least one intermediate atom). After calibration, this force field is shown to reproduce well the relative free energies of ring conformers, anomers, epimers, hydroxymethyl rotamers, and glycosidic linkage conformers. As a result, the 56A(CARBO) force field should be suitable for: (i) the characterization of the dynamics of pyranose ring conformational transitions (in simulations on the microsecond timescale); (ii) the investigation of systems where alternative ring conformations become significantly populated; (iii) the investigation of anomerization or epimerization in terms of free-energy differences

  20. A Discussion of Internal Accounting Control System of Fire Forces%部队会计控制制度建设研究

    Institute of Scientific and Technical Information of China (English)

    王彩霞

    2011-01-01

    It is important to establish a sound system of internal accounting controls for strengthening financial management and asset management. It effectively reduces the financial risks and asset losses, standardizes accounting practices. It improves the quality of accounting information in order to ensure national accounting laws and regulations effective implementation. To improve the effectiveness of army logistics support, this paper discusses the significance of the main content to safeguard measures and other aspects.%建立健全内部会计控制制度,是加强财务管理和资产管理的重要措施,可有效降低财务风险和减少资产损失,规范会计行为,提高会计信息质量,从而保证国家会计法律法规和规章制度的有效实施。

  1. Classical ab initio van der Waals interactions from many-body dispersion and multipole machine learning models trained in chemical space

    CERN Document Server

    Bereau, Tristan; von Lilienfeld, O Anatole

    2015-01-01

    Accurate predictions of van der Waals forces require faithful models of dispersion, permanent and induced multipole-moments, as well as penetration and repulsion. We introduce a universal combined physics- and data-driven model of dispersion and multipole-moment contributions, respectively. Atomic multipoles are estimated "on-the-fly" for any organic molecule in any conformation using a machine learning approach trained on quantum chemistry results for tens of thousands of atoms in varying chemical environments drawn from thousands of organic molecules. Globally neutral, cationic, and anionic molecular charge states can be treated with individual models. Dispersion interactions are included via recently-proposed classical many-body potentials. For nearly one thousand intermolecular dimers, this approximate van der Waals model is found to reach an accuracy similar to that of state-of-the-art force fields, while bypassing the need for parametrization. Estimates of cohesive energies for the benzene crystal confi...

  2. Report on the Assessment of Arms, Ammunition, and Explosives Accountability and Control; Security Assistance; and Logistics Sustainment for the Iraq Security Forces

    Science.gov (United States)

    2008-12-19

    Forces equipment requirements. Specifically, we examined the organizational structure and processes used to execute security assistance programs during...logistics and transportation sectors within the DoD portion of the Federal Government Critical Infrastructure Protection structure . 29 30 maintaining...Procedures Comprehensive Standare Operating Procedures (SOP) with site-specific guidance were ordinarily unavailable for SAO personnel at the Iraqi

  3. Internet Accounting

    NARCIS (Netherlands)

    Pras, Aiko; Beijnum, van Bert-Jan; Sprenkels, Ron; Párhonyi, Robert

    2001-01-01

    This article provides an introduction to Internet accounting and discusses the status of related work within the IETF and IRTF, as well as certain research projects. Internet accounting is different from accounting in POTS. To understand Internet accounting, it is important to answer questions like

  4. Accounting Automation

    OpenAIRE

    Laynebaril1

    2017-01-01

    Accounting Automation   Click Link Below To Buy:   http://hwcampus.com/shop/accounting-automation/  Or Visit www.hwcampus.com Accounting Automation” Please respond to the following: Imagine you are a consultant hired to convert a manual accounting system to an automated system. Suggest the key advantages and disadvantages of automating a manual accounting system. Identify the most important step in the conversion process. Provide a rationale for your response. ...

  5. Analysis of Melting for Alkali Earth and Alkali Oxides Based on the Diffusional Force Theory

    Science.gov (United States)

    Liu, Quan; Chen, Li-Rong

    An analysis of the melting alkali earth and alkali oxides is presented using the concept of diffusional force. The calculations are performed by developing an ionic model based on Harrison's quantum mechanical treatment of overlap repulsive potential which takes into account the interactions up to second neighbors. Van der Waals dipole-dipole and dipole-quadrupole interactions calculated by more accurate methods are also included in the model. Using the formula by Fang, derived on the basis of thermodynamic analysis, the values of interionic distances for 8 alkali earth and alkali oxides at melting have been obtained. A simple model for melting is developed based on the diffusional force models. The values of Tm thus obtained are found to show fairly good agreement with experimental values of melting temperatures.

  6. Forced vibrations of a current-carrying nanowire in a longitudinal magnetic field accounting for both surface energy and size effects

    Science.gov (United States)

    Kiani, Keivan

    2014-09-01

    Forced vibrations of current-carrying nanowires in the presence of a longitudinal magnetic field are of interest. By considering the surface energy and size effects, the coupled equations of motion describing transverse motions of the nanostructure are derived. By employing Galerkin and Newmark-β approaches, the deflections of the nanowire subjected to transverse dynamic loads are evaluated. The effects of the magnetic field, electric current, pre-tension force, frequency of the applied load, surface and size effects on the maximum transverse displacements are discussed. The obtained results display that for the frequency of the applied load lower than the nanowire's fundamental frequency, by increasing the magnetic field or electric current, the maximum transverse displacements would increase. However, for exciting frequencies greater than that of the nanowire, maximum transverse displacements would increase or decrease with the magnetic field strength or electric current. Additionally, the pre-tension force results in decreasing of the maximum transverse displacements. Such a reduction is more apparent for higher values of the magnetic field strength and electric current. The present study would be useful in the design of the micro- and nano-electro-mechanical systems expected to be one of the most wanted technologies in the near future.

  7. Field Effect in Graphene-Based van der Waals Heterostructures

    DEFF Research Database (Denmark)

    Stradi, Daniele; Papior, Nick Rübner; Hansen, Ole

    2017-01-01

    Stacked van der Waals (vdW) heterostructures where semiconducting two-dimensional (2D) materials are contacted by overlaid graphene electrodes enable atomically thin, flexible electronics. We use first-principles quantum transport simulations of graphene-contacted MoS2 devices to show how...... the transistor effect critically depends on the stacking configuration relative to the gate electrode. We can trace this behavior to the stacking-dependent response of the contact region to the capacitive electric field induced by the gate. The contact resistance is a central parameter and our observation...

  8. Van der Waals phase transition in the framework of holography

    CERN Document Server

    Zeng, Xiao-Xiong

    2015-01-01

    Phase structure of the quintessence Reissner-Nordstr\\"{o}m-AdS black hole is probed with the nonlocal observables such as holographic entanglement entropy and two point correlation function. Our result shows that, as the case of the thermal entropy, both the observables exhibit the similar Van der Waals-like phase transition. To reinforce the conclusion, we further check the equal area law for the first order phase transition and critical exponent of the heat capacity for the second order phase transition. We also discuss the effect of the state parameter on the phase structure of the nonlocal observables.

  9. Interaction forces between waterborne bacteria and activated carbon particles

    NARCIS (Netherlands)

    Busscher, Henk J.; Dijkstra, Rene J. B.; Langworthy, Don E.; Collias, Dimitris I.; Bjorkquist, David W.; Mitchell, Michael D.; Van der Mei, Henny C.

    2008-01-01

    Activated carbons remove waterborne bacteria from potable water systems through attractive Lifshitz-van der Waals forces despite electrostatic repulsion between negatively charged cells and carbon surfaces. In this paper we quantify the interaction forces between bacteria with negatively and positiv

  10. Educational Accountability

    Science.gov (United States)

    Pincoffs, Edmund L.

    1973-01-01

    Discusses educational accountability as the paradigm of performance contracting, presents some arguments for and against accountability, and discusses the goals of education and the responsibility of the teacher. (Author/PG)

  11. Accounting outsourcing

    OpenAIRE

    Richtáriková, Paulína

    2012-01-01

    The thesis deals with accounting outsourcing and provides a comprehensive explanation of the topic. At first the thesis defines basic concepts (outsourcing, insourcing, offshoring and outplacement) and describes differences between the accounting outsourcing and outsourcing of other business activities. The emphasis is put on a decision whether or not to implement the accounting outsourcing. Thus the thesis describes main reasons why to implement the accounting outsourcing and risks that are ...

  12. Accounting outsourcing

    OpenAIRE

    Klečacká, Tereza

    2009-01-01

    This thesis gives a complex view on accounting outsourcing, deals with the outsourcing process from its beginning (condition of collaboration, making of contract), through collaboration to its possible ending. This work defines outsourcing, indicates the main advatages, disadvatages and arguments for its using. The main object of thesis is mainly practical side of accounting outsourcing and providing of first quality accounting services.

  13. Accounting standards

    NARCIS (Netherlands)

    Stellinga, B.; Mügge, D.

    2014-01-01

    The European and global regulation of accounting standards have witnessed remarkable changes over the past twenty years. In the early 1990s, EU accounting practices were fragmented along national lines and US accounting standards were the de facto global standards. Since 2005, all EU listed companie

  14. Franckeite as a naturally occurring van der Waals heterostructure

    Science.gov (United States)

    Molina-Mendoza, Aday J.; Giovanelli, Emerson; Paz, Wendel S.; Niño, Miguel Angel; Island, Joshua O.; Evangeli, Charalambos; Aballe, Lucía; Foerster, Michael; van der Zant, Herre S. J.; Rubio-Bollinger, Gabino; Agraït, Nicolás; Palacios, J. J.; Pérez, Emilio M.; Castellanos-Gomez, Andres

    2017-01-01

    The fabrication of van der Waals heterostructures, artificial materials assembled by individual stacking of 2D layers, is among the most promising directions in 2D materials research. Until now, the most widespread approach to stack 2D layers relies on deterministic placement methods, which are cumbersome and tend to suffer from poor control over the lattice orientations and the presence of unwanted interlayer adsorbates. Here, we present a different approach to fabricate ultrathin heterostructures by exfoliation of bulk franckeite which is a naturally occurring and air stable van der Waals heterostructure (composed of alternating SnS2-like and PbS-like layers stacked on top of each other). Presenting both an attractive narrow bandgap (<0.7 eV) and p-type doping, we find that the material can be exfoliated both mechanically and chemically down to few-layer thicknesses. We present extensive theoretical and experimental characterizations of the material's electronic properties and crystal structure, and explore applications for near-infrared photodetectors. PMID:28194037

  15. Role of van der Waals interactions for the intrinsic stability of polyalanine helices

    Science.gov (United States)

    Tkatchenko, Alexandre; Blum, Volker; Ireta, Joel; Scheffler, Matthias

    2009-03-01

    The helical motif is an ubiquitous conformation adopted by aminoacid residues in a protein structure and helix formation is the simplest example of the protein folding process. How stable is the folded peptide helix in comparison to a random coil structure? What are the interactions responsible for stabilizing the helical conformation? Answering these questions has thus a direct implication for understanding protein folding. In this work we use density functional theory (DFT) augmented with a non-empirical correction for van der Waals (vdW) forces to study the stability of alanine polypeptide helices in vacuo. We find a large stabilization of the native helical forms when vdW correction is used. It amounts to 121%, 157% and 83% on top of the Perdew-Burke-Ernzerhof (PBE) functional in the case of infinite α, π and 310 helices, respectively. Thus, the experimentally observed α helix is significantly stabilized by vdW forces both over the fully extended and the 310 conformations. Our findings also suggest an explanation to the remarkable stability of gas-phase alanine helices up to high temperatures [M. Kohtani et al. JACS 126, 7420 (2004)].

  16. Thermal electron attachment to oxygen and van der Waals molecules containing oxygen

    Science.gov (United States)

    Shimamori, Hiroshi; Fessenden, Richard W.

    1981-01-01

    Thermal electron attachment to O2 has been studied for pure O2 (16O2 and 18O2), O2-N2, O2-CO, and O2-n-C4H10 (16O2 and 18O2) systems at temperatures from ˜330 down to 78° K using pulse radiolysis and microwave conductivity. For pure O2, O2-N2, and O2-CO mixtures, the electron attachment rates showed three-body pressure dependences at all temperatures over the pressure range studied (PO2<10Torr, PN2<60 Torr, PCO<40 Torr). The three-body rate constant of 16O2 decreases from ˜2.4×10-30 cm6 molecule-2 sec-1 at 330 °K to about 0.9×10-30 cm6 molecule-2 sec-1 at ˜ 140 °K but unexpectedly increases again to about 1.7×10-30 cm6 molecule-2 sec-1 at 79 °K. Similarly, the three-body rate constant of 18O2 decreases from 5.1×10-30 cm6 molecule-2 sec-1 at 300 °K to 1.8×10-30 cm6 molecule-2 sec-1 at ˜110 °K but increases to 2.3×10-30 cm6 molecule-2 sec-1 at 80 °K. The three-body rate constant of N2 shows a more dramatic monotonic increase from 0.9×10-31 cm6 molecule-2 sec-1 at 300 °K to 9.4×10-31 cm6 molecule-2 sec-1 at 78 °K. In the case of CO, the three-body rate constant appears to have a very shallow minimum around 170 °K and again increases with further decrease of temperature. Since theory predicts a simple decrease in rate constant with reduced temperature, an extra contribution to the rate constant which increases with lowered temperature is evident. Electron attachment to the van der Waals molecules (O2)2, (O2ṡN2), and (O2ṡCO) is proposed to account for this behavior. It has been found that the dependence of the excess rate on temperature follows rather closely the predicted concentration of van der Waals molecules. Qualitatively, this observation suggests that the rate constant for electron attachment to the van der Waals molecules is only weakly dependent on temperature. The estimated rate constants for this attachment are nearly two orders of magnitude larger than for O2 itself. A discussion of possible reasons for this large increase is given

  17. Vibrations of double-nanotube systems with mislocation via a newly developed van der Waals model

    Science.gov (United States)

    Kiani, Keivan

    2015-06-01

    This study deals with transverse vibrations of two adjacent-parallel-mislocated single-walled carbon nanotubes (SWCNTs) under various end conditions. These tubes interact with each other and their surrounding medium through the intertube van der Waals (vdW) forces, and existing bonds between their atoms and those of the elastic medium. The elastic energy of such forces due to the deflections of nanotubes is appropriately modeled by defining a vdW force density function. In the previous works, vdW forces between two identical tubes were idealized by a uniform form of this function. The newly introduced function enables us to investigate the influences of both intertube free distance and longitudinal mislocation on the natural transverse frequencies of the nanosystem which consists of two dissimilar tubes. Such crucial issues have not been addressed yet, even for simply supported tubes. Using nonlocal Timoshenko and higher-order beam theories as well as Hamilton's principle, the strong form of the equations of motion is established. Seeking for an explicit solution to these integro-partial differential equations is a very problematic task. Thereby, an energy-based method in conjunction with an efficient meshfree method is proposed and the nonlocal frequencies of the elastically embedded nanosystem are determined. For simply supported nanosystems, the predicted first five frequencies of the proposed model are checked with those of assumed mode method, and a reasonably good agreement is achieved. Through various studies, the roles of the tube's length ratio, intertube free space, mislocation, small-scale effect, slenderness ratio, radius of SWCNTs, and elastic constants of the elastic matrix on the natural frequencies of the nanosystem with various end conditions are explained. The limitations of the nonlocal Timoshenko beam theory are also addressed. This work can be considered as a vital step towards better realizing of a more complex system that consists of

  18. Equations of State: From the Ideas of van der Waals to Association Theories

    DEFF Research Database (Denmark)

    Kontogeorgis, Georgios; Economou, Ioannis G.

    2010-01-01

    The ideas of van der Waals have resulted to cubic equations of state like Soave–Redlich–Kwong (SRK) and Peng–Robinson (PR) which are widely used in the petroleum and chemical industries. It is often thought that the range of applicability of van der Waals-type models is limited to mixtures...

  19. Vertical electron transport in van der Waals heterostructures with graphene layers

    Energy Technology Data Exchange (ETDEWEB)

    Ryzhii, V., E-mail: v-ryzhii@riec.tohoku.ac.jp [Research Institute for Electrical Communication, Tohoku University, Sendai 980-8577 (Japan); Center for Photonics and Infrared Engineering, Bauman Moscow State Technical University and Institute of Ultra High Frequency Semiconductor Electronics of RAS, Moscow 111005 (Russian Federation); Otsuji, T. [Research Institute for Electrical Communication, Tohoku University, Sendai 980-8577 (Japan); Ryzhii, M. [Department of Computer Science and Engineering, University of Aizu, Aizu-Wakamatsu 965-8580 (Japan); Aleshkin, V. Ya.; Dubinov, A. A. [Institute for Physics of Microstructures of RAS and Lobachevsky State University of Nizhny Novgorod, Nizhny Novgorod 603950 (Russian Federation); Mitin, V. [Research Institute for Electrical Communication, Tohoku University, Sendai 980-8577 (Japan); Department of Electrical Engineering, University at Buffalo, Buffalo, New York 1460-1920 (United States); Shur, M. S. [Department of Electrical, Electronics, and Systems Engineering and Department of Physics, Applied Physics, and Astronomy, Rensselaer Polytechnic Institute, Troy, New York 12180 (United States)

    2015-04-21

    We propose and analyze an analytical model for the self-consistent description of the vertical electron transport in van der Waals graphene-layer (GL) heterostructures with the GLs separated by the barriers layers. The top and bottom GLs serve as the structure emitter and collector. The vertical electron transport in such structures is associated with the propagation of the electrons thermionically emitted from GLs above the inter-GL barriers. The model under consideration describes the processes of the electron thermionic emission from and the electron capture to GLs. It accounts for the nonuniformity of the self-consistent electric field governed by the Poisson equation which accounts for the variation of the electron population in GLs. The model takes also under consideration the cooling of electrons in the emitter layer due to the Peltier effect. We find the spatial distributions of the electric field and potential with the high-electric-field domain near the emitter GL in the GL heterostructures with different numbers of GLs. Using the obtained spatial distributions of the electric field, we calculate the current-voltage characteristics. We demonstrate that the Peltier cooling of the two-dimensional electron gas in the emitter GL can strongly affect the current-voltage characteristics resulting in their saturation. The obtained results can be important for the optimization of the hot-electron bolometric terahertz detectors and different devices based on GL heterostructures.

  20. Electron acceleration and emission in a field of a plane and converging dipole wave of relativistic amplitudes with the radiation reaction force taken into account

    Science.gov (United States)

    Bashinov, Aleksei V.; Gonoskov, Arkady A.; Kim, A. V.; Marklund, Mattias; Mourou, G.; Sergeev, Aleksandr M.

    2013-04-01

    A comparative analysis is performed of the electron emission characteristics as the electrons move in laser fields with ultra-relativistic intensity and different configurations corresponding to a plane or tightly focused wave. For a plane travelling wave, analytical expressions are derived for the emission characteristics, and it is shown that the angular distribution of the radiation intensity changes qualitatively even when the wave intensity is much less than that in the case of the radiation-dominated regime. An important conclusion is drawn that the electrons in a travelling wave tend to synchronised motion under the radiation reaction force. The characteristic features of the motion of electrons are found in a converging dipole wave, associated with the curvature of the phase front and nonuniformity of the field distribution. The values of the maximum achievable longitudinal momenta of electrons accelerated to the centre, as well as their distribution function are determined. The existence of quasi-periodic trajectories near the focal region of the dipole wave is shown, and the characteristics of the emission of both accelerated and oscillating electrons are analysed.

  1. Explaining as Mediated Action. An Analysis of Pre-service Teachers' Account of Forces of Inertia in Non-inertial Frames of Reference

    Science.gov (United States)

    de Pereira, Alexsandro Pereira; Lima Junior, Paulo; Rodrigues, Renato Felix

    2016-05-01

    Explaining is one of the most important everyday practices in science education. In this article, we examine how scientific explanations could serve as cultural tools for members of a group of pre-service physics teachers. Specifically, we aim at their use of explanations about forces of inertia in non-inertial frames of reference. A basic assumption of our study is that explanatory tools (e.g., typical explanations learned) shape the ways we think and speak about the world. Drawing on the theory of mediated action, analysis illustrates three major claims on scientific explanations: (1) explaining is an act of actively responding to explanations presented by others (and not only to evidence itself); (2) the actual experience of explaining involves the enactment of power and authority; (3) resistance (not acknowledging an explanation as one's own) might be a constitutive part of learning how to explain (hence, teachers could approach scientific explanation in a less dogmatic way). These assertions expand the possibilities of dialogue between studies of scientific explanations and the social sciences. Implications for science teaching and research in science education are presented.

  2. Application of the van der Waals equation of state to polymers .4. Correlation and prediction of lower critical solution temperatures for polymer solutions

    DEFF Research Database (Denmark)

    Goncalves, Ana Saraiva; Kontogeorgis, Georgios; Harismiadis, Vassilis I.

    1996-01-01

    The van der Waals equation of state is used for the correlation and the prediction of the lower critical solution behavior or mixtures including a solvent and a polymer. The equation of state parameters for the polymer are estimated from experimental volumetric data at low pressures. The equation...... of state parameters for the solvent are estimated via the classical Soave method, i.e. using the critical properties and a generalized equation for the energy parameter. When extended to mixtures, the van der Waals one-fluid mixing rules along with the Berthelot combining rule for the molecular cross...... energy parameter are used. The arithmetic mean combining rule is used for the cross co-volume parameter. The deviations from the Berthelot combining rule are taken into account via a simple expression which has been previously obtained from vapor-liquid equilibrium data of athermal polymer solutions...

  3. Flexible ferroelectric element based on van der Waals heteroepitaxy.

    Science.gov (United States)

    Jiang, Jie; Bitla, Yugandhar; Huang, Chun-Wei; Do, Thi Hien; Liu, Heng-Jui; Hsieh, Ying-Hui; Ma, Chun-Hao; Jang, Chi-Yuan; Lai, Yu-Hong; Chiu, Po-Wen; Wu, Wen-Wei; Chen, Yi-Chun; Zhou, Yi-Chun; Chu, Ying-Hao

    2017-06-01

    We present a promising technology for nonvolatile flexible electronic devices: A direct fabrication of epitaxial lead zirconium titanate (PZT) on flexible mica substrate via van der Waals epitaxy. These single-crystalline flexible ferroelectric PZT films not only retain their performance, reliability, and thermal stability comparable to those on rigid counterparts in tests of nonvolatile memory elements but also exhibit remarkable mechanical properties with robust operation in bent states (bending radii down to 2.5 mm) and cycling tests (1000 times). This study marks the technological advancement toward realizing much-awaited flexible yet single-crystalline nonvolatile electronic devices for the design and development of flexible, lightweight, and next-generation smart devices with potential applications in electronics, robotics, automotive, health care, industrial, and military systems.

  4. Engineering Low Dimensional Materials with van der Waals Interaction

    Science.gov (United States)

    Jin, Chenhao

    Two-dimensional van der Waals materials grow into a hot and big field in condensed matter physics in the past decade. One particularly intriguing thing is the possibility to stack different layers together as one wish, like playing a Lego game, which can create artificial structures that do not exist in nature. These new structures can enable rich new physics from interlayer interaction: The interaction is strong, because in low-dimension materials electrons are exposed to the interface and are susceptible to other layers; and the screening of interaction is less prominent. The consequence is rich, not only from the extensive list of two-dimensional materials available nowadays, but also from the freedom of interlayer configuration, such as displacement and twist angle, which creates a gigantic parameter space to play with. On the other hand, however, the huge parameter space sometimes can make it challenging to describe consistently with a single picture. For example, the large periodicity or even incommensurability in van der Waals systems creates difficulty in using periodic boundary condition. Worse still, the huge superlattice unit cell and overwhelming computational efforts involved to some extent prevent the establishment of a simple physical picture to understand the evolution of system properties in the parameter space of interlayer configuration. In the first part of the dissertation, I will focus on classification of the huge parameter space into subspaces, and introduce suitable theoretical approaches for each subspace. For each approach, I will discuss its validity, limitation, general solution, as well as a specific example of application demonstrating how one can obtain the most important effects of interlayer interaction with little computation efforts. Combining all the approaches introduced will provide an analytic solution to cover majority of the parameter space, which will be very helpful in understanding the intuitive physical picture behind

  5. Thermohydrodynamics of boiling in a van der Waals fluid.

    Science.gov (United States)

    Laurila, T; Carlson, A; Do-Quang, M; Ala-Nissila, T; Amberg, G

    2012-02-01

    We present a modeling approach that enables numerical simulations of a boiling Van der Waals fluid based on the diffuse interface description. A boundary condition is implemented that allows in and out flux of mass at constant external pressure. In addition, a boundary condition for controlled wetting properties of the boiling surface is also proposed. We present isothermal verification cases for each element of our modeling approach. By using these two boundary conditions we are able to numerically access a system that contains the essential physics of the boiling process at microscopic scales. Evolution of bubbles under film boiling and nucleate boiling conditions are observed by varying boiling surface wettability. We observe flow patters around the three-phase contact line where the phase change is greatest. For a hydrophilic boiling surface, a complex flow pattern consistent with vapor recoil theory is observed.

  6. Critical fluctuations in models with van der Waals interactions

    CERN Document Server

    Vovchenko, V; Gorenstein, M I; Poberezhnyuk, R V; Stoecker, H

    2016-01-01

    Particle number fluctuations are considered within the van der Waals (VDW) equation, which contains both attractive (mean-field) and repulsive (eigenvolume) interactions. The VDW equation is used to calculate the scaled variance of particle number fluctuations in generic Boltzmann VDW system and in nuclear matter. The strongly intensive measures $\\Delta[E^*,N]$ and $\\Sigma[E^*,N]$ of the particle number and excitation energy fluctuations are also considered, and, similarly, show singular behavior near the critical point. The $\\Delta[E^*,N]$ measure is shown to attain both positive and negative values in the vicinity of critical point. Based on universality argument, similar behavior is expected to occur in the vicinity of the QCD critical point.

  7. Heterostructures based on inorganic and organic van der Waals systems

    Directory of Open Access Journals (Sweden)

    Gwan-Hyoung Lee

    2014-09-01

    Full Text Available The two-dimensional limit of layered materials has recently been realized through the use of van der Waals (vdW heterostructures composed of weakly interacting layers. In this paper, we describe two different classes of vdW heterostructures: inorganic vdW heterostructures prepared by co-lamination and restacking; and organic-inorganic hetero-epitaxy created by physical vapor deposition of organic molecule crystals on an inorganic vdW substrate. Both types of heterostructures exhibit atomically clean vdW interfaces. Employing such vdW heterostructures, we have demonstrated various novel devices, including graphene/hexagonal boron nitride (hBN and MoS2 heterostructures for memory devices; graphene/MoS2/WSe2/graphene vertical p-n junctions for photovoltaic devices, and organic crystals on hBN with graphene electrodes for high-performance transistors.

  8. Fabrication and characterization of PbSe nanostructures on van der Waals surfaces of GaSe layered semiconductor crystals

    Science.gov (United States)

    Kudrynskyi, Z. R.; Bakhtinov, A. P.; Vodopyanov, V. N.; Kovalyuk, Z. D.; Tovarnitskii, M. V.; Lytvyn, O. S.

    2015-11-01

    The growth morphology, composition and structure of PbSe nanostructures grown on the atomically smooth, clean, nanoporous and oxidized van der Waals (0001) surfaces of GaSe layered crystals were studied by means of atomic force microscopy, x-ray diffractometry, photoelectron spectroscopy and Raman spectroscopy. Semiconductor heterostructures were grown by the hot-wall technique in vacuum. Nanoporous GaSe substrates were fabricated by the thermal annealing of layered crystals in a molecular hydrogen atmosphere. The irradiation of the GaSe(0001) surface by UV radiation was used to fabricate thin Ga2O3 layers with thickness clusters with a square or rectangular symmetry on the clean low-energy (0001) GaSe surface, and (001)-oriented growth of PbSe thin films takes place on this surface. Using this growth technique it is possible to grow PbSe nanostructures with different morphologies: continuous epitaxial layers with thickness quantum dots with a high lateral density (more than 1011 cm-2) on the oxidized van der Waals (0001) surfaces and faceted square pillar-like nanostructures with a low lateral density (˜108 cm-2) on the nanoporous GaSe substrates. We exploit the ‘vapor-liquid-solid’ growth with low-melting metal (Ga) catalyst of PbSe crystalline branched nanostructures via a surface-defect-assisted mechanism.

  9. Microwave spectrum and structure of the 3,5-difluoropyridine⋯CO2 van der Waals complex

    Science.gov (United States)

    Dewberry, Christopher T.; Cornelius, Ryan D.; Mackenzie, Rebecca B.; Smith, C. J.; Dvorak, Michael A.; Leopold, Kenneth R.

    2016-10-01

    The rotational spectrum of the weakly bound complex 3,5-difluoropyridine⋯CO2 has been observed using pulsed-nozzle Fourier transform microwave spectroscopy. Spectroscopic constants are reported for the parent and 13CO2 isotopologues. The data indicate a planar structure in which the nitrogen approaches the carbon of the CO2 with either a C2v or effectively C2v geometry in the ground vibrational state. The N⋯C van der Waals bond distance is 2.8245(16) Å and the oxygen⋯ortho-hydrogen distance is 3.091(2) Å. The N⋯C van der Waals bond length is 0.027(8) Å longer than that previously determined for pyridine-CO2, but is still considerably shorter than the 2.998 Å distance in HCN⋯CO2. M06-2X/6-311++G(3df,3pd) calculations place the binding energy of the complex at 4.3 kcal/mol (4.1 kcal/mol with counterpoise correction). The calculations further indicate that a secondary interaction between the ortho-hydrogens of the ring and the CO2 oxygens account for ∼50% of the total binding energy.

  10. On van der Waals friction between half-spaces at low temperature.

    Science.gov (United States)

    Barton, Gabriel

    2011-09-07

    We determine, in the van der Waals regime (neglecting retardation and relativistic effects), the frictional power loss P and the drag force F = P/u per unit area between two Drude-modelled half-spaces, with surface plasmon frequency ω(S) and realistically weak dissipation, separated by a gap of width ζ, and constrained to uniform parallel motion with relative speed u. The calculation uses only textbook-level adiabatic and perturbative methods of nonrelativistic quantum mechanics. The initial temperature is taken to be low, with τ ≡ k(B)T/ħω(S) 1. But at fixed nonzero τ, as v rises from zero, P is at first dominated by a temperature-dependent component proportional to u(2)T(2)/ζ(4). The assumptions of the model as regards the half-spaces are satisfied by most quantum-electrodynamics-based approaches, whose results in the nonretarded limit should therefore be the same as ours. We also find that the frequency distribution of the friction-induced energy increments is not thermal, suggesting that in this respect the Huttner-Barnett theory (which we use to describe dissipative materials) needs further refinement.

  11. Accounting assessment

    Directory of Open Access Journals (Sweden)

    Kafka S.М.

    2017-03-01

    Full Text Available The proper evaluation of accounting objects influences essentially upon the reliability of assessing the financial situation of a company. Thus, the problem in accounting estimate is quite relevant. The works of home and foreign scholars on the issues of assessment of accounting objects, regulatory and legal acts of Ukraine controlling the accounting and compiling financial reporting are a methodological basis for the research. The author uses the theoretical methods of cognition (abstraction and generalization, analysis and synthesis, induction and deduction and other methods producing conceptual knowledge for the synthesis of theoretical and methodological principles in the evaluation of assets accounting, liabilities and equity. The tabular presentation and information comparison methods are used for analytical researches. The article considers the modern approaches to the issue of evaluation of accounting objects and financial statements items. The expedience to keep records under historical value is proved and the articles of financial statements are to be presented according to the evaluation on the reporting date. In connection with the evaluation the depreciation of fixed assets is considered as a process of systematic return into circulation of the before advanced funds on the purchase (production, improvement of fixed assets and intangible assets by means of including the amount of wear in production costs. Therefore it is proposed to amortize only the actual costs incurred, i.e. not to depreciate the fixed assets received free of charge and surplus valuation of different kinds.

  12. Density functional results for isotropic and anisotropic multipole polarizabilities and C6, C7, and C8 Van der Waals dispersion coefficients for molecules

    Science.gov (United States)

    Osinga, V. P.; van Gisbergen, S. J. A.; Snijders, J. G.; Baerends, E. J.

    1997-03-01

    The generalized gradient-approximated (GGA) energy functionals used in density functional theory (DFT) provide accurate results for many different properties. However, one of their weaknesses lies in the fact that Van der Waals forces are not described. In spite of this, it is possible to obtain reliable long-range potential energy surfaces within DFT. In this paper, we use time-dependent density functional response theory to obtain the Van der Waals dispersion coefficients C6, C7, and C8 (both isotropic and anisotropic). They are calculated from the multipole polarizabilities at imaginary frequencies of the two interacting molecules. Alternatively, one might use one of the recently-proposed Van der Waals energy functionals for well-separated systems, which provide fairly good approximations to our isotropic results. Results with the local density approximation (LDA), Becke-Perdew (BP) GGA and the Van Leeuwen-Baerends (LB94) exchange-correlation potentials are presented for the multipole polarizabilities and the dispersion coefficients of several rare gases, diatomics and the water molecule. The LB94 potential clearly performs best, due to its correct Coulombic asymptotic behavior, yielding results which are close to those obtained with many-body perturbation theory (MBPT). The LDA and BP results are systematically too high for the isotropic properties. This becomes progressively worse for the higher dispersion coefficients. The results for the relative anisotropies are quite satisfactory for all three potentials, however.

  13. Effect of surface roughness on van der Waals and Casimir-Polder/Casimir attraction energies

    Science.gov (United States)

    Makeev, Maxim A.

    2017-09-01

    A theoretical model is devised to assess effects of surface roughness on dispersion interactions between macroscopic bodies, bounded by self-affine fractal surfaces and separated by a vacuum gap. The rough-surface profiles are described statistically by the saturation values of surface width and the correlation lengths; i.e., in terms of experimentally measurable quantities. The model devised takes into account the separation distance-dependent nature of dispersive interactions. The case of non-retarded van der Waals interactions, known to operate at smaller separation distances between the bodies, and that of retarded attractions, operative at larger separation length-scales, are treated separately in this work. Analytical formulae for the roughness corrections are deduced for the two aforementioned types of attractions. The model is employed to compute roughness corrections to interactions between an extended body, bounded by a self-affine surface, and: a) a point-like adherent; and b) a planar half-space. Furthermore, the roughness-induced corrections to dispersive interaction energies between half-spaces, both bounded by self-affine surfaces, are obtained under assumption that the corresponding surface profiles are not correlated. The predictions of the model are compared with some previously reported theoretical studies and available experimental data on the theme of dispersive adhesion between macroscopic bodies.

  14. Forces between Hydrophobic Solids in Concentrated Aqueous Salt Solution

    OpenAIRE

    Mastropietro, Dean J; Ducker, William A.

    2012-01-01

    Much research has focused on the discovery and description of long-ranged forces between hydrophobic solids immersed in water. Here we show that the force between high contact-angle solids in concentrated salt solution (1 M KCl) agrees very well with van der Waals forces calculated from Lifshitz theory for separations greater than 5 nm. The hydrophobic solids are octadecyltrichlorosilane-coated glass, with an advancing contact angle of 108 degrees. Thus, in 1 M salt solution, it is unnecessar...

  15. Coincidence Lattices and Interlayer Twist in van der Waals Heterostructures: Application of the Coincidence Lattice Method on \\hbox {hBN/MoSe}_2 Heterobilayer Systems

    Science.gov (United States)

    Koda, Daniel S.; Bechstedt, Friedhelm; Marques, Marcelo; Teles, Lara K.

    2017-07-01

    Van der Waals heterostructures have great potential in large-scale integration devices and exploration of new physics. Experimental investigations allow flexible combinations of two-dimensional crystals in device fabrications. Theory, however, has limitations of supercell sizes and commensurability, translated into computational effort. In this work, we demonstrate the application of the coincidence lattice method to simulate two \\hbox {hBN/MoSe}_2 heterobilayers taking interlayer twist effects into account. We predict that both systems are stable upon contact and interact via van der Waals dispersions. We found that electronic properties of \\hbox {MoSe}_2 are preserved for both simulated systems, but hBN suffers from the increase of interface interactions, as evidenced by band structures and density of states calculations. Finally, band discontinuities are obtained and charge transfer arguments explain small shifts in band offsets with respect to natural alignments. We conclude that hBN is a reasonable substrate for preserving useful properties of \\hbox {MoSe}_2 for application in electronic and optoelectronic devices, and that interlayer twist angles play a significant role in the physics of van der Waals heterostructures.

  16. Interlayer Transition and Infrared Photodetection in Atomically Thin Type-II MoTe₂/MoS₂ van der Waals Heterostructures.

    Science.gov (United States)

    Zhang, Kenan; Zhang, Tianning; Cheng, Guanghui; Li, Tianxin; Wang, Shuxia; Wei, Wei; Zhou, Xiaohao; Yu, Weiwei; Sun, Yan; Wang, Peng; Zhang, Dong; Zeng, Changgan; Wang, Xingjun; Hu, Weida; Fan, Hong Jin; Shen, Guozhen; Chen, Xin; Duan, Xiangfeng; Chang, Kai; Dai, Ning

    2016-03-22

    We demonstrate the type-II staggered band alignment in MoTe2/MoS2 van der Waals (vdW) heterostructures and an interlayer optical transition at ∼1.55 μm. The photoinduced charge separation between the MoTe2/MoS2 vdW heterostructure is verified by Kelvin probe force microscopy (KPFM) under illumination, density function theory (DFT) simulations and photoluminescence (PL) spectroscopy. Photoelectrical measurements of MoTe2/MoS2 vdW heterostructures show a distinct photocurrent response in the infrared regime (1550 nm). The creation of type-II vdW heterostructures with strong interlayer coupling could improve our fundamental understanding of the essential physics behind vdW heterostructures and help the design of next-generation infrared optoelectronics.

  17. Exact results for Casimir interactions between dielectric bodies: The weak-coupling or van der Waals Limit

    CERN Document Server

    Milton, Kimball A; Wagner, Jef

    2008-01-01

    In earlier papers we have applied multiple scattering techniques to calculate Casimir forces due to scalar fields between different bodies described by delta function potentials. When the coupling to the potentials became weak, closed-form results were obtained. We simplify this weak-coupling technique and apply it to the case of tenuous dielectric bodies, in which case the method involves the summation of van der Waals (Casimir-Polder) interactions. Once again exact results for finite bodies can be obtained. We present closed formulas describing the interaction between spheres and between cylinders, and between an infinite plate and a retangular slab of finite size. For such a slab, we consider the torque acting on it, and find non-trivial equilibrium points can occur.

  18. Electronic structure of transferred graphene/h-BN van der Waals heterostructures with nonzero stacking angles by nano-ARPES

    Science.gov (United States)

    Wang, Eryin; Chen, Guorui; Wan, Guoliang; Lu, Xiaobo; Chen, Chaoyu; Avila, Jose; Fedorov, Alexei V.; Zhang, Guangyu; Asensio, Maria C.; Zhang, Yuanbo; Zhou, Shuyun

    2016-11-01

    In van der Waals heterostructures, the periodic potential from the Moiré superlattice can be used as a control knob to modulate the electronic structure of the constituent materials. Here we present a nanoscale angle-resolved photoemission spectroscopy (nano-ARPES) study of transferred graphene/h-BN heterostructures with two different stacking angles of 2.4° and 4.3° respectively. Our measurements reveal six replicas of graphene Dirac cones at the superlattice Brillouin zone (SBZ) centers. The size of the SBZ and its relative rotation angle to the graphene BZ are in good agreement with Moiré superlattice period extracted from atomic force microscopy (AFM) measurements. Comparison to the epitaxial graphene/h-BN with 0° stacking angles suggests that the interaction between graphene and h-BN decreases with increasing stacking angle.

  19. Interfacial forces between silica surfaces measured by atomic force microscopy

    Institute of Scientific and Technical Information of China (English)

    DUAN Jinming

    2009-01-01

    Colloidal particle stability and some other interfacial phenomena are governed by interfacial force interactions. The two well known forces are van der Waals force and electrostatic force, as documented by the classical Derjaguin, Landau, Verwey and Overbeek (DLVO) theory. Moreover, advances in modern instrumentation and colloid science suggested that some short-ranged forces or structure forces are important for relevant colloidal systems. The interfacial and/or molecular forces can be measured as a resultant force as function of separation distance by atomic force microscopy (AFM) colloid probe. This article presents a discussion on AFM colloid probe measurement of silica particle and silica wafer surfaces in solutions with some technical notifications in measurement and data convolution mechanisms. The measured forces are then analyzed and discussed based on the 'constant charge' and 'constant potential' models of DLVO theory. The difference between the prediction of DLVO theory and the measured results indicates that there is a strong short-range structure force between the two hydrophilic surfaces, even at extremely low ionic concentration, such as Milli-Q water purity solution.

  20. Interfacial forces between silica surfaces measured by atomic force microscopy.

    Science.gov (United States)

    Duan, Jinming

    2009-01-01

    Colloidal particle stability and some other interfacial phenomena are governed by interfacial force interactions. The two well known forces are van der Waals force and electrostatic force, as documented by the classical Derjaguin, Landau, Verwey, and Overbeek (DLVO) theory. Moreover, advances in modern instrumentation and colloid science suggested that some short-ranged forces or structure forces are important for relevant colloidal systems. The interfacial and/or molecular forces can be measured as a resultant force as function of separation distance by atomic force microscopy (AFM) colloid probe. This article presents a discussion on AFM colloid probe measurement of silica particle and silica wafer surfaces in solutions with some technical notifications in measurement and data convolution mechanisms. The measured forces are then analyzed and discussed based on the 'constant charge' and 'constant potential' models of DLVO theory. The difference between the prediction of DLVO theory and the measured results indicates that there is a strong short-range structure force between the two hydrophilic surfaces, even at extremely low ionic concentration, such as Milli-Q water purity solution.

  1. Surface and interface of epitaxial CdTe film on CdS buffered van der Waals mica substrate

    Science.gov (United States)

    Yang, Y.-B.; Seewald, L.; Mohanty, Dibyajyoti; Wang, Y.; Zhang, L. H.; Kisslinger, K.; Xie, Weiyu; Shi, J.; Bhat, I.; Zhang, Shengbai; Lu, T.-M.; Wang, G.-C.

    2017-08-01

    Single crystal CdTe films are desirable for optoelectronic device applications. An important strategy of creating films with high crystallinity is through epitaxial growth on a proper single crystal substrate. We report the metalorganic chemical vapor deposition of epitaxial CdTe films on the CdS/mica substrate. The epitaxial CdS film was grown on a mica surface by thermal evaporation. Due to the weak van der Waals forces, epitaxy is achieved despite the very large interface lattice mismatch between CdS and mica (∼21-55%). The surface morphology of mica, CdS and CdTe were quantified by atomic force microscopy. The near surface structures, orientations and texture of CdTe and CdS films were characterized by the unique reflection high-energy electron diffraction surface pole figure technique. The interfaces of CdTe and CdS films and mica were characterized by X-ray pole figure technique and transmission electron microscopy. The out-of-plane and in-plane epitaxy of the heteroepitaxial films stack are determined to be CdTe(111)//CdS(0001)//mica(001) and [ 1 bar2 1 bar]CdTe//[1 bar100]CdS//[010]mica, respectively. The measured photoluminescence (PL), time resolved PL, photoresponse, and Hall mobility of the CdTe/CdS/mica indicate quality films. The use of van der Waals surface to grow epitaxial CdTe/CdS films offers an alternative strategy towards infrared imaging and solar cell applications.

  2. NATO Advanced Research Workshop on Dynamics of Polyatomic Van der Waals Complexes

    CERN Document Server

    Janda, Kenneth

    1991-01-01

    This publication is the Proceedings of the NATO Advanced Research Workshop (ARW) on the Dynamics of Polyatomic Van der Waals Molecules held at the Chateau de Bonas, Castera-Verduzan, France, from August 21 through August 26, 1989. Van der Waals complexes provide important model problems for understanding energy transfer and dissipation. These processes can be described in great detail for Van der Waals complexes, and the insight gained from such studies can be applied to more complicated chemical problems that are not amenable to detailed study. The workshop concentrated on the current questions and future prospects for extend­ ing our highly detailed knowledge of triatomic Van der Waals molecule dynamics to polyatomic molecules and clusters (one molecule surrounded by several, or up to sev­ eral tens of, atoms). Both experimental and theoretical studies were discussed, with particular emphasis on the dynamical behavior of dissociation as observed in the dis­ tributions of quantum states of the dissociatio...

  3. {InSe}/{GaSe} heterointerfaces prepared by Van der Waals epitaxy

    Science.gov (United States)

    Lang, O.; Klein, A.; Schlaf, R.; Löher, T.; Pettenkofer, C.; Jaegermann, W.; Chevy, A.

    1995-01-01

    Epitaxial films of layered substrates can be prepared onto layered substrates even for large lattice mismatch, when the growth is attempted with the Van der Waals surfaces opposing each other (Van der Waals epitaxy). Thin epitaxial InSe(GaSe) films are prepared onto ultrahigh vacuum (UHV) cleaved GaSe(InSe) Van der Waals (0001) surfaces. The films and the heterointerface are characterized by photoelectron spectroscopy, electron diffraction and scanning tunneling microscopy (STM). High quality and stoichiometric films are obtained by direct InSe(GaSe) evaporation from a Knudsen cell at sample temperatures between 520 and 620 K. Despite a 6% lattice mismatch the deposited films are oriented with their c- and α-axis to the hexagonal substrate. The growth mostly follows the Frank-Van der Merwe mode. This rather ideal growth behaviour is related to the specific properties of the Van der Waals plane which contains no dangling bonds.

  4. Van der Waals torque induced by external magnetic fields

    CERN Document Server

    Esquivel-Sirvent, R; Palomono-Ovando, M

    2010-01-01

    We present a method for inducing and controlling van der Waals torques between two parallel slabs using a constant magnetic field. The torque is calculated using the Barash theory of dispersive torques. In III-IV semiconductors such as $InSb$, the effect of an external magnetic field is to induce an optical anisotropy, in an otherwise isotropic material, that will in turn induce a torque. The calculations of the torque are done in the Voigt configuration, with the magnetic field parallel to the surface of the slabs. As a case study we consider a slab made of calcite and a second slab made of $InSb$. In the absence of magnetic field there is no torque. As the magnetic field increases, the optical anisotropy of $InSb$ increases and the torque becomes different from zero, increasing with the magnetic field. The resulting torque is of the same order of magnitude as that calculated using permanent anisotropic materials when the magnetic fields is close to 1 T.

  5. Van der Waals torque induced by external magnetic fields

    Energy Technology Data Exchange (ETDEWEB)

    Esquivel-Sirvent, R.; Cocoletzi, G. H.; Palomino-Ovando, M.

    2010-01-01

    We present a method for inducing and controlling van der Waals torques between two parallel slabs using a constant magnetic field. The torque is calculated using the Barash theory of dispersive torques. In III–IV semiconductors such as InSb, the effect of an external magnetic field is to induce an optical anisotropy, in an otherwise isotropic material, that will in turn induce a torque. The calculations of the torque are done in the Voigt configuration, with the magnetic field parallel to the surface of the slabs. As a case study we consider a slab made of calcite and a second slab made of InSb. In the absence of magnetic field there is no torque. As the magnetic field increases, the optical anisotropy of InSb increases and the torque becomes different from zero, increasing with the magnetic field. The resulting torque is of the same order of magnitude as that calculated using permanent anisotropicmaterials when the magnetic fields is close to 1 T.

  6. Spatially Correlated Disorder in Epitaxial van der Waals Heterostructures

    Science.gov (United States)

    Laanait, Nouamane; Zhang, Zhan; Schleputz, Christian; Liu, Ying; Wojcik, Michael; Myers-Ward, Rachael; Gaskill, D. Kurt; Fenter, Paul; Li, Lian

    The structural cohesion of van der Waals (vdW) heterostructures relies upon a cooperative balance between strong intra-layer bonded interactions and weak inter-layer coupling. The confinement of extended defects to within a single vdW layer and competing interactions introduced by epitaxial constraints could generate fundamentally new structural disorders. Here we report on the presence of spatially correlated and localized disorder states that coexist with the near perfect crystallographic order along the growth direction of epitaxial vdW heterostructure of Bi2Se3/graphene/SiC grown by molecular beam epitaxy. With the depth penetration of hard X-ray diffraction microscopy and high-resolution surface scattering, we imaged local structural configurations from the atomic to mesoscopic length scales, and found that these disorder states result as a confluence of atomic scale modulations in the strength of vdW layer-layer interactions and nanoscale boundary conditions imposed by the substrate. These findings reveal a vast landscape of novel disorder states that can be manifested in epitaxial vdW heterostructures. Supported by the Wigner Fellowship program at Oak Ridge Nat'l Lab.

  7. Thermionic Energy Conversion Based on Graphene van der Waals Heterostructures

    Science.gov (United States)

    Liang, Shi-Jun; Liu, Bo; Hu, Wei; Zhou, Kun; Ang, L. K.

    2017-01-01

    Seeking for thermoelectric (TE) materials with high figure of merit (or ZT), which can directly converts low-grade wasted heat (400 to 500 K) into electricity, has been a big challenge. Inspired by the concept of multilayer thermionic devices, we propose and design a solid-state thermionic devices (as a power generator or a refrigerator) in using van der Waals (vdW) heterostructure sandwiched between two graphene electrodes, to achieve high energy conversion efficiency in the temperature range of 400 to 500 K. The vdW heterostructure is composed of suitable multiple layers of transition metal dichalcogenides (TMDs), such as MoS2, MoSe2, WS2 and WSe2. From our calculations, WSe2 and MoSe2 are identified as two ideal TMDs (using the reported experimental material’s properties), which can harvest waste heat at 400 K with efficiencies about 7% to 8%. To our best knowledge, this design is the first in combining the advantages of graphene electrodes and TMDs to function as a thermionic-based device. PMID:28387363

  8. Consistent van der Waals radii for the whole main group.

    Science.gov (United States)

    Mantina, Manjeera; Chamberlin, Adam C; Valero, Rosendo; Cramer, Christopher J; Truhlar, Donald G

    2009-05-14

    Atomic radii are not precisely defined but are nevertheless widely used parameters in modeling and understanding molecular structure and interactions. The van der Waals radii determined by Bondi from molecular crystals and data for gases are the most widely used values, but Bondi recommended radius values for only 28 of the 44 main-group elements in the periodic table. In the present Article, we present atomic radii for the other 16; these new radii were determined in a way designed to be compatible with Bondi's scale. The method chosen is a set of two-parameter correlations of Bondi's radii with repulsive-wall distances calculated by relativistic coupled-cluster electronic structure calculations. The newly determined radii (in A) are Be, 1.53; B, 1.92; Al, 1.84; Ca, 2.31; Ge, 2.11; Rb, 3.03; Sr, 2.49; Sb, 2.06; Cs, 3.43; Ba, 2.68; Bi, 2.07; Po, 1.97; At, 2.02; Rn, 2.20; Fr, 3.48; and Ra, 2.83.

  9. Repulsive van der Waals forces enable Pickering emulsions with non-touching colloids

    NARCIS (Netherlands)

    Elbers, Nina; van der Hoeven, Jessi; de Winter, D.A.M.; Schneijdenberg, C.T.W.M.; van der Linden, M.N.; Filion, L.C.; van Blaaderen, A.

    2016-01-01

    Emulsions stabilized by solid particles, called Pickering emulsions, offer promising applications in drug delivery, cosmetics, food science and the manufacturing of porous materials. This potential stems from their high stability against coalescence and ‘surfactant-free’ nature. Generally, Pickering

  10. Role of Van der Waals Forces in Graphene Adsorption over Pd, Pt, and Ni

    Science.gov (United States)

    Quiroga, Matias A. O.; Cabeza, Gabriela F.

    2013-06-01

    We report ab initio computations with the Vienna Ab initio Simulation Package (VASP) aimed at elucidating the adsorption mechanism of graphene-like structures on (111) Pd, Pt, and Ni surfaces. To study the adsorption properties, we simulate an already-formed graphene layer. We present a comparative discussion of the graphene interactions with the three metals, focusing on the very particular adsorption of graphene over Pd.

  11. Role of Van der Waals forces in graphene adsorption over Pd, Pt, and Ni

    Energy Technology Data Exchange (ETDEWEB)

    Quiroga, Matias A.O.; Cabeza, Gabriela F. [Instituto de Física del Sur, CONICET, Bahia Blanca, Buenos Aires (Argentina)

    2013-07-01

    We report ab initio computations with the Vienna Ab initio Simulation Package (VASP) aimed at elucidating the adsorption mechanism of graphene-like structures on (111) Pd, Pt, and Ni surfaces. To study the adsorption properties, we simulate an already-formed graphene layer. We present a comparative discussion of the graphene interactions with the three metals, focusing on the very particular adsorption of graphene over Pd. (author)

  12. El Legado de Johannes Diderik van der Waals y su Conferencia Nobel The Legacy of Johannes Diderik van der Waals and his Nobel Lecture

    Directory of Open Access Journals (Sweden)

    José O Valderrama

    2010-01-01

    Full Text Available El autor presenta la conferencia que dictó Johannes Diderik van der Waals cuando recibió el premio Nobel de física el año 1910. Este trabajo es una contribución a las celebraciones que se realizan alrededor del mundo para conmemorar los cien años desde que van der Waals recibiera el máximo galardón. La conferencia resume en forma simple pero detallada algunos de sus principales logros; en particular la ecuación de estado, el principio de estados correspondientes y la teoría de mezclas. Estas pioneras ideas de van der Waals han influenciado efectivamente varias áreas de la ciencia, pero en particular estos tres conceptos, y que fueron los que motivaron su merecido premio Nobel. Este artículo concluye que aún después de 100 años del Nobel y más de 125 de la Tesis doctoral, y a pesar de muchos otros extraordinarios logros en la física y en la termodinámica, los conceptos de van der Waals siguen más vigentes que nunca.The author presents the conference that van der Waals delivered when he received the Nobel Prize for Physics in 1910. This work is a contribution to the several commemorating activities that are be-ing organized around the world to celébrate the 100 years since van der Waals was awarded the máximum prize. The conference summarizes some of the main achievements and in particular the equation of state, the principie of corresponding states and the theory of mixtures. These pioneering ideas of van der Waals have influenced several áreas of physics and thermodynamics but in particular these three concepts, which motivated his merited Nobel Prize. The paper concludes that even after a hundred years since the Nobel and more than 125 years since the doctoral thesis, and despite of many other extraordinary advances in physics and thermodynamics, the concepts of van der Waals continué more valid than ever.

  13. Design Accountability

    DEFF Research Database (Denmark)

    Koskinen, Ilpo; Krogh, Peter

    2015-01-01

    design research is that where classical research is interested in singling out a particular aspect and exploring it in depth, design practice is characterized by balancing numerous concerns in a heterogenous and occasionally paradoxical product. It is on this basis the notion of design accountability...

  14. Design Accountability

    DEFF Research Database (Denmark)

    Koskinen, Ilpo; Krogh, Peter

    2015-01-01

    design research is that where classical research is interested in singling out a particular aspect and exploring it in depth, design practice is characterized by balancing numerous concerns in a heterogenous and occasionally paradoxical product. It is on this basis the notion of design accountability...

  15. van der Waals energy under strong atom-field coupling in doped carbon nanotubes

    OpenAIRE

    Bondarev, Igor; Lambin, Philippe

    2004-01-01

    Using a unified macroscopic QED formalism, we derive an integral equation for the van der Waals energy of a two-level atomic system near a carbon nanotube. The equation is valid for both strong and weak atom-vacuum-field coupling. By solving it numerically, we demonstrate the inapplicability of weak-coupling-based van der Waals interaction models in a close vicinity of the nanotube surface.

  16. van der Waals energy under strong atom field coupling in doped carbon nanotubes

    Science.gov (United States)

    Bondarev, I. V.; Lambin, Ph.

    2004-10-01

    Using a unified macroscopic QED formalism, we derive an integral equation for the van der Waals energy of a two-level atomic system near a carbon nanotube. The equation is valid for both strong and weak atom-vacuum-field coupling. By solving it numerically, we demonstrate the inapplicability of weak-coupling-based van der Waals interaction models in a close vicinity of the nanotube surface.

  17. Statistical Analysis of Long- and Short-Range Forces Involved in Bacterial Adhesion to Substratum Surfaces as Measured Using Atomic Force Microscopy

    NARCIS (Netherlands)

    Chen, Yun; Busscher, Henk J.; van der Mei, Henny C.; Norde, Willem

    Surface thermodynamic analyses of microbial adhesion using measured contact angles on solid substrata and microbial cell surfaces are widely employed to determine the nature of the adhesion forces, i.e., the interplay between Lifshitz-van der Waals and acid-base forces. While surface thermodynamic

  18. Lennard-Jones parameters for small diameter carbon nanotubes and water for molecular mechanics simulations from van der Waals density functional calculations.

    Science.gov (United States)

    Kaukonen, M; Gulans, A; Havu, P; Kauppinen, E

    2012-03-05

    Lennard-Jones (LJ) parameters are derived for classical nonpolarizable force fields for carbon nanotubes (CNTs) and for CNT-water interaction from van der Waals (vdW) enhanced density functional calculations. The new LJ parameters for carbon-carbon interactions are of the same order as those previously used in the literature but differ significantly for CNT-water interactions. This may partially originate from the fact that in addition to pure vdW interactions the polarization and other quantum mechanics effects are embedded into the LJ-potential.

  19. Wavelet transforms to probe long- and short-range forces by thermally excited dynamic force spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Malegori, Giovanna; Ferrini, Gabriele, E-mail: gabriele@dmf.unicatt.it [Dipartimento di Matematica e Fisica, Universita Cattolica, I-25121 Brescia (Italy)

    2011-05-13

    The use of wavelet transforms in thermally excited dynamic force spectroscopy allows us to gain insight into the fundamental thermodynamical properties of a cantilever's Brownian motion as well as giving a meaningful and intuitive representation of the cantilever dynamics in time and frequency caused by the interaction with long- and short-range forces. The possibility of carrying out measurements across the jump-to-contact transition without interruption, providing information on both van der Waals forces and short-range adhesion surface forces, is remarkable.

  20. AMERICAN ACCOUNTING

    Directory of Open Access Journals (Sweden)

    Mihaela Onica

    2005-01-01

    Full Text Available The international Accounting Standards already contribute to the generation of better and more easily comparable financial information on an international level, supporting thus a more effective allocationof the investments resources in the world. Under the circumstances, there occurs the necessity of a consistent application of the standards on a global level. The financial statements are part of thefinancial reporting process. A set of complete financial statements usually includes a balance sheet,a profit and loss account, a report of the financial item change (which can be presented in various ways, for example as a status of the treasury flows and of the funds flows and those notes, as well as those explanatory situations and materials which are part of the financial statements.

  1. Infrastrukturel Accountability

    DEFF Research Database (Denmark)

    Ubbesen, Morten Bonde

    Hvordan redegør man troværdigt for noget så diffust som en hel nations udledning af drivhusgasser? Det undersøger denne afhandling i et etnografisk studie af hvordan Danmarks drivhusgasregnskab udarbejdes, rapporteres og kontrolleres. Studiet trækker på begreber og forståelser fra 'Science & Tech...... & Technology Studies', og bidrager med begrebet 'infrastrukturel accountability' til nye måder at forstå og tænke om det arbejde, hvormed højt specialiserede praksisser dokumenterer og redegør for kvaliteten af deres arbejde....

  2. Infrastrukturel Accountability

    DEFF Research Database (Denmark)

    Ubbesen, Morten Bonde

    Hvordan redegør man troværdigt for noget så diffust som en hel nations udledning af drivhusgasser? Det undersøger denne afhandling i et etnografisk studie af hvordan Danmarks drivhusgasregnskab udarbejdes, rapporteres og kontrolleres. Studiet trækker på begreber og forståelser fra 'Science & Tech...... & Technology Studies', og bidrager med begrebet 'infrastrukturel accountability' til nye måder at forstå og tænke om det arbejde, hvormed højt specialiserede praksisser dokumenterer og redegør for kvaliteten af deres arbejde....

  3. Interfacial forces in aqueous media

    CERN Document Server

    van Oss, Carel J

    2006-01-01

    Thoroughly revised and reorganized, the second edition of Interfacial Forces in Aqueous Media examines the role of polar interfacial and noncovalent interactions among biological and nonbiological macromolecules as well as biopolymers, particles, surfaces, cells, and both polar and apolar polymers. The book encompasses Lifshitz-van der Waals and electrical double layer interactions, as well as Lewis acid-base interactions between colloidal entities in polar liquids such as water. New in this Edition: Four previously unpublished chapters comprising a new section on interfacial propertie

  4. Comparative study of van der Waals corrections to the bulk properties of graphite.

    Science.gov (United States)

    Rêgo, Celso R C; Oliveira, Luiz N; Tereshchuk, Polina; Da Silva, Juarez L F

    2015-10-21

    Graphite is a stack of honeycomb (graphene) layers bound together by nonlocal, long-range van der Waals (vdW) forces, which are poorly described by density functional theory (DFT) within local or semilocal exchange-correlation functionals. Several approximations have been proposed to add a vdW correction to the DFT total energies (Stefan Grimme (D2 and D3) with different damping functions (D3-BJ), Tkatchenko-Scheffler (TS) without and with self-consistent screening (TS  +  SCS) effects). Those corrections have remarkly improved the agreement between our results and experiment for the interlayer distance (from 3.9 to 0.6%) [corrected] and high-level random-phase approximation (RPA) calculations for interlayer binding energy (from 69.5 to 1.5%). [corrected]. We report a systematic investigation of various structural, energetic and electron properties with the aforementioned vdW corrections followed by comparison with experimental and theoretical RPA data. Comparison between the resulting relative errors shows that the TS  +  SCS correction provides the best results; the other corrections yield significantly larger errors for at least one of the studied properties. If considerations of computational costs or convergence problems rule out the TS  +  SCS approach, we recommend the D3-BJ correction. Comparison between the computed π(z)Γ-splitting and experimental results shows disagreements of 10% or more with all vdW corrections. Even the computationally more expensive hybrid PBE0 has proved unable to improve the agreement with the measured splitting. Our results indicate that improvements of the exchange-correlation functionals beyond the vdW corrections are necessary to accurately describe the band structure of graphite.

  5. Electronic structure, lattice dynamics, and optical properties of a novel van der Waals semiconductor heterostructure: InGaSe2

    Science.gov (United States)

    Ibarra-Hernández, Wilfredo; Elsayed, Hannan; Romero, Aldo H.; Bautista-Hernández, Alejandro; Olguín, Daniel; Cantarero, Andrés

    2017-07-01

    There is a growing interest in the property dependence of transition metal dichalcogenides as a function of the number of layers and formation of heterostructures. Depending on the stacking, doping, edge effects, and interlayer distance, the properties can be modified, which opens the door to novel applications that require a detailed understanding of the atomic mechanisms responsible for those changes. In this work, we analyze the electronic properties and lattice dynamics of a heterostructure constructed by simultaneously stacking InSe layers and GaSe layers bounded by van der Waals forces. We have assumed the same space group of GaSe, P 6 ¯m 2 as it becomes the lower energy configuration for other considered stackings. The structural, vibrational, and optical properties of this layered compound have been calculated using density functional theory. The structure is shown to be energetically, thermally, and elastically stable, which indicates its possible chemical synthesis. A correlation of the theoretical physical properties with respect to its parent compounds is extensively discussed. One of the most interesting properties is the low thermal conductivity, which indicates its potential use in thermolectric applications. Additionally, we discuss the possibility of using electronic gap engineering methods, which can help us to tune the optical emission in a variable range close to that used in the field of biological systems (NIR). Finally, the importance of considering properly van der Waals dispersion in layered materials has been emphasized as included in the exchange correlation functional. As for the presence of atoms with important spin-orbit coupling, relativistic corrections have been included.

  6. Application of Solution-blown 20-50 nm Nanofibers in Filtration of Nanoparticles: The Efficient van der Waals Collectors

    Science.gov (United States)

    Sinha-Ray, Sumit; Sinha-Ray, Suman; Yarin, Alexander; Pourdeyhimi, Behnam

    2015-11-01

    Filtration efficiency of commercially available filter media with fiber/pore sizes on the scale of 10 μm can be dramatically increased by adding a layer of ultrafine supersonically-blown 20-50 nm nanofibers. Different commercial filters were modified with (i) electrospun nanofibers alone, (ii) solution-blown 20-50 nm alone, and (iii) the dual coating with electrospun nanofibers deposited first and the solution-blown 20-50 nm nanofibers deposited on top of them. Detailed observations of nanoparticle removal revealed that the above-mentioned modified filters, especially those with the dual nanofiber coating with the 20-50 nm nanofibers deposited on top, are the most effective in removing the below-200 nm Cu nanoparticles/clusters from aqueous suspensions, in particular at the lowest concentrations of 0.2-0.5 ppm. The theory developed in the present work dealing with convective transport of nanoparticles in the fluid flow along with diffusion of nanoparticles and the van der Waals attraction explains and describes how the smallest solution-blown nanofibers introduce a novel physical mechanism of nanoparticle interception (the attractive van der Waals forces) and become significantly more efficient collectors compared to the larger electrospun nanofibers. The theory also elucidates the morphology of the nanoparticle clusters being accumulated at the smallest nanofiber surfaces, including the clusters growing at the windward side, or in some cases also on the leeward side of a nanofiber. This work is supported by the Nonwovens Cooperative Research Center (NCRC), grant No. 12-144SB.

  7. Dynamical screening of van der Waals interactions in nanostructured solids: Sublimation of fullerenes

    Energy Technology Data Exchange (ETDEWEB)

    Tao, Jianmin; Yang, Jing; Rappe, Andrew M. [Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6323 (United States)

    2015-04-28

    Sublimation energy is one of the most important properties of molecular crystals, but it is difficult to study, because the attractive long-range van der Waals (vdW) interaction plays an important role. Here, we apply efficient semilocal density functional theory (DFT), corrected with the dynamically screened vdW interaction (DFT + vdW), the Rutgers-Chalmers nonlocal vdW-DF, and the pairwise-based dispersion-corrected DFT-D2 developed by Grimme and co-workers, to study the sublimation of fullerenes. We find that the short-range part, which accounts for the interaction due to the orbital overlap between fullerenes, is negligibly small. Our calculation shows that there exists a strong screening effect on the vdW interaction arising from the valence electrons of fullerenes. On the other hand, higher-order contributions can be as important as the leading-order term. The reasons are that (i) the surface of fullerene molecules is metallic and thus highly polarizable, (ii) the band gap of fullerene solids is small (less than 2 eV), and (iii) fullerene molecules in the solid phase are so densely packed, yielding the high valence electron density and small equilibrium intermolecular distances (the first nearest neighbor distance is only about 10 Å for C{sub 60}). However, these two effects make opposite contributions, leading to significant error cancellation between these two contributions. We demonstrate that, by considering higher-order contributions and the dynamical screening, the DFT + vdW method can yield sublimation energies of fullerenes in good agreement with reference values, followed by vdW-DF and DFT-D2. The insights from this study are important for a better understanding of the long-range nature of vdW interactions in nanostructured solids.

  8. Dynamical screening of van der Waals interactions in nanostructured solids: Sublimation of fullerenes.

    Science.gov (United States)

    Tao, Jianmin; Yang, Jing; Rappe, Andrew M

    2015-04-28

    Sublimation energy is one of the most important properties of molecular crystals, but it is difficult to study, because the attractive long-range van der Waals (vdW) interaction plays an important role. Here, we apply efficient semilocal density functional theory (DFT), corrected with the dynamically screened vdW interaction (DFT + vdW), the Rutgers-Chalmers nonlocal vdW-DF, and the pairwise-based dispersion-corrected DFT-D2 developed by Grimme and co-workers, to study the sublimation of fullerenes. We find that the short-range part, which accounts for the interaction due to the orbital overlap between fullerenes, is negligibly small. Our calculation shows that there exists a strong screening effect on the vdW interaction arising from the valence electrons of fullerenes. On the other hand, higher-order contributions can be as important as the leading-order term. The reasons are that (i) the surface of fullerene molecules is metallic and thus highly polarizable, (ii) the band gap of fullerene solids is small (less than 2 eV), and (iii) fullerene molecules in the solid phase are so densely packed, yielding the high valence electron density and small equilibrium intermolecular distances (the first nearest neighbor distance is only about 10 Å for C60). However, these two effects make opposite contributions, leading to significant error cancellation between these two contributions. We demonstrate that, by considering higher-order contributions and the dynamical screening, the DFT + vdW method can yield sublimation energies of fullerenes in good agreement with reference values, followed by vdW-DF and DFT-D2. The insights from this study are important for a better understanding of the long-range nature of vdW interactions in nanostructured solids.

  9. Analyzing the Effect of Capillary Force on Vibrational Performance of the Cantilever of an Atomic Force Microscope in Tapping Mode with Double Piezoelectric Layers in an Air Environment.

    Science.gov (United States)

    Nahavandi, Amir; Korayem, Moharam Habibnejad

    2015-10-01

    The aim of this paper is to determine the effects of forces exerted on the cantilever probe tip of an atomic force microscope (AFM). These forces vary according to the separation distance between the probe tip and the surface of the sample being examined. Hence, at a distance away from the surface (farther than d(on)), these forces have an attractive nature and are of Van der Waals type, and when the probe tip is situated in the range of a₀≤ d(ts) ≤ d(on), the capillary force is added to the Van der Waals force. At a distance of d(ts) ≤ a₀, the Van der Waals and capillary forces remain constant at intermolecular distances, and the contact repulsive force repels the probe tip from the surface of sample. The capillary force emerges due to the contact of thin water films with a thickness of h(c) which have accumulated on the sample and probe. Under environmental conditions a layer of water or hydrocarbon often forms between the probe tip and sample. The capillary meniscus can grow until the rate of evaporation equals the rate of condensation. For each of the above forces, different models are presented. The smoothness or roughness of the surfaces and the geometry of the cantilever tip have a significant effect on the modeling of forces applied on the probe tip. Van der Waals and the repulsive forces are considered to be the same in all the simulations, and only the capillary force is altered in order to evaluate the role of this force in the AFM-based modeling. Therefore, in view of the remarkable advantages of the piezoelectric microcantilever and also the extensive applications of the tapping mode, we investigate vibrational motion of the piezoelectric microcantilever in the tapping mode. The cantilever mentioned is entirely covered by two piezoelectric layers that carry out both the actuation of the probe tip and the measuringof its position.

  10. New spreading law of thin film liquids controlled by gravity and vdW forces under thermal fluctuations

    Science.gov (United States)

    Nesic, Svetozar; Cuerno Rejado, Rodolfo; Moro Egido, Esteban

    2013-11-01

    It has been shown that, in the regime controlled by surface tension, the spreading dynamics of a thin viscous fluid droplet changes significantly when it is subjected to thermal fluctuations. Technically, this has been accomplished through the incorporation of appropriate stochastic terms into the standard lubrication equation. In practice, it leads to a modification of the classic Tanner's law for spreading, with implications for Micro and Nanofluidic systems. We have recently found a new law of spreading for the same kind of systems, but in the gravity-dominated regime. Moreover, in the deteministic case a finite contact angle is formed when a van der Waals attractive force is introduced to the system and we show that there is a slight change in contact angle when thermal fluctuations are taken into account. Ph.D student and a member of GISC (http://matematicas.uc3m.es/index.php/gisc).

  11. Cohesive properties of noble metals by van der Waals-corrected Density Functional Theory

    CERN Document Server

    Ambrosetti, Alberto

    2016-01-01

    The cohesive energy, equilibrium lattice constant, and bulk modulus of noble metals are computed by different van der Waals-corrected Density Functional Theory methods, including vdW-DF, vdW-DF2, vdW-DF-cx, rVV10 and PBE-D. Two specifically-designed methods are also developed in order to effectively include dynamical screening effects: the DFT/vdW-WF2p method, based on the generation of Maximally Localized Wannier Functions, and the RPAp scheme (in two variants), based on a single-oscillator model of the localized electron response. Comparison with results obtained without explicit inclusion of van der Waals effects, such as with the LDA, PBE, PBEsol, or the hybrid PBE0 functional, elucidates the importance of a suitable description of screened van der Waals interactions even in the case of strong metal bonding. Many-body effects are also quantitatively evaluated within the RPAp approach.

  12. Many-body effects in the van der Waals-Casimir interaction between graphene layers

    Science.gov (United States)

    Sarabadani, Jalal; Naji, Ali; Asgari, Reza; Podgornik, Rudolf

    2011-10-01

    Van der Waals-Casimir dispersion interactions between two apposed graphene layers, a graphene layer and a substrate, and in a multilamellar graphene system are analyzed within the framework of the Lifshitz theory. This formulation hinges on a known form of the dielectric response function of an undoped or doped graphene sheet, assumed to be of a random-phase-approximation form. In the geometry of two apposed layers, the separation dependence of the van der Waals-Casimir interaction for both types of graphene sheets is determined and critically compared with some well-known limiting cases. In a multilamellar array, the many-body effects are quantified and shown to increase the magnitude of the van der Waals-Casimir interactions.

  13. Molecular recognition by van der Waals interaction between polymers with sequence-specific polarizabilities

    CERN Document Server

    Lu, Bing-Sui; Podgornik, Rudolf

    2016-01-01

    We analyze van der Waals interactions between two rigid polymers with sequence-specific, anisotropic polarizabilities along the polymer backbones, so that the dipole moments fluctuate parallel to the polymer backbones. Assuming that each polymer has a quenched-in polarizability sequence which reflects, for example, the polynucleotide sequence of a double-stranded DNA molecule, we study the van der Waals interaction energy between a pair of such polymers with rod-like structure for the cases where their respective polarizability sequences are (i) distinct and (ii) identical, with both zero and non-zero correlation length of the polarizability correlator along the polymer backbones in the latter case. For identical polymers, we find a novel $r^{-5}$ scaling behavior of the van der Waals interaction energy for small inter-polymer separation $r$, in contradistinction to the $r^{-4}$ scaling behavior of distinct polymers, with furthermore a pronounced angular dependence favoring attraction between sufficiently ali...

  14. Van der Waals universality in homonuclear atom-dimer elastic collisions

    CERN Document Server

    Giannakeas, P

    2016-01-01

    The universal aspects of atom-dimer elastic collisions are investigated within the framework of Faddeev equations. The two-body interactions between the neutral atoms are approximated by the separable potential approach. Our analysis considers a pure van der Waals potential tail as well as soft-core van der Waals interactions permitting us in this manner to address the universally general features of atom-dimer resonant spectra. In particular, we show that the atom-dimer resonances are solely associated with the {\\it excited} Efimov states. Furthermore, the positions of the corresponding resonances for a soft-core potentials with more than 5 bound states are in good agreement with the corresponding results from an infinitely deep pure van der Waals tail potential.

  15. Van der Waals Interactions among Alkali Rydberg Atoms with Excitonic States

    CERN Document Server

    Zoubi, Hashem

    2015-01-01

    We investigate the influence of the appearance of excitonic states on van der Waals interactions among two Rydberg atoms. The atoms are assumed to be in different Rydberg states, e.g., in the $|ns\\rangle$ and $|np\\rangle$ states. The resonant dipole-dipole interactions yield symmetric and antisymmetric excitons, with energy splitting that give rise to new resonances as the atoms approach each other. Only far from these resonances the van der Waals coefficients, $C_6^{sp}$, can be defined. We calculate the $C_6$ coefficients for alkali atoms and present the results for lithium by applying perturbation theory. At short interatomic distances of several $\\mu m$, we show that the widely used simple model of two-level systems for excitons in Rydberg atoms breaks down, and the correct representation implies multi-level atoms. Even though, at larger distances one can keep the two-level systems but in including van der Waals interactions among the atoms.

  16. ENVIRONMENTAL FINANCIAL ACCOUNTING

    Directory of Open Access Journals (Sweden)

    Oana MIHAI

    2006-01-01

    Full Text Available From a company’s perspective, there seem to be two underlying forces driving company interest in various kinds of environmental performance data that might be considered varieties of accounting. The first is a growing demand from company stakeholders, based on an increased interest in environmental issues. Interested stakeholders are not only the consumers, but also industrial customers, financialinstitutions and others. For this reason, more and more companies are producing environmental reports, but these are often low on data content, which adversely affects company credibility on environmental issues.

  17. Bridging the accountability gap.

    Science.gov (United States)

    Johnson, J E

    1991-01-01

    Accountability for patient care is a responsibility shared by nursing and hospital administration. Inherent in professional nursing is the responsibility for the achievement of patient outcomes, while administrators assume more indirect responsibilities related to managerial functions, strategic planning and legal obligations. Historically, the poor communication and conflict between these groups have been a barrier to achieving true institutional accountability for patient care. Collaboration rather than conflict can be promoted in health care institutions by making organizational changes that promote communication and clarify ambiguities in job responsibilities. Such changes include redefining the nurse's job to reflect its scope and purpose; integrating nursing into the hospital environment via regular forums for information exchange and participation in hospital committees; considering that the delegation of patient care is implicit in nursing practice and patient-care management; and strengthening the nursing work force by improving compensation and benefits packages for nurses.

  18. Measurement of inter-particle forces by an interfacial force microscope

    Institute of Scientific and Technical Information of China (English)

    Qing Huang; Asghar Mesbah-Nejad; Seyed M. Tadayyon; Peter Norton; Hui Zhang; Jesse Zhu

    2010-01-01

    An inteffacial force microscope (IFM) was employed to measure the inter-particle forces between two individual glass beads with diameters varying from 8 to 20 μm. With the feedback function of IFM turned off, attractive forces were obtained. The forces varied in the range of 0.1-0.34 μN, and their validity was confirmed by a theoretical analysis of the van der Waals force between the same glass beads. With the feedback function switched on, no attractive forces between particles were detected by the IFM when the probe approached the sample substrate. This may be attributed to the dramatic change of the attractive forces within a very short separation distance and/or the relatively poor signal-to-noise ratio of the IFM.

  19. Thermal electron attachment to oxygen and van der Waals molecules containing oxygen

    Energy Technology Data Exchange (ETDEWEB)

    Shimamori, H.; Fessenden, R.W.

    1981-01-01

    Thermal electron attachment to O/sub 2/ has been studied for pure O/sub 2/ (/sup 16/O/sub 2/ and /sup 18/O/sub 2/), O/sub 2/--N/sub 2/, O/sub 2/--CO, and O/sub 2/--n-C/sub 4/H/sub 10/ (/sup 16/O/sub 2/ and /sup 18/O/sub 2/) systems at temperatures from approx.330 down to 78/sup 0/ K using pulse radiolysis and microwave conductivity. For pure O/sub 2/, O/sub 2/--N/sub 2/, and O/sub 2/--CO mixtures, the electron attachment rates showed three-body pressure dependences at all temperatures over the pressure range studied (P/sub O2/<10Torr, P/sub N2/<60 Torr, P/sub CO/<40 Torr). The three-body rate constant of /sup 16/O/sub 2/ decreases from approx.2.4 x 10/sup -30/ cm/sup 6/ molecule/sup -2/ sec/sup -1/ at 330 /sup 0/K to about 0.9 x 10/sup -30/ cm/sup 6/ molecule/sup -2/ sec/sup -1/ at approx. 140 /sup 0/K but unexpectedly increases again to about 1.7 x 10/sup -30/ cm/sup 6/ molecule/sup -2/ sec/sup -1/ at 79 /sup 0/K. Similarly, the three-body rate constant of /sup 18/O/sub 2/ decreases from 5.1 x 10/sup -30/ cm/sup 6/ molecule/sup -2/ sec/sup -1/ at 300 /sup 0/K to 1.8 x 10/sup -30/ cm/sup 6/ molecule/sup -2/ sec/sup -1/ at approx.110 /sup 0/K but increases to 2.3 x 10/sup -30/ cm/sup 6/ molecule/sup -2/ sec/sup -1/ at 80 /sup 0/K. The three-body rate constant of N/sub 2/ shows a more dramatic monotonic increase from 0.9 x 10/sup -31/ cm/sup 6/ molecule/sup -2/ sec/sup -1/ at 300 /sup 0/K to 9.4 x 10/sup -31/ cm/sup 6/ molecule/sup -2/ sec/sup -1/ at 78 /sup 0/K. In the case of CO, the three-body rate constant appears to have a very shallow minimum around 170 /sup 0/K and again increases with further decrease of temperature. Since theory predicts a simple decrease in rate constant with reduced temperature, an extra contribution to the rate constant which increases with lowered temperature is evident. Electron attachment to the van der Waals molecules (O/sub 2/)/sub 2/, (O/sub 2/xN/sub 2/), and (O/sub 2/xCO) is proposed to account for this behavior. It has been found

  20. High broad-band photoresponsivity of mechanically formed InSe-graphene van der Waals heterostructures.

    Science.gov (United States)

    Mudd, Garry W; Svatek, Simon A; Hague, Lee; Makarovsky, Oleg; Kudrynskyi, Zakhar R; Mellor, Christopher J; Beton, Peter H; Eaves, Laurence; Novoselov, Kostya S; Kovalyuk, Zakhar D; Vdovin, Evgeny E; Marsden, Alex J; Wilson, Neil R; Patanè, Amalia

    2015-07-01

    High broad-band photoresponsivity of mechanically formed InSe-graphene van der Waals heterostructures is achieved by exploiting the broad-band transparency of graphene, the direct bandgap of InSe, and the favorable band line up of InSe with graphene. The photoresponsivity exceeds that for other van der Waals heterostructures and the spectral response extends from the near-infrared to the visible spectrum. © 2015 The Authors. Published by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. A high-pressure van der Waals compound in solid nitrogen-helium mixtures

    Science.gov (United States)

    Vos, W. L.; Finger, L. W.; Hemley, R. J.; Hu, J. Z.; Mao, H. K.; Schouten, J. A.

    1992-01-01

    A detailed diamond anvil-cell study using synchrotron X-ray diffraction, Raman scattering, and optical microscopy has been conducted for the He-N system, with a view to the weakly-bound van der Waals molecule interactions that can be formed in the gas phase. High pressure is found to stabilize the formation of a stoichiometric, solid van der Waals compound of He(N2)11 composition which may exemplify a novel class of compounds found at high pressures in the interiors of the outer planets and their satellites.

  2. Anisotropic spheres with Van derWaals-type equation of state

    Indian Academy of Sciences (India)

    S Thirukkanesh; F C Ragel

    2014-07-01

    We study static spherically symmetric space-time to describe relativistic compact objects with anisotropic matter distribution and derive two classes of exact models to the Einstein–Maxwell system with a modified Van derWaals equation of state. We motivate a Van derWaals-type equation of state to physically signify a high-density domain of quark matter, and the generated exact solutions are shown to contain several classes of exact models reported previously that correspond to various physical scenarios. Geometrical analysis shows that the physical quantities are well behaved so that these models may be used to describe anisotropic charged compact spheres.

  3. Near-Unity Absorption in van der Waals Semiconductors for Ultrathin Optoelectronics.

    Science.gov (United States)

    Jariwala, Deep; Davoyan, Artur R; Tagliabue, Giulia; Sherrott, Michelle C; Wong, Joeson; Atwater, Harry A

    2016-09-14

    We demonstrate near-unity, broadband absorbing optoelectronic devices using sub-15 nm thick transition metal dichalcogenides (TMDCs) of molybdenum and tungsten as van der Waals semiconductor active layers. Specifically, we report that near-unity light absorption is possible in extremely thin (<15 nm) van der Waals semiconductor structures by coupling to strongly damped optical modes of semiconductor/metal heterostructures. We further fabricate Schottky junction devices using these highly absorbing heterostructures and characterize their optoelectronic performance. Our work addresses one of the key criteria to enable TMDCs as potential candidates to achieve high optoelectronic efficiency.

  4. Nanoscale Tail Aggregation in Ionic Liquids: Roles of Electrostatic and van der Waals Interactions

    Institute of Scientific and Technical Information of China (English)

    赵海清; 石锐; 王延颋

    2011-01-01

    Nanoscale spatial heterogeneity in ionic liquids is formed by the aggregation of cationic tail groups. The electrostatic interactions between polar groups and the collective van der Waals interactions between nonpolar tail groups both contribute to the formation of tail domains, but the degrees of their contributions were unknown. In this work, by applying a strong external electric field to effectively overpower the electrostatic interactions between polar groups, we have determined that the tail aggregation is majorly attributed to the electrostatic interactions and the van der Waals interactions only have minor influence on the spatial heterogeneity phenomenon of ionic liquids.

  5. Using computation to teach the properties of the van der Waals fluid

    Science.gov (United States)

    Swendsen, Robert H.

    2013-10-01

    The calculation of the thermodynamic properties of the van der Waals fluid is not trivial and most of its properties are rarely discussed because of mathematical difficulties. I describe a numerical approach that produces the full thermodynamic behavior of the van der Waals fluid with little effort. The numerical approach is particularly useful for showing the behavior of the specific heat, the isothermal compressibility, and the coefficient of thermal expansion at and near the critical point. The results of these computations show some surprising properties and give new insights into the mean-field description of the liquid-gas transition.

  6. INTERMOLECULAR FORCES IN ASSOCIATION OF PURINES WITH POLYBENZENOID HYDROCARBONS.

    Science.gov (United States)

    PULLMAN, B; CLAVERIE, P; CAILLET, J

    1965-03-12

    The interactions in solution between purine or pyrimidine bases and polybenzenoid aromatic hydrocarbons probably consist in a vertical, stacking-type physical association. By molecular orbital calculations the role of the Van der Waals-London intermolecular forces in these interactions is determined. The electrostatic dipole-dipole forces are negligible, the polarization (or induction) dipole-induced dipole forces are contributory, but most important are the dispersion (or fluctuation) forces. This loose, physical type of interaction should not show any specificity with respect to the carcinogenic activity of the hydrocarbons.

  7. Thoughts on competency integration in accounting education

    NARCIS (Netherlands)

    Lawson, R.A.; Blocher, E.J.; Brewer, P.C.; Morris, J.T.; Stocks, K.D.; Sorensen, J.E.; Stout, D.E.; Wouters, M.J.F.

    2015-01-01

    The paper follows up on Lawson et al. (2014), which reported on the work of a joint task force sponsored by the Management Accounting Section (MAS) of the American Accounting Association (AAA) and the Institute of Management Accountants (IMA) charged with the responsibility of developing curricular

  8. The hot pick-up technique for batch assembly of van der Waals heterostructures

    DEFF Research Database (Denmark)

    Pizzocchero, Filippo; Gammelgaard, Lene; Jessen, Bjarke Sørensen

    2016-01-01

    The assembly of individual two-dimensional materials into van der Waals heterostructures enables the construction of layered three-dimensional materials with desirable electronic and optical properties. A core problem in the fabrication of these structures is the formation of clean interfaces bet...

  9. Probing low-energy hyperbolic polaritons in van der Waals crystals with an electron microscope

    KAUST Repository

    Govyadinov, Alexander A.

    2017-07-14

    Van der Waals materials exhibit intriguing structural, electronic, and photonic properties. Electron energy loss spectroscopy within scanning transmission electron microscopy allows for nanoscale mapping of such properties. However, its detection is typically limited to energy losses in the eV range-too large for probing low-energy excitations such as phonons or mid-infrared plasmons. Here, we adapt a conventional instrument to probe energy loss down to 100 meV, and map phononic states in hexagonal boron nitride, a representative van der Waals material. The boron nitride spectra depend on the flake thickness and on the distance of the electron beam to the flake edges. To explain these observations, we developed a classical response theory that describes the interaction of fast electrons with (anisotropic) van der Waals slabs, revealing that the electron energy loss is dominated by excitation of hyperbolic phonon polaritons, and not of bulk phonons as often reported. Thus, our work is of fundamental importance for interpreting future low-energy loss spectra of van der Waals materials.Here the authors adapt a STEM-EELS system to probe energy loss down to 100 meV, and apply it to map phononic states in hexagonal boron nitride, revealing that the electron loss is dominated by hyperbolic phonon polaritons.

  10. Control of excitons in multi-layer van der Waals heterostructures

    Energy Technology Data Exchange (ETDEWEB)

    Calman, E. V., E-mail: ecalman@gmail.com; Dorow, C. J.; Fogler, M. M.; Butov, L. V. [Department of Physics, University of California at San Diego, La Jolla, California 92093-0319 (United States); Hu, S.; Mishchenko, A.; Geim, A. K. [School of Physics and Astronomy, University of Manchester, Manchester M13 9PL (United Kingdom)

    2016-03-07

    We report an experimental study of excitons in a double quantum well van der Waals heterostructure made of atomically thin layers of MoS{sub 2} and hexagonal boron nitride. The emission of neutral and charged excitons is controlled by gate voltage, temperature, and both the helicity and the power of optical excitation.

  11. Estimating spawning habitat availability in flooded areas of the river Waal, the Netherlands

    NARCIS (Netherlands)

    Wolfshaar, van de K.E.; Ruizeveld de Winter, A.C.; Straatsma, M.W.; Brink, N.G.M.; Leeuw, de J.J.

    2010-01-01

    Fish spawning habitat availability in the river Waal is significantly influenced by seasonal and annual variations in discharge. In this paper we develop habitat suitability models, based on a literature survey of spawning preferences of the commonly occurring species roach (Rutilus rutilus), bream

  12. Molecular van der Waals Space and Topological Indices from the Distance Matrix

    Directory of Open Access Journals (Sweden)

    Seiman Corina

    2004-12-01

    Full Text Available A comparative study of 36 molecular descriptors derived from the topologicaldistance matrix and van der Waals space is carried out within this paper. They arepartitioned into 16 generalized topological distance matrix indices, 11 topologicaldistance indices known in the literature (seven obtained from eigenvalues/eigenvectors ofdistance matrix, and 9 van der Waals molecular descriptors. The generalized topologicaldistance indices, kδλ (λ = 1 – 3, k = 1 – 4, are introduced in this work on the basis ofreciprocical distance matrix. Intercorrelation analysis reveals that topological distanceindices mostly contain the same type of information, while van der Waals indices can bebound to the shape or the size of molecules. Furthermore, we found that topologicaldistance indices are good for describing molecular size, and they may be viewed as bulkparameters. The most accurate QSPR models for predicting boiling point of alkanes arebased on some of the generalized, eigenvalues/eigenvectors topological distance indicesand the van der Waals descriptors of molecular size.

  13. A van der Waals Equation of State for a Dilute Boson Gas

    Science.gov (United States)

    Deeney, F. A.; O'Leary, J. P.

    2012-01-01

    An equation of state of a system is a relationship that connects the thermodynamic variables of the system such as pressure and temperature. Such equations are well known for classical gases but less so for quantum systems. In this paper we develop a van der Waals equation of state for a dilute boson gas that may be used to explain the occurrence…

  14. Van der Waals Type Model for Neutron-Proton Elastic Scattering at High Energies

    Science.gov (United States)

    Aleem, F.

    1980-12-01

    The most recent measurements of the angular distribution and total cross-section for neutron-proton elastic scattering between 70< pL <400 GeV/c with squared four momentum transfer -t ≤ 3.6 (GeV/c)2 have been explained using Van der Waals type model.

  15. Mechanistic Origin of the Ultrastrong Adhesion between Graphene and a-SiO2: Beyond van der Waals.

    Science.gov (United States)

    Kumar, Sandeep; Parks, David; Kamrin, Ken

    2016-07-26

    The origin of the ultrastrong adhesion between graphene and a-SiO2 has remained a mystery. This adhesion is believed to be predominantly van der Waals (vdW) in nature. By rigorously analyzing recently reported blistering and nanoindentation experiments, we show that the ultrastrong adhesion between graphene and a-SiO2 cannot be attributed to vdW forces alone. Our analyses show that the fracture toughness of the graphene/a-SiO2 interface, when the interfacial adhesion is modeled with vdW forces alone, is anomalously weak compared to the measured values. The anomaly is related to an ultrasmall fracture process zone (FPZ): owing to the lack of a third dimension in graphene, the FPZ for the graphene/a-SiO2 interface is extremely small, and the combination of predominantly tensile vdW forces, distributed over such a small area, is bound to result in a correspondingly small interfacial fracture toughness. Through multiscale modeling, combining the results of finite element analysis and molecular dynamics simulations, we show that the adhesion between graphene and a-SiO2 involves two different kinds of interactions: one, a weak, long-range interaction arising from vdW adhesion and, second, discrete, short-range interactions originating from graphene clinging to the undercoordinated Si (≡Si·) and the nonbridging O (≡Si-O·) defects on a-SiO2. A strong resistance to relative opening and sliding provided by the latter mechanism is identified as the operative mechanism responsible for the ultrastrong adhesion between graphene and a-SiO2.

  16. Defining function of lipopolysaccharide O-antigen ligase WaaL using chemoenzymatically synthesized substrates.

    Science.gov (United States)

    Han, Weiqing; Wu, Baolin; Li, Lei; Zhao, Guohui; Woodward, Robert; Pettit, Nicholas; Cai, Li; Thon, Vireak; Wang, Peng G

    2012-02-17

    The WaaL-mediated ligation of O-antigen onto the core region of the lipid A-core block is an important step in the lipopolysaccharide (LPS) biosynthetic pathway. Although the LPS biosynthesis has been largely characterized, only a limited amount of in vitro biochemical evidence has been established for the ligation reaction. Such limitations have primarily resulted from the barriers in purifying WaaL homologues and obtaining chemically defined substrates. Accordingly, we describe herein a chemical biology approach that enabled the reconstitution of this ligation reaction. The O-antigen repeating unit (O-unit) of Escherichia coli O86 was first enzymatically assembled via sequential enzymatic glycosylation of a chemically synthesized GalNAc-pyrophosphate-undecaprenyl precursor. Subsequent expression of WaaL through use of a chaperone co-expression system then enabled the demonstration of the in vitro ligation between the synthesized donor (O-unit-pyrophosphate-undecaprenyl) and the isolated lipid A-core acceptor. The previously reported ATP and divalent metal cation dependence were not observed using this system. Further analyses of other donor substrates revealed that WaaL possesses a highly relaxed specificity toward both the lipid moiety and the glycan moiety of the donor. Lastly, three conserved amino acid residues identified by sequence alignment were found essential for the WaaL activity. Taken together, the present work represents an in vitro systematic investigation of the WaaL function using a chemical biology approach, providing a system that could facilitate the elucidation of the mechanism of WaaL-catalyzed ligation reaction.

  17. INTERPRETATION, COPING & ACCOUNTABILITY IN SOCIAL ACCOUNTING

    OpenAIRE

    Lehman, Glen

    2013-01-01

    Many accountants and accounting theorists believe that objective accounts of the external world are possible. This paper critiques such arguments via an examination of the ethical assumptions underpinning social and environmental accounting. In the early 1990s, David Solomons and Tony Tinker debated the idea that accounting was a fair, just and neutral means to represent reality. On the one hand, Tinker argued that accounting reports are simply artificial constructions and are not objectiv...

  18. Redox levels in aqueous solution: Effect of van der Waals interactions and hybrid functionals

    Science.gov (United States)

    Ambrosio, Francesco; Miceli, Giacomo; Pasquarello, Alfredo

    2015-12-01

    We investigate redox levels in aqueous solution using a combination of ab initio molecular dynamics (MD) simulations and thermodynamic integration methods. The molecular dynamics are performed with both the semilocal Perdew-Burke-Ernzerhof functional and a nonlocal functional (rVV10) accounting for van der Waals (vdW) interactions. The band edges are determined through three different schemes, namely, from the energy of the highest occupied and of the lowest unoccupied Kohn-Sham states, from total-energy differences, and from a linear extrapolation of the density of states. It is shown that the latter does not depend on the system size while the former two are subject to significant finite-size effects. For the redox levels, we provide a formulation in analogy to the definition of charge transition levels for defects in crystalline materials. We consider the H+/H2 level defining the standard hydrogen electrode, the OH-/OH∗ level corresponding to the oxidation of the hydroxyl ion, and the H2O/OH∗ level for the dehydrogenation of water. In spite of the large structural modifications induced in liquid water, vdW interactions do not lead to any significant structural effect on the calculated band gap and band edges. The effect on the redox levels is also small since the solvation properties of ionic species are little affected by vdW interactions. Since the electronic properties are not significantly affected by the underlying structural properties, it is justified to perform hybrid functional calculations on the configurations of our MD simulations. The redox levels calculated as a function of the fraction α of Fock exchange are found to remain constant, reproducing a general behavior previously observed for charge transition levels of defects. Comparison with experimental values shows very good agreement. At variance, the band edges and the band gap evolve linearly with α. For α ≃ 0.40, we achieve a band gap, band-edge positions, and redox levels in overall

  19. Redox levels in aqueous solution: Effect of van der Waals interactions and hybrid functionals

    Energy Technology Data Exchange (ETDEWEB)

    Ambrosio, Francesco, E-mail: Francesco.Ambrosio@epfl.ch; Miceli, Giacomo; Pasquarello, Alfredo [Chaire de Simulation à l’Echelle Atomique (CSEA), Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne (Switzerland)

    2015-12-28

    We investigate redox levels in aqueous solution using a combination of ab initio molecular dynamics (MD) simulations and thermodynamic integration methods. The molecular dynamics are performed with both the semilocal Perdew-Burke-Ernzerhof functional and a nonlocal functional (rVV10) accounting for van der Waals (vdW) interactions. The band edges are determined through three different schemes, namely, from the energy of the highest occupied and of the lowest unoccupied Kohn-Sham states, from total-energy differences, and from a linear extrapolation of the density of states. It is shown that the latter does not depend on the system size while the former two are subject to significant finite-size effects. For the redox levels, we provide a formulation in analogy to the definition of charge transition levels for defects in crystalline materials. We consider the H{sup +}/H{sub 2} level defining the standard hydrogen electrode, the OH{sup −}/OH{sup ∗} level corresponding to the oxidation of the hydroxyl ion, and the H{sub 2}O/OH{sup ∗} level for the dehydrogenation of water. In spite of the large structural modifications induced in liquid water, vdW interactions do not lead to any significant structural effect on the calculated band gap and band edges. The effect on the redox levels is also small since the solvation properties of ionic species are little affected by vdW interactions. Since the electronic properties are not significantly affected by the underlying structural properties, it is justified to perform hybrid functional calculations on the configurations of our MD simulations. The redox levels calculated as a function of the fraction α of Fock exchange are found to remain constant, reproducing a general behavior previously observed for charge transition levels of defects. Comparison with experimental values shows very good agreement. At variance, the band edges and the band gap evolve linearly with α. For α ≃ 0.40, we achieve a band gap, band

  20. Surface features on Sahara soil dust particles made visible by atomic force microscope (AFM) phase images

    OpenAIRE

    Andreae, M. O.; G. Helas

    2008-01-01

    We show that atomic force microscopy (AFM) phase images can reveal surface features of soil dust particles, which are not evident using other microscopic methods. The non-contact AFM method is able to resolve topographical structures in the nanometer range as well as to uncover repulsive atomic forces and attractive van der Waals' forces, and thus gives insight to surface properties. Though the method does not allow quantitative assignment in terms of chemical compound description, it clearly...

  1. van der Waals-corrected Density Functional Theory simulation of adsorption processes on noble-metal surfaces: Xe on Ag(111), Au(111), and Cu(111)

    CERN Document Server

    Silvestrelli, Pier Luigi

    2016-01-01

    The DFT/vdW-WF2s1 method based on the generation of localized Wannier functions, recently developed to include the van der Waals interactions in the Density Functional Theory and describe adsorption processes on metal surfaces by taking metal-screening effects into account, is applied to the case of the interaction of Xe with noble-metal surfaces, namely Ag(111), Au(111), and Cu(111). The study is also repeated by adopting the DFT/vdW-QHO-WF variant relying on the Quantum Harmonic Oscillator model which describes well many-body effects. Comparison of the computed equilibrium binding energies and distances, and the $C_3$ coefficients characterizing the adatom-surface van der Waals interactions, with available experimental and theoretical reference data shows that the methods perform well and elucidate the importance of properly including screening effects. The results are also compared with those obtained by other vdW-corrected DFT schemes, including PBE-D, vdW-DF, vdW-DF2, rVV10, and by the simpler Local Dens...

  2. Van Der Waals-Corrected Density Functional Theory Simulation of Adsorption Processes on Noble-Metal Surfaces: Xe on Ag(111), Au(111), and Cu(111)

    Science.gov (United States)

    Silvestrelli, Pier Luigi; Ambrosetti, Alberto

    2016-10-01

    The DFT/vdW-WF2s1 method based on the generation of localized Wannier functions, recently developed to include the van der Waals interactions in the density functional theory and describe adsorption processes on metal surfaces by taking metal-screening effects into account, is applied to the case of the interaction of Xe with noble-metal surfaces, namely Ag(111), Au(111), and Cu(111). The study is also repeated by adopting the DFT/vdW-QHO-WF variant relying on the quantum harmonic oscillator model which describes well many body effects. Comparison of the computed equilibrium binding energies and distances, and the C_3 coefficients characterizing the adatom-surface van der Waals interactions, with available experimental and theoretical reference data shows that the methods perform well and elucidates the importance of properly including screening effects. The results are also compared with those obtained by other vdW-corrected DFT schemes, including PBE-D, vdW-DF, vdW-DF2, rVV10, and by the simpler local density approximation and semi-local (PBE) generalized gradient approximation approaches.

  3. Quantitative relationships for the prediction of the vapor pressure of some hydrocarbons from the van der Waals molecular surface

    Directory of Open Access Journals (Sweden)

    Olariu Tudor

    2015-01-01

    Full Text Available A quantitative structure - property relationship (QSPR modeling of vapor pressure at 298.15 K, expressed as log (VP / Pa was performed for a series of 84 hydrocarbons (63 alkanes and 21 cycloalkanes using the van der Waals (vdW surface area, SW/Å2, calculated by the Monte Carlo method, as the molecular descriptor. The QSPR model developed from the subset of 63 alkanes (C1-C16, deemed as the training set, was successfully used for the prediction of the log (VP / Pa values of the 21 cycloalkanes, which was the external prediction (test subset. A QSPR model was also developed for a series composed of all 84 hydrocarbons. Both QSPR models were statistically tested for their ability to fit the data and for prediction. The results showed that the vdW molecular surface used as molecular descriptor (MD explains the variance of the majority of the log (VP / Pa values in this series of 84 hydrocarbons. This MD describes very well the intermolecular forces that hold neutral molecules together. The clear physical meaning of the molecular surface values, SW/Å2, could explain the success of the QSPR models obtained with a single structural molecular descriptor.

  4. Assessing the influence of van der Waals corrected exchange-correlation functionals on the anisotropic mechanical properties of coinage metals

    Science.gov (United States)

    Lee, Ji-Hwan; Park, Jong-Hun; Soon, Aloysius

    2016-07-01

    Current materials-related calculations employ density-functional theory (DFT), commonly using the (semi-)local-density approximations for the exchange-correlation (xc) functional. The difficulties in arriving at a reasonable description of van der Waals (vdW) interactions by DFT-based models is to date a big challenge. In this work, we use various flavors of vdW-corrected DFT xc functionals—ranging from the quasiempirical force-field add-on vdW corrections to self-consistent nonlocal correlation functionals—to study the bulk lattice and mechanical properties (including the elastic constants and anisotropic indices) of the coinage metals (copper, silver, and gold). We critically assess the reliability of the different vdW-corrected DFT methods in describing their anisotropic mechanical properties which have been less reported in the literature. In the context of this work, we regard that our results reiterate the fact that advocating a so-called perfect vdW-inclusive xc functional for describing the general physics and chemistry of these coinage metals could be a little premature. These challenges to modern-day functionals for anisotropically strained coinage metals (e.g., at the faceted surfaces of nanostructures) may well be relevant to other strained material systems.

  5. Accountability: The Most Underappreciated Aspect of Command

    Science.gov (United States)

    2012-02-15

    1994). Webster, John. "Air Force Hush Job Skips Accountability." The Spokesman-Review. May 25, 1995. http://www.spokesman.com/stories/1995/may/25...air-force- hush -job-skips- accountability/ (accessed December 9, 2011). Wynne, Michael W., Secretary of the Air Force. "Resignation Letter." June 6...used against you in a trial by court-martial except…for perjury, false swearing, or for a false official statement.” 79 John Webster, “Air Force Hush

  6. ACCOUNTING HARMONIZATION AND HISTORICAL COST ACCOUNTING

    Directory of Open Access Journals (Sweden)

    Valentin Gabriel CRISTEA

    2017-05-01

    Full Text Available There is a huge interest in accounting harmonization and historical costs accounting, in what they offer us. In this article, different valuation models are discussed. Although one notices the movement from historical cost accounting to fair value accounting, each one has its advantages.

  7. Are non-linear C-H⋯O contacts hydrogen bonds or Van der Waals interactions?. Establishing the limits between hydrogen bonds and Van der Waals interactions

    Science.gov (United States)

    Novoa, Juan J.; Lafuente, Pilar; Mota, Fernando

    1998-07-01

    The hydrogen bond nature of angular C-H⋯O contacts is examined to determine when these contacts are better classified as hydrogen bonds or as Van der Waals bonds. To classify the bond we propose to look at the nature of the intermolecular bond critical point present in the electron density of the complex containing the bond. The physics behind this approach is explained using a qualitative orbital overlap model aimed at describing the main changes in the electronic density of the complex produced by the C-H⋯O bending.

  8. In-situ epitaxial growth of graphene/h-BN van der Waals heterostructures by molecular beam epitaxy.

    Science.gov (United States)

    Zuo, Zheng; Xu, Zhongguang; Zheng, Renjing; Khanaki, Alireza; Zheng, Jian-Guo; Liu, Jianlin

    2015-10-07

    Van der Waals materials have received a great deal of attention for their exceptional layered structures and exotic properties, which can open up various device applications in nanoelectronics. However, in situ epitaxial growth of dissimilar van der Waals materials remains challenging. Here we demonstrate a solution for fabricating van der Waals heterostructures. Graphene/hexagonal boron nitride (h-BN) heterostructures were synthesized on cobalt substrates by using molecular beam epitaxy. Various characterizations were carried out to evaluate the heterostructures. Wafer-scale heterostructures consisting of single-layer/bilayer graphene and multilayer h-BN were achieved. The mismatch angle between graphene and h-BN is below 1°.

  9. Modelling the dispersion energy for Van der Waals complexes

    CERN Document Server

    Sanz-Garcia, A

    2002-01-01

    Strictly ab initio calculations of the dispersion energy are unfeasible in practice but for the smallest systems. A sensible alternative is to model the dispersion contribution through a damped multipolar expansion. This thesis proposes to represent the dispersion energy by means of a non-empirical, atom-atom model using damping functions scaled from 'exact' results for one electron-one electron systems. We start by investigating the scalability of ab initio calculated damping functions for closed-shell atom-atom dimers. Ab initio scaling parameters are employed to assess the quality of the damping functions yielded by a predictor scheme based on the charge overlap between the interacting monomers. The investigation of the scaling properties is extended to atom-linear molecule systems, focusing on the dependence on orientation of the short-range dispersion energy and how to account for it using isotropic damping parameters. We study the possibilities of an 'atomic' (multicentre) representation of the dispersi...

  10. Confusion around the tidal force and the centrifugal force

    CERN Document Server

    Matsuda, Takuya; Boffin, Henri M J

    2015-01-01

    We discuss the tidal force, whose notion is sometimes misunderstood in the public domain literature. We discuss the tidal force exerted by a secondary point mass on an extended primary body such as the Earth. The tidal force arises because the gravitational force exerted on the extended body by the secondary mass is not uniform across the primary. In the derivation of the tidal force, the non-uniformity of the gravity is essential, and inertial forces such as the centrifugal force are not needed. Nevertheless, it is often asserted that the tidal force can be explained by the centrifugal force. If we literally take into account the centrifugal force, it would mislead us. We therefore also discuss the proper treatment of the centrifugal force.

  11. Spectroscopic measurement of the titanium-helium van der Waals molecule: TiHe

    Science.gov (United States)

    Quiros, Nancy; Tariq, Naima; Weinstein, Jonathan

    2016-05-01

    Atoms that are weakly bound by the van der Waals (vdW) interaction are known as van der Waals molecules. The existence and formation of vdW molecules is favorable at low temperatures due to their weak binding energy. We have used laser ablation and helium buffer gas cooling to create the exotic vdW diatomic molecule made of titanium (Ti) and helium (He). TiHe molecules were detected through laser-induced-fluorescence spectroscopy closely blue-detuned from the a3F2 --> y3F3 atomic Ti transition at 25227 cm-1. Measurements of the binding energy of TiHe were obtained by studying its equilibrium thermodynamic properties. It is believed the molecules are formed from the constituent cold atoms through three-body recombination. Progress towards measuring the three-body recombination rate coefficient will be discussed. This material is based upon work supported by National Science Foundation under Grant No. PHY 1265905.

  12. A simplified implementation of van der Waals density functionals for first-principles molecular dynamics applications

    Science.gov (United States)

    Wu, Jun; Gygi, François

    2012-06-01

    We present a simplified implementation of the non-local van der Waals correlation functional introduced by Dion et al. [Phys. Rev. Lett. 92, 246401 (2004)] and reformulated by Román-Pérez et al. [Phys. Rev. Lett. 103, 096102 (2009)]. The proposed numerical approach removes the logarithmic singularity of the kernel function. Complete expressions of the self-consistent correlation potential and of the stress tensor are given. Combined with various choices of exchange functionals, five versions of van der Waals density functionals are implemented. Applications to the computation of the interaction energy of the benzene-water complex and to the computation of the equilibrium cell parameters of the benzene crystal are presented. As an example of crystal structure calculation involving a mixture of hydrogen bonding and dispersion interactions, we compute the equilibrium structure of two polymorphs of aspirin (2-acetoxybenzoic acid, C9H8O4) in the P21/c monoclinic structure.

  13. First principles calculations of solid-state thermionic transport in layered van der Waals heterostructures

    Science.gov (United States)

    Wang, Xiaoming; Zebarjadi, Mona; Esfarjani, Keivan

    2016-08-01

    This work aims at understanding solid-state energy conversion and transport in layered (van der Waals) heterostructures in contact with metallic electrodes via a first-principles approach. As an illustration, a graphene/phosphorene/graphene heterostructure in contact with gold electrodes is studied by using density functional theory (DFT)-based first principles calculations combined with real space Green's function (GF) formalism. We show that for a monolayer phosphorene, quantum tunneling dominates the transport. By adding more phosphorene layers, one can switch from tunneling-dominated transport to thermionic-dominated transport, resulting in transporting more heat per charge carrier, thus, enhancing the cooling coefficient of performance. The use of layered van der Waals heterostructures has two advantages: (a) thermionic transport barriers can be tuned by changing the number of layers, and (b) thermal conductance across these non-covalent structures is very weak. The phonon thermal conductance of the present van der Waals heterostructure is found to be 4.1 MW m-2 K-1 which is one order of magnitude lower than the lowest value for that of covalently-bonded interfaces. The thermionic coefficient of performance for the proposed device is 18.5 at 600 K corresponding to an equivalent ZT of 0.13, which is significant for nanoscale devices. This study shows that layered van der Waals structures have great potential to be used as solid-state energy-conversion devices.This work aims at understanding solid-state energy conversion and transport in layered (van der Waals) heterostructures in contact with metallic electrodes via a first-principles approach. As an illustration, a graphene/phosphorene/graphene heterostructure in contact with gold electrodes is studied by using density functional theory (DFT)-based first principles calculations combined with real space Green's function (GF) formalism. We show that for a monolayer phosphorene, quantum tunneling dominates the

  14. Two dimensional graphene nanogenerator by coulomb dragging: Moving van der Waals heterostructure

    Energy Technology Data Exchange (ETDEWEB)

    Zhong, Huikai; Li, Xiaoqiang; Wu, Zhiqian; Zhang, Shengjiao; Xu, Zhijuan [Department of Information Science and Electronic Engineering, Zhejiang University, Hangzhou 310027 (China); Chen, Hongsheng; Lin, Shisheng, E-mail: shishenglin@zju.edu.cn [Department of Information Science and Electronic Engineering, Zhejiang University, Hangzhou 310027 (China); State Key Laboratory of Modern Optical Instrumentation, Zhejiang University, Hangzhou 310027 (China)

    2015-06-15

    Harvesting energy from environment is the current focus of scientific community. Here, we demonstrate a graphene nanogenerator, which is based on moving van der Waals heterostructure formed between graphene and two dimensional (2D) graphene oxide (GO). This nanogenerator can convert mechanical energy into electricity with a voltage output of around 10 mV. Systematic experiments reveal the generated electricity originates from the coulomb interaction induced momentum transfer between 2D GO and holes in graphene. 2D boron nitride was also demonstrated to be effective in the framework of moving van der Waals heterostructure nanogenerator. This investigation of nanogenerator based on the interaction between 2D macromolecule materials will be important to understand the origin of the flow-induced potential in nanomaterials and may have great potential in practical applications.

  15. Two dimensional graphene nanogenerator by coulomb dragging: Moving van der Waals heterostructure

    Science.gov (United States)

    Zhong, Huikai; Li, Xiaoqiang; Wu, Zhiqian; Zhang, Shengjiao; Xu, Zhijuan; Chen, Hongsheng; Lin, Shisheng

    2015-06-01

    Harvesting energy from environment is the current focus of scientific community. Here, we demonstrate a graphene nanogenerator, which is based on moving van der Waals heterostructure formed between graphene and two dimensional (2D) graphene oxide (GO). This nanogenerator can convert mechanical energy into electricity with a voltage output of around 10 mV. Systematic experiments reveal the generated electricity originates from the coulomb interaction induced momentum transfer between 2D GO and holes in graphene. 2D boron nitride was also demonstrated to be effective in the framework of moving van der Waals heterostructure nanogenerator. This investigation of nanogenerator based on the interaction between 2D macromolecule materials will be important to understand the origin of the flow-induced potential in nanomaterials and may have great potential in practical applications.

  16. Formation and dynamics of van der Waals molecules in buffer-gas traps

    CERN Document Server

    Brahms, Nathan; Zhang, Peng; Kłos, Jacek; Forrey, Robert C; Au, Yat Shan; Sadeghpour, H R; Dalgarno, A; Doyle, John M; Walker, Thad G

    2011-01-01

    We show that weakly bound He-containing van der Waals molecules can be produced and magnetically trapped in buffer-gas cooling experiments, and provide a general model for the formation and dynamics of these molecules. Our analysis shows that, at typical experimental parameters, thermodynamics favors the formation of van der Waals complexes composed of a helium atom bound to most open-shell atoms and molecules, and that complex formation occurs quickly enough to ensure chemical equilibrium. For molecular pairs composed of a He atom and an S-state atom, the molecular spin is stable during formation, dissociation, and collisions, and thus these molecules can be magnetically trapped. Collisional spin relaxations are too slow to affect trap lifetimes. However, helium-3-containing complexes can change spin due to adiabatic crossings between trapped and untrapped Zeeman states, mediated by the anisotropic hyperfine interaction, causing trap loss. We provide a detailed model for Ag3He molecules, using ab initio calc...

  17. Exfoliation of natural van der Waals heterostructures to a single unit cell thickness

    Science.gov (United States)

    Velický, Matěj; Toth, Peter S.; Rakowski, Alexander M.; Rooney, Aidan P.; Kozikov, Aleksey; Woods, Colin R.; Mishchenko, Artem; Fumagalli, Laura; Yin, Jun; Zólyomi, Viktor; Georgiou, Thanasis; Haigh, Sarah J.; Novoselov, Kostya S.; Dryfe, Robert A. W.

    2017-02-01

    Weak interlayer interactions in van der Waals crystals facilitate their mechanical exfoliation to monolayer and few-layer two-dimensional materials, which often exhibit striking physical phenomena absent in their bulk form. Here we utilize mechanical exfoliation to produce a two-dimensional form of a mineral franckeite and show that the phase segregation of chemical species into discrete layers at the sub-nanometre scale facilitates franckeite's layered structure and basal cleavage down to a single unit cell thickness. This behaviour is likely to be common in a wider family of complex minerals and could be exploited for a single-step synthesis of van der Waals heterostructures, as an alternative to artificial stacking of individual two-dimensional crystals. We demonstrate p-type electrical conductivity and remarkable electrochemical properties of the exfoliated crystals, showing promise for a range of applications, and use the density functional theory calculations of franckeite's electronic band structure to rationalize the experimental results.

  18. Van der Waals interactions in rare-gas dimers: The role of interparticle interactions

    CERN Document Server

    Chen, Yu-Ting; Chai, Jeng-Da

    2015-01-01

    We investigate the potential energy curves of rare-gas dimers with various ranges and strengths of interparticle interactions (nuclear-electron, electron-electron, and nuclear-nuclear interactions). Our investigation is based on the highly accurate coupled-cluster theory associated with those interparticle interactions. For comparison, the performance of the corresponding Hartree-Fock theory, second-order Moller-Plesset perturbation theory, and density functional theory is also investigated. Our results reveal that when the interparticle interactions retain the long-range Coulomb tails, the nature of van der Waals interactions in the rare-gas dimers remains similar. By contrast, when the interparticle interactions are sufficiently short-range, the conventional van der Waals interactions in the rare-gas dimers completely disappear, yielding purely repulsive potential energy curves.

  19. Electrical and optical properties of SnS2/WSe2 van der Waals Heterojunction FETs

    Science.gov (United States)

    Zubair, Ahmad; Nourbakhsh, Amirhasan; Dresselhaus, Mildred; Palacios, Tomas

    Two dimensional crystals based on atomically thin films of transition metal dichalcogenides offer an exciting platform for various optoelectronic applications. Their unique crystal properties make them particularly attractive for van der Waals heterostructures which open up an additional degree of freedom to tailor the material properties into new physics and device applications. In this work, we explore, for the first time, the optoelectronic properties of van der Waals SnS2/WSe2 heterojunction. WSe2 is an ambipolar semiconductor while SnS2 is an n-type wide bandgap semiconductor. We use the pickup and dry transfer methods to fabricate SnS2/WSe2 heterojunction transistors (hetero-FETs). We observe negative differential transconductance in the SnS2/WSe2 hetero-FET. Also, the heterostructure couples strongly to incident light and shows high photovoltaic responsivity which can find applications in nano-devices such as photo-detectors and solar cells.

  20. Steady dynamics of exothermic chemical wave fronts in van der Waals fluids

    Science.gov (United States)

    Dumazer, G.; Antoine, C.; Lemarchand, A.; Nowakowski, B.

    2009-12-01

    We study the steady dynamics of an exothermic Fisher-Kolmogorov-Petrovsky-Piskunov chemical wave front traveling in a one-dimensional van der Waals fluid. The propagating wave is initiated by a nonuniformity in reactant concentration contrary to usual combustion ignition processes. The heat release and activation energy of the reaction play the role of control parameters. We recently proved that the propagation of an exothermic chemical wave front in a perfect gas displays a forbidden interval of stationary wave front speeds [G. Dumazer, M. Leda, B. Nowakowski, and A. Lemarchand, Phys. Rev. E 78, 016309 (2008)]. We examine how this result is modified for nonideal fluids and determine the effect of the van der Waals parameters and fluid density on the bifurcation between diffusion flames and Chapman-Jouguet detonation waves as heat release increases. Analytical predictions are confirmed by the numerical solution of the hydrodynamic equations including reaction kinetics.

  1. Bonding in Mercury-Alkali Molecules: Orbital-driven van der Waals Complexes

    Directory of Open Access Journals (Sweden)

    Dieter Cremer

    2008-06-01

    Full Text Available The bonding situation in mercury-alkali diatomics HgA (2Σ+ (A = Li, Na, K, Rb has been investigated employing the relativistic all-electron method Normalized Elimination of the Small Component (NESC, CCSD(T, and augmented VTZ basis sets. Although Hg,A interactions are typical of van der Waals complexes, trends in calculated De values can be explained on the basis of a 3-electron 2-orbital model utilizing calculated ionization potentials and the De values of HgA+(1Σ+ diatomics. HgA molecules are identified as orbital-driven van der Waals complexes. The relevance of results for the understanding of the properties of liquid alkali metal amalgams is discussed.

  2. Holographic Van der Waals-like phase transition in the Gauss–Bonnet gravity

    Energy Technology Data Exchange (ETDEWEB)

    He, Song, E-mail: hesong17@gmail.com [Max Planck Institute for Gravitational Physics (Albert Einstein Institute), Am Mühlenberg 1, 14476 Golm (Germany); State Key Laboratory of Theoretical Physics, Institute of Theoretical Physics, Chinese Academy of Sciences, Beijing 100190 (China); Li, Li-Fang, E-mail: lilf@itp.ac.cn [Center for Space Science and Applied Research, Chinese Academy of Sciences, Beijing 100190 (China); Zeng, Xiao-Xiong, E-mail: xxzeng@itp.ac.cn [State Key Laboratory of Theoretical Physics, Institute of Theoretical Physics, Chinese Academy of Sciences, Beijing 100190 (China); School of Material Science and Engineering, Chongqing Jiaotong University, Chongqing 400074 (China)

    2017-02-15

    The Van der Waals-like phase transition is observed in temperature–thermal entropy plane in spherically symmetric charged Gauss–Bonnet–AdS black hole background. In terms of AdS/CFT, the non-local observables such as holographic entanglement entropy, Wilson loop, and two point correlation function of very heavy operators in the field theory dual to spherically symmetric charged Gauss–Bonnet–AdS black hole have been investigated. All of them exhibit the Van der Waals-like phase transition for a fixed charge parameter or Gauss–Bonnet parameter in such gravity background. Further, with choosing various values of charge or Gauss–Bonnet parameter, the equal area law and the critical exponent of the heat capacity are found to be consistent with phase structures in temperature–thermal entropy plane.

  3. Henry constants in polymer solutions with the van der Waals equation of state

    DEFF Research Database (Denmark)

    Bithas, Sotiris; Kalospiros, Nikolaos; Kontogeorgis, Georgios

    1996-01-01

    The simple der Waals equation of state, as extended to polymer systems, is applied to the correlation and prediction of Henry constants in polymer solutions comprising five polymers and many nonpolar and polar solvents, including supercritical gases. The correlation achieved with one adjustable...... parameter is satisfactory, with typical errors within the experimental uncertainty and comparable to those with the more complex Perturbed Hard Chain Theory-based equations of state with the same number of adjustable parameters. A predictive scheme for calculating Henry constants is also presented, which...... is a corresponding-states correlation for a dimensionless Henry constant defined based on the van der Waals equation of state. Satisfactory results-often close to the ones from the one-parameter correlation-are obtained for all systems investigated in this work. Compared with literature models that have been applied...

  4. Holographic Van der Waals-like phase transition in the Gauss-Bonnet gravity

    Science.gov (United States)

    He, Song; Li, Li-Fang; Zeng, Xiao-Xiong

    2017-02-01

    The Van der Waals-like phase transition is observed in temperature-thermal entropy plane in spherically symmetric charged Gauss-Bonnet-AdS black hole background. In terms of AdS/CFT, the non-local observables such as holographic entanglement entropy, Wilson loop, and two point correlation function of very heavy operators in the field theory dual to spherically symmetric charged Gauss-Bonnet-AdS black hole have been investigated. All of them exhibit the Van der Waals-like phase transition for a fixed charge parameter or Gauss-Bonnet parameter in such gravity background. Further, with choosing various values of charge or Gauss-Bonnet parameter, the equal area law and the critical exponent of the heat capacity are found to be consistent with phase structures in temperature-thermal entropy plane.

  5. van der Waals interaction of a neutral atom with the surface of a metal or dielectric nanosphere

    Energy Technology Data Exchange (ETDEWEB)

    Schmidt, Regine; Chormaic, Sile Nic [Photonics Centre, Tyndall National Institute, Prospect Row, Cork (Ireland); Minogin, Vladimir G, E-mail: s.nicchormaic@ucc.ie [Institute of Spectroscopy Russ. Ac. of Sciences, 142190 Troitsk, Moscow region (Russian Federation)

    2011-01-14

    We analyse the van der Waals interaction of a neutral atom with the internal and external surfaces of either a metal or dielectric nanosphere. We derive closed analytical equations for the van der Waals interaction energy using an electrostatic approximation and show that the energy increases or decreases as a function of the atom's distance from the surface, depending on the surface curvature. For concave spherical surfaces, the van der Waals energy can increase by up to a factor of 6, while for convex surfaces it decreases by as much as a factor of 2, when compared to that obtained for a flat surface. The derived analytical equations are very simple and can be used for a comparison between theory and experimental measurements of the van der Waals constant, C{sub 3}.

  6. Theoretical Study of the Pyridine-Helium van der Waals Complexes

    DEFF Research Database (Denmark)

    v, Hubert; Henriksen, Christian; Fernandez, Berta

    2015-01-01

    In this study we evaluate a high-level ab initio ground-state intermolecular potential-energy surface for the pyridine–He van der Waals complex, using the CCSD(T) method and Dunning’s augmented correlation consistent polarized valence double-ζ basis set extended with a set of 3s3p2d1f1g midbond f...

  7. Van der Waals equation of state revisited: importance of the dispersion correction.

    Science.gov (United States)

    de Visser, Sam P

    2011-04-28

    One of the most basic equations of state describing nonideal gases and liquids is the van der Waals equation of state, and as a consequence, it is generally taught in most first year undergraduate chemistry courses. In this work, we show that the constants a and b in the van der Waals equation of state are linearly proportional to the polarizability volume of the molecules in a gas or liquid. Using this information, a new thermodynamic one-parameter equation of state is derived that contains experimentally measurable variables and physics constants only. This is the first equation of state apart from the Ideal Gas Law that contains experimentally measurable variables and physics constants only, and as such, it may be a very useful and practical equation for the description of dilute gases and liquids. The modified van der Waals equation of state describes pV as the sum of repulsive and attractive intermolecular interaction energies that are represented by an exponential repulsion function between the electron clouds of the molecules and a London dispersion component, respectively. The newly derived equation of state is tested against experimental data for several gas and liquid examples, and the agreement is satisfactory. The description of the equation of state as a one-parameter function also has implications on other thermodynamic functions, such as critical parameters, virial coefficients, and isothermal compressibilities. Using our modified van der Waals equation of state, we show that all of these properties are a function of the molecular polarizability volume. Correlations of experimental data confirm the derived proportionalities.

  8. van der Waals epitaxy and photoresponse of two-dimensional CdSe plates

    Science.gov (United States)

    Zhu, Dan-Dan; Xia, Jing; Wang, Lei; Li, Xuan-Ze; Tian, Li-Feng; Meng, Xiang-Min

    2016-06-01

    Here we demonstrate the first growth of two-dimensional (2D) single-crystalline CdSe plates on mica substrates via van der Waals epitaxy. The as-synthesized 2D plates exhibit hexagonal, truncated triangular and triangular shapes with the lateral size around several microns. Photodetectors based on 2D CdSe plates present a fast response time of 24 ms, revealing that 2D CdSe is a promising building block for ultrathin optoelectronic devices.

  9. Moire superlattice effects in graphene/boron-nitride van der Waals heterostructures

    Energy Technology Data Exchange (ETDEWEB)

    Wallbank, John R.; Chen, Xi; Fal' ko, Vladimir I. [Department of Physics, Lancaster University, Lancaster (United Kingdom); Mucha-Kruczynski, Marcin [Department of Physics, University of Bath (United Kingdom)

    2015-06-15

    Van der Waals heterostructures of graphene and hexagonal boron nitride feature a moire superlattice for graphene's Dirac electrons. Here, we review the effects generated by this superlattice, including a specific miniband structure featuring gaps and secondary Dirac points, and a fractal spectrum of magnetic minibands known as Hofstadter's butterfly. (copyright 2015 by WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  10. Van der Waals epitaxial double heterostructure: InAs/single-layer graphene/InAs.

    Science.gov (United States)

    Hong, Young Joon; Yang, Jae Won; Lee, Wi Hyoung; Ruoff, Rodney S; Kim, Kwang S; Fukui, Takashi

    2013-12-17

    Van der Waals (vdW) epitaxial double heterostructures have been fabricated by vdW epitaxy of InAs nanostructures on both sides of graphene. InAs nanostructures diametrically form on/underneath graphene exclusively along As-polar direction, indicating polarity inversion of the double heterostructures. First-principles and density functional calculations demonstrate how and why InAs easily form to be double heterostructures with polarity inversion.

  11. First-principles study of two-dimensional van der Waals heterojunctions

    OpenAIRE

    Hu, Wei; Yang, Jinlong

    2015-01-01

    Research on graphene and other two-dimensional (2D) materials, such as silicene, germanene, phosphorene, hexagonal boron nitride (h-BN), graphitic carbon nitride (g-C3N4), graphitic zinc oxide (g-ZnO) and molybdenum disulphide (MoS2), has recently received considerable interest owing to their outstanding properties and wide applications. Looking beyond this field, combining the electronic structures of 2D materials in ultrathin van der Waals heterojunctions has also emerged to widely study th...

  12. Van der Waals density functional study of water binding in metal-organic frameworks

    Science.gov (United States)

    Lee, Kyuho; Smit, Berend; Neaton, Jeffrey B.

    2013-03-01

    Metal-organic frameworks (MOFs) are promising candidate materials for gas storage, gas separation and catalysis. However, MOFs are vulnerable to humid air and effective surface area drops dramatically on an exposure to water. In this theoretical study, we investigate the interaction of single water molecule with MOF-74 on different binding sites by using van der Waals density functionals. We also explore how different type of metal cations affect the interaction.

  13. Van der Waals Type Model and Structure in π-p Elastic Scattering at High Energies

    Science.gov (United States)

    Aleem, F.

    1982-10-01

    The most recent measurement of the angular distribution for π-p elastic scattering at pL =50 and 200 GeV/c which show a structure near -t ≈ 4(GeV/c)2, with squared four momentum transfer -t extended to 10(GeV/c)2, and the total cross section data for 50 ≤ pL ≤ 370 GeV/c have been simultaneously explained by using Van der Waal's type model.

  14. The role of van der waals interaction on quantum-mechanical tunneling

    Energy Technology Data Exchange (ETDEWEB)

    Takayanagi, Toshiyuki; Kurosaki, Yuzuru [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    1998-10-01

    We present three-dimensional quantum cumulative reaction probabilities for the F + H{sub 2}, D{sub 2}, and HD reactions with a special emphasis on resonances associated with quasi-bound states localized in the reactant van der Waals region of the potential energy surface. The accurate ab initio potential surface of Stark and Werner and the less accurate 5SEC-W surface developed by Truhlar and co-workers have been employed. (author)

  15. Effect of van der Waals interactions on the structural and elastic properties of black phosphorus

    DEFF Research Database (Denmark)

    Appalakondaiah, S.; Vaitheeswaran, G.; Lebègue, S.;

    2012-01-01

    The structural and elastic properties of orthorhombic black phosphorus have been investigated using first-principles calculations based on density functional theory. The structural parameters have been calculated using the local density approximation (LDA), the generalized gradient approximation...... (GGA), and with several dispersion corrections to include van der Waals interactions. It is found that the dispersion corrections improve the lattice parameters over LDA and GGA in comparison with experimental results. The calculations reproduce well the experimental trends under pressure and show...

  16. Accounting Fundamentals for Non-Accountants

    Science.gov (United States)

    The purpose of this module is to provide an introduction and overview of accounting fundamentals for non-accountants. The module also covers important topics such as communication, internal controls, documentation and recordkeeping.

  17. Point Defects in Carbon Nanotubes: ab initio and Force-Fields Based Simulations

    Science.gov (United States)

    Kroes, Jaap; Pietrucci, Fabio; Curioni, Alessandro; Andreoni, Wanda

    2014-03-01

    We present an extended investigation of point defects in carbon nanotubes (CNTs) and their effects on mechanical and electronic properties. This study is based on large-scale calculations using DFT with exchange and correlation functionals of the GGA - including empirical corrections for van-der-Waals interactions - and of the hybrid type. Additional simulations using classical interatomic potentials allow us to obtain a critical comparison between the outcome of DFT and force-fields. The CNT models adopted have a range of sizes and chiralities. In particular, (i) our simulations of oxygen chemisorption revealed a tendency to clustering and the existence of kinetic traps (epoxides), which explain STS data; (ii) the extension to oxygen isovalent species on CNTs and other graphitic surfaces has suggested a simple predictive model for the chemisorption pattern. Moreover, (iii) our analysis shows an intrinsic difficulty of available force fields to account for the energetics of vacancies and adsorption site preferences. Additional results aiming at characterizing the interaction of nitrogen oxides (NOx) with the CNT surface will also be presented. Work supported by SNSF Nano-Tera.ch and CSCS.

  18. Large area molybdenum disulphide- epitaxial graphene vertical Van der Waals heterostructures

    Science.gov (United States)

    Pierucci, Debora; Henck, Hugo; Naylor, Carl H.; Sediri, Haikel; Lhuillier, Emmanuel; Balan, Adrian; Rault, Julien E.; Dappe, Yannick J.; Bertran, François; Fèvre, Patrick Le; Johnson, A. T. Charlie; Ouerghi, Abdelkarim

    2016-06-01

    Two-dimensional layered transition metal dichalcogenides (TMDCs) show great potential for optoelectronic devices due to their electronic and optical properties. A metal-semiconductor interface, as epitaxial graphene - molybdenum disulfide (MoS2), is of great interest from the standpoint of fundamental science, as it constitutes an outstanding platform to investigate the interlayer interaction in van der Waals heterostructures. Here, we study large area MoS2-graphene-heterostructures formed by direct transfer of chemical-vapor deposited MoS2 layer onto epitaxial graphene/SiC. We show that via a direct transfer, which minimizes interface contamination, we can obtain high quality and homogeneous van der Waals heterostructures. Angle-resolved photoemission spectroscopy (ARPES) measurements combined with Density Functional Theory (DFT) calculations show that the transition from indirect to direct bandgap in monolayer MoS2 is maintained in these heterostructures due to the weak van der Waals interaction with epitaxial graphene. A downshift of the Raman 2D band of the graphene, an up shift of the A1g peak of MoS2 and a significant photoluminescence quenching are observed for both monolayer and bilayer MoS2 as a result of charge transfer from MoS2 to epitaxial graphene under illumination. Our work provides a possible route to modify the thin film TDMCs photoluminescence properties via substrate engineering for future device design.

  19. Molecular recognition by van der Waals interaction between polymers with sequence-specific polarizabilities

    Science.gov (United States)

    Lu, Bing-Sui; Naji, Ali; Podgornik, Rudolf

    2015-06-01

    We analyze van der Waals interactions between two rigid polymers with sequence-specific, anisotropic polarizabilities along the polymer backbones, so that the dipole moments fluctuate parallel to the polymer backbones. Assuming that each polymer has a quenched-in polarizability sequence which reflects, for example, the polynucleotide sequence of a double-stranded DNA molecule, we study the van der Waals interaction energy between a pair of such polymers with rod-like structure for the cases where their respective polarizability sequences are (i) distinct and (ii) identical, with both zero and non-zero correlation length of the polarizability correlator along the polymer backbones in the latter case. For identical polymers, we find a novel r-5 scaling behavior of the van der Waals interaction energy for small inter-polymer separation r, in contradistinction to the r-4 scaling behavior of distinct polymers, with furthermore a pronounced angular dependence favoring attraction between sufficiently aligned identical polymers. Such behavior can assist the molecular recognition between polymers.

  20. Li intercalation in graphite: A van der Waals density-functional study

    Science.gov (United States)

    Hazrati, E.; de Wijs, G. A.; Brocks, G.

    2014-10-01

    Modeling layered intercalation compounds from first principles poses a problem, as many of their properties are determined by a subtle balance between van der Waals interactions and chemical or Madelung terms, and a good description of van der Waals interactions is often lacking. Using van der Waals density functionals we study the structures, phonons and energetics of the archetype layered intercalation compound Li-graphite. Intercalation of Li in graphite leads to stable systems with calculated intercalation energies of -0.2 to -0.3 eV/Li atom, (referred to bulk graphite and Li metal). The fully loaded stage 1 and stage 2 compounds LiC6 and Li1 /2C6 are stable, corresponding to two-dimensional √{3 }×√{3 } lattices of Li atoms intercalated between two graphene planes. Stage N >2 structures are unstable compared to dilute stage 2 compounds with the same concentration. At elevated temperatures dilute stage 2 compounds easily become disordered, but the structure of Li3 /16C6 is relatively stable, corresponding to a √{7 }×√{7 } in-plane packing of Li atoms. First-principles calculations, along with a Bethe-Peierls model of finite temperature effects, allow for a microscopic description of the observed voltage profiles.

  1. The hot pick-up technique for batch assembly of van der Waals heterostructures.

    Science.gov (United States)

    Pizzocchero, Filippo; Gammelgaard, Lene; Jessen, Bjarke S; Caridad, José M; Wang, Lei; Hone, James; Bøggild, Peter; Booth, Timothy J

    2016-06-16

    The assembly of individual two-dimensional materials into van der Waals heterostructures enables the construction of layered three-dimensional materials with desirable electronic and optical properties. A core problem in the fabrication of these structures is the formation of clean interfaces between the individual two-dimensional materials which would affect device performance. We present here a technique for the rapid batch fabrication of van der Waals heterostructures, demonstrated by the controlled production of 22 mono-, bi- and trilayer graphene stacks encapsulated in hexagonal boron nitride with close to 100% yield. For the monolayer devices, we found semiclassical mean-free paths up to 0.9 μm, with the narrowest samples showing clear indications of the transport being affected by boundary scattering. The presented method readily lends itself to fabrication of van der Waals heterostructures in both ambient and controlled atmospheres, while the ability to assemble pre-patterned layers paves the way for complex three-dimensional architectures.

  2. ACCOUNTING TREATMENTS USED FOR ACCOUNTING SERVICES PROVIDERS

    OpenAIRE

    ŢOGOE GRETI DANIELA; AVRAM MARIOARA; AVRAM COSTIN DANIEL

    2014-01-01

    The theme of our research is the ways of keeping accounting entities that are the object of the provision of services in the accounting profession. This paper aims to achieve a parallel between the ways of organizing financial records - accounting provided by freelancers and companies with activity in the financial - accounting. The first step in our scientific research is to establish objectives chosen area of scientific knowledge. Our scientific approach seeks to explain thr...

  3. Accounting: Accountants Need Verbal Skill Training

    Science.gov (United States)

    Whitaker, Bruce L.

    1978-01-01

    Verbal skills training is one aspect of accounting education not usually included in secondary and postsecondary accounting courses. The author discusses the need for verbal competency and methods of incorporating it into accounting courses, particularly a variation of the Keller plan of individualized instruction. (MF)

  4. Microscopic origin of Casimir-Polder forces

    OpenAIRE

    2006-01-01

    We establish a general relation between dispersion forces. First, based on QED in causal media, leading-order perturbation theory is used to express both the single-atom Casimir-Polder and the two-atom van der Waals potentials in terms of the atomic polarizabilities and the Green tensor for the body-assisted electromagnetic field. Endowed with this geometry-independent framework, we then employ the Born expansion of the Green tensor together with the Clausius-Mosotti relation to prove that th...

  5. Uncertainties in forces extracted from non-contact atomic force microscopy measurements by fitting of long-range background forces

    Directory of Open Access Journals (Sweden)

    Adam Sweetman

    2014-04-01

    Full Text Available In principle, non-contact atomic force microscopy (NC-AFM now readily allows for the measurement of forces with sub-nanonewton precision on the atomic scale. In practice, however, the extraction of the often desired ‘short-range’ force from the experimental observable (frequency shift is often far from trivial. In most cases there is a significant contribution to the total tip–sample force due to non-site-specific van der Waals and electrostatic forces. Typically, the contribution from these forces must be removed before the results of the experiment can be successfully interpreted, often by comparison to density functional theory calculations. In this paper we compare the ‘on-minus-off’ method for extracting site-specific forces to a commonly used extrapolation method modelling the long-range forces using a simple power law. By examining the behaviour of the fitting method in the case of two radically different interaction potentials we show that significant uncertainties in the final extracted forces may result from use of the extrapolation method.

  6. Safeguards Accountability Network accountability and materials management

    Energy Technology Data Exchange (ETDEWEB)

    Carnival, G.J.; Meredith, E.M.

    1985-01-01

    The Safeguards Accountability Network (SAN) is a computerized on-line accountability system for the safeguards accountability control of nuclear materials inventories at Rocky Flats Plant. SAN is a dedicated accountability system utilizing source documents filled out on the shop floor as its base. The system incorporates double entry accounting and is developed around the Material Balance Area (MBA) concept. MBA custodians enter transaction information from source documents prepared by personnel in the process areas directly into the SAN system. This provides a somewhat near-real time perpetual inventory system which has limited interaction with MBA custodians. MBA custodians are permitted to inquire into the system and status items on inventory. They are also responsible for the accuracy of the accountability information used as input to the system for their MBA. Monthly audits by the Nuclear Materials Control group assure the timeliness and accuracy of SAN accountability information.

  7. ACCOUNTING TREATMENTS USED FOR ACCOUNTING SERVICES PROVIDERS

    Directory of Open Access Journals (Sweden)

    ŢOGOE GRETI DANIELA

    2014-08-01

    Full Text Available The theme of our research is the ways of keeping accounting entities that are the object of the provision of services in the accounting profession. This paper aims to achieve a parallel between the ways of organizing financial records - accounting provided by freelancers and companies with activity in the financial - accounting. The first step in our scientific research is to establish objectives chosen area of scientific knowledge. Our scientific approach seeks to explain through a thorough and detailed approach as different sides (conceptual and practical looking projections of accounting issues related to regulatory developments and practices in the field. This paper addresses various concepts, accounting treatments, and books and accounting documents used both freelancers in providing accounting services and legal persons authorized accounting profession. In terms of methodology and research perspective, the whole scientific approach combined with quantitative and qualitative research theoretical perspective (descriptive-conceptual with practice perspective (empirical analyzing the main contributions of various authors (Romanian and foreign to knowledge in the field. Following the survey believe that the amendments to the national legislation will support entities providing accounting services, by cutting red tape on Administrative Burdens, and consequently will increase profitability and increase service quality.

  8. Accounting and Tax Issues Concerning Commercial Discounts

    Directory of Open Access Journals (Sweden)

    Sava Raluca

    2015-12-01

    Full Text Available Commercial discounts accounting presents a particular importance because, on the one hand, of their widely spread on a large scale in the commercial activity and on the second hand, due to the influence of the accounting and reporting method over the value added tax. The paper theoretically addresses commercial reductions and also their reflection in the accounting according with the latest regulations in force.

  9. Nonlocal axial load-bearing capacity of two neighboring perpendicular single-walled carbon nanotubes accounting for shear deformation

    Science.gov (United States)

    Kiani, Keivan

    2015-11-01

    This study is devoted to examine load-bearing capacity of a nanosystem composed of two adjacent perpendicular single-walled carbon nanotubes (SWCNTs) which are embedded in an elastic matrix. Accounting for the nonlocality and the intertube van der Waals forces, the governing equations are established based on the nonlocal Euler-Bernoulli, Timoshenko, and higher-order beam theories. These are sets of coupled integro-ordinary differential equations whose analytical solutions are unavailable. Hence, an efficient meshless methodology is proposed and the discrete governing equations are obtained via Galerkin approach. By solving the resulting set of eigenvalue equations, the axial buckling load of the elastically embedded nanosystem is evaluated. The roles of the radius and slenderness ratio of the constitutive SWCNTs, free distance between two tubes, small-scale parameter, aspect ratio, transverse and rotational stiffness of the surrounding matrix on the axial buckling load of the nanosystem are comprehensively addressed. The obtained results can be regarded as a pivotal step for better understanding the mechanism of elastic buckling of more complex systems such as elastically embedded-orthogonal membranes or even forests of SWCNTs.

  10. The Role of the Electrostatic Force in Spore Adhesion

    Energy Technology Data Exchange (ETDEWEB)

    Chung, Eunhyea [Georgia Institute of Technology; Yiacoumi, Sotira [Georgia Institute of Technology; Lee, Ida [University of Tennessee, Knoxville (UTK); Tsouris, Costas [ORNL

    2010-01-01

    Electrostatic force is investigated as one of the components of the adhesion force between Bacillus thuringiensis (Bt) spores and planar surfaces. The surface potentials of a Bt spore and a mica surface are experimentally obtained using a combined atomic force microscopy (AFM)-scanning surface potential microscopy technique. On the basis of experimental information, the surface charge density of the spores is estimated at 0.03 {micro}C/cm{sup 2} at 20% relative humidity and decreases with increasing humidity. The Coulombic force is introduced for the spore-mica system (both charged, nonconductive surfaces), and an electrostatic image force is introduced to the spore-gold system because gold is electrically conductive. The Coulombic force for spore-mica is repulsive because the components are similarly charged, while the image force for the spore-gold system is attractive. The magnitude of both forces decreases with increasing humidity. The electrostatic forces are added to other force components, e.g., van der Waals and capillary forces, to obtain the adhesion force for each system. The adhesion forces measured by AFM are compared to the estimated values. It is shown that the electrostatic (Coulombic and image) forces play a significant role in the adhesion force between spores and planar surfaces.

  11. Polarizable water model for the coarse-grained MARTINI force field.

    Directory of Open Access Journals (Sweden)

    Semen O Yesylevskyy

    2010-06-01

    Full Text Available Coarse-grained (CG simulations have become an essential tool to study a large variety of biomolecular processes, exploring temporal and spatial scales inaccessible to traditional models of atomistic resolution. One of the major simplifications of CG models is the representation of the solvent, which is either implicit or modeled explicitly as a van der Waals particle. The effect of polarization, and thus a proper screening of interactions depending on the local environment, is absent. Given the important role of water as a ubiquitous solvent in biological systems, its treatment is crucial to the properties derived from simulation studies. Here, we parameterize a polarizable coarse-grained water model to be used in combination with the CG MARTINI force field. Using a three-bead model to represent four water molecules, we show that the orientational polarizability of real water can be effectively accounted for. This has the consequence that the dielectric screening of bulk water is reproduced. At the same time, we parameterized our new water model such that bulk water density and oil/water partitioning data remain at the same level of accuracy as for the standard MARTINI force field. We apply the new model to two cases for which current CG force fields are inadequate. First, we address the transport of ions across a lipid membrane. The computed potential of mean force shows that the ions now naturally feel the change in dielectric medium when moving from the high dielectric aqueous phase toward the low dielectric membrane interior. In the second application we consider the electroporation process of both an oil slab and a lipid bilayer. The electrostatic field drives the formation of water filled pores in both cases, following a similar mechanism as seen with atomistically detailed models.

  12. Delphi Accounts Receivable Module -

    Data.gov (United States)

    Department of Transportation — Delphi accounts receivable module contains the following data elements, but are not limited to customer information, cash receipts, line of accounting details, bill...

  13. Liquid-vapor phase relations in the Si-O system: A calorically constrained van der Waals-type model

    Science.gov (United States)

    Connolly, James A. D.

    2016-09-01

    This work explores the use of several van der Waals (vW)-type equations of state (EoS) for predicting vaporous phase relations and speciation in the Si-O system, with emphasis on the azeotropic boiling curve of SiO2-rich liquid. Comparison with the observed Rb and Hg boiling curves demonstrates that prediction accuracy is improved if the a-parameter of the EoS, which characterizes vW forces, is constrained by ambient pressure heat capacities. All EoS considered accurately reproduce metal boiling curve trajectories, but absent knowledge of the true critical compressibility factor, critical temperatures remain uncertain by ~500 K. The EoS plausibly represent the termination of the azeotropic boiling curve of silica-rich liquid by a critical point across which the dominant Si oxidation state changes abruptly from the tetravalent state characteristic of the liquid to the divalent state characteristic of the vapor. The azeotropic composition diverges from silica toward metal-rich compositions with increasing temperature. Consequently, silica boiling is divariant and atmospheric loss after a giant impact would enrich residual silicate liquids in reduced silicon. Two major sources of uncertainty in the boiling curve prediction are the heat capacity of silica liquid, which may decay during depolymerization from the near-Dulong-Petit limit heat capacity of the ionic liquid to value characteristic of the molecular liquid, and the unknown liquid affinity of silicon monoxide. Extremal scenarios for these uncertainties yield critical temperatures and compositions of 5200-6200 K and Si1.1O2-Si1.4O2. The lowest critical temperatures are marginally consistent with shock experiments and are therefore considered more probable.

  14. Combined Poisson and soft-particle DLVO analysis of the specific and nonspecific adhesion forces measured between L. monocytogenes grown at various temperatures and silicon nitride.

    Science.gov (United States)

    Gordesli, F Pinar; Abu-Lail, Nehal I

    2012-09-18

    Adhesion forces between pathogenic L. monocytogenes EGDe and silicon nitride (Si(3)N(4)) were measured using atomic force microscopy (AFM) under water and at room temperature for cells grown at five different temperatures (10, 20, 30, 37, and 40 °C). Adhesion forces were then decoupled into specific (hydrogen bonding) and nonspecific (electrostatic and Lifshitz-van der Waals) force components using Poisson statistical analysis. The strongest specific and nonspecific attraction forces were observed for cells grown at 30 °C, compared to those observed for cells grown at higher or lower temperatures, respectively. By combining the results of Poisson analysis with the results obtained through soft-particle Derjaguin-Landau-Verwey-Overbeek (DLVO) analysis, the contributions of the Lifshitz-van der Waals and electrostatic forces to the overall nonspecific interaction forces were determined. Our results showed that the Lifshitz-van der Waals attraction forces dominated the total nonspecific adhesion forces for all investigated thermal conditions. However, irrespective of the temperature of growth investigated, hydrogen bonding forces were always stronger than the nonspecific forces. Finally, by combining Poisson analysis with soft-particle analysis of DLVO forces, the closest separation distances where the irreversible bacterial adhesion takes place can be determined relatively easily. For all investigated thermal conditions, the closest separation distances were <1 nm.

  15. Spontaneous doping on high quality talc-graphene-hBN van der Waals heterostructures

    Science.gov (United States)

    Mania, E.; Alencar, A. B.; Cadore, A. R.; Carvalho, B. R.; Watanabe, K.; Taniguchi, T.; Neves, B. R. A.; Chacham, H.; Campos, L. C.

    2017-09-01

    Steady doping, added to its remarkable electronic properties, would make graphene a valuable commodity in the solar cell market, as energy power conversion could be substantially increased. Here we report a graphene van der Waals heterostructure which is able to spontaneously dope graphene (p-type) up to n ~ 2.2  ×  1013 cm-2 while providing excellent charge mobility (μ ~ 25 000 cm2 V-1 s-1). Such properties are achieved via deposition of graphene on atomically flat layered talc, a natural and abundant dielectric crystal. Raman investigation shows a preferential charge accumulation on graphene-talc van der Waals heterostructures, which are investigated through the electronic properties of talc/graphene/hBN heterostructure devices. These heterostructures preserve graphene’s good electronic quality, verified by the observation of quantum Hall effect at low magnetic fields (B  =  0.4 T) at T  =  4.2 K. In order to investigate the physical mechanisms behind graphene-on-talc p-type doping, we performed first-principles calculations of their interface structural and electronic properties. In addition to potentially improving solar cell efficiency, graphene doping via van der Waals stacking is also a promising route towards controlling the band gap opening in bilayer graphene, promoting a steady n or p type doping in graphene and, eventually, providing a new path to access superconducting states in graphene, predicted to exist only at very high doping.

  16. Discovery of intrinsic ferromagnetism in two-dimensional van der Waals crystals

    Science.gov (United States)

    Gong, Cheng; Li, Lin; Li, Zhenglu; Ji, Huiwen; Stern, Alex; Xia, Yang; Cao, Ting; Bao, Wei; Wang, Chenzhe; Wang, Yuan; Qiu, Z. Q.; Cava, R. J.; Louie, Steven G.; Xia, Jing; Zhang, Xiang

    2017-06-01

    The realization of long-range ferromagnetic order in two-dimensional van der Waals crystals, combined with their rich electronic and optical properties, could lead to new magnetic, magnetoelectric and magneto-optic applications. In two-dimensional systems, the long-range magnetic order is strongly suppressed by thermal fluctuations, according to the Mermin-Wagner theorem; however, these thermal fluctuations can be counteracted by magnetic anisotropy. Previous efforts, based on defect and composition engineering, or the proximity effect, introduced magnetic responses only locally or extrinsically. Here we report intrinsic long-range ferromagnetic order in pristine Cr2Ge2Te6 atomic layers, as revealed by scanning magneto-optic Kerr microscopy. In this magnetically soft, two-dimensional van der Waals ferromagnet, we achieve unprecedented control of the transition temperature (between ferromagnetic and paramagnetic states) using very small fields (smaller than 0.3 tesla). This result is in contrast to the insensitivity of the transition temperature to magnetic fields in the three-dimensional regime. We found that the small applied field leads to an effective anisotropy that is much greater than the near-zero magnetocrystalline anisotropy, opening up a large spin-wave excitation gap. We explain the observed phenomenon using renormalized spin-wave theory and conclude that the unusual field dependence of the transition temperature is a hallmark of soft, two-dimensional ferromagnetic van der Waals crystals. Cr2Ge2Te6 is a nearly ideal two-dimensional Heisenberg ferromagnet and so will be useful for studying fundamental spin behaviours, opening the door to exploring new applications such as ultra-compact spintronics.

  17. Local Probe Spectroscopy of Two-Dimensional van der Waals Heterostructures

    Science.gov (United States)

    Yankowitz, Matthew Abraham

    A large family of materials, collectively known as "van der Waals materials", have attracted enormous research attention over the past decade following the realization that they could be isolated into individual crystalline monolayers, with charge carriers behaving effectively two-dimensionally. More recently, an even larger class of composite materials has been realized, made possible by combining the isolated atomic layers of different materials into "van der Waals heterostructures", which can exhibit electronic and optical behaviors not observed in the parent materials alone. This thesis describes efforts to characterize the atomic-scale structural and electronic properties of these van der Waals materials and heterostructures through scanning tunneling microscopy measurements. The majority of this work addresses the properties of monolayer and few-layer graphene, whose charge carriers are described by massless and massive chiral Dirac Hamiltonians, respectively. In heterostructures with hexagonal boron nitride, an insulating isomorph of graphene, we observe electronic interference patterns between the two materials which depend on their relative rotation. As a result, replica Dirac cones are formed in the valence and conduction bands of graphene, with their energy tuned by the rotation. Further, we are able to dynamically drag the graphene lattice in these heterostructures, owing to an interaction between the scanning probe tip and the domain walls formed by the electronic interference pattern. Similar dragging is observed in domain walls of trilayer graphene, whose electronic properties are found to depend on the stacking configuration of the three layers. Scanning tunneling spectroscopy provides a direct method for visualizing the scattering pathways of electrons in these materials. By analyzing the scattering, we can directly infer properties of the band structures and local environments of these heterostructures. In bilayer graphene, we map the electrically

  18. How "accountable" are accountable care organizations?

    Science.gov (United States)

    Addicott, Rachael; Shortell, Stephen M

    2014-01-01

    The establishment of accountable care organizations (ACOs) in the Affordable Care Act (ACA) was intended to support both cost savings and high-quality care. However, a key challenge will be to ensure that governance and accountability mechanisms are sufficient to support those twin ambitions. This exploratory study considers how recently developed ACOs have established governance structures and accountability mechanisms, particularly focusing on attempts at collaborative accountability and shared governance arrangements. Four case studies of ACOs across the United States were undertaken, with data collected throughout 2012. These involved 34 semistructured interviews with ACO administrative and clinical leaders, observation of nine meetings, and a review of documentary materials from each ACO. We identified very few examples of physicians being held to account as a collective and therefore only limited evidence of collaborative accountability impacting on behavior change. However, ACO leaders do have many mechanisms available to stimulate change across physicians. The challenge is to determine governance structure(s) and accountability mechanisms that facilitate the most effective combination of approaches, measures, incentives, and sanctions to achieve the goals of more accountable care. Accountability structures and processes will need to be tailored to local membership composition, historical evolution, and current stage of development. There are also some common lessons to be drawn. Shared goals and incentives should be reflected through performance criteria. It is important to align measures and thresholds across payers to ensure ACOs are not unnecessarily burdened or compromised by reporting on different and potentially disjointed measures. Finally, emphasis needs to be placed on the importance of credible, transparent data. This exploratory study provides early evidence regarding how ACOs are establishing their governance and accountability arrangements and

  19. Atomically thin resonant tunnel diodes built from synthetic van der Waals heterostructures

    Science.gov (United States)

    Lin, Yu-Chuan; Ghosh, Ram Krishna; Addou, Rafik; Lu, Ning; Eichfeld, Sarah M.; Zhu, Hui; Li, Ming-Yang; Peng, Xin; Kim, Moon J.; Li, Lain-Jong; Wallace, Robert M.; Datta, Suman; Robinson, Joshua A.

    2015-06-01

    Vertical integration of two-dimensional van der Waals materials is predicted to lead to novel electronic and optical properties not found in the constituent layers. Here, we present the direct synthesis of two unique, atomically thin, multi-junction heterostructures by combining graphene with the monolayer transition-metal dichalcogenides: molybdenum disulfide (MoS2), molybdenum diselenide (MoSe2) and tungsten diselenide (WSe2). The realization of MoS2-WSe2-graphene and WSe2-MoS2-graphene heterostructures leads to resonant tunnelling in an atomically thin stack with spectrally narrow, room temperature negative differential resistance characteristics.

  20. Electro-photo modulation of the fermi level in WSe2/graphene van der Waals heterojunction

    Science.gov (United States)

    Sun, Honghui; Yang, Hang; Fang, Liang; Zhang, Jiangwei; Wang, Zhiyuan; Jiang, Tian

    2017-04-01

    We report an electro-photo double modulation of the fermi level in a WSe2/graphene heterojunction. The heterojunction exhibits high ION/IOFF ratio ( 103) in transfer characteristic in dark and distinct rectification behavior in output characteristic under light illumination, respectively. Time-dependent photoresponse reveals that the heterojunction has a considerable potential in the application of photodetection. Interestingly, an exotic current peak is observed in transfer characteristic under light illumination. This novel behavior is attributed to the tunable fermi level at the WSe2/graphene heterojunction by electro-photo double modulation. The results may be helpful to develop tunable photovoltaic optoelectronics based on van der Waals heterojunctions.

  1. Field effect in graphene-based van der Waals heterostructures: Stacking sequence matters.

    Science.gov (United States)

    Stradi, Daniele; Papior, Nick; Hansen, Ole; Brandbyge, Mads

    2017-03-06

    Stacked van der Waals (vdW) heterostructures where semi-conducting two-dimensional (2D) materials are contacted by overlayed graphene electrodes enable atomically-thin, flexible electronics. We use first-principles quantum transport simulations of graphene- contacted MoS2 devices to show how the transistor effect critically depends on the stacking configuration relative to the gate electrode. We can trace this behavior to the stacking-dependent response of the contact region to the capacitive electric field induced by the gate. The contact resistance is a central parameter and our observation establishes an important design rule for ultra-thin devices based on 2D atomic crystals.

  2. Van der Waals coefficients for alkali metal clusters and their size dependence

    Indian Academy of Sciences (India)

    Arup Banerjee; Manoj K Harbola

    2006-02-01

    In this paper we employ the hydrodynamic formulation of time-dependent density functional theory to obtain the van der Waals coefficients 6 and 8 of alkali metal clusters of various sizes including very large clusters. Such calculations become computationally very demanding in the orbital-based Kohn-Sham formalism, but are quite simple in the hydrodynamic approach. We show that for interactions between the clusters of the same sizes, 6 and 8 scale as the sixth and the eighth power of the cluster radius, respectively, and approach their classically predicted values for the large size clusters.

  3. Stability of Multidimensional Phase Transitions in a Steady van der Waals Flow

    Institute of Scientific and Technical Information of China (English)

    Shuyi ZHANG

    2008-01-01

    In this paper,the author studies the multidimensional stability of subsonic phase transitions in a steady supersonic flow of van der Waals type.The viscosity capillarity criterion (in "Arch.Rat.Mech.Anal.,81(4),1983,301-315") is used to seek physical admissible planar waves.By showing the Lopatinski determinant being non-zero,it is proved that subsonic phase transitions are uniformly stable in the sense of Majda (in "Mem.Amer.Math.Soc.,41(275),1983,1-95") under both one dimensional and multidimensional perturbations.

  4. Controlled Synthesis of Organic/Inorganic van der Waals Solid for Tunable Light-Matter Interactions.

    Science.gov (United States)

    Niu, Lin; Liu, Xinfeng; Cong, Chunxiao; Wu, Chunyang; Wu, Di; Chang, Tay Rong; Wang, Hong; Zeng, Qingsheng; Zhou, Jiadong; Wang, Xingli; Fu, Wei; Yu, Peng; Fu, Qundong; Najmaei, Sina; Zhang, Zhuhua; Yakobson, Boris I; Tay, Beng Kang; Zhou, Wu; Jeng, Horng Tay; Lin, Hsin; Sum, Tze Chien; Jin, Chuanhong; He, Haiyong; Yu, Ting; Liu, Zheng

    2015-12-16

    High-quality organic and inorganic van der Waals (vdW) solids are realized using methylammonium lead halide (CH3 NH3 PbI3 ) as the organic part (organic perovskite) and 2D inorganic monolayers as counterparts. By stacking on various 2D monolayers, the vdW solids exhibit dramatically different light emissions. Futhermore, organic/h-BN vdW solid arrays are patterned for red-light emission. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Atomically thin resonant tunnel diodes built from synthetic van der Waals heterostructures

    KAUST Repository

    Lin, Yu-Chuan

    2015-06-19

    Vertical integration of two-dimensional van der Waals materials is predicted to lead to novel electronic and optical properties not found in the constituent layers. Here, we present the direct synthesis of two unique, atomically thin, multi-junction heterostructures by combining graphene with the monolayer transition-metal dichalcogenides: molybdenum disulfide (MoS2), molybdenum diselenide (MoSe2) and tungsten diselenide (WSe2). The realization of MoS2–WSe2–graphene and WSe2–MoS2–graphene heterostructures leads to resonant tunnelling in an atomically thin stack with spectrally narrow, room temperature negative differential resistance characteristics.

  6. Room temperature electroluminescence from mechanically formed van der Waals III–VI homojunctions and heterojunctions

    OpenAIRE

    Balakrishnan, Nilanthy; Kudrynskyi, Zakhar R.; Fay, Mike W.; Mudd, Garry W.; Svatek, Simon A; Makarovsky, Oleg; Kovalyuk, Zakhar D.; Eaves, Laurence; Peter H. Beton; Patanè, Amalia

    2014-01-01

    Room temperature electroluminescence from semiconductor junctions is demonstrated. The junctions are fabricated by the exfoliation and direct mechanical adhesion of InSe and GaSe van der Waals layered crystals. Homojunction diodes formed from layers of p- and n-type InSe exhibit electroluminescence at energies close to the bandgap energy of InSe (Eg= 1.26 eV). In contrast, heterojunction diodes formed by combining layers of p-type GaSe and n-type InSe emit photons at lower energies, which is ...

  7. Interlayer coupling effects on Schottky barrier in the arsenene-graphene van der Waals heterostructures

    Energy Technology Data Exchange (ETDEWEB)

    Xia, Congxin, E-mail: xiacongxin@htu.edu.cn; Xue, Bin; Wang, Tianxing; Peng, Yuting [Department of Physic, Henan Normal University, Xinxiang 453007 (China); Jia, Yu [School of Physics and Engineering, Zhengzhou University, Zhengzhou 450052 (China)

    2015-11-09

    The electronic characteristics of arsenene-graphene van der Waals (vdW) heterostructures are studied by using first-principles methods. The results show that a linear Dirac-like dispersion relation around the Fermi level can be quite well preserved in the vdW heterostructures. Moreover, the p-type Schottky barrier (0.18 eV) to n-type Schottky barrier (0.31 eV) transition occurs when the interlayer distance increases from 2.8 to 4.5 Å, which indicates that the Schottky barrier can be tuned effectively by the interlayer distance in the vdW heterostructures.

  8. Silicene on MoS2: role of the van der Waals interaction

    KAUST Repository

    Jiajie Zhu,

    2015-10-13

    We demonstrate for silicene on MoS2 substrate the limitations of the predictive power of first principles calculations based on van der Waals density functional theory. Only the optB86b-vdW functional is found to give reasonable agreement with experimental results on structural properties, while for all other investigated functionals the interlayer interaction is underestimated or the charge redistribution at the interface is not described correctly so that the predicted electronic structure is qualitatively wrong. © 2015 IOP Publishing Ltd.

  9. A Harmonious Accounting Duo?

    Science.gov (United States)

    Schapperle, Robert F.; Hardiman, Patrick F.

    1992-01-01

    Accountants have urged "harmonization" of standards between the Governmental Accounting Standards Board and the Financial Accounting Standards Board, recommending similar reporting of like transactions. However, varying display of similar accounting events does not necessarily indicate disharmony. The potential for problems because of…

  10. Direct measurement of the intermolecular forces between counterion-condensed DNA double helices. Evidence for long range attractive hydration forces.

    Science.gov (United States)

    Rau, D C; Parsegian, V A

    1992-01-01

    Rather than acting by modifying van der Waals or electrostatic double layer interactions or by directly bridging neighboring molecules, polyvalent ligands bound to DNA double helices appear to act by reconfiguring the water between macromolecular surfaces to create attractive long range hydration forces. We have reached this conclusion by directly measuring the repulsive forces between parallel B-form DNA double helices pushed together from the separations at which they have self organized into hexagonal arrays of parallel rods. For all of the wide variety of "condensing agents" from divalent Mn to polymeric protamines, the resulting intermolecular force varies exponentially with a decay rate of 1.4-1.5 A, exactly one-half that seen previously for hydration repulsion. Such behavior qualitatively contradicts the predictions of all electrostatic double layer and van der Waals force potentials previously suggested. It fits remarkably well with the idea, developed and tested here, that multivalent counterion adsorption reorganizes the water at discrete sites complementary to unadsorbed sites on the apposing surface. The measured strength and range of these attractive forces together with their apparent specificity suggest the presence of a previously unexpected force in molecular organization.

  11. Assessing photocatalytic power of g-C3N4 for solar fuel production: A first-principles study involving quasi-particle theory and dispersive forces

    Science.gov (United States)

    Osorio-Guillén, J. M.; Espinosa-García, W. F.; Moyses Araujo, C.

    2015-09-01

    First-principles quasi-particle theory has been employed to assess catalytic power of graphitic carbon nitride, g-C3N4, for solar fuel production. A comparative study between g-h-triazine and g-h-heptazine has been carried out taking also into account van der Waals dispersive forces. The band edge potentials have been calculated using a recently developed approach where quasi-particle effects are taken into account through the GW approximation. First, it was found that the description of ground state properties such as cohesive and surface formation energies requires the proper treatment of dispersive interaction. Furthermore, through the analysis of calculated band-edge potentials, it is shown that g-h-triazine has high reductive power reaching the potential to reduce CO2 to formic acid, coplanar g-h-heptazine displays the highest thermodynamics force toward H2O/O2 oxidation reaction, and corrugated g-h-heptazine exhibits a good capacity for both reactions. This rigorous theoretical study shows a route to further improve the catalytic performance of g-C3N4.

  12. Van der Waals effects in ab initio water at ambient and supercritical conditions.

    Science.gov (United States)

    Jonchiere, Romain; Seitsonen, Ari P; Ferlat, Guillaume; Saitta, A Marco; Vuilleumier, Rodolphe

    2011-10-21

    Density functional theory (DFT) within the generalized gradient approximation (GGA) is known to poorly reproduce the experimental properties of liquid water. The poor description of the dispersion forces in the exchange correlation functionals is one of the possible causes. Recent studies have demonstrated an improvement in the simulated properties when they are taken into account. We present here a study of the effects on liquid water of the recently proposed semi-empirical correction of Grimme et al. [J. Chem. Phys. 132, 154104 (2010)]. The difference between standard and corrected DFT-GGA simulations is rationalized with a detailed analysis upon modifying an accurate parameterised potential. This allows an estimate of the typical range of dispersion forces in water. We also show that the structure and diffusivity of ambient-like liquid water are sensitive to the fifth neighbor position, thus highlighting the key role played by this neighbor. Our study is extended to water at supercritical conditions, where experimental and theoretical results are much more scarce. We show that the semi-empirical correction by Grimme et al. improves significantly, although somewhat counter-intuitively, both the structural and the dynamical description of supercritical water.

  13. Fair value accounting

    OpenAIRE

    Shamkuts, Volha, 1977-

    2010-01-01

    The thesis is devoted to fair value accounting. Fair value accounting implies that assets and liabilities get measured and reported in firm´s financial statements at their market value. The purpose of the thesis is to analyze the conceptual foundations of fair value accounting. The thesis is organized in the following way. First, origins and development of fair value accounting are discussed. Second, overview of fair value accounting is presented. The overview includes de...

  14. Assessing in financial account

    OpenAIRE

    VACKOVÁ, Lenka

    2011-01-01

    The aim of this thesis is to define possibilities of valuation and their impacts on the function of accounting. Furthermore the comparison of valuation methods within the czech accounting standards with international standards (IAS/IFRS). Valuation is metodical element which has huge influence on use value of information provided by accounting system. It affects the predicative capability of accounting information, mainly the items in accounting document. Monetary expression of company assets...

  15. Comparison of accounting methods for business combinations

    Directory of Open Access Journals (Sweden)

    Jaroslav Sedláček

    2012-01-01

    Full Text Available The revised accounting rules applicable to business combinations in force on July1st 2009, are the result of several years efforts the convergence of U.S. and International Committee of the Financial Accounting Standards. Following the harmonization of global accounting procedures are revised and implemented also Czech accounting regulations. In our research we wanted to see how changes can affect the strategy and timing of business combinations. Comparative analysis is mainly focused on the differences between U.S. and international accounting policies and Czech accounting regulations. Key areas of analysis and synthesis are the identification of business combination, accounting methods for business combinations and goodwill recognition. The result is to assess the impact of the identified differences in the reported financial position and profit or loss of company.

  16. Analysis of strategic and deterrence equilibrium by modeling with a Van der Waals gas

    CERN Document Server

    Angaroni, Fabrizio

    2016-01-01

    In this paper we are going to propose a physical model that can represent a simple deterrence equilibrium situation, it is on based theory of unitary rational actors. This theory takes in account that a state is composed of a large number of people and a detailed study of the dynamics of any individual it is impossible. This situation, in Physics, is similar for gases, which are composed by a huge number of molecules and the study dynamics for one is impossible. Then a common approach, in this case, is the thermodynamics one. We only look to the macroscopic properties of the gas such as pressure, temperature and volume. Then in this sense thermodynamics could help to use theory of unitary rational actors also considering some non-rational factors. Firstly we are going to see how this model represents the Mutual assured destruction (MAD) theory if the influence of internal (economical, political,due to non state actors) instability and o conventional military forces are not taken in account. Secondly we are go...

  17. Safeguards Accountability Network accountability and materials management

    Energy Technology Data Exchange (ETDEWEB)

    Carnival, G.J.; Meredith, E.M.

    1985-01-01

    The Safeguards Accountability Network (SAN) is an on-line accountability system used by Rocky Flats Plant to provide accountability control of its nuclear material inventory. The system is also used to monitor and evaluate the use of the nuclear material inventory against programmatic objectives for materials management. The SAN system utilizes two Harris 800 Computers as central processing units. Enhancement plans are currently being formulated to provide automated data collection from process operations on the shop floor and from non-destructive analysis safeguards instrumentation. SAN, discussed in this paper, is an excellent system for basic accountability control of nuclear materials inventories and is a quite useful tool in evaluating the efficient use of nuclear materials inventories at Rocky Flats Plant.

  18. Four notes on van der waals forces: Induction effect, nonadditivity, attraction between a cone and a flat plate (asperities), history

    NARCIS (Netherlands)

    Sparnaay, M.J.

    1983-01-01

    The derivation of the induction or Debye—Falkenhagen effect has been carried out in the past both for a purely classical system and for a system in the quantum limit. In both cases the same equation was the result. An explanation of this fact is given in terms of statistical thermodynamics. The Lond

  19. Simple model for analyzing Efimov energy and three-body recombination of three identical bosons with van der Waals interactions

    Science.gov (United States)

    Li, Jing-Lun; Hu, Xue-Jin; Han, Yong-Chang; Cong, Shu-Lin

    2016-09-01

    We construct a simple model to calculate the trimer bound state energy ET(n ) and three-body recombination rate K30 of three identical bosons with van der Waals interaction without using any two- or three-body fitting parameter. Using this simple model, we investigate the influence of the van der Waals finite-range effect on ET(n ) and K30. Our calculation shows that the finite-range effect leads to the ground trimer state energy ET(0 ) not crossing the atom-dimer threshold, and the scaled three-body recombination rate K30/a4 deviating from the universal three-body theory. The results of our simple model agree within a few percent with other theoretical works with van der Waals interaction and also the experimental data.

  20. Accountability in Health Care

    DEFF Research Database (Denmark)

    Vrangbæk, Karsten; Byrkjeflot, Haldor

    2016-01-01

    The debate on accountability within the public sector has been lively in the past decade. Significant progress has been made in developing conceptual frameworks and typologies for characterizing different features and functions of accountability. However, there is a lack of sector specific...... adjustment of such frameworks. In this article we present a framework for analyzing accountability within health care. The paper makes use of the concept of "accountability regime" to signify the combination of different accountability forms, directions and functions at any given point in time. We show...... that reforms can introduce new forms of accountability, change existing accountability relations or change the relative importance of different accountability forms. They may also change the dominant direction and shift the balance between different functions of accountability. We further suggest...

  1. Modeling of the intermolecular Force-Induced Adhesion in Freestanding Nanostructures Made of Nano-beams

    Directory of Open Access Journals (Sweden)

    Alireza Yekrangi

    2015-11-01

    Full Text Available Among the intermolecular interactions, the Casimir and van der Waals forces are the most important forces that highly affect the behavior of nanostructures. This paper studies the effect of such forces on the adhesion of cantilever freestanding nanostructures. The nanostructures are made of a freestanding nano-beam which is suspended between two upper and lower conductive surfaces. The linear spring model is applied to derive the elastic force. The Lumped Parameter Model (LPM is used to obtain constitutive equations of the systems. The maximum length of the nano-beam which prevents the adhesion is computed. Results of this study are useful for design and development of miniature devices.

  2. BIFURCATION AND DYNAMICS OF THIN SLIPPING FILMS UNDER THE INFLUENCE OF INTERMOLECULAR FORCES

    Institute of Scientific and Technical Information of China (English)

    HU Guo-hui

    2006-01-01

    The effects of the Born repulsive force on the stability and dynamics of ultra-thin slipping films under the influences of intermolecular forces are investigated with bifurcation theory and numerical simulation. Results show that the repulsive force has a stabilizing effect on the development of perturbations, and can suppress the rupture process induced by the van der Waals attractive force. Although slippage will enhance the growth of disturbances, it does not have influence on the linear cutoff wave number and the final shape of the film thickness as time approaches to infinity.

  3. An equal area law for the van der Waals transition of holographic entanglement entropy

    CERN Document Server

    Nguyen, Phuc H

    2015-01-01

    The Anti-de Sitter-Reissner-Nordstrom (AdS-RN) black hole in the canonical ensemble undergoes a phase transition similar to the liquid-gas phase transition. i.e. the isocharges on the entropy-temperature plane develop an unstable branch when the charge is smaller than a critical value. It was later discovered that the isocharges on the entanglement entropy-temperature plane also exhibit the same van der Waals-like structure. In this paper, we present numerical results which sharpen this similarity between entanglement entropy and black hole entropy, by showing that both of these entropies obey Maxwell's equal area law. Moreover, we checked this for two disk-shaped entangling regions of different sizes, and the conclusion seems to be valid regardless of the region's size. We checked the equal area law for AdS-RN in 4 and 5 dimensions, so that the conclusion seems to hold for any dimension. Finally, we also checked that the equal area law holds for a similar, van der Waals-like transition of the dyonic black ho...

  4. Formation and dynamics of van der Waals molecules in buffer-gas traps.

    Science.gov (United States)

    Brahms, Nathan; Tscherbul, Timur V; Zhang, Peng; Kłos, Jacek; Forrey, Robert C; Au, Yat Shan; Sadeghpour, H R; Dalgarno, A; Doyle, John M; Walker, Thad G

    2011-11-14

    We show that weakly bound He-containing van der Waals molecules can be produced and magnetically trapped in buffer-gas cooling experiments, and provide a general model for the formation and dynamics of these molecules. Our analysis shows that, at typical experimental parameters, thermodynamics favors the formation of van der Waals complexes composed of a helium atom bound to most open-shell atoms and molecules, and that complex formation occurs quickly enough to ensure chemical equilibrium. For molecular pairs composed of a He atom and an S-state atom, the molecular spin is stable during formation, dissociation, and collisions, and thus these molecules can be magnetically trapped. Collisional spin relaxation is too slow to affect trap lifetimes. However, (3)He-containing complexes can change spin due to adiabatic crossings between trapped and untrapped Zeeman states, mediated by the anisotropic hyperfine interaction, causing trap loss. We provide a detailed model for Ag(3)He molecules, using ab initio calculation of Ag-He interaction potentials and spin interactions, quantum scattering theory, and direct Monte Carlo simulations to describe formation and spin relaxation in this system. The calculated rate of spin-change agrees quantitatively with experimental observations, providing indirect evidence for molecular formation in buffer-gas-cooled magnetic traps. Finally, we discuss the possibilities for spectroscopic detection of these complexes, including a calculation of expected spectra for Ag(3)He, and report on our spectroscopic search for Ag(3)He, which produced a null result.

  5. Structural and quantum properties of van der Waals cluster near the unitary regime

    Science.gov (United States)

    Lekala, M. L.; Chakrabarti, B.; Haldar, S. K.; Roy, R.; Rampho, G. J.

    2017-07-01

    We study the structural and several quantum properties of three-dimensional bosonic cluster interacting through van der Waals potential at large scattering length. We use Faddeev-type decomposition of the many-body wave function which includes all possible two-body correlations. At large scattering length, we observe spatially extended states which exhibit the exponential dependence on the state number. The cluster ground state energy shows universal nature at large negative scattering length. We also find the existence of generalized Tjon lines for N-body clusters. Signature of universal behaviour of weakly bound clusters can be observed in experiments of ultracold Bose gases. We also study the spectral statistics of the system. We calculate both the short-range fluctuation and long-range correlation and observe semi-Poisson distribution which interpolates the Gaussian Orthogonal Ensemble (GOE) and Poisson statistics of random matrix theory. It indicates that the van der Waal cluster near the unitary becomes highly complex and correlated. However additional study of P (r) distribution (without unfolding of energy spectrum) reveals the possibility of chaos for larger cluster.

  6. Thermal transport in van der Waals solids from first-principles calculations

    Science.gov (United States)

    Lindroth, Daniel O.; Erhart, Paul

    2016-09-01

    The lattice thermal expansion and conductivity in bulk Mo and W-based transition metal dichalcogenides are investigated by means of density functional and Boltzmann transport theory calculations. To this end, a recent van der Waals density functional (vdW-DF-CX) is employed, which is shown to yield excellent agreement with reference data for the structural parameters. The calculated in-plane thermal conductivity compares well with experimental room-temperature values, when phonon-phonon and isotopic scattering are included. To explain the behavior over the entire available temperature range one must, however, include additional (temperature independent) scattering mechanisms that limit the mean free path. Generally, the primary heat carrying modes have mean free paths of 1 μ m or more, which makes these materials very susceptible to structural defects. The conductivity of Mo- and W-based transition metal dichalcogenides is primarily determined by the chalcogenide species and increases in the order Te-Se-S. While for the tellurides and selenides the transition metal element has a negligible effect, the conductivity of WS2 is notably higher than for MoS2, which may be traced to the much larger phonon band gap of the former. Overall, the present study provides a consistent set of thermal conductivities that reveal chemical trends and constitute the basis for future investigations of van der Waals solids.

  7. van der Waals interaction energy and disjoining pressure at small separation.

    Science.gov (United States)

    White, Lee R

    2010-03-01

    The divergence of the van der Waals interaction energy E(132)(L) between plane half-spaces 1 and 2 separated by medium 3 as the separation distance L tends to zero is naively thought of as due to the overlap of the atomic polarization centers. It follows that it may therefore be prevented by properly allowing for the finite size of the atomic species which would prevent the overlap. The distance cutoff model is a simple example of such a modification. The present paper demonstrates that this is not ultimately the origin of the divergence and, that although finite atomic dimensions would alleviate the embarrassment, non-overlap does not properly address the thermodynamic restriction that pertains to the interaction energy. By allowing in an albeit approximate way for the wavelength dependence of the material dielectric response functions epsilon(i xi, k) which arise naturally in the modern Lifshitz theory for this interaction, a form for the van der Waals energy and the corresponding disjoining pressure may be derived which obey the thermodynamic constraint and remove the divergence as L-->0. The energy and disjoining pressure in this new model are compared with the classic non-retarded results and the length cutoff model.

  8. Band Alignment and Minigaps in Monolayer MoS2-Graphene van der Waals Heterostructures.

    Science.gov (United States)

    Pierucci, Debora; Henck, Hugo; Avila, Jose; Balan, Adrian; Naylor, Carl H; Patriarche, Gilles; Dappe, Yannick J; Silly, Mathieu G; Sirotti, Fausto; Johnson, A T Charlie; Asensio, Maria C; Ouerghi, Abdelkarim

    2016-07-13

    Two-dimensional layered MoS2 shows great potential for nanoelectronic and optoelectronic devices due to its high photosensitivity, which is the result of its indirect to direct band gap transition when the bulk dimension is reduced to a single monolayer. Here, we present an exhaustive study of the band alignment and relativistic properties of a van der Waals heterostructure formed between single layers of MoS2 and graphene. A sharp, high-quality MoS2-graphene interface was obtained and characterized by micro-Raman spectroscopy, high-resolution X-ray photoemission spectroscopy (HRXPS), and scanning high-resolution transmission electron microscopy (STEM/HRTEM). Moreover, direct band structure determination of the MoS2/graphene van der Waals heterostructure monolayer was carried out using angle-resolved photoemission spectroscopy (ARPES), shedding light on essential features such as doping, Fermi velocity, hybridization, and band-offset of the low energy electronic dynamics found at the interface. We show that, close to the Fermi level, graphene exhibits a robust, almost perfect, gapless, and n-doped Dirac cone and no significant charge transfer doping is detected from MoS2 to graphene. However, modification of the graphene band structure occurs at rather larger binding energies, as the opening of several miniband-gaps is observed. These miniband-gaps resulting from the overlay of MoS2 and the graphene layer lattice impose a superperiodic potential.

  9. Exciton–polaritons in van der Waals heterostructures embedded in tunable microcavities

    Science.gov (United States)

    Dufferwiel, S.; Schwarz, S.; Withers, F.; Trichet, A. A. P.; Li, F.; Sich, M.; Del Pozo-Zamudio, O.; Clark, C.; Nalitov, A.; Solnyshkov, D. D.; Malpuech, G.; Novoselov, K. S.; Smith, J. M.; Skolnick, M. S.; Krizhanovskii, D. N.; Tartakovskii, A. I.

    2015-01-01

    Layered materials can be assembled vertically to fabricate a new class of van der Waals heterostructures a few atomic layers thick, compatible with a wide range of substrates and optoelectronic device geometries, enabling new strategies for control of light–matter coupling. Here, we incorporate molybdenum diselenide/hexagonal boron nitride (MoSe2/hBN) quantum wells in a tunable optical microcavity. Part-light–part-matter polariton eigenstates are observed as a result of the strong coupling between MoSe2 excitons and cavity photons, evidenced from a clear anticrossing between the neutral exciton and the cavity modes with a splitting of 20 meV for a single MoSe2 monolayer, enhanced to 29 meV in MoSe2/hBN/MoSe2 double-quantum wells. The splitting at resonance provides an estimate of the exciton radiative lifetime of 0.4 ps. Our results pave the way for room-temperature polaritonic devices based on multiple-quantum-well van der Waals heterostructures, where polariton condensation and electrical polariton injection through the incorporation of graphene contacts may be realized. PMID:26446783

  10. Direct measurement of the van der Waals interaction between two single atoms

    CERN Document Server

    Béguin, Lucas; Chicireanu, Radu; Lahaye, Thierry; Browaeys, Antoine

    2013-01-01

    We report on the direct measurement of the van der Waals interaction between two isolated, single Rydberg atoms separated by a controlled distance of a few micrometers. By working in a regime where the single-atom Rabi frequency of the laser used for excitation to the Rydberg state is comparable to the interaction energy, we observe a \\emph{partial} Rydberg blockade, whereby the time-dependent populations of the various two-atom states exhibit coherent oscillations with several frequencies. A quantitative comparison of the data with a simple model based on the optical Bloch equations allows us to extract the van der Waals energy, and to observe its characteristic $C_6/R^6$ dependence. The magnitude of the measured $C_6$ coefficient agrees well with an \\emph{ab-initio} theoretical calculation, and we observe its dramatic increase with the principal quantum number $n$ of the Rydberg state. Our results not only allow to test an important physical law, but also demonstrate a degree of experimental control which o...

  11. Adhesion forces due to nano-triboelectrification between similar materials

    CERN Document Server

    Guerret-Piecourt, Christelle; Ségault, Frédéric; Juvé, Denyse; Tréheux, Daniel; Tonck, André

    2004-01-01

    Contact electrification and triboelectrification are well-known in the case of dissimilar materials, however the case of charge exchange during friction between nominally identical insulating materials is less documented. We experimentally investigated the triboelectrification between two smooth monocrystalline α-Al 2O 3 (sapphire) antagonists by surface force measurements with a Surface Force Apparatus (SFA). The force between a sphere and a plane, both in sapphire, was measured as a function of the sphere-plane distance D, before and after nano-friction tests, under dry argon atmosphere. Respective contributions of van der Waals, water meniscus and electrostatic forces were determined. The estimated Hamaker constant was in good agreement with the Lifshitz theory, and the dominant meniscus attraction at low separation could be overcome with small radius sphere. We demonstrated that electrostatic forces were generated by the nano-friction test and we quantified the adhesion that results from this con...

  12. Simple benzene derivatives adsorption on defective single-walled carbon nanotubes: a first-principles van der Waals density functional study.

    Science.gov (United States)

    Ganji, Masoud Darvish; Mohseni, Maryam; Bakhshandeh, Anahita

    2013-03-01

    We have investigated the interaction between open-ended zig-zag single-walled carbon nanotube (SWCNT) and a few benzene derivatives using the first-principles van der Waals density functional (vdW-DF) method, involving full geometry optimization. Such sp (2)-like materials are typically investigated using conventional DFT methods, which significantly underestimate non-local dispersion forces (vdW interactions), therefore affecting interactions between respected molecules. Here, we considered the vdW forces for the interacting molecules that originate from the interacting π electrons of the two systems. The -0.54 eV adsorption energy reveals that the interaction of benzene with the side wall of the SWCNT is typical of the strong physisorption and comparable with the experimental value for benzene adsorption onto the graphene sheet. It was found that aromatics are physisorbed on the sidewall of perfect SWCNTs, as well as at the edge site of the defective nanotube. Analysis of the electronic structures shows that no orbital hybridization between aromatics and nanotubes occurs in the adsorption process. The results are relevant in order to identify the potential applications of noncovalent functionalized systems.

  13. Harmonisation of agricultural accounting

    Directory of Open Access Journals (Sweden)

    Jaroslav Sedláček

    2007-01-01

    Full Text Available This paper deals with the accounting of the biological assets. There are described two approaches: Czech and international. The International Accounting Standards are emulative of more authentic presentment of economic processes in agricultural activities than Czech accounting legislation. From the comparison the both approaches accrued some differences, which can influent the financial statements of enterprises. The causation of main difference appears an application of fair value, which is prescribed for biological assets in international accounting standards. In international accounting standards is preferred principle of fair and true view, while in Czech accounting is preferred prudence principle.

  14. van der Waals-Tonks-type equations of state for hard-hypersphere fluids in four and five dimensions.

    Science.gov (United States)

    Wang, Xian-Zhi

    2004-04-15

    Recently, we developed accurate van der Waals-Tonks-type equations of state for hard-disk and hard-sphere fluids by using the known virial coefficients. In this paper, we derive the van der Waals-Tonks-type equations of state. We further apply these equations of state to hard-hypersphere fluids in four and five dimensions. In the low-density fluid regime, these equations of state are in good agreement with the simulation results and existing equations of state.

  15. COMPUTER-ASSISTED ACCOUNTING

    Directory of Open Access Journals (Sweden)

    SORIN-CIPRIAN TEIUŞAN

    2009-01-01

    Full Text Available What is computer-assisted accounting? Where is the place and what is the role of the computer in the financial-accounting activity? What is the position and importance of the computer in the accountant’s activity? All these are questions that require scientific research in order to find the answers. The paper approaches the issue of the support granted to the accountant to organize and manage the accounting activity by the computer. Starting from the notions of accounting and computer, the concept of computer-assisted accounting is introduced, it has a general character and it refers to the accounting performed with the help of the computer or using the computer to automate the procedures performed by the person who is doing the accounting activity; this is a concept used to define the computer applications of the accounting activity. The arguments regarding the use of the computer to assist accounting targets the accounting informatization, the automating of the financial-accounting activities and the endowment with modern technology of the contemporary accounting.

  16. Labor Force

    Science.gov (United States)

    Occupational Outlook Quarterly, 2012

    2012-01-01

    The labor force is the number of people ages 16 or older who are either working or looking for work. It does not include active-duty military personnel or the institutionalized population, such as prison inmates. Determining the size of the labor force is a way of determining how big the economy can get. The size of the labor force depends on two…

  17. TIME MANAGEMENT FOR ACCOUNTANTS

    Directory of Open Access Journals (Sweden)

    Cristina Elena BIGIOI

    2016-06-01

    Full Text Available Time is money. Every accountant knows that. In our country, the taxes are changing frequently. The accountants have to update their fiscal knowledge. The purpose of the article is to find how the accountants manage their time, taking into consideration the number of fiscal declarations and the fiscal changes. In this article we present some ways to improve time management for accountants.

  18. Making Collaborative Innovation Accountable

    DEFF Research Database (Denmark)

    Sørensen, Eva

    The public sector is increasingly expected to be innovative, but the prize for a more innovative public sector might be that it becomes difficult to hold public authorities to account for their actions. The article explores the tensions between innovative and accountable governance, describes...... the foundation for these tensions in different accountability models, and suggest directions to take in analyzing the accountability of collaborative innovation processes....

  19. ACCOUNTING AUTOMATIONS RISKS

    OpenAIRE

    Муравський, В. В.; Хома, Н. Г.

    2015-01-01

    Accountant accepts active voice in organization of the automated account in the conditions of the informative systems introduction in enterprise activity. Effective accounting automation needs identification and warning of organizational risks. Authors researched, classified and generalized the risks of introduction of the informative accounting systems. The ways of liquidation of the organizational risks sources andminimization of their consequences are gives. The method of the effective con...

  20. Asymmetric electrostatic and hydrophobic-hydrophilic interaction forces between mica surfaces and silicone polymer thin films.

    Science.gov (United States)

    Donaldson, Stephen H; Das, Saurabh; Gebbie, Matthew A; Rapp, Michael; Jones, Louis C; Roiter, Yuri; Koenig, Peter H; Gizaw, Yonas; Israelachvili, Jacob N

    2013-11-26

    We have synthesized model hydrophobic silicone thin films on gold surfaces by a two-step covalent grafting procedure. An amino-functionalized gold surface reacts with monoepoxy-terminated polydimethylsiloxane (PDMS) via a click reaction, resulting in a covalently attached nanoscale thin film of PDMS, and the click chemistry synthesis route provides great selectivity, reproducibility, and stability in the resulting model hydrophobic silicone thin films. The asymmetric interaction forces between the PDMS thin films and mica surfaces were measured with the surface forces apparatus in aqueous sodium chloride solutions. At an acidic pH of 3, attractive interactions are measured, resulting in instabilities during both approach (jump-in) and separation (jump-out from adhesive contact). Quantitative analysis of the results indicates that the Derjaguin-Landau-Verwey-Overbeek theory alone, i.e., the combination of electrostatic repulsion and van der Waals attraction, cannot fully describe the measured forces and that the additional measured adhesion is likely due to hydrophobic interactions. The surface interactions are highly pH-dependent, and a basic pH of 10 results in fully repulsive interactions at all distances, due to repulsive electrostatic and steric-hydration interactions, indicating that the PDMS is negatively charged at high pH. We describe an interaction potential with a parameter, known as the Hydra parameter, that can account for the extra attraction (low pH) due to hydrophobicity as well as the extra repulsion (high pH) due to hydrophilic (steric-hydration) interactions. The interaction potential is general and provides a quantitative measure of interfacial hydrophobicity/hydrophilicity for any set of interacting surfaces in aqueous solution.

  1. Cash Advance Accounting: Accounting Regulations and Practices

    Directory of Open Access Journals (Sweden)

    Aristita Rotila

    2012-12-01

    Full Text Available It is known the fact that often the entities offer to staff or third parties certain amounts of money, in order to make payments for the entities, such sums being registered differently in the accounting as cash advances. In the case in which the advances are offered in a foreign currency, there is the problem of the exchange rate used when justifying the advance, for the conversion in lei of payments that were carried out. In this article we wanted to signal the effect that the exchange rate, used in the assessment for reflecting in the accounting operations concerning cash advance reimbursements in a foreign currency, has on the information presented in the financial statement. Therewith, we signal some aspects from the content of the accounting regulations, with reference at defining the cash advances, meaning, and the presentation in the balance sheet of cash advances, which, in our opinion, impose clarifications.

  2. The Accounting Capstone Problem

    Science.gov (United States)

    Elrod, Henry; Norris, J. T.

    2012-01-01

    Capstone courses in accounting programs bring students experiences integrating across the curriculum (University of Washington, 2005) and offer unique (Sanyal, 2003) and transformative experiences (Sill, Harward, & Cooper, 2009). Students take many accounting courses without preparing complete sets of financial statements. Accountants not only…

  3. Accounting Education in Crisis

    Science.gov (United States)

    Turner, Karen F.; Reed, Ronald O.; Greiman, Janel

    2011-01-01

    Almost on a daily basis new accounting rules and laws are put into use, creating information that must be known and learned by the accounting faculty and then introduced to and understood by the accounting student. Even with the 150 hours of education now required for CPA licensure, it is impossible to teach and learn all there is to learn. Over…

  4. Automated Accounting. Instructor Guide.

    Science.gov (United States)

    Moses, Duane R.

    This curriculum guide was developed to assist business instructors using Dac Easy Accounting College Edition Version 2.0 software in their accounting programs. The module consists of four units containing assignment sheets and job sheets designed to enable students to master competencies identified in the area of automated accounting. The first…

  5. Intelligent Accountability in Education

    Science.gov (United States)

    O'Neill, Onora

    2013-01-01

    Systems of accountability are "second order" ways of using evidence of the standard to which "first order" tasks are carried out for a great variety of purposes. However, more accountability is not always better, and processes of holding to account can impose high costs without securing substantial benefits. At their worst,…

  6. Magneto-Elastic Vibration of Multi-Walled Carbon Nanotubes based on a Rigorous Van Der Waals Interaction%基于严格范德华力作用的多壁碳纳米管磁弹性振动

    Institute of Scientific and Technical Information of China (English)

    张薇; 王熙

    2013-01-01

    给出了一种求解在任意两管之间严格范德华力相互作用下多壁碳纳米管磁弹性振动频率的解析方法.研究结果表明,在轴向磁场的作用下,严格范德华力相互作用对多壁碳纳米管最高磁弹性振动频率的影响大于对最低振动频率的影响;严格范德华力作用下多壁碳纳米管的最高磁弹性振动频率要高于经典范德华力作用下多壁碳纳米管的最高磁弹性振动频率;严格范德华力对磁弹性振动频率的影响依赖于碳纳米管层间距的变化和管的层数,且随着多壁碳纳米管层数的增加而趋于一个稳定值.本文的研究结果对于碳纳米管作为基本元件在纳米电子元件中的实际应用具有一定的参考价值.%This paper presents an analytical method to solve magneto-elastic vibrations of multiwall carbon nanotubes under a rigorous van der Waals interaction. Results show that under the axial magnetic field, the effects of the rigorous van der Waals force on the highest frequency of multi-walled carbon tubes are larger than the effects on its lowest frequency, and the highest frequency of multi-walled carbon tubes under rigorous van der Waals force is higher than that under classical van der Waals force. The influence of rigorous van der Waals force on magneto-elastic frequency depends on the change of interlayer spacing and the layer numbers of tubes and as the layer numbers increase the influence tends to a steady value. The investigation result is a valuable reference for the carbon nanotubes's practical application as basic electromagnetic elements.

  7. Causal reasoning with forces

    Science.gov (United States)

    Wolff, Phillip; Barbey, Aron K.

    2015-01-01

    Causal composition allows people to generate new causal relations by combining existing causal knowledge. We introduce a new computational model of such reasoning, the force theory, which holds that people compose causal relations by simulating the processes that join forces in the world, and compare this theory with the mental model theory (Khemlani et al., 2014) and the causal model theory (Sloman et al., 2009), which explain causal composition on the basis of mental models and structural equations, respectively. In one experiment, the force theory was uniquely able to account for people's ability to compose causal relationships from complex animations of real-world events. In three additional experiments, the force theory did as well as or better than the other two theories in explaining the causal compositions people generated from linguistically presented causal relations. Implications for causal learning and the hierarchical structure of causal knowledge are discussed. PMID:25653611

  8. The Responsibilities of Accountants

    OpenAIRE

    Ronald F Duska

    2005-01-01

    An accountant is a good accountant if in practicing his craft he is superb in handling the numbers. But a good accountant in handling the numbers can use that skill to misstate earnings to cover a multitude of problems with a company's books while staying within the law. So, the notion of a moral or ethical accountant is not the same as the notion of a good accountant. Our general principle would be that to be ethical a person has a responsibility to fulfil one's role or roles, as long as tha...

  9. Dispersion Forces

    CERN Document Server

    Buhmann, Stefan Yoshi

    2012-01-01

    In this book, a modern unified theory of dispersion forces on atoms and bodies is presented which covers a broad range of advanced aspects and scenarios. Macroscopic quantum electrodynamics is shown to provide a powerful framework for dispersion forces which allows for discussing general properties like their non-additivity and the relation between microscopic and macroscopic interactions. It is demonstrated how the general results can be used to obtain dispersion forces on atoms in the presence of bodies of various shapes and materials. Starting with a brief recapitulation of volume I, this volume II deals especially with bodies of irregular shapes, universal scaling laws, dynamical forces on excited atoms, enhanced forces in cavity quantum electrodynamics, non-equilibrium forces in thermal environments and quantum friction. The book gives both the specialist and those new to the field a thorough overview over recent results in the field. It provides a toolbox for studying dispersion forces in various contex...

  10. Standardized accounting ashore for afloat activities

    OpenAIRE

    Burr, Michael J.

    1996-01-01

    With limited resources and reduced funding for Naval forces, there is a need to standardize accounting ashore for all afloat activities. The purpose of this thesis was to review the framework for standardization of inventory reporting afloat under one stores (inventory) accounting system, referred to as the Material Financial Control System-Retail (MFCS-Retail). Additional analysis was conducted on general funds obligational reporting for afloat Operating Targets (OPTARS) and the conversion t...

  11. Accounting: "Balancing Out" the Accounting Program.

    Science.gov (United States)

    Babcock, Coleen

    1979-01-01

    The vocational accounting laboratory is a viable, meaningful educational experience for high school seniors, due to the uniqueness of its educational approach and the direct involvement of the professional and business community. A balance of experiences is provided to match individual needs and goals of students. (CT)

  12. PARADIGM OF ACCOUNTING CHANGE

    Directory of Open Access Journals (Sweden)

    Constanta Iacob

    2016-12-01

    Full Text Available The words and phrases swop with each other and the apparent stability of a word’s meaning sometimes change in time. This explains why the generic term of accounting is used when referring to the qualities attributed to accounting,but also when it comes to organizing financial accounting function within the entity, and when referring concretely to keeping a double record with its specific means, methods and tools specific, respectively seen as a technical accounting.Speaking about the qualities of accounting, but also about the organizational form it takes, we note that there is a manifold meaning of the word accounting, which is why the purpose of this article is to demonstrate that the paradigm shift aimed at a new set of rules and if the rules changes, then we can change the very purpose of accounting.

  13. Morphodynamic responds of groyne fields to the lowering of crest level of the groynes in the Waal River, The Netherlands

    NARCIS (Netherlands)

    Busnelli, M.M.; Schuurman, F.; Sieben, A.; Wal, Maarten van der; Hector, H.

    2011-01-01

    The lowering of the crest of the groynes in the River Waal is one of the measures being applied in the Netherlands to reduce the water levels at high water conditions. A total of 750 groynes will be lowered lengthwise by 1 to 2 meters. An expected side-effect is sedimentation in the main channel, du

  14. Wolff algorithm and anisotropic continuous-spin models: An application to the spin-van der Waals model

    Science.gov (United States)

    D'onorio de Meo, Marco; Oh, Suhk Kun

    1992-07-01

    The problem of applying Wolff's cluster algorithm to anisotropic classical spin models is resolved by modifying a part of the Wolff algorithm. To test the effectiveness of our modified algorithm, the spin-van der Waals model is investigated in detail. Our estimate of the dynamical exponent of the model is z=0.19+/-0.04.

  15. Effect of a waaL mutation on lipopolysaccharide composition, oxidative stress survival, and virulence in Erwinia amylovora.

    Science.gov (United States)

    Berry, Matthew C; McGhee, Gayle C; Zhao, Youfu; Sundin, George W

    2009-02-01

    Erwinia amylovora, the causal agent of fire blight, is an enterobacterial pathogen of Rosaceous plants including apple and pear. We have been studying the response of E. amylovora to oxidative stress because, during infection, the bacterium elicits an oxidative burst response in host plants. During the screening of a transposon mutant library for hydrogen peroxide sensitivity, we identified a mutant carrying an insertion in waaL, a gene involved in lipopolysaccharide biosynthesis, that was more sensitive to hydrogen peroxide than the parental wild-type strain. We also confirmed that a waaL mutant of Pseudomonas aeruginosa exhibited an increased sensitivity to hydrogen peroxide compared with the wild-type strain. The E. amylovora waaL mutant was also reduced in virulence, showed a decrease in twitching motility, and was more sensitive to polymyxin B than the wild type. Each of these phenotypes was complemented by the cloned waaL gene. Our results highlight the importance of the lipopolysaccharide layer to virulence in E. amylovora and the unexpected finding of an additional function of lipopolysaccharide in protection from oxidative stress in E. amylovora and P. aeruginosa.

  16. Bundle and chirality influences on properties of carbon nanotubes studied with van der Waals density functional theory

    Energy Technology Data Exchange (ETDEWEB)

    Dumlich, Heiko; Gegg, Michael; Reich, Stephanie [Fachbereich Physik, Freie Universitaet Berlin, Arnimallee 14, 14195 Berlin (Germany); Hennrich, Frank [Institut fuer Nanotechnologie, Karlsruhe Institute of Technology, 76021 Karlsruhe (Germany)

    2011-11-15

    We study the binding strength and intertube distance of carbon nanotube bundles in dependence of their structure (chirality) with van der Waals density functional theory. We try to understand the bundling and debundling process of nanotube bundles and test whether an influence of chirality exists. The distance between the nanotubes in the bundles vary only in a small range within 3.3 and 3.4A, without any chiral angle and diameter dependence. We find an increase of van der Waals energy per length with increasing diameter of the nanotubes (E{sub vdW}{sup length}{proportional_to} d or{radical}(d)) for tubes with diameters between 5.6 and 27.3A, but no obvious correlation between the chirality of the tubes and the van der Waals energy per length. The van der Waals energy per atom is decreasing with increasing tube diameter (E{sub vdW}{sup atom}{proportional_to} 1/d or1/{radical}(d)). (Copyright copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  17. High Energy Proton-Proton Elastic Scattering for Large Momentum Transfers and Van der Waals Type Model

    Science.gov (United States)

    Aleem, F.

    1980-03-01

    The most recent measurements of the angular distribution in proton-proton elastic scattering at sqrt{s}=27.4, 45 and 62GeV with squared four momentum transfer, -t, extending up to 14(GeV/c)2, have been explained using Van der Waals type model.

  18. In het kielzog van moderne markten : handel en verkeer op de Rijn, Waal en IJssel, c. 1360-1560

    NARCIS (Netherlands)

    Weststrate, Job Andries

    2007-01-01

    This dissertation studies trade and transport on the rivers Rhine, Waal and IJssel during the Late Middle Ages. These rivers were the main arteries connecting Holland, Flanders and Brabant on the one hand with Guelders, Cleves, Jülich and Cologne on the other hand. The study tries to establish the n

  19. Nonlocal van der Waals functionals: The case of rare-gas dimers and solids

    CERN Document Server

    Tran, Fabien

    2013-01-01

    Recently, the nonlocal van der Waals (vdW) density functionals [M. Dion, H. Rydberg, E. Schroeder, D. C. Langreth, and B. I. Lundqvist, Phys. Rev. Lett. 92, 246401 (2004)] have attracted considerable attention due to their good performance for systems where weak interactions are important. Since the physics of dispersion is included in these functionals, they are usually more accurate and show less erratic behavior than the semilocal and hybrid methods. In this work, several variants of the vdW functionals have been tested on rare-gas dimers (from He2 to Kr2) and solids (Ne, Ar, and Kr) and their accuracy compared to standard semilocal approximations supplemented or not by an atom-pairwise dispersion correction [S. Grimme, J. Antony, S. Ehrlich, and H. Krieg, J. Chem. Phys. 132, 154104 (2010)]. An analysis of the results in terms of energy decomposition is also provided.

  20. Encapsulation of organic molecules in carbon nanotubes: role of the van der Waals interactions

    Science.gov (United States)

    Dappe, Y. J.

    2014-02-01

    Carbon nanotubes are fascinating nano-objects not only from a fundamental point of view but also with respect to their remarkable properties, holding great potential in new materials design. When combined with organic molecules, these properties can be enhanced or modulated in order to fulfil the demand in domains as diverse as molecular electronics, biomaterials or even construction engineering, to name a few. To adequately conceive these hybrid materials it is essential to fully appreciate the nature of molecule-carbon nanotube interactions. In this review, we will discuss some relevant fundamental and applied research done on encapsulated molecules in carbon nanotubes. We will particularly focus on the weak and van der Waals interactions which rule the molecule-tube coupling. Therefore a small state of the art on the theoretical methods used to describe these interactions is presented here. Then, we will discuss various applications of molecular encapsulation, where we will consider structural, magnetic, charge transfer and transport, and optical properties.

  1. Van der Waals-coupled electronic states in incommensurate double-walled carbon nanotubes

    Science.gov (United States)

    Liu, Kaihui; Jin, Chenhao; Hong, Xiaoping; Kim, Jihoon; Zettl, Alex; Wang, Enge; Wang, Feng

    2014-10-01

    Non-commensurate two-dimensional materials such as a twisted graphene bilayer or graphene on boron nitride, consisting of components that have no finite common unit cell, exhibit emerging moiré physics such as novel Van Hove singularities, Fermi velocity renormalization, mini Dirac points and Hofstadter butterflies. Here we use double-walled carbon nanotubes as a model system for probing moiré physics in incommensurate one-dimensional systems, by combining structural and optical characterizations. We show that electron wavefunctions between incommensurate inner- and outer-wall nanotubes can hybridize strongly, contrary to the conventional wisdom of negligible electron hybridization due to destructive interference. The chirality-dependent inter-tube electronic coupling is described by one-dimensional zone folding of the electronic structure of twisted-and-stretched graphene bilayers. Our results demonstrate that incommensurate van der Waals interactions can be important for engineering the electronic structure and optical properties of one-dimensional materials.

  2. Graphene/h-BN/ZnO van der Waals tunneling heterostructure based ultraviolet photodetector.

    Science.gov (United States)

    Wu, Zhiqian; Li, Xiaoqiang; Zhong, Huikai; Zhang, Shengjiao; Wang, Peng; Kim, Tae-ho; Kwak, Sung Soo; Liu, Cheng; Chen, Hongsheng; Kim, Sang-Woo; Lin, Shisheng

    2015-07-27

    We report a novel ultraviolet photodetector based on graphene/h-BN/ZnO van der Waals heterostructure. Graphene/ZnO heterostructure shows poor rectification behavior and almost no photoresponse. In comparison, graphene/h-BN/ZnO structure shows improved electrical rectified behavior and surprising high UV photoresponse (1350AW(-1)), which is two or three orders magnitude larger than reported GaN UV photodetector (0.2~20AW(-1)). Such high photoresponse mainly originates from the introduction of ultrathin two-dimensional (2D) insulating h-BN layer, which behaves as the tunneling layer for holes produced in ZnO and the blocking layer for holes in graphene. The graphene/h-BN/ZnO heterostructure should be a novel and representative 2D heterostructure for improving the performance of 2D materials/Semiconductor heterostructure based optoelectronic devices.

  3. Strain induced piezoelectric effect in black phosphorus and MoS2 van der Waals heterostructure.

    Science.gov (United States)

    Huang, Le; Li, Yan; Wei, Zhongming; Li, Jingbo

    2015-11-10

    The structural, electronic, transport and optical properties of black phosphorus/MoS2 (BP/MoS2) van der Waals (vdw) heterostructure are investigated by using first principles calculations. The band gap of BP/MoS2 bilayer decreases with the applied normal compressive strain and a semiconductor-to-metal transition is observed when the applied strain is more than 0.85 Å. BP/MoS2 bilayer also exhibits modulation of its carrier effective mass and carrier concentration by the applied compressive strain, suggesting that mobility engineering and good piezoelectric effect can be realized in BP/MoS2 heterostructure. Because the type-II band alignment can facilitate the separation of photo-excited electrons and holes, and it can benefit from the great absorption coefficient in ultra-violet region, the BP/MoS2 shows great potential to be a very efficient ultra-violet photodetector.

  4. Van der Waals potential and vibrational energy levels of the ground state radon dimer

    Science.gov (United States)

    Sheng, Xiaowei; Qian, Shifeng; Hu, Fengfei

    2017-08-01

    In the present paper, the ground state van der Waals potential of the Radon dimer is described by the Tang-Toennies potential model, which requires five essential parameters. Among them, the two dispersion coefficients C6 and C8 are estimated from the well determined dispersion coefficients C6 and C8 of Xe2. C10 is estimated by using the approximation equation that C6C10 / C82 has an average value of 1.221 for all the rare gas dimers. With these estimated dispersion coefficients and the well determined well depth De and Re the Born-Mayer parameters A and b are derived. Then the vibrational energy levels of the ground state radon dimer are calculated. 40 vibrational energy levels are observed in the ground state of Rn2 dimer. The last vibrational energy level is bound by only 0.0012 cm-1.

  5. Coulomb expansion of a van der Waals C60 solid film

    Institute of Scientific and Technical Information of China (English)

    薛其坤; 厉建龙; 孙牧; 陆华; T.Hashizume; Y.Hasegawa; K.Ohno; Y.Kawazoe; T.Sakurai; H.Kamiyama; H.Shinohara

    2000-01-01

    Scanning tunneling microscopy study revealed a van der Waals C60, solid film with 13% room-temperature lattice expansion on the GaAs(001) 2×4 surface. The mechanism involves fundamental Coulomb interaction due to charge transfer from the GaAs substrate. Theoretical calculation determines the charge transfer to be 1.76 electrons per C60 molecule. Oriented at its (110) crystallo-graphic axis this film also distinguishes itself from those formed on all other semiconductor and metal substrates where only the low-energy (111) hexagonal packing of C60 molecules was developed. It is shown that this is due to the one-dimensional confinement effect of the anisotropic substrate, which may have the prospect of controlling crystal growth.

  6. Communication: evidence of stable van der Waals CO2 clusters relevant to Venus atmosphere conditions.

    Science.gov (United States)

    Asfin, Ruslan E; Buldyreva, Jeanna V; Sinyakova, Tatyana N; Oparin, Daniil V; Filippov, Nikolai N

    2015-02-07

    Non-intrusive spectroscopic probing of weakly bound van der Waals complexes forming in gaseous carbon dioxide is generally performed at low pressures, for instance in supersonic jets, where the low temperature favors dimers, or in few-atmosphere samples, where the signature of dimers varying as the squared gas density is entangled with the dominating collision-induced absorption. We report experimental and theoretical results on CO2 dimers at very high pressures approaching the liquid phase. We observe that the shape of the CO2-dimer bands undergoes a distinctive line-mixing transformation, which reveals an unexpected stability of the dimers despite the collisions with the surrounding particles and negates the common belief that CO2 dimers are short-lived complexes. Our results furnish a deeper insight allowing a better modeling of CO2-rich atmospheres and provide also a new spectroscopic tool for studying the robustness of molecular clusters.

  7. Van Der Waals Heterostructures between Small Organic Molecules and Layered Substrates

    Directory of Open Access Journals (Sweden)

    Han Huang

    2016-09-01

    Full Text Available Two dimensional atomic crystals, like grapheme (G and molybdenum disulfide (MoS2, exhibit great interest in electronic and optoelectronic applications. The excellent physical properties, such as transparency, semiconductivity, and flexibility, make them compatible with current organic electronics. Here, we review recent progress in the understanding of the interfaces of van der Waals (vdW heterostructures between small organic molecules (pentacene, copper phthalocyanine (CuPc, perylene-3,4,9,10-tetracarboxylic dianhydride (PTCDA, and dioctylbenzothienobenzothiophene (C8-BTBT and layered substrates (G, MoS2 and hexagonal boron nitride (h-BN. The influences of the underlying layered substrates on the molecular arrangement, electronic and vibrational properties will be addressed.

  8. Cavitation inception of a van der Waals fluid at a sack-wall obstacle

    CERN Document Server

    Kaehler, G; Gonnella, G; Lamura, A

    2016-01-01

    Cavitation in a liquid moving past a constraint is numerically investigated by means of a free-energy lattice Boltzmann simulation based on the van der Waals equation of state. The fluid is streamed past an obstacle and, depending on the pressure drop between inlet and outlet, vapor formation underneath the corner of the sack-wall is observed. The circumstances of cavitation formation are investigated and it is found that the local bulk pressure and mean stress are insufficient to explain the phenomenon. Results obtained in this study strongly suggest that the viscous stress, interfacial contributions to the local pressure, and the Laplace pressure are relevant to the opening of a vapor cavity. This can be described by a generalization of Joseph's criterion that includes these contributions. A macroscopic investigation measuring mass flow rate behavior and discharge coefficient was also performed. As theoretically predicted, mass flow rate increases linearly with the square root of the pressure drop. However,...

  9. Scanning tunneling spectroscopy of van der Waals graphene/semiconductor interfaces: absence of Fermi level pinning

    Science.gov (United States)

    Le Quang, T.; Cherkez, V.; Nogajewski, K.; Potemski, M.; Dau, M. T.; Jamet, M.; Mallet, P.; Veuillen, J.-Y.

    2017-09-01

    We have investigated the electronic properties of two-dimensional (2D) transition metal dichalcogenides (TMDs), namely trilayer WSe2 and monolayer MoSe2, deposited on epitaxial graphene on silicon carbide, by using scanning tunneling microscopy and spectroscopy (STM/STS) in ultra-high vacuum. Depending on the number of graphene layers below the TMD flakes, we identified variations in the electronic dI/dV(V) spectra measured by the STM tip: the most salient feature is a rigid shift of the TMD spectra (i.e. of the different band onset positions) towards occupied states by about 120 mV when passing from bilayer to monolayer underlying graphene. Since both graphene phases are metallic and present a work function difference in the same energy range, our measurements point towards the absence of Fermi-level pinning for such van der Waals 2D TMD/Metal heterojunctions, following the prediction of the Schottky-Mott model.

  10. Bounds of Falk and Bruch in the low temperature Van der Waals model

    Energy Technology Data Exchange (ETDEWEB)

    Lee, M.H.; Kim, I.M. (Georgia Univ., Athens (USA). Dept. of Physics)

    For many-body systems, the susceptibility and the fluctuation in the long-range order can be different. There are bounds on the ratio of the susceptibility to the fluctuation due to Falk and Bruch, according to which the two correlation functions cannot be entirely independent. For the spin van der Waals model, we obtain exact expressions for the susceptibility and fluctuation in the low temperature region. We find that the susceptibilty are the same in the XY-like regime of the model but they are different in the Ising-like regime. In both cases the bounds do not merge. Thus, the bounds alone are not sufficient to explain the relative behavior of the susceptibility and fluctuation.

  11. Band structure engineering in van der Waals heterostructures via dielectric screening: the GΔW method

    DEFF Research Database (Denmark)

    Winther, Kirsten Trøstrup; Thygesen, Kristian Sommer

    2017-01-01

    precise magnitude is non-trivial to predict because of the non-local nature of the screening in quasi-2D crystals. Moreover, the effect is not captured by effective single-particle methods such as density functional theory. Here we present an efficient and general method for calculating the band gap......The idea of combining different two-dimensional (2D) crystals in van der Waals heterostructures (vdWHs) has led to a new paradigm for band structure engineering with atomic precision. Due to the weak interlayer couplings, the band structures of the individual 2D crystals are largely preserved upon...... formation of the heterostructure. However, regardless of the details of the interlayer hybridisation, the size of the 2D crystal band gaps are always reduced due to the enhanced dielectric screening provided by the surrounding layers. The effect can be significant (on the order of electron volts) but its...

  12. Experiment and computation: a combined approach to study the van der Waals complexes

    Directory of Open Access Journals (Sweden)

    Surin L.A.

    2017-01-01

    Full Text Available A review of recent results on the millimetre-wave spectroscopy of weakly bound van der Waals complexes, mostly those which contain H2 and He, is presented. In our work, we compared the experimental spectra to the theoretical bound state results, thus providing a critical test of the quality of the M–H2 and M–He potential energy surfaces (PESs which are a key issue for reliable computations of the collisional excitation and de-excitation of molecules (M = CO, NH3, H2O in the dense interstellar medium. The intermolecular interactions with He and H2 play also an important role for high resolution spectroscopy of helium or para-hydrogen clusters doped by a probe molecule (CO, HCN. Such experiments are directed on the detection of superfluid response of molecular rotation in the He and p-H2 clusters.

  13. Enhanced van der Waals epitaxy via electron transfer-enabled interfacial dative bond formation

    CERN Document Server

    Xie, Weiyu; Wang, Gwo-Ching; Bhat, Ishwara; Zhang, Shengbai

    2016-01-01

    Enhanced van der Waals (vdW) epitaxy of semiconductors on layered vdW substrate is identified as the formation of dative bonds. For example, despite that NbSe2 is a vdW layered material, first-principles calculations reveal that the bond strength at CdTe-NbSe2 interface is five times as large as that of vdW interaction at CdTe-graphene interface. The unconventional chemistry here is enabled by an effective net electron transfer from Cd dangling-bond states at CdTe surface to metallic non-bonding NbSe2 states, which is a necessary condition to activate the Cd for enhanced binding with Se.

  14. Tuning the Schottky barrier in the arsenene/graphene van der Waals heterostructures by electric field

    Science.gov (United States)

    Li, Wei; Wang, Tian-Xing; Dai, Xian-Qi; Wang, Xiao-Long; Ma, Ya-Qiang; Chang, Shan-Shan; Tang, Ya-Nan

    2017-04-01

    Using density functional theory calculations, we investigate the electronic properties of arsenene/graphene van der Waals (vdW) heterostructures by applying external electric field perpendicular to the layers. It is demonstrated that weak vdW interactions dominate between arsenene and graphene with their intrinsic electronic properties preserved. We find that an n-type Schottky contact is formed at the arsenene/graphene interface with a Schottky barrier of 0.54 eV. Moreover, the vertical electric field can not only control the Schottky barrier height but also the Schottky contacts (n-type and p-type) and Ohmic contacts (n-type) at the interface. Tunable p-type doping in graphene is achieved under the negative electric field because electrons can transfer from the Dirac point of graphene to the conduction band of arsenene. The present study would open a new avenue for application of ultrathin arsenene/graphene heterostructures in future nano- and optoelectronics.

  15. The Van der Waals interaction of the hydrogen molecule an exact local energy density functional

    CERN Document Server

    Choy, T C

    1999-01-01

    We verify that the van der Waals interaction and hence all dispersion interactions for the hydrogen molecule given by: W''= -{A/R^6}-{B/R^8}-{C/R^10}- ..., in which R is the internuclear separation, are exactly soluble. The constants A=6.4990267..., B=124.3990835 ... and C=1135.2140398... (in Hartree units) first obtained approximately by Pauling and Beach (PB) [1] using a linear variational method, can be shown to be obtainable to any desired accuracy via our exact solution. In addition we shall show that a local energy density functional can be obtained, whose variational solution rederives the exact solution for this problem. This demonstrates explicitly that a static local density functional theory exists for this system. We conclude with remarks about generalising the method to other hydrogenic systems and also to helium.

  16. Stability of Complex Biomolecular Structures: Vander Waals, Hydrogen Bond Cooperativity, and Nuclear Quantum Effects

    CERN Document Server

    Rossi, Mariana; Michaelides, Angelos

    2016-01-01

    Biomolecules are complex systems stabilized by a delicate balance of weak interactions, making it important to assess all energetic contributions in an accurate manner. However, it is a priori unclear which contributions make more of an impact. Here, we examine stacked polyglutamine (polyQ) strands, a peptide repeat often found in amyloid aggregates. We investigate the role of hydrogen bond (HB) cooperativity, van der Waals (vdW) dispersion interactions, and quantum contributions to free energies, including anharmonicities through density functional theory and ab initio path integral simulations. Of these various factors, we find that the largest impact on structural stabilization comes from vdW interactions. HB cooperativity is the second largest contribution as the size of the stacked chain grows. Competing nuclear quantum effects make the net quantum contribution small but very sensitive to anharmonicities, vdW, and the number of HBs. Our results suggest that a reliable treatment of these systems can only ...

  17. Van der Waals-Casimir-Polder interaction of an atom with a composite surface

    CERN Document Server

    Eizner, Elad; Henkel, Carsten

    2012-01-01

    We study the dispersion interaction of the van der Waals and Casimir-Polder (vdW-CP) type between a neutral atom and the surface of a metal by allowing for nonlocal electrodynamics, i.e. electron diffusion. We consider two models: (i) bulk diffusion, and (ii) diffusion in a surface charge layer. In both cases the transition to a semiconductor is continuous as a function of the conductivity, unlike the case of a local model. The relevant parameter is the electric screening length and depends on the carrier diffusion constant. We find that for distances comparable to the screening length, vdW-CP data can distinguish between bulk and surface diffusion, hence it can be a sensitive probe for surface states.

  18. Van der Waals interactions between polymers with sequence-specific polarizabilities: Stiff polymers and Gaussian coils

    Science.gov (United States)

    Lu, Bing-Sui; Naji, Ali; Podgornik, Rudolf

    2016-01-01

    We consider the van der Waals interaction between a pair of polymers with quenched heterogeneous sequences of local polarizabilities along their backbones, and study the effective pairwise interaction energy for both stiff polymers and flexible Gaussian coils. In particular, we focus on the cases where the pair of polarizability sequences are (i) distinct and (ii) identical. We find that the pairwise interaction energies of distinct and identical Gaussian coils are both isotropic and exhibit the same decay behavior for separations larger than their gyration radius, in contradistinction to the orientationally anisotropic interaction energies of distinct and identical stiff polymers. For both Gaussian coils and stiff polymers, the attractive interaction between identical polymers is enhanced if the polarizability sequence is more heterogeneous.

  19. The T-shaped KrI2(ion-pair states) van der Waals complexes

    Science.gov (United States)

    Baturo, V. V.; Kevorkyants, R.; Lukashov, S. S.; Poretsky, S. A.; Pravilov, A. M.; Zhironkin, A. I.

    2017-09-01

    The T-shaped KrI2(E0g+) van der Waals complexes have been observed and studied for the first time. Analysis of the luminescence excitation spectra as well as luminescence spectra themselves in the spectral ranges, where the I2(E0g+ → B0u+, D0u+ → X0g+, β1g → A1u and D‧2g → A‧2u) transitions can occur, has been carried out. Branching ratios of the iodine molecule state formation and vibronic level population, as well as the potential parameters of the KrI2(E,vE = 0-8, nE) complexes have been determined. Binding energies of the KrI2(X0g+,vX = 0, nX = 0 and B0u+, vB = 19, nB = 0) complexes have been also estimated.

  20. Thermodynamic properties of van der Waals fluids from Monte Carlo simulations and perturbative Monte Carlo theory.

    Science.gov (United States)

    Díez, A; Largo, J; Solana, J R

    2006-08-21

    Computer simulations have been performed for fluids with van der Waals potential, that is, hard spheres with attractive inverse power tails, to determine the equation of state and the excess energy. On the other hand, the first- and second-order perturbative contributions to the energy and the zero- and first-order perturbative contributions to the compressibility factor have been determined too from Monte Carlo simulations performed on the reference hard-sphere system. The aim was to test the reliability of this "exact" perturbation theory. It has been found that the results obtained from the Monte Carlo perturbation theory for these two thermodynamic properties agree well with the direct Monte Carlo simulations. Moreover, it has been found that results from the Barker-Henderson [J. Chem. Phys. 47, 2856 (1967)] perturbation theory are in good agreement with those from the exact perturbation theory.

  1. Improving the accuracy of the nonlocal van der Waals density functional with minimal empiricism.

    Science.gov (United States)

    Vydrov, Oleg A; Van Voorhis, Troy

    2009-03-14

    The nonlocal van der Waals density functional (vdW-DF) captures the essential physics of the dispersion interaction not only in the asymptotic regime but also for a general case of overlapping fragment densities. A balanced treatment of other energetic contributions, such as exchange, is crucial if we aim for accurate description of various properties of weakly bound systems. In this paper, the vdW-DF correlation functional is modified to make it better compatible with accurate exchange functionals. We suggest a slightly simplified construction of the nonlocal correlation, yielding more accurate asymptotic C(6) coefficients. We also derive a gradient correction, containing a parameter that can be adjusted to suit an exchange functional of choice. We devise a particularly apt combination of exchange and correlation terms, which satisfies many important constraints and performs well for our benchmark tests.

  2. Quantum transport across van der Waals domain walls in bilayer graphene

    Science.gov (United States)

    Abdullah, H. M.; Van Duppen, B.; Zarenia, M.; Bahlouli, H.; Peeters, F. M.

    2017-10-01

    Bilayer graphene can exhibit deformations such that the two graphene sheets are locally detached from each other resulting in a structure consisting of domains with different van der Waals inter-layer coupling. Here we investigate how the presence of these domains affects the transport properties of bilayer graphene. We derive analytical expressions for the transmission probability, and the corresponding conductance, across walls separating different inter-layer coupling domains. We find that the transmission can exhibit a valley-dependent layer asymmetry and that the domain walls have a considerable effect on the chiral tunnelling properties of the charge carriers. We show that transport measurements allow one to obtain the strength with which the two layers are coupled. We perform numerical calculations for systems with two domain walls and find that the availability of multiple transport channels in bilayer graphene significantly modifies the conductance dependence on inter-layer potential asymmetry.

  3. Exploring the van der Waals Atom-Surface attraction in the nanometric range

    CERN Document Server

    Fichet, M; Yarovitski, A; Todorov, P; Hamdi, I; Maurin, I; Saltiel, S; Sarkisyan, D; Gorza, M P; Bloch, D; Ducloy, M; Fichet, Mich\\`{e}le; Dutier, Gabriel; Yarovitski, Alexander; Todorov, Petko; Hamdi, Ismah\\`{e}ne; Maurin, Isabelle; Saltiel, Solomon; Sarkisyan, David; Gorza, Marie-Pascale; Bloch, Daniel; Ducloy, Martial

    2006-01-01

    The van der Waals atom-surface attraction, scaling as C3 z-3 for z the atom-surface distance, is expected to be valid for ~ 1-1000 nm, covering 8-10 orders of magnitudes in the interaction energy. Thanks to a Cs vapor nanocell, we analyze the spectroscopic modifications induced by the atom-surface attraction on the 6P3/2->6D5/2 transition. The C3 value, extracted independently for various thicknesses ranging from 40 nm to 130 nm, is found to be independent of the thickness. It agrees, but only within a factor of 2, with an elementary theoretical prediction, whose validity is discussed.

  4. 1-D Van der Waals Foams Heated by Ion Beam Energy Deposition

    Energy Technology Data Exchange (ETDEWEB)

    Zylstra, A; Barnard, J J; More, R M

    2010-03-19

    One dimensional simulations of various initial average density aluminum foams (modeled as slabs of solid metal separated by low density regions) heated by volumetric energy deposition are conducted with a Lagrangian hydrodynamics code using a van der Waals equation of state (EOS). The resulting behavior is studied to facilitate the design of future warm dense matter (WDM) experiments at LBNL. In the simulations the energy deposition ranges from 10 to 30 kJ/g and from 0.075 to 4.0 ns total pulse length, resulting in temperatures from approximately 1 to 4 eV. We study peak pressures and temperatures in the foams, expansion velocity, and the phase evolution. Five relevant time scales in the problem are identified. Additionally, we present a method for characterizing the level of inhomogeneity in a foam target as it is heated and the time it takes for a foam to homogenize.

  5. 1-D Van der Waals Foams Heated by Ion Beam Energy Deposition

    Energy Technology Data Exchange (ETDEWEB)

    Zylstra, A. B.; Barnard, J. J.; More, R. M.

    2009-12-23

    One dimensional simulations of various initial average density aluminum foams (modeled as slabs of solid metal separated by low density regions) heated by volumetric energy deposition are conducted with a Lagrangian hydrodynamics code using a van der Waals equation of tate (EOS). The resulting behavior is studied to facilitate the design of future warm dense matter (WDM) experiments at LBNL. In the simulations the energy deposition ranges from 10 to 30 kJ/g and from 0.075 to 4.0 ns total pulse length, resulting in temperatures from approximately 1 o 4 eV. We study peak pressures and temperatures in the foams, expansion velocity, and the phase evolution. Five relevant time scales in the problem are identified. Additionally, we present a method for characterizing the level of inhomogeneity in a foam target as it is heated and the time it takes for a foam to homogenize.

  6. Nonclassical Riemann solvers and kinetic relations III: A nonconvex hyperbolic model for Van der Waals fluids

    Directory of Open Access Journals (Sweden)

    Philippe G. LeFloch

    2000-12-01

    Full Text Available This paper deals with the so-called p-system describing the dynamics of isothermal and compressible fluids. The constitutive equation is assumed to have the typical convexity/concavity properties of the van der Waals equation. We search for discontinuous solutions constrained by the associated mathematical entropy inequality. First, following a strategy proposed by Abeyaratne and Knowles and by Hayes and LeFloch, we describe here the whole family of nonclassical Riemann solutions for this model. Second, we supplement the set of equations with a kinetic relation for the propagation of nonclassical undercompressive shocks, and we arrive at a uniquely defined solution of the Riemann problem. We also prove that the solutions depend $L^1$-continuously upon their data. The main novelty of the present paper is the presence of two inflection points in the constitutive equation. The Riemann solver constructed here is relevant for fluids in which viscosity and capillarity effects are kept in balance.

  7. Turbulent mixing of a slightly supercritical Van der Waals fluid at Low-Mach number

    CERN Document Server

    Battista, Francesco; Casciola, Carlo Massimo

    2014-01-01

    Supercritical fluids near the critical point are characterized by liquid-like densities and gas-like transport properties. These features are purposely exploited in different contexts ranging from natural products extraction/fractionation to aerospace propulsion. Large part of studies concerns this last context, focusing on the dynamics of supercritical fluids at high Mach number where compressibility and thermodynamics strictly interact. Despite the widespread use also at low Mach number, the turbulent mixing properties of slightly supercritical fluids have still not investigated in detail in this regime. This topic is addressed here by dealing with Direct Numerical Simulations (DNS) of a coaxial jet of a slightly supercritical Van der Waals fluid. Since acoustic effects are irrelevant in the Low Mach number conditions found in many industrial applications, the numerical model is based on a suitable low-Mach number expansion of the governing equation. According to experimental observations, the weakly superc...

  8. Nucleotide insertion initiated by van derWaals interaction during polymerase beta DNA replication

    Indian Academy of Sciences (India)

    Andrew Das Arulsamy

    2013-09-01

    We present here an unambiguous theoretical analyses and to show that the exclusive biochemical reaction involved in a single nucleotide insertion into the DNA primer can be efficiently tracked using the renormalized van derWaals (vdW) interaction of a stronger type, the Hermansson blue-shifting hydrogen bond effect, and the Arunan composite hydrogen-vdW bond. We find that there are two biochemical steps involved to complete the insertion of a single base (cytosine) into the 3' end of a DNA primer. First, the O3' (from a DNA primer) initiates the nucleophilic attack on P (from an incoming dCTP), in response, O3 (bonded to P) interacts with H' (bonded to O3'). These interactions are shown to be strongly interdependent and require the forming and breaking of P—O and H—O covalent bonds, which in turn imply that we do not need any external energy supply.

  9. A self-consistent GW approach to the van der Waals potential for a helium dimer.

    Science.gov (United States)

    Shoji, Toru; Kuwahara, Riichi; Ono, Shota; Ohno, Kaoru

    2016-09-21

    van der Waals interaction between two helium (He) atoms is studied by calculating the total energy as a function of the He-He distance within the self-consistent GW approximation, which is expected to behave correctly in the long wavelength limit. In the Born-Oppenheimer (BO) approximation, the pair potential curve has its minimum value at 2.87 Å, which is somewhat larger than the local density approximation result, 2.40 Å, and is closer to previous quantum chemistry results. The expectation value for the interatomic distance, calculated by solving the Schrödinger equation for the two nuclei problem using the BO potential energy curve, is 30 Å, which is smaller but of the same order as previous experimental and theoretical results.

  10. Hydration free energies of cyanide and hydroxide ions from molecular dynamics simulations with accurate force fields

    Science.gov (United States)

    Lee, M.W.; Meuwly, M.

    2013-01-01

    The evaluation of hydration free energies is a sensitive test to assess force fields used in atomistic simulations. We showed recently that the vibrational relaxation times, 1D- and 2D-infrared spectroscopies for CN(-) in water can be quantitatively described from molecular dynamics (MD) simulations with multipolar force fields and slightly enlarged van der Waals radii for the C- and N-atoms. To validate such an approach, the present work investigates the solvation free energy of cyanide in water using MD simulations with accurate multipolar electrostatics. It is found that larger van der Waals radii are indeed necessary to obtain results close to the experimental values when a multipolar force field is used. For CN(-), the van der Waals ranges refined in our previous work yield hydration free energy between -72.0 and -77.2 kcal mol(-1), which is in excellent agreement with the experimental data. In addition to the cyanide ion, we also study the hydroxide ion to show that the method used here is readily applicable to similar systems. Hydration free energies are found to sensitively depend on the intermolecular interactions, while bonded interactions are less important, as expected. We also investigate in the present work the possibility of applying the multipolar force field in scoring trajectories generated using computationally inexpensive methods, which should be useful in broader parametrization studies with reduced computational resources, as scoring is much faster than the generation of the trajectories.

  11. Thioarsenides: A case for long-range Lewis acid-base-directed van der Waals interactions

    Energy Technology Data Exchange (ETDEWEB)

    Gibbs, Gerald V.; Wallace, Adam F.; Downs, R. T.; Ross, Nancy L.; Cox, David F.; Rosso, Kevin M.

    2011-04-01

    Electron density distributions, bond paths, Laplacian and local energy density properties have been calculated for a number of As4Sn (n = 3,4,5) thioarsenide molecular crystals. On the basis of the distributions, the intramolecular As-S and As-As interactions classify as shared bonded interactions and the intermolecular As-S, As-As and S-S interactions classify as closed-shell van der Waals bonded interactions. The bulk of the intermolecular As-S bond paths link regions of locally concentrated electron density (Lewis base regions) with aligned regions of locally depleted electron density (Lewis acid regions) on adjacent molecules. The paths are comparable with intermolecular paths reported for several other molecular crystals that link aligned Lewis base and acid regions in a key-lock fashion, interactions that classified as long range Lewis acid-base directed van der Waals interactions. As the bulk of the intermolecular As-S bond paths (~70%) link Lewis acid-base regions on adjacent molecules, it appears that molecules adopt an arrangement that maximizes the number of As-S Lewis acid-base intermolecular bonded interactions. The maximization of the number of Lewis acid-base interactions appears to be connected with the close-packed array adopted by molecules: distorted cubic close-packed arrays are adopted for alacránite, pararealgar, uzonite, realgar and β-AsS and the distorted hexagonal close-packed arrays adopted by α- and β-dimorphite. A growth mechanism is proposed for thioarsenide molecular crystals from aqueous species that maximizes the number of long range Lewis acid-base vdW As-S bonded interactions with the resulting directed bond paths structuralizing the molecules as a molecular crystal.

  12. Layer-dependent ferromagnetism in a van der Waals crystal down to the monolayer limit

    Science.gov (United States)

    Huang, Bevin; Clark, Genevieve; Navarro-Moratalla, Efrén; Klein, Dahlia R.; Cheng, Ran; Seyler, Kyle L.; Zhong, Ding; Schmidgall, Emma; McGuire, Michael A.; Cobden, David H.; Yao, Wang; Xiao, Di; Jarillo-Herrero, Pablo; Xu, Xiaodong

    2017-06-01

    Since the discovery of graphene, the family of two-dimensional materials has grown, displaying a broad range of electronic properties. Recent additions include semiconductors with spin-valley coupling, Ising superconductors that can be tuned into a quantum metal, possible Mott insulators with tunable charge-density waves, and topological semimetals with edge transport. However, no two-dimensional crystal with intrinsic magnetism has yet been discovered; such a crystal would be useful in many technologies from sensing to data storage. Theoretically, magnetic order is prohibited in the two-dimensional isotropic Heisenberg model at finite temperatures by the Mermin-Wagner theorem. Magnetic anisotropy removes this restriction, however, and enables, for instance, the occurrence of two-dimensional Ising ferromagnetism. Here we use magneto-optical Kerr effect microscopy to demonstrate that monolayer chromium triiodide (CrI3) is an Ising ferromagnet with out-of-plane spin orientation. Its Curie temperature of 45 kelvin is only slightly lower than that of the bulk crystal, 61 kelvin, which is consistent with a weak interlayer coupling. Moreover, our studies suggest a layer-dependent magnetic phase, highlighting thickness-dependent physical properties typical of van der Waals crystals. Remarkably, bilayer CrI3 displays suppressed magnetization with a metamagnetic effect, whereas in trilayer CrI3 the interlayer ferromagnetism observed in the bulk crystal is restored. This work creates opportunities for studying magnetism by harnessing the unusual features of atomically thin materials, such as electrical control for realizing magnetoelectronics, and van der Waals engineering to produce interface phenomena.

  13. An oscillation free shock-capturing method for compressible van der Waals supercritical fluid flows

    Science.gov (United States)

    Pantano, C.; Saurel, R.; Schmitt, T.

    2017-04-01

    Numerical solutions of the Euler equations using real gas equations of state (EOS) often exhibit serious inaccuracies. The focus here is the van der Waals EOS and its variants (often used in supercritical fluid computations). The problems are not related to a lack of convexity of the EOS since the EOS are considered in their domain of convexity at any mesh point and at any time. The difficulties appear as soon as a density discontinuity is present with the rest of the fluid in mechanical equilibrium and typically result in spurious pressure and velocity oscillations. This is reminiscent of well-known pressure oscillations occurring with ideal gas mixtures when a mass fraction discontinuity is present, which can be interpreted as a discontinuity in the EOS parameters. We are concerned with pressure oscillations that appear just for a single fluid each time a density discontinuity is present. The combination of density in a nonlinear fashion in the EOS with diffusion by the numerical method results in violation of mechanical equilibrium conditions which are not easy to eliminate, even under grid refinement. A cure to this problem is developed in the present paper for the van der Waals EOS based on previous ideas. A special extra field and its corresponding evolution equation is added to the flow model. This new field separates the evolution of the nonlinear part of the density in the EOS and produce oscillation free solutions. The extra equation being nonconservative the behavior of two established numerical schemes on shocks computation is studied and compared to exact reference solutions that are available in the present context. The analysis shows that shock conditions of the nonconservative equation have important consequence on the results. Last, multidimensional computations of a supercritical gas jet is performed to illustrate the benefits of the present method, compared to conventional flow solvers.

  14. Density, structure, and dynamics of water: the effect of van der Waals interactions.

    Science.gov (United States)

    Wang, Jue; Román-Pérez, G; Soler, Jose M; Artacho, Emilio; Fernández-Serra, M-V

    2011-01-14

    It is known that ab initio molecular dynamics (AIMD) simulations of liquid water at ambient conditions, based on the generalized gradient approximation (GGA) to density functional theory (DFT), with commonly used functionals fail to produce structural and diffusive properties in reasonable agreement with experiment. This is true for canonical, constant temperature simulations where the density of the liquid is fixed to the experimental density. The equilibrium density, at ambient conditions, of DFT water has recently been shown by Schmidt et al. [J. Phys. Chem. B, 113, 11959 (2009)] to be underestimated by different GGA functionals for exchange and correlation, and corrected by the addition of interatomic pair potentials to describe van der Waals (vdW) interactions. In this contribution we present a DFT-AIMD study of liquid water using several GGA functionals as well as the van der Waals density functional (vdW-DF) of Dion et al. [Phys. Rev. Lett. 92, 246401 (2004)]. As expected, we find that the density of water is grossly underestimated by GGA functionals. When a vdW-DF is used, the density improves drastically and the experimental diffusivity is reproduced without the need of thermal corrections. We analyze the origin of the density differences between all the functionals. We show that the vdW-DF increases the population of non-H-bonded interstitial sites, at distances between the first and second coordination shells. However, it excessively weakens the H-bond network, collapsing the second coordination shell. This structural problem is partially associated to the choice of GGA exchange in the vdW-DF. We show that a different choice for the exchange functional is enough to achieve an overall improvement both in structure and diffusivity.

  15. Band structure engineering in van der Waals heterostructures via dielectric screening: the GΔW method

    Science.gov (United States)

    Winther, Kirsten T.; Thygesen, Kristian S.

    2017-06-01

    The idea of combining different two-dimensional (2D) crystals in van der Waals heterostructures (vdWHs) has led to a new paradigm for band structure engineering with atomic precision. Due to the weak interlayer couplings, the band structures of the individual 2D crystals are largely preserved upon formation of the heterostructure. However, regardless of the details of the interlayer hybridisation, the size of the 2D crystal band gaps are always reduced due to the enhanced dielectric screening provided by the surrounding layers. The effect can be significant (on the order of electron volts) but its precise magnitude is non-trivial to predict because of the non-local nature of the screening in quasi-2D crystals. Moreover, the effect is not captured by effective single-particle methods such as density functional theory. Here we present an efficient and general method for calculating the band gap renormalization of a 2D material embedded in an arbitrary vdWH. The method evaluates the change in the GW self-energy of the 2D material from the change in the screened Coulomb interaction. The latter is obtained using the quantum-electrostatic heterostructure (QEH) model. We benchmark the GΔW method against full first-principles GW calculations and use it to unravel the importance of screening-induced band structure renormalisation in various vdWHs. A main result is the observation that the size of the band gap reduction of a given 2D material when inserted into a heterostructure scales inversely with the polarisability of the 2D material. Our work demonstrates that dielectric engineering via van der Waals heterostructuring represents a promising strategy for tailoring the band structure of 2D materials.

  16. Electrical Transport and Thermal Expansion in van der Waals Materials: Graphene and Topological Insulator

    Science.gov (United States)

    Jing, Lei

    Novel two-dimensional materials with weak interlayer Van der Waals interaction are fantastic platforms to study novel physical phenomena. This thesis describes our investigation on two different Van der Waals materials: graphene and bismuth selenide with calcium doping (CaxBi 2-xSe3, x as the doping level) in the topological insulator family. Firstly, we characterize the electrical transport behaviors of high-quality substrate-supported bilayer graphene devices with suspended metal gates. The device exhibits a transport gap induced by external electric field with an on/off ratio of 20,000, which could be explained by variable range hoping between localized states or disordered charge puddles. At large magnetic field, the device presents quantum Hall plateau at fractional values of conductance quantum, which arises from the equilibration of edge states between differentially doped regions. Secondly, we present our study on the electronic transport of CaxBi 2-xSe3 thin films, which are three-dimensional topological insulators and coupled with superconducting leads. In these novel Josephson transistors, we observe different characteristic features by energy dispersion spectrum (EDS) and Raman spectroscopy, and the weak suppression in the critical current Ic. Thirdly, we explore the thermal expansion of suspended graphene. By in-situ scanning electron microscope (SEM), we measure the thickness-dependence of graphene's negative thermal expansion coefficient (TEC). We propose that there is a competitive relation between the intrinsic TEC and the friction from the substrate and the graphene. Lastly, in collaboration with Dr. Nikolai Kalugin from New Mexico Tech., we explore the graphene's application as a quantum Hall effect infrared photodetector. This graphene-based detector can be operated at higher temperature (liquid nitrogen) and wider frequency than the previous implementations of quantum Hall detector.

  17. Jet-Cooled High Resolution Infrared Spectroscopy of Small Van Der Waals SF_6 Clusters

    Science.gov (United States)

    Asselin, Pierre; Boudon, Vincent; Potapov, Alexey; Bruel, Laurent; Gaveau, Marc-André; Mons, Michel

    2016-06-01

    Using a pulsed slit nozzle multipass absorption spectrometer with a tunable quantum cascade laser we investigated van der Waals clusters involving sulfur hexafluoride in the spectral range near the νb{3} stretching vibration. Different sized homo-complexes were generated in a planar supersonic expansion with typically 0,5 % SF_6 diluted in 6 bar He. Firstly, several rotationally resolved parallel and perpendicular bands of (SF_6)_2, at 934,0 and 956,1 wn (#1 structure) in agreement with Takami et al. but also one band at 933,6 wn (#2 structure) never observed previously, were analyzed in light of a recent theoretical study predicting three nearly isoenergetic isomers of D2d, C2h and C_2 symmetry for the dimer. Furthermore, some broader bands were detected around 938 and 964 wn and assigned to (SF_6)_3 and (SF_6)_4 clusters on the grounds of concentration effects and/or ab initio calculations. Lastly, with 0,5 % rare gas Rg (Rg = Ne, Ar, Kr and Xe) added to the SF_6:He gas mixture, a series of van der Waals (SF_6)_2-Rg hetero-trimers were observed, which display a remarkable linear dependence of the vibrational shift with the polarizability of the rare gas atom provided that the initial SF_6 dimer structure is #2 . In the same time no transitions belonging to the binary complexes SF_6-Rg were found near the νb{3} monomer band. This result suggests a complex thermodynamics within the pulsed supersonic expansion leading to the preponderance of (SF_6)_2-Rg clusters over SF_6-Rg binary systems. R. D. Urban and M. Takami, J. Chem. Phys. 103, 9132 (1995). T. Vazhappily, A. Marjolin and K. D. Jordan, J. Phys. Chem. B, DOI: 10.1021/acs.jpcb.5b09419 (2015).

  18. Graphene-supported small transition-metal clusters: A density functional theory investigation within van der Waals corrections

    Science.gov (United States)

    Rêgo, Celso R. C.; Tereshchuk, Polina; Oliveira, Luiz N.; Da Silva, Juarez L. F.

    2017-06-01

    Transition-metal nanoparticles adsorbed on graphene are of great interest due to the unique catalytic and magnetic properties resulting from nanoparticles-graphene interactions. Comparison between the physical properties of such systems and those of the same nanoparticles in the gas phase is especially important. Here we report a systematic density functional investigation of the structural, energetic, and magnetic properties of small Nin, Pdn, and Ptn clusters, comprising from n =1 to 6 atoms, in the gas phase and adsorbed on a graphene monolayer. Our results show that the Ni adatom binds to the graphene hollow site, with -1.47 -meV adsorption energy, while Pd and Pt prefer the bridge sites, with -1.14 - and -1.62 -meV adsorption energies, respectively. This difference is determined by a competition between quantum and classical forces. Ni2 and Pt2 dimers bind perpendicularly on hollow and bridge sites, respectively, while Pd2 lies parallel to the graphene sheet, with each adatom on a bridge site. For larger TMn (TM = Ni , Pd , Pt ; n =3 -6 ) clusters, either two or three atoms bind to bridge graphene sites. In almost all cases the adsorbed clusters retain their gas-phase structures. The exceptions are Ni5 and Pt4, which acquire more compact structures with effective coordination number 12 and 19 % larger than in the gas phase, respectively. As the number of atoms grows, the cluster binds more weakly to the graphene, while its binding energy mounts up. Van der Waals corrections to the plain density functional theory (DFT) total energy raise the adsorption energy, but leave the cluster structure unchanged, in the gas phase or upon adsorption. Bader charge analysis shows that adsorption causes minor charge redistribution: the TM atoms bound to C atoms become positively charged, while the remaining metal atoms acquire negative charge. We have derived an approximate analytical expression for the local densities of states for the d orbitals of Ni , Pd , and Pt adatoms

  19. Scaling forces to asteroid surfaces: The role of cohesion

    CERN Document Server

    Scheeres, D J; Sanchez, P; Swift, M

    2010-01-01

    The scaling of physical forces to the extremely low ambient gravitational acceleration regimes found on the surfaces of small asteroids is performed. Resulting from this, it is found that van der Waals cohesive forces between regolith grains on asteroid surfaces should be a dominant force and compete with particle weights and be greater, in general, than electrostatic and solar radiation pressure forces. Based on this scaling, we interpret previous experiments performed on cohesive powders in the terrestrial environment as being relevant for the understanding of processes on asteroid surfaces. The implications of these terrestrial experiments for interpreting observations of asteroid surfaces and macro-porosity are considered, and yield interpretations that differ from previously assumed processes for these environments. Based on this understanding, we propose a new model for the end state of small, rapidly rotating asteroids which allows them to be comprised of relatively fine regolith grains held together b...

  20. Emerging accounting trends accounting for leases.

    Science.gov (United States)

    Valletta, Robert; Huggins, Brian

    2010-12-01

    A new model for lease accounting can have a significant impact on hospitals and healthcare organizations. The new approach proposes a "right-of-use" model that involves complex estimates and significant administrative burden. Hospitals and health systems that draw heavily on lease arrangements should start preparing for the new approach now even though guidance and a final rule are not expected until mid-2011. This article highlights a number of considerations from the lessee point of view.

  1. The image of accountants

    DEFF Research Database (Denmark)

    Baldvinsdottir, Gudrun; Burns, John; Nørreklit, Hanne

    2009-01-01

    , and whether the image produced reflects a wide social change in society. Findings - It was found that in the 1970s and the 1980s the accountant was constructed as a responsible and rational person. In the 1990s, the accountant was presented as an instructed action man. However, in a recent advert...... the accountant appeared as a more hedonistic person. Overall, the changes observed reflect changes in wider social practice from modernity, through high modernity, to hyper-modernity. Research limitations/implications - The image of the accountants has implications for the development of the accounting...... profession. In particular, the move towards hyper-modernity, where empathy towards others and the virtues of self-discipline and fairness are not at stake, has implications for the trustworthiness of the accounting profession. Originality/value - Although there has been some research into the image...

  2. Accounting for Quality

    DEFF Research Database (Denmark)

    Pflueger, Dane

    2015-01-01

    Background Accounting-that is, standardized measurement, public reporting, performance evaluation and managerial control-is commonly seen to provide the core infrastructure for quality improvement in healthcare. Yet, accounting successfully for quality has been a problematic endeavor, often......, but that it would need to be understood and operationalized in new ways in order to contribute to this end. Proposals for this new way of advancing accounting are discussed. They include the cultivation of overlapping and even conflicting measures of quality, the evaluation of accounting regimes in terms of what...... producing dysfunctional effects. This has raised questions about the appropriate role for accounting in achieving quality improvement. This paper contributes to this debate by contrasting the specific way in which accounting is understood and operationalized for quality improvement in the UK National Health...

  3. Goals and Psychological Accounting

    DEFF Research Database (Denmark)

    Koch, Alexander Karl; Nafziger, Julia

    -induced reference points make substandard performance psychologically painful and motivate the individual to stick to his goals. How strong the commitment to goals is depends on the type of psychological account. We provide conditions when it is optimal to evaluate goals in narrow accounts. The key intuition......We model how people formulate and evaluate goals to overcome self-control problems. People often attempt to regulate their behavior by evaluating goal-related outcomes separately (in narrow psychological accounts) rather than jointly (in a broad account). To explain this evidence, our theory...... of endogenous narrow or broad psychological accounts combines insights from the literatures on goals and mental accounting with models of expectations-based reference-dependent preferences. By formulating goals the individual creates expectations that induce reference points for task outcomes. These goal...

  4. The Accountability Bind

    Directory of Open Access Journals (Sweden)

    Katrina Bulkley

    2001-10-01

    Full Text Available Charter schools involve a trading of autonomy for accountability. This accountability comes through two forces—markets through the choices of parents and students, and accountability to government through the writing of contracts that must be renewed for schools to continue to operate. Charter schools are supposed to be more accountable for educational performance than traditional public schools because authorizers have the ability to revoke charter contracts. Here, I focus on one central component of accountability to government: performance accountability or accountability for educational outcomes to charter school authorizers through the revocation or non-renewal of charter contracts. In this paper, I suggest that contract-based accountability for educational performance in charter schools may not be working as proponents argued it would. This article explores some explanations for why there are very few examples of charter schools that have been closed primarily because of failure to demonstrate educational performance or improvement. Future work will need to test if these challenges for authorizers hold in a variety of contexts. The conclusion examines the implications of these findings for the future of charter school accountability.

  5. VAT Cash Accounting Scheme in Romania

    Directory of Open Access Journals (Sweden)

    BUNEA-BONTAS Cristina Aurora

    2013-05-01

    Full Text Available VAT cash accounting enables the small enterprises to account for VAT on the basis of payments received and made, instead of on tax invoices issued and received. Accordingly, the VAT payable or repayable for each accounting period is the difference between the total amount of VAT included in payments received from the customers and the total amount of VAT included in payments made to the suppliers. The VAT cash accounting scheme, recently introduced for the Romanian companies by Government Ordinance no. 15/2012, entered into force on January 1st, 2013. This article reviews the basic principles of VAT cash accounting and highlights its benefits and disadvantages. It also discusses the impact and the challenges for the Romanian companies, due to the particularities of the system.

  6. Surface features on Sahara soil dust particles made visible by atomic force microscope (AFM) phase images

    Science.gov (United States)

    Helas, G.; Andreae, M. O.

    2008-10-01

    We show that atomic force microscopy (AFM) phase images can reveal surface features of soil dust particles, which are not evident using other microscopic methods. The non-contact AFM method is able to resolve topographical structures in the nanometer range as well as to uncover repulsive atomic forces and attractive van der Waals' forces, and thus gives insight to surface properties. Though the method does not allow quantitative assignment in terms of chemical compound description, it clearly shows deposits of distinguishable material on the surface. We apply this technique to dust aerosol particles from the Sahara collected over the Atlantic Ocean and describe micro-features on the surfaces of such particles.

  7. Assessing photocatalytic power of g-C{sub 3}N{sub 4} for solar fuel production: A first-principles study involving quasi-particle theory and dispersive forces

    Energy Technology Data Exchange (ETDEWEB)

    Osorio-Guillén, J. M., E-mail: mario.osorio@udea.edu.co [Instituto de Física, Universidad de Antioquia UdeA, Calle 70 No 52-21, Medellín (Colombia); Espinosa-García, W. F. [Instituto de Física, Universidad de Antioquia UdeA, Calle 70 No 52-21, Medellín (Colombia); Grupo de Investigación en Modelamiento y Simulación Computacional, Facultad de Ingenierías, Universidad de San Buenaventura Seccional Medellín, Carrera 56C No 51-110, Medellín (Colombia); Moyses Araujo, C., E-mail: moyses.araujo@physics.uu.se [Materials Theory Division, Department of Physics and Astronomy, Uppsala University, P.O. Box 516, S75120 Uppsala (Sweden)

    2015-09-07

    First-principles quasi-particle theory has been employed to assess catalytic power of graphitic carbon nitride, g-C{sub 3}N{sub 4}, for solar fuel production. A comparative study between g-h-triazine and g-h-heptazine has been carried out taking also into account van der Waals dispersive forces. The band edge potentials have been calculated using a recently developed approach where quasi-particle effects are taken into account through the GW approximation. First, it was found that the description of ground state properties such as cohesive and surface formation energies requires the proper treatment of dispersive interaction. Furthermore, through the analysis of calculated band-edge potentials, it is shown that g-h-triazine has high reductive power reaching the potential to reduce CO{sub 2} to formic acid, coplanar g-h-heptazine displays the highest thermodynamics force toward H{sub 2}O/O{sub 2} oxidation reaction, and corrugated g-h-heptazine exhibits a good capacity for both reactions. This rigorous theoretical study shows a route to further improve the catalytic performance of g-C{sub 3}N{sub 4}.

  8. Georgia : Accounting and Auditing

    OpenAIRE

    2007-01-01

    This report provides an assessment of accounting, financial reporting and auditing requirements and practices within the enterprise and financial sectors in Georgia. The report uses International Financial Reporting Standards (IFRS), International Standards on Auditing (ISA) and draws on international experience and good practices in the field of accounting and audit regulation, including in ...

  9. Internet accounting dictionaries

    DEFF Research Database (Denmark)

    Nielsen, Sandro; Mourier, Lise

    2005-01-01

    An examination of existing accounting dictionaries on the Internet reveals a general need for a new type of dictionary. In contrast to the dictionaries now accessible, the future accounting dictionaries should be designed as proper Internet dictionaries based on a functional approach so they can...

  10. Accounting as an Engine

    DEFF Research Database (Denmark)

    Revellino, Silvana; Mouritsen, Jan

    2015-01-01

    This paper explores the relationships between calculative practices and innovative activities. It investigates how calculative practices such as accounting develop knowledge that functions as an engine (MacKenzie, 2006) for innovation. This is an attempt at exploring the role of accounting through...

  11. Deterrents to Accountability.

    Science.gov (United States)

    Hencley, Stephen P.

    This speech assesses potential deterrents to the implementation of accountability in education. The author divides these deterrents into (1) philosophical-ideological; humanist-behaviorist conflicts, individuality versus "techno-urban fascism," and accountability systems tied to the achievement of cognitive objectives at the lower end of Bloom's…

  12. The Choreography of Accountability

    Science.gov (United States)

    Webb, P. Taylor

    2006-01-01

    The prevailing performance discourse in education claims school improvements can be achieved through transparent accountability procedures. The article identifies how teachers generate performances of their work in order to satisfy accountability demands. By identifying sources of teachers' knowledge that produce choreographed performances, I…

  13. Accounting Faculty Internships

    Directory of Open Access Journals (Sweden)

    Jill Christopher

    2013-06-01

    Full Text Available Accounting professionals, business college accrediting bodies, and even accounting academics themselves acknowledge that there is a disconnect between academe and the rigors and requirements of the accounting profession. Among the suggestions proposed in the literature to reduce this gap is the faculty internship, where accounting faculty members work within the field as accountants. Heretofore, individual case studies report benefits of such internships that accrue to a variety of stakeholder groups beyond just the faculty intern and include the academic institution, students, and accounting profession through faculty internships. This research seeks wider support for these benefits. This descriptive study involved surveying a sample of accounting faculty members to get their opinions about the benefits and drawbacks of faculty internships, and to determine the level of use of faculty internships in accounting. In all, 128 usable responses were obtained, representing a 14.6% response rate. The results of this study reveal that although most faculty members acknowledge the benefits cited in the literature, too few take advantage of faculty internships.

  14. The Accountability Illusion: Kansas

    Science.gov (United States)

    Thomas B. Fordham Institute, 2009

    2009-01-01

    The intent of the No Child Left Behind (NCLB) Act of 2001 is to hold schools accountable for ensuring that all their students achieve mastery in reading and math, with a particular focus on groups that have traditionally been left behind. Under NCLB, states submit accountability plans to the U.S. Department of Education detailing the rules and…

  15. Indonesia : Accounting and Auditing

    OpenAIRE

    World Bank

    2011-01-01

    This report is part of a joint initiative of the World Bank and IMF to prepare Reports on the Observance of Standards and Codes (ROSC). The ROSC Accounting and Auditing review for Indonesia mainly focuses on the strengths and weaknesses of the accounting and auditing environment that influences the quality of corporate financial reporting. It involves both a review of mandatory requirement...

  16. Towards ecosystem accounting

    NARCIS (Netherlands)

    Duku, C.; Rathjens, H.; Zwart, S.J.; Hein, L.

    2015-01-01

    Ecosystem accounting is an emerging field that aims to provide a consistent approach to analysing environment-economy interactions. One of the specific features of ecosystem accounting is the distinction between the capacity and the flow of ecosystem services. Ecohydrological modelling to support

  17. Bulgaria : Accounting and Auditing

    OpenAIRE

    World Bank

    2008-01-01

    An assessment of accounting and auditing practices in Bulgaria is a part of the World Bank and the International Monetary Fund (IMF) joint initiative on reports on the Observance of Standards and Codes (ROSC). The assessment focused on the strengths and weaknesses of the accounting and auditing environment that influences the quality of corporate financial reporting. It used the Internatio...

  18. The Evolution of Accountability

    Science.gov (United States)

    Webb, P. Taylor

    2011-01-01

    Campus 2020: Thinking ahead is a policy in British Columbia (BC), Canada, that attempted to hold universities accountable to performance. Within, I demonstrate how this Canadian articulation of educational accountability intended to develop "governmentality constellations" to control the university and regulate its knowledge output. This…

  19. PLATO IV Accountancy Index.

    Science.gov (United States)

    Pondy, Dorothy, Comp.

    The catalog was compiled to assist instructors in planning community college and university curricula using the 48 computer-assisted accountancy lessons available on PLATO IV (Programmed Logic for Automatic Teaching Operation) for first semester accounting courses. It contains information on lesson access, lists of acceptable abbreviations for…

  20. Public Accountancy Handbook.

    Science.gov (United States)

    New York State Education Dept., Albany. Office of the Professions.

    A reference guide to laws, rules, and regulations that govern public accountancy practice in New York State is presented. In addition to identifying licensing requirements/procedures for certified public accountants, general provisions of Title VIII of the Education Law are covered, along with state management, professional misconduct, and…

  1. Public Accountancy Handbook.

    Science.gov (United States)

    New York State Education Dept., Albany. Office of the Professions.

    A reference guide to laws, rules, and regulations that govern public accountancy practice in New York State is presented. In addition to identifying licensing requirements/procedures for certified public accountants, general provisions of Title VIII of the Education Law are covered, along with state management, professional misconduct, and…

  2. Accounting for Quality

    DEFF Research Database (Denmark)

    Pflueger, Dane

    2015-01-01

    Background Accounting-that is, standardized measurement, public reporting, performance evaluation and managerial control-is commonly seen to provide the core infrastructure for quality improvement in healthcare. Yet, accounting successfully for quality has been a problematic endeavor, often...... producing dysfunctional effects. This has raised questions about the appropriate role for accounting in achieving quality improvement. This paper contributes to this debate by contrasting the specific way in which accounting is understood and operationalized for quality improvement in the UK National Health...... Service (NHS) with findings from the broadly defined ‘social studies of accounting’ literature and illustrative examples. Discussion This paper highlights three significant differences between the way that accounting is understood to operate in the dominant health policy discourse and recent healthcare...

  3. Accounting and strategising

    DEFF Research Database (Denmark)

    Jørgensen, Brian; Messner, Martin

    2010-01-01

    This paper explores the relationship between accounting and strategy in a context that is characterised by pluralistic demands and high uncertainty about outcomes. By way of an ethnographic field study in an R&D intensive company, we analyse new product development (NPD) projects and the way...... in which decisions and practices concerning these projects are accounted for. Building upon a practice theory perspective, we find that actors account for the appropriateness of NPD practices not only or primarily on the basis of accounting information, but also by "strategising", i.e. by mobilising...... different strategic objectives to which these practices are supposed to contribute. We argue that this has to do with the ambiguous demands on NPD and the limits of calculability inherent in NPD design decisions. At the same time, accounting information is not necessarily irrelevant in such a case; it can...

  4. Particularities of farm accounting

    Directory of Open Access Journals (Sweden)

    Lapteș, R.

    2012-01-01

    Full Text Available Nowadays, agriculture has become one of the most important fields of activity, significant funds being allotted within the EU budget to finance the European agriculture. In this context, organising the accounting of economic entities which carry out their activity in the agricultural sector has acquired new meanings. The goal of the present study is to bring into the light the particularities of the farm accounting on two levels: on the one hand, from the perspective of the international accounting referential and, on the other hand, in compliance with the national accounting regulations. The most important conclusion of this work is that, in post-1990 Romania, no interest was further manifested for the refinement of aspects specific to farm accounting.

  5. Accounting for Quality

    DEFF Research Database (Denmark)

    Pflueger, Dane

    2015-01-01

    Background Accounting-that is, standardized measurement, public reporting, performance evaluation and managerial control-is commonly seen to provide the core infrastructure for quality improvement in healthcare. Yet, accounting successfully for quality has been a problematic endeavor, often...... producing dysfunctional effects. This has raised questions about the appropriate role for accounting in achieving quality improvement. This paper contributes to this debate by contrasting the specific way in which accounting is understood and operationalized for quality improvement in the UK National Health...... Service (NHS) with findings from the broadly defined ‘social studies of accounting’ literature and illustrative examples. Discussion This paper highlights three significant differences between the way that accounting is understood to operate in the dominant health policy discourse and recent healthcare...

  6. Adsorption of CO2, N2, and CH4 in Cs-exchanged chabazite: A combination of van der Waals density functional theory calculations and experiment study

    Science.gov (United States)

    Shang, Jin; Li, Gang; Singh, Ranjeet; Xiao, Penny; Danaci, David; Liu, Jefferson Z.; Webley, Paul A.

    2014-02-01

    The crucial role of dispersion force in correctly describing the adsorption of some typical small-size gas molecules (e.g., CO2, N2, and CH4) in ion-exchanged chabazites has been investigated at different levels of theory, including the standard density functional theory calculation using the Perdew, Burke, and Ernzerhof (PBE) exchange-correlation functional and van der Waals density functional theory (vdWDFT) calculations using different exchange-correlation models - vdW_DF2, optB86b, optB88, and optPBE. Our results show that the usage of different vdWDFT functionals does not significantly change the adsorption configuration or the profile of static charge rearrangement of the gas-chabazite complexes, in comparison with the results obtained using the PBE. The calculated values of adsorption enthalpy using different functionals are compared with our experimental results. We conclude that the incorporation of dispersion interaction is imperative to correctly predict the trend of adsorption enthalpy values, in terms of different gas molecules and Cs+ cation densities in the adsorbents, even though the absolute values of adsorption enthalpy are overestimated by approximate 10 kJ/mol compared with experiments.

  7. Benchmarking Density Functional Theory Based Methods To Model NiOOH Material Properties: Hubbard and van der Waals Corrections vs Hybrid Functionals.

    Science.gov (United States)

    Zaffran, Jeremie; Caspary Toroker, Maytal

    2016-08-09

    NiOOH has recently been used to catalyze water oxidation by way of electrochemical water splitting. Few experimental data are available to rationalize the successful catalytic capability of NiOOH. Thus, theory has a distinctive role for studying its properties. However, the unique layered structure of NiOOH is associated with the presence of essential dispersion forces within the lattice. Hence, the choice of an appropriate exchange-correlation functional within Density Functional Theory (DFT) is not straightforward. In this work, we will show that standard DFT is sufficient to evaluate the geometry, but DFT+U and hybrid functionals are required to calculate the oxidation states. Notably, the benefit of DFT with van der Waals correction is marginal. Furthermore, only hybrid functionals succeed in opening a bandgap, and such methods are necessary to study NiOOH electronic structure. In this work, we expect to give guidelines to theoreticians dealing with this material and to present a rational approach in the choice of the DFT method of calculation.

  8. Strong Force

    CERN Document Server

    Without the strong force, there could be no life. The carbon in living matter is synthesised in stars via the strong force. Lighter atomic nuclei become bound together in a process called nuclear fusion. A minor change in this interaction would make life impossible. As its name suggests, the strong force is the most powerful of the 4 forces, yet its sphere of influence is limited to within the atomic nucleus. Indeed it is the strong force that holds together the quarks inside the positively charged protons. Without this glue, the quarks would fly apart repulsed by electromagnetism. In fact, it is impossible to separate 2 quarks : so much energy is needed, that a second pair of quarks is produced. Text for the interactive: Can you pull apart the quarks inside a proton?

  9. Consolidating Air Force Maintenance Occupational Specialties

    Science.gov (United States)

    2016-01-01

    Level Current Assigned Level (91% of Authorized Level) 11% -17% 16% -11% 23 4. Long-Run Cost and Readiness Implications of Air Force...Requirements and Readiness .............. 19 4. Long-Run Cost and Readiness Implications of Air Force Specialty Consolidation ................. 23 Cost ...Force Specialty Constructs After Taking into Account Retention ......................................................... 16 Table 4.1. Cost Impacts of

  10. Institutions and accounting standard transformation:Observations from Japan

    Institute of Scientific and Technical Information of China (English)

    Naohiro; Urasaki

    2014-01-01

    This paper describes the transformation of Japan’s accounting standards over the past 2 decades and the driving forces behind this transformation. It also analyzes the current state of Japan’s accounting standards, which are characterized by the dichotomy of accounting systems inherited from the country’s political, economic and legal institutions. The discussion in this paper emphasizes that a single set of accounting standards is not always effective for every entity.

  11. Institutions and accounting standard transformation: Observations from Japan

    Directory of Open Access Journals (Sweden)

    Naohiro Urasaki

    2014-03-01

    Full Text Available This paper describes the transformation of Japan’s accounting standards over the past 2 decades and the driving forces behind this transformation. It also analyzes the current state of Japan’s accounting standards, which are characterized by the dichotomy of accounting systems inherited from the country’s political, economic and legal institutions. The discussion in this paper emphasizes that a single set of accounting standards is not always effective for every entity.

  12. Weak Force

    CERN Multimedia

    Without the weak force, the sun wouldn't shine. The weak force causes beta decay, a form of radioactivity that triggers nuclear fusion in the heart of the sun. The weak force is unlike other forces: it is characterised by disintegration. In beta decay, a down quark transforms into an up quark and an electron is emitted. Some materials are more radioactive than others because the delicate balance between the strong force and the weak force varies depending on the number of particles in the atomic nucleus. We live in the midst of a natural radioactive background that varies from region to region. For example, in Cornwall where there is a lot of granite, levels of background radiation are much higher than in the Geneva region. Text for the interactive: Move the Geiger counter to find out which samples are radioactive - you may be surprised. It is the weak force that is responsible for the Beta radioactivity here. The electrons emitted do not cross the plastic cover. Why do you think there is some detected radioa...

  13. Management and cost accounting

    CERN Document Server

    Drury, Colin

    1992-01-01

    This third edition of a textbook on management and cost accounting features coverage of activity-based costing (ABC), advance manufacturing technologies (AMTs), JIT, MRP, target costing, life-cycle costing, strategic management accounting, total quality management and customer profitability analysis. Also included are revised and new end-of-chapter problems taken from past examination papers of CIMA, ACCA and ICAEW. There is increased reference to management accounting in practice, including many of the results of the author's CIMA sponsored survey, and greater emphasis on operational control and performance measurement.

  14. Accounting for productivity

    DEFF Research Database (Denmark)

    Aiyar, Shekhar; Dalgaard, Carl-Johan Lars

    2009-01-01

    The development accounting literature almost always assumes a Cobb-Douglas (CD) production function. However, if in reality the elasticity of substitution between capital and labor deviates substantially from 1, the assumption is invalid, potentially casting doubt on the commonly held view...... that factors of production are relatively unimportant in accounting for differences in labor productivity. We use international data on relative factor shares and capital-output ratios to formulate a number of tests for the validity of the CD assumption. We find that the CD specification performs reasonably...... well for the purposes of cross-country productivity accounting....

  15. Beyond safety accountability

    CERN Document Server

    Geller, E Scott

    2001-01-01

    Written in an easy-to-read conversational tone, Beyond Safety Accountability explains how to develop an organizational culture that encourages people to be accountable for their work practices and to embrace a higher sense of personal responsibility. The author begins by thoroughly explaining the difference between safety accountability and safety responsibility. He then examines the need of organizations to improve safety performance, discusses why such performance improvement can be achieved through a continuous safety process, as distinguished from a safety program, and provides the practic

  16. Convergence of Phase-Field Free Energy and Boundary Force for Molecular Solvation

    Science.gov (United States)

    Dai, Shibin; Li, Bo; Lu, Jianfeng

    2017-08-01

    We study a phase-field variational model for the solvation of charged molecules with an implicit solvent. The solvation free-energy functional of all phase fields consists of the surface energy, solute excluded volume and solute-solvent van der Waals dispersion energy, and electrostatic free energy. The surface energy is defined by the van der Waals-Cahn-Hilliard functional with squared gradient and a double-well potential. The electrostatic part of free energy is defined through the electrostatic potential governed by the Poisson-Boltzmann equation in which the dielectric coefficient is defined through the underlying phase field. We prove the continuity of the electrostatics—its potential, free energy, and dielectric boundary force—with respect to the perturbation of the dielectric boundary. We also prove the {Γ} -convergence of the phase-field free-energy functionals to their sharp-interface limit, and the equivalence of the convergence of total free energies to that of all individual parts of free energy. We finally prove the convergence of phase-field forces to their sharp-interface limit. Such forces are defined as the negative first variations of the free-energy functional; and arise from stress tensors. In particular, we obtain the force convergence for the van der Waals-Cahn-Hilliard functionals with minimal assumptions.

  17. Socioeconomic forces affecting medicine: times of increased retrenchment and accountability.

    Science.gov (United States)

    McNeil, B J

    1993-01-01

    Costs of health care are increasing at a rapid rate, but both access to care and costs of care have become focal points for current national and local debates. Access issues relate not only to those who have no insurance but also to those who are underinsured. Cost issues relate most directly to radiology and nuclear medicine through their impact on coverage and payment. Increasing scrutiny is paid to criteria used for these purposes, and major changes at the federal and private level can be expected in the next decade. Finally, the ubiquitous development of practice guidelines and their expected use in physician profiles will influence the practice of medicine significantly in the future.

  18. 7 CFR 1753.29 - Force account procedures.

    Science.gov (United States)

    2010-01-01

    ... required for construction. (3) A construction schedule showing the estimated construction period for each... AGRICULTURE TELECOMMUNICATIONS SYSTEM CONSTRUCTION POLICIES AND PROCEDURES Construction of Buildings § 1753.29... construction of buildings in advance in order to obtain RUS financing. (b) The borrower shall prepare the...

  19. A simple natural orbital mechanism of "pure" van der Waals interaction in the lowest excited triplet state of the hydrogen molecule.

    Science.gov (United States)

    Gritsenko, Oleg; Baerends, Evert Jan

    2006-02-07

    A treatment of van der Waals (vdW) interaction by density-matrix functional theory requires a description of this interaction in terms of natural orbitals (NOs) and their occupation numbers. From an analysis of the configuration-interaction (CI) wave function of the 3Sigmau + state of H2 and the exact NO expansion of the two-electron triplet wave function, we demonstrate that the construction of such a functional is straightforward in this case. A quantitative description of the vdW interaction is already obtained with, in addition to the standard part arising from the Hartree-Fock determinant /1sigmag(r1)1sigmau(r2)/, only two additional terms in the two-electron density, one from the first "excited" determinant /2sigmag(r1)2sigmau(r2)/ and one from the state of 3Sigmau + symmetry belonging to the (1pig)1(1piu)1 configuration. The potential-energy curve of the 3Sigmau + state calculated around the vdW minimum with the exact density-matrix functional employing only these eight NOs and NO occupations is in excellent agreement with the full CI one and reproduces well the benchmark potential curve of Kolos and Wolniewicz [J. Chem. Phys. 43, 2429 (1965)]. The corresponding terms in the two-electron density rho2(r1,r2), containing specific products of NOs combined with prefactors that depend on the occupation numbers, can be shown to produce exchange-correlation holes that correspond precisely to the well-known intuitive picture of the dispersion interaction as an instantaneous dipole-induced dipole (higher multipole) effect. Indeed, (induced) higher multipoles account for almost 50% of the total vdW bond energy. These results serve as a basis for both a density-matrix functional theory of van der Waals bonding and for the construction of orbital-dependent functionals in density-functional theory that could be used for this type of bonding.

  20. Tuning electronic transport in epitaxial graphene-based van der Waals heterostructures

    Science.gov (United States)

    Lin, Yu-Chuan; Li, Jun; de La Barrera, Sergio C.; Eichfeld, Sarah M.; Nie, Yifan; Addou, Rafik; Mende, Patrick C.; Wallace, Robert M.; Cho, Kyeongjae; Feenstra, Randall M.; Robinson, Joshua A.

    2016-04-01

    Two-dimensional tungsten diselenide (WSe2) has been used as a component in atomically thin photovoltaic devices, field effect transistors, and tunneling diodes in tandem with graphene. In some applications it is necessary to achieve efficient charge transport across the interface of layered WSe2-graphene, a semiconductor to semimetal junction with a van der Waals (vdW) gap. In such cases, band alignment engineering is required to ensure a low-resistance, ohmic contact. In this work, we investigate the impact of graphene electronic properties on the transport at the WSe2-graphene interface. Electrical transport measurements reveal a lower resistance between WSe2 and fully hydrogenated epitaxial graphene (EGFH) compared to WSe2 grown on partially hydrogenated epitaxial graphene (EGPH). Using low-energy electron microscopy and reflectivity on these samples, we extract the work function difference between the WSe2 and graphene and employ a charge transfer model to determine the WSe2 carrier density in both cases. The results indicate that WSe2-EGFH displays ohmic behavior at small biases due to a large hole density in the WSe2, whereas WSe2-EGPH forms a Schottky barrier junction.Two-dimensional tungsten diselenide (WSe2) has been used as a component in atomically thin photovoltaic devices, field effect transistors, and tunneling diodes in tandem with graphene. In some applications it is necessary to achieve efficient charge transport across the interface of layered WSe2-graphene, a semiconductor to semimetal junction with a van der Waals (vdW) gap. In such cases, band alignment engineering is required to ensure a low-resistance, ohmic contact. In this work, we investigate the impact of graphene electronic properties on the transport at the WSe2-graphene interface. Electrical transport measurements reveal a lower resistance between WSe2 and fully hydrogenated epitaxial graphene (EGFH) compared to WSe2 grown on partially hydrogenated epitaxial graphene (EGPH). Using low

  1. Basic Financial Accounting

    DEFF Research Database (Denmark)

    Wiborg, Karsten

    This textbook on Basic Financial Accounting is targeted students in the economics studies at universities and business colleges having an introductory subject in the external dimension of the company's economic reporting, including bookkeeping, etc. The book includes the following subjects...

  2. Human Resource Accounting System

    Science.gov (United States)

    Cerullo, Michael J.

    1974-01-01

    Main objectives of human resource accounting systems are to satisfy the informational demands made by investors and by operating managers. The paper's main concern is with the internal uses of a human asset system. (Author)

  3. Valuation and creative accounting

    Directory of Open Access Journals (Sweden)

    Maria Madalina VOINEA

    2014-06-01

    Full Text Available This paper deals with the economic and financial valuation, that is the only type of valuation, based on a diagnosis and expertise, which has as objective to establish the market value of elements, whether goods or businesses, being a "orientation tool" for the economic operators on the market. There are specific means to measure value but there are also some mechanisms that can influence the value obtained, from the category of creative accounting. Creative accounting occurs due to human intervention and even the most advanced accounting systems are not able to do this due to the lack of reasoning. There must be also assumed that it is possible that these creative accounting techniques may be caused by a simple mistake and not necessarily with the intention of manipulating the financial results and reports. The aim of the paper is to see how specific element valuation can influence the general one, namely the value of a company.

  4. Basic Financial Accounting

    DEFF Research Database (Denmark)

    Wiborg, Karsten

    This textbook on Basic Financial Accounting is targeted students in the economics studies at universities and business colleges having an introductory subject in the external dimension of the company's economic reporting, including bookkeeping, etc. The book includes the following subjects...

  5. Species accounts. Chapter 4

    Science.gov (United States)

    Margaret K. Trani; W. Mark Ford; Brian R., eds. Chapman

    2007-01-01

    Narrative accounts for each species are presented by several authors in a consistent format to convey specific information relative to that mammal. The orders are arranged phylogenetically; families and species are arranged alphabetically to facilitate finding a particular species.

  6. Whole of Government Accounts

    DEFF Research Database (Denmark)

    Pontoppidan, Caroline Aggestam; Chow, Danny; Day, Ronald

    In our comparative study, we surveyed an emerging literature on the use of consolidation in government accounting and develop a research agenda. We find heterogeneous approaches to the development of consolidation models across the five countries (Australia, New Zealand, UK, Canada and Sweden...... of financial reporting (GAAP)-based reforms when compared with budget-centric systems of accounting, which dominate government decision-making. At a trans-national level, there is a need to examine the embedded or implicit contests or ‘trials of strength’ between nations and/or institutions jockeying...... for influence. We highlight three arenas where such contests are being played out: 1. Statistical versus GAAP notions of accounting value, which features in all accounting debates over the merits and costs of ex-ante versus ex-post notions of value (i.e., the relevance versus reliability debate); 2. Private...

  7. Ideas for the Accounting Classroom.

    Science.gov (United States)

    Kerby, Debra; Romine, Jeff

    2003-01-01

    Innovative ideas for accounting education include having students study accounting across historical periods, using businesses for student research, exploring nontraditional accounting careers, and collaborating with professional associations. (SK)

  8. Verification Account Management System (VAMS)

    Data.gov (United States)

    Social Security Administration — The Verification Account Management System (VAMS) is the centralized location for maintaining SSA's verification and data exchange accounts. VAMS account management...

  9. Managing Public Accountability : How Public Managers Manage Public Accountability

    NARCIS (Netherlands)

    Schillemans, Thomas

    2015-01-01

    Accountability is of growing importance in contemporary governance. The academic literature on public accountability is fraught with concerned analyses, suggesting that accountability is a problematic issue for public managers. This article investigates how public managers experience accountability

  10. Resistance To Accounting Changes

    OpenAIRE

    Tanış, Veyis Naci

    2013-01-01

    Changing manufacturing environments have affected cost and management accounting techniques employed by companies On the one hand manufacturing companies have changed their costing and decision making systems on the other they try to overcome the problems that occur as a result of employee resistance A survey has been conducted to investigate cost accounting changes on the largest 500 manufacturing companies in Turkey This work also attempts to shed light onto underlying reasons of why...

  11. Nesilsel Hesaplama = Generational Accounting

    Directory of Open Access Journals (Sweden)

    İlter ÜNLÜKAPLAN

    2009-01-01

    Full Text Available In this study, the theoretical background of generational accounting, the importance of the concept of “generational account” and “fiscal balance rule” have been explained by putting forward that budget deficit is not a suitable indicator to assess intergenerational effects of the fiscal and debt policy. The last part of the study contains presentation of generational accounting studies for selected countries.

  12. Human Resources Accounting

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    The 21 st century will be the epoch of knowled ge economy. Knowledge economy is to develop economy on the basis of knowledge will surely become the major resources of economy development. Therefore, human resources accounting which provides such information as the ebb and follow of hu man resources investment, the size of the human resources employment, will bec ome the main stream of accounting the time of knowledge economy. To face China 's reality, to develop economy, and to flourish enterprise...

  13. Ethics In Accounting Career

    OpenAIRE

    2007-01-01

    The purpose of my thesis was to refer to fundamental principals of claims on accounting profession, to possibilities inducing potential conflicts of professional and employee interests and possibilities of abuse. At the same time I characterised independence threats. Among most frequent risks are self-interest threat and familiarity threat. We should consider also self-review threat, advocacy threat and intimidation threat. People working as accountants and those working as auditors should me...

  14. Key Account Management

    OpenAIRE

    Dvořák, Dalibor

    2007-01-01

    This note tries to explain concept of key account management (KAM), factors leading to importance of this emerging concept, criteria to determine key accounts from customer base, benefits to both buyers and sellers agreeing to practice it, stages of KAM relationship, conditions under which power lies with buyer or seller, outlines risks faced by both the parties, key success factors, challenges faced in implementing this concept and relevance to infrastructure sector.

  15. Systematic study of electronic structure and band alignment of monolayer transition metal dichalcogenides in Van der Waals heterostructures

    Science.gov (United States)

    Zhang, Chenxi; Gong, Cheng; Nie, Yifan; Min, Kyung-Ah; Liang, Chaoping; Oh, Young Jun; Zhang, Hengji; Wang, Weihua; Hong, Suklyun; Colombo, Luigi; Wallace, Robert M.; Cho, Kyeongjae

    2017-03-01

    Two-dimensional transition metal dichalcogenides (TMDs) are promising low-dimensional materials which can produce diverse electronic properties and band alignment in van der Waals heterostructures. Systematic density functional theory (DFT) calculations are performed for 24 different TMD monolayers and their bilayer heterostacks. DFT calculations show that monolayer TMDs can behave as semiconducting, metallic or semimetallic depending on their structures; we also calculated the band alignment of the TMDs to predict their alignment in van der Waals heterostacks. We have applied the charge equilibration model (CEM) to obtain a quantitative formula predicting the highest occupied state of any type of bilayer TMD heterostacks (552 pairs for 24 TMDs). The CEM predicted values agree quite well with the selected DFT simulation results. The quantitative prediction of the band alignment in the TMD heterostructures can provide an insightful guidance to the development of TMD-based devices.

  16. Thermodynamics of lithium intercalation into graphite studied using density functional theory calculations incorporating van der Waals correlation and uncertainty estimation

    CERN Document Server

    Pande, Vikram

    2016-01-01

    Graphite is the most widely used and among the most widely-studied anode materials for lithium-ion batteries. Lithium intercalation into graphite has been extensively studied theoretically using density functional theory (DFT) calculations, complemented by experimental studies through X-ray diffraction, spectroscopy, optical imaging and other techniques. However, previous theoretical studies have not directly included van der Waals (vdW) interactions in their density functional theory calculations and vdW interactions play a crucial role in determining the stable phases. In this work, we present a first principles based model using DFT calculations, employing Bayesian Error Estimation Functional with van der Waals (BEEF-vdW) as the exchange correlation functional, and statistical thermodynamics to determine the phase transformations and subsequently, the thermodynamic intercalation potential diagram. We explore the entire configurational phase space by determining the important interactions and applying clust...

  17. Quantum Transport Detected by Strong Proximity Interaction at a Graphene-WS2 van der Waals Interface.

    Science.gov (United States)

    O'Farrell, E C T; Avsar, A; Tan, J Y; Eda, G; Özyilmaz, B

    2015-09-09

    Magnetotransport measurements demonstrate that graphene in a van der Waals heterostructure is a sensitive probe of quantum transport in an adjacent WS2 layer via strong Coulomb interactions. We observe a large low-field magnetoresistance (≫ e(2)/h) and a -ln T temperature dependence of the resistance. In-plane magnetic field resistance indicates the origin is orbital and nonclassical. We demonstrate a strong electron-hole asymmetry in the mobility and coherence length of graphene demonstrating the presence of localized Coulomb interactions with ionized donors in the WS2 substrate, which ultimately leads to screening as the Fermi level of graphene is tuned toward the conduction band of WS2. This leads us to conclude that graphene couples to quantum localization processes in WS2 via the Coulomb interaction and results in the observed signatures of quantum transport. Our results show that theoretical descriptions of the van der Waals interface should not ignore localized strong correlations.

  18. 18 CFR 367.1840 - Account 184, Clearing accounts.

    Science.gov (United States)

    2010-04-01

    ... ACT Balance Sheet Chart of Accounts Deferred Debits § 367.1840 Account 184, Clearing accounts. This account must include undistributed balances in clearing accounts at the date of the balance sheet... accounts. 367.1840 Section 367.1840 Conservation of Power and Water Resources FEDERAL ENERGY...

  19. Fundamental aspects of electric double layer force-distance measurements at liquid-solid interfaces using atomic force microscopy.

    Science.gov (United States)

    Black, Jennifer M; Zhu, Mengyang; Zhang, Pengfei; Unocic, Raymond R; Guo, Daqiang; Okatan, M Baris; Dai, Sheng; Cummings, Peter T; Kalinin, Sergei V; Feng, Guang; Balke, Nina

    2016-09-02

    Atomic force microscopy (AFM) force-distance measurements are used to investigate the layered ion structure of Ionic Liquids (ILs) at the mica surface. The effects of various tip properties on the measured force profiles are examined and reveal that the measured ion position is independent of tip properties, while the tip radius affects the forces required to break through the ion layers as well as the adhesion force. Force data is collected for different ILs and directly compared with interfacial ion density profiles predicted by molecular dynamics. Through this comparison it is concluded that AFM force measurements are sensitive to the position of the ion with the larger volume and mass, suggesting that ion selectivity in force-distance measurements are related to excluded volume effects and not to electrostatic or chemical interactions between ions and AFM tip. The comparison also revealed that at distances greater than 1 nm the system maintains overall electroneutrality between the AFM tip and sample, while at smaller distances other forces (e.g., van der waals interactions) dominate and electroneutrality is no longer maintained.

  20. Fundamental aspects of electric double layer force-distance measurements at liquid-solid interfaces using atomic force microscopy

    Science.gov (United States)

    Black, Jennifer M.; Zhu, Mengyang; Zhang, Pengfei; Unocic, Raymond R.; Guo, Daqiang; Okatan, M. Baris; Dai, Sheng; Cummings, Peter T.; Kalinin, Sergei V.; Feng, Guang; Balke, Nina

    2016-01-01

    Atomic force microscopy (AFM) force-distance measurements are used to investigate the layered ion structure of Ionic Liquids (ILs) at the mica surface. The effects of various tip properties on the measured force profiles are examined and reveal that the measured ion position is independent of tip properties, while the tip radius affects the forces required to break through the ion layers as well as the adhesion force. Force data is collected for different ILs and directly compared with interfacial ion density profiles predicted by molecular dynamics. Through this comparison it is concluded that AFM force measurements are sensitive to the position of the ion with the larger volume and mass, suggesting that ion selectivity in force-distance measurements are related to excluded volume effects and not to electrostatic or chemical interactions between ions and AFM tip. The comparison also revealed that at distances greater than 1 nm the system maintains overall electroneutrality between the AFM tip and sample, while at smaller distances other forces (e.g., van der waals interactions) dominate and electroneutrality is no longer maintained. PMID:27587276