WorldWideScience

Sample records for w7-x coil system

  1. Manufacturing of the coil support structure for W7-X

    Energy Technology Data Exchange (ETDEWEB)

    Benito, A. [Equipos Nucleares, S.A., Avda. Juan Carlos 1, 39600 Maliano (Spain)], E-mail: benito.alberto@ensa.es; Goitia, D.; Casado, E.; Anderez, M.; Vazquez, E.; Fajardo, M.; Palacios, C. [Equipos Nucleares, S.A., Avda. Juan Carlos 1, 39600 Maliano (Spain); Cardella, A.; Pilopp, D. [Max-Planck Institut fuer PlasmaPhysik, Wendelsteinstrasse 1, D-17491 Greifswald (Germany); Giordano, L. [ROVERA Construzioni Meccaniche, Via Vecchia di Cuneo 45, 12011 Borgo san Dalmazzo (Italy); Di Bartolo, G. [M and G srl Consultants, Via Dei Romanelli 8, 20034 Giussano (Italy)

    2007-10-15

    Equipos Nucleares S.A. as one of the contractors for the Wendelstein 7-X Stellarator project is currently manufacturing the coil support structure (CSS), which is a stainless steel ring-shaped structure formed by five equal sectors (modules), each of them made up from two symmetric half-modules, everything joined together by way of bolts and super-bolts. This CSS works as the central support for both planar and non-planar coils. The complicate shape of the CSS allows the ports to pass through the structure and reach their place into the vacuum vessel. Furthermore, all the structure is cooled down by way of a copper coated stainless steel long pipe going through the entire structure. Liquid helium at 4 K will be used as coolant to refrigerate the entire structure. Temperature and stresses on the structure will be controlled by means of advanced temperature sensors and strain gauges glued to the structure. Equipos Nucleares collaborates both in the design and the manufacturing of the CSS with the highest and newest technologies such as 3D CAD systems, laser trackers for dimensional controls, tools, machines, non-destructives tests, etc.

  2. Effect of error field correction coils on W7-X limiter loads

    Science.gov (United States)

    Bozhenkov, S. A.; Jakubowski, M. W.; Niemann, H.; Lazerson, S. A.; Wurden, G. A.; Biedermann, C.; Kocsis, G.; König, R.; Pisano, F.; Stephey, L.; Szepesi, T.; Wenzel, U.; Pedersen, T. S.; Wolf, R. C.; W7-X Team

    2017-12-01

    In the first campaign Wendelstein 7-X was operated with five poloidal graphite limiters installed stellarator symmetrically. In an ideal situation the power losses would be equally distributed between the limiters. The limiter shape was designed to smoothly distribute the heat flux over two strike lines. Vertically the strike lines are not uniform because of different connection lengths. In this paper it is demonstrated both numerically and experimentally that the heat flux distribution can be significantly changed by non-resonant n=1 perturbation field of the order of 10-4 . Numerical studies are performed with field line tracing. In experiments perturbation fields are excited with five error field trim coils. The limiters are diagnosed with infrared cameras, neutral gas pressure gauges, thermocouples and spectroscopic diagnostics. Experimental results are qualitatively consistent with the simulations. With a suitable choice of the phase and amplitude of the perturbation a more symmetric plasma-limiter interaction can be potentially achieved. These results are also of interest for the later W7-X divertor operation.

  3. Features and analyses of W7-X cryostat system FE model

    Energy Technology Data Exchange (ETDEWEB)

    Eeten, Paul van, E-mail: paul.van.eeten@ipp.mpg.de; Bräuer, Torsten; Bykov, Victor; Carls, Andre; Fellinger, Joris; Kallmeyer, J.P.

    2015-10-15

    The Wendelstein 7-X stellarator is presently under construction at the Max-Planck-Institute for Plasma Physics in Greifswald with the goal to verify that a stellarator magnetic confinement concept is a viable option for a fusion power plant. The main components of the W7-X cryostat system are the plasma vessel (PV), outer vessel (OV), ports, thermal insulation, vessel supports and the machine base (MB). The main task of the cryostat system is to provide an insulating vacuum for the cryogenic magnet system while allowing external access to the PV through ports for diagnostic, supply and heating systems. The cryostat is subjected to different types of loads during assembly, maintenance and operation. This ranges from basic weight loads from all installed components to mechanical, vacuum and thermal loads. To predict the behavior of the cryostat in terms of deformations, stresses and support load distribution a finite element (FE) global model has been created called the Global Model of the Cryostat System (GMCS). A complete refurbishment of the GM CS has been done in the last 2 years to prepare the model for future applications. This involved a complete mesh update of the model, an improvement of many model features, an update of the applied operational loads and boundary conditions as well as the creation of automatic post processing procedures. Currently the GMCS is used to support several significant assembly and commissioning steps of W7-X that involve the cryostat system, e.g. the removal of temporary supports beneath the MB, transfer of the PV from temporary to the final supports and evacuation of the cryostat. In the upcoming months the model will be used for further support of the commissioning of W7-X which includes the first evacuation of the PV.

  4. Modelling of pressure increase protection system for the vacuum vessel of W7-X device

    Energy Technology Data Exchange (ETDEWEB)

    Kaliatka, Tadas, E-mail: tadas.kaliatka@lei.lt; Uspuras, Eugenijus; Kaliatka, Algirdas

    2016-11-01

    Highlights: • Two in-vessel LOCAs (partial and guillotine break of 40 mm diameter pipe of cooling system) for Wendelstein 7-X fusion device were analyzed. • The analysis of the processes in the cooling system, vacuum vessel and pressure increase protection system were performed using thermal-hydraulic RELAP5 Mod3.3 code. • The suitability of pressure increase protection system was assessed. - Abstract: In fusion devices, plasma is contained in a vacuum vessel. The vacuum vessel cannot withstand a pressure above atmospheric. Any damage of in-vessel components could lead to water ingress and may lead to pressure increase and possible damage of vacuum vessel. In order to avoid such undesirable consequences, the pressure increase protection system is designed. In this article, the processes occurring in the vacuum vessel and pressure increase protection system of W7-X device during LOCA (small and guillotine pipe break) event are analyzed. The model of W7-X cooling system, vacuum vessel and pressure increase protection system was developed using RELAP5 code. Numerical analysis of partial and guillotine break of 40 mm diameter pipe of cooling system was performed. Calculation results showed that burst disc of the pressure increase protection system does not open when the cross section area of partial break in the cooling system is smaller than 1 mm{sup 2}. During the guillotine break of cooling system, the burst disc opens, but pressure increase protection system is capable to prevent overpressure of the vacuum vessel.

  5. Remote-Steering Launchers for the ECRH system on the Stellarator W7-X

    Directory of Open Access Journals (Sweden)

    Kasparek W.

    2015-01-01

    Full Text Available For electron cyclotron resonance heating of the stellarator W7-X at IPP Greifswald, a 140 GHz/10 MW cw millimeter wave system is in construction. Two out of 12 launchers will employ a remote-steering design. This paper describes the overall design of the two launchers, and design issues like input coupling structures, manufacturing of corrugated waveguides, optimization of the steering range, integration of vacuum windows, mitrebends and vacuum valves into the launchers, as well as tests of prototype parts.

  6. A high resolution IR/visible imaging system for the W7-X limiter

    Energy Technology Data Exchange (ETDEWEB)

    Wurden, G. A., E-mail: wurden@lanl.gov; Dunn, J. P. [Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States); Stephey, L. A. [University of Wisconsin, Madison, Wisconsin 53706 (United States); Biedermann, C.; Jakubowski, M. W.; Gamradt, M. [Max Planck Institut für Plasma Physik, Wendelsteinstrasse 1, 17491 Greifswald (Germany)

    2016-11-15

    A high-resolution imaging system, consisting of megapixel mid-IR and visible cameras along the same line of sight, has been prepared for the new W7-X stellarator and was operated during Operational Period 1.1 to view one of the five inboard graphite limiters. The radial line of sight, through a large diameter (184 mm clear aperture) uncoated sapphire window, couples a direct viewing 1344 × 784 pixel FLIR SC8303HD camera. A germanium beam-splitter sends visible light to a 1024 × 1024 pixel Allied Vision Technologies Prosilica GX1050 color camera. Both achieve sub-millimeter resolution on the 161 mm wide, inertially cooled, segmented graphite tiles. The IR and visible cameras are controlled via optical fibers over full Camera Link and dual GigE Ethernet (2 Gbit/s data rates) interfaces, respectively. While they are mounted outside the cryostat at a distance of 3.2 m from the limiter, they are close to a large magnetic trim coil and require soft iron shielding. We have taken IR data at 125 Hz to 1.25 kHz frame rates and seen that surface temperature increases in excess of 350 °C, especially on leading edges or defect hot spots. The IR camera sees heat-load stripe patterns on the limiter and has been used to infer limiter power fluxes (∼1–4.5 MW/m{sup 2}), during the ECRH heating phase. IR images have also been used calorimetrically between shots to measure equilibrated bulk tile temperature, and hence tile energy inputs (in the range of 30 kJ/tile with 0.6 MW, 6 s heating pulses). Small UFO’s can be seen and tracked by the FLIR camera in some discharges. The calibrated visible color camera (100 Hz frame rate) has also been equipped with narrow band C-III and H-alpha filters, to compare with other diagnostics, and is used for absolute particle flux determination from the limiter surface. Sometimes, but not always, hot-spots in the IR are also seen to be bright in C-III light.

  7. A high resolution IR/visible imaging system for the W7-X limiter

    Science.gov (United States)

    Wurden, G. A.; Stephey, L. A.; Biedermann, C.; Jakubowski, M. W.; Dunn, J. P.; Gamradt, M.

    2016-11-01

    A high-resolution imaging system, consisting of megapixel mid-IR and visible cameras along the same line of sight, has been prepared for the new W7-X stellarator and was operated during Operational Period 1.1 to view one of the five inboard graphite limiters. The radial line of sight, through a large diameter (184 mm clear aperture) uncoated sapphire window, couples a direct viewing 1344 × 784 pixel FLIR SC8303HD camera. A germanium beam-splitter sends visible light to a 1024 × 1024 pixel Allied Vision Technologies Prosilica GX1050 color camera. Both achieve sub-millimeter resolution on the 161 mm wide, inertially cooled, segmented graphite tiles. The IR and visible cameras are controlled via optical fibers over full Camera Link and dual GigE Ethernet (2 Gbit/s data rates) interfaces, respectively. While they are mounted outside the cryostat at a distance of 3.2 m from the limiter, they are close to a large magnetic trim coil and require soft iron shielding. We have taken IR data at 125 Hz to 1.25 kHz frame rates and seen that surface temperature increases in excess of 350 °C, especially on leading edges or defect hot spots. The IR camera sees heat-load stripe patterns on the limiter and has been used to infer limiter power fluxes (˜1-4.5 MW/m2), during the ECRH heating phase. IR images have also been used calorimetrically between shots to measure equilibrated bulk tile temperature, and hence tile energy inputs (in the range of 30 kJ/tile with 0.6 MW, 6 s heating pulses). Small UFO's can be seen and tracked by the FLIR camera in some discharges. The calibrated visible color camera (100 Hz frame rate) has also been equipped with narrow band C-III and H-alpha filters, to compare with other diagnostics, and is used for absolute particle flux determination from the limiter surface. Sometimes, but not always, hot-spots in the IR are also seen to be bright in C-III light.

  8. Comparison of silicon drift detectors made by Amptek and PNDetectors in application to the PHA system for W7-X

    National Research Council Canada - National Science Library

    Natalia Krawczyk; Jacek Kaczmarczyk; Monika Kubkowska; Leszek Ryć

    2016-01-01

    The paper presents comparison of two silicon drift detectors (SDD), one made by Amptek, USA, and the second one by PNDetector, Germany, which are considered for a soft X-ray diagnostic system for W7-X...

  9. Current status of the neutral beam heating system of W7-X

    Energy Technology Data Exchange (ETDEWEB)

    McNeely, Paul, E-mail: p.mcneely@ipp.mpg.de [Max-Planck-Institut für Plasmaphysik, EURATOM Association, Teilinstitut Griefswald, Wendelsteinstrasse 1, 17491 Griefswald (Germany); Barlak, Marek [National Centre for Nuclear Research, 05-400 Otwock/Swierk, A. Soltana 7 (Poland); Baldzuhn, Jürgen; Bozhenkov, Sergey; Drevlak, Michael [Max-Planck-Institut für Plasmaphysik, EURATOM Association, Teilinstitut Griefswald, Wendelsteinstrasse 1, 17491 Griefswald (Germany); Gawlik, Grzegorz [Institute for Electronic Materials Technology, 01-919 Warszawa, Wolczynska 133 (Poland); Heinemann, Bernd; Holtum, Dieter [Max-Planck-Institut für Plasmaphysik, EURATOM Association, Boltzmannstrasse 2, 85748 Garching bei München (Germany); Jagielski, Jacek [National Centre for Nuclear Research, 05-400 Otwock/Swierk, A. Soltana 7 (Poland); Institute for Electronic Materials Technology, 01-919 Warszawa, Wolczynska 133 (Poland); Kairys, Roland [Max-Planck-Institut für Plasmaphysik, EURATOM Association, Teilinstitut Griefswald, Wendelsteinstrasse 1, 17491 Griefswald (Germany); Nocentini, Riccardo; Riedl, Rudolf [Max-Planck-Institut für Plasmaphysik, EURATOM Association, Boltzmannstrasse 2, 85748 Garching bei München (Germany); Rong, Peter; Rust, Norbert; Schroeder, Ralf [Max-Planck-Institut für Plasmaphysik, EURATOM Association, Teilinstitut Griefswald, Wendelsteinstrasse 1, 17491 Griefswald (Germany); Speth, Eckehart; Stäbler, Albrecht [Max-Planck-Institut für Plasmaphysik, EURATOM Association, Boltzmannstrasse 2, 85748 Garching bei München (Germany); and others

    2013-10-15

    Under construction for the stellarator project Wendestein 7-X is a neutral beam heating system based on RF driven positive ion sources. It is planned to start operation with 2 sources capable of injecting 5 MW of heating power in deuterium. This paper gives the current status and future plans of the construction of the injector boxes and subsequent installation in the experimental hall. The fruitful collaboration with the National Center for Nuclear Research in Swierk, Poland is also detailed. Lastly, results from an initial study on fast ions in Wendelstein 7-X will be given.

  10. Comparison of silicon drift detectors made by Amptek and PNDetectors in application to the PHA system for W7-X

    Directory of Open Access Journals (Sweden)

    Krawczyk Natalia

    2016-12-01

    Full Text Available The paper presents comparison of two silicon drift detectors (SDD, one made by Amptek, USA, and the second one by PNDetector, Germany, which are considered for a soft X-ray diagnostic system for W7-X. The sensitive area of the first one is 7 mm2 × 450 μm and the second one is 10 mm2 × 450 μm. The first detector is cooled by a double-stage Peltier element, while the second detector is cooled by single-stage Peltier element. Each one is equipped with a field-effect transistor (FET. In the detector from Amptek, the FET is mounted separately, while in the detector from PNDetector, the FET is integrated on the chip. The nominal energy resolution given by the producers of the first and the second one is 136 eV@5.9 keV (at -50°C and 132 eV@5.9 keV (at -20°C, respectively. Owing to many advantages, the investigated detectors are good candidates for soft X-ray measurements in magnetic confinement devices. They are suitable for soft X-ray diagnostics, like the pulse height analysis (PHA system for the stellarator Wendelstein 7-X, which has been developed and manufactured at the Institute of Plasma Physics and Laser Microfusion (IPPLM, Warsaw, in collaboration with the Max Planck Institute for Plasma Physics (IPP, Greifswald. The diagnostic is important for the measurements of plasma electron temperature, impurities content, and possible suprathermal tails in the spectra. In order to choose the best type of detector, analysis of technical parameters and laboratory tests were done. Detailed studies show that the most suitable detector for the PHA diagnostics is the PNDetector.

  11. The integral analysis of 40 mm diameter pipe rupture in cooling system of fusion facility W7-X with ASTEC code

    Energy Technology Data Exchange (ETDEWEB)

    Kačegavičius, Tomas, E-mail: Tomas.Kacegavicius@lei.lt; Povilaitis, Mantas, E-mail: Mantas.Povilaitis@lei.lt

    2015-12-15

    Highlights: • The analysis of loss-of-coolant accident (LOCA) in W7-X facility. • Burst disc is sufficient to prevent pressure inside the plasma vessel exceeding 110 kPa. • Developed model of the cooling system adequately represents the expected phenomena. - Abstract: Fusion is the energy production technology, which could potentially solve problems with growing energy demand of population in the future. Wendelstein 7-X (W7-X) is an experimental facility of stellarator type, which is currently being built at the Max-Planck-Institute for Plasmaphysics located in Greifswald, Germany. W7-X shall demonstrate that in future the energy could be produced in such type of fusion reactors. The safety analysis is required before the operation of the facility could be started. A rupture of 40 mm diameter pipe, which is connected to the divertor unit (module for plasma cooling) to ensure heat removal from the vacuum vessel in case of no-plasma operation mode “baking” is one of the design basis accidents to be investigated. During “baking” mode the vacuum vessel structures and working fluid – water are heated to the temperature 160 °C. This accident was selected for the detailed analysis using integral code ASTEC, which is developed by IRSN (France) and GRS mbH (Germany). This paper presents the integral analysis of W7-X response to a selected accident scenario. The model of the main cooling circuit and “baking” circuit was developed for ASTEC code. There were analysed two cases: (1) rupture of a pipe connected to the upper divertor unit and (2) rupture of a pipe connected to the lower divertor unit. The results of analysis showed that in both cases the water is almost completely released from the units into the plasma vessel. In both cases the pressure in the plasma vessel rapidly increases and in 28 s the set point for burst disc opening is reached preventing further pressurisation.

  12. Thermal-Hydraulic Assessment of W7-X Plasma Vessel Venting System in Case of 40 mm In-Vessel LOCA

    Directory of Open Access Journals (Sweden)

    E. Urbonavičius

    2015-01-01

    Full Text Available This paper presents assessment of the capacity of W7-X venting system in response to in-vessel LOCA, rupture of 40 mm diameter pipe during operation mode “baking.” The integral analysis of the coolant release from the cooling system, pressurisation of PV, and response of the venting system is performed using RELAP5 code. The same coolant release rate was introduced to the COCOSYS code, which is a lumped-parameter code developed for analysis of processes in containment of the light water reactors and the detailed analysis of the plasma vessel and the venting system is performed. Different options of coolant release modeling available in COCOSYS are compared to define the base case model, which is further used for assessment of the other parameters, that is, the failure of one burst disk, the temperature in the environment, and the pressure losses in the piping of venting system. The performed analysis identified the best option for coolant release modeling and showed that the capacity of the W7-X venting system is enough to prevent overpressure of the plasma vessel in the case of in-vessel LOCA.

  13. Employing industrial standards in software engineering for W7X

    Energy Technology Data Exchange (ETDEWEB)

    Kuehner, Georg [Max-Planck-Institut fuer Plasmaphysik, EURATOM Association, Teilinstitut Greifswald, Wendelsteinstrasse 1, D-17491 Greifswald (Germany)], E-mail: kuehner@ipp.mpg.de; Bluhm, Torsten [Max-Planck-Institut fuer Plasmaphysik, EURATOM Association, Teilinstitut Greifswald, Wendelsteinstrasse 1, D-17491 Greifswald (Germany); Heimann, Peter [Max-Planck-Institut fuer Plasmaphysik, EURATOM Association, Boltzmannstrasse 2, D-85748 Garching (Germany); Hennig, Christine [Max-Planck-Institut fuer Plasmaphysik, EURATOM Association, Teilinstitut Greifswald, Wendelsteinstrasse 1, D-17491 Greifswald (Germany); Kroiss, Hugo [Max-Planck-Institut fuer Plasmaphysik, EURATOM Association, Boltzmannstrasse 2, D-85748 Garching (Germany); Krueger, Alexander [University of Applied Sciences, Schwedenschanze 135, 18435 Stralsund (Germany); Laqua, Heike; Lewerentz, Marc [Max-Planck-Institut fuer Plasmaphysik, EURATOM Association, Teilinstitut Greifswald, Wendelsteinstrasse 1, D-17491 Greifswald (Germany); Maier, Josef [Max-Planck-Institut fuer Plasmaphysik, EURATOM Association, Boltzmannstrasse 2, D-85748 Garching (Germany); Riemann, Heike; Schacht, Joerg; Spring, Anett; Werner, Andreas [Max-Planck-Institut fuer Plasmaphysik, EURATOM Association, Teilinstitut Greifswald, Wendelsteinstrasse 1, D-17491 Greifswald (Germany); Zilker, Manfred [Max-Planck-Institut fuer Plasmaphysik, EURATOM Association, Boltzmannstrasse 2, D-85748 Garching (Germany)

    2009-06-15

    The stellarator W7X is a large complex experiment designed for continuous operation and planned to be operated for about 20 years. Software support is highly demanded for experiment preparation, operation and data analysis which in turn induces serious non-functional requirements on the software quality like, e.g.: {center_dot}high availability, stability, maintainability vs. {center_dot}high flexibility concerning change of functionality, technology, personnel {center_dot}high versatility concerning the scale of system size and performance These challenges are best met by exploiting industrial experience in quality management and assurance (QM/QA), e.g. focusing on top-down development methods, developing an integral functional system model, using UML as a diagramming standard, building vertical prototypes, support for distributed development, etc., which have been used for W7X, however on an 'as necessary' basis. Proceeding in this manner gave significant results for control, data acquisition, corresponding database-structures and user applications over many years. As soon as production systems started using the software in the labs or on a prototype the development activity demanded to be organized in a more rigorous process mainly to provide stable operation conditions. Thus a process improvement activity was started for stepwise introduction of quality assuring processes with tool support taking standards like CMMI, ISO-15504 (SPICE) as a guideline. Experiences obtained so far will be reported. We conclude software engineering and quality assurance has to be an integral part of systems engineering right from the beginning of projects and be organized according to industrial standards to be prepared for the challenges of nuclear fusion research.

  14. Shielding of the NBI boxes against W7-X magnetic stray fields

    Energy Technology Data Exchange (ETDEWEB)

    Kick, Manfred [Max-Planck-Institut fuer Plasmaphysik, Boltzmannstr. 2, D-85748 Garching (Germany)], E-mail: Kick@arcor.de; Sielanko, Juliusz [Maria Curie Sklodowska University, Pl. M. C. Sklodowskie 1, 20-031 Lublin (Poland); Heinemann, Bernd; Riedl, Rudolf; Speth, Eckehart; Staebler, Albrecht [Max-Planck-Institut fuer Plasmaphysik, Boltzmannstr. 2, D-85748 Garching (Germany)

    2009-06-15

    Neutral Beam Injection (NBI), besides ECRH, is foreseen as one of the main heating devices at the W7-X stellarator currently under construction at IPP Greifswald, Germany. In a final stage 20 MW of NBI heating power will be installed generated by two NBI boxes of the ASDEX Upgrade (AUG) type. Since magnetic fields generally affect the trajectories of charged particles, essentially all the NBI boxes - including ion sources, acceleration sections, neutralisers and deflection magnets - must be shielded against the stray fields of W7-X. In the magnetic stray fields of W7-X there exist significant radial and toroidal components whereas at tokamaks the vertical components are dominant. The power loads on the ion dump and the protecting structures of the deflecting magnets and the beam lines caused by residual beam ions, therefore, will be strongly different. Thus the shielding concept of AUG cannot simply be taken over, but must be carefully redesigned in order to remain below the critical power limits. New modelling calculations of the magnetic shielding, the ion trajectories and the resulting power loads have been carried out for the 'high iota' and 'low shear' experimental scenarios of W7-X. The fields taken for these calculations are modelled by averaging the calculated W7-X stray fields on the one hand, and by fields generated by two-hypothetical-planar coils perpendicular to the x-y plane, on the other hand. The shielding concept for W7-X mainly consist of iron plates in the outer side regions of the boxes and as little magnetic material as possible inside the boxes.

  15. Feasibility of a Heavy Ion Beam Probe for W7-X

    Science.gov (United States)

    Crowley, T. P.; Demers, D. R.; Fimognari, P. J.; Grulke, O.; Laube, R.

    2017-10-01

    A feasibility study of a Heavy Ion Beam Probe (HIBP) diagnostic for the Wendelstein 7-X (W7-X) superconducting stellarator, incorporating the accelerator and energy analyzer (currently in Greifswald) from the 2 MeV TEXT-U HIBP, is being carried out. The study's results are positive: beam trajectory simulations in the W7-X standard magnetic configuration, with central densities up to 1020 m-3, predict that it will be possible to measure the equilibrium plasma potential and Er at all radii, and simultaneously measure temporally and spatially resolved fluctuations of ne and potential for r / a >0.5. This will provide a unique capability to advance understanding of neoclassical and turbulent particle and energy transport in W7-X. Within this feasibility study, the beam is injected and detected through the K11 and N11 ports respectively, and the toroidal magnetic field is in the ` + φ ' direction. Additional beam simulations reveal that most radii can be accessed in 7 other paradigm magnetic configurations. It's anticipated that electrostatic beam steering suitable for studying all these configurations is plausible; it will have plate dimensions comparable to TEXT-U's with smaller electric fields and higher voltages. Initial estimates of anticipated heat load from the W7-X plasma on the steering systems indicate it will be significant, but tractable. Our conclusion from these studies is that an HIBP diagnostic for W7-X is feasible. This work is supported by US DoE Award DE-SC0013918.

  16. Concurrent Object Access for the W7-X Configuration Database

    Energy Technology Data Exchange (ETDEWEB)

    Maier, J.; Heimann, P.; Kroiss, H.; Zilker, M. [Max-Planck-Institute for Plasmaphysics, Garching (Germany); Bluhm, T.; Hennig, C.; Kuhner, G.; Laqua, H.; Lewerentz, M.; Riemann, H.; Schacht, J.; Spring, A.; Werner, A. [Max-Planck-Institute for Plasmaphysics, Teilinstitut Greifswald (Germany)

    2009-07-01

    The W7-X Device is designed for continuous operation where long discharges are subdivided into time intervals. In W7-X terminology these time intervals are called segments. Each segment requires numerous parameters for all the attached data acquisition- and fast control stations. The descriptors of these segments and the descriptors of the stations, each consisting of a large number of individual objects together with the parameter set objects for all the modules of W7- X CoDaC are kept in the W7-X Object database. The configuration of a station forms a tree structure of many module objects. A segment descriptor for the whole W7-X project also forms a tree structure containing mainly sub-trees of group (component) descriptors with the parameter sets of all the modules involved in W7X CoDaC. Each object may be addressed and edited separately and may be reused and referenced in many other objects. Setting up these structures of objects is done concurrently via several editing tools by different users. One of the main policies is to reuse as many objects as possible. The high granularity of the database implies that changes in the configurations or segments parameters can have serious impacts on the many object graphs in the database. The handling and editing of the huge amount of segment descriptors containing many shared objects have to be accomplished in a concurrent, but nevertheless collision-safe manner. More general, the concurrent access to the objects together with safe operations (guaranteeing consistent structures) on the objects has to be solved. Some ideas for object locking strategies and competition reduction will be presented and discussed. The goal should be to reduce locking necessities either structurally which seems difficult in this case, or by defined work-flows which avoid competition. This document is composed of an abstract and a poster. (authors)

  17. Measurement of the plasma edge profiles using the combined probe on W7-X

    Science.gov (United States)

    Drews, P.; Liang, Y.; Liu, S.; Krämer-Flecken, A.; Neubauer, O.; Geiger, J.; Rack, M.; Nicolai, D.; Grulke, O.; Killer, C.; Wang, N.; Charl, A.; Schweer, B.; Denner, P.; Henkel, M.; Gao, Y.; Hollfeld, K.; Satheeswaran, G.; Sandri, N.; Höschen, D.; The W7-X Team

    2017-12-01

    Wendelstein 7-X (W7-X), started operation in December 2015 with a limiter configuration. In conjunction with the multi-purpose manipulator, a carrier for fast reciprocating probe systems, the combined probe has been installed. This combined probe is able to measure the local electron temperatures and densities, magnetic field, the electric field and the plasma flow. These parameters are very useful in ascertaining the edge plasma perfomance. In addition, the field line tracing feature of the W7-X webservices was used to calculate the connection length along the path of the probe, for each configuration.

  18. Continuity and enhancement of quality management during commissioning of W7-X

    Energy Technology Data Exchange (ETDEWEB)

    Vilbrandt, Reinhard, E-mail: reinhard.vilbrandt@ipp.mpg.de; Bosch, Hans-Stephan; Feist, Jost-Henrich; Klinger, Thomas

    2015-10-15

    Highlights: • Commissioning follows the W7-X structure into appropriate components, subsystems and systems. • Local and integrated commissioning steps are carried out alternately. • An exact and detailed preparation of all commissioning is absolutely necessary. • Templates support instruction manuals, safety analyses, and commissioning instructions. • Because of safety special attention must be paid to the first putting into service. - Abstract: The commissioning of Wendelstein 7-X, the first numerically optimized stellarator, is a new phase in the project. The general planning and execution of the commissioning of the entire W7-X system follow its structure into appropriate components, subsystems and systems. The approach for taking these systems into operation will lead to so-called local commissioning which is usually executed for individual systems in connection with the necessary peripheral devices and auxiliary systems. The subsequent step-wise testing and commissioning of the systems in connection with the central device of W7-X, including the central safety control, and the central data acquisition system is performed in the second step, the so-called integrated commissioning. This leads directly to the preparation of first plasma operation. New organizational and quality management elements have been added to the running system, or existing, proven tools have been modified. The major new organizational structures and tasks and the quality planning and assurance tools are described in more detail. The experience during the first commissioning steps of the vacuum and cryogenic systems is outlined.

  19. ECRH and ECCD scenarios for W7-X

    Directory of Open Access Journals (Sweden)

    Laqua H.P.

    2012-09-01

    Full Text Available The main ECRH scenarios for the W7-X Stellarator are described. Both X2 (low and moderate densities and O2 scenarios (high density have been studied. Since O2 scenario cannot be realized without pre-heating, transition from X2 to O2 scenarios has been discussed. Due to a lack of Ohmic transformer, only ECCD is available for compensating the bootstrap current and for controlling the edge rotational transform value. The efficiency of ECCD for all main scenarios has been estimated. All simulations have been performed by a 1D transport code coupled self-consistently with ray-tracing code.

  20. Fast-camera imaging on the W7-X stellarator

    Science.gov (United States)

    Ballinger, S. B.; Terry, J. L.; Baek, S. G.; Tang, K.; Grulke, O.

    2017-10-01

    Fast cameras recording in the visible range have been used to study filamentary (``blob'') edge turbulence in tokamak plasmas, revealing that emissive filaments aligned with the magnetic field can propagate perpendicular to it at speeds on the order of 1 km/s in the SOL or private flux region. The motion of these filaments has been studied in several tokamaks, including MAST, NSTX, and Alcator C-Mod. Filaments were also observed in the W7-X Stellarator using fast cameras during its initial run campaign. For W7-X's upcoming 2017-18 run campaign, we have installed a Phantom V710 fast camera with a view of the machine cross section and part of a divertor module in order to continue studying edge and divertor filaments. The view is coupled to the camera via a coherent fiber bundle. The Phantom camera is able to record at up to 400,000 frames per second and has a spatial resolution of roughly 2 cm in the view. A beam-splitter is used to share the view with a slower machine-protection camera. Stepping-motor actuators tilt the beam-splitter about two orthogonal axes, making it possible to frame user-defined sub-regions anywhere within the view. The diagnostic has been prepared to be remotely controlled via MDSplus. The MIT portion of this work is supported by US DOE award DE-SC0014251.

  1. Initial observations on core transport in W7-X island divertor plasmas

    Science.gov (United States)

    Pablant, Novimir; W7-X Team

    2017-10-01

    The current campaign of the Wendelstein 7-X (W7-X) stellarator, specified as OP1.2a, features the first operation with an island divertor and a completed carbon first wall. With the completion of the divertor, and recent upgrades to the ECRH heating system, higher temperatures and densities are expected than previously available during the first campaign (OP1.1), which featured a limiter plasma. After completion of wall conditioning, plasmas with Te Ti are expected to become accessible, allowing the investigation of plasma performance in the ion-root regime. Initial investigations of core transport in the W7-X island divertor are reported, along with measurements of the radial electric field. Measurements of temperature, density and radial electric field are compared at similar ECRH input powers between the island divertor plasmas from OP1.2a and the limiter plasmas from OP1.1.

  2. Energetic Particle Loss Estimates in W7-X

    Science.gov (United States)

    Lazerson, Samuel; Akaslompolo, Simppa; Drevlak, Micheal; Wolf, Robert; Darrow, Douglass; Gates, David; W7-X Team

    2017-10-01

    The collisionless loss of high energy H+ and D+ ions in the W7-X device are examined using the BEAMS3D code. Simulations of collisionless losses are performed for a large ensemble of particles distributed over various flux surfaces. A clear loss cone of particles is present in the distribution for all particles. These simulations are compared against slowing down simulations in which electron impact, ion impact, and pitch angle scattering are considered. Full device simulations allow tracing of particle trajectories to the first wall components. These simulations provide estimates for placement of a novel set of energetic particle detectors. Recent performance upgrades to the code are allowing simulations with > 1000 processors providing high fidelity simulations. Speedup and future works are discussed. DE-AC02-09CH11466.

  3. A first W7-X experiment program editor

    Energy Technology Data Exchange (ETDEWEB)

    Spring, A.; Lewerentz, M.; Bluhm, T.; Hennig, C.; Kuhner, G.; Laqua, H.; Riemann, H.; Schacht, J.; Werner, A. [Max-Planck-Institute for Plasmaphysics, Teilinstitut Greifswald (Germany); Heimann, P.; Kroiss, H.; Maier, J.; Zilker, M. [Max-Planck-Institute for Plasmaphysics, Garching (Germany)

    2009-07-01

    This document is composed of a poster and its abstract. The long Wendelstein 7-X experiment programs will be segmented into arbitrary time slices. For each of these segments the planned behaviour is stored in a configuration database - and that for every component within the W7X hierarchical layout. Up to now we have an editor to set up these segments for each single component. But generating the compound program description out of the components' segments is still time-consuming experts' hand work. It is planned to implement a top-down program editor which is able to break down a high level physics program proposal to component segments while observing all the physical and technical constraints - a quite ambitious intention. This poster describes the first step to an experiment program editor: The 'express program editor' will be able to modify parameters of a single, a subset, or all segments within a given program, thus adapting its behaviour in an easy way. A graphical program structure overview has been implemented giving fast access to program parameters for comparison and editing. Appropriate parameter editors regard type and constraints as known from the single-segment editor. In a single transaction all changes are saved, the resulting experiment program is re-generated and the involved components are triggered to reload the changed program. Even though changing the program's structure is not supported in this version, the express program editor will serve as a tool for quick program adaptations in the daily experiment routine. Furthermore this implementation will be used as a design and usage study for the later high-end W7-X program editor. (authors)

  4. Pendulum support of the W7-X plasma vessel: Design, tests, manufacturing, assembly, critical aspects, status

    Energy Technology Data Exchange (ETDEWEB)

    Missal, B., E-mail: bernd.missal@ipp.mpg.de [Max-Planck-Institut für Plasmaphysik, EURATOM Association, Teilinstitut Greifswald, Wendelsteinstraße 1, D-17491 Greifswald (Germany); Leher, F.; Schiller, T. [MAN Diesel and Turbo SE, Werftstraße 17, 94469 Deggendorf (Germany); Friedrich, P. [Universität Rostock, FB Maschinenbau und Schiffstechnik, Albert-Einsteins-Straße 2, 18051 Rostock (Germany); Capriccioli, A. [ENEA Frascati, Fusion Technology Unit, Frascati (Italy)

    2014-10-15

    Highlights: • Plasma vessel support has to allow vertical adjustment and horizontal passive movement. • Planar sliding tables with PTFE do not fulfill all requirements. • Pendulums can fulfill all requirements. • Geometry and material of spherical bearings had to be optimized in calculations and tests. • Optimized pendulums were manufactured and assembled. - Abstract: The superconducting helical advanced stellarator Wendelstein 7-X (W7-X) is under construction at the Max-Planck-Institut für Plasmaphysik (IPP) in Greifswald, Germany. The three dimensional shape of plasma will be generated by 50 non-planar magnetic coils. The plasma vessel geometry follows exactly this three dimensional shape of plasma. To ensure the superconductivity of coils a cryo vacuum has to be generated. Therefore the coils and their support structure are enclosed within the outer vessel. Plasma vessel, coil structures and outer vessel have to be supported separately. This paper will describe the vertical supports of plasma vessel which have to fulfill two special requirements, vertical adjustability and horizontal mobility. These two tasks will be carried out by plasma vessel supports (PVS) with hydraulic cylinders, special sliding tables during assembly and pendulum supports during operating phase. The paper will give an overview of design, calculation, tests, fabrication, assembly, critical aspects and status of PVS.

  5. Design criteria of the bolometer diagnostic for steady-state operation of the W7-X stellarator.

    Science.gov (United States)

    Zhang, D; Burhenn, R; Koenig, R; Giannone, L; Grodzki, P A; Klein, B; Grosser, K; Baldzuhn, J; Ewert, K; Erckmann, V; Hirsch, M; Laqua, H P; Oosterbeek, J W

    2010-10-01

    A bolometric diagnostic system with features necessary for steady-state operation in the superconducting stellarator W7-X was designed. During a pulse length of 1800 s with an ECRH (electron cyclotron resonance heating) power of 10 MW, the components suffer not only from a large thermal load but also from stray radiation of the nonabsorbed isotropic microwaves. This paper gives an overview of the technical problems encountered during the design work and the solutions to individual problems to meet the special requirements in W7-X, e.g., component thermal protection, detector offset thermal drift suppression, as well as a microwave shielding technique.

  6. Remote-Steering Antennas for 140 GHz Electron Cyclotron Heating of the Stellarator W7-X

    Directory of Open Access Journals (Sweden)

    Lechte C.

    2017-01-01

    Full Text Available For electron cyclotron resonance heating of the stellarator W7-X at IPP Greifswald, a 140 GHz/10 MW cw millimeter wave system has been built. Two out of 12 launchers will employ a remote-steering design. This paper describes the overall design of the two launchers, and design issues like input coupling structures, manufacturing of corrugated waveguides, optimization of the steering range, integration of vacuum windows, mitrebends and vacuum valves into the launchers, as well as low power tests of the finished waveguides.

  7. Remote-Steering Antennas for 140 GHz Electron Cyclotron Heating of the Stellarator W7-X

    Science.gov (United States)

    Lechte, C.; Kasparek, W.; Plaum, B.; Zeitler, A.; Erckmann, V.; Laqua, H.; Schneider, N.; Weissgerber, M.; Bechtold, A.; Busch, M.; Szepaniak, B.

    2017-07-01

    For electron cyclotron resonance heating of the stellarator W7-X at IPP Greifswald, a 140 GHz/10 MW cw millimeter wave system has been built. Two out of 12 launchers will employ a remote-steering design. This paper describes the overall design of the two launchers, and design issues like input coupling structures, manufacturing of corrugated waveguides, optimization of the steering range, integration of vacuum windows, mitrebends and vacuum valves into the launchers, as well as low power tests of the finished waveguides.

  8. Progress on standardization and automation in software development on W7X

    Energy Technology Data Exchange (ETDEWEB)

    Kuehner, Georg, E-mail: kuehner@ipp.mpg.de [Max-Planck-Institut fuer Plasmaphysik, Wendelsteinstrasse 1, D-17491 Greifswald (Germany); Bluhm, Torsten [Max-Planck-Institut fuer Plasmaphysik, Wendelsteinstrasse 1, D-17491 Greifswald (Germany); Heimann, Peter [Max-Planck-Institut fuer Plasmaphysik, Boltzmannstrasse 2, D-85748 Garching (Germany); Hennig, Christine [Max-Planck-Institut fuer Plasmaphysik, Wendelsteinstrasse 1, D-17491 Greifswald (Germany); Kroiss, Hugo [Max-Planck-Institut fuer Plasmaphysik, Boltzmannstrasse 2, D-85748 Garching (Germany); Krom, Jon; Laqua, Heike; Lewerentz, Marc [Max-Planck-Institut fuer Plasmaphysik, Wendelsteinstrasse 1, D-17491 Greifswald (Germany); Maier, Josef [Max-Planck-Institut fuer Plasmaphysik, Boltzmannstrasse 2, D-85748 Garching (Germany); Schacht, Joerg; Spring, Anett; Werner, Andreas [Max-Planck-Institut fuer Plasmaphysik, Wendelsteinstrasse 1, D-17491 Greifswald (Germany); Zilker, Manfred [Max-Planck-Institut fuer Plasmaphysik, Boltzmannstrasse 2, D-85748 Garching (Germany)

    2012-12-15

    Highlights: Black-Right-Pointing-Pointer For W7X software development the use of ISO/IEC15504-5 is further extended. Black-Right-Pointing-Pointer The standard provides a basis to manage software multi-projects for a large system project. Black-Right-Pointing-Pointer Adoption of a scrum-like management allows for quick reaction on priority changes. Black-Right-Pointing-Pointer A high degree of software build automation allows for quick responses to user requests. Black-Right-Pointing-Pointer It provides additional resources to concentrate work on product quality (ISO/IEC 25000). - Abstract: For a complex experiment like W7X being subject to changes all along its projected lifetime the advantages of a formalized software development method have already been stated. Quality standards like ISO/IEC-12207 provide a guideline for structuring of development work and improving process and product quality. A considerable number of tools has emerged supporting and automating parts of development work. On W7X progress has been made during the last years in exploiting the benefit of automation and management during software development: -Continuous build, integration and automated test of software artefacts. Ring-Operator Syntax checks and code quality metrics. Ring-Operator Documentation generation. Ring-Operator Feedback for developers by temporal statistics. -Versioned repository for build products (libraries, executables). -Separate snapshot and release repositories and automatic deployment. -Semi-automatic provisioning of applications. -Feedback from testers and feature requests by ticket system. This toolset is working efficiently and allows the team to concentrate on development. The activity there is presently focused on increasing the quality of the existing software to become a dependable product. Testing of single functions and qualities must be simplified. So a restructuring is underway which relies more on small, individually testable components with standardized

  9. Dual coil ignition system

    Science.gov (United States)

    Huberts, Garlan J.; Qu, Qiuping; Czekala, Michael Damian

    2017-03-28

    A dual coil ignition system is provided. The dual coil ignition system includes a first inductive ignition coil including a first primary winding and a first secondary winding, and a second inductive ignition coil including a second primary winding and a second secondary winding, the second secondary winding connected in series to the first secondary winding. The dual coil ignition system further includes a diode network including a first diode and a second diode connected between the first secondary winding and the second secondary winding.

  10. Development of a virtual Z(eff) diagnostic for the W7-X stellarator.

    Science.gov (United States)

    Krychowiak, M; Dodt, D; Dreier, H; König, R; Wolf, R

    2008-10-01

    For the W7-X stellarator a diagnostic system for measurement of local Z(eff) values from the visible bremsstrahlung continuum is foreseen. The method is based on passive, absolute measurement of the bremsstrahlung intensity along several lines of sight. In order to eliminate the spurious impact of other radiation sources of different spectral intensity distribution than the bremsstrahlung, like the line radiation, it is intended to spectrally resolve the detected radiation, e.g., by use of microspectrometers. The visible bremsstrahlung background can be extracted by making use of the 1/lambda(2) dependence of its intensity (expressed in unit Wm(3) sr nm) in the high temperature plasmas by using Bayesian data analysis techniques. In a second step, the local values of Z(eff) as a function of the effective plasma radius are derived by inversion, using different regularization methods, of the line-integrated bremsstrahlung signals with the knowledge of the magnetic flux surfaces. Inversion of the full model based on statistical methods allows taking into account all conceivable uncertainties accompanying Z(eff) measurement and provides uncertainties of the local Z(eff) values and valuable information on other uncertain parameters of the model. In this paper we show the first steps in developing a virtual Z(eff) diagnostic for W7-X which allows the optimization of the statistical model as well as of the future diagnostic setup.

  11. Integrated assessment of thermal hydraulic processes in W7-X fusion experimental facility

    Energy Technology Data Exchange (ETDEWEB)

    Kaliatka, T., E-mail: tadas.kaliatka@lei.lt; Uspuras, E.; Kaliatka, A.

    2017-02-15

    Highlights: • The model of Ingress of Coolant Event experiment facility was developed using the RELAP5 code. • Calculation results were compared with Ingress of Coolant Event experiment data. • Using gained experience, the numerical model of Wendelstein 7-X facility was developed. • Performed analysis approved pressure increase protection system for LOCA event. - Abstract: Energy received from the nuclear fusion reaction is one of the most promising options for generating large amounts of carbon-free energy in the future. However, physical and technical problems existing in this technology are complicated. Several experimental nuclear fusion devices around the world have already been constructed, and several are under construction. However, the processes in the cooling system of the in-vessel components, vacuum vessel and pressure increase protection system of nuclear fusion devices are not widely studied. The largest amount of radioactive materials is concentrated in the vacuum vessel of the fusion device. Vacuum vessel is designed for the vacuum conditions inside the vessel. Rupture of the in-vessel components of the cooling system pipe may lead to a sharp pressure increase and possible damage of the vacuum vessel. To prevent the overpressure, the pressure increase protection system should be designed and implemented. Therefore, systematic and detailed experimental and numerical studies, regarding the thermal-hydraulic processes in cooling system, vacuum vessel and pressure increase protection system, are important and relevant. In this article, the numerical investigation of thermal-hydraulic processes in cooling systems of in-vessel components, vacuum vessels and pressure increase protection system of fusion devices is presented. Using the experience gained from the modelling of “Ingress of Coolant Event” experimental facilities, the numerical model of Wendelstein 7-X (W7-X) experimental fusion device was developed. The integrated analysis of the

  12. Experimental characterization of plasma start-up using ECRH in preparation of W7-X operation

    Directory of Open Access Journals (Sweden)

    Preynas M.

    2015-01-01

    Full Text Available The upcoming operation of Wendelstein 7-X (W7-X will be supported by an Electron Cyclotron Resonance Heating (ECRH system working at 140 GHz in second harmonic at the nominal magnetic field of 2.5T. Because the optimization of the plasma breakdown is crucial to ensure a successful plasma build-up, dedicated plasma start-up experiments were performed on three stellarator/heliotron devices: Heliotron J, LHD and WEGA. Start-up behavior and dependencies on ECRH injected power, neutral gas pressure and rotational transform were obtained in X2 heating. Plasma start-up delay time decreases with the increase in ECRH input power. However, this behavior saturates when low pre-fill neutral gas pressure conditions are met. Both the delay time and the electron density are an increasing function of the gas pressure. On Heliotron J and WEGA devices, the higher the rotational transform is, the faster the start-up and the higher the plasma density are. Analysis of the temporal evolution of the plasma start-up shows that plasma start-up on stellarators is a two-step process. In addition, off-axis heating experiments are characterized by a longer plasma start-up duration compared to on-axis heating discharges. Third harmonic in X-mode has been attempted on LHD for different neutral gas puffing settings but no plasma breakdown was achieved. This multi-machine study was useful to define ECRH start-up scenarios for W7-X.

  13. GTC simulations of ion temperature gradient driven instabilities in W7-X and LHD stellarators

    Science.gov (United States)

    Wang, Hongyu

    2017-10-01

    We report GTC linear simulations of ion temperature gradient (ITG) instabilities in Wendelstein 7-X (W7-X) and Large Helical Device (LHD) stellarators. GTC has recently been updated to treat 3D equilibria by interfacing with MHD equilibrium code VMEC. GTC simulations of ITG have been carried out in both full torus and partial torus taking into account the toroidal periodicity of the stellarators. The effects of toroidal mode coupling on linear dispersions and mode structures in W7-X and LHD are studied. The mode structure in W7-X is more localized in the toroidal direction, and LHD is more extended in the toroidal direction and tokamak-like. Linear growth rates, real frequencies, and mode structures agree reasonably with results of EUTERPE simulations. In collaboration with I. Holod, J. Riemann, Z. Lin, J. Bao, L. Shi, S. Taimourzadeh, R. Kleiber, and M. Borchardt.

  14. Coherence Imaging Measurements of Impurity Flow in the CTH and W7-X Experiments

    Science.gov (United States)

    Ennis, D. A.; Allen, N. R.; Hartwell, G. J.; Johnson, C. A.; Maurer, D. A.; Allen, S. L.; Samuell, C. M.; Gradic, D.; Konig, R.; Perseo, V.; W7-X Team

    2017-10-01

    Measurements of impurity ion emissivity and velocity in the Compact Toroidal Hybrid (CTH) experiment are achieved with a new optical coherence imaging diagnostic. The Coherence Imaging Spectroscopy (CIS) technique uses an imaging interferometer of fixed delay to provide 2D spectral images, making it ideal for investigating the non-axisymmetric geometry of CTH plasmas. Preliminary analysis of C III interferograms indicate a net toroidal flow on the order of 10 km/s during the time of peak current. Bench tests using Zn and Cd light sources reveal that the temperature of the interferometer optics must be controlled to within 0.01°C to limit phase drift resulting in artificially measured flow. A new collaboration between Auburn University and the Max-Planck-Institute for Plasma Physics is underway to develop two new coherence imaging instruments for ion impurity flow measurements in orthogonal directions to investigate the 3D physics of the W7-X island divertor during OP1.2. A continuous wave laser tunable over most of the visible region will be incorporated to provide immediate and accurate calibrations of both CIS systems during plasma operations. Work supported by USDoE Grant DE-FG02-00ER54610.

  15. Optical design study for divertor observation at the stellarator W7-X

    NARCIS (Netherlands)

    König, R.; Hildebrandt, D.; Hübner, T.; Klinkhamer, J.F.F.; Moddemeijer, K.; Vliegenthart, W.A.

    2006-01-01

    The stellarator W7-X will be capable of running in a quasicontinuous operating mode with 10 MW of electron cyclotron heating (ECRH) heating for 30 min, the duration only being limited by the capacity of the available cooling reservoir. The integrated ten discrete water cooled divertor modules need

  16. Thermo-mechanical analysis of retro-reflectors for interferometry and polarimetry in W7-X

    NARCIS (Netherlands)

    Köppen, M.; Hirsch, M.; Ernst, J.; Vliegenthart, W.A.; Ye, M.Y.; Bykov, V.; Schauer, F.

    2011-01-01

    The stellarator Wendelstein 7-X (W7-X) is presently under construction at the Max-Planck-Institut für Plasmaphysik in Greifswald, Germany. The plasma density profile will be measured by two-colour interferometry where for each line of sight through the plasma the phase shifts of two far-infrared

  17. Development and testing of 140 GHz absorber coatings for the water baffle of W7-X cryopumps

    Energy Technology Data Exchange (ETDEWEB)

    Floristan, Miriam, E-mail: miriam.floristan@gsame.uni-stuttgart.de [Graduate School for advanced Manufacturing Engineering (GSaME), Universitaet Stuttgart (Germany); Institute for Manufacturing Technologies of Ceramic Components and Composites (IMTCCC), Universitaet Stuttgart, Allmandring 7 b, D-70569 Stuttgart (Germany); Mueller, Philipp; Gebhardt, Andreas; Killinger, Andreas; Gadow, Rainer [Institute for Manufacturing Technologies of Ceramic Components and Composites (IMTCCC), Universitaet Stuttgart, Allmandring 7 b, D-70569 Stuttgart (Germany); Cardella, Antonio [European Commission c/o Wendelstein 7X, Boltzmannstasse 2, D-85748 Garching (Germany); Li, Chuanfei; Stadler, Reinhold; Zangl, Guenter; Hirsch, Matthias; Laqua, Heinrich P. [Max-Planck-Institut fuer Plasmaphysik, EURATOM Assoc., Wendelsteinstrasse 1, D-17491 Greifswald (Germany); Kasparek, Walter [Institut fuer Plasmaforschung, Universitaet Stuttgart, Pfaffenwaldring 31, D-70569 Stuttgart (Germany)

    2011-10-15

    Due to the relatively high strayfield radiation (140 GHz) from the electron cyclotron radio frequency heating system to which the W7-X cryopumps are expected to be subjected, coating systems acting as an efficient absorber for 140 GHz radiation have been developed for the water-cooled baffle shield in order to reduce the thermal load on the liquid N shield and the liquid He cryopanel. Several types of oxide ceramic coatings were applied on planar copper substrates by Atmospheric Plasma Spraying. The influence of the process parameters on the coating properties and microwave absorbing capability was analysed. It was found that film thickness and microstructure of the sprayed coatings have a significant influence on microwave absorption behaviour. For Al{sub 2}O{sub 3}/TiO{sub 2} coatings, absorption values over 90% were obtained for the 140 GHz probing beam. After optimisation of the coating structure for maximum microwave absorption, the coating procedure was adapted by special robot trajectories to the complex water baffle geometry. The selected spray parameters and kinematics were then used for the complete coating of four mock-ups, which have been tested in the W7-X strayfield test facility Mistral. The mock-ups showed absorption values of 75%.

  18. Assessment of W7-X plasma vessel pressurisation in case of LOCA taking into account in-vessel components

    Energy Technology Data Exchange (ETDEWEB)

    Urbonavičius, E., E-mail: Egidijus.Urbonavicius@lei.lt; Povilaitis, M., E-mail: Mantas.Povilaitis@lei.lt; Kontautas, A., E-mail: Aurimas.Kontautas@lei.lt

    2015-11-15

    Highlights: • Analysis of the vacuum vessel response to the LOCA in W7-X was performed using lumped-parameter codes COCOSYS and ASTEC. • Benchmarking of the results received with two codes provides more confidence in results and helps in identification of possible important differences in the modelling. • The performed analysis answered the questions set in the installed plasma vessel venting system during overpressure of PV in case of 40 mm diameter LOCA in “baking” mode. • Differences in time until opening the burst disk observed in ASTEC and COCOSYS results are caused by differences in heat transfer modelling. - Abstract: This paper presents the analysis of W7-X vacuum vessel response taking into account in-vessel components. A detailed analysis of the vacuum vessel response to the loss of coolant accident was performed using lumped-parameter codes COCOSYS and ASTEC. The performed analysis showed that the installed plasma vessel venting system prevents overpressure of PV in case of 40 mm diameter LOCA in “baking” mode. The performed analysis revealed differences in heat transfer modelling implemented in ASTEC and COCOSYS computer codes, which require further investigation to justify the correct approach for application to fusion facilities.

  19. Recent achievements on tests of series gyrotrons for W7-X and planned extension at the KIT gyrotron test facility

    Energy Technology Data Exchange (ETDEWEB)

    Schmid, M., E-mail: martin.schmid@kit.edu [Karlsruhe Institute of Technology, Association EURATOM-KIT, Karlsruhe (Germany); Institute for Pulsed Power and Microwave Technology (IHM) (Germany); Choudhury, A. Roy; Dammertz, G. [Karlsruhe Institute of Technology, Association EURATOM-KIT, Karlsruhe (Germany); Institute for Pulsed Power and Microwave Technology (IHM) (Germany); Erckmann, V. [Karlsruhe Institute of Technology, Association EURATOM-KIT, Karlsruhe (Germany); Max-Planck-Institute for Plasmaphysics, Association EURATOM-IPP, Greifswald (Germany); Gantenbein, G.; Illy, S. [Karlsruhe Institute of Technology, Association EURATOM-KIT, Karlsruhe (Germany); Institute for Pulsed Power and Microwave Technology (IHM) (Germany); Jelonnek, J. [Karlsruhe Institute of Technology, Association EURATOM-KIT, Karlsruhe (Germany); Institute for Pulsed Power and Microwave Technology (IHM) (Germany); Institute of High Frequency Techniques and Electronics (IHE) (Germany); Kern, S. [Karlsruhe Institute of Technology, Association EURATOM-KIT, Karlsruhe (Germany); Institute for Pulsed Power and Microwave Technology (IHM) (Germany); Legrand, F. [Karlsruhe Institute of Technology, Association EURATOM-KIT, Karlsruhe (Germany); Thales Electron Devices, Vélicy (France); Rzesnicki, T.; Samartsev, A. [Karlsruhe Institute of Technology, Association EURATOM-KIT, Karlsruhe (Germany); Institute for Pulsed Power and Microwave Technology (IHM) (Germany); Schlaich, A.; Thumm, M. [Karlsruhe Institute of Technology, Association EURATOM-KIT, Karlsruhe (Germany); Institute for Pulsed Power and Microwave Technology (IHM) (Germany); Institute of High Frequency Techniques and Electronics (IHE) (Germany)

    2013-10-15

    Highlights: ► Solution found to suppress parasitic beam tunnel oscillations on high power gyrotrons. ► Electron beam sweeping technique to avoid plastic deformation on collector of high power gyrotrons. ► Ongoing investigations on limitations of gyrotron efficiency. ► Upgrade of 10 MW CW modulator for gyrotrons with multistage depressed collectors. -- Abstract: Parasitic beam tunnel oscillations have been hampering the series production of gyrotrons for W7-X. This problem has now been overcome thanks to the introduction of a specially corrugated beam tunnel. Two gyrotrons equipped with the new beam tunnel have fully passed the acceptance tests. Despite excellent power capability, the expected efficiency has not yet been achieved, possibly due to the presence of parasitic oscillations suspected to be dynamic after-cavity-oscillations (ACI's) or due to insufficient electron beam quality. Both theoretical and experimental investigations on these topics are ongoing. On previous W7-X gyrotrons collector fatigue has been observed, not (yet) leading to any failures so far. The plastic deformation occurring on the collector has now been eliminated due to the strict use (on all gyrotrons) of a sweeping method which combines the conventional 7 Hz solenoid sweeping technique with a 50 Hz transverse-field sweep system. Starting in 2013, the gyrotron test facility at KIT will be enhanced, chiefly with a new 10 MW DC modulator, capable of testing gyrotrons up to 4 MW CW output power with multi-stage-depressed collectors.

  20. Fractional pressure measurements inside of the divertor baffling at W7-X with a spectroscopically assisted Penning gauge

    Science.gov (United States)

    Kremeyer, Thierry; Schmitz, Oliver; Wenzel, Uwe; Flesch, Kurt; W7-X Team

    2017-10-01

    Studies of helium exhaust from stellarator divertors is important to qualify sufficient helium exhaust for future reactors. Penning gauges assisted by spectroscopy were used to measure total neutral pressure and to resolve the D and He partial pressures. A generic feasibility test at W7-X gave successful measurements of the total as well as the fractional neutral pressures of He and H. A first prototype of a new Penning gauge probe head has been tested at UW Madison at 240 mT as well as at the PAX magnet at IPP Greifswald, Germany at 3 T and shows a near linear power law scaling between current and pressure: I = C *Pn with n = 1.0 - 1.2 for the 240 mT case and 2.3 - 2.8 for the 3 T case. Pressure measurements were achieved starting at 10-2 mbar and down to 10-6 mbar. With the new probe head, it was possible to increase the time resolution of the spectroscopically assisted fractional neutral pressure measurements to up to 1MHz. This system is now implemented at three poloidal positions at one toroidal location in W7-X and is ready for measurements. This work was funded in part by the Department of Energy under Grants DE-SC0012315 and DE-SC0014210 and from EUROfusion under Grant No 633053.

  1. ECRH scenarios with selective heating of trapped/passing electrons in the W7-X Stellarator

    Directory of Open Access Journals (Sweden)

    Marushchenko N.B.

    2015-01-01

    Full Text Available Using specific features of the magnetic equilibrium in the W7-X stellarator, the ECRH scenarios with combined X2 and X3 modes are discussed. The RF beams for operation with X2 and X3 modes need to be launched from low- and, via the remote steering launcher, high-field-side, respectivaly, in the different crosssections of the device where the maximum and minimum of the magnetic field located. The aim is to explore the possibility of selective heating of the different classes of electrons, passing and trapped, by changing direction of the beam for X3 or switching between the beams for X2 and X3 launched from the different ports. The numerical predictions for this kind of experiments in W7-X are performed by coupled transport and ray tracing codes

  2. A W7-X experiment program editor--A usage driven development

    Energy Technology Data Exchange (ETDEWEB)

    Spring, Anett, E-mail: anett.spring@ipp.mpg.de [Max-Planck-Institut fuer Plasmaphysik, EURATOM Association, Teilinstitut Greifswald, Wendelsteinstrasse 1, D-17491 Greifswald (Germany); Lewerentz, Marc; Bluhm, Torsten [Max-Planck-Institut fuer Plasmaphysik, EURATOM Association, Teilinstitut Greifswald, Wendelsteinstrasse 1, D-17491 Greifswald (Germany); Heimann, Peter [Max-Planck-Institut fuer Plasmaphysik, EURATOM Association, Boltzmannstrasse 2, D-85748 Garching (Germany); Hennig, Christine; Kuehner, Georg [Max-Planck-Institut fuer Plasmaphysik, EURATOM Association, Teilinstitut Greifswald, Wendelsteinstrasse 1, D-17491 Greifswald (Germany); Kroiss, Hugo [Max-Planck-Institut fuer Plasmaphysik, EURATOM Association, Boltzmannstrasse 2, D-85748 Garching (Germany); Krom, Johannes G.; Laqua, Heike [Max-Planck-Institut fuer Plasmaphysik, EURATOM Association, Teilinstitut Greifswald, Wendelsteinstrasse 1, D-17491 Greifswald (Germany); Maier, Josef [Max-Planck-Institut fuer Plasmaphysik, EURATOM Association, Boltzmannstrasse 2, D-85748 Garching (Germany); Riemann, Heike; Schacht, Joerg; Werner, Andreas [Max-Planck-Institut fuer Plasmaphysik, EURATOM Association, Teilinstitut Greifswald, Wendelsteinstrasse 1, D-17491 Greifswald (Germany); Zilker, Manfred [Max-Planck-Institut fuer Plasmaphysik, EURATOM Association, Boltzmannstrasse 2, D-85748 Garching (Germany)

    2012-12-15

    The set-up of experiment programs for the complex fusion device Wendelstein 7-X has to define a multitude of parameters which have to obey large number of rules arising from physics and technical constraints. Since this is hard to automate as long as the dependencies are not known sufficiently, the W7-X CoDaC team decided to implement an editor following a constructive approach: starting from an established experiment program the user is able to modify parts of it - thus complying the usual workflow of experimenters. Already the very first implementation has been deployed at the W7-X CoDaC prototype, the WEGA stellarator. Driven by agile programming principles the weighting of the requirements has been influenced by the editor usage in the daily experiment routine, thus ensuring client-oriented development steps and short release cycles. At present, a stable program editor implementation with graphical preview, immediate feedback on user actions and instantaneous warnings about incorrect settings is under continuous operation at the CoDaC prototype. It has potential to improve together with growing knowledge about the physical and technical constraints. The experiences gained give certainty that the editor is suitable for future use during the start-up phase and the first years of W7-X operation.

  3. Concept for the real-time control and data acquisition of the W7X diagnostic injector (RudiX)

    Energy Technology Data Exchange (ETDEWEB)

    Lambertz, H. [Institute for Energy Research - Plasma Physics, Julich (Germany); Richert, T. [Max-Planck-Institute for Plasma Physics, Greifswald (Germany)

    2009-07-01

    This document is composed of a poster and its abstract. The Russian diagnostics injector for Wendelstein 7-X (RudiX) is built within the scope of an international cooperation by 3 associations (FZJ-IEF-4 1, IPP-HGW 2, BINP 3). With respect to the large distance between the partner institutes and the huge number of interfaces at the injector side a modular, decentralized concept became necessary. It has to fulfill the requirements regarding the operation modes as well as local boundary conditions (limited access to the experiment). The control system based on S7 300/400 series by Siemens and for programming and visualisation environment the Step 7 and WinCC software packages are used. Connection to other systems and sub-systems of the diagnostics injector are realised by standardised interfaces, using the following protocols: professional bus DP and Ethernet TCP-IP. The concept is separated in two parts: a) an interfaces to the W7-X main control and b) an internal subsystem interfaces. For the internal set-up several independent PLC 4 or decentralized peripheral modules with separate Cpu are used according to the safety requirements (fault-tolerant Cpu and peripheral). The data acquisition modules allowing connections to XDV 5 and to the PLC at the same. Following this modular and decentralized set-up it is possible to develop and apply standardised and re-usable software components allowing the operation of sub-systems independently from the complete system. For the connection to the central W7-X main control an interface simulator will be developed to test the functionality during the project phase independently. (authors)

  4. Three-dimensional modelling and numerical optimisation of the W7-X ICRH antenna

    Energy Technology Data Exchange (ETDEWEB)

    Louche, F., E-mail: fabrice.louche@rma.ac.be [Laboratoire de physique des plasmas de l’ERM, Laboratorium voor plasmafysica van de KMS (LPP-ERM/KMS), Ecole Royale Militaire, Koninklijke Militaire School, Brussels (Belgium); Křivská, A.; Messiaen, A.; Ongena, J. [Laboratoire de physique des plasmas de l’ERM, Laboratorium voor plasmafysica van de KMS (LPP-ERM/KMS), Ecole Royale Militaire, Koninklijke Militaire School, Brussels (Belgium); Borsuk, V. [Institute of Energy and Climate Research – Plasma Physics, Forschungszentrum Juelich (Germany); Durodié, F.; Schweer, B. [Laboratoire de physique des plasmas de l’ERM, Laboratorium voor plasmafysica van de KMS (LPP-ERM/KMS), Ecole Royale Militaire, Koninklijke Militaire School, Brussels (Belgium)

    2015-10-15

    Highlights: • A simplified version of the ICRF antenna for the stellarator W7-X has been modelled with the 3D electromagnetic software Microwave Studio. This antenna can be tuned between 25 and 38 MHz with the help of adjustable capacitors. • In previous modellings the front of the antenna was modelled with the help of 3D codes, while the capacitors were modelled as lumped elements with a given DC capacitance. As this approach does not take into account the effect of the internal inductance, a MWS model of these capacitors has been developed. • The initial geometry does not permit the operation at 38 MHz. By modifying some geometrical parameters of the front face, it was possible to increase the frequency band of the antenna, and to increase (up to 25%) the maximum coupled power accounting for the technical constraints on the capacitors. • The W7-X ICRH antenna must be operated at 25 and 38 MHz, and for various toroidal phasings of the strap RF currents. Due to the considered duty cycle it is shown that thanks to a special procedure based on minimisation techniques, it is possible to define a satisfactory optimum geometry in agreement with the specifications of the capacitors. • The various steps of the optimisation are validated with TOPICA simulations. For a given density profile the RF power coupling expectancy can be precisely computed. - Abstract: Ion Cyclotron Resonance Heating (ICRH) is a promising heating and wall conditioning method considered for the W7-X stellarator and a dedicated ICRH antenna has been designed. This antenna must perform several tasks in a long term physics programme: fast particles generation, heating at high densities, current drive and ICRH physics studies. Various minority heating scenarios are considered and two frequency bands will be used. In the present work a design for the low frequency range (25–38 MHz) only is developed. The antenna is made of 2 straps with tap feeds and tuning capacitors with DC capacitance in

  5. Investigation of turbulence rotation in limiter plasmas at W7-X with newly installed poloidal correlation reflectometer

    Science.gov (United States)

    Krämer-Flecken, A.; Windisch, T.; Behr, W.; Czymek, G.; Drews, P.; Fuchert, G.; Geiger, J.; Grulke, O.; Hirsch, M.; Knaup, M.; Liang, Y.; Neubauer, O.; Pasch, E.; Velasco, J. L.; The W7-X Team

    2017-06-01

    For the first operation phase of the optimized stellarator W7-X, a heterodyne poloidal correlation reflectometry diagnostic is installed and put into operation. The system is intended to measure the perpendicular (with respect to the magnetic field) turbulence rotation and turbulence properties, such as the decorrelation time and correlation length at the plasma edge. Furthermore, it can give information on the magnetic field line pitch angle. The system consists of an array of microwave antennas distributed in the poloidal and toroidal directions. The frequency range of 22 GHz-40 GHz allows us to access local plasma densities of 0.6× {{10}19} m-3-2.0× {{10}19} m-3. During the first operation phase the turbulence rotation is measured in almost all plasmas. In addition, the radial electric field is estimated and compared to that in neoclassical theory. The relatively low plasma density allows us to cover up to 80% of the plasma radius during OP1.1. The obtained data cover various experimental programs and are partly presented in the paper.

  6. Preliminary study of ECE imaging concept for W7-X, using the Talbot effect in rectangular waveguides

    Energy Technology Data Exchange (ETDEWEB)

    Iglesias, Daniel; Plaum, Burkhard; Kasparek, Walter; Hirth, Thomas [IGVP, Universitaet Stuttgart (Germany); Hirsch, Matthias [Max-Planck Institut fuer Plasmaphysik, Greifswald (Germany)

    2016-07-01

    For spatially resolved measurements of Electron Cyclotron Emission (ECE) in W7-X, an imaging antenna based on a corrugated rectangular waveguide can be used. The imaging characteristics of the antenna allow a simultaneous operation at multiple angles and frequencies. As a result it is possible to localize a set of points inside the plasma, where the ECE can be measured without the need of mobile components facing the plasma.

  7. Validation of the electrical design of the W7-X ICRF antenna on a reduced-scale mock-up

    Energy Technology Data Exchange (ETDEWEB)

    Dumortier, Pierre, E-mail: pierre.dumortier@rma.ac.be; Křivská, Alena; Messiaen, André; Vervier, Michel; Louche, Fabrice; Ongena, Jozef

    2015-10-15

    Highlights: • The electrical design of the W7X ICRF antenna is validated on a reduced-scale mock-up. • High dieletric constant materials are needed for the dummy load to mimic the plasma load. • Salted water and a mix of ferroelectric BaTiO{sub 3} and salted water are used as loads. • A comparison is made between experimental measurements and numerical simulations by 3 codes: Antiter II, CST MWS and Topica. • The best agreement is obtained with the BaTiO{sub 3} mix load for all phasings. • The dependence of the coupled power estimate on the dielectric load properties is given. - Abstract: A scaled mock-up (1/4) of the proposed W7-X ICRF antenna has been constructed and placed in front of dielectric dummy loads. It allows comparing measured and predicted coupling performances and hence validating the electrical design of the antenna. High dielectric constant materials are needed for the dummy load to mimic the plasma. Salted water and a mix of the ferroelectric BaTiO{sub 3} and salted water are used. The measurements are compared with the expectations of 3 codes: ANTITER II, MWS and TOPICA. The best agreement is obtained with the BaTiO{sub 3} load for all phasings.

  8. Superconducting Coil Winding Machine Control System

    Energy Technology Data Exchange (ETDEWEB)

    Nogiec, J. M. [Fermilab; Kotelnikov, S. [Fermilab; Makulski, A. [Fermilab; Walbridge, D. [Fermilab; Trombly-Freytag, K. [Fermilab

    2016-10-05

    The Spirex coil winding machine is used at Fermilab to build coils for superconducting magnets. Recently this ma-chine was equipped with a new control system, which al-lows operation from both a computer and a portable remote control unit. This control system is distributed between three layers, implemented on a PC, real-time target, and FPGA, providing respectively HMI, operational logic and direct controls. The system controls motion of all mechan-ical components and regulates the cable tension. Safety is ensured by a failsafe, redundant system.

  9. Development of automatic steel coil recognition system for automated crane

    OpenAIRE

    Nishibe, Kunihiko; Fujiwara, Naofumi

    1999-01-01

    An automatic steel coil recognition system with two types of laser-assisted range sensor has been developed for full automated crane operation in the steel coil yard. Performance tests of recognizing full scale model coils were carried out by mounting the recognition system on a full size crane. As a result, recognition accuracy of coil center position, coil diameter and width were confirmed to be ±20 mm, which is enough fur practical applications. This recognition system was delivered to com...

  10. Deep brain transcranial magnetic stimulation using variable "Halo coil" system

    Science.gov (United States)

    Meng, Y.; Hadimani, R. L.; Crowther, L. J.; Xu, Z.; Qu, J.; Jiles, D. C.

    2015-05-01

    Transcranial Magnetic Stimulation has the potential to treat various neurological disorders non-invasively and safely. The "Halo coil" configuration can stimulate deeper regions of the brain with lower surface to deep-brain field ratio compared to other coil configurations. The existing "Halo coil" configuration is fixed and is limited in varying the site of stimulation in the brain. We have developed a new system based on the current "Halo coil" design along with a graphical user interface system that enables the larger coil to rotate along the transverse plane. The new system can also enable vertical movement of larger coil. Thus, this adjustable "Halo coil" configuration can stimulate different regions of the brain by adjusting the position and orientation of the larger coil on the head. We have calculated magnetic and electric fields inside a MRI-derived heterogeneous head model for various positions and orientations of the coil. We have also investigated the mechanical and thermal stability of the adjustable "Halo coil" configuration for various positions and orientations of the coil to ensure safe operation of the system.

  11. Analysis and experimental study of wireless power transfer with HTS coil and copper coil as the intermediate resonators system

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Xiufang [School of Electrical Engineering, Southwest Jiaotong University, Chengdu, Sichuan 610031 (China); School of Physics and Technology, Southwest Jiaotong University, Chengdu, Sichuan 610031 (China); Nie, Xinyi [School of Electrical Engineering, Southwest Jiaotong University, Chengdu, Sichuan 610031 (China); Liang, Yilang [School of Physics and Technology, Southwest Jiaotong University, Chengdu, Sichuan 610031 (China); Lu, Falong [School of Electrical Engineering, Southwest Jiaotong University, Chengdu, Sichuan 610031 (China); Yan, Zhongming, E-mail: wangxiufanghappy@163.com [School of Electrical Engineering, Southwest Jiaotong University, Chengdu, Sichuan 610031 (China); Wang, Yu [School of Electrical Engineering, Southwest Jiaotong University, Chengdu, Sichuan 610031 (China)

    2017-01-15

    Highlights: • We investigated a kind of system architecture with three coils which the repeater is copper coil or HTS coil. • We simulated the different repeater system and obtained the magnetic field distribution at different distance. • We used helical coil instead of pancake coil which does not use capacitors. • HTS intermediate coil has significant effect on improving the transmission efficiency and lengthening transmission distance than copper intermediate coil. - Abstract: Intermediate resonator (repeater) between transmitter and receiver can significantly increase the distance of wireless power transfer (WPT) and the efficiency of wireless power transfer. The wireless power transfer via strongly coupled magnetic resonances with an high temperature superconducting (HTS) coil and copper coil as intermediate resonators was presented in this paper. The electromagnetic experiment system under different conditions with different repeating coils were simulated by finite element software. The spatial distribution patterns of magnetic induction intensity at different distances were plotted. In this paper, we examined transfer characteristics with HTS repeating coil and copper repeating coil at 77 K and 300 K, respectively. Simulation and experimental results show that HTS and copper repeating coil can effectively enhance the space magnetic induction intensity, which has significant effect on improving the transmission efficiency and lengthening transmission distance. We found that the efficiency and the distance of wireless power transfer system with an HTS coil as repeater is much higher by using of copper coil as repeater.

  12. Measurement of limiter particle fluxes and carbon erosion in the helical scrape-off layer of startup plasmas at W7-X

    Science.gov (United States)

    Winters, V.; Biedermann, C.; Brezinsek, S.; Effenberg, F.; Frerichs, H.; Harris, J.; Schmitz, O.; Stephey, L.; Unterberg, E.; Wurden, G.; W7-X Team

    2016-10-01

    Measurement of the 2D recycling flux and calculations of the carbon erosion from the limiter in startup plasmas of W7-X provides a first insight into neutral particle release and impurity inflow into the helical scrape-off layer. H-alpha, C-II (514.5nm) and C-III (465.1nm) line emissions were collected with filter-scopes and a visible camera aimed at limiter 3 of W7-X. Local plasma parameters are considered to estimate physical and chemical sputtering contributions. The analytical model for chemical sputtering by Roth is used to convert the measured particle flux into a chemically eroded C flux. The particle flux as well as the extracted C erosion pattern deviates from the measured heat flux distribution and also from the predicted particle flux distribution from EMC3-EIRENE. Candidates to resolve this discrepancy are measurement uncertainties and physics related (e.g. asymmetry in the last closed flux surface position). Post-mortem analysis of the limiter will be taken into account and compared to these in-situ measurements to gather first detailed insight on the net C erosion distribution and the impurity sourcing into the helical scrape-off layer. This work was funded by DE-SC0014210, DE-AC5206NA25396, DE-AC05-00OR22725 and by EUROfusion under Grant No 633053.

  13. A new type of coil structure called pan-shaped coil of wireless charging system based on magnetic resonance

    Science.gov (United States)

    Yue, Z. K.; Liu, Z. Z.; Hou, Y. J.; Zeng, H.; Liang, L. H.; Cui, S.

    2017-11-01

    The problem that misalignment between the transmitting coil and the receiving coil significantly impairs the transmission power and efficiency of the system has been attached more and more attention. In order to improve the uniformity of the magnetic field between the two coils to solve this problem, a new type of coil called pan-shaped coil is proposed. Three-dimension simulation models of the planar-core coil and the pan-shaped coil are established using Ansoft Maxwell software. The coupling coefficient between the transmitting coil and the receiving coil is obtained by simulating the magnetic field with the receiving coil misalignment or not. And the maximum percentage difference strength along the radial direction which is defined as the magnetic field uniformity factor is calculated. According to the simulation results of the two kinds of coil structures, it is found that the new type of coil structure can obviously improve the uniformity of the magnetic field, coupling coefficient and power transmission properties between the transmitting coil and the receiving coil.

  14. An Air Bearing Rotating Coil Magnetic Measurement System

    CERN Document Server

    Gottschalk, Stephen C; Taylor, David J; Thayer, William

    2005-01-01

    This paper describes a rotating coil magnetic measurement system supported on air bearings. The design is optimized for measurements of 0.1micron magnetic centerline changes on long, small aperture quadrupoles. Graphite impregnated epoxy resin is used for the coil holder and coil winding forms. Coil holder diameter is 11 mm with a length between supports of 750mm. A pair of coils is used to permit quadrupole bucking during centerline measurements. Coil length is 616mm, inner radius 1.82mm, outer radius 4.74mm. The key features of the mechanical system are simplicity; air bearings for accurate, repeatable measurements without needing warm up time and a vibration isolated stand that uses a steel-topped Newport optical table with air suspension. Coil rotation is achieved by a low noise servo motor controlled by a standalone Ethernet servo board running custom servo software. Coil calibration procedures that correct wire placement errors, tests for mechanical resonances, and other system checks will also be discu...

  15. NSTX-U Digital Coil Protection System Software Detailed Design

    Energy Technology Data Exchange (ETDEWEB)

    None

    2014-06-01

    The National Spherical Torus Experiment (NSTX) currently uses a collection of analog signal processing solutions for coil protection. Part of the NSTX Upgrade (NSTX-U) entails replacing these analog systems with a software solution running on a conventional computing platform. The new Digital Coil Protection System (DCPS) will replace the old systems entirely, while also providing an extensible framework that allows adding new functionality as desired.

  16. Development of Metallic Coil Identification System Based on RFID

    OpenAIRE

    Kim, Myunsik; Song, Beobsung; Ju, Daegeun; Choi, Eunjung; Cho, Byunglok

    2010-01-01

    This paper describes RFID based metal products identification technique for SCM of iron and steel industry. Specially, the coil identification system is developed. To cope with the falling off the tag identification performance affected by neighbouring metallic objects, the tag attachment method based on flagtag is proposed and the reader antenna packaging technique is developed to improve the performance of target coil identification. A Crane equipped with the developed system can detect the...

  17. Foldable micro coils for a transponder system measuring intraocular pressure

    Energy Technology Data Exchange (ETDEWEB)

    Ullerich, S.; Schnakenberg, U. [Technische Hochschule Aachen (Germany). Inst. of Materials in Electrical Engineering 1; Mokwa, W. [Technische Hochschule Aachen (Germany). Inst. of Materials in Electrical Engineering 1]|[Fraunhofer Inst. of Microelectronic Circuits and Systems, Duisburg (Germany); Boegel, G. vom [Fraunhofer Inst. of Microelectronic Circuits and Systems, Duisburg (Germany)

    2001-07-01

    A foldable transponder system consisting of a chip and a micro coil for measuring intraocular pressure continuously is presented. The system will be integrated in the haptic of a soft artificial intraocular lens. Calculations of planar micro coils with 6 mm and 10.3 mm in diameter show the limits for planar coils with an outer diameter of 6 mm. For the realisation of the transponder system a 20 {mu}m thick coil with an outer diameter of 10.3 mm, an inner diameter of 7.7 mm, 16 turns and a gap of 20 {mu}m between the windings was selected. Measurements show a good agreement between calculated and measured values. Wireless pressure measurements were carried out showing a linear behaviour of the output signal with respect to the applied pressure. (orig.)

  18. Performance of Upgraded Cooling System for Lhd Helical Coils

    Science.gov (United States)

    Hamaguchi, S.; Imagawa, S.; Obana, T.; Yanagi, N.; Moriuchi, S.; Sekiguchi, H.; Oba, K.; Mito, T.; Motojima, O.; Okamura, T.; Semba, T.; Yoshinaga, S.; Wakisaka, H.

    2008-03-01

    Helical coils of the Large Helical Device (LHD) are large scale superconducting magnets for heliotron plasma experiments. The helical coils had been cooled by saturated helium at 4.4 K, 120 kPa until 2005. An upgrade of the cooling system was carried out in 2006 in order to improve the cryogenic stability of the helical coils and then it has been possible to supply the coils with subcooled helium at 3.2 K, 120 kPa. A designed mass flow of the supplied subcooled helium is 50 g/s. The subcooled helium is generated at a heat exchanger in a saturated helium bath. A series of two centrifugal cold compressors with gas foil bearing is utilized to lower the helium pressure in the bath. The supplied helium temperature is regulated by rotational speed of the cold compressors and power of a heater in the bath. The mass flow of the supplied helium is also controlled manually by a supply valve and its surplus is evaporated by ten heaters at the outlet above the coils. In the present study, the performance of the cooling system has been investigated and a stable operating method has also developed. As the result, it was confirmed that the performance of the upgraded cooling system satisfies the requirements.

  19. Analysis and experimental study of wireless power transfer with HTS coil and copper coil as the intermediate resonators system

    Science.gov (United States)

    Wang, Xiufang; Nie, Xinyi; Liang, Yilang; Lu, Falong; Yan, Zhongming; Wang, Yu

    2017-01-01

    Intermediate resonator (repeater) between transmitter and receiver can significantly increase the distance of wireless power transfer (WPT) and the efficiency of wireless power transfer. The wireless power transfer via strongly coupled magnetic resonances with an high temperature superconducting (HTS) coil and copper coil as intermediate resonators was presented in this paper. The electromagnetic experiment system under different conditions with different repeating coils were simulated by finite element software. The spatial distribution patterns of magnetic induction intensity at different distances were plotted. In this paper, we examined transfer characteristics with HTS repeating coil and copper repeating coil at 77 K and 300 K, respectively. Simulation and experimental results show that HTS and copper repeating coil can effectively enhance the space magnetic induction intensity, which has significant effect on improving the transmission efficiency and lengthening transmission distance. We found that the efficiency and the distance of wireless power transfer system with an HTS coil as repeater is much higher by using of copper coil as repeater.

  20. Large Scale CW ECRH Systems: Some considerations

    Directory of Open Access Journals (Sweden)

    Turkin Y.

    2012-09-01

    Full Text Available Electron Cyclotron Resonance Heating (ECRH is a key component in the heating arsenal for the next step fusion devices like W7-X and ITER. These devices are equipped with superconducting coils and are designed to operate steady state. ECRH must thus operate in CW-mode with a large flexibility to comply with various physics demands such as plasma start-up, heating and current drive, as well as configurationand MHD - control. The request for many different sophisticated applications results in a growing complexity, which is in conflict with the request for high availability, reliability, and maintainability. ‘Advanced’ ECRH-systems must, therefore, comply with both the complex physics demands and operational robustness and reliability. The W7-X ECRH system is the first CW- facility of an ITER relevant size and is used as a test bed for advanced components. Proposals for future developments are presented together with improvements of gyrotrons, transmission components and launchers.

  1. Feasibility Study: Ductless Hydronic Distribution Systems with Fan Coil Delivery

    Energy Technology Data Exchange (ETDEWEB)

    Springer, D.; Dakin, B.; Backman, C.

    2012-07-01

    The primary objectives of this study are to estimate potential energy savings relative to conventional ducted air distribution, and to identify equipment requirements, costs, and barriers with a focus on ductless hydronic delivery systems that utilize water-to-air terminal units in each zone. Results indicate that annual heating and cooling energy use can be reduced by up to 27% assuming replacement of the conventional 13 SEER heat pump and coil with a similarly rated air-to-water heat pump.

  2. Results and performances of X-ray imaging GEM cameras on FTU (1-D), KSTAR (2-D) and progresses of future experimental set up on W7-X and EAST Facilities

    Science.gov (United States)

    Cordella, F.; Choe, W.; Claps, G.; Gabellieri, L.; Jang, J.; Jeon, T.; Lee, S. H.; Li, E.; Pacella, D.; Romano, A.; Song, I.

    2017-10-01

    The triple Gas Electron Multiplier (GEM) is a good candidate for the observation of the plasma volume emitting X-rays photons in the energy band up to 30 keV . The GEM camera system can be simply installed outside the port of a fusion device and it's a micropattern proportional gas detector which consists of an ionization gap, where X-rays photon conversion occurs, three consecutive foils working as amplification stage and finally a dedicated printed circuit board. Its simple experimental setup can be made in different configurations with 1D or 2D imaging possibilities: perpendicular GEM camera allows a 1D emissivity profile reconstruction instead a tangential GEM camera allows a poloidal cross-section image. Moreover, they offer high sensitivity, noise free, optical flexibility (zooming and tilting, magnification 10× up to 30×), high contrast, high dynamic range (6 orders of magnitude) and good time resolution (submillisecond). In this work several experimental results already observed on the Frascati Tokamak Upgrade (FTU) and the Korean Superconducting Tokamak Advanced Research (KSTAR) devices will be presented. The perpendicular installation on FTU allows a 1D radial profile with 128 lines of sight, while thanks to the 2D tangential view of the plasma, the reconstruction of the cross section has been done on KSTAR. Between them there are dynamic and precursors of sawtooth, effects of Edge Localized Mode (ELM) in the core and possible interplay between core and edge in ELMs (high m modes), effects of plasma rotation in the core, dynamic of injected impurities in the outer part of the plasma or also impurity accumulation and localized effects of additional heating. Installation of GEM systems is planned on Wendelstein 7-X (W7-X) and the Experimental Advanced Superconducting Tokamak (EAST) also for their robustness and flexibility X-rays detection in presence of high radiative environments (neutrons and gammas). In future applications on the above mentioned

  3. Inductance and resistance measurement method for vessel detection and coil powering in all-surface inductive heating systems composed of outer squircle coils

    Directory of Open Access Journals (Sweden)

    Veli Tayfun Kilic

    2017-05-01

    Full Text Available In this work, we investigate a method proposed for vessel detection and coil powering in an all-surface inductive heating system composed of outer squircle coils. Besides conventional circular coils, coils with different shapes such as outer squircle coils are used for and enable efficient all-surface inductive heating. Validity of the method, which relies on measuring inductance and resistance values of a loaded coil at different frequencies, is experimentally demonstrated for a coil with shape different from conventional circular coil. Simple setup was constructed with a small coil to model an all-surface inductive heating system. Inductance and resistance maps were generated by measuring coil’s inductance and resistance values at different frequencies loaded by a plate made of different materials and located at various positions. Results show that in an induction hob for various coil geometries it is possible to detect a vessel’s presence, to identify its material type and to specify its position on the hob surface by considering inductance and resistance of the coil measured on at least two different frequencies. The studied method is important in terms of enabling safe, efficient and user flexible heating in an all-surface inductive heating system by automatically detecting the vessel’s presence and powering on only the coils that are loaded by the vessel with predetermined current levels.

  4. Advanced Mud System for Microhole Coiled Tubing Drilling

    Energy Technology Data Exchange (ETDEWEB)

    Kenneth Oglesby

    2008-12-01

    An advanced mud system was designed and key components were built that augment a coiled tubing drilling (CTD) rig that is designed specifically to drill microholes (less than 4-inch diameter) with advanced drilling techniques. The mud system was tailored to the hydraulics of the hole geometries and rig characteristics required for microholes and is capable of mixing and circulating mud and removing solids while being self contained and having zero discharge capability. Key components of this system are two modified triplex mud pumps (High Pressure Slurry Pumps) for advanced Abrasive Slurry Jetting (ASJ) and a modified Gas-Liquid-Solid (GLS) Separator for well control, flow return and initial processing. The system developed also includes an additional component of an advanced version of ASJ which allows cutting through most all materials encountered in oil and gas wells including steel, cement, and all rock types. It includes new fluids and new ASJ nozzles. The jetting mechanism does not require rotation of the bottom hole assembly or drill string, which is essential for use with Coiled Tubing (CT). It also has low reactive forces acting on the CT and generates cuttings small enough to be easily cleaned from the well bore, which is important in horizontal drilling. These cutting and mud processing components and capabilities compliment the concepts put forth by DOE for microhole coiled tubing drilling (MHTCTD) and should help insure the reality of drilling small diameter holes quickly and inexpensively with a minimal environmental footprint and that is efficient, compact and portable. Other components (site liners, sump and transfer pumps, stacked shakers, filter membranes, etc.. ) of the overall mud system were identified as readily available in industry and will not be purchased until we are ready to drill a specific well.

  5. Dry cryomagnetic system with MgB2 coil

    Science.gov (United States)

    Abin, D. A.; Mineev, N. A.; Osipov, M. A.; Pokrovskii, S. V.; Rudnev, I. A.

    2017-12-01

    MgB2 may be the future superconducting wire material for industrial magnets due to it’s higher operation temperature and potentially lower cost than low temperature superconductors (LTS) have. We designed a compact cryomagnetic system with the use of MgB2. The possibility of creating a magnet with a central field of 5 T from a commercial MgB2 wire by the “react and wound” method was investigated. The magnetic system is cooled by a cryocooler through a copper bus. The magnet has a warm bore diameter of 4 cm. The design of a magnet consisting of three concentric solenoids is proposed: an internal one of high-temperature superconductor (HTS), an average of MgB2, and an external of NbTi. The operating current of the system is 100 A. Two pairs of current leads are used. A separate pair of current leads for power supplying NbTi coil allows testing of MgB2 and HTS coils in an external field. The load curves for each of the magnets are calculated.

  6. Integrated Design System of Toroidal Field Coil for CFETR

    Science.gov (United States)

    Luo, Zhiren; Liu, Xufeng; Du, Shuangsong; Wang, Zhongwei; Song, Yuntao

    2016-09-01

    Integrating engineering software is meaningful but challenging for a system code of a fusion device. This issue is seldom considered by system codes currently. Therefore, to discuss the issue, the Integrated Design System of TF Coil (IDS-TFC) has been worked out, which consists of physical calculation, CAD, and Finite Element Analysis (FEA). Furthermore, an Integrated and Automatically Optimized Method (IAOM) has been created to address the integration and interfaces. The method utilizes a geometry parameter to connect each design submodule and achieve automatic optimization. Double-objectives optimization has been realized, confirming it is feasible to integrate and optimize engineering design and physical calculation. Moreover, IDS-TFC can also serve as a useful reference of integrated design processing for subsequent fusion design. supported by the National Magnetic Confinement Fusion Science Program of China (Nos. 2014GB110000, 2014GB110002)

  7. Winding machines for the manufacturing of superconductive coils of the main European fusion research machines

    CERN Document Server

    Cazzaniga, R; D’Urzo, C

    2005-01-01

    The successfull construction of large magnets passes through the development and application of non-conventional manufacturing processes. A difficult and delicate step in the manufacturing of superconducting coils is the conductor winding technique. It is often a challenging and technologically advanced process, developed according to the requirements of each project. An important aspect during the winding is to avoid any deformation of the cable cross section leading to a damage of the strands and to maintain the design features of the cable. A second aspect is to assure the suitable repeatability and a production rate for an industrial process. The winding line is a system of different machines linked and tuned together properly designed for each project. An adapted software assures the overall process control. TPA realized for ANSALDO Superconduttori the winding lines for many projects: TFMC (NET-TEAM), CMS (INFN-CERN), WENDELSTEIN W7-X (Max Planck Institute, IPP), etc. The experience acquired in this fiel...

  8. Anharmonic Oscillations of a Spring-Magnet System inside a Magnetic Coil

    Science.gov (United States)

    Ladera, Celso L.; Donoso, Guillermo

    2012-01-01

    We consider the nonlinear oscillations of a simple spring-magnet system that oscillates in the magnetic field of an inductive coil excited with a dc current. Using the relations for the interaction of a coil and a magnet we obtain the motion equation of the system. The relative strengths of the terms of this equation can be adjusted easily by…

  9. New method to design stellarator coils without the winding surface

    Science.gov (United States)

    Zhu, Caoxiang; Hudson, Stuart R.; Song, Yuntao; Wan, Yuanxi

    2018-01-01

    Finding an easy-to-build coils set has been a critical issue for stellarator design for decades. Conventional approaches assume a toroidal ‘winding’ surface, but a poorly chosen winding surface can unnecessarily constrain the coil optimization algorithm, This article presents a new method to design coils for stellarators. Each discrete coil is represented as an arbitrary, closed, one-dimensional curve embedded in three-dimensional space. A target function to be minimized that includes both physical requirements and engineering constraints is constructed. The derivatives of the target function with respect to the parameters describing the coil geometries and currents are calculated analytically. A numerical code, named flexible optimized coils using space curves (FOCUS), has been developed. Applications to a simple stellarator configuration, W7-X and LHD vacuum fields are presented.

  10. The Structures of Coiled-Coil Domains from Type III Secretion System Translocators Reveal Homology to Pore-Forming Toxins

    Energy Technology Data Exchange (ETDEWEB)

    Barta, Michael L.; Dickenson, Nicholas E.; Patil, Mrinalini; Keightley, Andrew; Wyckoff, Gerald J.; Picking, William D.; Picking, Wendy L.; Geisbrecht, Brian V. (UMKC); (OKLU)

    2012-03-26

    Many pathogenic Gram-negative bacteria utilize type III secretion systems (T3SSs) to alter the normal functions of target cells. Shigella flexneri uses its T3SS to invade human intestinal cells to cause bacillary dysentery (shigellosis) that is responsible for over one million deaths per year. The Shigella type III secretion apparatus is composed of a basal body spanning both bacterial membranes and an exposed oligomeric needle. Host altering effectors are secreted through this energized unidirectional conduit to promote bacterial invasion. The active needle tip complex of S. flexneri is composed of a tip protein, IpaD, and two pore-forming translocators, IpaB and IpaC. While the atomic structure of IpaD has been elucidated and studied, structural data on the hydrophobic translocators from the T3SS family remain elusive. We present here the crystal structures of a protease-stable fragment identified within the N-terminal regions of IpaB from S. flexneri and SipB from Salmonella enterica serovar Typhimurium determined at 2.1 {angstrom} and 2.8 {angstrom} limiting resolution, respectively. These newly identified domains are composed of extended-length (114 {angstrom} in IpaB and 71 {angstrom} in SipB) coiled-coil motifs that display a high degree of structural homology to one another despite the fact that they share only 21% sequence identity. Further structural comparisons also reveal substantial similarity to the coiled-coil regions of pore-forming proteins from other Gram-negative pathogens, notably, colicin Ia. This suggests that these mechanistically separate and functionally distinct membrane-targeting proteins may have diverged from a common ancestor during the course of pathogen-specific evolutionary events.

  11. Symmetry evaluation for an interferometric fiber optic gyro coil utilizing a bidirectional distributed polarization measurement system.

    Science.gov (United States)

    Peng, Feng; Li, Chuang; Yang, Jun; Hou, Chengcheng; Zhang, Haoliang; Yu, Zhangjun; Yuan, Yonggui; Li, Hanyang; Yuan, Libo

    2017-07-10

    We propose a dual-channel measurement system for evaluating the optical path symmetry of an interferometric fiber optic gyro (IFOG) coil. Utilizing a bidirectional distributed polarization measurement system, the forward and backward transmission performances of an IFOG coil are characterized simultaneously by just a one-time measurement. The simple but practical configuration is composed of a bidirectional Mach-Zehnder interferometer and multichannel transmission devices connected to the IFOG coil under test. The static and dynamic temperature results of the IFOG coil reveal that its polarization-related symmetric properties can be effectively obtained with high accuracy. The optical path symmetry investigation is highly beneficial in monitoring and improving the winding technology of an IFOG coil and reducing the nonreciprocal effect of an IFOG.

  12. Coil Design for High Misalignment Tolerant Inductive Power Transfer System for EV Charging

    Directory of Open Access Journals (Sweden)

    Kafeel Ahmed Kalwar

    2016-11-01

    Full Text Available The inductive power transfer (IPT system for electric vehicle (EV charging has acquired more research interest in its different facets. However, the misalignment tolerance between the charging coil (installed in the ground and pick-up coil (mounted on the car chassis, has been a challenge and fundamental interest in the future market of EVs. This paper proposes a new coil design QDQ (Quad D Quadrature that maintains the high coupling coefficient and efficient power transfer during reasonable misalignment. The QDQ design makes the use of four adjacent circular coils and one square coil, for both charging and pick-up side, to capture the maximum flux at any position. The coil design has been modeled in JMAG software for calculation of inductive parameters using the finite element method (FEM, and its hardware has been tested experimentally at various misaligned positions. The QDQ coils are shown to be capable of achieving good coupling coefficient and high efficiency of the system until the misalignment displacement reaches 50% of the employed coil size.

  13. Cryogenic system characteristics for the transitional heat disturbance of the CS model coil

    Energy Technology Data Exchange (ETDEWEB)

    Kawano, Katsumi; Hamada, Kazuya; Matsui, Kunihiro; Hara, Eiji; Kato, Takashi [Japan Atomic Energy Research Inst., Naka, Ibaraki (Japan). Naka Fusion Research Establishment

    2001-06-01

    The CS model coil cryogenic system had experienced many transient disturbances because of AC losses and quenches during the coil experiment. The cryogenic system adopted a forced-flow circulating loop to refrigerate the coil system by supercritical helium, and it was observed how the disturbances affected the refrigeration loop. When the disturbance occurred, the loop pressure suddenly increased such as an adiabatic-compression phenomenon in an incompressible fluid loop. Thermal disturbance, however, generated and grew in the coil-cooling channels and moved with the coolant velocity. Through the observation of disturbance, a cryogenic-system operation method that could control the influence because of disturbance was developed. The method functioned by 25 times of the transient disturbance and did not cause the cryogenic system to stop. (author)

  14. Analysis of transmission efficiency of the superconducting resonance coil according the materials of cooling system

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Yu Kyeong; Hwang, Jun Won; Choi, Hyo Sang [Chosun University, Gwangju (Korea, Republic of)

    2016-03-15

    The wireless power transfer (WPT) system using a magnetic resonance was based on magnetic resonance coupling of the transmission and the receiver coils. In these system, it is important to maintain a high quality-factor (Q-factor) to increase the transmission efficiency of WPT system. Our research team used a superconducting coil to increase the Q-factor of the magnetic resonance coil in WPT system. When the superconductor is applied in these system, we confirmed that transmission efficiency of WPT system was higher than normal conductor coil through a preceding study. The efficiency of the transmission and the receiver coil is affected by the magnetic shielding effect of materials around the coils. The magnetic shielding effect is dependent on the type, thickness, frequency, distance, shape of materials. Therefore, it is necessary to study the WPT system on the basis of these conditions. In this paper, the magnetic shield properties of the cooling system were analyzed using the High-Frequency Structure Simulation (HFSS, Ansys) program. We have used the shielding materials such as plastic, aluminum and iron, etc. As a result, when we applied the fiber reinforced polymer (FRP), the transmission efficiency of WPT was not affected because electromagnetic waves went through the FRP. On the other hand, in case of a iron and aluminum, transmission efficiency was decreased because of their electromagnetic shielding effect. Based on these results, the research to improve the transmission efficiency and reliability of WPT system is continuously necessary.

  15. High performance 3-coil wireless power transfer system for the 512-electrode epiretinal prosthesis.

    Science.gov (United States)

    Zhao, Yu; Nandra, Mandheerej; Yu, Chia-Chen; Tai, Yu-chong

    2012-01-01

    The next-generation retinal prostheses feature high image resolution and chronic implantation. These features demand the delivery of power as high as 100 mW to be wireless and efficient. A common solution is the 2-coil inductive power link, used by current retinal prostheses. This power link tends to include a larger-size extraocular receiver coil coupled to the external transmitter coil, and the receiver coil is connected to the intraocular electrodes through a trans-sclera trans-choroid cable. In the long-term implantation of the device, the cable may cause hypotony (low intraocular pressure) and infection. However, when a 2-coil system is constructed from a small-size intraocular receiver coil, the efficiency drops drastically which may induce over heat dissipation and electromagnetic field exposure. Our previous 2-coil system achieved only 7% power transfer. This paper presents a fully intraocular and highly efficient wireless power transfer system, by introducing another inductive coupling link to bypass the trans-sclera trans-choroid cable. With the specific equivalent load of our customized 512-electrode stimulator, the current 3-coil inductive link was measured to have the overall power transfer efficiency around 36%, with 1-inch separation in saline. The high efficiency will favorably reduce the heat dissipation and electromagnetic field exposure to surrounding human tissues. The effect of the eyeball rotation on the power transfer efficiency was investigated as well. The efficiency can still maintain 14.7% with left and right deflection of 30 degree during normal use. The surgical procedure for the coils' implantation into the porcine eye was also demonstrated.

  16. Apparatus and method for reducing inductive coupling between levitation and drive coils within a magnetic propulsion system

    Science.gov (United States)

    Post, Richard F.

    2001-01-01

    An apparatus and method is disclosed for reducing inductive coupling between levitation and drive coils within a magnetic levitation system. A pole array has a magnetic field. A levitation coil is positioned so that in response to motion of the magnetic field of the pole array a current is induced in the levitation coil. A first drive coil having a magnetic field coupled to drive the pole array also has a magnetic flux which induces a parasitic current in the levitation coil. A second drive coil having a magnetic field is positioned to attenuate the parasitic current in the levitation coil by canceling the magnetic flux of the first drive coil which induces the parasitic current. Steps in the method include generating a magnetic field with a pole array for levitating an object; inducing current in a levitation coil in response to motion of the magnetic field of the pole array; generating a magnetic field with a first drive coil for propelling the object; and generating a magnetic field with a second drive coil for attenuating effects of the magnetic field of the first drive coil on the current in the levitation coil.

  17. 3-Coil resonance-based wireless power transfer system for implantable electronic

    KAUST Repository

    Yi, Ying

    2013-05-01

    This paper presents a 3-coil resonance-based wireless power transfer (R-WPT) system using a single layer of inductor coil windings, in a pancake configuration, in order to obtain a compact system for implantable electronic applications. A theoretical analysis and experimental measurements in terms of quality factor Q and power transfer efficiency (PTE), was done. Our proposed 3-coil scheme can achieve a high PTE with a resonance frequency of 2.46 MHz over a transfer distance of up to 30 mm, by using two 15-mm radius implant coils. The achieved experimental PTE is more than 85%at a 5 mm separation distance, and about 50% PTE at a distance of 20 mm. © 2013 IEEE.

  18. Clinical Application of Insertion Force Sensor System for Coil Embolization of Intracranial Aneurysms.

    Science.gov (United States)

    Matsubara, Noriaki; Miyachi, Shigeru; Izumi, Takashi; Yamada, Hiroyuki; Marui, Naoki; Ota, Keisuke; Tajima, Hayato; Shintai, Kazunori; Ito, Masashi; Imai, Tasuku; Nishihori, Masahiro; Wakabayashi, Toshihiko

    2017-09-01

    In endovascular embolization for intracranial aneurysms, it is important to properly control the coil insertion force. However, the force can only be subjectively detected by the subtle feedback experienced by neurointerventionists at their fingertips. The authors envisioned a system that would objectively sense and quantify that force. In this article, coil insertion force was measured in cases of intracranial aneurysm using this sensor, and its actual clinical application was investigated. The sensor consists of a hemostatic valve (Y-connector). A little flexure was intentionally added in the device, and it creates a bend in the delivery wire. The sensor measures the change in the position of the bent wire depending on the insertion force and translates it into a force value. Using this, embolization was performed for 10 unruptured intracranial aneurysms. The sensor adequately recorded the force, and it reflected the operators' usual clinical experience. The presence of the sensor did not affect the procedures. The sensor enabled the operators to objectively note and evaluate the insertion force and better cooperative handling was possible. Additionally, other members of the intervention team shared the information. Force records demonstrated the characteristic patterns according to every stage of coiling (framing, filling, and finishing). The force sensor system adequately measured coil insertion force in intracranial aneurysm coil embolization procedures. The safety of this sensor was demonstrated in clinical application for the limited number of patients. This system is useful adjunct for assisting during coil embolization for an intracranial aneurysm. Copyright © 2017 Elsevier Inc. All rights reserved.

  19. Static Measurements on HTS Coils of Fully Superconducting AC Electric Machines for Aircraft Electric Propulsion System

    Science.gov (United States)

    Choi, Benjamin B.; Hunker, Keith R.; Hartwig, Jason; Brown, Gerald V.

    2017-01-01

    The NASA Glenn Research Center (GRC) has been developing the high efficiency and high-power density superconducting (SC) electric machines in full support of electrified aircraft propulsion (EAP) systems for a future electric aircraft. A SC coil test rig has been designed and built to perform static and AC measurements on BSCCO, (RE)BCO, and YBCO high temperature superconducting (HTS) wire and coils at liquid nitrogen (LN2) temperature. In this paper, DC measurements on five SC coil configurations of various geometry in zero external magnetic field are measured to develop good measurement technique and to determine the critical current (Ic) and the sharpness (n value) of the super-to-normal transition. Also, standard procedures for coil design, fabrication, coil mounting, micro-volt measurement, cryogenic testing, current control, and data acquisition technique were established. Experimentally measured critical currents are compared with theoretical predicted values based on an electric-field criterion (Ec). Data here are essential to quantify the SC electric machine operation limits where the SC begins to exhibit non-zero resistance. All test data will be utilized to assess the feasibility of using HTS coils for the fully superconducting AC electric machine development for an aircraft electric propulsion system.

  20. Design and optimization of a 3-coil resonance-based wireless power transfer system for biomedical implants

    KAUST Repository

    Yi, Ying

    2014-09-01

    This paper presents a resonance-based wireless power transfer system using a single layer of inductor coil windings, in a pancake configuration, in order to obtain a compact system for implantable electronic applications. We theoretically analyzed the system and characterized it by measuring its inductance, self-resonant frequency, and quality factor Q. In our resonance-based wireless power transfer prototype, we proposed a 3-coil system, using two 15-mm radius implantable coils, with a resonance frequency of 6.76MHz. This system can effectively transfer power for a distance of up to 50mm. Moreover, our proposed 3-coil system can achieve a high Q-factor and has a comparable power transfer efficiency (PTE) to previously reported works about 3-coil and 4-coil systems. The experimental PTE can achieve 82.4% at a separation distance of 20mm and more than 10% PTE at a distance of 40mm.

  1. Design of Range Adaptive Wireless Power Transfer System Using Non-coaxial Coils

    Science.gov (United States)

    Yang, Dongsheng; Won, Sokhui; Hong, Huan

    2017-05-01

    Wireless Power Transfer (WPT) is a remarkable technology because of its convenience and applicability in harsh environment. Particularly, Magnetic Coupling WPT (MC-WPT) is a proper method to midrange power transfer, but the frequency splitting at over-coupling range, which is related with transfer distance, is challenge of transmission efficiency. In order to overcome this phenomenon, recently the range adaptive WPT is proposed. In this paper, we aim to the type with a set of non-coaxial driving coils, so that this may remove the connection wires from PA (Power Amplifier) to driving coil. And, when the radius of driving coil is changed, on the different gaps between driving and TX coils, coupling coefficient between these is computed in both cases of coaxial and non-coaxial configurations. In addition, the designing steps for 4-coil WPT system using non-coaxial coils are described with the example. Finally, the reliability of this topology has been proved and simulated with PSPICE.

  2. Determining the Frequency for Load-Independent Output Current in Three-Coil Wireless Power Transfer System

    Directory of Open Access Journals (Sweden)

    Longzhao Sun

    2015-09-01

    Full Text Available Conditions for load-independent output voltage or current in two-coil wireless power transfer (WPT systems have been studied. However, analysis of load-independent output current in three-coil WPT system is still lacking in previous studies. This paper investigates the output current characteristics of a three-coil WPT system against load variations, and determines the operating frequency to achieve a constant output current. First, a three-coil WPT system is modeled by circuit theory, and the analytical expression of the root-mean-square of the output current is derived. By substituting the coupling coefficients, the quality factor, and the resonant frequency of each coil, we propose a method of calculating the frequency for load-independent output current in a three-coil WPT system, which indicates that there are two frequencies that can achieve load-independent output current. Experiments are conducted to validate these analytical results.

  3. Condition Monitoring System Designing of GIS Based on Trip/close Coil Current

    Science.gov (United States)

    Wei, Dongliang; Wang, Zhi; Xue, Feng; Li, Haitao

    2017-05-01

    In this article, the types and characteristics of the faults from GIS were analyzed that the major failures were caused by its operating mechanism and auxiliary control circuits. While a useful parameter to effectively diagnose the mechanical failures of GIS is the trip/close coil current which is accessible and easy-to-measure. A portable system has been design to monitor the condition of GIS by detecting the coil current. This system was fulfilled with functions like signal sampling, processing, transmitting and performing. DSP and ARM11 carrying WINCE 6.0 have been used to construct the system. The feasibility and reliability were validated through several repeated experiments.

  4. Design and Implementation of Double-Transmitter-Coil Antenna Used for the Tag Test System

    Directory of Open Access Journals (Sweden)

    Bin You

    2013-01-01

    Full Text Available At present, more and more electronic tags are used in Antitheft system; it is important to examine the performance of electronic tags. The traditional single-transmitter-coil antenna (STC antenna of the electronic tags tester has some serious drawbacks. So a novel double-transmitter-coil antenna (DTC antenna is presented in this paper. Compared to the traditional STC antenna, this new antenna has a more excellent performance in the tag test systems, especially when it is used for testing the quality factor of tags.

  5. On the analysis of using 3-coil wireless power transfer system in retinal prosthesis.

    Science.gov (United States)

    Bai, Shun; Skafidas, Stan

    2014-01-01

    Designing a wireless power transmission system(WPTS) using inductive coupling has been investigated extensively in the last decade. Depending on the different configurations of the coupling system, there have been various designing methods to optimise the power transmission efficiency based on the tuning circuitry, quality factor optimisation and geometrical configuration. Recently, a 3-coil WPTS was introduced in retinal prosthesis to overcome the low power transferring efficiency due to low coupling coefficient. Here we present a method to analyse this 3-coil WPTS using the S-parameters to directly obtain maximum achievable power transferring efficiency. Through electromagnetic simulation, we brought a question on the condition of improvement using 3-coil WPTS in powering retinal prosthesis.

  6. Experimental Study on Intelligent Control Scheme for Fan Coil Air-Conditioning System

    Directory of Open Access Journals (Sweden)

    Yanfeng Li

    2013-01-01

    Full Text Available An intelligent control scheme for fan coil air-conditioning systems has been put forward in order to overcome the shortcomings of the traditional proportion-integral-derivative (PID control scheme. These shortcomings include the inability of anti-interference and large inertia. An intelligent control test rig of fan coil air-conditioning system has been built, and MATLAB/Simulink dynamics simulation software has been adopted to implement the intelligent control scheme. A software for data exchange has been developed to combine the intelligence control system and the building automation (BA system. Experimental tests have been conducted to investigate the effectiveness of different control schemes including the traditional PID control, fuzzy control, and fuzzy-PID control for fan coil air-conditioning system. The effects of control schemes have been compared and analyzed in robustness, static and dynamic character, and economy. The results have shown that the developed data exchange interface software can induce the intelligent control scheme of the BA system more effectively. Among the proposed control strategies, fuzzy-PID control scheme which has the advantages of both traditional PID and fuzzy schemes is the optimal control scheme for the fan coil air-conditioning system.

  7. A new stellarator coil design tool using space curves

    Science.gov (United States)

    Zhu, Caoxiang; Hudson, Stuart; Breslau, Joshua; Lazerson, Samuel; Song, Yuntao; Wan, Yuanxi

    2016-10-01

    Finding easy-to-build coils has always been critical for stellarator design. Conventional approaches assume a toroidal ``winding'' surface. Either a surface current potential is constructed using a Green's function; or a discrete set of filamentary coils lying on the winding surface is non-linearly optimized. The winding surface concept ensures that the coils are separated from the plasma surface; however, requiring the coils lie on a given winding surface may overly constrain the coil optimization process. In this work, we investigate whether a winding surface is required. Our starting point is to represent each discrete coil as an arbitrary closed curve embedded in 3D space. From the Fundamental Theorem for Curves, such curves are uniquely described by the curvature and torsion functions. Our representation does not need a winding surface and can allow coils to evolve arbitrarily. We have constructed different penalty functions, F, that incorporate both the `physics' and `engineering' constraints. The first and second derivatives of F with respect to the parameters describing the coils are constructed analytically and are exploited to enable fast optimization algorithms for finding minima. Illustrations of coils for W7X and other stellarators will be presented. China Scholarship Council.

  8. Electrical design of the BUSSARD inverter system for ASDEX upgrade saddle coils

    Energy Technology Data Exchange (ETDEWEB)

    Teschke, Markus, E-mail: teschke@ipp.mpg.de; Arden, Nils; Eixenberger, Horst; Rott, Michael; Suttrop, Wolfgang

    2015-10-15

    Highlights: • A cost effective inverter topology for AUG's 16 in-vessel saddle coils has been found. • Use of commercially available power modules is possible. • A NPC-like topology of the power stage is realized in a modular way. • The high-speed controllers and PWM engines are realized on Linux-based systems. • First experimental results of AUG plasma shots are presented. - Abstract: A set of 16 in-vessel saddle coils is installed in the ASDEX Upgrade (AUG) nuclear fusion experiment for mitigation of edge localized modes (ELM) and feedback control of resistive wall modes (RWM). The coils were driven by DC current only during previous campaigns. Now, a new inverter system “BUSSARD” (German abbr. for “Bayerischer Umrichter, schnell schaltend für AUGs rasche Drehfelder”, translated: “bavarian fast switching inverter for AUG's fast rotating fields”) is built for the experiment. A four-phase system has been assembled to simultaneously operate up to 4 groups of coils consisting of up to 4 serial-connected coils each. The maximum current is 1.3 kA with a ripple in the range of 7% and the frequency is variable between DC and approx. 100 Hz. The switching frequency is variable between approximately 3 and 10 kHz. As a first application, rotating fields are generated. The system can be enhanced in two stages to 16-phase operation with a bandwidth of 500 Hz and a 24 phase system with a bandwidth of up to 3 kHz.

  9. Low cost optical tweezers systems using double coil driving stepping motor to controlling sample stage

    Science.gov (United States)

    Laowattanatham, N.; Cheamanunkul, N.; Plaipichit, S.; Buranasiri, P.; Nuansri, R.

    2013-06-01

    In this research, the low cost optical tweezers systems using X-Y stage has been developed by using 5-phase stepping motor. By using sequential double coil driving, we can obtain the driving torque larger than using the single coil driving. The moving scale is fine resolution at 0.2 micrometer. The overall systems based on microcontroller PIC18F458 and joystick controller with LabView® graphical user interface (GUI). The mechanical damping has been included in the system for decreasing the vibrational noise. By using this method, our optical tweezers system is cheaper than the other commercial system that has been used the piezoelectric driving, and still has the same efficiency.

  10. Asymmetric MRI Systems: Shim and RF Coil Designs

    National Research Council Canada - National Science Library

    Crozier, S

    2001-01-01

    We have recently introduced the concept of asymmetric clinical MRI systems. The potential advantages of these systems include a reduced perception of claustrophobia by patients and better physician access to the patient...

  11. Magnesium Diboride Superconducting Stator Coils for Electric Propulsion Systems Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Many are pursuing the development of electric propulsion systems for large aircraft due to the potential of being cleaner, quieter, lighter, and more versatile than...

  12. A Feasibility Study. Ductless Hydronic Distribution Systems with Fan Coil Delivery

    Energy Technology Data Exchange (ETDEWEB)

    Springer, D. [Alliance for Residential Building Innovation (ARBI), Davis, CA (United States); Dakin, B. [Alliance for Residential Building Innovation (ARBI), Davis, CA (United States); Backman, C. [Alliance for Residential Building Innovation (ARBI), Davis, CA (United States)

    2012-07-01

    The primary objectives of this study are to estimate potential energy savings relative to conventional ducted air distribution, and to identify equipment requirements, costs, and barriers with a focus on ductless hydronic delivery systems that utilize water-to-air terminal units in each zone. Results indicate that annual heating and cooling energy use can be reduced by up to 27% assuming replacement of the conventional 13 SEER heat pump and coil with a similarly rated air-to-water heat pump.

  13. A practical, low-noise coil system for magnetotellurics

    Science.gov (United States)

    Stanley, William D.; Tinkler, Richard D.

    1983-01-01

    Magnetotellurics is a geophysical technique which was developed by Cagnaird (1953) and Tikhonov (1950) and later refined by other scientists worldwide. The technique is a method of electromagnetic sounding of the Earth and is based upon the skin depth effect in conductive media. The electric and magnetic fields arising from natural sources are measured at the surface of the earth over broad frequency bands. An excellent review of the technique is provided in the paper by Vozoff (1972). The sources of the natural fields are found in two basic mechanisms. At frequencies above a few hertz, most of the energy arises from lightning in thunderstorm belts around the equatorial regions. This energy is propagated in a wave-guide formed by the earthionospheric cavity. Energy levels are higher at fundamental modes for this cavity, but sufficient energy exists over most of the audio range to be useful for sounding at these frequencies, in which case the technique is generally referred to as audio-magnetotellurics or AMT. At frequencies lower than audio, and in general below 1 Hz, the source of naturally occuring electromagnetic energy is found in ionospheric currents. Current systems flowing in the ionosphere generate EM waves which can be used in sounding of the earth. These fields generate a relatively complete spectrum of electromagnetic energy that extends from around 1 Hz to periods of one day. Figure 1 shows an amplitude spectrum characteristic of both the ionospheric and lightning sources, covering a frequency range from 0.0001 Hz to 1000 Hz. It can be seen that there is a minimum in signal levels that occurs at about 1 Hz, in the gap between the two sources, and that signal level increases with a decrease in frequency.

  14. MRI compatibility study of an integrated PET/RF-coil prototype system at 3T.

    Science.gov (United States)

    Akram, Md Shahadat Hossain; Obata, Takayuki; Suga, Mikio; Nishikido, Fumihiko; Yoshida, Eiji; Saito, Kazuyuki; Yamaya, Taiga

    2017-10-01

    We have been working on the development of a PET insert for existing magnetic resonance imaging (MRI) systems for simultaneous PET/MR imaging, which integrates radiofrequency (RF)-shielded PET detector modules with an RF head coil. In order to avoid interferences between the PET detector circuits and the different MRI-generated electromagnetic fields, PET detector circuits were installed inside eight Cu-shielded fiber-reinforced plastic boxes, and these eight shielded PET modules were integrated in between the eight elements of a 270-mm-diameter and 280-mm-axial-length cylindrical birdcage RF coil, which was designed to be used with a 3-T clinical MRI system. The diameter of the PET scintillators with a 12-mm axial field-of-view became 255mm, which was very close to the imaging region. In this study, we have investigated the effects of this PET/RF-coil integrated system on the performance of MRI, which include the evaluation of static field (Bo) inhomogeneity, RF field (B1) distribution, local specific absorption rate (SAR) distribution, average SAR, and signal-to-noise ratio (SNR). For the central 170-mm-diameter and 80-mm-axial-length of a homogenous cylindrical phantom (with the total diameter of 200mm and axial-length of 100mm), an increase of about a maximum of 3μT in the Bo inhomogeneity was found, both in the central and 40-mm off-centered transverse planes, and a 5 percentage point increase of B1 field inhomogeneity was observed in the central transverse plane (from 84% without PET to 79% with PET), while B1 homogeneity along the coronal plane was almost unchanged (77%) following the integration of PET with the RF head coil. The average SAR and maximum local SAR were increased by 1.21 and 1.62 times, respectively. However, the SNR study for both spin-echo and gradient-echo sequences showed a reduction of about 70% and 60%, respectively, because of the shielded PET modules. The overall results prove the feasibility of this integrated PET/RF-coil system for

  15. Optimal secondary coil design for inductive powering of the Artificial Accommodation System.

    Science.gov (United States)

    Nagel, J A; Krug, M; Gengenbach, U; Guth, H; Bretthauer, G; Guthoff, R F

    2011-01-01

    Age-related ailments like presbyopia and cataract are increasing concerns in the aging society. Both go along with a loss of ability to accommodate. A new approach to restore the patients' ability to accommodate is the Artificial Accommodation System. This micro mechatronic system will be implanted into the capsular bag to replace the human crystalline lens. Depending on the patients' actual need for accommodation, the Artificial Accommodation System autonomously adapts the refractive power of its integrated optical element in a way that the projection on the patients' retina results in a sharp image. As the Artificial Accommodation System is an active implant, its subsystems have to be supplied with electrical energy. Evolving technologies, like energy harvesting, which can potentially be used to power an implant like the Artificial Accommodation System are at the current state of art not sufficient to power the Artificial Accommodation System autonomously [1]. In the near future, therefore an inductive power supply system will be developed which includes an energy storage to power the Artificial Accommodation System autonomously over a period of 24 h and can be recharged wirelessly. This Paper describes a new possibility to optimize the secondary coil design in a solely analytical way, based on a new figure of merit. Within this paper the developed figure of merit is applied to optimize the secondary coil design for the Artificial Accommodation System.

  16. An improved current potential method for fast computation of stellarator coil shapes

    CERN Document Server

    Landreman, Matt

    2016-01-01

    Several fast methods for computing stellarator coil shapes are compared, including the classical NESCOIL procedure [Merkel, Nucl. Fusion 27, 867 (1987)], its generalization using truncated singular value decomposition, and a Tikhonov regularization approach we call REGCOIL in which the squared current density is included in the objective function. Considering W7-X and NCSX geometries, and for any desired level of regularization, we find the REGCOIL approach simultaneously achieves lower surface-averaged and maximum values of both current density (on the coil winding surface) and normal magnetic field (on the desired plasma surface). This approach therefore can simultaneously improve the free-boundary reconstruction of the target plasma shape while substantially increasing the minimum distances between coils, preventing collisions between coils while improving access for ports and maintenance. The REGCOIL method also allows finer control over the level of regularization, and it eliminates two pathologies of NE...

  17. Tests of insulation systems for Nb3Sn wind and react coils

    Energy Technology Data Exchange (ETDEWEB)

    Bossert, R.; Ambrosio, G; Andreev, N.; Whitson, G.; Zlobin, A.; /Fermilab

    2007-07-01

    Tests were performed to assess the viability of several cable insulation systems for use in Nb{sub 3}Sn accelerator magnets. Insulated stacks of cables were subjected to reaction cycles commonly used for Nb{sub 3}Sn coils. After reaction and epoxy impregnation, current leakage between turns was measured at pressures up to 180 MPa and turn-to-turn potentials up to 500V. Systems consisting of S-2 glass, ceramic fiber, and E-glass were tested. Several methods of applying the insulation were incorporated, including sleeves and various spiral wrapped configurations. Methods of sample preparation and testing are described and results are reported.

  18. An accurate online calibration system based on combined clamp-shape coil for high voltage electronic current transformers.

    Science.gov (United States)

    Li, Zhen-hua; Li, Hong-bin; Zhang, Zhi

    2013-07-01

    Electronic transformers are widely used in power systems because of their wide bandwidth and good transient performance. However, as an emerging technology, the failure rate of electronic transformers is higher than that of traditional transformers. As a result, the calibration period needs to be shortened. Traditional calibration methods require the power of transmission line be cut off, which results in complicated operation and power off loss. This paper proposes an online calibration system which can calibrate electronic current transformers without power off. In this work, the high accuracy standard current transformer and online operation method are the key techniques. Based on the clamp-shape iron-core coil and clamp-shape air-core coil, a combined clamp-shape coil is designed as the standard current transformer. By analyzing the output characteristics of the two coils, the combined clamp-shape coil can achieve verification of the accuracy. So the accuracy of the online calibration system can be guaranteed. Moreover, by employing the earth potential working method and using two insulating rods to connect the combined clamp-shape coil to the high voltage bus, the operation becomes simple and safe. Tests in China National Center for High Voltage Measurement and field experiments show that the proposed system has a high accuracy of up to 0.05 class.

  19. Electromechanical design and construction of a rotating radio-frequency coil system for applications in magnetic resonance.

    Science.gov (United States)

    Trakic, Adnan; Weber, Ewald; Li, Bing Keong; Wang, Hua; Liu, Feng; Engstrom, Craig; Crozier, Stuart

    2012-04-01

    While recent studies have shown that rotating a single radio-frequency (RF) coil during the acquisition of magnetic resonance (MR) images provides a number of hardware advantages (i.e., requires only one RF channel, avoids coil-coil coupling and facilitates large-scale multinuclear imaging), they did not describe in detail how to build a rotating RF coil system. This paper presents detailed engineering information on the electromechanical design and construction of a MR-compatible RRFC system for human head imaging at 2 T. A custom-made (bladeless) pneumatic Tesla turbine was used to rotate the RF coil at a constant velocity, while an infrared optical encoder measured the selected frequency of rotation. Once the rotating structure was mechanically balanced and the compressed air supply suitably regulated, the maximum frequency of rotation measured ~14.5 Hz with a 2.4% frequency variation over time. MR images of a water phantom and human head were obtained using the rotating RF head coil system.

  20. Erosion of Embolization Coils into the Renal Collecting System Mimicking Stone

    Directory of Open Access Journals (Sweden)

    Jason Phan

    2012-04-01

    Full Text Available Urinary tract interventions can lead to multiple complications in the renal collecting system, includingretained foreign bodies from endourologic or percutaneous procedures, such as stents, nephrostomytubes, and others. We report a case of very delayed erosion of embolization coils migrating into therenal pelvis, acting as a nidus for stone formation, causing mild obstruction and finally leading to grosshematuria roughly 18 years post transarterial embolization. History is significant for a remoteunsuccessful endopyelotomy attempt that required an urgent embolization. [West J Emerg Med.2012;13(1:127–130.

  1. An Autonomous Coil Alignment System for the Dynamic Wireless Charging of Electric Vehicles to Minimize Lateral Misalignment

    Directory of Open Access Journals (Sweden)

    Karam Hwang

    2017-03-01

    Full Text Available This paper proposes an autonomous coil alignment system (ACAS for electric vehicles (EVs with dynamic wireless charging (DWC to mitigate the reduction in received power caused by lateral misalignment between the source and load coils. The key component of the ACAS is a novel sensor coil design, which can detect the load coil’s left or right position relative to the source coil by observing the change in voltage phase. This allows the lateral misalignment to be estimated through the wireless power transfer (WPT system alone, which is a novel tracking method for vehicular applications. Once misalignment is detected, the vehicle’s lateral position is self-adjusted by an autonomous steering function. The feasibility of the overall operation of the ACAS was verified through simulation and experiments. In addition, an analysis based on experimental results was conducted, demonstrating that 26% more energy can be transferred during DWC with the ACAS, just by keeping the vehicle’s load coil aligned with the source coil.

  2. Modelling and Practical Implementation of 2-Coil Wireless Power Transfer Systems

    Directory of Open Access Journals (Sweden)

    Hong Zhou

    2014-01-01

    Full Text Available Wireless power transfer (WPT based on inductive coupling could be potentially applied in many practical applications. It has attracted a lot of research interests in the last few years. In this paper, the modelling, design, and implementation of a 2-coil WPT system are represented. The prototype system can be implemented using conventional power electronic devices such as MOSFETs with very low costs as it works in relative low frequency range (less than 1 MHz. In order to find out about the optimal working area for the WPT system, the circuit model based on the practical parameters from the prototype is built. The relationships between the exciting frequency, coupling, and output power are analyzed based on the circuit and magnetic principles. Apart from the theoretic study, the detailed implementation of the WPT prototype including the coil design, digital frequency generation, and high frequency power electronics is also introduced in this paper. Experiments are conducted to verify the effectiveness of the circuit analysis. By carefully tuning the circuit parameters, the prototype is able to deliver 20 W power through 2.2 meter distance with 20–30% efficiency.

  3. ALEPH Coil

    CERN Multimedia

    ALEPH was one of the four experiments installed at the LEP particle accelerator from 1989 - 2000. The detector was used by a collaboration of hundreds of physicists, mostly from Europe but also from China and the USA. The ALEPH superconducting magnet coils provide a very uniform magnetic field of 1.5 Tesla. The current in the coil is about 5000 A and the stored energy is 136 MJ. The coils are cooled by liquid Helium. Two correction coils serve to improve the uniformity of the field. This piece is connected to OBJ-DE-054.

  4. Radiation induced current in the RF coils of integrated linac-MR systems: the effect of buildup and magnetic field.

    Science.gov (United States)

    Burke, Ben; Ghila, Andrei; Fallone, B G; Rathee, Satyapal

    2012-08-01

    In integrated linac-MRI systems, a measurable radiation induced current (RIC) is caused in RF coils by pulsed irradiation. This work (1) tests a buildup method of RIC removal in planar conductors; (2) validates a Monte Carlo method of RIC calculation in metal conductors; and (3) uses the Monte Carlo method to examine the effects of magnetic fields on both planar conductor and practical cylindrical coil geometries. The RIC was measured in copper and aluminum plates, taken as the RF coil conductor surrogates, as a function of increasing thickness of buildup materials (teflon and copper). Based on the Penelope Monte Carlo code, a method of RIC calculation was implemented and validated against measurements. This method was then used to calculate the RIC in cylindrical coil geometries with various air gaps between the coil conductor and the enclosed water phantom. Magnetic fields, both parallel and perpendicular to the radiation beam direction, were then included in the simulation program. The effect of magnetic fields on the effectiveness of RIC removal with the application of buildup material was examined in both the planar and the cylindrical geometries. Buildup reduced RIC in metal plate conductors. For copper detector∕copper buildup case, the RIC amplitude was reduced to zero value with 0.15 cm copper buildup. However, when the copper is replaced with teflon as buildup atop the copper conductor, the RIC was only reduced to 80% of its value at zero buildup since the true electronic equilibrium cannot be obtained in this case. For the aluminum detector∕teflon buildup case, the initial amplitude of the RIC was reduced by 90% and 92% in planar aluminum conductor and a surface coil, respectively. In case of cylindrical coils made of aluminum, teflon buildup around the coil's outer surface was generally effective but failed to remove RIC when there was an air gap between the coil and the phantom. Stronger magnetic fields (>0.5 T) perpendicular to the beam direction

  5. Double pancake superconducting coil design for maximum magnetic energy storage in small scale SMES systems

    Science.gov (United States)

    Hekmati, Arsalan; Hekmati, Rasoul

    2016-12-01

    Electrical power quality and stability is an important issue nowadays and technology of Superconducting Magnetic Energy Storage systems, SMES, has brought real power storage capability to power systems. Therefore, optimum SMES design to achieve maximum energy with the least length of tape has been quite a matter of concern. This paper provides an approach to design optimization of solenoid and toroid types of SMES, ensuring maximum possible energy storage. The optimization process, based on Genetic Algorithm, calculates the operating current of superconducting tapes through intersection of a load line with the surface indicating the critical current variation versus the parallel and perpendicular components of magnetic flux density. FLUX3D simulations of SMES have been utilized for energy calculations. Through numerical analysis of obtained data, formulations have been obtained for the optimum dimensions of superconductor coil and maximum stored energy for a given length and cross sectional area of superconductor tape.

  6. Congenital anomalous/aberrant systemic artery to pulmonary venous fistula: Closure with vascular plugs & coil embolization

    Directory of Open Access Journals (Sweden)

    Pankaj Jariwala

    2014-01-01

    Full Text Available A 7-month-old girl with failure to thrive, who, on clinical and diagnostic evaluation [echocardiography & CT angiography] to rule out congenital heart disease, revealed a rare vascular anomaly called systemic artery to pulmonary venous fistula. In our case, there was dual abnormal supply to the entire left lung as1 anomalous supply by normal systemic artery [internal mammary artery]2 and an aberrant feeder vessel from the abdominal aorta. Left Lung had normal bronchial connections and normal pulmonary vasculature. The fistula drained through the pulmonary veins to the left atrium leading to ‘left–left shunt’. Percutaneous intervention in two stages was performed using Amplatzer vascular plugs and coil embolization to close them successfully. The patient gained significant weight in follow up with other normal developmental and mental milestones.

  7. Magnesium Diboride Superconducting Coils for Electric Propulsion Systems for Large Aircraft Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The recent development of magnesium diboride superconducting wires makes possible the potential to have much lighter weight superconducting coils for heavy aircraft...

  8. Three-phase receiving coil of wireless power transmission system for gastrointestinal robot

    Science.gov (United States)

    Jia, Z. W.; Jiang, T.; Liu, Y.

    2017-11-01

    Power shortage is the bottleneck for the wide application of gastrointestinal (GI) robot. Owing to the limited volume and free change of orientation of the receiving set in GI trace, the optimal of receiving set is the key point to promote the transmission efficiency of wireless power transmission system. A new type of receiving set, similar to the winding of three-phase asynchronous motor, is presented and compared with the original three-dimensional orthogonal coil. Considering the given volume and the space utilization ratio, the three-phase and the three-orthogonal ones are the parameters which are optimized and compared. Both the transmission efficiency and stability are analyzed and verified by in vitro experiments. Animal experiments show that the new one could provide at least 420 mW power in volume of Φ11 × 13mm with a uniformity of 78.3% for the GI robot.

  9. A liquid-helium-free superconducting coil system forming a flat minimum-magnetic-field distribution of an electron cyclotron resonance ion source.

    Science.gov (United States)

    Yoshida, Ken-ichi; Nara, Takayuki; Saitoh, Yuichi; Yokota, Watalu

    2014-02-01

    A flat distribution of the minimum magnetic field (flat-Bmin) of an electron cyclotron resonance ion source (ECRIS) is expected to perform better in highly charged ion production than classical Bmin. To form a flat-Bmin structure with a liquid helium-free superconducting device, a coil system of seven coils with four current leads has been designed. The lead number was reduced by connecting the plural coils in series to maintain the flat-Bmin structure even when the coil currents are changed for adjustment. This coil system can be operated with a helium-free cryostat, since the estimation of heat from the leads to the coils is nearly equivalent to the existing superconducting ECRIS of a similar type.

  10. A liquid-helium-free superconducting coil system forming a flat minimum-magnetic-field distribution of an electron cyclotron resonance ion source

    Energy Technology Data Exchange (ETDEWEB)

    Yoshida, Ken-ichi, E-mail: yoshida.kennichi71@jaea.go.jp; Nara, Takayuki; Saitoh, Yuichi; Yokota, Watalu [Takasaki Advanced Radiation Research Institute, Japan Atomic Energy Agency, 1233 Watanuki, Takasaki, Gunma 370-1292 (Japan)

    2014-02-15

    A flat distribution of the minimum magnetic field (flat-B{sub min}) of an electron cyclotron resonance ion source (ECRIS) is expected to perform better in highly charged ion production than classical B{sub min}. To form a flat-B{sub min} structure with a liquid helium-free superconducting device, a coil system of seven coils with four current leads has been designed. The lead number was reduced by connecting the plural coils in series to maintain the flat-B{sub min} structure even when the coil currents are changed for adjustment. This coil system can be operated with a helium-free cryostat, since the estimation of heat from the leads to the coils is nearly equivalent to the existing superconducting ECRIS of a similar type.

  11. A liquid-helium-free superconducting coil system forming a flat minimum-magnetic-field distribution of an electron cyclotron resonance ion source

    Science.gov (United States)

    Yoshida, Ken-ichi; Nara, Takayuki; Saitoh, Yuichi; Yokota, Watalu

    2014-02-01

    A flat distribution of the minimum magnetic field (flat-Bmin) of an electron cyclotron resonance ion source (ECRIS) is expected to perform better in highly charged ion production than classical Bmin. To form a flat-Bmin structure with a liquid helium-free superconducting device, a coil system of seven coils with four current leads has been designed. The lead number was reduced by connecting the plural coils in series to maintain the flat-Bmin structure even when the coil currents are changed for adjustment. This coil system can be operated with a helium-free cryostat, since the estimation of heat from the leads to the coils is nearly equivalent to the existing superconducting ECRIS of a similar type.

  12. Analysis of relay based valley coil system of K-130 Cyclotron and an approach to computer controlled system

    Energy Technology Data Exchange (ETDEWEB)

    Shoor, B.

    2016-09-11

    To overcome the first harmonic field imperfection in sector focused cyclotron, a set of coils placed in valleys are used to produce an opposite first harmonic effect. Usually, at the time of beam tuning the phase of the first harmonic is varied using a relay system. It can be shown analytically that magnitude of it changes simultaneously, when phase is changed. This is not desirable at the time of beam tuning. Moreover phase changes in long steps, which hampers accuracy of beam tuning. To overcome this, a computer controlled system is suggested where amplitude remains constant at the time of phase change. Moreover, phase can be changed continuously which gives better tuning accuracy.

  13. Design and analysis of permanent magnet moving coil type generator used in a micro-CHP generation system

    Science.gov (United States)

    Oros Pop, Susana Teodora; Berinde, Ioan; Vadan, Ioan

    2015-12-01

    This paper presents the design and analysis of a permanent magnet moving coil type generator driven by a free piston Stirling engine. This assemble free piston Stirling engine - permanent magnet moving coil type generator will be used in a combined heat and power (CHP) system for producing heat and power in residential area. The design procedure for moving coil type linear generator starts from the rated power imposed and finally uses the Faraday law of induction. The magneto-static magnetic field generated by permanent magnets is analyzed by means of Reluctance method and Finite Element Method in order to evaluate the magnetic flux density in the air gap, which is a design data imposed in the design stage, and the results are compared.

  14. Conceptual design of the W7-X port liners

    Energy Technology Data Exchange (ETDEWEB)

    Stadler, Reinhold J., E-mail: reinhold.stadler@ipp.mpg.de [Max Planck Institute for Plasma Physics, 85748 Garching (Germany); Peacock, A.; Boscary, J.; Mendelevitch, B [Max Planck Institute for Plasma Physics, 85748 Garching (Germany); Scholz, P. [Max Planck Institute for Plasma Physics, 17491 Greifswald (Germany); Schubert, W. [Max Planck Institute for Plasma Physics, 85748 Garching (Germany)

    2016-11-15

    The experimental stellarator Wendelstein 7-X has a large variety of ports for plasma diagnostics. For the steady-state operation with 10 MW input power and a plasma pulse length of up to 30 min, 101 diagnostics ports need to be shielded with actively cooled port liners made of stainless steel. A total of 41 variants of port liners taking into account the various port geometries and the interfaces with different types of diagnostics have to be installed. Before starting the production, different concepts have been studied. Five full-scale demonstrators and three different technologies representative of the port liner variety have been designed and are being produced. Results of this fabrication will serve as a basis for the procurement of the 101 port liners.

  15. Thermoeconomic Optimization of a Combined Heating and Humidification Coil for HVAC Systems

    Science.gov (United States)

    Teodoros, Liliana; Andresen, Bjarne

    2016-07-01

    The total cost of ownership is calculated for a combined heating and humidification coil of an air-handling unit taking into account investment and operation costs simultaneously. This total cost represents the optimization function for which the minimum is sought. The parameters for the cost dependencies are the physical dimensions of the coil: length, width and height. The term "coil" is used generically since in this setup it generates heating as well as humidification in a single unit. The first part of the paper deals with the constructive optimization and finds the relationship between the dimensions for a minimum cost. The second part of the paper takes the results of the constructive optimization further and, based on the data derived in our previous papers, analyzes the minimum total cost for the humidification coil while balancing the amount of water used to humidify the air and modify its temperature.

  16. An Optimized Air-Core Coil Sensor with a Magnetic Flux Compensation Structure Suitable to the Helicopter TEM System.

    Science.gov (United States)

    Chen, Chen; Liu, Fei; Lin, Jun; Zhu, Kaiguang; Wang, Yanzhang

    2016-04-12

    The air-core coil sensor (ACS) is widely used as a transducer to measure the variation in magnetic fields of a helicopter transient electromagnetic (TEM) system. A high periodic emitting current induces the magnetic field signal of the underground medium. However, such current also generates a high primary field signal that can affect the received signal of the ACS and even damage the receiver. To increase the dynamic range of the received signal and to protect the receiver when emitting current rises/falls, the combination of ACS with magnetic flux compensation structure (bucking coil) is necessary. Moreover, the optimized ACS, which is composed of an air-core coil and a differential pre-amplifier circuit, must be investigated to meet the requirements of the helicopter TEM system suited to rapid surveying for shallow buried metal mine in rough topography. Accordingly, two ACSs are fabricated in this study, and their performance is verified and compared inside a magnetic shielding room. Using the designed ACSs, field experiments are conducted in Baoqing County. The field experimental data show that the primary field response can be compensated when the bucking coil is placed at an appropriate point in the range of allowed shift distance beyond the center of the transmitting coil and that the damage to the receiver induced by the over-statured signal can be solved. In conclusion, a more suitable ACS is adopted and is shown to have better performance, with a mass of 2.5 kg, resultant effective area of 11.6 m² (i.e., diameter of 0.496 m), 3 dB bandwidth of 66 kHz, signal-to-noise ratio of 4 (i.e., varying magnetic field strength of 0.2 nT/s), and normalized equivalent input noise of 3.62 nV/m².

  17. Design and implementation of a novel rotary micropositioning system driven by linear voice coil motor

    Science.gov (United States)

    Xu, Qingsong

    2013-05-01

    Limited-angle rotary micropositioning stages are required in precision engineering applications where an ultrahigh-precision rotational motion within a restricted range is needed. This paper presents the design, fabrication, and control of a compliant rotary micropositioning stage dedicated to the said applications. To tackle the challenge of achieving both a large rotational range and a compact size, a new idea of multi-stage compound radial flexure is proposed. A compact rotary stage is devised to deliver an over 10° rotational range while possessing a negligible magnitude of center shift. The stage is driven by a linear voice coil motor and its output motion is measured by laser displacement sensors. Analytical models are derived to facilitate the parametric design, which is validated by conducting finite element analysis. The actuation and sensing issues are addressed to guarantee the stage performance. A prototype is fabricated and a proportional-integral-derivative control is implemented to achieve a precise positioning. Experimental results demonstrate a resolution of 2 μrad over 10° rotational range as well as a low level of center shift of the rotary micropositioning system.

  18. Magnetic induction pneumography: a planar coil system for continuous monitoring of lung function via contactless measurements

    Directory of Open Access Journals (Sweden)

    Doga Gursoy

    2010-01-01

    Full Text Available Continuous monitoring of lung function is of particular interest to the mechanically ventilated patients during critical care. Recent studies have shown that magnetic induction measurements with single coils provide signals which are correlated with the lung dynamics and this idea is extended here by using a 5 by 5 planar coil matrix for data acquisition in order to image the regional thoracic conductivity changes. The coil matrix can easily be mounted onto the patient bed, and thus, the problems faced in methods that use contacting sensors can readily be eliminated and the patient comfort can be improved. In the proposed technique, the data are acquired by successively exciting each coil in order to induce an eddy-current density within the dorsal tissues and measuring the corresponding response magnetic field strength by the remaining coils. The recorded set of data is then used to reconstruct the internal conductivity distribution by means of algorithms that minimize the residual norm between the estimated and measured data. To investigate the feasibility of the technique, the sensitivity maps and the point spread functions at different locations and depths were studied. To simulate a realistic scenario, a chest model was generated by segmenting the tissue boundaries from NMR images. The reconstructions of the ventilation distribution and the development of an edematous lung injury were presented. The imaging artifacts caused by either the incorrect positioning of the patient or the expansion of the chest wall due to breathing were illustrated by simulations.

  19. Eddy Current Loss Induced in Aluminum Thermal Conduction Strips for ASPCS Coils Indirectly Cooled by Liquid Hydrogen through Thermo-siphon System

    Science.gov (United States)

    Ota, Narumi; Katsura, Masashi; Ando, Kennosuke; Takao, Tomoaki; Shintomi, Takakazu; Makida, Yasuhiro; Hamajima, Takataro; Tsuda, Makoto; Miyagi, Daisuke; Tsujigami, Hiroshi; Fujikawa, Shizuichi; Semba, Toshiaki; Iwaki, Katsuya

    To promote renewable energy sources, we proposed a new system called the Advanced Superconducting Power Conditioning System (ASPCS), which consists of Superconducting Magnetic Energy Storage-system (SMES), Electrolyzer, and Fuel Cell, and is also combined with a liquid hydrogen station for vehicles. The SMES plays a role to compensate the fast fluctuations generated by the renewable energies. In case of the ASPCS with a capacity of 5 MW, we designed the 50 MJ-class SMES composed of 4 solenoid coils. The winding of the solenoid coils is double pancake and a basic coil is 2 m in diameter and 0.5 m in height. Each SMES coil is wound with MgB2 conductor and indirectly cooled at 20 K by liquid hydrogen flowing through a thermo-siphon cooling system. Pure aluminum strips are inserted between the double-pancake coils and the pure aluminum plates gathering the strips lead to liquid hydrogen pipes. This scheme enables the strips and the plates to transfer the heat load in the coils to the cooling pipes and keep the coils at low temperature. On the other hand, we must consider that the strips generate eddy current loss which is strongly affected by a width of the strips. At the same time as the primary study of the SMES coils, we experimented on the thermo-siphon cooling system and investigated the relationship between the heat load and the heat extraction ability of the cooling system. The experiments showed that the cooling system could proficiently function. The estimation of eddy current loss from the particular cooling aluminum strips for the SMES in the ASPCS is reported with the results of the thermo-siphon driving experiment.

  20. Coiled-Coil Design: Updated and Upgraded.

    Science.gov (United States)

    Woolfson, Derek N

    2017-01-01

    α-Helical coiled coils are ubiquitous protein-folding and protein-interaction domains in which two or more α-helical chains come together to form bundles. Through a combination of bioinformatics analysis of many thousands of natural coiled-coil sequences and structures, plus empirical protein engineering and design studies, there is now a deep understanding of the sequence-to-structure relationships for this class of protein architecture. This has led to considerable success in rational design and what might be termed in biro de novo design of simple coiled coils, which include homo- and hetero-meric parallel dimers, trimers and tetramers. In turn, these provide a toolkit for directing the assembly of both natural proteins and more complex designs in protein engineering, materials science and synthetic biology. Moving on, the increased and improved use of computational design is allowing access to coiled-coil structures that are rare or even not observed in nature, for example α-helical barrels, which comprise five or more α-helices and have central channels into which different functions may be ported. This chapter reviews all of these advances, outlining improvements in our knowledge of the fundamentals of coiled-coil folding and assembly, and highlighting new coiled coil-based materials and applications that this new understanding is opening up. Despite considerable progress, however, challenges remain in coiled-coil design, and the next decade promises to be as productive and exciting as the last.

  1. Suppressing local hot spots due to eddy currents in magnetic coil systems

    Science.gov (United States)

    Yao, Zhen; Shojinaga, Aaron; Wu, Yong; Shvartsman, Shmaryu; Eagan, Timothy; Chmielewski, Thomas; Brown, Robert

    2011-03-01

    A particular goal in magnetic field applications is to avoid eddy current heating in coils and shields. It is important, in MRI, for example, to avoid hot spots near the patient to be imaged as well as in the vicinity of soldering joints. We develop effective analytical formulas for the eddy current behavior of sources close to surrounding conductors, we verify these via numerical simulations, and we make successful comparisons to corresponding experimental temperature distributions. Optimized patterns of incisions made in the conductors are discovered for addressing particularly troublesome heating locations. The criteria include the need to minimize the number and length of the cuts. Theory and experiment are in agreement on the efficacy of this method for reducing steady-state temperatures. An example of results in the practical design of commercial coils and shields is that a single cut parallel to the long edge of rectangular conductors reduces the temperatures much more than making multiple cuts parallel to the short edge. Supported by Ohio Third Frontier Program

  2. RF Head Coil Design with Improved RF Magnetic Near-Fields Uniformity for Magnetic Resonance Imaging (MRI) Systems.

    Science.gov (United States)

    Sohn, Sung-Min; DelaBarre, Lance; Gopinath, Anand; Vaughan, John Thomas

    2014-08-01

    Higher magnetic field strength in magnetic resonance imaging (MRI) systems offers higher signal-to-noise ratio (SNR), contrast, and spatial resolution in MR images. However, the wavelength in ultra-high fields (7 tesla and beyond) becomes shorter than the human body at the Larmor frequency with increasing static magnetic field (B0) of MRI system. At short wavelengths, interference effect appears resulting in non- uniformity of the RF magnetic near-field (B1) over the subject and MR images may have spatially anomalous contrast. The B1 near-field generated by the transverse electromagnetic (TEM) RF coil's microstrip line element has a maximum near the center of its length and falls off towards both ends. In this study, a double trapezoidal shaped microstrip transmission line element is proposed to obtain uniform B1 field distribution by gradual impedance variation. Two multi-channel RF head coils with uniform and trapezoidal shape elements were built and tested with a phantom at 7T MRI scanner for comparison. The simulation and experimental results show stronger and more uniform B1+ near-field with the trapezoidal shape.

  3. Simulation Research of Magnetically-coupled Resonant Wireless Power Transfer System with Single Intermediate Coil Resonator Based on S Parameters Using ANSYS

    Directory of Open Access Journals (Sweden)

    Liu Cheng

    2016-01-01

    Full Text Available ANSYS can be a powerful tool to simulate the process of energy exchange in magnetically-coupled resonant wireless power transfer system. In this work, the MCR-WPT system with single intermediate coil resonator is simulated and researched based on scattering parameters using ANSYS Electromagnetics. The change rule of power transfer efficiency is reflected intuitively through the scattering parameters. A new method of calculating the coupling coefficient is proposed. A cascaded 2-port network model using scattering parameters is adopted to research the efficiency of transmission. By changing the relative position and the number of turns of the intermediate coil, we find some factors affecting the efficiency of transmission. Methods and principles of designing the MCR-WPT system with single intermediate coil resonator are obtained. And these methods have practical value with design and optimization of system efficiency.

  4. Growth Factor Identity Is Encoded by Discrete Coiled-Coil Rotamers in the EGFR Juxtamembrane Region.

    Science.gov (United States)

    Doerner, Amy; Scheck, Rebecca; Schepartz, Alanna

    2015-06-18

    Binding of transforming growth factor α (TGF-α) to the epidermal growth factor receptor (EGFR) extracellular domain is encoded through the formation of a unique antiparallel coiled coil within the juxtamembrane segment. This new coiled coil is an "inside-out" version of the coiled coil formed in the presence of epidermal growth factor (EGF). A third, intermediary coiled-coil interface is formed in the juxtamembrane region when EGFR is stimulated with betacellulin. The seven growth factors that activate EGFR in mammalian systems (EGF, TGF-α, epigen, epiregulin, betacellulin, heparin-binding EGF, and amphiregulin) fall into distinct categories in which the structure of the coiled coil induced within the juxtamembrane region correlates with cell state. The observation that coiled-coil state tracks with the downstream signaling profiles for each ligand provides evidence for growth factor functional selectivity by EGFR. Encoding growth factor identity in alternative coiled-coil rotamers provides a simple and elegant method for communicating chemical information across the plasma membrane. Copyright © 2015 Elsevier Ltd. All rights reserved.

  5. Toroidal field coil design concept and structural support system for CTHR

    Energy Technology Data Exchange (ETDEWEB)

    Chianese, R. B.; Kelly, J. L.; Ruck, G. W.

    1980-09-01

    The CTHR conceptual design consists of a magnetically confined (tokamak) fusion reactor fitted with a fertile uranium blanket. The fusion driver concept was based on an ignited plasma. All concepts and parameters were selected on the basis that technical feasibility would be achieved by 1995 to assure a viable commercial operation in the early to mid-21st century. The reactor was designed to achieve good fissile fuel production, with electricity production being a second order priority. However, the resulting concepts that evolved were all excellent power producers which significantly improved the economic performance. The subsystems discussed in the following paragraphs provide a background of the application for the TF coil design described in this report.

  6. The utility of pelvic coil SNR testing in the quality assurance of a clinical MRgFUS system

    Energy Technology Data Exchange (ETDEWEB)

    Gorny, Krzysztof R; Hangiandreou, Nicholas J; Ward, Heidi A; Hesley, Gina K; Brown, Douglas L; Felmlee, Joel P [Department of Radiology, Mayo Clinic, Rochester, MN 55905 (United States)

    2009-04-07

    During MRI-guided focused ultrasound (MRgFUS) treatments of uterine fibroids using ExAblate (registered) 2000, tissue ablations are delivered by a FUS transducer while MR imaging is performed with a pelvic receiver coil. The consistency of the pelvic coil performance is crucial for reliable MR temperature measurements as well as detailed anatomic imaging in patients. Test sonications in a gel phantom combined with MR thermometry are used to test the performance of the FUS transducer prior to each treatment. As we show, however, these tests do not adequately evaluate receiver coil performance prior to clinical use. This could become a problem since the posterior part of the coil is frequently moved and can malfunction. The aim of this work is to demonstrate the utility of the signal-to-noise ratio (SNR) as a reliable indicator of pelvic coil performance. Slight modification of the vendor-provided coil support was accomplished to assure reproducible coil positioning. The SNR was measured in a gel phantom using axial acquisitions from the 3D-localizer scan. MR temperature and SNR measurements were obtained using a degraded receiver coil (with posterior element removed) and a known faulty coil, and compared to those obtained with a fully functioning coil. While the MR temperature-based tests were insensitive to change in pelvic coil performance, (degraded, p = 0.24; faulty, p = 0.28), the SNR tests were highly sensitive to coil performance, (degraded, p < 0.001; faulty, p < 0.001). Additional clinical data illustrate the utility of SNR testing of the receiver coil. These tests require minimal (or possibly no) additional scan time and have proven to be effective in our clinical practice. (note)

  7. Imaging performance of a full-ring prototype PET-MRI system based on four-layer DOI-PET detectors integrated with a RF coil

    Energy Technology Data Exchange (ETDEWEB)

    Nishikido, Fumihiko; Tashima, Hideaki [National Institute of Radiological Sciences, Chiba (Japan); Suga, Mikio [Chiba University, Chiba (Japan); Inadama, Naoko; Eiji, Yoshida; Obata, Takayuki; Yamaya, Taiga [National Institute of Radiological Sciences, Chiba (Japan)

    2015-05-18

    We are developing a PET system integrated with a birdcage RF-coil for PET-MRI in order to realize both high sensitivity and high spatial resolution of the PET image by using the 4-layered depth-of-interaction (DOI) PET detector. We constructed a full-ring prototype system and evaluated performances, especially imaging performance, of the prototype system in simultaneous measurement. The prototype system consists of eight four-layer DOI-PET detectors and a prototype birdcage RF-coil developed for the proposed system. The PET detectors consist of six monolithic multi-pixel photon counter array (S11064-050P), a readout circuit, fourlayer DOI scintillator arrays and a shielding box made of 35 μm thick copper foil. The crystal array consists of 2.0 mm x 2.0 mm x 5.0 mm LYSO crystals arranged in 38 x 6 x 4 layer. The RF-coil has eight coil elements and the eight PET detectors are positioned at each element gap. The diameter of the RF-coil elements is 261 mm. We conducted performance tests of the prototype system with a 3.0 T MRI (MAGNETOM Verio). Only the PET detectors, the RF-coil and the cables were in an MRI room during measurements. A data acquisition system and power supplies for the MPPCs and preamplifiers were outside the MRI room and connected to all the detectors through a penetration panel. As a result, the spatial resolutions of a Na-22 point source in the PET image were lower than 1.6 mm in whole the FOV due to the DOI capability. In addition, the influence of the simultaneous measurements on the PET performance is negligible. On the other hand, the SNR of the phantom image in the magnitude images was degraded from 259.7 to 209.4 due to noise contamination from the power supplies.

  8. Design and simulation of printed spiral coil used in wireless power transmission systems for implant medical devices.

    Science.gov (United States)

    Wu, Wei; Fang, Qiang

    2011-01-01

    Printed Spiral Coil (PSC) is a coil antenna for near-field wireless power transmission to the next generation implant medical devices. PSC for implant medical device should be power efficient and low electromagnetic radiation to human tissues. We utilized a physical model of printed spiral coil and applied our algorithm to design PSC operating at 13.56 MHz. Numerical and electromagnetic simulation of power transfer efficiency of PSC in air medium is 77.5% and 71.1%, respectively. The simulation results show that the printed spiral coil which is optimized for air will keep 15.2% power transfer efficiency in human subcutaneous tissues. In addition, the Specific Absorption Ratio (SAR) for this coil antenna in subcutaneous at 13.56 MHz is below 1.6 W/Kg, which suggests this coil is implantable safe based on IEEE C95.1 safety guideline.

  9. Test equipment for a flywheel energy storage system using a magnetic bearing composed of superconducting coils and superconducting bulks

    Science.gov (United States)

    Ogata, M.; Matsue, H.; Yamashita, T.; Hasegawa, H.; Nagashima, K.; Maeda, T.; Matsuoka, T.; Mukoyama, S.; Shimizu, H.; Horiuchi, S.

    2016-05-01

    Energy storage systems are necessary for renewable energy sources such as solar power in order to stabilize their output power, which fluctuates widely depending on the weather. Since ‘flywheel energy storage systems’ (FWSSs) do not use chemical reactions, they do not deteriorate due to charge or discharge. This is an advantage of FWSSs in applications for renewable energy plants. A conventional FWSS has capacity limitation because of the mechanical bearings used to support the flywheel. Therefore, we have designed a superconducting magnetic bearing composed of a superconducting coil stator and a superconducting bulk rotor in order to solve this problem, and have experimentally manufactured a large scale FWSS with a capacity of 100 kWh and an output power of 300 kW. The superconducting magnetic bearing can levitate 4 tons and enables the flywheel to rotate smoothly. A performance confirmation test will be started soon. An overview of the superconducting FWSS is presented in this paper.

  10. Programming protein self assembly with coiled coils

    Energy Technology Data Exchange (ETDEWEB)

    Dietz, Hendrik; Bornschloegl, Thomas; Heym, Roland; Koenig, Frauke; Rief, Matthias [Physik Department E22, Technische Universitaet Muenchen, James-Franck-Strasse 1, 85748 Garching (Germany)

    2007-11-15

    The controlled assembly of protein domains into supramolecular structures will be an important prerequisite for the use of functional proteins in future nanotechnology applications. Coiled coils are multimerization motifs whose dimerization properties can be programmed by amino acid sequence. Here, we report programmed supramolecular self-assembly of protein molecules using coiled coils and directly demonstrate its potential on the single molecule level by AFM force spectroscopy. We flanked two different model proteins, Ig27 from human cardiac titin and green fluorescent protein (GFP), by coiled coil binding partners and studied the capability of these elementary building blocks to self-assemble into linear chains. Simple sterical constraints are shown to control the assembly process, providing evidence that many proteins can be assembled with this method. An application for this technique is the design of polyproteins for single molecule force spectroscopy with an integrated force-calibration standard.

  11. Susceptibility Imaging in Glial Tumor Grading; Using 3 Tesla Magnetic Resonance (MR) System and 32 Channel Head Coil.

    Science.gov (United States)

    Aydin, Omer; Buyukkaya, Ramazan; Hakyemez, Bahattin

    2017-01-01

    Susceptibility weighted imaging (SWI) is a velocity compensated, high-resolution three-dimensional (3D) spoiled gradient-echo sequence that uses magnitude and filtered-phase data. SWI seems to be a valuable tool for non-invasive evaluation of central nervous system gliomas. Relative cerebral blood volume (rCBV) ratio is one of the best noninvasive methods for glioma grading. Degree of intratumoral susceptibility signal (ITSS) on SWI correlates with rCBV ratio and histopathological grade. This study investigated the effectiveness of ITSS grading and rCBV ratio in preoperative assessment. Thirty-one patients (17 males and 14 females) with histopathogical diagnosis of glial tumor undergoing routine cranial MRI, SWI, and perfusion MRI examinations between October 2011 and July 2013 were retrospectively enrolled. All examinations were performed using 3T apparatus with 32-channel head coil. We used ITSS number for SWI grading. Correlations between SWI grade, rCBV ratio, and pathological grading were evaluated. ROC analysis was performed to determine the optimal rCBV ratio to distinguish between high-grade and low-grade glial tumors. There was a strong positive correlation between both pathological and SWI grading. We determined the optimal rCBV ratio to discriminate between high-grade and low-grade tumors to be 2.21. In conclusion, perfusion MRI and SWI using 3T MR and 32-channel head coil may provide useful information for preoperative glial tumor grading. SWI can be used as an accessory to perfusion MR technique in preoperative tumor grading.

  12. Three-axis orthogonal transceiver coil for eddy current sounding

    Science.gov (United States)

    Sukhanov, D.; Zavyalova, K.; Goncharik, M.

    2017-08-01

    We propose the new structure of three-axis transceiver magnetic-induction coil for eddy current probing. Due to the orientation of the coils, the direct signal from the transmitting coil to the receiving coil is minimized, which provided a high dynamic range. Sensitivity in all directions is provided by combining coils of different orientations. Numerical simulation and experimental studies of such a system have been carried out and confirmed the applicability of the proposed method and the mathematical model.

  13. Renal magnetic resonance angiography at 3.0 Tesla using a 32-element phased-array coil system and parallel imaging in 2 directions.

    Science.gov (United States)

    Fenchel, Michael; Nael, Kambiz; Deshpande, Vibhas S; Finn, J Paul; Kramer, Ulrich; Miller, Stephan; Ruehm, Stefan; Laub, Gerhard

    2006-09-01

    The aim of the present study was to assess the feasibility of renal magnetic resonance angiography at 3.0 T using a phased-array coil system with 32-coil elements. Specifically, high parallel imaging factors were used for an increased spatial resolution and anatomic coverage of the whole abdomen. Signal-to-noise values and the g-factor distribution of the 32 element coil were examined in phantom studies for the magnetic resonance angiography (MRA) sequence. Eleven volunteers (6 men, median age of 30.0 years) were examined on a 3.0-T MR scanner (Magnetom Trio, Siemens Medical Solutions, Malvern, PA) using a 32-element phased-array coil (prototype from In vivo Corp.). Contrast-enhanced 3D-MRA (TR 2.95 milliseconds, TE 1.12 milliseconds, flip angle 25-30 degrees , bandwidth 650 Hz/pixel) was acquired with integrated generalized autocalibrating partially parallel acquisition (GRAPPA), in both phase- and slice-encoding direction. Images were assessed by 2 independent observers with regard to image quality, noise and presence of artifacts. Signal-to-noise levels of 22.2 +/- 22.0 and 57.9 +/- 49.0 were measured with (GRAPPAx6) and without parallel-imaging, respectively. The mean g-factor of the 32-element coil for GRAPPA with an acceleration of 3 and 2 in the phase-encoding and slice-encoding direction, respectively, was 1.61. High image quality was found in 9 of 11 volunteers (2.6 +/- 0.8) with good overall interobserver agreement (k = 0.87). Relatively low image quality with higher noise levels were encountered in 2 volunteers. MRA at 3.0 T using a 32-element phased-array coil is feasible in healthy volunteers. High diagnostic image quality and extended anatomic coverage could be achieved with application of high parallel imaging factors.

  14. Immune responses to coiled coil supramolecular biomaterials.

    Science.gov (United States)

    Rudra, Jai S; Tripathi, Pulak K; Hildeman, David A; Jung, Jangwook P; Collier, Joel H

    2010-11-01

    Self-assembly has been increasingly utilized in recent years to create peptide-based biomaterials for 3D cell culture, tissue engineering, and regenerative medicine, but the molecular determinants of these materials' immunogenicity have remained largely unexplored. In this study, a set of molecules that self-assembled through coiled coil oligomerization was designed and synthesized, and immune responses against them were investigated in mice. Experimental groups spanned a range of oligomerization behaviors and included a peptide from the coiled coil region of mouse fibrin that did not form supramolecular structures, an engineered version of this peptide that formed coiled coil bundles, and a peptide-PEG-peptide triblock bioconjugate that formed coiled coil multimers and supramolecular aggregates. In mice, the native peptide and engineered peptide did not produce any detectable antibody response, and none of the materials elicited detectable peptide-specific T cell responses, as evidenced by the absence of IL-2 and interferon-gamma in cultures of peptide-challenged splenocytes or draining lymph node cells. However, specific antibody responses were elevated in mice injected with the multimerizing peptide-PEG-peptide. Minimal changes in secondary structure were observed between the engineered peptide and the triblock peptide-PEG-peptide, making it possible that the triblock's multimerization was responsible for this antibody response. Copyright (c) 2010 Elsevier Ltd. All rights reserved.

  15. Rope coiling

    Indian Academy of Sciences (India)

    Sitichoke Amnuanpol

    2017-10-19

    Oct 19, 2017 ... For macroscopic systems, the buckling instability is mechanistically induced. Alternatively, the ... of the radius of gyration [7]. These preceding elegant experiments with simple apparatus inspire us to simi- ...... rope patterns and the liquid patterns on a conveyor belt are two-fold, the length scale of pattern and ...

  16. Characteristics analysis on a superconductor resonance coil WPT system according to cooling vessel materials in different distances

    Energy Technology Data Exchange (ETDEWEB)

    Jeong, In-Sung, E-mail: no21park@hanmail.net; Lee, Yu-Kyeong; Choi, Hyo-Sang, E-mail: hyosang@chosun.ac.kr

    2016-11-15

    Highlights: • WPT using the superconductor coil was needed research for cooling vessel. FRP, bakelite, polystyrene, aluminum, and iron were applied as the cooling vessel material to analyze the WPT distance efficiency. • When the distance between the transmitter and receiver coils was 2000 mm, FRP being used for the cooling vessel made the transmission efficiency higher than any other materials. The efficiency and distance of sending power can be improved in the superconductor coil if the cooling vessel is made with FRP. - Abstract: The interest in wireless power transfer (WPT) that can send power without using wires has been increasing recently. Especially, there is a great interest in the wireless power devices for portable IT devices. The WPT devices that have been developed so far use the magnetic induction method, and they are not active due to their distance problem. A magnetic resonance WPT method was developed and has been actively researched to resolve this problem. A superconductor coil was applied in this study to increase the efficiency of the magnetic resonance WPT. FRP, bakelite, polystyrene, aluminum, and iron were applied as the cooling vessel material to analyze the WPT distance. The distance between the transmitter and receiver coils started from 800 mm and was increased by 200 mm. The reflection coefficient was measured at each distance. As a result, FRP, bakelite, plastic PVC, polystyrene of the reflection coefficient was similar. From among these FRP being used for the cooling vessel made the transmission characteristics higher than any other materials when the distance between the transmitter and receiver coils was 2,000 mm. On the other hand, the reflection coefficient dropped when iron was used. It is estimated based on the experimental results that the wireless power transmission characteristics and distance of sending power can be improved in the superconductor coil if the cooling vessel is made with FRP.

  17. Magnesium Diboride Superconducting Coils for Electric Propulsion Systems for Large Aircraft Project

    Data.gov (United States)

    National Aeronautics and Space Administration — For electric propulsion systems for large aircraft it is desirable to have very light weight electric motors. Cryogenic motors offer much lighter weight than...

  18. Optimization and Control of Lumped Transmitting Coil-Based in Motion Wireless Power Transfer Systems

    OpenAIRE

    Hasan, Nazmul

    2015-01-01

    Wireless inductive power transfer systems are the only viable option for transferring energy to a moving vehicle. In recent years, there has been a great deal of interest in in-motion vehicle charging. The dominant technology thus far for in motion charging is elongated tracks, creating a constant eld for the moving vehicle. This technology suers from high volt ampere ratings and lower efficiency of 70%. On the other hand, stationary charging systems can demonstrate efficiency up to 95%. This...

  19. A new resin system for the impregnation and bonding of large magnet coils

    CERN Document Server

    Evans, D

    1998-01-01

    ATLAS is an instrument which forms part of the Large Hadron Collider, a high energy physics experiment which is under construction at CERN, Geneva, Switzerland. The properties of the candidate resin systems developed for the impregnation of the Atlas End Cap Toroid magnets are presented. The resin systems contain a blend of two resins; a low viscosity Bisphenol F resin, with a long chain aliphatic epoxide resin. An aromatic amine curing agent was used. It was found that increased additions of the long chain aliphatic epoxide resin resulted in longer useable life, lower glass transition temperature, lower modulus, higher toughness and higher bond strength at 4 K. (4 refs).

  20. Biomaterials Made from Coiled-Coil Peptides.

    Science.gov (United States)

    Conticello, Vincent; Hughes, Spencer; Modlin, Charles

    The development of biomaterials designed for specific applications is an important objective in personalized medicine. While the breadth and prominence of biomaterials have increased exponentially over the past decades, critical challenges remain to be addressed, particularly in the development of biomaterials that exhibit highly specific functions. These functional properties are often encoded within the molecular structure of the component molecules. Proteins, as a consequence of their structural specificity, represent useful substrates for the construction of functional biomaterials through rational design. This chapter provides an in-depth survey of biomaterials constructed from coiled-coils, one of the best-understood protein structural motifs. We discuss the utility of this structurally diverse and functionally tunable class of proteins for the creation of novel biomaterials. This discussion illustrates the progress that has been made in the development of coiled-coil biomaterials by showcasing studies that bridge the gap between the academic science and potential technological impact.

  1. A self propelled drilling system for hard-rock, horizontal and coiled tube drilling

    Energy Technology Data Exchange (ETDEWEB)

    Biglin, D.; Wassell, M.

    1997-12-31

    Several advancements are needed to improve the efficiency and reliability of both hard rock drilling and extended reach drilling. This paper will present a Self Propelled Drilling System (SPDS) which can grip the borehole wall in order to provide a stable platform for the application of weight on bit (WOB) and resisting the reactive torque created by the downhole drilling motor, bit and formation interaction. The system will also dampen the damaging effects of drill string vibration. This tool employs two hydraulically activated anchors (front and rear) to grip the borehole wall, and a two-way thrust mandrel to apply both the drilling force to the bit, and a retraction force to pull the drill string into the hole. Forward drilling motion will commence by sequencing the anchor pistons and thrust mandrel to allow the tool to walk in a stepping motion. The SPDS has a microprocessor to control valve timing, sensing and communication functions. An optional Measurement While Drilling (MWD) interface can provide two-way communication of critical operating parameters such as hydraulic pressure and piston location. This information can then be telemetered to the surface, or used downhole to autonomously control system parameters such as anchor and thrust force or damping characteristics.

  2. Managing Coil Epoxy Vacuum Impregnation Systems at the Manufacturing Floor Level To Achieve Ultimate Properties in State-of-the-Art Magnet Assemblies

    CERN Document Server

    Hubrig, Jeffrey G

    2005-01-01

    Liquid epoxy resin impregnation systems remain a state-of-the-art polymer material for vacuum and vacuum/pressure impregnation applications in the manufacture of both advanced and conventional coil winding configurations. Epoxy resins inherent latitude in processing parameters accounts for their continued popularity in engineering applications, but also for the tendency to overlook or misinterpret the requisite processing parameters on the manufacturing floor. Resin system impregnation must be managed in detail in order to achieve device life cycle reliability. This closer look reveals how manufacturing floor level management of material acceptance, handling and storage, pre- and post- impregnation processing and cure can be built into a manufacturing plan to increase manufacturing yield, lower unit cost and ensure optimum life cycle performance of the coil.

  3. Coil Optimization for High Temperature Superconductor Machines

    DEFF Research Database (Denmark)

    Mijatovic, Nenad; Jensen, Bogi Bech; Abrahamsen, Asger Bech

    2011-01-01

    This paper presents topology optimization of HTS racetrack coils for large HTS synchronous machines. The topology optimization is used to acquire optimal coil designs for the excitation system of 3 T HTS machines. Several tapes are evaluated and the optimization results are discussed. The optimiz...

  4. Final design of the Korean AC/DC converters for the ITER coil power supply system

    Energy Technology Data Exchange (ETDEWEB)

    Oh, Jong-Seok, E-mail: jsoh@nfri.re.kr [ITER Korea, National Fusion Research Institute, Daejeon 305-806 (Korea, Republic of); Choi, Jungwan; Suh, Jae-Hak; Choi, Jihyun [ITER Korea, National Fusion Research Institute, Daejeon 305-806 (Korea, Republic of); Lee, Lacksang; Kim, Changwoo; Park, Hyungjin; Jo, Seongman; Lee, Seungyun; Hwang, Kwangcheol; Liu, Hyoyol [Dawonsys Corp., Siheung 429-450 (Korea, Republic of); Hong, Ki-Don; Sim, Dong-Joon; Lee, Jang-Soo [Hyosung Corp., Gongdeok-Dong, Seoul 121-720 (Korea, Republic of); Lee, Eui-Jae; Kwon, Yang-Hae; Lee, Dae-Yeol; Ko, Ki-Won; Kim, Jong-Min [Mobiis Corp., Yangjae-dong, Seoul 137-888 (Korea, Republic of); Song, Inho [ITER Organization, Route de Vinon sur Verdon, CS 90 046, 13067 St. Paul Lez Durance Cedex (France); and others

    2015-10-15

    The final design of the ITER TF, CS, CC and VS AC/DC converters has been completed to implement ITER requirements following the detailed design and refinements of the preliminary design. The number of parallel thyristors and the rating of fuses are coordinated to keep those devices within the explosion limit even under most severe fault conditions. The impedance of the converter transformer has been optimized taking into account the energization inrush current, short circuit current, reactive power consumption and the available DC voltage. To ensure system integrity, AC/DC converters are mechanically divided into transformers, AC busbars, 6-pulse bridges, DC interconnecting busbars and DC reactors, and then all subsystems are decoupled by flexible links. To provide stable real time network communication down to the converters, a one GbE link is deployed between master controllers and local controllers. IEEE 1588 is implemented to the embedded controllers for precision time synchronization. This paper describes the detailed solutions implemented in the final design for the ITER AC/DC converters with R&D results of converter prototypes.

  5. Probabilistic Identification of Spin Systems and their Assignments including Coil-Helix Inference as Output (PISTACHIO)

    Energy Technology Data Exchange (ETDEWEB)

    Eghbalnia, Hamid R., E-mail: eghbalni@nmrfam.wisc.edu; Bahrami, Arash; Wang, Liya [National Magnetic Resonance Facility at Madison, Biochemistry Department (United States); Assadi, Amir [University of Wisconsin-Madison, Mathematics Department (United States); Markley, John L. [National Magnetic Resonance Facility at Madison, Biochemistry Department (United States)

    2005-07-15

    We present a novel automated strategy (PISTACHIO) for the probabilistic assignment of backbone and sidechain chemical shifts in proteins. The algorithm uses peak lists derived from various NMR experiments as input and provides as output ranked lists of assignments for all signals recognized in the input data as constituting spin systems. PISTACHIO was evaluated by comparing its performance with raw peak-picked data from 15 proteins ranging from 54 to 300 residues; the results were compared with those achieved by experts analyzing the same datasets by hand. As scored against the best available independent assignments for these proteins, the first-ranked PISTACHIO assignments were 80-100% correct for backbone signals and 75-95% correct for sidechain signals. The independent assignments benefited, in a number of cases, from structural data (e.g. from NOESY spectra) that were unavailable to PISTACHIO. Any number of datasets in any combination can serve as input. Thus PISTACHIO can be used as datasets are collected to ascertain the current extent of secure assignments, to identify residues with low assignment probability, and to suggest the types of additional data needed to remove ambiguities. The current implementation of PISTACHIO, which is available from a server on the Internet, supports input data from 15 standard double- and triple-resonance experiments. The software can readily accommodate additional types of experiments, including data from selectively labeled samples. The assignment probabilities can be carried forward and refined in subsequent steps leading to a structure. The performance of PISTACHIO showed no direct dependence on protein size, but correlated instead with data quality (completeness and signal-to-noise). PISTACHIO represents one component of a comprehensive probabilistic approach we are developing for the collection and analysis of protein NMR data.

  6. α-Helical coiled-coil peptide materials for biomedical applications.

    Science.gov (United States)

    Wu, Yaoying; Collier, Joel H

    2017-03-01

    Self-assembling coiled coils, which occur commonly in native proteins, have received significant interest for the design of new biomaterials-based medical therapies. Considerable effort over recent years has led to a detailed understanding of the self-assembly process of coiled coils, and a diverse collection of strategies have been developed for designing functional materials using this motif. The ability to engineer the interface between coiled coils allows one to achieve variously connected components, leading to precisely defined structures such as nanofibers, nanotubes, nanoparticles, networks, gels, and combinations of these. Currently these materials are being developed for a range of biotechnological and medical applications, including drug delivery systems for controlled release, targeted nanomaterials, 'drug-free' therapeutics, vaccine delivery systems, and others. WIREs Nanomed Nanobiotechnol 2017, 9:e1424. doi: 10.1002/wnan.1424 For further resources related to this article, please visit the WIREs website. © 2016 Wiley Periodicals, Inc.

  7. Liquid-liquid extraction system with microstructured coiled flow inverter and other capillary setups for single-stage extraction applications

    NARCIS (Netherlands)

    Kurt, Safa Kutup; Vural Gürsel, Iris; Hessel, Volker; Nigam, Krishna D P; Kockmann, Norbert

    2016-01-01

    Process intensification via miniaturization has become an attractive research field for industry and R&D especially for the production of fine chemicals and pharmaceuticals due to enhanced mass and heat transport. Fabrication of helically coiled tubular devices (HCTDs) in micro-scale can further

  8. Novel transcranial magnetic stimulation coil for mice

    Science.gov (United States)

    March, Stephen; Stark, Spencer; Crowther, Lawrence; Hadimani, Ravi; Jiles, David

    2014-03-01

    Transcranial magnetic stimulation (TMS) shows potential for non-invasive treatment of various neurological disorders. Significant work has been performed on the design of coils used for TMS on human subjects but few reports have been made on the design of coils for use on the brains of animals such as mice. This work is needed as TMS studies utilizing mice can allow rapid preclinical development of TMS for human disorders but the coil designs developed for use on humans are inadequate for optimal stimulation of the much smaller mouse brain. A novel TMS coil has been developed with the goal of inducing strong and focused electric fields for the stimulation of small animals such as mice. Calculations of induced electric fields were performed utilizing an MRI derived inhomogeneous model of an adult male mouse. Mechanical and thermal analysis of this new TMS helmet-coil design have also been performed at anticipated TMS operating conditions to ensure mechanical stability of the new coil and establish expected linear attraction and rotational force values. Calculated temperature increases for typical stimulation periods indicate the helmet-coil system is capable of operating within established medical standards. A prototype of the coil has been fabricated and characterization results are presented.

  9. Platinum (IV) coiled coil nanotubes selectively kill human glioblastoma cells.

    Science.gov (United States)

    Thanasupawat, Thatchawan; Bergen, Hugo; Hombach-Klonisch, Sabine; Krcek, Jerry; Ghavami, Saeid; Del Bigio, Marc R; Krawitz, Sherry; Stelmack, Gerald; Halayko, Andrew; McDougall, Matthew; Meier, Markus; Stetefeld, Jörg; Klonisch, Thomas

    2015-05-01

    Malignant glioma are often fatal and pose a significant therapeutic challenge. Here we have employed α-helical right handed coiled coils (RHCC) which self-assemble into tetrameric nanotubes that stably associate with platinum (Pt) (IV) compound. This Pt(IV)-RHCC complex showed superior in vitro and in vivo toxicity in human malignant glioma cells at up to 5 fold lower platinum concentrations when compared to free Pt(IV). Pt(IV)-RHCC nanotubes activated multiple cell death pathways in GB cells without affecting astrocytes in vitro or causing damage to normal mouse brain. This Pt(IV)-RHCC nanotubes may serve as a promising new therapeutic tool for low dose Pt(IV) prodrug application for highly efficient and selective treatment of human brain tumors. The prognosis of malignant glioma remains poor despite medical advances. Platinum, one of the chemotherapeutic agents used, has significant systemic side effects. In this article, the authors employed α-helical right handed coiled coil (RHCC) protein nanotubes as a carrier for cisplatin. It was shown that the new compound achieved higher tumor kill rate but lower toxicity to normal cells and thus may hold promise to be a highly efficient treatment for the future. Copyright © 2015 Elsevier Inc. All rights reserved.

  10. Liquid rope coiling

    NARCIS (Netherlands)

    Ribe, N.M.; Habibi, M.; Bonn, D.

    2012-01-01

    A thin stream or rope of viscous fluid falling from a sufficient height onto a surface forms a steadily rotating helical coil. Tabletop laboratory experiments in combination with a numerical model for slender liquid ropes reveal that finite-amplitude coiling can occur in four distinct regimes

  11. Magnetic field mapper based on rotating coils

    CERN Document Server

    AUTHOR|(CDS)2087244; Arpaia, Pasquale

    This thesis presents a magnetic field mapper based on rotating coils. The requirements, the architecture, the conceptual design, and the prototype for straight magnets were shown. The proposed system is made up of a rotating coil transducer and a train-like system for longitudinal motion and positioning inside magnet bore. The mapper allows a localized measurement of magnetic fields and the variation of the harmonic multipole content in the magnet ends. The proof-of-principle demonstration and the experimental characterization of the rotating-coil transducer specifically conceived for mapping validated the main objective of satisfying the magnetic measurement needs of the next generation of compact accelerators.

  12. The tests at Saclay of the stellarator W7X superconducting magnets; Les essais a Saclay des aimants supraconducteurs du stellarator W7X

    Energy Technology Data Exchange (ETDEWEB)

    Jacquemet, M

    2000-05-01

    The tests on the superconducting magnets should allow to check at ambient or cryogenic temperature, the mechanical behaviour and the lack of leak from the conductor, the correct configuration of the cable in the pipe, the electric insulation, the magnet behaviour during a transition, the buckling and mechanical constraints on the whole. (N.C.)

  13. Large scale CW ECRH systems: Meeting a challenge

    NARCIS (Netherlands)

    Erckmann, V.; Kasparek, W.; Plaum, B.; Lechte, C.; Petelin, M.I.; Bruschi, A.; D'Arcangelo, O.; Bin, W.; Braune, H.; Braber, R. van den; Doelman, N.J.; Gantenbein, G.; Laqua, H.P.; Lubiako, L.; Marushchenko, N.B.; Michel, G.; Thumm, M.; Stuttgart, I.

    2011-01-01

    Electron Cyclotron Resonance Heating (ECRH) systems for next step-fusion devices like W7-X and ITER operate in CW-mode and provide a large flexibility to comply with various physics demands such as plasma start-up, heating and current drive, as well as configuration and MHD control. The request for

  14. Radiofrequency coils for magnetic resonance applications: theory, design, and evaluation.

    Science.gov (United States)

    Giovannetti, Giulio; Hartwig, Valentina; Positano, Vincenzo; Vanello, Nicola

    2014-01-01

    Magnetic resonance imaging and magnetic resonance spectroscopy are noninvasive diagnostic techniques based on the phenomenon of nuclear magnetic resonance. Radiofrequency coils are key components in both the transmission and receiving phases of magnetic resonance systems. Transmitter coils have to produce a highly homogeneous alternating field in a wide field of view, whereas receiver coils have to maximize signal detection while minimizing noise. Development of modern magnetic resonance coils often is based on numerical methods for simulating and predicting coil performance. Numerical methods allows the behavior of the coil in the presence of realistic loads to be simulated and the coil's efficiency at high magnetic fields to be investigated. After being built, coils have to be characterized in the laboratory to optimize their setting and performance by extracting several quality indices. Successively, coils performance has to be evaluated in a scanner using standardized image quality parameters with phantom and human experiments. This article reviews the principles of radiofrequency coils, coil performance parameters, and their estimation methods using simulations, workbench, and magnetic resonance experiments. Finally, an overview of future developments in radiofrequency coils technology is included.

  15. Fabrication and calibration of search coils

    CERN Document Server

    Buzio, M

    2010-01-01

    In this paper the techniques available to make and calibrate magnetic search coils are reviewed, with emphasis on harmonic coil systems as the commonly-used optimal choice for integral measurements of accelerator magnets in terms of measuring range, accuracy, and cost. The topics treated, drawing extensively on half a century of experience at CERN, include mechanical and electrical design criteria, practical fabrication techniques, metrological considerations, and various calibration methods for coil parameters such as surface area, rotation radius, tilt angle etc. in both static or time-varying magnetic fields.

  16. A periodic table of coiled-coil protein structures.

    Science.gov (United States)

    Moutevelis, Efrosini; Woolfson, Derek N

    2009-01-23

    Coiled coils are protein structure domains with two or more alpha-helices packed together via interlacing of side chains known as knob-into-hole packing. We analysed and classified a large set of coiled-coil structures using a combination of automated and manual methods. This led to a systematic classification that we termed a "periodic table of coiled coils," which we have made available at http://coiledcoils.chm.bris.ac.uk/ccplus/search/periodic_table. In this table, coiled-coil assemblies are arranged in columns with increasing numbers of alpha-helices and in rows of increased complexity. The table provides a framework for understanding possibilities in and limits on coiled-coil structures and a basis for future prediction, engineering and design studies.

  17. 3D Gradient coil design - Toroidal surfaces

    Science.gov (United States)

    While, Peter T.; Forbes, Larry K.; Crozier, Stuart

    2009-05-01

    Gradient coil design typically involves optimisation of current densities or coil windings on familiar cylindrical, planar, spherical or conical surfaces. In this paper, an analytic inverse method is presented for the theoretical design of toroidal transverse gradient coils. This novel geometry is based on previous work involving a 3D current density solution, in which the precise geometry of the gradient coils was obtained as part of the optimisation process. Regularisation is used to solve for the toroidal current densities, whereby the field error is minimised in conjunction with the total power of the coil. The method is applied to the design of unshielded and shielded, whole-body and head coil gradient systems. Preliminary coil windings displaying high gradient homogeneity, low inductance, high efficiency and good force balancing are displayed and discussed. Potential benefits associated with this morphology include self-shielding gradient sets, greater access to cooling mechanisms, a reduction in acoustic noise due to force-balancing, a lessening of patient claustrophobia and greater patient access for clinicians.

  18. Initial clinical experience with a quadrupole butterfly coil for spinal injection interventions in an open MRI system at 1.0 tesla.

    Science.gov (United States)

    Jonczyk, Martin; Hamm, Bernd; Heinrich, Andreas; Thomas, Andreas; Rathke, Hendrik; Schnackenburg, Bernhard; Güttler, Felix; Teichgräber, Ulf K M; de Bucourt, Maximilian

    2014-02-01

    To report our initial clinical experience with a new magnetic resonance imaging (MRI) quadrupole coil that allows interventions in prone position. Fifteen patients (seven women, eight men; average age, 42.8 years) were treated in the same 1.0-Tesla Panorama High Field Open (HFO) MRI system (Panorama HFO) using a quadrupole butterfly coil (Bfly) and compared with 15 patients matched for sex, age, and MR intervention using the MultiPurposeL coil (MPL), performed in conventional lateral decubitus position (all, Philips Medical Systems, Best, The Netherlands). All interventions were performed with a near-real-time proton density turbo spin echo (PD TSE) sequence (time to repeat/time to echo/flip angle/acquisition time, 600 ms/10 ms/90°/3 s/image). Qualitative and quantitative image analyses were performed, including signal intensity, signal-to-noise and contrast-to-noise ratio (SNR, CNR), contrast, and full width at half maximum (FWHM) measurements. Contrast differed significantly between the needle and muscles (Bfly 0.27/MPL 0.17), as well as the needle and periradicular fat (0.13/0.24) during the intervention (both, p=0.029), as well as the CNR between muscles and the needle (10.61/5.23; p=0.010), although the FWHM values did not (2.4/2.2; p=0.754). The signal intensity of the needle in interventional imaging (1152.9/793.2; p=0.006) and the postinterventional SNR values of subcutaneous fat (15.3/28.6; p=0.007), muscles (6.6/11.8; p=0.011), and the CNR between these tissues (8.7/17.5; p=0.004) yielded significant differences. The new coil is a valid alternative for MR-guided interventions in an open MRI system at 1.0 tesla, especially if patients cannot (or prefer not to) be in a lateral decubitus position or if prone positioning yields better access to the target zone.

  19. LHC bending magnet coil

    CERN Multimedia

    A short test version of coil of wire used for the LHC dipole magnets. The high magnetic fields needed for guiding particles around the Large Hadron Collider (LHC) ring are created by passing 12’500 amps of current through coils of superconducting wiring. At very low temperatures, superconductors have no electrical resistance and therefore no power loss. The LHC is the largest superconducting installation ever built. The magnetic field must also be extremely uniform. This means the current flowing in the coils has to be very precisely controlled. Indeed, nowhere before has such precision been achieved at such high currents. Magnet coils are made of copper-clad niobium–titanium cables — each wire in the cable consists of 9’000 niobium–titanium filaments ten times finer than a hair.

  20. LHCb magnet coils arrive

    CERN Multimedia

    Maximilien Brice

    2003-01-01

    Each of the two coils for the LHCb magnet comprises 15 individual monolayer 'pancakes' of identical trapezoidal racetrack shape, and is bent at 45 degrees on the two transverse sides. Each pancake consists of eight turns of conductor, wound from a single length (approx. 290 m) of extruded aluminium. The coils have arrived at CERN; one of them is seen here being unloaded above the LHCb experimental cavern.

  1. Surface coil magnetic resonance imaging.

    Science.gov (United States)

    Axel, L; Hayes, C

    1985-12-01

    Detection of MR signals with surface coils provides increased signal-to-noise ratio for superficial structures relative to detection by circumferential coils, permitting improved spatial resolution. Different geometries of surface coils can be used for different regions. Coils that are flat or curved to fit body contours are good for general imaging, with a range of coil sizes useful for structures of different size or depth. Solenoidal coils are useful for imaging protruding structures such as breasts, while smaller versions of conventional circumferential coils that can be slipped over limbs are useful for imaging extremities.

  2. Performance Improvement of a Magnetized Coaxial Plasma Gun by adopting Iron-core Bias Coil and New Pre-Ionization System

    Science.gov (United States)

    Edo, Takahiro; Asai, T.; Tanaka, F.; Yamada, S.; Hosozawa, A.; Gota, H.; Roche, T.; Allfrey, I.; Matsumoto, T.

    2017-10-01

    A magnetized coaxial plasma gun (MCPG) is a device used to generate a compact toroid (CT), which has a spheromak-like configuration. A typical MCPG consists of a set of axisymmetric cylindrical electrodes, bias coil, and gas-puff valves. In order to expand the CT operating range, the distributions of the bias magnetic field and neutral gas have been investigated. We have developed a new means of generating stuffing flux. By inserting an iron core into the bias coil, the magnetic field increases dramatically; even a small current of a few Amps produces a sufficient bias field. According to a simulation result, it was also suggested that the radial distribution of the bias field is easily controlled. The ejected CT and the target FRC are cooled by excess neutral gas that typical MCPGs require to initiate a breakdown; therefore, we have adopted a miniature gun as a new pre-ionization (PI) system. By introducing this PI system, the breakdown occurs at lower neutral gas density so that the amount of excess neutral gas can be reduced.

  3. Measurement of a Conduction Cooled Nb3Sn Racetrack Coil

    Science.gov (United States)

    Kim, HS; Kovacs, C.; Rochester, J.; Sumption, MD; Tomsic, M.; Peng, X.; Doll, D.

    2017-12-01

    Use of superconducting coils for wind turbines and electric aircraft is of interest because of the potential for high power density and weight reduction. Here we test a racetrack coil developed as a proof-of-concept for cryogen-free superconducting motors and generators. The coil was wound with 1209 m of 0.7-mm-diameter insulated tube-type Nb3Sn wire. The coil was epoxy-impregnated, instrumented, covered with numerous layers of aluminized mylar insulation, and inserted vertically into a dewar. The system was cooled to 4.2 K, and a few inches of liquid helium was allowed to collect at the bottom of the dewar but below the coil. The coil was cooled by conduction via copper cooling bars were attached to the coil but also were immersed in the liquid helium at their lower ends. Several current tests were performed on the coil, initially in voltage mode, and one run in current mode. The maximum coil Ic at 4.2 K was 480 A, generating 3.06 T at the surface of the coil. The coil met the design targets with a noticeable margin.

  4. Meiosis specific coiled-coil proteins in Shizosaccharomyces pombe

    Directory of Open Access Journals (Sweden)

    Okuzaki Daisuke

    2007-05-01

    Full Text Available Abstract Many meiosis-specific proteins in Schizosaccharomyces pombe contain coiled-coil motifs which play essential roles for meiotic progression. For example, the coiled-coil motifs present in Meu13 and Mcp7 are required for their function as a putative recombinase cofactor complex during meiotic recombination. Mcp6/Hrs1 and Mcp5/Num1 control horsetail chromosome movement by astral microtubule organization and anchoring dynein respectively. Dhc1 and Ssm4 are also required for horsetail chromosome movement. It is clear from these examples that the coiled-coil motif in these proteins plays an important role during the progression of cells through meiosis. However, there are still many unanswered questions on how these proteins operate. In this paper, we briefly review recent studies on the meiotic coiled-coil proteins in Sz. pombe.

  5. [Development of RF coil of permanent magnet mini-magnetic resonance imager and mouse imaging experiments].

    Science.gov (United States)

    Hou, Shulian; Xie, Huantong; Chen, Wei; Wang, Guangxin; Zhao, Qiang; Li, Shiyu

    2014-10-01

    In the development of radio frequency (RF) coils for better quality of the mini-type permanent magnetic resonance imager for using in the small animal imaging, the solenoid RF coil has a special advantage for permanent magnetic system based on analyses of various types.of RF coils. However, it is not satisfied for imaging if the RF coils are directly used. By theoretical analyses of the magnetic field properties produced from the solenoid coil, the research direction was determined by careful studies to raise further the uniformity of the magnetic field coil, receiving coil sensitivity for signals and signal-to-noise ratio (SNR). The method had certain advantages and avoided some shortcomings of the other different coil types, such as, birdcage coil, saddle shaped coil and phased array coil by using the alloy materials (from our own patent). The RF coils were designed, developed and made for keeled applicable to permanent magnet-type magnetic resonance imager, multi-coil combination-type, single-channel overall RF receiving coil, and applied for a patent. Mounted on three instruments (25 mm aperture, with main magnetic field strength of 0.5 T or 1.5 T, and 50 mm aperture, with main magnetic field strength of 0.48 T), we performed experiments with mice, rats, and nude mice bearing tumors. The experimental results indicated that the RF receiving coil was fully applicable to the permanent magnet-type imaging system.

  6. Hydrodynamic studies of CNT nanofluids in helical coil heat exchanger

    Science.gov (United States)

    Babita; Sharma, S. K.; Mital Gupta, Shipra; Kumar, Arinjay

    2017-12-01

    Helical coils are extensively used in several industrial processes such as refrigeration systems, chemical reactors, recovery processes etc to accommodate a large heat transfer area within a smaller space. Nanofluids are getting great attention due to their enhanced heat transfer capability. In heat transfer equipments, pressure drop is one of the major factors of consideration for pumping power calculations. So, the present work is aimed to study hydrodynamics of CNT nanofluids in helical coils. In this study, pressure drop characteristics of CNT nanofluid flowing inside horizontal helical coils are investigated experimentally. The helical coil to tube diameter was varied from 11.71 to 27.34 keeping pitch of the helical coil constant. Double distilled water was used as basefluid. SDBS and GA surfactants were added to stablilize CNT nanofluids. The volumetric fraction of CNT nanofluid was varied from 0.003 vol% to 0.051 vol%. From the experimental data, it was analyzed that the friction factor in helical coils is greater than that of straight tubes. Concentration of CNT in nanofluids also has a significant influence on the pressure drop/friction factor of helical coils. At a constant concentration of CNT, decreasing helical coil to tube diameter from 27.24 to 11.71, fanning friction factor of helical coil; f c increases for a constant value of p/d t. This increase in the value of fanning friction factor can be attributed to the secondary flow of CNT nanofluid in helical coils.

  7. Research and development of MRI surface coil for TMJ MR imaging; Modulated Helmholtz surface coil

    Energy Technology Data Exchange (ETDEWEB)

    Kukimoto, Yoshiaki; Kukimoto, Kyoko (Kameda General Hospital, Kamogawa, Chiba (Japan)); Shirakawa, Toyomi

    1989-12-01

    Internal derangements of the temporomandibular joint (TMJ) are a major cause of jaw pain and dysfunction as well as other related clinical symptoms. TMJ diagnosis is the abnormal position and appearance of the disk. Most X-ray-based methods are useful for evaluating bony abnormalities, but their reduced soft-tissue contrast often makes the diagnostic evaluation of TMJ disorders difficult. Magnetic resonance (MR) imaging is a very recent addition to the medical diagnostic of TMJ diseases. MR imaging can produce high-quality tomographic images of greater soft-tissue contrast without ionizing radiation or known biological hazards. MR system was circular type Simens Magnetom 1.5 tesla. Display matrix was 256x256. A Modulated Helmholtz type coil of 17 cm in diameter was developed in Kameda General Hospital in order to increase signal to noise ratio in the area of bilateral TMJs. The distance between two coils was 16-20 cm. The head was placed in supine position in the center of two surface coils. A Modulated Helmholtz type coil: 1. Modulated Helmholtz type coil was used as an emitter and a receiver. 2. Modulated Helmholtz type coil had a pair of 17 cm coils, which were movable according to head width of each patient. 3. MR imaging of bilateral TMJs was taken at once because of no necessity to reset a surfacecoil. 4. It was easy to set positioning of the head. (author).

  8. Recent developments of long pulse RF ion sources for NBI systems

    Energy Technology Data Exchange (ETDEWEB)

    Kraus, W. E-mail: wrk@ipp.mpg.de; Franzen, P.; Heinemann, B.; Speth, E.; Vollmer, O

    2001-10-01

    For the new radial injector of the Wendelstein 7-AS stellerator, two medium size 40 kW RF sources ('W7-AS RF source') have been built and tested. A positive hydrogen ion beam of 28 A at 50 kV with a proton fraction of 60% has been extracted. For future injection systems, in particular those based on negative ions, large area beam extraction and long pulse capability up to cw operation are envisaged. At IPP two different design concepts of RF sources are being investigated in order to meet these requirements: in the first one, the plasma is generated in one or two small circular RF sources ('drivers'), which are mounted onto the back plate of a 30 l expansion volume ('bucket') with magnetic multi-cusp confinement of the plasma ('Type 6-1' and 'Type 6-2' respectively). In the second concept the plasma is generated inside the bucket by an internal RF coil, which is insulated by a quartz tube ('Type 5'). In both cases the applicability for negative as well as for positive ion production is being tested. The next application will be in the positive ion based injectors in the third injector of JET and in the W7X stellerator.

  9. Multicentre comparison Of shock efficacy using single-vs. Dual-coil lead systems and Anodal vs. cathodaL polarITY defibrillation in patients undergoing transvenous cardioverter-defibrillator implantation. The MODALITY study.

    Science.gov (United States)

    Baccillieri, Maria Stella; Gasparini, Gianni; Benacchio, Luca; Zorzi, Alessandro; Marras, Elena; Zerbo, Francesca; Tomasi, Luca; Vaccari, Diego; Pastore, Gianni; Bonanno, Carlo; Molon, Giulio; Zanotto, Gabriele; Fusco, Antonio; Carasi, Massimo; Zorzi, Andrea; Calzolari, Vittorio; Ignatiuk, Barbara; Cannas, Sergio; Vaglio, Alessandro; Al Bunni, Muhamad; Pedrini, Antonella; Olivieri, Armando; Rampazzo, Roberta; Minicuci, Nadia; Corrado, Domenico; Verlato, Roberto

    2015-06-01

    An optimal active-can lead configuration during implantable cardioverter defibrillator (ICD) placement is important to obtain an adequate defibrillation safety margin. The purpose of this multicenter study was to evaluate the rate of the first shock success at defibrillation testing according to the type of lead implant (single vs. dual coil) and shock polarity (cathodal and anodal) in a large series of consecutive patients who received transvenous ICDs. This was a multicenter study enrolling 469 consecutive patients. Single- versus dual-coil leads and cathodal versus anodal polarity were evaluated at defibrillation testing. In all cases, the value of the energy for the first shock was set to 20 J less than the maximum energy deliverable from the device. A total of 469 patients underwent defibrillation testing: 158 (34 %) had dual-coil and 311 (66 %) had single-coil lead systems configuration, 254 (54 %) received anodal shock and 215 (46 %) received cathodal shock. In 35 (7.4 %) patients, the shock was unsuccessful. No significant differences in the outcome of defibrillation testing using single- versus dual-coil lead were observed but the multivariate analysis showed an increased risk of shock failure using cathodal shock polarity (OR 2.37, 95 % CI 1.12-5.03). Both single- and dual-coil transvenous ICD lead systems were associated with high rates of successful ICD implantation, and we found no significant differences in ventricular arrhythmias interruption between the two ICD lead systems configuration. Instead, anodal defibrillation was more likely to be successful than cathodal defibrillation.

  10. Ocular MR imaging: evaluation of different coil setups in a phantom study.

    Science.gov (United States)

    Erb-Eigner, Katharina; Warmuth, Carsten; Taupitz, Matthias; Bertelmann, Eckart; Hamm, Bernd; Asbach, Patrick

    2013-01-01

    Small loop surface coils are generally recommended for ocular magnetic resonance (MR) imaging, but the optimal coil setup has not been systematically investigated. In this phantom study, we investigated which coil setup of those coils available for our MR imaging system provides the highest signal-to-noise ratio (SNR) in ocular MR imaging at 1.5 tesla. Using a phantom to simulate the eyeball and the orbital fat, we employed loop surface coils of 4- and 6-cm diameter and a multi-channel head coil to obtain images using a T1-weighted spin-echo sequence and then measured the SNR for each coil and coil combination. Use of the 6-cm loop coil alone yielded the highest mean SNR (27.5). Even in superficial regions (mesial and temporal), the SNR was higher using the 6-cm loop coil (33.6 and 45.5) than the 4-cm loop coil (28.0 and 33.8). Additional use of the head coil reduced the mean SNR to 10.4. This quantitative analysis suggests that use of a 6-cm loop surface coil offers the best results in ocular MR imaging. Combinations of loop coils or additional use of a head coil cannot be recommended because higher noise degrades image quality.

  11. The properties of short-circuited HTSC coils

    Science.gov (United States)

    Kozintseva, M. V.; Bishaev, A. M.; Bush, A. A.; Gavrikov, M. B.; Kamentsev, K. E.; Nizhel'skii, N. A.; Savel'ev, V. V.; Sigov, A. S.

    2017-06-01

    The properties of short-circuited multiturn superconducting coils have been studied; coils with nonsuperconducting contacts have been fabricated from a high-temperature superconducting (HTSC) tape made by Super Power Company. The magnetic flux captured by HTSC coils has been measured at different values of magnetic field of the magnetizing solenoid. the critical current in the coils have been experimentally determined based on the maximum values of the field they captured. It is 50% of the nominal value for this HTSC tape. The range of external magnetic field, where HTSC coils keep the captured magnetic flux, has been experimentally found. The obtained results have demonstrated the possibility of designing magnet systems with levitating coils made of HTSC tape, in which levitation is controlled without using feedbacks.

  12. Poloidal correlation reflectometry at W7-X: radial electric field and coherent fluctuations

    Science.gov (United States)

    Windisch, T.; Krämer-Flecken, A.; Velasco, JL; Könies, A.; Nührenberg, C.; Grulke, O.; Klinger, T.; the W7-X Team

    2017-10-01

    Poloidal correlation reflectometry measurements during the first plasma campaign of the optimized stellarator Wendelstein-7X are presented. The radial electric field is determined and a comparison with neoclassical calculations and shows good qualitative agreement. The measured density fluctuation spectrum exhibits coherent low- and high-frequency modes. Magneto-hydrodynamic (MHD) modeling results suggest that the coherent fluctuations are caused by stable MHD-modes and Alfvén waves.

  13. Assessment of the W7-X high heat flux divertor with thermo-mechanical analysis

    Energy Technology Data Exchange (ETDEWEB)

    Qian, Xinyuan [School of Nuclear Science and Technology, University of Science and Technology of China, Jinzhai Road 96, 230026 Hefei,Anhui (China); Institute of Plasma Physics, Chinese Academy of Sciences, Shushanhu Road 350, 230031 Hefei, Anhui (China); Peng, Xuebing, E-mail: pengxb@ipp.ac.cn [Institute of Plasma Physics, Chinese Academy of Sciences, Shushanhu Road 350, 230031 Hefei, Anhui (China); Fellinger, Joris [Max Planck Institute for Plasma Physics, Wendelsteinstr. 1, 17491 Greifswald (Germany); Boscary, Jean [Max Planck Institute for Plasma Physics, Boltzmannstr. 2, 85748 Garching (Germany); Bykov, Victor [Max Planck Institute for Plasma Physics, Wendelsteinstr. 1, 17491 Greifswald (Germany); Wang, Zhongwei [Institute of Plasma Physics, Chinese Academy of Sciences, Shushanhu Road 350, 230031 Hefei, Anhui (China); Ye, Minyou; Song, Yuntao [School of Nuclear Science and Technology, University of Science and Technology of China, Jinzhai Road 96, 230026 Hefei,Anhui (China); Institute of Plasma Physics, Chinese Academy of Sciences, Shushanhu Road 350, 230031 Hefei, Anhui (China)

    2016-11-01

    Highlights: • Thermo-mechanical analysis of HHF divertor module, TM2H. • Temperature of all parts is acceptable for long pulse operation. • Stress in different parts is mainly caused by different load. • Radial displacement need to be improved based on FE calculations. - Abstract: The Wendelstein 7-X is an experimental device designed with a stellarator magnetic confinement for stationary plasma operation (up to 30 min). At the first stage, it is scheduled to start with an inertially cooled test divertor unit and a shorter plasma pulse operation up to 10 s. After the completion of this stage, a water-cooled high heat flux (HHF) divertor will be installed for the steady-state operation phase. The divertor consists of individual target modules, which are sets of target elements armored with CFC tiles supported by a stainless steel structure and fed in parallel with manifolds. Detailed thermo-mechanical analysis of the target modules using the finite element method has been performed to validate and/or improve the elected design of the HHF divertor under operation. Different operating conditions have been studied and the effect of the variation of the convective heat flux pattern with localized heating loads as high as 10 MW/m{sup 2} onto the target elements has been computed. The analysis of the thermal response, stress distribution and deformation allowed a better understanding of the behavior of the divertor modules under operation and confirmed the suitability of the design.

  14. Field application. Selective stimulation of reservoirs or perforated intervals with use of coiled tubing equipped with real-time data communication system in combination with straddle packer assemblies

    Energy Technology Data Exchange (ETDEWEB)

    Oberascher, R.; Breimer, G. [GDF SUEZ E and P Deutschland GmbH, Lingen (Germany); Jonge, R.M. de [Baker Hughes (Netherlands)

    2013-08-01

    In two German gas wells a decline in production and wellhead pressures had been observed. Production logging data obtained by PLT surveys were evaluated, which showed that certain intervals within the reservoir section did not contribute, or showed a restricted contribution to the overall gas production. The restricted contribution was suspected to be caused by near-wellbore damage. To restore or enhance the production of the perforated intervals an acid treatment was considered in these wells in order to remove skin damage. To restore or enhance the production of the wells, an acid treatment of the perforated intervals was designed. For obtaining the required selective placement of the acid across the zones of interest, the use of coiled tubing (CT) in combination with a resettable straddle packer assembly was selected. The accuracy of the setting depth of the straddle packer was a critical issue for the execution of the well intervention operations. In order to obtain the required depth accuracy, the CT string was equipped with an intelligent CT communication system, which transfers real-time downhole data to surface. For the first time, a reservoir stimulation project was executed by combining CT equipped with a real-time data communication system (TeleCoil) and the Inflatable Straddle Acidizing Packer (ISAP) assembly. Inside the CT an encapsulated monoconductor cable was installed to transmit real-time data from the CT Bottom Hole Assembly (BHA) to surface. The BHA consists of a Casing Collar Locator (CCL) and downhole pressure and temperature gauges. Due to the protective jacket of the monoconductor cable, there are no restrictions in the use of different fluids in combination with the system. Information provided by the CCL monitoring tool ensures accurate depth correlations, whereas differential pressure measurements from the down-hole pressure gauges provide positive information about the setting and sealing conditions of the straddle packer assembly. The

  15. Pulsed-coil magnet systems for applying uniform 10–30 T fields to centimeter-scale targets on Sandia's Z facility

    Energy Technology Data Exchange (ETDEWEB)

    Rovang, D. C., E-mail: dcrovan@sandia.gov; Lamppa, D. C.; Cuneo, M. E.; Owen, A. C.; McKenney, J.; Johnson, D. W.; Radovich, S.; Kaye, R. J.; McBride, R. D.; Alexander, C. S.; Awe, T. J.; Slutz, S. A.; Sefkow, A. B.; Haill, T. A.; Jones, P. A.; Argo, J. W.; Dalton, D. G.; Robertson, G. K.; Waisman, E. M.; Sinars, D. B. [Sandia National Laboratories, P.O. Box 5800, Albuquerque, New Mexico 87185 (United States); and others

    2014-12-15

    Sandia has successfully integrated the capability to apply uniform, high magnetic fields (10–30 T) to high energy density experiments on the Z facility. This system uses an 8-mF, 15-kV capacitor bank to drive large-bore (5 cm diameter), high-inductance (1–3 mH) multi-turn, multi-layer electromagnets that slowly magnetize the conductive targets used on Z over several milliseconds (time to peak field of 2–7 ms). This system was commissioned in February 2013 and has been used successfully to magnetize more than 30 experiments up to 10 T that have produced exciting and surprising physics results. These experiments used split-magnet topologies to maintain diagnostic lines of sight to the target. We describe the design, integration, and operation of the pulsed coil system into the challenging and harsh environment of the Z Machine. We also describe our plans and designs for achieving fields up to 20 T with a reduced-gap split-magnet configuration, and up to 30 T with a solid magnet configuration in pursuit of the Magnetized Liner Inertial Fusion concept.

  16. Application of Coiled Coil Peptides in Liposomal Anticancer Drug Delivery Using a Zebrafish Xenograft Model.

    Science.gov (United States)

    Yang, Jian; Shimada, Yasuhito; Olsthoorn, René C L; Snaar-Jagalska, B Ewa; Spaink, Herman P; Kros, Alexander

    2016-08-23

    The complementary coiled coil forming peptides E4 [(EIAALEK)4] and K4 [(KIAALKE)4] are known to trigger liposomal membrane fusion when tethered to lipid vesicles in the form of lipopeptides. In this study, we examined whether these coiled coil forming peptides can be used for drug delivery applications. First, we prepared E4 peptide modified liposomes containing the far-red fluorescent dye TO-PRO-3 iodide (E4-Lipo-TP3) and confirmed that E4-liposomes could deliver TP3 into HeLa cells expressing K4 peptide on the membrane (HeLa-K) under cell culture conditions in a selective manner. Next, we prepared doxorubicin-containing E4-liposomes (E4-Lipo-DOX) and confirmed that E4-liposomes could also deliver DOX into HeLa-K cells. Moreover, E4-Lipo-DOX showed enhanced cytotoxicity toward HeLa-K cells compared to free doxorubicin. To prove the suitability of E4/K4 coiled coil formation for in vivo drug delivery, we injected E4-Lipo-TP3 or E4-Lipo-DOX into zebrafish xenografts of HeLa-K. As a result, E4-liposomes delivered TP3 to the implanted HeLa-K cells, and E4-Lipo-DOX could suppress cancer proliferation in the xenograft when compared to nontargeted conditions (i.e., zebrafish xenograft with free DOX injection). These data demonstrate that coiled coil formation enables drug selectivity and efficacy in vivo. It is envisaged that these findings are a step forward toward biorthogonal targeting systems as a tool for clinical drug delivery.

  17. Coils in a nutshell: a review of coil physical properties.

    Science.gov (United States)

    White, J B; Ken, C G M; Cloft, H J; Kallmes, D F

    2008-08-01

    Since its inception, endovascular coil technology has grown substantially as multiple manufacturers entered the market with an ever-increasing number of new products. Practitioners are now inundated with a choice of coils that vary on the basis of factors such as size, composition, stiffness, and detachment mechanism. The seasoned interventionalist had the benefit of evolving with this technology and, therefore, is likely to understand many of the practical nuances of coil development; for more junior practitioners, who did not experience the ongoing changes in technology, this review will provide a basic framework for the fundamentals of coil design.

  18. NMR measurement system including two synchronized ring buffers, with 128 rf coils for in situ water monitoring in a polymer electrolyte fuel cell

    Science.gov (United States)

    Ogawa, Kuniyasu; Haishi, Tomoyuki; Aoki, Masaru; Hasegawa, Hiroshi; Morisaka, Shinichi; Hashimoto, Seitaro

    2017-01-01

    A small radio-frequency (rf) coil inserted into a polymer electrolyte fuel cell (PEFC) can be used to acquire nuclear magnetic resonance (NMR) signals from the water in a membrane electrode assembly (MEA) or in oxygen gas channels in the PEFC. Measuring the spatial distribution of the water in a large PEFC requires using many rf probes, so an NMR measurement system which acquires NMR signals from 128 rf probes at intervals of 0.5 s was manufactured. The system has eight rf transceiver units with a field-programmable gate array (FPGA) for modulation of the excitation pulse and quadrature phase detection of the NMR signal, and one control unit with two ring buffers for data control. The sequence data required for the NMR measurement were written into one ring buffer. The acquired NMR signal data were then written temporarily into the other ring buffer and then were transmitted to a personal computer (PC). A total of 98 rf probes were inserted into the PEFC that had an electrical generation area of 16 cm × 14 cm, and the water generated in the PEFC was measured when the PEFC operated at 100 A. As a result, time-dependent changes in the spatial distribution of the water content in the MEA and the water in the oxygen gas channels were obtained.

  19. NMR measurement system including two synchronized ring buffers, with 128 rf coils for in situ water monitoring in a polymer electrolyte fuel cell.

    Science.gov (United States)

    Ogawa, Kuniyasu; Haishi, Tomoyuki; Aoki, Masaru; Hasegawa, Hiroshi; Morisaka, Shinichi; Hashimoto, Seitaro

    2017-01-01

    A small radio-frequency (rf) coil inserted into a polymer electrolyte fuel cell (PEFC) can be used to acquire nuclear magnetic resonance (NMR) signals from the water in a membrane electrode assembly (MEA) or in oxygen gas channels in the PEFC. Measuring the spatial distribution of the water in a large PEFC requires using many rf probes, so an NMR measurement system which acquires NMR signals from 128 rf probes at intervals of 0.5 s was manufactured. The system has eight rf transceiver units with a field-programmable gate array (FPGA) for modulation of the excitation pulse and quadrature phase detection of the NMR signal, and one control unit with two ring buffers for data control. The sequence data required for the NMR measurement were written into one ring buffer. The acquired NMR signal data were then written temporarily into the other ring buffer and then were transmitted to a personal computer (PC). A total of 98 rf probes were inserted into the PEFC that had an electrical generation area of 16 cm × 14 cm, and the water generated in the PEFC was measured when the PEFC operated at 100 A. As a result, time-dependent changes in the spatial distribution of the water content in the MEA and the water in the oxygen gas channels were obtained.

  20. Coil Optimization for HTS Machines

    DEFF Research Database (Denmark)

    Mijatovic, Nenad; Jensen, Bogi Bech; Abrahamsen, Asger Bech

    An optimization approach of HTS coils in HTS synchronous machines (SM) is presented. The optimization is aimed at high power SM suitable for direct driven wind turbines applications. The optimization process was applied to a general radial flux machine with a peak air gap flux density of ~3T...... is suitable for which coil segment is presented. Thus, the performed study gives valuable input for the coil design of HTS machines ensuring optimal usage of HTS tapes....

  1. Triple Halo Coil: Development and Comparison with Other TMS Coils

    Science.gov (United States)

    Rastogi, Priyam; Hadimani, Ravi; Jiles, David

    Transcranial Magnetic Stimulation (TMS) is a non-invasive stimulation technique that can be used for the treatment of various neurological disorders such as Parkinson's Disease, PTSD, TBI and anxiety by regulating synaptic activity. TMS is FDA approved for the treatment of major depressive disorder. There is a critical need to develop deep TMS coils that can stimulate deeper regions of the brain without excessively stimulating the cortex in order to provide an alternative to surgical methods. We have developed a novel multi-coil configuration called ``Triple Halo Coil'' (THC) that can stimulate deep brain regions. Investigation of induced electric and magnetic field in these regions have been achieved by computer modelling. Comparison of the results due to THC configuration have been conducted with other TMS coils such as ``Halo Coil'', circular coil and ``Figure of Eight'' coil. There was an improvement of more than 15 times in the strength of magnetic field, induced by THC configuration at 10 cm below the vertex of the head when compared with the ``Figure of Eight'' coil alone. Carver Charitable Trust.

  2. High-resolution structures of a heterochiral coiled coil.

    Science.gov (United States)

    Mortenson, David E; Steinkruger, Jay D; Kreitler, Dale F; Perroni, Dominic V; Sorenson, Gregory P; Huang, Lijun; Mittal, Ritesh; Yun, Hyun Gi; Travis, Benjamin R; Mahanthappa, Mahesh K; Forest, Katrina T; Gellman, Samuel H

    2015-10-27

    Interactions between polypeptide chains containing amino acid residues with opposite absolute configurations have long been a source of interest and speculation, but there is very little structural information for such heterochiral associations. The need to address this lacuna has grown in recent years because of increasing interest in the use of peptides generated from d amino acids (d peptides) as specific ligands for natural proteins, e.g., to inhibit deleterious protein-protein interactions. Coiled-coil interactions, between or among α-helices, represent the most common tertiary and quaternary packing motif in proteins. Heterochiral coiled-coil interactions were predicted over 50 years ago by Crick, and limited experimental data obtained in solution suggest that such interactions can indeed occur. To address the dearth of atomic-level structural characterization of heterochiral helix pairings, we report two independent crystal structures that elucidate coiled-coil packing between l- and d-peptide helices. Both structures resulted from racemic crystallization of a peptide corresponding to the transmembrane segment of the influenza M2 protein. Networks of canonical knobs-into-holes side-chain packing interactions are observed at each helical interface. However, the underlying patterns for these heterochiral coiled coils seem to deviate from the heptad sequence repeat that is characteristic of most homochiral analogs, with an apparent preference for a hendecad repeat pattern.

  3. Modified Rogowski coil for the detection of fast plane currents

    Science.gov (United States)

    Nassisi, V.; Delle Side, D.

    2017-09-01

    Rogowski coils are used to diagnostic currents of cylindrical configuration, therefore they are known to have a toroidal geometry. Nowadays, also linear transmission lines can be developed to get planar beams. Therefore, linear Rogowski coil to detect current pulses inside the linear conductors are necessary. For large devices, the theory necessary to study the system is that of the transmission lines, especially if the pulse width is comparable to the propagating time of signal inside the detector. The device we developed is able to record pulses more than 80 ns long with rise time near 500 ps. The former depends on the inductance value, load impedance and resistance of the coil; while the second on the mechanical configuration of coil loops. Theoretically, the attenuation coefficient depends exclusively on the turn number of the coil, while experimentally it is found to depend also on the current distribution inside the line.

  4. First assembly phase for the ATLAS toroid coils

    CERN Multimedia

    Maximilien Brice

    2003-01-01

    The ATLAS barrel toroid system consists of eight coils, each of axial length 25.3 m, assembled radially and symmetrically around the beam axis. The coils are of a flat racetrack type with two double-pancake windings made of 20.5 kA aluminium-stabilized niobium-titanium superconductor. In the first phase of assembly, the two 'pancakes' are packed into their vacuum vessel. This is done using bladders filled with resin and glass microbeads under pressure. The resin is heated and, once cooled, holds the pancakes in place. The operation has to be performed on both sides of the coil, which necessitated a special technique to turn the coils over and then transport them to the heating table. Photos 01, 02, 03: Transporting the coil to the heating table using a special lifting gantry manufactured at JINR-Dubna, Russia in preparation for the 'bladderisation' operation.

  5. Design and construction of a novel 1H/19F double-tuned coil system using PIN-diode switches at 9.4T.

    Science.gov (United States)

    Choi, Chang-Hoon; Hong, Suk-Min; Ha, YongHyun; Shah, N Jon

    2017-06-01

    A double-tuned 1H/19F coil using PIN-diode switches was developed and its performance evaluated. The is a key difference from the previous developments being that this design used a PIN-diode switch in series with an additionally inserted inductor in parallel to one of the capacitors on the loop. The probe was adjusted to 19F when the reverse bias voltage was applied (PIN-diode OFF), whilst it was switched to 1H when forward current was flowing (PIN-diode ON). S-parameters and Q-factors of single- and double-tuned coils were examined and compared with/without a phantom on the bench. Imaging experiments were carried out on a 9.4T preclinical scanner. All coils were tuned at resonance frequencies and matched well. It is shown that the Q-ratio and SNR of double-tuned coil at 19F frequency are nearly as good as those of a single-tuned coil. Since the operating frequency was tuned to 19F when the PIN-diodes were turned off, losses due to PIN-diodes were substantially lower resulting in the provision of excellent image quality of X-nuclei. Copyright © 2017 Elsevier Inc. All rights reserved.

  6. First assembly phase for the ATLAS toroid coils

    CERN Multimedia

    Patrice Loïez

    2003-01-01

    The ATLAS barrel toroid system consists of eight coils, each of axial length 25.3 m, assembled radially and symmetrically around the beam axis. The coils are of a flat racetrack type with two double-pancake windings made of 20.5 kA aluminium-stabilized niobium-titanium superconductor. In the first phase of assembly, the two 'pancakes' are packed into their vacuum vessel. This is done using bladders filled with resin and glass microbeads under pressure. The resin is heated and, once cooled, holds the pancakes in place. The operation has to be performed on both sides of the coil, which necessitated a special technique to turn the coils over and then transport them to the heating table. Photos 01, 02, 03: Use of the overhead travelling crane to hoist the coil up and then tilt it over, the coil frame's metal feet being used as rotational pivots, supporting half the coil's weight. Once it has been turned over, the coil, now with only half the frame, is transported to the heating table using a special lifting gant...

  7. CCHMM_PROF: a HMM-based coiled-coil predictor with evolutionary information

    DEFF Research Database (Denmark)

    Bartoli, Lisa; Fariselli, Piero; Krogh, Anders

    2009-01-01

    MOTIVATION: The widespread coiled-coil structural motif in proteins is known to mediate a variety of biological interactions. Recognizing a coiled-coil containing sequence and locating its coiled-coil domains are key steps towards the determination of the protein structure and function. Different......://www.biocomp.unibo.it/ approximately lisa/coiled-coils. The predictor is freely available at http://gpcr.biocomp.unibo.it/cgi/predictors/cchmmprof/pred_cchmmprof.cgi. CONTACT: piero@biocomp.unibo.it....

  8. Final Project Report: Self-Correcting Controls for VAV System Faults Filter/Fan/Coil and VAV Box Sections

    Energy Technology Data Exchange (ETDEWEB)

    Brambley, Michael R.; Fernandez, Nicholas; Wang, Weimin; Cort, Katherine A.; Cho, Heejin; Ngo, Hung; Goddard, James K.

    2011-05-01

    This report addresses original research by the Pacific Northwest National Laboratory for the California Institute for Energy and Environment on self-correcting controls for variable-air-volume (VAV) heating, ventilating and air-conditioning systems and focuses specifically on air handling and VAV box components of the air side of the system. A complete set of faults for these components was compiled and a fault mode analysis performed to understand the detectable symptoms of the faults and the chain of causation. A set of 26 algorithms was developed to facilitate the automatic correction of these faults in typical commercial VAV systems. These algorithms include training tests that are used during commissioning to develop models of normal system operation, passive diagnostics used to detect the symptoms of faults, proactive diagnostics used to diagnose the cause of a fault, and finally fault correction algorithms. Ten of the twenty six algorithms were implemented in a prototype software package that interfaces with a test bed facility at PNNL's Richland, WA, laboratory. Measurement bias faults were instigated in the supply-air temperature sensor and the supply-air flow meter to test the algorithms developed. The algorithms as implemented in the laboratory software correctly detected, diagnosed and corrected these faults. Finally, an economic and impact assessment was performed for the State of California for deployment of self-correcting controls. Assuming 15% HVAC energy savings and a modeled deployment profile, 3.1-5.8 TBu of energy savings are possible by year 15.

  9. Design of catheter radio frequency coils using coaxial transmission line resonators for interventional neurovascular MR imaging.

    Science.gov (United States)

    Zhang, Xiaoliang; Martin, Alastair; Jordan, Caroline; Lillaney, Prasheel; Losey, Aaron; Pang, Yong; Hu, Jeffrey; Wilson, Mark; Cooke, Daniel; Hetts, Steven W

    2017-04-01

    It is technically challenging to design compact yet sensitive miniature catheter radio frequency (RF) coils for endovascular interventional MR imaging. In this work, a new design method for catheter RF coils is proposed based on the coaxial transmission line resonator (TLR) technique. Due to its distributed circuit, the TLR catheter coil does not need any lumped capacitors to support its resonance, which simplifies the practical design and construction and provides a straightforward technique for designing miniature catheter-mounted imaging coils that are appropriate for interventional neurovascular procedures. The outer conductor of the TLR serves as an RF shield, which prevents electromagnetic energy loss, and improves coil Q factors. It also minimizes interaction with surrounding tissues and signal losses along the catheter coil. To investigate the technique, a prototype catheter coil was built using the proposed coaxial TLR technique and evaluated with standard RF testing and measurement methods and MR imaging experiments. Numerical simulation was carried out to assess the RF electromagnetic field behavior of the proposed TLR catheter coil and the conventional lumped-element catheter coil. The proposed TLR catheter coil was successfully tuned to 64 MHz for proton imaging at 1.5 T. B1 fields were numerically calculated, showing improved magnetic field intensity of the TLR catheter coil over the conventional lumped-element catheter coil. MR images were acquired from a dedicated vascular phantom using the TLR catheter coil and also the system body coil. The TLR catheter coil is able to provide a significant signal-to-noise ratio (SNR) increase (a factor of 200 to 300) over its imaging volume relative to the body coil. Catheter imaging RF coil design using the proposed coaxial TLR technique is feasible and advantageous in endovascular interventional MR imaging applications.

  10. Fundamental study on the magnetic field control method using multiple HTS coils for Magnetic Drug Delivery System

    Science.gov (United States)

    Hirano, R.; Kim, S. B.; Nakagawa, T.; Tomisaka, Y.; Ueda, H.

    2017-07-01

    The magnetic drug delivery system (MDDS) is a key technology to reduce the side effects in the medical applications, and the magnetic force control is very important issue in MDDS. In this application, the strength of magnetic field and gradient required to MDDS devices are 54 mT and 5.5 T/m, respectively. We proposed the new magnetic force control system that consists of the multiple racetrack HTS magnets. We can control the magnetic field gradient along the longitudinal direction by the arrangement of the multiple racetrack HTS magnets and operating current of each magnet. When the racetrack HTS magnets were used, the critical current was reduced by the self-magnetic field. Therefore, the shape design of HTS magnet to reduce the magnet field into the surface of HTS tapes was required. Therefore, the electromagnetic analysis based on finite element method (FEM) was carried out to design and optimize the shape of multiple racetrack HTS magnet. We were able to suppress the reduction of critical current by placing the magnetic substance at upper and lower side of the HTS magnets. It was confirmed that obtained maximum values of magnetic field strength and field gradient were 33 mT and 0.18 T/m, respectively.

  11. Wind turbine/generator set having a stator cooling system located between stator frame and active coils

    Science.gov (United States)

    Bevington, Christopher M.; Bywaters, Garrett L.; Coleman, Clint C.; Costin, Daniel P.; Danforth, William L.; Lynch, Jonathan A.; Rolland, Robert H.

    2012-11-13

    A wind turbine comprising an electrical generator that includes a rotor assembly. A wind rotor that includes a wind rotor hub is directly coupled to the rotor assembly via a simplified connection. The wind rotor and generator rotor assembly are rotatably mounted on a central spindle via a bearing assembly. The wind rotor hub includes an opening having a diameter larger than the outside diameter of the central spindle adjacent the bearing assembly so as to allow access to the bearing assembly from a cavity inside the wind rotor hub. The spindle is attached to a turret supported by a tower. Each of the spindle, turret and tower has an interior cavity that permits personnel to traverse therethrough to the cavity of the wind rotor hub. The wind turbine further includes a frictional braking system for slowing, stopping or keeping stopped the rotation of the wind rotor and rotor assembly.

  12. Single-coil and dual-coil defibrillator leads and association with clinical outcomes in a complete Danish nationwide ICD cohort

    DEFF Research Database (Denmark)

    Larsen, Jacob M; Hjortshøj, Søren P; Nielsen, Jens C

    2015-01-01

    BACKGROUND: The best choice of defibrillator lead in patients with routine implantable cardioverter-defibrillator (ICD) is not settled. Traditionally, most physicians prefer dual-coil leads but the use of single-coil leads is increasing. OBJECTIVE: The purpose of this study was to compare clinical...... outcomes in patients with single- and dual-coil leads. METHODS: All 4769 Danish patients 18 years or older with first-time ICD implants from 2007 to 2011 were included from the Danish Pacemaker and ICD Register. Defibrillator leads were 38.9% single-coil leads and 61.1% dual-coil leads. The primary end...... of lead failures and extraction complications. CONCLUSION: Shock efficacy is high for modern ICD systems. The choice between single-coil and dual-coil defibrillator leads is unlikely to have a clinically significant impact on patient outcomes in routine ICD implants....

  13. Electrostatic determinants of stability in parallel 3-stranded coiled coils.

    Science.gov (United States)

    Roy, Liton; Case, Martin A

    2009-01-08

    The optimal positioning of salt-bridging interactions in a parallel alpha-helical homotrimeric coiled coil has been explored in a metal ion-assembled polypeptide trimer of 60 residues; arginine-glutamate pairs are more stabilizing than the corresponding lysine-glutamate pairs, and optimal stabilization is obtained with positively charged arginine residues at the c positions of the alpha-helical heptad and negatively charged glutamate residues at the e positions.

  14. Endothelial cell proliferation in swine experimental aneurysm after coil embolization.

    Directory of Open Access Journals (Sweden)

    Yumiko Mitome-Mishima

    Full Text Available After coil embolization, recanalization in cerebral aneurysms adversely influences long-term prognosis. Proliferation of endothelial cells on the coil surface may reduce the incidence of recanalization and further improve outcomes after coil embolization. We aimed to map the expression of proliferating tissue over the aneurysmal orifice and define the temporal profile of tissue growth in a swine experimental aneurysm model. We compared the outcomes after spontaneous thrombosis with those of coil embolization using histological and morphological techniques. In aneurysms that we not coiled, spontaneous thrombosis was observed, and weak, easily detachable proliferating tissue was evident in the aneurysmal neck. In contrast, in the coil embolization group, histological analysis showed endothelial-like cells lining the aneurysmal opening. Moreover, immunohistochemical and morphological analysis suggested that these cells were immature endothelial cells. Our results indicated the existence of endothelial cell proliferation 1 week after coil embolization and showed immature endothelial cells in septal tissue between the systemic circulation and the aneurysm. These findings suggest that endothelial cells are lead to and proliferate in the former aneurysmal orifice. This is the first examination to evaluate the temporal change of proliferating tissue in a swine experimental aneurysm model.

  15. Micro Chemical Oxygen-Iodine Laser (COIL)

    Science.gov (United States)

    2007-10-01

    until it reached its set point at around -5’C. Once the set points of pressure and temperature had been reached, the chlorine, flowing concurrently ...literature. Future work includes testing multiple pSOGs in tandem at their optimal operating conditions and using arrays of ptSOGs to drive a MEMS COIL...yields of 78%, comparing well with reactor model predictions. Topical Heading: 5. Reactors, Kinetics, and Catalysis ii INTRODUCTION Microchemical systems

  16. Coil for LEAR extraction septum

    CERN Multimedia

    CERN PhotoLab

    1982-01-01

    Which way does the current flow ? This intriguing object is the coil for the LEAR extraction septum. There were two septa, first a thin one, then this one, not so thin, somewhat on the borderline between septum and bending magnet.

  17. First coil for the SC

    CERN Multimedia

    CERN PhotoLab

    1955-01-01

    The coils for the SC magnet were stored in the large hangar of the Cointrin Airport (to make sure that they would be available before snow and ice would block the roads and canals from Belgium, where they were built).

  18. Nylon screws make inexpensive coil forms

    Science.gov (United States)

    Aucoin, G.; Rosenthal, C.

    1978-01-01

    Standard nylon screws act as coil form copper wire laid down in spiral thread. Completed coil may be bonded to printed-circuit board. However, it is impossible to tune coil by adjusting spacing between windings, technique sometimes used with air-core coils.

  19. Balance between Coiled-Coil Stability and Dynamics Regulates Activity of BvgS Sensor Kinase in Bordetella

    Directory of Open Access Journals (Sweden)

    E. Lesne

    2016-03-01

    Full Text Available The two-component system BvgAS controls the expression of the virulence regulon of Bordetella pertussis. BvgS is a prototype of bacterial sensor kinases with extracytoplasmic Venus flytrap perception domains. Following its transmembrane segment, BvgS harbors a cytoplasmic Per-Arnt-Sim (PAS domain and then a predicted 2-helix coiled coil that precede the dimerization-histidine-phosphotransfer domain of the kinase. BvgS homologs have a similar domain organization, or they harbor only a predicted coiled coil between the transmembrane and the dimerization-histidine-phosphotransfer domains. Here, we show that the 2-helix coiled coil of BvgS regulates the enzymatic activity in a mechanical manner. Its marginally stable hydrophobic interface enables a switch between a state of great rotational dynamics in the kinase mode and a more rigid conformation in the phosphatase mode in response to signal perception by the periplasmic domains. We further show that the activity of BvgS is controlled in the same manner if its PAS domain is replaced with the natural α-helical sequences of PAS-less homologs. Clamshell motions of the Venus flytrap domains trigger the shift of the coiled coil’s dynamics. Thus, we have uncovered a general mechanism of regulation for the BvgS family of Venus flytrap-containing two-component sensor kinases.

  20. Power Loss Analysis and Comparison of Segmented and Unsegmented Energy Coupling Coils for Wireless Energy Transfer.

    Science.gov (United States)

    Tang, Sai Chun; McDannold, Nathan J

    2015-03-01

    This paper investigated the power losses of unsegmented and segmented energy coupling coils for wireless energy transfer. Four 30-cm energy coupling coils with different winding separations, conductor cross-sectional areas, and number of turns were developed. The four coils were tested in both unsegmented and segmented configurations. The winding conduction and intrawinding dielectric losses of the coils were evaluated individually based on a well-established lumped circuit model. We found that the intrawinding dielectric loss can be as much as seven times higher than the winding conduction loss at 6.78 MHz when the unsegmented coil is tightly wound. The dielectric loss of an unsegmented coil can be reduced by increasing the winding separation or reducing the number of turns, but the power transfer capability is reduced because of the reduced magnetomotive force. Coil segmentation using resonant capacitors has recently been proposed to significantly reduce the operating voltage of a coil to a safe level in wireless energy transfer for medical implants. Here, we found that it can naturally eliminate the dielectric loss. The coil segmentation method and the power loss analysis used in this paper could be applied to the transmitting, receiving, and resonant coils in two- and four-coil energy transfer systems.

  1. Composite Coiled Tubing for Extended Reach in Horizontal Oil Wells

    DEFF Research Database (Denmark)

    Costache, Andrei; Berggreen, Christian

    2017-01-01

    Conventional steel coiled tubing cannot reach along the entire length of very long horizontal oil wells. A lighter and more buoyant coiled tube is made possible using composite materials. The high stiffness to weight ratio of fiber reinforced polymers, coupled with a lower coefficient of friction......, has the potential of greatly extending the reach in horizontal oil wells. This study shows how to design composite coiled tubing and gives a comprehensive discussion about the most influential parameters. Several solutions, using glass-fiber and carbon are considered. Finite element models are used...... to calculate the buckling loads and the corresponding interlaminar stresses. The very positive results obtained during this study show that composite coiled tubing systems are vastly superior to their steel counterparts, and that in the future, these will become the new industry standard....

  2. The Role of Filtration in Maintaining Clean Heat Exchanger Coils

    Energy Technology Data Exchange (ETDEWEB)

    Li Yang; James E. Braun; Eckhard A. Groll

    2004-06-30

    The main purpose of the study was to investigate the role of filtration in maintaining clean heat exchanger coils and overall performance. Combinations of 6 different levels of filtration (MERV 14, 11, 8, 6, 4, and no filter) and 4 different coils (an eight-row lanced-fin coil, HX8L), (an eight-row wavy-fin coil, HX8W), (a four-row lanced-fin coil, HX4L) and (a two-row lanced-fin coil, HX2L) were tested at 4 different air velocities (1.52, 2.03, 2.54,3.05 m/s (300, 400, 500, 600 ft/min)). The fouled conditions were obtained after injection of 600 grams of ASHRAE standard dust upstream of the filter/coil combination. This magnitude of dust is representative of a year of normal operation for an air conditioning system. The air-side pressure drops of the coils and filters and air-side heat transfer coefficients of the coils were determined from the measurements under the clean and fouled conditions. Depending upon the filter and coil test, the coil pressure drops increased in the range of 6%-30% for an air velocity at 2.54 m/s (500 ft/min). The impact was significantly greater for tests performed without a filter. The largest relative effect of fouling on pressure drop occurs for coils with fewer rows and having lanced fins. Coils with a greater number of rows can hold more dust so that a fixed amount of dust has a relatively smaller impact. The impact of fouling on air-side heat transfer coefficients was found to be relatively small. In some cases, heat transfer was actually enhanced due to additional turbulence caused by the presence of dust. The experimental results for pressure drops and heat transfer coefficients were correlated and the correlations were implemented within computer models of prototypical rooftop air conditioners and used to evaluate the impact of fouling on cooling capacity and EER. The equipment cooling capacity is reduced with fouling primarily because of a decrease in air flow due to the increase pressure drop rather than due to changes in h

  3. Coiling and Folding of Viscoelastic Jets

    Science.gov (United States)

    Majmudar, Trushant; Varagnat, Matthieu; McKinley, Gareth

    2007-11-01

    The study of fluid jets impacting on a flat surface has industrial applications in many areas, including processing of foods and consumer goods, bottle filling, and polymer melt processing. Previous studies have focused primarily on purely viscous, Newtonian fluids, which exhibit a number of different dynamical regimes including dripping, steady jetting, folding, and steady coiling. Here we add another dimension to the problem by focusing on mobile (low viscosity) viscoelastic fluids, with the study of two wormlike-micellar fluids, a cetylpyridinum-salicylic acid salt (CPyCl/NaSal) solution, and an industrially relevant shampoo base. We investigate the effects of viscosity and elasticity on the dynamics of axi-symmetric jets. The viscoelasticity of the fluids is systematically controlled by varying the concentration of salt counterions. Experimental methods include shear and extensional rheology measurements to characterize the fluids, and high-speed digital video imaging. In addition to the regimes observed in purely viscous systems, we also find a novel regime in which the elastic jet buckles and folds on itself, and alternates between coiling and folding behavior. We suggest phase diagrams and scaling laws for the coiling and folding frequencies through a systematic exploration of the experimental parameter space (height of fall, imposed flow rate, elasticity of the solution).

  4. BI-ground microstrip array coil vs. conventional microstrip array coil for mouse imaging at 7 tesla

    Science.gov (United States)

    Hernández, Ricardo; Terrones, M. A. López; Jakob, P. M.

    2012-10-01

    At high field strengths, the need for more efficient high frequency coils has grown. Since the radiation losses and the interaction between coil and sample increase proportionally to field strength, the quality factor (Q) and the sensitivity of the coil decrease as consequence of these negative effects. Since Zhang et al proposed in 2001 a new surface coil based on the microstrip transmission line for high frequency, different Tx-Rx phased arrays based on this concept have been already introduced in animal and whole body systems at high field strengths, each of them with different modifications in order to get better field homogeneity, SNR or isolation between coil elements in the array. All these arrays for animals systems have been built for rat imaging. One of these modifications is called BI-Ground Microstrip Array Coil (BIGMAC). The implementation of a smaller two-channel BIGMAC design for mouse imaging is studied and its performance compared to a two-channel conventional Microstrip array at 7 Tesla, the higher isolation by using BIGMAC elements in comparison with conventional Microstrip elements is shown in this work.

  5. The structure of the GemC1 coiled coil and its interaction with the Geminin family of coiled-coil proteins

    Energy Technology Data Exchange (ETDEWEB)

    Caillat, Christophe; Fish, Alexander [The Netherlands Cancer Institute, 1066 CX Amsterdam (Netherlands); Pefani, Dafni-Eleftheria; Taraviras, Stavros; Lygerou, Zoi [University of Patras, 26505 Rio, Patras (Greece); Perrakis, Anastassis, E-mail: a.perrakis@nki.nl [The Netherlands Cancer Institute, 1066 CX Amsterdam (Netherlands)

    2015-10-31

    The GemC1 coiled-coil structure has subtle differences compared with its homologues Geminin and Idas. Co-expression experiments in cells and biophysical stability analysis of the Geminin-family coiled coils suggest that the GemC1 coiled coil alone is unstable. GemC1, together with Idas and Geminin, an important regulator of DNA-replication licensing and differentiation decisions, constitute a superfamily sharing a homologous central coiled-coil domain. To better understand this family of proteins, the crystal structure of a GemC1 coiled-coil domain variant engineered for better solubility was determined to 2.2 Å resolution. GemC1 shows a less typical coiled coil compared with the Geminin homodimer and the Geminin–Idas heterodimer structures. It is also shown that both in vitro and in cells GemC1 interacts with Geminin through its coiled-coil domain, forming a heterodimer that is more stable that the GemC1 homodimer. Comparative analysis of the thermal stability of all of the possible superfamily complexes, using circular dichroism to follow the unfolding of the entire helix of the coiled coil, or intrinsic tryptophan fluorescence of a unique conserved N-terminal tryptophan, shows that the unfolding of the coiled coil is likely to take place from the C-terminus towards the N-terminus. It is also shown that homodimers show a single-state unfolding, while heterodimers show a two-state unfolding, suggesting that the dimer first falls apart and the helices then unfold according to the stability of each protein. The findings argue that Geminin-family members form homodimers and heterodimers between them, and this ability is likely to be important for modulating their function in cycling and differentiating cells.

  6. Ferrite-Cored Solenoidal Induction Coil Sensor for BUD (MM-1667)

    Energy Technology Data Exchange (ETDEWEB)

    Morrison, F.; Becker, A.; Conti, U.; Gasperikova, E.

    2011-06-15

    We have designed and lab tested a new ferrite cored induction coil sensor for measuring the secondary fields from metallic UXO with the BUD system. The objective was to replace the 5-inch diameter air-cored coils in the BUD system with smaller sensors that would allow the placement of multiple sensors in the smaller package of the new BUD hand-held system. A ferrite-cored solenoidal coil of length L can easily be made to have sensitivity and noise level roughly the same as an air-cored coil of a diameter on the same order as L. A ferrite-cored solenoidal coil can easily have a feedback configuration to achieve critical damping. The feedback configuration leads to a very stable response. Feedback ferrite-cored solenoidal coils show very little interaction as long as they are separated by one half their length.

  7. AC losses of oxide superconducting coils operated in liquid nitrogen; Ekitai chisso reikyaku sankabutsu chodendo koiru no koryu sonshitsu

    Energy Technology Data Exchange (ETDEWEB)

    Fukushige, K.; Hayashida, T.; Sumiyoshi, F.; Kawabata, S. [Kagoshima Univ., Kagoshima (Japan); Hayashi, H. [Kyushu Electric Power Co., Inc., Fukuoka (Japan)

    1999-06-07

    As a basic research with the aim of practical application of the liquid nitrogen cooling oxide superconductivity coil, the double pancake-shape coil was produced experimentally using Bi system polycore tape wire rod, and the characteristic evaluation was carried out. Especially, it tried to examine the measured value of ac loss in the coil energization using analytical result of magnetic field distribution which is added to coil winding and magnetization loss data of the short length sample. (NEDO)

  8. First ATLAS Barrel Toroid coil casing arrives at CERN

    CERN Document Server

    2002-01-01

    The first of eight 25-metre long coil casings for the ATLAS experiment's barrel toroid magnet system arrived at CERN on Saturday 2 March by road from Heidelberg. This structure will be part of the largest superconducting toroid magnet ever made.   The first coil casing for the toroidal magnets of Atlas arrives at Building 180. This is the start of an enormous three-dimensional jigsaw puzzle. Each of the eight sets of double pancake coils will be housed inside aluminium coil casings, which in turn will be held inside a stainless steel vacuum vessel. A huge construction, the casing that arrived at CERN measures 25 metres in length and 5 metres in width. It weighs 20 tones. And this is just the beginning of the toroid jigsaw: by early April a batch of four double pancake coils, which altogether weighs 65 tones, will arrive from Ansaldo in Italy. The first vacuum vessel will also be arriving from Felguera in Spain this month. It will take about two years for all these 25 m long structures of casings, coils a...

  9. Design and field testing of solar-assisted Earth coils

    Science.gov (United States)

    Bose, J. E.

    A nominal 1000-foot, 4-inch, PVC coil buried in a serpentine pattern is the heat source/sink for two commercial heat pump systems. This system is vented which allows the easy placement of thermocouples down its length to measure changes in temperature as well as changes in overall U values as a function of length. Integral to the earth coil is a 1000-gallon uninsulated water storage tank in which solar energy from 210 sq ft of solar collectors (single-glazed, metal absorber) can be added directly to the heat pump, circulated through the 1000-foot earth coil system, or added to an insulated storage tank for direct transfer. Temperature ranges for this type of system at the four-foot level are from a nominal range of 780F to a low of 420F in the absence of heat rejection of absorption. The second type of earth coil was a vertical coil approximately 240 feet in length. The vertical heat exchanger consists of a 5-inch PVC pipe which is capped at both ends and pressurized at approximately 15 PSIG. This sealed and pressurized heat exchanger allows a low power pump to circulate water through both the heat pump and vertical heat exchanger system.

  10. Power Supply Changes for NSTX Resistive Wall Mode Coils

    Energy Technology Data Exchange (ETDEWEB)

    Ramakrishnan, S S.

    2013-06-28

    The National Spherical Torus Experiment (NSTX) has been designed and installed in the existing facilities at Princeton Plasma Physics Laboratory (PPPL). Most of the hardware, plant facilities, auxiliary sub-systems, and power systems originally used for the Tokamak Fusion Test Reactor (TFTR) have been used with suitable modifications to reflect NSTX needs. Prior to 2004, the NSTX power system was feeding twelve (12) circuits in the machine. In 2004 the Resistive Wall Mode (RWM) Coils were installed on the machine to correct error fields. There are six of these coils installed around the machine in the mid-plane. Since these coils need fast and accurate controls, a Switching Power Amplifier (SPA) with three sub-units was procured, installed and commissioned along with other power loop components. Two RWM Coils were connected in series and fed from one SPA sub-unit. After the initial RWM campaign, operational requirements evolved such that each of the RWM coils now requires separate power and control. Hence a second SPA with three sub-units has been procured and installed. The second unit is of improved design and has the controls and power components completely isolated. The existing thyristor rectifier is used as DC Link to both of the Switching Power Amplifiers. The controls for the RWM are integrated into the overall computer control of the DC Power systems for NSTX. This paper describes the design changes in the RWM Power system for NSTX.

  11. Bare platinum coils vs. HydroCoil in the treatment of unruptured intracranial aneurysms—A single center randomized controlled study

    Energy Technology Data Exchange (ETDEWEB)

    Poncyljusz, Wojciech, E-mail: wponcyl@poczta.onet.pl [Departament of Interventional Radiology, Pomeranian Medical University, Neurointerventional Cath Lab MSW Hospital, Al. Powst. Wielkopolskich 72, 70-111 Szczecin (Poland); Zarzycki, Artur, E-mail: arturzarzycki@o2.pl [Department of Neurosurgery and Pediatric Neurosurgery, Pomeranian Medical University, Unii Lubelskiej 1, 71-242 Szczecin Poland (Poland); Zwarzany, Łukasz, E-mail: zwarzany@gmail.com [Departament of Interventional Radiology, Pomeranian Medical University, Neurointerventional Cath Lab MSW Hospital, Al. Powst. Wielkopolskich 72, 70-111 Szczecin (Poland); Burke, Thomas H., E-mail: tom.burke@microvention.com [Microvention–Terumo, Tustin, CA (United States)

    2015-02-15

    Highlights: • The use of HydroCoil tends to improve immediate angiographic outcome. • Less total number of coils is needed when using HydroCoil. • HydroCoil is equivocal to bare platinum coil. - Abstract: Purpose: The HydroCoil Embolic System (HES) was developed to improve aneurysm filling to provide superior occlusion efficacy, reduce retreatment rates and enhance long-term durability. We performed a randomized clinical trial to compare the effectiveness of bare platinum coils (BPC) vs. HES for unruptured intracranial aneurysms. Methods: Ninety-six patients underwent endovascular coiling of unruptured intracranial aneurysms. The aneurysms were randomized equally to receive BPC or HES. Immediate angiographic results, number of coils used and complications were evaluated and all cases had 12-month follow-up angiography. Results: Immediate angiographic results demonstrated that 84.0% of aneurysms treated with HES were completely occluded compared to 76.1% of aneurysms treated with BPC (p = 0.3310). The mean number of coils utilized to fill the aneurysm was significantly lower in the HES arm (5.04 vs. 6.93). Additional adjunctive techniques were performed in 51.1% of all cases. There were seven patients (7.3%) with postoperative complications during the study period. The coil type used during the treatment did not demonstrate any significant differences on the overall recurrence rate (HES – 18.0%, BPC – 17.4%, p = 0.9712). There was a statistically significant difference in the aneurysm size and the neck width between completely occluded aneurysms and aneurysms with residual flow in both immediate angiographic and mid-term follow-up. Conclusions: Overall, aneurysm size and neck width are the main risk factors associated with aneurysm recurrence. HES compared to BPC required less total number of coils to provide a denser aneurysm filling. However, there were equivocal results with both devices, at the mid-term angiographic follow-up.

  12. Hemodynamic performance of coil embolization and stentassisted coil embolization treatments: a numerical comparative study based on subject-specific models of cerebral aneurysms

    Science.gov (United States)

    Wang, Shengzhang; Zhang, Yisen; Lu, Gang; Yang, Xinjian; Zhang, Xiaolong; Ding, Guanghong

    2011-11-01

    Hemodynamic characteristics such as blood velocity, blood pressure, flow impingement, wall shear stress and oscillatory shear index are considered to play important roles in the initiation, growth, rupture and recurrence of the cerebral aneurysms. Endovascular therapy is widely implemented to treat the cerebral aneurysms by releasing coils into the aneurysm sac for limiting the blood flow to the sac and stent-assisted coil embolization is adopted to occlude the wide-necked or complex aneurysms. Some researchers believe that stents are not only a mechanical device but may act as a biological system and contribute to vessel wall healing. Hemodynamics simulation helps people understand the effect of hemodynamic characteristics on the recurrence of the coiled aneurysm and it also benefits the interventional planning of neurosurgeons. This study constructed the numerical model for a subject-specific ICA aneurysm treated with stent-assisted coil embolization, which combined the coiled model of the aneurysm with a porous stent placement, and simulated the pulsatile blood flow in these aneurysm models. When a stent was placed across the aneurysm orifice in the coiled aneurysm, the high wall shear stress around the distal aneurysm root was reduced more than that of the coiled aneurysm without a stent. The simulated results point to the conclusion that the stent not only protects the parent artery from occlusion due to extension of coils or thrombosis, but may also reduce the recurrence risk of the stent-assisted coiled aneurysm.

  13. A fast and accurate simulator for the design of birdcage coils in MRI.

    Science.gov (United States)

    Giovannetti, Giulio; Landini, Luigi; Santarelli, Maria Filomena; Positano, Vincenzo

    2002-11-01

    The birdcage coils are extensively used in MRI systems since they introduce a high signal to noise ratio and a high radiofrequency magnetic field homogeneity that guarantee a large field of view. The present article describes the implementation of a birdcage coil simulator, operating in high-pass and low-pass modes, using magnetostatic analysis of the coil. Respect to other simulators described in literature, our simulator allows to obtain in short time not only the dominant frequency mode, but also the complete resonant frequency spectrum and the relevant magnetic field pattern with high accuracy. Our simulator accounts for all the inductances including the mutual inductances between conductors. Moreover, the inductance calculation includes an accurately birdcage geometry description and the effect of a radiofrequency shield. The knowledge of all the resonance modes introduced by a birdcage coil is twofold useful during birdcage coil design: --higher order modes should be pushed far from the fundamental one, --for particular applications, it is necessary to localize other resonant modes (as the Helmholtz mode) jointly to the dominant mode. The knowledge of the magnetic field pattern allows to a priori verify the field homogeneity created inside the coil, when varying the coil dimension and mainly the number of the coil legs. The coil is analyzed using equivalent circuit method. Finally, the simulator is validated by implementing a low-pass birdcage coil and comparing our data with the literature. Copyright 2002 Elsevier Science B.V.

  14. Cardiac cine imaging at 3 Tesla: initial experience with a 32-element body-array coil.

    Science.gov (United States)

    Fenchel, Michael; Deshpande, Vibhas S; Nael, Kambiz; Finn, J Paul; Miller, Stephan; Ruehm, Stefan; Laub, Gerhard

    2006-08-01

    We sought to assess the feasibility of cardiac cine imaging and evaluate image quality at 3 T using a body-array coil with 32 coil elements. Eight healthy volunteers (3 men; median age 29 years) were examined on a 3-T magnetic resonance scanner (Magnetom Trio, Siemens Medical Solutions) using a 32-element phased-array coil (prototype from In vivo Corp.). Gradient-recalled-echo (GRE) cine (GRAPPAx3), GRE cine with tagging lines, steady-state-free-precession (SSFP) cine (GRAPPAx3 and x4), and SSFP cine(TSENSEx4 andx6) images were acquired in short-axis and 4-chamber view. Reference images with identical scan parameters were acquired using the total-imaging-matrix (Tim) coil system with a total of 12 coil elements. Images were assessed by 2 observers in a consensus reading with regard to image quality, noise and presence of artifacts. Furthermore, signal-to-noise values were determined in phantom measurements. In phantom measurements signal-to-noise values were increased by 115-155% for the various cine sequences using the 32-element coil. Scoring of image quality yielded statistically significant increased image quality with the SSFP-GRAPPAx4, SSFP-TSENSEx4, and SSFP-TSENSEx6 sequence using the 32-element coil (P coil (P coil is feasible in healthy volunteers. Using a large number of coil elements with a favorable sensitivity profile supports faster image acquisition, with high diagnostic image quality even for high parallel imaging factors.

  15. Plasmodium vivax antigen discovery based on alpha-helical coiled coil protein motif

    DEFF Research Database (Denmark)

    Céspedes, Nora; Habel, Catherine; Lopez-Perez, Mary

    2014-01-01

    Protein α-helical coiled coil structures that elicit antibody responses, which block critical functions of medically important microorganisms, represent a means for vaccine development. By using bioinformatics algorithms, a total of 50 antigens with α-helical coiled coil motifs orthologous...

  16. Calculations on resonance spin-echo coils

    CERN Document Server

    Prokudaylo, S B; Keller, T; Bleuel, M; Axtner, M; Selvachev, A

    2002-01-01

    The performance of the coils used for a resonance spin-echo spectrometer is simulated to obtain the optimum parameters. The possibility to use a round wire instead of a flat band for coil production is explored. The parameters of the static bootstrap coils were varied in a 2D approach and a better configuration than one actually uses was found. (orig.)

  17. The umbilical coiling index in normal pregnancy

    NARCIS (Netherlands)

    van Diik, C. C.; Franx, A.; de Laat, M. W. M.; Bruinse, H. W.; Visser, G. H. A.; Nikkels, P. G. J.

    2002-01-01

    To provide reference values for the umbilical coiling index in uncomplicated pregnancy. Umbilical cords were collected from livebom singleton infants born after uncomplicated pregnancies. The umbilical coiling index (UCI) was calculated as the number of coils divided by the cord length in

  18. The umbilical coiling index in complicated pregnancy

    NARCIS (Netherlands)

    de Laat, Monique W. M.; van Alderen, Elise D.; Franx, Arie; Visser, Gerard H. A.; Bots, Michiel L.; Nikkels, Peter G. J.

    2007-01-01

    To evaluate umbilical cord coiling in pregnancies with adverse outcome. Umbilical cords and hospital records of 565 consecutive cases with an indication for histological examination of the placenta were studied. The umbilical coiling index (UCI) was determined as the number of complete coils divided

  19. Efficiency evaluation of a 13C Magnetic Resonance birdcage coil: Theory and comparison of four methods

    DEFF Research Database (Denmark)

    Giovannetti, Giulio; Frijia, Francesca; Hartwig, Valentina

    2013-01-01

    .Coil efficiency, defined as the B1 magnetic field induced at a given point on the square root of supplied power P, is an important parameter that characterizes coil performance, since by maximizing efficiency will also maximize the signal-to-noise ratio.This work describes and compares four methods for coil......Radiofrequency coils in Magnetic Resonance systems are used to produce a homogeneous B1 field for exciting the nuclei and to pick up the signals emitted by the nuclei with high signal-to-noise ratio. Accordingly, coil performance affects strongly the quality of the obtained data and images...... efficiency estimation, based on different theoretical approaches. Three methods allow efficiency measurement by using “probe techniques” (perturbing loop, perturbing sphere and pick-up coil), which can be used both on the bench and inside the scanner, while an “NMR technique” has been employed for comparison...

  20. Mechanical-Stress Analytical Modeling for the Design of Coils in Power Applications

    Directory of Open Access Journals (Sweden)

    Bellan D.

    2014-12-01

    Full Text Available Modern electrical-power systems are often exploited for transmitting high-frequency carrier signals for communications purposes. Series-connected air-core coils represent the fundamental component allowing such applications by providing a proper filtering in the frequency domain. They must be designed, however, to withstand also the line short-circuit current. When a high-magnitude current flows through a coil, strong mechanical stresses are produced within the conductor, leading to possible damage of the coil. In this paper, an approximate analytical model is derived for the relationship between the maximum mechanical stress and the electrical/geometrical parameters of the coil. Such a model provides the guidelines for a fast and safe coil design, whereas numerical simulations are only needed for the design refinement. The presented approach can be extended to other applications such as, for example, the mechanical stress resulting from the inrush currents in the coils of power transformers.

  1. Fabrication and Analysis of 150 mm Aperture Nb3Sn LARP MQXF Coils

    CERN Document Server

    Holik, E F; Anerella, M; Bossert, R; Cavanna, E; Cheng, D; Dietderich, D R; Ferracin, P; Ghosh, A K; Izquierdo Bermudez, S; Krave, S; Nobrega, A; Perez, J C; Pong, I; Rochepault; Sabbi, G L; Schmalzle, J; Yu, M

    2016-01-01

    The US LHC Accelerator Research Program (LARP) and CERN are combining efforts for the HiLumi-LHC upgrade to design and fabricate 150 mm aperture, interaction region quadrupoles with a nominal gradient of 130 T/m using Nb3Sn. To successfully produce the necessary long MQXF triplets, the HiLumi-LHC collaboration is systematically reducing risk and design modification by heavily relying upon the experience gained from the successful 120 mm aperture LARP HQ program. First generation MQXF short (MQXFS) coils were predominately a scaling up of the HQ quadrupole design allowing comparable cable expansion during Nb3Sn formation heat treatment and increased insulation fraction for electrical robustness. A total of 13 first generation MQXFS coils were fabricated between LARP and CERN. Systematic differences in coil size, coil alignment symmetry, and coil length contraction during heat treatment are observed and likely due to slight variances in tooling and insulation/cable systems. Analysis of coil cross sections indic...

  2. Sensitivity of an eight-element phased array coil in 3 Tesla MR imaging: a basic analysis.

    Science.gov (United States)

    Hiratsuka, Yoshiyasu; Miki, Hitoshi; Kikuchi, Keiichi; Kiriyama, Ikuko; Mochizuki, Teruhito; Takahashi, Shizue; Sadamoto, Kazuhiko

    2007-01-01

    To evaluate the performance advantages of an 8-element phased array head coil (8 ch coil) over a conventional quadrature-type birdcage head coil (QD coil) with regard to the signal-to-noise ratio (SNR) and image uniformity in 3 Tesla magnetic resonance (MR) imaging. We scanned a phantom filled with silicon oil using an 8 ch coil and a QD coil in a 3T MR imaging system and compared the SNR and image uniformity obtained from T(1)-weighted spin echo (SE) images and T(2)-weighted fast SE images between the 2 coils. We also visually evaluated images from 4 healthy volunteers. The SNR with the 8 ch coil was approximately twice that with the QD coil in the region of interest (ROI), which was set as 75% of the area in the center of the phantom images. With regard to the spatial variation of sensitivity, the SNR with the 8 ch coil was lower at the center of the images than at the periphery, whereas the SNR with the QD coil exhibited an inverse pattern. At the center of the images with the 8 ch coil, the SNR was somewhat lower, and that distribution was relatively flat compared to that in the periphery. Image uniformity varied less with the 8 ch coil than with the QD coil on both imaging sequences. The 8 ch phased array coil was useful for obtaining high quality 3T images because of its higher SNR and improved image uniformity than those obtained with conventional quadrature-type birdcage head coil.

  3. Antibody engineering using phage display with a coiled-coil heterodimeric Fv antibody fragment.

    Directory of Open Access Journals (Sweden)

    Xinwei Wang

    Full Text Available A Fab-like antibody binding unit, ccFv, in which a pair of heterodimeric coiled-coil domains was fused to V(H and V(L for Fv stabilization, was constructed for an anti-VEGF antibody. The anti-VEGF ccFv showed the same binding affinity as scFv but significantly improved stability and phage display level. Furthermore, phage display libraries in the ccFv format were constructed for humanization and affinity maturation of the anti-VEGF antibody. A panel of V(H frameworks and V(H-CDR3 variants, with a significant improvement in affinity and expressibility in both E. coli and yeast systems, was isolated from the ccFv phage libraries. These results demonstrate the potential application of the ccFv antibody format in antibody engineering.

  4. Coil Migration through a Neuroform 3 Stent during Endovascular Coiling. A Case Report.

    LENUS (Irish Health Repository)

    O'Hare, A

    2009-07-29

    Summary: A 43-year-old woman attended for stent assisted coiling. A Neuroform 30 x 4.5 mm stent had been successfully placed over the left periophthalmic aneurysm. During the coiling the first coil migrated through the crowns in the stent, lodging at the MCA bifurcation. We believe that the coil herniated through the overlying stent due to the carotid siphon curvature and the open cell design. Furthermore the distal markers of the stent impeded coil extraction with a MERCI device.

  5. Near-field wireless sensing of single and multiple open-ended micro coils

    Directory of Open Access Journals (Sweden)

    A. Yousaf

    2013-05-01

    Full Text Available In this work we present near-field wireless sensing of single and multiple open-ended micro coils using an electrically small loop antenna. Wirelessly characterized parameters of open-ended micro coils include its resonance frequency, quality factor and inductance. Moreover a wireless frequency-dependent analytical model was developed. Micro coil inductance was extracted from the wirelessly measured signal using a constraint-based least-squares approach. Wireless measurements and analytical fit of micro coils are in strong agreement which validates the analytical model. Finite element method (FEM simulations of the coupled system were done in COMSOL Multiphysics.

  6. Superconducting magnet coils for the 'Omega' spark chamber at CERN

    CERN Document Server

    Schleich, A

    1972-01-01

    Superconducting windings of zero electrical resistance are being carried over from the development stage into industrial application. Brown Boveri are building the superconducting d.c. excitation system for the 'Omega' magnet which will be used for nuclear physics research at CERN. The magnet will weigh 1300 t and its excitation coils will have an overall diameter of 5 m. Magnet, coils and type of conductor are described. Special requirements and design features of the electrical insulation, thermal insulation, and mechanical support system for the windings operating under high vacuum at -269 degrees C are discussed. (15 refs).

  7. Stability improvement for coil position locking of joule balance

    Science.gov (United States)

    Bai, Yang; Liu, Yongmeng; Lu, Yunfeng; Hu, Pengcheng; Wang, Dawei; Li, Zhengkun; Tan, Jiubin; Zhang, Zhonghua

    2017-08-01

    The relative vertical position locking precision between the exciting and suspended coils is an important uncertainty for the Planck constant traceability in joule balance. In order to improve the relative vertical position locking precision, several stability experiments are conducted. The stability characteristics of the suspended and exciting coils are measured using a six-axis laser interferometer system; meanwhile, the effectiveness of the active vibration isolation table is measured using a vibration measurement sensor. The piezoelectric ceramic actuators with PID controller are used to compensate the relative vertical displacement drifts while a six-axis laser interferometer system is used to measure the positions of two coils. Experimental results show that the relative vertical position is stably locked.

  8. Leak locating method using an ultra-snuffler test gas process for the fusion experiment Wendelstein 7-X (W7-X); Ortung einer Leckage mit dem Ultra-Schnueffler-Testgasverfahren fuer das Fusionsexperiment Wendelstein 7-X (W7-X)

    Energy Technology Data Exchange (ETDEWEB)

    Brockmann, Robert

    2014-11-01

    The fusion experiment Wendelstein 7-X in Greifswald is the largest stellarator experiment worldwide. In order to exclude the leakage of the surrounding vacuum of the magnetic cage the helium-tightness has to be ensured. Besides the conventional demonstration of helium-tightness of all components according DIN EN 1779 the additional demonstration of tightness wars performed using the leak detection method developed at the Max-Planck-Institute for plasma physics, the so-called ultra-snuffler test gas method (UST). With improved sensitivity the ISR method allows to localize a leakage of 10{sup -6} mbar l/s.

  9. Coiled transmission line pulse generators

    Science.gov (United States)

    McDonald, Kenneth Fox

    2010-11-09

    Methods and apparatus are provided for fabricating and constructing solid dielectric "Coiled Transmission Line" pulse generators in radial or axial coiled geometries. The pour and cure fabrication process enables a wide variety of geometries and form factors. The volume between the conductors is filled with liquid blends of monomers, polymers, oligomers, and/or cross-linkers and dielectric powders; and then cured to form high field strength and high dielectric constant solid dielectric transmission lines that intrinsically produce ideal rectangular high voltage pulses when charged and switched into matched impedance loads. Voltage levels may be increased by Marx and/or Blumlein principles incorporating spark gap or, preferentially, solid state switches (such as optically triggered thyristors) which produce reliable, high repetition rate operation. Moreover, these Marxed pulse generators can be DC charged and do not require additional pulse forming circuitry, pulse forming lines, transformers, or an a high voltage spark gap output switch. The apparatus accommodates a wide range of voltages, impedances, pulse durations, pulse repetition rates, and duty cycles. The resulting mobile or flight platform friendly cylindrical geometric configuration is much more compact, light-weight, and robust than conventional linear geometries, or pulse generators constructed from conventional components. Installing additional circuitry may accommodate optional pulse shape improvements. The Coiled Transmission Lines can also be connected in parallel to decrease the impedance, or in series to increase the pulse length.

  10. A novel method for coiled tubing installation

    Energy Technology Data Exchange (ETDEWEB)

    Simpson, Peter J. [2H Offshore, Houston, TX (United States); Tibbetts, David [Aquactic Engineering and Construction Ltd., Aberdeen (United Kingdom)

    2009-12-19

    Installation of flexible pipe for offshore developments is costly due to the physical cost of the flexible pipe, expensive day rates and the availability of suitable installation vessels. Considering the scarcity of flexible pipe in today's increasingly demanding and busy market, operators are seeking a cost effective solution for installing piping in a range of water depths using vessels which are readily on hand. This paper describes a novel approach to installing reeled coiled tubing, from 1 inch to 5 inch diameter, from the back of a small vessel in water depths from 40 m up to around 1000 m. The uniqueness of the system is the fact that the equipment design is modular and compact. This means that when disassembled, it fits into standard 40 ft shipping containers, and the size allows it to be installed on even relatively small vessels of opportunity, such as anchor handling or installation vessels, from smaller, and cheaper quay side locations. Such an approach is the ideal solution to the problem faced by operators, in that it allows the installation of cheaper, readily available coiled tubing, from cost-effective vessels, which do not need to transit to a pick up the system. (author)

  11. Optimization design of the coil of the eddy current sensor

    Science.gov (United States)

    Pu, Tiecheng; Fan, Shangchun

    2006-11-01

    An eddy current sensor is usually used to measure the departure of a shaft from its axes, in order to avoid destroying the system because of collision. The design of the coil as the sense organ of an eddy current sensor is to search a set of proper sizes (includes the outer radius, the inner radius and tallness of the coil) in which the quality factor and the grads of magnetic field strength is great as soon as possible but the length of the lead is not much long. So an optimization function is introduced here for efficient design. This function is direct ratio with the quality factor of the core and the magnetic grads product by the coil and inverse ratio with the lead length. The proportions of three parameters can be changed according to the instance. When the value of the function reaches the maximum, the sizes of coil are the anticipant optimal sizes and the integration capability of the coil is at the high-point. To search the maximum of the function, the genetic algorithm is adopted. The simulation result by Matlab proves the practicability of the method.

  12. Simultaneous PET/MR imaging: MR-based attenuation correction of local radiofrequency surface coils.

    Science.gov (United States)

    Paulus, Daniel H; Braun, Harald; Aklan, Bassim; Quick, Harald H

    2012-07-01

    In simultaneous positron emission tomography/magnetic resonance (PET/MR) imaging, local receiver surface radiofrequency (RF) coils are positioned in the field-of-view (FOV) of the PET detector during PET/MR data acquisition and potentially attenuate the PET signal. For flexible body RF surface coils placed on top of the patient's body, MR-based attenuation correction (AC) is an unsolved problem since the RF coils are not inherently visible in MR images and their individual position in the FOV is patient specific and not known a priori. The aim of this work was to quantify the effect of local body RF coils used in the Biograph mMR hybrid PET/MR system on PET emission data and to present techniques for MR-based position determination of these specific local RF coils. Acquisitions of a homogeneous phantom were performed on a whole-body PET/MRI scanner. Two different PET emission scans were performed, with and without the local body matrix RF coil placed on the top of the phantom. For position determination of the coil, two methods were applied. First, cod liver oil capsules were attached to the surface of the coil and second, an ultrashort echo time (UTE) sequence was used. PET images were reconstructed in five different ways: (1) PET reference scan without the coil, (2) PET scan with the coil, but omitting the coil in AC (PET/MR scanning conditions), (3) AC of the coil using a CT scan of the same phantom setup and registration via capsules, (4) same setup as 3, but registration was done using UTE images, neglecting the capsules, and (5) registration using the capsules, but the CT was performed with the coil placed flat on the CT table and the outer regions of the coil were cropped. The activity concentrations were then compared to the reference scan. For clinical evaluation of the concept, the presented methods were also evaluated on a patient. The oil capsules were visible in the MR and CT images and image registration was straightforward. The UTE images show only

  13. Asymmetric gradient coil design for use in a short, open bore magnetic resonance imaging scanner

    Science.gov (United States)

    Wang, Yaohui; Liu, Feng; Li, Yu; Tang, Fangfang; Crozier, Stuart

    2016-08-01

    A conventional cylindrical whole-body MRI scanner has a long bore that may cause claustrophobia for some patients in addition to being inconvenient for healthcare workers accessing the patient. A short-bore scanner usually offers a small sized imaging area, which is impractical for imaging some body parts, such as the torso. This work proposes a novel asymmetric gradient coil design that offers a full-sized imaging area close to one end of the coil. In the new design, the primary and shielding coils are connected at one end whilst separated at the other, allowing the installation of the cooling system and shim trays. The proposed coils have a larger wire gap, higher efficiency, lower inductance, less resistance and a higher figure of merit than the non-connected coils. This half-connected coil structure not only improves the coils' electromagnetic performance, but also slightly attenuates acoustic radiation at most frequencies when compared to a non-connected gradient coil. It is also quieter in some frequency bands than a conventional symmetric gradient coil.

  14. Loop radiofrequency coils for clinical magnetic resonance imaging at 7 tesla

    NARCIS (Netherlands)

    Kraff, Oliver; Kraff, O.

    2011-01-01

    To date, the 7 T magnetic resonance imaging (MRI) scanner remains a pure research system and there is still a long way ahead till full clinical integration. Key challenges are the absence of a body transmit radiofrequency (RF) coil as well as of dedicated RF coils in general, short RF wavelengths of

  15. 46 CFR 153.434 - Heat transfer coils within a tank.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 5 2010-10-01 2010-10-01 false Heat transfer coils within a tank. 153.434 Section 153... Cargo Temperature Control Systems § 153.434 Heat transfer coils within a tank. When a cargo tank... the heat transfer fluid at a pressure greater than the pressure exerted on the heating or cooling...

  16. 78 FR 14403 - Alabama Metal Coil Securement Act; Petition for Determination of Preemption

    Science.gov (United States)

    2013-03-05

    ... Federal Motor Carrier Safety Administration Alabama Metal Coil Securement Act; Petition for Determination... Alabama's Metal Coil Securement Act (the Act) is preempted by Federal law. Federal law provides for... System (FDMS) published in the Federal Register on December 29, 2010 (75 FR 82132). Background The Metal...

  17. Non-uniformity of Clinical Head, Head and Neck, and Body Coils in Magnetic Resonance Imaging (MRI

    Directory of Open Access Journals (Sweden)

    Mahmood Nazarpoor

    2014-11-01

    Full Text Available Introduction Signal intensity uniformity in a magnetic resonance (MR image indicates how well the MR imaging (MRI system represents an object. One of the major sources of image non-uniformity in high-field MRI scanners is inhomogeneity of radio-frequency coil. The aim of this study was to investigate non-uniformity in head, head and neck, and body coils and compare the obtained results to determine the best clinical coil for future clinical application. Materials and Methods A phantom was designed to investigate the non-uniformity of coils. All evaluations were carried out using a 1.5 T clinical MRI scanner. T1-weighted inversion recovery sequence (linear phase encoding and turbo fast low angle shot (TurboFLASH images were used to find non-uniformity in the clinical coils. For testing the uniformity of coils, signal intensity profiles in parts of the coronal image of phantom were measured over X and Y axes. Results The results showed that body coil was the most uniform coil of all; in addition, the head and neck coil was more uniform than the head coil. The results also indicated that signal-to-noise ratio (SNR of the head and neck coil was higher than the head and body coils. Moreover, SNR of the head coil was higher than that of the body coil. Conclusion In order to accurately find or apply an image signal intensity for measuring organ blood flow or perfusion, coil non-uniformity corrections are required.

  18. Nonlinear Dynamics of a Magnetically Driven Duffing-Type Spring-Magnet Oscillator in the Static Magnetic Field of a Coil

    Science.gov (United States)

    Donoso, Guillermo; Ladera, Celso L.

    2012-01-01

    We study the nonlinear oscillations of a forced and weakly dissipative spring-magnet system moving in the magnetic fields of two fixed coaxial, hollow induction coils. As the first coil is excited with a dc current, both a linear and a cubic magnet-position dependent force appear on the magnet-spring system. The second coil, located below the…

  19. Analysis of a flux-coupling type superconductor fault current limiter with pancake coils

    Science.gov (United States)

    Liu, Shizhuo; Xia, Dong; Zhang, Zhifeng; Qiu, Qingquan; Zhang, Guomin

    2017-10-01

    The characteristics of a flux-coupling type superconductor fault current limiter (SFCL) with pancake coils are investigated in this paper. The conventional double-wound non-inductive pancake coil used in AC power systems has an inevitable defect in Voltage Sourced Converter Based High Voltage DC (VSC-HVDC) power systems. Due to its special structure, flashover would occur easily during the fault in high voltage environment. Considering the shortcomings of conventional resistive SFCLs with non-inductive coils, a novel flux-coupling type SFCL with pancake coils is carried out. The module connections of pancake coils are performed. The electromagnetic field and force analysis of the module are contrasted under different parameters. To ensure proper operation of the module, the impedance of the module under representative operating conditions is calculated. Finally, the feasibility of the flux-coupling type SFCL in VSC-HVDC power systems is discussed.

  20. Flow analysis by using solenoid valves for As(III determination in natural waters by an on-line separation and pre-concentration system coupled to a tungsten coil atomizer

    Directory of Open Access Journals (Sweden)

    José Y. Neira

    2005-03-01

    Full Text Available A flow system coupled to a tungsten coil atomizer in an atomic absorption spectrometer (TCA-AAS was developed for As(III determination in waters, by extraction with sodium diethyldithiocarbamate (NaDDTC as complexing agent, and by sorption of the As(III-DDTC complex in a micro-column filled with 5 mg C18 reversed phase (10 µL dry sorbent, followed by elution with ethanol. A complete pre-concentration/elution cycle took 208 s, with 30 s sample load time (1.7 mL and 4 s elution time (71 µL. The interface and software for the synchronous control of two peristaltic pumps (RUN/ STOP, an autosampler arm, seven solenoid valves, one injection valve, the electrothermal atomizer and the spectrometer Read function were constructed. The system was characterized and validated by analytical recovery studies performed both in synthetic solutions and in natural waters. Using a 30 s pre-concentration period, the working curve was linear between 0.25 and 6.0 µg L-1 (r = 0.9976, the retention efficiency was 94±1% (6.0 µg L-1, and the pre-concentration coefficient was 28.9. The characteristic mass was 58 pg, the mean repeatability (expressed as the variation coefficient was 3.4% (n=5, the detection limit was 0.058 µg L-1 (4.1 pg in 71 µL of eluate injected into the coil, and the mean analytical recovery in natural waters was 92.6 ± 9.5 % (n=15. The procedure is simple, economic, less prone to sample loss and contamination and the useful lifetime of the micro-column was between 200-300 pre-concentration cycles.

  1. A novel electric design for electromagnetic stimulation--the Slinky coil.

    Science.gov (United States)

    Ren, C; Tarjan, P P; Popović, D B

    1995-09-01

    A novel coil design for inductive electromagnetic stimulation of neural cells has been simulated and experimentally tested. This coil improves the focal effect of a magnetic stimulator, and it reduces its inductance, hence the efficiency of the system is improved. The basic structure of the device is derived from the popular "Slinky" toy. The actual device is formed by winding different numbers of loops forming a helical coil on a half torus. The loops are bunched at the axis of the torus. The coil, due to its geometry, generates a unique distribution of eddy currents in nearby tissues which is favorable compared to a solenoid type stimulator. This renders the Slinky coil more selective than conventional coils used for magnetic stimulation. The distribution of eddy currents was analyzed using Matlab, following Faraday's Law of Induction. Improved focality permits the current through the coil to be reduced for the same effect. In addition, the reduced inductance of the Slinky coil decreases the power requirement; thus, the improved efficiency of the system may allow the generation of bursts of pulses, and expand the utilization of the system to possible functional activation of certain neuro-muscular structures when peripheral nerves are stimulated.

  2. Mechanical properties of ITER coil CICC steel jackets production

    NARCIS (Netherlands)

    Romano, Gennaro; Vostner, Alexander; Bessette, Denis; Pong, Ian; Bevillard, Gregory; Zhou, Chao; Devred, Arnaud

    2016-01-01

    ITER cable-in-conduit conductor (CICC) used in the superconducting magnet system consists of a cable made of Nb3Sn or Nb-Ti strands inserted in a stainless steel tube (called jacket or conduit). Depending on the coil type, the jacket material is either made of a low carbon AISI 316LN (for toroidal

  3. Experimental evaluation of helically coiled tube flocculators for ...

    African Journals Online (AJOL)

    The constant need to improve water treatment techniques allows for the emergence of new technologies for obtaining adequate water, both in terms of quality and quantity. In order to obtain an efficient, rapid and low-cost clarification system, this study proposes the use of helically coiled tubes (HCTs) as a ...

  4. Relationship between voice coil fill factor and loudspeaker efficiency

    DEFF Research Database (Denmark)

    Iversen, Niels Elkjær; Knott, Arnold; Andersen, Michael A. E.

    2016-01-01

    In modern audio systems, utilizing switch-mode amplifiers, the total efficiency is dominated by the rather poor efficiency of the loudspeaker. For decades voice coils have been designed so that nominal resistances of 3 to 8 Ω are obtained, despite modern audio amplifiers, using switch...... was measured to be 53 % which leaves plenty of room for future fill factor optimization....

  5. Low Impedance Voice Coils for Improved Loudspeaker Efficiency

    DEFF Research Database (Denmark)

    Iversen, Niels Elkjær; Knott, Arnold; Andersen, Michael A. E.

    2015-01-01

    In modern audio systems utilizing switch-mode amplifiers the total efficiency is dominated by the rather poor efficiency of the loudspeaker. For decades voice coils have been designed so that nominal resistances of 4 to 8 Ohms is obtained, despite modern audio amplifiers, using switch...

  6. DEVELOPMENT OF COILED TUBING STRESS ANALYSIS

    Directory of Open Access Journals (Sweden)

    Davorin Matanović

    1998-12-01

    Full Text Available The use of coiled tubing is increasing rapidly with drilling of horizontal wells. To satisfy all requirements (larger mechanical stresses, larger fluid capacities the production of larger sizes and better material qualities was developed. Stresses due to axial forces and pressures that coiled tubing is subjected are close to its performance limits. So it is really important to know and understand the behaviour of coiled tubing to avoid its break, burst or collapse in the well.

  7. Evaluation of Quantitative Head Impulse Testing Using Search Coils Versus Video-oculography in Older Individuals

    Science.gov (United States)

    Agrawal, Yuri; Schubert, Michael C.; Migliaccio, Americo A.; Zee, David S.; Schneider, Erich; Lehnen, Nadine; Carey, John P.

    2015-01-01

    Objective To evaluate the validity of 2D video-oculography (VOG) compared with scleral search coils for horizontal AVOR gain estimation in older individuals. Study Design Cross-sectional validation study. Setting Tertiary care academic medical center. Patients Six individuals age 70 and older. Interventions Simultaneous eye movement recording with scleral search coil (over right eye) and EyeSeeCam VOG camera (over left eye) during horizontal head impulses. Main Outcome Measures Best estimate search coil and VOG horizontal AVOR gain, presence of compensatory saccades using both eye movement recording techniques. Results We observed a significant correlation between search coil and VOG best estimate horizontal AVOR gain (r = 0.86, p = 0.0002). We evaluated individual head impulses and found that the shapes of the head movement and eye movement traces from the coil and VOG systems were similar. Specific features of eye movements seen in older individuals, including overt and covert corrective saccades and anticompensatory eye movements, were captured by both the search coil and VOG systems. Conclusion These data suggest that VOG is a reasonable proxy for search coil eye movement recording in older subjects to estimate VOR gain and the approximate timing of corrective eye movements. VOG offers advantages over the conventional search coil method; it is portable and easy to use, allowing for quantitative VOR estimation in diverse settings such as a routine office-based practice, at the bedside, and potentially in larger scale population analyses. PMID:24080977

  8. Transport vesicle tethering at the trans Golgi network: coiled coil proteins in action

    Directory of Open Access Journals (Sweden)

    Pak-yan Patricia Cheung

    2016-03-01

    Full Text Available The Golgi complex is decorated with so-called Golgin proteins that share a common feature: a large proportion of their amino acid sequences are predicted to form coiled-coil structures. The possible presence of extensive coiled coils implies that these proteins are highly elongated molecules that can extend a significant distance from the Golgi surface. This property would help them to capture or trap inbound transport vesicles and to tether Golgi mini-stacks together. This review will summarize our current understanding of coiled coil tethers that are needed for the receipt of transport vesicles at the trans Golgi network. How do long tethering proteins actually catch vesicles? Golgi-associated, coiled coil tethers contain numerous binding sites for small GTPases, SNARE proteins, and vesicle coat proteins. How are these interactions coordinated and are any or all of them important for the tethering process? Progress towards understanding these questions and remaining, unresolved mysteries will be discussed.

  9. Tesla coil theoretical model and experimental verification

    OpenAIRE

    Voitkans, Janis; Voitkans, Arnis

    2014-01-01

    Abstract – In this paper a theoretical model of a Tesla coil operation is proposed. Tesla coil is described as a long line with distributed parameters in a single-wired format, where the line voltage is measured against electrically neutral space. It is shown that equivalent two-wired scheme can be found for a single-wired scheme and already known long line theory can be applied to a Tesla coil. Formulas for calculation of voltage in a Tesla coil by coordinate and calculation of resonance fre...

  10. Helical axis stellarator with noninterlocking planar coils

    Science.gov (United States)

    Reiman, Allan; Boozer, Allen H.

    1987-01-01

    A helical axis stellarator using only noninterlocking planar, non-circular coils, generates magnetic fields having a magnetic well and large rotational transform with resultant large equilibrium beta.

  11. A 16-channel MR coil for simultaneous PET/MR imaging in breast cancer.

    Science.gov (United States)

    Dregely, Isabel; Lanz, Titus; Metz, Stephan; Mueller, Matthias F; Kuschan, Marika; Nimbalkar, Manoj; Bundschuh, Ralph A; Ziegler, Sibylle I; Haase, Axel; Nekolla, Stephan G; Schwaiger, Markus

    2015-04-01

    To implement and evaluate a dedicated receiver array coil for simultaneous positron emission tomography/magnetic resonance (PET/MR) imaging in breast cancer. A 16-channel receiver coil design was optimized for simultaneous PET/MR imaging. To assess MR performance, the signal-to-noise ratio, parallel imaging capability and image quality was evaluated in phantoms, volunteers and patients and compared to clinical standard protocols. For PET evaluation, quantitative (18) F-FDG PET images of phantoms and seven patients (14 lesions) were compared to images without the coil. In PET image reconstruction, a CT-based template of the coil was combined with the MR-acquired attenuation correction (AC) map of the phantom/patient. MR image quality was comparable to clinical MR-only examinations. PET evaluation in phantoms showed regionally varying underestimation of the standardised uptake value (SUV; mean 22 %) due to attenuation caused by the coil. This was improved by implementing the CT-based coil template in the AC (PET/MR breast coil, state-of-the-art MRI was possible. In PET, accurate quantification and image homogeneity could be achieved if a CT-template of this coil was included in the AC for PET image reconstruction. • State-of-the-art breast MRI using a dedicated PET/MR breast coil is feasible. • A multi-channel design facilitates shorter MR acquisition times via parallel imaging. • An MR coil inside a simultaneous PET/MR system causes PET photon attenuation. • Including a coil CT-template in PET image reconstruction results in recovering accurate quantification.

  12. Superconducting Coil of Po Dipole

    CERN Multimedia

    1983-01-01

    The Po superconducting dipole was built as a prototype beam transport magnet for the SPS extracted proton beam P0. Its main features were: coil aperture 72 mm, length 5 m, room-temperature yoke, NbTi cable conductor impregnated with solder, nominal field 4.2 T at 4.7 K (87% of critical field). It reached its nominal field without any quench.After this successful test up to its nominal field of 4.2 T, the power was not raised to reach a quench. The magnet was not installed in a beam and had no other further use. Nevertheless its construction provided knowledges and experience which became useful in the design and construction of the LHC magnets. The photo shows a detail of the inner layer winding before superposing the outer layer to form the complete coil of a pole. Worth noticing is the interleaved glass-epoxy sheet (white) with grooved channels for the flow of cooling helium. See also 8211532X.

  13. Compact stellarators with modular coils

    Science.gov (United States)

    Garabedian, P. R.

    2000-01-01

    Compact stellarator designs with modular coils and only two or three field periods are now available; these designs have both good stability and quasiaxial symmetry providing adequate transport for a magnetic fusion reactor. If the bootstrap current assumes theoretically predicted values a three field period configuration is optimal, but if that net current turns out to be lower, a device with two periods and just 12 modular coils might be better. There are also attractive designs with quasihelical symmetry and four or five periods whose properties depend less on the bootstrap current. Good performance requires that there be a satisfactory magnetic well in the vacuum field, which is a property lacking in a stellarator-tokamak hybrid that has been proposed for a proof of principle experiment. In this paper, we present an analysis of stability for these configurations that is based on a mountain pass theorem asserting that, if two solutions of the problem of magnetohydrodynamic equilibrium can be found, then there has to be an unstable solution. We compare results of our theory of equilibrium, stability, and transport with recently announced measurements from the large LHD experiment in Japan. PMID:10899993

  14. Multicoil2: predicting coiled coils and their oligomerization states from sequence in the twilight zone.

    Directory of Open Access Journals (Sweden)

    Jason Trigg

    Full Text Available The alpha-helical coiled coil can adopt a variety of topologies, among the most common of which are parallel and antiparallel dimers and trimers. We present Multicoil2, an algorithm that predicts both the location and oligomerization state (two versus three helices of coiled coils in protein sequences. Multicoil2 combines the pairwise correlations of the previous Multicoil method with the flexibility of Hidden Markov Models (HMMs in a Markov Random Field (MRF. The resulting algorithm integrates sequence features, including pairwise interactions, through multinomial logistic regression to devise an optimized scoring function for distinguishing dimer, trimer and non-coiled-coil oligomerization states; this scoring function is used to produce Markov Random Field potentials that incorporate pairwise correlations localized in sequence. Multicoil2 significantly improves both coiled-coil detection and dimer versus trimer state prediction over the original Multicoil algorithm retrained on a newly-constructed database of coiled-coil sequences. The new database, comprised of 2,105 sequences containing 124,088 residues, includes reliable structural annotations based on experimental data in the literature. Notably, the enhanced performance of Multicoil2 is evident when tested in stringent leave-family-out cross-validation on the new database, reflecting expected performance on challenging new prediction targets that have minimal sequence similarity to known coiled-coil families. The Multicoil2 program and training database are available for download from http://multicoil2.csail.mit.edu.

  15. Simulation Model solves exact the Enigma named Generating high Voltages and high Frequencies by Tesla Coil

    Directory of Open Access Journals (Sweden)

    Simo Janjanin

    2016-11-01

    Full Text Available Simulation model of Tesla coil has been successfully completed, and has been verified the procedure and functioning. The literature and documentation for the model were taken from the rich sources, especially the copies of Tesla patents. The oscillating system‟s electrical scheme consists of the voltage supply 220/50 Hz, Fe transformer, capacitor and belonging chosen electrical components, the air gap in the primary Tesla coil (air transformer and spark gap in the exit of the coil. The investigation of the oscillating process Tesla coil‟s system using the simulation model in MATLAB & SIMULINK have given the exact solution the enigma named the generating high voltage and high frequency the Tesla‟s coil. The inductance voltage from the spark current in the primary (coil with its high voltage impulse excites the oscillating series circuit Ce-L3-R3 on the secondary of the air transformer to its own damped oscillations

  16. Integrated flexible ocular coil for power and data transfer in retinal prostheses.

    Science.gov (United States)

    Li, W; Rodger, D; Weiland, J; Humayun, M; Tai, Y

    2005-01-01

    A microfabricated and fully-implantable coil for use as a power and data transfer component for retinal prostheses is presented. Compared with traditional hand-made ocular coils, this parylene-based device is thin and flexible with 10 turns of thin-film metal wires and a thickness of less than 10 μm. In addition, the entire coil structure can be heat-formed on a mold to match the eye's curvature for extraocular implantation. Because it is made using parylene thin-film technology, this coil can be directly integrated with multielectrode arrays and with parylene-based packages incorporating application specific integrated circuits (ASICs) or discrete electrical components such as chip capacitors. This coil thus enables the fabrication and implantation of a fully microfabricated system for retinal prostheses.

  17. In vivo field-cycling relaxometry using an insert coil for magnetic field offset.

    Science.gov (United States)

    Pine, Kerrin J; Goldie, Fred; Lurie, David J

    2014-11-01

    The T(1) of tissue has a strong dependence on the measurement magnetic field strength. T(1) -dispersion could be a useful contrast parameter, but is unavailable to clinical MR systems which operate at fixed magnetic field strength. The purpose of this work was to implement a removable insert magnet coil for field-cycling T(1) -dispersion measurements on a vertical-field MRI scanner, by offsetting the static field over a volume of interest. An insert magnet coil was constructed for use with a whole-body sized 59 milli-Tesla (mT) vertical-field, permanent-magnet based imager. The coil has diameter 38 cm and thickness 6.1 cm and a homogeneous region (± 5%) of 5 cm DSV, offset by 5 cm from the coil surface. Surface radiofrequency (RF) coils were also constructed. The insert coil was used in conjunction with a surface RF coil and a volume-localized inversion-recovery pulse sequence to plot T(1) -dispersion in a human volunteer's forearm over a range of field strengths from 1 mT to 70 mT. T(1) -dispersion measurements were demonstrated on a fixed-field MRI scanner, using an insert coil. This demonstrates the feasibility of relaxation dispersion measurements on an otherwise conventional MR imager, facilitating the exploitation of T(1) -dispersion contrast for enhanced diagnosis. Copyright © 2013 Wiley Periodicals, Inc.

  18. The design study of the JT-60SU device. No. 3. The superconductor-coils of JT-60SU

    Energy Technology Data Exchange (ETDEWEB)

    Ushigusa, Kenkichi; Mori, Katsuharu; Nakagawa, Syouji [Japan Atomic Energy Research Inst., Naka, Ibaraki (Japan). Naka Fusion Research Establishment] [and others

    1997-03-01

    The superconducting coil systems and the cryogenic system for the JT-60 Super Upgrade (JT-60SU) has been designed. Both Nb{sub 3}Al and NbTi as a superconducting wire material are employed in the toroidal coils (D-shaped 18 coils) to realize a high field magnet with a low cost. Significant reduction of the coil weight (150 tons/coil) without losing the coil rigidity has been achieved by connecting two toroidal coils with shear panels. Validity of this design is confirmed by the detailed structural analysis and thermohydraulic analysis. The poloidal coil system consists of 4 central solenoid coils with (NbTi){sub 3}Sn and 6 outer equilibrium field coils with NbTi. This system has an enough capability to supply the flux of 170Vs to produce a 10MA discharge with 200s of flat-top and to make various plasma configurations. The construction procedure of the poloidal coil system is also established under the constraint of the JT-60 site. Two sets of race-track shaped superconducting coils mounted on the top of the machine is designed to compensate the error field inside the vessel by supplying helical (m=2/n=1) magnetic field. By using cryogenic system with a 36kW of cooling capacity, the total cold weight of around 4000tons can be cooled down to 4.5K within one month, and steady heat load of 6.5kW and transient heat load of 9.0MJ can be removed within 30 minutes of discharge repetition rate. (author)

  19. Penile hair coil strangulation of the child

    African Journals Online (AJOL)

    shanker

    amputation of the corpus spongiosum. Grade IV corresponds to the section of the glans [8]. In the majority of the reported cases, the constrictive injury is located in the coronal sulcus. The coil of hair can be so deeply embedded in the skin that the physical examination shows no foreign body coiled around the penis.

  20. Magnetic Fields at the Center of Coils

    Science.gov (United States)

    Binder, Philippe; Hui, Kaleonui; Goldman, Jesse

    2014-01-01

    In this note we synthesize and extend expressions for the magnetic field at the center of very short and very long current-carrying coils. Elementary physics textbooks present the following equation for the magnetic field inside a very long current-carrying coil (solenoid): B[subscript sol] = µ[subscript 0] (N/L) I, (1) where I is the current, N…

  1. Evidence-based pathology: umbilical cord coiling.

    Science.gov (United States)

    Khong, T Y

    2010-12-01

    The generation of a pathology test result must be based on criteria that are proven to be acceptably reproducible and clinically relevant to be evidence-based. This review de-constructs the umbilical cord coiling index to illustrate how it can stray from being evidence-based. Publications related to umbilical cord coiling were retrieved and analysed with regard to how the umbilical coiling index was calculated, abnormal coiling was defined and reference ranges were constructed. Errors and other influences that can occur with the measurement of the length of the umbilical cord or of the number of coils can compromise the generation of the coiling index. Definitions of abnormal coiling are not consistent in the literature. Reference ranges defining hypocoiling or hypercoiling have not taken those potential errors or the possible effect of gestational age into account. Even the way numerical test results in anatomical pathology are generated, as illustrated by the umbilical coiling index, warrants a critical analysis into its evidence base to ensure that they are reproducible or free from errors.

  2. Radiative MRI Coil Design Using Parasitic Scatterers

    DEFF Research Database (Denmark)

    Sanchez-Heredia, Juan D.; Avendal, Johan; Bibic, Adnan

    2018-01-01

    Conventionally, radiofrequency (RF) coils used for magnetic resonance imaging (MRI) are electrically small and designed for nearfield operation. Therefore, existing antenna design techniques are mostly irrelevant for RF coils. However, the use of higher frequencies in ultrahigh field (UHF) MRI...... allows for antenna design techniques to be adapted to RF coil designs. This study proposes the use of parasitic scatterers to improve the performance of an existing 7T MRI coil called the single-sided adapted dipole (SSAD) antenna. The results reveal that scatterers arranged in a Yagi fashion can...... suitable for use in high density arrays. These findings show the potential of parasitic scatterers as an effective method to improve the performance of existing radiative MRI coils....

  3. Coupled FEM-DBEM method to assess crack growth in magnet system of Wendelstein 7-X

    Directory of Open Access Journals (Sweden)

    R. Citarella

    2013-10-01

    Full Text Available The fivefold symmetric modular stellarator Wendelstein 7-X (W7-X is currently under construction in Greifswald, Germany. The superconducting coils of the magnet system are bolted onto a central support ring and interconnected with five so-called lateral support elements (LSEs per half module. After welding of the LSE hollow boxes to the coil cases, cracks were found in the vicinity of the welds that could potentially limit the allowed number N of electromagnetic (EM load cycles of the machine. In response to the appearance of first cracks during assembly, the Stress Intensity Factors (SIFs were calculated and corresponding crack growth rates of theoretical semi-circular cracks of measured sizes in potentially critical position and orientation were predicted using Paris’ law, whose parameters were calibrated in fatigue tests at cryogenic temperature. In this paper the Dual Boundary Element Method (DBEM is applied in a coupled FEM-DBEM approach to analyze the propagation of multiple cracks with different shapes. For this purpose, the crack path is assessed with the Minimum Strain Energy density criterion and SIFs are calculated by the J-integral approach. The Finite Element Method (FEM is adopted to model, using the commercial codes Ansys or Abaqus;, the overall component whereas the submodel analysis, in the volume surrounding the cracked area, is performed by FEM (“FEM-FEM approach” or alternatively by DBEM (“FEM-DBEM approach”. The “FEM-FEM approach” considers a FEM submodel, that is extracted from the FEM global model; the latter provide the boundary conditions for the submodel. Such approach is affected by some restrictions in the crack propagation phase, whereas, with the “FEM-DBEM approach”, the crack propagation simulation is straightforward. In this case the submodel is created in a DBEM environment with boundary conditions provided by the global FEM analysis; then the crack is introduced and a crack propagation analysis

  4. Comparison of coil designs for peripheral magnetic muscle stimulation

    Science.gov (United States)

    Goetz, S. M.; Herzog, H.-G.; Gattinger, N.; Gleich, B.

    2011-10-01

    The recent application of magnetic stimulation in rehabilitation is often said to solve key drawbacks of the established electrical method. Magnetic fields cause less pain, allow principally a better penetration of inhomogeneous biologic tissue and do not require skin contact. However, in most studies the evoked muscle force has been disappointing. In this paper, a comparison of a classical round circular geometry, a commercial muscle-stimulation coil and a novel design is presented, with special emphasis on the physical field properties. These systems show markedly different force responses for the same magnetic energy and highlight the enormous potential of different coil geometries. The new design resulted in a slope of the force recruiting curve being more than two and a half times higher than the other coils. The data were analyzed with respect to the underlying physical causes and field conditions. After a parameter-extraction approach, the results for the three coils span a two-dimensional space with clearly distinguishable degrees of freedom, which can be manipulated nearly separately and reflect the two main features of a field; the peak amplitude and its decay with the distance.

  5. Reversible and irreversible coiled coils in the stalk domain of ncd motor protein.

    Science.gov (United States)

    Makino, Tsukasa; Morii, Hisayuki; Shimizu, Takashi; Arisaka, Fumio; Kato, Yusuke; Nagata, Koji; Tanokura, Masaru

    2007-08-21

    Ncd is a microtubule minus end-directed motor protein from Drosophila, a member of the kinesin-14 family, and an essential protein in mitosis and meiosis. Full-length ncd exists as a dimer via the formation of an alpha-helical coiled coil in its central stalk domain (P192-R346), which is thought to be one of the key regions for its motility. In our previous studies, however, none of the various synthetic polypeptide fragments (up to 46 residues) from the stalk domain formed a coiled coil. Herein, we have investigated the structural properties of the full-length ncd stalk domain using recombinant polypeptides together with shorter segments. These new fragments did form coiled coils as verified by far-UV circular dichroism (CD) spectroscopy and analytical ultracentrifugation, suggesting that a certain length of polypeptide would be required for dimer formation. Moreover, deletion mapping revealed that the cooperativity among the neighboring subdomains in the stalk domain is required for formation of the coiled coil. Interestingly, the intact stalk domain segments showed three-state transition in thermal unfolding measurements with CD, indicating the presence of two regions: (i) a coiled-coil region (P227-R306) that exhibits reversible denaturation at a lower temperature (20-30 degrees C) and (ii) a more rigid coiled-coil region (T307-E334) that exhibits irreversible denaturation at a high temperature (ca. 60 degrees C). These results imply that the N-terminal region of the stalk domain might be able to adopt both a coiled-coil conformation and a dissociated one, which might be relevant to the functions of ncd.

  6. Reliability data to improve high magnetic field coil design for high velocity coilguns.

    Energy Technology Data Exchange (ETDEWEB)

    Kaye, Ronald John; Mann, Gregory Allen

    2003-09-01

    Coilguns have demonstrated their capability to launch projectiles to 1 km/s, and there is interest in their application for long-range precision strike weapons. However, the incorporation of cooling systems for repetitive operation will impact the mechanical design and response of the future coils. To assess the impact of such changes, an evaluation of the ruggedness and reliability of the existing 50 mm bore coil designed in 1993 was made by repeatedly testing at stress levels associated with operation in a coilgun. A two-coil testbed has been built with a static projectile where each coil is energized by its own capacitor bank. Simulation models of the applied forces generated in this testbed have been created with the SLINGSHOT circuit code to obtain loads equivalent to the worst-case anticipated in a 50 mm coilgun that could launch a 236 g projectile to 2 km/s. Bench measurements of the seven remaining coils built in 1993 have been used to evaluate which coils were viable for testing, and only one was found defective. Measurements of the gradient of the effective coil inductance in the presence of the projectile were compared to values from SLINGSHOT, and the agreement is excellent. Repeated testing of the HFC5 coil built in 1993 has demonstrated no failures after 205 shots, which is an order of magnitude greater than any number achieved in previous testing. Although this testing has only been done on two coils, the results are encouraging as it demonstrates there are no fundamental weak links in the design that will cause a very early failure. Several recommendations for future coil designs are suggested based on observations of this study.

  7. The use of a P. falciparum specific coiled-coil domain to construct a self-assembling protein nanoparticle vaccine to prevent malaria.

    Science.gov (United States)

    Karch, Christopher P; Doll, Tais A P F; Paulillo, Sara M; Nebie, Issa; Lanar, David E; Corradin, Giampietro; Burkhard, Peter

    2017-09-06

    The parasitic disease malaria remains a major global public health concern and no truly effective vaccine exists. One approach to the development of a malaria vaccine is to target the asexual blood stage that results in clinical symptoms. Most attempts have failed. New antigens such as P27A and P27 have emerged as potential new vaccine candidates. Multiple studies have demonstrated that antigens are more immunogenic and are better correlated with protection when presented on particulate delivery systems. One such particulate delivery system is the self-assembling protein nanoparticle (SAPN) that relies on coiled-coil domains of proteins to form stable nanoparticles. In the past we have used de novo designed amino acid domains to drive the formation of the coiled-coil scaffolds which present the antigenic epitopes on the particle surface. Here we use naturally occurring domains found in the tex1 protein to form the coiled-coil scaffolding of the nanoparticle. Thus, by engineering P27A and a new extended form of the coiled-coil domain P27 onto the N and C terminus of the SAPN protein monomer we have developed a particulate delivery system that effectively displays both antigens on a single particle that uses malaria tex1 sequences to form the nanoparticle scaffold. These particles are immunogenic in a murine model and induce immune responses similar to the ones observed in seropositive individuals in malaria endemic regions. We demonstrate that our P27/P27A-SAPNs induce an immune response akin to the one in seropositive individuals in Burkina Faso. Since P27 is highly conserved among different Plasmodium species, these novel SAPNs may even provide cross-protection between Plasmodium falciparum and Plasmodium vivax the two major human malaria pathogens. As the SAPNs are also easy to manufacture and store they can be delivered to the population in need without complication thus providing a low cost malaria vaccine.

  8. Analyzing Charge-pump Inverter Circuit for Induction-coil Type Electrodeless Lamp

    National Research Council Canada - National Science Library

    Hidenori Kakehashi; Shohei Yamamoto; Tamotsu Ninomiya

    2009-01-01

      A charge-pump inverter circuit is useful for an induction-coil type electrodeless lamp system, and the input AC current harmonics can be reduced by using an additional diode and a small capacitance...

  9. Studies of a thermal energy storage unit with ice on coils; Ice on coil gata kori chikunetsuso no kenkyu

    Energy Technology Data Exchange (ETDEWEB)

    Ito, S.; Miura, N. [Kanagawa Institute of Technology, Kanagawa (Japan)

    1996-10-27

    Study was made of an ice-on-coil heat storage tank for power load levelling. Prior to the prediction of performance of the system as a whole, the performance of the heat storage tank itself needs to be predicted. A brine (35.9% water solution of ethylene glycol) cooled by a refrigerating machine was poured from the upper end of the piping in the heat storage tank (consisting of 19 spiral pipes or coils arranged in parallel in the vertical direction) for the collection of ice around the coils. Ice grew thicker with the passage of time but there was no remarkable decrease in the transfer of heat because there was an increase in the area of contact between ice and water, and the brine exit temperature remained constant over a prolonged period of time. There was a close agreement between experiment results and theoretical conclusions throughout the heat accumulation process, including changes with time in the thickness of ice on the coils, all pointing to the appropriateness of this analytical effort. To melt the ice, water was poured into the tank top at a predetermined rate. Water chilly at 2-4{degree}C was recovered at the tank bottom, stable in the amount produced. As for the use of spiral pipes for making ice, the laminar heat transfer rate in such pipes are supposed to be more than two times higher than that in straight pipes, and this was quite effective in accelerating heat transfer. 7 refs., 11 figs.

  10. Self-assembly of coiled coil peptides into nanoparticles vs 2-d plates: effects of assembly pathway

    Science.gov (United States)

    Kim, Kyunghee; Pochan, Darrin

    Molecular solution assembly, or self-assembly, is a process by which ordered nanostructures or patterns are formed by non-covalent interactions during assembly. Biomimicry, the use of bioinspired molecules or biologically relevant materials, is an important area of self-assembly research with peptides serving a critical role as molecular tools. The morphology of peptide assemblies can be controlled by adjusting solution conditions such as the concentration of peptides, the temperature, and pH. Herein, spherical nanostructures, which have potential for creating an encapsulation system, are formed by self-assembly when coiled coil peptides are combined in solution. These peptides are homotrimeric and heterodimeric coiled-coil bundles and the homotrimer is connected with each of heterodimer through their external surfaces via disulfide bonds. The resultant covalent constructs could co-assemble into complementary trimeric hubs, respectively. The two peptide constructs are directly mixed and assembled in solution in order to produce either spherical particles or 2-d plates depending on the solution conditions and kinetic pathway of assembly. In particular, structural changes of the self-assembled peptides are explored by control of the thermal history of the assembly solution.

  11. Design of a novel coil satellite centrifuge and its performance on counter-current chromatographic separation of 4-methylumbelliferyl sugar derivatives with organic-aqueous two-phase solvent systems

    Science.gov (United States)

    Shinomiya, Kazufusa; Tokura, Koji; Kimura, Emiru; Takai, Midori; Harikai, Naoki; Yoshida, Kazunori; Yanagidaira, Kazuhiro; Ito, Yoichiro

    2015-01-01

    A new high-speed counter-current chromatograph, named coil satellite centrifuge (CSC), was designed and fabricated in our laboratory. The CSC apparatus produces the satellite motion such that the coiled column simultaneously rotates around the sun axis (the angular velocity, ω1), the planet axis (ω2) and the satellite axis (the central axis of the column) (ω3). In order to achieve this triplicate rotary motion without twisting of the flow tube, the rotation of each axis was determined by the following formula: ω1 = ω2 + ω3. This relation enabled to lay out the flow tube by two different ways, the SS type and the JS type. In the SS type, the flow tube was introduced from the upper side of the apparatus into the sun axis of the first rotary frame and connected to the planet axis of the second rotary frame like a double letter SS. In the JS type, the flow tube was introduced from the bottom of the apparatus into the sun axis reaching the upper side of the planet axis an inversed letter J, followed by distribution as in the SS type. The performance of the apparatus was examined on separation of 4-methylumbelliferyl (MU) sugar derivatives as test samples with organic-aqueous two-phase solvent systems composed of ethyl acetate/1-butanol/water (3 : 2 : 5, v/v) for lower phase mobile and (1 : 4 : 5, v/v) for upper phase mobile. With lower phase mobile, five 4-MU sugar derivatives including β-D-cellobioside (Cel), β-D-glucopyranoside, α-D-mannopyranoside, β-D-fucopyranoside and α-L-fucopyranoside (α-L-Fuc) were separated with the combined rotation around each axis at counterclockwise (CCW) (ω1) – CCW (ω2) – CCW (ω3) by the JS type flow tube distribution. With upper phase mobile, three 4-MU sugar derivatives including α-L-Fuc, β-D-galactopyranoside and Cel were separated with the combined rotation around each axis at clockwise (CW) (ω1) – CW (ω2) – CW (ω3) by the JS type flow tube distribution. A series of experiments on peak resolution and

  12. Correcting coils in end magnets of accelerators

    Directory of Open Access Journals (Sweden)

    L. R. P. Kassab

    1998-05-01

    Full Text Available We present an empirical investigation of the correcting coils behavior used to homogenize the field distribution of the race-track microtron accelerator end magnets. These end magnets belong to the second stage of the 30.0 MeV cw electron accelerator under construction at IFUSP, the race-track microtron booster, in which the beam energy is raised from 1.97 to 5.1 MeV. The correcting coils are attached to the pole faces and are based on the inhomogeneities of the magnetic field measured. The performance of these coils, when operating the end magnets with currents that differ by ±10% from the one used in the mappings that originated the coils copper leads, is presented. For one of the magnets, adjusting conveniently the current of the correcting coils makes it possible to homogenize field distributions of different intensities, once their shapes are practically identical to those that originated the coils. For the other one, the shapes are changed and the coils are less efficient. This is related to intrinsic factors that determine the inhomogeneities. However, we obtained uniformity of 0.001% in both cases.

  13. Spaced-based search coil magnetometers

    Science.gov (United States)

    Hospodarsky, George B.

    2016-12-01

    Search coil magnetometers are one of the primary tools used to study the magnetic component of low-frequency electromagnetic waves in space. Their relatively small size, mass, and power consumption, coupled with a good frequency range and sensitivity, make them ideal for spaceflight applications. The basic design of a search coil magnetometer consists of many thousands of turns of wire wound on a high permeability core. When a time-varying magnetic field passes through the coil, a time-varying voltage is induced due to Faraday's law of magnetic induction. The output of the coil is usually attached to a preamplifier, which amplifies the induced voltage and conditions the signal for transmission to the main electronics (usually a low-frequency radio receiver). Search coil magnetometers are usually used in conjunction with electric field antenna to measure electromagnetic plasma waves in the frequency range of a few hertz to a few tens of kilohertzs. Search coil magnetometers are used to determine the properties of waves, such as comparing the relative electric and magnetic field amplitudes of the waves, or to investigate wave propagation parameters, such as Poynting flux and wave normal vectors. On a spinning spacecraft, they are also sometimes used to determine the background magnetic field. This paper presents some of the basic design criteria of search coil magnetometers and discusses design characteristics of sensors flown on a number of spacecraft.

  14. Switching transients in a superconducting coil

    Energy Technology Data Exchange (ETDEWEB)

    Owen, E.W.; Shimer, D.W.

    1983-11-18

    A study is made of the transients caused by the fast dump of large superconducting coils. Theoretical analysis, computer simulation, and actual measurements are used. Theoretical analysis can only be applied to the simplest of models. In the computer simulations two models are used, one in which the coil is divided into ten segments and another in which a single coil is employed. The circuit breaker that interrupts the current to the power supply, causing a fast dump, is represented by a time and current dependent conductance. Actual measurements are limited to measurements made incidental to performance tests on the MFTF Yin-yang coils. It is found that the breaker opening time is the critical factor in determining the size and shape of the transient. Instantaneous opening of the breaker causes a lightly damped transient with large amplitude voltages to ground. Increasing the opening time causes the transient to become a monopulse of decreasing amplitude. The voltages at the external terminals are determined by the parameters of the external circuit. For fast opening times the frequency depends on the dump resistor inductance, the circuit capacitance, and the amplitude on the coil current. For slower openings the dump resistor inductance and the current determine the amplitude of the voltage to ground at the terminals. Voltages to ground are less in the interior of the coil, where transients related to the parameters of the coil itself are observed.

  15. Numerical and experimental analysis of harmonic distortion in a moving-coil loudspeaker

    Science.gov (United States)

    Chang, Chun; Wang, Chi-Chang; Shiah, Y. C.; Huang, Jin H.

    2013-07-01

    The nonlinear effect of a moving-coil loudspeaker, originating from its magnetic coupling factor and the system's stiffness, presents a significant impact on the sound quality. For improving the sound quality, this article proposes an approach to reduce the total harmonic distortion (THD) by adjusting the initial position of its voice-coil. First, a mathematical model involving the nonlinearities of force factor, mechanical stiffness, and inductance of voice coil is constructed and then solved using a novel algorithm called the parameter spline difference method (PSD). In the course of pursuing reduction of the corresponding THD of a typical moving-coil loudspeaker, the model was used to analyze the nonlinearity of the THD, revealing itself as a nonlinear function of force factor, the system's stiffness and inductance of voice coil. For various initial positions of the voice-coil, the coupled nonlinear differential equations were solved using the PSD to yield corresponding sound pressure level and THD. To our satisfaction, the loudspeaker driver with its voice-coil optimally tuned for the initial position turns out to have a THD reduction of 10%, which is also consistent with our experimental observations.

  16. Crystal structure of a coiled-coil domain from human ROCK I.

    Directory of Open Access Journals (Sweden)

    Daqi Tu

    Full Text Available The small GTPase Rho and one of its targets, Rho-associated kinase (ROCK, participate in a variety of actin-based cellular processes including smooth muscle contraction, cell migration, and stress fiber formation. The ROCK protein consists of an N-terminal kinase domain, a central coiled-coil domain containing a Rho binding site, and a C-terminal pleckstrin homology domain. Here we present the crystal structure of a large section of the central coiled-coil domain of human ROCK I (amino acids 535-700. The structure forms a parallel α-helical coiled-coil dimer that is structurally similar to tropomyosin, an actin filament binding protein. There is an unusual discontinuity in the coiled-coil; three charged residues (E613, R617 and D620 are positioned at what is normally the hydrophobic core of coiled-coil packing. We speculate that this conserved irregularity could function as a hinge that allows ROCK to adopt its autoinhibited conformation.

  17. Seismic analysis of ITER fourth PF (Poloidal Field Coil) feeder

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Sumei, E-mail: smliu@ipp.ac.cn [School of Engineering, Anhui Agricultural University, Hefei 230036 (China); Institute of Plasma Physics, Chinese Academy of Science, Hefei 230031 (China); Chen, Wei [School of Engineering, Anhui Agricultural University, Hefei 230036 (China); Song, Yuntao; Ni, Xiaojun; Wang, Zhongwei [Institute of Plasma Physics, Chinese Academy of Science, Hefei 230031 (China); Chen, Yonghua; Gong, Chenyu [Magnet Division, TKM, ITER Organization, Route de Vinon sur Verdon, 13115 St. Paul Lez Durance (France)

    2014-10-15

    The ITER feeder systems connect the ITER magnet systems located inside the main cryostat to the cryo-plant, power-supply and control system interfaces outside the cryostat. The main purpose of the feeders is to convey the cryogenic supply and electrical power to the coils as well as house the instrumentation wiring. The PF busbar which carries 52 kA current will suffer from high Lorentz force due to the background magnetic field inspired by the coils and the self-field between every pair of busbars. Except their mechanical strength and thermal insulation performance must be achieved, the dynamic mechanism on PF structure should be assessed. This paper presents the simulation and seismic analysis on ITER 4th PF feeder including the Coil Terminal Box and S-bend Box (CTB and SBB), the Cryostat Feed-through (CFT), the In-Cryostat-Feeder (ICF), especially for the ground supports and main outer-tube firstly. This analysis aims to study seismic resistance on system design under local seismograms with floor response spectrum, the structural response vibration mode and response duration results of displacement, membrane stress, and bending stress on structure under different directions actuating signals were obtained by using the single-seismic spectrum analysis and Dead Weight analysis respectively. Based on the simulative and analytical results, the system seismic resistance and the integrity of the support structure in the 4th PF feeder have been studied and the detail design confirmed.

  18. Coiled coil rich proteins (Ccrp influence molecular pathogenicity of Helicobacter pylori.

    Directory of Open Access Journals (Sweden)

    Sarah Schätzle

    Full Text Available Pathogenicity of the human pathogen Helicobacter pylori relies on its capacity to adapt to a hostile environment and to escape the host response. Although there have been great advances in our understanding of the bacterial cytoskeleton, major gaps remain in our knowledge of its contribution to virulence. In this study we have explored the influence of coiled coil rich proteins (Ccrp cytoskeletal elements on pathogenicity factors of H. pylori. Deletion of any of the ccrp resulted in a strongly decreased activity of the main pathogenicity factor urease. We further investigated their role using in vitro co-culture experiments with the human gastric adenocarcinoma cell line AGS modeling H. pylori - host cell interactions. Intriguingly, host cell showed only a weak "scattering/hummingbird" phenotype, in which host cells are transformed from a uniform polygonal shape into a severely elongated state characterized by the formation of needle-like projections, after co-incubation with any ccrp deletion mutant. Furthermore, co-incubation with the ccrp59 mutant resulted in reduced type IV secretion system associated activities, e.g. IL-8 production and CagA translocation/phosphorylation. Thus, in addition to their role in maintaining the helical cell shape of H. pylori Ccrp proteins influence many cellular processes and are thereby crucial for the virulence of this human pathogen.

  19. Internal trim coils for CBA superconducting magnets

    Energy Technology Data Exchange (ETDEWEB)

    Thompson, P.A.; Aronson, S.; Cottingham, J.G.; Garber, M.; Hahn, H.; Sampson, W.B.

    1983-01-01

    In order to correct iron saturation effects and shape the beam working line, superconducting trim coils have been constructed, which operate inside the main coils. Detailed studies of mechanical properties, quench behavior, fields produced, and hysteresis have lead to the production of accelerator-quality coils generating the required-strength harmonics up to cos (7theta). These are routinely installed in CBA main magnets and operate at 80% of short sample with negligible training in an ambient field of more than 5.3T.

  20. A six-channel pediatric coil array for detection of children spinal pathologies by MRI at 1.5 Tesla

    Energy Technology Data Exchange (ETDEWEB)

    López Terrones, Marcos Alonso, E-mail: malt.marcos@gmail.com [Ingeniería Biomédica, Dirección de Planeación, Servicios de Salud de Durango. Cuauhtémoc 225 Norte, Durango, Durango 34000 (Mexico); Solís-Nájera, Sergio Enrique, E-mail: solisnajera@ciencias.unam.mx [Facultad de Ciencias, Universidad Nacional Autónoma de México, México, DF 04510 (Mexico)

    2014-11-07

    Nowadays, magnetic resonance (MR) in Mexico has become a standard technique for clinical imaging. Although most of the times the MR systems contain only coils oriented for adults. Radiologists use these coils for children studies due to the non-availability of pediatric coils. Image quality is decreased due to the low signal to noise ratio delivered to the system. The development of RF coils is always focused towards increasing SNR and optimizing the RF penetration into the sample. Moreover, spinal pathologies in children, which are an important topic in pediatric care, cover congenital and neuromuscular disorders that occur in childhood. In this work, the design of a dedicated six-channel coil for detection of spinal pathologies at 1.5 Tesla is addressed. Numerical electromagnetic simulations were performed in order to evaluate their magnetic field performance at (63.6 MHz) 1.5 Tesla. The magnetic field uniformity as well as the RF penetration depth of the coil configurations was evaluated in order to find the best/optimized coil array configuration. The coil is comprised of three rows, one with 4 coil elements and two with only one coil element. Phantom and in vivo images were acquired with the six-channel pediatric coil array. The phantom images agree with the simulated data. In vivo images acquired with the 6-channel pediatric coil array have shown very good penetration depth and homogeneity, which allow better image quality throughout the whole FOV. In addition, the parallel imaging capabilities of the array allow the acceleration of the experiments avoiding possible motion artifacts.

  1. A six-channel pediatric coil array for detection of children spinal pathologies by MRI at 1.5 Tesla

    Science.gov (United States)

    López Terrones, Marcos Alonso; Solís-Nájera, Sergio Enrique

    2014-11-01

    Nowadays, magnetic resonance (MR) in Mexico has become a standard technique for clinical imaging. Although most of the times the MR systems contain only coils oriented for adults. Radiologists use these coils for children studies due to the non-availability of pediatric coils. Image quality is decreased due to the low signal to noise ratio delivered to the system. The development of RF coils is always focused towards increasing SNR and optimizing the RF penetration into the sample. Moreover, spinal pathologies in children, which are an important topic in pediatric care, cover congenital and neuromuscular disorders that occur in childhood. In this work, the design of a dedicated six-channel coil for detection of spinal pathologies at 1.5 Tesla is addressed. Numerical electromagnetic simulations were performed in order to evaluate their magnetic field performance at (63.6 MHz) 1.5 Tesla. The magnetic field uniformity as well as the RF penetration depth of the coil configurations was evaluated in order to find the best/optimized coil array configuration. The coil is comprised of three rows, one with 4 coil elements and two with only one coil element. Phantom and in vivo images were acquired with the six-channel pediatric coil array. The phantom images agree with the simulated data. In vivo images acquired with the 6-channel pediatric coil array have shown very good penetration depth and homogeneity, which allow better image quality throughout the whole FOV. In addition, the parallel imaging capabilities of the array allow the acceleration of the experiments avoiding possible motion artifacts.

  2. Performance of Helical Coil Heat Recovery Exchanger using Nanofluid as Coolant

    Directory of Open Access Journals (Sweden)

    Navid Bozorgan

    2015-07-01

    Full Text Available Nanofluids are expected to be a promising coolant condidate in chemical processes for heat transfer system size reduction. This paper focuses on reducing the number of turns in a helical coil heat recovery exchanger with a given heat exchange capacity in a biomass heating plant using γ-Al2O3/n-decane nanofluid as coolant. The nanofluid flows through the tubes and the hot n-hexane flows through the shell. The numerical results show that using nanofluid as coolant in a helical coil heat exchanger can reduce the manufacturing cost of the heat exchanger and pumping power by reducing the number of turns of the coil.

  3. A coil test facility for the cryogenic tests of the JT-60SA TF coils

    Energy Technology Data Exchange (ETDEWEB)

    Chantant, M., E-mail: michel.chantant@cea.fr [CEA/DSM/IRFM, F-13108 Saint Paul-lez-Durance (France); Genini, L. [CEA/DSM/Irfu CEA-Saclay, F-91191 Gif-sur-Yvette Cedex (France); Bayetti, P. [CEA/DSM/IRFM, F-13108 Saint Paul-lez-Durance (France); Millet, F. [CEA/DSM/INAC, F-38054 Grenoble Cedex (France); Wanner, M. [F4E, Broader Fusion Development Department Boltzmannstr.2, D-85748 Garching (Germany); Massaut, V. [SCK/CEN Boeretang 200 2400 Mol (Belgium); Corte, A. Della [ENEA CRE Frascati Via Enrico Fermi 45 CP65 00044 frascati Italy (Italy); Ardelier-Desage, F. [CEA/DSM/Irfu CEA-Saclay, F-91191 Gif-sur-Yvette Cedex (France); Catherine-Dumont, V. [CEA/DSM/IRFM, F-13108 Saint Paul-lez-Durance (France); Dael, A. [CEA/DSM/Irfu CEA-Saclay, F-91191 Gif-sur-Yvette Cedex (France); Decool, P. [CEA/DSM/IRFM, F-13108 Saint Paul-lez-Durance (France); Donati, A. [CEA/DSM/Irfu CEA-Saclay, F-91191 Gif-sur-Yvette Cedex (France); Duchateau, J.L.; Garibaldi, P.; Girard, S.; Hatchressian, J.C.; Fejoz, P. [CEA/DSM/IRFM, F-13108 Saint Paul-lez-Durance (France); Jamotton, P. [CSL-LIEGE Science Park, Avenue du Pre-Aily, 4031 Angleur (Belgium); Jourdheuil, L. [CEA/DSM/IRFM, F-13108 Saint Paul-lez-Durance (France); Juster, F.P. [CEA/DSM/Irfu CEA-Saclay, F-91191 Gif-sur-Yvette Cedex (France)

    2011-10-15

    In the framework of the Broader Approach Activities, the EU will deliver to Japan the 18 superconducting coils, which constitute the JT-60SA Toroidal field magnet. These 18 coils, manufactured by France and Italy, will be cold tested before shipping to Japan. For this purpose, the European Joint Undertaking for ITER, the Development of Fusion Energy ('Fusion for Energy', F4E) and the European Voluntary Contributors are collaborating to design and set-up a coil test facility (CTF) and to perform the acceptance test of the 18 JT-60SA Toroidal Field (TF) coils. The test facility is designed to test one coil at a time at nominal current and cryogenic temperature. The test of the first coil of each manufacturer includes a quench triggered by increasing the temperature. The project is presently in the detailed design phase.

  4. A Built for Purpose Micro-Hole Coiled Tubing Rig (MCTR)

    Energy Technology Data Exchange (ETDEWEB)

    Bart Patton

    2007-09-30

    This report will serve as the final report on the work performed from the contract period October 2005 thru April 2007. The project 'A Built for Purpose Microhole Coiled Tubing Rig (MCTR)' purpose was to upgrade an existing state-of-the-art Coiled Tubing Drilling Rig to a Microhole Coiled Tubing Rig (MCTR) capable of meeting the specifications and tasks of the Department of Energy. The individual tasks outlined to meet the Department of Energy's specifications are: (1) Concept and development of lubricator and tool deployment system; (2) Concept and development of process control and data acquisition; (3) Concept and development of safety and efficiency improvements; and (4) Final unit integration and testing. The end result of the MCTR upgrade has produced a unit capable of meeting the following requirements: (1) Capable of handling 1-inch through 2-3/8-inch coiled tubing (Currently dressed for 2-3/8-inch coiled tubing and capable of running up to 3-1/2-inch coiled tubing); (2) Capable of drilling and casing surface, intermediate, production and liner hole intervals; (3) Capable of drilling with coiled tubing and has all controls and installation piping for a top drive; (4) Rig is capable of running 7-5/8-inch range 2 casing; and (5) Capable of drilling 5,000 ft true vertical depth (TVD) and 6,000 ft true measured depth (TMD).

  5. Some aspects of the design of the ITER NBI Active Correction and Compensation Coils

    Energy Technology Data Exchange (ETDEWEB)

    Alonso, Javier, E-mail: javier.alonso@ciemat.es [CIEMAT, Laboratorio Nacional de Fusión, Avda. Complutense 40, 28040 Madrid (Spain); Barrera, Germán; Cabrera, Santiago; Rincón, Esther; Ríos, Luis; Soleto, Alfonso [CIEMAT, Laboratorio Nacional de Fusión, Avda. Complutense 40, 28040 Madrid (Spain); El-Ouazzani, Anass; Graceffa, Joseph; Shah, Darshan; Urbani, Marc [ITER Organization, Route de Vinon-sur-Verdon, CS 90 046, 13067 St Paul Lez Durance Cedex (France); Agarici, Gilbert [Fusion for Energy, Josep Pla 2, Torres Diagonal Litoral B3 – 07/08, 08019 Barcelona (Spain)

    2015-10-15

    Highlights: • Water cooled coil design. • Magnetic shielding of the plasma heating Neutral Beam Injection System. • Active coils for magnetic field compensation. - Abstract: The neutral beam system for ITER consists of two heating and current drive injectors plus a diagnostic neutral beam injector. The proposed physical plant layout allows for a possible third heating injector to be installed later. For correct operation of the beam source, and to avoid deflections of the charged fraction of the beam, the magnetic field along the beam path must be very low. To minimize the stray ITER field in critical areas (ion source, acceleration grids, neutralizer, residual ion dump), a Magnetic Field Reduction System will envelop the beam vessels and the high voltage transmission lines to ion source. This whole system comprises the Passive Magnetic Shield, a set of thick steel plates, and the Active Correction and Compensation Coils, a set of coils carrying currents which depend on the tokamak stray field. This paper describes the status of the coil design, terminals and support structures, as well as a description of the calculations carried out. Most coils are suitable for removal from their final position to be replaced in case of a fault. Conclusions of the chosen design highlight the strategy for the system feasibility.

  6. Computational characterization of parallel dimeric and trimeric coiled-coils using effective amino acid indices.

    Science.gov (United States)

    Li, Chen; Wang, Xiao-Feng; Chen, Zhen; Zhang, Ziding; Song, Jiangning

    2015-02-01

    The coiled-coil, which consists of two or more α-helices winding around each other, is a ubiquitous and the most frequently observed protein-protein interaction motif in nature. The coiled-coil is known for its straightforward heptad repeat pattern and can be readily recognized based on protein primary sequences, exhibiting a variety of oligomer states and topologies. Due to the stable interaction formed between their α-helices, coiled-coils have been under close scrutiny to design novel protein structures for potential applications in the fields of material science, synthetic biology and medicine. However, their broader application requires an in-depth and systematic analysis of the sequence-to-structure relationship of coiled-coil folding and oligomeric formation. In this article, we propose a new oligomerization state predictor, termed as RFCoil, which exploits the most useful and non-redundant amino acid indices combined with the machine learning algorithm - random forest (RF) - to predict the oligomeric states of coiled-coil regions. Benchmarking experiments show that RFCoil achieves an AUC (area under the ROC curve) of 0.849 on the 10-fold cross-validation test using the training dataset and 0.855 on the independent test using the validation dataset, respectively. Performance comparison results indicate that RFCoil outperforms the four existing predictors LOGICOIL, PrOCoil, SCORER 2.0 and Multicoil2. Furthermore, we extract a number of predominant rules from the trained RF model that underlie the oligomeric formation. We also present two case studies to illustrate the applicability of the extracted rules to the prediction of coiled-coil oligomerization state. The RFCoil web server, source codes and datasets are freely available for academic users at http://protein.cau.edu.cn/RFCoil/.

  7. MR angiography after coiling of intracranial aneurysms

    NARCIS (Netherlands)

    Schaafsma, J.D.

    2012-01-01

    Introduction Endovascular occlusion with detachable coils has become an alternative treatment to neurosurgical clipping of intracranial aneurysms over the last two decades. Its minimal invasiveness is the most important advantage of this treatment compared to clipping. The disadvantage of occlusion

  8. Effect of Inductive Coil Geometry and Current Sheet Trajectory of a Conical Theta Pinch Pulsed Inductive Plasma Accelerator

    Science.gov (United States)

    Hallock, Ashley K.; Polzin, Kurt A.; Bonds, Kevin W.; Emsellem, Gregory D.

    2011-01-01

    Results are presented demonstrating the e ect of inductive coil geometry and current sheet trajectory on the exhaust velocity of propellant in conical theta pinch pulsed induc- tive plasma accelerators. The electromagnetic coupling between the inductive coil of the accelerator and a plasma current sheet is simulated, substituting a conical copper frustum for the plasma. The variation of system inductance as a function of plasma position is obtained by displacing the simulated current sheet from the coil while measuring the total inductance of the coil. Four coils of differing geometries were employed, and the total inductance of each coil was measured as a function of the axial displacement of two sep- arate copper frusta both having the same cone angle and length as the coil but with one compressed to a smaller size relative to the coil. The measured relationship between total coil inductance and current sheet position closes a dynamical circuit model that is used to calculate the resulting current sheet velocity for various coil and current sheet con gura- tions. The results of this model, which neglects the pinching contribution to thrust, radial propellant con nement, and plume divergence, indicate that in a conical theta pinch ge- ometry current sheet pinching is detrimental to thruster performance, reducing the kinetic energy of the exhausting propellant by up to 50% (at the upper bound for the parameter range of the study). The decrease in exhaust velocity was larger for coils and simulated current sheets of smaller half cone angles. An upper bound for the pinching contribution to thrust is estimated for typical operating parameters. Measurements of coil inductance for three di erent current sheet pinching conditions are used to estimate the magnetic pressure as a function of current sheet radial compression. The gas-dynamic contribution to axial acceleration is also estimated and shown to not compensate for the decrease in axial electromagnetic acceleration

  9. Heterogeneous Superconducting Low-Noise Sensing Coils

    Science.gov (United States)

    Hahn, Inseob; Penanen, Konstantin I.; Ho Eom, Byeong

    2008-01-01

    A heterogeneous material construction has been devised for sensing coils of superconducting quantum interference device (SQUID) magnetometers that are subject to a combination of requirements peculiar to some advanced applications, notably including low-field magnetic resonance imaging for medical diagnosis. The requirements in question are the following: The sensing coils must be large enough (in some cases having dimensions of as much as tens of centimeters) to afford adequate sensitivity; The sensing coils must be made electrically superconductive to eliminate Johnson noise (thermally induced noise proportional to electrical resistance); and Although the sensing coils must be cooled to below their superconducting- transition temperatures with sufficient cooling power to overcome moderate ambient radiative heat leakage, they must not be immersed in cryogenic liquid baths. For a given superconducting sensing coil, this combination of requirements can be satisfied by providing a sufficiently thermally conductive link between the coil and a cold source. However, the superconducting coil material is not suitable as such a link because electrically superconductive materials are typically poor thermal conductors. The heterogeneous material construction makes it possible to solve both the electrical- and thermal-conductivity problems. The basic idea is to construct the coil as a skeleton made of a highly thermally conductive material (typically, annealed copper), then coat the skeleton with an electrically superconductive alloy (typically, a lead-tin solder) [see figure]. In operation, the copper skeleton provides the required thermally conductive connection to the cold source, while the electrically superconductive coating material shields against Johnson noise that originates in the copper skeleton.

  10. Umbilical coiling index & the perinatal outcome.

    Science.gov (United States)

    Devaru, Dakshayini; Thusoo, Meghna

    2012-02-01

    To correlate the perinatal outcome by noting the umbilical coiling index. The umbilical cords of the babies born to 100 women, who delivered either vaginally or by lower segment cesarean section, were examined and umbilical coiling index was calculated. There was significant correlation (p value 0.003) between the hypercoiled cords (UCI >90th percentile) and intrauterine growth restriction of the babies. Apgar score at 1 min UCI UCI UCI >10th percentile is associated with intra uterine growth restriction.

  11. NUMERICAL INVESTIGATION FOR THE HEAT TRANSFER ENHANCEMENT IN HELICAL CONE COILS OVER ORDINARY HELICAL COILS

    Directory of Open Access Journals (Sweden)

    M. M. ABO ELAZM

    2013-02-01

    Full Text Available This numerical research is introducing the concept of helical cone coils and their enhanced heat transfer characteristics compared to the ordinary helical coils. Helical and spiral coils are known to have better heat and mass transfer than straight tubes, which is attributed to the generation of a vortex at the helical coil known as Dean Vortex. The Dean number which is a dimensionless number used to describe the Dean vortex is a function of Reynolds number and the square root of the curvature ratio, so varying the curvature ratio for the same coil would vary the Dean number. Two scenarios were adopted to study the effect of changing the taper angle (curvature ratio on the heat transfer characteristics of the coil; the commercial software FLUENT was used in the investigation. It was found that Nusselt number increased with increasing the taper angle. A MATLAB code was built based on empirical correlation of Manlapaz and Churchill for ordinary helical coils to calculate the Nusselt number at each coil turn, and then calculate the average Nusselt number for the entire coil turns, the CFD simulation results were found acceptable when compared with the MATLAB results.

  12. Coiled coil in the stalk region of ncd motor protein is nonlocally sustained.

    Science.gov (United States)

    Ito, Mie; Morii, Hisayuki; Shimizu, Takashi; Tanokura, Masaru

    2006-03-14

    The dimeric structure of kinesin superfamily proteins plays an important role in their motile functions and characteristics. In this study, the coiled-coil-forming property of the stalk region (192-346) of Drosophila ncd, a C-terminal kinesin motor protein, was investigated by synthesizing various peptide fragments. The alpha helicity of a set of 46-residue peptides spanning the stalk region appeared too low to form a coiled-coil dimer, probably because of insufficient continuity of the hydrophobic residues at (a and d) core positions in amphipathic heptad repeats. On the other hand, several peptides with leucine residues introduced at core positions or with extensional sequences with high alpha helicity had an advantage in coiled-coil formation. When we analyzed the thermal and urea-induced unfolding of these dimeric peptides, we identified four domains having a relatively high potential to form coiled coils. Among them, three domains on the C-terminal side of the stalk region, i.e., (252-272), (276-330), and (336-346), were in the same heptad frame, although these potential coiled-coil domains were not self-sustaining individually. This is in sharp contrast to the fragment of human kinesin, (332-369), which has an extremely high tendency toward coiled-coil formation. One of the possible triggers for coiled-coil formation of the ncd stalk region may be the interaction between the motor domain and the C-terminal part of the stalk as previously revealed by X-ray crystallography. The residues, S331 and R335, seem to act as a breaking point for alpha-helix continuity. This would make the region (336-346), as the head-stalk joint, more flexible such as seen with a plus-end-directed kinesin, if this region had no interaction with the motor domain. These characteristic differences between ncd and kinesin suggest that the nonlocally sustained coiled coil of ncd is one of the factors important for minus-end-directed motility.

  13. pH sensitive coiled coils: a strategy for enhanced liposomal drug delivery

    Science.gov (United States)

    Reja, Rahi M.; Khan, Mohsina; Singh, Sumeet K.; Misra, Rajkumar; Shiras, Anjali; Gopi, Hosahudya N.

    2016-02-01

    Stimuli responsive controlled release from liposome based vesicles is a promising strategy for the site specific delivery of drugs. Herein, we report the design of pH sensitive coiled coils and their incorporation into the liposome as triggers for the controlled release of encapsulated drugs. The designed coiled coil peptides with the incorporation of environment sensitive fluorescent amino acids were found to be stable at physiological pH and unstructured while changing the pH of the environment to either acidic or basic. This pH dependent conformational switch of the coiled-coil polypeptides was exploited as triggers for the enhanced release of the encapsulated drug molecules from liposomes. The SEM, DLS and TEM analysis revealed the uniform morphology of the peptide liposome hybrid vesicles. Further, the drug encapsulated liposome internalization experiments with cancer cells revealed the enhanced release and accumulation of drugs in the acidic lysosomal compartments in comparison with liposomes without coiled coils.Stimuli responsive controlled release from liposome based vesicles is a promising strategy for the site specific delivery of drugs. Herein, we report the design of pH sensitive coiled coils and their incorporation into the liposome as triggers for the controlled release of encapsulated drugs. The designed coiled coil peptides with the incorporation of environment sensitive fluorescent amino acids were found to be stable at physiological pH and unstructured while changing the pH of the environment to either acidic or basic. This pH dependent conformational switch of the coiled-coil polypeptides was exploited as triggers for the enhanced release of the encapsulated drug molecules from liposomes. The SEM, DLS and TEM analysis revealed the uniform morphology of the peptide liposome hybrid vesicles. Further, the drug encapsulated liposome internalization experiments with cancer cells revealed the enhanced release and accumulation of drugs in the acidic

  14. A prospective feasibility trial of a novel intravascular catheter system with retractable coiled tip guidewire placed in difficult intravascular access (DIVA) patients in the Emergency Department.

    Science.gov (United States)

    Raio, Christopher; Elspermann, Robert; Kittisarapong, Natwalee; Stankard, Brendon; Bajaj, Tanya; Modayil, Veena; Nelson, Mathew; Chiricolo, Gerardo; Wie, Benjamin; Snock, Alexandra; Mackay, Michael; Ash, Adam

    2017-09-14

    The primary study objective was to evaluate insertion success rates. Secondary objectives included patient satisfaction, procedure time, complication rates, completion of therapy and dwell time of the novel AccuCath(®) 2.25″ Blood Control (BC) Catheter System (FDA approved) placed in difficult-access patients. This was a single-arm feasibility trial evaluating the AccuCath(®) 2.25″ BC Catheter System in a convenience sample of DIVA patients defined as at least two failed initial attempts or a history of difficult access plus the inability to directly visualize or palpate a target vein. All enrolled patients were 18 years of age or older. A total of 120 patients were enrolled. These patients had an average of 3.7 and median of 3 prior attempts at vascular access prior to AccuCath placement. Successful access was gained in 100% of the patients, 77% on the first attempt and all within three attempts; 88.5% of patients completed therapy, with the remaining 12.5% experiencing minor complications that required discontinuation of the catheter. The average patient satisfaction score on a 5-point Likert scale was highly positive at 4.6. Preliminary results show that the AccuCath(®) 2.25″ BC Catheter System has excellent success rates in gaining vascular access in an extremely difficult patient population. The device did not lead to any significant complications. Patients were also very satisfied with the procedure.

  15. Optimizing stellarator coil winding surfaces with Regcoil

    Science.gov (United States)

    Bader, Aaron; Landreman, Matt; Anderson, David; Hegna, Chris

    2017-10-01

    We show initial attempts at optimizing a coil winding surface using the Regcoil code [1] for selected quasi helically symmetric equilibria. We implement a generic optimization scheme which allows for variation of the winding surface to allow for improved diagnostic access and allow for flexible divertor solutions. Regcoil and similar coil-solving algorithms require a user-input winding surface, on which the coils lie. Simple winding surfaces created by uniformly expanding the plasma boundary may not be ideal. Engineering constraints on reactor design require a coil-plasma separation sufficient for the introduction of neutron shielding and a tritium generating blanket. This distance can be the limiting factor in determining reactor size. Furthermore, expanding coils in other regions, where possible, can be useful for diagnostic and maintenance access along with providing sufficient room for a divertor. We minimize a target function that includes as constraints, the minimum coil-plasma distance, the winding surface volume, and the normal magnetic field on the plasma boundary. Results are presented for two quasi-symmetric equilibria at different aspect ratios. Work supported by the US DOE under Grant DE-FG02-93ER54222.

  16. Construction and evaluation of a switch-tuned (13) C - (1) H birdcage radiofrequency coil for imaging the metabolism of hyperpolarized (13) C-enriched compounds.

    Science.gov (United States)

    Lim, Heeseung; Thind, Kundan; Martinez-Santiesteban, Francisco M; Scholl, Timothy James

    2014-11-01

    To construct a switch-tuned (13) C - (1) H birdcage radiofrequency (RF) coil system capable of metabolic imaging of hyperpolarized (13) C-enriched metabolic probes for co-registration with MRI morphology using protons. The switch-tuned coil was constructed using PIN diodes for rapid switching of the resonant frequency of the coil. Identical, single-tuned, (1) H and (13) C birdcage RF coils have also been constructed for comparison of imaging performance. A (13) C receive-only surface RF coil has been integrated with the switch-tuned coil for transmit-only, receive-only operation (TORO) to increase local (13) C signal for improved signal-to-noise ratio (SNR). The SNR achieved with the switch-tuned coil in transmit/receive mode was 87% that of the single-tuned (1) H coil. For (13) C imaging, the SNR for the switch-tuned coil was 55% that of the single-tuned (13) C coil. TORO operation of the switch-tuned coil with the surface coil increased SNR for by a factor of 4.2 over transmit/receive operation of the switch-tuned coil alone. A surface coil can be integrated with a switch-tuned (13) C - (1) H coil for (13) C TORO operation producing improved SNR. In vivo metabolic imaging of [1-(13) C]pyruvate in a rat model of glioma is demonstrated using TORO operation, which is co-registered with (1) H-imaged anatomy. © 2014 Wiley Periodicals, Inc.

  17. Promoted-Combustion Chamber with Induction Heating Coil

    Science.gov (United States)

    Richardson, Erin; Hagood, Richard; Lowery, Freida; Herald, Stephen

    2006-01-01

    An improved promoted-combustion system has been developed for studying the effects of elevated temperatures on the flammability of metals in pure oxygen. In prior promoted-combustion chambers, initial temperatures of metal specimens in experiments have been limited to the temperatures of gas supplies, usually near room temperature. Although limited elevated temperature promoted-combustion chambers have been developed using water-cooled induction coils for preheating specimens, these designs have been limited to low-pressure operation due to the hollow induction coil. In contrast, the improved promoted-combustion chamber can sustain a pressure up to 10 kpsi (69 MPa) and, through utilization of a solid induction coil, is capable of preheating a metal specimen up to its melting point [potentially in excess of 2,000 F (approximately equal to 1,100 C)]. Hence, the improved promoted combustion chamber makes a greater range of physical conditions and material properties accessible for experimentation. The chamber consists of a vertical cylindrical housing with an inner diameter of 8 in. (20.32 cm) and an inner height of 20.4 in. (51.81 cm). A threaded, sealing cover at one end of the housing can be unscrewed to gain access for installing a specimen. Inlet and outlet ports for gases are provided. Six openings arranged in a helical pattern in the chamber wall contain sealed sapphire windows for viewing an experiment in progress. The base of the chamber contains pressure-sealed electrical connectors for supplying power to the induction coil. The connectors feature a unique design that prevents induction heating of the housing and the pressure sealing surfaces; this is important because if such spurious induction heating were allowed to occur, chamber pressure could be lost. The induction coil is 10 in. (25.4 cm) long and is fitted with a specimen holder at its upper end. At its lower end, the induction coil is mounted on a ceramic base, which affords thermal insulation to

  18. Beam formation by ion optical system with slit finite length apertures.

    Science.gov (United States)

    Davydenko, V I; Ivanov, A A; Shikhovtsev, I V; Sorokin, A V; Uhlemann, R

    2008-02-01

    Ion beam formation by four-electrode ion optical system with slit finite length apertures is considered. Results of numerical simulations by two and three dimensional codes shown that accurate ion beam formation in slit aperture with semicircular ends can be provided. In experimental studies of beam formation in single slit ion optical system angular beam divergences of 0.53 degrees across the slit and 0.35 degrees along it were measured. Studied slit ion optical system will be used for ion beam formation in diagnostic neutral injector for large W-7X stellarator.

  19. Modeling Endovascular Coils as Heterogeneous Porous Media

    Science.gov (United States)

    Yadollahi Farsani, H.; Herrmann, M.; Chong, B.; Frakes, D.

    2016-12-01

    Minimally invasive surgeries are the stat-of-the-art treatments for many pathologies. Treating brain aneurysms is no exception; invasive neurovascular clipping is no longer the only option and endovascular coiling has introduced itself as the most common treatment. Coiling isolates the aneurysm from blood circulation by promoting thrombosis within the aneurysm. One approach to studying intra-aneurysmal hemodynamics consists of virtually deploying finite element coil models and then performing computational fluid dynamics. However, this approach is often computationally expensive and requires extensive resources to perform. The porous medium approach has been considered as an alternative to the conventional coil modeling approach because it lessens the complexities of computational fluid dynamics simulations by reducing the number of mesh elements needed to discretize the domain. There have been a limited number of attempts at treating the endovascular coils as homogeneous porous media. However, the heterogeneity associated with coil configurations requires a more accurately defined porous medium in which the porosity and permeability change throughout the domain. We implemented this approach by introducing a lattice of sample volumes and utilizing techniques available in the field of interactive computer graphics. We observed that the introduction of the heterogeneity assumption was associated with significant changes in simulated aneurysmal flow velocities as compared to the homogeneous assumption case. Moreover, as the sample volume size was decreased, the flow velocities approached an asymptotical value, showing the importance of the sample volume size selection. These results demonstrate that the homogeneous assumption for porous media that are inherently heterogeneous can lead to considerable errors. Additionally, this modeling approach allowed us to simulate post-treatment flows without considering the explicit geometry of a deployed endovascular coil mass

  20. Effect of Branching on Rod-coil Polyimides as Membrane Materials for Lithium Polymer Batteries

    Science.gov (United States)

    Meador, Mary Ann B.; Cubon, Valerie A.; Scheiman, Daniel A.; Bennett, William R.

    2003-01-01

    This paper describes a series of rod-coil block co-polymers that produce easy to fabricate, dimensionally stable films with good ionic conductivity down to room temperature for use as electrolytes for lithium polymer batteries. The polymers consist of short, rigid rod polyimide segments, alternating with flexible, polyalkylene oxide coil segments. The highly incompatible rods and coils should phase separate, especially in the presence of lithium ions. The coil phase would allow for conduction of lithium ions, while the rigid rod phase would provide a high degree of dimensional stability. An optimization study was carried out to study the effect of four variables (degree of branching, formulated molecular weight, polymerization solvent and lithium salt concentration) on ionic conductivity, glass transition temperature and dimensional stability in this system.

  1. Simplified approach of predictions of thermal performance for counterflow fully-wet cooling coil

    Science.gov (United States)

    Mansour, M. Khamis; Hassab, M. A.

    2017-06-01

    An innovative correlation associating the effectiveness (ɛ) of the fully-wet cooling coil with its number of transfer unit and vice versa is presented in this work. The thermal performance and design of fully-wet cooling coil can be predicted simply through those correlations. The analytical model was constructed on a basis of solving heat and mass transfer equation "enthalpy potential method" simultaneously coupled with the energy equations. The validity of the new correlations was tested by experimental reported in the available literature. A good agreement with deviation less than 10% was found during the comparison between the output results of the new correlations and those obtained from the literature. The main benefits of those new correlations (1) Its simplicity to be implemented through simple calculations of input parameters (2) It provides helpful guidelines for optimization of wet cooling coil performance during its operation coupling with the thermal system at which the coil is integrated.

  2. Allosteric effects in coiled-coil proteins folding and lanthanide-ion binding.

    Science.gov (United States)

    Samiappan, Manickasundaram; Alasibi, Samaa; Cohen-Luria, Rivka; Shanzer, Abraham; Ashkenasy, Gonen

    2012-10-07

    Peptide sequences modified with lanthanide-chelating groups at their N-termini, or at their lysine side chains, were synthesized, and new Ln(III) complexes were characterized. We show that partial folding of the conjugates to form trimer coiled coil structures induces coordination of lanthanides to the ligand, which in turn further stabilizes the 3D structure.

  3. Folding Topology of a Short Coiled-Coil Peptide Structure Templated by an Oligonucleotide Triplex

    DEFF Research Database (Denmark)

    Lou, Chenguang; Christensen, Niels Johan; Martos Maldonado, Manuel Cristo

    2017-01-01

    The rational design of a well-defined protein-like tertiary structure formed by small peptide building blocks is still a formidable challenge. By using peptide-oligonucleotide conjugates (POC) as building blocks, we present the self-assembly of miniature coiled-coil α-helical peptides guided...

  4. Antiparallel Four-Stranded Coiled Coil Specified by a 3-3-1 Hyrdrophobic Heptad Repeat

    Energy Technology Data Exchange (ETDEWEB)

    Deng,Y.; Liu, J.; Zheng, Q.; Eliezer, D.; Kallenbach, N.; Lu, M.

    2006-01-01

    Coiled-coil sequences in proteins commonly share a seven-amino acid repeat with nonpolar side chains at the first (a) and fourth (d) positions. We investigate here the role of a 3-3-1 hydrophobic repeat containing nonpolar amino acids at the a, d, and g positions in determining the structures of coiled coils using mutants of the GCN4 leucine zipper dimerization domain. When three charged residues at the g positions in the parental sequence are replaced by nonpolar alanine or valine side chains, stable four-helix structures result. The X-ray crystal structures of the tetramers reveal antiparallel, four-stranded coiled coils in which the a, d, and g side chains interlock in a combination of knobs-into-knobs and knobs-into-holes packing. Interfacial interactions in a coiled coil can therefore be prescribed by hydrophobic-polar patterns beyond the canonical 3-4 heptad repeat. The results suggest that the conserved, charged residues at the g positions in the GCN4 leucine zipper can impart a negative design element to disfavor thermodynamically more stable, antiparallel tetramers.

  5. Golgi coiled-coil proteins contain multiple binding sites for Rab family G proteins

    NARCIS (Netherlands)

    Sinka, Rita; Gillingham, Alison K.; Kondylis, Vangelis; Munro, Sean

    2008-01-01

    Vesicles and other carriers destined for the Golgi apparatus must be guided to the correct cisternae. Golgins, long coiled-coil proteins that localize to particular Golgi subdomains via their C termini, are candidate regulators of vesicle sorting. In this study, we report that the GRIP domain

  6. Performance Comparison of 1.5 T Endorectal Coil MRI with Non-Endorectal Coil 3.0 T MRI in Patients with Prostate Cancer

    Science.gov (United States)

    Shah, Zarine K.; Elias, Saba N.; Abaza, Ronney; Zynger, Debra L.; DeRenne, Lawrence A.; Knopp, Michael V.; Guo, Beibei; Schurr, Ryan; Heymsfield, Steven B.; Jia, Guang

    2015-01-01

    Rationale and Objectives To compare prostate morphology, image quality, and diagnostic performance of 1.5 T endorectal coil MRI and 3.0 T non-endorectal coil MRI in patients with prostate cancer. Materials and Methods MR images obtained of 83 patients with prostate cancer using 1.5 T MRI systems with an endorectal coil were compared to images collected from 83 patients with a 3.0 T MRI system. Prostate diameters were measured and image quality was evaluated by one ABR-certified radiologist (Reader 1) and one ABR-certified diagnostic medical physicist (Reader 2). The likelihood of the peripheral zone cancer presence in each sextant and local extent were rated and compared with histopathologic findings. Results Prostate anterior-posterior diameter measured by both readers was significantly shorter with 1.5 T endorectal MRI than with 3.0 T MRI. The overall image quality score difference was significant only for Reader 1. Both readers found that the two MRI systems provided similar diagnostic accuracy in cancer localization, extraprostatic extension, and seminal vesicle involvement. Conclusion Non-endorectal coil 3.0 T MRI provides prostate images that are natural in shape and that have comparable image quality to those obtained at 1.5 T with an endorectal coil, but not superior diagnostic performance. These findings suggest an opportunity exists for improving technical aspects of 3.0 T prostate MRI. PMID:25579637

  7. Do carotid MR surface coils affect PET quantification in PET/MR imaging?

    Energy Technology Data Exchange (ETDEWEB)

    Willemink, Martin J; Eldib, Mootaz [Translational and Molecular Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, NY (United States); Leiner, Tim [Department of Radiology, University Medical Center Utrecht, Utrecht (Netherlands); Fayad, Zahi A; Mani, Venkatesh [Translational and Molecular Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, NY (United States)

    2015-05-18

    To evaluate the effect of surface coils for carotid MR imaging on PET quantification in a clinical simultaneous whole-body PET/MR scanner. A cylindrical phantom was filled with a homogeneous 2L water-FDG mixture at a starting dose of 301.2MBq. Clinical PET/MR and PET/CT systems were used to acquire PET-data without a coil (reference standard) and with two carotid MRI coils (Siemens Special Purpose 8-Channel and Machnet 4-Channel Phased Array). PET-signal attenuation was evaluated with Osirix using 51 (PET/MR) and 37 (PET/CT) circular ROIs. Mean and maximum standardized uptake values (SUVs) were quantified for each ROI. Furthermore, SUVs of PET/MR and PET/CT were compared. For validation, a patient was scanned with an injected dose of 407.7MBq on both a PET/CT and a PET/MR system without a coil and with both coils. PET/MR underestimations were -2.2% (Siemens) and -7.8% (Machnet) for SUVmean, and -1.2% (Siemens) and -3.3% (Machnet) for SUVmax, respectively. For PET/CT, underestimations were -1.3% (Siemens) and -1.4% (Machnet) for SUVmean and -0.5% (both Siemens and Machnet) for SUVmax, respectively using no coil data as reference. Except for PET/CT SUVmax values all differences were significant. SUVs differed significantly between PET/MR and PET/CT with SUVmean values of 0.51-0.55 for PET/MR and 0.68-0.69 for PET/CT, respectively. The patient examination showed that median SUVmean values measured in the carotid arteries decreased from 0.97 without a coil to 0.96 (Siemens) and 0.88 (Machnet). Carotid surface coils do affect attenuation correction in both PET/MR and PET/CT imaging. Furthermore, SUVs differed significantly between PET/MR and PET/CT.

  8. An unusual case of intrarenal coiled and ruptured guidewire.

    Science.gov (United States)

    Manassero, Francesca; Ortori, Simona; Gabellieri, Cristina; Gabelloni, Michela; Selli, Cesare

    2015-03-31

    To the best of our knowledge there are only 3 reports of fractured guidewires inside the pelvicalyceal system, successfully removed with endourology techniques, and this is the first one presenting a tightly coiled intraparenchymal section. A 59-year-old woman was hospitalized for surgical treatment of a right kidney of reduced size. Past history revealed pyelolithotomy for a staghorn stone 14 months earlier at another Institution with subsequent ureteral obstruction, one failed attempt at ureteral double-J catheter insertion and one failed attempt at percutaneous nephrostomy placement 5 months postoperatively. Another nephrostomy was placed, but left indwelling briefly. CT scan demonstrated a small-size kidney with residual stone fragments and presence of a "device" in the lower pole. The tapered distal extremity of an hydrophilic guidewire, with a tightly coiled central section wedged in the renal tissue was found inside the nephrectomy specimen. While the Radiologist who read the CT scan hypothesized that the "device" was a fragment of double-J ureteral stent or nephrostomy catheter, it consisted of the hydrophilic extremity of a guidewire, broken during a previous attempt at nephrostomy placement. Perirenal fibrosis and inappropriate angle between the needle and the lower calyx are the likely causes of guidewire coiling during its advancement and subsequent rupture during withdrawal. Urologists must be aware that, although percutaneous nephrostomy has a very high technical success rate, unusual complications like guidewire fracture may occur, and that modern imaging techniques can provide an accurate picture of this condition.

  9. Hinderin, a five-domains protein including coiled-coil motifs that binds to SMC3

    Directory of Open Access Journals (Sweden)

    Ghiselli Giancarlo

    2005-01-01

    Full Text Available Abstract Background The structural maintenance of chromosome proteins SMC1 and SMC3 play an important role in the maintenance of chromosomal integrity by preventing the premature separation of the sister chromatids at the onset of anaphase. The two proteins are constitutive components of the multimeric complex cohesin and form dimers by interacting at their central globular regions. Results In order to identify proteins that by binding to SMC3 may interfere with the protein dimerization process, a human cDNA library was screened by the yeast two-hybrid system by using the hinge region of SMC3 as bait. This has lead to the identification of Hinderin, a novel five domains protein including two coiled-coil motifs and sharing a strikingly structural similarity to the SMC family of proteins. Hinderin is ubiquitously expressed in human tissues. Orthologue forms of the protein are present in other vertebrates but not in lower organisms. A mapping of the interaction sites revealed that the N- and C-terminal globular domains mediate the binding of Hinderin to SMC3. Hinderin/SMC3 complexes could be recovered by immunoprecipitation from cell lysates using an anti-SMC3 antibody, thus demonstrating that the two proteins interact in vivo. On the contrary, Hinderin did not interact with SMC1. In vivo the rate of SMC1/SMC3 interaction was decreased by the ectopic expression of Hinderin. Conclusions Hinderin is a novel binding partner of SMC3. Based on its ability to modulate SMC1/SMC3 interaction we postulate that Hinderin affects the availability of SMC3 to engage in the formation of multimeric protein complexes.

  10. Wireless power transmission applied the mutual coupling between coils

    Science.gov (United States)

    Furuta, Kenta; Baba, Ryouichi; Shun, Endo; Nunokawa, Kazuki; Takahashi, Wataru; Maruyama, Tamami

    2017-07-01

    Recently, the studies of wireless power transfer (WPT) to electric vehicles in motion on the snow-piled road have been reported. In WPT by magnetic field resonance method, transmission coefficient S21, which is one of the scattering parameters, from transmission coil to received coil are degraded because of misalignment of transmitting and receiving coil, the distance between these coils, and the effects of the ice and snow. This paper adopts parasitic coil as a solution to improve the reception power in which the parasitic coil is inserted between transmitting and receiving coils. Analysis and experimental results show that parasitic coil could improve the value of S21 by 15 dB using mutual coupling. LED could be light by this solution when the distance between transmitting and receiving coils are 150 mm.

  11. Critical current studies of a HTS rectangular coil

    Energy Technology Data Exchange (ETDEWEB)

    Zhong, Z. [Department of Engineering, University of Cambridge (United Kingdom); Chudy, M., E-mail: Michal.chudy@stuba.sk [Graduate School of Technology Management, University of Pretoria (South Africa); Institute of Power and Applied Electrical Engineering, Slovak University of Technology in Bratislava (Slovakia); Ruiz, H.S. [Department of Engineering, University of Leicester, Leicester LE1 7RH (United Kingdom); Zhang, X.; Coombs, T. [Department of Engineering, University of Cambridge (United Kingdom)

    2017-05-15

    Highlights: • Unique square pancake coil was manufactured. • Measurements in relatively high magnetic field were performed. • Different sections of the coil were characterized. • Parts of the coil which are limiting critical current were identified. - Abstract: Nowadays, superconducting high field magnets are used in numerous applications due to their superior properties. High temperature superconductors (HTS) are usually used for production of circular pancake or racetrack coils. However different geometries of HTS coils might be required for some specific applications. In this study, the HTS coil wound on a rectangular frame was fully characterized in homogeneous DC background field. The study contains measurements of critical current angular dependencies. The critical current of the entire coil and two selected strands under different magnitudes and orientations of external magnetic fields are measured. The critical regions of the coil in different angular regimes are determined. This study brings better understanding of the in- field performance of HTS coils wound on frames with right-angles.

  12. Improving Coil Designs for the HSX Stellarator with FOCUS

    Science.gov (United States)

    Kruger, Thomas; Zhu, Caoxiang; Bader, Aaron; Singh, Luquant; Anderson, David

    2017-10-01

    We use the FOCUS code to generate improved coil sets for the HSX stellarator. FOCUS produces curves in 3D space to best reproduce a target plasma equilibrium. Unlike similar codes, the curves in FOCUS are not constrained to lie on a user-defined 2D surface. Therefore FOCUS can inherently solve problems such as determining the optimum coil-plasma distance for a given equilibrium. By adjusting the relative weights between a) the match to the plasma boundary, and b) the average coil length. We present the results from FOCUS where we attempt to improve the coil set by moving coils further away to reduce coil ripple, decreasing the number of coils to improve accessibility, and better matching the target plasma surface. We also present results of alternative coil designs with helical and saddle coils. Work supported by the US DOE under Grant DE-FG02-93ER54222 and UW Sorden account 233PRJ65ZM.

  13. Bare platinum coils vs. HydroCoil in the treatment of unruptured intracranial aneurysms-A single center randomized controlled study.

    Science.gov (United States)

    Poncyljusz, Wojciech; Zarzycki, Artur; Zwarzany, Łukasz; Burke, Thomas H

    2015-02-01

    The HydroCoil Embolic System (HES) was developed to improve aneurysm filling to provide superior occlusion efficacy, reduce retreatment rates and enhance long-term durability. We performed a randomized clinical trial to compare the effectiveness of bare platinum coils (BPC) vs. HES for unruptured intracranial aneurysms. Ninety-six patients underwent endovascular coiling of unruptured intracranial aneurysms. The aneurysms were randomized equally to receive BPC or HES. Immediate angiographic results, number of coils used and complications were evaluated and all cases had 12-month follow-up angiography. Immediate angiographic results demonstrated that 84.0% of aneurysms treated with HES were completely occluded compared to 76.1% of aneurysms treated with BPC (p=0.3310). The mean number of coils utilized to fill the aneurysm was significantly lower in the HES arm (5.04 vs. 6.93). Additional adjunctive techniques were performed in 51.1% of all cases. There were seven patients (7.3%) with postoperative complications during the study period. The coil type used during the treatment did not demonstrate any significant differences on the overall recurrence rate (HES - 18.0%, BPC - 17.4%, p=0.9712). There was a statistically significant difference in the aneurysm size and the neck width between completely occluded aneurysms and aneurysms with residual flow in both immediate angiographic and mid-term follow-up. Overall, aneurysm size and neck width are the main risk factors associated with aneurysm recurrence. HES compared to BPC required less total number of coils to provide a denser aneurysm filling. However, there were equivocal results with both devices, at the mid-term angiographic follow-up. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  14. Simulation of defects on contactor coil

    Science.gov (United States)

    Erdei, Z.; Horgos, M.; Zetea, O.

    2017-05-01

    By definition, a coil is an electrical passive device, which have two terminals, use in electrical circuits to keep the power in magnetic field or to detect the magnetic fields. In winding process, is possible to appear different defects, or issues which can cause in time problems in functionality of products. In this paper, we will analyze two types of defectives what were observed in winding process. In first type of defect, some wires of beginning of winding remain out of normal winding, and the wires are visible from outside, and in second type of defect, same beginning of winding remain inside of coil, under the normal winding, not in correct position. For simulation, we will used an assembly compose by anchor, electromagnet and coil. Those are parts of contactor.

  15. Coupled wave model for large magnet coils

    Science.gov (United States)

    Gabriel, G. J.

    1980-01-01

    A wave coupled model based on field theory is evolved for analysis of fast electromagnetic transients on superconducting coils. It is expected to play a useful role in the design of protection methods against damage due to high voltages or any adverse effects that might arise from unintentional transients. The significant parameters of the coil are identified to be the turn to turn wave coupling coefficients and the travel time of an electromagnetic disturbance around a single turn. Unlike circuit theoretic inductor, the coil response evolves in discrete steps having durations equal to this travel time. It is during such intervals that high voltages are likely to occur. The model also bridges the gap between the low and high ends of the frequency spectrum.

  16. Modelling of lossy coils using fractional derivatives

    Science.gov (United States)

    Schäfer, Ingo; Krüger, Klaus

    2008-02-01

    Coils exposed to eddy current and hysteresis losses are conventionally described by an inductance with equivalent core-loss resistance connected in parallel. The value of the equivalent core-loss resistance depends on the working frequency and the external wiring. Thus the model is less than satisfactory. The authors propose to describe loss inductance using fractional derivatives containing both a loss term and a storage term. After introducing the theory of fractional derivatives, the operating mode of the fractional coil model is explained by the example of an RLC oscillating circuit. Subsequent measurements of a series resonant circuit with a lossy coil impressively confirm the theoretical model with regard to both the frequency and time domains.

  17. Determination of Coil Inductances Cylindrical Iron Nucleus

    Directory of Open Access Journals (Sweden)

    Azeddine Mazouz

    2014-03-01

    Full Text Available The paper describes the investigation and development of a structure and performance characteristics of a coil iron nucleus cylindrical (C.I.N.C. The coil iron nucleus cylindrical is a nonlinear electro radio in which the moving of the nucleus in a sense or in other causes change in inductance and can reach extreme values at the superposition of nucleus and coil centers. The variation of the inductance and the degree of freedom of movement of the nucleus can lead to a device with electromechanical conversion The aim of this paper is the determination and visualization of self inductance and mutual of the (C.I.N.C based on geometric dimensions and the displacement of the nucleus.  

  18. Acoustic rainbow trapping by coiling up space

    KAUST Repository

    Ni, Xu

    2014-11-13

    We numerically realize the acoustic rainbow trapping effect by tapping an air waveguide with space-coiling metamaterials. Due to the high refractive-index of the space-coiling metamaterials, our device is more compact compared to the reported trapped-rainbow devices. A numerical model utilizing effective parameters is also calculated, whose results are consistent well with the direct numerical simulation of space-coiling structure. Moreover, such device with the capability of dropping different frequency components of a broadband incident temporal acoustic signal into different channels can function as an acoustic wavelength division de-multiplexer. These results may have potential applications in acoustic device design such as an acoustic filter and an artificial cochlea.

  19. An active homopolar magnetic bearing with high temperature superconductor (HTS) coils and ferromagnetic cores

    Science.gov (United States)

    Brown, G. V.; Dirusso, E.; Provenza, A. J.

    1995-01-01

    A proof-of-feasibility demonstration showed that high temperature superconductor (HTS) coils can be used in a high-load, active magnetic bearing in liquid nitrogen. A homopolar radial bearing with commercially wound HTS (Bi 2223) bias and control coils produced over 200 lb (890 N) radial load capacity (measured non-rotating) and supported a shaft to 14000 rpm. The goal was to show that HTS coils can operate stably with ferromagnetic cores in a feedback controlled system at a current density similar to that in Cu in liquid nitrogen. Design compromises permitted use of circular coils with rectangular cross section. Conductor improvements will eventually permit coil shape optimization, higher current density and higher bearing load capacity. The bias coil, wound with non-twisted, multifilament HTS conductor, required negligible power to carry its direct current. The control coils were wound with monofilament HTS sheathed in Ag. These dissipated negligible power for direct current (i.e. for steady radial load components). When an alternating current (AC) was added, the AC component dissipated power which increased rapidly with frequency and quadratically with AC amplitude. In fact at frequencies above about 2 hz, the effective resistance of the control coil conductor actually exceeds that of the silver which is in electrical parallel with the oxide superconductor. This is at least qualitatively understandable in the context of a Bean-type model of flux and current penetration into a Type II superconductor. Fortunately the dynamic currents required for bearing stability are of small amplitude. These results show that while twisted multifilament conductor is not needed for stable levitation, twisted multifilaments will be required to reduce control power for sizable dynamic loads, such as those due to unbalance.

  20. An active magnetic bearing with high T(sub c) superconducting coils and ferromagnetic cores

    Science.gov (United States)

    Brown, G. V.; Dirusso, E.; Provenza, A. J.

    1995-01-01

    A proof-of-feasibility demonstration showed that high-T(sub c) superconductor (HTS) coils can be used in a high-load, active magnetic bearing in LN2. A homopolar radial bearing with commercially wound HTS (Bi 2223) bias and control coils produced over 890 N (200 lb) radial load capacity (measured non-rotatings) and supported a shaft to 14,000 rpm. The goal was to show that HTS coils can operate stably with ferromagnetic cores in a feedback controlled system at a current density similar to that for Cu in LN2. The bias coil, wound with non-twisted, multifilament HTS conductor, dissipated negligible power for its direct current. The control coils, wound with monofilament HTS sheathed in Ag, dissipated negligible power for direct current. AC losses increased rapidly with frequency and quadratically with AC amplitude. Above about 2 Hz, the effective resistance of the control coils exceeds that of the silver which is in electrical parallel with the oxide superconductor. These results show that twisted multifilament conductor is not needed for stable levitation but may be desired to reduce control power for sizable dynamic loads.

  1. Warming up to coil : inroads slowly being made in the US

    Energy Technology Data Exchange (ETDEWEB)

    Macedo, R.

    2007-11-15

    Coiled tubing drilling is now gaining a foothold in the United States oil and gas industry. This article discussed new coiled tubing drilling rigs designed by the Xtreme Drilling Corporation. Use of the XTC 400 rigs at a play in Kansas has resulted in cost savings of between 25 to 35 per cent per well. The XTC 400 coiled tubing rigs were able to drill, install casing, handle tools and provide logging information. The design has the largest coiled tubing injection system in the world. The rigs are able to drill with both jointed pipe and coil applications, and have reduced connection times. Recent analyses have demonstrated that with additional improvements in technology, coiled tubing drilling will be used in 28 per cent of all 0 to 5000 foot wells. Annual savings are predicted to reach over $6 billion using the technology. It was concluded that use of the technology is expected to result in the recovery of 11 trillion cubic feet of non-conventional gas. 1 ref., 3 figs.

  2. Analysis and Optimization of Four-Coil Planar Magnetically Coupled Printed Spiral Resonators

    Directory of Open Access Journals (Sweden)

    Sadeque Reza Khan

    2016-08-01

    Full Text Available High-efficiency power transfer at a long distance can be efficiently established using resonance-based wireless techniques. In contrast to the conventional two-coil-based inductive links, this paper presents a magnetically coupled fully planar four-coil printed spiral resonator-based wireless power-transfer system that compensates the adverse effect of low coupling and improves efficiency by using high quality-factor coils. A conformal architecture is adopted to reduce the transmitter and receiver sizes. Both square architecture and circular architectures are analyzed and optimized to provide maximum efficiency at a certain operating distance. Furthermore, their performance is compared on the basis of the power-transfer efficiency and power delivered to the load. Square resonators can produce higher measured power-transfer efficiency (79.8% than circular resonators (78.43% when the distance between the transmitter and receiver coils is 10 mm of air medium at a resonant frequency of 13.56 MHz. On the other hand, circular coils can deliver higher power (443.5 mW to the load than the square coils (396 mW under the same medium properties. The performance of the proposed structures is investigated by simulation using a three-layer human-tissue medium and by experimentation.

  3. Position Dependence of Fractional Derivative Models for Loudspeaker Voice Coils with Lossy Inductance

    DEFF Research Database (Denmark)

    King, Alexander Weider; Agerkvist, Finn T.

    2017-01-01

    Commonly used models of moving-coil loudspeaker voice coils, which include effects from eddy current losses, are either inaccurate or contain an abundance of parameters, and are difficult to extend to the nonlinear domain. On the contrary, fractional derivative models accurately describe the freq......Commonly used models of moving-coil loudspeaker voice coils, which include effects from eddy current losses, are either inaccurate or contain an abundance of parameters, and are difficult to extend to the nonlinear domain. On the contrary, fractional derivative models accurately describe...... the frequency and position dependence of the lossy inductance, with meaningful connections to the underlying physics, while keeping the number of parameters low. These fractional derivatives are also compatible with state-space polynomial methods of modeling nonlinear behavior. It is shown that the fractional...... order derivative approaches a value of 1, corresponding to an ideal inductance, when the voice coil is completely outside the magnetic system. Finally, the developed model reveals details about the effect of conductive voice coil formers...

  4. Potted fiber optic sensor coil by novel adhesives for high-stability FOG

    Science.gov (United States)

    Bi, Congzhi; Sun, Guofei; Wu, Yanji; Zhao, Keyong

    2011-08-01

    A sensor coil for a fiber optic gyroscope is fabricated and potted by a novel adhesive. The kind of adhesive can match to the outer jacket of polarization maintaining fiber (PMF) to improve the potting uniformity of the whole coil, so that it could contribute to reduce the temperature-induced strain and the strain differential between the clockwise and counterclockwise-wound portions of a symmetrically-wound fiber coil, i.e. temperature-dependent Shupe stress effect. The adhesive is a compound comprising acrylate and polyurethane, which can avoid the non-wetting problem resulting from the two different types of compounds. The adhesive is a low viscosity system which exhibits a prolonged work life, an adjustable hardness. Specially, the potting compound with a low glass transition temperature (Tg), down to the lower temperature -60°C, remain stable modulus during thermal cycling between -40°C and 60°C. The potted fiber optic sensor coil with a smooth surface is clear and regular due to the completely curable adhesive. The extinction coefficient of the fiber optic sensor coil can reflect the additional stress produced by the adhesives through comparing before potting with after potting. the potted fiber optic sensor coil shows excellent bias characteristics and temperature performance.

  5. Multiple coil closure of isolated aortopulmonary collateral

    Directory of Open Access Journals (Sweden)

    Padhi Sumanta

    2010-01-01

    Full Text Available A 7-month-old girl was diagnosed to have large aortopulmonary collateral during evaluation for congestive heart failure. There was no other evidence of cardiopulmonary disease. The collateral was successfully closed with multiple coils delivered sequentially. We describe the issues associated during closure of the aortopulmonary collateral in this case. To the best of our knowledge, this is the first reported case of large aortopulmonary collateral presenting with heart failure in an otherwise structurally normal heart that was closed successfully with multiple coils delivered sequentially.

  6. Magnetic measurement with coils and wires

    CERN Document Server

    Walckiers, L

    2010-01-01

    Accelerator magnets steer particle beams according to the field integrated along the trajectory over the magnet length. Purpose-wound coils measure these relevant parameters with high precision and complement efficiently point-like measurements performed with Hall plates or NMR probes. The rotating coil method gives a complete two-dimensional description of the magnetic field in a series of normal and skew multipoles. The more recent single stretched wire is a reference instrument to measure field integrals and to find the magnetic axis.

  7. A HTS dipole insert coil constructed

    CERN Document Server

    Ballarino, A; Rey, J M; Stenvall, A; Sorbi, M; Tixador, P

    2013-01-01

    This report is the deliverable report 7.4.1 “A HTS dipole insert coil constructed“. The report has three parts: “Design report for the HTS dipole insert”, “One insert pancake prototype coil constructed with the setup for a high field test”, and “All insert components ordered”. The three report parts show that, although the insert construction will be only completed by end 2013, all elements are present for a successful completion and that, given the important investments done by the participants, there is a full commitment of all of them to finish the project

  8. Self-assembling segmented coiled tubing

    Energy Technology Data Exchange (ETDEWEB)

    Raymond, David W.

    2016-09-27

    Self-assembling segmented coiled tubing is a concept that allows the strength of thick-wall rigid pipe, and the flexibility of thin-wall tubing, to be realized in a single design. The primary use is for a drillstring tubular, but it has potential for other applications requiring transmission of mechanical loads (forces and torques) through an initially coiled tubular. The concept uses a spring-loaded spherical `ball-and-socket` type joint to interconnect two or more short, rigid segments of pipe. Use of an optional snap ring allows the joint to be permanently made, in a `self-assembling` manner.

  9. Heat dissipation research on the water-cooling channel of HL-2M in-vessel coils

    Energy Technology Data Exchange (ETDEWEB)

    Jiang, J., E-mail: jiangjiaming@swip.ac.cn; Liu, Y.; Chen, Q.; Ji, X.Q.

    2017-04-15

    Highlights: • The joule heat of in-vessel coils is very difficult to dissipate inside HL-2M vacuum vessel. • Heat dissipation model of the coil includes the joule heat model, the heat conduction model and the heat transfer model. • The CFD analysis has been done for the coil-water cooling, with comparison with the date of theoretical analysis and experiment. • The result shows water-cooling channel is good for the joule heat transfer and taken away. - Abstract: HL-2M in-vessel coils are positioned in high vacuum circumstance, and they will generate joule heat when they carry 15 kA electrical current, but joule heat is very difficult to dissipate in vacuum, so a hollow cable with 8 mm inner diameter is design as water-cooling channel for heat convection. By using the methods of the theoretical derivation, together with CFD numeric simulation method and the experiment of the heat transfer, the water channel of HL-2M in-vessel coils has been studied, and the temperature of HL-2M in-vessel coils under different cooling water flow rates is obtained and acceptable. Simultaneously, the external cooling water supply system parameters for the water-cooling channel of the coils are estimated. Three methods’ results are in good agreement; the theoretical model is verified and could be popularized for predicting the temperature rise of HL-2M in-vessel coils.

  10. Magnetic diagnostics at Wendelstein 7-X

    Energy Technology Data Exchange (ETDEWEB)

    Rahbarnia, K.; Andreeva, T.; Endler, M.; Hathiramani, D.; Grulke, O.; Neuner, U.; Svensson, J.; Thomsen, H.; Geiger, J.; Werner, A. [Max Planck Institute for Plasma Physics, Greifswald (Germany); Cardella, A. [JT-60SA project, F4E c/o IPP, Garching (Germany); Carvalho, B. [Instituto de Plasmas e Fusao Nuclear Instituto Superior Tecnico, Lisbon (Portugal)

    2016-07-01

    An arrangement of magnetic sensors has been installed at the stellarator Wendelstein 7-X (W7-X) including over 300 individual 3D shaped sensors like diamagnetic loops, Rogowski, Saddle and Mirnov coils. Future long pulse operation of up to 1800 s demands an optimization of materials, thermal shielding and signal integration accuracy. The main objectives are the reconstruction of magnetic equilibria and monitoring the diamagnetic plasma energy. Generally, in stellarators a toroidal current drive is not necessary to maintain confinement. Minimization of toroidal currents is in fact one of the major optimization criteria of W7-X. It will be investigated by continuous and segmented Rogowski coils and Saddle coils measuring e.g. bootstrap and Pfirsch-Schlueter currents and their spatial distributions. A set of 125 toroidally and poloidally arranged Mirnov coils will give information on MHD and Alfven mode activity and edge localized modes (ELMs). A detailed overview of the magnetic diagnostic system is outlined, and initial results obtained during the first operation phase of W7-X are presented.

  11. A Quiet Gradient-Coil Set Employing Optimized, Force-Shielded, Distributed Coil Designs

    Science.gov (United States)

    Chapman, B. L. W.; Mansfield, P.

    1995-05-01

    A distributed coil design is described which employs active force shielding to reduce acoustic noise. Both axial and transverse gradients employ sets of distributed pairs of coplanar closed-are loops whose planes are normal to the static magnetic field direction. The resulting gradients are also partially magnetically screened. The design results in an axially compact coil set that provides linear gradients which extend over greater fractions of the enclosed volume than previous designs. The minimal gradient field interaction with the patient inherent in this force-shielded transverse-gradient coil design provides intrinsically safer Gx and Gy gradient fields.

  12. Rogowski coils for studies of detonator initiation

    Science.gov (United States)

    Tasker, Douglas

    2017-06-01

    The Rogowski coil dates back to 1887 and it has commonly been employed to measure rapid changes of electrical currents without direct contact with the circuits, especially in high energy density applications. Recently, it has been used to measure currents in relatively low energy devices such as semiconductor circuits; here we report its utility in the analysis of detonator initiation. From an electrical perspective, the coil is essentially an air-cored transformer and measures the temporal rate of change of current dI/dt. Following a careful characterization of the circuit, an accurate measurement of this derivative is shown to provide a complete solution of the detonator circuit, including current, voltage, power and energy delivered to the detonator. The dependence of the electrical sensitivity, accuracy and bandwidth on coil design will be discussed and a new printed circuit design will be presented. Interesting features in the initiation of exploding bridgewire detonators have been observed with this coil and the results of various experiments will be discussed.

  13. Coil in bottom part of splitter magnet

    CERN Multimedia

    CERN PhotoLab

    1976-01-01

    Radiation-resistant coil being bedded into the bottom part of a splitter magnet. This very particular magnet split the beam into 3 branches, for 3 target stations in the West-Area. See Annual Report 1975, p.176, Figs.14 and 15.

  14. Stellarator Coil Design and Plasma Sensitivity

    Energy Technology Data Exchange (ETDEWEB)

    Long-Poe Ku and Allen H. Boozer

    2010-11-03

    The rich information contained in the plasma response to external magnetic perturbations can be used to help design stellarator coils more effectively. We demonstrate the feasibility by first devel- oping a simple, direct method to study perturbations in stellarators that do not break stellarator symmetry and periodicity. The method applies a small perturbation to the plasma boundary and evaluates the resulting perturbed free-boundary equilibrium to build up a sensitivity matrix for the important physics attributes of the underlying configuration. Using this sensitivity information, design methods for better stellarator coils are then developed. The procedure and a proof-of-principle application are given that (1) determine the spatial distributions of external normal magnetic field at the location of the unperturbed plasma boundary to which the plasma properties are most sen- sitive, (2) determine the distributions of external normal magnetic field that can be produced most efficiently by distant coils, (3) choose the ratios of the magnitudes of the the efficiently produced magnetic distributions so the sensitive plasma properties can be controlled. Using these methods, sets of modular coils are found for the National Compact Stellarator Experiment (NCSX) that are either smoother or can be located much farther from the plasma boundary than those of the present design.

  15. Tesla Coil Theoretical Model and its Experimental Verification

    National Research Council Canada - National Science Library

    Janis Voitkans; Arnis Voitkans

    2014-01-01

    In this paper a theoretical model of Tesla coil operation is proposed. Tesla coil is described as a long line with distributed parameters in a single-wire form, where the line voltage is measured across electrically neutral space...

  16. Modular Coils and Plasma Configurations for Quasi-axisymmetric Stellarators

    Energy Technology Data Exchange (ETDEWEB)

    L.P. Ku and A.H. Boozer

    2010-09-10

    Characteristics of modular coils for quasi-axisymmetric stellarators that are related to the plasma aspect ratio, number of field periods and rotational transform have been examined systematically. It is observed that, for a given plasma aspect ratio, the coil complexity tends to increase with the increased number of field periods. For a given number of field periods, the toroidal excursion of coil winding is reduced as the plasma aspect ratio is increased. It is also clear that the larger the coil-plasma separation is, the more complex the coils become. It is further demonstrated that it is possible to use other types of coils to complement modular coils to improve both the physics and the modular coil characteristics.

  17. Mechanical design of a high field common coil magnet

    CERN Document Server

    Caspi, S; Dietderich, D R; Gourlay, S A; Gupta, R; McInturff, A; Millos, G; Scanlan, R M

    1999-01-01

    A common coil design for high field 2-in-1 accelerator magnets has been previously presented as a "conductor-friendly" option for high field magnets applicable for a Very Large Hadron Collider. This paper presents the mechanical design for a 14 tesla 2-in-1 dipole based on the common coil design approach. The magnet will use a high current density Nb/sub 3/Sn conductor. The design addresses mechanical issues particular to the common coil geometry: horizontal support against coil edges, vertical preload on coil faces, end loading and support, and coil stresses and strains. The magnet is the second in a series of racetrack coil magnets that will provide experimental verification of the common coil design approach. (9 refs).

  18. Optimization of a conduction-cooled LTS pulse coil

    Energy Technology Data Exchange (ETDEWEB)

    Kawagoe, A. [Kagoshima University, Kohrimoto 1-21-40, Kagoshima-shi, Kagoshima 890-0065 (Japan)]. E-mail: kawagoe@eee.kagoshima-u.ac.jp; Yamamuro, H. [Kagoshima University, Kohrimoto 1-21-40, Kagoshima-shi, Kagoshima 890-0065 (Japan); Sumiyoshi, F. [Kagoshima University, Kohrimoto 1-21-40, Kagoshima-shi, Kagoshima 890-0065 (Japan); Mito, T. [National Institute for Fusion Science, Toki, Gifu 509-5292 (Japan); Chikaraishi, H. [National Institute for Fusion Science, Toki, Gifu 509-5292 (Japan); Hemmi, T. [National Institute for Fusion Science, Toki, Gifu 509-5292 (Japan); Baba, T. [National Institute for Fusion Science, Toki, Gifu 509-5292 (Japan); Yokota, M. [National Institute for Fusion Science, Toki, Gifu 509-5292 (Japan); Morita, Y. [National Institute for Fusion Science, Toki, Gifu 509-5292 (Japan); Ogawa, H. [National Institute for Fusion Science, Toki, Gifu 509-5292 (Japan); Abe, R. [Shibuya Kogyo Co., Ltd., Kanazawa, Ishikawa 920-0054 (Japan); Okumura, K. [Technova Inc., Chiyoda-ku, Tokyo 100-0011 (Japan); Iwakuma, M. [Kyushu University, Higashi-ku, Fukuoka 812-8581 (Japan)

    2006-11-15

    The output limit of the available power of a prototype conduction-cooled low temperature superconducting (LTS) pulse coil is clarified for the optimization of the coil. The winding conductor of this coil is a NbTi/Cu Rutherford cable, which is extruded with aluminum. Dyneema[reg] fiber reinforced plastics (DFRP) and Litz wires are used as the spacers of this coil. A prototype coil with a stored energy of 100 kJ was successfully fabricated and tested, and the coil performed excellently. In this paper, the stability margin of this coil is clarified by thermal analysis, using a two-dimensional finite element method, taking into account the effects of both types of spacers, DFRP and Litz wires. Additionally, the maximum output power of the coil is estimated at about three times the rated output.

  19. Mechanical design of a high field common coil magnet

    Energy Technology Data Exchange (ETDEWEB)

    Caspi, S.; Chow, K.; Dietderich, D.; Gourlay, S.; Gupta, R.; McInturff, A.; Millos, G.; Scanlan, R.

    1999-03-18

    A common coil design for high field 2-in-1 accelerator magnets has been previously presented as a 'conductor-friendly' option for high field magnets applicable for a Very Large Hadron Collider. This paper presents the mechanical design for a 14 tesla 2-in-1 dipole based on the common coil design approach. The magnet will use a high current density Nb{sub 3}Sn conductor. The design addresses mechanical issues particular to the common coil geometry: horizontal support against coil edges, vertical preload on coil faces, end loading and support, and coil stresses and strains. The magnet is the second in a series of racetrack coil magnets that will provide experimental verification of the common coil design approach.

  20. Antiparallel coiled-coil–mediated dimerization of myosin X

    Science.gov (United States)

    Lu, Qing; Ye, Fei; Wei, Zhiyi; Wen, Zilong; Zhang, Mingjie

    2012-01-01

    Processive movements of unconventional myosins on actin filaments generally require motor dimerization. A commonly accepted myosin dimerization mechanism is via formation of a parallel coiled-coil dimer by a stretch of amino acid residues immediately carboxyl-terminal to the motor’s lever-arm domain. Here, we discover that the predicted coiled-coil region of myosin X forms a highly stable, antiparallel coiled-coil dimer (anti-CC). Disruption of the anti-CC either by single-point mutations or by replacement of the anti-CC with a parallel coiled coil with a similar length compromised the filopodial induction activity of myosin X. We further show that the anti-CC and the single α-helical domain of myosin X are connected by a semirigid helical linker. The anti-CC–mediated dimerization may enable myosin X to walk on both single and bundled actin filaments. PMID:23012428

  1. Anchor coil technique for arteriovenous fistula embolization. A technical note.

    Science.gov (United States)

    Kanemaru, Kazuya; Ezura, Masayuki; Nishiyama, Yoshihisa; Yagi, Takashi; Yoshioka, Hideyuki; Fukumoto, Yuichiro; Horikoshi, Toru; Kinouchi, Hiroyuki

    2014-01-01

    We describe a case of arteriovenous fistula (AVF) successfully treated by coil embolization with an anchor coil inserted in the varix to facilitate dense packing at the shunting site. AVF of the left anterior choroidal artery (AChoA) draining into the ipsilateral basal vein of Rosenthal was incidentally found in a newborn female. A single detachable coil was inserted as an anchor into the varix adjacent to the shunt, and the microcatheter was pulled back to the shunting point. Three more detachable coils were delivered at the shunting point without migration under the support of the anchor coil, and the AVF was successfully obliterated with preservation of AChoA blood flow. The anchor coil technique can reduce the risk of coil migration and the number of coils required.

  2. Simultaneous recordings of human microsaccades and drifts with a contemporary video eye tracker and the search coil technique.

    Directory of Open Access Journals (Sweden)

    Michael B McCamy

    Full Text Available Human eyes move continuously, even during visual fixation. These "fixational eye movements" (FEMs include microsaccades, intersaccadic drift and oculomotor tremor. Research in human FEMs has grown considerably in the last decade, facilitated by the manufacture of noninvasive, high-resolution/speed video-oculography eye trackers. Due to the small magnitude of FEMs, obtaining reliable data can be challenging, however, and depends critically on the sensitivity and precision of the eye tracking system. Yet, no study has conducted an in-depth comparison of human FEM recordings obtained with the search coil (considered the gold standard for measuring microsaccades and drift and with contemporary, state-of-the art video trackers. Here we measured human microsaccades and drift simultaneously with the search coil and a popular state-of-the-art video tracker. We found that 95% of microsaccades detected with the search coil were also detected with the video tracker, and 95% of microsaccades detected with video tracking were also detected with the search coil, indicating substantial agreement between the two systems. Peak/mean velocities and main sequence slopes of microsaccades detected with video tracking were significantly higher than those of the same microsaccades detected with the search coil, however. Ocular drift was significantly correlated between the two systems, but drift speeds were higher with video tracking than with the search coil. Overall, our combined results suggest that contemporary video tracking now approaches the search coil for measuring FEMs.

  3. d-Cysteine Ligands Control Metal Geometries within De Novo Designed Three-Stranded Coiled Coils

    DEFF Research Database (Denmark)

    Ruckthong, Leela; Peacock, Anna F.A.; Pascoe, Cherilyn E.

    2017-01-01

    Although metal ion binding to naturally occurring l-amino acid proteins is well documented, understanding the impact of the opposite chirality (d-)amino acids on the structure and stereochemistry of metals is in its infancy. We examine the effect of a d-configuration cysteine within a designed l......-amino acid three-stranded coiled coil in order to enforce a precise coordination number on a metal center. The d chirality does not alter the native fold, but the side-chain re-orientation modifies the sterics of the metal binding pocket. l-Cys side chains within the coiled-coil structure have previously...... been shown to rotate substantially from their preferred positions in the apo structure to create a binding site for a tetra-coordinate metal ion. However, here we show by X-ray crystallography that d-Cys side chains are preorganized within a suitable geometry to bind such a ligand. This is confirmed...

  4. Structured Light-Based Motion Tracking in the Limited View of an MR Head Coil

    DEFF Research Database (Denmark)

    Erikshøj, M.; Olesen, Oline Vinter; Conradsen, Knut

    2013-01-01

    of the facial surface. The point clouds are continuously realigned to a reference scan to obtain pose estimates. The system has been tested on a mannequin head performing controlled rotational and translational axial movements within the head coil outside the range of the magnetic field. The RMS of the residual......A markerless motion tracking (MT) system developed for use in PET brain imaging has been tested in the limited field of view (FOV) of the MR head coil from the Siemens Biograph mMR. The system is a 3D surface scanner that uses structured light (SL) to create point cloud reconstructions...

  5. GBNV encoded movement protein (NSm) remodels ER network via C-terminal coiled coil domain

    Energy Technology Data Exchange (ETDEWEB)

    Singh, Pratibha; Savithri, H.S., E-mail: bchss@biochem.iisc.ernet.in

    2015-08-15

    Plant viruses exploit the host machinery for targeting the viral genome–movement protein complex to plasmodesmata (PD). The mechanism by which the non-structural protein m (NSm) of Groundnut bud necrosis virus (GBNV) is targeted to PD was investigated using Agrobacterium mediated transient expression of NSm and its fusion proteins in Nicotiana benthamiana. GFP:NSm formed punctuate structures that colocalized with mCherry:plasmodesmata localized protein 1a (PDLP 1a) confirming that GBNV NSm localizes to PD. Unlike in other movement proteins, the C-terminal coiled coil domain of GBNV NSm was shown to be involved in the localization of NSm to PD, as deletion of this domain resulted in the cytoplasmic localization of NSm. Treatment with Brefeldin A demonstrated the role of ER in targeting GFP NSm to PD. Furthermore, mCherry:NSm co-localized with ER–GFP (endoplasmic reticulum targeting peptide (HDEL peptide fused with GFP). Co-expression of NSm with ER–GFP showed that the ER-network was transformed into vesicles indicating that NSm interacts with ER and remodels it. Mutations in the conserved hydrophobic region of NSm (residues 130–138) did not abolish the formation of vesicles. Additionally, the conserved prolines at positions 140 and 142 were found to be essential for targeting the vesicles to the cell membrane. Further, systematic deletion of amino acid residues from N- and C-terminus demonstrated that N-terminal 203 amino acids are dispensable for the vesicle formation. On the other hand, the C-terminal coiled coil domain when expressed alone could also form vesicles. These results suggest that GBNV NSm remodels the ER network by forming vesicles via its interaction through the C-terminal coiled coil domain. Interestingly, NSm interacts with NP in vitro and coexpression of these two proteins in planta resulted in the relocalization of NP to PD and this relocalization was abolished when the N-terminal unfolded region of NSm was deleted. Thus, the NSm

  6. A REVIEW ON HEAT TRANSFER THROUGH HELICAL COIL HEAT EXCHANGERS

    OpenAIRE

    Surendra Vishvakarma*, Sanjay Kumbhare, K. K. Thakur

    2016-01-01

    This study presents a brief review of heat transfer through helical coil heat exchangers. Helical coils of circular cross section have been used in wide variety of applications due to simplicity in manufacturing. Enhancement in heat transfer due to helical coils has been reported by many researchers. While the heat transfer characteristics of double pipe helical heat exchangers are available in the literature, there exists no published experimental or theoretical analysis of a helically coile...

  7. Compressing DNA sequence databases with coil

    Directory of Open Access Journals (Sweden)

    Hendy Michael D

    2008-05-01

    Full Text Available Abstract Background Publicly available DNA sequence databases such as GenBank are large, and are growing at an exponential rate. The sheer volume of data being dealt with presents serious storage and data communications problems. Currently, sequence data is usually kept in large "flat files," which are then compressed using standard Lempel-Ziv (gzip compression – an approach which rarely achieves good compression ratios. While much research has been done on compressing individual DNA sequences, surprisingly little has focused on the compression of entire databases of such sequences. In this study we introduce the sequence database compression software coil. Results We have designed and implemented a portable software package, coil, for compressing and decompressing DNA sequence databases based on the idea of edit-tree coding. coil is geared towards achieving high compression ratios at the expense of execution time and memory usage during compression – the compression time represents a "one-off investment" whose cost is quickly amortised if the resulting compressed file is transmitted many times. Decompression requires little memory and is extremely fast. We demonstrate a 5% improvement in compression ratio over state-of-the-art general-purpose compression tools for a large GenBank database file containing Expressed Sequence Tag (EST data. Finally, coil can efficiently encode incremental additions to a sequence database. Conclusion coil presents a compelling alternative to conventional compression of flat files for the storage and distribution of DNA sequence databases having a narrow distribution of sequence lengths, such as EST data. Increasing compression levels for databases having a wide distribution of sequence lengths is a direction for future work.

  8. Plasmodium vivax antigen discovery based on alpha-helical coiled coil protein motif.

    Directory of Open Access Journals (Sweden)

    Nora Céspedes

    Full Text Available Protein α-helical coiled coil structures that elicit antibody responses, which block critical functions of medically important microorganisms, represent a means for vaccine development. By using bioinformatics algorithms, a total of 50 antigens with α-helical coiled coil motifs orthologous to Plasmodium falciparum were identified in the P. vivax genome. The peptides identified in silico were chemically synthesized; circular dichroism studies indicated partial or high α-helical content. Antigenicity was evaluated using human sera samples from malaria-endemic areas of Colombia and Papua New Guinea. Eight of these fragments were selected and used to assess immunogenicity in BALB/c mice. ELISA assays indicated strong reactivity of serum samples from individuals residing in malaria-endemic regions and sera of immunized mice, with the α-helical coiled coil structures. In addition, ex vivo production of IFN-γ by murine mononuclear cells confirmed the immunogenicity of these structures and the presence of T-cell epitopes in the peptide sequences. Moreover, sera of mice immunized with four of the eight antigens recognized native proteins on blood-stage P. vivax parasites, and antigenic cross-reactivity with three of the peptides was observed when reacted with both the P. falciparum orthologous fragments and whole parasites. Results here point to the α-helical coiled coil peptides as possible P. vivax malaria vaccine candidates as were observed for P. falciparum. Fragments selected here warrant further study in humans and non-human primate models to assess their protective efficacy as single components or assembled as hybrid linear epitopes.

  9. CCBuilder 2.0: Powerful and accessible coiled-coil modeling.

    Science.gov (United States)

    Wood, Christopher W; Woolfson, Derek N

    2018-01-01

    The increased availability of user-friendly and accessible computational tools for biomolecular modeling would expand the reach and application of biomolecular engineering and design. For protein modeling, one key challenge is to reduce the complexities of 3D protein folds to sets of parametric equations that nonetheless capture the salient features of these structures accurately. At present, this is possible for a subset of proteins, namely, repeat proteins. The α-helical coiled coil provides one such example, which represents ≈ 3-5% of all known protein-encoding regions of DNA. Coiled coils are bundles of α helices that can be described by a small set of structural parameters. Here we describe how this parametric description can be implemented in an easy-to-use web application, called CCBuilder 2.0, for modeling and optimizing both α-helical coiled coils and polyproline-based collagen triple helices. This has many applications from providing models to aid molecular replacement for X-ray crystallography, in silico model building and engineering of natural and designed protein assemblies, and through to the creation of completely de novo "dark matter" protein structures. CCBuilder 2.0 is available as a web-based application, the code for which is open-source and can be downloaded freely. http://coiledcoils.chm.bris.ac.uk/ccbuilder2. We have created CCBuilder 2.0, an easy to use web-based application that can model structures for a whole class of proteins, the α-helical coiled coil, which is estimated to account for 3-5% of all proteins in nature. CCBuilder 2.0 will be of use to a large number of protein scientists engaged in fundamental studies, such as protein structure determination, through to more-applied research including designing and engineering novel proteins that have potential applications in biotechnology. © 2017 The Authors Protein Science published by Wiley Periodicals, Inc. on behalf of The Protein Society.

  10. Coiled-coil forming peptides for the induction of silver nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Božič Abram, Sabina [Department of Synthetic Biology and Immunology, National Institute of Chemistry, Hajdrihova 19, 1000 Ljubljana (Slovenia); Graduate School of Biomedicine, University of Ljubljana, Ljubljana 1000 (Slovenia); Aupič, Jana [Department of Synthetic Biology and Immunology, National Institute of Chemistry, Hajdrihova 19, 1000 Ljubljana (Slovenia); Doctoral Programme in Chemical Sciences, Faculty of Chemistry and Chemical Technology, University of Ljubljana, Ljubljana 1000 (Slovenia); Dražić, Goran [Laboratory for Materials Chemistry, National Institute of Chemistry, Hajdrihova 19, 1000 Ljubljana (Slovenia); Gradišar, Helena [Department of Synthetic Biology and Immunology, National Institute of Chemistry, Hajdrihova 19, 1000 Ljubljana (Slovenia); EN-FIST, Centre of Excellence, Trg Osvobodilne fronte 13, Ljubljana 1000 (Slovenia); Jerala, Roman, E-mail: roman.jerala@ki.si [Department of Synthetic Biology and Immunology, National Institute of Chemistry, Hajdrihova 19, 1000 Ljubljana (Slovenia); EN-FIST, Centre of Excellence, Trg Osvobodilne fronte 13, Ljubljana 1000 (Slovenia)

    2016-04-08

    Biopolymers with defined sequence patterns offer an attractive alternative for the formation of silver nanoparticle (AgNP). A set of coiled-coil dimer forming peptides was tested for their AgNP formation ability. Seventeen of those peptides mediated the formation of AgNPs in aqueous solution at neutral pH, while the formation of a coiled-coil dimer inhibited the nanoparticle generation. A QSAR regression model on the relationship between sequence and function suggests that in this peptide type the patterns KXQQ and KXEE are favorable, whereas Ala residues appear to have an inhibitory effect. UV–VIS spectra of the obtained nanoparticles gave a peak at around 420 nm, typical for AgNPs in the size range around 40 nm, which was confirmed by dynamic light scattering and transmission electron microscopy. Peptide-induced AgNPs exhibited good antibacterial activity, even after a 15 min contact time, while they had low toxicity to human cells at the same concentrations. These results show that our designed peptides generate AgNPs with antibacterial activity at mild conditions and might be used for antibacterial coatings. - Highlights: • 17 of the 30 tested coiled-coil forming peptides induce AgNP formation. • Coiled-coil dimer formation suppresses AgNP generation of individual peptides. • Size of the peptide-induced silver nanoparticles is around 40 nm. • QSAR analysis points to the importance of KXQQ and KXEE motifs for AgNP generation. • Peptide-induced silver nanoparticles exhibit antibacterial activity.

  11. Active toroidal field ripple compensation and MHD feedback control coils in FAST

    Energy Technology Data Exchange (ETDEWEB)

    Ramogida, G., E-mail: giuseppe.ramogida@enea.it [Associazione Euratom-ENEA sulla Fusione, ENEA – C.R. Frascati, Via E. Fermi 45, I-00044 Frascati, RM (Italy); Calabrò, G.; Cocilovo, V.; Crescenzi, F.; Crisanti, F.; Cucchiaro, A. [Associazione Euratom-ENEA sulla Fusione, ENEA – C.R. Frascati, Via E. Fermi 45, I-00044 Frascati, RM (Italy); Di Gironimo, G. [Associazione Euratom-ENEA, CREATE – Università di Napoli Federico II, Via Claudio 21, I-80125 Napoli (Italy); Fresa, R. [Università della Basilicata, Via Nazario Sauro 85, I-85100 Potenza (Italy); Fusco, V. [Associazione Euratom-ENEA sulla Fusione, ENEA – C.R. Frascati, Via E. Fermi 45, I-00044 Frascati, RM (Italy); Martin, P. [Associazione Euratom-ENEA, Consorzio RFX, Corso Stati Uniti 4, I-35127, Padova (Italy); Mastrostefano, S. [Associazione Euratom-ENEA, CREATE – DIEI Università di Cassino, Via Di Biasio 43, I-03043 Cassino, FR (Italy); Mozzillo, R. [Associazione Euratom-ENEA, CREATE – Università di Napoli Federico II, Via Claudio 21, I-80125 Napoli (Italy); Nuzzolese, F. [Università della Basilicata, Via Nazario Sauro 85, I-85100 Potenza (Italy); Renno, F. [Associazione Euratom-ENEA, CREATE – Università di Napoli Federico II, Via Claudio 21, I-80125 Napoli (Italy); Rita, C. [Associazione Euratom-ENEA sulla Fusione, ENEA – C.R. Frascati, Via E. Fermi 45, I-00044 Frascati, RM (Italy); Villone, F. [Associazione Euratom-ENEA, CREATE – DIEI Università di Cassino, Via Di Biasio 43, I-03043 Cassino, FR (Italy); Vlad, G. [Associazione Euratom-ENEA sulla Fusione, ENEA – C.R. Frascati, Via E. Fermi 45, I-00044 Frascati, RM (Italy)

    2013-10-15

    Highlights: ► Active Ripple Compensating System (ARCS) consists of 18 off-centre poloidal coils between plasma and Toroidal Field Coils. ► The current in ARCS, adjustable and opposite to that in TFC, reduces the toroidal ripple below 0.2% at any toroidal fields. ► Feedback Active Control System (FACS) consists of two arrays of 9 in-vessel saddle coils fed by an MHD feedback controller. ► FACS allows robust feedback stabilization of low toroidal number MHD modes enabling plasma operations at low safety factor. ► ARCS and FACS are included in the whole FAST model and first engineering assessments show their feasibility and capability. -- Abstract: The Fusion Advanced Study Torus (FAST) has been proposed as a high magnetic field, compact size tokamak providing a flexible integrated environment to study physics and technology issues in ITER and DEMO relevant conditions. FAST has a quite large natural toroidal field ripple (around 1.5%) due to its compactness and to the number of access ports: this ripple must be lowered to an acceptable level to allow safe operations and a good confinement quality. An Active Ripple Compensating System (ARCS) has been designed, based on a set of poloidal coils placed between the plasma chamber and the Toroidal Field Coils (TFCs). These ARCS coils will be fed with adjustable currents, opposite in direction respect to the TFC currents, and will allow lowering the ripple up to zero and beyond. The CAD model of FAST including the ARCS coils has been completed and preliminary electromagnetic and thermal analyses have been carried out. Moreover, a Feedback Active Control System (FACS) composed of two arrays of in-vessel saddle coils has been designed to allow safe high plasma current, low safety factor operation and to mitigate possibly large ELMs effects in FAST. These FACS coils will be fed by a feedback system to control MHD modes: a first engineering assessment of the current requirements has been carried out.

  12. Transport of one SC coil through the village of Meyrin

    CERN Multimedia

    1956-01-01

    The energizing coils of the Synchro-cyclotron magnet were manufactured in Belgium before travelling to Basel in Switzerland by boat and continuing by road to Geneva. The first coil reached Geneva in December 1955, with the second following in early 1956. The coils were stored in a hangar at the Geneva airport before they were brought to CERN in May 1956.

  13. The Roach muscle bundle and umbilical cord coiling

    NARCIS (Netherlands)

    de Laat, Monique W. M.; Nikkels, Peter G. J.; Franx, Arie; Visser, Gerard H. A.

    2007-01-01

    To determine if presence of the Roach muscle, a small muscle bundle lying just beside the umbilical artery, contributes to umbilical cord coiling. 251 umbilical cords were examined. The umbilical coiling index (UCI) was calculated as the number of coils divided by the cord length in cm. Cords were

  14. The umbilical coiling index, a review of the literature

    NARCIS (Netherlands)

    de Laat, Monique W. M.; Franx, Arie; van Alderen, Elise D.; Nikkels, Peter G. J.; Visser, Gerard H. A.

    2005-01-01

    Our aim was to review the literature on umbilical cord coiling. Relevant articles in English published between 1966 and 2003 were retrieved by a Medline search and cross-referencing. The normal umbilical cord coiling index (UCI) is 0.17 (+/- 0.009) spirals completed per cm. Abnormal cord coiling,

  15. Historical review: another 50th anniversary--new periodicities in coiled coils.

    Science.gov (United States)

    Gruber, Markus; Lupas, Andrei N

    2003-12-01

    In 1953, Francis Crick and Linus Pauling both proposed models of supercoiled alpha helices ('coiled coils') for the structure of keratin. These were the first attempts at modelling the tertiary structure of a protein. Crick emphasized the packing mode of the side-chains ('knobs-into-holes'), which required a periodicity of seven residues over two helical turns (7/2) and a supercoil in the opposite sense of the constituent helices. By contrast, Pauling envisaged a broader set of periodicities (4/1, 7/2, 18/5, 15/4, 11/3) and supercoils of both senses. Crick's model became canonical and the 'heptad repeat' essentially synonymous with coiled coils, but 50 years later new crystal structures and protein sequences show that the less common periodicities envisaged by Pauling also occur in coiled coils, adding a variant packing mode ('knobs-to-knobs') to the standard model. Pauling's laboratory notebooks suggest that he searched unsuccessfully for this packing mode in 1953.

  16. Coiled-Coil Proteins Facilitated the Functional Expansion of the Centrosome

    Science.gov (United States)

    Kuhn, Michael; Hyman, Anthony A.; Beyer, Andreas

    2014-01-01

    Repurposing existing proteins for new cellular functions is recognized as a main mechanism of evolutionary innovation, but its role in organelle evolution is unclear. Here, we explore the mechanisms that led to the evolution of the centrosome, an ancestral eukaryotic organelle that expanded its functional repertoire through the course of evolution. We developed a refined sequence alignment technique that is more sensitive to coiled coil proteins, which are abundant in the centrosome. For proteins with high coiled-coil content, our algorithm identified 17% more reciprocal best hits than BLAST. Analyzing 108 eukaryotic genomes, we traced the evolutionary history of centrosome proteins. In order to assess how these proteins formed the centrosome and adopted new functions, we computationally emulated evolution by iteratively removing the most recently evolved proteins from the centrosomal protein interaction network. Coiled-coil proteins that first appeared in the animal–fungi ancestor act as scaffolds and recruit ancestral eukaryotic proteins such as kinases and phosphatases to the centrosome. This process created a signaling hub that is crucial for multicellular development. Our results demonstrate how ancient proteins can be co-opted to different cellular localizations, thereby becoming involved in novel functions. PMID:24901223

  17. Regulation of c-Fes Tyrosine Kinase and Biological Activities by N-Terminal Coiled-Coil Oligomerization Domains

    Science.gov (United States)

    Cheng, Haiyun; Rogers, Jim A.; Dunham, Nancy A.; Smithgall, Thomas E.

    1999-01-01

    The cytoplasmic protein-tyrosine kinase Fes has been implicated in cytokine signal transduction, hematopoiesis, and embryonic development. Previous work from our laboratory has shown that active Fes exists as a large oligomeric complex in vitro. However, when Fes is expressed in mammalian cells, its kinase activity is tightly repressed. The Fes unique N-terminal sequence has two regions with strong homology to coiled-coil-forming domains often found in oligomeric proteins. Here we show that disruption or deletion of the first coiled-coil domain upregulates Fes tyrosine kinase and transforming activities in Rat-2 fibroblasts and enhances Fes differentiation-inducing activity in myeloid leukemia cells. Conversely, expression of a Fes truncation mutant consisting only of the unique N-terminal domain interfered with Rat-2 fibroblast transformation by an activated Fes mutant, suggesting that oligomerization is essential for Fes activation in vivo. Coexpression with the Fes N-terminal region did not affect the transforming activity of v-Src in Rat-2 cells, arguing against a nonspecific suppressive effect. Taken together, these findings suggest a model in which Fes activation may involve coiled-coil-mediated interconversion of monomeric and oligomeric forms of the kinase. Mutation of the first coiled-coil domain may activate Fes by disturbing intramolecular coiled-coil interaction, allowing for oligomerization via the second coiled-coil domain. Deletion of the second coiled-coil domain blocks fibroblast transformation by an activated form of c-Fes, consistent with this model. These results provide the first evidence for regulation of a nonreceptor protein-tyrosine kinase by coiled-coil domains. PMID:10567558

  18. Coil-On-Plug Ignition for LOX/Methane Liquid Rocket Engines in Thermal Vacuum Environments

    Science.gov (United States)

    Melcher, John C.; Atwell, Matthew J.; Morehead, Robert L.; Hurlbert, Eric A.; Bugarin, Luz; Chaidez, Mariana

    2017-01-01

    A coil-on-plug ignition system has been developed and tested for Liquid Oxygen (LOX) / liquid methane rocket engines operating in thermal vacuum conditions. The igniters were developed and tested as part of the Integrated Cryogenic Propulsion Test Article (ICPTA), previously tested as part of the Project Morpheus test vehicle. The ICPTA uses an integrated, pressure-fed, cryogenic LOX/methane propulsion system including a reaction control system (RCS) and a main engine. The ICPTA was tested at NASA Glenn Research Center's Plum Brook Station in the Spacecraft Propulsion Research Facility (B-2) under vacuum and thermal vacuum conditions. In order to successfully demonstrate ignition reliability in the vacuum conditions and eliminate corona discharge issues, a coil-on-plug ignition system has been developed. The ICPTA uses spark-plug ignition for both the main engine igniter and the RCS. The coil-on-plug configuration eliminates the conventional high-voltage spark plug cable by combining the coil and the spark-plug into a single component. Prior to ICPTA testing at Plum Brook, component-level reaction control engine (RCE) and main engine igniter testing was conducted at NASA Johnson Space Center (JSC), which demonstrated successful hot-fire ignition using the coil-on-plug from sea-level ambient conditions down to 10(exp.-2) torr. Integrated vehicle hot-fire testing at JSC demonstrated electrical and command/data system performance. Lastly, Plum Brook testing demonstrated successful ignitions at simulated altitude conditions at 30 torr and cold thermal-vacuum conditions at 6 torr. The test campaign successfully proved that coil-on-plug technology will enable integrated LOX/methane propulsion systems in future spacecraft.

  19. Radio frequency coil technology for small-animal MRI.

    Science.gov (United States)

    Doty, F David; Entzminger, George; Kulkarni, Jatin; Pamarthy, Kranti; Staab, John P

    2007-05-01

    A review of the theory, technology, and use of radio frequency (RF) coils for small-animal MRI is presented. It includes a brief overview of MR signal-to-noise (S/N) analysis and discussions of the various coils commonly used in small-animal MR: surface coils, linear volume coils, birdcages, and their derivatives. The scope is limited to mid-range coils, i.e. coils where the product (fd) of the frequency f and the coil diameter d is in the range 2-30 MHz-m. Common applications include mouse brain and body coils from 125 to 750 MHz, rat body coils up to 500 MHz, and small surface coils at all fields. In this regime, all the sources of loss (coil, capacitor, sample, shield, and transmission lines) are important. All such losses may be accurately captured in some modern full-wave 3D electromagnetics software, and new simulation results are presented for a selection of surface coils using Microwave Studio 2006 by Computer Simulation Technology, showing the dramatic importance of the "lift-off effect". Standard linear circuit simulators have been shown to be useful in optimization of complex coil tuning and matching circuits. There appears to be considerable potential for trading S/N for speed using phased arrays, especially for a larger field of view. Circuit simulators are shown to be useful for optimal mismatching of ultra-low-noise preamps based on the enhancement-mode pseudomorphic high-electron-mobility transistor for optimal coil decoupling in phased arrays. Cryogenically cooled RF coils are shown to offer considerable opportunity for future gains in S/N in smaller samples.

  20. Computational study for the effects of coil configuration on blood flow characteristics in coil-embolized cerebral aneurysm.

    Science.gov (United States)

    Otani, Tomohiro; Ii, Satoshi; Shigematsu, Tomoyoshi; Fujinaka, Toshiyuki; Hirata, Masayuki; Ozaki, Tomohiko; Wada, Shigeo

    2017-05-01

    Coil embolization of cerebral aneurysms with inhomogeneous coil distribution leads to an incomplete occlusion of the aneurysm. However, the effects of this factor on the blood flow characteristics are still not fully understood. This study investigates the effects of coil configuration on the blood flow characteristics in a coil-embolized aneurysm using computational fluid dynamics (CFD) simulation. The blood flow analysis in the aneurysm with coil embolization was performed using a coil deployment (CD) model, in which the coil configuration was constructed using a physics-based simulation of the CD. In the CFD results, total flow momentum and kinetic energy in the aneurysm gradually decayed with increasing coil packing density (PD), regardless of the coil configuration attributed to deployment conditions. However, the total shear rate in the aneurysm was relatively high and the strength of the local shear flow varied based on the differences in coil configuration, even at adequate PDs used in clinical practice (20-25 %). Because the sufficient shear rate reduction is a well-known factor in the blood clot formation occluding the aneurysm inside, the present study gives useful insight into the effects of coil configuration on the treatment efficiency of coil embolization.

  1. Study of the magnetic interaction of a 4-coil array and copper shielding with a PET/MRI using the finite-element method.

    Science.gov (United States)

    Solis, S E; Rodriguez, A O; Tomasi, D

    2010-01-01

    The effect of the shielding in a PET-MRI system was numerically estimated by calculating the RF magnetic field, B1, produced by a coil array of 4 independent elements at the resonant frequency of 171 MHz (4T for protons). The array coil is located inside a μPET camera to simultaneously acquire PET and MR images of a rat brain. Profiles showed a good uniformity despite the shielding that is interacting between the coil array and the μPET camera. These limitations are currently being dealt with the fabrication of a birdcage coil design.

  2. Response Characteristics and Experimental Study of Underground Magnetic Resonance Sounding Using a Small-Coil Sensor

    Directory of Open Access Journals (Sweden)

    Shengwu Qin

    2017-09-01

    Full Text Available Due to its unique sensitivity to hydrogen protons, magnetic resonance sounding (MRS is the only geophysical method that directly detects water and can provide nondestructive information on subsurface aquifer properties. The relationship between the surface MRS signal and the location and characteristics of aquifers using large-coil (typically 50–150 m sensors has been discussed based on forward modelling and experiments. However, few researchers have studied underground MRS using a small-coil sensor. In this paper, a parametric study and a large-scale physical model test were conducted to shed light on the critical response characteristics of underground MRS using a small-coil sensor. The effects of the size and number of turns of the transmitter coil and receiver coil, the geomagnetic declination, the geomagnetic inclination, and the position, thickness, and water content of a water-bearing structure on the performance of the underground MRS were studied based on numerical simulations. Furthermore, we derived the kernel function and underground MRS signal curves for a water-bearing structure model based on the simulations. Finally, a large-scale physical model test on underground MRS using a small-coil sensor was performed using a physical test system for geological prediction of tunnels at Shandong University. The results show that the inversion results of the physical model test were in good agreement with the physical prototype results. Using both numerical modeling and physical model tests, this study showed that underground MRS using a small-coil sensor can be used to predict water-bearing structures in underground engineering.

  3. Response Characteristics and Experimental Study of Underground Magnetic Resonance Sounding Using a Small-Coil Sensor.

    Science.gov (United States)

    Qin, Shengwu; Ma, Zhongjun; Jiang, Chuandong; Lin, Jun; Xue, Yiguo; Shang, Xinlei; Li, Zhiqiang

    2017-09-15

    Due to its unique sensitivity to hydrogen protons, magnetic resonance sounding (MRS) is the only geophysical method that directly detects water and can provide nondestructive information on subsurface aquifer properties. The relationship between the surface MRS signal and the location and characteristics of aquifers using large-coil (typically 50-150 m) sensors has been discussed based on forward modelling and experiments. However, few researchers have studied underground MRS using a small-coil sensor. In this paper, a parametric study and a large-scale physical model test were conducted to shed light on the critical response characteristics of underground MRS using a small-coil sensor. The effects of the size and number of turns of the transmitter coil and receiver coil, the geomagnetic declination, the geomagnetic inclination, and the position, thickness, and water content of a water-bearing structure on the performance of the underground MRS were studied based on numerical simulations. Furthermore, we derived the kernel function and underground MRS signal curves for a water-bearing structure model based on the simulations. Finally, a large-scale physical model test on underground MRS using a small-coil sensor was performed using a physical test system for geological prediction of tunnels at Shandong University. The results show that the inversion results of the physical model test were in good agreement with the physical prototype results. Using both numerical modeling and physical model tests, this study showed that underground MRS using a small-coil sensor can be used to predict water-bearing structures in underground engineering.

  4. Balloon-expandable stenting with and without coiling for wide-neck and complex aneurysms.

    Science.gov (United States)

    Zenteno, Marco; Modenesi Freitas, José Maria; Aburto-Murrieta, Yolanda; Koppe, Gelson; Machado, Elcio; Lee, Angel

    2006-12-01

    Wide-necked, saccular, dissecting, and fusiform intracranial aneurysms are poor coil retainers. Retention can be improved by parent-artery stenting across the aneurysm. We used a balloon-expandable stent and delivery system, intending to treat 38 aneurysms in 36 patients. Stents could not be advanced across the neck of 2 aneurysms near the ophthalmic artery origin. These cases were managed by temporary balloon remodeling and coiling. Stenting alone was done for 15 aneurysms, including 7 in vertebral artery V4 segments. Stenting with immediate or delayed coiling was done in 21 aneurysms. Stenting alone caused immediate and complete obliteration of 1 treated aneurysm (7%), subtotal obliteration in 13 treated (86%) aneurysms, and was associated with 1 failure. Stenting and coiling yielded a significantly better 57% complete obliteration rate, 43% subtotal obliteration, and no failures. There were 5 complications: 1 wire perforation, 2 cavernous-carotid-sinus fistulae, and 2 partial in-stent thromboses. All were controlled or cleared with no long-term sequelae or deaths. Contrast imaging at 1 to 12 months was available for 30 patients (13 stent-only, 17 stent-plus-coiling), demonstrating complete obliteration in 25 (83%) and subtotal obliteration in 5. A total of 7 stent-only aneurysms (4 V4s) were completely obliterated, and 3 (all V4s) were > or = 90% obliterated. Stenting and coiling through the wall of the stent resulted in 88% (15/17) complete obliteration when imaged 1 to 12 months after treatment. Stenting alone effectively closed off V4-segment wide-necked aneurysms but was inferior to stenting and coiling in less mobile vessels.

  5. SSC (Superconducting Super Collider) dipole coil production tooling

    Energy Technology Data Exchange (ETDEWEB)

    Carson, J.A.; Barczak, E.J.; Bossert, R.C.; Brandt, J.S.; Smith, G.A.

    1989-03-01

    Superconducting Super Collider dipole coils must be produced to high precision to ensure uniform prestress and even conductor distribution within the collared coil assembly. Tooling is being prepared at Fermilab for the production of high precision 1M and 16.6M SSC dipole coils suitable for mass production. The design and construction methods builds on the Tevatron tooling and production experience. Details of the design and construction methods and measured coil uniformity of 1M coils will be presented. 4 refs., 10 figs.

  6. Umbilical Cord Coiling and Zygosity: Is there a Link?

    Science.gov (United States)

    Coetzee, André Joannou; Castro, Eumenia; Peres, Luiz Cesar

    2015-01-01

    The aim of this study was to analyze abnormalities of umbilical coiling index (UCI) in twin gestation to test whether the coiling is genetically influenced by zygosity. Data retrieved comprised gestational age (GA), chorionicity, fetal gender, and UCI. The mean UCI of hypercoiled cords in monochorionic placentas was 0.55 coils/cm and 0.49 coils/cm in dichorionic placentas with discordant fetal gender (P = 0.2629). In conclusion, no significant statistical difference between UCI in monochorionic and dichorionic twin placentas with discordant fetal gender was identified, suggesting that zygosity does not play a role in umbilical coiling induction.

  7. Construction of the ATLAS B0 model coil

    CERN Document Server

    Daël, A; Alessandria, F; Berriaud, C; Berthier, R; Broggi, F; Mayri, C; Pabot, Y; Rey, J M; Reytier, M; Rossi, L; Sorbi, M; Van Hille, H; Volpini, G; Sun, Z

    2001-01-01

    The B0 coil is a technological model for the ATLAS Barrel Toroid coils. The major concepts and the construction procedures are the same as those specified for the BT coils. So the manufacturing feasibility has been extensively proved and the technological developments have been carried out for the industrial production of the conductor, the welding technique of the coil casing, the prestress of the coil with bladders, the cold to warm supports, the construction and assembly of the cryostat. The paper illustrates all these phases. (4 refs).

  8. Advanced Examination Techniques Applied to the Assessment of Vacuum Pressure Impregnation (VPI) of ITER Correction Coils

    CERN Document Server

    Sgobba, Stefano; Samain, Valerie; Libeyre, Paul; Cecillon, Alexandre; Dawid, J

    2014-01-01

    The ITER Magnet System includes a set of 18 superconducting correction coils (CC) which are used to compensate the error field modes arising from geometrical deviations caused by manufacturing and assembly tolerances. The turn and ground insulation are electrically insulated with a multi-layer fiberglass polyimide interleaved composite, impregnated with epoxy resin using vacuum pressure impregnation (VPI). Adequate high voltage insulation (5 kV), mechanical strength and rigidity of the winding pack should be achieved after impregnation and curing of the insulation system. VPI is an effective process to avoid defects such dry spots and incomplete wet out. This insulation technology has also been developed since several years for application to large superconducting coils and more recently to ITER CC. It allows the coils to be impregnated without impacting on their functional characteristics. One of the critical challenges associated with the construction of the CC is the qualification of the VPI insulation. Se...

  9. Design of air coil dehumidification

    OpenAIRE

    Ohlsson, Simon; Frölund, Henrik

    2016-01-01

    Experiments in school are designed for students to study and learn about real life phenomena by using models. If the student are going to be able to learn as much as possible the model needs to simulate reality well. During the course MJ2407 at KTH there is an experiment where the students study heat transport via heat exchanger in air conditioning systems. In the current experimental setup the air gets heated by a heater and then cooled down by the heat exchanger; the air is circulating thro...

  10. Coil irrigation in sugar cane (Saccharum officinarum

    Directory of Open Access Journals (Sweden)

    Jesús Sánchez Gutiérrez

    2016-01-01

    Full Text Available This study was made at the Basic Seed Bank of the Local Sugar Cane Research Station for the Mideastern Cuba, based in Camaguey, on brown carbonate soil, between 2013 and 12014. Coil irrigation was applied to meet the water requirements for the crop, according to the edafoclimatic conditions and the different phenological phases it has. The Savo method was used to determine useful rain water. Adjustment and complementation of the irrigation program was based on indicators that characterize the exploitation scheme. The machine´s working parameters were determined to meet the water needs, and increase crop´s overall yields. The evaluations and results achieved have contributed to new proposals for management and operation of coil irrigation, and they are important to increase its efficiency.

  11. Toroidal high temperature superconducting coils for ISTTOK

    Energy Technology Data Exchange (ETDEWEB)

    Fernandes, H., E-mail: hf@ipfn.ist.utl.pt [Associacao Euratom/IST, Instituto de Plasmas e Fusao Nuclear, Laboratorio Associado, Instituto Superior Tecnico, 1049-001 Lisboa (Portugal); Goemoery, F. [Institute of Electrical Engineering, Slovak Academy of Sciences, Dubravska cesta 9, 84104 Bratislava (Slovakia); Corte, A. della; Celentano, G. [ENEA C.R. Frascati, Via E. Fermi 45, 00044 Frascati (Italy); Souc, J. [Institute of Electrical Engineering, Slovak Academy of Sciences, Dubravska cesta 9, 84104 Bratislava (Slovakia); Silva, C.; Carvalho, I.; Gomes, R. [Associacao Euratom/IST, Instituto de Plasmas e Fusao Nuclear, Laboratorio Associado, Instituto Superior Tecnico, 1049-001 Lisboa (Portugal); Di Zenobio, A.; Messina, G. [ENEA C.R. Frascati, Via E. Fermi 45, 00044 Frascati (Italy)

    2011-10-15

    High temperature superconductors (HTS) are very attractive to be used in fusion devices mainly due to lower operations costs. The HTS technology has reached a point where the construction of toroidal field coils for a tokamak is possible. The feasibility of a tokamak operating with HTS is extremely relevant and ISTTOK is the ideal candidate for a meaningful test due to its small size (and consequently lower cost) and the possibility to operate in a steady-state inductive regime. In this paper, a conceptual study of the ISTTOK upgrade to a superconducting device is presented, along with the relevant boundary conditions to achieve a permanent toroidal field with HTS. It is shown that the actual state of the art in HTS allows the design of a toroidal field coil capable of generating the appropriate field on plasma axis while respecting the structural specification of the machine.

  12. In situ calibration of rotating sensor coils for magnet testing.

    Science.gov (United States)

    Arpaia, P; Buzio, M; Golluccio, G; Walckiers, L

    2012-01-01

    An in situ procedure for calibrating equivalent magnetic area and rotation radius of rotating coils is proposed for testing accelerator magnets shorter than the measuring coil. The procedure exploits measurements of magnetic field and mechanical displacement inside a reference quadrupole magnet. In a quadrupole field, an offset between the magnet and coil rotation axes gives rise to a dipole component in the field series expansion. The measurements of the focusing strength, the displacement, and the resulting dipole term allow the equivalent area and radius of the coil to be determined analytically. The procedure improves the accuracy of coils with large geometrical irregularities in the winding. This is essential for short magnets where the coil dimensions constrain the measurement accuracy. Experimental results on different coils measuring small-aperture permanent magnets are shown.

  13. An unusual case of intrarenal coiled and ruptured guidewire

    Directory of Open Access Journals (Sweden)

    Francesca Manassero

    2015-03-01

    Full Text Available Objective. To the best of our knowledge there are only 3 reports of fractured guidewires inside the pelvicalyceal system, successfully removed with endourology techniques, and this is the first one presenting a tightly coiled intraparenchymal section. Material and methods: A 59-year-old woman was hospitalized for surgical treatment of a right kidney of reduced size. Past history revealed pyelolithotomy for a staghorn stone 14 months earlier at another Institution with subsequent ureteral obstruction, one failed attempt at ureteral double-J catheter insertion and one failed attempt at percutaneous nephrostomy placement 5 months postoperatively. Another nephrostomy was placed, but left indwelling briefly. CT scan demonstrated a small-size kidney with residual stone fragments and presence of a “device” in the lower pole. The tapered distal extremity of an hydrophilic guidewire, with a tightly coiled central section wedged in the renal tissue was found inside the nephrectomy specimen. Results: While the Radiologist who read the CT scan hypothesized that the “device” was a fragment of double-J ureteral stent or nephrostomy catheter, it consisted of the hydrophilic extremity of a guidewire, broken during a previous attempt at nephostomy placement. Perirenal fibrosis and inappropriate angle between the needle and the lower calyx are the likely causes of guidewire coiling during its advancement and subsequent rupture during withdrawal. Conclusions. Urologists must be aware that, although percutaneous nephrostomy has a very high technical success rate, unusual complications like guidewire fracture may occur, and that modern imaging techniques can provide an accurate picture of this condition.

  14. Voice coil based scanning probe microscopy

    Czech Academy of Sciences Publication Activity Database

    Klapetek, P.; Valtr, M.; Duchoň, V.; Sobota, Jaroslav

    2012-01-01

    Roč. 7, č. 6 (2012), 332:1-7 ISSN 1931-7573 R&D Projects: GA MPO FR-TI1/241; GA AV ČR KAN311610701; GA MŠk ED0017/01/01 Institutional support: RVO:68081731 Keywords : SPM * Voice coil * Interferometry Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 2.524, year: 2012

  15. Coil irrigation in sugar cane (Saccharum officinarum)

    OpenAIRE

    Jesús Sánchez Gutiérrez; Yoslén Fernández Gálvez; Mayra Martínez Pírez; Camilo Bonet Pérez; Manuel A Hernández Victoria; Arlandy Noy Perera

    2016-01-01

    This study was made at the Basic Seed Bank of the Local Sugar Cane Research Station for the Mideastern Cuba, based in Camaguey, on brown carbonate soil, between 2013 and 12014. Coil irrigation was applied to meet the water requirements for the crop, according to the edafoclimatic conditions and the different phenological phases it has. The Savo method was used to determine useful rain water. Adjustment and complementation of the irrigation program was based on indicators that characterize the...

  16. Choice of coils for a fusion reactor

    Science.gov (United States)

    Alexander, Romeo; Garabedian, Paul R.

    2007-01-01

    In a fusion reactor a hot plasma of deuterium and tritium is confined by a strong magnetic field to produce helium ions and release energetic neutrons. The 3D geometry of a stellarator provides configurations for such a device that reduce net toroidal current that might lead to disruptions. We construct smooth coils generating an external magnetic field designed to prevent the plasma from deteriorating. PMID:17640879

  17. The Geometry Variation of As-Grown Carbon Coils with Ni Layer Thickness and Hydrogen Plasma Pretreatment

    Directory of Open Access Journals (Sweden)

    Young-Chul Jeon

    2013-01-01

    Full Text Available Carbon coils could be synthesized using C2H2/H2 as source gases and SF6 as an incorporated additive gas under thermal chemical vapor deposition system. Ni layer on SiO2 substrate was used as a catalyst for the formation of carbon coils. Ni powder was evaporated to form Ni layer on the substrate. The characteristics (formation densities, morphologies, and geometries of as-grown carbon coils on the substrate were investigated as a function of the evaporation time for Ni catalyst layer formation. By hydrogen plasma pretreatment prior to carbon coils synthesis reaction, the dominant formation of the nanosized wave-like geometry of carbon coils could be achieved. The characteristics of as-grown carbon coils with or without hydrogen plasma pretreatment process were investigated. The cause for the control of the carbon coils geometries from the microsized type to the nanosized wave-like one by H2 plasma pretreatment was discussed in association with the stress of Ni catalyst layer on the substrate.

  18. Numerical dosimetry of transcranial magnetic stimulation coils

    Science.gov (United States)

    Crowther, Lawrence; Hadimani, Ravi; Jiles, David

    2014-03-01

    Transcranial magnetic stimulation (TMS) is a non-invasive neuromodulation technique capable of stimulating neurons by means of electromagnetic induction. TMS can be used to map brain function and shows promise for the diagnosis and treatment of neurological and psychiatric disorders. Calculation of fields induced in the brain are necessary to accurately identify stimulated neural tissue during TMS. This allows the development of novel TMS coil designs capable of stimulating deeper brain regions and increasing the localization of stimulation that can be achieved. We have performed numerical calculations of magnetic and electric field with high-resolution anatomically realistic human head models to find these stimulated brain regions for a variety of proposed TMS coil designs. The realistic head models contain heterogeneous tissue structures and electrical conductivities, yielding superior results to those obtained from the simplified homogeneous head models that are commonly employed. The attenuation of electric field as a function of depth in the brain and the localization of stimulating field have been methodically investigated. In addition to providing a quantitative comparison of different TMS coil designs the variation of induced field between subjects has been investigated. We also show the differences in induced fields between adult, adolescent and child head models to preemptively identify potential safety issues in the application of pediatric TMS.

  19. Ab initio theory of helix <-> coil phase transition

    DEFF Research Database (Denmark)

    Yakubovich, Alexander V.; Solov'yov, Ilia; Solov'yov, Andrey V.

    2008-01-01

    In this paper, we suggest a theoretical method based on the statistical mechanics for treating the alpha-helix <-> random coil transition in alanine polypeptides. We consider this process as a first-order phase transition and develop a theory which is free of model parameters and is based solely ...... twisting. The suggested theory is general and with some modification can be applied for the description of phase transitions in other complex molecular systems (e.g. proteins, DNA, nanotubes, atomic clusters, fullerenes).......In this paper, we suggest a theoretical method based on the statistical mechanics for treating the alpha-helix random coil transition in alanine polypeptides. We consider this process as a first-order phase transition and develop a theory which is free of model parameters and is based solely...... on fundamental physical principles. It describes essential thermodynamical properties of the system such as heat capacity, the phase transition temperature and others from the analysis of the polypeptide potential energy surface calculated as a function of two dihedral angles, responsible for the polypeptide...

  20. Design of beta-domain swapping, alpha/beta-protein, environmentally sensitive coiled coil and peptide functionalized titania materials

    Science.gov (United States)

    Nagarkar, Radhika P.

    2009-12-01

    The objective of this dissertation is to apply rational peptide design to fabricate nanomaterials via self-assembly. This has been demonstrated in structurally diverse systems with an aim of deciphering the underlying principles governing how sequence affects the peptide's ability to adopt a specific secondary structure and ultimate material properties that are realized from the association of these secondary structural elements. Several amyloidogenic proteins have been shown to self-assemble into fibrils using a mechanism known as domain swapping. Here, discreet units of secondary structure are exchanged among discreet proteins during self-assembly to form extended networks with precise three dimensional organization. The possibility of using these mechanisms to design peptides capable of controlled assembly and fibril formation leading to materials with targeted properties is explored. By altering the placement of a beta-turn sequence that varies the size and location of the exchanged strand, twisting, non-twisting and laminated fibrillar nanostructures are obtained. Hydrogels prepared from these strand swapping beta-hairpins have varied rheological properties due to differences in their fibrillar nanostructures. In a second distinct design, alpha/beta-proteins are used to prepare environmentally sensitive hydrogels. Here, multiple distinct motifs for structural integrity and dynamic response within a single self-assembling peptide allow the amyloid-like fibrils formed to controllably alter their nano-topography in response to an external stimulus such as temperature. The development of these self-assembling alpha/beta-protein motifs also necessitated the design of pH sensitive antiparallel coiled coils. Exploring the basic principles responsible for pH dependent conformational changes in coiled coils can lead to new insights in the control of protein structure and function. Lastly, this dissertation discusses the interface between biomolecules and inorganic

  1. Evidence of α-helical coiled coils and β-sheets in hornet silk.

    Science.gov (United States)

    Kameda, Tsunenori; Nemoto, Takashi; Ogawa, Tetsuya; Tosaka, Masatoshi; Kurata, Hiroki; Schaper, Andreas K

    2014-03-01

    α-Helical coiled coil and β-sheet complexes are essential structural building elements of silk proteins produced by different species of the Hymenoptera. Beside X-ray scattering at wide and small angles we applied cryo-electron diffraction and microscopy to demonstrate the presence and the details of such structures in silk of the giant hornet Vespa mandarinia japonica. Our studies on the assembly of the fibrous silk proteins and their internal organization in relation to the primary chain structure suggest a 172 Å pitch supercoil consisting of four intertwined alanine-rich α-helical strands. The axial periodicity may adopt even multiples of the pitch value. Coiled coil motifs form the largest portion of the hornet silk structure and are aligned nearly parallel to the cocoon fiber axis in the same way as the membrane-like parts of the cocoon are molecularly orientated in the spinning direction. Supercoils were found to be associated with β-crystals, predominantly localized in the l-serine-rich chain sequences terminating each of the four predominant silk proteins. Such β-sheet blocks are considered resulting from transformation of random coil molecular sequences due to the action of elongational forces during the spinning process. Copyright © 2013 Elsevier Inc. All rights reserved.

  2. Design and testing of a coil-unit barrel for helical coil electromagnetic launcher

    Science.gov (United States)

    Yang, Dong; Liu, Zhenxiang; Shu, Ting; Yang, Lijia; Ouyang, Jianming

    2018-01-01

    A coil-unit barrel for a helical coil electromagnetic launcher is described. It provides better features of high structural strength and flexible adjustability. It is convenient to replace the damaged coil units and easy to adjust the number of turns in the stator coils due to the modular design. In our experiments, the highest velocity measured for a 4.5-kg projectile is 47.3 m/s and the mechanical reinforcement of the launcher could bear 35 kA peak current. The relationship between the energy conversion efficiency and the inductance gradient of the launcher is also studied. In the region of low inductance gradient, the efficiency is positively correlated with the inductance gradient. However, in the region of high inductance gradient, the inter-turn arc erosion becomes a major problem of limiting the efficiency and velocity of the launcher. This modular barrel allows further studies in the inter-turn arc and the variable inductance gradient helical coil launcher.

  3. Multi circular-cavity surface coil for magnetic resonance imaging of monkey's brain at 4 Tesla

    Science.gov (United States)

    Osorio, A. I.; Solis-Najera, S. E.; Vázquez, F.; Wang, R. L.; Tomasi, D.; Rodriguez, A. O.

    2014-11-01

    Animal models in medical research has been used to study humans diseases for several decades. The use of different imaging techniques together with different animal models offers a great advantage due to the possibility to study some human pathologies without the necessity of chirurgical intervention. The employ of magnetic resonance imaging for the acquisition of anatomical and functional images is an excellent tool because its noninvasive nature. Dedicated coils to perform magnetic resonance imaging experiments are obligatory due to the improvement on the signal-to-noise ratio and reduced specific absorption ratio. A specifically designed surface coil for magnetic resonance imaging of monkey's brain is proposed based on the multi circular-slot coil. Numerical simulations of the magnetic and electric fields were also performed using the Finite Integration Method to solve Maxwell's equations for this particular coil design and, to study the behavior of various vector magnetic field configurations and specific absorption ratio. Monkey's brain images were then acquired with a research-dedicated magnetic resonance imaging system at 4T, to evaluate the anatomical images with conventional imaging sequences. This coil showed good quality images of a monkey's brain and full compatibility with standard pulse sequences implemented in research-dedicated imager.

  4. Alternatives to natural gas in metal coil coating. First topical report for the period September 27, 1978 - December 31, 1979

    Energy Technology Data Exchange (ETDEWEB)

    Huebner, S R

    1979-12-31

    The design, construction, and demonstration of an inert air metal coating line that does not use natural gas as the primary fuel for the process is developed. The concept utilizes an incinerator that uses electrically heated air to cleanly burn all evaporated solvents from the coil coating line to generate the process heat as well as provide an inert atmosphere for safe operation of the oven. The program envisaged the demonstration of these energy conservation concepts in an operational coil coating line at a host site. During the reporting period, a thermal review of coil coating technology was completed. From an efficient energy usage view point, system components that need be pursued were identified. Lacking a host for the operational coil coating line to incorporate the propsed system, the program has been revised for a laboratory demonstration of the concept. The design and construction of this unit will be carried out in subsequent phases of the program.

  5. Synthesis and functionalization of coiled carbon filaments

    Science.gov (United States)

    Hikita, Muneaki

    Coiled carbon filaments have one of the most attractive three-dimensional forms in carbon materials due to their helical morphologies. Because of their shape and carbon structure, they exhibit excellent mechanical and electrical properties such as superelasticity, low Young's modulus, relatively high electrical conductivity, and good electromagnetic (EM) wave absorption. Therefore, they are good candidates as fillers in composite materials for tactile sensor and electromagnetic interference shielding. In medical areas of interests, coiled carbon filaments can be used as micro and nano heaters or trigger for thermotherapy and biosensors using EM wave exposure because absorbed EM waves by coiled carbon filaments are converted into heat. Although various shapes of coiled carbon filaments have been discovered, optimum synthesis conditions and growth mechanisms of coiled carbon filaments are poorly understood. The study of growth kinetics is significant not only to analyze catalyst activity but also to establish the growth mechanisms of coiled carbon filaments. The establishment of growth mechanisms would be useful for determining optimum synthesis conditions and maximizing the quantity of carbon filaments synthesized for a given application. In the first study, tip grown single helical carbon filaments or carbon nanocoils (CNCs) were synthesized by a chemical vapor deposition method using tin-iron-oxide (Sn-Fe-O) xerogel film catalyst. The Sn-Fe-O catalyst was prepared by a low-cost sol-gel method using stannous acetate and ferric acetate as precursors. The growth kinetics of CNCs were monitored by a thermogravimetric analyzer, and the experimental result was correlated using a one-dimensional kinetic model, corresponding to one-dimensional tip growth. In the second study, bidirectionally grown double helical filaments or carbon microcoils (CMCs) were synthesized using a chemical vapor deposition method. CMCs obtained at two reaction temperatures were compared. CMCs

  6. Integrated PET/MR breast cancer imaging: Attenuation correction and implementation of a 16-channel RF coil.

    Science.gov (United States)

    Oehmigen, Mark; Lindemann, Maike E; Lanz, Titus; Kinner, Sonja; Quick, Harald H

    2016-08-01

    This study aims to develop, implement, and evaluate a 16-channel radiofrequency (RF) coil for integrated positron emission tomography/magnetic resonance (PET/MR) imaging of breast cancer. The RF coil is designed for optimized MR imaging performance and PET transparency and attenuation correction (AC) is applied for accurate PET quantification. A 16-channel breast array RF coil was designed for integrated PET/MR hybrid imaging of breast cancer lesions. The RF coil features a lightweight rigid design and is positioned with a spacer at a defined position on the patient table of an integrated PET/MR system. Attenuation correction is performed by generating and applying a dedicated 3D CT-based template attenuation map. Reposition accuracy of the RF coil on the system patient table while using the positioning frame was tested in repeated measurements using MR-visible markers. The MR, PET, and PET/MR imaging performances were systematically evaluated using modular breast phantoms. Attenuation correction of the RF coil was evaluated with difference measurements of the active breast phantoms filled with radiotracer in the PET detector with and without the RF coil in place, serving as a standard of reference measurement. The overall PET/MR imaging performance and PET quantification accuracy of the new 16-channel RF coil and its AC were then evaluated in first clinical examinations on ten patients with local breast cancer. The RF breast array coil provides excellent signal-to-noise ratio and signal homogeneity across the volume of the breast phantoms in MR imaging and visualizes small structures in the phantoms down to 0.4 mm in plane. Difference measurements with PET revealed a global loss and thus attenuation of counts by 13% (mean value across the whole phantom volume) when the RF coil is placed in the PET detector. Local attenuation ranging from 0% in the middle of the phantoms up to 24% was detected in the peripheral regions of the phantoms at positions closer to

  7. Coil design considerations for a high-frequency electromagnetic induction sensing instrument

    Science.gov (United States)

    Sigman, John B.; Barrowes, Benjamin E.; Wang, Yinlin; Bennett, Hollis J.; Simms, Janet E.; Yule, Donald E.; O'Neill, Kevin; Shubitidze, Fridon

    2016-05-01

    Intermediate electrical conductivity (IEC) materials (101S/m carbon fiber (CF), have recently been used to make smart bombs. In addition, homemade improvised explosive devices (IED) can be produced with low conducting materials (10-4S/m low frequency, EMI systems use more wire turns in transmit and receive coils to boost signal-to-noise ratios (SNR), but at higher frequencies, the transmitter current has non-uniform distribution along the coil length. These non-uniform currents change the spatial distribution of the primary magnetic field and disturb axial symmetry and thwart established approaches for inferring subsurface metallic object properties. This paper discusses engineering tradeoffs for sensing with a broader band of frequencies ever used for EMI sensing, with particular focus on coil geometries.

  8. Room Temperature Magnetic Determination of the Current Center Line for the ITER TF Coils

    CERN Document Server

    Lerch, Philippe; Buzio, Marco; Negrazus, Marco; Baynham, Elwyn; Sanfilippo, Stephane; Foussat, Arnaud

    2014-01-01

    The ITER tokamak includes 18 superconducting D-shaped toroidal field (IT) coils. Unavoidable shape deformations as well as assembly errors will lead to field errors, which can be modeled with the knowledge of the current center line (CCL). Accurate survey during the entire manufacturing and assembly process, including transfer of survey points, is complex. In order to increase the level of confidence, a room temperature magnetic measurement of the CCL on assembled and closed winding packs is foreseen, prior to insertion into their cold case. In this contribution, we discuss the principle of the CCL determination and present a low frequency ac measurement system under development at PSI, within an ITER framework contract. The largest current allowed to flow in the TF coil at room temperature and the precision requirements for the determination of the CCL loci of the coil are hard boundaries. Eddy currents in the radial plates, the winding pack enclosures, and possibly from iron in the reinforced concrete floor...

  9. Attenuation Correction for MR Coils in Combined PET/MR Imaging: A Review

    Science.gov (United States)

    Eldib, Mootaz; Bini, Jason; Faul, David D.; Oesingmann, Niels; Tsoumpas, Charalampos; Fayad, Zahi A.

    2015-01-01

    Synopsis With the introduction of clinical PET/MR systems, novel attenuation correction methods are needed, as there are no direct or indirect MR methods to measure the attenuation of the objects in the FOV. A unique challenge for PET/MR attenuation correction is that coils for MR data acquisition are located in the FOV of the PET detector and could induce significant quantitative errors. In this review, we summarize and evaluate current methods and techniques to correct for the attenuation of a variety of coils. PMID:26952728

  10. Retrieval of prolapsed coils during endovascular treatment of cerebral aneurysms

    Energy Technology Data Exchange (ETDEWEB)

    Dinc, Hasan [Karadeniz Technical University, Department of Radiology, Faculty of Medicine, Trabzon (Turkey); KTU Farabi Hospital, Department of Radiology, Trabzon (Turkey); Kuzeyli, Kayhan [Karadeniz Technical University, Department of Neurosurgery, Faculty of Medicine, Trabzon (Turkey); Kosucu, Polat; Sari, Ahmet [Karadeniz Technical University, Department of Radiology, Faculty of Medicine, Trabzon (Turkey); Cekirge, Saruhan [Hacettepe University, Department of Radiology, Faculty of Medicine, Ankara (Turkey)

    2006-04-15

    One of the feared complications during detachable coil embolization of cerebral aneurysms is herniation of a coil loop into the parent artery. Although coil protrusion of one or two loops into the parent vessel may not cause adverse events and in some instances can be ignored, the authors believe that coil retrieval is indicated if a free end is seen pulsating along the blood flow stream to prevent migration of the entire coil mass. In one patient, a microballoon was inflated across the neck of the aneurysm during retrieval of a herniated coil to prevent further coil herniation from the aneurysm sac. We present two cases in which prolapsed coils were successfully retrieved either using a microsnare and balloon combination or a microsnare alone. This report focuses on the efficacy of the Amplatz microsnare for such retrievals and the circumstances in which a herniated coil needs to be retrieved. We report two cases in which embolization coils partially migrated into the parent artery during endovascular treatment of cerebral aneurysm and were retrieved using the Amplatz Nitinol microsnare. (orig.)

  11. Ablation dynamics in coiled wire-array Z-pinches

    Energy Technology Data Exchange (ETDEWEB)

    Hall, G. N.; Lebedev, S. V.; Suzuki-Vidal, F.; Swadling, G.; Chittenden, J. P.; Bland, S. N.; Harvey-Thompson, A. [Blackett Laboratory, Imperial College, London SW7 2BW (United Kingdom); Knapp, P. F.; Blesener, I. C.; McBride, R. D.; Chalenski, D. A.; Blesener, K. S.; Greenly, J. B.; Pikuz, S. A.; Shelkovenko, T. A.; Hammer, D. A.; Kusse, B. R. [Laboratory of Plasma Studies, Cornell University, 439 Rhodes Hall, Ithaca, New York 14853 (United States)

    2013-02-15

    Experiments to study the ablation dynamics of coiled wire arrays were performed on the MAGPIE generator (1 MA, 240 ns) at Imperial College, and on the COBRA generator at Cornell University's Laboratory of Plasma Studies (1 MA, 100 ns). The MAGPIE generator was used to drive coiled wires in an inverse array configuration to study the distribution of ablated plasma. Using interferometry to study the plasma distribution during the ablation phase, absolute quantitative measurements of electron line density demonstrated very high density contrasts between coiled ablation streams and inter-stream regions many millimetres from the wire. The measured density contrasts for a coiled array were many times greater than that observed for a conventional array with straight wires, indicating that a much greater axial modulation of the ablated plasma may be responsible for the unique implosion dynamics of coiled arrays. Experiments on the COBRA generator were used to study the complex redirection of plasma around a coiled wire that gives rise to the ablation structure exhibited by coiled arrays. Observations of this complex 3D plasma structure were used to validate the current model of coiled array ablation dynamics [Hall et al., Phys. Rev. Lett. 100, 065003 (2008)], demonstrating irrefutably that plasma flow from the wires behaves as predicted. Coiled wires were observed to ablate and implode in the same manner on both machines, indicating that current rise time should not be an issue for the scaling of coiled arrays to larger machines with fast current rise times.

  12. Transcranial Magnetic Stimulation-coil design with improved focality

    Science.gov (United States)

    Rastogi, P.; Lee, E. G.; Hadimani, R. L.; Jiles, D. C.

    2017-05-01

    Transcranial Magnetic Stimulation (TMS) is a technique for neuromodulation that can be used as a non-invasive therapy for various neurological disorders. In TMS, a time varying magnetic field generated from an electromagnetic coil placed on the scalp is used to induce an electric field inside the brain. TMS coil geometry plays an important role in determining the focality and depth of penetration of the induced electric field responsible for stimulation. Clinicians and basic scientists are interested in stimulating a localized area of the brain, while minimizing the stimulation of surrounding neural networks. In this paper, a novel coil has been proposed, namely Quadruple Butterfly Coil (QBC) with an improved focality over the commercial Figure-8 coil. Finite element simulations were conducted with both the QBC and the conventional Figure-8 coil. The two coil's stimulation profiles were assessed with 50 anatomically realistic MRI derived head models. The coils were positioned on the vertex and the scalp over the dorsolateral prefrontal cortex to stimulate the brain. Computer modeling of the coils has been done to determine the parameters of interest-volume of stimulation, maximum electric field, location of maximum electric field and area of stimulation across all 50 head models for both coils.

  13. Type I macrophage scavenger receptor contains α-helical and collagen-like coiled coils

    Science.gov (United States)

    Kodama, Tatsuhiko; Freeman, Mason; Rohrer, Lucia; Zabrecky, James; Matsudaira, Paul; Krieger, Monty

    1990-02-01

    The macrophage scavenger receptor is a trimeric membrane glycoprotein with unusual ligand-binding properties which has been implicated in the development of atherosclerosis. The trimeric structure of the bovine type I scavenger receptor, deduced by complementary DNA cloning, contains three extracellular C-terminal cysteine-rich domains connected to the transmembrane domain by a long fibrous stalk. This stalk structure, composed of an a-helical coiled coil and a collagen-like triple helix, has not previously been observed in an integral membrane protein.

  14. Development of Radar Navigation and Radio Data Transmission for Microhole Coiled Tubing Bottom Hole Assemblies

    Energy Technology Data Exchange (ETDEWEB)

    Larry G. Stolarczyk; Gerald L. Stolarczyk; Larry Icerman; John Howard; Hooman Tehrani

    2007-03-25

    This Final Technical Report summarizes the research and development (R&D) work performed by Stolar Research Corporation (Stolar) under U.S. Department of Energy (DOE) Contract Number DE-FC26-04NT15477. This work involved the development of radar navigation and radio data transmission systems for integration with microhole coiled tubing bottom hole assemblies. Under this contract, Stolar designed, fabricated, and laboratory and field tested two advanced technologies of importance to the future growth of the U.S. oil and gas industry: (1) real-time measurement-while-drilling (MWD) for guidance and navigation of coiled tubing drilling in hydrocarbon reservoirs and (2) two-way inductive radio data transmission on coiled tubing for real-time, subsurface-to-surface data transmission. The operating specifications for these technologies are compatible with 3.5-inch boreholes drilled to a true vertical depth (TVD) of 5,000 feet, which is typical of coiled tubing drilling applications. These two technologies (i.e., the Stolar Data Transmission System and Drill String Radar) were developed into pre-commercial prototypes and tested successfully in simulated coiled tubing drilling conditions. Integration of these two technologies provides a real-time geosteering capability with extremely quick response times. Stolar is conducting additional work required to transition the Drill String Radar into a true commercial product. The results of this advanced development work should be an important step in the expanded commercialization of advanced coiled tubing microhole drilling equipment for use in U.S. hydrocarbon reservoirs.

  15. Analysis of alpha-helical coiled coils with the program TWISTER reveals a structural mechanism for stutter compensation.

    Science.gov (United States)

    Strelkov, Sergei V; Burkhard, Peter

    2002-01-01

    Alpha-helical coiled coils represent a widespread protein structure motif distinguished by a seven-residue periodicity of apolar residues in the primary sequence. A characteristic "knobs-into-holes" packing of these residues into a hydrophobic core results in a superhelical, usually left-handed, rope of two or more alpha-helices. Such a geometry can be parameterized. For this purpose, a new computer program, TWISTER, was developed. With the three-dimensional coordinates as input, TWISTER uses an original algorithm to determine the local coiled-coil parameters as a function of residue number. In addition, heptad positions are assigned based on structural criteria. It is known that frequently encountered discontinuities in the heptad repeat, such as stutters and skips, can be tolerated within a continuous coiled coil but result in a local distortion of its geometry. This was explored in detail with the help of TWISTER for several two- and three-stranded coiled coils. Depending on the particular protein, stutters were found to be compensated locally by an unwinding of the superhelix, alpha-helical unwinding, or both. In the first case, there is often a local switch from a left-handed to a right-handed superhelix. In general, the geometrical distortion is confined to about two alpha-helical turns at either side of the stutter. Furthermore, stutters result in a local increase of the coiled-coil radius. (c) 2002 Elsevier Science (USA).

  16. The heterotrimeric laminin coiled-coil domain exerts anti-adhesive effects and induces a pro-invasive phenotype.

    Directory of Open Access Journals (Sweden)

    Patricia Santos-Valle

    Full Text Available Laminins are large heterotrimeric cross-shaped extracellular matrix glycoproteins with terminal globular domains and a coiled-coil region through which the three chains are assembled and covalently linked. Laminins are key components of basement membranes, and they serve as attachment sites for cell adhesion, migration and proliferation. In this work, we produced a recombinant fragment comprising the entire laminin coiled-coil of the α1-, β1-, and γ1-chains that assemble into a stable heterotrimeric coiled-coil structure independently of the rest of the molecule. This domain was biologically active and not only failed to serve as a substrate for cell attachment, spreading and focal adhesion formation but also inhibited cell adhesion to laminin when added to cells in a soluble form at the time of seeding. Furthermore, gene array expression profiling in cells cultured in the presence of the laminin coiled-coil domain revealed up-regulation of genes involved in cell motility and invasion. These findings were confirmed by real-time quantitative PCR and zymography assays. In conclusion, this study shows for the first time that the laminin coiled-coil domain displays anti-adhesive functions and has potential implications for cell migration during matrix remodeling.

  17. Performance assessment and optimization of the ITER toroidal field coil joints

    NARCIS (Netherlands)

    Rolando, G.; Foussat, A.; Knaster, J.; Ilyin, Y.; Nijhuis, Arend

    2013-01-01

    The ITER toroidal field (TF) system features eighteen coils that will provide the magnetic field necessary to confine the plasma. Each winding pack is composed of seven double pancakes (DP) connected through praying hands joints. Shaking hands joints are used to interface the terminals of the

  18. Comparison of the association of sac growth and coil compaction with recurrence in coil embolized cerebral aneurysms.

    Directory of Open Access Journals (Sweden)

    Anna L Hoppe

    Full Text Available In recurrent cerebral aneurysms treated by coil embolization, coil compaction is regarded as the presumptive mechanism. We test the hypothesis that aneurysm growth is the primary recurrence mechanism. We also test the hypothesis that the coil mass will translate a measurable extent when recurrence occurs.An objective, quantitative image analysis protocol was developed to determine the volumes of aneurysms and coil masses during initial and follow-up visits from 3D rotational angiograms. The population consisted of 15 recurrence and 12 non-recurrence control aneurysms initially completely coiled at a single center. An investigator sensitivity study was performed to assess the objectivity of the methods. Paired Wilcoxon tests (p<0.05, one-tailed were performed to assess for aneurysm and coil growth. The translation of the coil mass center at follow-up was computed. A Mann Whitney U-Test (p<0.05, one-tailed was used to compare translation of coil mass centers between recurrence and control subjects.Image analysis protocol was found to be insensitive to the investigator. Aneurysm growth was evident in the recurrence cohort (p=0.003 but not the control (p=0.136. There was no evidence of coil compaction in either the recurrence or control cohorts (recurrence: p=0.339; control: p=0.429. The translation of the coil mass centers was found to be significantly larger in the recurrence cohort than the control cohort (p=0.047.Aneurysm sac growth, not coil compaction, was the primary mechanism of recurrence following successful coil embolization. The coil mass likely translates to a measurable extent when recurrence occurs and has the potential to serve as a non-angiographic recurrence marker.

  19. Evaluation of persistent-mode operation in a superconducting MgB2 coil in solid nitrogen

    Science.gov (United States)

    Patel, Dipak; Hossain, Md Shahriar Al; See, Khay Wai; Qiu, Wenbin; Kobayashi, Hiroki; Ma, Zongqing; Kim, Seong Jun; Hong, Jonggi; Park, Jin Yong; Choi, Seyong; Maeda, Minoru; Shahabuddin, Mohammed; Rindfleisch, Matt; Tomsic, Mike; Xue Dou, Shi; Kim, Jung Ho

    2016-04-01

    We report the fabrication of a magnesium diboride (MgB2) coil and evaluate its persistent-mode operation in a system cooled by a cryocooler with solid nitrogen (SN2) as a cooling medium. The main purpose of SN2 was to increase enthalpy of the cold mass. For this work, an in situ processed carbon-doped MgB2 wire was used. The coil was wound on a stainless steel former in a single layer (22 turns), with an inner diameter of 109 mm and height of 20 mm without any insulation. The two ends of the coil were then joined to make a persistent-current switch to obtain the persistent-current mode. After a heat treatment, the whole coil was installed in the SN2 chamber. During operation, the resultant total circuit resistance was estimated to be magnetic resonance imaging application.

  20. Coil Springs Layer Used to Support a Car Vertical Dynamics Simulator and to Reduce the Maximum Actuation Force

    Directory of Open Access Journals (Sweden)

    Dan N. Dumitriu

    2015-09-01

    Full Text Available A Danaher Thomson linear actuator with ball screw drive and a realtime control system are used here to induce vertical displacements under the driver/user seat of an in-house dynamic car simulator. In order to better support the car simulator and to dynamically protect the actuator’s ball screw drive, a layer of coil springs is used to support the whole simulator chassis. More precisely, one coil spring is placed vertically under each corner of the rectangular chassis. The paper presents the choice of the appropriate coil springs, so that to minimize as much as possible the ball screw drive task of generating linear motions, corresponding to the vertical displacements and accelerations encountered by a driver during a real ride. For this application, coil springs with lower spring constant are more suited to reduce the forces in the ball screw drive and thus to increase the ball screw drive life expectancy.

  1. Performance analyses of helical coil heat exchangers. The effect of external coil surface modification on heat exchanger effectiveness

    Science.gov (United States)

    Andrzejczyk, Rafał; Muszyński, Tomasz

    2016-12-01

    The shell and coil heat exchangers are commonly used in heating, ventilation, nuclear industry, process plant, heat recovery and air conditioning systems. This type of recuperators benefits from simple construction, the low value of pressure drops and high heat transfer. In helical coil, centrifugal force is acting on the moving fluid due to the curvature of the tube results in the development. It has been long recognized that the heat transfer in the helical tube is much better than in the straight ones because of the occurrence of secondary flow in planes normal to the main flow inside the helical structure. Helical tubes show good performance in heat transfer enhancement, while the uniform curvature of spiral structure is inconvenient in pipe installation in heat exchangers. Authors have presented their own construction of shell and tube heat exchanger with intensified heat transfer. The purpose of this article is to assess the influence of the surface modification over the performance coefficient and effectiveness. The experiments have been performed for the steady-state heat transfer. Experimental data points were gathered for both laminar and turbulent flow, both for co current- and countercurrent flow arrangement. To find optimal heat transfer intensification on the shell-side authors applied the number of transfer units analysis.

  2. Magnetic Field Alignment of PS-P4VP: a Non-Liquid Crystalline Coil-Coil Block Copolymer

    Science.gov (United States)

    Rokhlenko, Yekaterina; Zhang, Kai; Larson, Steven; Gopalan, Padma; O'Hern, Corey; Osuji, Chinedum

    2015-03-01

    Magnetic fields provide the ability to control alignment of self-assembled soft materials such as block copolymers. Most prior work in this area has relied on the presence of ordered assemblies of anisotropic liquid crystalline species to ensure sufficient magnetic anisotropy to drive alignment. Recent experiments with poly(styrene-b-4-vinylpyridine), a non-liquid crystalline BCP, however, show field-induced alignment of a lamellar microstructure during cooling across the order-disorder transition. Using in situ x-ray scattering, we examine the roles of field strength and cooling rate on the alignment response of this low MW coil-coil BCP. Alignment is first observed at field strengths as low as 1 Tesla and improves markedly with both increasing field strength and slower cooling. We present a geometric argument to illustrate the origin of a finite, non-trivial magnetic susceptibility anisotropy for highly stretched surface-tethered polymer chains and corroborate this using coarse-grained molecular dynamics simulations. We rationalize the magnetic field response of the system in terms of the mobility afforded by the absence of entanglements, the intrinsic anisotropy resulting from the stretched polymer chains and sterically constrained conjugated rings, and the large grain size in these low molecular weight materials.

  3. Sound Coiled-Tubing Drilling Practices

    Energy Technology Data Exchange (ETDEWEB)

    Williams, Thomas; Deskins, Greg (Maurer Technology Inc.); Ward, Stephen L. (Advantage Energy Services Ltd); Hightower, Mel

    2001-09-30

    This Coiled-Tubing Drilling (CTD) Sound Practices Manual provides tools needed by CTD engineers and supervisors to plan, design and perform safe, successful CTD operations. As emphasized throughout, both careful planning and attention to detail are mandatory for success. A bibliography of many useful CTD references is presented in Chapter 6. This manual is organized according to three processes: 1) Pre-Job Planning Process, 2) Operations Execution Process, and 3) Post-Job Review Process. Each is discussed in a logical and sequential format.

  4. Optically tracked, single-coil, scanning magnetic induction tomography

    Science.gov (United States)

    Feldkamp, Joe R.; Quirk, Stephen

    2017-03-01

    Recent work has shown the feasibility of single-coil, magnetic induction tomography, for visualizing a 3D distribution of electrical conductivity in portions of the human body. Loss is measured in a single, planar coil consisting of concentric circular loops while the coil is relocated to various non-redundant positions and orientations in the vicinity of the target. These loss values, together with measured coil position and orientation, are processed by a quantitative mapping equation that enables reconstruction of an electrical conductivity image. Up until now, the position of the coil had to be established by a template, which required assignment of locations for the coil to visit without necessarily giving any prior consideration to target geometry. We have now added optical tracking to our existing single-coil device so that position and orientation are tracked automatically, allowing collection of coil loss data at arbitrary positions or orientations as needed. Optical tracking is accomplished via a set of IR reflective spheres mounted on the same enclosure that supports the coil. Position for a select sphere within the set, together with the four quaternions specifying optical body orientation, is fed to a laptop at the same time coil loss data is streamed to the same laptop via Bluetooth. The coil center can be tracked with sub-millimeter accuracy while orientation angle is known to a fraction of a degree. This work illustrates the use of single-coil MIT in full, position-orientation-tracked scan mode while imaging laboratory phantoms. Phantoms are based upon simple materials having biologic conductivity (values for the various features within the image.

  5. Transmit coil design for Wireless Power Transfer for medical implants.

    Science.gov (United States)

    Lemdiasov, Rosti; Venkatasubramanian, Arun

    2017-07-01

    A new design approach for the design of transmit coils for Wireless Power Transfer (WPT) is presented. The theoretical formulation involves a figure of merit that has to be maximized to solve for the surface current. Numerical predictions and comparisons with practical measurements for the coil parameters (inductance. resistance) underscore the success of this approach in terms of achieving strong coupling with a receive coil while maintaining low resistance.

  6. An autoinhibited coiled-coil design strategy for split-protein protease sensors.

    Science.gov (United States)

    Shekhawat, Sujan S; Porter, Jason R; Sriprasad, Akshay; Ghosh, Indraneel

    2009-10-28

    Proteases are widely studied as they are integral players in cell-cycle control and apoptosis. We report a new approach for the design of a family of genetically encoded turn-on protease biosensors. In our design, an autoinhibited coiled-coil switch is turned on upon proteolytic cleavage, which results in the complementation of split-protein reporters. Utilizing this new autoinhibition design paradigm, we present the rational construction and optimization of three generations of protease biosensors, with the final design providing a 1000-fold increase in bioluminescent signal upon addition of the TEV protease. We demonstrate the generality of the approach utilizing two different split-protein reporters, firefly luciferase and beta-lactamase, while also testing our design in the context of a therapeutically relevant protease, caspase-3. Finally, we present a dual protease sensor geometry that allows for the use of these turn-on sensors as potential AND logic gates. Thus, these studies potentially provide a new method for the design and implementation of genetically encoded turn-on protease sensors while also providing a general autoinhibited coiled-coil strategy for controlling the activity of fragmented proteins.

  7. Structure and Misfolding of the Flexible Tripartite Coiled-Coil Domain of Glaucoma-Associated Myocilin

    Energy Technology Data Exchange (ETDEWEB)

    Hill, Shannon E.; Nguyen, Elaine; Donegan, Rebecca K.; Patterson-Orazem, Athéna C.; Hazel, Anthony; Gumbart, James C.; Lieberman, Raquel L.

    2017-11-01

    Glaucoma-associated myocilin is a member of the olfactomedins, a protein family involved in neuronal development and human diseases. Molecular studies of the myocilin N-terminal coiled coil demonstrate a unique tripartite architecture: a Y-shaped parallel dimer-of-dimers with distinct tetramer and dimer regions. The structure of the dimeric C-terminal 7-heptad repeats elucidates an unexpected repeat pattern involving inter-strand stabilization by oppositely charged residues. Molecular dynamics simulations reveal an alternate accessible conformation in which the terminal inter-strand disulfide limits the extent of unfolding and results in a kinked configuration. By inference, full-length myocilin is also branched, with two pairs of C-terminal olfactomedin domains. Selected variants within the N-terminal region alter the apparent quaternary structure of myocilin but do so without compromising stability or causing aggregation. In addition to increasing our structural knowledge of naturally occurring extracellular coiled coils and biomedically important olfactomedins, this work broadens the scope of protein misfolding in the pathogenesis of myocilin-associated glaucoma.

  8. Structure and Misfolding of the Flexible Tripartite Coiled-Coil Domain of Glaucoma-Associated Myocilin.

    Science.gov (United States)

    Hill, Shannon E; Nguyen, Elaine; Donegan, Rebecca K; Patterson-Orazem, Athéna C; Hazel, Anthony; Gumbart, James C; Lieberman, Raquel L

    2017-11-07

    Glaucoma-associated myocilin is a member of the olfactomedins, a protein family involved in neuronal development and human diseases. Molecular studies of the myocilin N-terminal coiled coil demonstrate a unique tripartite architecture: a Y-shaped parallel dimer-of-dimers with distinct tetramer and dimer regions. The structure of the dimeric C-terminal 7-heptad repeats elucidates an unexpected repeat pattern involving inter-strand stabilization by oppositely charged residues. Molecular dynamics simulations reveal an alternate accessible conformation in which the terminal inter-strand disulfide limits the extent of unfolding and results in a kinked configuration. By inference, full-length myocilin is also branched, with two pairs of C-terminal olfactomedin domains. Selected variants within the N-terminal region alter the apparent quaternary structure of myocilin but do so without compromising stability or causing aggregation. In addition to increasing our structural knowledge of naturally occurring extracellular coiled coils and biomedically important olfactomedins, this work broadens the scope of protein misfolding in the pathogenesis of myocilin-associated glaucoma. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Stabilization of Tokamak Plasmas by the Addition of Nonaxisymmetric Coils

    Science.gov (United States)

    Reiman, Allan

    2008-11-01

    It has been recognized since the early days of the fusion program that stellarator coils can be used to stabilize current carrying, toroidal, magnetically confined plasmas.[1] More recently, it has been shown that the vertical mode in a tokamak can be stabilized by a relatively simple set of parallelogram-shaped, localized, nonaxisymmetric coils.[2] We show that by superposing sets of these parallelogram-shaped, nonaxisymmetric coils at different locations, it is possible to reproduce the coil current patterns for conventional stellarator coils as well as those for Furth-Hartman coils[3]. This allows us to gain insight into the physics of stabilization produced by various sets of nonaxisymmetric coils by analysis of the effect on stability of localized coils at differing locations. In particular, the relationship between the stabilization effect and the rotational transform generated by the nonaxisymmetric coils is clarified. [1] J. L. Johnson, C. R. Oberman, R. M. Kulsrud, and E. A. Frieman, Phys. Fluids 1, 281 (1958) [2] A. Reiman, Phys. Rev. Lett. 99, 135007, (2007). [3] H.P. Furth and C.W. Hartman, Phys. Fluids 11, 408 (1968).

  10. Synthesis, characterisation and applications of coiled carbon nanotubes.

    Science.gov (United States)

    Hanus, Monica J; Harris, Andrew T

    2010-04-01

    Coiled carbon nanotubes are helical carbon structures formed when heptagonal and pentagonal rings are inserted into the hexagonal backbone of a 'straight' nanotube. Coiled carbon nanotubes have been reported with both regular and irregular helical structures. In this work the structure, growth mechanism(s), synthesis, properties and potential applications of coiled carbon nanotubes are reviewed. Published data suggests that coiled carbon nanotube synthesis occurs due to nonuniform extrusion of carbon from a catalyst surface. To date, coiled carbon nanotubes have been synthesised using catalyst modification techniques including: (i) the addition of S or P containing compounds during synthesis; (ii) the use of binary or ternary metal catalysts; (iii) the use of microwaves to create a local temperature gradient around individual catalyst particles and; (iv) the use of pH control during catalyst preparation. In most instances coiled carbon nanotubes are produced as a by-product; high yield and/or large-scale synthesis of coiled carbon nanotubes remains problematic. The qualitative analysis of coiled carbon nanotubes is currently hindered by the absence of specific characterisation data in the literature, e.g., oxidation profiles measured by thermogravimetric analysis and Raman spectra of pure coiled carbon nanotube samples.

  11. The effect of MR surface coils on PET quantification in whole-body PET/MR: results from a pseudo-PET/MR phantom study.

    Science.gov (United States)

    Tellmann, L; Quick, H H; Bockisch, A; Herzog, H; Beyer, T

    2011-05-01

    The use of magnetic resonance (MR) radiofrequency (RF) surface coils is a prerequisite for high-quality positron emission tomography (PET)/MR imaging. In lack of in-gantry transmission (TX) sources, the exact position of the RF coils is unknown in PET/MR, and may, therefore, lead to false attenuation correction (AC) of the emission (EM) data. The authors assess lesion and background quantification in AC-PET by mimicking different PET/MR imaging situations using a whole-body (WB) PET-only tomograph. Phantom experiments were performed on a PET tomograph with 68 Ge-rod TX sources. First, a 15-cm plastic cylinder was filled uniformly with [18F]-FDG to simulate a head study. Second, a NEMA NU-2001 image quality phantom (35 x 25 x 25 cm3) was filled uniformly with [18F]-FDG to simulate torso imaging. The phantom contained six lesions (10-38 mm diameter, lesion-to-background ratio 6:1) centred around a 5 cm diameter lung insert. EM and TX measurements were acquired with and without MR head (cylinder) and surface (NU-2001 phantom) RF coils in place. The following imaging situations were mimicked in both head and torso phantom studies: (1) PET scan without MR coils in EM and TX for reference, (2) PET scan with coils in both EM and TX, and (3) PET scan with coils in EM but without coils in TX. Two more set-ups were performed for the torso phantom: (4) PET scan with coils in EM only and phantom shifted slightly compared to (3), and (5) PET scan with coils in EM and TX following local displacement of the surface coils. PET EM data (1)-(4) were corrected for attenuation and scatter using cold TX data. Imaging situations (1)-(3) were repeated with the cylinder phantom and head coil in a combined PET/MR prototype system employing template-based AC. Head phantom: In case the MR head coils were not accounted for during AC (3), central and peripheral background activity concentration was underestimated by 13%-19% when compared to the reference setup (1). The effects of MR coil

  12. Dental MRI using wireless intraoral coils

    Science.gov (United States)

    Ludwig, Ute; Eisenbeiss, Anne-Katrin; Scheifele, Christian; Nelson, Katja; Bock, Michael; Hennig, Jürgen; von Elverfeldt, Dominik; Herdt, Olga; Flügge, Tabea; Hövener, Jan-Bernd

    2016-03-01

    Currently, the gold standard for dental imaging is projection radiography or cone-beam computed tomography (CBCT). These methods are fast and cost-efficient, but exhibit poor soft tissue contrast and expose the patient to ionizing radiation (X-rays). The need for an alternative imaging modality e.g. for soft tissue management has stimulated a rising interest in dental magnetic resonance imaging (MRI) which provides superior soft tissue contrast. Compared to X-ray imaging, however, so far the spatial resolution of MRI is lower and the scan time is longer. In this contribution, we describe wireless, inductively-coupled intraoral coils whose local sensitivity enables high resolution MRI of dental soft tissue. In comparison to CBCT, a similar image quality with complementary contrast was obtained ex vivo. In-vivo, a voxel size of the order of 250•250•500 μm3 was achieved in 4 min only. Compared to dental MRI acquired with clinical equipment, the quality of the images was superior in the sensitive volume of the coils and is expected to improve the planning of interventions and monitoring thereafter. This method may enable a more accurate dental diagnosis and avoid unnecessary interventions, improving patient welfare and bringing MRI a step closer to becoming a radiation-free alternative for dental imaging.

  13. Voice Coil Actuators for two MTG Instruments

    Science.gov (United States)

    Bencheikh, N.; Guignabert, A.; Barillot, F.; Benoit, C.; Burgui, C.; Compostizo, C.; Bueno, I.; Spanoudakis, P.; Kiener, L.; Schwab, P.

    2015-09-01

    While Cedrat Technologies has been active in space for more than 20 years with piezoelectric mechanisms, we have also been increasingly involved over the last few years in the development of magnetic actuators for space projects. In this paper, a focus is made on the case of magnetic actuators that are developed in the frame of the Meteosat Third Generation (MTG) project. The first one is the Scan Assembly (SCA) actuated by Rotating Voice Coil Motors (RVCM) for the East/West (E/W) axes and the North/South (N/S) axes developed in collaboration with Sener and the second one is the Voice Coil Motor (VCM) developed in collaboration with CSEM for the Corner Cube Mechanism (CCM)The motion needs are different for the both motor, linear motion for the CCM and rotational movement for the SCA. Even if the motion is different, the both applications have the same performance requirements such as linearity, low hysteresis, a high power to mass ratio, redundancy and so on.

  14. Umbilical cord coiling index and perinatal outcome.

    Science.gov (United States)

    Patil, Nivedita S; Kulkarni, Sunanda R; Lohitashwa, Renu

    2013-08-01

    To evaluate the perinatal outcome with the abnormal umbilical cord coiling index. This prospective study was carried out in the department of OBG at Adichunchangiri Institute of Medical Sciences, B.G.Nagara, Mandya, Karnataka, India from January 2008 to August 2010. 200 patients who were in active labour with term gestations, irrespective of their parities, who had singleton pregnancies with live babies who were either delivered by vaginal or LSCS were included in the study. Umbilical cord coiling index was calculated and it was correlated with various perinatal parameters like birth weight, meconium stained liquor, Apgar score, ponderal index and foetal growth restriction. Chi square and Fisher exact tests were used to find the significance of study parameters. There was a significant correlation between the hypercoiled cords (UCI >90(th) percentile) and IUGR of the babies (p value of UCI which was UCI which was > 90(th) percentile was associated with IUGR and low ponderal indices. Hypocoiled cords or UCI which was <10th percentile was associated with meconium staining, Apgar score at 1 min of <4 and at 5 min of <7, more LSCS rates and more NICU admissions.

  15. Toward simultaneous PET/MR breast imaging: systematic evaluation and integration of a radiofrequency breast coil.

    Science.gov (United States)

    Aklan, Bassim; Paulus, Daniel H; Wenkel, Evelyn; Braun, Harald; Navalpakkam, Bharath K; Ziegler, Susanne; Geppert, Christian; Sigmund, Eric E; Melsaether, Amy; Quick, Harald H

    2013-02-01

    With the recent introduction of integrated whole-body hybrid positron emission tomography/magnetic resonance (PET/MR) scanners, simultaneous PET/MR breast imaging appears to be a potentially attractive new clinical application. In this study, the technical groundwork toward performing simultaneous PET/MR breast imaging was developed and systematically evaluated in phantom experiments and breast cancer patient hybrid imaging. Measurements were performed on a state-of-the-art whole-body simultaneous PET/MR system (Biograph mMR, Siemens AG, Erlangen, Germany). The PET signal attenuating effects of a MR-only four-channel radiofrequency (RF) breast coil that is present in the PET field-of-view (FoV) during a simultaneous PET/MR data acquisition has been investigated and quantified. For this purpose, a dedicated PET/MR visible breast phantom featuring four modular inserts with various structures (no insert, MR insert, PET insert, and PET/MR insert) was developed. In addition to a systematic evaluation of MR-only image quality, the following phantom scans were performed using (18)F radio tracer: (1) PET emission scan with only the homogeneous breast phantom; (2) PET emission scan additionally with the RF breast coil in the PET FoV. Attenuation correction (AC) of PET data was performed with CT-based three-dimensional (3D) hardware attenuation maps (μ-maps) of the RF coil and breast phantom. Finally, a simultaneous PET/MR breast imaging was performed in two breast cancer patients. The modular breast phantom allowed for systematic evaluation of various MR, PET, and PET/MR image quality parameters. The RF breast coil provided MR images of good image quality, unaffected by PET imaging. The global attenuation of the RF breast coil on the PET emission data was approximately 11%. This hardware attributed PET signal attenuation was successfully corrected by using an appropriate CT-based 3D μ-map of the RF breast coil. Imaging of two breast cancer patients confirmed the

  16. A near infra-red video system as a protective diagnostic for electron cyclotron resonance heating operation in the Wendelstein 7-X stellarator.

    Science.gov (United States)

    Preynas, M; Laqua, H P; Marsen, S; Reintrog, A; Corre, Y; Moncada, V; Travere, J-M

    2015-11-01

    The Wendelstein 7-X stellarator is a large nuclear fusion device based at Max-Planck-Institut für Plasmaphysik in Greifswald in Germany. The main plasma heating system for steady state operation in W7-X is electron cyclotron resonance heating (ECRH). During operation, part of plama facing components will be directly heated by the non-absorbed power of 1 MW rf beams of ECRH. In order to avoid damages of such components made of graphite tiles during the first operational phase, a near infra-red video system has been developed as a protective diagnostic for safe and secure ECRH operation. Both the mechanical design housing the camera and the optical system are very flexible and respect the requirements of steady state operation. The full system including data acquisition and control system has been successfully tested in the vacuum vessel, including on-line visualization and data storage of the four cameras equipping the ECRH equatorial launchers of W7-X.

  17. A near infra-red video system as a protective diagnostic for electron cyclotron resonance heating operation in the Wendelstein 7-X stellarator

    Energy Technology Data Exchange (ETDEWEB)

    Preynas, M.; Laqua, H. P.; Marsen, S.; Reintrog, A. [Max-Planck-Institut für Plasmaphysik (IPP), D-17491 Greifswald (Germany); Corre, Y.; Moncada, V.; Travere, J.-M. [IRFM, CEA-Cadarache, 13108 Saint Paul lez Durance Cedex (France)

    2015-11-15

    The Wendelstein 7-X stellarator is a large nuclear fusion device based at Max-Planck-Institut für Plasmaphysik in Greifswald in Germany. The main plasma heating system for steady state operation in W7-X is electron cyclotron resonance heating (ECRH). During operation, part of plama facing components will be directly heated by the non-absorbed power of 1 MW rf beams of ECRH. In order to avoid damages of such components made of graphite tiles during the first operational phase, a near infra-red video system has been developed as a protective diagnostic for safe and secure ECRH operation. Both the mechanical design housing the camera and the optical system are very flexible and respect the requirements of steady state operation. The full system including data acquisition and control system has been successfully tested in the vacuum vessel, including on-line visualization and data storage of the four cameras equipping the ECRH equatorial launchers of W7-X.

  18. Ultra-Low Field SQUID-NMR using LN2 Cooled Cu Polarizing Field coil

    Science.gov (United States)

    Demachi, K.; Kawagoe, S.; Ariyoshi, S.; Tanaka, S.

    2017-07-01

    We are developing an Ultra-Low Field (ULF) Magnetic Resonance Imaging (MRI) system using a High-Temperature Superconductor superconducting quantum interference device (HTS rf-SQUID) for food inspection. The advantages of the ULF-NMR (Nuclear Magnetic Resonance) / MRI as compared with a conventional high field MRI are that they are compact and of low cost. In this study, we developed a ULF SQUID-NMR system using a polarizing coil to measure fat of which relaxation time T1 is shorter. The handmade polarizing coil was cooled by liquid nitrogen to reduce the resistance and accordingly increase the allowable current. The measured decay time of the polarizing field was 40 ms. The measurement system consisted of the liquid nitrogen cooled polarizing coil, a SQUID, a Cu wound flux transformer, a measurement field coil for the field of 47 μT, and an AC pulse coil for a 90°pulse field. The NMR measurements were performed in a magnetically shielded room to reduce the environmental magnetic field. The size of the sample was ϕ35 mm × L80 mm. After applying a polarizing field and a 90°pulse, an NMR signal was detected by the SQUID through the flux transformer. As a result, the NMR spectra of fat samples were obtained at 2.0 kHz corresponding to the measurement field Bm of 47 μT. The T1 relaxation time of the mineral oil measured in Bm was 45 ms. These results suggested that the ULF-NMR/MRI system has potential for food inspection.

  19. Impact of the use of an endorectal coil for 3 T prostate MRI on image quality and cancer detection rate

    Science.gov (United States)

    Gawlitza, Josephin; Reiss-Zimmermann, Martin; Thörmer, Gregor; Schaudinn, Alexander; Linder, Nicolas; Garnov, Nikita; Horn, Lars-Christian; Minh, Do Hoang; Ganzer, Roman; Stolzenburg, Jens-Uwe; Kahn, Thomas; Moche, Michael; Busse, Harald

    2017-02-01

    This work aims to assess the impact of an additional endorectal coil on image quality and cancer detection rate within the same patients. At a single academic medical center, this transversal study included 41 men who underwent T2- and diffusion-weighted imaging at 3 T using surface coils only or in combination with an endorectal coil in the same session. Two blinded readers (A and B) randomly evaluated all image data in separate sessions. Image quality with respect to localization and staging was rated on a five-point scale. Lesions were classified according to their prostate imaging reporting and data system (PIRADS) score version 1. Standard of reference was provided by whole-mount step-section analysis. Mean image quality scores averaged over all localization-related items were significantly higher with additional endorectal coil for both readers (p patient was significantly higher for reader B (p < 0.001) but not for reader A (p = 0.219). The numbers of histologically confirmed tumor lesions were rather similar for both settings. The subjectively rated 3-T image quality was improved with an endorectal coil. In terms of diagnostic performance, the use of an additional endorectal coil was not superior.

  20. Optimization of Three-stage Electromagnetic Coil Launcher

    Directory of Open Access Journals (Sweden)

    Yujiao Zhang

    2014-05-01

    Full Text Available For the design of three-stage electromagnetic coilgun, many parameters and their relations must be considered at the same time. However, there is no complete mathematical model to describe the relationship between these parameters and energy conversion efficiency of the coil launcher system. In this paper, using orthogonal test approach we consider the influence of 11 parameters to improve the energy conversion efficiency of a three-stage coilgun. Moreover, for the 11 parameters, another three neighboring values of the actual value are considered. According to the different 64 simulations arranged by orthogonal test approach, the 64 groups of muzzle velocity calculated by circuit equations can be analyzed to obtain a better parameters’ combination. For the solution of circuit simulations, an improved current filament method is proposed. To validate the optimal design, we manufacture the prototype and the improved one. The experimental results indicate that the optimal design method is effective.

  1. Implanted, inductively-coupled, radiofrequency coils fabricated on flexible polymeric material: Application to in vivo rat brain MRI at 7 T

    Science.gov (United States)

    Ginefri, J.-C.; Rubin, A.; Tatoulian, M.; Woytasik, M.; Boumezbeur, F.; Djemaï, B.; Poirier-Quinot, M.; Lethimonnier, F.; Darrasse, L.; Dufour-Gergam, E.

    2012-11-01

    Combined with high-field MRI scanners, small implanted coils allow for high resolution imaging with locally improved SNR, as compared to external coils. Small flexible implantable coils dedicated to in vivo MRI of the rat brain at 7 T were developed. Based on the Multi-turn Transmission Line Resonator design, they were fabricated with a Teflon substrate using copper micromolding process and a specific metal-polymer adhesion treatment. The implanted coils were made biocompatible by PolyDimethylSiloxane (PDMS) encapsulation. The use of low loss tangent material achieves low dielectric losses within the substrate and the use of the PDMS layer reduces the parasitic coupling with the surrounding media. An implanted coil was implemented in a 7 T MRI system using inductive coupling and a dedicated external pick-up coil for signal transmission. In vivo images of the rat brain acquired with in plane resolution of (150 μm)2 thanks to the implanted coil revealed high SNR near the coil, allowing for the visualization of fine cerebral structures.

  2. Biocide-mediated corrosion of coiled tubing.

    Science.gov (United States)

    Sharma, Mohita; An, Dongshan; Liu, Tao; Pinnock, Tijan; Cheng, Frank; Voordouw, Gerrit

    2017-01-01

    Coiled tubing corrosion was investigated for 16 field water samples (S5 to S20) from a Canadian shale gas field. Weight loss corrosion rates of carbon steel beads incubated with these field water samples averaged 0.2 mm/yr, but injection water sample S19 had 1.25±0.07 mm/yr. S19 had a most probable number of zero acid-producing bacteria and incubation of S19 with carbon steel beads or coupons did not lead to big changes in microbial community composition. In contrast other field water samples had most probable numbers of APB of 102/mL to 107/mL and incubation of these field water samples with carbon steel beads or coupons often gave large changes in microbial community composition. HPLC analysis indicated that all field water samples had elevated concentrations of bromide (average 1.6 mM), which may be derived from bronopol, which was used as a biocide. S19 had the highest bromide concentration (4.2 mM) and was the only water sample with a high concentration of active bronopol (13.8 mM, 2760 ppm). Corrosion rates increased linearly with bronopol concentration, as determined by weight loss of carbon steel beads, for experiments with S19, with filtered S19 and with bronopol dissolved in defined medium. This indicated that the high corrosion rate found for S19 was due to its high bronopol concentration. The corrosion rate of coiled tubing coupons also increased linearly with bronopol concentration as determined by electrochemical methods. Profilometry measurements also showed formation of multiple pits on the surface of coiled tubing coupon with an average pit depth of 60 μm after 1 week of incubation with 1 mM bronopol. At the recommended dosage of 100 ppm the corrosiveness of bronopol towards carbon steel beads was modest (0.011 mm/yr). Higher concentrations, resulting if biocide is added repeatedly as commonly done in shale gas operations, are more corrosive and should be avoided. Overdosing may be avoided by assaying the presence of residual biocide by HPLC

  3. Chemical oxygen iodine laser (COIL) technology and development

    Science.gov (United States)

    Duff, Edward A.; Truesdell, Keith A.

    2004-09-01

    In the late 1960's researchers realized that producing a population inversion in a moving medium could be used to generate high-energy laser beams. The first lasers to scale to the 10 kW size with good beam quality were supersonic flows of N2 - CO2, emitting radiation from the CO2 at 10.6 microns. In the 1970's gas dynamic CO2 lasers were scaled to hundreds of kilowatts and engineered into a KC-135 aircraft. This aircraft (The Airborne Laser Laboratory) was used to shoot down Sidewinder AIM-9B missiles in the early 1980"s. During this same time period (1970-1990) hydrogen fluoride and deuterium fluoride lasers were scaled to the MW scale in ground-based facilities. In 1978, the Iodine laser was invented at the Air Force Research Laboratory and scaled to the 100 kW level by the early 1990"s. Since the 60s, the DOD Chemical Laser development efforts have included CO2, CO, DF, HF, and Iodine. Currently, the DOD is developing DF, HF, and Iodine lasers, since CO2 and CO have wavelengths and diffraction limitations which make them less attractive for high energy weapons applications. The current military vision is to use chemical lasers to prove the principles and field ground and air mounted laser systems while attempting to develop weight efficient solid-state lasers at the high power levels for use in future Strategic and Tactical situations. This paper describes the evolution of Chemical Oxygen Iodine Lasers, their selection for use in the Airborne Laser (ABL), and the Advanced Tactical Laser (ATL). COIL was selected for these early applications because of its power scalability, its short wavelength, its atmospheric transmittance, and its excellent beam quality. The advantages and challenges are described, as well as some of the activities to improve magazine depth and logistics supportability. COIL lasers are also potentially applicable to mobile ground based applications, and future space based applications, but challenges exist. In addition, COIL is being

  4. Validation of welding technology for ITER TF coil structures

    Energy Technology Data Exchange (ETDEWEB)

    Chida, Yutaka, E-mail: chida.yutaka@jaea.go.jp [Japan Atomic Energy Agency (Japan); Iguchi, Masahide; Takano, Katutoshi; Nakajima, Hideo [Japan Atomic Energy Agency (Japan); Oosemochi, Koichi [Toshiba Corporation (Japan); Niimi, Kenichiro; Tokai, Daisuke [Kawasaki Heavy Industries, LTD. (Japan); Gallix, Remy [ITER Organization (France)

    2011-12-15

    Japan Atomic Energy Agency (JAEA), acting as the Japan Domestic Agency (JADA) in the ITER project is responsible for the procurement of 9 Toroidal Field (TF) coil winding packs (WPs), structures for 19 TF coils (including one spare), and assembly of the WPs and the coil structures for 9 TF coils . The TF Coil structures which support large electromagnetic force generated in TF coils under the cryogenic temperature (about 4 K), are very large welded structures composed of a coil case and structural attachments made of high strength and high toughness stainless steel. JAEA has been performing welding trials for heavy thickness materials since 2008 and is planning fabrication of full-scale mock-ups of main sub-components (1 set for the inboard side and 1 set for the outboard side) in 2011 in order to investigate the technical issues for manufacturing the TF coil structures. This paper presents the results of welding trials and the status of full scale mock-ups fabrication to confirm the validity of welding technology and manufacturing design before fabricating the actual products.

  5. Device for measuring elastic modulus of superconducting coils (See 7903169)

    CERN Multimedia

    1979-01-01

    This device was made to measure elastic modulus of the Po dipole superconducting coils. More elaborated devices, but based on the same concept, were later used to measure the apparent elastic moduli of the LHC superconducting magnet coils. See also 7903169, 7901386.

  6. Second Barrel Toroid Coil Installed in ATLAS Cavern

    CERN Multimedia

    Tappern, G.

    The second barrel toroid coil was lowered into the ATLAS Cavern on Friday, 26 November. The operation takes approximately five hours of precision crane and winch operations. Before lowering, several checks are made to ensure that no loose items have been left on the coil which would fall during the lowering down the shaft. This is a very difficult, but very important check, with the first coil in position, and partly below the shaft. After changing the winch tooling on Wednesday December 1st, the coil was lifted, rotated and placed into the feet. The girders which support the coil and the Z direction stops had all been pre-set before putting the coil in the feet. The angle is controlled by an inclinometer. When the final adjustments of position have been made, which will locate the coils at the plus/minus two mm level, the connection beams (voussoirs and struts) will be put in place; this requires a complex shimming procedure. This will lock together the two coils into the feet and forms the foundation for th...

  7. Dependence on winding tensions for stability of a superconducting coil

    Science.gov (United States)

    Takeo, Masakatsu; Sato, Seiki; Matsuo, Masaaki; Kiss, Takanobu; Takao, Tomoaki; Yamanaka, Atsuhiko; Kashima, Toshihiro; Mito, Toshiyuki; Minamizato, Kazushige

    2003-10-01

    The purpose of this study is to manufacture a high performance superconducting pulse coil by using high strength polyethylene fiber (DF; Dyneema ® fiber) reinforced plastic (DFRP) or Dyneema-glass hybrid composite fiber reinforced plastic (DGFRP) as material of a coil bobbin, which has negative thermal expansion, low frictional coefficient and high thermal conductivity. Description in this paper is as follows. First, thermal strains of several kinds of FRP pipes made by filament-winding (FW) method are measured, and the measured results well agreed with calculated ones by our proposed calculation method about thermal strains of a FW-pipe form. This shows that thermal expansion can be controlled by the proposed design technique of a DGFRP FW-pipe. Moreover, frictional coefficients of FRP plates using as coil structural material are measured and frictional heats are calculated for respective material when contact forces are changed. From these results, we find that the lower winding tension of a coil generates the smaller frictional heat when the frictional coefficient of the coil structural material is low. Furthermore, we systematically measure quench characteristics of many specimens of small superconducting coils using DFRP or DGFRP bobbins with different thermal expansions. From the results of quench tests, we find that the higher winding tension's coils tend to decrease quench current when the coil's bobbin expanded to a direction of circumference during the cooling down to cryogenic temperature, and suitable values of winding tension in a coil are located in region of 2-4 kg/mm 2. Finally, we design and manufacture 100 kJ class superconducting pulse coil by using a DGFRP bobbin, which wound in winding tension of 4 kg/mm 2. In addition, we prepare another 100 kJ class coil with the higher winding tensions of 8 kg/mm 2, and the quench characteristics of the coils are compared. The quench currents in the coils exceed the 95% rating on the load line for critical

  8. New directions in the design of MRI gradient coils

    Science.gov (United States)

    Baig, Tanvir Noor

    In this dissertation new designs for gradient coils are presented. The principal work is on better shielding for fringe field reduction. Fringe fields from gradient coils produce eddy currents in surrounding metal structures. Such eddy currents can degrade image quality and lead to acoustic noise. The acoustic effects are magnified for high-field Magnetic Resonance Imaging (MRI) scanners because of increased Lorentz forces. Conventional actively shielded gradient assemblies consist of primary and secondary coils in the shape of cylindrical shells surrounding the imaging volume. One of the principal regions of field leakage is at the ends of the gradient structure, and these fields are responsible for substantial eddy current generation. Our new shielded gradient coil designs that feature the inclusion of an endcap have significantly reduced fringe field at the cryostat inner bore. We discuss the degree to which the suppression of peak fringe fields corresponds to a reduction in the acoustic noise generated near the end of the warm bore. Energy efficient capped actively shielded elliptical gradient coils are also designed. In comparison with traditional uncapped elliptical designs the newly proposed design substantially reduces the fringe field at the inner cryostat bore. And compared to a cylindrical design (with a diameter matched to the elliptical semi-major axis), a good reduction in magnetic energy is observed. In addition, a design for a very short, symmetrical, and winged X-gradient insertable head coil is presented. With a smaller radius, an insertable head gradient coil has the advantage of less stored magnetic energy. The corresponding smaller inductance leads to higher slew rates. Lower torque from Lorentz forces is another advantage for these coils. When designing an insertable head coil one must remember the geometry is impacted by the shoulders. In consequence, asymmetric unshielded and shielded designs have been developed. Gradient designs with a

  9. Random coil chemical shift for intrinsically disordered proteins

    DEFF Research Database (Denmark)

    Kjærgaard, Magnus; Brander, Søren; Poulsen, Flemming Martin

    2011-01-01

    Secondary chemical shift analysis is the main NMR method for detection of transiently formed secondary structure in intrinsically disordered proteins. The quality of the secondary chemical shifts is dependent on an appropriate choice of random coil chemical shifts. We report random coil chemical....... Temperature has a non-negligible effect on the (13)C random coil chemical shifts, so temperature coefficients are reported for the random coil chemical shifts to allow extrapolation to other temperatures. The pH dependence of the histidine random coil chemical shifts is investigated in a titration series...... shifts and sequence correction factors determined for a GGXGG peptide series following the approach of Schwarzinger et al. (J Am Chem Soc 123(13):2970-2978, 2001). The chemical shifts are determined at neutral pH in order to match the conditions of most studies of intrinsically disordered proteins...

  10. Differential Search Coils Based Magnetometers: Conditioning, Magnetic Sensitivity, Spatial Resolution

    Directory of Open Access Journals (Sweden)

    Timofeeva Maria

    2012-03-01

    Full Text Available A theoretical and experimental comparison of optimized search coils based magnetometers, operating either in the Flux mode or in the classical Lenz-Faraday mode, is presented. The improvements provided by the Flux mode in terms of bandwidth and measuring range of the sensor are detailed. Theory, SPICE model and measurements are in good agreement. The spatial resolution of the sensor is studied which is an important parameter for applications in non destructive evaluation. A general expression of the magnetic sensitivity of search coils sensors is derived. Solutions are proposed to design magnetometers with reduced weight and volume without degrading the magnetic sensitivity. An original differential search coil based magnetometer, made of coupled coils, operating in flux mode and connected to a differential transimpedance amplifier is proposed. It is shown that this structure is better in terms of volume occupancy than magnetometers using two separated coils without any degradation in magnetic sensitivity. Experimental results are in good agreement with calculations.

  11. Electromagnetic Design of Superconducting Dipoles Based on Sector Coils

    CERN Document Server

    Todesco, Ezio

    2007-01-01

    We study the coil lay-outs of superconducting dipoles for particle accelerators based on the sector geometry. We show that a simple model based on a sector coil with a wedge allows us to derive an equation giving the short sample field as a function of the aperture, coil width, cable properties and superconducting material. The equation agrees well with the actual results of several dipole coils that have been built in the last 30 years. The improvements due to the grading technique and the iron yoke are also studied. The proposed equation can be used as a benchmark to judge the efficiency of the coil design, and to carry out a global optimization of an accelerator lay-out.

  12. Transformer current sensor for superconducting magnetic coils

    Science.gov (United States)

    Shen, Stewart S.; Wilson, C. Thomas

    1988-01-01

    A transformer current sensor having primary turns carrying a primary current for a superconducting coil and secondary turns only partially arranged within the primary turns. The secondary turns include an active winding disposed within the primary turns and a dummy winding which is not disposed in the primary turns and so does not experience a magnetic field due to a flow of current in the primary turns. The active and dummy windings are wound in opposite directions or connected in series-bucking relationship, and are exposed to the same ambient magnetic field. Voltages which might otherwise develop in the active and dummy windings due to ambient magnetic fields thus cancel out. The resultant voltage is purely indicative of the rate of change of current flowing in the primary turns.

  13. Modelling of flexi-coil springs with rubber-metal pads in a locomotive running gear

    Directory of Open Access Journals (Sweden)

    Michálek T.

    2015-06-01

    Full Text Available Nowadays, flexi-coil springs are commonly used in the secondary suspension stage of railway vehicles. Lateral stiffness of these springs is influenced by means of their design parameters (number of coils, height, mean diameter of coils, wire diameter etc. and it is often suitable to modify this stiffness in such way, that the suspension shows various lateral stiffness in different directions (i.e., longitudinally vs. laterally in the vehicle-related coordinate system. Therefore, these springs are often supplemented with some kind of rubber-metal pads. This paper deals with modelling of the flexi-coil springs supplemented with tilting rubber-metal tilting pads applied in running gear of an electric locomotive as well as with consequences of application of that solution of the secondary suspension from the point of view of the vehicle running performance. This analysis is performed by means of multi-body simulations and the description of lateral stiffness characteristics of the springs is based on results of experimental measurements of these characteristics performed in heavy laboratories of the Jan Perner Transport Faculty of the University of Pardubice.

  14. Integration of Resonant Coil for Wireless Power Transfer and Implantable Antenna for Signal Transfer

    Directory of Open Access Journals (Sweden)

    Dong-Wook Seo

    2016-01-01

    Full Text Available We propose the integration of the resonant coil for wireless power transfer (WPT and the implantable antenna for physiological signal transfer. The integration allows for a compact biomedical implantable system such as electrocardiogram (ECG recorder and pacemaker. While the resonant coils resonate at the frequency of 13.56 MHz for the WPT, the implantable antenna works in the medical implant communications service (MICS band of 402–405 MHz for wireless communications. They share the narrow substrate area of a bar-type shape; the coil has the current path on the outer part of the substrate and the meandered planar inverted-F antenna (PIFA occupies the inside of the coil. To verify the potentials of the proposed structure, a prototype is fabricated and tested in vitro. The power transfer efficiency (PTE of about 20% is obtained at a distance of 15 mm and the antenna gain of roughly −40 dBi is achieved.

  15. MR coil sensitivity inhomogeneity correction for plaque characterization in carotid arteries

    Science.gov (United States)

    Salvado, Olivier; Hillenbrand, Claudia; Suri, Jasjit; Wilson, David L.

    2004-05-01

    We are involved in a comprehensive program to characterize atherosclerotic disease using multiple MR images having different contrast mechanisms (T1W, T2W, PDW, magnetization transfer, etc.) of human carotid and animal model arteries. We use specially designed intravascular and surface array coils that give high signal-to-noise but suffer from sensitivity inhomogeneity. With carotid surface coils, challenges include: (1) a steep bias field with an 80% change; (2) presence of nearby muscular structures lacking high frequency information to distinguish bias from anatomical features; (3) many confounding zero-valued voxels subject to fat suppression, blood flow cancellation, or air, which are not subject to coil sensitivity; and (4) substantial noise. Bias was corrected using a modification of the adaptive fuzzy c-mean method reported by Pham et al. (IEEE TMI, 18:738-752), whereby a bias field modeled as a mechanical membrane was iteratively improved until cluster means no longer changed. Because our images were noisy, we added a noise reduction filtering step between iterations and used about 5 classes. In a digital phantom having a bias field measured from our MR system, variations across an area comparable to a carotid artery were reduced from 50% to images were qualitatively improved and large regions of skeletal muscle were relatively flat. Other commonly applied techniques failed to segment the images or introduced strong edge artifacts. Current evaluations include comparisons to bias as measured by a body coil in human MR images.

  16. Coil-current effect in Kibble balances: analysis, measurement, and optimization

    Science.gov (United States)

    Li, S.; Bielsa, F.; Stock, M.; Kiss, A.; Fang, H.

    2018-02-01

    The Kibble balance is expected to become an important instrument in the near future for realizing the unit of mass, the kilogram, in the revised international system of units (SI). The Kibble balance assumes an equality of two magnetic profiles measured in the weighing and velocity phases. A recent study conducted in the Kibble balance group at the Bureau International des Poids et Mesures (BIPM) showed that the coil current could significantly affect the magnetic profile, which should be carefully taken into account in the Kibble balance experiment. This paper gives a deeper understanding and investigation of the effect, and discusses the magnetic profile change due to the coil current, for both the classical two-mode and the one-mode Kibble balances. The coil current effect has been theoretically and experimentally investigated based on a typical magnet design with an air gap. One important conclusion found in the one-mode Kibble balance is that the magnetic profile change measured in the velocity phase is twice the change in the weighing phase. A compensation suggestion, to minimize the profile change due to the coil current in a BIPM-type magnet, is presented.

  17. Assessment of Effective Connectivity and Plasticity With Dual-Coil Transcranial Magnetic Stimulation.

    Science.gov (United States)

    Lafleur, Louis-Philippe; Tremblay, Sara; Whittingstall, Kevin; Lepage, Jean-Francois

    2016-01-01

    Understanding how different brain regions interact with one another is at the heart of current endeavors in cognitive and basic neuroscience. Unlike most neuroimaging techniques, transcranial magnetic stimulation (TMS) allows the establishment of causal relationships in the study of the functional architecture of the human brain. While this tool is increasingly used to probe the functional and causal nature of the associations between brain regions, a comprehensive guide documenting the various existing stimulation protocols is currently lacking, limiting its use. The main objective of the current work is to characterize the various dual-coil TMS protocols used to probe effective connectivity and plasticity within the motor system. In addition, we want to propose a short TMS battery that could be used in clinical and research settings. Articles using dual-coil TMS indexed in PubMed and Medline published between 1990 and 2015 were included in the review. A wide range of stimulation parameters has been used to probe connectivity and plasticity. However, a few protocols have been shown to produce robust effects, mostly inhibitory in nature. Dual-coil TMS offers the distinctive opportunity to investigate effective connectivity and plasticity between different parts of the brain. Sites of stimulation, stimulation intensity, inter-stimulus interval and coil orientation are crucial factors to consider when using this technique. We propose a brief battery of tests that could be used to assess effective brain connectivity in clinical populations. Copyright © 2016 Elsevier Inc. All rights reserved.

  18. Magnetic cubes-collocated coils as sensors for displacement positioning

    Directory of Open Access Journals (Sweden)

    Jovičić Nenad S.

    2015-01-01

    Full Text Available We describe design and verification of a novel autonomous sensor system (Magnetic Cubes for evaluating the distance between two points as well as the rotation matrix between the coordinate systems attached to the sensors. The system is based on two sensors, each comprising three orthogonal coils wound on foam cubes, and near-field coupling between the sensors, which operate the medium frequency band. Testing and verification of the designed system was done by performing various 2D and 3D movements, and comparing positions and orientations estimated by Magnetic Cubes with those measured by an optical motion capture system. In all cases, good agreement is obtained: the RMS error for the estimation of the distances between the cubes is less than 10 mm (less than 2%, while the RMS errors for the estimation of the Cartesian coordinates are less than 7%. The discrepancies between the results obtained from the two systems were also assessed by the Pearson correlation coefficient (greater than 0.9 for the Cartesian coordinates and greater than 0.99 for the distances between the cubes.

  19. Structural Comparisons of Apo- and Metalated Three-Stranded Coiled Coils Clarify Metal Binding Determinants in Thiolate Containing Designed Peptides

    Energy Technology Data Exchange (ETDEWEB)

    Chakraborty, Saumen; Touw, Debra S.; Peacock, Anna F.A.; Stuckey, Jeanne; Pecoraro, Vincent L. (Michigan)

    2010-11-05

    Over the past two decades, designed metallopeptides have held the promise for understanding a variety of fundamental questions in metallobiochemistry; however, these dreams have not yet been realized because of a lack of structural data to elaborate the protein scaffolds before metal complexation and the resultant metalated structures which ultimately exist. This is because there are few reports of structural characterization of such systems either in their metalated or nonmetalated forms and no examples where an apo structure and the corresponding metalated peptide assembly have both been defined by X-ray crystallography. Herein we present X-ray structures of two de novo designed parallel three-stranded coiled coils (designed using the heptad repeat (a {yields} g)) CSL9C (CS = Coil Ser) and CSL19C in their nonmetalated forms, determined to 1.36 and 2.15 {angstrom} resolutions, respectively. Leucines from either position 9 (a site) or 19 (d site) are replaced by cysteine to generate the constructs CSL9C and CSL19C, respectively, yielding thiol-rich pockets at the hydrophobic interior of these peptides, suitable to bind heavy metals such as As(III), Hg(II), Cd(II), and Pb(II). We use these structures to understand the inherent structural differences between a and d sites to clarify the basis of the observed differential spectroscopic behavior of metal binding in these types of peptides. Cys side chains of (CSL9C){sub 3} show alternate conformations and are partially preorganized for metal binding, whereas cysteines in (CSL19C){sub 3} are present as a single conformer. Zn(II) ions, which do not coordinate or influence Cys residues at the designed metal sites but are essential for forming X-ray quality crystals, are bound to His and Glu residues at the crystal packing interfaces of both structures. These 'apo' structures are used to clarify the changes in metal site organization between metalated As(CSL9C){sub 3} and to speculate on the differential basis of

  20. An improvement of airflow and heat transfer performance of multi-coil condensers by different coil configurations

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Tzong-Shing; Wu, Wu-Chieh; Chuah, Yew-Khoy; Wang, Sheng-Kai [Department of Energy and Refrigerating Air-Conditioning Engineering, National Taipei University of Technology, 1, Sec.3, Chung-Hsiao E. Rd., Taipei 106 (China)

    2010-11-15

    Mal-distribution of airflow is an important factor for the performance of air-cooled multi-coil air-cooled condensers. This study is an attempt to investigate the effects of different included angles between the coils of the condenser. It has been found in this study that it can be a mean to improve the performance of multi-coil condensers without using larger heat transfer surfaces. A commercially used four-coil condenser of an air-cooled water chiller was used as the base case in the tests and analysis. The results show that the variation of the included angle can increase the airflow rate by 7.85%, which corresponds to 5.29% increase in heat transfer. The improvements were found to be due to the reduction of the stagnant flow regions of the heat exchanger coils, and more even flow distribution through the coils. Test data were used to verify the computer model of the four-coil heat exchanger. The same tested fan performance characteristic was used in all of the analyses. The research results are important as air-cooled condensing units can be designed to better performance merely by changing the configuration of the coil arrangements. (author)

  1. Self-assembly of designed coiled coil peptides studied by small-angle X-ray scattering and analytical ultracentrifugation

    DEFF Research Database (Denmark)

    Malik, Leila; Nygaard, Jesper; Christensen, Niels Johan

    2013-01-01

    , they are promising tools for the construction of nanomaterials. Small-angle X-ray scattering (SAXS) has emerged as a new biophysical technique for elucidation of protein topology. Here, we describe a systematic study of the self-assembly of a small ensemble of coiled coil sequences using SAXS and analytical...

  2. Overview of the PPPL International Experimental Stellarator Collaboration Activity

    Energy Technology Data Exchange (ETDEWEB)

    Gates, David [Princeton University

    2012-03-28

    PPPL has initiated and strengthened collaborative experimental programs aimed at developing the required toolsets and scientific knowledge for advancing stellarators as a viable fusion energy source. In particular, activities at LHD and W7-X, the two large superconducting helical confinement systems in the world, have been expanded. The focus at LHD has been on diagnostic development and data analysis, since the device is a mature research facility with more than 20MW of heating power available. High beta stability experiments, ion and electron temperature measurements using a recently installed imaging x-ray crystal spectrometer, and 3D equilibrium reconstructions will be described. The focus on W7-X has been to develop hardware capabilities for divertor heat flux control, including plasma-facing components, error field correction coils, and power supplies. Progress on these and other activities will be presented.

  3. Research of Measurement Circuits for High Voltage Current Transformer Based on Rogowski Coils

    OpenAIRE

    Yan Bing; Wang Yutian; Li Hui; Wang Huixin; Chen Yiqiang

    2014-01-01

    The electronic current transformer plays an irreplaceable position in the field of relay protection and current measurement of the power system. Rogowski coils are used as sensor parts, and in order to improve the measurement accuracy and reliability, the circuits at the high voltage system are introduced and improved in this paper, including the analog integral element, the filtering circuit and the phase shift circuit. Simulations results proved the reliability and accuracy of the improved ...

  4. Research of Measurement Circuits for High Voltage Current Transformer Based on Rogowski Coils

    Directory of Open Access Journals (Sweden)

    Yan Bing

    2014-02-01

    Full Text Available The electronic current transformer plays an irreplaceable position in the field of relay protection and current measurement of the power system. Rogowski coils are used as sensor parts, and in order to improve the measurement accuracy and reliability, the circuits at the high voltage system are introduced and improved in this paper, including the analog integral element, the filtering circuit and the phase shift circuit. Simulations results proved the reliability and accuracy of the improved circuits.

  5. Development of real time system imaging software for the protection of plasma facing components(PFCs) in Wendelstein 7-X

    Energy Technology Data Exchange (ETDEWEB)

    Ali, Adnan; Jakubowski, Marcin; Sunn Pedersen, Thomas; Rodatos, Alexander [Max-Planck-Institute for Plasma Physics, Greifswald (Germany); Greuner, Henri [Max-Planck-Institute for Plasma Physics, Garching (Germany)

    2016-07-01

    One of the main aims of Wendelstein 7-X, an advanced stellarator in Greifswald, is the investigation of quasi-steady state operation of magnetic fusion devices, for which power exhaust is a very important issue. The predominant fraction of the energy lost from the confined plasma region will be removed by 10 so-called island divertors, which can sustain up to 10 MW/Sq-m. In order to protect the divertor elements from overheating and to monitor power deposition onto the divertor elements, 10 state-of-the-art infrared endoscopes will be installed at W7-X and software is under development for real-time analysis of automatic detection of the hot spots and other abnormal events. The pre-defined algorithms designed for early detection of defects e.g. hotspots, surface layers and delaminations during the discharge are being implemented into the software acquiring the images from the infrared cameras and broadcast them to the main Discharge Control System(DCS). This allows for automatic control of the scenario of the discharge in order to assure safe operation of W7-X. The first online tests of the software will soon be performed at GLADIS in Garching.

  6. First results of the multi-purpose real-time processing video camera system on the Wendelstein 7-X stellarator and implications for future devices

    Science.gov (United States)

    Zoletnik, S.; Biedermann, C.; Cseh, G.; Kocsis, G.; König, R.; Szabolics, T.; Szepesi, T.; Wendelstein 7-X Team

    2018-01-01

    A special video camera has been developed for the 10-camera overview video system of the Wendelstein 7-X (W7-X) stellarator considering multiple application needs and limitations resulting from this complex long-pulse superconducting stellarator experiment. The event detection intelligent camera (EDICAM) uses a special 1.3 Mpixel CMOS sensor with non-destructive read capability which enables fast monitoring of smaller Regions of Interest (ROIs) even during long exposures. The camera can perform simple data evaluation algorithms (minimum/maximum, mean comparison to levels) on the ROI data which can dynamically change the readout process and generate output signals. Multiple EDICAM cameras were operated in the first campaign of W7-X and capabilities were explored in the real environment. Data prove that the camera can be used for taking long exposure (10-100 ms) overview images of the plasma while sub-ms monitoring and even multi-camera correlated edge plasma turbulence measurements of smaller areas can be done in parallel. These latter revealed that filamentary turbulence structures extend between neighboring modules of the stellarator. Considerations emerging for future upgrades of this system and similar setups on future long-pulse fusion experiments such as ITER are discussed.

  7. Three-dimensional proton magnetic resonance spectroscopic imaging with and without an endorectal coil: a prostate phantom study.

    Science.gov (United States)

    Ma, Chao; Chen, Luguang; Scheenen, Tom W J; Lu, Jianping; Wang, Jian

    2015-11-01

    Proton magnetic resonance spectroscopic imaging (MRSI) of the prostate has been used with only a combination of external surface coils. The quality of spectral fitting of the (choline + creatine)/citrate ([Cho + Cr]/Cit) ratio at different field strengths and different coils is important for quantitative/semi-quantitative diagnosis of prostate cancer. To evaluate the quality of spectral fitting of the (Cho + Cr)/Cit ratio of a prostate phantom using MRSI at different field strengths and various coils. Experiments were using 1.5-T and 3.0-T MR systems. Measurements were taken on a homemade prostate phantom with different coils: spinal array; abdominal array; and endorectal. The signal-to-noise ratio (SNR) of choline, creatine, and citrate peaks as well as the (Cho + Cr)/Cit ratio in each voxel were compared among groups using multi-way analysis of variance. Magnetic field strength, coils, and plane position had a significant effect on the SNR or (Cho + Cr)/Cit ratio, and there were interactions among groups (all P = 0.000). The 1.5-T (0.228 ± 0.044) exhibited a higher (Cho + Cr)/Cit ratio than the 3.0-T (0.125 ± 0.041) magnetic field strength (F = 3238, P = 0.000). The (Cho + Cr)/Cit ratio of both surface coils (0.183 ± 0.065) and all coils (0.181 ± 0.057) was significantly lower than that of the endorectal coil (0.195 ± 0.077) (both P  0.05). No significant differences were found among the (Cho + Cr)/Cit ratios of all voxels in the middle planes by the post-hoc analyses (all P > 0.05). Three-dimensional proton MRSI of prostate metabolites in a phantom using surface coils is feasible and reliable, but (Cho + Cr)/Cit ratios acquired at different magnetic fields and coils were different. This difference should be taken into account when calculating this ratio in a field strength-independent way. © The Foundation Acta Radiologica 2014.

  8. Dynamics of entangled rod-coil block copolymers

    Science.gov (United States)

    Wang, Muzhou; Timachova, Ksenia; Alexander-Katz, Alfredo; Likhtman, Alexei E.; Olsen, Bradley D.

    2014-03-01

    Polymer science is exploring advanced materials which combine functional domains such as proteins and semiconducting polymers with traditional flexible polymers onto the same molecule. While many studies have focused on equilibrium structure-property relationships, little is known about how the conformational restrictions of rigid domains affect dynamical phenomena such as mechanical properties, processing pathways, and self-assembly kinetics. We have recently introduced a reptation theory for entangled rod-coil block copolymers as a model for this wider class of functional polymeric materials. The theory hypothesizes that the motion of rod-coils is slowed relative to rod and coil homopolymers because of a mismatch between the curvature of the rod and coil entanglement tubes. This effect leads to activated reptation and arm retraction as two relaxation mechanisms that govern the short and long rod regimes, respectively. These results were verified by tracer diffusion measurements using molecular dynamics simulation and forced Rayleigh scattering in both the rod-coil diblock and coil-rod-coil triblock configurations. The tracer diffusion results were then compared to experimental self-diffusion measurements which require a consideration of the motion of the surrounding chains.

  9. MANUFACTURING OF MAGNETIC PROBE COILS FOR DIII-D

    Energy Technology Data Exchange (ETDEWEB)

    BOZEK,A.S; STRAIT,E.J

    2003-10-01

    OAK-B135 The magnetic diagnostics program at DIII-D adds to its in-vessel installations of induction-type loops and coils almost every year. The current design of toroidal and poloidal magnetic field coils (45-50 kHz, N {center_dot} A = 0.06 m{sup 2}) has been in existence since 1987. Many coils were installed in DIII-D during that year and are still operating and reliable today. The high reliability of the coils is owing to the use of a continuous length of mineral-insulated cable, eliminating any electrical connections inside the vacuum vessel. The geometry of the probes was designed to achieve a bandwidth of 50 kHz, despite the conducting shell formed by the stainless steel sheath of the mineral-insulated cable. The bandwidth is sensitive to the details of the cable dimensions and winding technique, and care must be taken in the fabrication in order to maintain this specification. With possible future magnetic diagnostics installations IN ITER and other long-pulse machines requiring large numbers of coils and/or multiple layers per coil, the manufacturing scale-up, quality control, and the development of layered coils should all be investigated in addition to the obvious issues such as irradiation effects.

  10. Review of the ATLAS B0 model coil test program

    CERN Document Server

    Dolgetta, N; Acerbi, E; Berriaud, C; Boxman, H; Broggi, F; Cataneo, F; Daël, A; Delruelle, N; Dudarev, A; Foussat, A; Haug, F; ten Kate, H H J; Mayri, C; Paccalini, A; Pengo, R; Rivoltella, G; Sbrissa, E

    2004-01-01

    The ATLAS B0 model coil has been extensively tested, reproducing the operational conditions of the final ATLAS Barrel Toroid coils. Two test campaigns have taken place on B0, at the CERN facility where the individual BT coils are about to be tested. The first campaign aimed to test the cool-down, warm-up phases and to commission the coil up to its nominal current of 20.5 kA, reproducing Lorentz forces similar to the ones on the BT coil. The second campaign aimed to evaluate the margins above the nominal conditions. The B0 was tested up to 24 kA and specific tests were performed to assess: the coil temperature margin with respect to the design value, the performance of the double pancake internal joints, static and dynamic heat loads, behavior of the coil under quench conditions. The paper reviews the overall test program with emphasis on second campaign results not covered before. 10 Refs.

  11. Modeling of Heat Transfer in the Helical-Coil Heat Exchanger for the Reactor Facility "UNITERM"

    Directory of Open Access Journals (Sweden)

    V. I. Solonin

    2014-01-01

    Full Text Available Circuit heat sink plays an important role in the reactor system. Therefore it imposes high requirements for quality of determining thermal-hydraulic parameters. This article is aimed at modeling of heat exchange process of the helical-coil heat exchanger, which is part of the heat sink circuit of the reactor facility "UNITERM."The simulation was performed using hydro-gas-dynamic software package ANSYS CFX. Computational fluid dynamics of this package allows us to perform calculations in a threedimensional setting, giving an idea of the fluid flow nature. The purpose of the simulation was to determine the parameters of the helical-coil heat exchanger (temperature, velocity at the outlet of the pipe and inter-tubular space, pressure drop, and the nature of the fluid flow of primary and intermediate coolants. Geometric parameters of the model were determined using the preliminary calculations performed by the criterion equations. In calculations Turbulence models k-ε RNG, Shear Stress Transport (SST are used. The article describes selected turbulence models, and considers relationship with wall function.The calculation results allow us to give the values obtained for thermal-hydraulic parameters, to compare selected turbulence models, as well as to show distribution patterns of the coolant temperature, pressure, and velocity at the outlet of the intermediate cooler.Calculations have shown that:- maximum values of primary coolant temperature at the outlet of the heat exchanger surface are encountered in the space between the helical-coil tubes;- higher temperatures of intermediate coolant at the outlet of the coils (in space of helicalcoil tubes are observed for the peripheral row;- primary coolant movement in the inter-tubular space of helical-coil surface is formed as a spiral flow, rather than as a in-line tube bank cross flow.

  12. Coil-On-Plug Ignition for Oxygen/Methane Liquid Rocket Engines in Thermal-Vacuum Environments

    Science.gov (United States)

    Melcher, John C.; Atwell, Matthew J.; Morehead, Robert L.; Hurlbert, Eric A.; Bugarin, Luz; Chaidez, Mariana

    2017-01-01

    A coil-on-plug ignition system has been developed and tested for Liquid Oxygen (LOX)/liquid methane (LCH4) rocket engines operating in thermal vacuum conditions. The igniters were developed and tested as part of the Integrated Cryogenic Propulsion Test Article (ICPTA), previously tested as part of the Project Morpheus test vehicle. The ICPTA uses an integrated, pressure-fed, cryogenic LOX/LCH4 propulsion system including a reaction control system (RCS) and a main engine. The ICPTA was tested at NASA Glenn Research Center's Plum Brook Station in the Spacecraft Propulsion Research Facility (B-2) under vacuum and thermal vacuum conditions. A coil-on-plug ignition system has been developed to successfully demonstrate ignition reliability at these conditions while preventing corona discharge issues. The ICPTA uses spark plug ignition for both the main engine igniter and the RCS. The coil-on-plug configuration eliminates the conventional high-voltage spark plug cable by combining the coil and the spark plug into a single component. Prior to ICPTA testing at Plum Brook, component-level reaction control engine (RCE) and main engine igniter testing was conducted at NASA Johnson Space Center (JSC), which demonstrated successful hot-fire ignition using the coil-on-plug from sea-level ambient conditions down to 10(exp -2) torr. Integrated vehicle hot-fire testing at JSC demonstrated electrical and command/data system performance. Lastly, hot-fire testing at Plum Brook demonstrated successful ignitions at simulated altitude conditions at 30 torr and cold thermal-vacuum conditions at 6 torr. The test campaign successfully proved that coil-on-plug technology will enable integrated LOX/LCH4 propulsion systems in future spacecraft.

  13. Stacked planar micro coils for single-sided NMR applications

    Science.gov (United States)

    Watzlaw, Jan; Glöggler, Stefan; Blümich, Bernhard; Mokwa, Wilfried; Schnakenberg, Uwe

    2013-05-01

    This paper describes planar micro structured coils fabricated in a novel multilayer assembly for single-sided NMR experiments. By arranging the coil's turns in both lateral and vertical directions, all relevant coil parameters can be tailored to a specific application. To this end, we implemented an optimization algorithm based on simulations applying finite element methods (FEMs), which maximizes the coil's sensitivity and thus signal-to-noise ratio (SNR) while incorporating boundary conditions such as the coil's electrical properties and a localized sensitivity needed for single-sided applications. Utilizing thin-film technology and microstructuring techniques, the planar character is kept by a sub-millimeter overall thickness. The coils are adapted to the Profile NMR-MOUSE® magnet with a homogeneous slice of about 200 μm in height and a uniform depth gradient of about 20 T/m. The final design of a coil with 20 turns, separated in four layers with five turns each, and an outer dimension of 4 × 4 mm2 is able to measure a sample volume almost five times smaller than that of a state-of-the-art 14 × 16 mm2 Profile NMR-MOUSE® coil with the same SNR. This allows for volume-limited measurements with high SNR and enables different future developments. The minimal dead time of 4 μs facilitates further improvements of the SNR by echo adding techniques and the characterization of samples with short T2 relaxation times. Measurements on solid polymers like polyethylene (PE) and polypropylene (PP) with T2 components as short as 200 μs approve the overall beneficial coil properties. Furthermore the ability to perform depth profiling with microscopic resolution is demonstrated.

  14. Investigation of the elastic modulus of SSC coils

    Energy Technology Data Exchange (ETDEWEB)

    Markley, F.; Kerby, J.; Sizemore, B.; Khoun, C.; King, T.

    1991-03-01

    The Materials Development Laboratory at Fermilab has been conducting experiments on the mechanical properties of superconducting coils. Two of these measurements were designed to measure the elastic modulus of actual SSC coils in an effort to increase the precision of previously reported data. The first experiment utilizes a fixture redesigned for increased stiffness, in an attempt to reduce uncertainty in the data. As in the previous fixture of this type, the inner coil radius has been left unconstrained. The second fixture constrains the coil on all sides, allowing for the determination of the radial and azimuthal components of the cured coil modulus. A finite element model of the first test arrangement was also created to predict the compliance of the fixture, and compare numerical predictions with the experimental data. The results from this fixture suggest that the coil modulus is higher than previously reported, at 1.43{plus minus}0.03{times}10{sup 10} Pa (2.08{plus minus}.05{times}10{sup 6} psi). The main difference between the two experiments were the compliance of the fixture, which was found to have been seriously underestimated in last years test. Results from the second fixture suggest a coil modulus of 8.48{plus minus}0.82{times}10{sup 9} Pa (1.23{plus minus}0.12{times}10{sup 6} psi) for the azimuthal modulus, and between 8.96{plus minus}0.822{times}10{sup 9} Pa (1.3{plus minus}0.12{times}10{sup 6} psi) at lower loads and 1.12{plus minus}0.24{times}10{sup 10} Pa (1.63{plus minus}0.35{times}10{sup 6} psi) at higher loads in the radial direction. For a constrained coil, little difference is noted between the radial and azimuthal moduli of the coil. 2 refs., 8 figs.

  15. Investigation of the elastic modulus of SSC coils

    Energy Technology Data Exchange (ETDEWEB)

    Markley, F.; Kerby, J.; Sizemore, B.; Khoun, C.; King, T.

    1991-03-01

    The Materials Development Laboratory at Fermilab has been conducting experiments on the mechanical properties of superconducting coils. Two of these measurements were designed to measure the elastic modulus of actual SSC coils in an effort to increase the precision of previously reported data. The first experiment utilizes a fixture redesigned for increased stiffness, in an attempt to reduce uncertainty in the data. As in the previous fixture of this type, the inner coil radius has been left unconstrained. The second fixture constrains the coil on all sides, allowing for the determination of the radial and azimuthal components of the cured coil modulus. A finite element model of the first test arrangement was also created to predict the compliance of the fixture, and compare numerical predictions with the experimental data. The results from this fixture suggest that the coil modulus is higher than previously reported, at 1.43{plus_minus}0.03{times}10{sup 10} Pa (2.08{plus_minus}.05{times}10{sup 6} psi). The main difference between the two experiments were the compliance of the fixture, which was found to have been seriously underestimated in last years test. Results from the second fixture suggest a coil modulus of 8.48{plus_minus}0.82{times}10{sup 9} Pa (1.23{plus_minus}0.12{times}10{sup 6} psi) for the azimuthal modulus, and between 8.96{plus_minus}0.822{times}10{sup 9} Pa (1.3{plus_minus}0.12{times}10{sup 6} psi) at lower loads and 1.12{plus_minus}0.24{times}10{sup 10} Pa (1.63{plus_minus}0.35{times}10{sup 6} psi) at higher loads in the radial direction. For a constrained coil, little difference is noted between the radial and azimuthal moduli of the coil. 2 refs., 8 figs.

  16. Tesla Coil Theoretical Model and its Experimental Verification

    OpenAIRE

    Voitkans Janis; Voitkans Arnis

    2015-01-01

    In this paper a theoretical model of Tesla coil operation is proposed. Tesla coil is described as a long line with distributed parameters in a single-wire form, where the line voltage is measured across electrically neutral space. By applying the principle of equivalence of single-wire and two-wire schemes an equivalent two-wire scheme can be found for a single-wire scheme and the already known long line theory can be applied to the Tesla coil. A new method of multiple reflections is develope...

  17. Quantum conductance of a helically coiled carbon nanotube

    Directory of Open Access Journals (Sweden)

    Wengang Lu

    2005-01-01

    Full Text Available Using a π-orbital tight-binding model, we investigate the transport properties of a coiled carbon nanotube (also called carbon nanotube spring, which we construct by connecting carbon nanotubes periodically in three-dimensional (3D space. The conductance is quantized due to the translational symmetry in the coiled direction. However, the conductance behaviors differ greatly from those of pristine metallic carbon nanotubes but similar to those of carbon nanotube superlattices. We explain that conductance behaviors of the coiled carbon nanotube.

  18. PERSISTENT CURRENT EFFECTS IN BSCCO COMMON COIL DIPOLES.

    Energy Technology Data Exchange (ETDEWEB)

    SAMPSON,W.B.; GHOSH,A.K.; COZZOLINO,J.P.; HARRISON,M.A.; WANDERER,P.J.

    2000-09-17

    A series of one-meter long racetrack-shaped windings has been fabricated from BSCCO tape conductors obtained from four manufacturers. Two coils were built from each conductor type and tested in the ''common coil'' dipole configuration in liquid helium. The effect of the remnant magnetization currents was determined by measuring the residual dipole and sextupole fields after cycling the magnets to progressively higher currents. Two coil sets have been measured and the results are compared to those obtained from a Nb{sub 3}Sn ribbon magnet of the same geometry.

  19. Magnetic mirror structure for testing shell-type quadrupole coils

    Energy Technology Data Exchange (ETDEWEB)

    Andreev, N.; Barzi, E.; Bossert, R.; Chlachidze, G.; Kashikhin, V.S.; Kashikhin, V.V.; Lamm, M.J.; Nobrega, F.; Novitski, I.; Tartaglia, N.; Turrioni, D.; /Fermilab

    2009-10-01

    This paper presents magnetic and mechanical designs and analyses of the quadrupole mirror structure to test single shell-type quadrupole coils. Several quadrupole coils made of different Nb{sub 3}Sn strands, cable insulation and pole materials were tested using this structure at 4.5 and 1.9 K. The coils were instrumented with voltage taps, spot heaters, temperature sensors and strain gauges to study their mechanical and thermal properties and quench performance. The results of the quadrupole mirror model assembly and test are reported and discussed.

  20. Dynamic contrast-enhanced breast MRI at 7 Tesla utilizing a single-loop coil: a feasibility trial.

    Science.gov (United States)

    Umutlu, Lale; Maderwald, Stefan; Kraff, Oliver; Theysohn, Jens M; Kuemmel, Sherko; Hauth, Elke A; Forsting, Michael; Antoch, Gerald; Ladd, Mark E; Quick, Harald H; Lauenstein, Thomas C

    2010-08-01

    The aim of this study was to assess the feasibility of dynamic contrast-enhanced ultra-high-field breast imaging at 7 Tesla. A total of 15 subjects, including 5 patients with histologically proven breast cancer, were examined on a 7 Tesla whole-body magnetic resonance imaging system using a unilateral linearly polarized single-loop coil. Subjects were placed in prone position on a biopsy support system, with the coil placed directly below the region of interest. The examination protocol included the following sequences: 1) T2-weighted turbo spin echo sequence; 2) six dynamic T1-weighted spoiled gradient-echo sequences; and 3) subtraction imaging. Contrast-enhanced T1-weighted imaging at 7 Tesla could be obtained at high spatial resolution with short acquisition times, providing good image accuracy and a conclusively good delineation of small anatomical and pathological structures. T2-weighted imaging could be obtained with high spatial resolution at adequate acquisition times. Because of coil limitations, four high-field magnetic resonance examinations showed decreased diagnostic value. This first scientific approach of dynamic contrast-enhanced breast magnetic resonance imaging at 7 Tesla demonstrates the complexity of ultra-high-field breast magnetic resonance imaging and countenances the implementation of further advanced bilateral coil concepts to circumvent current limitations from the coil and ultra-high-field magnetic strength. 2010 AUR. Published by Elsevier Inc. All rights reserved.

  1. Yttrium-90 Resin Microsphere Radioembolization Using an Antireflux Catheter: An Alternative to Traditional Coil Embolization for Nontarget Protection

    Energy Technology Data Exchange (ETDEWEB)

    Morshedi, Maud M., E-mail: maud.morshedi@my.rfums.org; Bauman, Michael, E-mail: mbauman@ucsd.edu; Rose, Steven C., E-mail: scrose@ucsd.edu; Kikolski, Steven G., E-mail: skikolski@gmail.com [University of California San Diego Health Sciences, Radiology Department, University of California San Diego Medical Center (United States)

    2015-04-15

    PurposeSerious complications can result from nontarget embolization during yttrium-90 (Y-90) transarterial radioembolization. Hepatoenteric artery coil embolization has been traditionally performed to prevent nontarget radioembolization. The U.S. Food and Drug Administration–approved Surefire Infusion System (SIS) catheter, designed to prevent reflux, is an alternative to coils. The hypothesis that quantifiable SIS procedural parameters are comparable to coil embolization was tested.MethodsFourteen patients aged 36–79 years with colorectal, neuroendocrine, hepatocellular, and other predominantly bilobar hepatic tumors who underwent resin microsphere Y-90 radioembolization using only the SIS catheter (n = 7) versus only detachable coils (n = 7) for nontarget protection were reviewed retrospectively. Procedure time, fluoroscopy time, contrast dose, radiation dose, and cost were evaluated.ResultsMultivariate analysis identified significant cohort differences in the procedural parameters evaluated (F(10, 3) = 10.39, p = 0.04). Between-group comparisons of the pretreatment planning procedure in the SIS catheter group compared to the coil embolization group demonstrated a significant reduction in procedure time (102.6 vs. 192.1 min, respectively, p = 0.0004), fluoroscopy time (14.3 vs. 49.7 min, respectively, p = 0.0016), and contrast material dose (mean dose of 174.3 vs. 265.0 mL, respectively, p = 0.0098). Procedural parameters were not significantly different between the two groups during subsequent dose delivery procedures. Overall cost of combined first-time radioembolization procedures was significantly less in the SIS group ($4252) compared to retrievable coil embolization ($11,123; p = 0.001).ConclusionThe SIS catheter results in a reduction in procedure time, fluoroscopy time, and contrast material dose and may be an attractive cost-effective alternative to detachable coil embolization for prevention of nontarget radioembolization.

  2. Situation of the project of manufacture of 10 european toroidal coils for ITER; Situacion del proyecto de fabricacion de 10 bobinas toroidales europeas para el ITER

    Energy Technology Data Exchange (ETDEWEB)

    Felipe, A.; Mrenio, A.; Pando, F.; Pallisa, J.; Merino, O.; Condado, J. P.; Madorran, A.; Dormicchi, O.; Valle, N.; Presenti, P.; Durzo, C.; Pittaluga, S.; Lucas, J.; Ruiz de Villa, E.; Harrison, R.; Cornelis, M.; Cornella, J.; Poncet, L.; Bonito-Oliva, A.

    2013-07-01

    The toroidal coils are part of the magnetic confinement system, of tool of plasma ITER being them making a significant technological challenge since there is no previous experience of manufacture of similar dimensions superconducting coils (14 m X 9 m). F4E, is the agency responsible for making 10 of these coils, having awarded to the consortium of Iberdrola Ingenieria, ASG Superconductors and Elytt Energy making them. This project is now in the process of manufacture of the first Double Pancake prototype that will serve as a qualification of the manufacturing process.

  3. Adsorption of zinc ions on bone char using helical coil-packed bed columns and its mass transfer modeling

    DEFF Research Database (Denmark)

    Moreno-Pérez, J.; Bonilla-Petriciolet, A.; Rojas-Mayorga, C. K.

    2016-01-01

    char can be attributed to an ion-exchange mechanism. In summary, helical coil columns appear to be a feasible configuration for large-scale adsorption systems with high flow rates where a significant reduction on purification system size can be obtained without compromising the adsorbent performance....

  4. Abciximab for thrombolysis during intracranial aneurysm coiling

    Energy Technology Data Exchange (ETDEWEB)

    Gralla, Jan [West Wing, John Radcliffe Hospital, Department of Neuroradiology, Oxford (United Kingdom); Inselspital-University of Bern, Department of Neuroradiology, Bern (Switzerland); Rennie, Adam T.M.; Corkill, Rufus A.; Lalloo, Shivendra T.; Molyneux, Andrew; Byrne, James V.; Kuker, Wilhem [West Wing, John Radcliffe Hospital, Department of Neuroradiology, Oxford (United Kingdom)

    2008-12-15

    Thrombotic events are a common and severe complication of endovascular aneurysm treatment with significant impact on patients' outcome. This study evaluates risk factors for thrombus formation and assesses the efficacy and safety of abciximab for clot dissolution. All patients treated with abciximab during (41 patients) or shortly after (22 patients) intracranial aneurysm coil embolisation were retrieved from the institutional database (2000 to 2007, 1,250 patients). Sixty-three patients (mean age, 55.3 years, {+-}12.8) had received either intra-arterial or intravenous abciximab. Risk factors for clot formation were assessed and the angiographic and clinical outcome evaluated. No aneurysm rupture occurred during or after abciximab application. The intra-procedural rate of total recanalisation was 68.3%. Thromboembolic complications were frequently found in aneurysms of the Acom complex and of the basilar artery, whilst internal carotid artery aneurysms were underrepresented. Two patients died of treatment-related intracranial haemorrhages into preexisting cerebral infarcts. Two patients developed a symptomatic groin haematoma. Abciximab is efficacious and safe for thrombolysis during and after endovascular intracranial aneurysm treatment in the absence of preexisting ischaemic stroke. (orig.)

  5. Separation and preconcentration by flow injection coupled to tungsten coil electrothermal atomic absorption spectrometry

    Science.gov (United States)

    Silva, Márcia M.; Krug, Francisco J.; Oliveira, Pedro V.; Nóbrega, Joaquim A.; Reis, Boaventura F.; Penteado, Daniel A. G.

    1996-12-01

    A flow injection system coupled to a tungsten coil electrothermal atomizer has been developed for on-line separation and preconcentration, using lead as a model element. The system utilizes three-way solenoid valves for sampling, buffering, washing and reconditioning solution management, and the resin column is inserted in the tip of the autosampler arm of a Varian GTA-96. The solenoid valves and tungsten coil power supply were controlled by a computer program written in Visual Basic, interfaced with the built-in Varian software. The system performance was tested by loading the resin column with the sample flowing at 3 ml min -1 for 60 s. Elution was performed automatically by sampling 20 μl of the eluent from a sample cup of the autosampler, and this aliquot was delivered into a 150 W tungsten coil. With Chelex-100 resin, the separation of concomitants was tested with lead in the presence of as much as 1000 mg l -1 of Ca, Mg, Na or K. The model system presented an enrichment factor of 64 at a sampling rate of 30 samples per hour.

  6. Automated cleaning of fan coil units with a natural detergent-disinfectant product

    Directory of Open Access Journals (Sweden)

    Di Onofrio Valeria

    2010-10-01

    Full Text Available Abstract Background Air conditioning systems represent one important source of microbial pollutants for indoor air. In the past few years, numerous strategies have been conceived to reduce the contamination of air conditioners, mainly in hospital settings. The biocidal detergent BATT2 represents a natural product obtained through extraction from brown seaweeds, that has been tested previously on multidrug-resistant microorganisms. Methods BATT2 has been utilized for the disinfection of fan coil units from four air conditioning systems located in hospital environments with a mean degree of risk. Samples were collected from the air supplied by the conditioning systems and from the surfaces of fan coil units, before and after sanitization procedures. Total microbial counts at 37°C and 22°C and mycotic count at 32°C were evaluated. Staphylococci and Pseudomonas aeruginosa were also detected on surfaces samples. Results The biodetergent was able to reduce up 50% of the microbial pollution of fan coil units surfaces and air supplied by the air conditioners. Conclusions BATT2 could be considered for cleaning/disinfection of air conditioning systems, that should be performed on the basis of accurate and verifiable sanitization protocols.

  7. Using E-beam Mapping to Detect Coil Misalignment in NCSX

    Energy Technology Data Exchange (ETDEWEB)

    Fredrickson, E.; Georgiyevskiy, A.; Rudakov, V.; Zarnstorff, M. C.

    2005-10-18

    Following assembly of the NCSX device, a program of e-beam mapping experiments is planned to validate the accuracy of the construction and assembly of the NCSX coil systems. To aid in the development of requirements for the e-beam mapping hardware and machine requirements, simulations of the e-beam mapping experiments, including various coil misalignments, have been done. The magnetic flux surface configuration was constructed using a numerical code, based on the Biot-Savart law, to calculate the magnetic field components and trace the field line trajectory many times around the torus. Magnetic surfaces are then mapped by recording the field line intersections with toroidal cross-sections of the magnetic system, much as in an actual e-beam mapping experiment.

  8. Implementation of a planar coil of wires as a sinus-galvanometer. Analysis of the coil magnetic field

    CERN Document Server

    Stoyanov, Dimitar G

    2010-01-01

    The paper presents a theoretical analysis on the interaction between the Earth's magnetic field of a compass needle and the magnetic field of a straight infinite current-carrying wire. Implementation of a planar horizontal coil of wires has been shown as a sinus galvanometer. The magnetic field over the planar coil of wires has been examined by experiment. The coil could be used as a model for straight infinite current wire in demonstration set-ups or could be given as an assignment in Physics laboratory workshops.

  9. Characterization of the impact to PET quantification and image quality of an anterior array surface coil for PET/MR imaging.

    Science.gov (United States)

    Wollenweber, Scott D; Delso, Gaspar; Deller, Timothy; Goldhaber, David; Hüllner, Martin; Veit-Haibach, Patrick

    2014-04-01

    The aim of this study was to determine the impact to PET quantification, image quality and possible diagnostic impact of an anterior surface array used in a combined PET/MR imaging system. An extended oval phantom and 15 whole-body FDG PET/CT subjects were re-imaged for one bed position following placement of an anterior array coil at a clinically realistic position. The CT scan, used for PET attenuation correction, did not include the coil. Comparison, including liver SUV(mean), was performed between the coil present and absent images using two methods of PET reconstruction. Due to the time delay between PET scans, a model was used to account for average physiologic time change of SUV. On phantom data, neglecting the coil caused a mean bias of -8.2% for non-TOF/PSF reconstruction, and -7.3% with TOF/PSF. On clinical data, the liver SUV neglecting the coil presence fell by -6.1% (± 6.5%) for non-TOF/PSF reconstruction; respectively -5.2% (± 5.3%) with TOF/PSF. All FDG-avid features seen with TOF/PSF were also seen with non-TOF/PSF reconstruction. Neglecting coil attenuation for this anterior array coil results in a small but significant reduction in liver SUV(mean) but was not found to change the clinical interpretation of the PET images.

  10. Numerical Analysis of a Flexible Dual Loop Coil and its Experimental Validation for pre-Clinical Magnetic Resonance Imaging of Rodents at 7 T

    Directory of Open Access Journals (Sweden)

    Solis-Najera S.

    2016-12-01

    Full Text Available A surface radio frequency coil was developed for small animal image acquisition in a pre-clinical magnetic resonance imaging system at 7 T. A flexible coil composed of two circular loops was developed to closely cover the object to be imaged. Electromagnetic numerical simulations were performed to evaluate its performance before the coil construction. An analytical expression of the mutual inductance for the two circular loops as a function of the separation between them was derived and used to validate the simulations. The RF coil is composed of two circular loops with a 5 cm external diameter and was tuned to 300 MHz and 50 Ohms matched. The angle between the loops was varied and the Q factor was obtained from the S11 simulations for each angle. B1 homogeneity was also evaluated using the electromagnetic simulations. The coil prototype was designed and built considering the numerical simulation results. To show the feasibility of the coil and its performance, saline-solution phantom images were acquired. A correlation of the simulations and imaging experimental results was conducted showing a concordance of 0.88 for the B1 field. The best coil performance was obtained at the 90° aperture angle. A more realistic phantom was also built using a formaldehyde-fixed rat phantom for ex vivo imaging experiments. All images showed a good image quality revealing clearly defined anatomical details of an ex vivo rat.

  11. Critical Current Measurements in Commercial Tapes, Coils, and Magnets.

    Science.gov (United States)

    Gubser, D. U.; Soulen, R. J., Jr.; Fuller-Mora, W. W.; Francavilla, T. L.

    1996-03-01

    We have measured a number of tapes, coils, and magnets produced by commercial vendors and determined their properties as functions of magnetic field and temperature. The tapes were measured at the National High Magnetic Field Laboratory in magnetic fields to 20 tesla and at temperatures of 4.2 K, 27 K, 65 K, and 77 K. For the tapes we report critical currents and current-voltage characteristics. Six inch diameter coils were measured at NRL in zero magnetic field. Critical currents, current-voltage characteristics, and reliability studies are reported for the coils. Larger 10 inch diameter coils, which are to be used in a 200 hp superconducting motor, were also measured and results will be presented. The talk will also review the status of the most recent tests of the superconducting motor.

  12. Photonic crystal fiber coil sensor for water-depth sensing

    Science.gov (United States)

    Fan, Chen-Feng; Yu, Chin-Ping

    2013-05-01

    We fabricate a PCF coil sensor for water-depth sensing by winding a PCF on a plastic straw. Due to the bending-induced birefringence along the PCF, we can observe clear interference pattern in the output spectrum by placing the PCF coil into a Sagnac fiber loop. As we horizontally immerse the fabricated PCF coil into water, a nonlinear relationship between the water depth and the wavelength shift can be obtained. We have also measured the interference spectrum by vertically immersing the PCF coil into water. We can observe a linear relationship between the water depth and the wavelength shift, and the measured water-depth sensitivity for vertical immersion is -1.17 nm/mm.

  13. Ripple reduction with magnetic inserts and saddle coils

    Energy Technology Data Exchange (ETDEWEB)

    Ane, J.M. [Association Euratom-CEA pour la Fusion, Dept. de Recherches sur la Fusion Controlee, Centre d`Etudes de Cadarache, 13 - Saint Paul-lez-Durance (France)

    1995-12-31

    Analytic formulas for the computation of the toroidal field ripple in a tokamak with saddle coils and/or magnetic inserts for the reduction of the ripple are derived. The results of these analytic formulas compare well with the results of a 3D magneto static code for the geometry of Tore Supra and ITER. In Tore Supra 72 saddle coils with 5% of the toroidal field coils current or 36 magnetic inserts 12 cm thick are needed to reduce by a factor of four the ripple in the outboard region of the plasma. In ITER, using ferromagnetic rather than austenitic balls in the space between the vacuum vessel skins, would partially offset the ripple-increasing effect due to the reduction of the number of TF coils from 24 to 20. (orig.).

  14. Ripple reduction with magnetic inserts and saddle coils

    Energy Technology Data Exchange (ETDEWEB)

    Ane, J.M. [Association Euratom-CEA, Centre d`Etudes de Cadarache, 13 - Saint-Paul-lez-Durance (France). Dept. de Recherches sur la Fusion Controlee

    1994-12-31

    Analytic formulas for the computation of the toroidal field ripple in a tokamak with saddle coils and/or magnetic inserts for the reduction of the ripple are derived. The results of these analytic formulas compare well with the results of a 3D magneto static code for the geometry of Tore Supra and ITER. In Tore Supra 72 saddle coils with 5% of the toroidal field coils current or 36 magnetic inserts 12 cm thick are needed to reduce by a factor of four the ripple in the outboard region of the plasma. In ITER, using ferromagnetic rather than austenitic balls in the space between the vacuum vessel skins, would partially offset the ripple-increasing effect due to the reduction of the number of TF coils from 24 to 20. (author) 4 refs., 9 figs.

  15. Progress of the ITER Correction Coils in China

    CERN Document Server

    Wei, J; Han, S; Yu, X; Du, S; Li, C; Fang, C; Wang, L; Zheng, W; Liu, L; Wen, J; Li, H; Libeyre, P; Dolgetta, N; Cormany, C; Sgobba, S

    2014-01-01

    The ITER Correction Coils (CC) include three sets of six coils each, distributed symmetrically around the tokamak to correct error fields. Each pair of coils, located on opposite sides of the tokamak, is series connected with polarity to produce asymmetric fields. The manufacturing of these superconducting coils is undergoing qualification of the main fabrication processes: winding into multiple pancakes, welding helium inlet/outlet on the conductor jacket, turn and ground insulation, vacuum pressure impregnation, inserting into an austenitic stainless steel case, enclosure welding, and assembling the terminal service box. It has been proceeding by an intense phase of R\\&D, trials tests, and final adjustment of the tooling. This paper mainly describes the progress in ASIPP for the CC manufacturing process before and on qualification phase and the status of corresponding equipment which are ordered or designed for each process. Some test results for the key component and procedure are also presented.

  16. Coiled Brine Recovery Assembly (CoBRA) Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The Coiled Brine Recovery Assembly (CoBRA) project will result in a proof-of-concept demonstration for a lightweight, compact, affordable, regenerable and disposable...

  17. Test data from the US-Demonstration Poloidal Coil experiment

    Energy Technology Data Exchange (ETDEWEB)

    Painter, T.A.; Steeves, M.M.; Takayasu, M.; Gung, C.; Hoenig, M.O. (Massachusetts Inst. of Tech., Cambridge, MA (United States). Plasma Fusion Center); Tsuji, H.; Ando, T.; Hiyama, T.; Takahashi, Y.; Nishi, M.; Yoshida, K.; Okuno, K.; Nakajima, H.; Kato, T.; Sugimoto, M.; Isono, T.; Kawano, K.; Koizumi, N.; Osikiri, M.; Hanawa, H.; Ouchi, H.; Ono, M.; Ishida, H.; Hiue, H.; Yoshida, J.; Kamiyauchi, Y.; Ouchi, T.; Tajiri, F.

    1992-01-01

    The US Demonstration Poloidal Field Coil (US-DPC) experiment took place successfully at the Japan Atomic Energy Research Institute (JAERI) in late 1990. The 8 MJ niobium-tin coil was leak tight; it performed very well in DC tests; it performed well in AC tests, achieving approximately 70% of its design goal. An unexpected ramp-rate barrier at high currents was identified. The barrier could not be explored in the regime of higher fields and slower ramp rates due to limitations of the background-field coils. This document presents the results of the experiment with as little editing as possible. The coil, conductor, and operating conditions are given. The intent is to present data in a form that can be used by magnet analysts and designers.

  18. High-Q Antennas with built-in coils

    DEFF Research Database (Denmark)

    Bahramzy, Pevand; Svendsen, Simon; Pedersen, Gert Frølund

    2014-01-01

    Efficiency and isolation, at low frequencies (700 MHz), are two of the most important metrics for successful multicommunication implementation. This paper presents an antenna concept, that exhibits a very high isolation between high-Q Tx and Rx antennas at 700 MHz. Furthermore, it is shown how...... coils can be integrating into the antenna structure for obtaining better efficiency. It is shown that by integrated coils into the antenna structure, the efficiency can be improved by 2dB for each antenna....

  19. Computation of streamwise vorticity in a compressible flow of a winglet nozzle-based COIL device

    Science.gov (United States)

    Singhal, Gaurav; Dawar, A. L.; Subbarao, P. M. V.; Endo, M.

    2008-02-01

    Chemical oxygen iodine laser (COIL) is a high-power laser with potential applications in both military as well as in the industry. COIL is the only chemical laser based on electronic transition with a wavelength of 1.315 μm, which falls in the near-infrared (IR) range. Thus, COIL beam can also be transported via optical fibers for remote applications such as dismantling of nuclear reactors. The efficiency of a supersonic COIL is essentially a function of mixing specially in systems employing cross-stream injection of the secondary lasing ( I2) flow in supersonic regime into the primary pumping (O 21Δ g) flow. Streamwise vorticity has been proven to be among the most effective manner of enhancing mixing and has been utilized in jet engines for thrust augmentation, noise reduction, supersonic combustion, etc. Therefore, a computational study of the generation of streamwise vorticity in the supersonic flow field of a COIL device employing a winglet nozzle with various delta wing angles of 5°, 10°, and 22.5° has been carried out. The study predicts a typical Mach number of approximately 1.75 for all the winglet geometries. The analysis also confirms that the winglet geometry doubles up both as a nozzle and as a vortex generator. The region of maximum turbulence and fully developed streamwise vortices is observed to occur close to the exit, at x/ λ of 0.5, of the winglets making it the most suitable region for secondary flow injection for achieving efficient mixing. The predicted length scale of the scalloped mixer formed by the winglet nozzle is 4 λ. Also, the winglet nozzle with 10° lobe angle is most suitable from the point of view of mixing developing cross-stream velocity of 120 m/s with acceptable pressure drop of 0.7 Torr. The winglet geometry with 5° lobe angle is associated with a low cross-stream velocity of 60 m/s, whereas the one with 22.5° lobe angle is associated with a large static and total pressure drop of 1.87 and 9.37 Torr, respectively

  20. Ecological succession of the microbial communities of an air-conditioning cooling coil in the tropics.

    Science.gov (United States)

    Acerbi, E; Chénard, C; Miller, D; Gaultier, N E; Heinle, C E; Chang, V W-C; Uchida, A; Drautz-Moses, D I; Schuster, S C; Lauro, F M

    2017-03-01

    Air-conditioning systems harbor microorganisms, potentially spreading them to indoor environments. While air and surfaces in air-conditioning systems are periodically sampled as potential sources of indoor microbes, little is known about the dynamics of cooling coil-associated communities and their effect on the downstream airflow. Here, we conducted a 4-week time series sampling to characterize the succession of an air-conditioning duct and cooling coil after cleaning. Using an universal primer pair targeting hypervariable regions of the 16S/18S ribosomal RNA, we observed a community succession for the condensed water, with the most abundant airborne taxon Agaricomycetes fungi dominating the initial phase and Sphingomonas bacteria becoming the most prevalent taxa toward the end of the experiment. Duplicate air samples collected upstream and downstream of the coil suggest that the system does not act as ecological filter or source/sink for specific microbial taxa during the duration of the experiment. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  1. Implantation of looped epicardial cardioverter defibrillator coil on the surface of the right ventricular outflow tract.

    Science.gov (United States)

    Ozyuksel, Arda; Ersoy, Cihangir; Akdeniz, Celal; Akcevin, Atif; Turkoglu, Halil; Tuzcu, Volkan

    2015-04-01

    We present the early results of looped epicardial cardioverter defibrillator coil implantation on the anterior surface of right ventricular outflow tract in infants and children. Patients with a surgical history of an epicardial implantable cardioverter defibrillator system between 2013 and 2014 were included in the study. Patient age, gender, body weight, indications for a cardioverter defibrillator system implantation, defibrillation threshold values, and defibrillation therapies were retrospectively evaluated. There were eight patients with a mean age of 4.4 ± 2.9 years and a mean body weight of 19.5 ± 11.7 kg. Five of the patients had been diagnosed with long QT syndrome, one patient had been diagnosed with genetic channelopathy and noncompaction of the left ventricle, and two patients had been diagnosed with univentricle physiology. The implantable cardioverter defibrillator system was composed of pace-sense leads, an abdominal active can, and a defibrillation coil placed below the pulmonary valve annulus on the anterior surface of the heart. The mean defibrillation threshold was 6.6 ± 2.3 joules. There were four appropriate therapies in two patients in a mean follow-up of 9 ± 6.5 months. The significantly low defibrillation thresholds with the defibrillation coils located below the pulmonary valve annulus are encouraging. However, a larger patient series will be necessary to evaluate the safety and reliability of this technique. © 2015 Wiley Periodicals, Inc.

  2. Practical aspects of 13C surface receive coils with active decoupling and tuning circuit

    DEFF Research Database (Denmark)

    Nilsson, Daniel; Mohr, Johan Jacob; Zhurbenko, Vitaliy

    2012-01-01

    is based on application-specified coil profile and includes impedance matching and balancing circuits. Active decoupling is implemented in order to minimize the influence of the receiving coil on the homogeneity of the transmit-coil field. Measurement results for a coil prototype are presented, including...... imaging experiments and estimation of the signal-to-noise ratio....

  3. Progress on the design development and prototype manufacturing of the ITER In-vessel coils

    NARCIS (Netherlands)

    Encheva, A.; Omran, H.; Devred, A.; Vostner, A.; Mitchell, N.; Mariani, N.; Jun, CH H.; Long, F.; Zhou, C.; Macklin, B.; Marti, H. P.; Sborchia, C.; della Corte, A. Della; Di Zenobio, A.; Anemona, A.; Righetti, R.; Wu, Y.; Jin, H.; Xu, A.; Jin, J.

    2017-01-01

    ITER is incorporating two types of In-Vessel Coils (IVCs): ELM Coils to mitigate Edge Localized Modes and VS Coils to provide a reliable Vertical Stabilization of the plasma. Strong coupling with the plasma is required in order that the ELM and VS Coils can meet their performance requirements.

  4. Retrieval of a Migrated Coil Using an X6 MERCI Device.

    LENUS (Irish Health Repository)

    O'Hare, A

    2009-03-31

    Summary: Coil migration is a recognised but rare complication of endovascular coiling. Many techniques are available commercially for coil retrieval. We report the case of an acute subarachnoid hemorrhage in a 54-year-old woman in which a migrated coil was successfully retrieved using an X6 MERCI device.

  5. Endovascular therapy of arteriovenous fistulae with electrolytically detachable coils

    Energy Technology Data Exchange (ETDEWEB)

    Jansen, O.; Doerfler, A.; Forsting, M.; Hartmann, M.; Kummer, R. von; Tronnier, V.; Sartor, K. [Dept. of Neuroradiology, University of Heidelberg Medical School (Germany)

    1999-12-01

    We report our experience in using Guglielmi electrolytically detachable coils (GDC) alone or in combination with other materials in the treatment of intracranial or cervical high-flow fistulae. We treated 14 patients with arteriovenous fistulae on brain-supplying vessels - three involving the external carotid or the vertebral artery, five the cavernous sinus and six the dural sinuses - by endovascular occlusion using electrolytically detachable platinum coils. The fistula was caused by trauma in six cases. In one case Ehlers-Danlos syndrome was the underlying disease, and in the remaining seven cases no aetiology could be found. Fistulae of the external carotid and vertebral arteries and caroticocavernous fistulae were reached via the transarterial route, while in all dural fistulae a combined transarterial-transvenous approach was chosen. All fistulae were treated using electrolytically detachable coils. While small fistulae could be occluded with electrolytically detachable coils alone, large fistulae were treated by using coils to build a stable basket for other types of coil or balloons. In 11 of the 14 patients, endovascular treatment resulted in complete occlusion of the fistula; in the remaining three occlusion was subtotal. Symptoms and signs were completely abolished by this treatment in 12 patients and reduced in 2. On clinical and neuroradiological follow-up (mean 16 months) no reappearance of symptoms was recorded. (orig.)

  6. Quench and stress coupled analysis of high temperature superconducting coils

    Science.gov (United States)

    Li, Jessica; Zhai, Yuhu

    2017-10-01

    High-temperature superconductors (HTS) are promising candidates for compact next step fusion reactor designs due to their low power loss, higher margin and ability to carry extremely high current densities at high magnetic fields. However, unlike their low-temperature counterparts, HTS coils are much more vulnerable to damage during quench events under severe mechanical loading at high field magnet operation. It has been shown that the intensity of quench events may be mitigated by installing inductively coupled inserts around the superconducting coils. To this end, some previously explored designs of force-balanced coils which minimize stress in coil winding packs are reviewed for better stress management in HTS coils for quench mitigation. We use analytic models in FORTRAN and MATLAB to calculate the magnetic fields and resultant forces for various solenoid-like configurations of both high- and low-temperature superconducting coils. We then simulate their thermal, electric, and magnetic behaviors during quench-like events to identify optimal designs for both stability and quench protection.

  7. The Use of Correcting Coils in End Magnets Accelerators

    Science.gov (United States)

    Kassab, L. R. P.; Gouffon, P.

    1997-05-01

    The end magnets of the race-track microtron booster (L.R.P. Kassab, PhD Thesis, IFUSP, 1996) , which is the second stage of the 30.0 MeV cw electron accelerator under construction at IFUSP, play a fundamental role in terms of the beam quality. Their efficiency depends on the behavior of the magnetic fields that deflect, focus and return the beam to the accelerating section. The use of correcting coils, based on the inhomogeneities of the magnetic field and attached to the pole faces, assured uniformity of 10-5. We present the performance of these coils when operating the end magnets with currents that differ from the one used in the mappings that originated the coils copper leads. For one of the magnets, adjusting conveniently the current of the correcting coils, made it possible to homogenize field distributions of different intensities, once their shapes are identical to those that originated the coils. For the other one, the shapes are smoothly changed and the coils are less efficient. This is related to intrinsic factors that determine the inhomogeneities. However, in both cases we obtained uniformity of 10-5.

  8. Tesla Coil Theoretical Model and its Experimental Verification

    Directory of Open Access Journals (Sweden)

    Voitkans Janis

    2014-12-01

    Full Text Available In this paper a theoretical model of Tesla coil operation is proposed. Tesla coil is described as a long line with distributed parameters in a single-wire form, where the line voltage is measured across electrically neutral space. By applying the principle of equivalence of single-wire and two-wire schemes an equivalent two-wire scheme can be found for a single-wire scheme and the already known long line theory can be applied to the Tesla coil. A new method of multiple reflections is developed to characterize a signal in a long line. Formulas for calculation of voltage in Tesla coil by coordinate and calculation of resonance frequencies are proposed. The theoretical calculations are verified experimentally. Resonance frequencies of Tesla coil are measured and voltage standing wave characteristics are obtained for different output capacities in the single-wire mode. Wave resistance and phase coefficient of Tesla coil is obtained. Experimental measurements show good compliance with the proposed theory. The formulas obtained in this paper are also usable for a regular two-wire long line with distributed parameters.

  9. Rescue of vitrified-warmed bovine oocytes with rho-associated coiled-coil kinase inhibitor.

    Science.gov (United States)

    Hwang, In-Sul; Hara, Hiromasa; Chung, Hak-Jae; Hirabayashi, Masumi; Hochi, Shinichi

    2013-08-01

    Cryotolerance of matured bovine oocytes is not fully practical even though a promising vitrification procedure with a ultrarapid cooling rate was applied. The present study was conducted to investigate whether recovery culture of vitrified-warmed bovine oocytes with an inhibitor (Y-27632) of Rho-associated coiled-coil kinase (ROCK) can improve the developmental potential after in vitro fertilization (IVF) and in vitro culture. Immediately after warming, almost all oocytes appeared to be morphological normal. Treatment of the postwarming oocytes with 10 μM Y-27632 for 2 h resulted in the significantly higher oocyte survival rate before IVF as well as higher cleavage rate and blastocyst formation rate. Quality analysis of the resultant blastocysts in terms of total cell number and apoptotic cell ratio also showed the positive effect of the Y-27632 treatment. Time-dependent change in mitochondrial activity of the vitrified-warmed oocytes was not influenced by ROCK inhibition during the period of recovery culture. However, the ability of ooplasm to support single-aster formation was improved by the ROCK inhibition. Thus, inhibition of ROCK activity in vitrified-warmed bovine oocytes during a short-term recovery culture can lead to higher developmental competence, probably due to decreased apoptosis and normalized function of the microtubule-organizing center.

  10. Transforming the Energy Landscape of a Coiled-Coil Peptide via Point Mutations.

    Science.gov (United States)

    Röder, Konstantin; Wales, David J

    2017-03-14

    We analyze the effect of point mutations on the energy landscape of a coiled-coil peptide, GCN4-pLI, where the native state is a parallel tetrameric configuration formed from two identical dimers. Experimentally, a single mutation, E20S, supports both antiparallel and parallel structures. Here, we analyze the potential energy landscapes of the dimeric units for the parent sequence and four mutants, namely E20S, E20A, E20P, and E20G. Despite sharing characteristic funnels containing the parallel and antiparallel structures, the point mutations change some parts of the landscape quite dramatically, and we predict new intermediate structures and characterize the associated heat capacities. For the mutants we predict that kinked intermediate structures facilitate the transition between parallel and antiparallel morphologies, in contrast to the parent sequence. Furthermore, we predict a change from a multifunnel energy landscape in the E20S mutant to a landscape dominated by an underlying single funnel in the parent sequence, with accompanying heat capacity signatures. Our results imply that changes in the landscape due to mutations might provide useful tools for functional protein design.

  11. A coiled-coil protein is required for coordination of karyokinesis and cytokinesis in Toxoplasma gondii.

    Science.gov (United States)

    Courjol, Flavie; Gissot, Mathieu

    2018-02-15

    Toxoplasma gondii is a unicellular eukaryotic pathogen that belongs to the Apicomplexa phylum, which encompasses some of the deadliest pathogens of medical and veterinary importance. The centrosome is key to the organization and coordination of the cell cycle and division of apicomplexan parasites. The T. gondii centrosome possesses a particular bipartite structure (outer and inner core). One of the main roles of the centrosome is to ensure proper coordination of karyokinesis. However, how these two events are coordinated is still unknown in T. gondii, for which the centrosome components are poorly described. To gain more insights into the biology and the composition of the T. gondii centrosome, we characterized a protein that resides at the interface of the outer and inner core centrosome. TgCep530 is a large coil-coiled protein with an essential role in the survival of the parasite. Depletion of this protein leads to the accumulation of parasites lacking nuclei and disruption of the normal cell cycle. Lack of TgCep530 results in a discoordination between the nuclear cycle and the budding cycle that yields fully formed parasites without nuclei. TgCep530 has a crucial role in the coordination of karyokinesis and cytokinesis. This article is protected by copyright. All rights reserved.

  12. Midbody Targeting of the ESCRT Machinery by a Noncanonical Coiled Coil in CEP55

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Hyung Ho; Elia, Natalie; Ghirlando, Rodolfo; Lippincott-Schwartz, Jennifer; Hurley, James H. (NIH)

    2008-11-14

    The ESCRT (endosomal sorting complex required for transport) machinery is required for the scission of membrane necks in processes including the budding of HIV-1 and cytokinesis. An essential step in cytokinesis is recruitment of the ESCRT-I complex and the ESCRT-associated protein ALIX to the midbody (the structure that tethers two daughter cells) by the protein CEP55. Biochemical experiments show that peptides from ALIX and the ESCRT-I subunit TSG101 compete for binding to the ESCRT and ALIX-binding region (EABR) of CEP55. We solved the crystal structure of EABR bound to an ALIX peptide at a resolution of 2.0 angstroms. The structure shows that EABR forms an aberrant dimeric parallel coiled coil. Bulky and charged residues at the interface of the two central heptad repeats create asymmetry and a single binding site for an ALIX or TSG101 peptide. Both ALIX and ESCRT-I are required for cytokinesis, which suggests that multiple CEP55 dimers are required for function.

  13. Rational design of helical nanotubes from self-assembly of coiled-coil lock washers.

    Science.gov (United States)

    Xu, Chunfu; Liu, Rui; Mehta, Anil K; Guerrero-Ferreira, Ricardo C; Wright, Elizabeth R; Dunin-Horkawicz, Stanislaw; Morris, Kyle; Serpell, Louise C; Zuo, Xiaobing; Wall, Joseph S; Conticello, Vincent P

    2013-10-16

    Design of a structurally defined helical assembly is described that involves recoding of the amino acid sequence of peptide GCN4-pAA. In solution and the crystalline state, GCN4-pAA adopts a 7-helix bundle structure that resembles a supramolecular lock washer. Structurally informed mutagenesis of the sequence of GCN4-pAA afforded peptide 7HSAP1, which undergoes self-association into a nanotube via noncovalent interactions between complementary interfaces of the coiled-coil lock-washer structures. Biophysical measurements conducted in solution and the solid state over multiple length scales of structural hierarchy are consistent with self-assembly of nanotube structures derived from 7-helix bundle subunits. The dimensions of the supramolecular assemblies are similar to those observed in the crystal structure of GCN4-pAA. Fluorescence studies of the interaction of 7HSAP1 with the solvatochromic fluorophore PRODAN indicated that the nanotubes could encapsulate shape-appropriate small molecules with high binding affinity.

  14. Improved SNR of phased-array PERES coils via simulation study

    Energy Technology Data Exchange (ETDEWEB)

    RodrIguez, Alfredo O [Centro de Investigacion en Imagenologia e Instrumentacion Medica, Universidad Autonoma Metropolitana Iztapalapa, Av. San Rafael Atlixco 186, Mexico, DF, 09340 (Mexico); Medina, LucIa [DISCA, Instituto de Investigacion en Matematicas Aplicadas y Sistemas, Universidad Nacional Autonoma de Mexico, AP 20-728, Admo. No. 20, 01000 Mexico, DF (Mexico); Facultad de Ciencias, Universidad Nacional Autonoma de Mexico, Ciudad Universitaria, 04510 Mexico, DF (Mexico)

    2005-09-21

    A computational comparison of signal-to-noise ratio (SNR) was performed between a conventional phased array of two circular-shaped coils and a petal resonator surface array. The quasi-static model and phased-array optimum SNR were combined to derive an SNR formula for each array. Analysis of mutual inductance between coil petals was carried out to compute the optimal coil separation and optimum number of petal coils. Mutual interaction between coil arrays was not included in the model because this does not drastically affect coil performance. Phased arrays of PERES coils show a 114% improvement in SNR over that of the simplest circular configuration. (note)

  15. Modeling a Helical-coil Steam Generator in RELAP5-3D for the Next Generation Nuclear Plant

    Energy Technology Data Exchange (ETDEWEB)

    Nathan V. Hoffer; Piyush Sabharwall; Nolan A. Anderson

    2011-01-01

    Options for the primary heat transport loop heat exchangers for the Next Generation Nuclear Plant are currently being evaluated. A helical-coil steam generator is one heat exchanger design under consideration. Safety is an integral part of the helical-coil steam generator evaluation. Transient analysis plays a key role in evaluation of the steam generators safety. Using RELAP5-3D to model the helical-coil steam generator, a loss of pressure in the primary side of the steam generator is simulated. This report details the development of the steam generator model, the loss of pressure transient, and the response of the steam generator primary and secondary systems to the loss of primary pressure. Back ground on High Temperature Gas-cooled reactors, steam generators, the Next Generation Nuclear Plant is provided to increase the readers understanding of the material presented.

  16. Successful percutaneous angioembolisation of bleeding jejunal varix by acrylate glue and coils

    Science.gov (United States)

    Haq, Tanveer Ul; AlQamari, Nauman; Sayani, Raza; Hilal, Kiran

    2013-01-01

    Portal hypertension is a common disease worldwide. One of its rare complications is bleeding jejunal varices which is usually asymptomatic and may present with gastrointestinal bleeding. We present a case of a jejunal bleeding that was successfully embolised with acrylate glue and embolisation coils. A middle-aged woman with a history of multiple abdominal surgeries for adenocarcinoma of right ovary, presented to us with multiple episodes of haematochezia. On a CT scan of the abdomen, she was diagnosed with chronic liver disease with portal hypertension, multiple varices at porto-systemic anastomosis and ectopic jejunal varix. She was treated by interventional radiologists by percutaneous embolisation of bleeding varix using glue and embolisation coils through a portal venous approach. PMID:24158303

  17. Transcranial Magnetic Stimulation: An Automated Procedure to Obtain Coil-specific Models for Field Calculations

    DEFF Research Database (Denmark)

    Madsen, Kristoffer Hougaard; Ewald, Lars; Siebner, Hartwig R.

    2015-01-01

    Background: Field calculations for transcranial magnetic stimulation (TMS) are increasingly implemented online in neuronavigation systems and in more realistic offline approaches based on finite-element methods. They are often based on simplified and/or non-validated models of the magnetic vector...... potential of the TMS coils. Objective: To develop an approach to reconstruct the magnetic vector potential based on automated measurements. Methods: We implemented a setup that simultaneously measures the three components of the magnetic field with high spatial resolution. This is complemented by a novel...... approach to determine the magnetic vector potential via volume integration of the measured field. Results: The integration approach reproduces the vector potential with very good accuracy. The vector potential distribution of a standard figure-of-eight shaped coil determined with our setup corresponds well...

  18. The Influence of Dome Size, Parent Vessel Angle, and Coil Packing Density on Coil Embolization Treatment in Cerebral Aneurysms

    Science.gov (United States)

    Frakes, David H.; Indahlastari, Aprinda; Ryan, Justin; Babiker, M. Haithem; Nair, Priya; Parthas, Varsha

    2013-11-01

    Intracranial aneurysms (ICAs) are dilated cerebral blood vessels. Treating ICAs effectively prior rupture is crucial since their association with 45% mortality rate. Embolic coiling is the most effective ICA treatment. Series of embolic coils are deployed into the aneurysm with the intent of reaching a sufficient packing density (PD) to help seal off the ICA from circulation. While coiling is effective, treatment failures have been associated with basilar tip aneurysms (BTAs), perhaps because of their geometry. The aim of this study was to examine the effect of dome size, parent vessel (PV) angle, and PD on intraaneurysmal (IA) velocity, crossneck (CN) flow and low wall shear stress (WSS) area using simulations and experiments in idealized BTA models. IA velocity and CN flow decreased after coiling, while low WSS area increased. With increasing PD, IA velocity and CN flow were further reduced, but low WSS area had a minimal change. Coil PD had the greatest impact on post-treatment flow while dome size had a greater impact than PV angle. Overall, the role of aneurysmal geometries may vary depending on treatment goal and timing e.g., high coil PD may reduce IA velocity more effectively during early aneurysmal growth when the dome size is small. Funded by the American Heart Association.

  19. Rice Cellulose SynthaseA8 Plant-Conserved Region Is a Coiled-Coil at the Catalytic Core Entrance

    Energy Technology Data Exchange (ETDEWEB)

    Rushton, Phillip S.; Olek, Anna T.; Makowski, Lee; Badger, John; Steussy, C. Nicklaus; Carpita, Nicholas C.; Stauffacher, Cynthia V. (NEU); (Purdue)

    2016-11-22

    The crystallographic structure of a rice (Oryza sativa) cellulose synthase, OsCesA8, plant-conserved region (P-CR), one of two unique domains in the catalytic domain of plant CesAs, was solved to 2.4 Å resolution. Two antiparallel α-helices form a coiled-coil domain linked by a large extended connector loop containing a conserved trio of aromatic residues. The P-CR structure was fit into a molecular envelope for the P-CR domain derived from small-angle X-ray scattering data. The P-CR structure and molecular envelope, combined with a homology-based chain trace of the CesA8 catalytic core, were modeled into a previously determined CesA8 small-angle X-ray scattering molecular envelope to produce a detailed topological model of the CesA8 catalytic domain. The predicted position for the P-CR domain from the molecular docking models places the P-CR connector loop into a hydrophobic pocket of the catalytic core, with the coiled-coil aligned near the entrance of the substrate UDP-glucose into the active site. In this configuration, the P-CR coiled-coil alone is unlikely to regulate substrate access to the active site, but it could interact with other domains of CesA, accessory proteins, or other CesA catalytic domains to control substrate delivery.

  20. Testing of a Single 11 T $Nb_3Sn$ Dipole Coil Using a Dipole Mirror Structure

    Energy Technology Data Exchange (ETDEWEB)

    Zlobin, Alexander [Fermilab; Andreev, Nicolai [Fermilab; Barzi, Emanuela [Fermilab; Chlachidze, Guram [Fermilab; Kashikhin, Vadim [Fermilab; Nobrega, Alfred [Fermilab; Novitski, Igor [Fermilab; Turrioni, Daniele [Fermilab; Karppinen, Mikko [CERN; Smekens, David [CERN

    2014-07-01

    FNAL and CERN are developing an 11 T Nb3Sn dipole suitable for installation in the LHC. To optimize coil design parameters and fabrication process and study coil performance, a series of 1 m long dipole coils is being fabricated. One of the short coils has been tested using a dipole mirror structure. This paper describes the dipole mirror magnetic and mechanical designs, and reports coil parameters and test results.