WorldWideScience

Sample records for vver-440 fuel cycles

  1. VVER-440 fuel cycles possibilities using modified FA design

    International Nuclear Information System (INIS)

    Mikolas, P.; Svarny, J.; Razym, V.; Dostal, M.; Jenik, J.; Krupar, P.

    2009-01-01

    A nearly equilibrium five-year cycle has been achieved at Dukovany NPP over the last years. This means that working fuel assemblies (WFA) with an average enrichment of 4.25 w% (control assemblies (CA) with an average enrichment of 3.82 w%) are normally loaded and reloaded for five years. Operation at uprated thermal power (105% of the original one, increase from 1375 MW t to 1444 MW t ) is being prepared by use of WFA with an average enrichment of 4.38 w% (CA with an average enrichment of 4.25 w%). With the aim of fuel cycle economy improvement, the fuel residence time in the core has to be prolonged up to six years with one cycle duration time up to 18 months and preserving loadings with very low leakage. In order to achieve this goal, at least neutron-physical characteristics of FA must be improved and such changes should be evaluated from other viewpoints. Some particular changes have already been analyzed earlier. Designs of new fuel assemblies with higher (and in the central part of a FA the highest possible, i.e. 4.95 w%) enrichment with preserving low pin power non-uniformity are described in the presented paper. An FA with an average enrichment of 4.66 w% (lower than originally evaluated) containing six fuel pins with 3.35 w% Gd 2 O 3 content was selected in the end. Fuel pins have bigger pellet diameter, bigger pin pitch and thinner FA shroud. A newly designed FA was evaluated from the viewpoint of physics (pin power non-uniformity, criticality of fuel at transport and storage and determination of basic quantities for spent fuel storage purposes by ORIGEN code), thermo-hydraulics (comparison of subchannel output temperatures and the departure from nucleate boiling ratio - DNBR) and mechanical properties. The purpose of this study was to simulate an FA subject to the loads during its six- year lifetime whereas normal working conditions were taken into account. There are presented two models with different shroud thickness undergoing these analyses. Both

  2. Possibility of implementation of 6-year fuel cycle at NPP with VVER-440 reactor

    Energy Technology Data Exchange (ETDEWEB)

    Heraltova, L., E-mail: lenka.heraltova@fjfi.cvut.cz [UJV Rez a.s., Hlavni 130, 250 68 Husinec-Rez (Czech Republic); Faculty of Nuclear Sciences and Physical Engineering, Czech Technical University in Prague, Brehova 7, 115 19 Praha 1 (Czech Republic)

    2015-12-15

    Highlights: • Possibility of extension of fuel cycle. • Increase of enrichment above 5% {sup 235}U. • Core properties calculated by diffusion code ANDREA. • Back end fuel cycle characteristic. - Abstract: This paper discusses possibility of an extension of a fuel cycle at a VVER-440 reactor for up to 6 years. The prolongation of a fuel cycle was realized by optimization of a fuel design and increasing of a fuel enrichment. The modified design of the fuel assembly covers change of pellet geometry, decreasing of parasitic absorption in construction materials, improved moderation of fuel pins and also increase of enrichment. Fuel assemblies with enrichment up to 7% {sup 235}U are considered for prolonged fuel batches. Three different batch lengths were considered for evaluation of core properties – 12, 18 and 24 months, and two types of burnable absorbers were included – Gd{sub 2}O{sub 3} and Er{sub 2}O{sub 3}. Comparison of proposed fuel assemblies was realized by length of a batch, average burnup, maximal power of fuel assembly or fuel pin, control fuel assembly worth, reactivity coefficients, and effective delayed neutrons fraction. Comparison of characteristics of a burned fuel discharged from a reactor core is discussed in the last part of the paper.

  3. Development of fuel cycles with new fuel with 8.9 mm external diameter for VVER-440. Preliminary assessment of operating efficiency

    Energy Technology Data Exchange (ETDEWEB)

    Gagarinskiy, Alexey [National Research Centre ' ' Kurchatov Institute' ' , Moscow (Russian Federation)

    2017-09-15

    Since the introduction of VVERs-440, their fuel assemblies are subject to ongoing improvements. Until now, the basic structural parameters of fuel, such as rod diameter of 9.1 mm, have never changed. This paper focuses on computational estimates of basic neutronic parameters of the fuel cycle that involves assemblies consisting of fuel rods with diameter reduced to 8.9 mm.

  4. Impact of burnable absorber Gd on nuclide composition for VVER-440 fuel (Gd-2)

    International Nuclear Information System (INIS)

    Zajac, R.; Chrapciak, V.

    2010-01-01

    The latest version of Russian fuel VVER-440 includes burnable absorber in 6 pins. In this article is impact of burnable absorber on nuclide composition and criticality analyzed. In part 1 was analyzed whole burnup interval 0-50 MWd/kgU. In present part 2 are detailed analysis only for first cycle (burnup 0-10 MWd/kgU). (Authors)

  5. Improving the VVER-440 fuel design and technology

    International Nuclear Information System (INIS)

    Aksenov, P.; Bondar, Y.; Kolosovsky, Y.; Kochergin, V.; Luzan, Y.; Malakhov, A.; Krapivtsev, V.; Bauman, N.; Shumeev, A.; Filippov, V.

    2009-01-01

    Operational performance of VVER-440 fuel has long been demonstrating good reliability of the fuel. However, assembly failures occur, and fuel suppliers should always take measures to maintain its reliability. For several years, OAO MSZ has been fabricating working assemblies with detachable shrouds and removable fuel rods. The next step is the supply of demountable assemblies to allow inspection or repair of fuel rods after removal of the shroud. With the help of corresponding program the Russian organizations have carried out research and development work to advance and study operational features of demountable VVER-440 CFAs. The main engineering solutions are consistent with the working assemblies. The pilot demountable CFAs are running in the Kola-4 core. The obtained results can be used when deciding on the demountable CFAs delivery issues. The experiment-calculated research results of coolant mixing in the present design VVER-440 have been analysed. It has been found out that coolant mixing in the WA head is incomplete and that is why leading to conservatism when determining the reactor operational limits. The proposed WA head design includes an upgraded bumper grid with additional planes intensifying coolant mixing in the head. The bumper grid drawing and a pilot model is available. The thermohydraulics and rigidity features of the proposed design have been studied by experiment-calculated methods

  6. Determination of mixing factors for VVER-440 fuel assembly head

    Energy Technology Data Exchange (ETDEWEB)

    Tóth, S., E-mail: toth@reak.bme.hu [Institute of Nuclear Techniques, Budapest University of Technology and Economics, Műegyetem rkp. 9, H-1111 Budapest (Hungary); Aszódi, A. [Institute of Nuclear Techniques, Budapest University of Technology and Economics, Műegyetem rkp. 9, H-1111 Budapest (Hungary)

    2013-11-15

    CFD models have been developed for the heads of the old, the present and the new type VVER-440 fuel assemblies using the experience of a former validation process. With these models temperature distributions are investigated in the heads of some typical assemblies and the in-core thermocouple signals are calculated. The analyses show that the coolant mixing is intensive but not-perfect in the assembly heads. The difference between the thermocouple signal and the cross-sectional average temperature at the measurement level depends on the assembly type. Using the results of these CFD calculations the weight factors of the rod bundle regions for the in-core thermocouple have been determined. With these factors the thermocouple signals are estimated and the results are statistically tested using the registered data of the Hungarian nuclear power plant. This test shows that the deviations between the measured and the calculated temperatures can be significantly decreased and consequently monitoring uncertainties can be reduced with using the weight factors.

  7. Water chemistry regimes for VVER-440 units: water chemistry influence on fuel cladding behaviour

    International Nuclear Information System (INIS)

    Zmitko, M.

    1999-01-01

    In this lecture next problems of water chemistry influence on fuel cladding behaviour for VVER-440 units are presented: primary coolant technologies; water chemistry specification and control; fuel integrity considerations; zirconium alloys cladding corrosion (corrosion versus burn-up; water chemistry effect; crud deposition; hydrogen absorption; axial offset anomaly); alternatives for the primary coolant regimes

  8. Experimental study of hydrodynamically induced vibrational processes in VVER-440 fuel assemblies

    International Nuclear Information System (INIS)

    Solonin, V.I.; Perevezentsev, V.V.; Rekshnya, N.F.; Krapivtsev, V.G.

    2000-01-01

    Investigations are described of hydrodynamically induced vibrations in a single fuel assembly of a VVER-440 reactor, performed on a full-scale model installed in a closed loop filled with distilled water; the model fuel elements contained simulators of fuel pellets. Data on hydrodynamic loads were obtained by measuring pressure oscillations along the height of the fuel assembly case. Results of the measurements are presented in graphs and are discussed in some detail. (A.K.)

  9. Influence of Bypass on Thermo-Hydraulics of VVER 440 Fuel Assembly

    Directory of Open Access Journals (Sweden)

    Jakubec Jakub

    2017-04-01

    Full Text Available The paper deals with CFD modelling and simulation of coolant flow within the nuclear reactor VVER 440 fuel assembly. The influence of coolant flow in bypass on the temperature distribution at the outlet of the fuel assembly and pressure drop was investigated. Only steady-state analyses were performed. Boundary conditions are based on operating conditions. ANSYS CFX is chosen as the main CFD software tool, where all analyses are performed.

  10. Hydrodynamics around a spacer of a VVER-440 fuel rod bundle

    International Nuclear Information System (INIS)

    Mayer, G.; Hazi, G.; Kavran, P.

    2004-01-01

    Recently, an intensive research has been started in our institute, focusing on the hydrodynamics of fuel rod bundles. Numerical computations have been planed to be carried out in a three level bottom-up hierarchy, using direct numerical simulation, large eddy simulation and Reynolds averaged Navier-Stokes approach. Here, we give a description of the numerical method applied for direct numerical and large eddy simulation. We present some preliminary results obtained by the simulation of the flow around a spacer of a VVER-440 fuel rod bundle. (author)

  11. Verification of the enrichment of fresh VVER-440 fuel assemblies at NPP Paks

    Energy Technology Data Exchange (ETDEWEB)

    Almasia, I.; Hlavathya, Z.; Nguyena, C. T. [Institute of Isotopes, Hungarian Academy of Sciences, Budapest, (Hungary); others, and

    2012-06-15

    A Non Destructive Analysis (NDA) method was developed for the verification of {sup 235}U enrichment of both homogeneous and profiled VVER-440 reactor fresh fuel assemblies by means of gamma spectrometry. A total of ca. 30 assemblies were tested, five of which were homogeneous, with {sup 235}U enrichment in the range 1,6% to 3,6%, while the others were profiled with pins of 3,3% to 4,4% enrichment. Two types of gamma detectors were used for the test measurements: 2 coaxial HPGe detectors and a miniature CdZnTe (CZT) detector fitting into the central tube of the assemblies. It was therefore possible to obtain information from both the inside and the outside of the assemblies. It was shown that it is possible to distinguish between different types of assemblies within a reasonable measurement time (about 1000 sec). For the HPGe measurements the assemblies had to be lifted out from their storage rack, while for the CZT detector measurements the assemblies could be left at their storage position, as it was shown that the neighbouring assemblies do not affect measurement inside the assemblies' central tube. The measured values were compared to Monte Carlo simulations carried out using the MCNP code, and a recommendation for the optimal approach to verify the {sup 235}U enrichment of fresh VVER-440 reactor fuel assemblies is suggested.

  12. Safety of VVER-440 reactors

    CERN Document Server

    Slugen, Vladimir

    2011-01-01

    Safety of VVER-440 Reactors endeavours to promote an increase in the safety of VVER-440 nuclear reactors via the improvement of fission products limitation systems and the implementation of special non-destructive spectroscopic methods for materials testing. All theoretical and experimental studies performed the by author over the last 25 years have been undertaken with the aim of improving VVER-440 defence in depth, which is one of the most important principle for ensuring safety in nuclear power plants. Safety of VVER-440 Reactors is focused on the barrier system through which the safety pri

  13. VVER fuel cycle development at Slovakia

    International Nuclear Information System (INIS)

    Darilek, P.; Chrapiak, V.; Majerik, J.

    1995-01-01

    Four VVER-440 units are now under exploitation at Bohunice-site in Slovakia. Fuel cycle development of Unit No.3 and No.4 (type 213) is discussed and compared with equilibrium cycles in this paper. (author)

  14. The results of postirradiation examinations of VVER-1000 and VVER-440 fuel rods

    Science.gov (United States)

    Dubrovin, K. P.; Ivanov, E. G.; Strijov, P. N.; Yakovlev, V. V.

    1991-02-01

    The paper presents the results of postirradiation examination of the fuel rods having different fuel-cladding gaps, pellet densities, pellet inner diameters and so on. The fuel rods were irradiated in the material science reactor (MR) of the Kurchatov Institute of Atomic Energy and at 4 unit of the Novo-Voronezh nuclear powerplant. Some data on fission gas release and rod geometry and compared with computer code predictions.

  15. Feasibility of VVER-440 type SFAT

    International Nuclear Information System (INIS)

    Kaartinen, J.; Tarvainen, M.

    1995-05-01

    Spent fuel attribute tester, SFAT, has been constructed and tested for gross defect verification of VVER-440 type spent fuel assemblies. Based on earlier optimisation studies, the VVER-440 SFAT is kept hanging from the mast of the fuel handling machine moved by the operator. The device tested includes a standard 2' x 2' NaI(T1) detector connected to a commercial MCA. The results achieved with normal VVER-440 spent fuel assemblies at the Loviisa npp in Finland in November 1994 show that the method is feasible. The design of the so-called fuel follower assemblies, however, prevents SFAT verification, at least with moderate measurement times. Verification of the presence of the assemblies based on the detection of the fission product 137 Cs (662 keV) is possible even in 10-30 seconds. Measurement times of the order of 1-2 minutes make it possible to draw also semi-quantitative conclusions of the burnup and cooling time of the operator declared data (consistency check). (orig.) (7 refs., 11 figs., 3 tabs.)

  16. Main results on pilot operation during 5 years of the 3rd generation fuel in VVER-440 reactors of Kola NPP

    International Nuclear Information System (INIS)

    Saprykin, V.; Sumarokov, M.; Gagarinskiy, A.; Sumarokova, A.; Adeev, V.

    2015-01-01

    In the report the results of comparison of main neutron-physical data of exploitation of nuclear fuel are presented for the average enrichment (on U - 235) of 4.87 for the 2nd and 3rd (12 piece) generations with the results of calculations by the complex of the programs KASKAD for 5 fuel loadings of Kola NPP Unit 4 with the reactor VVER- 440. The basic feature of fuel of the 3rd generation as compared with the 2nd is a presence of ribs of inflexibility at corners instead of cover of the fuel assembly and also the increased amount of uranium. The arrangement of fuel rods with different enrichment in fuel assemblies of the 2nd and 3rd generations is chosen identical for the convenient comparison of neutronic and thermohydraulic characteristics of the fuel of different generations. The fuel of 3rd generation was situated in the core symmetrically to the fuel of 2nd one

  17. Sensitivity study applied to the CB4 VVER-440 benchmark on burnup credit

    International Nuclear Information System (INIS)

    Markova, Ludmila

    2003-01-01

    A brief overview of four completed portions (CB1, CB2, CB3, CB3+, CB4) of the international VVER-440 benchmark focused on burnup credit and a sensitivity study as one of the final views of the benchmark results are presented in the paper. Finally, the influence of real and conservative VVER-440 fuel assembly models taken for the isotopics calculation by SCALE sas2 on the system k eff is shown in the paper. (author)

  18. APROS multifunctional simulator applications for VVER-440

    International Nuclear Information System (INIS)

    Porkholm, K.; Kantee, H.; Tiihonen, O.

    2000-01-01

    Fortum Engineering Ltd and the Technical Research Centre of Finland have developed APROS simulation software since 1986. APROS is a multifunctional simulator, which is used for process and automation design, safety analysis and training simulator applications. APROS has unique features and models developed especially for VVER-440 reactors. At first the paper gives a short overview of APROS multifunctional simulator. The rest of the paper deals with different kind of applications of APROS in VVER-440 reactors' improvement and operation development. (author)

  19. Interactive nuclear plant analyzer for the VVER-440 reactor

    International Nuclear Information System (INIS)

    Shier, W.; Kennett, R.

    1993-01-01

    An interactive nuclear plant analyzer (NPA) has been developed for a VVER-440 model 213 reactor for use in the training of plant personnel, the development and verification of plant operating procedures, and in the analysis of various anticipated operational occurrences and accident scenarios. This NPA is operational on an IBM RISC-6000 workstation and utilizes the RELAP5/MOD2 computer code for the calculation of the VVER-440 reactor response to the interactive commands initiated by the NPA operator. Results of the interactive calculation can be through the user-defined, digital display of various plant parameters and through color changes that reflect changes in primary system fluid temperatures, fuel and clad temperatures, and the temperatures of other metal structures. In addition, changes in the status of various components and system can be initiated and/or displayed both numerically and graphically on the mask

  20. The integration of fast reactor to the fuel cycle in Slovakia

    International Nuclear Information System (INIS)

    Zajac, R.; Darilek, P.; Necas, V.

    2009-01-01

    A very topical problem of nuclear power is the fuel cycle back-end. One of the options is a LWR spent fuel reprocessing and a fissile nuclides re-use in the fast reactor. A large amount of spent fuel has been stored in the power plant intermediate storage during the operation of VVER-440 reactors in Slovakia. This paper is based on an analysis of Pu and minor actinides content in actual VVER-440 spent fuel stored in Slovakia. The next part presents the possibilities of reprocessing and Pu re-use in fast reactor under Slovak conditions. The fuel cycle consisting of the VVER-440 reactor, PUREX reprocessing plant and a sodium fast reactor was designed. The last section compares two parts of this fuel cycle: one is UOX cycle in VVER-440 reactor and the other is cycle in the fast reactor - SUPER PHENIX loaded with MOX fuel (Pu + Minor Actinides). The starting point is a single recycling of Pu from VVER-440 in the FR. The next step is multirecycling of Pu in the FR to obtain equilibrium cycle. This article is dealing with the solution of power production and fuel cycle indicators. All kinds of calculations were performed by computer code HELIOS 1.10. (authors)

  1. Automatic loading pattern optimization tool for Loviisa VVER-440 reactors

    Energy Technology Data Exchange (ETDEWEB)

    Kuopanportti, Jaakko [Fortum Power and Heat, Fortum (Finland). Nuclear Competence Center

    2013-09-15

    An automatic loading pattern optimization tool called ALPOT has been developed for Loviisa VVER-440 reactors. The ALPOT code utilizes combination of three different optimization methods. The first method is the imitation of the equilibrium pattern that is the optimized pattern in case the cycle length and the operation conditions are constant and the same shuffling pattern is repeated from cycle to cycle. In practice, the algorithm imitates assemblies' operation year distribution of the equilibrium pattern stochastically. The function of the imitation algorithm is to provide initial patterns quickly for the next optimization phase, which is performed either with the stochastic guided binary search algorithm or the deterministic burnup kernel method depending on the choice of the user. The former is a modified version of the standard binary search. The standard version goes through all possible swaps of the assemblies and chooses the best swap at each iteration round. The guided version chooses one assembly, tries to swap it with every other possible assembly and performs the best swap at each iteration round. The search is guided so that the algorithm chooses the assemblies at or near the most restrictive fuel assembly first. The kernel method creates burnup kernel functions to estimate burnup variations that are required to achieve desired changes in the power distribution of the reactor. The idea of the kernel method is first determine the optimal burnup distribution that minimizes the maximum relative assembly power using the created kernel functions and a common solver routine. Then, the burnups of the available fuel assemblies are matched with the obtained burnup distribution. (orig.)

  2. Automatic loading pattern optimization tool for Loviisa VVER-440 reactors

    International Nuclear Information System (INIS)

    Kuopanportti, Jaakko

    2013-01-01

    An automatic loading pattern optimization tool called ALPOT has been developed for Loviisa VVER-440 reactors. The ALPOT code utilizes combination of three different optimization methods. The first method is the imitation of the equilibrium pattern that is the optimized pattern in case the cycle length and the operation conditions are constant and the same shuffling pattern is repeated from cycle to cycle. In practice, the algorithm imitates assemblies' operation year distribution of the equilibrium pattern stochastically. The function of the imitation algorithm is to provide initial patterns quickly for the next optimization phase, which is performed either with the stochastic guided binary search algorithm or the deterministic burnup kernel method depending on the choice of the user. The former is a modified version of the standard binary search. The standard version goes through all possible swaps of the assemblies and chooses the best swap at each iteration round. The guided version chooses one assembly, tries to swap it with every other possible assembly and performs the best swap at each iteration round. The search is guided so that the algorithm chooses the assemblies at or near the most restrictive fuel assembly first. The kernel method creates burnup kernel functions to estimate burnup variations that are required to achieve desired changes in the power distribution of the reactor. The idea of the kernel method is first determine the optimal burnup distribution that minimizes the maximum relative assembly power using the created kernel functions and a common solver routine. Then, the burnups of the available fuel assemblies are matched with the obtained burnup distribution. (orig.)

  3. New code for VVER-440 loading pattern design

    International Nuclear Information System (INIS)

    Bajgl, J.; Lehmann, M.

    1999-01-01

    This paper describes the main attributes of a new computer program OPTIMAL used for loading pattern design in Dukovany NPP (4 reactors VVER-440). We have been developed this program in Nuclear Research Institute Rez since 1994 on the base of special contract between Dukovany NPP and Nuclear Research Institute Rez. General information about the optimisation methodology is given in the first part. The organisation of the optimisation process is described in part 2. Construction of the optimisation functional is shown in part 3. Procedures used during one-cycle optimisation are described in part 4. (Authors)

  4. Modernizing the VVER-440/230

    International Nuclear Information System (INIS)

    Mink, F.J.

    1991-01-01

    The modernization of the VVER-440/230s is not fundamentally different from backfit projects on older pressurized water reactors which Westinghouse has completed elsewhere. However, carrying out such programmes only makes sense if the plants are expected to continue operation for their projected life or beyond. This clearly requires some licensing and political stability; both are essential if investors in the upgrading project are to be found. (author)

  5. Response of Soviet VVER-440 accident localization systems to overpressurization

    International Nuclear Information System (INIS)

    Kulak, R.F.; Fiala, C.; Sienicki, J.J.

    1989-01-01

    The Soviet designed VVER-440 model V230 and VVER-440 model V213 reactors do not use full containments to mitigate the effects of accidents. Instead, these VVER-440 units employ a sealed set of interconnected compartments, collectively called the accident localization system (ALS), to reduce the release of radionuclides to the atmosphere during accidents. Descriptions of the VVER accident localization structures may be found in the report DOE NE-0084. The objective of this paper is to evaluate the structural integrity of the VVER-440 ALS at the Soviet design pressure, and to determine their response to pressure loadings beyond the design value. Complex, three-dimensional, nonlinear, finite element models were developed to represent the major structural components of the localization systems of the VVER-440 models V230 and V213. The interior boundary of the localization system was incrementally pressurized in the calculations until the prediction of gross failure. 6 refs., 9 figs

  6. Stress corrosion cracking (Standard Astm G 30-90) in stainless steel 08X18H10T of swimming-pool that contain nuclear fuel in reactors V.V.E.R.-440

    International Nuclear Information System (INIS)

    Zamora R, L.; Herrera, V.

    1998-01-01

    The standard recommended practice for making and using 'U' bend stress corrosion test specimens; Designation G30-90 has been used as a laboratory tool to study the susceptibility of austenitic stainless steels and the other materials of test of intergranular stress corrosion cracking (IGSCC). The experiment has been development in a similar conditions of the chemical regime, the swimming-pool that containing nuclear fuel in borated water reactors VVER-440 in general this cladding by two films, one of carbon steel (04T26) and other with austenitic stainless steel 08X18HT (similar type 321) stabilized with titanium, the thickness of filler metals was to 4 to 8 mm. The specimens was prepare one plate with this characteristics, the welding was put in the part central with the following measurements of 160x15x5 mm. The specimens strips bent approximately 180 degrees around radius of curvature of R=14.5 mm and ε 1 = 17.2% and maintained in this plastically deformed condition during the test. And then preparing metallographically and exposure in environment of 12 and 40 gr./l of H 3 BO 3 70 Centigrade with or noting contaminants of NaCl. The results showed the initial cracks. (Author)

  7. Informational system to assist decision making at spent nuclear fuel transportation from VVER-440, VVER-1000 and RBMK-1000 nuclear power plants

    International Nuclear Information System (INIS)

    Kuryndin, A.V.; Kirkin, A.M.; Stroganov, A.A.

    2012-01-01

    The developed informational system provides an automated estimations of nuclear and radiation safety parameters during spent nuclear fuel transportation from WWER-440 and WWER-1000 and RBMK-1000 nuclear power plants to the nuclear fuel cycle facilities, and allows us to determine the optimum cask loading from the dose rates distribution outside of protection point of view [ru

  8. In core-fuel management in approach to equilibrium of WWER-440 reactor; Prelazni rezim iskoriscenja goriva u nuklearnom reaktoru tipa VVER-440

    Energy Technology Data Exchange (ETDEWEB)

    Marinkovic, N [Boris Kidric Institute of nuclear sciences, Vinca, Belgrade (Yugoslavia)

    1978-07-01

    For the need of in core fuel management and prediction of fuel cycle costs as well as operating of a nuclear power plant behaviour of main physical parameters and refueling scheme during approach to equilibrium operation are indispensable. An estimation of a refueling scheme during forst six years of exploitation for a commercially proven PWR reactor of WWER-440 type is shown in this paper. (author)

  9. Improving nuclear safety of VVER-440 units

    International Nuclear Information System (INIS)

    Nochev, T.; Sabinov, S.

    2001-01-01

    In this paper authors deals with improvement of nuclear safety of WWER-440 units in Kozloduy NPP. Main directions for improving nuclear safety of WWER-440 units were: - to expand number of the design accident; - to increase reliability of equipment important for the safety; - to decrease the probability of initiating events; - improvements the integrity of the primary circuit (application LBB concept, qualification of the pressure safety valves to avoid pressurized thermal shock); - improvement of the fire protection; - improvement of the operation including upgrading and improvement of operational documents, implementation of new system for training the operators and etc.; - reassessment of the seismic response of the plant. Main actions were made at NPP Kozloduy to increase nuclear safety of VVER-440 units. 1. Modernization of Emergency High Pressure Safety Injection System. The modernization includes dividing of independent channels with reservation of active elements. Pumps were exchanged with more effective and reliable ones. HPSIS was increased reliability in general through decrease number of active elements and exchanged with passive. 2. For the purpose of avoiding fast cooling at the primary circuit and obtaining thermal shock of reactor vessel, Main Safety Insulation Valves are installed at NPP Kozloduy. 3. Modernization of Emergency power supplies AC. Oil breakers VMP-10 are exchanged with gas FS-4. 4. Generator breakers are installed to decrease probability of loss power supply and blackout. They provide reliable power supply to the system important for the safety in case of failure on generator. 5. I and C system has been qualified and optimized. 6. Reassessments of Limiting Conditions of Operation and new scram signals have been introduced. 7. An operators-oriented Informational System has been developed. It includes ensuring and updating of equipment data, new informational support of operator and etc. 8. A new auxiliary independent system for

  10. Containment leak-tightness enhancement at VVER 440 NPPs

    International Nuclear Information System (INIS)

    Prandorfy, M.

    2001-01-01

    The hermetic compartments of VVER 440 NPPs fulfil the function of the containment used at NPPs all over the word. The purpose of the containment is to protect the NPP personal against radioactive impact as well as to prevent radioactive leakage to the environment during a lost of coolant accident. Leak-tightness enhancement in NPPs with VVER 440/213 and VVER 440/230 reactors is an important safety issue. New procedures, measures and methods were adopted at NPPs in Mochovce, J. Bohunice, Dukovany and Paks for leak identification and sealing works performed by VUEZ Levice. (authors)

  11. Interactive nuclear plant analyzer for VVER-440 reactor

    International Nuclear Information System (INIS)

    Shier, W.; Horak, W.; Kennett, R.

    1992-05-01

    This document discusses an interactive nuclear plant analyzer (NPA) which has been developed for a VVER-440, Model 213 reactor for use in the training of plant personnel, the development and verification of plant operating procedures, and in the analysis of various anticipated operational occurrences and accident scenarios. This NPA is operational on an IBM RISC-6000 workstation and utilizes the RELAP5/MOD2 computer code for the calculation of the VVER-440 reactor response to the interactive commands initiated by the NPA operator

  12. Investigations of SPND noise signals in VVER-440 reactors

    International Nuclear Information System (INIS)

    Kiss, S.; Lipcsei, S.; Hazi, G.

    2001-01-01

    This paper describes and characterises SPND noise measurements of an operating VVER-440 nuclear reactor. Characteristics of the signal can be radically influenced by the geometrical properties of the detector and the cable and by the measuring arrangement. Structure of phase spectra showing propagating perturbations measured on uncompensated SPN detectors is studied through models.(author)

  13. Standard and hydrazine water chemistry in primary circuit of VVER 440 units

    International Nuclear Information System (INIS)

    Burclova, J.

    1992-01-01

    Standard ammonia-potassium-boron water chemistry of 8 units with VVER 440 in CSFR is discussed as well as the corrosion product activity in the coolant during steady state and shut-down period and surface activity, dose rate build-up and occupational radiation exposure. Available data on hydrazine application (USSR, Hungary) indicate the possibility of the radiation field decreasing. Nevertheless the detailed analysis of 55 cycles of operation under standard water chemistry in Czechoslovakia allows to expect the comparable results for both water chemistries. (author)

  14. Neutron dosimetry in EDF experimental surveillance programme for VVER-440 nuclear power plants

    International Nuclear Information System (INIS)

    Brumovsky, M.; Erben, O.; Novosad, P.; Zerola, L.; Hogel, J.; Trollat, C.

    2001-01-01

    Fourteen chains containing experimental surveillance material specimens of the VVER 440/213 nuclear power reactor pressure vessels were irradiated in the surveillance channels of the Nuclear Power Plant Dukovany in the Czech Republic. The irradiation periods were one, two or three cycles. The chains contained different number and types of containers, the omitted ones were replaced by chain elements. All of the containers were instrumented with wire neutron fluence detectors, some of the containers in the chain had spectrometric sets of neutron fluence monitors. For the absolute fluence values evaluation it was taken into account time history of the reactor power and local changes of the neutron flux along the reactor core height, correction factors due to the orientation of monitors with respect to the reactor core centre. Unfolding programs SAND-II or BASA-CF were used. The relative axial fluence distribution was obtained from the O-wire measurements. Neutron fluence values above 0.5 MeV energy and above 1.0 MeV energy in the container axis on the axial positions of the sample centres and fluence values in the geometric centre of the samples was calculated making use the exponential attenuation model of the incident neutron beam. Received fast neutron fluence values can be used as reference values to all VVER-440 type 213 nuclear power plant reactors. (author)

  15. Comparison of PWR-IMF and FR fuel cycles

    International Nuclear Information System (INIS)

    Darilek, Petr; Zajac, Radoslav; Breza, Juraj; Necas, Vladimir

    2007-01-01

    The paper gives a comparison of PWR (Russia origin VVER-440) cycle with improved micro-heterogeneous inert matrix fuel assemblies and FR cycle. Micro-heterogeneous combined assembly contains transmutation pins with Pu and MAs from burned uranium reprocessing and standard uranium pins. Cycle analyses were performed by HELIOS spectral code and SCALE code system. Comparison is based on fuel cycle indicators, used in the project RED-IMPACT - part of EU FP6. Advantages of both closed cycles are pointed out. (authors)

  16. Nuclear fuel for VVER reactors. Actual state and trends

    International Nuclear Information System (INIS)

    Molchanov, V.

    2011-01-01

    The main tasks concerning development of FA design, development and modernization of structural materials, improvement of technology of structural materials manufacturing and FA fabrication and development of methods and codes are discussed in this paper. The main features and expected benefit of implementation of second generation and third generation fuel assembly for VVER-440 Nuclear Fuel are given. A brief review of VVER-440 and VVER-1000 Nuclear Fuel development before 1997 since 2010 is shown. A summary of VVER-440 and VVER-1000 Nuclear Fuel Today, including details about TVSA-PLUS, TVSA-ALFA, TVSA-12 and NPP-2006 Phase 2 tasks (2010-2012) is presented. In conclusion, as a result of large scope of R and D performed by leading enterprises of nuclear industry modern nuclear fuel for VVER reactors is developed, implemented and successfully operated. Fuel performance (burnup, lifetime, fuel cycles, operating reliability, etc.) meets the level of world's producers of nuclear fuel for commercial reactors

  17. The further development of WWER-440 fuel design performance

    International Nuclear Information System (INIS)

    Lushin, V.; Vasilchenko, I.; Ananjev, J.; Abashina, G.

    2011-01-01

    The most distinguished stages in VVER-440 fuel development of the latest ten years are: designing of second generation FA complex; and designing of sheathless working fuel assembly of the third generation (RK-3) which are presented in this report. Designing of fuel assemblies of the second generation and RK-3 is characterized by the tendency to power increase of VVER-440 operating units with V-213-type reactor, that, in turn, has given a stimulus to further design enhancement of fuel assemblies specified. The further development of the second generation fuel assembly design and the change-over to the third generation working assemblies will allow for fuel utilization to be considerably increased under the conditions of application the more long-term fuel cycles for VVER-440 reactors and operation of the Units at the increased power

  18. ASTEC applications to VVER-440/V213 reactors

    Energy Technology Data Exchange (ETDEWEB)

    Matejovic, Peter, E-mail: ivstt@nextra.sk; Barnak, Miroslav; Bachraty, Milan; Vranka, Lubomir

    2014-06-01

    Since the beginning of ASTEC development by IRSN and GRS the code was widely applied to VVER reactors. In this paper, at first specific features of VVER-440/V213 reactor design that are important from the modelling point of view are briefly described. Then the validation of ASTEC code with focus on its applicability to VVER reactors is briefly summarised and the results obtained with the ASTEC V2.0-rev1 version for the ISP-33 PACTEL natural circulation experiment are presented. In the next section the application of ASTEC V2.0-rev1 code in upgrade of VVER-440/V213 NPPs to cope with consequences of severe accidents is described. This upgrade includes adoption of in-vessel retention via external reactor vessel cooling and installation of large capacity passive autocatalytic recombiners. Results of analysis with focus on corium localisation and stabilisation inside reactor vessel, hydrogen control in confinement and prevention of long-term confinement pressurisation are presented.

  19. Accident loads for a VVER-440/213 containment

    Energy Technology Data Exchange (ETDEWEB)

    Techy, Z. [Institute for Electric Power Research (VEIKI), Budapest (Hungary); Lajtha, G. [Institute for Electric Power Research (VEIKI), Budapest (Hungary); Taubner, R. [Institute for Electric Power Research (VEIKI), Budapest (Hungary)

    1995-08-01

    Specific features of the VVER-440/213 containment are the subdivided rectangular building and the localization system including the bubbler trays and air traps. Accident loads are calculated for a large break loss of coolant accident (LBLOCA). The maximum pressure and temperature loads are calculated with different codes during the blowdown phase of the LBLOCA. The uncertainty margins of the maximum pressure are given in this case. Sensitivity studies are performed for different leakage rates and hydraulic data of the containment. The effects of the active and passive spray systems on the depressurization are presented in this paper. The maximum pressure loads are also examined in case of degraded conditions of the localization system. (orig.).

  20. Advanced fuel cycles options for LWRs and IMF benchmark definition

    International Nuclear Information System (INIS)

    Breza, J.; Darilek, P.; Necas, V.

    2008-01-01

    In the paper, different advanced nuclear fuel cycles including thorium-based fuel and inert-matrix fuel are examined under light water reactor conditions, especially VVER-440, and compared. Two investigated thorium based fuels include one solely plutonium-thorium based fuel and the second one plutonium-thorium based fuel with initial uranium content. Both of them are used to carry and burn or transmute plutonium created in the classical UOX cycle. The inert-matrix fuel consist of plutonium and minor actinides separated from spent UOX fuel fixed in Yttria-stabilised zirconia matrix. The article shows analysed fuel cycles and their short description. The conclusion is concentrated on the rate of Pu transmutation and Pu with minor actinides cumulating in the spent advanced thorium fuel and its comparison to UOX open fuel cycle. Definition of IMF benchmark based on presented scenario is given. (authors)

  1. Microstructure and embrittlement of VVER 440 reactor pressure vessel steels

    International Nuclear Information System (INIS)

    Hennion, A.

    1999-03-01

    27 VVER 440 pressurised water reactors operate in former Soviet Union and in Eastern Europe. The pressure vessel, is made of Cr-Mo-V steel. It contains a circumferential arc weld in front of the nuclear core. This weld undergoes a high neutron flux and contains large amounts of copper and phosphorus, elements well known for their embrittlement potency under irradiation. The embrittlement kinetic of the steel is accelerated, reducing the lifetime of the reactor. In order to get informations on the microstructure and mechanical properties of these steels, base metals, HAZ, and weld metals have been characterized. The high amount of phosphorus in weld metals promotes the reverse temper embrittlement that occurs during post-weld heat treatment. The radiation damage structure has been identified by small angle neutron scattering, atomic probe, and transmission electron microscopy. Nanometer-sized clusters of solute atoms, rich in copper with almost the same characteristics as in western pressure vessels steels, and an evolution of the size distribution of vanadium carbides, which are present on dislocation structure, are observed. These defects disappear during post-irradiation tempering. As in western steels, the embrittlement is due to both hardening and reduction of interphase cohesion. The radiation damage specificity of VVER steels arises from their high amount of phosphorus and from their significant density of fine vanadium carbides. (author)

  2. Investigation of station blackout scenario in VVER440/v230 with RELAP5 computer code

    Energy Technology Data Exchange (ETDEWEB)

    Gencheva, Rositsa Veselinova, E-mail: roseh@mail.bg; Stefanova, Antoaneta Emilova, E-mail: antoanet@inrne.bas.bg; Groudev, Pavlin Petkov, E-mail: pavlinpg@inrne.bas.bg

    2015-12-15

    Highlights: • We have modeled SBO in VVER440. • RELAP5/MOD3 computer code has been used. • Base case calculation has been done. • Fail case calculation has been done. • Operator and alternative operator actions have been investigated. - Abstract: During the development of symptom-based emergency operating procedures (SB-EOPs) for VVER440/v230 units at Kozloduy Nuclear Power Plant (NPP) a number of analyses have been performed using the RELAP5/MOD3 (Carlson et al., 1990). Some of them investigate the response of VVER440/v230 during the station blackout (SBO). The main purpose of the analyses presented in this paper is to identify the behavior of important VVER440 parameters in case of total station blackout. The RELAP5/MOD3 has been used to simulate the SBO in VVER440 NPP model (Fletcher and Schultz, 1995). This model was developed at the Institute for Nuclear Research and Nuclear Energy, Bulgarian Academy of Sciences (INRNE-BAS), Sofia, for analyses of operational occurrences, abnormal events and design based scenarios. The model provides a significant analytical capability for specialists working in the field of NPP safety.

  3. Isothermal and thermal–mechanical fatigue of VVER-440 reactor pressure vessel steels

    Energy Technology Data Exchange (ETDEWEB)

    Fekete, Balazs, E-mail: fekete.mm.bme@gmail.com [College of Dunaujvaros, Tancsics 1A, Dunaujvaros H-2400 (Hungary); Department of Applied Mechanics, Budapest University of Technology and Economics, Muegyetem 5, Budapest H-1111 (Hungary); Trampus, Peter [College of Dunaujvaros, Tancsics 1A, Dunaujvaros H-2400 (Hungary)

    2015-09-15

    Highlights: • We aimed to determine the thermomechanical behaviour of VVER reactor steels. • Material tests were developed and performed on GLEEBLE 3800 physical simulator. • Coffin–Manson curves and parameters were derived. • High accuracy of the strain energy based evaluation was found. • The observed dislocation evolution correlates with the mechanical behaviour. - Abstract: The fatigue life of the structural materials 15Ch2MFA (CrMoV-alloyed ferritic steel) and 08Ch18N10T (CrNi-alloyed austenitic steel) of VVER-440 reactor pressure vessel under completely reserved total strain controlled low cycle fatigue tests were investigated. An advanced test facility was developed for GLEEBLE-3800 physical simulator which was able to perform thermomechanical fatigue experiments under in-service conditions of VVER nuclear reactors. The low cycle fatigue results were evaluated with the plastic strain based Coffin–Manson law, and plastic strain energy based model as well. It was shown that both methods are able to predict the fatigue life of reactor pressure vessel steels accurately. Interrupted fatigue tests were also carried out to investigate the kinetic of the fatigue evolution of the materials. On these samples microstructural evaluation by TEM was performed. The investigated low cycle fatigue behavior can provide reference for remaining life assessment and lifetime extension analysis.

  4. Isothermal and thermal-mechanical fatigue of VVER-440 reactor pressure vessel steels

    Science.gov (United States)

    Fekete, Balazs; Trampus, Peter

    2015-09-01

    The fatigue life of the structural materials 15Ch2MFA (CrMoV-alloyed ferritic steel) and 08Ch18N10T (CrNi-alloyed austenitic steel) of VVER-440 reactor pressure vessel under completely reserved total strain controlled low cycle fatigue tests were investigated. An advanced test facility was developed for GLEEBLE-3800 physical simulator which was able to perform thermomechanical fatigue experiments under in-service conditions of VVER nuclear reactors. The low cycle fatigue results were evaluated with the plastic strain based Coffin-Manson law, and plastic strain energy based model as well. It was shown that both methods are able to predict the fatigue life of reactor pressure vessel steels accurately. Interrupted fatigue tests were also carried out to investigate the kinetic of the fatigue evolution of the materials. On these samples microstructural evaluation by TEM was performed. The investigated low cycle fatigue behavior can provide reference for remaining life assessment and lifetime extension analysis.

  5. Regeneration and localization of radioactive waste in the nuclear fuel cycle

    International Nuclear Information System (INIS)

    Egorov, N.N.; Kudryavtsev, E.G.; Nikipelov, B.V.; Polyakov, A.S.; Zakharkin, B.S.; Mamaev, L.A.

    1993-01-01

    Normal functioning of the nuclear-power industry is only possible with a closed fuel cycle, including regeneration of the spent fuel from atomic power plants, the production and recycling of the secondary fuel, and localization of the radioactive waste. Despite the diversity of contemporary attitudes toward the structure of the nuclear fuel cycle around the world, the closure of the fuel cycle has been fundamental to the atomic-power industry in the USSR since the very beginning, and has taken on even greater significance in Russia today. From the beginning, the idea of a closed fuel cycle has been based essentially on one fundamental criterion: the concept of expanded productivity on the basis of fuel regeneration, i.e., the economic factor. Important as economic factors are, safety issues have taken on great significance in recent years: not only power-station reactors but all the ancillary stages of the fuel cycle must meet fundamentally new reliability, safety, and environmental hazards. The RT-1 plant is a versatile operation, regenerating spent fuel from VVER-440, BN-350, and BN-600 reactors, nuclear icebreakers and submarines, research reactors, and other power units. The plant can reprocess 400 ton/year of basic VVER-440 fuel. World-class modern processes have been introduced at the plant, meeting the necessary quality standards: zonal planning, remote operation to eliminate direct contact of the staff with radioactive material, extensive monitoring and control systems, multistage gas-purification systems, and new waste-treatment methods

  6. Numerical investigation of the coolant mixing during fast deboration transients for VVER-440 type reactors

    International Nuclear Information System (INIS)

    Hoehne, T.; Rhode, U.

    2000-01-01

    The VVER-440 (440 MW) V-230 was considered for analyzing the flow field and mixing processes. The V-230 has no elliptical sieve plate in the lower plenum. Previously, the 3D flow distribution in the downcomer and the lower plenum of the VVER-440 reactor have been calculated by means of the CFD code CFX-4 for operational conditions. The CFX-calculations were compared with the experimental data and the analytical mixing model. In this paper, CFD calculations for the start-up of the first main coolant pump in a VVER-440 type reactor are reported about. This scenario is important in case that there is a plug of lower borated water in one of the primary coolant loops. (orig.)

  7. The FARC fuel archive of VVER

    International Nuclear Information System (INIS)

    Zizin, M.N.; Parfenova, N.A.; Proselkov, V.N.; Shishkov, L.K.

    1998-01-01

    The principles of organisation are explained and the structure of the FARC fuel archive for VVER reactors is described. The objective of the archive is accumulation of fuel data, data storage and obtaining the fuel using characteristics. The working version of fuel archive on 01.07.98 is realised, in which the data tables for fuel assemblies for 169 VVER-440 cycles and 35 VVER-1000 cycles are stored. There are two different versions of fuel archive - for VVER-440 (FARC) and for VVER-1000 (FARC1000). A structure of some tables and the texts of programs for them differ. The algorithms and codes for checking integrity, reasonableness and reliability of fuel archive data are developed. (author)

  8. Assessment of computer codes for VVER-440/213-type nuclear power plants

    Energy Technology Data Exchange (ETDEWEB)

    Szabados, L.; Ezsol, Gy.; Perneczky [Atomic Energy Research Institute, Budapest (Hungary)

    1995-09-01

    Nuclear power plant of VVER-440/213 designed by the former USSR have a number of special features. As a consequence of these features the transient behaviour of such a reactor system should be different from the PWR system behaviour. To study the transient behaviour of the Hungarian Paks Nuclear Power Plant of VVER-440/213-type both analytical and experimental activities have been performed. The experimental basis of the research in the PMK-2 integral-type test facility , which is a scaled down model of the plant. Experiments performed on this facility have been used to assess thermal-hydraulic system codes. Four tests were selected for {open_quotes}Standard Problem Exercises{close_quotes} of the International Atomic Energy Agency. Results of the 4th Exercise, of high international interest, are presented in the paper, focusing on the essential findings of the assessment of computer codes.

  9. Floor response spectra for seismic qualification of Kozloduy VVER 440-230 NPP

    Energy Technology Data Exchange (ETDEWEB)

    Kostov, M.K. [Bulgarian Academy of Sciences, Sofia (BG). Central Lab. for Seismic Mechanics and Earthquake Engineering; Ma, D.C. [Argonne National Lab., IL (United States); Prato, C.A. [Univ. of Cordoba (AR); Stevenson, J.D. [Stevenson and Associates, Cleveland, OH (US)

    1993-08-01

    In this paper the floor response spectra generation methodology for Kozloduy NPP, Unit 1-2 of VVER 440-230 is presented. The 2D coupled soil-structure interaction models are used combined with a simplified correction of the final results for accounting of torsional effects. Both time history and direct approach for in-structure spectra generation are used and discussion of results is made.

  10. Floor response spectra for seismic qualification of Kozloduy VVER 440-230 NPP

    International Nuclear Information System (INIS)

    Kostov, M.K.; Prato, C.A.; Stevenson, J.D.

    1993-01-01

    In this paper the floor response spectra generation methodology for Kozloduy NPP, Unit 1-2 of VVER 440-230 is presented. The 2D coupled soil-structure interaction models are used combined with a simplified correction of the final results for accounting of torsional effects. Both time history and direct approach for in-structure spectra generation are used and discussion of results is made

  11. Sequence of decommissioning of the main equipment in a central type VVER 440 V-230

    International Nuclear Information System (INIS)

    Andres, E.; Garcia Ruiz, R.

    2014-01-01

    IBERDROLA Ingenieria y Construccion S.A.U., leader of consortium with Empresarios Agrupados and INDRA, has developed the Basic Engineering for the decommissioning of contaminated systems and building of a VVER 440 V-230 Nuclear Power Plant, establishing the sequence and methodology for the main equipment fragmentation. For that, it has been designed dry and wet cutting zones to be set up in the area where steam generators, main cooling pumps and pressurizer are located; these components will be dismantled previously. (Author)

  12. VVER-440 loading patterns optimization using ATHENA code

    International Nuclear Information System (INIS)

    Katovsky, K.; Sustek, J.; Bajgl, J.; Cada, R.

    2009-01-01

    In this paper the Czech optimization state-of-the-art, new code system development goals and OPAL optimization system are briefly mentioned. The algorithms, maths, present status and future developments of the ATHENA code are described. A calculation exercise of the Dukovany NPP cycles, on increased power using ATHENA, starting with on-coming 24th cycle (303 FPD) continuing with 25th (322 FPD), and 26th (336 FPD); for all cycles K R ≤1.54 is presented

  13. Application of the thermal-hydraulic codes in VVER-440 steam generators modelling

    Energy Technology Data Exchange (ETDEWEB)

    Matejovic, P.; Vranca, L.; Vaclav, E. [Nuclear Power Plant Research Inst. VUJE (Slovakia)

    1995-12-31

    Performances with the CATHARE2 V1.3U and RELAP5/MOD3.0 application to the VVER-440 SG modelling during normal conditions and during transient with secondary water lowering are described. Similar recirculation model was chosen for both codes. In the CATHARE calculation, no special measures were taken with the aim to optimize artificially flow rate distribution coefficients for the junction between SG riser and steam dome. Contrary to RELAP code, the CATHARE code is able to predict reasonable the secondary swell level in nominal conditions. Both codes are able to model properly natural phase separation on the SG water level. 6 refs.

  14. Application of the thermal-hydraulic codes in VVER-440 steam generators modelling

    Energy Technology Data Exchange (ETDEWEB)

    Matejovic, P; Vranca, L; Vaclav, E [Nuclear Power Plant Research Inst. VUJE (Slovakia)

    1996-12-31

    Performances with the CATHARE2 V1.3U and RELAP5/MOD3.0 application to the VVER-440 SG modelling during normal conditions and during transient with secondary water lowering are described. Similar recirculation model was chosen for both codes. In the CATHARE calculation, no special measures were taken with the aim to optimize artificially flow rate distribution coefficients for the junction between SG riser and steam dome. Contrary to RELAP code, the CATHARE code is able to predict reasonable the secondary swell level in nominal conditions. Both codes are able to model properly natural phase separation on the SG water level. 6 refs.

  15. Effect of uncompensated SPN detector cables on neutron noise signals measured in VVER-440 reactors

    Energy Technology Data Exchange (ETDEWEB)

    Kiss, S. E-mail: kisss@sunserv.kfki.hu; Lipcsei, S. E-mail: lipcsei@sunserv.kfki.hu; Hazi, G. E-mail: gah@sunserv.kfki.hu

    2003-03-01

    The Self Powered Neutron Detector (SPND) noise measurements of an operating VVER-440 nuclear reactor are described and characterised. Signal characteristics may be radically influenced by the geometrical properties of the detector and the cable, and by the measuring arrangement. Simulator is used as a means of studying the structure of those phase spectra that show propagating perturbations measured on uncompensated SPN detectors. The paper presents measurements with detectors of very different sizes (i.e. 20 cm length SPNDs and the 200 cm length compensation cables), where the ratios of the global and local component differ significantly for the different detector sizes. This phenomenon is used up for signal compensation.

  16. Nuclear safety evaluation of the VVER 440, Type 213

    International Nuclear Information System (INIS)

    Urbancik, L.

    1997-01-01

    The supervisory activities of the State Office for Nuclear Safety at the Dukovany nuclear power plant are described. No event resulting in an inpermissible radioactivity leak into the environment occurred at the plant in 1996. From among the 76 failures and events having occurred, only 4 were classified as level 1 on the International Nuclear Event Scale. Changes in the technology of radioactive waste bituminization were proposed. The Interim Spent Fuel Storage Facility at the Dukovany site was in test operation in 1996. Selected physical parameters of this facility were monitored. Seven international transports of spent fuel were accomplished in 1996. The dose rates in the surroundings of the Dukovany plant are monitored constantly by a teledosimetric system operated by the nuclear power plant. Periodical sampling and radionuclide activity measurements in the environment are also performed. (M.D.)

  17. Qualification of UT methods and systems used for in-service inspections of VVER 440 vessels

    International Nuclear Information System (INIS)

    Skala, Z.; Vit, J.

    2003-01-01

    SKODA JS has been performing automated in-service inspections VVER reactor pressure vessels for more than twenty years. All of these inspections were performed by ultrasonic pulse echo method, combined from 1996 with eddy current testing. The Time of Flight Diffraction Method (TOFD) is one of modern methods of ultrasonic testing. The accuracy of sizing the through wall extent of a flaw by TOFD is much better than the accuracy achievable by the pulse echo method. A series of laboratory tests were performed by SKODA JS and confirmed the suitability of TOFD method for VVER reactor parts testing. The Czech Atomic law demands the qualification of systems and methods used for the in-service inspections of nuclear reactors. The qualification is done in accordance with ENIQ methodology and consists of preparation of the Technical Justification and practical tests made under the surveillance of Qualification Body. SKODA JS intends to qualify systems and methods used for the automated ultrasonic testing of VVER 440 and VVER 1000 reactor components from the inner as well as from the outer surface. The accuracy of the flaw through wall extent sizing by TOFD was confirmed by the qualification of methods and systems used for the testing of VVER 440 vessel circumferential weld and so the TOFD method shall be used routinely by SKODA JS for the inspection of vessel circumferential welds root area and for sizing of flaws exceeding the acceptance level. (author)

  18. Corrosion particles in the primary coolant of VVER-440 reactors

    International Nuclear Information System (INIS)

    Vajda, N.; Molnar, Z.; Macsik, Z.; Szeles, E.; Hargittai, P.; Csordas, A.; Pinter, T.; Pinter, T.

    2010-01-01

    surfaces are released into the coolant and activated during the residence time (τ) in the reactor core that varies in a wide range. Smallest τ values are obtained if the particle circulates without deposition in the core and high values reflect a long deposition time in the core, probably on the fuel cladding surfaces. Residence times (τ) were calculated from the measured specific activities under various migration-activation conditions. Conclusions about particle transport-activation processes in case of the 4 reactor units have been drawn. The residence time of the migrating corrosion particles is usually small, less than 50 days. Periods of stable operation, shutdown and startup were comparatively evaluated. The 4 reactor units of the plant which have different operation history (including steam generator decontamination in certain cases) were also compared with each other. Significant differences in the Fe/Cr/Ni ratio of the oxide layers of the steam generators were observed. Correlation between the behavior of the migrating particles and particles deposited on the steam generator surfaces were also studied. (author)

  19. Microstructure and embrittlement of VVER 440 reactor pressure vessel steels; Microstructure et fragilisation des aciers de cuve des reacteurs nucleaires VVER 440

    Energy Technology Data Exchange (ETDEWEB)

    Hennion, A

    1999-03-15

    27 VVER 440 pressurised water reactors operate in former Soviet Union and in Eastern Europe. The pressure vessel, is made of Cr-Mo-V steel. It contains a circumferential arc weld in front of the nuclear core. This weld undergoes a high neutron flux and contains large amounts of copper and phosphorus, elements well known for their embrittlement potency under irradiation. The embrittlement kinetic of the steel is accelerated, reducing the lifetime of the reactor. In order to get informations on the microstructure and mechanical properties of these steels, base metals, HAZ, and weld metals have been characterized. The high amount of phosphorus in weld metals promotes the reverse temper embrittlement that occurs during post-weld heat treatment. The radiation damage structure has been identified by small angle neutron scattering, atomic probe, and transmission electron microscopy. Nanometer-sized clusters of solute atoms, rich in copper with almost the same characteristics as in western pressure vessels steels, and an evolution of the size distribution of vanadium carbides, which are present on dislocation structure, are observed. These defects disappear during post-irradiation tempering. As in western steels, the embrittlement is due to both hardening and reduction of interphase cohesion. The radiation damage specificity of VVER steels arises from their high amount of phosphorus and from their significant density of fine vanadium carbides. (author)

  20. VVER-440 training simulators upgrades - Experience of CORYS T.E.S.S

    International Nuclear Information System (INIS)

    Bartak, J.; Fallon, B.

    2006-01-01

    The paper presents recent projects of upgrading screen operated simulators of VVER-440 nuclear power plants to full scale replica simulators, implemented by CORYS TESS. Control room replica full scope simulators were built for the Bohunice NPP in Slovakia and the Novovoronezh NPP in Russia. The scope of simulation was extended to reflect the current status of the units, which have undergone significant modernization programs over the last few years. The paper describes the software and hardware adaptations and evolutions of the existing simulators, the implementation in the simulator of modern supervision systems as well as of systems and equipment designed in the seventies and still used on the reference units. The training benefits of parallel use of control room replica and screen-operated simulators in the training process are discussed. (author)

  1. Technology of repair of selected equipment in the power plant type VVER 440

    Energy Technology Data Exchange (ETDEWEB)

    Barborka, J.; Magula, V. [Welding Research Inst. (WRI), Bratislava (Slovakia)

    1998-11-01

    This article is divided in two parts: The first part is studying the effect of individual parameters by the usual and pulsed welding of 15CH2MFA steel. It can be concluded that by use of mechanized or automatic TIG process in PC position with addition of a cold wire with high nickel content the desired quality of repair welded joints of a pressure vessel of VVER 440 reactor can be achieved. Based on the results of the second laboratory study of the renovation technology applied for the rotary surfaces of pressure-tight cover and spindle of the main closing armature type DN 500 it can be concluded, that the developed technology for surfacing the sealing surfaces by TIG process with addition of a high-nickel cold wire the functional capability of the mentioned parts can be fully restored.

  2. Technology of repair of selected equipment in the power plant type VVER 440

    International Nuclear Information System (INIS)

    Barborka, J.; Magula, V.

    1998-01-01

    This article is divided in two parts: The first part is studying the effect of individual parameters by the usual and pulsed welding of 15CH2MFA steel. It can be concluded that by use of mechanized or automatic TIG process in PC position with addition of a cold wire with high nickel content the desired quality of repair welded joints of a pressure vessel of VVER 440 reactor can be achieved. Based on the results of the second laboratory study of the renovation technology applied for the rotary surfaces of pressure-tight cover and spindle of the main closing armature type DN 500 it can be concluded, that the developed technology for surfacing the sealing surfaces by TIG process with addition of a high-nickel cold wire the functional capability of the mentioned parts can be fully restored

  3. Test facility of the VVER-440 condensation-type pressure suppression system

    International Nuclear Information System (INIS)

    Wolff, H.; Arndt, S.

    2004-01-01

    Since the early nineties, GRS has supported regulatory authorities in Central and Eastern Europe in performing safety assessments of nuclear power plants. Especially studies of the condensation-type pressure suppression system of VVER-440/V-213-type plants have been important in this respect. Major steps in demonstrating complete functioning of the condensation-type pressure suppression system under accident conditions by experiments run in the Russian large scale test facility, BC V-213, have been completed in the past two years within the framework of various international experimental programs. The test results were used to validate specifically for power plants with VVER-400/V-213 reactors the COCOSYS GRS computer code, which is used in the safety assessments. The results of recalculations of the C02 EREC test, which simulates a break of a main steam pipe, demonstrate the present state of validation of COCOSYS for VVER condensation-type pressure suppression systems. (orig.) [de

  4. Assessment of In-vessel corium retention for VVER-440/V213

    International Nuclear Information System (INIS)

    Matejovic, P.; Barnak, M.; Bachraty, M.; Berky, R.

    2011-01-01

    In-vessel corium retention (IVR) via external reactor vessel cooling (ERVC) has been recognised as a feasible and promising severe accident management strategy for VVER-440/V213 reactors. In general, the avoiding of boiling crisis on outer (cooled) RPV (reactor pressure vessel) surface is sufficient condition for preserving the RPV integrity. The crucial point of the proposed IVR concept for VVER-440/V213 is the narrow gap between elliptical lower head and thermal and biological shield. In the cold conditions the width of this gap is only about 2 cm and would be even lower in hot IVR conditions, when the reactor wall is subjected to large thermal gradients due to temperature difference between the hot inner surface (loaded by corium) and cold outer surface (which is cooled by water in flooded cavity). Sufficient gap should remain free for coolant flow for the success of the proposed IVR concept. Thus, realistic estimation of thermal load and corresponding deformations of reactor wall and their impact on gap width are of primarily importance. Two different approaches were used for the estimation of the thermal load: a conservative approach and a transient approach, both were computed with the ASTEC code. The structural analysis of RPV subjected to IVR load was performed using the finite element method (FEM) code ANSYS release 10.0. From the results obtained it follows, that even when the RPV is subjected to limiting loading conditions during severe accident, there should be sufficient gap width (∼ 1 cm) between RPV wall and thermal/biological shield for the coolant flow in natural circulation regime alongside the outer surface of the RPV wall

  5. Delayed Neutron Fraction (beta-effective) Calculation for VVER 440 Reactor

    International Nuclear Information System (INIS)

    Hascik, J.; Michalek, S.; Farkas, G.; Slugen, V.

    2008-01-01

    Effective delayed neutron fraction (β eff ) is the main parameter in reactor dynamics. In the paper, its possible determination methods are summarized and a β eff calculation for a VVER 440 power reactor as well as for training reactor VR1 using stochastic transport Monte Carlo method based code MCNP5 is made. The uncertainties in determination of basic delayed neutron parameters lead to the unwished conservatism in the reactor control system design and operation. Therefore, the exact determination of the β eff value is the main requirement in the field of reactor dynamics. The interest in the delayed neutron data accuracy improvement started to increase at the end of 80-ties and the beginning of 90-ties, after discrepancies among the results of experiments and measurements what do you mean differences between different calculation approaches and experimental results. In consequence of difficulties in β eff experimental measurement, this value in exact state is determined by calculations. Subsequently, its reliability depends on the calculation method and the delayed neutron data used. An accurate estimate of β eff is essential for converting reactivity, as measured in dollars, to an absolute reactivity and/or to an absolute k eff . In the past, k eff has been traditionally calculated by taking the ratio of the adjoint- and spectrum-weighted delayed neutron production rate to the adjoint- and spectrum-weighted total neutron production rate. An alternative method has also been used in which β eff is calculated from simple k-eigenvalue solutions. The summary of the possible β eff determination methods can be found in this work and also a calculation of β eff first for the training reactor VR1 in one operation state and then for VVER 440 power reactor in two different operation states are made using the prompt method, by MCNP5 code.(author)

  6. Analysis of the VVER-440 reactor steam generator secondary side with the RELAP5/MOD3 code

    International Nuclear Information System (INIS)

    Tuunanen, J.

    1993-01-01

    Nuclear Engineering Laboratory of the Technical Research Centre of Finland has widely used RELAP5/MOD2 and -MOD3 codes to simulate horizontal steam generators. Several models have been developed and successfully used in the VVER-safety analysis. Nevertheless, the models developed have included only rather few nodes in the steam generator secondary side. The secondary side has normally been divided into about 10 to 15 nodes. Since the secondary side at the steam generators of VVER-440 type reactors consists of a rather large water pool, these models were only roughly capable to predict secondary side flows. The paper describes an attempt to use RELAP5/MOD3 code to predict secondary side flows in a steam generator of a VVER-440 reactor. A 2D/3D model has been developed using RELAP5/MOD3 codes cross-flow junctions. The model includes 90 volumes on the steam generator secondary side. The model has been used to calculate steady state flow conditions in the secondary side of a VVER-440 reactor steam generator. (orig.) (1 ref., 9 figs., 2 tabs.)

  7. Phase and structural transformations in VVER-440 RPV base metal after long-term operation and recovery annealing

    Science.gov (United States)

    Kuleshova, E. A.; Gurovich, B. A.; Maltsev, D. A.; Frolov, A. S.; Bukina, Z. V.; Fedotova, S. V.; Saltykov, M. A.; Krikun, E. V.; Erak, D. Yu; Zhurko, D. A.; Safonov, D. V.; Zhuchkov, G. M.

    2018-04-01

    This study was carried out to evaluate the possibility of 1st generation VVER-440 reactors lifetime extension by recovery re-annealing with the respect to base metal (BM). Comprehensive studies of the structure and properties of BM templates (samples cut from the inner surface of the shells in beltline region) of operating VVER-440 reactor (after primary standard recovery annealing 475 °C/150 h and subsequent long-term re-irradiation within reactor pressure vessel (RPV)) were conducted. These templates were also subjected to laboratory re-annealing 475 °C/150 h. TEM, SEM and APT studies of BM after laboratory re-annealing revealed significant recovery of radiation-induced hardening elements (Cu-rich precipitates and dislocation loops). Simultaneously a process of strong phosphorus accumulation at grain boundaries occurs since annealing temperature corresponds to the maximum reversible temper brittleness development. The latter is not observed for VVER-440 weld metal (WM). Comparative assessment of the properties return level for the beltline BM templates after recovery re-annealing 475 °C/150 h showed that it does not reach the one typical for beltline WM after the same annealing.

  8. Reflooding and boil-off experiments in a VVER-440 like rod bundle and analyses with the CATHARE code

    International Nuclear Information System (INIS)

    Korteniemi, V.; Haapalehto, T.; Puustinen, M.

    1995-01-01

    Several experiments were performed with the VEERA facility to simulate reflooding and boil-off phenomena in a VVER-440 like rod bundle. The objective of these experiments was to get experience of a full-scale bundle behavior and to create a database for verification of VVER type core models used with modern thermal-hydraulic codes. The VEERA facility used in the experiments is a scaled-down model of the Russian VVER-440 type pressurized water reactors used in Loviisa, Finland. The test section of the facility consists of one full-scale copy of a VVER-440 reactor rod bundle with 126 full-length electrically heated rod simulators. Bottom and top-down reflooding, different modes of emergency core cooling (ECC) injection and the effect of heating power on the heat-up of the rods was studied. In this paper the results of calculations simulating two reflood and one boil-off experiment with the French CATHARE2 thermal-hydraulic code are also presented. Especially the performance of the recently implemented top-down reflood model of the code was studied

  9. The status of the Bubbler Condenser Containment System for the Reactors of the VVER-440/213 Type

    International Nuclear Information System (INIS)

    Karwat, H.; Rosinger, H.E.

    1998-01-01

    VVER-440/213 Pressurized Water Reactors have a pressure-suppression containment structure called a 'Bubbler Condenser' tower which can reduce the design pressure of the entire containment following a design basis accident (DBA), such as a loss-of-coolant accident (LOCA). The bubbler condenser pressure suppression system provides reduction of the LOCA containment pressure by the condensation of released steam in a water pool. World-wide there are 14 nuclear power plants of the VVER-440/213 type in Eastern Europe and Russia. One of the safety concerns for the VVER-440/213 reactors relates to the ability of the bubbler condenser containment system to function satisfactorily and to maintain its integrity following certain postulated accidents and thus limit the release of radioactive material to the environment. The complicated geometry of the bubbler condenser unit, and the dependence on several moving devices and interlocks are the main doubts expressed by different specialists with regard to the design. General description of the bubbler condenser containment system, the physical processes, concerns and design assessment of the bubbler condenser containment system, presentation of the OECD's Unified Bubbler Condenser Research Project (UBCRP) and the European Commission PHARE/TACIS project. Recent utility investigations are also discussed

  10. Reflooding and boil-off experiments in a VVER-440 like rod bundle and analyses with the CATHARE code

    Energy Technology Data Exchange (ETDEWEB)

    Korteniemi, V.; Haapalehto, T. [Lappeenranta Univ. of Technology (Finland); Puustinen, M. [VTT Energy, Lappeenranta (Finland)

    1995-09-01

    Several experiments were performed with the VEERA facility to simulate reflooding and boil-off phenomena in a VVER-440 like rod bundle. The objective of these experiments was to get experience of a full-scale bundle behavior and to create a database for verification of VVER type core models used with modern thermal-hydraulic codes. The VEERA facility used in the experiments is a scaled-down model of the Russian VVER-440 type pressurized water reactors used in Loviisa, Finland. The test section of the facility consists of one full-scale copy of a VVER-440 reactor rod bundle with 126 full-length electrically heated rod simulators. Bottom and top-down reflooding, different modes of emergency core cooling (ECC) injection and the effect of heating power on the heat-up of the rods was studied. In this paper the results of calculations simulating two reflood and one boil-off experiment with the French CATHARE2 thermal-hydraulic code are also presented. Especially the performance of the recently implemented top-down reflood model of the code was studied.

  11. Physical model of the nuclear fuel cycle simulation code SITON

    International Nuclear Information System (INIS)

    Brolly, Á.; Halász, M.; Szieberth, M.; Nagy, L.; Fehér, S.

    2017-01-01

    Finding answers to main challenges of nuclear energy, like resource utilisation or waste minimisation, calls for transient fuel cycle modelling. This motivation led to the development of SITON v2.0 a dynamic, discrete facilities/discrete materials and also discrete events fuel cycle simulation code. The physical model of the code includes the most important fuel cycle facilities. Facilities can be connected flexibly; their number is not limited. Material transfer between facilities is tracked by taking into account 52 nuclides. Composition of discharged fuel is determined using burnup tables except for the 2400 MW thermal power design of the Gas-Cooled Fast Reactor (GFR2400). For the GFR2400 the FITXS method is used, which fits one-group microscopic cross-sections as polynomial functions of the fuel composition. This method is accurate and fast enough to be used in fuel cycle simulations. Operation of the fuel cycle, i.e. material requests and transfers, is described by discrete events. In advance of the simulation reactors and plants formulate their requests as events; triggered requests are tracked. After that, the events are simulated, i.e. the requests are fulfilled and composition of the material flow between facilities is calculated. To demonstrate capabilities of SITON v2.0, a hypothetical transient fuel cycle is presented in which a 4-unit VVER-440 reactor park was replaced by one GFR2400 that recycled its own spent fuel. It is found that the GFR2400 can be started if the cooling time of its spent fuel is 2 years. However, if the cooling time is 5 years it needs an additional plutonium feed, which can be covered from the spent fuel of a Generation III light water reactor.

  12. Analysis of transients for NPP with VVER-440 using the code SiTAP

    International Nuclear Information System (INIS)

    Kalinenko, V.

    1994-06-01

    The report contains analysis of transients ''Loop connection'' and ''Steam generator tube rupture'' for nuclear power plants (NPP) with VVER-440. To obtain more detailed information about NPP's dynamic characteristics, various variants of initial and boundary conditions are considerd. Calculation of these transients was performed using the SiTAP code developed at the Nuclear Safety Institute of the Russian Research Centre ''Kurchatov Institute''. SiTAP code is a multifunctional computer tool for fast analysis of transient and accidental processes of VVER type reactors for engineers working in the field of NPP dynamics. SiTAP can be used form comparative analysis of several variants of accident scenarios to find out the conditions leading to most serious consequences from a safety point of view. In such cases, additional analyses using best-estimate codes should be carried out. The results of SiTAP for a faulty loop connection leading to a boron dilution accident are intended to be used as boundary conditions for a more detailed anlaysis with the aid of the three-dimensional reactor core model DYN3D, developed in the Research Centre Rossendorf for the simulation of reactivity initiated accidents. (orig.)

  13. Completion of the VVER 440/213 NPP Mochovce incorporation enhanced safety features

    International Nuclear Information System (INIS)

    Charbonneau, S.; Eckert, G.

    1996-01-01

    The cooperation between the western countries and the countries of ex-eastern block in the field of nuclear safety is recent and still limited. The main reasons for this situation are limited or non existent capabilities of these countries for financing as well as non acceptable legal conditions concerning the third party nuclear liability in this part of Europe. Nevertheless, Framatome and Siemens associated in the consortium named EUCOM, have signed in April 1996 the contract of about 100 million US dollars with Slovak electricity company (SLOVENSKE ELEKTRARNE-SE) for upgrading the Units 1 and 2 of Mochovce Nuclear Power Plant according to the western safety standards. This is the first important project involving west-european companies in the modernisation of Russian type of pressurized water reactor (VVER 440/213). The consortium will cooperate with other partners involved in the project: Slovak, Czech and Russian. The financing of the project will be provided mainly form Slovak and Czech sources. The safety upgrading will be financed through French and German buyer credits. French company Electricite de France (EDF) will be the consultant for SE. The safety upgrading measures have been elaborated taking into account the recommendation of Vienna International Atomic Energy Agency (IAEA) and the evaluation of the safety realised by RISKAUDIT, the common organization of German and French safety authorities (GSR and IPSN). Hence all guaranties have been taken to fulfil the western safety criteria for Nuclear Power Plant Mochovce. (author)

  14. Thermal-hydraulic studies on the safety of VVER-440 type nuclear power plants

    International Nuclear Information System (INIS)

    Tuunanen, J.

    1994-01-01

    The thesis includes several thermal-hydraulic analyses related to the Loviisa VVER-440 nuclear power plant units. The work consists of experimental studies, analysis of the experiments, analysis of some plant transients and development of a calculational model for calculation of boric concentrations in the reactor. In the first part of thesis, in the case of simulation of boric acid solution behaviour during long-term cooling period of LOCAs, experiments were performed in scaled-down test facilities. The experimental data together with the results of RELAP5/MOD3 simulations were used to develop a model for calculations of boric acid concentrations in the reactor during LOCAs. In the second part, in the case of simulation of horizontal generators, experiments were performed with PACTEL integral test loop to simulate loss of feedwater transients. The PACTEL experiments as well as earlier REWETT-III natural circulation tests, were analyzed with RELAP5/MOD3 Version 5m5 code. The third part of the work consists of simulations of Loviisa VVER reactor pump trip transients with RELAP5/MOD1-Eur, RELAP5/MOD3 and CATHARE codes. (56 refs., 9 figs.)

  15. Feasibility and usefulness of reconstructing obsolete power blocks of VVER-440 reactors

    International Nuclear Information System (INIS)

    Kirichenko, A.M.; Krushenik, S.D.; Sigal, M.V.; Kustov, V.P.

    1993-01-01

    At the present time, in Russia and in the East European countries there are atomic power stations with first-generation VVER-440 reactors built according to specification which no longer satisfy the more rigorous modern safety standards. Among these power stations are, in particular, the Novovoronezh and the Armenian Atomic Power Station and two blocks of the Kola Atomic Power Station. The search for technical solutions for modernizing these power blocks is complicated because two conditions which are hard to reconcile must be fulfilled: an acceptable safety level must be obtained and the rebuilding must be economically justifiable (particularly since the time of operation of a power block until its standard service life is over is short). Research work undertaken in the All-Union Scientific Research Institute of Atomic Power Stations has shown that one way of overcoming these difficulties may involve changing the operating conditions of the reactor assembly to a less demanding mode of operation. This solution implies an economically justified minimum of structural improvements, provides the required safety level, and prolongs the service life of the power block. The reduction of the thermal power, and consequently, the necessary transfer of a power block to another option

  16. Living PSA program for VVER 440/213 in the Czech Republic

    International Nuclear Information System (INIS)

    Husak, S.; Patrik, M.

    2000-01-01

    The paper presents an overview of a Living PSA concept in the Czech Republic for the VVER 440/213 NPP Dukovany unit. The first step of PSA program was a Level 1 basic study for Unit No. 1 which was completed in 1995. The main objective of the study was to determine the risk level of full power operation and its contributors as well as to reveal the weak points of the plant. Living PSA program for a Level 1 study has been afterwards established as a framework for all activities related to risk assessment and risk based decision-making support in NPP Dukovany. The basic parts of the project are: a management of PSA models and studies to implement design and procedures, modifications or new data inputs from data collection; continuous improvement based of new analyses, experiments or more detailed models; an extensions of the scope (external events, all plant operating modes, other sources of radioactive releases). The Living PSA program in NPP Dukovany provides basis for three kinds of PSA activities: risk assessment applications, risk monitoring and risk assessment of operational. (author)

  17. VVER-440 and VVER-1000 reactor dosimetry benchmark - BUGLE-96 versus ALPAN VII.0

    International Nuclear Information System (INIS)

    Duo, J. I.

    2011-01-01

    Document available in abstract form only, full text of document follows: Analytical results of the vodo-vodyanoi energetichesky reactor-(VVER-) 440 and VVER-1000 reactor dosimetry benchmarks developed from engineering mockups at the Nuclear Research Inst. Rez LR-0 reactor are discussed. These benchmarks provide accurate determination of radiation field parameters in the vicinity and over the thickness of the reactor pressure vessel. Measurements are compared to calculated results with two sets of tools: TORT discrete ordinates code and BUGLE-96 cross-section library versus the newly Westinghouse-developed RAPTOR-M3G and ALPAN VII.0. The parallel code RAPTOR-M3G enables detailed neutron distributions in energy and space in reduced computational time. ALPAN VII.0 cross-section library is based on ENDF/B-VII.0 and is designed for reactor dosimetry applications. It uses a unique broad group structure to enhance resolution in thermal-neutron-energy range compared to other analogous libraries. The comparison of fast neutron (E > 0.5 MeV) results shows good agreement (within 10%) between BUGLE-96 and ALPAN VII.O libraries. Furthermore, the results compare well with analogous results of participants of the REDOS program (2005). Finally, the analytical results for fast neutrons agree within 15% with the measurements, for most locations in all three mockups. In general, however, the analytical results underestimate the attenuation through the reactor pressure vessel thickness compared to the measurements. (authors)

  18. The most extensive reconstruction of nuclear power plant with VVER 440/V230 reactor

    International Nuclear Information System (INIS)

    Ferenc, M.

    2000-01-01

    The nuclear power plant V-1 Bohunice consists of two VVER-440 units with V-230 reactors. Unit 1 was commissioned in 1978 and Unit 2 in 1980. Large experience and knowledge from the operation of previous units with V-230 reactors were incorporated into the V-1 design, which resulted in a higher level of safety and operational reliability of these units. The Siemens company which won an international bidding process developed these basic goals for the Gradual Upgrading into the so called Basic Engineering (BE). For the implementation of the Gradual Upgrading in line with the BE, Rekon consortium was established consisting of Siemens and VUJE. The implementation of the Gradual Upgrading is scheduled for the time period of 1996 - 2000. Siemens was responsible for the upgrading strategy - based on the approved results of the basic engineering phase and the PSAR, the engineering and realization of all I and C improvements, and also for the seismic upgrade. VUJE's responsibility covered the detailed engineering and implementation of mechanical, electrical and civil part of upgrading measures as well as overall organisation and evaluation of verification tests. The consortium awarded contracts for final planning and design, installation services and commissioning to other Slovakian subcontractors in order to ensure the largest possible local content. The gradual reconstruction of the V-1 Bohunice with V230 reactors represents a comprehensive reconstruction of safety-related systems and equipment. Following its completion, the units will be operated with a safety level accepted internationally. (author)

  19. CFD evaluation of hydrogen risk mitigation measures in a VVER-440/213 containment

    Energy Technology Data Exchange (ETDEWEB)

    Heitsch, Matthias, E-mail: Matthias.Heitsch@ec.europa.e [Institute for Energy, Joint Research Centre, PO Box 2, 1755 ZG Petten (Netherlands); Huhtanen, Risto [VTT Technical Research Centre of Finland, PO Box 1000, FI-02044 VTT (Finland); Techy, Zsolt [VEIKI Institute for Electric Power Research Co., PO Box 80, H-1251 Budapest (Hungary); Fry, Chris [Serco, Winfrith Technology Centre, Dorchester, Dorset DT2 8DH (United Kingdom); Kostka, Pal [VEIKI Institute for Electric Power Research Co., PO Box 80, H-1251 Budapest (Hungary); Niemi, Jarto [VTT Technical Research Centre of Finland, PO Box 1000, FI-02044 VTT (Finland); Schramm, Berthold [Gesellschaft fuer Anlagen- und Reaktorsicherheit, GRS mbH, Schwertnergasse 1, 50667 Koeln (Germany)

    2010-02-15

    In the PHARE project 'Hydrogen Management for the VVER440/213' (HU2002/000-632-04-01), CFD (Computational Fluid Dynamics) calculations using GASFLOW, FLUENT and CFX were performed for the Paks NPP (Nuclear Power Plant), modelling a defined severe accident scenario which involves the release of hydrogen. The purpose of this work is to demonstrate that CFD codes can be used to model gas movement inside a containment during a severe accident. With growing experience in performing such analyses, the results encourage the use of CFD in assessing the risk of losing containment integrity as a result of hydrogen deflagrations. As an effective mitigation measure in such a situation, the implementation of catalytic recombiners is planned in the Paks NPP. In order to support these plans both unmitigated and recombiner-mitigated simulations were performed. These are described and selected results are compared. The codes CFX and FLUENT needed refinement to their models of wall and bulk steam condensation in order to be able to fully simulate the severe accident under consideration. Several CFD codes were used in parallel to model the same accident scenario in order to reduce uncertainties in the results. Previously it was considered impractical to use CFD codes to simulate a full containment subject to a severe accident extending over many hours. This was because of the expected prohibitive computing times and missing physical capabilities of the codes. This work demonstrates that, because of developments in the capabilities of CFD codes and improvements in computer power, these calculations have now become feasible.

  20. Experimental support of the bleed and feed accident management measures for VVER-440/213 type reactors

    International Nuclear Information System (INIS)

    Szabados, L.

    2002-01-01

    In the original design of the VVER-440/213 type nuclear power plants event oriented emergency operating procedures (EOP) were implemented. In the last years, however, new symptom based procedures of Westinghouse-type have been developed and partly implemented for the plants in Central Europe including the Paks Nuclear Power Plant. Paper gives a short review of the experiments performed in the PMK-2 facility to study the effectiveness of the bleed and feed strategies and to get experimental data bases for the validation of thermohydraulic system codes like RELAP5, ATHLET and CATHARE.(author)

  1. Severe accident management development program for VVER-1000 and VVER-440/213 based on the westinghouse owners group approach

    International Nuclear Information System (INIS)

    Felix, E.; Dessars, N.

    2003-01-01

    The development of the Westinghouse Owners Group Severe Accident Management Guidelines (WOG SAMG) between 1991 and 1994 was initiated in response to the U.S. Nuclear Regulatory Commission (NRC) requirement for addressing the regulatory severe accident concerns. Hence, the WOG SAMG is designed to interface with other existing procedures at the plant and is used in accident sequences that have progressed to the point where these other procedures are not applicable any longer, i.e. following core damage. The primary purpose of the WOG SAMG is to reach a controlled stable state, which can be declared when fission product releases are controlled, challenges to the confinement fission product boundary have been mitigated, and adequate heat removal is provided to the core and the containment. Although the WOG SAMG is a generic severe accident management guidance developed for use by the entirety of the operating Westinghouse PWR plants, provisions have been made in their development to address specific features of individual plants such as confinement type and the feasibility of reactor cavity flooding. Similarly, the generic SAMG does not address unique plant features and equipment, but rather allows for consideration of plant specific features and strategies. This adaptable approach has led to several SAMG development programs for VVER-1000 and VVER-440 type of power plants, under Westinghouse' s lead. The first of these programs carried out to completion was for Temelin NPP - VVER-1000 - in the first quarter of 2003. Other ongoing programs aim at providing a similar work for VVER-440 design, namely Dukovany, Mochovce and Bohunice NPPs. The challenge of adapting the existing generic WOG material to plants other than PWRs mainly arises for VVER-440 because of important differences in confinement design, making it more vulnerable to ex-vessel phenomena such as hydrogen burn. Also, for both eastern designs, cavity flooding strategy requires special consideration and

  2. The experimental definition of the acoustic standing wave series shapes, formed in the coolant of the primary circuit of VVER-440 type reactor

    International Nuclear Information System (INIS)

    Bulavin, V.V.; Pavelko, V.I.

    1995-01-01

    On the basis of pressure fluctuation measurements in some primary circuit loops at 2 nd Unit of Kola NPP with VVER-440 type reactors, the shapes of acoustic standing waves (ASW) were determined at frequencies corresponding to four minimal oscillation eigenfrequencies in the primary circuit coolant. On identification of the ASW modes and properties, experimental results based on six circulating loops in symmetric arrangement allowed determination of the three-dimensional space structure of the wave nodes and antinodes inside and outside of the reactor vessel (RV). As part of this analysis, the geometric features of the primary circuit that caused the formation of these standing waves were identified. Differences in each ASW shape were shown to cause different individual effects on the neutron field in the reactor core and on fuel assembly vibration. This has been partially confirmed by ex-core neutron ionization chamber noise analysis. One type of ASW, possessing an antinode inside the RV, can be used for measurement of the pressure coefficient of reactivity. However, this must be done with care to avoid the potential for incorrect results in some cases. The results presented in this paper can be readily extended to other VVER type reactors with both odd and even number of loops. (author)

  3. Application of the coupled code system KIKO3D/ATHLET to the boron dilution transients in VVER-440 Type NPP

    International Nuclear Information System (INIS)

    Hegyi, G.; Kereszturi, A.; Trosztel, I.

    2003-01-01

    The transient caused by a perturbation of boron concentration and coolant temperature at the inlet of a Russian developed reactor (VVER-440) is reanalysed as a part of the modernisation (introduction of a new type profiled fuel) and power upgrading (up to 108 %) project. This task is one of the basis cases to be investigated in the safety analysis of the pressurized water reactor (PWR) and the criteria of Anticipated Operational Occurrences (AOO) have to be fulfilled for it. First detailed planning calculations were performed with the thermal hydraulic system code ATHLET and neutron physical code system KARATE-440 to find out the appropriate initial parameter set taking into account the active safety system of the NPP. Finally the most reactive case is analysed by the KIKO3D/ATHLET coupled system code. Whereas the investigation is done for safety analysis, conservative assumptions are imposed on reactivity characteristics. Moreover at the core inlet no-mixing is supposed from the unaffected loops. The presented calculations show, how the coupled code system with a detailed description of plant functions and core behaviour can help to understand better the local phenomena in the study of a potential risk of dilution accident, as it offers the possibility to evaluate the plant safety in a more realistic and versatile manner. (author)

  4. Fuel cycles

    International Nuclear Information System (INIS)

    Hawley, N.J.

    1983-05-01

    AECL publications, from the open literature, on fuels and fuel cycles used in CANDU reactors are listed in this bibliography. The accompanying index is by subject. The bibliography will be brought up to date periodically

  5. Adoption of in-vessel retention concept for VVER-440/V213 reactors in Central European Countries

    Energy Technology Data Exchange (ETDEWEB)

    Matejovic, Peter, E-mail: peter.matejovic@ivstt.sk [Inzinierska Vypoctova Spolocnost (IVS), Jana Holleho 5, 91701 Trnava (Slovakia); Barnak, Miroslav; Bachraty, Milan; Vranka, Lubomir [Inzinierska Vypoctova Spolocnost (IVS), Jana Holleho 5, 91701 Trnava (Slovakia); Berky, Robert [Integrita a Bezpecnost Ocelovych Konstrukcii, Rybnicna 40, 831 07 Bratislava (Slovakia)

    2017-04-01

    Highlights: • Design of in-vessel retention concept for VVER-440/V213 reactors. • Thermal loads acting on the inner reactor surface. • Structural response of reactor pressure vessel. • External reactor vessel cooling. - Abstract: An in-vessel retention (IVR) concept was proposed for standard VVER-440/V213 reactors equipped with confinement made of reinforced concrete and bubbler condenser pressure suppression system. This IVR concept is based on simple modifications of existing plant technology and thus it was attractive for plant operators in Central European Countries. Contrary to the solution that was adopted before at Loviisa NPP in Finland (two units of VVER-440/V213 reactor with steel confinement equipped with ice condenser), the coolant access to the reactor pressure vessel from flooded cavity is enabled via closable hole installed in the centre of thermal shield of the reactor lower head instead of lowering this massive structure in the case of severe accident. As a consequence, the crucial point of this IVR concept is narrow gap between torispherical lower head and thermal and biological shield. Here the highest thermal flux is expected in the case of severe accident. Thus, realistic estimation of thermal load and corresponding deformations of reactor wall and their impact on gap width for coolant flow are of primarily importance. In this contribution the attention is paid especially to the analytical support with emphasis to the following points: 1) {sup ∗}Estimation of thermal loads acting on the inner reactor surface; 2) {sup ∗}Estimation of structural response of reactor pressure vessel (RPV) with emphasis on the deformation of outer reactor surface and its impact on the annular gap between RPV wall and thermal/biological shield; 3) {sup ∗}Analysis of external reactor vessel cooling. For this purpose the ASTEC code was used for performing analysis of core degradation scenarios, the ANSYS code for structural analysis of reactor vessel

  6. Experience in modernization of safety I and C in VVER 440 nuclear power plants Bohunice V1 and Paks

    International Nuclear Information System (INIS)

    Martin, M.

    2000-01-01

    For nuclear power plants which have been in operation for more than 15 years, backfitting or even complete replacement of the instrumentation and control (I and C) equipment becomes an increasingly attractive option, motivated not only by the objective to reduce the cost of I and C system maintenance and repair but also to prolong or at least to safeguard the plant life-time: optimized spare-part management through use of standard equipment; reduction of number and variety of different items of equipment by implementing functions stepwise in application software; adding new functionality in the application software which was not possible in the old technology due to lack of space; safeguarding of long-term After-Sales-Service. Some years ago Bohunice V1 NPP, Slovak Republic and Paks NPP, Hungary intended to replace parts of their Safety I and C, mainly the Reactor Trip System, the Reactor Limitation System and the Neutron Flux Excore Instrumentation and Monitoring Systems. After a Basic Engineering Phase in Bohunice V1 and a Feasibility Study in Paks both plants decided to use the Siemens' Digital Safety I and C System TELEPERM XS to modernize their plants. Both Bohunice, Unit 2 and Paks, Unit 1 have been back on line for over six months with the new Digital Safety I and C. At the present time Bohunice, Unit 1 and within the next few months Paks, Unit 2 will be replaced. Trouble-free start-ups and no major problems under operation in the first two plants were based on: thorough understanding of the VVER 440 technology; comprehensive planning together with the plant operators and authorities; the possibility to adapt TELEPERM XS to every plant type; the execution of extensive pre-operational tests. Regarding these modernization measures Siemens, as well as the above Operators, have gained considerable experience in the field of I and C Modernization in VVER 440 NPPs. Important aspects of this experience are: how to transfer the VVER technology to TELEPERM XS; how to

  7. Fuel cycle

    International Nuclear Information System (INIS)

    Bahm, W.

    1989-01-01

    The situation of the nuclear fuel cycle for LWR type reactors in France and in the Federal Republic of Germany was presented in 14 lectures with the aim to compare the state-of-the-art in both countries. In addition to the momentarily changing fuilds of fuel element development and fueling strategies, the situation of reprocessing, made interesting by some recent developmnts, was portrayed and differences in ultimate waste disposal elucidated. (orig.) [de

  8. Measures for ensuring hydrogen fire and explosion safety for VVER-440/230

    International Nuclear Information System (INIS)

    Bezlepkin, V.; Semashko, S.; Svetlov, S.; Sidorov, V.; Ivkov, I.; Krylov, Yu.; Kukhtevich, V.

    2004-01-01

    This paper deals with the findings of calculation analysis as regards the release of mass, energy and hydrogen during beyond-design-basis accident (BDBA) at Kola NPP equipped with VVER-440 reactor (B-230 design) and in respect of distribution of hydrogen throughout NPP tight compartments. The analysis figures out the number and locations of passive catalytic hydrogen recombiners and of the sensors of the hydrogen concentration monitoring system. In order to prove the hydrogen safety of the design, it has been necessary to review accidents accompanied by maximum emissions (both peak and integral ones) of hydrogen into the tight area. During design-basis accident (DBA), no steam/zirconium reactions occur in the reactor core. Out of BDBA, the severe accidents with damage to the core accompanied oxidative reactions between zirconium and steel with emission of hydrogen are regarded as the most dangerous ones. Assessment of additional hydrogen sources shows that the contribution of such sources to the total amount of hydrogen that may emit during a severe accident is insignificant. Calculations have been made for the following scenarios of severe accidents, which seem to be the most important in terms of hydrogen safety analysis: - 20 mm leak from the primary circuit in combination with a failure of the emergency makeup system; - 500 mm PCP rupture in the vicinity of reactor inlet branch with bi-lateral leakage of coolant. Releases of mass and energy during the aforesaid scenarios, changes of medium parameters within the tight compartments and analysis of possible fire conditions have been analyzed by means of Russian computer codes RATEG/SVECHA/HEFEST, KUPOL-M and LIMITS. The said analysis shows that the large break accident (500 mm), i.e. PCP rupture in the vicinity of the reactor branch with bi-lateral leakage of coolant is of the keen interest in terms of hydrogen safety. This accident typifies powerful short-term release of hydrogen at a significantly lesser

  9. Results of VVER fuel rods tests in the MIR.M1 reactor under power cycling conditions

    International Nuclear Information System (INIS)

    Burukin, A.; Izhutov, A.; Ovchinnikov, V.; Kalygin, V.; Markov, D.; Pimenov, Y.; Novikov, V.; Medvedev, A.; Nesterov, B.

    2011-01-01

    The paper presents the main results of the 50 ... 60 MWd/kgU burnup VVER fuel rods tests performed in the MIR.M1 reactor loop facilities under power cycling. The non-destructive PIE results are presented as well. A series of experiments was performed, including overall measurement of fuel rod parameters test, in one of which 300 cycles were done. Irradiation under power cycling conditions and PIE of high-burnup VVER fuel rods showed the following: 1) all fuel rods claddings preserved their integrity under irradiation at linear heat rate (LHR) higher than the NPP operating one; 2) experimental data were obtained on the axial and radial cladding strain and fission gas release (FGR) from 50 ... 60 MWd/kgU burnup VVER-440 and VVER-1000 fuel rods as well as on the kinetics of the change in these parameters and fuel temperature under the power cycling; 3) non-destructive PIE results are in a satisfactory correlation with the data obtained by means of in-pile measurement gages during irradiation. (authors)

  10. Information about AER WG a on improvement, extension and validation of parametrized few-group libraries for VVER 440 and VVER 1000

    International Nuclear Information System (INIS)

    Mikolas, P.

    2009-01-01

    Joint AER Working Group A on 'Improvement, extension and validation of parameterized few-group libraries for VVER-440 and VVER-1000' and AER Working group B on 'Core design' eighteenth meeting was hosted by Skoda JS a.s. in Plzen (Czech Republic) during the period of 4 to 6 May 2009. There were present altogether 16 participants from 6 member organizations and 13 presentations were read. Objectives of the meeting of WG A are: Issues connected with spectral calculations and few-groups libraries preparation, their accuracy and validation. Presentations were devoted to some aspects of few group libraries preparations and to the benchmark dealing with VVER-440 follower modeling in calculations. Gy. Hegyi gave some new information about NURESIM-NURISP EU project (ZR-6), R. Zajac spoke about the development of data libraries for codes BIPR-7 and PERMAK, P. Darilek compared FA's with Gd during burning process and Yu. Bilodid described further development of plutonium-based burnup history modeling in DYN3D burnup calculations. G. Hordosy presented results of control rod follower induced local power peaking computational benchmark and J. Svarny described Monte Carlo VVER-440 control rod follower benchmark computations. Future activities are also shortly described in the end of the paper. (author)

  11. Severe accident experiments on PLINIUS platform. Results of first experiments on COLIMA facility related to VVER-440. Presentation of planned VULCANO and KROTOS tests

    International Nuclear Information System (INIS)

    Piluso, P.; Boccaccio, E.; Bonnet, J.-M.; Journeau, C.; Fouquart, P.; Magallon, D.; Ivanov, I.; Mladenov, I.; Kalchev, S.; Grudev, P.; Alsmeyer, H.; Fluhrer, B.; Leskovar, M.

    2005-01-01

    In the hypothetical case of a nuclear reactor severe accident, the reactor core could melt and form a mixture of nuclear fuel (UO 2 + Fission Products), metallic or oxidized cladding + steel, called c orium , of highly refractory oxides (UO 2 , ZrO 2 ) and metallic or oxidized steel, that could eventually flow out of the vessel and mix with the substrate decomposition products (generally oxides such as SiO 2 , Al 2 O 3 , CaO, Fe 2 O 3 ). The French Atomic Energy Commission (CEA) has launched a R and D programme aimed at providing the tools for improving the mastering of severe accidents. It encompasses the development of models and codes, performance of experiments in simulant and prototypic materials and the analysis of international experiments. The experiments with prototypic corium (i.e. material containing depleted UO 2 ) are performed in the PLINIUS experimental platform at CEA Cadarache. It comprises the VULCANO facility for 50-100 kg tests (corium-material interactions, corium solidification etc.), the COLIMA facility for smaller scale (∼1 kg) experiments, the VITI facility for corium properties measurement and the KROTOS facility for corium-water interaction (a few kg). In the framework of the 5 th European Framework Programme, free trans-national access to these facilities has been offered to EU and Associated States researchers. For the first PLINIUS access, COLIMA experiments have been conducted with a Bulgarian Team (TU/SOFIA, BAS/INRNE and NPP/KOZLODUY). This series of tests was devoted to experimental studies on fission products release and corium behaviour in the late phase in a hypothetic case of severe accident in a PWR type VVER-440. The COLIMA experimental results are consistent with previous experiments on irradiated fuels (VERCORS, PHEBUS) with small differences for some fission products and show new results for the remaining corium. For the second visit, scientific users from FZK in Germany were selected to validate the COMET core

  12. Time versus frequency domain calculation of the main building complex of the VVER 440/213 NPP PAKS

    International Nuclear Information System (INIS)

    Katona, T.; Ratkai, S.; Halbritter, A.; Krutzik, N.J.; Schuetz, W.

    1995-01-01

    Various dynamic analyses were conducted for the main building complex of the VVER 440/213 PAKS in order to determine the dynamic response and assess the aseismic capacity of this nuclear power plant. Different types of mathematical models for idealizing the soil and the building structures were used. The main goal of the study presented here was to demonstrate the effects of different procedures for consideration of soil-structure interaction on the dynamic response of the structures mentioned above. The analyses were based on appropriate mathematical models of the coupled vibration structures (reactor building, turbine hall, intermediate building structures) and the layered soil. On the basis of this study, it can be concluded that substructure models using frequency-independent impedances and cut-off of modal damping usually provide conservative results. Complex models which allow the soil-soil and the structure or by frequency-dependent impedances) provide more accurate results. The latter approach results in more efficient designs which are not only safe but also economical. (author). 7 refs., 15 figs

  13. Calculation of spatial weighting functions for ex-core detectors of VVER-440 reactors by Monte Carlo method

    International Nuclear Information System (INIS)

    Berki, T.

    2003-01-01

    The signal of ex-core detectors depends not only on the total power of a reactor but also on the power distribution. The spatial weighting function establishes correspondence between the power distribution and the detector signal. The weighting function is independent of the power distribution. The weighting function is used for detector-response analyses, for example in the case of rod-drop experiments. (1) The paper describes the calculation and analysis of the weighting function of a VVER-440. The three-dimensional Monte Carlo code MCNP is used for the evaluation. Results from forward and adjoint calculations are compared. The effect of the change in the concentration of boric acid is also investigated. The evaluation of the spatial weighting function is a fixed-source neutron transport problem, which can be solved much faster by adjoint calculation, however forward calculations provide more detailed results. It is showed that the effect of boric acid upon the weighting function is negligible. (author)

  14. Recent results of three-dimensional CFD simulations of coolant mixing in VVER-440/213 reactor pressure vessel

    International Nuclear Information System (INIS)

    Kiss, B.; Boros, I.; Aszodi, A.

    2008-01-01

    The Budapest University of Technology and Economics, Institute of Nuclear Techniques has been working since 2001 on the three-dimensional CFD model of the reactor pressure vessel of the VVER-440 type reactor. During this time period - due to the development of the available computational capacity - a very complex and detailed model of the RPV has been developed. The aim of the construction of the new model is to describe further internal structures of the RPV (e.g. correct modeling of brake tubes, or internals in the upper mixing chamber) and to perform an extensive sensitivity analysis on the different modeling and calculation parameters (e.g. porous region models vs. detailed modeling, or n different turbulence models). The new model can be applied for steady state calculation during normal operational condition and for different transient analyses as well. One interesting application is the participation in a planned benchmark exercise on the start-up of the sixth main coolant pump, which is aimed to compare the capabilities of mixing models of one-dimensional system codes with the results of CFD simulation. (authors)

  15. Implementation of New Reactivity Measurement System and New Reactor Noise Analysis Equipment in a VVER-440 Nuclear Power Plant

    Science.gov (United States)

    Vegh, János; Kiss, Sándor; Lipcsei, Sándor; Horvath, Csaba; Pos, István; Kiss, Gábor

    2010-10-01

    The paper deals with two recently developed, high-precision nuclear measurement systems installed at the VVER-440 units of the Hungarian Paks NPP. Both developments were motivated by the reactor power increase to 108%, and by the planned plant service time extension. The first part describes the RMR start-up reactivity measurement system with advanced services. High-precision picoampere meters were installed at each reactor unit and measured ionization chamber current signals are handled by a portable computer providing data acquisition and online reactivity calculation service. Detailed offline evaluation and analysis of reactor start-up measurements can be performed on the portable unit, too. The second part of the paper describes a new reactor noise diagnostics system using state-of-the-art data acquisition hardware and signal processing methods. Details of the new reactor noise measurement evaluation software are also outlined. Noise diagnostics at Paks NPP is a standard tool for core anomaly detection and for long-term noise trend monitoring. Regular application of these systems is illustrated by real plant data, e.g., results of standard reactivity measurements during a reactor startup session are given. Noise applications are also illustrated by real plant measurements; results of core anomaly detection are presented.

  16. Evaluation of an experiment modelling heat transfer from the melt pool for use in VVER 440/213 reactors

    International Nuclear Information System (INIS)

    Skop, J.

    2003-12-01

    The strategy of confining core melt within the reactor vessel is among promising strategies to mitigate severe accidents of VVER 440/213 reactors. This strategy consists in residual heat removal from the melt by external vessel cooling from the outside, using water from the flooded reactor downcomer. This approach can only be successful if the critical heat flux on the external vessel surface is not exceeded. This can be assessed based on the parameters of heat transfer from the core melt pool in the conditions of natural circulation within the pool. Those parameters are the subject of the report. A basic description of the terms and physical basis of the strategy of confining core melt inside the vessel is given in Chapter 2, which also briefly explains similarity theory, based on which the results obtained on experimental facilities, using simulation materials, can be related to the actual situation inside a real reactor. Chapter 3 presents an overview of experimental work addressing the characteristics of heat transfer from the core melt pool in natural circulation conditions and a description of the experimental facilities. An overview of the results emerging from the experiments and their evaluation with respect to their applicability to reactors in Czech nuclear power plants are given in Chapter 4

  17. VVER fuel. Results of post irradiation examination

    International Nuclear Information System (INIS)

    Smirnov, V.P.; Markov, D.V.; Smirnov, A.V.; Polenok, V.S.; Perepelkin, S.O.; Ivashchenko, A.A.

    2005-01-01

    The present paper presents the main results of post-irradiation examination of more than 40 different fuel assemblies (FA) operated in the cores of VVER-1000 and VVER-440-type power reactors in a wide range of fuel burnup. The condition of fuel assembly components from the viewpoint of deformation, corrosion resistance and mechanical properties is described here. A serviceability of the FA design as a whole and interaction between individual FA components under vibration condition and mechanical load received primary emphasis. The reasons of FA damage fuel element failure in a wide range of fuel burnup are also analyzed. A possibility and ways of fuel burnup increase have been proved experimentally for the case of high-level serviceability maintenance of fuel elements to provide for advanced fuel cycles. (author)

  18. Contributions of Modranska potrubni a.s. to the safety improvement of piping systems and valves of NPS type VVER 440 and VVER 1000

    International Nuclear Information System (INIS)

    Slach, J.

    2004-01-01

    The following activities are described: (i) Installation of pipe whip restraints on piping for high pressure and temperature steam and feed piping; (ii) Installation of air receivers for quick-acting valves with air actuator on VVER 440 units at the Jaslovske Bohunice V2 NPP; (iii) Replacement of the technical water distribution system material in the reactor hall of the Temelin VVER 1000 units; Installation of measuring nozzles on main steam piping DN 600 at the Temelin VVER 1000 units. (P.A.)

  19. Analysis of core damage frequency: Nuclear power plant Dukovany, VVER/440 V-213 Unit 1, internal events. Volume 1: Main report

    International Nuclear Information System (INIS)

    Pugila, W.J.

    1994-01-01

    This report presents the final results from the Level 1 probabilistic safety assessment (PSA) for the Dukovany VVER/440 V-213 nuclear power plant, Unit 1. Section 1.1 describes the objectives of this study. Section 1.2 discusses the approach that was used for completing the Dukovany PSA. Section 1.3 summarizes the results of the PSA. Section 1.4 provides a comparison of the results of the Dukovany PSA with the results of other PSAs for different types of reactors worldwide. Section 1.5 summarizes the conclusions of the Dukovany PSA

  20. Nuclear power fuel cycle

    International Nuclear Information System (INIS)

    Havelka, S.; Jakesova, L.

    1982-01-01

    Economic problems are discussed of the fuel cycle (cost of the individual parts of the fuel cycle and the share of the fuel cycle in the price of 1 kWh), the technological problems of the fuel cycle (uranium ore mining and processing, uranium isotope enrichment, the manufacture of fuel elements, the building of long-term storage sites for spent fuel, spent fuel reprocessing, liquid and gaseous waste processing), and the ecologic aspects of the fuel cycle. (H.S.)

  1. VVER-440 control rod follower induced local power peaking computational benchmark: MCNP and KARATE solutions

    International Nuclear Information System (INIS)

    Hegyi, G.; Hordosy, G.; Kereszturi, A.; Maraczy, C.; Temesvari, E.

    2009-01-01

    In this paper the linear pin power calculation in the KARATE-440 code system are presented. The calculation results show that: 1) The coupler mathematical benchmark was solved by the KARATE code system using the same methods and approximations as in case of NPP applications. 2) Without Hf plate in the fuel pin row next to the problematic coupler section pronounced local power peak arises. 4) Though the underprediction of the peak by KARATE-SADR is 4%, it is in accordance with the applied uncertainty of KARATE-SADR. 5) The application of Hf plate solves the problem.

  2. Thorium fuel cycle management

    International Nuclear Information System (INIS)

    Zajac, R.; Darilek, P.; Breza, J.; Necas, V.

    2010-01-01

    In this presentation author deals with the thorium fuel cycle management. Description of the thorium fuels and thorium fuel cycle benefits and challenges as well as thorium fuel calculations performed by the computer code HELIOS are presented.

  3. Fuel leak testing performance at NPP Jaslovske Bohunice

    International Nuclear Information System (INIS)

    Slugen, V.; Krnac, S.; Smiesko, I.

    1995-01-01

    The NPP Bohunice VVER-440 fuel leak testing experience are relatively extensive in comparison with other VVER-440 users. As the first Europe NPP was adapted Siemens (KWU) in core-sipping equipment to VVER-440 units and since this time were have done these tests also for NPP Paks (Hungary) and NPP Dukovany (Czech Republic). The occurrence of leaking fuel assemblies in NPP is in the last 5 years relatively stabilised and low. A significant difference can be observed between type V-230 (31 leaks) and type V-213 (1 leak). None of of the indicated leaking fuel assemblies has been investigated in the hot cell. Therefore cannot be confirm the effective causes of leak occurrence. Nevertheless, the fuel failure rate and the performance of leak testing in NPP Bohunice are comparable to the world standard at PWR's. 1 tab., 2 figs., 3 refs

  4. Fuel leak testing performance at NPP Jaslovske Bohunice

    Energy Technology Data Exchange (ETDEWEB)

    Slugen, V; Krnac, S [Slovak Technical Univ., Bratislava (Slovakia); Smiesko, I [Nuclear Powr Plant EBO, Jaslovske Bohuce (Slovakia)

    1996-12-31

    The NPP Bohunice VVER-440 fuel leak testing experience are relatively extensive in comparison with other VVER-440 users. As the first Europe NPP was adapted Siemens (KWU) in core-sipping equipment to VVER-440 units and since this time were have done these tests also for NPP Paks (Hungary) and NPP Dukovany (Czech Republic). The occurrence of leaking fuel assemblies in NPP is in the last 5 years relatively stabilised and low. A significant difference can be observed between type V-230 (31 leaks) and type V-213 (1 leak). None of of the indicated leaking fuel assemblies has been investigated in the hot cell. Therefore cannot be confirm the effective causes of leak occurrence. Nevertheless, the fuel failure rate and the performance of leak testing in NPP Bohunice are comparable to the world standard at PWR`s. 1 tab., 2 figs., 3 refs.

  5. Development and application of Siton, a new fuel cycle simulation code

    International Nuclear Information System (INIS)

    Brolly, Aron; Szieberth, Mate; Halasz, Mate; Nagy, Lajos; Feher, Sandor

    2015-01-01

    As the result of the co-operation between the Centre for Energy Research (EK) and the Institute of Nuclear Techniques (NTI) a new fuel cycle simulation code called SITON was developed. Physical model of the code takes into account six facilities of the nuclear fuel cycle namely material stocks, spent fuel interim storages, plants for uranium enrichment, fuel fabrication, spent fuel reprocessing and reactors. Facilities can be linked in a flexible manner and their number is not limited. Lag time of the facilities and cooling time of the spent fuel, which are the two main parameters to introduce lag time into the fuel cycle, are taken into account. Material transfer between the facilities is modelled in a discrete manner tracking 52 nuclides and their short-lived decay daughters. Composition of the discharged fuel is determined by means of burn-up tables except for the 2400 MWth design of gas cooled fast reactor (GFR2400) which has a separate burn-up module developed at the NTI. To demonstrate the capabilities of SITON introduction of a GFR2400 into the Hungarian reactor park using the legacy spent fuel of the four presently operating VVER-440 units was simulated. 2040 was assumed as the commissioning date of the GFR2400 and recycling of its fuel was started as soon as possible. It was found that the plutonium content of the legacy spent fuel is sufficient to the start-up of only one GFR2400. There is an intermediate period between the commissioning of the reactor and the recycling of its first discharged fuel. Plutonium need of this period can be covered by the legacy spent fuel if the cooling time of the spent GFR2400 fuel is 2 years. If the cooling time is 5 years there will be a lack of plutonium in this period. To counterbalance this lack an EPR was started before the GFR2400 and its spent fuel was accumulated and reprocessed. Cooling time of the spent EPR fuel was also varied. Finally, an EPR only scenario is presented using two EPRs as a reference case

  6. Investigation of circulating temperature fluctuations of the primary coolant in order to develop an enhanced MTC estimator for VVER-440 reactors

    Energy Technology Data Exchange (ETDEWEB)

    Kiss, Sandor; Lipcsei, Sandor [Hungarian Academy of Sciences, Budapest (Hungary). Centre for Energy Research - MTA

    2017-09-15

    Our aim was to develop a method based on noise diagnostics for the estimation of the moderator temperature coefficient of reactivity (MTC) for the Paks VVER-440 units in normal operation. The method requires determining core average neutron flux and temperature fluctuations. The circulation period of the primary coolant, transfer properties of the steam generators, as well as the source and the propagation of the temperature perturbations and the proportions of the perturbation components were investigated in order to estimate the feedback caused by the circulation of the primary coolant. Finally, after developing the new MTC estimator, determining its frequency range and optimal parameters, trends were produced based on an overall evaluation of measurements made with standard instrumentation during a one-year-long period at Paks NPP.

  7. Qualification of coupled 3D neutron kinetic/thermal hydraulic code systems by the calculation of a VVER-440 benchmark. Re-connection of an isolated loop

    Energy Technology Data Exchange (ETDEWEB)

    Kotsarev, Alexander; Lizorkin, Mikhail [National Research Centre ' Kurchatov Institute' , Moscow (Russian Federation); Bencik, Marek; Hadek, Jan [UJV Rez, a.s., Rez (Czech Republic); Kozmenkov, Yaroslav; Kliem, Soeren [Helmholtz-Zentrum Dresden-Rossendorf (HZDR) e.V., Dresden (Germany)

    2016-09-15

    The 7th AER dynamic benchmark is a continuation of the efforts to validate the codes systematically for the estimation of the transient behavior of VVER type nuclear power plants. The main part of the benchmark is the simulation of the re-connection of an isolated circulation loop with low temperature in a VVER-440 plant. This benchmark was calculated by the National Research Centre ''Kurchatov Institute'' (with the code ATHLET/BIPR-VVER), UJV Rez (with the code RELAP5-3D {sup copyright}) and HZDR (with the code DYN3D/ATHLET). The paper gives an overview of the behavior of the main thermal hydraulic and neutron kinetic parameters in the provided solutions.

  8. Denatured fuel cycles

    International Nuclear Information System (INIS)

    Till, C.E.

    1979-01-01

    This paper traces the history of the denatured fuel concept and discusses the characteristics of fuel cycles based on the concept. The proliferation resistance of denatured fuel cycles, the reactor types they involve, and the limitations they place on energy generation potential are discussed. The paper concludes with some remarks on the outlook for such cycles

  9. The Nuclear Fuel Cycle

    International Nuclear Information System (INIS)

    2011-08-01

    This brochure describes the nuclear fuel cycle, which is an industrial process involving various activities to produce electricity from uranium in nuclear power reactors. The cycle starts with the mining of uranium and ends with the disposal of nuclear waste. The raw material for today's nuclear fuel is uranium. It must be processed through a series of steps to produce an efficient fuel for generating electricity. Used fuel also needs to be taken care of for reuse and disposal. The nuclear fuel cycle includes the 'front end', i.e. preparation of the fuel, the 'service period' in which fuel is used during reactor operation to generate electricity, and the 'back end', i.e. the safe management of spent nuclear fuel including reprocessing and reuse and disposal. If spent fuel is not reprocessed, the fuel cycle is referred to as an 'open' or 'once-through' fuel cycle; if spent fuel is reprocessed, and partly reused, it is referred to as a 'closed' nuclear fuel cycle.

  10. Analysis of noncondensable effect during small break transient in VVER-440 geometry with CATHARE V1.3L. Preliminary results

    International Nuclear Information System (INIS)

    Sarrette, C.

    1996-11-01

    The report presents a study of the transport and dissolution-release of non-condensable gas into the fluid of the primary loop for the VVER-440 geometry. The analysis has been done using a new model developed for the CATHARE thermal hydraulic code. Results are presented, obtained from calculations of small break loss-of-coolant (SBLOCA) accidents for the Loviisa nuclear power plant (NPP) geometry. The influence of nitrogen dissolved in the water of the accumulators of the emergency core coolant system (ECCS) on natural circulation is discussed. Possibilities of formation of nitrogen bubbles in the main vessels upper plenum, top of the downcomer, steam generators collectors, and upper structures of RCP's are investigated. First results show that there is potentiality for interruption, mainly due to the presence of nitrogen in the top of the downcomer and the upper parts of the RCP's. These preliminary results should be confirmed by carrying out calculations now prematurely stopped for numerical reasons. (8 refs.)

  11. Start-up of a cold loop in a VVER-440, the 7th AER benchmark calculation with HEXTRAN-SMABRE-PORFLO

    International Nuclear Information System (INIS)

    Hovi, Ville; Taivassalo, Veikko; Haemaelaeinen, Anitta; Raety, Hanna; Syrjaelahti, Elina

    2017-01-01

    The 7 th dynamic AER benchmark is the first in which three-dimensional thermal hydraulics codes are supposed to be applied. The aim is to get a more precise core inlet temperature profile than the sector temperatures available typically with system codes. The benchmark consists of a start-up of the sixth, isolated loop in a VVER-440 plant. The isolated loop initially contains cold water without boric acid and the start-up leads to a somewhat asymmetrical core power increase due to feedbacks in the core. In this study, the 7 th AER benchmark is calculated with the three-dimensional nodal reactor dynamics code HEXTRAN-SMABRE coupled with the porous computational fluid dynamics code PORFLO. These three codes are developed at VTT. A novel two-way coupled simulation of the 7 th AER benchmark was performed successfully demonstrating the feasibility and advantages of the new reactor analysis framework. The modelling issues for this benchmark are reported and some evaluation against the previously reported comparisons between the system codes is provided.

  12. Start-up of a cold loop in a VVER-440, the 7{sup th} AER benchmark calculation with HEXTRAN-SMABRE-PORFLO

    Energy Technology Data Exchange (ETDEWEB)

    Hovi, Ville; Taivassalo, Veikko; Haemaelaeinen, Anitta; Raety, Hanna; Syrjaelahti, Elina [VTT Technical Research Centre of Finland Ltd, VTT (Finland)

    2017-09-15

    The 7{sup th} dynamic AER benchmark is the first in which three-dimensional thermal hydraulics codes are supposed to be applied. The aim is to get a more precise core inlet temperature profile than the sector temperatures available typically with system codes. The benchmark consists of a start-up of the sixth, isolated loop in a VVER-440 plant. The isolated loop initially contains cold water without boric acid and the start-up leads to a somewhat asymmetrical core power increase due to feedbacks in the core. In this study, the 7{sup th} AER benchmark is calculated with the three-dimensional nodal reactor dynamics code HEXTRAN-SMABRE coupled with the porous computational fluid dynamics code PORFLO. These three codes are developed at VTT. A novel two-way coupled simulation of the 7{sup th} AER benchmark was performed successfully demonstrating the feasibility and advantages of the new reactor analysis framework. The modelling issues for this benchmark are reported and some evaluation against the previously reported comparisons between the system codes is provided.

  13. PMK-2, the First Integral Thermal-Hydraulics Tests for the Safety Evaluation of VVER-440/213 Nuclear Power Plants

    Directory of Open Access Journals (Sweden)

    Gy. Ézsöl

    2012-01-01

    Full Text Available The PMK-2 facility is a full-pressure thermal-hydraulic model of the primary and partly the secondary circuit of the VVER-type units of Paks NPP. The facility was the first integral-type facility for VVERs. The PMK-2 was followed later by the PACTEL (for VVER-440, the ISB, and PSB for VVER-1000. Since the startup of the facility in 1985, 55 experiments have been performed primarily in international frameworks with the participation of experts from 29 European and overseas countries forming a scientific school to better understand VVER system behaviour and reach a high level of modelling of accident sequences. The ATHLET, CATHARE, and RELAP5 codes have been validated including both qualitative and quantitative assessments. The former was almost exclusively applied to the early phase of validation by integral experiments, while the quantitative assessments have been performed by the Fast Fourier Transform Based Method. Paper gives comprehensive information on the design features of PMK-2 facility with a special respect to the representativeness of phenomena, the experiments performed, and the results of the validation of ATHLET, CATHARE, and RELAP5 codes. Safety significance of the PMK-2 projects is also discussed.

  14. Evaluation of containment peak pressure and structural response for a large-break loss-of-coolant accident in a VVER-440/213 NPP

    Energy Technology Data Exchange (ETDEWEB)

    Spencer, B.W.; Sienicki, J.J.; Kulak, R.F.; Pfeiffer, P.A. [Argonne National Lab., IL (United States); Voeroess, L.; Techy, Z. [VEIKI Inst. for Electric Power Research, Budapest (Hungary); Katona, T. [Paks Nuclear Power Plant (Hungary)

    1998-07-01

    A collaborative effort between US and Hungarian specialists was undertaken to investigate the response of a VVER-440/213-type NPP to a maximum design-basis accident, defined as a guillotine rupture with double-ended flow from the largest pipe (500 mm) in the reactor coolant system. Analyses were performed to evaluate the magnitude of the peak containment pressure and temperature for this event; additional analyses were performed to evaluate the ultimate strength capability of the containment. Separate cases were evaluated assuming 100% effectiveness of the bubbler-condenser pressure suppression system as well as zero effectiveness. The pipe break energy release conditions were evaluated from three sources: (1) FSAR release rate based on Soviet safety calculations, (2) RETRAN-03 analysis and (3) ATHLET analysis. The findings indicated that for 100% bubbler-condenser effectiveness the peak containment pressures were less than the containment design pressure of 0.25 MPa. For the BDBA case of zero effectiveness of the bubbler-condenser system, the peak pressures were less than the calculated containment failure pressure of 0.40 MPa absolute.

  15. PMK-2, the First Integral Thermal-Hydraulics Tests for the Safety Evaluation of VVER-440/213 Nuclear Power Plants

    International Nuclear Information System (INIS)

    Ezsol, G.; Perneczky, L.; Szabados, L.; Toth, I.

    2012-01-01

    The PMK-2 facility is a full-pressure thermal-hydraulic model of the primary and partly the secondary circuit of the VVER-type units of Paks NPP. The facility was the first integral-type facility for VVERs. The PMK-2 was followed later by the PACTEL (for VVER-440), the ISB, and PSB for VVER-1000. Since the startup of the facility in 1985, 55 experiments have been performed primarily in international frameworks with the participation of experts from 29 European and overseas countries forming a scientific school to better understand VVER system behaviour and reach a high level of modelling of accident sequences. The ATHLET, CATHARE, and RELAP5 codes have been validated including both qualitative and quantitative assessments. The former was almost exclusively applied to the early phase of validation by integral experiments, while the quantitative assessments have been performed by the Fast Fourier Transform Based Method. Paper gives comprehensive information on the design features of PMK-2 facility with a special respect to the representativeness of phenomena, the experiments performed, and the results of the validation of ATHLET, CATHARE, and RELAP5 codes. Safety significance of the PMK-2 projects is also discussed

  16. The nuclear fuel cycle

    International Nuclear Information System (INIS)

    Jones, P.M.S.

    1987-01-01

    This chapter explains the distinction between fissile and fertile materials, examines briefly the processes involved in fuel manufacture and management, describes the alternative nuclear fuel cycles and considers their advantages and disadvantages. Fuel management is usually divided into three stages; the front end stage of production and fabrication, the back end stage which deals with the fuel after it is removed from the reactor (including reprocessing and waste treatment) and the stage in between when the fuel is actually in the reactor. These stages are illustrated and explained in detail. The plutonium fuel cycle and thorium-uranium-233 fuel cycle are explained. The differences between fuels for thermal reactors and fast reactors are explained. (U.K.)

  17. The plutonium fuel cycles

    International Nuclear Information System (INIS)

    Pigford, T.H.; Ang, K.P.

    1975-01-01

    The quantities of plutonium and other fuel actinides have been calculated for equilibrium fuel cycles for 1000-MW water reactors fueled with slightly enriched uranium, water reactors fueled with plutonium and natural uranium, fast-breder reactors, gas-cooled reactors fueled with thorium and highly enriched uranium, and gas-cooled reactors fueled with thorium, plutonium and recycled uranium. The radioactivity quantities of plutonium, americium and curium processed yearly in these fuel cycles are greatest for the water reactors fueled with natural uranium and recycled plutonium. The total amount of actinides processed is calculated for the predicted future growth of the U.S. nuclear power industry. For the same total installed nuclear power capacity, the introduction of the plutonium breeder has little effect upon the total amount of plutonium in this century. The estimated amount of plutonium in the low-level process wastes in the plutonium fuel cycles is comparable to the amount of plutonium in the high-level fission product wastes. The amount of plutonium processed in the nuclear fuel cycles can be considerably reduced by using gas-cooled reactors to consume plutonium produced in uranium-fueled water reactors. These, and other reactors dedicated for plutonium utilization, could be co-located with facilities for fuel reprocessing ad fuel fabrication to eliminate the off-site transport of separated plutonium. (author)

  18. Nuclear fuel cycle

    International Nuclear Information System (INIS)

    1993-01-01

    Status of different nuclear fuel cycle phases in 1992 is discussed including the following issues: uranium exploration, resources, supply and demand, production, market prices, conversion, enrichment; reactor fuel technology; spent fuel management, as well as trends of these phases development up to the year 2010. 10 refs, 11 figs, 15 tabs

  19. Fast breeder fuel cycle

    International Nuclear Information System (INIS)

    1978-09-01

    Basic elements of the ex-reactor part of the fuel cycle (reprocessing, fabrication, waste handling and transportation) are described. Possible technical and proliferation measures are evaluated, including current methods of accountability, surveillance and protection. The reference oxide based cycle and advanced cycles based on carbide and metallic fuels are considered utilizing conventional processes; advanced nonaqueous reprocessing is also considered. This contribution provides a comprehensive data base for evaluation of proliferation risks

  20. Extended fuel cycle length

    International Nuclear Information System (INIS)

    Bruyere, M.; Vallee, A.; Collette, C.

    1986-09-01

    Extended fuel cycle length and burnup are currently offered by Framatome and Fragema in order to satisfy the needs of the utilities in terms of fuel cycle cost and of overall systems cost optimization. We intend to point out the consequences of an increased fuel cycle length and burnup on reactor safety, in order to determine whether the bounding safety analyses presented in the Safety Analysis Report are applicable and to evaluate the effect on plant licensing. This paper presents the results of this examination. The first part indicates the consequences of increased fuel cycle length and burnup on the nuclear data used in the bounding accident analyses. In the second part of this paper, the required safety reanalyses are presented and the impact on the safety margins of different fuel management strategies is examined. In addition, systems modifications which can be required are indicated

  1. Fuel cycle management

    International Nuclear Information System (INIS)

    Herbin, H.C.

    1977-01-01

    The fuel cycle management is more and more dependent on the management of the generation means among the power plants tied to the grid. This is due mainly because of the importance taken by the nuclear power plants within the power system. The main task of the fuel cycle management is to define the refuelling pattern of the new and irradiated fuel assemblies to load in the core as a function of: 1) the differences which exist between the actual conditions of the core and what was expected for the present cycle, 2) the operating constraints and the reactor availability, 3) the technical requirements in safety and the technological limits of the fuel, 4) the economics. Three levels of fuel cycle management can be considered: 1) a long term management: determination of enrichments and expected cycle lengths, 2) a mid term management whose aim corresponds to the evaluation of the batch to load within the core as a function of both: the next cycle length to achieve and the integrated power history of all the cycles up to the present one, 3) a short term management which deals with the updating of the loaded fuel utilisations to take into account the operation perturbations, or with the alteration of the loading pattern of the next batch to respect unexpected conditions. (orig.) [de

  2. ITER fuel cycle

    International Nuclear Information System (INIS)

    Leger, D.; Dinner, P.; Yoshida, H.

    1991-01-01

    Resulting from the Conceptual Design Activities (1988-1990) by the parties involved in the International Thermonuclear Experimental Reactor (ITER) project, this document summarizes the design requirements and the Conceptual Design Descriptions for each of the principal subsystems and design options of the ITER Fuel Cycle conceptual design. The ITER Fuel Cycle system provides for the handling of all tritiated water and gas mixtures on ITER. The system is subdivided into subsystems for fuelling, primary (torus) vacuum pumping, fuel processing, blanket tritium recovery, and common processes (including isotopic separation, fuel management and storage, and processes for detritiation of solid, liquid, and gaseous wastes). After an introduction describing system function and conceptual design procedure, a summary of the design is presented including a discussion of scope and main parameters, and the fuel design options for fuelling, plasma chamber vacuum pumping, fuel cleanup, blanket tritium recovery, and auxiliary and common processes. Design requirements are defined and design descriptions are given for the various subsystems (fuelling, plasma vacuum pumping, fuel cleanup, blanket tritium recovery, and auxiliary/common processes). The document ends with sections on fuel cycle design integration, fuel cycle building layout, safety considerations, a summary of the research and development programme, costing, and conclusions. Refs, figs and tabs

  3. The thorium fuel cycle

    International Nuclear Information System (INIS)

    Merz, E.R.

    1977-01-01

    The utilization of the thorium fuel cycle has long since been considered attractive owing to the excellent neutronic characteristics of 233 U, and the widespread and cheap thorium resources. Rapidly increasing uranium prices, public reluctance for widespread Pu recycling and expected delays for the market penetration of fast breeders have led to a reconsideration of the thorium fuel cycle merits. In addition, problems associated with reprocessing and waste handling, particularly with re-fabrication by remote handling of 233 U, are certainly not appreciably more difficult than for Pu recycling. To divert from uranium as a nuclear energy source it seems worth while intensifying future efforts for closing the Th/ 233 U fuel cycle. HTGRs are particularly promising for economic application. However, further research and development activities should not concentrate on this reactor type alone. Light- and heavy-water-moderated reactors, and even future fast breeders, may just as well take advantage of a demonstrated thorium fuel cycle. (author)

  4. Fuel cycle studies

    International Nuclear Information System (INIS)

    Anon.

    1978-01-01

    Programs are being conducted in the following areas: advanced solvent extraction techniques, accident consequences, fuel cycles for nonproliferation, pyrochemical and dry processes, waste encapsulation, radionuclide transport in geologic media, hull treatment, and analytical support for LWBR

  5. IFR fuel cycle

    International Nuclear Information System (INIS)

    Battles, J.E.; Miller, W.E.; Lineberry, M.J.; Phipps, R.D.

    1992-01-01

    The next major milestone of the IFR program is engineering-scale demonstration of the pyroprocess fuel cycle. The EBR-II Fuel Cycle Facility has just entered a startup phase, which includes completion of facility modifications and installation and cold checkout of process equipment. This paper reviews the development of the electrorefining pyroprocess, the design and construction of the facility for the hot demonstration, the design and fabrication of the equipment, and the schedule and initial plan for its operation

  6. The nuclear fuel cycle

    International Nuclear Information System (INIS)

    Patarin, L.

    2002-01-01

    This book treats of the different aspects of the industrial operations linked with the nuclear fuel, before and after its use in nuclear reactors. The basis science of this nuclear fuel cycle is chemistry. Thus a recall of the elementary notions of chemistry is given in order to understand the phenomena involved in the ore processing, in the isotope enrichment, in the fabrication of fuel pellets and rods (front-end of the cycle), in the extraction of recyclable materials (residual uranium and plutonium), and in the processing and conditioning of wastes (back-end of the fuel cycle). Nuclear reactors produce about 80% of the French electric power and the Cogema group makes 40% of its turnover at the export. Thus this book contains also some economic and geopolitical data in order to clearly position the stakes. The last part, devoted to the management of wastes, presents the solutions already operational and also the research studies in progress. (J.S.)

  7. Alternative fuel cycles

    International Nuclear Information System (INIS)

    Penn, W.J.

    1979-05-01

    Uranium resource utilization and economic considerations provide incentives to study alternative fuel cycles as future options to the PHWR natural uranium cycle. Preliminary studies to define the most favourable alternatives and their possible introduction dates are discussed. The important and uncertain components which influence option selection are reviewed, including nuclear capacity growth, uranium availability and demand, economic potential, and required technological developments. Finally, a summary of Ontario Hydro's program to further assess cycle selection and define development needs is given. (auth)

  8. The nuclear fuel cycle

    International Nuclear Information System (INIS)

    1998-05-01

    After a short introduction about nuclear power in the world, fission physics and the French nuclear power plants, this brochure describes in a digest way the different steps of the nuclear fuel cycle: uranium prospecting, mining activity, processing of uranium ores and production of uranium concentrates (yellow cake), uranium chemistry (conversion of the yellow cake into uranium hexafluoride), fabrication of nuclear fuels, use of fuels, reprocessing of spent fuels (uranium, plutonium and fission products), recycling of energetic materials, and storage of radioactive wastes. (J.S.)

  9. Reference thorium fuel cycle

    International Nuclear Information System (INIS)

    Driggers, F.E.

    1978-08-01

    In the reference fuel cycle for the TFCT program, fissile U will be denatured by mixing with 238 U; the plants will be located in secure areas, with Pu being recycled within these secure areas; Th will be recycled with recovered U and Pu; the head end will handle a variety of core and blanket fuel assembly designs for LWRs and HWRs; the fuel may be a homogeneous mixture either of U and Th oxide pellets or sol-gel microspheres; the cladding will be Zircaloy; and MgO may be added to the fuel to improve Th dissolution. Th is being considered as the fertile component of fuel in order to increase proliferation resistance. Spent U recovered from Th-based fuels must be re-enriched before recycle to prevent very rapid buildup of 238 U. Stainless steel will be considered as a backup to Zircaloy cladding in case Zr is incompatible with commercial aqueous dissolution. Storage of recovered irradiated Th will be considered as a backup to its use in the recycle of recovered Pu and U. Estimates are made of the time for introducing the Th fuel cycle into the LWR power industry. Since U fuel exposures in LWRs are likely to increase from 30,000 to 50,000 MWD/MT, the Th reprocessing plant should also be designed for Th fuel with 50,000 MWD/MT exposure

  10. Future fuel cycles

    International Nuclear Information System (INIS)

    Archinoff, G.H.

    1980-01-01

    A fuel cycle must offer both financial and resource savings if it is to be considered for introduction into Ontario's nuclear system. The most promising alternative CANDU fuel cycles are examined in the context of both of these factors over a wide range of installed capacity growth rates and economic assumptions, in order to determine which fuel cycle, or cycles, should be introduced, and when. It is concluded that the optimum path for the long term begins with the prompt introduction of the low-enriched-uranium fuel cycle. For a wide range of conditions, this cycle remains the optimum throughout the very long term. Conditions of rapid nuclear growth and very high uranium price escalation rates warrant the supersedure of the low-enriched-uranium cycle by either a plutonium-topped thorium cycle or plutonium recycle, beginning between 2010 and 2025. It is also found that the uranium resource position is sound in terms of both known resources and production capability. Moreover, introduction of the low-enriched-uranium fuel cycle and 1250 MWe reactor units will assure the economic viability of nuclear power until at least 2020, even if uranium prices increase at a rate of 3.5% above inflation. The interrelationship between these two conclusions lies in the tremendous incentive for exploration which will occur if the real uranium price escalation rate is high. From a competitive viewpoint, nuclear power can withstand increases in the price of uranium. However, such increases will likely further expand the resource base, making nuclear an even more reliable energy source. (auth)

  11. Fuel cycle based safeguards

    International Nuclear Information System (INIS)

    De Montmollin, J.M.; Higinbotham, W.A.; Gupta, D.

    1985-07-01

    In NPT safeguards the same model approach and absolute-quantity inspection goals are applied at present to all similar facilities, irrespective of the State's fuel cycle. There is a continuing interest and activity on the part of the IAEA in new NPT safeguards approaches that more directly address a State's nuclear activities as a whole. This fuel cycle based safeguards system is expected to a) provide a statement of findings for the entire State rather than only for individual facilities; b) allocate inspection efforts so as to reflect more realistically the different categories of nuclear materials in the different parts of the fuel cycle and c) provide more timely and better coordinated information on the inputs, outputs and inventories of nuclear materials in a State. (orig./RF) [de

  12. Fuel cycle services

    International Nuclear Information System (INIS)

    Gruber, Gerhard J.

    1990-01-01

    TRIGA reactor operators are increasingly concerned about the back end of their Fuel Cycle due to a new environmental policy in the USA. The question how to close the Fuel Cycle will have to be answered by all operators sooner or later. Reprocessing of the TRIGA fuel elements is not available. Only long term storage and final disposal can be considered. But for such a storage or disposal a special treatment of the fuel elements and of course a final depository is necessary. NUKEM plans to undertake efforts to assist the TRIGA operators in this area. For that reason we need to know your special needs for today and tomorrow - so that potential processors can consider whether to offer these services on the market. (orig.)

  13. The thorium fuel cycle

    International Nuclear Information System (INIS)

    Merz, E.R.

    1977-01-01

    The utilization of the thorium fuel cycle has long since been considered attractive due to the excellent neutronic characteristics of 233 U, and the widespread and cheap thorium resources. Although the uranium ore as well as the separative work requirements are usually lower for any thorium-based fuel cycle in comparison to present uranium-plutonium fuel cycles of thermal water reactors, interest by nuclear industry has hitherto been marginal. Fast increasing uranium prices, public reluctance against widespread Pu-recycling and expected retardations for the market penetration of fast breeders have led to a reconsideration of the thorium fuel cycle merits. In addition, it could be learned in the meantime that problems associated with reprocessing and waste handling, but particularly with a remote refabrication of 233 U are certainly not appreciably more difficult than for Pu-recycling. This may not only be due to psychological constraints but be based upon technological as well as economical facts, which have been mostly neglected up till now. In order to diversify from uranium as a nuclear energy source it seems to be worthwhile to greatly intensify efforts in the future for closing the Th/ 233 U fuel cycle. HTGR's are particularly promising for economic application. However, further R and D activites should not be solely focussed on this reactor type alone. Light and heavy-water moderated reactors, as well as even fast breeders later on, may just as well take advantage of a demonstrated thorium fuel cycle. A summary is presented of the state-of-the-art of Th/ 233 U-recycling technology and the efforts still necessary to demonstrate this technology all the way through to its industrial application

  14. Closing the fuel cycle

    International Nuclear Information System (INIS)

    Aycoberry, C.; Rougeau, J.P.

    1987-01-01

    The progressive implementation of some key nuclear fuel cycle capecities in a country corresponds to a strategy for the acquisition of an independant energy source, France, Japan, and some European countries are engaged in such strategic programs. In France, COGEMA, the nuclear fuel company, has now completed the industrial demonstration of the closed fuel cycle. Its experience covers every step of the front-end and of the back-end: transportation of spent fuels, storage, reprocessing, wastes conditioning. The La Hague reprocessing plant smooth operation, as well as the large investment program under active progress can testify of full mastering of this industry. Together with other French and European companies, COGEMA is engaged in the recycling industry, both for uranium through conversion of uranyl nitrate for its further reeichment, and for plutonium through MOX fuel fabrication. Reprocessing and recycling offer the optimum solution for a complete, economic, safe and future-oriented fuel cycle, hence contributing to the necessary development of nuclear energy. (author)

  15. HTGR fuel and fuel cycle technology

    International Nuclear Information System (INIS)

    Lotts, A.L.; Coobs, J.H.

    1976-08-01

    The status of fuel and fuel cycle technology for high-temperature gas-cooled reactors (HTGRs) is reviewed. The all-ceramic core of the HTGRs permits high temperatures compared with other reactors. Core outlet temperatures of 740 0 C are now available for the steam cycle. For advanced HTGRs such as are required for direct-cycle power generation and for high-temperature process heat, coolant temperatures as high as 1000 0 C may be expected. The paper discusses the variations of HTGR fuel designs that meet the performance requirements and the requirements of the isotopes to be used in the fuel cycle. Also discussed are the fuel cycle possibilities, which include the low-enrichment cycle, the Th- 233 U cycle, and plutonium utilization in either cycle. The status of fuel and fuel cycle development is summarized

  16. Experimental investigation of am measures and effect of hydro-accumulator initial pressure for VVER-440 plants

    International Nuclear Information System (INIS)

    Ivan Toth; Gyorgy Ezsol; Attila Guba; Laszlo Perneczky

    2005-01-01

    Full text of publication follows: A series of experiments were performed at the PMK-2 test facility within the IMPAM-VVER project of the EU 5. Framework Programme. The PMK-2 integral-type facility is a scaled down model of the Paks NPP with a volume and power scaling of 1:2070. Transients can be started from nominal operating conditions. The ratio of elevations is 1:1 except for the lower plenum and pressurizer. The six loops of the plant are modelled by a single active loop. The main objective of the project was to address different problems encountered during the development of EOPs for the Paks NPP in Hungary. Two of the six PMK tests addressed the investigation of starting criteria for primary and secondary bleed during a small break LOCA without HPIS: - a 'base case', with bleed actions following the plant procedures; - a run with secondary and primary bleed started as early as possible. Further two tests investigated the effect of nominal and reduced initial hydro-accumulator pressures on the process, the main question being, whether the starting pressure of the LPIS can be reached without significant overheating of the fuel. These latter were run from lowered initial system pressure in order to be compared to similar tests performed in the project at the PACTEL facility. The two first tests confirmed tendencies shown by earlier plant calculations that neither the secondary nor the primary bleed is effective enough to reduce the pressure, even if their earliest possible actuation is envisaged. As a consequence, low pressure injection could not be started in time to avoid severe fuel rod heat-up and the core power had to be cut in both tests. Comparing the results of tests 3 and 4 the beneficial effect of lowered HA pressure could be analysed. Although heater rod temperatures started to rise also in this test after hydro-accumulators were empty, the secondary and primary bleed actions resulted in the primary pressure dropping to 0.7 MPa and LPIS injection

  17. World nuclear fuel cycle

    International Nuclear Information System (INIS)

    Anon.

    1979-01-01

    A coloured pull-out wall chart is presented showing the fuel cycle interests of the world. Place names are marked and symbols are used to indicate regions associated with uranium or thorium deposits, mining, milling, enrichment, reprocessing and fabrication. (UK)

  18. Fuel cycle centres

    International Nuclear Information System (INIS)

    Hagen, M.

    1977-01-01

    The concept of co-locating and integrating fuel cycle facilities at one site is discussed. This concept offers considerable advantages, especially in minimizing the amount of radioactive material to be transported on public roads. Safeguards and physical protection as relating to such an integrated system of facilities are analysed in detail, also industrial and commercial questions. An overall risk-benefit evaluation turns out to be in favour of fuel cycle centres. These centres seem to be specifically attractive with regard to the back end of the fuel cycle, including on-site disposal of radioactive wastes. The respective German approach is presented as an example. Special emphasis is given to the site selection procedures in this case. Time scale and cost for the implementation of this concept are important factors to be looked at. Since participation of governmental institutions in these centres seems to be indispensable their respective roles as compared to industry must be clearly defined. The idea of adjusting fuel cycle centres to regional rather than national use might be an attractive option, depending on the specific parameters in the region, though results of existing multinational ventures are inconclusive in this respect. Major difficulties might be expected e.g. because of different national safety regulations and standards as well as commercial conditions among partner countries. Public acceptance in the host country seems to be another stumbling block for the realization of this type of multinational facilities

  19. Fuel cycle oriented approach

    International Nuclear Information System (INIS)

    Petit, A.

    1987-01-01

    The term fuel cycle oriented approach is currently used to designate two quite different things: the attempt to consider all or part of a national fuel cycle as one material balance area (MBA) or to consider individual MBAs existing in a state while designing a unique safeguards approach for each and applying the principle of nondiscrimination to fuel cycles as a whole, rather than to individual facilities. The merits of such an approach are acceptability by the industry and comparison with the contemplated establishment of long-term criteria. The following points concern the acceptability by the industry: (1) The main interest of the industry is to keep an open international market and therefore, to have effective and efficient safeguards. (2) The main concerns of the industry regarding international safeguards are economic burden, intrusiveness, and discrimination. Answers to these legitimate concerns, which retain the benefits of a fuel cycle oriented approach, are needed. More specifically, the problem of reimbursing the operator the costs that he has incurred for the safeguards must be considered

  20. Thorium fuel cycle analysis

    Energy Technology Data Exchange (ETDEWEB)

    Yamaji, K [Central Research Inst. of Electric Power Industry, Tokyo (Japan)

    1980-07-01

    Systems analysis of the thorium cycle, a nuclear fuel cycle accomplished by using thorium, is reported in this paper. Following a brief review on the history of the thorium cycle development, analysis is made on the three functions of the thorium cycle; (1) auxiliary system of U-Pu cycle to save uranium consumption, (2) thermal breeder system to exert full capacity of the thorium resource, (3) symbiotic system to utilize special features of /sup 233/U and neutron sources. The effects of the thorium loading in LWR (Light Water Reactor), HWR (Heavy Water Reactor) and HTGR (High Temperature Gas-cooled Reactor) are considered for the function of auxiliary system of U-Pu cycle. Analysis is made to find how much uranium is saved by /sup 233/U recycling and how the decrease in Pu production influences the introduction of FBR (Fast Breeder Reactor). Study on thermal breeder system is carried out in the case of MSBR (Molten Salt Breeder Reactor). Under a certain amount of fissile material supply, the potential system expansion rate of MSBR, which is determined by fissile material balance, is superior to that of FBR because of the smaller specific fissile inventory of MSBR. For symbiotic system, three cases are treated; i) nuclear heat supply system using HTGR, ii) denatured fuel supply system for nonproliferation purpose, and iii) hybrid system utilizing neutron sources other than fission reactor.

  1. Nuclear fuel cycle system analysis

    International Nuclear Information System (INIS)

    Ko, W. I.; Kwon, E. H.; Kim, S. G.; Park, B. H.; Song, K. C.; Song, D. Y.; Lee, H. H.; Chang, H. L.; Jeong, C. J.

    2012-04-01

    The nuclear fuel cycle system analysis method has been designed and established for an integrated nuclear fuel cycle system assessment by analyzing various methodologies. The economics, PR(Proliferation Resistance) and environmental impact evaluation of the fuel cycle system were performed using improved DB, and finally the best fuel cycle option which is applicable in Korea was derived. In addition, this research is helped to increase the national credibility and transparency for PR with developing and fulfilling PR enhancement program. The detailed contents of the work are as follows: 1)Establish and improve the DB for nuclear fuel cycle system analysis 2)Development of the analysis model for nuclear fuel cycle 3)Preliminary study for nuclear fuel cycle analysis 4)Development of overall evaluation model of nuclear fuel cycle system 5)Overall evaluation of nuclear fuel cycle system 6)Evaluate the PR for nuclear fuel cycle system and derive the enhancement method 7)Derive and fulfill of nuclear transparency enhancement method The optimum fuel cycle option which is economical and applicable to domestic situation was derived in this research. It would be a basis for establishment of the long-term strategy for nuclear fuel cycle. This work contributes for guaranteeing the technical, economical validity of the optimal fuel cycle option. Deriving and fulfillment of the method for enhancing nuclear transparency will also contribute to renewing the ROK-U.S Atomic Energy Agreement in 2014

  2. Fuel and nuclear fuel cycle

    International Nuclear Information System (INIS)

    Prunier, C.

    1998-01-01

    The nuclear fuel is studied in detail, the best choice and why in relation with the type of reactor, the properties of the fuel cans, the choice of fuel materials. An important part is granted to the fuel assembly of PWR type reactor and the performances of nuclear fuels are tackled. The different subjects for research and development are discussed and this article ends with the particular situation of mixed oxide fuels ( materials, behavior, efficiency). (N.C.)

  3. 24-month fuel cycles

    International Nuclear Information System (INIS)

    Rosenstein, R.G.; Sipes, D.E.; Beall, R.H.; Donovan, E.J.

    1986-01-01

    Twenty-four month reload cycles can potentially lessen total power generation costs. While 24-month cores increase purchased fuel costs, the longer cycles reduce the number of refueling outages and thus enhance plant availability; men-rem exposure to site personnel and other costs associated with reload core design and licensing are also reduced. At dual unit sites an operational advantage can be realized by refueling each plant alternately on a 1-year offset basis. This results in a single outage per site per year which can be scheduled for off-peak periods or when replacement power costs are low

  4. The nuclear fuel cycle

    International Nuclear Information System (INIS)

    Anon.

    1975-01-01

    The papers presented at the International Conference on The Nuclear Fuel Cycle, held at Stockholm, 28 to 31 October 1975, are reviewed. The meeting, organised by the U.S. Atomic Industrial Forum, and the Swedish Nuclear Forum, was concerned more particularly with economic, political, social and commercial aspects than with tecnology. The papers discussed were considered under the subject heading of current status, uranium resources, enrichment, and reprocessing. (U.K.)

  5. Nuclear fuel cycle

    Energy Technology Data Exchange (ETDEWEB)

    1975-12-01

    The papers presented at the International Conference on The Nuclear Fuel Cycle, held at Stockholm, 28 to 31 October 1975, are reviewed. The meeting, organised by the U.S. Atomic Industrial Forum, and the Swedish Nuclear Forum, was concerned more particularly with economic, political, social and commercial aspects than with tecnology. The papers discussed were considered under the subject heading of current status, uranium resources, enrichment, and reprocessing.

  6. Alternative nuclear fuel cycles

    International Nuclear Information System (INIS)

    Till, C.E.

    1979-01-01

    This diffuse subject involves value judgments that are political as well as technical, and is best understood in that context. The four questions raised here, however, are mostly from the technical viewpoints: (1) what are alternative nuclear fuel cycles; (2) what generalizations are possible about their characteristics; (3) what are the major practical considerations; and (4) what is the present situation and what can be said about the outlook for the future

  7. HTGR fuel cycle

    International Nuclear Information System (INIS)

    1987-08-01

    In the spring of 1987, the HTGR fuel cycle project has been existing for ten years, and for this reason a status seminar has been held on May 12, 1987 in the Juelich Nuclear Research Center, that gathered the participants in this project for a discussion on the state of the art in HTGR fuel element development, graphite development, and waste management. The papers present an overview of work performed so far and an outlook on future tasks and goals, and on taking stock one can say that the project has been very successful so far: The HTGR fuel element now available meets highest requirements and forms the basis of today's HTGR safety philosophy; research work on graphite behaviour in a high-temperature reactor has led to complete knowledge of the temperature or neutron-induced effects, and with the concept of direct ultimate waste disposal, the waste management problem has found a feasible solution. (orig./GL) [de

  8. Nuclear Fuel Cycle Objectives

    International Nuclear Information System (INIS)

    2013-01-01

    . The four Objectives publications include Nuclear General Objectives, Nuclear Power Objectives, Nuclear Fuel Cycle Objectives, and Radioactive Waste management and Decommissioning Objectives. This publication sets out the objectives that need to be achieved in the area of the nuclear fuel cycle to ensure that the Nuclear Energy Basic Principles are satisfied. Within each of these four Objectives publications, the individual topics that make up each area are addressed. The five topics included in this publication are: resources; fuel engineering and performance; spent fuel management and reprocessing; fuel cycles; and the research reactor nuclear fuel cycle

  9. Solid TRU fuels and fuel cycle technology

    International Nuclear Information System (INIS)

    Ogawa, Toru; Suzuki, Yasufumi

    1997-01-01

    Alloys and nitrides are candidate solid fuels for transmutation. However, the nitride fuels are preferred to the alloys because they have more favorable thermal properties which allows to apply a cold-fuel concept. The nitride fuel cycle technology is briefly presented

  10. Fast breeder fuel cycle

    International Nuclear Information System (INIS)

    1978-07-01

    This contribution is prepared for the answer to the questionnaire of working group 5, subgroup B. B.1. is the short review of the fast breeder fuel cycles based on the reference large commercial Japanese LMFBR. The LMFBRs are devided into two types. FBR-A is the reactor to be used before 2000, and its burnup and breeding ratio are relatively low. The reference fuel cycle requirement is calculated based on the FBR-A. FBR-B is the one to be used after 2000, and its burnup and breeding ratio are relatively high. B.2. is basic FBR fuel reprocessing scheme emphasizing the differences with LWR reprocessing. This scheme is based on the conceptual design and research and development work on the small scale LMFBR reprocessing facility of Japan. The facility adopts a conventional PUREX process except head end portions. The report also describes the effects of technical modifications of conventional reprocessing flow sheets, and the problems to be solved before the adoption of these alternatives

  11. CFD investigations of natural circulation between the RPV and the cooling pond of VVER-440 type reactors in incidental conditions during maintenance performed with the code CFX-4.3

    International Nuclear Information System (INIS)

    Legradi, G.; Aszodi, A.

    2002-01-01

    During the annual maintenance of the VVER-440 type reactors, the RPV, the cooling pond and the transfer pond form a connected flow domain. The reactor is cooled by the natural circulation, which develops in one or two main loops. The cooling pond has its own cooling loops. CFD calculations have been performed with the CFX-4.3 code to investigate whether it is possible to cool the reactor core in case the main loops are lost and other emergency systems are not available. The results point out that the cooling system of the cooling pond is not capable of cooling the reactor core with the present connection. Therefore, modifications of the cooling system are investigated which would make it suitable for removing the remanent heat from the core.(author)

  12. BNFL Springfields Fuel Division

    International Nuclear Information System (INIS)

    Tarkiainen, S.; Plit, H.

    1998-01-01

    The Fuel Division of British Nuclear Fuels Ltd (BNFL) manufactures nuclear fuel elements for British Magnox and AGR power plants as well as for LWR plants. The new fuel factory - Oxide Fuel Complex (OFC), located in Springfields, is equipped with modern technology and the automation level of the factory is very high. With their quality products, BNFL aims for the new business areas. A recent example of this expansion was shown, when BNFL signed a contract to design and license new VVER-440 fuel for Finnish Loviisa and Hungarian Paks power plants. (author)

  13. The closed fuel cycle

    International Nuclear Information System (INIS)

    Froment, Antoine; Gillet, Philippe

    2007-01-01

    Available in abstract form only. Full text of publication follows: The fast growth of the world's economy coupled with the need for optimizing use of natural resources, for energy security and for climate change mitigation make energy supply one of the 21. century most daring challenges. The high reliability and efficiency of nuclear energy, its competitiveness in an energy market undergoing a new oil shock are as many factors in favor of the 'renaissance' of this greenhouse gas free energy. Over 160,000 tHM of LWR1 and AGR2 Used Nuclear Fuel (UNF) have already been unloaded from the reactor cores corresponding to 7,000 tons discharged per year worldwide. By 2030, this amount could exceed 400,000 tHM and annual unloading 14,000 tHM/year. AREVA believes that closing the nuclear fuel cycle through the treatment and recycling of Used Nuclear Fuel sustains the worldwide nuclear power expansion. It is an economically sound and environmentally responsible choice, based on the preservation of natural resources through the recycling of used fuel. It furthermore provides a safe and secure management of wastes while significantly minimizing the burden left to future generations. (authors)

  14. Closing the fuel cycle

    International Nuclear Information System (INIS)

    Wolfe, B.; Judson, B.F.

    1984-01-01

    The possibilities for closing the fuel cycle in today's nuclear climate in the US are compared with those envisioned in 1977. Reprocessing, the fast breeder reactor program, and the uranium supply are discussed. The conclusion drawn is that the nuclear world is less healthy and less stable than the one previously envisioned and that the major task before the international nuclear community is to develop technologies, institutions, and accepted procedures that will allow to economically provide the huge store of energy from reprocessing and the breeder that it appears the world will desperately need

  15. The fuel cycle scoping system

    International Nuclear Information System (INIS)

    Dooley, G.D.; Malone, J.P.

    1986-01-01

    The Fuel Cycle Scoping System (FCSS) was created to fill the need for a scoping tool which provides the utilities with the ability to quickly evaluate alternative fuel management strategies, tails assay choices, fuel fabrication quotes, fuel financing alternatives, fuel cycle schedules, and other fuel cycle perturbations. The FCSS was specifically designed for PC's that support dBASE-III(TM), a relational data base software system by Ashton-Tate. However, knowledge of dBASE-III is not necessary in order to utilize the FCSS. The FCSS is menu driven and can be utilized as a teaching tool as well as a scoping tool

  16. Part 5. Fuel cycle options

    International Nuclear Information System (INIS)

    Lineberry, M.J.; McFarlane, H.F.; Amundson, P.I.; Goin, R.W.; Webster, D.S.

    1980-01-01

    The results of the FBR fuel cycle study that supported US contributions to the INFCE are presented. Fuel cycle technology is reviewed from both generic and historical standpoints. Technology requirements are developed within the framework of three deployment scenarios: the reference international, the secured area, and the integral cycle. Reprocessing, fabrication, waste handling, transportation, and safeguards are discussed for each deployment scenario. Fuel cycle modifications designed to increase proliferation defenses are described and assessed for effectiveness and technology feasibility. The present status of fuel cycle technology is reviewed and key issues that require resolution are identified

  17. Selected examples for safety analysis in VVER-440 type reactors simulated by the coupled ATHLET/KIKO3D code system

    International Nuclear Information System (INIS)

    Hegyi, Gy.; Kereszturi, A.; Trosztel, I.

    2005-01-01

    Recently several projects have been initiated in Hungary aiming at the introduction of new fuel type, increased maximum allowed power and economic fuel cycle. The planned upgraded power and parallel application of new fuel type require the renewal of the relevant chapter of the Final Safety Analysis Report (FSAR). One of the main tools used for analyzing transient scenarios initiating by reactivity and power distribution anomalies was the ATHLET/KIKO3D coupled neutron kinetic / thermal-hydraulic code. This paper gives an overview of two analyses, which was prepared in the frame of the revision of Paks FSAR, namely the ''withdrawal of one control rod'' and ''initial phase of main steam line break'' events. (author)

  18. HTGR fuel and fuel cycle technology

    International Nuclear Information System (INIS)

    Lotts, A.L.; Homan, F.J.; Balthesen, E.; Turner, R.F.

    1977-01-01

    Significant advances have occurred in the development of HTGR fuel and fuel cycle. These accomplishments permit a wide choice of fuel designs, reactor concepts, and fuel cycles. Fuels capable of providing helium outlet temperatures of 750 0 C are available, and fuels capable of 1000 0 C outlet temperatures may be expected from extension of present technology. Fuels have been developed for two basic HTGR designs, one using a spherical (pebble bed) element and the other a prismatic element. Within each concept a number of variations of geometry, fuel composition, and structural materials are permitted. Potential fuel cycles include both low-enriched and high-enriched Th- 235 U, recycle Th- 233 U, and Th-Pu or U-Pu cycles. This flexibility offered by the HTGR is of great practical benefit considering the rapidly changing economics of power production. The inflation of ore prices has increased optimum conversion ratios, and increased the necessity of fuel recycle at an early date. Fuel element makeup is very similar for prismatic and spherical designs. Both use spherical fissile and fertile particles coated with combinations of pyrolytic carbon and silicon carbide. Both use carbonaceous binder materials, and graphite as the structural material. Weak-acid resin (WAR) UO 2 -UC 2 fissile fuels and sol-gel-derived ThO 2 fertile fuels have been selected for the Th- 233 U cycle in the prismatic design. Sol-gel-derived UO 2 UC 2 is the reference fissile fuel for the low-enriched pebble bed design. Both the United States and Federal Republic of Germany are developing technology for fuel cycle operations including fabrication, reprocessing, refabrication, and waste handling. Feasibility of basic processes has been established and designs developed for full-scale equipment. Fuel and fuel cycle technology provide the basis for a broad range of applications of the HTGR. Extension of the fuels to higher operating temperatures and development and commercial demonstration of fuel

  19. CANDU advanced fuel cycles

    International Nuclear Information System (INIS)

    Slater, J.B.

    1986-03-01

    This report is based on informal lectures and presentations made on CANDU Advanced Fuel Cycles over the past year or so, and discusses the future role of CANDU in the changing environment for the Canadian and international nuclear power industry. The changing perspectives of the past decade lead to the conclusion that a significant future market for a CANDU advanced thermal reactor will exist for many decades. Such a reactor could operate in a stand-alone strategy or integrate with a mixed CANDU-LWR or CANDU-FBR strategy. The consistent design focus of CANDU on enhanced efficiency of resource utilization combined with a simple technology to achieve economic targets, will provide sufficient flexibility to maintain CANDU as a viable power producer for both the medium- and long-term future

  20. Nuclear fuel cycle information workshop

    International Nuclear Information System (INIS)

    1983-01-01

    This overview of the nuclear fuel cycle is divided into three parts. First, is a brief discussion of the basic principles of how nuclear reactors work; second, is a look at the major types of nuclear reactors being used and world-wide nuclear capacity; and third, is an overview of the nuclear fuel cycle and the present industrial capability in the US

  1. Current state of spent fuel management in the Russian Federation

    International Nuclear Information System (INIS)

    Makarchuk, T.F.; Spichev, V.V.; Tikhonov, N.S.; Simanovsky, V.M.; Tokarenko, A.I.; Bespalov, V.N.

    1998-01-01

    Twenty nine power units of nine nuclear power plants of total installed capacity 22 GW(e) are now in operation in the Russian Federation. They produce approximately 12% of electric power in the country. The annual spent fuel arising is about 790 tU. The spent fuel from VVER-440 and BN-600 is reprocessed at the RT-1 plant near Chelyabinsk. The VVER-1000 spent fuel is planned to be reprocessed at the reprocessing plant RT-2 which is under construction near Krasnoyarsk. The RBMK-1000 spent fuel is not reprocessed because of its low fissile content. It is meant to be stored in intermediate storage facilities at the NPP sites and in a centralized storage facility during a period not less than 50 years and then to be disposed of in geological formations. State of the art of spent fuel reprocessing, storage and transportation is considered in the paper. Problems of nuclear fuel cycle back-end in Russia are taken into account. (author)

  2. Used mixed oxide fuel reprocessing at RT-1 plant

    Energy Technology Data Exchange (ETDEWEB)

    Kolupaev, D.; Logunov, M.; Mashkin, A.; Bugrov, K.; Korchenkin, K. [FSUE PA ' Mayak' , 30, Lenins str, Ozersk, 460065 (Russian Federation); Shadrin, A.; Dvoeglazov, K. [ITCP ' PRORYV' , 2/8 Malaya Krasmoselskay str, Moscow, 107140 (Russian Federation)

    2016-07-01

    Reprocessing of the mixed uranium-plutonium spent nuclear fuel of the BN-600 reactor was performed at the RT-1 plant twice, in 2012 and 2014. In total, 8 fuel assemblies with a burn-up from 73 to 89 GW day/t and the cooling time from 17 to 21 years were reprocessed. The reprocessing included the stages of dissolution, clarification, extraction separation of U and Pu with purification from the fission products, refining of uranium and plutonium at the relevant refining cycles. Dissolution of the fuel composition of MOX used nuclear fuel (UNF) in nitric acid solutions in the presence of fluoride ion has occurred with the full transfer of actinides into solution. Due to the high content of Pu extraction separation of U and Pu was carried out on a nuclear-safe equipment designed for the reprocessing of highly enriched U spent nuclear fuel and Pu refining. Technological processes of extraction, separation and refining of actinides proceeded without deviations from the normal mode. The output flow of the extraction outlets in their compositions corresponded to the regulatory norms and remained at the level of the compositions of the streams resulting from the reprocessing of fuel types typical for the RT-1 plant. No increased losses of Pu into waste have been registered during the reprocessing of BN-600 MOX UNF an compare with VVER-440 uranium UNF reprocessing. (authors)

  3. Fuel cycles using adulterated plutonium

    International Nuclear Information System (INIS)

    Brooksbank, R.E.; Bigelow, J.E.; Campbell, D.O.; Kitts, F.G.; Lindauer, R.B.

    1978-01-01

    Adjustments in the U-Pu fuel cycle necessitated by decisions made to improve the nonproliferation objectives of the US are examined. The uranium-based fuel cycle, using bred plutonium to provide the fissile enrichment, is the fuel system with the highest degree of commercial development at the present time. However, because purified plutonium can be used in weapons, this fuel cycle is potentially vulnerable to diversion of that plutonium. It does appear that there are technologically sound ways in which the plutonium might be adulterated by admixture with 238 U and/or radioisotopes, and maintained in that state throughout the fuel cycle, so that the likelihood of a successful diversion is small. Adulteration of the plutonium in this manner would have relatively little effect on the operations of existing or planned reactors. Studies now in progress should show within a year or two whether the less expensive coprocessing scheme would provide adequate protection (coupled perhaps with elaborate conventional safeguards procedures) or if the more expensive spiked fuel cycle is needed as in the proposed civex pocess. If the latter is the case, it will be further necessary to determine the optimum spiking level, which could vary as much as a factor of a billion. A very basic question hangs on these determinations: What is to be the nature of the recycle fuel fabrication facilities. If the hot, fully remote fuel fabrication is required, then a great deal of further development work will be required to make the full cycle fully commercial

  4. Analysis of possible fuel cycles

    International Nuclear Information System (INIS)

    Boehm, H.; Kessler, G.; Engelmann, P.; Maerkl, H.; Stoll, W.

    1978-01-01

    A brief survey is presented of the most important fuel cycles. A rough analysis of fuel cycles is attempted under the aspects of proliferation, status of technical feasibility, resource conservation and waste management and the most important criteria for such an analysis are discussed. Among the multitude of potential combinations of fuel cycles and types of reactors only a few have reached a level of technical feasibility which would make them eligible for commercial implementation within the next decade. However, if, for instance, the higher proliferation resistance of a specific fuel cycle is to be utilized to diminish the worldwide proliferation hazard, that cycle would first of all have to be introduced on an industrial scale as quickly as possible. The analysis shows that the reduction of the bazard of worldwide proliferation will continue to be the objective primarily of international agreements and measures taken in the political realm. (orig.) [de

  5. Quadratic reactivity fuel cycle model

    International Nuclear Information System (INIS)

    Lewins, J.D.

    1985-01-01

    For educational purposes it is highly desirable to provide simple yet realistic models for fuel cycle and fuel economy. In particular, a lumped model without recourse to detailed spatial calculations would be very helpful in providing the student with a proper understanding of the purposes of fuel cycle calculations. A teaching model for fuel cycle studies based on a lumped model assuming the summability of partial reactivities with a linear dependence of reactivity usefully illustrates fuel utilization concepts. The linear burnup model does not satisfactorily represent natural enrichment reactors. A better model, showing the trend of initial plutonium production before subsequent fuel burnup and fission product generation, is a quadratic fit. The study of M-batch cycles, reloading 1/Mth of the core at end of cycle, is now complicated by nonlinear equations. A complete account of the asymptotic cycle for any order of M-batch refueling can be given and compared with the linear model. A complete account of the transient cycle can be obtained readily in the two-batch model and this exact solution would be useful in verifying numerical marching models. It is convenient to treat the parabolic fit rho = 1 - tau 2 as a special case of the general quadratic fit rho = 1 - C/sub tau/ - (1 - C)tau 2 in suitably normalized reactivity and cycle time units. The parabolic results are given in this paper

  6. Large eddy simulation of a fuel rod subchannel

    International Nuclear Information System (INIS)

    Mayer, Gusztav

    2007-01-01

    In a VVER-440 reactor the measured outlet temperature is related to fuel limit parameters and the power upgrading plans of VVER-440 reactors motivated us to obtain more information on the mixing process of the fuel assemblies. In a VVER-440 rod bundle the fuel rods are arranged in triangular array. Measurement shows (Krauss and Meyer, 1998) that the classical engineering approach, which tries to trace the characterization of such systems back to equivalent (hydraulic diameter) pipe flows, does not give reasonable results. Due to the different turbulence characteristics, the mixing is more intensive in rod bundles than it would be expected based on equivalent pipe flow correlations. As a possible explanation of the high mixing, secondary flow was deduced from measurements by several experimentalists (Trupp and Azad, 1975). Another candidate to explain the high mixing is the so-called flow pulsation phenomenon (Krauss and Meyer, 1998). In this paper we present subchannel simulations (Mayer et al. 2007) using large eddy simulation (LES) methodology and the lattice Boltzmann method (LBM) without the spacers at Reynolds number 21000. The simulation results are compared with the measurements of Trupp and Azad (1975). The mean axial velocity profile shows good agreement with the measurement data. Secondary flow has been observed directly in the simulation results. Reasonable agreement has been achieved for most Reynolds stresses. Nevertheless, the calculated normal stresses show small, but systematic deviation from the measurement data. (author)

  7. The evolving nuclear fuel cycle

    International Nuclear Information System (INIS)

    Gale, J.D.; Hanson, G.E.; Coleman, T.A.

    1993-01-01

    Various economics and political pressures have shaped the evolution of nuclear fuel cycles over the past 10 to 15 yr. Future trends will no doubt be similarly driven. This paper discusses the influences that long cycles, high discharge burnups, fuel reliability, and costs will have on the future nuclear cycle. Maintaining the economic viability of nuclear generation is a key issue facing many utilities. Nuclear fuel has been a tremendous bargain for utilities, helping to offset major increases in operation and maintenance (O ampersand M) expenses. An important factor in reducing O ampersand M costs is increasing capacity factor by eliminating outages

  8. ITER fuel cycle systems layout

    International Nuclear Information System (INIS)

    Kveton, O.K.

    1990-10-01

    The ITER fuel cycle building (FCB) will contain the following systems: fuel purification - permeator based; fuel purification - molecular sieves; impurity treatment; waste water storage and treatment; isotope separation; waste water tritium extraction; tritium extraction from solid breeder; tritium extraction from test modules; tritium storage, shipping and receiving; tritium laboratory; atmosphere detritiation systems; fuel cycle control centre; tritiated equipment maintenance space; control maintenance space; health physics laboratory; access, access control and facilities. The layout of the FCB and the requirements for these systems are described. (10 figs.)

  9. Compound process fuel cycle concept

    International Nuclear Information System (INIS)

    Ikegami, Tetsuo

    2005-01-01

    Mass flow of light water reactor spent fuel for a newly proposed nuclear fuel cycle concept 'Compound Process Fuel Cycle' has been studied in order to assess the capacity of the concept for accepting light water reactor spent fuels, taking an example for boiling water reactor mixed oxide spent fuel of 60 GWd/t burn-up and for a fast reactor core of 3 GW thermal output. The acceptable heavy metal of boiling water reactor mixed oxide spent fuel is about 3.7 t/y/reactor while the burn-up of the recycled fuel is about 160 GWd/t and about 1.6 t/y reactor with the recycled fuel burn-up of about 300 GWd/t, in the case of 2 times recycle and 4 times recycle respectively. The compound process fuel cycle concept has such flexibility that it can accept so much light water reactor spent fuels as to suppress the light water reactor spent fuel pile-up if not so high fuel burn-up is expected, and can aim at high fuel burn-up if the light water reactor spent fuel pile-up is not so much. Following distinctive features of the concept have also been revealed. A sort of ideal utilization of boiling water reactor mixed oxide spent fuel might be achieved through this concept, since both plutonium and minor actinide reach equilibrium state beyond 2 times recycle. Changes of the reactivity coefficients during recycles are mild, giving roughly same level of reactivity coefficients as the conventional large scale fast breeder core. Both the radio-activity and the heat generation after 4 year cooling and after 4 times recycle are less than 2.5 times of those of the pre recycle fuel. (author)

  10. Calculation methodology validation. Pt. 2/01-R. Calculation of the multiplication factor for eight experiments with a critical set of nineteen VVER-440 fuel assemblies

    International Nuclear Information System (INIS)

    Kyncl, J.

    2001-04-01

    Comparison calculations were performed for 8 experiments accomplished in 2000 on the LR-0 reactor. The MCNP4a code was applied using effective cross section data in the continuous representation as per the ENDF/B-VI library. (P.A.)

  11. Proliferation resistance fuel cycle technology

    Energy Technology Data Exchange (ETDEWEB)

    Lee, J. S.; Ko, W. I

    1999-02-01

    The issues of dual use in nuclear technology are analysed for nuclear fuel cycle with special focus on uranium enrichment and spent fuel reprocessing which are considered as the most sensitive components in terms of vulnerability to diversion. Technical alternatives to mitigrate the vulnerability, as has been analysed in depth during the NASAP and INFCE era in the late seventies, are reviewed to characterize the DUPIC fuel cycle alternative. On the other hand, the new realities in nuclear energy including the disposition of weapon materials as a legacy of cold war are recast in an angle of nuclear proliferation resistance and safeguards with a discussion on the concept of spent fuel standard concept and its compliance with the DUPIC fuel cycle technology. (author)

  12. New technology and fuel cycles

    International Nuclear Information System (INIS)

    Mooradian, A.J.

    1979-06-01

    The means of improving uranium utilization in nuclear power reactors are reviewed with respect to economic considerations, assurance of adequate fuel supplies and risk of weapons proliferation. Reference is made to what can be done to improve fuel economy in existing reactor systems operating on a once-through fuel cycle and the potential for improvement offered by fuel recycle in those systems. The state of development of new reactor systems that offer significant savings in uranium utilization is also reviewed and conclusions are made respecting the policy implications of the search for fuel economy. (author)

  13. Implications of alternative fuel cycles

    International Nuclear Information System (INIS)

    Anon.

    1978-01-01

    The United States is re-examining alternative fuel cycles and nuclear power strategies, and doubtful attempts are being made to justify the economics of the 'throw-away' fuel cycle. At an international forum on 'An acceptable nuclear energy future for the world' at Fort Lauderdale, Karl Cohen of General Electric and a leading authority on this topic put the implications into perspective. Extracts from his address are presented

  14. The effect of the volumetric heat source distribution of the fuel pellet on the minimum DNBR ratio

    International Nuclear Information System (INIS)

    Hordosy, G.; Kereszturi, A.; Maroti, L.; Trosztel, I.

    1995-01-01

    The radial power distribution in a VVER-440 type fuel assembly is strongly non-uniform as a result of the water-gap between the shrouds and the moderator filled central tube. Consequently, it can be expected that the power density inside a single fuel rod is inhomogeneous, as well. In the paper the methodology and the results of coupled thermohydraulic and neutronic calculations are presented. The objective of the analysis was the investigation of the heat source distribution and the determination of the possible extent of the power non-uniformity in a corner rod which has always the highest peaking factor in a VVER-440 type assembly. The results of the analysis revealed that there can be a strong non-uniformity of power distribution inside a fuel pellet, and the effect depends first of all on the general assembly conditions, while the local subchannel parameters have only a slight influence on the pellet heat source distribution. (author)

  15. CANDU fuel-cycle vision

    International Nuclear Information System (INIS)

    Boczar, P.G.

    1999-01-01

    The fuel-cycle path chosen by a particular country will depend on a range of local and global factors. The CANDU reactor provides the fuel-cycle flexibility to enable any country to optimize its fuel-cycle strategy to suit its own needs. AECL has developed the CANFLEX fuel bundle as the near-term carrier of advanced fuel cycles. A demonstration irradiation of 24 CANFLEX bundles in the Point Lepreau power station, and a full-scale critical heat flux (CHF) test in water are planned in 1998, before commercial implementation of CANFLEX fuelling. CANFLEX fuel provides a reduction in peak linear element ratings, and a significant enhancement in thermalhydraulic performance. Whereas natural uranium fuel provides many advantages, the use of slightly enriched uranium (SEU) in CANDU reactors offers even lower fuel-cycle costs and other benefits, such as uprating capability through flattening the channel power distribution across the core. Recycled uranium (RU) from reprocessing spent PWR fuel is a subset of SEU that has significant economic promise. AECL views the use of SEU/RU in the CANFLEX bundle as the first logical step from natural uranium. High neutron economy enables the use of low-fissile fuel in CANDU reactors, which opens up a spectrum of unique fuel-cycle opportunities that exploit the synergism between CANDU reactors and LWRs. At one end of this spectrum is the use of materials from conventional reprocessing: CANDU reactors can utilize the RU directly without re-enrichment, the plutonium as conventional Mixed-oxide (MOX) fuel, and the actinide waste mixed with plutonium in an inert-matrix carrier. At the other end of the spectrum is the DUPIC cycle, employing only thermal-mechanical processes to convert spent LWR fuel into CANDU fuel, with no purposeful separation of isotopes from the fuel, and possessing a high degree of proliferation resistance. Between these two extremes are other advanced recycling options that offer particular advantages in exploiting the

  16. CANDU fuel-cycle vision

    International Nuclear Information System (INIS)

    Boczar, P.G

    1998-05-01

    The fuel-cycle path chosen by a particular country will depend on a range of local and global factors. The CANDU reactor provides the fuel-cycle flexibility to enable any country to optimize its fuel-cycle strategy to suit its own needs. AECL has developed the CANFLEX fuel bundle as the near-term carrier of advanced fuel cycles. A demonstration irradiation of 24 CANFLEX bundles in the Point Lepreau power station, and a full-scale critical heat flux (CHF) test in water are planned in 1998, before commercial implementation of CANFLEX fuelling. CANFLEX fuel provides a reduction in peak linear element ratings, and a significant enhancement in thermalhydraulic performance. Whereas natural uranium fuel provides many advantages, the use of slightly enriched uranium (SEU) in CANDU reactors offers even lower fuel-cycle costs and other benefits, such as uprating capability through flattening the channel power distribution across the core. Recycled uranium (RU) from reprocessing spent PWR fuel is a subset of SEU that has significant economic promise. AECL views the use of SEU/RU in the CANFLEX bundle as the first logical step from natural uranium. High neutron economy enables the use of low-fissile fuel in CANDU reactors, which opens up a spectrum of unique fuel-cycle opportunities that exploit the synergism between CANDU reactors and LWRs. At one end of this spectrum is the use of materials from conventional reprocessing: CANDU reactors can utilize the RU directly without reenrichment, the plutonium as conventional mixed-oxide (MOX) fuel, and the actinide waste mixed with plutonium in an inert-matrix carrier. At the other end of the spectrum is the DUPIC cycle, employing only thermal-mechanical processes to convert spent LWR fuel into CANDU fuel, with no purposeful separation of isotopes from the fuel, and possessing a high degree of proliferation resistance. Between these two extremes are other advanced recycling options that offer particular advantages in exploiting the

  17. Optimization of the fuel cycle

    International Nuclear Information System (INIS)

    Kidd, S.W.; Balu, K.; Boczar, P.G.; Krebs, W.D.

    1999-01-01

    The nuclear fuel cycle can be optimized subject to a wide range of criteria. Prime amongst these are economics, sustainability of resources, environmental aspects, and proliferation-resistance of the fuel cycle. Other specific national objectives will also be important. These criteria, and their relative importance, will vary from country to country, and with time. There is no single fuel cycle strategy that is optimal for all countries. Within the short term, the industry is attached to dominant thermal reactor technologies, which themselves have two main variants, a cycle closed by reprocessing of spent fuel and subsequent recycling and a once through one where spent fuel is stored in advance of geological disposal. However, even with current technologies, much can be done to optimize the fuel cycles to meet the relevant criteria. In the long term, resource sustainability can be assured for centuries through the use of fast breeder reactors, supporting high-conversion thermal reactors, possibly also utilizing the thorium cycle. These must, however, meet the other key criteria by being both economic and safe. (author)

  18. Fuel cycle management in Finland

    International Nuclear Information System (INIS)

    Vaeyrynen, H.; Mikkola, I.

    1987-01-01

    Both Finnish utilities producing nuclear power - Imatran Voima Oy (IVO) and Teollisuuden Voima Oy (Industrial Power Co. Ltd, TVO) - have created efficient fuel cycle management systems. The systems however differ in almost all respects. The reason is that the principal supplier for IVO is the Soviet Union and for TVO is Sweden. A common feature of both systems at the front end of the cycle is the building of stockpiles in order to provide for interruptions in fuel deliveries. Quality assurance supervision at the fuel factory for IVO is regulated by the Soviet Chamber of Commerce and Industry and a final control is made in Finland. The in-core fuel management is done by IVO using codes developed in Finland. The whole IVO fuel cycle is basically a leasing arrangement. The spent fuel is returned to the USSR after five years cooling. TVO carries out the in-core fuel management using a computer code system supplied by Asea-Atom. TVO is responsable for the back end of the cycle and makes preparations for the final disposal of the spent fuel in Finland. 6 refs., 2 figs

  19. Nuclear fuel cycle techniques

    International Nuclear Information System (INIS)

    Pecqueur, Michel; Taranger, Pierre

    1975-01-01

    The production of fuels for nuclear power plants involves five principal stages: prospecting of uranium deposits (on the ground, aerial, geochemical, geophysical, etc...); extraction and production of natural uranium from the deposits (U content of ores is not generally high and a chemical processing is necessary to obtain U concentrates); production of 235 U enriched uranium for plants utilizing this type of fuel (a description is given of the gaseous diffusion process widely used throughout the world and particularly in France); manufacture of suitable fuel elements for the different plants; reprocessing of spent fuels for the purpose of not only recovering the fissile materials but also disposing safely of the fission products and other wastes [fr

  20. Financing the nuclear fuel cycle

    International Nuclear Information System (INIS)

    Stephany, M.

    1975-01-01

    While conventional power stations usually have fossil fuel reserves for only a few weeks, nuclear power stations, because of the relatively long time required for uranium processing from ore extraction to the delivery of the fuel elements and their prolonged in-pile time, require fuel reserves for a period of several years. Although the specific fuel costs of nuclear power stations are much lower than those of conventional power stations, this results in consistently higher financial requirements. But the problems involved in financing the nuclear fuel do not only include the aspect of financing the requirements of reactor operators, but also of financing the facilities of the nuclear fuel cycle. As far as the fuel supply is concerned, the true financial requirements greatly exceed the mere purchasing costs because the costs of financing are rather high as a consequence of the long lead times. (orig./UA) [de

  1. Answering Key Fuel Cycle Questions

    International Nuclear Information System (INIS)

    Piet, S.J.; Dixon, B.W.; Bennett, R.G.; Smith, J.D.; Hill, R.N.

    2004-01-01

    Given the range of fuel cycle goals and criteria, and the wide range of fuel cycle options, how can the set of options eventually be narrowed in a transparent and justifiable fashion? It is impractical to develop all options. We suggest an approach that starts by considering a range of goals for the Advanced Fuel Cycle Initiative (AFCI) and then posits seven questions, such as whether Cs and Sr isotopes should be separated from spent fuel and, if so, what should be done with them. For each question, we consider which of the goals may be relevant to eventually providing answers. The AFCI program has both ''outcome'' and ''process'' goals because it must address both waste already accumulating as well as completing the fuel cycle in connection with advanced nuclear power plant concepts. The outcome objectives are waste geologic repository capacity and cost, energy security and sustainability, proliferation resistance, fuel cycle economics, and safety. The process objectives are rea diness to proceed and adaptability and robustness in the face of uncertainties

  2. Characteristics of fuel cycle waste

    International Nuclear Information System (INIS)

    Aquilina, C.A.; Everette, S.E.

    1982-01-01

    The Low-Level Waste Management System started in 1979 to describe and model the existing commercial low-level waste management system. The system description produced is based on the identification of the different elements making up both the fuel and non-fuel cycle and their relationships to each other. A systems model based on the system description can accurately reflect the flow of low-level waste from generator to disposal site and is only limited by the reliability of the information it uses. For both the fuel cycle and non-fuel cycle large quantities of information is required in order to allow the system to operate at its full potential. Work is ongoing to collect this information. Significant progress is being made in the fuel cycle area primarily because the majority of fuel cycle low-level radioactive waste is produced by commercial power reactor plant operations. The Low-Level Waste Management system is only beginning to derive the benefits to be obtained from an accurate low-level waste management information system. As data is verified and analyzed, results on a national as well as individual organization level will be gained. Comparisons to previous studies will be made. Accurate projections of waste volumes and activities to be produced, projected impacts of waste streams of treatment or management changes are only examples of information to be produced. 1 figure, 1 table

  3. Romanian nuclear fuel cycle development

    International Nuclear Information System (INIS)

    Rapeanu, S.N.; Comsa, Olivia

    1998-01-01

    Romanian decision to introduce nuclear power was based on the evaluation of electricity demand and supply as well as a domestic resources assessment. The option was the introduction of CANDU-PHWR through a license agreement with AECL Canada. The major factors in this choice have been the need of diversifying the energy resources, the improvement the national industry and the independence of foreign suppliers. Romanian Nuclear Power Program envisaged a large national participation in Cernavoda NPP completion, in the development of nuclear fuel cycle facilities and horizontal industry, in R and D and human resources. As consequence, important support was being given to development of industries involved in Nuclear Fuel Cycle and manufacturing of equipment and nuclear materials based on technology transfer, implementation of advanced design execution standards, QA procedures and current nuclear safety requirements at international level. Unit 1 of the first Romanian nuclear power plant, Cernavoda NPP with a final profile 5x700 Mw e, is now in operation and its production represents 10% of all national electricity production. There were also developed all stages of FRONT END of Nuclear Fuel Cycle as well as programs for spent fuel and waste management. Industrial facilities for uranian production, U 3 O 8 concentrate, UO 2 powder and CANDU fuel bundles, as well as heavy water plant, supply the required fuel and heavy water for Cernavoda NPP. The paper presents the Romanian activities in Nuclear Fuel Cycle and waste management fields. (authors)

  4. Evaluation gives the activity inventory the nuclear fuel irradiated and its radioactive waste

    International Nuclear Information System (INIS)

    Rodriguez Gual, Maritza

    1998-01-01

    The present work has as objectives to give a quantitative evaluation to the activity that possesses the nuclear fuel for 3,6% enrichment with a burnt one the 33 000 NWd/Tu proposed for the Juragua Nuclear Power Plant . In this work the method is used I calculate ORIGEN2. Obtained results are presented and they are compared with other calculations carried out in reactors type VVER-440

  5. Nuclear fuel cycle

    International Nuclear Information System (INIS)

    Niedrig, T.

    1987-01-01

    Nuclear fuel supply is viewed as a buyer's market of assured medium-term stability. Even on a long-term basis, no shortage is envisaged for all conceivable expansion schedules. The conversion and enrichment facilities developed since the mid-seventies have done much to stabilize the market, owing to the fact that one-sided political decisions by the USA can be counteracted efficiently. In view of the uncertainties concerning realistic nuclear waste management strategies, thermal recycling and mixed oxide fuel elements might increase their market share in the future. Capacities are being planned accordingly. (orig.) [de

  6. Fuel cycle developments

    International Nuclear Information System (INIS)

    Anon.

    1994-01-01

    This article is a review of the end-of-1994 status of world uranium production and fuels processing. The major producing areas/countries of the world are discussed and the production figures for each area/country are provided. The conversion services market is also discussed, as is the enrichment services market. Each of the major enrichment services provider organizations is noted

  7. Nuclear fuel cycle studies

    International Nuclear Information System (INIS)

    Anon.

    1980-01-01

    For the metal-matrix encapsulation of radioactive waste, brittle-fracture, leach-rate, and migration studies are being conducted. For fuel reprocessing, annular and centrifugal contactors are being tested and modeled. For the LWBR proof-of-breeding project, the full-scale shear and the prototype dissolver were procured and tested. 5 figures

  8. Fuel cycle cost uncertainty from nuclear fuel cycle comparison

    International Nuclear Information System (INIS)

    Li, J.; McNelis, D.; Yim, M.S.

    2013-01-01

    This paper examined the uncertainty in fuel cycle cost (FCC) calculation by considering both model and parameter uncertainty. Four different fuel cycle options were compared in the analysis including the once-through cycle (OT), the DUPIC cycle, the MOX cycle and a closed fuel cycle with fast reactors (FR). The model uncertainty was addressed by using three different FCC modeling approaches with and without the time value of money consideration. The relative ratios of FCC in comparison to OT did not change much by using different modeling approaches. This observation was consistent with the results of the sensitivity study for the discount rate. Two different sets of data with uncertainty range of unit costs were used to address the parameter uncertainty of the FCC calculation. The sensitivity study showed that the dominating contributor to the total variance of FCC is the uranium price. In general, the FCC of OT was found to be the lowest followed by FR, MOX, and DUPIC. But depending on the uranium price, the FR cycle was found to have lower FCC over OT. The reprocessing cost was also found to have a major impact on FCC

  9. IAEA activities on nuclear fuel cycle 1997

    International Nuclear Information System (INIS)

    Oi, N.

    1997-01-01

    The presentation discussing the IAEA activities on nuclear fuel cycle reviews the following issues: organizational charts of IAEA, division of nuclear power and the fuel cycle, nuclear fuel cycle and materials section; 1997 budget estimates; budget trends; the nuclear fuel cycle programme

  10. IAEA activities on nuclear fuel cycle 1997

    Energy Technology Data Exchange (ETDEWEB)

    Oi, N [International Atomic Energy Agency, Vienna (Austria). Nuclear Fuel Cycle and Materials Section

    1997-12-01

    The presentation discussing the IAEA activities on nuclear fuel cycle reviews the following issues: organizational charts of IAEA, division of nuclear power and the fuel cycle, nuclear fuel cycle and materials section; 1997 budget estimates; budget trends; the nuclear fuel cycle programme.

  11. Advanced Fuel Cycle Cost Basis

    Energy Technology Data Exchange (ETDEWEB)

    D. E. Shropshire; K. A. Williams; W. B. Boore; J. D. Smith; B. W. Dixon; M. Dunzik-Gougar; R. D. Adams; D. Gombert; E. Schneider

    2009-12-01

    This report, commissioned by the U.S. Department of Energy (DOE), provides a comprehensive set of cost data supporting a cost analysis for the relative economic comparison of options for use in the Advanced Fuel Cycle Initiative (AFCI) Program. The report describes the AFCI cost basis development process, reference information on AFCI cost modules, a procedure for estimating fuel cycle costs, economic evaluation guidelines, and a discussion on the integration of cost data into economic computer models. This report contains reference cost data for 25 cost modules—23 fuel cycle cost modules and 2 reactor modules. The cost modules were developed in the areas of natural uranium mining and milling, conversion, enrichment, depleted uranium disposition, fuel fabrication, interim spent fuel storage, reprocessing, waste conditioning, spent nuclear fuel (SNF) packaging, long-term monitored retrievable storage, near surface disposal of low-level waste (LLW), geologic repository and other disposal concepts, and transportation processes for nuclear fuel, LLW, SNF, transuranic, and high-level waste.

  12. Advanced Fuel Cycle Cost Basis

    Energy Technology Data Exchange (ETDEWEB)

    D. E. Shropshire; K. A. Williams; W. B. Boore; J. D. Smith; B. W. Dixon; M. Dunzik-Gougar; R. D. Adams; D. Gombert

    2007-04-01

    This report, commissioned by the U.S. Department of Energy (DOE), provides a comprehensive set of cost data supporting a cost analysis for the relative economic comparison of options for use in the Advanced Fuel Cycle Initiative (AFCI) Program. The report describes the AFCI cost basis development process, reference information on AFCI cost modules, a procedure for estimating fuel cycle costs, economic evaluation guidelines, and a discussion on the integration of cost data into economic computer models. This report contains reference cost data for 26 cost modules—24 fuel cycle cost modules and 2 reactor modules. The cost modules were developed in the areas of natural uranium mining and milling, conversion, enrichment, depleted uranium disposition, fuel fabrication, interim spent fuel storage, reprocessing, waste conditioning, spent nuclear fuel (SNF) packaging, long-term monitored retrievable storage, near surface disposal of low-level waste (LLW), geologic repository and other disposal concepts, and transportation processes for nuclear fuel, LLW, SNF, and high-level waste.

  13. Advanced Fuel Cycle Cost Basis

    Energy Technology Data Exchange (ETDEWEB)

    D. E. Shropshire; K. A. Williams; W. B. Boore; J. D. Smith; B. W. Dixon; M. Dunzik-Gougar; R. D. Adams; D. Gombert; E. Schneider

    2008-03-01

    This report, commissioned by the U.S. Department of Energy (DOE), provides a comprehensive set of cost data supporting a cost analysis for the relative economic comparison of options for use in the Advanced Fuel Cycle Initiative (AFCI) Program. The report describes the AFCI cost basis development process, reference information on AFCI cost modules, a procedure for estimating fuel cycle costs, economic evaluation guidelines, and a discussion on the integration of cost data into economic computer models. This report contains reference cost data for 25 cost modules—23 fuel cycle cost modules and 2 reactor modules. The cost modules were developed in the areas of natural uranium mining and milling, conversion, enrichment, depleted uranium disposition, fuel fabrication, interim spent fuel storage, reprocessing, waste conditioning, spent nuclear fuel (SNF) packaging, long-term monitored retrievable storage, near surface disposal of low-level waste (LLW), geologic repository and other disposal concepts, and transportation processes for nuclear fuel, LLW, SNF, transuranic, and high-level waste.

  14. Rapsodie: A closed fuel cycle

    International Nuclear Information System (INIS)

    Levallet, E.H.; Costa, L.; Mougniot, J.C.; Robin, J.

    1977-01-01

    The Fortissimo Version of the core of the RAPSODIE fast reactor produces 40 MWTh. Since its start up in May 1970 in the CEN-CADARACHE its availability has stayed around 85%. Some of the mixed oxyde fuel pins UO 2 - 30% PuO 2 have already reached 150.000 MWd/t. The reprocessing is done in the pilot plant located in the La Hague Center and the plutonium obtained has already been re-used in the reactor. The Rapsodie-Fortissimo cycle is therefore now a closed cycle. This cycle is quite representative of fast reactor cycle characteristics and thus provides a remarkable research and development tool for the study of fabrication, in-reactor performances, transport, storage and reprocessing. These studies concern in particular the evolution of fission products and heavy isotopes content in fuel which controls both reprocessing schemes and intensity of emitted radiations. A program for the analysis of irradiated fuel has been developed either using samples collected all along the cycle, or following the actual reprocessing subassemblies. A set of basic data and calculation models has been established with two objectives: to give a better interpretation of the experimental program on one hand, and to extrapolate these results to the fuel cycle of fast reactors in general on the other hand. The first results have been quite encouraging up to now [fr

  15. Fuel cycle kinetics

    International Nuclear Information System (INIS)

    Maudlin, P.J.

    1979-01-01

    A theoretical methodology describing the time dependent growth of large populations of nuclear power reactors of different types is pursued. This methodology is based on the apparent close analogy between the time dependent variations of neutrons and of fuel in nuclear reactors. Methods for the realistic projection of reactor populations, as they develop in a reactor park, are provided using the point park model as kernel in a superposition of reactor deployment elements that form a realistic park scenario. Typical deployment strategy results are presented illustrating the theoretical and computational advantages of the point park model methodology

  16. Fuel cycle math - part two

    International Nuclear Information System (INIS)

    Anon.

    1992-01-01

    This article is Part 2 of a two part series on simple mathematics associated with the nuclear fuel cycle. While not addressing any of the financial aspects of the fuel cycle, this article does discuss the following: conversion between English and metric systems; uranium content expressed in equivalent forms, such as U3O8, and the method of determining these equivalencies; the uranium conversion process, considering different input and output compounds; and the enrichment process, including feed, tails, and product assays, as well as SWU and feed requirements

  17. Fuel reliability experience in Finland

    International Nuclear Information System (INIS)

    Kekkonen, L.

    2015-01-01

    Four nuclear reactors have operated in Finland now for 35-38 years. The two VVER-440 units at Loviisa Nuclear Power Plant are operated by Fortum and two BWR’s in Olkiluoto are operated by Teollisuuden Voima Oyj (TVO). The fuel reliability experience of the four reactors operating currently in Finland has been very good and the fuel failure rates have been very low. Systematic inspection of spent fuel assemblies, and especially all failed assemblies, is a good practice that is employed in Finland in order to improve fuel reliability and operational safety. Investigation of the root cause of fuel failures is important in developing ways to prevent similar failures in the future. The operational and fuel reliability experience at the Loviisa Nuclear Power Plant has been reported also earlier in the international seminars on WWER Fuel Performance, Modelling and Experimental Support. In this paper the information on fuel reliability experience at Loviisa NPP is updated and also a short summary of the fuel reliability experience at Olkiluoto NPP is given. Keywords: VVER-440, fuel reliability, operational experience, poolside inspections, fuel failure identification. (author)

  18. Fuel and fuel cycles with high burnup for WWER reactors

    International Nuclear Information System (INIS)

    Chernushev, V.; Sokolov, F.

    2002-01-01

    The paper discusses the status and trends in development of nuclear fuel and fuel cycles for WWER reactors. Parameters and main stages of implementation of new fuel cycles will be presented. At present, these new fuel cycles are offered to NPPs. Development of new fuel and fuel cycles based on the following principles: profiling fuel enrichment in a cross section of fuel assemblies; increase of average fuel enrichment in fuel assemblies; use of refuelling schemes with lower neutron leakage ('in-in-out'); use of integrated fuel gadolinium-based burnable absorber (for a five-year fuel cycle); increase of fuel burnup in fuel assemblies; improving the neutron balance by using structural materials with low neutron absorption; use of zirconium alloy claddings which are highly resistant to irradiation and corrosion. The paper also presents the results of fuel operation. (author)

  19. Fuel cycle and quality control

    International Nuclear Information System (INIS)

    Stoll, W.

    1979-01-01

    The volume of the fuel cycle is described in its economic importance and its through put, as it is envisaged for the Federal Republic of Germany. Definitions are given for quality continuing usefulness of an object and translated into quality criteria. Requirements on performance of fuel elements are defined. The way in which experimental results are translated into mass production of fuel rods, is described. The economic potential for further quality effort is derived. Future ways of development for quality control organisation and structure are outlined. (Auth.)

  20. The future fuel cycle plants

    International Nuclear Information System (INIS)

    Paret, L.; Touron, E.

    2016-01-01

    The future fuel cycle plants will have to cope with both the fuel for PWR and the fuel for the new generation of fast reactors. Furthermore, the MOX fuel, that is not recycled in PWR reactors will have the possibility to be recycled in fast reactors of 4. generation. Recycling MOX fuels will imply to handle nuclear fuels with higher concentration of Pu than today. The design of the nuclear fuel for the future fast reactors will be similar to that of the Astrid prototype. In order to simplify the fabrication of UPuO_2 pellets, all the fabrication process will take place in a dedicated glove box. Enhanced reality and virtual reality technologies have been used to optimize the glove-box design in order to have a better recovery of radioactive dust and to ease routine operations and its future dismantling. As a fuel assembly will contain 120 kg of UPuO_2 fuel, it will no longer be possible to mount these assemblies by hand contrary to what was done for Superphenix reactor. A new shielded mounting line has to be designed. Another point is that additive manufacturing for the fabrication of very small parts with a complex design will be broadly used. (A.C.)

  1. Rolls-Royce successful modernization of safety-critical Instrumentation and Control (I and C) equipment at the Dukovany VVER 440/213 Nuclear Power Plant, based on SPINLINE 3 platform

    International Nuclear Information System (INIS)

    Rebreyend, P.; Burel, J.P.; Spoc, J.; Karasek, A.

    2010-01-01

    Rolls-Royce has provided on-time delivery of a substantial safety-critical I and C overhaul for four Nuclear reactors operated by Czech Republic utility, CEZ a.s. This nine-year project is considered to be one of the largest I and C modernization projects in the world. The Dukovany VVER 440 I and C modernization project and its key success factors are profiled in this paper. The project is in the final stages with the last unit to be completed in 2009. Beginning in September 2000, the project is in compliance with the initial schedule. Rolls-Royce has been designing and manufacturing I and C solutions dedicated to the implementation of safety and safety-related functions in nuclear power plants (NPPs) for more than 30 years. Though the early solutions were non-software-based, since 1984 software-based solutions for safety I and C functions have been deployed in operating NPPs across France and 15 other countries. The Rolls-Royce platform is suitable for implementation of safety I and C functions in new NPPs, as well as in the modernization of safety equipment in existing plants. CEZ a.s. is a major electricity supplier for the national grid. At Dukovany, CEZ a.s. operates four units of VVER-440/213-type reactors producing one quarter of CEZ a.s. electricity production. The first of these units was connected to the grid in 1985. Since the year 2000, the nine-year modernization program has been underway at Dukovany, at a cost of more than 200 million Euros. The equipment replacement was implemented during regular, planned outages of the original equipment and systems. After an international bidding phase, CEZ a.s. awarded a contract to Skoda JS for general engineering and project management. Individual subcontracts were then signed between Skoda JS and a consortium between Rolls-Royce and Areva for modernization of the safety systems, including the Reactor Protection System (RPS), the Reactor Control System (RCS), and the Post-Accident Monitoring System (PAMS). Two

  2. Modeling the Nuclear Fuel Cycle

    International Nuclear Information System (INIS)

    Jacobson, Jacob J.; Dunzik-Gougar, Mary Lou; Juchau, Christopher A.

    2010-01-01

    A review of existing nuclear fuel cycle systems analysis codes was performed to determine if any existing codes meet technical and functional requirements defined for a U.S. national program supporting the global and domestic assessment, development and deployment of nuclear energy systems. The program would be implemented using an interconnected architecture of different codes ranging from the fuel cycle analysis code, which is the subject of the review, to fundamental physical and mechanistic codes. Four main functions are defined for the code: (1) the ability to characterize and deploy individual fuel cycle facilities and reactors in a simulation, while discretely tracking material movements, (2) the capability to perform an uncertainty analysis for each element of the fuel cycle and an aggregate uncertainty analysis, (3) the inclusion of an optimization engine able to optimize simultaneously across multiple objective functions, and (4) open and accessible code software and documentation to aid in collaboration between multiple entities and facilitate software updates. Existing codes, categorized as annualized or discrete fuel tracking codes, were assessed according to the four functions and associated requirements. These codes were developed by various government, education and industrial entities to fulfill particular needs. In some cases, decisions were made during code development to limit the level of detail included in a code to ease its use or to focus on certain aspects of a fuel cycle to address specific questions. The review revealed that while no two of the codes are identical, they all perform many of the same basic functions. No code was able to perform defined function 2 or several requirements of functions 1 and 3. Based on this review, it was concluded that the functions and requirements will be met only with development of a new code, referred to as GENIUS.

  3. Fuel cycle economics of HTRs

    Energy Technology Data Exchange (ETDEWEB)

    Hansen, U.

    1975-06-15

    The High Temperature Reactor commands a unique fuel cycle flexibility and alternative options are open to the utilities. The reference thorium reactor operating in the U-233 recycle mode is 10 to 20% cheaper than the low-enriched reactor; however, the thorium cycle depends on the supply of 93% enriched uranium and the availability of reprocessing and refabrication facilities to utilize its bred fissile material. The economic landscape towards the end of the 20th Century will presumably be dominated by pronounced increases in the costs of natural resources. In the case of nuclear energy, resource considerations are reflected in the price of uranium, which is expected Lo have reached 50 $/lbm U3O8 in the early 1990s and around 100 $/lbm U3O8 around 2010. In this economic environment the fuel cycle advantage of the thorium system amounts to some 20% and is capable of absorbing substantial expenses in bringing about the closing of the out-of-pile cycle. A most attractive aspect of the HTR fuel cycle flexibility is for the utility to start operating the reactor on the low enriched uranium cycle and at a later date switch over to the thorium cycle as this becomes economically more and more attractive. The incentive amounts to some 50 M$ in terms of present worth money at the time of decision making, assumed to take place 10 years after start-up. The closing of the thorium cycle is of paramount importance and a step to realize this objective lies in simplifying the head-end reprocessing technology by abandoning the segregation concept of feed and breed coated particles in the reference cycle. A one-coated-particle scheme in which all discharged uranium isotopes are recycled in mixed oxide particles is feasible and suffers a very minor economic penalty only.

  4. Nuclear fuel cycle. V. 1

    International Nuclear Information System (INIS)

    1983-01-01

    Nuclear fuel cycle information in the main countries that develop, supply or use nuclear energy is presented. Data about Japan, FRG, United Kingdom, France and Canada are included. The information is presented in a tree-like graphic way. (C.S.A.) [pt

  5. Nuclear Fuel Cycle Introductory Concepts

    Energy Technology Data Exchange (ETDEWEB)

    Karpius, Peter Joseph [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-02-02

    The nuclear fuel cycle is a complex entity, with many stages and possibilities, encompassing natural resources, energy, science, commerce, and security, involving a host of nations around the world. This overview describes the process for generating nuclear power using fissionable nuclei.

  6. Nuclear Fuel Cycle Introductory Concepts

    International Nuclear Information System (INIS)

    Karpius, Peter Joseph

    2017-01-01

    The nuclear fuel cycle is a complex entity, with many stages and possibilities, encompassing natural resources, energy, science, commerce, and security, involving a host of nations around the world. This overview describes the process for generating nuclear power using fissionable nuclei.

  7. Some thorium fuel cycle strategies

    International Nuclear Information System (INIS)

    Duret, M.F.; Hatton, H.

    1979-02-01

    The report deals with the problem of introducing an advanced nuclear fuel cycle based on thorium in Canada. It is pointed out that timing and introduction rate are important considerations, certain choices of these variables leading to undesirable business fluctuations in some of the industries involved in the production of nuclear energy. (author)

  8. Nuclear fuel cycle. V. 2

    International Nuclear Information System (INIS)

    1984-01-01

    Nuclear fuel cycle information in some countries that develop, supply or use nuclear energy is presented. Data about Argentina, Australia, Belgium, Netherlands, Italy, Denmarmark, Norway, Sweden, Switzerland, Finland, Spain and India are included. The information is presented in a tree-like graphic way. (C.S.A.) [pt

  9. The in-core fuel management code system for VVER reactors

    International Nuclear Information System (INIS)

    Cada, R.; Krysl, V.; Mikolas, P.; Sustek, J.; Svarny, J.

    2004-01-01

    The structure and methodology of a fuel management system for NPP VVER 1000 (NPP Temelin) and VVER 440 (NPP Dukovany) is described. It is under development in SKODA JS a.s. and is followed by practical applications. The general objectives of the system are maximization of end of cycle reactivity, the minimization of fresh fuel inventory for the minimization of fed enrichment and minimization of burnable poisons (BPs) inventory. They are also safety related constraints in witch minimization of power peaking plays a dominant role. General structure of the system consists in preparation of input data for macrocode calculation, algorithms (codes) for optimization of fuel loading, calculation of fuel enrichment and BPs assignment. At present core loading can be calculated (optimized) by Tabu search algorithm (code ATHENA), genetic algorithm (code Gen1) and hybrid algorithm - simplex procedure with application of Tabu search algorithm on binary shuffling (code OPAL B ). Enrichment search is realized by the application of simplex algorithm (OPAL B code) and BPs assignment by module BPASS and simplex algorithm in OPAL B code. Calculations of the real core loadings are presented and a comparison of different optimization methods is provided. (author)

  10. Fuel cycles for the 80's

    International Nuclear Information System (INIS)

    1980-01-01

    Papers presented at the American Nuclear Society's topical meeting on the fuel cycle are summarized. Present progress and goals in the areas of fuel fabrication, fuel reprocessing, spent fuel storage, accountability, and safeguards are reported. Present governmental policies which affect the fuel cycle are also discussed. Individual presentations are processed for inclusion in the Energy Data Base

  11. Economic evaluation of fast reactor fuel cycling

    International Nuclear Information System (INIS)

    Hu Ping; Zhao Fuyu; Yan Zhou; Li Chong

    2012-01-01

    Economic calculation and analysis of two kinds of nuclear fuel cycle are conducted by check off method, based on the nuclear fuel cycling process and model for fast reactor power plant, and comparison is carried out for the economy of fast reactor fuel cycle and PWR once-through fuel cycle. Calculated based on the current price level, the economy of PWR one-through fuel cycle is better than that of the fast reactor fuel cycle. However, in the long term considering the rising of the natural uranium's price and the development of the post treatment technology for nuclear fuels, the cost of the fast reactor fuel cycle is expected to match or lower than that of the PWR once-through fuel cycle. (authors)

  12. Regulation at nuclear fuel cycle

    International Nuclear Information System (INIS)

    2002-01-01

    This bulletin contains information about activities of the Nuclear Regulatory Authority of the Slovak Republic (UJD). In this leaflet the role of the UJD in regulation at nuclear fuel cycle is presented. The Nuclear Fuel Cycle (NFC) is a complex of activities linked with production of nuclear fuel for nuclear reactors as a source of energy used for production of electricity and heat, and of activities linked with spent nuclear fuel handling. Activities linked with nuclear fuel (NF) production, known as the Front-End of Nuclear Fuel Cycle, include (production of nuclear fuel from uranium as the most frequently used element). After discharging spent nuclear fuel (SNF) from nuclear reactor the activities follow linked with its storage, reprocessing and disposal known as the Back-End of Nuclear Fuel Cycle. Individual activity, which penetrates throughout the NFC, is transport of nuclear materials various forms during NF production and transport of NF and SNF. Nuclear reactors are installed in the Slovak Republic only in commercial nuclear power plants and the NFC is of the open type is imported from abroad and SNF is long-term supposed without reprocessing. The main mission of the area of NFC is supervision over: - assurance of nuclear safety throughout all NFC activities; - observance of provisions of the Treaty on Non-Proliferation of Nuclear Weapons during nuclear material handling; with an aim to prevent leakage of radioactive substances into environment (including deliberated danage of NFC sensitive facilities and misuse of nuclear materials to production of nuclear weapons. The UJD carries out this mission through: - assessment of safety documentation submitted by operators of nuclear installations at which nuclear material, NF and SNF is handled; - inspections concentrated on assurance of compliance of real conditions in NFC, i.e. storage and transport of NF and SNF; storage, transport and disposal of wastes from processing of SNF; with assumptions of the safety

  13. Nuclear reactors and fuel cycle

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2014-07-01

    fulfill its mission that is to contribute in improving the quality of life of the Brazilian people. The nuclear fuel cycle is a series of steps involved in the production and use of fuel for nuclear reactors. The Laboratories of Chemistry and Environmental Diagnosis Center, CQMA, support the demand of Nuclear Fuel Cycle Program providing chemical characterization of uranium compounds and other related materials. In this period the Research Reactor Center (CRPq) concentrated efforts on improving equipment and systems to enable the IEA-R1 research reactor to operate at higher power, increasing the capacity of radioisotopes production, samples irradiation, tests and experiments. (author)

  14. Nuclear reactors and fuel cycle

    International Nuclear Information System (INIS)

    2014-01-01

    to contribute in improving the quality of life of the Brazilian people. The nuclear fuel cycle is a series of steps involved in the production and use of fuel for nuclear reactors. The Laboratories of Chemistry and Environmental Diagnosis Center, CQMA, support the demand of Nuclear Fuel Cycle Program providing chemical characterization of uranium compounds and other related materials. In this period the Research Reactor Center (CRPq) concentrated efforts on improving equipment and systems to enable the IEA-R1 research reactor to operate at higher power, increasing the capacity of radioisotopes production, samples irradiation, tests and experiments. (author)

  15. The benefits of longer fuel cycle lengths

    International Nuclear Information System (INIS)

    Kesler, D.C.

    1986-01-01

    Longer fuel cycle lengths have been found to increase generation and improve outage management. A study at Duke Power Company has shown that longer fuel cycles offer both increased scheduling flexibility and increased capacity factors

  16. Fuel cycle problems in fusion reactors

    International Nuclear Information System (INIS)

    Hickman, R.G.

    1976-01-01

    Fuel cycle problems of fusion reactors evolve around the breeding, recovery, containment, and recycling of tritium. These processes are described, and their implications and alternatives are discussed. Technically, fuel cycle problems are solvable; economically, their feasibility is not yet known

  17. Fuel cycle math - part one

    International Nuclear Information System (INIS)

    Anon.

    1992-01-01

    This article is Part One of a two-part article that reviews some of the numbers associated with the nuclear fuel cycle. The contents of Part One include: composition of the element uranium, considering atomic mass and weight-percent of the isotopes; uranium in the ground, including ore grades; mining, with dilution factors and recovery rates; ore sorting, including concentration factors; and uranium recovery. No financial information is presented in either Part One or Part Two

  18. Nuclear power and its fuel cycle

    International Nuclear Information System (INIS)

    Wymer, R.G.

    1986-01-01

    A series of viewgraphs describes the nuclear fuel cycle and nuclear power, covering reactor types, sources of uranium, enrichment of uranium, fuel fabrication, transportation, fuel reprocessing, and radioactive wastes

  19. Aspects of the fast reactors fuel cycle

    International Nuclear Information System (INIS)

    Zouain, D.M.

    1982-06-01

    The fuel cycle for fast reactors, is analysed, regarding the technical aspects of the developing of the reprocessing stages and the fuel fabrication. The environmental impact of LMFBRs and the waste management of this cycle are studied. The economic aspects of the fuel cycle, are studied too. Some coments about the Brazilian fast reactors programs are done. (E.G.) [pt

  20. Spent fuel transport in fuel cycle

    International Nuclear Information System (INIS)

    Labrousse, M.

    1977-01-01

    The transport of radioactive substances is a minor part of the fuel cycle because the quantities of matter involved are very small. However the length and complexity of the cycle, the weight of the packing, the respective distances between stations, enrichment plants and reprocessing plants are such that the problem is not negligible. In addition these transports have considerable psychological importance. The most interesting is spent fuel transport which requires exceptionally efficient packaging, especially where thermal and mechanical resistance are concerned. To meet the safety criteria necessary for the protection of both public and users it was decided to use the maximum capacity consistent with rail transport and to avoid coolant fluids under pressure. Since no single type of packing is suitable for all existing stations an effort has been made to standardise handling accessories, and future trands are towards maximum automation. A discussion on the various technical solutions available for the construction of these packing systems is followed by a description of those used for the two types of packaging ordered by COGEMA [fr

  1. Homogeneous Thorium Fuel Cycles in Candu Reactors

    Energy Technology Data Exchange (ETDEWEB)

    Hyland, B.; Dyck, G.R.; Edwards, G.W.R.; Magill, M. [Chalk River Laboratories, Atomic Energy of Canada Limited (Canada)

    2009-06-15

    The CANDU{sup R} reactor has an unsurpassed degree of fuel-cycle flexibility, as a consequence of its fuel-channel design, excellent neutron economy, on-power refueling, and simple fuel bundle [1]. These features facilitate the introduction and full exploitation of thorium fuel cycles in Candu reactors in an evolutionary fashion. Because thorium itself does not contain a fissile isotope, neutrons must be provided by adding a fissile material, either within or outside of the thorium-based fuel. Those same Candu features that provide fuel-cycle flexibility also make possible many thorium fuel-cycle options. Various thorium fuel cycles can be categorized by the type and geometry of the added fissile material. The simplest of these fuel cycles are based on homogeneous thorium fuel designs, where the fissile material is mixed uniformly with the fertile thorium. These fuel cycles can be competitive in resource utilization with the best uranium-based fuel cycles, while building up a 'mine' of U-233 in the spent fuel, for possible recycle in thermal reactors. When U-233 is recycled from the spent fuel, thorium-based fuel cycles in Candu reactors can provide substantial improvements in the efficiency of energy production from existing fissile resources. The fissile component driving the initial fuel could be enriched uranium, plutonium, or uranium-233. Many different thorium fuel cycle options have been studied at AECL [2,3]. This paper presents the results of recent homogeneous thorium fuel cycle calculations using plutonium and enriched uranium as driver fuels, with and without U-233 recycle. High and low burnup cases have been investigated for both the once-through and U-233 recycle cases. CANDU{sup R} is a registered trademark of Atomic Energy of Canada Limited (AECL). 1. Boczar, P.G. 'Candu Fuel-Cycle Vision', Presented at IAEA Technical Committee Meeting on 'Fuel Cycle Options for LWRs and HWRs', 1998 April 28 - May 01, also Atomic Energy

  2. Advanced Fuel Cycle Economic Sensitivity Analysis

    Energy Technology Data Exchange (ETDEWEB)

    David Shropshire; Kent Williams; J.D. Smith; Brent Boore

    2006-12-01

    A fuel cycle economic analysis was performed on four fuel cycles to provide a baseline for initial cost comparison using the Gen IV Economic Modeling Work Group G4 ECON spreadsheet model, Decision Programming Language software, the 2006 Advanced Fuel Cycle Cost Basis report, industry cost data, international papers, the nuclear power related cost study from MIT, Harvard, and the University of Chicago. The analysis developed and compared the fuel cycle cost component of the total cost of energy for a wide range of fuel cycles including: once through, thermal with fast recycle, continuous fast recycle, and thermal recycle.

  3. Benefits of barrier fuel on fuel cycle economics

    International Nuclear Information System (INIS)

    Crowther, R.L.; Kunz, C.L.

    1988-01-01

    Barrier fuel rod cladding was developed to eliminate fuel rod failures from pellet/cladding stress/corrosion interaction and to eliminate the associated need to restrict the rate at which fuel rod power can be increased. The performance of barrier cladding has been demonstrated through extensive testing and through production application to many boiling water reactors (BWRs). Power reactor data have shown that barrier fuel rod cladding has a significant beneficial effect on plant capacity factor and plant operating costs and significantly increases fuel reliability. Independent of the fuel reliability benefit, it is less obvious that barrier fuel has a beneficial effect of fuel cycle costs, since barrier cladding is more costly to fabricate. Evaluations, measurements, and development activities, however, have shown that the fuel cycle cost benefits of barrier fuel are large. This paper is a summary of development activities that have shown that application of barrier fuel significantly reduces BWR fuel cycle costs

  4. Feasibility study on tandem fuel cycle

    International Nuclear Information System (INIS)

    Han, P.S.; Suh, I.S.; Rim, C.S.; Kim, B.K.; Suh, K.S.; Ro, S.K.; Juhn, P.I.; Kim, S.Y.

    1983-01-01

    The objective of this feasibility study is to review and assess the current state of technology concerning the tandem fuel cycle. Based on the results from this study, a long-term development plan suitable for Korea has been proposed for this cycle, i.e., the PWR → CANDU tandem fuel cycle which used plutonium and uranium, recovered from spent PWR fuel by co-processing, as fuel material for CANDU reactors. (Author)

  5. Introductory remarks about the international fuel cycle

    International Nuclear Information System (INIS)

    Wolfe, B.

    1989-01-01

    The reason why nuclear power has promise is because of the promise of its fuel cycle. The fuel cycle is in fairly good shape and has demonstrated the characteristics of good economics, good general characterization, and good maintenance of the various parts of the fuel cycle. The thermal recycling of fuel is an area in which the economics have changed to the point that, at least in many parts of the world, it's no longer economical

  6. Thorium nuclear fuel cycle technology

    International Nuclear Information System (INIS)

    Eom, Tae Yoon; Do, Jae Bum; Choi, Yoon Dong; Park, Kyoung Kyum; Choi, In Kyu; Lee, Jae Won; Song, Woong Sup; Kim, Heong Woo

    1998-03-01

    Since thorium produces relatively small amount of TRU elements after irradiation in the reactor, it is considered one of possible media to mix with the elements to be transmuted. Both solid and molten-salt thorium fuel cycles were investigated. Transmutation concepts being studied involved fast breeder reactor, accelerator-driven subcritical reactor, and energy amplifier with thorium. Long-lived radionuclides, especially TRU elements, could be separated from spent fuel by a pyrochemical process which is evaluated to be proliferation resistance. Pyrochemical processes of IFR, MSRE and ATW were reviewed and evaluated in detail, regarding technological feasibility, compatibility of thorium with TRU, proliferation resistance, their economy and safety. (author). 26 refs., 22 figs

  7. The DUPIC alternative for backend fuel cycle

    International Nuclear Information System (INIS)

    Lee, J.S.; Yang, M.S.; Park, H.S.; Boczar, P.; Sullivan, J.; Gadsby, R.D.

    1997-01-01

    The DUPIC fuel cycle was conceived as an alternative to the conventional fuel cycle backed options, with a view to multiple benefits expectable from burning spent PWR fuel again in CANDU reactors. It is based on the basic idea that the bulk of spent PWR fuel can be directly refabricated into a reusable fuel for CANDU of which high efficiency in neutron utilization would exhaustively burn the fissile remnants in the spent PWR fuel to a level below that of natural uranium. Such ''burn again'' strategy of the DUPIC fuel cycle implies that the spent PWR fuel will become CANDU fuel of higher burnup with relevant benefits such as spent PWR fuel disposition, saving of natural uranium fuel, etc. A salient feature of the DUPIC fuel cycle is neither the fissile content nor the bulk radioactivity is separated from the DUPIC mass flow which must be contained and shielded all along the cycle. This feature can be considered as a factor of proliferation resistance by deterrence against access to sensitive materials. It means also the requirement for remote systems technologies for DUPIC fuel operation. The conflicting aspects between better safeguardability and harder engineering problems of the radioactive fuel operation may be the important reason why the decades' old concept, since INFCE, of ''hot'' fuel cycle has not been pursued with much progress. In this context, the DUPIC fuel cycle could be a live example for development of proliferation resistant fuel cycle. As the DUPIC fuel cycle looks for synergism of fuel linkage from PWR to CANDU (or in broader sense LWR to HWR), Korea occupies a best position for DUPIC exercise with her unique strategy of reactor mix of both reactor types. But the DUPIC benefits can be extended to global bonus, expectable from successful development of the technology. (author)

  8. Economic aspects of Dukovany NPP fuel cycle

    International Nuclear Information System (INIS)

    Vesely, P.; Borovicka, M.

    2001-01-01

    The paper discusses some aspects of high burnup program implementation at Dukovany NPP and its influence on the fuel cycle costs. Dukovany internal fuel cycle is originally designed as a three years cycle of the Out-In-In fuel reloading patterns. These reloads are not only uneconomical but they additionally increased the radiation load of the reactor pressure vessel due to high neutron leakage typical for Out-In-In loading pattern. To avoid the high neutron leakage from the core a transition to 4-year fuel cycle is started in 1987. The neutron leakage from the core is sequentially decreased by insertion of older fuel assemblies at the core periphery. Other developments in fuel cycle are: 1) increasing of enrichment in control assemblies (3.6% of U-235); 2) improvement in fuel assembly design (reduce the assembly shroud thickness from 2.1 to 1.6 mm); 3) introduction of Zr spacer grid instead of stainless steel; 4) introduction of new type of assembly with profiled enrichment with average value of 3.82%. Due to increased reactivity of the new assemblies the transition to the partial 5-year fuel cycle is required. Typical fuel loading pattern for 3, 3.5, 4 and 5-year cycles are shown in the presented paper. An evaluation of fuel cost is also discussed by using comparative analysis of different fuel cycle options. The analysis shows that introduction of the high burnup program has decrease relative fuel cycle costs

  9. Economic comparison of fusion fuel cycles

    International Nuclear Information System (INIS)

    Brereton, S.J.; Kazimi, M.S.

    1987-01-01

    The economics of the DT, DD, and DHe fusion fuel cycles are evaluated by comparison on a consistent basis. The designs for the comparison employ HT-9 structure and helium coolant; liquid lithium is used as the tritium breeding material for the DT fuel cycle. The reactors are pulsed, superconducting tokamaks, producing 1200 MW of electric power. The DT and DD designs scan a range of values of plasma beta, assuming first stability scaling laws. The results indicate that on a purely economic basis, the DT fuel cycle is superior to both of the advanced fuel cycles. Geometric factors, materials limitations, and plasma beta were seen to have an impact on the Cost of Electricity (COE). The economics for the DD fuel cycle are more strongly affected by these parameters than is the DT fuel cycle. Fuel costs are a major factor in determining the COE for the DHe fuel cycle. Based on costs directly attributable to the fuel cycle, the DT fuel cycle appears most attractive. Technological advances, improved understanding of physics, or strides in advanced energy conversion schemes may result in altering the economic ranking of the fuel cycles indicated here. 7 refs., 6 figs., 2 tabs

  10. International nuclear fuel cycle evaluation

    International Nuclear Information System (INIS)

    Witt, P.

    1980-01-01

    In the end of February 1980, the two-years work on the International Nuclear Fuel Cycle Evaluation (INFCE) was finished in Vienna with a plenary meeting. INFCE is likely to have been a unique event in the history of international meetings: It was ni diplomatic negotiation meeting, but a techno-analytical investigation in which the participants tenaciously shuggled for many of the formulations. Starting point had been a meeting initiated by President Carter in Washington in Oct. 1979 after the World Economy Summit Meeting in London. The results of the investigation are presented here in a brief and popular form. (orig./UA) [de

  11. Radioecology of nuclear fuel cycles

    International Nuclear Information System (INIS)

    Cadwell, L.L.

    1982-01-01

    This study provides information to help assess the environmental impacts and certain potential human hazards associated with nuclear fuel cycles. A data base is being developed to define and quantify biological transport routes, which will permit credible predictions and assessment of routine and potential large-scale releases of radionuclides and other toxic materials. These data, used in assessment models, will increase the accuracy of estimating radiation doses to man and other life forms. Results will provide information to determine if waste management procedures on the Hanford site have caused ecological perturbations, and, if so, to determine the source, nature and magnitude of such disturbances

  12. Radioecology of nuclear fuel cycles

    International Nuclear Information System (INIS)

    Schreckhise, R.G.; Cadwell, L.L.; Emery, R.M.

    1981-01-01

    This study provides information to help assess the environmental impacts and certain potential human hazards associated with nuclear fuel cycles. A data base is being developed to define and quantify biological transport routes which will permit credible predictions and assessment of routine and potential large-scale releases of radionuclides and other toxic materials. Information obtained from existing storage and disposal sites will provide a meaningful radioecological perspective with which to improve the effectiveness of waste management practices. This paper focuses on terrestrial and aquatic radioecology of waste management areas and biotic transport parameters

  13. National Policy on Nuclear Fuel Cycle

    International Nuclear Information System (INIS)

    Soedyartomo, S.

    1996-01-01

    National policy on nuclear fuel cycle is aimed at attaining the expected condition, i.e. being able to support optimality the national energy policy and other related Government policies taking into account current domestic nuclear fuel cycle condition and the trend of international nuclear fuel cycle development, the national strength, weakness, thread and opportunity in the field of energy. This policy has to be followed by the strategy to accomplish covering the optimization of domestic efforts, cooperation with other countries, and or purchasing licences. These policy and strategy have to be broken down into various nuclear fuel cycle programmes covering basically assesment of the whole cycle, performing research and development of the whole cycle without enrichment and reprocessing being able for weapon, as well as programmes for industrialization of the fuel cycle stepwisery commencing with the middle part of the cycle and ending with the edge of the back-end of the cycle

  14. Fuel cycle cost study with HEU and LEU fuels

    International Nuclear Information System (INIS)

    Matos, J.E.; Freese, K.E.

    1984-01-01

    Fuel cycle costs are compared for a range of 235 U loadings with HEU and LEU fuels using the IAEA generic 10 MW reactor as an example. If LEU silicide fuels are successfully demonstrated and licensed, the results indicate that total fuel cycle costs can be about the same or lower than those with the HEU fuels that are currently used in most research reactors

  15. A fuel cycle cost study with HEU and LEU fuels

    International Nuclear Information System (INIS)

    Matos, J.E.; Freese, K.E.

    1985-01-01

    Fuel cycle costs are compared for a range of 235 U loadings with HEU and LEU fuels using the IAEA generic 10 MW reactor as an example. If LEU silicide fuels are successfully demonstrated and licensed, the results indicate that total fuel cycle costs can be about the same or lower than those with the HEU fuels that are currently used in most research reactors. (author)

  16. A fuel cycle cost study with HEU and LEU fuels

    Energy Technology Data Exchange (ETDEWEB)

    Matos, J E; Freese, K E [Argonne National Laboratory, Argonne, IL (United States)

    1985-07-01

    Fuel cycle costs are compared for a range of {sup 235}U loadings with HEU and LEU fuels using the IAEA generic 10 MW reactor as an example. If LEU silicide fuels are successfully demonstrated and licensed, the results indicate that total fuel cycle costs can be about the same or lower than those with the HEU fuels that are currently used in most research reactors. (author)

  17. Fuel-cycle cost comparisons with oxide and silicide fuels

    International Nuclear Information System (INIS)

    Matos, J.E.; Freese, K.E.

    1982-01-01

    This paper addresses fuel cycle cost comparisons for a generic 10 MW reactor with HEU aluminide fuel and with LEU oxide and silicide fuels in several fuel element geometries. The intention of this study is to provide a consistent assessment of various design options from a cost point of view. Fuel cycle cost benefits could result if a number of reactors were to utilize fuel elements with the same number or different numbers of the same standard fuel plate. Data are presented to quantify these potential cost benefits. This analysis shows that there are a number of fuel element designs using LEU oxide or silicide fuels that have either the same or lower total fuel cycle costs than the HEU design. Use of these fuels with the uranium densities considered requires that they are successfully demonstrated and licensed

  18. High conversion HTRs and their fuel cycle

    International Nuclear Information System (INIS)

    Gutmann, H.; Hansen, U.; Larsen, H.; Price, M.S.T.

    1975-01-01

    This report discusses the principles of the core design and the fuel cycle layout for High Conversion HTRs (HCHTRs). Though most of the principles apply equally to HTRs of the pebble-bed and the prismatic fuel element design types, the paper concentrates on the latter. Design and fuel cycle strategies for the full utilisation of the high conversion potential are compared with others that aim at easier reprocessing and the 'environmental' fuel cycle. The paper concludes by discussing operating and fuel cycle characteristics and economics of HCHTRs, and how the latter impinge on the allowable price for uranium ore and the available uranium resources. (orig./UA) [de

  19. Large-scale fuel cycle centres

    International Nuclear Information System (INIS)

    Smiley, S.H.; Black, K.M.

    1977-01-01

    The US Nuclear Regulatory Commission (NRC) has considered the nuclear energy centre concept for fuel cycle plants in the Nuclear Energy Centre Site Survey 1975 (NECSS-75) Rep. No. NUREG-0001, an important study mandated by the US Congress in the Energy Reorganization Act of 1974 which created the NRC. For this study, the NRC defined fuel cycle centres as consisting of fuel reprocessing and mixed-oxide fuel fabrication plants, and optional high-level waste and transuranic waste management facilities. A range of fuel cycle centre sizes corresponded to the fuel throughput of power plants with a total capacity of 50,000-300,000MW(e). The types of fuel cycle facilities located at the fuel cycle centre permit the assessment of the role of fuel cycle centres in enhancing the safeguard of strategic special nuclear materials - plutonium and mixed oxides. Siting fuel cycle centres presents a smaller problem than siting reactors. A single reprocessing plant of the scale projected for use in the USA (1500-2000t/a) can reprocess fuel from reactors producing 50,000-65,000MW(e). Only two or three fuel cycle centres of the upper limit size considered in the NECSS-75 would be required in the USA by the year 2000. The NECSS-75 fuel cycle centre evaluation showed that large-scale fuel cycle centres present no real technical siting difficulties from a radiological effluent and safety standpoint. Some construction economies may be achievable with fuel cycle centres, which offer opportunities to improve waste-management systems. Combined centres consisting of reactors and fuel reprocessing and mixed-oxide fuel fabrication plants were also studied in the NECSS. Such centres can eliminate shipment not only of Pu but also mixed-oxide fuel. Increased fuel cycle costs result from implementation of combined centres unless the fuel reprocessing plants are commercial-sized. Development of Pu-burning reactors could reduce any economic penalties of combined centres. The need for effective fissile

  20. Fuel rod behaviour at high burnup WWER fuel cycles

    International Nuclear Information System (INIS)

    Medvedev, A.; Bogatyr, S.; Kouznetsov, V.; Khvostov, G.; Lagovsky; Korystin, L.; Poudov, V.

    2003-01-01

    The modernisation of WWER fuel cycles is carried out on the base of complete modelling and experimental justification of fuel rods up to 70 MWd/kgU. The modelling justification of the reliability of fuel rod and fuel rod with gadolinium is carried out with the use of certified START-3 code. START-3 code has a continuous experimental support. The thermophysical and strength reliability of WWER-440 fuel is justified for fuel rod and pellet burnups 65 MWd/kgU and 74 MWd/U, accordingly. Results of analysis are demonstrated by the example of uranium-gadolinium fuel assemblies of second generation under 5-year cycle with a portion of 6-year assemblies and by the example of successfully completed pilot operation of 5-year cycle fuel assemblies during 6 years at unit 3 of Kolskaja NPP. The thermophysical and strength reliability of WWER-1000 fuel is justified for a fuel rod burnup 66 MWd/kgU by the example of fuel operation under 4-year cycles and 6-year test operation of fuel assemblies at unit 1 of Kalininskaya NPP. By the example of 5-year cycle at Dukovany NPP Unit 2 it was demonstrated that WWER fuel rod of a burnup 58 MWd/kgU ensure reliable operation under load following conditions. The analysis has confirmed sufficient reserves of Russian fuel to implement program of JSC 'TVEL' in order to improve technical and economical parameters of WWER fuel cycles

  1. Survey of the nuclear fuel cycle

    International Nuclear Information System (INIS)

    Zech, H.J.; Pickert, F.K.

    1975-01-01

    A brief outline of the technical aspects of the fuel cycle, starting from the mining of uranium up to fuel element fabrication, is followed by a more detailed description of the management of the outer fuel cycle. This includes the system of contracts and their reciprocal technical and chronological interdepence, as well as financial aspects, market conditions and trends. (RB) [de

  2. Fuel Cycle System Analysis Handbook

    International Nuclear Information System (INIS)

    Piet, Steven J.; Dixon, Brent W.; Gombert, Dirk; Hoffman, Edward A.; Matthern, Gretchen E.; Williams, Kent A.

    2009-01-01

    This Handbook aims to improve understanding and communication regarding nuclear fuel cycle options. It is intended to assist DOE, Campaign Managers, and other presenters prepare presentations and reports. When looking for information, check here. The Handbook generally includes few details of how calculations were performed, which can be found by consulting references provided to the reader. The Handbook emphasizes results in the form of graphics and diagrams, with only enough text to explain the graphic, to ensure that the messages associated with the graphic is clear, and to explain key assumptions and methods that cause the graphed results. Some of the material is new and is not found in previous reports, for example: (1) Section 3 has system-level mass flow diagrams for 0-tier (once-through), 1-tier (UOX to CR=0.50 fast reactor), and 2-tier (UOX to MOX-Pu to CR=0.50 fast reactor) scenarios - at both static and dynamic equilibrium. (2) To help inform fast reactor transuranic (TRU) conversion ratio and uranium supply behavior, section 5 provides the sustainable fast reactor growth rate as a function of TRU conversion ratio. (3) To help clarify the difference in recycling Pu, NpPu, NpPuAm, and all-TRU, section 5 provides mass fraction, gamma, and neutron emission for those four cases for MOX, heterogeneous LWR IMF (assemblies mixing IMF and UOX pins), and a CR=0.50 fast reactor. There are data for the first 10 LWR recycle passes and equilibrium. (4) Section 6 provides information on the cycle length, planned and unplanned outages, and TRU enrichment as a function of fast reactor TRU conversion ratio, as well as the dilution of TRU feedstock by uranium in making fast reactor fuel. (The recovered uranium is considered to be more pure than recovered TRU.) The latter parameter impacts the required TRU impurity limits specified by the Fuels Campaign. (5) Section 7 provides flows for an 800-tonne UOX separation plant. (6) To complement 'tornado' economic uncertainty

  3. The economics of thorium fuel cycles

    International Nuclear Information System (INIS)

    James, R.A.

    1978-01-01

    The individual cost components and the total fuel cycle costs for natural uranium and thorium fuel cycles are discussed. The thorium cycles are initiated by using either enriched uranium or plutonium. Subsequent thorium cycles utilize recycled uranium-233 and, where necessary, either uranium-235 or plutonium as topping. A calculation is performed to establish the economic conditions under which thorium cycles are economically attractive. (auth)

  4. Research and development of thorium fuel cycle

    International Nuclear Information System (INIS)

    Oishi, Jun.

    1994-01-01

    Nuclear properties of thorium are summarized and present status of research and development of the use of thorium as nuclear fuel is reviewed. Thorium may be used for nuclear fuel in forms of metal, oxide, carbide and nitride independently, alloy with uranium or plutonium or mixture of the compound. Their use in reactors is described. The reprocessing of the spent oxide fuel in thorium fuel cycle is called the thorex process and similar to the purex process. A concept of a molten salt fuel reactor and chemical processing of the molten salt fuel are explained. The required future research on thorium fuel cycle is commented briefly. (T.H.)

  5. Advanced fuel development at AECL: What does the future hold for CANDU fuels/fuel cycles?

    Energy Technology Data Exchange (ETDEWEB)

    Kupferschmidt, W.C.H. [Atomic Energy of Canada Limited, Chalk River, Ontario (Canada)

    2013-07-01

    This paper outlines advanced fuel development at AECL. It discusses expanding the limits of fuel utilization, deploy alternate fuel cycles, increase fuel flexibility, employ recycled fuels; increase safety and reliability, decrease environmental impact and develop proliferation resistant fuel and fuel cycle.

  6. Thorium fuel cycle - Potential benefits and challenges

    International Nuclear Information System (INIS)

    2005-05-01

    There has been significant interest among Member States in developing advanced and innovative technologies for safe, proliferation resistant and economically efficient nuclear fuel cycles, while minimizing waste and environmental impacts. This publication provides an insight into the reasons for renewed interest in the thorium fuel cycle, different implementation scenarios and options for the thorium cycle and an update of the information base on thorium fuels and fuel cycles. The present TECDOC focuses on the upcoming thorium based reactors, current information base, front and back end issues, including manufacturing and reprocessing of thorium fuels and waste management, proliferation-resistance and economic issues. The concluding chapter summarizes future prospects and recommendations pertaining to thorium fuels and fuel cycles

  7. Plutonium in an enduring fuel cycle

    International Nuclear Information System (INIS)

    Pillay, K.K.S.

    1998-05-01

    Nuclear fuel cycles evolved over the past five decades have allowed many nations of the world to enjoy the benefits of nuclear energy, while contributing to the sustainable consumption of the world's energy resources. The nuclear fuel cycle for energy production suffered many traumas since the 1970s because of perceived risks of proliferation of nuclear weapons. However, the experience of the past five decades has shown that the world community is committed to safeguarding all fissile materials and continuing the use of nuclear energy resources. Decisions of a few nations to discard spent nuclear fuels in geologic formations are contrary to the goals of an enduring nuclear fuel cycle and sustainable development being pursued by the world community. The maintenance of an enduring nuclear fuel cycle is dependent on sensible management of all the resources of the fuel cycle, including spent fuels

  8. SPES, Fuel Cycle Optimization for LWR

    International Nuclear Information System (INIS)

    1973-01-01

    1 - Nature of physical problem solved: Determination of optimal fuel cycle at equilibrium for a light water reactor taking into account batch size, fuel enrichment, de-rating, shutdown time, cost of replacement energy. 2 - Method of solution: Iterative method

  9. World nuclear fuel cycle requirements 1991

    Energy Technology Data Exchange (ETDEWEB)

    1991-10-10

    The nuclear fuel cycle consists of mining and milling uranium ore, processing the uranium into a form suitable for generating electricity, burning'' the fuel in nuclear reactors, and managing the resulting spent nuclear fuel. This report presents projections of domestic and foreign requirements for natural uranium and enrichment services as well as projections of discharges of spent nuclear fuel. These fuel cycle requirements are based on the forecasts of future commercial nuclear power capacity and generation published in a recent Energy Information Administration (EIA) report. Also included in this report are projections of the amount of spent fuel discharged at the end of each fuel cycle for each nuclear generating unit in the United States. The International Nuclear Model is used for calculating the projected nuclear fuel cycle requirements. 14 figs., 38 tabs.

  10. World nuclear fuel cycle requirements 1991

    International Nuclear Information System (INIS)

    1991-01-01

    The nuclear fuel cycle consists of mining and milling uranium ore, processing the uranium into a form suitable for generating electricity, ''burning'' the fuel in nuclear reactors, and managing the resulting spent nuclear fuel. This report presents projections of domestic and foreign requirements for natural uranium and enrichment services as well as projections of discharges of spent nuclear fuel. These fuel cycle requirements are based on the forecasts of future commercial nuclear power capacity and generation published in a recent Energy Information Administration (EIA) report. Also included in this report are projections of the amount of spent fuel discharged at the end of each fuel cycle for each nuclear generating unit in the United States. The International Nuclear Model is used for calculating the projected nuclear fuel cycle requirements. 14 figs., 38 tabs

  11. Mechanical fragmentation of nuclear reactor fuel assemblies by the double cutting method

    International Nuclear Information System (INIS)

    Voitsekhovskii, B.V.; Istomin, V.L.; Mitrofanov, V.V.

    1995-01-01

    A method is described for cutting a spent fuel assembly with straight shears into pieces of a prescribed size. The method does not require separation of the casing and the lattices. The double cutting method is briefly described, and experiments designed for cutting BN-350 and VVER-440 fuel assemblies are outlined. The testing showed that the cutting method was suitable for mechanical polarization of fuel assemblies. The investigations led to the development of turnkey industrial equipment for cutting spent fuel assemblies of different geometries with a maximum size up to 170 mm. 6 refs., 8 figs., 1 tab

  12. Overview of the nuclear fuel cycle

    International Nuclear Information System (INIS)

    Knief, R.A.

    1978-01-01

    The nuclear fuel cycle is substantially more complicated than the energy production cycles of conventional fuels because of the very low abundance of uranium 235, the presence of radioactivity, the potential for producing fissile nuclides from irradiation, and the risk that fissile materials will be used for nuclear weapons. These factors add enrichment, recycling, spent fuel storage, and safeguards to the cycle, besides making the conventional steps of exploration, mining, processing, use, waste disposal, and transportation more difficult

  13. Nonproliferation characteristics of advanced fuel cycle concepts

    International Nuclear Information System (INIS)

    Persiani, P.J.

    1998-01-01

    The purpose of this study is to comment on the proliferation characteristic profiles of some of the proposed fuel cycle alternatives to help ensure that nonproliferation concerns are introduced into the early stages of a fuel cycle concept development program, and to perhaps aid in the more effective implementation of the international nonproliferation regime initiatives and safeguards methods and systems. Alternative cycle concepts proposed by several countries involve the recycle of spent fuel without the separation of plutonium from uranium and fission products

  14. Fuel cycle parameters for strategy studies

    International Nuclear Information System (INIS)

    Archinoff, G.H.

    1979-05-01

    This report summarizes seven fuel cycle parameters (efficiency, specific power, burnup, equilibrium net fissile feed, equilibrium net fissile surplus, first charge fissile content, and whether or not fuel reprocessing is required) to be used in long-term strategy analyses of fuel cycles based on natural UO 2 , low enriched uranium, mixed oxides, plutonium topped thorium, uranium topped thorium, and the fast breeder oxide cycle. (LL)

  15. CANDU fuel cycle options in Korea

    International Nuclear Information System (INIS)

    Boczar, P. G.; Fehrenbach, P. J.; Meneley, D. A.

    1996-01-01

    There are many reasons for countries embarking on a CANDU R program to start with the natural uranium fuel cycle. Simplicity of fuel design, ease of fabrication, and ready availability of natural uranium all help to localize the technology and to reduce reliance on foreign technology. Nonetheless, at some point, the incentives for using natural uranium fuel may be outweighed by the advantages of alternate fuel cycles. The excellent neutron economy, on-line refuelling, and simple fuel-bundle design provide an unsurpassed degree of fuel-cycle flexibility in CANDU reactors. The easiest first step in CANDU fuel-cycle evolution may be the use of slightly enriched uranium (SEU), including recovered uranium from reprocessed LWR spent fuel. Relatively low enrichment (up to 1.2%) will result in a two- to three-fold reduction in the quantity of spent fuel per unit energy production, reductions in fuel-cycle costs, and greater flexibility in the design of new reactors. The CANFLEX (CANDU FLEXible) fuel bundle would be the optimal fuel carrier. A country that has both CANDU and PWR reactors can exploit the natural synergism between these two reactor types to minimize overall waste production, and maximize energy derived from the fuel. This synergism can be exploited through several different fuel cycles. A high burnup CANDU MOX fuel design could be used to utilize plutonium from conventional reprocessing or more advanced reprocessing options (such as co-processing). DUPIC (Direct Use of Spent PWR Fuel In CANDU) represents a recycle option that has a higher degree of proliferation resistance than dose conventional reprocessing, since it uses only dry processes for converting spent PWR fuel into CANDU fuel, without separating the plutonium. Good progress is being made in the current KAERI, AECL, and U. S. Department of State program in demonstrating the technical feasibility of DUPIC. In the longer term, CANDU reactors offer even more dramatic synergistic fuel cycles with PWR or

  16. The Nuclear Fuel Cycle Information System

    International Nuclear Information System (INIS)

    1987-02-01

    The Nuclear Fuel Cycle Information System (NFCIS) is an international directory of civilian nuclear fuel cycle facilities. Its purpose is to identify existing and planned nuclear fuel cycle facilities throughout the world and to indicate their main parameters. It includes information on facilities for uranium ore processing, refining, conversion and enrichment, for fuel fabrication, away-from-reactor storage of spent fuel and reprocessing, and for the production of zirconium metal and Zircaloy tubing. NFCIS currently covers 271 facilities in 32 countries and includes 171 references

  17. Some reactor properties of the new designed nuclear fuels after neutron irradiation

    International Nuclear Information System (INIS)

    Bajan, M.; Necas, V.

    2013-01-01

    The main goal of this paper was perform the optimisation of the fuel assemblies from the profiling point of view as well as the enrichment of individual rods in such a way that the power peaking factor is steady as possible and also the stock of reactivity for six year fuel cycle. For this reason the limit for maximum fuel rod enrichment was increased to 5.95%. The power in the individual rods is the factor, which can limit the total reactor's power, it is very important to minimise the power peaking factor as possible. At the first the power peaking factor of selected fuel assemblies used in VVER-440 reactor were investigated and from results was based perspective designs which was divided into four parts according to the position of pins with gadolinium burnable absorber and according to the shroudless design. From every part the most perspective fuel assembly was chosen. The results are shown in the Fig. 7. The best result is using the shroudless design. As the second best design is fuel assembly with three gadolinium rods in the middle of the assembly. The power peaking factor unsteadiness is much lower as the reference fuel assembly Gd-2. Also it was demonstrate that the increase of enrichment to 5.95% is perspective, because in several designs the difference in enrichment in individual pins was 1% "2'3"5U. Considering only the present allowed value (max 5%) it would not be possible to reach such good power peaking factor and the reactivity sufficient for 6-years fuel cycle. Profiling optimisation together with modernization of structural changes of assembly was achieved the low power peaking factor unsteadiness in individual pins and higher average enrichment of "2"3"5U. So the optimisation can be summarized as very prosperous and perspective. (authors)

  18. International Nuclear Fuel Cycle Evaluation

    International Nuclear Information System (INIS)

    Carnesale, A.

    1980-01-01

    As nuclear power expands globally, so too expands the capability for producing nuclear weapons. The International Nuclear Fuel Cycle Evaluation (INFCE) was organized in 1977 for the purpose of exploring two areas: (1) ways in which nuclear energy can be made available to help meet world energy needs, and (2) means by which the attendant risk of weapons proliferation can be held to a minimum. INFCE is designed for technical and analytical study rather than negotiation. Its organizational structure and issues under consideration are discussed. Some even broader issues that emerge from consideration of the relationships between the peaceful and military use of nuclear energy are also discussed. These are different notions of the meaning of nuclear proliferation, nuclear export policy, the need of a nuclear policy to be both a domestic as well as a foreign one, and political-military measures that can help reduce incentives of countries to acquire nuclear weapons of their own

  19. Sustainability of Advanced Fuel Cycles

    International Nuclear Information System (INIS)

    Kuznetsov, Vladimir

    2013-01-01

    ⇒ The IAEA’s International Project on Innovative Nuclear Reactors and Fuel Cycles (INPRO) was established in 2000. ⇒ INPRO cooperates with Member States to ensure that sustainable nuclear energy is available to help meet the energy needs of the 21st century. ⇒ INPRO is part of the integrated services of the IAEA provided to Member States considering initial development or expansion of nuclear energy programmes. ⇒ INPRO Methodology for nuclear energy system assessment - a comprehensive set of internationally agreed basic principles, requirements and criteria in the important areas of economics, safety, waste management, proliferation resistance, physical protection, environment and infrastructure. ⇒ Meeting the INPRO criteria in all of the areas ensures sustainability of nuclear energy system and its high potential to meet growing energy demand throughout the present century

  20. Safeguarding the Plutonium Fuel Cycle

    International Nuclear Information System (INIS)

    Johnson, S.J.; Lockwood, D.

    2013-01-01

    In developing a Safeguards Approach for a plutonium process facility, two general diversion and misuse scenarios must be addressed: 1) Unreported batches of undeclared nuclear material being processed through the plant and bypassing the accountancy measurement points, and 2) The operator removing plutonium at a rate that cannot be detected with confidence due to measurement uncertainties. This paper will look at the implementation of international safeguards at plutonium fuel cycle facilities in light of past lessons learned and current safeguards approaches. It will then discuss technical areas which are currently being addressed as future tools to improve on the efficiency of safeguards implementation, while maintaining its effectiveness. The discussion of new improvements will include: safeguards by design (SBD), process monitoring (PM), measurement and monitoring equipment, and data management. The paper is illustrated with the implementation of international safeguards at the Rokkasho Reprocessing Plant in Japan and its accountancy structure is detailed. The paper is followed by the slides of the presentation

  1. Design report of the canister for nuclear fuel disposal

    International Nuclear Information System (INIS)

    Raiko, H.; Salo, J.P.

    1996-12-01

    The report provides a summary of the design of the canister for final disposal of nuclear fuel. The canister structure consists of a cylindrical massive nodular graphite cast iron insert covered by a 50 mm thick copper overlay. The capacity of the canister is 11 assemblies of BWR or VVER 440 fuel. The canister shall be tight with a high probability for about 100 000 years. The design basis of the canister is set, the performed analyses are summarised and the results are assessed and discussed in the report. (26 refs.)

  2. Advanced fuel cycles in CANDU reactors

    International Nuclear Information System (INIS)

    Green, R.E.; Boczar, P.G.

    1990-04-01

    This paper re-examines the rationale for advanced nuclear fuel cycles in general, and for CANDU advanced fuel cycles in particular. The traditional resource-related arguments for more uranium nuclear fuel cycles are currently clouded by record-low prices for uranium. However, the total known conventional uranium resources can support projected uranium requirements for only another 50 years or so, less if a major revival of the nuclear option occurs as part of the solution to the world's environmental problems. While the extent of the uranium resource in the earth's crust and oceans is very large, uncertainty in the availability and price of uranium is the prime resource-related motivation for advanced fuel cycles. There are other important reasons for pursuing advanced fuel cycles. The three R's of the environmental movement, reduce, recycle, reuse, can be achieved in nuclear energy production through the employment of advanced fuel cycles. The adoption of more uranium-conserving fuel cycles would reduce the amount of uranium which needs to be mined, and the environmental impact of that mining. Environmental concerns over the back end of the fuel cycle can be mitigated as well. Higher fuel burnup reduces the volume of spent fuels which needs to be disposed of. The transmutation of actinides and long-lived fission products into short-lived fission products would reduce the radiological hazard of the waste from thousands to hundreds of years. Recycling of uranium and/or plutonium in spent fuel reuses valuable fissile material, leaving only true waste to be disposed of. Advanced fuel cycles have an economical benefit as well, enabling a ceiling to be put on fuel cycle costs, which are

  3. Sustainability Features of Nuclear Fuel Cycle Options

    Directory of Open Access Journals (Sweden)

    Stefano Passerini

    2012-09-01

    Full Text Available The nuclear fuel cycle is the series of stages that nuclear fuel materials go through in a cradle to grave framework. The Once Through Cycle (OTC is the current fuel cycle implemented in the United States; in which an appropriate form of the fuel is irradiated through a nuclear reactor only once before it is disposed of as waste. The discharged fuel contains materials that can be suitable for use as fuel. Thus, different types of fuel recycling technologies may be introduced in order to more fully utilize the energy potential of the fuel, or reduce the environmental impacts and proliferation concerns about the discarded fuel materials. Nuclear fuel cycle systems analysis is applied in this paper to attain a better understanding of the strengths and weaknesses of fuel cycle alternatives. Through the use of the nuclear fuel cycle analysis code CAFCA (Code for Advanced Fuel Cycle Analysis, the impact of a number of recycling technologies and the associated fuel cycle options is explored in the context of the U.S. energy scenario over 100 years. Particular focus is given to the quantification of Uranium utilization, the amount of Transuranic Material (TRU generated and the economics of the different options compared to the base-line case, the OTC option. It is concluded that LWRs and the OTC are likely to dominate the nuclear energy supply system for the period considered due to limitations on availability of TRU to initiate recycling technologies. While the introduction of U-235 initiated fast reactors can accelerate their penetration of the nuclear energy system, their higher capital cost may lead to continued preference for the LWR-OTC cycle.

  4. Reprocessing in breeder fuel cycles

    International Nuclear Information System (INIS)

    Burch, W.D.; Groenier, W.S.

    1982-01-01

    Over the past decade, the United States has developed plans and carried out programs directed toward the demonstration of breeder fuel reprocessing in connection with the first breeder demonstration reactor. A renewed commitment to moving forward with the construction of the Clinch River Breeder Reactor (CRBR) has been made, with startup anticipated near the end of this decade. While plans for the CRBR and its associated fuel cycle are still being firmed up, the basic research and development programs required to carry out the demonstrations have continued. This paper updates the status of the reprocessing plans and programs. Policies call for breeder recycle to begin in the early to mid-1990's. Contents of this paper are: (1) evolving plans for breeder reprocessing (demonstration reprocessing plant, reprocessing head-end colocated at an existing facility); (2) relationship to LWR reprocessing; (3) integrated equipment test (IET) facility and related hardware development activities (mechanical considerations in shearing and dissolving, remote operations and maintenance demonstration phase of IET, integrated process demonstration phase of IET, separate component development activities); and (4) supporting process R and D

  5. The safety of the nuclear fuel cycle

    International Nuclear Information System (INIS)

    2005-01-01

    The procurement and preparation of fuel for nuclear power reactors, followed by its recovery, processing and management subsequent to reactor discharge, are frequently referred to as the ''front end'' and ''back end'' of the nuclear fuel cycle. The facilities associated with these activities have an extensive and well-documented safety record accumulated over the past 50 years by technical experts and safety authorities. This information has enabled an in-depth analysis of the complete fuel cycle. Preceded by two previous editions in 1981 and 1993, this new edition of the Safety of the Nuclear Fuel Cycle represents the most up-to-date analysis of the safety aspects of the nuclear fuel cycle. It will be of considerable interest to nuclear safety experts, but also to those wishing to acquire extensive information about the fuel cycle more generally. (author)

  6. The safety of the nuclear fuel cycle

    International Nuclear Information System (INIS)

    2005-10-01

    The procurement and preparation of fuel for nuclear power reactors, followed by its recovery, processing and management subsequent to reactor discharge, are frequently referred to as the 'front end' and 'back end' of the nuclear fuel cycle. The facilities associated with these activities have an extensive and well-documented safety record accumulated over the past 50 years by technical experts and safety authorities. This information has enabled an in-depth analysis of the complete fuel cycle. Preceded by two previous editions in 1981 and 1993, this new edition of The Safety of the Nuclear Fuel Cycle represents the most up-to-date analysis of the safety aspects of the nuclear fuel cycle. It will be of considerable interest to nuclear safety experts, but also to those wishing to acquire extensive information about the fuel cycle more generally. (author)

  7. DUPIC fuel cycle economics assessment (1)

    International Nuclear Information System (INIS)

    Choi, H. B.; Roh, G. H.; Kim, D. H.

    1999-04-01

    This is a state-of-art report that describes the current status of the DUPIC fuel cycle economics analysis conducted by the DUPIC fuel compatibility assessment group of the DUPIC fuel development project. For the DUPIC fuel cycle economics analysis, the DUPIC fuel compatibility assessment group has organized the 1st technical meeting composed of 8 domestic specialists from government, academy, industry, etc. and a foreign specialist of hot-cell design from TRI on July 16, 1998. This report contains the presentation material of the 1st technical meeting, published date used for the economics analysis and opinions of participants, which could be utilized for further DUPIC fuel cycle and back-end fuel cycle economics analyses. (author). 11 refs., 7 charts

  8. Practical introduction of thorium fuel cycles

    International Nuclear Information System (INIS)

    Kasten, P.R.

    1982-01-01

    The pracitcal introduction of throrium fuel cycles implies that thorium fuel cycles compete economically with uranium fuel cycles in economic nuclear power plants. In this study the reactor types under consideration are light water reactors (LWRs), heavy water reactors (HWRs), high-temperature gas-cooled reactors (HTGRs), and fast breeder reactors (FBRs). On the basis that once-through fuel cycles will be used almost exclusively for the next 20 or 25 years, introduction of economic thorium fuel cycles appears best accomplished by commercial introduction of HTGRs. As the price of natural uranium increases, along with commercialization of fuel recycle, there will be increasing incentive to utilize thorium fuel cycles in heavy water reactors and light water reactors as well as in HTGRs. After FBRs and fuel recycle are commercialized, use of thorium fuel cycles in the blanket of FBRs appears advantageous when fast breeder reactors and thermal reactors operate in a symbiosis mode (i.e., where 233 U bred in the blanket of a fast breeder reactor is utilized as fissile fuel in thermal converter reactors)

  9. Introducing advanced nuclear fuel cycles in Canada

    International Nuclear Information System (INIS)

    Duret, M.F.

    1978-05-01

    The ability of several different advanced fuel cycles to provide energy for a range of energy growth scenarios has been examined for a few special situations of interest in Canada. Plutonium generated from the CANDU-PHW operating on natural uranium is used to initiate advanced fuel cycles in the year 2000. The four fuel cycles compared are: 1) natural uranium in the CANDU-PHW; 2) high burnup thorium cycle in the CANDU-PHW; 3) self-sufficient thorium cycle in the CANDU-PHW; 4) plutonium-uranium cycle in a fast breeder reactor. The general features of the results are quite clear. While any plutonium generated prior to the introduction of the advanced fuel cycle remains, system requirements for natural uranium for each of the advanced fuel cycles are the same and are governed by the rate at which plants operating on natural uranium can be retired. When the accumulated plutonium inventory has been entirely used, natural uranium is again required to provide inventory for the advanced fuel cycle reactors. The time interval during which no uranium is required varies only from about 25 to 40 years for both thorium cycles, depending primarily on the energy growth rate. The breeder does not require the entire plutonium inventory produced and so would call for less processing of fuel from the PHW reactors. (author)

  10. Fast Reactor Fuel Cycle Cost Estimates for Advanced Fuel Cycle Studies

    International Nuclear Information System (INIS)

    Harrison, Thomas

    2013-01-01

    Presentation Outline: • Why Do I Need a Cost Basis?; • History of the Advanced Fuel Cycle Cost Basis; • Description of the Cost Basis; • Current Work; • Fast Reactor Fuel Cycle Applications; • Sample Fuel Cycle Cost Estimate Analysis; • Future Work

  11. Advanced fuel cycles for WWER-1000 reactors

    International Nuclear Information System (INIS)

    Semchenkov, Y. M.; Pavlovichev, A. M.; Pavlov, V. I.; Spirkin, E. I.; Styrin, Y. A.; Kosourov, E. K.

    2007-01-01

    Main stages of Russian uranium fuel development regarding improvement of safety and economics of fuel load operation are presented. Intervals of possible changes in fuel cycle duration have been demonstrated for the use of current and perspective fuel. Examples of equilibrium fuel load patterns have been demonstrated and main core neutronics parameters have been presented. Problems on the use of axial blankets with reduced enrichment in WWER-1000 fuel assemblies are considered. Some results are presented regarding core neutronic characteristics of WWER-1000 at the use of regenerated uranium and uranium-plutonium fuel. Examples of equilibrium fuel cycles for the core partially loaded with MOX fuel from weapon-grade plutonium are also considered (Authors)

  12. Uncertainty Analyses of Advanced Fuel Cycles

    International Nuclear Information System (INIS)

    Miller, Laurence F.; Preston, J.; Sweder, G.; Anderson, T.; Janson, S.; Humberstone, M.; MConn, J.; Clark, J.

    2008-01-01

    The Department of Energy is developing technology, experimental protocols, computational methods, systems analysis software, and many other capabilities in order to advance the nuclear power infrastructure through the Advanced Fuel Cycle Initiative (AFDI). Our project, is intended to facilitate will-informed decision making for the selection of fuel cycle options and facilities for development

  13. Fuel cycle studies for the Dragon HTR

    Energy Technology Data Exchange (ETDEWEB)

    Desoisa, J A; Nunn, R M; Twitchin, A E

    1971-02-15

    This note reports the progress made at B.N.L. in the study of the fuel cycle for the HTR design described by Daub (1970). The primary purpose of the study is to examine the special problems of the approach to equilibrium fuel cycle.

  14. Physics challenges for advanced fuel cycle assessment

    Energy Technology Data Exchange (ETDEWEB)

    Giuseppe Palmiotti; Massimo Salvatores; Gerardo Aliberti

    2014-06-01

    Advanced fuel cycles and associated optimized reactor designs will require substantial improvements in key research area to meet new and more challenging requirements. The present paper reviews challenges and issues in the field of reactor and fuel cycle physics. Typical examples are discussed with, in some cases, original results.

  15. Physics challenges for advanced fuel cycle assessment

    Energy Technology Data Exchange (ETDEWEB)

    Salvatores, Massimo; Aliberti, Gerardo; Palmiotti, Giuseppe

    2014-06-17

    Advanced fuel cycles and associated optimized reactor designs will require substantial improvements in key research area to meet new and more challenging requirements. The present paper reviews challenges and issues in the field of reactor and fuel cycle physics. Typical examples are discussed with, in some cases, original results.

  16. Recent developments in the nuclear fuel cycle

    International Nuclear Information System (INIS)

    Wunderer, A.

    1984-01-01

    There is a description of the present situation in each individual area of the nuclear fuel cycle. Further topics are: risk and safety factors and emissions from the fuel cycle, availability and disruptions, waste disposal and the storage of radioactive waste. (UA) [de

  17. Status of IFR fuel cycle demonstration

    International Nuclear Information System (INIS)

    Lineberry, M.J.; Phipps, R.D.; McFarlane, H.F.

    1993-01-01

    The next major step in Argonne's Integral Fast Reactor (IFR) Program is demonstration of the pyroprocess fuel cycle, in conjunction with continued operation of EBR-II. The Fuel Cycle Facility (FCF) is being readied for this mission. This paper will address the status of facility systems and process equipment, the initial startup experience, and plans for the demonstration program

  18. The IFR modern nuclear fuel cycle

    Energy Technology Data Exchange (ETDEWEB)

    Hannum, W.H.

    1991-01-01

    Nuclear power is an essential component of the world's energy supply. The IFR program, by returning to fundamentals, offers a fresh approach to closing the nuclear fuel cycle. This closed fuel cycle represents the ultimate in efficient resource utilization and environmental accountability. 35 refs., 2 tabs.

  19. Uncertainty Analyses of Advanced Fuel Cycles

    Energy Technology Data Exchange (ETDEWEB)

    Laurence F. Miller; J. Preston; G. Sweder; T. Anderson; S. Janson; M. Humberstone; J. MConn; J. Clark

    2008-12-12

    The Department of Energy is developing technology, experimental protocols, computational methods, systems analysis software, and many other capabilities in order to advance the nuclear power infrastructure through the Advanced Fuel Cycle Initiative (AFDI). Our project, is intended to facilitate will-informed decision making for the selection of fuel cycle options and facilities for development.

  20. The IFR modern nuclear fuel cycle

    International Nuclear Information System (INIS)

    Hannum, W.H.

    1991-01-01

    Nuclear power is an essential component of the world's energy supply. The IFR program, by returning to fundamentals, offers a fresh approach to closing the nuclear fuel cycle. This closed fuel cycle represents the ultimate in efficient resource utilization and environmental accountability. 35 refs., 2 tabs

  1. BWROPT: A multi-cycle BWR fuel cycle optimization code

    Energy Technology Data Exchange (ETDEWEB)

    Ottinger, Keith E.; Maldonado, G. Ivan, E-mail: Ivan.Maldonado@utk.edu

    2015-09-15

    Highlights: • A multi-cycle BWR fuel cycle optimization algorithm is presented. • New fuel inventory and core loading pattern determination. • The parallel simulated annealing algorithm was used for the optimization. • Variable sampling probabilities were compared to constant sampling probabilities. - Abstract: A new computer code for performing BWR in-core and out-of-core fuel cycle optimization for multiple cycles simultaneously has been developed. Parallel simulated annealing (PSA) is used to optimize the new fuel inventory and placement of new and reload fuel for each cycle considered. Several algorithm improvements were implemented and evaluated. The most significant of these are variable sampling probabilities and sampling new fuel types from an ordered array. A heuristic control rod pattern (CRP) search algorithm was also implemented, which is useful for single CRP determinations, however, this feature requires significant computational resources and is currently not practical for use in a full multi-cycle optimization. The PSA algorithm was demonstrated to be capable of significant objective function reduction and finding candidate loading patterns without constraint violations. The use of variable sampling probabilities was shown to reduce runtime while producing better results compared to using constant sampling probabilities. Sampling new fuel types from an ordered array was shown to have a mixed effect compared to random new fuel type sampling, whereby using both random and ordered sampling produced better results but required longer runtimes.

  2. The safety of the nuclear fuel cycle

    International Nuclear Information System (INIS)

    1993-01-01

    The nuclear fuel cycle covers the procurement and preparation of fuel for nuclear power reactors, its recovery and recycling after use and the safe storage of all wastes generated through these operations. The facilities associated with these activities have an extensive and well documented safety record accumulated over the past 40 years by technical experts and safety authorities. This report constitutes an up-to-date analysis of the safety of the nuclear fuel cycle, based on the available experience in OECD countries. It addresses the technical aspects of fuel cycle operations, provides information on operating practices and looks ahead to future activities

  3. Fuel cycle technologies - The next 50 years

    International Nuclear Information System (INIS)

    Chamberlain, L.N.; Ion, S.E.; Patterson, J.

    1997-01-01

    World energy demands are set to increase through the next Millennium. As fossil fuel reserves fall and environmental concerns increase there is likely to be a growing dependence on nuclear and renewable sources for electricity generation. This paper considers some of the desirable attributes of the nuclear fuel cycle in the year 2050 and emphasises the importance of considering the whole of the fuel cycle in an integrated way - the concept of the 'holistic' fuel cycle. We then consider how some sectors of the fuel cycle will develop, through a number of multi- national contributions covering: enrichment, fuel, aqueous reprocessing, non-aqueous reprocessing, P and T, MOX, direct disposal, waste. Finally, we summarize some of the key technical and institutional challenges that lie ahead if nuclear power is going to play its part in ensuring that planet Earth is a safe and hospitable place to live. (author)

  4. Nuclear power and the nuclear fuel cycle

    International Nuclear Information System (INIS)

    Hardy, C.J.; Silver, J.M.

    1985-09-01

    The report provides data and assessments of the status and prospects of nuclear power and the nuclear fuel cycle. The report discusses the economic competitiveness of nuclear electricity generation, the extent of world uranium resources, production and requirements, uranium conversion and enrichment, fuel fabrication, spent fuel treatment and radioactive waste management. A review is given of the status of nuclear fusion research

  5. Transparency associated with the nuclear fuel cycle

    International Nuclear Information System (INIS)

    2009-01-01

    This document presents the different fuel cycle stages with which the CEA is associated, the annual flow of materials and wastes produced at these different stages, and the destiny of these produced materials and wastes. These information are given for the different CEA R and D activities: experimentation hot laboratories (activities, fuel cycle stages, list of laboratories, tables giving annual flows for each of them), research reactors (types of reactors, fuel usage modes, annual flows of nuclear materials for each reactor), spent fuel management (different types of used materials), spent fuels and radioactive wastes with a foreign origin (quantities, processes)

  6. Advanced nuclear fuel cycles activities in IAEA

    International Nuclear Information System (INIS)

    Nawada, H.P.; Ganguly, C.

    2007-01-01

    Full text of publication follows. Of late several developments in reprocessing areas along with advances in fuel design and robotics have led to immense interest in partitioning and transmutation (P and T). The R and D efforts in the P and T area are being paid increased attention as potential answers to ever-growing issues threatening sustainability, environmental protection and non-proliferation. Any fuel cycle studies that integrate partitioning and transmutation are also known as ''advanced fuel cycles'' (AFC), that could incinerate plutonium and minor actinide (MA) elements (namely Am, Np, Cm, etc.) which are the main contributors to long-term radiotoxicity. The R and D efforts in developing these innovative fuel cycles as well as reactors are being co-ordinated by international initiatives such as Innovative Nuclear Power Reactors and Fuel Cycles (INPRO), the Generation IV International Forum (GIF) and the Global Nuclear Energy Partnership (GENP). For these advanced nuclear fuel cycle schemes to take shape, the development of liquid-metal-cooled reactor fuel cycles would be the most essential step for implementation of P and T. Some member states are also evaluating other concepts involving the use of thorium fuel cycle or inert-matrix fuel or coated particle fuel. Advanced fuel cycle involving novel partitioning methods such as pyrochemical separation methods to recover the transuranic elements are being developed by some member states which would form a critical stage of P and T. However, methods that can achieve a very high reduction (>99.5%) of MA and long-lived fission products in the waste streams after partitioning must be achieved to realize the goal of an improved protection of the environment. In addition, the development of MA-based fuel is also an essential and crucial step for transmutation of these transuranic elements. The presentation intends to describe progress of the IAEA activities encompassing the following subject-areas: minimization of

  7. Nuclear Fuel Cycle Information System. A directory of nuclear fuel cycle facilities. 2009 ed

    International Nuclear Information System (INIS)

    2009-04-01

    The Nuclear Fuel Cycle Information System (NFCIS) is an international directory of civilian nuclear fuel cycle facilities, published online as part of the Integrated Nuclear Fuel Cycle Information System (iNFCIS: http://www-nfcis.iaea.org/). This is the fourth hardcopy publication in almost 30 years and it represents a snapshot of the NFCIS database as of the end of 2008. Together with the attached CD-ROM, it provides information on 650 civilian nuclear fuel cycle facilities in 53 countries, thus helping to improve the transparency of global nuclear fuel cycle activities

  8. Radioecology of nuclear fuel cycles

    International Nuclear Information System (INIS)

    Schreckhise, R.G.; Cadwell, L.L.; Emery, R.M.

    1980-01-01

    Sites where radioactive wastes are found are solid waste burial grounds, soils below liquid stoage areas, surface ditches and ponds, and the terrestrial environment around chemical processing facilities that discharge airborne radioactive debris from stacks. This study provides information to help assess the environmental impacts and certain potentiall human hazards associated with nuclear fuel cycles. A data base is being developed to define and quantify biological transport routes which will permit credible predictions and assessment of routine and potential large-scale releases of radionuclides and other toxic materials. These data, used in assessment models, will increase the accuracy of estimating radiation doses to man and other life forms. Information obtained from existing storage and disposal sites will provide a meaningful radioecological perspective with which to improve the effectiveness of waste management practices. Results will provide information to determine if waste management procedures on the Hanford Site have caused ecological perturbations, and if so, to determine the source, nature, and magnitude of such disturbances

  9. Safeguarding the fuel cycle: Methodologies

    International Nuclear Information System (INIS)

    Gruemm, H.

    1984-01-01

    The effectiveness of IAEA safeguards is characterized by the extent to which they achieve their basic purpose - credible verification that no nuclear material is diverted from peaceful uses. This effectiveness depends inter alia but significantly on manpower in terms of the number and qualifications of inspectors. Staff increases will be required to improve effectiveness further, if this is requested by Member States, as well as to take into account new facilities expected to come under safeguards in the future. However, they are difficult to achieve due to financial constraints set by the IAEA budget. As a consequence, much has been done and is being undertaken to improve utilization of available manpower, including standardization of inspection procedures; improvement of management practices and training; rationalization of planning, reporting, and evaluation of inspection activities; and development of new equipment. This article focuses on certain aspects of the verification methodology presently used and asks: are any modifications of this methodology conceivable that would lead to economies of manpower, without loss of effectiveness. It has been stated in this context that present safeguards approaches are ''facility-oriented'' and that the adoption of a ''fuel cycle-oriented approach'' might bring about the desired savings. Many studies have been devoted to this very interesting suggestion. Up to this moment, no definite answer is available and further studies will be necessary to come to a conclusion. In what follows, the essentials of the problem are explained and some possible paths to a solution are discussed

  10. Advanced fuel cycles of WWER-1000 reactors

    International Nuclear Information System (INIS)

    Lunin, G.; Novikov, A.; Pavlov, V.; Pavlovichev, A.

    2003-01-01

    The present paper considers characteristics of fuel cycles for the WWER-1000 reactor satisfying the following conditions: duration of the campaign at the nominal power is extended from 250 EFPD up to 470 and more ones; fuel enrichment does not exceed 5 wt.%; fuel assemblies maximum burnup does not exceed 55 MWd/kgHM. Along with uranium fuel, the use of mixed Uranium-Plutonium fuel is considered. Calculations were conducted by codes TVS-M, BIPR-7A and PERMAK-A developed in the RRC Kurchatov Institute, verified for the calculations of uranium fuel and certified by GAN RF

  11. Innovation in the fuel cycle industry

    International Nuclear Information System (INIS)

    Lamorlette, Guy

    1998-01-01

    The fuel cycle industry will have to adapt to the production of new fuel and in the same time will have to improve its performance. Innovation will be a key factor of success. Innovation must be driven by the needs of the fuel cycle industry to achieve. The fuel cycle requirement of tomorrow, Innovative processes for mining high grade uranium, Innovative enrichment process, Sorting the pellets at Melox plant, Innovation in action, and Innovative waste management in la Hague are presented. A number of innovative solutions are already implemented and are in action on industrial facilities. As problems are becoming more and more tough to address, international cooperation will be required. The fuel cycle industry, as a part of the nuclear power industry, is committed to seek improvements through performance upgrade and innovation. (Cho. G. S.). 10 refs., 4 figs

  12. Serving the fuel cycle: preparing tomorrow's packagings

    International Nuclear Information System (INIS)

    Roland, V.

    2001-01-01

    The main fleet of transport packagings serving today the fuel cycle was born more than 20 years ago. Or was it they? The present paper will show that serving the fuel cycle by preparing tomorrow's logistics is actually an on-going process, rather than a rupture. We shall review the great packagings of the fuel cycle: In the front end, the major actors are the UF 4 , UF 6 , enriched UF 6 , UO 2 powders, fresh fuel packagings. In the back end of the fuel cycle, we find the dry transport casks of the TN-12, TN-17, TN-13, family and also the Excellox wet flasks. In the waste management, a whole fleet of containers, culminating in the TN Gemini, are available or being created. (author)

  13. Large-scale fuel cycle centers

    International Nuclear Information System (INIS)

    Smiley, S.H.; Black, K.M.

    1977-01-01

    The United States Nuclear Regulatory Commission (NRC) has considered the nuclear energy center concept for fuel cycle plants in the Nuclear Energy Center Site Survey - 1975 (NECSS-75) -- an important study mandated by the U.S. Congress in the Energy Reorganization Act of 1974 which created the NRC. For the study, NRC defined fuel cycle centers to consist of fuel reprocessing and mixed oxide fuel fabrication plants, and optional high-level waste and transuranic waste management facilities. A range of fuel cycle center sizes corresponded to the fuel throughput of power plants with a total capacity of 50,000 - 300,000 MWe. The types of fuel cycle facilities located at the fuel cycle center permit the assessment of the role of fuel cycle centers in enhancing safeguarding of strategic special nuclear materials -- plutonium and mixed oxides. Siting of fuel cycle centers presents a considerably smaller problem than the siting of reactors. A single reprocessing plant of the scale projected for use in the United States (1500-2000 MT/yr) can reprocess the fuel from reactors producing 50,000-65,000 MWe. Only two or three fuel cycle centers of the upper limit size considered in the NECSS-75 would be required in the United States by the year 2000 . The NECSS-75 fuel cycle center evaluations showed that large scale fuel cycle centers present no real technical difficulties in siting from a radiological effluent and safety standpoint. Some construction economies may be attainable with fuel cycle centers; such centers offer opportunities for improved waste management systems. Combined centers consisting of reactors and fuel reprocessing and mixed oxide fuel fabrication plants were also studied in the NECSS. Such centers can eliminate not only shipment of plutonium, but also mixed oxide fuel. Increased fuel cycle costs result from implementation of combined centers unless the fuel reprocessing plants are commercial-sized. Development of plutonium-burning reactors could reduce any

  14. Economic Analysis of Several Nuclear Fuel Cycles

    International Nuclear Information System (INIS)

    Ko, Won Il; Gao, Fanxing; Kim, Sung Ki

    2012-01-01

    Economics is one of the essential criteria to be considered for the future deployment of the nuclear power. With regard to the competitive power market, the cost of electricity from nuclear power plants is somewhat highly competitive with those from the other electricity generations, averaging lower in cost than fossil fuels, wind, or solar. However, a closer look at the nuclear power production brings an insight that the cost varies within a wide range, highly depending on a nuclear fuel cycle option. The option of nuclear fuel cycle is a key determinant in the economics, and therefrom, a comprehensive comparison among the proposed fuel cycle options necessitates an economic analysis for thirteen promising options based on the material flow analysis obtained by an equilibrium model as specified in the first article (Modeling and System Analysis of Different Fuel Cycle Options for Nuclear Power Sustainability (I): Uranium Consumption and Waste Generation). The objective of the article is to provide a systematic cost comparison among these nuclear fuel cycles. The generation cost (GC) generally consists of a capital cost, an operation and maintenance cost (O and M cost), a fuel cycle cost (FCC), and a decontaminating and decommissioning (D and D) cost. FCC includes a frontend cost and a back-end cost, as well as costs associated with fuel recycling in the cases of semi-closed and closed cycle options. As a part of GC, the economic analysis on FCC mainly focuses on the cost differences among fuel cycle options considered and therefore efficiently avoids the large uncertainties of the Generation-IV reactor capital costs and the advanced reprocessing costs. However, the GC provides a more comprehensive result covering all the associated costs, and therefrom, both GC and FCC have been analyzed, respectively. As a widely applied tool, the levelized cost (mills/KWh) proves to be a fundamental calculation principle in the energy and power industry, which is particularly

  15. Spent fuel management and closed nuclear fuel cycle

    International Nuclear Information System (INIS)

    Kudryavtsev, E.G.

    2012-01-01

    Strategic objectives set by Rosatom Corporation in the field of spent fuel management are given. By 2030, Russia is to create technological infrastructure for innovative nuclear energy development, including complete closure of the nuclear fuel cycle. A target model of the spent NPP nuclear fuel management system until 2030 is analyzed. The schedule for key stages of putting in place the infrastructure for spent NPP fuel management is given. The financial aspect of the problem is also discussed [ru

  16. Nuclear Fusion Fuel Cycle Research Perspectives

    International Nuclear Information System (INIS)

    Chung, Hongsuk; Koo, Daeseo; Park, Jongcheol; Kim, Yeanjin; Yun, Sei-Hun

    2015-01-01

    As a part of the International Thermonuclear Experimental Reactor (ITER) Project, we at the Korea Atomic Energy Research Institute (KAERI) and our National Fusion Research Institute (NFRI) colleagues are investigating nuclear fusion fuel cycle hardware including a nuclear fusion fuel Storage and Delivery System (SDS). To have a better knowledge of the nuclear fusion fuel cycle, we present our research efforts not only on SDS but also on the Fuel Supply System (FS), Tokamak Exhaust Processing System (TEP), Isotope Separation System (ISS), and Detritiation System (DS). To have better knowledge of the nuclear fusion fuel cycle, we presented our research efforts not only on SDS but also on the Fuel Supply System (FS), Tokamak Exhaust Processing System (TEP), Isotope Separation System (ISS), and Detritiation System (DS). Our efforts to enhance the tritium confinement will be continued for the development of cleaner nuclear fusion power plants

  17. French development program on fuel cycle

    International Nuclear Information System (INIS)

    Viala, M.; Bourgeois, M.

    1991-01-01

    The need to close the fuel cycle of fast reactors makes the development of the cycle installations (fuel fabrication, irradiated assembly conditioning before reprocessing, reprocessing and waste management) especially independent with the development of the reactor. French experience with the integrated cycle over a period of about 25 years, the tonnage of fuels fabricated (more than 100 t of mixed oxides) for the Rapsodie, Phoenix and SuperPhoenix reactors, and the tonnage of reprocessed fuel (nearly 30 t of plutonium fuel) demonstrate the control of the cycle operations. The capacities of the cycle installations in existence and under construction are largely adequate for presents needs, even including a new European EFR reactor. They include the Cadarache fuel fabrication complex, the La Hague UP2-800 reprocessing plant, and the Marcoule pilot facility. Short- and medium-term R and D programs are connected with fuel developments, with the primary objective of very high burnups. For the longer term and for a specific plant to reprocess fast reactor fuels, the programs could concern new fabrication and reprocessing systems and the study of the consequences of the reduction in fuel out-of-core time

  18. Back end of an enduring fuel cycle

    International Nuclear Information System (INIS)

    Pillay, K.K.S.

    1998-03-01

    An enduring nuclear fuel cycle is an essential part of sustainable consumption, the process whereby world's riches are consumed in a responsible manner so that future generations can continue to enjoy at least some of them. In many countries, the goal of sustainable development has focused attention on the benefits of nuclear technologies. However, sustenance of the nuclear fuel cycle is dependent on sensible management of all the resources of the fuel cycle, including energy, spent fuels, and all of its side streams. The nuclear fuel cycle for energy production has suffered many traumas since the mid seventies. The common basis of technologies producing nuclear explosives and consumable nuclear energy has been a preoccupation for some, predicament for others, and a perception problem for many. It is essential to reestablish a reliable back end of the nuclear fuel cycle that can sustain the resource requirements of an enduring full cycle. This paper identifies some pragmatic steps necessary to reverse the trend and to maintain a necessary fuel cycle option for the future

  19. Advanced fuel cycles and burnup increase of WWER-440 fuel

    International Nuclear Information System (INIS)

    Proselkov, V.; Saprykin, V.; Scheglov, A.

    2003-01-01

    Analyses of operational experience of 4.4% enriched fuel in the 5-year fuel cycle at Kola NPP Unit 3 and fuel assemblies with Uranium-Gadolinium fuel at Kola NPP Unit 4 are made. The operability of WWER-440 fuel under high burnup is studied. The obtained results indicate that the fuel rods of WWER-440 assemblies intended for operation within six years of the reviewed fuel cycle totally preserve their operability. Performed analyses have demonstrated the possibility of the fuel rod operability during the fuel cycle. 12 assemblies were loaded into the reactor unit of Kola 3 in 2001. The predicted burnup in six assemblies was 59.2 MWd/kgU. Calculated values of the burnup after operation for working fuel assemblies were ∼57 MWd/kgU, for fuel rods - up to ∼61 MWd/kgU. Data on the coolant activity, specific activity of the benchmark iodine radionuclides of the reactor primary circuit, control of the integrity of fuel rods of the assemblies that were operated for six years indicate that not a single assembly has reached the criterion for the early discharge

  20. Nuclear-fuel-cycle costs. Consolidated Fuel-Reprocessing Program

    International Nuclear Information System (INIS)

    Burch, W.D.; Haire, M.J.; Rainey, R.H.

    1981-01-01

    The costs for the back-end of the nuclear fuel cycle, which were developed as part of the Nonproliferation Alternative Systems Assessment Program (NASAP), are presented. Total fuel-cycle costs are given for the pressurized-water reactor once-through and fuel-recycle systems, and for the liquid-metal fast-breeder-reactor system. These calculations show that fuel-cycle costs are a small part of the total power costs. For breeder reactors, fuel-cycle costs are about half that of the present once-through system. The total power cost of the breeder-reactor system is greater than that of light-water reactor at today's prices for uranium and enrichment

  1. Nuclear fuel cycle modelling using MESSAGE

    International Nuclear Information System (INIS)

    Guiying Zhang; Dongsheng Niu; Guoliang Xu; Hui Zhang; Jue Li; Lei Cao; Zeqin Guo; Zhichao Wang; Yutong Qiu; Yanming Shi; Gaoliang Li

    2017-01-01

    In order to demonstrate the possibilities of application of MESSAGE tool for the modelling of a Nuclear Energy System at the national level, one of the possible open nuclear fuel cycle options based on thermal reactors has been modelled using MESSAGE. The steps of the front-end and back-end of nuclear fuel cycle and nuclear reactor operation are described. The optimal structure for Nuclear Power Development and optimal schedule for introducing various reactor technologies and fuel cycle options; infrastructure facilities, nuclear material flows and waste, investments and other costs are demonstrated. (author)

  2. International Nuclear Fuel Cycle Fact Book

    Energy Technology Data Exchange (ETDEWEB)

    Leigh, I.W.; Patridge, M.D.

    1991-05-01

    As the US Department of Energy (DOE) and DOE contractors have become increasingly involved with other nations in nuclear fuel cycle and waste management cooperative activities, a need has developed for a ready source of information concerning foreign fuel cycle programs, facilities, and personnel. This Fact Book was compiled to meet that need. The information contained in the International Nuclear Fuel Cycle Fact Book has been obtained from many unclassified sources: nuclear trade journals and newsletters; reports of foreign visits and visitors; CEC, IAEA, and OECN/NEA activities reports; not reflect any one single source but frequently represent a consolidation/combination of information.

  3. Globalisation of the nuclear fuel cycle

    International Nuclear Information System (INIS)

    Rougeau, J.-P.; Durret, L.-F.

    1995-01-01

    Three main features of the globalisation of the nuclear fuel cycle are identified and discussed. The first is an increase in the scale of the nuclear fuel cycle materials and services markets in the past 20 years. This has been accompanied by a growth in the sophistication of the fuel cycle. Secondly, the nuclear industry is now more vulnerable to outside pressures; it is no longer possible to make strategic decisions on the industry within a country solely on national considerations. Thirdly, there are changes in the decision-making process at the political, regulatory, operational and industrial level which are the consequence of global factors. (UK)

  4. The DUPIC alternative for backend fuel cycle

    International Nuclear Information System (INIS)

    Lee, J.S.; Choi, J.W.; Park, H.S.; Boczar, P.; Sullivan, J.; Gadsby, R.D.

    1997-01-01

    From the early nineties, a research programme, called DUPIC (Direct Use of Spent PWR Fuel in CANDU) has been undertaken in an international exercise involving Korea, Canada, the U.S. and later the IAEA. The basic idea of this fuel cycle alternative is that the spent fuel from LWR contains enough fissile remnant to be burnt again in CANDUs thanks to its excellent neutron economy. A systematic R and D plan has now gained a full momentum to verify experimentally the DUPIC fuel cycle concept. 4 refs

  5. The status of nuclear fuel cycle system analysis for the development of advanced nuclear fuel cycles

    Energy Technology Data Exchange (ETDEWEB)

    Ko, Won Il; Kim, Seong Ki; Lee, Hyo Jik; Chang, Hong Rae; Kwon, Eun Ha; Lee, Yoon Hee; Gao, Fanxing [KAERI, Daejeon (Korea, Republic of)

    2011-11-15

    The system analysis has been used with different system and objectives in various fields. In the nuclear field, the system can be applied from uranium mining to spent fuel reprocessing or disposal which is called the nuclear fuel cycle. The analysis of nuclear fuel cycle can be guideline for development of advanced fuel cycle through integrating and evaluating the technologies. For this purpose, objective approach is essential and modeling and simulation can be useful. In this report, several methods which can be applicable for development of advanced nuclear fuel cycle, such as TRL, simulation and trade analysis were explained with case study

  6. Moving towards sustainable thorium fuel cycles

    International Nuclear Information System (INIS)

    Hyland, B.; Hamilton, H.

    2011-01-01

    The CANDU reactor has an unsurpassed degree of fuel-cycle flexibility as a consequence of its fuel-channel design, excellent neutron economy, on-power refueling, and simple fuel bundle design. These features facilitate the introduction and full exploitation of thorium fuel cycles in CANDU reactors in an evolutionary fashion. Thoria (ThO 2 ) based fuel offers both fuel performance and safety advantages over urania (UO 2 ) based fuel, due its higher thermal conductivity which results in lower fuel-operating temperatures at similar linear element powers. Thoria fuel has demonstrated lower fission gas release than UO 2 under similar operating powers during test irradiations. In addition, thoria has a higher melting point than urania and is far less reactive in hypothetical accident scenarios owing to the fact that it has only one oxidation state. This paper examines one possible strategy for the introduction of thorium fuel cycles into CANDU reactors. In the short term, the initial fissile material would be provided in a heterogeneous bundle of low-enriched uranium and thorium. The medium term scenario uses homogeneous Pu/Th bundles in the CANDU reactor, further increasing the energy derived from the thorium. In the long term, the full energy potential from thorium would be realized through the recycle of the U-233 in the used fuel. With U-233 recycle in CANDU reactors, plutonium would then only be required to top up the fissile content to achieve the desired burnup. (author)

  7. CANDU fuel cycle options in Korea

    International Nuclear Information System (INIS)

    Boczar, P.G.; Fehrenbach, P.J.; Meneley, D.A.

    1996-04-01

    The easiest first step in CANDU fuel-cycle evolution may be the use of slightly enriched uranium (SEU), including recovered uranium from reprocessed LWR spent fuel. Relatively low enrichment (up to 1.2%) will result in a twoto three-fold reduction in the quantity of spent fuel per unit energy production, reductions in fuel-cycle costs, and greater flexibility in the design of new reactors. The CANFLEX (CANDU FLEXible) fuel bundle would be the optimal fuel carrier. A country that has both CANDU and PWR reactors can exploit the natural synergism between these two reactor types to minimize overall waste production, and maximize energy derived from the fuel. This synergism can be exploited through several different fuel cycles. A high burnup CANDU MOX fuel design could be used to utilize plutonium from conventional reprocessing or more advanced reprocessing options (such as co-processing). DUPIC (Direct Use of Spent PWR Fuel In CANDU) represents a recycle option that has a higher degree of proliferation resistance than does conventional reprocessing, since it uses only dry processes for converting spent PWR fuel into CANDU fuel, without separating the plutonium. Good progress is being made in the current KAERI, AECL, and U.S. Department of State program in demonstrating the technical feasibility of DUPIC. In the longer term, CANDU reactors offer even more dramatic synergistic fuel cycles with PWR or FBR reactors. If the objective of a national fuel-cycle program is the minimization of actinide waste or destruction of long-lived fission products, then studies have shown the superiority of CANDU reactors in meeting this objective. Long-term energy security can be assured either through the thorium cycle or through a CANDU 1 FBR system, in which the FBR would be operated as a 'fuel factory,' providing the fissile material to power a number of lower-cost, high efficiency CANDU reactors. In summary, the CANDU reactor's simple fuel design, high neutron economy, and on

  8. Nuclear Fuel Cycle Evaluation and Real Options

    Directory of Open Access Journals (Sweden)

    L. Havlíček

    2008-01-01

    Full Text Available The first part of this paper describes the nuclear fuel cycle. It is divided into three parts. The first part, called Front-End, covers all activities connected with fuel procurement and fabrication. The middle part of the cycle includes fuel reload design activities and the operation of the fuel in the reactor. Back-End comprises all activities ensuring safe separation of spent fuel and radioactive waste from the environment. The individual stages of the fuel cycle are strongly interrelated. Overall economic optimization is very difficult. Generally, NPV is used for an economic evaluation in the nuclear fuel cycle. However the high volatility of uranium prices in the Front-End, and the large uncertainty of both economic and technical parameters in the Back-End, make the use of NPV difficult. The real option method is able to evaluate the value added by flexibility of decision making by a company under conditions of uncertainty. The possibility of applying this method to the nuclear fuel cycle evaluation is studied. 

  9. CANDU-6 fuel optimization for advanced cycles

    Energy Technology Data Exchange (ETDEWEB)

    St-Aubin, Emmanuel, E-mail: emmanuel.st-aubin@polymtl.ca; Marleau, Guy, E-mail: guy.marleau@polymtl.ca

    2015-11-15

    Highlights: • New fuel selection process proposed for advanced CANDU cycles. • Full core time-average CANDU modeling with independent refueling and burnup zones. • New time-average fuel optimization method used for discrete on-power refueling. • Performance metrics evaluated for thorium-uranium and thorium-DUPIC cycles. - Abstract: We implement a selection process based on DRAGON and DONJON simulations to identify interesting thorium fuel cycles driven by low-enriched uranium or DUPIC dioxide fuels for CANDU-6 reactors. We also develop a fuel management optimization method based on the physics of discrete on-power refueling and the time-average approach to maximize the economical advantages of the candidates that have been pre-selected using a corrected infinite lattice model. Credible instantaneous states are also defined using a channel age model and simulated to quantify the hot spots amplitude and the departure from criticality with fixed reactivity devices. For the most promising fuels identified using coarse models, optimized 2D cell and 3D reactivity device supercell DRAGON models are then used to generate accurate reactor databases at low computational cost. The application of the selection process to different cycles demonstrates the efficiency of our procedure in identifying the most interesting fuel compositions and refueling options for a CANDU reactor. The results show that using our optimization method one can obtain fuels that achieve a high average exit burnup while respecting the reference cycle safety limits.

  10. Several remarks on the fuel cycle economy

    International Nuclear Information System (INIS)

    Roman Kubin; Rudolf Vespalec

    2007-01-01

    Present paper deals with some aspects influencing significantly cost of nuclear fuel and possibilities of its usage in optimal fuel cycle technology. Our discussion is focused on the phase of fuel procurement that means financial parts of the contract as well as its technical Appendices. Typically the fuel fabrication price is taken as the main economy indicator; nevertheless also many other financial and technical features of the contract must be taken into account in order to reach the best price of electricity sold into public energy grid. Our experience from several international tenders shows that the consistent complex of commercial and technical parameters of the contract is necessary to achieve optimal economic results and prepare proper conditions for advanced fuel cycle technology. Among those essential characteristics are payment conditions and schedule and extent of vendor's services and assistance to the operator. Very important role play also technical parameters, as safety and operational limits, influencing loading pattern quality and operating flexibility. Obviously also a level of operator's fuel cycle technology is a crucial point that is necessary for usage of technical quality of the fuel at the power plant. The final electricity price, produced by the plant, and uranium consumption are the only objective criteria to evaluate economic level of the fuel contract and the fuel cycle at all (Authors)

  11. Development of nuclear fuel cycle technologies

    International Nuclear Information System (INIS)

    Suzuoki, Akira; Matsumoto, Takashi; Suzuki, Kazumichi; Kawamura, Fumio

    1995-01-01

    In the long term plan for atomic energy that the Atomic Energy Commission decided the other day, the necessity of the technical development for establishing full scale fuel cycle for future was emphasized. Hitachi Ltd. has engaged in technical development and facility construction in the fields of uranium enrichment, MOX fuel fabrication, spent fuel reprocessing and so on. In uranium enrichment, it took part in the development of centrifuge process centering around Power Reactor and Nuclear Fuel Development Corporation (PNC), and took its share in the construction of the Rokkasho uranium enrichment plant of Japan Nuclear Fuel Service Co., Ltd. Also it cooperates with Laser Enrichment Technology Research Association. In Mox fuel fabrication, it took part in the construction of the facilities for Monju plutonium fuel production of PNC, for pellet production, fabrication and assembling processes. In spent fuel reprocessing, it cooperated with the technical development of maintenance and repair of Tokai reprocessing plant of PNC, and the construction of spent fuel stores in Rokkasho reprocessing plant is advanced. The centrifuge process and the atomic laser process of uranium enrichment are explained. The high reliability of spent fuel reprocessing plants and the advancement of spent fuel reprocessing process are reported. Hitachi Ltd. Intends to exert efforts for the technical development to establish nuclear fuel cycle which increases the importance hereafter. (K.I.)

  12. Out-of-core fuel cycle optimization for nonequilibrium cycles

    International Nuclear Information System (INIS)

    Comes, S.A.; Turinsky, P.J.

    1988-01-01

    A methodology has been developed for determining the family of near-optimum fuel management schemes that minimize the levelized fuel cycle costs of a light water reactor over a multicycle planning horizon. Feed batch enrichments and sizes, burned batches to reinsert, and burnable poison loadings are determined for each cycle in the planning horizon. Flexibility in the methodology includes the capability to assess the economic benefits of various partially burned bath reload strategies as well as the effects of using split feed enrichments and enrichment palettes. Constraint limitations are imposed on feed enrichments, discharge burnups, moderator temperature coefficient, and cycle energy requirements

  13. Nuclear fuel cycle scenarios at CGNPC

    International Nuclear Information System (INIS)

    Xiao, Min; Zhou, Zhou; Nie, Li Hong; Mao, Guo Ping; Hao, Si Xiong; Shen, Kang

    2008-01-01

    Established in 1994, China Guangdong Nuclear Power Holding Co. (CGNPC) now owns two power stations GNPS and LNPS Phase I, with approximate 4000 MWe of installed capacity. With plant upgrades, advanced fuel management has been introduced into the two plants to improve the plant economical behavior with the high burnup fuel implemented. For the purpose of sustainable development, some preliminary studies on nuclear fuel cycle, especially on the back-end, have been carried out at CGNPC. According to the nuclear power development plan of China, the timing for operation and the capacity of the reprocessing facility are studied based on the amount of the spent fuel forecast in the future. Furthermore, scenarios of the fuel cycles in the future in China with the next generation of nuclear power were considered. Based on the international experiences on the spent fuel management, several options of spent fuel reprocessing strategies are investigated in detail, for example, MOX fuel recycling in light water reactor, especially in the current reactors of CGNPC, spent fuel intermediated storage, etc. All the investigations help us to draw an overall scheme of the nuclear fuel cycle, and to find a suitable road-map to achieve the sustainable development of nuclear power. (authors)

  14. Fast reactors fuel Cycle: State in Europe

    International Nuclear Information System (INIS)

    1991-01-01

    In this SFEN day we treat all aspects (economics-reactor cores, reprocessing, experience return) of the LMFBR fuel cycle in Europe and we discuss about the development of this type of reactor (EFR project) [fr

  15. Ecological effects of fuel cycle activities

    Energy Technology Data Exchange (ETDEWEB)

    Barnthouse, L; Cada, G; Kroodsma, R; Shriner, D; Tolbert, V; Turner, R

    1994-07-01

    The purpose of this paper is to summarize the approach used to characterize ecological impacts of the coal fuel cycle. The same approach is used for many of the impacts in other fuel cycles as well. The principal analytical approach being used in the study is an accounting framework - that is, a series of matrices that map each phase of the fuel cycle to a suite of possible. emissions, each emission to a suite of impact categories, and each impact category to an external cost. This paper summarizes the ecological impacts of all phases of the coal fuel cycle, defines the ecological impact categories used in the study's 'accounting framework', and discusses alternative approaches to quantification. Externalities associated with CO{sub 2}-induced global climate change are beyond the scope of this paper and are not discussed.

  16. Globalization of the nuclear fuel cycle

    Energy Technology Data Exchange (ETDEWEB)

    Rougeau, J.P. [Cogema, Corporate Strategy and International Development, Velizy (France)

    1996-07-01

    The article deals with the increased scale and sophistication of the markets in the nuclear fuel cycle, with the increased vulnerability to outside pressures, and with changes in the decision process.

  17. Ecological effects of fuel cycle activities

    International Nuclear Information System (INIS)

    Barnthouse, L.; Cada, G.; Kroodsma, R.; Shriner, D.; Tolbert, V.; Turner, R.

    1994-01-01

    The purpose of this paper is to summarize the approach used to characterize ecological impacts of the coal fuel cycle. The same approach is used for many of the impacts in other fuel cycles as well. The principal analytical approach being used in the study is an accounting framework - that is, a series of matrices that map each phase of the fuel cycle to a suite of possible. emissions, each emission to a suite of impact categories, and each impact category to an external cost. This paper summarizes the ecological impacts of all phases of the coal fuel cycle, defines the ecological impact categories used in the study's 'accounting framework', and discusses alternative approaches to quantification. Externalities associated with CO 2 -induced global climate change are beyond the scope of this paper and are not discussed

  18. WWER-440 fuel cycles possibilities using improved fuel assemblies design

    International Nuclear Information System (INIS)

    Mikolas, P.; Svarny, J.

    2008-01-01

    Practically five years cycle has been achieved in the last years at NPP Dukovany. There are two principal means how it could be achieved. First, it is necessary to use fuel assemblies with higher fuel enrichment and second, to use fuel loading with very low leakage. Both these conditions are fulfilled at NPP Dukovany at this time. It is known, that the fuel cycle economy can be improved by increasing the fuel residence time in the core up to six years. There are at least two ways how this goal could be achieved. The simplest way is to increase enrichment in fuel. There exists a limit, which is 5.0 w % of 235 U. Taking into account some uncertainty, the calculation maximum is 4.95 w % of 235 U. The second way is to change fuel assembly design. There are several possibilities, which seem to be suitable from the neutron - physical point of view. The first one is higher mass content of uranium in a fuel assembly. The next possibility is to enlarge pin pitch. The last possibility is to 'omit' FA shroud. This is practically unrealistic; anyway, some other structural parts must be introduced. The basic neutron physical characteristics of these cycles for up-rated power are presented showing that the possibilities of fuel assemblies with this improved design in enlargement of fuel cycles are very promising. In the end, on the basis of neutron physical characteristics and necessary economical input parameters, a preliminary evaluation of economic contribution of proposals of advanced fuel assemblies on fuel cycle economy is presented (Authors)

  19. Regional nuclear fuel cycle centers study project

    International Nuclear Information System (INIS)

    Bennett, L.; Catlin, R.G.; Meckoni, V.

    1977-01-01

    The concept of regional fuel cycle centers (RFCC) has attracted wide interest. The concept was endorsed by many countries in discussions at the General Conference of the International Atomic Energy Agency and at the General Assembly of the United Nations. Accordingly, in 1975, the IAEA initiated a detailed study of the RFCC concept. The Agency study has concentrated on what is referred to as the ''back-end'' of the fuel cycle because that is the portion which is currently problematic. The study covers transport, storage, processing and recycle activities starting from the time the spent fuel leaves the reactor storage pools and through all steps until the recycled fuel is in finished fuel elements and shipped to the reactor. A detailed evaluation of the specific features of large regional fuel cycle centers established on a multinational basis vis-a-vis smaller dispersed fuel cycle facilities set up on a national basis has been carried out. The methodology for assessment of alternative strategies for fuel storage, reprocessing, and recycling of plutonium has been developed, characteristic data on material flows and cost factors have been generated, and an analytic system has been developed to carry out such evaluations including appropriate sensitivity analysis. Studies in related areas on institutional and legal, organizational, environmental, materials control and other essential aspects have also been made. The material developed during the course of this Study would enable any group of interested Member States to examine and work out alternative strategies pertinent to their present and projected nuclear fuel cycle needs, as well as evolve institutional, legal and other appropriate frameworks or agreements for the establishment of fuel cycle centers on a multinational cooperative basis

  20. Energy security externalities and fuel cycle comparisons

    International Nuclear Information System (INIS)

    Bohi, D.; Toman, M.

    1994-01-01

    Externalities related to 'energy security' may be one way in which the full social costs of energy use diverge from the market prices of energy commodities. Such divergences need to be included in reckoning the full costs of different fuel cycles. In this paper we critically examine potential externalities related to energy security and issues related to the measurement of 2 these externalities, in the context of fuel cycle comparisons

  1. French views on the nuclear fuel cycle

    International Nuclear Information System (INIS)

    Chavardes, D.

    1986-01-01

    Fuel cycle activities are viewed in France as a very important and indissociable part of our nuclear program. Supply of material and services are firmly assured for domestic needs and overcapacities provide opportunities for industry to compete on the international market. A permanent and consistent R and D effort is continuously undertaken, aiming to apply new advanced technologies improving safety, economy and reliability of fuel cycle installations

  2. Energy security externalities and fuel cycle comparisons

    Energy Technology Data Exchange (ETDEWEB)

    Bohi, D; Toman, M

    1994-07-01

    Externalities related to 'energy security' may be one way in which the full social costs of energy use diverge from the market prices of energy commodities. Such divergences need to be included in reckoning the full costs of different fuel cycles. In this paper we critically examine potential externalities related to energy security and issues related to the measurement of 2 these externalities, in the context of fuel cycle comparisons.

  3. An introduction to the nuclear fuel cycle

    International Nuclear Information System (INIS)

    Leuze, R.E.

    1986-01-01

    This overview of the nuclear fuel cycle is divided into three parts. First, is a brief discussion of the basic principles of how nuclear reactors work;second, is a look at the major types of nuclear reactors being used and world-wide nuclear capacity;and third, is an overview of the nuclear fuel cycle and the present industrial capability in the US. 34 figs., 10 tabs

  4. The nuclear fuel cycle; Le cycle du combustible nucleaire

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-05-01

    After a short introduction about nuclear power in the world, fission physics and the French nuclear power plants, this brochure describes in a digest way the different steps of the nuclear fuel cycle: uranium prospecting, mining activity, processing of uranium ores and production of uranium concentrates (yellow cake), uranium chemistry (conversion of the yellow cake into uranium hexafluoride), fabrication of nuclear fuels, use of fuels, reprocessing of spent fuels (uranium, plutonium and fission products), recycling of energetic materials, and storage of radioactive wastes. (J.S.)

  5. Future fuel cycle development for CANDU reactors

    International Nuclear Information System (INIS)

    Hatcher, S.R.; McDonnell, F.N.; Griffiths, J.; Boczar, P.G.

    1987-01-01

    The CANDU reactor has proven to be safe and economical and has demonstrated outstanding performance with natural uranium fuel. The use of on-power fuelling, coupled with excellent neutron economy, leads to a very flexible reactor system with can utilize a wide variety of fuels. The spectrum of fuel cycles ranges from natural uranium, through slightly enriched uranium, to plutonium and ultimately thorium fuels which offer many of the advantages of the fast breeder reactor system. CANDU can also burn the recycled uranium and/or the plutonium from fuel discharged from light water reactors. This synergistic relationship could obviate the need to re-enrich the reprocessed uranium and allow a simpler reprocessing scheme. Fule management strategies that will permit future fuel cycles to be used in existing CANDU reactors have been identified. Evolutionary design changes will lead to an even greater flexibility, which will guarantee the continued success of the CANDU system. (author)

  6. Dynamic Simulations of Advanced Fuel Cycles

    International Nuclear Information System (INIS)

    Piet, Steven J.; Dixon, Brent W.; Jacobson, Jacob J.; Matthern, Gretchen E.; Shropshire, David E.

    2011-01-01

    Years of performing dynamic simulations of advanced nuclear fuel cycle options provide insights into how they could work and how one might transition from the current once-through fuel cycle. This paper summarizes those insights from the context of the 2005 objectives and goals of the U.S. Advanced Fuel Cycle Initiative (AFCI). Our intent is not to compare options, assess options versus those objectives and goals, nor recommend changes to those objectives and goals. Rather, we organize what we have learned from dynamic simulations in the context of the AFCI objectives for waste management, proliferation resistance, uranium utilization, and economics. Thus, we do not merely describe 'lessons learned' from dynamic simulations but attempt to answer the 'so what' question by using this context. The analyses have been performed using the Verifiable Fuel Cycle Simulation of Nuclear Fuel Cycle Dynamics (VISION). We observe that the 2005 objectives and goals do not address many of the inherently dynamic discriminators among advanced fuel cycle options and transitions thereof.

  7. FRG paper on assessment of fuel cycles

    International Nuclear Information System (INIS)

    1979-01-01

    The paper deals with the assessment of the nuclear fuel cycle under different aspects: Assured energy supply, economy, environmental aspects, and non-proliferation philosophy. The results of an assessment of nuclear fuel variants along these lines for several types of commercial reactors (light-water reactors, heavy-water reactors, high-temperature reactors, and fast breeders) are presented in tables

  8. Physics of fusion-fuel cycles

    International Nuclear Information System (INIS)

    McNally, J.R. Jr.

    1981-01-01

    The evaluation of nuclear fusion fuels for a magnetic fusion economy must take into account the various technological impacts of the various fusion fuel cycles as well as the relative reactivity and the required β's and temperatures necessary for economic steady-state burns. This paper will review some of the physics of the various fusion fuel cycles (D-T, catalyzed D-D, D- 3 He, D- 6 Li, and the exotic fuels: 3 He 3 He and the proton-based fuels such as P- 6 Li, P- 9 Be, and P- 11 B) including such items as: (1) tritium inventory, burnup, and recycle, (2) neutrons, (3) condensable fuels and ashes, (4) direct electrical recovery prospects, (5) fissile breeding, etc. The advantages as well as the disadvantages of the different fusion fuel cycles will be discussed. The optimum fuel cycle from an overall standpoint of viability and potential technological considerations appears to be catalyzed D-D, which could also support smaller relatively clean, lean-D, rich- 3 He satellite reactors as well as fission reactors

  9. Description Fuel Cycle Spanish. Technical Visits

    International Nuclear Information System (INIS)

    Ochoa Valero, R.; Vinuesa Carretero, A.

    2014-01-01

    The nuclear fuel cycle includes all processes and operations from the mining of uranium to the management of radioactive waste generated. These processes include the manufacture of nuclear fuel, the operation of the plants and the storage of radioactive waste in the corresponding temporary stores. (Author)

  10. Critical review of nuclear fuel cycle

    International Nuclear Information System (INIS)

    Kuster, N.

    1996-01-01

    Transmutation of long-lived radionuclides is considered as an alternative to the in-depth disposal of spent nuclear fuel, in particular, on the final stage of the nuclear fuel cycle. The majority of conclusions is the result of the common work of the Karlsruhe FZK and the Commissariat on nuclear energy of France (CEA)

  11. Increased fuel burn-up and fuel cycle equilibrium

    International Nuclear Information System (INIS)

    Debes, M.

    2001-01-01

    Improvement of nuclear competitiveness will rely mainly on increased fuel performance, with higher burn-up, and reactors sustained life. Regarding spent fuel management, the EDF current policy relies on UO 2 fuel reprocessing (around 850 MTHM/year at La Hague) and MOX recycling to ensure plutonium flux adequacy (around 100 MTHM/year, with an electricity production equivalent to 30 TWh). This policy enables to reuse fuel material, while maintaining global kWh economy with existing facilities. It goes along with current perspective to increase fuel burn-up up to 57 GWday/t mean in 2010. The following presentation describes the consequences of higher fuel burn-up on fuel cycle and waste management and implementation of a long term and global equilibrium for decades in spent fuel management resulting from this strategy. (author)

  12. An Integrated Fuel Depletion Calculator for Fuel Cycle Options Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Schneider, Erich [Univ. of Texas, Austin, TX (United States); Scopatz, Anthony [Univ. of Wisconsin, Madison, WI (United States)

    2016-04-25

    Bright-lite is a reactor modeling software developed at the University of Texas Austin to expand upon the work done with the Bright [1] reactor modeling software. Originally, bright-lite was designed to function as a standalone reactor modeling software. However, this aim was refocused t couple bright-lite with the Cyclus fuel cycle simulator [2] to make it a module for the fuel cycle simulator.

  13. BWR fuel cycle optimization using neural networks

    International Nuclear Information System (INIS)

    Ortiz-Servin, Juan Jose; Castillo, Jose Alejandro; Pelta, David Alejandro

    2011-01-01

    Highlights: → OCONN a new system to optimize all nuclear fuel management steps in a coupled way. → OCON is based on an artificial recurrent neural network to find the best combination of partial solutions to each fuel management step. → OCONN works with a fuel lattices' stock, a fuel reloads' stock and a control rod patterns' stock, previously obtained with different heuristic techniques. → Results show OCONN is able to find good combinations according the global objective function. - Abstract: In nuclear fuel management activities for BWRs, four combinatorial optimization problems are solved: fuel lattice design, axial fuel bundle design, fuel reload design and control rod patterns design. Traditionally, these problems have been solved in separated ways due to their complexity and the required computational resources. In the specialized literature there are some attempts to solve fuel reloads and control rod patterns design or fuel lattice and axial fuel bundle design in a coupled way. In this paper, the system OCONN to solve all of these problems in a coupled way is shown. This system is based on an artificial recurrent neural network to find the best combination of partial solutions to each problem, in order to maximize a global objective function. The new system works with a fuel lattices' stock, a fuel reloads' stock and a control rod patterns' stock, previously obtained with different heuristic techniques. The system was tested to design an equilibrium cycle with a cycle length of 18 months. Results show that the new system is able to find good combinations. Cycle length is reached and safety parameters are fulfilled.

  14. IFR fuel cycle--pyroprocess development

    International Nuclear Information System (INIS)

    Laidler, J.J.; Miller, W.E.; Johnson, T.R.; Ackerman, J.P.; Battles, J.E.

    1992-01-01

    The Integral Fast Reactor (IFR) fuel cycle is based on the use of a metallic fuel alloy, with nominal composition U-2OPu-lOZr. In its present state of development, this fuel system offers excellent high-burnup capabilities. Test fuel has been carried to burnups in excess of 20 atom % in EBR-II irradiations, and to peak burnups over 15 atom % in FFTF. The metallic fuel possesses physical characteristics, in particular very high thermal conductivity, that facilitate a high degree of passive inherent safety in the IFR design. The fuel has been shown to provide very large margins to failure in overpower transient events. Rapid overpower transient tests carried out in the TREAT reactor have shown the capability to withstand up to 400% overpower conditions before failing. An operational transient test conducted in EBR-II at a power ramp rate of 0.1% per second reached its termination point of 130% of normal power without any fuel failures. The IFR metallic fuel also exhibits superior compatibility with the liquid sodium coolant. Equally as important as the performance advantages offered by the use of metallic fuel is the fact that this fuel system permits the use of an innovative reprocessing method, known as ''pyroprocessing,'' featuring fused-salt electrorefining of the spent fuel. Development of the IFR pyroprocess has been underway at the Argonne National Laboratory for over five years, and great progress has been made toward establishing a commercially-viable process. Pyroprocessing offers a simple, compact means for closure of the fuel cycle, with anticipated significant savings in fuel cycle costs

  15. Fuel cycle optimization in PWR'S

    International Nuclear Information System (INIS)

    Castro Lobo, P.D. de; Amorim, E.S. do.

    1979-08-01

    Neutronics aspects of a reactor core throughout its cycle were investigated in a search for increasing in-core utilization of the residual fissile isotopes content in the cycle discharged disposal. The effects due to design modifications introduced at burnup levels near the end-of-cycle, in an equilibrium cycle condition, have indicated the possibility of a better in-core utilization of the residual fissile isotopes existing in the cycle discharged disposal. The potential benefits are significant to warranty an examination of the mechanical and thermal hydraulic involved. At convenient burnup levels, change in H 2 O/UO 2 volume ratio were introduced allowing an intense depletion of the residual fissile isotopes existing in assemblies with high exposures levels. (Author) [pt

  16. Synergistic fuel cycles of the future

    International Nuclear Information System (INIS)

    Meneley, D.A.; Dastur, A.R.

    1997-01-01

    Good neutron economy is the basis of the fuel cycle flexibility in the CANDU reactor. This paper describes the fuel cycle options available to the CANDU owner with special emphasis on resource conservation and waste management. CANDU fuel cycles with low initial fissile content operate with relatively high conversion ratio. The natural uranium cycle provides over 55 % of energy from the plutonium that is created during fuel life. Resource utilization is over 7 MWd/kg NU. This can be improved by slight enrichment (between 0.9 and 1.2 wt % U235) of the fuel. Resource utilization increases to 11 MWd/kg NU with the Slightly Enriched Uranium cycle. Thorium based cycles in CANDU operate at near-breeder efficiency. Obey provide attractive options when used with natural uranium or separated (reactor grade and weapons grade) plutonium as driver fuels. In the latter case, the energy from the U233 plus the initial plutonium content amounts to 3.4 GW(th).d/kg Pu-fissile. The same utilization is expected from the use of FBR plutonium in a CANDU thorium cycle. Extension of natural resource is achieved by the use of spent fuels in CANDU. The LWR/CANDU Tandem cycle leads to an additional 77 % of energy through the use of reprocessed LWR fuel (which has a fissile content of 1.6 wt %) in CANDU. Dry reprocessing of LWR fuel with the OREOX process (a more safeguardable alternative to the PUREX process) provides an additional 50 % energy. Uranium recovered (RU) from separation of plutonium contained in spent LWR fuel provides an additional 15 MWd/kg RU. CANDU's low fissile requirement provides the possibility, through the use of non-fertile targets, of extracting energy from the minor actinides contained in spent fuel. In addition to the resource utilization advantage described above, there is a corresponding reduction in waste arisings with such cycles. This is especially significant when separated plutonium is available as a fissile resource. (author)

  17. Diversification of the VVER fuel market in Eastern Europe and Ukraine

    Energy Technology Data Exchange (ETDEWEB)

    Kirst, Michael [Westinghouse EMEA, Brussels (Belgium); Benjaminsson, Ulf; Oenneby, Carina [Westinghouse Electric Sweden AB, Vaesteraes (Sweden)

    2015-03-15

    There are a total of 33 VVER active reactors in the EU and Ukraine, accounting for the largest percentage of the total electricity supply in the countries operating these. The responsible governments and utilities operating these units want too see an increased diversification of the nuclear fuel supply. Westinghouse is the only nuclear fuel producer outside Russia, which has taken the major steps to develop, qualify and manufacture VVER fuel designs - both for VVER-440 and VVER-1000 reactors. The company has delivered reloads of VVER-440 fuel to Loviisa 2 in Finland, VVER-1000 fuel for both the initial core and follow-on regions to Temelin 1-2 in the Czech Republic and more recently reloads of VVER-1000 fuel to South Ukraine 2-3. Technical challenges in form of mechanical interference with the resident fuel have been encountered in Ukraine, but innovative solutions have been developed and successfully implemented and today Ukraine has, for the first time in its history, a viable VVER-1000 fuel design alternative, representing a tremendous lever in energy security for the country.

  18. The nuclear fuel cycle, an overview

    International Nuclear Information System (INIS)

    Ballery, J.L.; Cazalet, J.; Hagemann, R.

    1995-01-01

    Because uranium is widely distributed on the face of the Earth, nuclear energy has a very large potential as an energy source in view of future depletion of fossil fuel reserves. Also future energy requirements will be very sizeable as populations of developing countries are often growing and make the energy question one of the major challenges for the coming decades. Today, nuclear contributes some 340 GWe to the energy requirements of the world. Present and future nuclear programs require an adequate fuel cycle industry, from mining, refining, conversion, enrichment, fuel fabrication, fuel reprocessing and the storage of the resulting wastes. The commercial fuel cycle activities amount to an annual business in the 7-8 billions of US Dollars in the hands of a large number of industrial operators. This paper gives details about companies and countries involved in each step of the fuel cycle and about the national strategies and options chosen regarding the back end of the fuel cycle (waste storage and reprocessing). These options are illustrated by considering the policy adopted in three countries (France, United Kingdom, Japan) versed in reprocessing. (J.S.). 13 figs., 2 tabs

  19. CFTSIM-ITER dynamic fuel cycle model

    International Nuclear Information System (INIS)

    Busigin, A.; Gierszewski, P.

    1998-01-01

    Dynamic system models have been developed for specific tritium systems with considerable detail and for integrated fuel cycles with lesser detail (e.g. D. Holland, B. Merrill, Analysis of tritium migration and deposition in fusion reactor systems, Proceedings of the Ninth Symposium Eng. Problems of Fusion Research (1981); M.A. Abdou, E. Vold, C. Gung, M. Youssef, K. Shin, DT fuel self-sufficiency in fusion reactors, Fusion Technol. (1986); G. Spannagel, P. Gierszewski, Dynamic tritium inventory of a NET/ITER fuel cycle with lithium salt solution blanket, Fusion Eng. Des. (1991); W. Kuan, M.A. Abdou, R.S. Willms, Dynamic simulation of a proposed ITER tritium processing system, Fusion Technol. (1995)). In order to provide a tool to understand and optimize the behavior of the ITER fuel cycle, a dynamic fuel cycle model called CFTSIM is under development. The CFTSIM code incorporates more detailed ITER models, specifically for the important isotope separation system, and also has an easier-to-use graphical interface. This paper provides an overview of CFTSIM Version 1.0. The models included are those with significant and varying tritium inventories over a test campaign: fueling, plasma and first wall, pumping, fuel cleanup, isotope separation and storage. An illustration of the results is shown. (orig.)

  20. CANDU fuel cycles - present and future

    International Nuclear Information System (INIS)

    Mooradian, A.J.

    1976-05-01

    The present commercially proven Canadian nuclear power system is based on a once-through natural uranium fuel cycle characterized by high uranium utilization and a high conversion efficiency. The cycle closes with secure retrievable storage of spent fuel. This cycle is based on a CANDU reactor concept which is now well understood. Both active and passive fuel storage options have been investigated and will be described in this paper. Future development of the CANDU system is focussed on conservation of uranium by plutonium and thorium recycle. The full exploitation of these options requires continued emphasis on neutron conservation, efficiency of extraction and fuel refabrication processes. The results of recent studies are discussed in this paper. (author)

  1. Waste management and the holistic fuel cycle

    International Nuclear Information System (INIS)

    Holmes, R.G.G.; Robbins, R.A.; Eilbeck, A.

    1996-01-01

    This paper outlines a holistic approach to the nuclear fuel cycle and the impact that waste management can have on the holistic approach. The philosophy includes regarding irradiated fuel as a resource rather than a waste that can be used as a source of fissile material to be recycled, either Uranium returned to fuel or Plutonium in mixed oxide fuels (MOX) for fast and impact of those compounds that leave the cycle (solid waste, liquid effluent and gaseous effluent) are minimized. This can only be achieved by applying a full life cycle analysis of process benefits. The paper describes some of the work in waste management but notes that waste and its generation must be seen as an integral part of any developed strategy. (authors)

  2. Fuel cycle related parametric study considering long lived actinide production, decay heat and fuel cycle performances

    International Nuclear Information System (INIS)

    Raepsaet, X.; Damian, F.; Lenain, R.; Lecomte, M.

    2001-01-01

    One of the very attractive HTGR reactor characteristics is its highly versatile and flexible core that can fulfil a wide range of diverse fuel cycles. Based on a GTMHR-600 MWth reactor, analyses of several fuel cycles were carried out without taking into account common fuel particle performance limits (burnup, fast fluence, temperature). These values are, however, indicated in each case. Fuel derived from uranium, thorium and a wide variety of plutonium grades has been considered. Long-lived actinide production and total residual decay heat were evaluated for the various types of fuel. The results presented in this papers provide a comparison of the potential and limits of each fuel cycle and allow to define specific cycles offering lowest actinide production and residual heat associated with a long life cycle. (author)

  3. Research reactors fuel cycle problems and dilemma

    International Nuclear Information System (INIS)

    Romano, R.

    2004-01-01

    During last 10 years, some problems appeared in different steps of research reactors fuel cycle. Actually the majority of these reactors have been built in the 60s and these reactors were operated during all this long period in a cycle with steps which were dedicated to this activity. Progressively and for reasons often economical, certain steps of the cycle became more and more difficult to manage due to closing of some specialised workshops in the activities of scraps recycling, irradiated fuel reprocessing, even fuel fabrication. Other steps of the cycle meet or will meet difficulties, in particular supplying of fissile raw material LEU or HEU because this material was mostly produced in enrichment units existing mainly for military reason. Rarefaction of fissile material lead to use more and more enriched uraniums said 'of technical quality', that is to say which come from mixing of varied qualities of enriched material, containing products resulting from reprocessing. Actually, problems of end of fuel cycle are increased, either consisting of intermediary storage on the site of reactor or on specialised sites, or consisting of reprocessing. This brief summary shows most difficulties which are met today by a major part of industrials of the fuel cycle in the exercise of their activities

  4. Nonproliferation norms in civilian nuclear fuel cycle

    International Nuclear Information System (INIS)

    Kawata, Tomio

    2005-01-01

    For sustainable use of nuclear energy in large scale, it seems inevitable to choose a closed cycle option. One of the important questions is, then, whether we can really achieve the compatibility between civilian nuclear fuel cycle and nonproliferation norms. In this aspect, Japan is very unique because she is now only one country with full-scope nuclear fuel cycle program as a non-nuclear weapon state in NPT regime. In June 2004 in the midst of heightened proliferation concerns in NPT regime, the IAEA Board of Governors concluded that, for Japanese nuclear energy program, non-diversion of declared nuclear material and the absence of undeclared nuclear material and activities were verified through the inspections and examinations under Comprehensive Safeguards and the Additional Protocol. Based on this conclusion, the IAEA announced the implementation of Integrated Safeguards in Japan in September 2004. This paper reviews how Japan has succeeded in becoming the first country with full-scope nuclear fuel cycle program to qualify for integrated Safeguards, and identifies five key elements that have made this achievement happen: (1) Obvious need of nuclear fuel cycle program, (2) Country's clear intention for renunciation of nuclear armament, (3) Transparency of national nuclear energy program, (4) Record of excellent compliance with nonproliferation obligations for many decades, and (5) Numerous proactive efforts. These five key elements will constitute a kind of an acceptance model for civilian nuclear fuel cycle in NNWS, and may become the basis for building 'Nonproliferation Culture'. (author)

  5. International issue: the nuclear fuel cycle

    International Nuclear Information System (INIS)

    Anon.

    1982-01-01

    In this special issue a serie of short articles of informations are presented on the following topics: the EEC's medium term policy regarding the reprocessing and storage of spent fuel, France's natural uranium supply, the Pechiney Group in the nuclear field, zircaloy cladding for nuclear fuel elements, USSI: a major French nuclear engineering firm, gaseous diffusion: the only commercial enrichment process, the transport of nuclear materials in the fuel cycle, Cogema and spent fuel reprocessing, SGN: a leader in the fuel cycle, quality control of mechanical, thermal and termodynamic design in nuclear engineering, Sulzer's new pump testing station in Mantes, the new look of the Ateliers et Chantiers de Bretagne, tubes and piping in nuclear power plants, piping in pressurized water reactor. All these articles are written in English and in French [fr

  6. Back end of the fuel cycle

    International Nuclear Information System (INIS)

    Wolfe, B.; Lambert, R.W.

    1975-01-01

    At present, that portion of the nuclear fuel cycle involving reprocessing, waste management, and mixed-oxide fuel fabrication is in an unsettled state. Government regulatory requirements with respect to all aspects of the back end of the fuel cycle are still being formulated, and there is little positive experience on the operation of commercial reprocessing or mixed-oxide fabrication plants. In view of this unsettled situation, it will be difficult to meet the reprocessing and mixed-oxide fabrication needs of the next decade in the pattern previously anticipated. The costs in the back end of the fuel cycle are much higher than had been anticipated several years ago, a situation similar to that of almost all large endeavors in this country. On the other hand, the added costs are small relative to total power costs and do not affect the economic advantage of nuclear power as compared to other power sources. A rough economic analysis indicates that the question for the back end of the fuel cycle has changed from one of optimizing profitability to one of determining the most economic disposition of spent fuel. Long-term spent fuel storage is a practical and economically acceptable way to provide time for determining a sound course of action for the back end of the fuel cycle. Indeed, if one could count on a breeder economy before the end of the century, one possible course of action is to store light-water fuel until the plutonium can be used in breeders. However, for philosophical as well as practical reasons, it is important that the uncertainties in the course of action should be resolved as quickly as possible. Long-term storage should not be an excuse to delay resolution of the basic questions. (U.S.)

  7. Sustainability of Advanced Fuel Cycles

    International Nuclear Information System (INIS)

    Abe, Tomoyuki

    2013-01-01

    Effect of FR Deployment for New Scenarios with Decreased Nuclear Contribution after 3.11: • Uranium utilization in constant contribution scenario: - Many countries maintain their nuclear energy program after 3.11. - Uranium shortage is still fatal issue of this century. - FR system has significant contribution to enhanse sustainability in uranium utilization. • Spent Fuel (SF) management in constant contribution scenario: - Reprocessing of spent fuels will be essential to remain the SF stockpile within the storage capacity. • Pu/waste management in all scenarios: - FR systems can provide flexibility to Pu/waste management

  8. Nuclear fuel cycle facility accident analysis handbook

    International Nuclear Information System (INIS)

    Ayer, J.E.; Clark, A.T.; Loysen, P.; Ballinger, M.Y.; Mishima, J.; Owczarski, P.C.; Gregory, W.S.; Nichols, B.D.

    1988-05-01

    The Accident Analysis Handbook (AAH) covers four generic facilities: fuel manufacturing, fuel reprocessing, waste storage/solidification, and spent fuel storage; and six accident types: fire, explosion, tornado, criticality, spill, and equipment failure. These are the accident types considered to make major contributions to the radiological risk from accidents in nuclear fuel cycle facility operations. The AAH will enable the user to calculate source term releases from accident scenarios manually or by computer. A major feature of the AAH is development of accident sample problems to provide input to source term analysis methods and transport computer codes. Sample problems and illustrative examples for different accident types are included in the AAH

  9. Probabilistic assessments of fuel performance

    International Nuclear Information System (INIS)

    Kelppe, S.; Ranta-Puska, K.

    1998-01-01

    The probabilistic Monte Carlo Method, coupled with quasi-random sampling, is applied for the fuel performance analyses. By using known distributions of fabrication parameters and real power histories with their randomly selected combinations, and by making a large number of ENIGMA code calculations, one expects to find out the state of the whole reactor fuel. Good statistics requires thousands of runs. A sample case representing VVER-440 reactor fuel indicates relatively low fuel temperatures and mainly athermal fission gas release if any. The rod internal pressure remains typically below 2.5 MPa, which leaves a large margin to the system pressure of 12 MPa Gap conductance, an essential parameter in the accident evaluations, shows no decrease from its start-of-life value. (orig.)

  10. Fuel cell hybrid taxi life cycle analysis

    Energy Technology Data Exchange (ETDEWEB)

    Baptista, Patricia, E-mail: patricia.baptista@ist.utl.pt [IDMEC-Instituto Superior Tecnico, Universidade Tecnica de Lisboa, Av. Rovisco Pais, 1, 1049-001 Lisboa (Portugal); Ribau, Joao; Bravo, Joao; Silva, Carla [IDMEC-Instituto Superior Tecnico, Universidade Tecnica de Lisboa, Av. Rovisco Pais, 1, 1049-001 Lisboa (Portugal); Adcock, Paul; Kells, Ashley [Intelligent Energy, Charnwood Building, HolywellPark, Ashby Road, Loughborough, LE11 3GR (United Kingdom)

    2011-09-15

    A small fleet of classic London Taxis (Black cabs) equipped with hydrogen fuel cell power systems is being prepared for demonstration during the 2012 London Olympics. This paper presents a Life Cycle Analysis for these vehicles in terms of energy consumption and CO{sub 2} emissions, focusing on the impacts of alternative vehicle technologies for the Taxi, combining the fuel life cycle (Tank-to-Wheel and Well-to-Tank) and vehicle materials Cradle-to-Grave. An internal combustion engine diesel taxi was used as the reference vehicle for the currently available technology. This is compared to battery and fuel cell vehicle configurations. Accordingly, the following energy pathways are compared: diesel, electricity and hydrogen (derived from natural gas steam reforming). Full Life Cycle Analysis, using the PCO-CENEX drive cycle, (derived from actual London Taxi drive cycles) shows that the fuel cell powered vehicle configurations have lower energy consumption (4.34 MJ/km) and CO{sub 2} emissions (235 g/km) than both the ICE Diesel (9.54 MJ/km and 738 g/km) and the battery electric vehicle (5.81 MJ/km and 269 g/km). - Highlights: > A Life Cycle Analysis of alternative vehicle technologies for the London Taxi was performed. > The hydrogen powered vehicles have the lowest energy consumption and CO{sub 2} emissions results. > A hydrogen powered solution can be a sustainable alternative in a full life cycle framework.

  11. Fuel cell hybrid taxi life cycle analysis

    International Nuclear Information System (INIS)

    Baptista, Patricia; Ribau, Joao; Bravo, Joao; Silva, Carla; Adcock, Paul; Kells, Ashley

    2011-01-01

    A small fleet of classic London Taxis (Black cabs) equipped with hydrogen fuel cell power systems is being prepared for demonstration during the 2012 London Olympics. This paper presents a Life Cycle Analysis for these vehicles in terms of energy consumption and CO 2 emissions, focusing on the impacts of alternative vehicle technologies for the Taxi, combining the fuel life cycle (Tank-to-Wheel and Well-to-Tank) and vehicle materials Cradle-to-Grave. An internal combustion engine diesel taxi was used as the reference vehicle for the currently available technology. This is compared to battery and fuel cell vehicle configurations. Accordingly, the following energy pathways are compared: diesel, electricity and hydrogen (derived from natural gas steam reforming). Full Life Cycle Analysis, using the PCO-CENEX drive cycle, (derived from actual London Taxi drive cycles) shows that the fuel cell powered vehicle configurations have lower energy consumption (4.34 MJ/km) and CO 2 emissions (235 g/km) than both the ICE Diesel (9.54 MJ/km and 738 g/km) and the battery electric vehicle (5.81 MJ/km and 269 g/km). - Highlights: → A Life Cycle Analysis of alternative vehicle technologies for the London Taxi was performed. → The hydrogen powered vehicles have the lowest energy consumption and CO 2 emissions results. → A hydrogen powered solution can be a sustainable alternative in a full life cycle framework.

  12. Fuel cycle cost comparisons with oxide and silicide fuels

    Energy Technology Data Exchange (ETDEWEB)

    Matos, J E; Freese, K E [RERTR Program, Argonne National Laboratory (United States)

    1983-09-01

    This paper addresses fuel cycle cost comparisons for a generic 10 MW reactor with HEU aluminide fuel and with LEU oxide and silicide fuels in several fuel element geometries. The intention of this study is to provide a consistent assessment of various design options from a cost point of view. The status of the development and demonstration of the oxide and silicide fuels are presented in several papers in these proceedings. Routine utilization of these fuels with the uranium densities considered here requires that they are successfully demonstrated and licensed. Thermal-hydraulic safety margins, shutdown margins, mixed cores, and transient analyses are not addressed here, but analyses of these safety issues are in progress for a limited number of the most promising design options. Fuel cycle cost benefits could result if a number of reactors were to utilize fuel elements with the same number or different numbers of the same standard fuel plate. Data is presented to quantify these potential cost benefits. This analysis shows that there are a number of fuel element designs using LEU oxide or silicide fuels that have either the same or lower total fuel cycle costs than the HEU design. Use of these fuels with the uranium densities considered requires that they are successfully demonstrated and licensed. All safety criteria for the reactor with these fuel element designs need to be satisfied as well. With LEU oxide fuel, 31 g U/cm{sup 3} 1 and 0.76 mm--thick fuel meat, elements with 18-22 plates 320-391 g {sup 235}U) result in the same or lower total costs than with the HEU element 23 plates, 280 g {sup 235}U). Higher LEU loadings (more plates per element) are needed for larger excess reactivity requirements. However, there is little cost advantage to using more than 20 of these plates per element. Increasing the fuel meat thickness from 0.76 mm to 1.0 mm with 3.1 g U/cm{sup 3} in the design with 20 plates per element could result in significant cost reductions if the

  13. Nuclear power and the nuclear fuel cycle

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1976-07-01

    The IAEA is organizing a major conference on nuclear power and the nuclear fuel cycle, which is to be held from 2 to 13 May 1977 in Salzburg, Austria. The programme for the conference was published in the preceding issue of the IAEA Bulletin (Vol.18, No. 3/4). Topics to be covered at the conference include: world energy supply and demand, supply of nuclear fuel and fuel cycle services, radioactivity management (including transport), nuclear safety, public acceptance of nuclear power, safeguarding of nuclear materials, and nuclear power prospects in developing countries. The articles in the section that follows are intended to serve as an introduction to the topics to be discussed at the Salzburg Conference. They deal with the demand for uranium and nuclear fuel cycle services, uranium supplies, a computer simulation of regional fuel cycle centres, nuclear safety codes, management of radioactive wastes, and a pioneering research project on factors that determine public attitudes toward nuclear power. It is planned to present additional background articles, including a review of the world nuclear fuel reprocessing situation and developments in the uranium enrichment industry, in future issues of the Bulletin. (author)

  14. Social awareness on nuclear fuel cycle

    International Nuclear Information System (INIS)

    Tanigaki, Toshihiko

    2006-01-01

    In the present we surveyed public opinion regarding the nuclear fuel cycle to find out about the social awareness about nuclear fuel cycle and nuclear facilities. The study revealed that people's image of nuclear power is more familiar than the image of the nuclear fuel cycle. People tend to display more recognition and concern towards nuclear power and reprocessing plants than towards other facilities. Comparatively speaking, they tend to perceive radioactive waste disposal facilities and nuclear power plants as being highly more dangerous than reprocessing plants. It is found also that with the exception of nuclear power plants don't know very much whether nuclear fuel cycle facilities are in operation in Japan or not. The results suggests that 1) the relatively mild image of the nuclear fuel cycle is the result of the interactive effect of the highly dangerous image of nuclear power plants and the less dangerous image of reprocessing plants; and 2) that the image of a given plant (nuclear power plant, reprocessing plant, radioactive waste disposal facility) is influenced by the fact of whether the name of the plant suggests the presence of danger or not. (author)

  15. Nuclear Fuel Cycle Strategy For Developing Countries

    International Nuclear Information System (INIS)

    Kim, Chang Hyo

    1987-01-01

    The world's uranium market is very uncertain at the moment while other front-end fuel cycle services including enrichment show a surplus of supply. Therefore, a current concern of developing countries is how to assure a long-term stable supply of uranium, so far as front-end fuel cycle operation is concerned. So, as for the front-end fuel cycle strategy, I would like to comment only on uranium procurement strategy. I imagine that you are familiar with, yet let me begin my talk by having a look at, the nuclear power development program and current status of fuel cycle technology of developing countries. It is a nice thing to achieve the full domestic control of fuel cycle operation. The surest way to do so is localization of related technology. Nevertheless, developing at a time due to enormous capital requirements, not to mention the non-proliferation restrictions. Therefore, the important which technology to localize prior to other technology and how to implement. The non-proliferation restriction excludes the enrichment and reprocessing technology for the time being. As for the remaining technology the balance between the capital costs and benefits must dictate the determination of the priority as mentioned previously. As a means to reduce the commercial risk and heavy financial burdens, the multi-national joint venture of concerned countries is desirable in implementing the localization projects

  16. Fuel Cycle Requirements Code (FLYER). Summary report

    International Nuclear Information System (INIS)

    Gift, E.H.; Goode, W.D.

    1976-01-01

    Planning for, and the analysis of, the fuel requirements of the nuclear industry requires the ability to evaluate contingencies in many areas of the nuclear fuel cycle. The areas of nuclear fuel utilization, both uranium and plutonium, and of separative work requirements are of particular interest. The Fuel Cycle Requirements (FLYER) model has been developed to provide a flexible, easily managed tool for obtaining a comprehensive analysis of the nuclear fuel cycle. The model allows analysis of the interactions among the nuclear capacity growth rate, reactor technology and mix, and uranium and plutonium recycling capabilities. The model was initially developed as a means of analyzing nuclear growth contingencies with particular emphasis on the uranium feed and separative work requirements. It served to provide the planning group with analyses similar to the OPA's NUFUEL code which has only recently become available for general use. The model has recently been modified to account for some features of the fuel cycle in a more explicit manner than the NUFUEL code. For instance, the uranium requirements for all reactors installed in a given year are calculated for the total lifetime of those reactors. These values are cumulated in order to indicate the total uranium committed for reactors installed by any given year of the campaign. Similarly, the interactions in the back end of the fuel cycle are handled specifically, such as, the impacts resulting from limitations on the industrial capacity for reprocessing and mixed oxide fabrication of both light water reactor and breeder fuels. The principal features of the modified FLYER code are presented in summary form

  17. Candu reactors with thorium fuel cycles

    International Nuclear Information System (INIS)

    Hopwood, J.M.; Fehrenbach, P.; Duffey, R.; Kuran, S.; Ivanco, M.; Dyck, G.R.; Chan, P.S.W.; Tyagi, A.K.; Mancuso, C.

    2006-01-01

    Over the last decade and a half AECL has established a strong record of delivering CANDU 6 nuclear power plants on time and at budget. Inherently flexible features of the CANDU type reactors, such as on-power fuelling, high neutron economy, fuel channel based heat transport system, simple fuel bundle configuration, two independent shut down systems, a cool moderator and a defence-in-depth based safety philosophy provides an evolutionary path to further improvements in design. The immediate milestone on this path is the Advanced CANDU ReactorTM** (ACRTM**), in the form of the ACR-1000TM**. This effort is being followed by the Super Critical Water Reactor (SCWR) design that will allow water-cooled reactors to attain high efficiencies by increasing the coolant temperature above 550 0 C. Adaptability of the CANDU design to different fuel cycles is another technology advantage that offers an additional avenue for design evolution. Thorium is one of the potential fuels for future reactors due to relative abundance, neutronics advantage as a fertile material in thermal reactors and proliferation resistance. The Thorium fuel cycle is also of interest to China, India, and Turkey due to local abundance that can ensure sustainable energy independence over the long term. AECL has performed an assessment of both CANDU 6 and ACR-1000 designs to identify systems, components, safety features and operational processes that may need to be modified to replace the NU or SEU fuel cycles with one based on Thorium. The paper reviews some of these requirements and the associated practical design solutions. These modifications can either be incorporated into the design prior to construction or, for currently operational reactors, during a refurbishment outage. In parallel with reactor modifications, various Thorium fuel cycles, either based on mixed bundles (homogeneous) or mixed channels (heterogeneous) have been assessed for technical and economic viability. Potential applications of a

  18. Economic analyses of LWR fuel cycles

    International Nuclear Information System (INIS)

    Field, F.R.

    1977-05-01

    An economic comparison was made of three options for handling irradiated light-water reactor (LWR) fuel. These options are reprocessing of spent reactor fuel and subsequent recycle of both uranium and plutonium, reprocessing and recycle of uranium only, and direct terminal storage of spent fuel not reprocessed. The comparison was based on a peak-installed nuclear capacity of 507 GWe by CY 2000 and retirement of reactors after 30 years of service. Results of the study indicate that: Through the year 2000, recycle of uranium and plutonium in LWRs saves about $12 billion (FY 1977 dollars) compared with the throwaway cycle, but this amounts to only about 1.3% of the total cost of generating electricity by nuclear power. If deferred costs are included for fuel that has been discharged from reactors but not reprocessed, the economic advantage increases to $17.7 billion. Recycle of uranium only (storage of plutonium) is approximately $7 billion more expensive than the throwaway fuel cycle and is, therefore, not considered an economically viable option. The throwaway fuel cycle ultimately requires >40% more uranium resources (U 3 O 8 ) than does reprocessing spent fuel where both uranium and plutonium are recycled

  19. Commercialization of nuclear fuel cycle business

    International Nuclear Information System (INIS)

    Yakabe, Hideo

    1998-01-01

    Japan depends on foreign countries almost for establishing nuclear fuel cycle. Accordingly, uranium enrichment, spent fuel reprocessing and the safe treatment and disposal of radioactive waste in Japan is important for securing energy. By these means, the stable supply of enriched uranium, the rise of utilization efficiency of uranium and making nuclear power into home-produced energy can be realized. Also this contributes to the protection of earth resources and the preservation of environment. Japan Nuclear Fuel Co., Ltd. operates four business commercially in Rokkasho, Aomori Prefecture, aiming at the completion of nuclear fuel cycle by the technologies developed by Power Reactor and Nuclear Fuel Development Corporation and the introduction of technologies from foreign countries. The conditions of location of nuclear fuel cycle facilities and the course of the location in Rokkasho are described. In the site of about 740 hectares area, uranium enrichment, burying of low level radioactive waste, fuel reprocessing and high level waste control have been carried out, and three businesses except reprocessing already began the operation. The state of operation of these businesses is reported. Hereafter, efforts will be exerted to the securing of safety through trouble-free operation and cost reduction. (K.I.)

  20. The nuclear fuel cycle light and shadow

    International Nuclear Information System (INIS)

    Giraud, A.

    1977-01-01

    The nuclear fuel cycle industry has a far reaching effect on future world energy developments. The growth in turnover of this industry follows a known patterm; by 1985 this turnover will have reached a figure of 2 billion dollars. Furthermore, the fuel cycle plays a determining role in ensuring the physical continuity of energy supplies for countries already engaged in the nuclear domain. Finally, the development of this industry is subject to economic and political constraints which imply the availability of raw materials, technological know-how, and production facilities. Various factors which could have an adverse influence on the cycle: technical, economic, or financial difficulties, environmental impact, nuclear safety, theft or diversion of nuclear materials, nuclear weapon, proliferation risks, are described, and the interaction between the development of the cycle, energy independance, and the fulfillment of nuclear energy programs is emphasized. It is concluded that the nuclear fuel cycle industry is confronted with difficulties due to its extremely rapid growth rate (doubling every 5 years); it is a long time since such a growth rate has been experienced by any heavy industry. The task which lays before us is difficult, but the fruit is worth the toil, as it is the fuel cycle which will govern the growth of the nuclear industry [fr

  1. US activities on fuel cycle transition scenarios

    International Nuclear Information System (INIS)

    McCarthy, Kathryn A.

    2010-01-01

    Countries with active nuclear programmes typically have as a goal transition to a closed fuel cycle. A closed fuel cycle enables long-term sustainability, provides waste management benefits, and as a system, can reduce overall proliferation risk. This transition will take many decades, thus the study of the actual transition is an important topic. The United States systems analysis activities as part of the Advanced Fuel Cycle Initiative (AFCI) provide the integrating analyses for the fuel cycle programme, and recent activities are focusing on transition options, and specifically, the dynamics of the transition. The United States is still studying both one-tier (recycling in fast reactors only) and two-tier (recycling in both thermal and fast reactors) systems, and the systems analysis activities provide insight into the trade-offs associated with the systems, and variations of each. Most recently, a series of sensitivity studies have been completed which provide insight into the behaviour of a transition system. These studies evaluate the impact of changing various parameters in the fuel cycle system, and provide insight into how the system will change as parameters change. Because these deployment analyses look at the development of nuclear energy systems over a long period of time, it is very unlikely that we will accurately predict the system's characteristics over time (for example, growth in electricity demand, how quickly nuclear reactors will be deployed, how many fast rectors versus thermal reactors, the conversion ratio of the fast reactors, etc.). How the system will develop will depend on a variety of factors, ranging from political to technical, rational to irrational. Because we cannot accurately predict the future, we need to understand how things could change, and what impact those changes have. Analyses of future fuel cycle systems require a number of assumptions. These include growth rates for nuclear energy, general architecture of fuel cycle

  2. The integral fast reactor fuel cycle

    International Nuclear Information System (INIS)

    Chang, Y.I.

    1990-01-01

    The liquid-metal reactor (LMR) has the potential to extend the uranium resource by a factor of 50 to 100 over current commercial light water reactors (LWRs). In the integral fast reactor (IFR) development program, the entire reactor system - reactor, fuel cycle, and waste process - is being developed and optimized at the same time as a single integral entity. A key feature of the IFR concept is the metallic fuel. The lead irradiation tests on the new U-Pu-Zr metallic fuel in the Experimental Breeder Reactor II have surpassed 185000 MWd/t burnup, and its high burnup capability has now been fully demonstrated. The metallic fuel also allows a radically improved fuel cycle technology. Pyroprocessing, which utilizes high temperatures and molten salt and molten metal solvents, can be advantageously utilized for processing metal fuels because the product is metal suitable for fabrication into new fuel elements. Direct production of a metal product avoids expensive and cumbersome chemical conversion steps that would result from use of the conventional Purex solvent extraction process. The key step in the IFR process is electrorefining, which provides for recovery of the valuable fuel constituents, uranium and plutonium, and for removal of fission products. A notable feature of the IFR process is that the actinide elements accompany plutonium through the process. This results in a major advantage in the high-level waste management

  3. International nuclear fuel cycle fact book

    International Nuclear Information System (INIS)

    1992-09-01

    The International Nuclear Fuel Cycle Fact Book has been compiled in an effort to provide current data concerning fuel cycle and waste management facilities, R ampersand D programs and key personnel on 23 countries, including the US, four multi-national agencies, and 21 nuclear societies. The Fact Book is organized as follows: National summaries-a section for each country which summarizes nuclear policy, describes organizational relationships, and provides addresses and names of key personnel and information on facilities. International agencies-a section for each of the international agencies which has significant fuel cycle involvement and a listing of nuclear societies. Glossary-a list of abbreviations/acronyms of organizations, facilities, technical and other terms. The national summaries, in addition to the data described above, feature a small map for each country as well as some general information. The latter presented from the perspective of the Fact Book user in the United States

  4. International nuclear fuel cycle fact book

    Energy Technology Data Exchange (ETDEWEB)

    Leigh, I.W.

    1988-01-01

    As the US Department of Energy (DOE) and DOE contractors have become increasingly involved with other nations in nuclear fuel cycle and waste management cooperative activities, a need has developed for a ready source or information concerning foreign fuel cycle programs, facilities, and personnel. This Fact Book was compiled to meet that need. The information contained has been obtained from nuclear trade journals and newsletters; reports of foreign visits and visitors; CEC, IAEA, and OECD/NEA activities reports; proceedings of conferences and workshops; and so forth. Sources do not agree completely with each other, and the data listed herein does not reflect any one single source but frequently is consolidation/combination of information. Lack of space as well as the intent and purpose of the Fact Book limit the given information to that pertaining to the Nuclear Fuel Cycle and to data considered of primary interest or most helpful to the majority of users.

  5. International Nuclear Fuel Cycle Fact Book

    International Nuclear Information System (INIS)

    Leigh, I.W.

    1992-05-01

    As the US Department of Energy (DOE) and DOE contractors have become increasingly involved with other nations in nuclear fuel cycle and waste management cooperative activities, a need exists costs for a ready source of information concerning foreign fuel cycle programs, facilities, and personnel. This Fact Book has been compiled to meet that need. The information contained in the International Nuclear Fuel Cycle Fact Book has been obtained from many unclassified sources: nuclear trade journals and newsletters; reports of foreign visits and visitors; CEC, IAEA, and OECD/NMEA activities reports; and proceedings of conferences and workshops. The data listed typically do not reflect any single source but frequently represent a consolidation/combination of information

  6. International nuclear fuel cycle fact book

    International Nuclear Information System (INIS)

    Leigh, I.W.; Lakey, L.T.; Schneider, K.J.; Silviera, D.J.

    1987-01-01

    As the US Department of Energy (DOE) and DOE contractors have become increasingly involved with other nations in nuclear fuel cycle and waste management cooperative activities, a need has developed for a ready source of information concerning foreign fuel cycle programs, facilities, and personnel. This Fact Book was compiled to meet that need. The information contained has been obtained from nuclear trade journals and newsletters; reports of foreign visits and visitors; CEC, IAEA, and OECD/NEA activities reports; proceedings of conferences and workshops; and so forth. Sources do not agree completely with each other, and the data listed herein does not reflect any one single source but frequently is a consolidation/combination of information. Lack of space as well as the intent and purpose of the Fact Book limit the given information to that pertaining to the Nuclear Fuel Cycle and to data considered of primary interest or most helpful to the majority of users

  7. International Nuclear Fuel Cycle Fact Book

    Energy Technology Data Exchange (ETDEWEB)

    Leigh, I W; Mitchell, S J

    1990-01-01

    As the US Department of Energy (DOE) and DOE contractors have become increasingly involved with other nations in nuclear fuel cycle and waste management cooperative activities, a need has developed for a ready source of information concerning foreign fuel cycle programs, facilities, and personnel. This Fact Book was compiled to meet that need. The information contained in the International Nuclear Fuel Cycle Fact Book has been obtained from many unclassified sources: nuclear trade journals and newsletters; reports of foreign visits and visitors; CEC, IAEA, and OECD/NEA activities reports; proceedings of conferences and workshops, etc. The data listed do not reflect any one single source but frequently represent a consolidation/combination of information.

  8. Significant incidents in nuclear fuel cycle facilities

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-03-01

    In contrast to nuclear power plants, events in nuclear fuel cycle facilities are not well documented. The INES database covers all the nuclear fuel cycle facilities; however, it was developed in the early 1990s and does not contain information on events prior to that. The purpose of the present report is to collect significant events and analyze them in order to give a safety related overview of nuclear fuel cycle facilities. Significant incidents were selected using the following criteria: release of radioactive material or exposure to radiation; degradation of items important to safety; and deficiencies in design, quality assurance, etc. which include criticality incidents, fire, explosion, radioactive release and contamination. This report includes an explanation, where possible, of root causes, lessons learned and action taken. 4 refs, 4 tabs.

  9. International nuclear fuel cycle fact book

    International Nuclear Information System (INIS)

    Leigh, I.W.

    1988-01-01

    As the US Department of Energy (DOE) and DOE contractors have become increasingly involved with other nations in nuclear fuel cycle and waste management cooperative activities, a need has developed for a ready source or information concerning foreign fuel cycle programs, facilities, and personnel. This Fact Book was compiled to meet that need. The information contained has been obtained from nuclear trade journals and newsletters; reports of foreign visits and visitors; CEC, IAEA, and OECD/NEA activities reports; proceedings of conferences and workshops; and so forth. Sources do not agree completely with each other, and the data listed herein does not reflect any one single source but frequently is consolidation/combination of information. Lack of space as well as the intent and purpose of the Fact Book limit the given information to that pertaining to the Nuclear Fuel Cycle and to data considered of primary interest or most helpful to the majority of users

  10. International Nuclear Fuel Cycle Fact Book

    International Nuclear Information System (INIS)

    Leigh, I.W.; Mitchell, S.J.

    1990-01-01

    As the US Department of Energy (DOE) and DOE contractors have become increasingly involved with other nations in nuclear fuel cycle and waste management cooperative activities, a need has developed for a ready source of information concerning foreign fuel cycle programs, facilities, and personnel. This Fact Book was compiled to meet that need. The information contained in the International Nuclear Fuel Cycle Fact Book has been obtained from many unclassified sources: nuclear trade journals and newsletters; reports of foreign visits and visitors; CEC, IAEA, and OECD/NEA activities reports; proceedings of conferences and workshops, etc. The data listed do not reflect any one single source but frequently represent a consolidation/combination of information

  11. Significant incidents in nuclear fuel cycle facilities

    International Nuclear Information System (INIS)

    1996-03-01

    In contrast to nuclear power plants, events in nuclear fuel cycle facilities are not well documented. The INES database covers all the nuclear fuel cycle facilities; however, it was developed in the early 1990s and does not contain information on events prior to that. The purpose of the present report is to collect significant events and analyze them in order to give a safety related overview of nuclear fuel cycle facilities. Significant incidents were selected using the following criteria: release of radioactive material or exposure to radiation; degradation of items important to safety; and deficiencies in design, quality assurance, etc. which include criticality incidents, fire, explosion, radioactive release and contamination. This report includes an explanation, where possible, of root causes, lessons learned and action taken. 4 refs, 4 tabs

  12. Nuclear Fuel Cycle System Analysis (I)

    Energy Technology Data Exchange (ETDEWEB)

    Ko, Won Il; Kwon, Eun Ha; Kim, Ho Dong; Yoon, Ji Sup; Park, Seong Won

    2006-12-15

    As a nation develops strategies that provide nuclear energy while meeting its various objectives, it must begin with identification of a fuel cycle option that can be best suitable for the country. For such a purpose, this paper takes four different fuel cycle options - Once-through Cycle, DUPIC Recycle, Thermal Reactor Recycle and GEN-IV Recycle, and evaluates each option in terms of sustainability, environment-friendliness, proliferation-resistance and economics. The analysis shows that the GEN-IV Recycle appears to have an advantage in terms of sustainability, environment-friendliness and long-term proliferation-resistance, while it is expected to be more economically competitive, if uranium ore prices increase or costs of pyroprocessing and fuel fabrication decrease.

  13. Transparency associated with the nuclear fuel cycle

    International Nuclear Information System (INIS)

    2009-01-01

    The author first recalls that the French nuclear industry works within the frame defined by international treaties and laws which ensure rigor and transparency. He gives some explanations for the resorting to Russian installations and for reprocessed uranium recycling (among them: supply security for the French nuclear industry, strategy of complete use of uranium energetic potential). Then, he outlines how the French State must further improve transparency and pedagogy about radioactive waste and material management. A technical appendix is provided, describing the fuel cycle (natural uranium extraction, conversion and enrichment, fuel fabrication, irradiation, used fuel processing, reprocessed uranium recycling, plutonium recycling in MOX, waste storage), giving an overview of the international supply context (concurrence and security needs), discussing valorization perspectives for materials which are not used in the current fuel cycle, describing the various aspects of radioactive waste management for the various types of wastes (long life, low or high activity for example), describing the control performed by public authorities and organisations

  14. Partially closed fuel cycle of WWER-440

    International Nuclear Information System (INIS)

    Darilek, P.; Sebian, V.; Necas, V.

    2002-01-01

    Position of nuclear energy at the energy sources competition is characterised briefly. Multi-tier transmutation system is outlined out as effective back-end solution and consequently as factor that can increase nuclear energy competitiveness. LWR and equivalent WWER are suggested as a first tier reactors. Partially closed fuel cycle with combined fuel assemblies is briefed. Main back-end effects are characterised (Authors)

  15. Fuel cycle for a fusion neutron source

    Energy Technology Data Exchange (ETDEWEB)

    Ananyev, S. S., E-mail: Ananyev-SS@nrcki.ru; Spitsyn, A. V., E-mail: spitsyn-av@nrcki.ru; Kuteev, B. V., E-mail: Kuteev-BV@nrcki.ru [National Research Center Kurchatov Institute (Russian Federation)

    2015-12-15

    The concept of a tokamak-based stationary fusion neutron source (FNS) for scientific research (neutron diffraction, etc.), tests of structural materials for future fusion reactors, nuclear waste transmutation, fission reactor fuel production, and control of subcritical nuclear systems (fusion–fission hybrid reactor) is being developed in Russia. The fuel cycle system is one of the most important systems of FNS that provides circulation and reprocessing of the deuterium–tritium fuel mixture in all fusion reactor systems: the vacuum chamber, neutral injection system, cryogenic pumps, tritium purification system, separation system, storage system, and tritium-breeding blanket. The existing technologies need to be significantly upgraded since the engineering solutions adopted in the ITER project can be only partially used in the FNS (considering the capacity factor higher than 0.3, tritium flow up to 200 m{sup 3}Pa/s, and temperature of reactor elements up to 650°C). The deuterium–tritium fuel cycle of the stationary FNS is considered. The TC-FNS computer code developed for estimating the tritium distribution in the systems of FNS is described. The code calculates tritium flows and inventory in tokamak systems (vacuum chamber, cryogenic pumps, neutral injection system, fuel mixture purification system, isotope separation system, tritium storage system) and takes into account tritium loss in the fuel cycle due to thermonuclear burnup and β decay. For the two facility versions considered, FNS-ST and DEMO-FNS, the amount of fuel mixture needed for uninterrupted operation of all fuel cycle systems is 0.9 and 1.4 kg, consequently, and the tritium consumption is 0.3 and 1.8 kg per year, including 35 and 55 g/yr, respectively, due to tritium decay.

  16. Microwave processing in MOX fuel cycle

    International Nuclear Information System (INIS)

    Mallik, G.K.; Malav, R.K.; Panakkal, J.P.; Kamath, H.S.

    2005-01-01

    The prominent aspect of the microwave heating technique applications in nuclear material processing is its eco-friendly status. It is envisaged that no active liquid waste will be generated from microwave processing. AFFF has fabricated the (U, Pu) 2 O mixed oxide fuels for PHWRs, BWRs and PFBR. AFFF is also working for the AHWR fuel cycle. The present paper summarises about the process experiments, instrumental development, results, and future applications of microwave heating technique. (author)

  17. Fuel cycle for a fusion neutron source

    Science.gov (United States)

    Ananyev, S. S.; Spitsyn, A. V.; Kuteev, B. V.

    2015-12-01

    The concept of a tokamak-based stationary fusion neutron source (FNS) for scientific research (neutron diffraction, etc.), tests of structural materials for future fusion reactors, nuclear waste transmutation, fission reactor fuel production, and control of subcritical nuclear systems (fusion-fission hybrid reactor) is being developed in Russia. The fuel cycle system is one of the most important systems of FNS that provides circulation and reprocessing of the deuterium-tritium fuel mixture in all fusion reactor systems: the vacuum chamber, neutral injection system, cryogenic pumps, tritium purification system, separation system, storage system, and tritium-breeding blanket. The existing technologies need to be significantly upgraded since the engineering solutions adopted in the ITER project can be only partially used in the FNS (considering the capacity factor higher than 0.3, tritium flow up to 200 m3Pa/s, and temperature of reactor elements up to 650°C). The deuterium-tritium fuel cycle of the stationary FNS is considered. The TC-FNS computer code developed for estimating the tritium distribution in the systems of FNS is described. The code calculates tritium flows and inventory in tokamak systems (vacuum chamber, cryogenic pumps, neutral injection system, fuel mixture purification system, isotope separation system, tritium storage system) and takes into account tritium loss in the fuel cycle due to thermonuclear burnup and β decay. For the two facility versions considered, FNS-ST and DEMO-FNS, the amount of fuel mixture needed for uninterrupted operation of all fuel cycle systems is 0.9 and 1.4 kg, consequently, and the tritium consumption is 0.3 and 1.8 kg per year, including 35 and 55 g/yr, respectively, due to tritium decay.

  18. Reprocessing on the whole fuel cycle operations

    International Nuclear Information System (INIS)

    Megy, J.

    1983-11-01

    Spent fuel reprocessing, in France, is become an industrial reality which takes an importance place in several fields: place surely essential in the fuel cycle from the energetic material economy and waste management point of view; place priority in the CEA (Commissariat a l'Energie Atomique) research and development programs; place in the industry where it is an important activity sector with the realizations in progress [fr

  19. Nuclear-fuel-cycle education: Module 1. Nuclear fuel cycle overview

    International Nuclear Information System (INIS)

    Eckhoff, N.D.

    1981-07-01

    This educational module is an overview of the nuclear-fule-cycle. The overview covers nuclear energy resources, the present and future US nuclear industry, the industry view of nuclear power, the International Nuclear Fuel Cycle Evaluation program, the Union of Concerned Scientists view of the nuclear-fuel-cycle, an analysis of this viewpoint, resource requirements for a model light water reactor, and world nuclear power considerations

  20. Evaluation and optimization of LWR fuel cycles

    International Nuclear Information System (INIS)

    Akbas, T.; Zabunoglu, O.; Tombakoglu, M.

    2001-01-01

    There are several options in the back-end of the nuclear fuel cycle. Discharge burn-up, length of interim storage period, choice of direct disposal or recycling and method of reprocessing in case of recycling affect the options and determine/define the fuel cycle scenarios. These options have been evaluated in viewpoint of some tangible (fuel cycle cost, natural uranium requirement, decay heat of high level waste, radiological ingestion and inhalation hazards) and intangible factors (technological feasibility, nonproliferation aspect, etc.). Neutronic parameters are calculated using versatile fuel depletion code ORIGEN2.1. A program is developed for calculation of cost related parameters. Analytical hierarchy process is used to transform the intangible factors into the tangible ones. Then all these tangible and intangible factors are incorporated into a form that is suitable for goal programming, which is a linear optimization technique and used to determine the optimal option among alternatives. According to the specified objective function and constraints, the optimal fuel cycle scenario is determined using GPSYS (a linear programming software) as a goal programming tool. In addition, a sensitivity analysis is performed for some selected important parameters

  1. Suggestions for future Pu fuel cycle designs

    International Nuclear Information System (INIS)

    Serfontein, Dawid E.; Mulder, Eben J.; Reitsma, Frederik

    2013-01-01

    Recommended follow-up Pu Studies: • Verification of VSOP-A vs. VSOP 99/05, by comparison with MCNP. • DLOFC temperatures with Multi-group Tinte. • Redesign of the reactor: - Replace small concentrated Pu fuel kernels with large (500 μm diameter) diluted kernels to reduce burn-up. - Switch from the direct Brayton cycle to the indirect Rankine steam cycle to reduce fuel temperatures. - Add neutron poisons to the reflectors to suppress power and temperature peaks and to produce negative uniform temperature reactivity coefficients

  2. Reprocessing in the thorium fuel cycle

    International Nuclear Information System (INIS)

    Merz, E.

    1984-01-01

    An overview of the authors personal view is presented on open questions in regard to still required research and development work for the thorium fuel cycle before its application in a technical-industrial scale may be tackled. For a better understanding, all stations of the back-end of the thorium fuel cycle are briefly illustrated and their special features discussed. They include storage and transportation measures, all steps of reprocessing, as well as the entire radioactive waste treatment. Knowledge gaps are, as far as they are obvious, identified and proposals put forward for additional worthwile investigations. (orig.) [de

  3. Sodium fast reactors with closed fuel cycle

    CERN Document Server

    Raj, Baldev; Vasudeva Rao, PR 0

    2015-01-01

    Sodium Fast Reactors with Closed Fuel Cycle delivers a detailed discussion of an important technology that is being harnessed for commercial energy production in many parts of the world. Presenting the state of the art of sodium-cooled fast reactors with closed fuel cycles, this book:Offers in-depth coverage of reactor physics, materials, design, safety analysis, validations, engineering, construction, and commissioning aspectsFeatures a special chapter on allied sciences to highlight advanced reactor core materials, specialized manufacturing technologies, chemical sensors, in-service inspecti

  4. Emergency planning for fuel cycle facilities

    International Nuclear Information System (INIS)

    Lacey, L.R.

    1991-01-01

    In April 1989, NRC published new emergency planning regulations which apply to certain by-product, source, and special nuclear materials licensees including most fuel cycle facilities. In addition to these NRC regulations, other regulatory agencies such as EPA, OSHA, and DOT have regulations concerning emergency planning or notification that may apply to fuel cycle facilities. Emergency planning requirements address such areas as emergency classification, organization, notification and activation, assessment, corrective and protective measures, emergency facilities and equipment, maintaining preparedness, records and reports, and recovery. This article reviews applicable regulatory requirements and guidance, then concentrates on implementation strategies to produce an effective emergency response capability

  5. Report of Nuclear Fuel Cycle Subcommittee

    International Nuclear Information System (INIS)

    1982-01-01

    In order to secure stable energy supply over a long period of time, the development and utilization of atomic energy have been actively promoted as the substitute energy for petroleum. Accordingly, the establishment of nuclear fuel cycle is indispensable to support this policy, and efforts have been exerted to promote the technical development and to put it in practical use. The Tokai reprocessing plant has been in operation since the beginning of 1981, and the pilot plant for uranium enrichment is about to start the full scale operation. Considering the progress in the refining and conversion techniques, plutonium fuel fabrication and son on, the prospect to technically establish the nuclear fuel cycle in Japan has been bright. The important problem for the future is to put these techniques in practical use economically. The main point of technical development hereafter is the enlargement and rationalization of the techniques, and the cooperation of the government and the people, and the smooth transfer of the technical development results in public corporations to private organization are necessary. The important problems for establishing the nuclear fuel cycle, the securing of enriched uranium, the reprocessing of spent fuel, unused resources, and the problems related to industrialization, location and fuel storing are reported. (Kako, I.)

  6. Nuclear Fuel Cycle System Analysis (II)

    Energy Technology Data Exchange (ETDEWEB)

    Ko, Won Il; Kwon, Eun Ha; Yoon, Ji Sup; Park, Seong Won

    2007-04-15

    As a nation develops strategies that provide nuclear energy while meeting its various objectives, it must begin with identification of a fuel cycle option that can be best suitable for the country. For such a purpose, this paper takes four different fuel cycle options that are likely adopted by the Korean government, considering the current status of nuclear power generation and the 2nd Comprehensive Nuclear Energy Promotion Plan (CNEPP) - Once-through Cycle, DUPIC Recycle, Thermal Reactor Recycle and GEN-IV Recycle. The paper then evaluates each option in terms of sustainability, environment-friendliness, proliferation-resistance, economics and technologies. Like all the policy decision, however, a nuclear fuel cycle option can not be superior in all aspects of sustainability, environment-friendliness, proliferation-resistance, economics, technologies and so on, which makes the comparison of the options extremely complicated. Taking this into consideration, the paper analyzes all the four fuel cycle options using the Multi-Attribute Utility Theory (MAUT) and the Analytic Hierarchy Process (AHP), methods of Multi-Attribute Decision Making (MADM), that support systematical evaluation of the cases with multi- goals or criteria and that such goals are incompatible with each other. The analysis shows that the GEN-IV Recycle appears to be most competitive.

  7. Challenge to establishment of nuclear fuel cycle

    International Nuclear Information System (INIS)

    Nakajima, Ichiro

    2000-01-01

    Japan Nuclear Cycle Development Inst. (JNC) has promoted some efforts on introduction of business management cycle system integrated on safety security and business management, planning a safety conservation system with effectiveness concept on risk, and their practice steadily and faithfully. Here were described on some characteristic items on effort of safety promotion since establishment of JNC. And, here were also introduced on outlines of some research actions, at a center of research and development on a high breeding reactor and its relating cycle technology carried out at present by JNC under aiming at establishment of the nuclear fuel recycling, that is to say the nuclear fuel cycle, in Japan to upgrade the nuclear security more and more. (G.K.)

  8. Solvent extraction in the nuclear fuel cycle

    International Nuclear Information System (INIS)

    Eccles, H.; Naylor, A.

    1987-01-01

    Solvent extraction techniques have been used in the uranium nuclear fuel cycle in three main areas; concentration of uranium from ore leach liquor, purification of ore concentrates and fuel reprocessing. Solvent extraction has been extended to the removal of transuranic elements from active waste liquor, the recovery of uranium from natural sources and the recovery of noble metals from active waste liquor. Schemes are presented for solvent extraction of uranium using the Amex or Dapex process; spent fuel reprocessing and the Purex process. Recent and future developments of the techniques are outlined. (UK)

  9. The economy of the nuclear fuel cycle

    Energy Technology Data Exchange (ETDEWEB)

    Stoll, W [Alpha Chemie und Metallurgie G.m.b.H. (ALKEM), Hanau (Germany, F.R.)

    1989-07-01

    Heat extracted from nuclear fuel costs by a factor of 3 to 7 less than heat from conventional fossile fuel. So, nuclear fuel per se has an economical advantage, decreased however partly by higher nuclear plant investment costs. The standard LWR design does not allow all the fission energy stored in the fuel during on cycle to be used. It is therefore the most natural approach to separate fissionable species from fission products and consume them by fissioning. Whether this is economically justified as opposed by storing them indefinitely with spent fuel has widely been debated. The paper outlines the different approaches taken by nuclear communities worldwide and their perceived or proven rational arguments. It will balance economic and other factors for the near and distant future including advanced reactor concepts. The specific solution within the German nuclear programme will be explained, including foreseeable future trends. (orig.).

  10. Verifiable Fuel Cycle Simulation Model (VISION): A Tool for Analyzing Nuclear Fuel Cycle Futures

    International Nuclear Information System (INIS)

    Jacobson, Jacob J.; Piet, Steven J.; Matthern, Gretchen E.; Shropshire, David E.; Jeffers, Robert F.; Yacout, A.M.; Schweitzer, Tyler

    2010-01-01

    The nuclear fuel cycle consists of a set of complex components that are intended to work together. To support the nuclear renaissance, it is necessary to understand the impacts of changes and timing of events in any part of the fuel cycle system such as how the system would respond to each technological change, a series of which moves the fuel cycle from where it is to a postulated future state. The system analysis working group of the United States research program on advanced fuel cycles (formerly called the Advanced Fuel Cycle Initiative) is developing a dynamic simulation model, VISION, to capture the relationships, timing, and changes in and among the fuel cycle components to help develop an understanding of how the overall fuel cycle works. This paper is an overview of the philosophy and development strategy behind VISION. The paper includes some descriptions of the model components and some examples of how to use VISION. For example, VISION users can now change yearly the selection of separation or reactor technologies, the performance characteristics of those technologies, and/or the routing of material among separation and reactor types - with the model still operating on a PC in <5 min.

  11. Fuel performance and operation experience of WWER-440 fuel in improved fuel cycle

    International Nuclear Information System (INIS)

    Gagarinski, A.; Proselkov, V.; Semchenkov, Yu.

    2007-01-01

    The paper summarizes WWER-440 second-generation fuel operation experience in improved fuel cycles using the example of Kola NPP units 3 and 4. Basic parameters of fuel assemblies, fuel rods and uranium-gadolinium fuel rods, as well as the principal neutronic parameters and burn-up achieved in fuel assemblies are presented. The paper also contains some data concerning the activity of coolant during operation (Authors)

  12. Nuclear fuel cycle simulation system (VISTA)

    International Nuclear Information System (INIS)

    2007-02-01

    The Nuclear Fuel Cycle Simulation System (VISTA) is a simulation system which estimates long term nuclear fuel cycle material and service requirements as well as the material arising from the operation of nuclear fuel cycle facilities and nuclear power reactors. The VISTA model needs isotopic composition of spent nuclear fuel in order to make estimations of the material arisings from the nuclear reactor operation. For this purpose, in accordance with the requirements of the VISTA code, a new module called Calculating Actinide Inventory (CAIN) was developed. CAIN is a simple fuel depletion model which requires a small number of input parameters and gives results in a very short time. VISTA has been used internally by the IAEA for the estimation of: spent fuel discharge from the reactors worldwide, Pu accumulation in the discharged spent fuel, minor actinides (MA) accumulation in the spent fuel, and in the high level waste (HLW) since its development. The IAEA decided to disseminate the VISTA tool to Member States using internet capabilities in 2003. The improvement and expansion of the simulation code and the development of the internet version was started in 2004. A website was developed to introduce the simulation system to the visitors providing a simple nuclear material flow calculation tool. This website has been made available to Member States in 2005. The development work for the full internet version is expected to be fully available to the interested parties from IAEA Member States in 2007 on its website. This publication is the accompanying text which gives details of the modelling and an example scenario

  13. 77 FR 19278 - Informational Meeting on Nuclear Fuel Cycle Options

    Science.gov (United States)

    2012-03-30

    ... DEPARTMENT OF ENERGY Informational Meeting on Nuclear Fuel Cycle Options AGENCY: Office of Fuel... activities leading to a comprehensive evaluation and screening of nuclear fuel cycle options in 2013. At this... fuel cycle options developed for the evaluation and screening provides a comprehensive representation...

  14. An economic analysis code used for PWR fuel cycle

    International Nuclear Information System (INIS)

    Liu Dingqin

    1989-01-01

    An economic analysis code used for PWR fuel cycle is developed. This economic code includes 12 subroutines representing vavious processes for entire PWR fuel cycle, and indicates the influence of the fuel cost on the cost of the electricity generation and the influence of individual process on the sensitivity of the fuel cycle cost

  15. The nuclear fuel cycle versus the carbon cycle

    International Nuclear Information System (INIS)

    Ewing, R.C.

    2005-01-01

    Nuclear power provides approximately 17% of the world's electricity, which is equivalent to a reduction in carbon emissions of ∼0.5 gigatonnes (Gt) of C/yr. This is a modest reduction as compared with global emissions of carbon, ∼7 Gt C/yr. Most analyses suggest that in order to have a significant and timely impact on carbon emissions, carbon-free sources, such as nuclear power, would have to expand total production of energy by factors of three to ten by 2050. A three-fold increase in nuclear power capacity would result in a projected reduction in carbon emissions of 1 to 2 Gt C/yr, depending on the type of carbon-based energy source that is displaced. This three-fold increase utilizing present nuclear technologies would result in 25,000 metric tonnes (t) of spent nuclear fuel (SNF) per year, containing over 200 t of plutonium. This is compared to a present global inventory of approximately 280,000 t of SNF and >1,700 t of Pu. A nuclear weapon can be fashioned from as little as 5 kg of 239 Pu. However, there is considerable technological flexibility in the nuclear fuel cycle. There are three types of nuclear fuel cycles that might be utilized for the increased production of energy: open, closed, or a symbiotic combination of different types of reactor (such as, thermal and fast neutron reactors). The neutron energy spectrum has a significant effect on the fission product yield, and the consumption of long-lived actinides, by fission, is best achieved by fast neutrons. Within each cycle, the volume and composition of the high-level nuclear waste and fissile material depend on the type of nuclear fuel, the amount of burn-up, the extent of radionuclide separation during reprocessing, and the types of materials used to immobilize different radionuclides. As an example, a 232 Th-based fuel cycle can be used to breed fissile 233 U with minimum production of Pu. In this paper, I will contrast the production of excess carbon in the form of CO 2 from fossil fuels with

  16. The industrial nuclear fuel cycle in Argentina

    International Nuclear Information System (INIS)

    Koll, J.H.; Kittl, J.E.; Parera, C.A.; Coppa, R.C.; Aguirre, E.J.

    1977-01-01

    The nuclear power program of Argentina for the period 1976-85 is described, as a basis to indicate fuel requirements and the consequent implementation of a national fuel cycle industry. Fuel cycle activities in Argentina were initiated as soon as 1951-2 in the prospection and mining activities through the country. Following this step, yellow-cake production was initiated in plants of limited capacity. National production of uranium concentrate has met requirements up to the present time, and will continue to do so until the Sierra Pintada Industrial Complex starts operation in 1979. Presently, there is a gap in local production of uranium dioxide and fuel elements for the Atucha power station, which are produced abroad using Argentine uranium concentrate. With its background, the argentine program for the installation of nuclear fuel cycle industries is described, and the techno-economical implications considered. Individual projects are reviewed, as well as the present and planned infrastructure needed to support the industrial effort [es

  17. Future fuel cycle and reactor strategies

    International Nuclear Information System (INIS)

    Meneley, D.A.

    1999-01-01

    Within the framework of the 1997 IAEA Symposium 'Future Fuel Cycle and Reactor Strategies Adjusting to New Realities', Working Group No.3 produced a Key Issues paper addressing the title of the symposium. The scope of the Key Issues paper included those factors that are expected to remain or become important in the time period from 2015 to 2050, considering all facets of nuclear energy utilization from ore extraction to final disposal of waste products. The paper addressed the factors influencing the choice of reactor and fuel cycle. It then addressed the quantitatively largest category of reactor types expected to be important during the period; that is, thermal reactors burning uranium and plutonium fuel. The fast reactor then was discussed both as a stand-alone technology and as might be used in combination with thermal reactors. Thorium fuel use was discussed briefly. The present paper includes of a digest of the Key Issues Paper. Some comparisons arc made between the directions suggested in that paper and those indicated by the Abstracts of this Technical Committee Meeting- Recommendations are made for work which might be undertaken in the short and medium time frames, to ensure that fuel cycle technologies and processes established by the year 2050 will support the continuation of nuclear energy applications in the long term. (author)

  18. Nuclear fuel cycle cost and cost calculation

    International Nuclear Information System (INIS)

    Schmiedel, P.; Schricker, W.

    1975-01-01

    Four different methods of calculating the cost of the fuel cycle are explained, starting from the individual cost components with their specific input data. The results (for LWRs) are presented in tabular form and in the form of diagrams. (RB) [de

  19. Concept for fuel-cycle based safeguards

    International Nuclear Information System (INIS)

    deMontmollin, J.M.; Higinbotham, W.A.; Gupta, D.

    1985-01-01

    Although the guidelines for NPT safeguards specify that the State's fuel cycle and degree of international independence are to be taken into account, the same model approach and absolute-quantity inspection goals are applied to all similar facilities, irrespective of the State's fuel cycle, and the findings are reported in those terms. A concept whereby safeguards might more effectively and efficiently accomplish the purposes of NPT safeguards is explored. The principal features are: (1) division of the fuel cycle into three zones, each containing material having a different degree of significance for safeguards; (2) closing a verified material balance around each zone, supplementing the present MBA balances for more sensitive facilities and replacing them for others; (3) maintenance by the IAEA of a current book inventory for each facility by means of immediate, abbreviated reporting of interfacility transfers; (4) near real-time analysis of material flow patterns through the fuel cycle; and (5) a periodic statement of the findings for the entire State that takes the form that there is assurance that all nuclear materials under safeguards are accounted for to some stated degree of uncertainty

  20. Nuclear fuel cycle and no proliferation

    International Nuclear Information System (INIS)

    Villagra Delgado, Pedro

    2005-01-01

    The worry produced by the possibility of new countries acquiring nuclear weapons through the forbidden use of sensitive installations for the production of fissionable materials, had arisen proposals intended to restrict activities related to the full nuclear fuel cycle, even when these activities are allowed in the frame of rules in force for the peaceful uses of nuclear energy. (author) [es

  1. Waste management and the nuclear fuel cycle

    International Nuclear Information System (INIS)

    Molinari, J.

    1982-01-01

    The present lecture deals with energy needs and nuclear power, the importance of waste and its relative place in the fuel cycle, the games of controversies over nuclear waste in the strategies of energy and finally with missions and functions of the IAEA for privileging the rational approach and facilitating the transfer of technology. (RW)

  2. Fusion fuel cycle solid radioactive wastes

    International Nuclear Information System (INIS)

    Gore, B.F.; Kaser, J.D.; Kabele, T.J.

    1978-06-01

    Eight conceptual deuterium-tritium fueled fusion power plant designs have been analyzed to identify waste sources, materials and quantities. All plant designs include the entire D-T fuel cycle within each plant. Wastes identified include radiation-damaged structural, moderating, and fertile materials; getter materials for removing corrosion products and other impurities from coolants; absorbents for removing tritium from ventilation air; getter materials for tritium recovery from fertile materials; vacuum pump oil and mercury sludge; failed equipment; decontamination wastes; and laundry waste. Radioactivity in these materials results primarily from neutron activation and from tritium contamination. For the designs analyzed annual radwaste volume was estimated to be 150 to 600 m 3 /GWe. This may be compared to 500 to 1300 m 3 /GWe estimated for the LMFBR fuel cycle. Major waste sources are replaced reactor structures and decontamination waste

  3. Future reactors and their fuel cycle

    International Nuclear Information System (INIS)

    Rastoin, J.

    1990-01-01

    Known world reserves of oil and natural gas may only last another 50 years and therefore nuclear energy will become more important in the future. Industrialised countries should also be encouraged to conserve their oil reserves to make better use of them and share them with less developed countries. France already produces 30% or more of its primary energy from uranium in the form of nuclear generated electricity. France has therefore accumulated considerable expertise in all aspects of the nuclear fuel cycle. Each stage of the fuel cycle, extraction, enrichment, fuel fabrication, fissile material utilisation, reprocessing and waste storage is discussed. The utilisation of fissile material is the most important stage and this is considered in more detail under headings: increase in burn-up, spectral shift, plutonium utilisation including recycling in pressurized water reactors and fast reactors and utilisation of reprocessed uranium. It is concluded that nuclear power for electricity production will be widely used throughout the world in the future. (UK)

  4. Advanced fuel cycles: a rationale and strategy for adopting the low-enriched-uranium fuel cycle

    International Nuclear Information System (INIS)

    James, R.A.

    1980-01-01

    A two-year study of alternatives to the natural uranium fuel cycle in CANDU reactors is summarized. The possible advanced cycles are briefly described. Selection criteria for choosing a cycle for development include resource utilization, economics, ease of implementaton, and social acceptability. It is recommended that a detailed study should be made with a view to the early implementation of the low-enriched uranium cycle. (LL)

  5. Environmental impact of nuclear fuel cycle operations

    International Nuclear Information System (INIS)

    Wilkinson, W.L.

    1989-09-01

    This paper considers the environmental impact of nuclear fuel cycle operations, particularly those operated by British Nuclear Fuels plc, which include uranium conversion, fuel fabrication, uranium enrichment, irradiated fuel transport and storage, reprocessing, uranium recycle and waste treatment and disposal. Quantitative assessments have been made of the impact of the liquid and gaseous discharges to the environment from all stages in the fuel cycle. An upper limit to the possible health effects is readily obtained using the codified recommendations of the International Commission on Radiological Protection. This contrasts with the lack of knowledge concerning the health effects of many other pollutants, including those resulting from the burning of fossil fuels. Most of the liquid and gaseous discharges result at the reprocessing stage and although their impact on the environment and on human health is small, they have given rise to much public concern. Reductions in discharges at Sellafield over the last few years have been quite dramatic, which shows what can be done provided the necessary very large investment is undertaken. The cost-effectiveness of this investment must be considered. Some of it has gone beyond the point of justification in terms of health benefit, having been undertaken in response to public and political pressure, some of it on an international scale. The potential for significant off-site impact from accidents in the fuel cycle has been quantitatively assessed and shown to be very limited. Waste disposal will also have an insignificant impact in terms of risk. It is also shown that it is insignificant in relation to terrestrial radioactivity and therefore in relation to the human environment. 14 refs, 5 figs, 2 tabs

  6. Nuclear Fuel Cycle Options Catalog: FY16 Improvements and Additions

    Energy Technology Data Exchange (ETDEWEB)

    Price, Laura L. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Barela, Amanda Crystal [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Schetnan, Richard Reed [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Walkow, Walter M. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2016-08-31

    The United States Department of Energy, Office of Nuclear Energy, Fuel Cycle Technology Program sponsors nuclear fuel cycle research and development. As part of its Fuel Cycle Options campaign, the DOE has established the Nuclear Fuel Cycle Options Catalog. The catalog is intended for use by the Fuel Cycle Technologies Program in planning its research and development activities and disseminating information regarding nuclear energy to interested parties. The purpose of this report is to document the improvements and additions that have been made to the Nuclear Fuel Cycle Options Catalog in the 2016 fiscal year.

  7. Nuclear Fuel Cycle Options Catalog FY15 Improvements and Additions.

    Energy Technology Data Exchange (ETDEWEB)

    Price, Laura L. [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States); Barela, Amanda Crystal [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States); Schetnan, Richard Reed [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States); Walkow, Walter M. [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States)

    2015-11-01

    The United States Department of Energy, Office of Nuclear Energy, Fuel Cycle Technology Program sponsors nuclear fuel cycle research and development. As part of its Fuel Cycle Options campaign, the DOE has established the Nuclear Fuel Cycle Options Catalog. The catalog is intended for use by the Fuel Cycle Technologies Program in planning its research and development activities and disseminating information regarding nuclear energy to interested parties. The purpose of this report is to document the improvements and additions that have been made to the Nuclear Fuel Cycle Options Catalog in the 2015 fiscal year.

  8. Nuclear fuel cycles : description, demand and supply estimates

    International Nuclear Information System (INIS)

    Gadallah, A.A.; Abou Zahra, A.A.; Hammad, F.H.

    1985-01-01

    This report deals with various nuclear fuel cycles description as well as the world demand and supply estimates of materials and services. Estimates of world nuclear fuel cycle requirements: nuclear fuel, heavy water and other fuel cycle services as well as the availability and production capabilities of these requirements, are discussed for several reactor fuel cycle strategies, different operating and under construction fuel cycle facilities in some industrialized and developed countries are surveyed. Various uncertainties and bottlenecks which are recently facing the development of some fuel cycle components are also discussed, as well as various proposals concerning fuel cycle back-end concepts. finally, the nuclear fuel cycles activities in some developing countries are reviewed with emphasis on the egyptian plans to introduce nuclear power in the country. 11 fig., 16 tab

  9. World nuclear fuel cycle requirements, 1988

    International Nuclear Information System (INIS)

    1988-01-01

    This report contains an analysis of the sensitivities of the nuclear fuel cycle projections to different levels and types of projected nuclear capacity, different enrichment tails assays, higher and lower capacity factors, changes in nuclear fuel burnup levels, and other exogenous assumptions. The projections for the United States generally extend through the year 2020, and the (WOCA) World Outside Centrally Planned Economic Areas projections, which include the United States, are provided through 2010. The report also presents annual projections of spent nuclear fuel discharges and inventories of spent fuel. Appendix E includes aggregated domestic spent fuel projections through the year 2020 for the Lower and Upper References cases and through 2037, the last year in which spent fuel is discharged, for the No New Orders case. Annual projections of spent fuel discharges through the year 2037 for individual US reactors in the No New Orders cases are included for the first time in Appendix H. These disaggregated projections are provided at the request of the Department of Energy's Office of Civilian Radioactive Waste Management

  10. Vertical integration in the nuclear fuel cycle

    International Nuclear Information System (INIS)

    Mommsen, J.T.

    1977-01-01

    Vertical integration in the nuclear fuel cycle and its contribution to market power of integrated fuel suppliers were studied. The industry subdivision analyzed is the uranium raw materials sector. The hypotheses demonstrated are that (1) this sector of the industry is trending toward vertical integration between production of uranium raw materials and the manufacture of nuclear fuel elements, and (2) this vertical integration confers upon integrated firms a significant market advantage over non-integrated fuel manufacturers. Under microeconomic concepts the rationale for vertical integration is the pursuit of efficiency, and it is beneficial because it increases physical output and decreases price. The Market Advantage Model developed is an arithmetical statement of the relative market power (in terms of price) between non-integrated nuclear fuel manufacturers and integrated raw material/fuel suppliers, based on the concept of the ''squeeze.'' In operation, the model compares net profit and return on sales of nuclear fuel elements between the competitors, under different price and cost circumstances. The model shows that, if integrated and non-integrated competitors sell their final product at identical prices, the non-integrated manufacturer returns a net profit only 17% of the integrated firm. Also, the integrated supplier can price his product 35% below the non-integrated producer's price and still return the same net profit. Vertical integration confers a definite market advantage to the integrated supplier, and the basic source of that advantage is the cost-price differential of the raw material, uranium

  11. World nuclear fuel cycle requirements 1989

    International Nuclear Information System (INIS)

    1989-01-01

    This analysis report presents the projected requirements for uranium concentrate and uranium enrichment services to fuel the nuclear power plants expected to be operating under two nuclear supply scenarios. These two scenarios, the Lower Reference and Upper Reference cases, apply to the United States, Canada, Europe, the Far East, and other countries in the World Outside Centrally Planned Economic Areas (WOCA). A No New Orders scenarios is also presented for the Unites States. This report contains an analysis of the sensitivities of the nuclear fuel cycle projections to different levels and types of projected nuclear capacity, different enrichment tails assays, higher and lower capacity factors, changes in nuclear fuel burnup levels, and other exogenous assumptions. The projections for the United States generally extend through the year 2020, and the WOCA projections, which include the United States, are provided through 2010. The report also presents annual projections of spent nuclear fuel; discharges and inventories of spent fuel. Appendix D includes domestic spent fuel projections through the year 2020 for the Lower and Upper Reference cases and through 2036, the last year in which spent fuel is discharged, for the No New Orders case

  12. Development of nuclear fuel cycle technology

    International Nuclear Information System (INIS)

    Kawahara, Akira; Sugimoto, Yoshikazu; Shibata, Satoshi; Ikeda, Takashi; Suzuki, Kazumichi; Miki, Atsushi.

    1990-01-01

    In order to establish the stable supply of nuclear fuel as an important energy source, Hitachi ltd. has advanced the technical development aiming at the heightening of reliability, the increase of capacity, upgrading and the heightening of performance of the facilities related to nuclear fuel cycle. As for fuel reprocessing, Japan Nuclear Fuel Service Ltd. is promoting the construction of a commercial fuel reprocessing plant which is the first in Japan. The verification of the process performance, the ensuring of high reliability accompanying large capacity and the technical development for recovering effective resources from spent fuel are advanced. Moreover, as for uranium enrichment, Laser Enrichment Technology Research Association was founded mainly by electric power companies, and the development of the next generation enrichment technology using laser is promoted. The development of spent fuel reprocessing technology, the development of the basic technology of atomic process laser enrichment and so on are reported. In addition to the above technologies recently developed by Hitachi Ltd., the technology of reducing harm and solidification of radioactive wastes, the molecular process laser enrichment and others are developed. (K.I.)

  13. World nuclear fuel cycle requirements 1990

    International Nuclear Information System (INIS)

    1990-01-01

    This analysis report presents the projected requirements for uranium concentrate and uranium enrichment services to fuel the nuclear power plants expected to be operating under three nuclear supply scenarios. Two of these scenarios, the Lower Reference and Upper Reference cases, apply to the United States, Canada, Europe, the Far East, and other countries with free market economies (FME countries). A No New Orders scenario is presented only for the United States. These nuclear supply scenarios are described in Commercial Nuclear Power 1990: Prospects for the United States and the World (DOE/EIA-0438(90)). This report contains an analysis of the sensitivities of the nuclear fuel cycle projections to different levels and types of projected nuclear capacity, different enrichment tails assays, higher and lower capacity factors, changes in nuclear fuel burnup levels, and other exogenous assumptions. The projections for the United States generally extend through the year 2020, and the FME projections, which include the United States, are provided through 2010. The report also presents annual projections of spent nuclear fuel discharges and inventories of spent fuel. Appendix D includes domestic spent fuel projections through the year 2030 for the Lower and Upper Reference cases and through 2040, the last year in which spent fuel is discharged, for the No New Orders case. These disaggregated projections are provided at the request of the Department of Energy's Office of Civilian Radioactive Waste Management

  14. IAEA Activities in the Area of Fast Reactors and Related Fuels and Fuel Cycles

    International Nuclear Information System (INIS)

    Monti, S.; Basak, U.; Dyck, G.; Inozemtsev, V.; Toti, A.; Zeman, A.

    2013-01-01

    Summary: • The IAEA role to support fast reactors and associated fuel cycle development programmes; • Main IAEA activities on fast reactors and related fuel and fuel cycle technology; • Main IAEA deliverables on fast reactors and related fuel and fuel cycle technology

  15. Fuel cycle and waste management: A perspective from British nuclear fuels plc

    International Nuclear Information System (INIS)

    Holmes, R.G.G.; Fairhall, G.A.; Robbins, R.A.

    1996-01-01

    The phrase fuel cycle and waste management implies two separate and distinct activities. British Nuclear Fuels plc (BNFL) has adopted a holistic approach to the fuel cycle that integrates the traditional fuel cycle activities of conversion to uranium hexafluoride, fuel fabrication, power generation, and reprocessing with waste arisings, its subsequent treatment, and disposal

  16. IFR fuel cycle demonstration in the EBR-II Fuel Cycle Facility

    International Nuclear Information System (INIS)

    Lineberry, M.J.; Phipps, R.D.; Rigg, R.H.; Benedict, R.W.; Carnes, M.D.; Herceg, J.E.; Holtz, R.E.

    1991-01-01

    The next major milestone of the IFR (Integral Fast Reactor) program is engineering-scale demonstration of the pyroprocess fuel cycle. The EBR-II Fuel Cycle Facility has just entered a startup phase which includes completion of facility modifications, and installation and cold checkout of process equipment. This paper reviews the design and construction of the facility, the design and fabrication of the process equipment, and the schedule and initial plan for its operation. (author)

  17. IFR fuel cycle demonstration in the EBR-II Fuel Cycle Facility

    International Nuclear Information System (INIS)

    Lineberry, M.J.; Phipps, R.D.; Rigg, R.H.; Benedict, R.W.; Carnes, M.D.; Herceg, J.E.; Holtz, R.E.

    1991-01-01

    The next major milestone of the IFR program is engineering-scale demonstration of the pyroprocess fuel cycle. The EBR-II Fuel Cycle Facility has just entered a startup phase which includes completion of facility modifications, and installation and cold checkout of process equipment. This paper reviews the design and construction of the facility, the design and fabrication of the process equipment, and the schedule and initial plan for its operation. 5 refs., 4 figs

  18. Life-cycle of fuel peat

    International Nuclear Information System (INIS)

    Leijting, J.; Silvo, K.

    1998-01-01

    The share of peat in the primary energy supply in Finland in 1996 was about 6.5 % and the area used for peat production was about 535 km 2 , corresponding to about 0.5 % of the original peatland area of Finland. Fuel peat production is hence a significant form of using natural resources. About 1.4 % of the total peatland area has been reserved for peat production. Approximately 95 % of the peat excavated in Finland is used as fuel peat, and 5 % as horticultural peat. As raw material and fuel peat can be considered to be slowly renewable material. The environmental impacts of fuel peat production, transportation and peat combustion were evaluated in this research by methods used in life-cycle assessment. Preparation and production phases of peat production areas, fuel peat transportation to power plants, combustion of peat in power plants, and disposal of the ashes formed the basis for the investigation. Data collected in 1994-1996 was used as the basic material in the research. Special attention was paid to the estimation of greenhouse gas balance when using a virgin bog and the forest drained peatland areas as starting points. Post-production use of peatlands were not inspected in the life-cycle assessment. The work was carried out in 1997 in cooperation with Vapo Oy. The regional environmental centers, VTT and Helsinki and Joensuu Universities assisted significantly in acquisition of the material and planning of the work 3 refs

  19. On the problems of the fuel cycles of nuclear fuels

    International Nuclear Information System (INIS)

    Schmidt-Kuester, W.J.; Wagner, H.F.

    1976-01-01

    A secured procurement with nuclear energy can be only achieved if a completely closed fuel cycle will be established. In the Federal Republic of Germany efforts are concentrated on the front end as well as on the back end of the fuel cycle. At the front end the main tasks are to secure uranium supply and to establish the necessary enrichment capacity. The German concept for the back end of the fuel cycle will provide for an integrated and co-located system for all necessary facilities including reprocessing, plutonium fuel fabrication, treatment, interim storage and final disposal of the radioactive wastes to be operational in the mid-80's. Responsibilities for establishing this system are shared between government and private industry. Government will provide for final waste disposal, industry will built and operate the other facilities. Another important point for the introduction of nuclear energy is to solve reliably the problems of protection of fissionable material, radioactive waste and nuclear facilities. German government has initiated respective activities and has started appropriate R+D-work. (orig.) [de

  20. Economics analysis of fuel cycle cost of fusion–fission hybrid reactors based on different fuel cycle strategies

    Energy Technology Data Exchange (ETDEWEB)

    Zu, Tiejun, E-mail: tiejun@mail.xjtu.edu.cn; Wu, Hongchun; Zheng, Youqi; Cao, Liangzhi

    2015-01-15

    Highlights: • Economics analysis of fuel cycle cost of FFHRs is carried out. • The mass flows of different fuel cycle strategies are established based on the equilibrium fuel cycle model. • The levelized fuel cycle costs of different fuel cycle strategies are calculated, and compared with current once-through fuel cycle. - Abstract: The economics analysis of fuel cycle cost of fusion–fission hybrid reactors has been performed to compare four fuel cycle strategies: light water cooled blanket burning natural uranium (Strategy A) or spent nuclear fuel (Strategy B), sodium cooled blanket burning transuranics (Strategy C) or minor actinides (Strategy D). The levelized fuel cycle costs (LFCC) which does not include the capital cost, operation and maintenance cost have been calculated based on the equilibrium mass flows. The current once-through (OT) cycle strategy has also been analyzed to serve as the reference fuel cycle for comparisons. It is found that Strategy A and Strategy B have lower LFCCs than OT cycle; although the LFCC of Strategy C is higher than that of OT cycle when the uranium price is at its nominal value, it would become comparable to that of OT cycle when the uranium price reaches its historical peak value level; Strategy D shows the highest LFCC, because it needs to reprocess huge mass of spent nuclear fuel; LFCC is sensitive to the discharge burnup of the nuclear fuel.

  1. Financing of the nuclear fuel cycle

    International Nuclear Information System (INIS)

    Wyart, P.

    1975-01-01

    Fuels account for only a modest share of the cost of nuclear energy: approximatively one-fourth whereas the capital financing charges exceed one-half. But it is necessary to take account of the combined effect of the magnitude of the needs in coming years and of the resulting acceleration due to the coming on stream of increasingly numerous nuclear power plants and to take account of the characteristics of the fuel cycle which is especially long because of technical requirements and the necessity to establish safety stocks [fr

  2. Advanced breeder cycle uses metallic fuel

    International Nuclear Information System (INIS)

    Chang, Y.I.

    1991-01-01

    Scientists from Argonne National Laboratory have been developing a concept called the Integral fast Reactor (IFR). This fast breeder reactor could effectively increase Uranium resources a hundred fold making nuclear power essentially an inexhaustible energy source. The IFR is outlined. In the IFR, the inherent properties of liquid metal cooling are combined with a new metallic fuel which is allowed to swell and gives an improved burnup level and a radically different refining process to allow breakthroughs in passive safety, fuel cycle economics and waste management. (author)

  3. Nuclear power and the nuclear fuel cycle

    International Nuclear Information System (INIS)

    Scurr, I.F.; Silver, J.M.

    1990-01-01

    Australian Nuclear Science and Technology Organization maintains an ongoing assessment of the world's nuclear technology developments, as a core activity of its Strategic Plan. This publication reviews the current status of the nuclear power and the nuclear fuel cycle in Australia and around the world. Main issues discussed include: performances and economics of various types of nuclear reactors, uranium resources and requirements, fuel fabrication and technology, radioactive waste management. A brief account of the large international effort to demonstrate the feasibility of fusion power is also given. 11 tabs., ills

  4. Nuclear-fuel-cycle optimization: methods and modelling techniques

    International Nuclear Information System (INIS)

    Silvennoinen, P.

    1982-01-01

    This book present methods applicable to analyzing fuel-cycle logistics and optimization as well as in evaluating the economics of different reactor strategies. After an introduction to the phases of a fuel cycle, uranium cost trends are assessed in a global perspective. Subsequent chapters deal with the fuel-cycle problems faced by a power utility. The fuel-cycle models cover the entire cycle from the supply of uranium to the disposition of spent fuel. The chapter headings are: Nuclear Fuel Cycle, Uranium Supply and Demand, Basic Model of the LWR (light water reactor) Fuel Cycle, Resolution of Uncertainties, Assessment of Proliferation Risks, Multigoal Optimization, Generalized Fuel-Cycle Models, Reactor Strategy Calculations, and Interface with Energy Strategies. 47 references, 34 figures, 25 tables

  5. Back end of the nuclear fuel cycle

    International Nuclear Information System (INIS)

    Shapar, H.K.

    1986-01-01

    Most of the nuclear spent fuel that is discharged from the reactors in OECD countries is destined currently for long term interim storage before final processing or direct disposal. There are at least three basic considerations affecting the dicision on spent fuel, that is, the capacity of prompt reprocessing is insufficient at present, reprocessing is not urgent for the reason of economy or plutonium availability, and the cooling of spent fuel in controlled storage is economically advantageous. The basic technology of reprocessing has been commercially available for several decades, but political problems and the lack of immediate incentive for reprocessing slowed the buildup of new capacity. To avoid the problems related to plutonium storage, it is reasonable to postpone reprocessing. Some OECD countries plan the direct disposal of spent fuel elements instead of reprocessing. The technology, supply and demand and cost of the storage and transport of spent fuel, reprocessing and waste disposal are discussed. The share of the back end in the total levelized fuel cycle cost is expected to be between 10 and 20 %. The impact of the choice of back end options on the cost of power generation will be only 2 %. (Kako, I.)

  6. CIEMAT analyses of transition fuel cycle scenarios

    International Nuclear Information System (INIS)

    Alvarez-Velarde, F.; Gonzalez-Romero, E.M.

    2010-01-01

    The efficient design of strategies for the long-term sustainability of nuclear energy or the phase-out of this technology is possible after the study of transition scenarios from the current fuel cycle to a future one with advanced technologies and concepts. CIEMAT has participated in numerous fuel cycle scenarios studies for more than a decade and, from some years ago, special attention has been put in the study of transition scenarios. In this paper, the main characteristics of each studied transition scenario are described. The main results and partial conclusions of each scenario are also analyzed. As general conclusions of transition studies, we highlight that the advantages of advanced technologies in transition scenarios can be obtained by countries or regions with sufficiently large nuclear parks, with a long-term implementation of the strategy. For small countries, these advantages are also accessible with an affordable cost, by means of the regional collaboration during several decades. (authors)

  7. Fuel Cycle Technologies 2014 Achievement Report

    Energy Technology Data Exchange (ETDEWEB)

    Hong, Bonnie C. [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2015-01-01

    The Fuel Cycle Technologies (FCT) program supports the Department of Energy’s (DOE’s) mission to: “Enhance U.S. security and economic growth through transformative science, technology innovation, and market solutions to meet our energy, nuclear security, and environmental challenges.” Goal 1 of DOE’s Strategic Plan is to innovate energy technologies that enhance U.S. economic growth and job creation, energy security, and environmental quality. FCT does this by investing in advanced technologies that could transform the nuclear fuel cycle in the decades to come. Goal 2 of DOE’s Strategic Plan is to strengthen national security by strengthening key science, technology, and engineering capabilities. FCT does this by working closely with the National Nuclear Security Administration and the U.S Department of State to develop advanced technologies that support the Nation’s nuclear nonproliferation goals.

  8. Survey of nuclear fuel-cycle codes

    International Nuclear Information System (INIS)

    Thomas, C.R.; de Saussure, G.; Marable, J.H.

    1981-04-01

    A two-month survey of nuclear fuel-cycle models was undertaken. This report presents the information forthcoming from the survey. Of the nearly thirty codes reviewed in the survey, fifteen of these codes have been identified as potentially useful in fulfilling the tasks of the Nuclear Energy Analysis Division (NEAD) as defined in their FY 1981-1982 Program Plan. Six of the fifteen codes are given individual reviews. The individual reviews address such items as the funding agency, the author and organization, the date of completion of the code, adequacy of documentation, computer requirements, history of use, variables that are input and forecast, type of reactors considered, part of fuel cycle modeled and scope of the code (international or domestic, long-term or short-term, regional or national). The report recommends that the Model Evaluation Team perform an evaluation of the EUREKA uranium mining and milling code

  9. International nuclear fuel cycle evaluation (INFCE)

    International Nuclear Information System (INIS)

    Schlupp, C.

    1986-07-01

    The study describes and analyzes the structures, the procedures and decision making processes of the International Nuclear Fuel Cycle Evaluation (INFCE). INFCE was agreed by the Organizing Conference to be a technical and analytical study and not a negotiation. The results were to be transmitted to governments for their consideration in developing their nuclear energy policies and in international discussions concerning nuclear energy cooperation and related controls and safeguards. Thus INFCE provided a unique example for decision making by consensus in the nuclear world. It was carried through under mutual respect for each country's choices and decisions, without jeopardizing their respective fuel cycle policies or international co-operation agreements and contracts for the peaceful use of nuclear energy, provided that agreed safeguards are applied. (orig.)

  10. ATALANTE, innovation for the nuclear fuel cycle

    International Nuclear Information System (INIS)

    Anon.

    2016-01-01

    At Marcoule (France) CEA has been operating a facility called ATALANTE since the beginning of the eighties and dedicated to research on the nuclear fuel cycle. 4 lines of research are pursued: a technical support for nuclear industry, advanced nuclear fuel cycles, the recycling of minor actinides, and the vitrification of high level radioactive wastes. ATALANTE facility consists of 17 laboratories working on 250 glove boxes and 11 shielded hot cells. The latter allow the handling of highly gamma emitting materials through 59 workstations equipped with remote manipulatory arms, while the former allow the handling of contaminating (but low irradiating) materials like most actinides. In 2013 ATALANTE was rewarded the 'Nuclear historic landmark' by the American Nuclear Society that awards facilities that have led to major advances in scientific knowledge

  11. Analytical chemistry challenges at the back end of fuel cycle

    International Nuclear Information System (INIS)

    Panja, S.; Dhami, P.S.; Gandhi, P.M.

    2015-01-01

    Among the various nuclear fuel cycle activities, spent fuel reprocessing and nuclear waste management play key role for adaptation of closed fuel cycle option and success of three stage Indian nuclear power programme. Reprocessing mainly aims to recover fissile and fertile component from spent fuel using well known PUREX/THOREX processes. Waste management deals with all the activities which are essential for safe management of radioactive wastes that get generated during entire nuclear fuel cycle operation

  12. International nuclear fuel cycle fact book. Revision 6

    International Nuclear Information System (INIS)

    Harmon, K.M.; Lakey, L.T.; Leigh, I.W.; Jeffs, A.G.

    1986-01-01

    The International Fuel Cycle Fact Book has been compiled in an effort to provide (1) an overview of worldwide nuclear power and fuel cycle programs and (2) current data concerning fuel cycle and waste management facilities, R and D programs and key personnel. Additional information on each country's program is available in the International Source Book: Nuclear Fuel Cycle Research and Development, PNL-2478, Rev. 2

  13. International nuclear fuel cycle fact book. Revision 6

    Energy Technology Data Exchange (ETDEWEB)

    Harmon, K.M.; Lakey, L.T.; Leigh, I.W.; Jeffs, A.G.

    1986-01-01

    The International Fuel Cycle Fact Book has been compiled in an effort to provide (1) an overview of worldwide nuclear power and fuel cycle programs and (2) current data concerning fuel cycle and waste management facilities, R and D programs and key personnel. Additional information on each country's program is available in the International Source Book: Nuclear Fuel Cycle Research and Development, PNL-2478, Rev. 2.

  14. Status and development of the thorium fuel cycle

    International Nuclear Information System (INIS)

    Yi Weijing; Wei Renjie

    2003-01-01

    A perspective view of the thorium fuel cycle is provided in this paper. The advantages and disadvantages of the thorium fuel cycle are given and the development of thorium fuel cycle in several types of reactors is introduced. The main difficulties in developing the thorium fuel cycle lie in the reprocessing and disposal of the waste and its economy, and the ways tried by foreign countries to solve the problems are presented in the paper

  15. Proliferation prevention in the commercial fuel cycle

    International Nuclear Information System (INIS)

    Sutcliffe, W.G.

    1999-01-01

    This website contains the papers presented on November 17, 1998 during the session, ''Proliferation Prevention in the Commercial Fuel Cycle,'' at the American Nuclear Society meeting in Washington, DC. The abstracts are in a separate section; individual papers also contain the author's bio and e-mail address. In the session planning phase, it was suggested that the following questions and other relevant issues be addressed: * What are the difficulties and issues with defining and enforcing international standards for the physical protection of Pu and HEU (beyond the Convention on the Physical protection of Nuclear Material, which primarily addresses transportation)? * How do we (or can we) keep nuclear technology in general, and reprocessing and enrichment technologies in particular, from spreading to undesirable organizations (including governments), in light of Article IV of the NPT? Specifically, can we (should we) prevent the construction of light-water reactors in Iran; and should we support the construction of light-water reactors in North Korea? * Are there more proliferation-resistant fuel cycles that would be appropriate in developing countries? * Can the concept of ''nonproliferation credentials'' be defined in a useful way? * Is there historical evidence to indicate that reprocessing (or enrichment of HEU) in the US, Japan, or the EURATOM countries has impacted the acquisition (or attempted acquisition) of nuclear weapons by other nations or groups? * What is the impact of a fissile material cutoff treaty (FMCT) be on commercial nuclear fuel cycles? * Does MOX spent fuel present a greater proliferation risk than LEU spent fuel? Although the authors did not explicitly attempt to answer all these questions, they did enlighten us about a number of these and related issues

  16. Developing safety in the nuclear fuel cycle

    International Nuclear Information System (INIS)

    Brown, M.L.

    1996-01-01

    The nuclear fuel cycle had its origins in the new technology developed in the 1940s and 50s involving novel physical and chemical processes. At the front end of the cycle, mining, milling and fuel fabrication all underwent development, but in general the focus of process development and safety concerns was the reprocessing stage, with radiation, contamination and criticality the chief hazards. Safety research is not over and there is still work to be done in advancing technical knowledge to new generation nuclear fuels such as Mixed Oxide Fuel and in refining knowledge of margins and of potential upset conditions. Some comments are made on potential areas for work. The NUCEF facility will provide many useful data to aid safety analysis and accident prevention. The routine operations in such plants, basically chemical factories, requires industrial safety and in addition the protection of workers against radiation or contamination. The engineering and management measures for this were novel and the early operation of such plants pioneering. Later commissioning and operating experience has improved routine operating safety, leading to a new generation of factories with highly developed worker protection, engineering safeguards and safety management systems. Ventilation of contamination control zones, remote operation and maintenance, and advanced neutron shielding are engineering examples. In safety management, dose control practices, formally controlled operating procedures and safety cases, and audit processes are comparable with, or lead, best industry practice in other hazardous industries. Nonetheless it is still important that the knowledge and experience from operating plants continue to be gathered together to provide a common basis for improvement. The NEA Working Group on Fuel Cycle Safety provides a forum for much of this interchange. Some activities in the Group are described in particular the FINAS incident reporting system. (J.P.N.)

  17. Overview of the nuclear fuel cycle

    International Nuclear Information System (INIS)

    Leuze, R.E.

    1981-01-01

    The use of nuclear reactors to provide electrical energy has shown considerable growth since the first nuclear plant started commercial operation in the mid 1950s. Although the main purpose of this paper is to review the fuel cycle capabilities in the United States, the introduction is a brief review of the types of nuclear reactors in use and the world-wide nuclear capacity

  18. Overview of the nuclear fuel cycle

    International Nuclear Information System (INIS)

    Leuze, R.E.

    1982-01-01

    The use of nuclear reactors to provide electrical energy has shown considerable growth since the first nuclear plant started commercial operation in the mid 1950s. Although the main purpose of this paper is to review the fuel cycle capabilities in the United States, the introduction is a brief review of the types of nuclear reactors in use and the world-wide nuclear capacity

  19. Financing Strategies for Nuclear Fuel Cycle Facility

    International Nuclear Information System (INIS)

    David Shropshire; Sharon Chandler

    2005-01-01

    To help meet our nation's energy needs, reprocessing of spent nuclear fuel is being considered more and more as a necessary step in a future nuclear fuel cycle, but incorporating this step into the fuel cycle will require considerable investment. This report presents an evaluation of financing scenarios for reprocessing facilities integrated into the nuclear fuel cycle. A range of options, from fully government owned to fully private owned, was evaluated using a DPL (Dynamic Programming Language) 6.0 model, which can systematically optimize outcomes based on user-defined criteria (e.g., lowest life-cycle cost, lowest unit cost). Though all business decisions follow similar logic with regard to financing, reprocessing facilities are an exception due to the range of financing options available. The evaluation concludes that lowest unit costs and lifetime costs follow a fully government-owned financing strategy, due to government forgiveness of debt as sunk costs. Other financing arrangements, however, including regulated utility ownership and a hybrid ownership scheme, led to acceptable costs, below the Nuclear Energy Agency published estimates. Overwhelmingly, uncertainty in annual capacity led to the greatest fluctuations in unit costs necessary for recovery of operating and capital expenditures; the ability to determine annual capacity will be a driving factor in setting unit costs. For private ventures, the costs of capital, especially equity interest rates, dominate the balance sheet; the annual operating costs dominate the government case. It is concluded that to finance the construction and operation of such a facility without government ownership could be feasible with measures taken to mitigate risk, and that factors besides unit costs should be considered (e.g., legal issues, social effects, proliferation concerns) before making a decision on financing strategy

  20. International trade in nuclear fuel cycle services

    International Nuclear Information System (INIS)

    May, D.

    1989-01-01

    This paper analyses and discusses general trends in international trade in nuclear fuel cycle services with particular emphasis on the development of trading patterns between Europe, North America and the Far East. The paper also examines the role of collaborative ventures in the development of the nuclear industry. Barriers to international trade, the effect of government regulations and restrictions and the impact of non-proliferation issues are discussed. (author)

  1. Safeguarding and Protecting the Nuclear Fuel Cycle

    International Nuclear Information System (INIS)

    Bjornard, Trond; Garcia, Humberto; Desmond, William; Demuth, Scott

    2010-01-01

    International safeguards as applied by the International Atomic Energy Agency (IAEA) are a vital cornerstone of the global nuclear nonproliferation regime - they protect against the peaceful nuclear fuel cycle becoming the undetected vehicle for nuclear weapons proliferation by States. Likewise, domestic safeguards and nuclear security are essential to combating theft, sabotage, and nuclear terrorism by non-State actors. While current approaches to safeguarding and protecting the nuclear fuel cycle have been very successful, there is significant, active interest to further improve the efficiency and effectiveness of safeguards and security, particularly in light of the anticipated growth of nuclear energy and the increase in the global threat environment. This article will address two recent developments called Safeguards-by-Design and Security-by-Design, which are receiving increasing broad international attention and support. Expected benefits include facilities that are inherently more economical to effectively safeguard and protect. However, the technical measures of safeguards and security alone are not enough - they must continue to be broadly supported by dynamic and adaptive nonproliferation and security regimes. To this end, at the level of the global fuel cycle architecture, 'nonproliferation and security by design' remains a worthy objective that is also the subject of very active, international focus.

  2. The fuel cycle industry of France

    International Nuclear Information System (INIS)

    Devilliers, J.P.

    1975-01-01

    When the energy crisis arose, experts asserted that uranium was abundant and well distributed and that consumer countries need not fear a lasting crisis in supply. In point of fact, the decisions announced in 1974 to accelerate nuclear programmes have upset the natural uranium market and have deeply modified commercial prospects respecting enrichment and retreatment. The demand for fuel is most sensitive to changes made in reactor construction programmes. As a result of the deadline for setting up production units in certain phases of the fuel cycle, fluctuations will probably again occur during the next 15 years. Taken as a whole, the fuel cycle industry calls for heavy investments, compared with the added value that they generate. It might therefore be feared that hesitancy on the part of the industry could compromise its ability to adapt itself to the needs of utilities producing electricity, and one can understand the vigilance of the latter when their security of supply is involved. The many projects now being carried out in the various phases of the cycle show, however, that this adaptation should continue under satisfactory conditions [fr

  3. The nuclear fuel cycle is complete

    International Nuclear Information System (INIS)

    Hildenbrand, G.

    1984-01-01

    The nuclear fuel cycle in the Federal Republic of Germany has a firm base. Its entry stages, natural uranium, conversion, enrichment, and fuel fabrication, have not only been put on solid grounds in terms of supplies, but have also attained a high degree of technical maturity and a high quality level. Further efforts are being devoted to cost reductions. Especially higher burnups and the recycling of plutonium in the form of MOX fuel assemblies in light water reactors must be mentioned under this heading. In the field of back end fuel cycle steps, the important sector of interim storage has now found a practical solution, which is also fully sufficient with respect to capacity. The project of a German reprocessing plant has now entered its decisive stage with the filling of the licensing applications and the awarding of the planning contracts. The study on alternative waste management techniques entitled ''Direct Final Storage'' is about to be concluded, and a work on the exploration and development of a repository proceeds on schedule. (orig.) [de

  4. Back-end of the nuclear fuel cycle

    International Nuclear Information System (INIS)

    Choi, J.S.

    2002-01-01

    Current strategies of the back-end nuclear fuel cycles are: (1) direct-disposal of spent fuel (Open Cycle), and (2) reprocessing of the spent fuel and recycling of the recovered nuclear materials (Closed Cycle). The selection of these strategies is country-specific, and factors affecting selection of strategy are identified and discussed in this paper. (author)

  5. Post operation: The changing characteristics of nuclear fuel cycle costs

    International Nuclear Information System (INIS)

    Frank, F.J.

    1986-01-01

    Fundamental changes have occurred in the nuclear fuel cycle. These changes forged by market forces, legislative action, and regulatory climate appear to be a long term characteristic of the nuclear fuel cycle. The nature of these changes and the resulting emerging importance of post-operation and its impact on fuel cycle costs are examined

  6. Fast breeder fuel cycle, worldwide and French prospects

    International Nuclear Information System (INIS)

    Rapin, M.

    1982-01-01

    A review is given of fast breeder fuel cycle development from both the technological and the economical points of view. LMFBR fuel fabrication, reactor operation, spent fuel storage and transportation, reprocessing and fuel cycle economics are topics considered. (U.K.)

  7. Nuclear-fuel-cycle education: Module 10. Environmental consideration

    International Nuclear Information System (INIS)

    Wethington, J.A.; Razvi, J.; Grier, C.; Myrick, T.

    1981-12-01

    This educational module is devoted to the environmental considerations of the nuclear fuel cycle. Eight chapters cover: National Environmental Policy Act; environmental impact statements; environmental survey of the uranium fuel cycle; the Barnwell Nuclear Fuel Reprocessing Plant; transport mechanisms; radiological hazards in uranium mining and milling operations; radiological hazards of uranium mill tailings; and the use of recycle plutonium in mixed oxide fuel

  8. Thermal Cycling of Uranium Dioxide - Tungsten Cermet Fuel Specimens

    Energy Technology Data Exchange (ETDEWEB)

    Gripshover, P.J.; Peterson, J.H.

    1969-12-08

    In phase I tungsten clad cermet fuel specimens were thermal cycled, to study the effects of fuel loading, fuel particle size, stablized fuel, duplex coatings, and fabrication techniques on dimensional stability during thermal cycling. In phase II the best combination of the factors studies in phase I were combined in one specimen for evaluation.

  9. Fuel Cycle of Reactor SVBR-100

    Energy Technology Data Exchange (ETDEWEB)

    Zrodnikov, A.V.; Toshinsky, G.I.; Komlev, O.G. [FSUE State Scientific Center Institute for Physics and Power Engineering, 1, Bondarenko sq., Obninsk, Kaluga rg., 249033 (Russian Federation)

    2009-06-15

    Modular fast reactor with lead-bismuth heavy liquid-metal coolant in 100 MWe class (SVBR 100) is referred to the IV Generation reactors and shall operate in a closed nuclear fuel cycle (NFC) without consumption of natural uranium. Usually it is considered that launch of fast reactors (FR) is realized using mixed uranium-plutonium fuel. However, such launch of FRs is not economically effective because of the current costs of natural uranium and uranium enrichment servicing. This is conditioned by the fact that the quantity of reprocessing the spent nuclear fuel (SNF) of thermal reactors (TR) calculated for a ton of plutonium that determines the expenditures for construction and operation of the corresponding enterprise is very large due to low content of plutonium in the TR SNF. The economical effectiveness of FRs will be reduced as the enterprises on reprocessing the TR SNF have to be built prior to FRs have been implemented in the nuclear power (NP). Moreover, the pace of putting the FRs in the NP will be constrained by the quantity of the TR SNF. The report grounds an alternative strategy of FRs implementation into the NP, which is considered to be more economically effective. That is conditioned by the fact that in the nearest future use of the mastered uranium oxide fuel for FRs and operation in the open fuel cycle with postponed reprocessing will be most economically expedient. Changeover to the mixed uranium-plutonium fuel and closed NFC will be economically effective when the cost of natural uranium is increased and the expenditures for construction of enterprises on SNF reprocessing, re-fabrication of new fuel with plutonium and their operating becomes lower than the corresponding costs of natural uranium, uranium enrichment servicing, expenditures for fabrication of fresh uranium fuel and long temporary storage of the SNF. As when operating in the open NFC, FRs use much more natural uranium as compared with TRs, and at a planned high pace of NP development

  10. Transition Towards a Sustainable Nuclear Fuel Cycle

    International Nuclear Information System (INIS)

    McCarthy, K.; Romanello, V.; Schwenk-Ferrero, A.; Vezzoni, B.; Gabrielli, F.; Maschek, W.; Rineiski, A.; Salvatores, M.

    2013-01-01

    To support the evaluation of R and D needs and relevant technology requirements for future nuclear fuel cycles, the OECD/NEA WPFC Expert Group on Advanced Fuel Cycle Scenarios was created in 2010, replacing the WPFC Expert Group on Fuel Cycle Transition Scenario Studies (1) to assemble, organise and understand the scientific issues of advanced fuel cycles and (2) to provide a framework for assessing specific national needs related to the implementation of advanced fuel cycles. In this framework, a simulation of world transition scenarios towards possible future fuel cycles with fast reactors has been performed, using both a homogeneous and a heterogeneous approach involving different world regions. In fact, it has been found that a crucial feature of any world scenario study is to provide not only trends for an idealised 'homogeneous' description of the world, but also trends for different regions in the world, selected with simple criteria (mostly of geographical type), in order to apply different hypotheses to energy demand growth, different fuel cycle strategies and different reactor types implementation in the different regions. This approach was an attempt to avoid focusing on selected countries, in particular on those where no new spectacular energy demand growth is expected, but to provide trends and conclusions that account for the features of countries that will be major future players in the world's energy development. The heterogeneous approach considered a subdivision of the world in four main macro-regions (where countries have been grouped together according to their economic development dynamics). An original global electricity production envelope was used in simulations and a specific regional energy share was defined. In the regional approach two different fuel cycles were analysed: a once-through LWR cycle was used as the reference and a transition to fast reactor closed cycle to enable a better management of resources and minimisation of waste

  11. Advanced nuclear fuel cycles and radioactive waste management

    International Nuclear Information System (INIS)

    2006-01-01

    This study analyses a range of advanced nuclear fuel cycle options from the perspective of their effect on radioactive waste management policies. It presents various fuel cycle options which illustrate differences between alternative technologies, but does not purport to cover all foreseeable future fuel cycles. The analysis extends the work carried out in previous studies, assesses the fuel cycles as a whole, including all radioactive waste generated at each step of the cycles, and covers high-level waste repository performance for the different fuel cycles considered. The estimates of quantities and types of waste arising from advanced fuel cycles are based on best available data and experts' judgement. The effects of various advanced fuel cycles on the management of radioactive waste are assessed relative to current technologies and options, using tools such as repository performance analysis and cost studies. (author)

  12. Nuclear fuel cycle and legal regulations

    International Nuclear Information System (INIS)

    Shimoyama, Shunji; Kaneko, Koji.

    1980-01-01

    Nuclear fuel cycle is regulated as a whole in Japan by the law concerning regulation of nuclear raw materials, nuclear fuel materials and reactors (hereafter referred to as ''the law concerning regulation of reactors''), which was published in 1957, and has been amended 13 times. The law seeks to limit the use of atomic energy to peaceful objects, and nuclear fuel materials are controlled centering on the regulation of enterprises which employ nuclear fuel materials, namely regulating each enterprise. While the permission and report of uses are necessary for the employment of nuclear materials under Article 52 and 61 of the law concerning regulation of reactors, the permission provisions are not applied to three kinds of enterprises of refining, processing and reprocessing and the persons who install reactors as the exceptions in Article 52, when nuclear materials are used for the objects of the enterprises themselves. The enterprises of refining, processing and reprocessing and the persons who install reactors are stipulated respectively in the law. Accordingly the nuclear material regulations are applied only to the users of small quantity of such materials, namely universities, research institutes and hospitals. The nuclear fuel materials used in Japan which are imported under international contracts including the nuclear energy agreements between two countries are mostly covered by the security measures of IAEA as internationally controlled substances. (Okada, K.)

  13. The uranium-plutonium breeder reactor fuel cycle

    International Nuclear Information System (INIS)

    Salmon, A.; Allardice, R.H.

    1979-01-01

    All power-producing systems have an associated fuel cycle covering the history of the fuel from its source to its eventual sink. Most, if not all, of the processes of extraction, preparation, generation, reprocessing, waste treatment and transportation are involved. With thermal nuclear reactors more than one fuel cycle is possible, however it is probable that the uranium-plutonium fuel cycle will become predominant; in this cycle the fuel is mined, usually enriched, fabricated, used and then reprocessed. The useful components of the fuel, the uranium and the plutonium, are then available for further use, the waste products are treated and disposed of safely. This particular thermal reactor fuel cycle is essential if the fast breeder reactor (FBR) using plutonium as its major fuel is to be used in a power-producing system, because it provides the necessary initial plutonium to get the system started. In this paper the authors only consider the FBR using plutonium as its major fuel, at present it is the type envisaged in all, current national plans for FBR power systems. The corresponding fuel cycle, the uranium-plutonium breeder reactor fuel cycle, is basically the same as the thermal reactor fuel cycle - the fuel is used and then reprocessed to separate the useful components from the waste products, the useful uranium and plutonium are used again and the waste disposed of safely. However the details of the cycle are significantly different from those of the thermal reactor cycle. (Auth.)

  14. Dynamic Analysis of the Thorium Fuel Cycle in CANDU Reactors

    International Nuclear Information System (INIS)

    Jeong, Chang Joon; Park, Chang Je

    2006-02-01

    The thorium fuel recycle scenarios through the Canada deuterium uranium (CANDU) reactor have been analyzed for two types of thorium fuel: homogeneous ThO 2 UO 2 and ThO 2 UO 2 -DUPIC fuels. The recycling is performed through the dry process fuel technology which has a proliferation resistance. For the once-through fuel cycle model, the existing nuclear power plant construction plan was considered up to 2016, while the nuclear demand growth rate from the year 2016 was assumed to be 0%. After setting up the once-through fuel cycle model, the thorium fuel CANDU reactor was modeled to investigate the fuel cycle parameters. In this analysis, the spent fuel inventory as well as the amount of plutonium, minor actinides and fission products of the multiple recycling fuel cycle were estimated and compared to those of the once-through fuel cycle. From the analysis results, it was found that the closed or partially closed thorium fuel cycle can be constructed through the dry process technology. Also, it is known that both the homogeneous and heterogeneous thorium fuel cycles can reduce the SF accumulation and save the natural uranium resource compared with the once-through cycle. From the material balance view point, the heterogeneous thorium fuel cycle seems to be more feasible. It is recommended, however, the economic analysis should be performed in future

  15. Dynamic Analysis of the Thorium Fuel Cycle in CANDU Reactors

    Energy Technology Data Exchange (ETDEWEB)

    Jeong, Chang Joon; Park, Chang Je

    2006-02-15

    The thorium fuel recycle scenarios through the Canada deuterium uranium (CANDU) reactor have been analyzed for two types of thorium fuel: homogeneous ThO{sub 2}UO{sub 2} and ThO{sub 2}UO{sub 2}-DUPIC fuels. The recycling is performed through the dry process fuel technology which has a proliferation resistance. For the once-through fuel cycle model, the existing nuclear power plant construction plan was considered up to 2016, while the nuclear demand growth rate from the year 2016 was assumed to be 0%. After setting up the once-through fuel cycle model, the thorium fuel CANDU reactor was modeled to investigate the fuel cycle parameters. In this analysis, the spent fuel inventory as well as the amount of plutonium, minor actinides and fission products of the multiple recycling fuel cycle were estimated and compared to those of the once-through fuel cycle. From the analysis results, it was found that the closed or partially closed thorium fuel cycle can be constructed through the dry process technology. Also, it is known that both the homogeneous and heterogeneous thorium fuel cycles can reduce the SF accumulation and save the natural uranium resource compared with the once-through cycle. From the material balance view point, the heterogeneous thorium fuel cycle seems to be more feasible. It is recommended, however, the economic analysis should be performed in future.

  16. A New Dynamic Model for Nuclear Fuel Cycle System Analysis

    International Nuclear Information System (INIS)

    Choi, Sungyeol; Ko, Won Il

    2014-01-01

    The evaluation of mass flow is a complex process where numerous parameters and their complex interaction are involved. Given that many nuclear power countries have light and heavy water reactors and associated fuel cycle technologies, the mass flow analysis has to consider a dynamic transition from the open fuel cycle to other cycles over decades or a century. Although an equilibrium analysis provides insight concerning the end-states of fuel cycle transitions, it cannot answer when we need specific management options, whether the current plan can deliver these options when needed, and how fast the equilibrium can be achieved. As a pilot application, the government brought several experts together to conduct preliminary evaluations for nuclear fuel cycle options in 2010. According to Table 1, they concluded that the closed nuclear fuel cycle has long-term advantages over the open fuel cycle. However, it is still necessary to assess these options in depth and to optimize transition paths of these long-term options with advanced dynamic fuel cycle models. A dynamic simulation model for nuclear fuel cycle systems was developed and its dynamic mass flow analysis capability was validated against the results of existing models. This model can reflects a complex combination of various fuel cycle processes and reactor types, from once-through to multiple recycling, within a single nuclear fuel cycle system. For the open fuel cycle, the results of the developed model are well matched with the results of other models

  17. Health effects attributable to coal and nuclear fuel cycle alternatives

    International Nuclear Information System (INIS)

    Gotchy, R.L.

    1977-09-01

    Estimates of mortality and morbidity are presented based on present-day knowledge of health effects resulting from current component designs and operations of the fuel cycles, and anticipated emission rates and occupational exposure for the various fuel cycle facilities expected to go into operation in approximately the 1975-1985 period. It was concluded that, although there are large uncertainties in the estimates of potential health effects, the coal fuel cycle alternative has a greater health impact on man than the uranium fuel cycle. However, the increased risk of health effects for either fuel cycle represents a very small incremental risk to the average individual in the public

  18. Closed Fuel Cycle Waste Treatment Strategy

    Energy Technology Data Exchange (ETDEWEB)

    Vienna, J. D. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Collins, E. D. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Crum, J. V. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Ebert, W. L. [Argonne National Lab. (ANL), Argonne, IL (United States); Frank, S. M. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Garn, T. G. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Gombert, D. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Jones, R. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Jubin, R. T. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Maio, V. C. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Marra, J. C. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Matyas, J. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Nenoff, T. M. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Riley, B. J. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Sevigny, G. J. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Soelberg, N. R. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Strachan, D. M. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Thallapally, P. K. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Westsik, J. H. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2015-02-01

    This study is aimed at evaluating the existing waste management approaches for nuclear fuel cycle facilities in comparison to the objectives of implementing an advanced fuel cycle in the U.S. under current legal, regulatory, and logistical constructs. The study begins with the Global Nuclear Energy Partnership (GNEP) Integrated Waste Management Strategy (IWMS) (Gombert et al. 2008) as a general strategy and associated Waste Treatment Baseline Study (WTBS) (Gombert et al. 2007). The tenets of the IWMS are equally valid to the current waste management study. However, the flowsheet details have changed significantly from those considered under GNEP. In addition, significant additional waste management technology development has occurred since the GNEP waste management studies were performed. This study updates the information found in the WTBS, summarizes the results of more recent technology development efforts, and describes waste management approaches as they apply to a representative full recycle reprocessing flowsheet. Many of the waste management technologies discussed also apply to other potential flowsheets that involve reprocessing. These applications are occasionally discussed where the data are more readily available. The report summarizes the waste arising from aqueous reprocessing of a typical light-water reactor (LWR) fuel to separate actinides for use in fabricating metal sodium fast reactor (SFR) fuel and from electrochemical reprocessing of the metal SFR fuel to separate actinides for recycle back into the SFR in the form of metal fuel. The primary streams considered and the recommended waste forms include; Tritium in low-water cement in high integrity containers (HICs); Iodine-129: As a reference case, a glass composite material (GCM) formed by the encapsulation of the silver Mordenite (AgZ) getter material in a low-temperature glass is assumed. A number of alternatives with distinct advantages are also considered including a fused silica waste form

  19. Outlook on to fuel cycle perspectives at WWER-440

    International Nuclear Information System (INIS)

    Stech, S.; Bajgl, J.

    2005-01-01

    Current internal fuel cycle in NPP Dukovany 4x440 MWe is shortly characterized with new types of fuel assemblies and advanced fuel cycles which have been introduced in the last years. The modernization activities accomplished until now might be extrapolated to the further period in fuel design - mechanic, thermal-hydraulic and neutronic respectively - with additional increase in fuel enrichments and burnups on the way to the 6-year cycle. Reaktor power up rating together with Unit thermal efficiency improvements could bring an increase in the electric output to the value nearly 500 MWe. The reasons are given for long-term cooperation with Fuel Supplier and Plant Designer in the area of fuel cycle as well as in Unit Design Basis. All innovations mentioned in the article including future fuel and fuel cycle changes might be a quite realistic perspective at the end of the first decade of the new century (Authors)

  20. Prospects for Australian involvement in the nuclear fuel cycle

    International Nuclear Information System (INIS)

    Chandra, S.; Hallenstein, C.

    1988-05-01

    A review of recent overseas developments in the nuclear industry by The Northern Territory Department of Mines and Energy suggests that there are market prospects in all stages of the fuel cycle. Australia could secure those markets through aggressive marketing and competitive prices. This report gives a profile of the nuclear fuel cycle and nuclear fuel cycle technologies, and describes the prospects of Australian involvement in the nuclear fuel cycle. It concludes that the nuclear fuel cycle industry has the potential to earn around $10 billion per year in export income. It recommend that the Federal Government: (1) re-examines its position on the Slayter recommendation (1984) that Australia should develop new uranium mines and further stages of the nuclear fuel cycle, and (2) gives it's in-principle agreement to the Northern Territory to seek expressions of interest from the nuclear industry for the establishment of an integrated nuclear fuel cycle industry in the Northern Territory

  1. International fuel cycle centres offer large economics and easier financing

    International Nuclear Information System (INIS)

    Smith, D.

    1977-01-01

    The summary report of the IAEA study project on multi-national regional nuclear fuel cycle indicates that for facilities of reasonable size such projects offer very decisive advantages in fuel cycle costs and resource availability over national facilities in general, and more markedly over the other alternative of the open ended, non-recycle fuel route. The economic evaluation of alternative fuel cycle strategies, one of the basic studies summarised in the report, is considered. (author)

  2. The modular ALMR (PRISM) fuel cycle

    International Nuclear Information System (INIS)

    Thompson, M.L.

    1990-01-01

    The modular reactor concept, PRISM (power reactor, innovative, small module), originated by General Electric in conjunction with the integral fast reactor (IFR) metal fuel being developed by Argonne National Laboratory (ANL), is the reference US Department of Energy advanced liquid-metal reactor (ALMR). The reference ALMR is unique in several ways; for example, it can produce (or breed) substantially more fissile material than it consumes. It is also unique in that it has the capability to utilize as fuel the long-life radioactive actinides (primarily plutonium, and the minor actinides, neptunium, americium, and curium) present as waste in light water reactor (LWR) spent fuels. This capability provides a means for converting long-life actinide radioactive wastes to elements whose lifetimes and thus storage needs are much shorter, namely, hundreds of years. This could clearly focus and potentially alleviate a controversial aspect (waste disposal) of the nuclear option. While it does not change the need for, or timing of, an initial high-level waste (HLW) repository, the conversion of actinides could change in a dramatic way the time period required for safe storage of nuclear waste and potentially the number and criteria for future repositories. This work considers the potential for utilizing LWR actinides in the ALMR fuel cycle

  3. Environmentally important radionuclides in nonproliferative fuel cycles

    International Nuclear Information System (INIS)

    Kaye, S.V.; Till, J.E.

    1978-01-01

    Our analyses indicate that more in-depth research should be done on 3 H, 14 C, 99 Tc, and 232 U, especially because of their presence in nonproliferative fuel cycles. For increased 3 H production by fast reactors, we can only speculate that such research could show that environmental releases might be significantly greater than for LWRs. Carbon-14 will likely not be a problem if a suitable decontamination factor can be agreed upon for reprocessing facilities and if a satisfactory regulatory limit can be established for global populations. Additional experimental research is urgently needed to determine the uptake of low levels of 99 Tc by plants. These data are essential before an accurate assessment of 99 Tc releases can be made. Finally, we recommend that investigators take a closer look at the potential problems associated with 232 U and daughters. This radionuclide could contribute a significant portion of the dose in both environmental and occupational exposures from the nonproliferative fuels

  4. Radiation protection at nuclear fuel cycle facilities

    International Nuclear Information System (INIS)

    Endo, K.; Momose, T.; Furuta, S.

    2011-01-01

    Radiation protection methodologies concerning individual monitoring, workplace monitoring and environmental monitoring in nuclear fuel facilities have been developed and applied to facilities in the Nuclear Fuel Cycle Engineering Laboratories (NCL) of Japan Atomic Energy Agency (JAEA) for over 40 y. External exposure to photon, beta ray and neutron and internal exposure to alpha emitter are important issues for radiation protection at these facilities. Monitoring of airborne and surface contamination by alpha and beta/photon emitters at workplace is also essential to avoid internal exposure. A critical accident alarm system developed by JAEA has been proved through application at the facilities for a long time. A centralised area monitoring system is effective for emergency situations. Air and liquid effluents from facilities are monitored by continuous monitors or sampling methods to comply with regulations. Effluent monitoring has been carried out for 40 y to assess the radiological impacts on the public and the environment due to plant operation. (authors)

  5. Nuclear fuel cycle requirements in WOCA

    International Nuclear Information System (INIS)

    Klumpp, P.

    1982-02-01

    OECD/NEA will publsih an updated version of its study 'Nuclear Fuel Cycle Requirements and Supply Considerations, Through the Long-Term.' The Nuclear Research Centre Karlsruhe (KfK) was involved in the work necessary to provide this book. Although KfK had only responsiblility for part of the required computations it performed all the calculations for its own documentation interests. This documentation was felt to be a helpful background material for the reader of the second 'Yellow Book'. In this sense the original strategy computer outprints are published now without any discussion of assumptions and results. (orig.) [de

  6. The actual state of nuclear fuel cycle

    International Nuclear Information System (INIS)

    Sawai, Masako

    2014-01-01

    The describing author's claims are as follows: a new mythology, semi made-in Japan energy, which 'the energy fundamental plan' creates; what is a nuclear fuel cycle?; operation processes in a reprocessing plant; the existing state against a recycle in dream; does a recycle reduce waste masses?; discharged liquid and gaseous radioactive wastes; an evaluation of exposure 'the value 22 μSv is irresponsible'; the putting off of waste problem in reprocessing; a guide in reprocessing; should a reprocessing be a duty of electric power companies? (M.H.)

  7. Current Comparison of Advanced Nuclear Fuel Cycles

    International Nuclear Information System (INIS)

    Steven Piet; Trond Bjornard; Brent Dixon; Robert Hill; Gretchen Matthern; David Shropshire

    2007-01-01

    This paper compares potential nuclear fuel cycle strategies--once-through, recycling in thermal reactors, sustained recycle with a mix of thermal and fast reactors, and sustained recycle with fast reactors. Initiation of recycle starts the draw-down of weapons-usable material and starts accruing improvements for geologic repositories and energy sustainability. It reduces the motivation to search for potential second geologic repository sites. Recycle in thermal-spectrum nuclear reactors achieves several recycling objectives; fast nuclear reactors achieve all of them

  8. The social cost of fuel cycles

    International Nuclear Information System (INIS)

    Pearce, D.; Bann, C.; Georgiou, S.

    1992-01-01

    This report was commissioned by the UK Department of Energy. Its purpose is to survey the available literature on the monetary estimation of the social costs of energy production and use. We focus on the social costs of electricity production. The report is not intended to convey original research. Nonetheless, the report does take various estimates of social cost and shows how they might be converted to monetary 'social cost surcharges' or externality adders in a UK context. It is also important to appreciate that the literature surveyed is on the monetary costs of fuel cycles. (author)

  9. Nuclear fuel cycle: reprocessing. A bibliography

    International Nuclear Information System (INIS)

    Smith, L.B.

    1982-12-01

    This bibliography contains information on the reprocessing portion of the nuclear fuel cycle included in the Department of Energy's Energy Data Base from January 1981 through November 1982. The abstracts are grouped by subject category. Entries in the subject index also facilitate access by subject. Within each category the arrangement is by report number for reports, followed by nonreports in reverse chronological order. These citations are to research reports, journal articles, books, patents, theses, and conference papers from worldwide sources. Five indexes, each preceded by a brief description, are provided: Corporate Author, Personal Author, Subject, Contract Number, and Report Number

  10. Overview of the CANDU fuel handling system for advanced fuel cycles

    International Nuclear Information System (INIS)

    Koivisto, D.J.; Brown, D.R.

    1997-01-01

    Because of its neutron economies and on-power re-fuelling capabilities the CANDU system is ideally suited for implementing advanced fuel cycles because it can be adapted to burn these alternative fuels without major changes to the reactor. The fuel handling system is adaptable to implement advanced fuel cycles with some minor changes. Each individual advanced fuel cycle imposes some new set of special requirements on the fuel handling system that is different from the requirements usually encountered in handling the traditional natural uranium fuel. These changes are minor from an overall plant point of view but will require some interesting design and operating changes to the fuel handling system. Some preliminary conceptual design has been done on the fuel handling system in support of these fuel cycles. Some fuel handling details were studies in depth for some of the advanced fuel cycles. This paper provides an overview of the concepts and design challenges. (author)

  11. Optimization of fuel cycles: marginal loss values

    International Nuclear Information System (INIS)

    Gaussens, J.; Lasteyrie, B. de; Doumerc, J.

    1965-01-01

    Uranium processing from the pit to the fuel element rod entails metal losses at every step. These losses become more and more expensive with the elaboration of the metal. Some of the uranium must be accepted as definitely lost whilst the rest could be recovered and recycled. The high cost of these losses, whether they are recycled or not, and the fact that the higher the enrichment is the higher their costs are, make it necessary to take them into account when optimizing fuel cycles. It is therefore felt important to determine their most desirable level from an economic point of view at the various nuclear fuel processing stages. However, in France as in some other countries, fissile material production is a state concern, whilst fuel element fabrication is carried out by private enterprise. Optimization criteria and the economic value of losses are therefore different for each of the two links in the fabrication chain. One can try in spite of this to reach an optimum which would conform to public interest, without interfering with the firm's sales policy. This entails using the fact that for a given output marginal costs are equal at the optimum. One can therefore adjust the level of the losses to attain this equation of marginal costs, as these are easier to obtain from the firm than a justification of the actual prices. One notices moreover that, although mainly concerned with losses, this global analysis can bring both the state and the firm to a better use of other production factors. An account is given of the theory of this economic optimization method and practical applications in the field of natural uranium-graphite moderated and CO 2 cooled reactor fuel element fabrication are offered. (authors) [fr

  12. Coupling fuel cycles with repositories: how repository institutional choices may impact fuel cycle design

    International Nuclear Information System (INIS)

    Forsberg, C.; Miller, W.F.

    2013-01-01

    The historical repository siting strategy in the United States has been a top-down approach driven by federal government decision making but it has been a failure. This policy has led to dispatching fuel cycle facilities in different states. The U.S. government is now considering an alternative repository siting strategy based on voluntary agreements with state governments. If that occurs, state governments become key decision makers. They have different priorities. Those priorities may change the characteristics of the repository and the fuel cycle. State government priorities, when considering hosting a repository, are safety, financial incentives and jobs. It follows that states will demand that a repository be the center of the back end of the fuel cycle as a condition of hosting it. For example, states will push for collocation of transportation services, safeguards training, and navy/private SNF (Spent Nuclear Fuel) inspection at the repository site. Such activities would more than double local employment relative to what was planned for the Yucca Mountain-type repository. States may demand (1) the right to take future title of the SNF so if recycle became economic the reprocessing plant would be built at the repository site and (2) the right of a certain fraction of the repository capacity for foreign SNF. That would open the future option of leasing of fuel to foreign utilities with disposal of the SNF in the repository but with the state-government condition that the front-end fuel-cycle enrichment and fuel fabrication facilities be located in that state

  13. Proceeding of the Fifth Scientific Presentation on Nuclear Fuel Cycle: Development of Nuclear Fuel Cycle Technology in Third Millennium

    International Nuclear Information System (INIS)

    Suripto, A.; Sastratenaya, A.S.; Sutarno, D.

    2000-01-01

    The proceeding contains papers presented in the Fifth Scientific Presentation on Nuclear Fuel Element Cycle with theme of Development of Nuclear Fuel Cycle Technology in Third Millennium, held on 22 February in Jakarta, Indonesia. These papers were divided by three groups that are technology of exploration, processing, purification and analysis of nuclear materials; technology of nuclear fuel elements and structures; and technology of waste management, safety and management of nuclear fuel cycle. There are 35 papers indexed individually. (id)

  14. Safeguards operations in the integral fast reactor fuel cycle

    International Nuclear Information System (INIS)

    Goff, K.M.; Benedict, R.W.; Brumbach, S.B.; Dickerman, C.E.; Tompot, R.W.

    1994-01-01

    Argonne National Laboratory is currently demonstrating the fuel cycle for the Integral Fast Reactor (IFR), an advanced reactor concept that takes advantage of the properties of metallic fuel and liquid metal cooling to offer significant improvements in reactor safety, operation, fuel-cycle economics, environmental protection, and safeguards. The IFR fuel cycle employs a pyrometallurgical process using molten salts and liquid metals to recover actinides from spent fuel. The safeguards aspects of the fuel cycle demonstration must be approved by the United States Department of Energy, but a further goal of the program is to develop a safeguards system that could gain acceptance from the Nuclear Regulatory Commission and International Atomic Energy Agency. This fuel cycle is described with emphasis on aspects that differ from aqueous reprocessing and on its improved safeguardability due to decreased attractiveness and diversion potential of all process streams, including the fuel product

  15. Survey of nuclear fuel cycle economics: 1970--1985

    International Nuclear Information System (INIS)

    Prince, B.E.; Peerenboom, J.P.; Delene, J.G.

    1977-03-01

    This report is intended to provide a coherent view of the diversity of factors that may affect nuclear fuel cycle economics through about 1985. The nuclear fuel cycle was surveyed as to past trends, current problems, and future considerations. Unit costs were projected for each step in the fuel cycle. Nuclear fuel accounting procedures were reviewed; methods of calculating fuel costs were examined; and application was made to Light Water Reactors (LWR) over the next decade. A method conforming to Federal Power Commission accounting procedures and used by utilities to account for backend fuel-cycle costs was described which assigns a zero net salvage value to discharged fuel. LWR fuel cycle costs of from 4 to 6 mills/kWhr (1976 dollars) were estimated for 1985. These are expected to reach 6 to 9 mills/kWr if the effect of inflation is included

  16. Fuel cycle cost analysis on molten-salt reactors

    International Nuclear Information System (INIS)

    Shimazu, Yoichiro

    1976-01-01

    An evaluation is made of the fuel cycle costs for molten-salt reactors (MSR's), developed at Oak Ridge National Laboratory. Eight combinations of conditions affecting fuel cycle costs are compared, covering 233 U-Th, 235 U-Th and 239 Pu-Th fuels, with and without on-site continuous fuel reprocessing. The resulting fuel cycle costs range from 0.61 to 1.18 mill/kWh. A discussion is also given on the practicability of these fuel cycles. The calculations indicate that somewhat lower fuel cycle costs can be expected from reactor operation in converter mode on 235 U make-up with fuel reprocessed in batches every 10 years to avoid fission product precipitation, than from operation as 233 U-Th breeder with continuous reprocessing. (auth.)

  17. Modifications to HFEF/S for IFR fuel cycle demonstration

    International Nuclear Information System (INIS)

    Lineberry, M.J.; Phipps, R.D.; Forrester, R.J.; Carnes, M.D.; Rigg, R.H.

    1988-01-01

    Modifications have begun to the Hot Fuel Examination Facility-South (HFEF/S) in order to demonstrate the technology of the integral fast reactor (IFR) fuel cycle. This paper describes the status of the modifications to the facility and briefly reviews the status of the development of the process equipment. The HFEF/S was the demonstration facility for the early Experimental Breeder Reactor II (EBR-II) melt refining/injection-casting fuel cycle. Then called the Fuel Cycle Facility, ∼400 EBR-II fuel assemblies were recycled in the two hot cells of the facility during the 1964-69 period. Since then it has been utilized as a fuels examination facility. The objective of the IFR fuel cycle program is to upgrade HFEF/S to current standards, install new process equipment, and demonstrate the commercial feasibility of the IFR pyroprocess fuel cycle

  18. Development of dynamic simulation code for fuel cycle fusion reactor

    Energy Technology Data Exchange (ETDEWEB)

    Aoki, Isao; Seki, Yasushi [Department of Fusion Engineering Research, Naka Fusion Research Establishment, Japan Atomic Energy Research Institute, Naka, Ibaraki (Japan); Sasaki, Makoto; Shintani, Kiyonori; Kim, Yeong-Chan

    1999-02-01

    A dynamic simulation code for fuel cycle of a fusion experimental reactor has been developed. The code follows the fuel inventory change with time in the plasma chamber and the fuel cycle system during 2 days pulse operation cycles. The time dependence of the fuel inventory distribution is evaluated considering the fuel burn and exhaust in the plasma chamber, purification and supply functions. For each subsystem of the plasma chamber and the fuel cycle system, the fuel inventory equation is written based on the equation of state considering the fuel burn and the function of exhaust, purification, and supply. The processing constants of subsystem for steady states were taken from the values in the ITER Conceptual Design Activity (CDA) report. Using this code, the time dependence of the fuel supply and inventory depending on the burn state and subsystem processing functions are shown. (author)

  19. Comprehensive Fuel Cycle - Community Perspective - 13093

    Energy Technology Data Exchange (ETDEWEB)

    McLeod, Richard V. [Savannah River Community Reuse Organization, P.O. Box 696, Aiken, SC 29802 (United States); Frazier, Timothy A. [Dickstein Shapiro LLP, 1825 Eye Street NW, Washington, DC, 20006-5403 (United States)

    2013-07-01

    Should a five-county region surrounding the Department of Energy's Savannah River Site ('SRS') use its assets to help provide solutions to closing the nation's nuclear fuel cycle? That question has been the focus of a local ad hoc multi-disciplinary community task force (Tier I) that has been at work in recent months outlining issues and identifying unanswered questions to determine if assuming a leadership role in closing the nuclear fuel cycle is in the community's interest. If so, what are the terms and conditions under which we the community would agree to participate? Our starting point was the President's Blue Ribbon Commission on America's Nuclear Future ('Commission') which made a total of eight (8) recommendations in its final report. There are several recommendations that are directly relevant to the Tier I group and potential efforts of the Region. These are the 'consent-based approach', the creation of an independent nuclear waste management entity funded from the existing nuclear waste fee; the 'prompt efforts to develop one or more consolidated storage facilities', and 'continued U.S. innovation in nuclear energy technology and for workforce development'. (authors)

  20. EPA requirements for the uranium fuel cycle

    International Nuclear Information System (INIS)

    Dunster, H.J.

    1975-01-01

    The draft Environmental Statement issued by the Environmental Protection Agency (EPA) in the United States in preparation for Proposed Rulemaking Action concerning 'Environmental radiation protection requirements for normal operations of activities in the uranium fuel cycle' is summarized and discussed. The standards proposed by the EPA limit the annual dose equivalents to any member of the public, and also the releases of radionuclides to the 'general environment' for each gigawatt year of electrical energy produced. These standards were based on cost effectiveness arguements and levels and correspond to the ICRP recommendation to keep all exposures as low as reasonably achievable, economic and social factors being taken into account. They should be clearly distinguished from dose limits, although the EPA does not make this at all clear. The EPA seems to have shown an unexpected lack of understanding of the recommendations of ICRP Publication 9 (1965) and an apparent unawareness of ICRP Publication 22 (1973), and has therefore wrongly presented the new standards as a significant change in policy. The EPA has reviewed the information on the likely level of dose equivalents to members of the public and the likely cost reductions, thereby quantifying existing principles as applied to the fuel cycle as a whole. The EPA has stated that its proposals could be achieved as a cost in the region of Pound100,000 per death (or major genetic defect). It is pointed out that the EPA's use of the term 'waste' to exclude liquid and gaseous effluents may cause confusion. (U.K.)

  1. Development of FR fuel cycle in japan (1) development scope of fuel cycle technology

    International Nuclear Information System (INIS)

    Nakamura, H.; Funasaka, H.; Namekawa, T.

    2008-01-01

    A fast reactor (FR) cycle has a potential to realize a sustainable energy supply system that is harmonized with environment by fully recycling both uranium (U) and transuranium (TRU) elements. In Japan, a Feasibility Study on Commercialized FR Cycle Systems (FS) was launched in July 1999, and through two different study phases, a final report was presented in 2006. As a result of FS, a combined system of sodium-cooled FR with mixed-oxide (MOX) fuel, advanced aqueous reprocessing and simplified pelletizing fuel fabrication was considered to be most promising for commercialization. The advanced aqueous reprocessing system, which is called the New Extraction system for TRU recovery (NEXT), consists of a U crystallization process for the bulk of U recovery, a simplified solvent extraction process for residual U, plutonium (Pu) and neptunium (Np) without Pu partitioning and purification, and a process for recovering americium (Am) and curium (Cm) from the raffinate. The ratio of Pu/U concentration in the mother solution after crystallization is adequate for MOX fuel fabrication, and thus complicated powder mixing processes for adjusting Pu content in MOX fuel can be eliminated in the subsequent simplified fuel fabrication system. In this system, lubricant-mixing process can also be eliminated by adopting the advanced technology in which lubricant is coated on the inner surface of a die before fuel powder supply. Such a simplification could help us overcoming the difficulty to treat MA bearing fuel powders in a hot cell. Ministry of Education, Culture, Sports, Science and Technology (MEXT) reviewed these results of FS in 2006 and identified the most promising FR cycle concept proposed in the FS phase II study as a mainline choice for commercialization. According to such a governmental assessment, R and D activities of FR cycle systems were decided to be concentrated mainly to the innovative technology development for the mainline concept. The stage of R and D project was

  2. Fuel-management simulations for once-through thorium fuel cycle in CANDU reactors

    International Nuclear Information System (INIS)

    Chan, P.S.W.; Boczar, P.G.; Ellis, R.J.; Ardeshiri, F.

    1999-01-01

    High neutron economy, on-power refuelling and a simple fuel bundle design result in unsurpassed fuel cycle flexibility for CANDU reactors. These features facilitate the introduction and exploitation of thorium fuel cycles in existing CANDU reactors in an evolutionary fashion. Detailed full-core fuel-management simulations concluded that a once-through thorium fuel cycle can be successfully implemented in an existing CANDU reactor without requiring major modifications. (author)

  3. Industrial Maturity of FR Fuel Cycle Processes and Technologies

    International Nuclear Information System (INIS)

    Bruezière, Jérôme

    2013-01-01

    FR fuel cycle processes and technologies have already been proven industrially for Oxide Fuel, and to a lesser extent for metal fuel. In addition, both used oxide fuel reprocessing and fresh oxide fuel manufacturing benefit from similar industrial experience currently deployed for LWR. Alternative fuel type will have to generate very significant benefit in reactor ( safety, cost, … ) to justify corresponding development and industrialization costs

  4. Fuel cycle centers revisited: Consolidation of fuel cycle activities in a few countries

    International Nuclear Information System (INIS)

    Kratzer, M.B.

    1996-01-01

    Despite varied expressions, the general impression remains that the international fuel cycle center concept, whatever its merits, is visionary. It also is quite possibly unattainable in light of strong national pressures toward independence and self-sufficiency in all things nuclear. Is the fuel cycle center an idea that has come and gone? Is it an idea whose time has not yet come? Or is it, as this paper suggests, an idea that has already arrived on the scene, attracting little attention or even acknowledgement of its presence? The difficult in answering this questions arises, in part, from the fact that despite its long and obvious appeal, there has been very little systematic analysis of the concept itself. Such obvious questions as how many and where fuel cycle centers should be located; what characteristics should the hot country or countries possess; and what are the institutional forms or features that endow the concept with enhanced proliferation protection have rarely been seriously and systematically addressed. The title of this paper focuses on limiting the geographic spread of fuel cycle facilities, and some may suggest that doing so does not necessarily call for any type of international or multinational arrangements applicable to those that exist. It is a premise of this paper, however, that a restriction on the number of countries possessing sensitive fuel cycle facilities necessarily involves some degree of multinationalization. This is not only because in every instance a nonproliferation pledge and international or multinational safeguards, or both, will be applied to the facility, but also because a restriction on the number of countries possessing these facilities implies that those in existence will serve a multinational market. This feature in itself is an important form of international auspices. Thus, the two concepts--limitation and multinationalization--if not necessarily one and the same, are at least de facto corollaries

  5. Compatibility analysis of DUPIC fuel (part5) - DUPIC fuel cycle economics analysis

    International Nuclear Information System (INIS)

    Ko, Won Il; Choi, Hang Bok; Yang, Myung Seung

    2000-08-01

    This study examines the economics of the DUPIC fuel cycle using unit costs of fuel cycle components estimated based on conceptual designs. The fuel cycle cost (FCC) was calculated by a deterministic method in which reference values of fuel cycle components are used. The FCC was then analyzed by a Monte Carlo simulation to get the uncertainty of the FCC associated with the unit costs of the fuel cycle components. From the deterministic analysis on the one-batch equilibrium fuel cycle model, the DUPIC FCC was estimated to be 6.55-6.72 mills/kWh for proposed DUPIC fuel options, which is a little smaller than that of the once-through FCC by 0.04-0.28 mills/kWh. Considering the uncertainty (0.45-0.51 mills/kWh) of the FCC estimated by the Monte Carlo simulation method, the cost difference between the DUPIC and once-through fuel cycle is negligible. On the other hand, the material balance calculation has shown that the DUPIC fuel cycle can save natural uranium resources by -20% and reduce the spent fuel arising by -65%, compared with the once-through fuel cycle. In conclusion, the DUPIC fuel cycle possesses a strong advantage over the once-through fuel cycle from the viewpoint of the environmental effect

  6. Compatibility analysis of DUPIC fuel (part5) - DUPIC fuel cycle economics analysis

    Energy Technology Data Exchange (ETDEWEB)

    Ko, Won Il; Choi, Hang Bok; Yang, Myung Seung

    2000-08-01

    This study examines the economics of the DUPIC fuel cycle using unit costs of fuel cycle components estimated based on conceptual designs. The fuel cycle cost (FCC) was calculated by a deterministic method in which reference values of fuel cycle components are used. The FCC was then analyzed by a Monte Carlo simulation to get the uncertainty of the FCC associated with the unit costs of the fuel cycle components. From the deterministic analysis on the one-batch equilibrium fuel cycle model, the DUPIC FCC was estimated to be 6.55-6.72 mills/kWh for proposed DUPIC fuel options, which is a little smaller than that of the once-through FCC by 0.04-0.28 mills/kWh. Considering the uncertainty (0.45-0.51 mills/kWh) of the FCC estimated by the Monte Carlo simulation method, the cost difference between the DUPIC and once-through fuel cycle is negligible. On the other hand, the material balance calculation has shown that the DUPIC fuel cycle can save natural uranium resources by -20% and reduce the spent fuel arising by -65%, compared with the once-through fuel cycle. In conclusion, the DUPIC fuel cycle possesses a strong advantage over the once-through fuel cycle from the viewpoint of the environmental effect.

  7. Performance concerns for high duty fuel cycle

    International Nuclear Information System (INIS)

    Esposito, V.J.; Gutierrez, J.E.

    1999-01-01

    One of the goals of the nuclear industry is to achieve economic performance such that nuclear power plants are competitive in a de-regulated market. The manner in which nuclear fuel is designed and operated lies at the heart of economic viability. In this sense reliability, operating flexibility and low costs are the three major requirements of the NPP today. The translation of these three requirements to the design is part of our work. The challenge today is to produce a fuel design which will operate with long operating cycles, high discharge burnup, power up-rating and while still maintaining all design and safety margins. European Fuel Group (EFG) understands that to achieve the required performance high duty/energy fuel designs are needed. The concerns for high duty design includes, among other items, core design methods, advanced Safety Analysis methodologies, performance models, advanced material and operational strategies. The operational aspects require the trade-off and evaluation of various parameters including coolant chemistry control, material corrosion, boiling duty, boron level impacts, etc. In this environment MAEF is the design that EFG is now offering based on ZIRLO alloy and a robust skeleton. This new design is able to achieve 70 GWd/tU and Lead Test Programs are being executed to demonstrate this capability. A number of performance issues which have been a concern with current designs have been resolved such as cladding corrosion and incomplete RCCA insertion (IRI). As the core duty becomes more aggressive other new issues need to be addressed such as Axial Offset Anomaly. These new issues are being addressed by combination of the new design in concert with advanced methodologies to meet the demanding needs of NPP. The ability and strategy to meet high duty core requirements, flexibility of operation and maintain acceptable balance of all technical issues is the discussion in this paper. (authors)

  8. Analysis of environmental friendliness of DUPIC fuel cycle

    International Nuclear Information System (INIS)

    Ko, Won Il; Kim, Ho Dong

    2001-07-01

    Some properties of irradiated DUPIC fuels are compared with those of other fuel cycles. It was indicated that the toxicity of the DUPIC option based on 1 GWe-yr is much smaller than those of other fuel cycle options, and is just about half the order of magnitude of other fuel cycles. From the activity analysis of 99 Tc and 237 Np, which are important to the long-term transport of fission products stored in geologic media, the DUPIC option, was being contained only about half of those other options. It was found from the actinide content estimation that the MOX option has the lowest plutonium arising based on 1 GWe-year and followed by the DUPIC option. However, fissile Pu content generated in the DUPIC fuel was the lowest among the fuel cycle options. From the analysis of radiation barrier in proliferation resistance aspect, the fresh DUPIC fuel can play a radiation barrier part, better than CANDU spent fuels as well as fresh MOX fuel. It is indicated that the DUPIC fuel cycle has the excellent resistance to proliferation, compared with an existing reprocessing option and CANDU once-through option. In conclusions, DUPIC fuel cycle would have good properties on environmental effect and proliferation resistance, compared to other fuel cycle cases

  9. Life cycle analysis of transportation fuel pathways

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2012-02-24

    The purpose of this work is to improve the understanding of the concept of life cycle analysis (LCA) of transportation fuels and some of its pertinent issues among non-technical people, senior managers, and policy makers. This work should provide some guidance to nations considering LCA-based policies and to people who are affected by existing policies or those being developed. While the concept of employing LCA to evaluate fuel options is simple and straightforward, the act of putting the concept into practice is complex and fraught with issues. Policy makers need to understand the limitations inherent in carrying out LCA work for transportation fuel systems. For many systems, even those that have been employed for a 100 years, there is a lack of sound data on the performance of those systems. Comparisons between systems should ideally be made using the same tool, so that differences caused by system boundaries, allocation processes, and temporal issues can be minimized (although probably not eliminated). Comparing the results for fuel pathway 1 from tool A to those of fuel system 2 from tool B introduces significant uncertainty into the results. There is also the question of the scale of system changes. LCA will give more reliable estimates when it is used to examine small changes in transportation fuel pathways than when used to estimate large scale changes that replace current pathways with completely new pathways. Some LCA tools have been developed recently primarily for regulatory purposes. These tools may deviate from ISO principles in order to facilitate simplicity and ease of use. In a regulatory environment, simplicity and ease of use are worthy objectives and in most cases there is nothing inherently wrong with this approach, particularly for assessing relative performance. However, the results of these tools should not be confused with, or compared to, the results that are obtained from a more complex and rigorous ISO compliant LCA. It should be

  10. Uranium to Electricity: The Chemistry of the Nuclear Fuel Cycle

    Science.gov (United States)

    Settle, Frank A.

    2009-01-01

    The nuclear fuel cycle consists of a series of industrial processes that produce fuel for the production of electricity in nuclear reactors, use the fuel to generate electricity, and subsequently manage the spent reactor fuel. While the physics and engineering of controlled fission are central to the generation of nuclear power, chemistry…

  11. Regulation of fuel cycle facilities in the UK

    International Nuclear Information System (INIS)

    Ascroft-Hutton, H.W.

    2001-01-01

    The UK has facilities for the production of uranium hexafluoride, its enrichment, conversion into fuel and for the subsequent reprocessing of irradiated fuel and closure of the fuel cycle. All of these facilities must be licensed under UK legislation. HM Nuclear Installations Inspectorate has delegated powers to issue the licence and to attach any conditions it considers necessary in the interests of safety. The fuel cycle facilities in the UK have been licensed since 1971. This paper describes briefly the UK nuclear regulatory framework and the fuel cycle facilities involved. It considers the regulatory practices adopted together with similarities and differences between regulation of fuel cycle facilities and power reactors. The safety issues associated with the fuel cycle are discussed and NII's regulatory strategy for these facilities is set out. (author)

  12. IAEA programme on nuclear fuel cycle and materials technologies

    International Nuclear Information System (INIS)

    Killeen, J.

    2006-01-01

    In this paper a brief description and the main objectives of IAEA Programme B on Nuclear fuel cycle are given. The coordinated research project on Improvement of Models Used For Fuel Behaviour Simulation (FUMEX II) is also presented

  13. Preparations for the Integral Fast Reactor fuel cycle demonstration

    International Nuclear Information System (INIS)

    Lineberry, M.J.; Phipps, R.D.

    1989-01-01

    Modifications to the Hot Fuel Examination Facility-South (HFEF/S) have been in progress since mid-1988 to ready the facility for demonstration of the unique Integral Fast Reactor (IFR) pyroprocess fuel cycle. This paper updates the last report on this subject to the American Nuclear Society and describes the progress made in the modifications to the facility and in fabrication of the new process equipment. The IFR is a breeder reactor, which is central to the capability of any reactor concept to contribute to mitigation of environmental impacts of fossil fuel combustion. As a fast breeder, fuel of course must be recycled in order to have any chance of an economical fuel cycle. The pyroprocess fuel cycle, relying on a metal alloy reactor fuel rather than oxide, has the potential to be economical even at small-scale deployment. Establishing this quantitatively is one important goal of the IFR fuel cycle demonstration

  14. International development within the spent nuclear fuel cycle

    International Nuclear Information System (INIS)

    Aggeryd, I.; Broden, K.; Gelin, R.

    1990-06-01

    The report gives a survey of the newest international development of the fuel processing and the spent nuclear fuel cycle. The transmutation technology of long lived nuclides is discussed in more details. (K.A.E)

  15. Status of the breeder fuel cycle in the United States

    International Nuclear Information System (INIS)

    Burch, W.D.

    1985-01-01

    This paper reviews the status and plans for the fast reactor fuel cycle in the United States. The United States is undertaking a complete reexamination of its entire breeder program strategy, and the direction of the new program is not yet clear. Studies in progress to examine the associated fuel cycle strategies as they relate to the overall emerging breeder strategy are described. The present status of and recent developments in the fuel cycle R and D programs are summarized

  16. Part 6. Internationalization and collocation of FBR fuel cycle facilities

    International Nuclear Information System (INIS)

    Stevenson, M.G.; Abramson, P.B.; LeSage, L.G.

    1980-01-01

    This report examines some of the non-proliferation, technical, and institutional aspects of internationalization and/or collocation of major facilities of the Fast Breeder Reactor (FBR) fuel cycle. The national incentives and disincentives for establishment of FBR Fuel Cycle Centers are enumerated. The technical, legal, and administrative considerations in determining the feasibility of FBR Fuel Cycle Centers are addressed by making comparisons with Light Water Reactor (LWR) centers which have been studied in detail by the IAEA and UNSRC

  17. Health and environmental aspects of nuclear fuel cycle facilities

    International Nuclear Information System (INIS)

    1996-11-01

    The purpose of the present publication is to give a generic description of health and environmental aspects of nuclear fuel cycle facilities. Primarily the report is meant to stand alone; however, because of the content of the publication and in the context of the DECADES project, it may serve as a means of introducing specialists in other fuel cycles to the nuclear fuel cycle. Refs, figs, tabs

  18. Ciclon: A neutronic fuel management program for PWR's consecutive cycles

    International Nuclear Information System (INIS)

    Aragones, J.M.

    1977-01-01

    The program description and user's manual of a new computer code is given. Ciclon performs the neutronic calculation of consecutive reload cycles for PWR's fuel management optimization. Fuel characteristics and burnup data, region or batch sizes, loading schemes and state of previously irradiated fuel are input to the code. Cycle lengths or feed enrichments and burnup sharing for each region or batch are calculate using different core neutronic models and printed or punched in standard fuel management format. (author) [es

  19. Preliminary design and analysis on nuclear fuel cycle for fission-fusion hybrid spent fuel burner

    International Nuclear Information System (INIS)

    Chen Yan; Wang Minghuang; Jiang Jieqiong

    2012-01-01

    A wet-processing-based fuel cycle and a dry-processing were designed for a fission-fusion hybrid spent fuel burner (FDS-SFB). Mass flow of SFB was preliminarily analyzed. The feasibility analysis of initial loaded fuel inventory, recycle fuel fabrication and spent fuel reprocessing were preliminarily evaluated. The results of mass flow of FDS-SFB demonstrated that the initial loaded fuel inventory, recycle fuel fabrication and spent fuel reprocessing of nuclear fuel cycle of FDS-SFB is preliminarily feasible. (authors)

  20. Application of the combined cycle LWR-gas turbine to PWR for NPP life extension, safety upgrade and improving economy

    International Nuclear Information System (INIS)

    Kuznetsov, Yu.N.; Gabaraev, B.A.

    2002-01-01

    Full text: The unconventional technology to extend the lifetime for the NPPs now in operation and make a construction of new NPPs cheaper - erection of steam-gas toppings to the nuclear power units - is considered in the paper. Application of the steam-gas toppings permits through reducing power of ageing reactors to extend lifetime of nuclear power unit, enhance its safety and at the same time to keep full load operation of NPP turbine and other balance-of-plant equipment. Proposed technology is examined for Russian VVER-440 reactor as an example and, also, as a pilot project, for Russian boiling VK-50 reactor now in operation Application of the steam-gas topping permits: extend the service life of ageing VVER-440 reactor by 10...15 years; use the turbine and other NPP balance-of-plant equipment at full power; increase the efficiency of combined cycle up to 48% and more; enhance the safety of NPP operation; utilize NPP balance-of-plant equipment after reactor decommissioning; perform the cost-effective operation in maneuvering modes; increase capacity factor of the plant. The construction of pilot project on the basis of the VK-50 reactor will allow not only to demonstrate new technology but also to attain appreciable economic effect including that obtained due to using the available reserves of the NPP turbine. (author)