WorldWideScience

Sample records for vuv laboratory measurements

  1. VUV spectroscopic measurement in current drive experiments in TRIAM-1M

    International Nuclear Information System (INIS)

    Hara, Shigemitsu; Kawasaki, Shoji; Jotaki, Eriko; Moriyama, Shin-ichi; Nagao, Akihiro; Nakamura, Kazuo; Nakamura, Yukio; Hiraki, Naoji; Itoh, Satoshi

    1991-01-01

    VUV spectrum and time evolution of line intensity were measured. Steady-state transport equation was solved numerically, and the solution was qualitatively compared with the experimental results. (author)

  2. Temperature-dependent absorption cross-section measurements of 1-butene (1-C4H8) in VUV and IR

    KAUST Repository

    Es-sebbar, Et-touhami; Bé nilan, Yves; Farooq, Aamir

    2013-01-01

    synchrotron radiation as a tunable VUV light source. Fourier Transform Infrared (FTIR) spectroscopy is employed to measure absorption cross-section and band strengths in the IR region between 1.54 and 25μm (~6500-400cm-1). The measured room-temperature VUV

  3. Measurement of impurity emission profiles in CHS Plasma using AXUV photodiode arrays and VUV bandpass filters

    International Nuclear Information System (INIS)

    Suzuki, C.; Peterson, B.J.; Ida, K.

    2004-01-01

    We have designed a compact and low-cost diagnostic system for spatiotemporal distributions of specific vacuum ultraviolet (VUV) emission lines from impurities in Compact Helical System (CHS) plasmas. The system consists of 20 channel absolute extreme ultraviolet photodiode arrays combined with interchangeable thin foil filters which have passbands in the VUV region. A compact mounting module which contains all the components including an in-vacuum preamplifier for immediate current-voltage conversion has been designed and successfully fabricated. A preliminary measurement with a single module using an aluminum foil filter has been carried out for monitoring the behavior of oxygen impurity in CHS, and initial results have been obtained. Two identical modules equipped with Versa Module European bus-based analog-digital converters will be available for future tomographic measurements

  4. Measurements of VUV lines on dense Z-pinch plasma

    International Nuclear Information System (INIS)

    Bertschinger, G.

    1980-01-01

    The transition n = 1 to n = 2 has the most simple structure of all hydrogen transitions and the corresponding spectralline Ly-α is therefore very appropriate to reveal discrepancies between theory and experiment. In this work mainly the Ly-α spectral line of neutral hydrogen has been studied. The electron density of the Z-pinch amounts to 1.5 x 10 24 m -3 with an electron temperature of about 1.2 x 10 5 K. In this parameter range the plasma can still be studied with spectroscopic methods in the visible spectral region. Based on a space and time resolved measurement of the continuous emission spectra the plasma parameters can be determined independent of line broadening. (orig./HT) [de

  5. Temperature-dependent absorption cross-section measurements of 1-butene (1-C4H8) in VUV and IR

    KAUST Repository

    Es-sebbar, Et-touhami

    2013-01-01

    Vacuum ultraviolet (VUV) and infrared (IR) absorption cross-section measurements of 1-butene (1-C4H8; CH2=CHCH2CH3; Butylene) are reported over the temperature range of 296-529K. The VUV measurements are performed between 115 and 205nm using synchrotron radiation as a tunable VUV light source. Fourier Transform Infrared (FTIR) spectroscopy is employed to measure absorption cross-section and band strengths in the IR region between 1.54 and 25μm (~6500-400cm-1). The measured room-temperature VUV and IR absorption cross-sections are compared with available literature data and are found to be in good agreement. The oscillator strength for the electronic transition (A1A\\'→X1A\\') around 150-205nm is determined to be 0.32±0.01.The gas temperature has a strong effect on both VUV and IR spectra. Measurements made in the VUV region show that the peak value of the band cross-section decreases and the background continuum increases with increasing gas temperature. This behavior is due to a change in the rotational and vibrational population distribution of 1-butene molecule. Similar changes in rotational population are observed in the IR spectra. Moreover, variation of the IR spectra with temperature is used to measure the enthalpy difference between syn and skew conformations of 1-butene and is found to be 0.24±0.03. kcal/mol, which is in excellent agreement with values reported in the literature. The measurements reported in this work will provide the much-needed spectroscopic information for the development of high-temperature quantitative diagnostics in combustion applications and validation of atmospheric chemistry models of extra-solar planets. © 2012 Elsevier Ltd.

  6. Semiconductor Electrical Measurements Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — The Semiconductor Electrical Measurements Laboratory is a research laboratory which complements the Optical Measurements Laboratory. The laboratory provides for Hall...

  7. Design and implementation of VUV-CD and LD measurements using an ac modulated polarizing undulator

    International Nuclear Information System (INIS)

    Yagi-Watanabe, K.; Yamada, T.; Tanaka, M.; Kaneko, F.; Kitada, T.; Ohta, Y.; Nakagawa, K.

    2005-01-01

    VUV circular dichroism (CD) and linear dichroism (LD) have been successfully measured at wavelengths beyond the conventional limit by using an ac modulated polarizing undulator. We have developed CD and LD measuring technique by polarization modulation at the source, without using transmission type polarizing modulator, to extend to the coverage to wavelengths shorter than 140-bar nm. AIST developed in 1986 ac polarizing undulator by using a electron storage ring 'TERAS' based on an original concept. The undulator which can produce any desired polarization of vertical- and horizontal-linear polarization (VLP and HLP) and right- and left-handed circular polarization (RCP and LCP) is specially well suited to both measurements of CD and LD. With this undulator, the polarization alternate in the order of VLP-RCP-HLP-RCP-VLP-LCP-HLP-LCP-VLP-, i.e. when circular polarization is modulated in f Hz, linear polarization alters in 2f Hz. This allows us simultaneous measurements of CD and LD. Since the TERAS can produce ac-modulated polarized radiation of wavelength as short as 40-bar nm, it is expected to have CD and LD measurement extended to 40-bar nm

  8. VUV/XUV measurements of impurity emission in plasmas with liquid lithium surfaces on LTX

    International Nuclear Information System (INIS)

    Tritz, Kevin; Finkenthal, Michael; Stutman, Dan; Bell, Ronald E; Boyle, Dennis; Kaita, Robert; Kozub, Tom; Lucia, Matthew; Majeski, Richard; Merino, Enrique; Schmitt, John; Beiersdorfer, Peter; Clementson, Joel; Kubota, Shigeyuki

    2014-01-01

    The VUV/XUV spectrum has been measured on the Lithium Tokamak eXperiment (LTX) using a transmission grating imaging spectrometer (TGIS) coupled to a direct-detection x-ray charge-coupled device camera. TGIS data show significant changes in the ratios between the lithium and oxygen impurity line emission during discharges with varying lithium wall conditions. Lithium coatings that have been passivated by lengthy exposure to significant levels of impurities contribute to a large O/Li ratio measured during LTX plasma discharges. Furthermore, previous results have indicated that a passivated lithium film on the plasma facing components will function as a stronger impurity source when in the form of a hot liquid layer compared to a solid lithium layer. However, recent TGIS measurements of plasma discharges in LTX with hot stainless steel boundary shells and a fresh liquid lithium coating show lower O/Li impurity line ratios when compared to discharges with a solid lithium film on cool shells. These new measurements help elucidate the somewhat contradictory results of the effects of solid and liquid lithium on plasma confinement observed in previous experiments. (paper)

  9. VUV Testing of Science Cameras at MSFC: QE Measurement of the CLASP Flight Cameras

    Science.gov (United States)

    Champey, Patrick R.; Kobayashi, Ken; Winebarger, A.; Cirtain, J.; Hyde, D.; Robertson, B.; Beabout, B.; Beabout, D.; Stewart, M.

    2015-01-01

    The NASA Marshall Space Flight Center (MSFC) has developed a science camera suitable for sub-orbital missions for observations in the UV, EUV and soft X-ray. Six cameras were built and tested for the Chromospheric Lyman-Alpha Spectro-Polarimeter (CLASP), a joint National Astronomical Observatory of Japan (NAOJ) and MSFC sounding rocket mission. The CLASP camera design includes a frame-transfer e2v CCD57-10 512x512 detector, dual channel analog readout electronics and an internally mounted cold block. At the flight operating temperature of -20 C, the CLASP cameras achieved the low-noise performance requirements (less than or equal to 25 e- read noise and greater than or equal to 10 e-/sec/pix dark current), in addition to maintaining a stable gain of approximately equal to 2.0 e-/DN. The e2v CCD57-10 detectors were coated with Lumogen-E to improve quantum efficiency (QE) at the Lyman- wavelength. A vacuum ultra-violet (VUV) monochromator and a NIST calibrated photodiode were employed to measure the QE of each camera. Four flight-like cameras were tested in a high-vacuum chamber, which was configured to operate several tests intended to verify the QE, gain, read noise, dark current and residual non-linearity of the CCD. We present and discuss the QE measurements performed on the CLASP cameras. We also discuss the high-vacuum system outfitted for testing of UV and EUV science cameras at MSFC.

  10. Atmospheric Measurements Laboratory (AML)

    Data.gov (United States)

    Federal Laboratory Consortium — The Atmospheric Measurements Laboratory (AML) is one of the nation's leading research facilities for understanding aerosols, clouds, and their interactions. The AML...

  11. Semiconductor Laser Measurements Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — The Semiconductor Laser Measurements Laboratory is equipped to investigate and characterize the lasing properties of semiconductor diode lasers. Lasing features such...

  12. VUV Processing of Polymers: Surface Modification and Deposition of Organic Thin Films

    International Nuclear Information System (INIS)

    Wertheimer, M.R.

    2006-01-01

    Materials processing based on the use of vacuum-ultraviolet (VUV) radiation has evolved from the status of 'laboratory curiosum' to that of technological reality, thanks to the availability of commercial light sources, first lasers but more recently VUV-lamps. We begin with a brief survey of application areas, still mostly 'high-tech' on account of the relatively elevated cost of the light sources. In this laboratory, we use a series of commercial VUV lamps (based on radio-frequency discharges in ampoules that are sealed with VUV-transparent MgF 2 ) that cover a broad spectral range, 120 nm 3 ) gas. This allowed us to achieve maximum bound N concentrations, [N] ∼ 25 at%, comparable to values achieved by plasma-induced nitriding. More recently, we have investigated the deposition of polymer-like ( V UV-polymer ) coatings by VUV-induced gas-phase photo-chemistry of ammonia-hydrocarbon mixtures, both gases that strongly absorb VUV photons. We use the same cylindrical high-vacuum reactor, with a VUV lamp and a VUV-sensitive photodiode detector at opposite ends; after measuring radiation intensity, the latter is replaced by a substrate holder, the frontal distance of which (with respect to the lamp) can be adjusted. For 'VUV-polymerization' experiments we have used two resonant lamps (low-pressure Kr and Xe), having 'monochromatic' emissions at λ 123.6 nm and 147.0 nm, respectively. The ammonia-hydrocarbon feed gas mixtures are characterised by their flow rate ratio, R ≡ NH 3 /C x H y , where C x H y designates methane (CH 4 ) or ethylene (C 2 H 4 ), the two 'monomers' investigated so far. Thin 'VUV-polymer' deposits were collected on MgF 2 or Si wafers placed on the substrate holder, and they were examined by a variety of physico-chemical techniques; for example, chemical structure and composition were characterized by X-ray photoelectron spectroscopy (XPS); layer thickness and refractive index, n, were determined by UV-VIS spectro-ellipsometry, and

  13. A VUV photoionization measurement and ab-initio calculation of the ionization energy of gas phase SiO2

    Energy Technology Data Exchange (ETDEWEB)

    Kostko, Oleg; Ahmed, Musahid; Metz, Ricardo B.

    2008-12-05

    In this work we report on the detection and vacuum-ultraviolet (VUV) photoionization of gas phase SiO2 generated in situ via laser ablation of silicon in a CO2 molecular beam. The resulting species are investigated by single photon ionization with tunable VUV synchrotron radiation and mass analyzed using reflectron mass spectrometry. Photoionization efficiency (PIE) curves are recorded for SiO and SiO2 and ionization energy estimates are revealed from such measurements. A state-to-state ionizationenergy of 12.60 (+-0.05) eV is recorded by fitting two prominent peaks in the PIE curve for the following process: 1SUM O-Si-O --> 2PRODg [O-Si-O]+. Electronic structure calculations aid in the interpretation of the photoionization process and allow for identification of the symmetric stretch of 2PRODg [O-Si-O]+ which is observed in the PIE spectrum to be 0.11 eV (890 cm-1) above the ground state of the cation and agrees with the 892 cm-1 symmetric stretch frequency calculated at the CCSD(T)/aug-cc-pVTZ level.

  14. Precision VUV Spectro-Polarimetry for Solar Chromospheric Magnetic Field Measurements

    Science.gov (United States)

    Ishikawa, R.; Bando, T.; Hara, H.; Ishikawa, S.; Kano, R.; Kubo, M.; Katsukawa, Y.; Kobiki, T.; Narukage, N.; Suematsu, Y.; Tsuneta, S.; Aoki, K.; Miyagawa, K.; Ichimoto, K.; Kobayashi, K.; Auchère, F.; Clasp Team

    2014-10-01

    The Chromospheric Lyman-Alpha Spectro-Polarimeter (CLASP) is a VUV spectro-polarimeter optimized for measuring the linear polarization of the Lyman-α line (121.6 nm) to be launched in 2015 with NASA's sounding rocket (Ishikawa et al. 2011; Narukage et al. 2011; Kano et al. 2012; Kobayashi et al. 2012). With this experiment, we aim to (1) observe the scattering polarization in the Lyman-α line, (2) detect the Hanle effect, and (3) assess the magnetic fields in the upper chromosphere and transition region for the first time. The polarization measurement error consists of scale error δ a (error in amplitude of linear polarization), azimuth error Δφ (error in the direction of linear polarization), and spurious polarization ɛ (false linear polarization signals). The error ɛ should be suppressed below 0.1% in the Lyman-α core (121.567 nm ±0.02 nm), and 0.5% in the Lyman-α wing (121.567 nm ±0.05 nm), based on our scientific requirements shown in Table 2 of Kubo et al. (2014). From scientific justification, we adopt Δ φspectro-polarimeter features a continuously rotating MgF2 waveplate (Ishikawa et al. 2013), a dual-beam spectrograph with a spherical grating working also as a beam splitter, and two polarization analyzers (Bridou et al. 2011), which are mounted at 90 degree from each other to measure two orthogonal polarization simultaneously. For the optical layout of the CLASP instrument, see Figure 3 in Kubo et al. (2014). Considering the continuous rotation of the half-waveplate, the modulation efficiency is 0.64 both for Stokes Q and U. All the raw data are returned and demodulation (successive addition or subtraction of images) is done on the ground. We control the CLASP polarization performance in the following three steps. First, we evaluate the throughput and polarization properties of each optical component in the Lyman-α line, using the Ultraviolet Synchrotron ORbital Radiation Facility (UVSOR) at the Institute for Molecular Science. The second step

  15. Real-time monitoring of trace-level VOCs by an ultrasensitive compact lamp-based VUV photoionization mass spectrometer

    Science.gov (United States)

    Sun, W. Q.; Shu, J. N.; Zhang, P.; Li, Z.; Li, N. N.; Liang, M.; Yang, B.

    2015-06-01

    In this study, we report on the development of a compact lamp-based vacuum ultraviolet (VUV) photoionization mass spectrometer (PIMS; hereafter referred to as VUV-PIMS) in our laboratory; it is composed of a radio frequency-powered VUV lamp, a VUV photoionizer, an ion-immigration region, and a reflection time-of-flight mass spectrometer. By utilizing the novel photoionizer consisting of a photoionization cavity and a VUV light baffle, extremely low background noise was obtained. An ultrasensitive detection limit (2σ) of 3 pptv was achieved for benzene after an acquisition time of 10 s. To examine its potential for application in real-time sample monitoring, the developed VUV-PIMS was employed for the continuous measurement of urban air for six days in Beijing, China. Strong signals of trace-level volatile organic compounds such as benzene and its alkylated derivatives were observed in the mass spectra. These initial experimental results reveal that the instrument can be used for the online monitoring of trace-level species in the atmosphere.

  16. High sensitivity detection of desorbed biomolecules by photoionization with tunable VUV

    International Nuclear Information System (INIS)

    Moore, J.F.; Calaway, W.F.; Veryovkin, I.V.; Pellin, M.J.; Lewellen, J.W.; Li, Y.; Milton, S.V.; King, B.V.

    2004-01-01

    Full text: The spectral region from 7 to 11eV has two attributes that make it attractive for biomolecule photoionization: 1. high photoionization cross sections, leading to high detection efficiency, and 2. overlap with nearly all first ionization energies of biomolecules, allowing possible control over fragmentation by accessing different final states via tuning. The lack of available tunable lasers in this energy range has generally hindered exploitation of these features thus far. A free-electron laser in operation at Argonne National Laboratory provides high pulse energy, widely tunable VUV pulses of 300 fs duration. Coupled with a novel time-of-flight mass spectrometer, this laser is able to photoionize and detect biomolecules, including peptides and nucleosides. Either laser desorption or primary ion beams are used to desorb sample material, followed by photoionization with a VUV laser. The instrument uses novel ion optics to extract photoions from a large volume while maintaining high mass resolution. This approach is capable of yielding dramatically improved detection limits over more conventional methods such as MALDI and SIMS. In the case of the common peptide substance P, for example, a substantial improvement over the MALDI signal was observed using VUV photoionization with very little observed fragmentation of the molecule. Nucleosides and cisplatin were also measured with typically order of magnitude improvements in signal. These and other examples show clearly the benefits that can be obtained in high sensitivity mass spectrometry of biomolecules with the increasing availability of VUV laser sources

  17. Mechanical Measurements Laboratory

    CERN Multimedia

    Maximilien Brice

    2007-01-01

    The CERN mechanical measurements team check the sensors on one of the ATLAS inner detector end-caps using high precision measurement equipment. Remote checks like this must be made on these sensitive detector components before they can be transported to make sure that all systems are working correctly.

  18. VUV spectroscopy in impurity injection experiments at KSTAR using prototype ITER VUV spectrometer

    Science.gov (United States)

    Seon, C. R.; Hong, J. H.; Song, I.; Jang, J.; Lee, H. Y.; An, Y. H.; Kim, B. S.; Jeon, T. M.; Park, J. S.; Choe, W.; Lee, H. G.; Pak, S.; Cheon, M. S.; Choi, J. H.; Kim, H. S.; Biel, W.; Bernascolle, P.; Barnsley, R.

    2017-08-01

    The ITER vacuum ultra-violet (VUV) core survey spectrometer has been designed as a 5-channel spectral system so that the high spectral resolving power of 200-500 could be achieved in the wavelength range of 2.4-160 nm. To verify the design of the ITER VUV core survey spectrometer, a two-channel prototype spectrometer was developed. As a subsequent step of the prototype test, the prototype VUV spectrometer has been operated at KSTAR since the 2012 experimental campaign. From impurity injection experiments in the years 2015 and 2016, strong emission lines, such as Kr xxv 15.8 nm, Kr xxvi 17.9 nm, Ne vii 46.5 nm, Ne vi 40.2 nm, and an array of largely unresolved tungsten lines (14-32 nm) could be measured successfully, showing the typical photon number of 1013-1015 photons/cm2 s.

  19. Measurements of SIMCON 3.1 LLRF control signal processing quality for VUV free-electron laser FLASH

    Science.gov (United States)

    Pietrasik, Rafal; Giergusiewicz, Wojciech; Jalmuzna, Wojciech; Pozniak, Krzysztof T.; Romaniuk, Ryszard S.; Simrock, Stefan

    2006-10-01

    The paper describes development of a new version of photonic and electronic control and measurement system for FLASH Laser under development in DESY Hamburg accelerator laboratory. The system is called SIMCON 3.1. and is a developmental continuation of previous systems SIMCON 1.0, SIMCON 2.1 and SIMCON 3.0. It differs from the previous systems by considerably bigger resources: 10 fast analog input channels, bigger FPGA chip with two power PC - CPU units, two multi-gigabit optical links, GbE interface, booting possibility from flash memory card. The PCB is done in VME mechanical and electrical standard. It is designed for usage in tests for FLASH Laser development.

  20. Purdue Rare Isotope Measurement Laboratory

    Science.gov (United States)

    Caffee, M.; Elmore, D.; Granger, D.; Muzikar, P.

    2002-12-01

    The Purdue Rare Isotope Measurement Laboratory (PRIME Lab) is a dedicated research and service facility for accelerator mass spectrometry. AMS is an ultra-sensitive analytical technique used to measure low levels of long-lived cosmic-ray-produced and anthropogenic radionuclides, and rare trace elements. We measure 10Be (T1/2 = 1.5 My), 26Al (.702 My), 36Cl (.301 My), and 129I (16 My), in geologic samples. Applications include dating the cosmic-ray-exposure time of rocks on Earth's surface, determining rock and sediment burial ages, measuring the erosion rates of rocks and soils, and tracing and dating ground water. We perform sample preparation and separation chemistries for these radio-nuclides for our internal research activities and for those external researchers not possessing this capability. Our chemical preparation laboratories also serve as training sites for members of the geoscience community developing these techniques at their institutions. Research at Purdue involves collaborators among members of the Purdue Departments of Physics, Earth and Atmospheric Sciences, Chemistry, Agronomy, and Anthropology. We also collaborate and serve numerous scientists from other institutions. We are currently in the process of modernizing the facility with the goals of higher precision for routinely measured radio-nuclides, increased sample throughput, and the development of new measurement capabilities for the geoscience community.

  1. UV-VUV FEL program at DUKE storage ring with OK-4 optical klystron

    International Nuclear Information System (INIS)

    Litvinenko, V.N.; Madey, J.M.J.; Vinokurov, N.A.

    1993-01-01

    A 1 GeV electron storage ring dedicated for UV-VUV FEL operation is under construction at the Duke University Free Electron Laser Laboratory. The UV-VUV-FEL project, based on the collaboration of the Duke FEL Laboratory and Budker Institute for Nuclear Physics is described. The main parameters of the DFELL storage ring, of the OK-4 optical klystron, and the experimental set-up are presented. The parameters of UV-VUV FEL are given and the possible future upgrades to this system are discussed

  2. Chemical evolution of Titan’s aerosol analogues under VUV irradiation

    Science.gov (United States)

    Carrasco, Nathalie; Gavilan, Lisseth; Tigrine, Sarah; Vettier, Ludovic; Nahon, Laurent; Pernot, Pascal

    2017-10-01

    Since the Cassini-CAPS measurements, organic aerosols are known to be present and formed at high altitudes in the diluted and partially ionized medium that is Titan’s ionosphere [1].After production in the ionosphere, Titan’s aerosols evolve through microphysics during their sedimentation down to Titan’s surface [2]. Starting with a few nanomers size in the upper atmosphere, they reach a fractal structure of a few hundreds nanometers close to the surface [3]. During sedimentation, aerosols are also submitted to solar irradiation. As laboratory analogs of Titan’s atmospheric aerosols (tholins) show a strong UV absorption [4], we suspect that VUV irradiation could also induce a chemical evolution of Titan’s aerosols during their descent in Titan’s atmosphere.The aim of this work ist to simulate the irradiation process occuring on the aerosols in Titan’s atmosphere and to address whether this irradiation impacts the chemical composition of the organic solids. First aerosol analogues were produced in a N2-CH4 plasma discharge as thin organic films of a few hundreds of nanometers thick [5]. Then those were irradiated at Lyman-α wavelength, the strongest VUV line in the solar spectrum, with a high photon flux on a synchrotron VUV beamline. We will present and discuss the significant chemical evolutions observed on the analogues after VUV irradiation by mid-IR absorption spectroscopy.[1] Waite et al. (2009) Science , 316, p. 870[2] Lavvas et al. (2011) Astrophysical Journal, 728:80[3] Tomasko et al. (2008) Planetary and Space Science, 56, p. 669[4] Mahjoub et al. (2012) Icarus 221, P. 670[5] Carrasco et al. (2016) Planetary and Space Science, 128, p. 52

  3. Portable laboratories for radioactivity measurements

    International Nuclear Information System (INIS)

    Damljanovic, D.; Smelcerovic, M.; Koturovic, A.; Drndarevic, V.; Sobajic, M.

    1989-01-01

    The portable radiometric laboratories LARA-10, LARA-GS, LARA-86 and ALARA-10 designed, developed and produced at the Boris Kidric Institute are described. Earlier models (LARA-1, LARA-1D, LARA-2 and LARA-5) are presented in brief. The basic characteristics of the devices and methods of measurements are given. All the instruments are battery operated and almost all can also use 220V/50Hz supply. They are a very suitable facility for radiological monitoring of soil, water, food, clothes etc., when working in field conditions (author)

  4. Photostability studies of prebiotic molecules at the VUV region

    International Nuclear Information System (INIS)

    Tanaka, H; Medina, A; Mendes, L A V; Prudente, F V; Marinho, R R T; Homem, M G P

    2014-01-01

    In this work we report absolute cross section studies of prebiotic molecules measured in the VUV range using the double ion chamber technique and synchrotron radiation. Absorption, ionization and neutral decay cross sections will be presented, together with the absolute ionization quantum yield. Additionally, partial ion yield spectra were measured by a TOF mass spectrometer.

  5. High power all solid state VUV lasers

    International Nuclear Information System (INIS)

    Zhang, Shen-jin; Cui, Da-fu; Zhang, Feng-feng; Xu, Zhi; Wang, Zhi-min; Yang, Feng; Zong, Nan; Tu, Wei; Chen, Ying; Xu, Hong-yan; Xu, Feng-liang; Peng, Qin-jun; Wang, Xiao-yang; Chen, Chuang-tian; Xu, Zu-yan

    2014-01-01

    Highlights: • Polarization and pulse repetition rate adjustable ps 177.3 nm laser was developed. • Wavelength tunable ns, ps and fs VUV lasers were developed. • High power ns 177.3 nm laser with narrow linewidth was investigated. - Abstract: We report the investigation on the high power all solid state vacuum ultra-violet (VUV) lasers by means of nonlinear frequency conversion with KBe 2 BO 3 F 2 (KBBF) nonlinear crystal. Several all solid state VUV lasers have developed in our group, including polarization and pulse repetition rate adjustable picosecond 177.3 nm VUV laser, wavelength tunable nanosecond, picosecond and femtosecond VUV lasers, high power ns 177.3 nm laser with narrow linewidth. The VUV lasers have impact, accurate and precise advantage

  6. Handbook of laboratory health and safety measures

    International Nuclear Information System (INIS)

    Pal, S.B.

    1985-01-01

    The application of radioactive isotopes and various scientific instruments based on different ionizing and non-ionizing radiation have brought new safety problems to laboratory workers today. Therefore, there is a need to revise present knowledge of safety measures to deal with new hazards, thus broadening the outlook towards health and safety measures for contemporary laboratory staff. This handbook presents a series of articles on current knowledge regarding laboratory safety

  7. Duke storage rink UV/VUV FEL: Status and prospects

    Energy Technology Data Exchange (ETDEWEB)

    Litvinenko, V.N.; Burnham, B.; Madey, J.M.J. [Duke Univ., Durham, NC (United States)] [and others

    1995-12-31

    The 1 GeV Duke storage ring was successfully commissioned with parameters exceeding initial specification. The OK-4 FEL has arrived at the Duke FEL laboratory from the Novosibirsk Institute of Nuclear Physics. The OK-4 installation and commissioning is in progress. In this paper we describe the up-to-date status of the Duke storage ring and the OK-4 FEL. The projected performance of the OK-4 UV/VUV FEL is presented based on the electron beam parameters achieved. Initial plans to operate the OK-4 UV/VUV FEL at the Duke 1 GeV storage ring are outlined. Future plans and prospects of both the OK-4 FEL and the Duke storage ring are discussed.

  8. Strategy for Realizing High-Precision VUV Spectro-Polarimeter

    Science.gov (United States)

    Ishikawa, R.; Narukage, N.; Kubo, M.; Ishikawa, S.; Kano, R.; Tsuneta, S.

    2014-12-01

    Spectro-polarimetric observations in the vacuum ultraviolet (VUV) range are currently the only means to measure magnetic fields in the upper chromosphere and transition region of the solar atmosphere. The Chromospheric Lyman-Alpha Spectro-Polarimeter (CLASP) aims to measure linear polarization at the hydrogen Lyman- α line (121.6 nm). This measurement requires a polarization sensitivity better than 0.1 %, which is unprecedented in the VUV range. We here present a strategy with which to realize such high-precision spectro-polarimetry. This involves the optimization of instrument design, testing of optical components, extensive analyses of polarization errors, polarization calibration of the instrument, and calibration with onboard data. We expect that this strategy will aid the development of other advanced high-precision polarimeters in the UV as well as in other wavelength ranges.

  9. Rain Erosion/Measurement Impact Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — The FARM Rain Erosion/Impact Measurement Lab develops solutions for deficiencies in the ability of materials, coatings and designs to withstand a severe operational...

  10. Quality assurance handbook for measurement laboratories

    International Nuclear Information System (INIS)

    Delvin, W.L.

    1984-10-01

    This handbook provides guidance in the application of quality assurance to measurement activities. It is intended to help those persons making measurements in applying quality assurance to their work activities by showing how laboratory practices and quality assurance requirements are integrated to provide control within those activities. The use of the guidance found in this handbook should help provide consistency in the interpretation of quality assurance requirements across all types of measurement laboratories. This handbook also can assist quality assurance personnel in understanding the relationships between laboratory practices and quality assurance requirements. The handbook is composed of three chapters and several appendices. Basic guidance is provided by the three chapters. In Chapter 1, the role of quality assurance in obtaining quality data and the importance of such data are discussed. Chapter 2 presents the elements of laboratory quality assurance in terms of practices that can be used in controlling work activities to assure the acquisition of quality data. Chapter 3 discusses the implementation of laboratory quality assurance. The appendices provide supplemental information to give the users a better understanding of the following: what is quality assurance; why quality assurance is required; where quality assurance requirements come from; how those requirements are interpreted for application to laboratory operations; how the elements of laboratory quality assurance relate to various laboratory activities; and how a quality assurance program can be developed

  11. Design of ITER divertor VUV spectrometer and prototype test at KSTAR tokamak

    Science.gov (United States)

    Seon, Changrae; Hong, Joohwan; Song, Inwoo; Jang, Juhyeok; Lee, Hyeonyong; An, Younghwa; Kim, Bosung; Jeon, Taemin; Park, Jaesun; Choe, Wonho; Lee, Hyeongon; Pak, Sunil; Cheon, MunSeong; Choi, Jihyeon; Kim, Hyeonseok; Biel, Wolfgang; Bernascolle, Philippe; Barnsley, Robin; O'Mullane, Martin

    2017-12-01

    Design and development of the ITER divertor VUV spectrometer have been performed from the year 1998, and it is planned to be installed in the year 2027. Currently, the design of the ITER divertor VUV spectrometer is in the phase of detail design. It is optimized for monitoring of chord-integrated VUV signals from divertor plasmas, chosen to contain representative lines emission from the tungsten as the divertor material, and other impurities. Impurity emission from overall divertor plasmas is collimated through the relay optics onto the entrance slit of a VUV spectrometer with working wavelength range of 14.6-32 nm. To validate the design of the ITER divertor VUV spectrometer, two sets of VUV spectrometers have been developed and tested at KSTAR tokamak. One set of spectrometer without the field mirror employs a survey spectrometer with the wavelength ranging from 14.6 nm to 32 nm, and it provides the same optical specification as the spectrometer part of the ITER divertor VUV spectrometer system. The other spectrometer with the wavelength range of 5-25 nm consists of a commercial spectrometer with a concave grating, and the relay mirrors with the same geometry as the relay mirrors of the ITER divertor VUV spectrometer. From test of these prototypes, alignment method using backward laser illumination could be verified. To validate the feasibility of tungsten emission measurement, furthermore, the tungsten powder was injected in KSTAR plasmas, and the preliminary result could be obtained successfully with regard to the evaluation of photon throughput. Contribution to the Topical Issue "Atomic and Molecular Data and their Applications", edited by Gordon W.F. Drake, Jung-Sik Yoon, Daiji Kato, Grzegorz Karwasz.

  12. Clearance Laboratory - Capability and measurement sensitivity

    International Nuclear Information System (INIS)

    Hedemann Jensen, P.; Lauridsen, B.; Silva, J.; Soegaard-Hansen, J.; Warming, L.

    2005-09-01

    A new low-level Clearance Laboratory has been built at the Risoe-site. Building materials with a low content of naturally occurring radionuclides have been used. To minimize transport of radon gas from soil into the laboratory the foundation has been supplied with a membrane. The laboratory has been equipped with two high-efficiency germanium detectors. These detectors will be used for clearance measurements on the predicted amount of 15,000 - 18,000 tonnes of non-active or nearly non-active materials, which will originate from the decommissioning of all the nuclear facilities at the Risoe-site. They will be used also for clearance measurements on buildings and land. Objects and materials to be measured for clearance are placed on a rotation table that can carry up to one tonne and can rotate once a minute to simulate some averaging of inhomogeneously distributed activity. Sensitivity and background measurements reveal that measuring times of 20 - 50 minutes would normally be sufficient to detect radionuclide concentrations of only a small fraction of the nuclide-specific clearance levels with a sufficiently low uncertainty. Probability calculations of the measurement capacity of the Clearance Laboratory indicate that the mean value of the total measuring time for all materials that potentially can be cleared would be 13 years with a 95% probability of being less than 25 years. The mean value of the annual amount of materials that can be measured in the laboratory is 600 tonnes with a 95% probability of being less than 1,200 tonnes. If needed, there is room for additional measuring systems to increase the capacity of the laboratory. (au)

  13. Clearance Laboratory - Capability and measurement sensitivity

    Energy Technology Data Exchange (ETDEWEB)

    Hedemann Jensen, P.; Lauridsen, B.; Silva, J.; Soegaard-Hansen, J.; Warming, L.

    2005-08-01

    A new low-level Clearance Laboratory has been built at the Risoe-site. Building materials with a low content of naturally occurring radionuclides have been used. To minimize transport of radon gas from soil into the laboratory the foundation has been supplied with a membrane. The laboratory has been equipped with two high-efficiency germanium detectors. These detectors will be used for clearance measurements on the predicted amount of 15,000 - 18,000 tonnes of non-active or nearly non-active materials, which will originate from the decommissioning of all the nuclear facilities at the Risoe-site. They will be used also for clearance measurements on buildings and land. Objects and materials to be measured for clearance are placed on a rotation table that can carry up to one tonne and can rotate once a minute to simulate some averaging of inhomogeneously distributed activity. Sensitivity and background measurements reveal that measuring times of 20 - 50 minutes would normally be sufficient to detect radionuclide concentrations of only a small fraction of the nuclide-specific clearance levels with a sufficiently low uncertainty. Probability calculations of the measurement capacity of the Clearance Laboratory indicate that the mean value of the total measuring time for all materials that potentially can be cleared would be 13 years with a 95% probability of being less than 25 years. The mean value of the annual amount of materials that can be measured in the laboratory is 600 tonnes with a 95% probability of being less than 1,200 tonnes. If needed, there is room for additional measuring systems to increase the capacity of the laboratory. (au)

  14. Environmental Measurements Laboratory (EML) procedures manual

    International Nuclear Information System (INIS)

    Chieco, N.A.; Bogen, D.C.; Knutson, E.O.

    1990-11-01

    Volume 1 of this manual documents the procedures and existing technology that are currently used by the Environmental Measurements Laboratory. A section devoted to quality assurance has been included. These procedures have been updated and revised and new procedures have been added. They include: sampling; radiation measurements; analytical chemistry; radionuclide data; special facilities; and specifications. 228 refs., 62 figs., 37 tabs. (FL)

  15. Measurement quality assurance for radioassay laboratories

    Energy Technology Data Exchange (ETDEWEB)

    McCurdy, D.E. [Yankee Atomic Environmental Laboratory, Boston, MA (United States)

    1993-12-31

    Until recently, the quality of U.S. radioassay laboratory services has been evaluated by a limited number of governmental measurement assurance programs (MAPs). The major programs have been limited to the U.S. Department of Energy (DOE), the U.S. Environmental Protection Agency (EPA) and the U.S. Nuclear Regulatory Commission (NRC). In 1988, an industry MAP was established for the nuclear power utility industry through the U.S. Council for Energy Awareness/National Institute of Standards and Technology (USCEA/NIST). This program functions as both a MAP for utility laboratories and/or their commercial contractor laboratories, and as a traceability program for the U.S. radioactive source manufacturers and the utility laboratories. Each of these generic MAPs has been initiated and is maintained to serve the specific needs of the sponsoring agency or organization. As a result, there is diversification in their approach, scope, requirements, and degree of traceability to NIST. In 1987, a writing committee was formed under the American National Standards Institute (ANSI) N42.2 committee to develop a standard to serve as the basis document for the creation of a national measurement quality assurance (MQA) program for radioassay laboratories in the U.S. The standard is entitled, {open_quotes}Measurement Quality Assurance For Radioassay Laboratories.{open_quotes} The document was developed to serve as a guide for MQA programs maintained for the specialized sectors of the radioassay community, such as bioassay, routine environmental monitoring, environmental restoration and waste management, radiopharmaceuticals, and nuclear facilities. It was the intent of the writing committee to develop a guidance document that could be utilized to establish a laboratory`s specific data quality objectives (DQOs) that govern the operational requirements of the radioassay process, including mandated protocols and recommendations.

  16. Accreditation - Its relevance for laboratories measuring radionuclides

    Energy Technology Data Exchange (ETDEWEB)

    Palsson, S E [Icelandic Radiation Protection Inst. (Iceland)

    2001-11-01

    Accreditation is an internationally recognised way for laboratories to demonstrate their competence. Obtaining and maintaining accreditation is, however, a costly and time-consuming procedure. The benefits of accreditation also depend on the role of the laboratory. Accreditation may be of limited relevance for a research laboratory, but essential for a laboratory associated with a national authority and e.g. issuing certificates. This report describes work done within the NKSBOK-1.1 sub-project on introducing accreditation to Nordic laboratories measuring radionuclides. Initially the focus was on the new standard ISO/IEC 17025, which was just in a draft form at the time, but which provides now a new framework for accreditation of laboratories. Later the focus was widened to include a general introduction to accreditation and providing through seminars a forum for exchanging views on the experience laboratories have had in this field. Copies of overheads from the last such seminar are included in the appendix to this report. (au)

  17. VUV-soft x-ray beamline for spectroscopy and calibration

    International Nuclear Information System (INIS)

    Bartlett, R.J.; Trela, W.J.; Michaud, F.D.; Southworth, S.H.; Rothe, R.; Alkire, R.W.

    1986-01-01

    The authors describe the design and performance of the Los Alamos VUV synchrotron radiation beamline, U3C, on the VUV ring of the National Synchrotron Light Source at Brookhaven National Laboratory. The beamline uses separate function optics to collect and focus the horizontally and vertically diverging beam. The monochromator is a grazing incidence Roland circle instrument of the extended grasshopper design (ERG). A post monochromator refocusing mirror is used to focus or collimate the diverging beam from the monochromator. The beamline control and diagnostics systems are also discussed

  18. Measurement quality assurance for radioassay laboratories

    International Nuclear Information System (INIS)

    McCurdy, D.E.

    1993-01-01

    Until recently, the quality of U.S. radioassay laboratory services has been evaluated by a limited number of governmental measurement assurance programs (MAPs). The major programs have been limited to the U.S. Department of Energy (DOE), the U.S. Environmental Protection Agency (EPA) and the U.S. Nuclear Regulatory Commission (NRC). In 1988, an industry MAP was established for the nuclear power utility industry through the U.S. Council for Energy Awareness/National Institute of Standards and Technology (USCEA/NIST). This program functions as both a MAP for utility laboratories and/or their commercial contractor laboratories, and as a traceability program for the U.S. radioactive source manufacturers and the utility laboratories. Each of these generic MAPs has been initiated and is maintained to serve the specific needs of the sponsoring agency or organization. As a result, there is diversification in their approach, scope, requirements, and degree of traceability to NIST. In 1987, a writing committee was formed under the American National Standards Institute (ANSI) N42.2 committee to develop a standard to serve as the basis document for the creation of a national measurement quality assurance (MQA) program for radioassay laboratories in the U.S. The standard is entitled, open-quotes Measurement Quality Assurance For Radioassay Laboratories.open-quotes The document was developed to serve as a guide for MQA programs maintained for the specialized sectors of the radioassay community, such as bioassay, routine environmental monitoring, environmental restoration and waste management, radiopharmaceuticals, and nuclear facilities. It was the intent of the writing committee to develop a guidance document that could be utilized to establish a laboratory's specific data quality objectives (DQOs) that govern the operational requirements of the radioassay process, including mandated protocols and recommendations

  19. Laboratory setup for temperature and humidity measurements

    CERN Document Server

    Eimre, Kristjan

    2015-01-01

    In active particle detectors, the temperature and humidity conditions must be under constant monitoring and control, as even small deviations from the norm cause changes to detector characteristics and result in a loss of precision. To monitor the temperature and humidity, different kinds of sensors are used, which must be calibrated beforehand to ensure their accuracy. To calibrate the large number of sensors that are needed for the particle detectors and other laboratory work, a calibration system is needed. The purpose of the current work was to develop a laboratory setup for temperature and humidity sensor measurements and calibration.

  20. Novel techniques in VUV high-resolution spectroscopy

    NARCIS (Netherlands)

    Ubachs, W.M.G.; Salumbides, E.J.; Eikema, K.S.E.; de Oliveira, N.; Nahon, L.

    2014-01-01

    Novel VUV sources and techniques for VUV spectroscopy are reviewed. Laser-based VUV sources have been developed via non-linear upconversion of laser pulses in the nanosecond (ns), the picosecond (ps), and femtosecond (fs) domain, and are applied in high-resolution gas phase spectroscopic studies.

  1. Environmental Measurements Laboratory 2002 Unit Performance Plan

    Energy Technology Data Exchange (ETDEWEB)

    None

    2001-10-01

    This EML Unit Performance Plan provides the key goals and performance measures for FY 2002 and continuing to FY 2003. The purpose of the Plan is to inform EML's stakeholders and customers of the Laboratory's products and services, and its accomplishments and future challenges. Also incorporated in the Unit Performance Plan is EML's Communication Plan for FY 2002.

  2. Electrical measurements in the laboratory practice

    CERN Document Server

    Bartiromo, Rosario

    2016-01-01

    This book covers the basic theory of electrical circuits, describes analog and digital instrumentation, and applies modern methods to evaluate uncertainties in electrical measurements. It is comprehensive in scope and is designed specifically to meet the needs of students in physics and electrical engineering who are attending laboratory classes in electrical measurements. The topics addressed in individual chapters include the analysis of continuous current circuits; sources of measurement uncertainty and their combined effect; direct current measurements; analysis of alternating current circuits; special circuits including resonant circuits, frequency filters and impedance matching networks; alternating current measurements; analog and digital oscilloscopes; non-sinusoidal waveforms and circuit excitation by pulses; distributed parameter components and transmission lines. Each chapter is equipped with a number of problems. A special appendix describes a series of nine experiments, in each case providing a p...

  3. Laboratory measurements of rock thermal properties

    DEFF Research Database (Denmark)

    Bording, Thue Sylvester; Balling, N.; Nielsen, S.B.

    The thermal properties of rocks are key elements in understanding and modelling the temperature field of the subsurface. Thermal conductivity and thermal diffusivity can be measured in the laboratory if rock samples can be provided. We have introduced improvements to the divided bar and needle...... probe methods to be able to measure both thermal conductivity and thermal diffusivity. The improvements we implement include, for both methods, a combination of fast numerical finite element forward modelling and a Markov Chain Monte Carlo inversion scheme for estimating rock thermal parameters...

  4. Time resolved 3D momentum imaging of ultrafast dynamics by coherent VUV-XUV radiation

    Energy Technology Data Exchange (ETDEWEB)

    Sturm, F. P., E-mail: fpsturm@lbl.gov [Ultrafast X-Ray Science Lab, Lawrence Berkeley National Laboratory, Berkeley, California 94720 (United States); Institut für Kernphysik, Universität Frankfurt, Max-von-Laue Str. 1, D-60438 Frankfurt (Germany); Wright, T. W.; Ray, D.; Zalyubovskaya, I.; Shivaram, N.; Slaughter, D. S.; Belkacem, A.; Weber, Th. [Ultrafast X-Ray Science Lab, Lawrence Berkeley National Laboratory, Berkeley, California 94720 (United States); Ranitovic, P. [Ultrafast X-Ray Science Lab, Lawrence Berkeley National Laboratory, Berkeley, California 94720 (United States); ELI-ALPS, ELI-Hu Nkft, Dugonics ter 13, Szeged H6720 (Hungary)

    2016-06-15

    We present a new experimental setup for measuring ultrafast nuclear and electron dynamics of molecules after photo-excitation and ionization. We combine a high flux femtosecond vacuum ultraviolet (VUV) and extreme ultraviolet (XUV) source with an internally cold molecular beam and a 3D momentum imaging particle spectrometer to measure electrons and ions in coincidence. We describe a variety of tools developed to perform pump-probe studies in the VUV-XUV spectrum and to modify and characterize the photon beam. First benchmark experiments are presented to demonstrate the capabilities of the system.

  5. Measuring preschool learning engagement in the laboratory.

    Science.gov (United States)

    Halliday, Simone E; Calkins, Susan D; Leerkes, Esther M

    2018-03-01

    Learning engagement is a critical factor for academic achievement and successful school transitioning. However, current methods of assessing learning engagement in young children are limited to teacher report or classroom observation, which may limit the types of research questions one could assess about this construct. The current study investigated the validity of a novel assessment designed to measure behavioral learning engagement among young children in a standardized laboratory setting and examined how learning engagement in the laboratory relates to future classroom adjustment. Preschool-aged children (N = 278) participated in a learning-based Tangrams task and Story sequencing task and were observed based on seven behavioral indicators of engagement. Confirmatory factor analysis supported the construct validity for a behavioral engagement factor composed of six of the original behavioral indicators: attention to instructions, on-task behavior, enthusiasm/energy, persistence, monitoring progress/strategy use, and negative affect. Concurrent validity for this behavioral engagement factor was established through its associations with parent-reported mastery motivation and pre-academic skills in math and literacy measured in the laboratory, and predictive validity was demonstrated through its associations with teacher-reported classroom learning behaviors and performance in math and reading in kindergarten. These associations were found when behavioral engagement was observed during both the nonverbal task and the verbal story sequencing tasks and persisted even after controlling for child minority status, gender, and maternal education. Learning engagement in preschool appears to be successfully measurable in a laboratory setting. This finding has implications for future research on the mechanisms that support successful academic development. Copyright © 2017 Elsevier Inc. All rights reserved.

  6. Environmental Measurements Laboratory program review, December 1983

    International Nuclear Information System (INIS)

    Volchok, H.L.; de Planque, G.

    1984-03-01

    This volume contains all of the written material that was submitted to the panel of Reviewers in advance of a Program Review conducted by the US Department of Energy, Office of Health and Environmental Research at the Environmental Measurements Laboratory (EML) December 7-9, 1983. In addition to a general introduction there are nineteen papers grouped into the five broad program categories covering all of the scientific and engineering projects of the Laboratory: Natural Radioactivity and Radiation, Anthropogenic Radioactivity and Radiation, Non-nuclear, Quality Assurance, and Development and Support. These short articles, for the most part, focus on the rationale for EML's involvement in each project, emphasizing their relevance to the EML and Department of Energy missions. Project results and their interpretation were presented at the Review and can be found in the material referenced in this volume

  7. Mobile Radiological Laboratories Intercomparison Measurements - Chernobyl

    International Nuclear Information System (INIS)

    Martincic, R.; Glavic-Cindro, D.; Korun, M.; Pucelj, B.; Vodenik, B.

    2001-01-01

    Full text: In last decade different institutions in European countries have organised periodic intercomparison exercises of mobile radiological laboratories to improve the preparedness of emergency monitoring teams. The 12th Regular Workshop on Mobile Radiological Laboratories was held in Exclusion Zone of the Chernobyl NPP, Ukraine from September 13 to September 18, 1999 under the acronym MORAL-12. The European Centre of Technological Safety (TESEC), Kiev, Ukraine and J. Stefan Institute, Ljubljana, Slovenia organised Intercomparison Measurements 99 jointly under the auspices of the International Atomic Energy Agency (IAEA). Nineteen teams from 9 countries and IAEA participated in the Workshop. Six field and personal and equipment contamination control exercises were prepared and conducted at two measuring sites with very different ambient dose rate levels. The Workshop pointed out that such exercises are very valuable for rapid, efficient and harmonised emergency response in case of nuclear or radiological emergency. The teams had an opportunity to test their ability to perform field measurements in the contaminated environment, and to report results on the spot, as well as to test their emergency preparedness and persistence. They gained new experiences for fieldwork under stress conditions. An overview and results of these intercomparison measurements are presented and lessons learned are discussed. (author)

  8. Magnetic measurements at Lawrence Berkeley Laboratory

    International Nuclear Information System (INIS)

    Green, M.I.; Barale, P.; Callapp, L.; Case-Fortier, M.; Lerner, D.; Nelson, D.; Schermer, R.; Skipper, G.; Van Dyke, D.; Cork, C.; Halbach, K.; Hassenzahl, W.; Hoyer, E.; Marks, S.; Harten, T.; Luchini, K.; Milburn, J.; Tanabe, J.; Zucca, F.; Keller, R.; Selph, F.; Gilbert, W.; Green, M.A.; O'Neil, J.; Schafer, R.; Taylor, C.; Greiman, W.; Hall, D.; MacFarlane, J.

    1991-08-01

    Recent magnetic measurement activities at LBL have been concentrated in two separate areas, electro-magnets and permanent magnets for the Advanced Light Source (ALS), and superconducting magnets for the Superconducting Super Collider Laboratory (SSCL). A survey of the many different measurement systems is presented. These include: AC magnetic measurements of an ALS booster dipole engineering model magnet, dipole moment measurements of permanent magnet blocks for ALS wigglers and undulators, permeability measurements of samples destined for wiggler and undulator poles, harmonic error analysis of SSC one meter model dipoles and quadrupoles and five meter long SSC prototype quadrupoles, harmonic error analysis of ALS dipoles, quadrupoles, and sextupoles, precision Hall probe mapping of ALS storage ring combined function magnets, and the design of the ALS insertion device magnets mapping system. We also describe a new UNIX based data acquisition system that is being developed for the SSC. Probes used for magnetic measurements include Helmholtz coils, integral coils, point coils, and bucking harmonic analysis coils, several different types of Hall probes, and nuclear magnetic resonance magnetometers. Both analog and digital integrators are used with the coils. Some problems that occurred and their rectification is described. The mechanisms used include rotating systems with optical encoders, X-Y mapping systems with optical encoders and a laser position measuring device. 10 refs., 3 figs., 1 tab

  9. Magnetic measurements at Lawrence Berkeley Laboratory

    International Nuclear Information System (INIS)

    Green, M.I.; Barale, P.; Callapp, L.; Case-Fortier, M.; Lerner, D.; Nelson, D.; Schermer, R.; Skipper, G.; Van Dyke, D.; Cork, C.

    1992-01-01

    Recent magnetic measurement activities at LBL have been concentrated in two separate areas, electro-magnets and permanent magnets for the Advanced Light Source (ALS), and superconducting magnets for the Superconducting Super Collider Laboratory (SSCL). In this paper a survey of the many different measurement systems is presented. These include: AC magnetic measurements of an ALS booster dipole engineering model magnet, dipole moment measurements of permanent magnet blocks for ALS wigglers and undulators, permeability measurements of samples destined for wiggler and undulator poles, harmonic error analysis of SSC one meter model dipoles and quadrupoles and five meter long SSC prototype quadrupoles, harmonic error analysis of ALS dipoles, quadrupoles, and sextupoles, precision Hall probe mapping of ALS design of the ALS insertion device magnetic mapping system. The authors also describe a new UNIX based data acquisition system that is being developed for the SSC. Probes used for magnetic measurements include Helmholtz coils, integral coils, point coils, and bucking harmonic analysis coils, several different types of Hall probes, and nuclear magnetic resonance magnetometers

  10. The VUV instrument SPICE for Solar Orbiter: performance ground testing

    Science.gov (United States)

    Caldwell, Martin E.; Morris, Nigel; Griffin, Douglas K.; Eccleston, Paul; Anderson, Mark; Pastor Santos, Carmen; Bruzzi, Davide; Tustain, Samuel; Howe, Chris; Davenne, Jenny; Grundy, Timothy; Speight, Roisin; Sidher, Sunil D.; Giunta, Alessandra; Fludra, Andrzej; Philippon, Anne; Auchere, Frederic; Hassler, Don; Davila, Joseph M.; Thompson, William T.; Schuehle, Udo H.; Meining, Stefan; Walls, Buddy; Phelan, P.; Dunn, Greg; Klein, Roman M.; Reichel, Thomas; Gyo, Manfred; Munro, Grant J.; Holmes, William; Doyle, Peter

    2017-08-01

    SPICE is an imaging spectrometer operating at vacuum ultraviolet (VUV) wavelengths, 70.4 - 79.0 nm and 97.3 - 104.9 nm. It is a facility instrument on the Solar Orbiter mission, which carries 10 science instruments in all, to make observations of the Sun's atmosphere and heliosphere, at close proximity to the Sun, i.e to 0.28 A.U. at perihelion. SPICE's role is to make VUV measurements of plasma in the solar atmosphere. SPICE is designed to achieve spectral imaging at spectral resolution >1500, spatial resolution of several arcsec, and two-dimensional FOV of 11 x16arcmins. The many strong constraints on the instrument design imposed by the mission requirements prevent the imaging performance from exceeding those of previous instruments, but by being closer to the sun there is a gain in spatial resolution. The price which is paid is the harsher environment, particularly thermal. This leads to some novel features in the design, which needed to be proven by ground test programs. These include a dichroic solar-transmitting primary mirror to dump the solar heat, a high in-flight temperature (60deg.C) and gradients in the optics box, and a bespoke variable-line-spacing grating to minimise the number of reflective components used. The tests culminate in the systemlevel test of VUV imaging performance and pointing stability. We will describe how our dedicated facility with heritage from previous solar instruments, is used to make these tests, and show the results, firstly on the Engineering Model of the optics unit, and more recently on the Flight Model. For the keywords, select up to 8 key terms for a search on your manuscript's subject.

  11. Penning plasma based simultaneous light emission source of visible and VUV lights

    Energy Technology Data Exchange (ETDEWEB)

    Vyas, G. L., E-mail: glvyas27@gmail.com [Manipal University Jaipur (India); Prakash, R.; Pal, U. N. [CSIR-Central Electronics and Engineering Research Institute, Microwave Tubes Division (India); Manchanda, R. [Institute for Plasma Research (India); Halder, N. [Manipal University Jaipur (India)

    2016-06-15

    In this paper, a laboratory-based penning plasma discharge source is reported which has been developed in two anode configurations and is able to produce visible and VUV lights simultaneously. The developed source has simultaneous diagnostics facility using Langmuir probe and optical emission spectroscopy. The two anode configurations, namely, double ring and rectangular configurations, have been studied and compared for optimum use of the geometry for efficient light emissions and recording. The plasma is produced using helium gas and admixture of three noble gases including helium, neon, and argon. The source is capable to produce eight spectral lines for pure helium in the VUV range from 20 to 60 nm and total 24 spectral lines covering the wavelength range 20–106 nm for the admixture of gases. The large range of VUV lines is generated from gaseous admixture rather from the sputtered materials. The recorded spectrum shows that the plasma light radiations in both visible and VUV range are larger in double ring configuration than that of the rectangular configurations at the same discharge operating conditions. To clearly understand the difference, the imaging of the discharge using ICCD camera and particle-in-cell simulation using VORPAL have also been carried out. The effect of ion diffusion, metastable collision with the anode wall and the nonlinear effects are correlated to explain the results.

  12. Laboratory Measurements for H3+ Deuteration Reactions

    Science.gov (United States)

    Bowen, Kyle; Hillenbrand, Pierre-Michel; Urbain, Xavier; Savin, Daniel Wolf

    2018-06-01

    Deuterated molecules are important chemical tracers of protostellar cores. At the ~106 cm-3 particle densities and ~20 K temperatures typical for protostellar cores, most molecules freeze onto dust grains. A notable exception is H3+ and its isotopologues. These become important carriers of positive charge in the gas, can couple to any ambient magnetic field, and can thereby alter the cloud dynamics. Knowing the total abundance of H3+ and its isotopologues is important for studying the evolution of protostellar cores. However, H3+ and D3+ have no dipole moment. They lack a pure rotational spectrum and are not observable at protostellar core temperatures. Fortunately H2D+ and D2H+ have dipole moments and a pure rotational spectrum that can be excited in protostellar cores. Observations of these two molecules, combined with astrochemical models, provide information about the total abundance of H3+ and all its isotopologues. The inferred abundances, though, rely on accurate astrochemical data for the deuteration of H3+ and its isotopologues.Here we present laboratory measurements of the rate coefficients for three important deuterating reactions, namely D + H3+/H2D+/D2H+ → H + H2D+/ D2H+/D3+. Astrochemical models currently rely on rate coefficients from classical (Langevin) or semi-classical methods for these reactions, as fully quantum-mechanical calculations are beyond current computational capabilities. Laboratory studies are the most tractable means of providing the needed data. For our studies we used our novel dual-source, merged fast-beams apparatus, which enables us to study reactions of neutral atoms and molecular ions. Co-propagating beams allow us to measure experimental rate coefficients as a function of collision energy. We extract cross section data from these results, which we then convolve with a Maxwell-Boltzmann distribution to generate thermal rate coefficients. Here we present our results for these three reactions and discuss some implications.

  13. Laboratory measurements and astronomical search for cyanomethanimine

    Science.gov (United States)

    Melosso, M.; Melli, A.; Puzzarini, C.; Codella, C.; Spada, L.; Dore, L.; Degli Esposti, C.; Lefloch, B.; Bachiller, R.; Ceccarelli, C.; Cernicharo, J.; Barone, V.

    2018-02-01

    Context. C-cyanomethanimine (HNCHCN), existing in the two Z and E isomeric forms, is a key prebiotic molecule, but, so far, only the E isomer has been detected toward the massive star-forming region Sagittarius B2(N) using transitions in the radio wavelength domain. Aims: With the aim of detecting HNCHCN in Sun-like-star forming regions, the laboratory investigation of its rotational spectrum has been extended to the millimeter-/submillimeter-wave (mm-/submm-) spectral window in which several unbiased spectral surveys have been already carried out. Methods: High-resolution laboratory measurements of the rotational spectrum of C-cyanomethanimine were carried out in the 100-420 GHz range using a frequency-modulation absorption spectrometer. We then searched for the C-cyanomethanimine spectral features in the mm-wave range using the high-sensitivity and unbiased spectral surveys obtained with the IRAM 30-m antenna in the ASAI context, the earliest stages of star formation from starless to evolved Class I objects being sampled. Results: For both the Z and E isomers, the spectroscopic work has led to an improved and extended knowledge of the spectroscopic parameters, thus providing accurate predictions of the rotational signatures up to 700 GHz. So far, no C-cyanomethanimine emission has been detected toward the ASAI targets, and upper limits of the column density of 1011-1012 cm-2 could only be derived. Consequently, the C-cyanomethanimine abundances have to be less than a few 10-10 for starless and hot-corinos. A less stringent constraint, ≤10-9, is obtained for shocks sites. Conclusions: The combination of the upper limits of the abundances of C-cyanomethanimine together with accurate laboratory frequencies up to 700 GHz poses the basis for future higher sensitivity searches around Sun-like-star forming regions. For compact (typically less than 1″) and chemically enriched sources such as hot-corinos, the use of interferometers as NOEMA and ALMA in their extended

  14. Environmental Measurements Laboratory, annual report 1995

    Energy Technology Data Exchange (ETDEWEB)

    Krey, P.W.; Heit, M. [eds.

    1996-07-01

    This report summarizes the activities of the Environmental Measurements Laboratory (EML) for the calendar year 1995 and serves as an annual report to the Director of the Office of Energy Research (ER), the Associate Director and staff of the Office of Health and Environmental Research (OHER), the Manager and staff of the Chicago Operations Office, and our colleagues. Emphasized are the progress and accomplishments of the year, rather than future plans or expectations. The technical summaries are grouped according to the following seven research program areas: (1) Environmental Radiation and Radioactivity; (2) Radiation Transport and Dosimetry; (3) Environmental Radon, Thoron, and Related Aerosols; (4) Atmospheric and Surface Pollutant Studies Related to Global Climate Change; (5) Atmospheric Chemistry; and (6) Metrology, Consultation, and Emergency Response Environmental Management The mission of EML is to address important scientific questions concerning human health and environmental impacts. Through its multidisciplinary staff, EML conducts experimental and theoretical research on radioactive and other energy-related pollutants and provides DOE and other federal agencies with the in-house capability to respond effectively and efficiently with regard to quality assurance activities, environmental issues, and related national security issues.

  15. Environmental Measurements Laboratory, annual report 1995

    International Nuclear Information System (INIS)

    Krey, P.W.; Heit, M.

    1996-07-01

    This report summarizes the activities of the Environmental Measurements Laboratory (EML) for the calendar year 1995 and serves as an annual report to the Director of the Office of Energy Research (ER), the Associate Director and staff of the Office of Health and Environmental Research (OHER), the Manager and staff of the Chicago Operations Office, and our colleagues. Emphasized are the progress and accomplishments of the year, rather than future plans or expectations. The technical summaries are grouped according to the following seven research program areas: (1) Environmental Radiation and Radioactivity; (2) Radiation Transport and Dosimetry; (3) Environmental Radon, Thoron, and Related Aerosols; (4) Atmospheric and Surface Pollutant Studies Related to Global Climate Change; (5) Atmospheric Chemistry; and (6) Metrology, Consultation, and Emergency Response Environmental Management The mission of EML is to address important scientific questions concerning human health and environmental impacts. Through its multidisciplinary staff, EML conducts experimental and theoretical research on radioactive and other energy-related pollutants and provides DOE and other federal agencies with the in-house capability to respond effectively and efficiently with regard to quality assurance activities, environmental issues, and related national security issues

  16. Environmental Measurements Laboratory 1994 annual report

    International Nuclear Information System (INIS)

    Chieco, N.A.; Krey, P.W.; Beck, H.L.

    1995-08-01

    This report summarizes the activities of the Environmental Measurements Laboratory (EML) for the calendar year 1994 and it serves as an annual report to the Director of the Office of Energy Research (ER), the Associate Director and staff of the Office of Health and Environmental Research (OHER), the manager and staff of the Chicago Field Office, and the authors colleagues. Emphasized are the progress and accomplishments of the year, rather than future plans or expectations. The technical summaries are grouped according to the following seven general program areas: environmental radiation and radioactivity; radiation transport and dosimetry; environmental radon, thoron, and related aerosols; atmospheric and surface pollutant studies related to global climate change; atmospheric chemistry; metrology, consultation, and emergency response; environmental management. EML's mission is to address important scientific questions concerning human health and environmental impacts. Through its multidisciplinary staff, EML conducts experimental and theoretical research on radioactive and other energy-related pollutants, and provides DOE and other federal agencies with the in-house capability to respond effectively and efficiently with regard to quality assurance activities, environmental issues and related national security issues

  17. Environmental Measurements Laboratory 1994 annual report

    Energy Technology Data Exchange (ETDEWEB)

    Chieco, N.A. [ed.; Krey, P.W.; Beck, H.L.

    1995-08-01

    This report summarizes the activities of the Environmental Measurements Laboratory (EML) for the calendar year 1994 and it serves as an annual report to the Director of the Office of Energy Research (ER), the Associate Director and staff of the Office of Health and Environmental Research (OHER), the manager and staff of the Chicago Field Office, and the authors colleagues. Emphasized are the progress and accomplishments of the year, rather than future plans or expectations. The technical summaries are grouped according to the following seven general program areas: environmental radiation and radioactivity; radiation transport and dosimetry; environmental radon, thoron, and related aerosols; atmospheric and surface pollutant studies related to global climate change; atmospheric chemistry; metrology, consultation, and emergency response; environmental management. EML`s mission is to address important scientific questions concerning human health and environmental impacts. Through its multidisciplinary staff, EML conducts experimental and theoretical research on radioactive and other energy-related pollutants, and provides DOE and other federal agencies with the in-house capability to respond effectively and efficiently with regard to quality assurance activities, environmental issues and related national security issues.

  18. Handbook of laboratory health and safety measures

    International Nuclear Information System (INIS)

    Pal, S.B.

    1985-01-01

    Eighteen chapters deal with all kinds of possible health and safety hazards, chemical, physical and biological, arising in laboratories. Two chapters, on X-ray hazards - diagnostic and therapeutic, and radiation protection in radionuclide investigations, respectively are indexed separately. (U.K.)

  19. Experience with the UHV box coater and the evaporation procedure for VUV reflective coatings on the HADES RICH mirror

    CERN Document Server

    Maier-Komor, P; Wieser, J; Ulrich, A

    1999-01-01

    An UHV box coater was set up for the deposition of highly reflective layers in the vacuum ultraviolet (VUV) wavelength range on large-area mirror substrates. The VUV mirrors are needed for the ring imaging Cherenkov (RICH) detector of the high-acceptance di-electron spectrometer (HADES). The complete dry vacuum system is described. The spatial deposition distribution from the evaporation sources was measured. The reflectivity of the Al mirror layer was optimized for the wavelength range of 145-210 nm by varying the thickness of the MgF sub 2 protective layer. The setup for measuring the reflectivity in the VUV range is described and reflectivity data are presented.

  20. Experimental study of carbon materials behavior under high temperature and VUV radiation: Application to Solar Probe+ heat shield

    International Nuclear Information System (INIS)

    Eck, J.; Sans, J.-L.; Balat-Pichelin, M.

    2011-01-01

    The aim of the Solar Probe Plus (SP+) mission is to understand how the solar corona is heated and how the solar wind is accelerated. To achieve these goals, in situ measurements are necessary and the spacecraft has to approach the Sun as close as 9.5 solar radii. This trajectory induces extreme environmental conditions such as high temperatures and intense Vacuum Ultraviolet radiation (VUV). To protect the measurement and communication instruments, a heat shield constituted of a carbon material is placed on the top of the probe. In this study, the physical and chemical behavior of carbon materials is experimentally investigated under high temperatures (1600-2100 K), high vacuum (10 -4 Pa) and VUV radiation in conditions near those at perihelion for SP+. Thanks to several in situ and ex situ characterizations, it was found that VUV radiation induced modification of outgassing and of mass loss rate together with alteration of microstructure and morphology.

  1. A VUV prism spectrometer for RICH radiator refractometry

    CERN Document Server

    Moyssides, P G; Fokitis, E

    2000-01-01

    A prism spectrometer has been developed to operate in the VUV wavelength range from 120 to 200 nm. It can be used as a pre- disperser in conjunction with a Fabry-Perot based gas refractometer. This instrument has also been used to measure the refractive index of the liquid radiator C/sub 6/F/sub 14/ in various spectral lines. This radiator is used in the RICH detectors of the DELPHI experiment and has been proposed for ALICE, and LHCb experiments. The spectral resolution of the system is improved as the wavelength decreases and the data are consistent with a wavelength accuracy about 0.4 nm at 140 nm. The results for the dispersion curve of the above liquid are presented. (17 refs).

  2. VUV Study of Electron-Pyrimidine Dissociative Excitation

    Science.gov (United States)

    Hein, Jeff; Al-Khazraji, Hajar; Tiessen, Collin; Lukic, Dragan; Trocchi, Joshuah; McConkey, William

    2013-05-01

    A crossed electron-gas beam system coupled to a VUV spectrometer has been used to investigate the dissociation of pyrimidine (C4H4N2) into excited atomic fragments in the electron-impact energy range from threshold to 375 eV. Data have been made absolute using Lyman- α from H2 as a secondary standard. The main features in the spectrum are the H Lyman series lines. The emission cross section of Lyman- α is measured to be (2.44 +/- 0.25) 10-18 cm2 at 100 eV impact energy. The probability of extracting C or N atoms from the ring is shown to be very small. Possible dissociation channels and excitation mechanisms in the parent molecule will be discussed. The authors thank NSERC (Canada) for financial support.

  3. An inter-laboratory comparison of urinary 3-hydroxypropylmercapturic acid measurement demonstrates good reproducibility between laboratories

    Directory of Open Access Journals (Sweden)

    Bailey Brian

    2011-10-01

    Full Text Available Abstract Background Biomarkers have been used extensively in clinical studies to assess toxicant exposure in smokers and non-smokers and have recently been used in the evaluation of novel tobacco products. The urinary metabolite 3-HPMA, a metabolite of the major tobacco smoke toxicity contributor acrolein, is one example of a biomarker used to measure exposure to tobacco smoke. A number of laboratories have developed liquid chromatography with tandem mass spectrometry (LC-MS/MS based methods to measure urinary 3-HPMA; however, it is unclear to what extent the data obtained by these different laboratories are comparable. Findings This report describes an inter-laboratory comparison carried out to evaluate the comparability of 3-HPMA measurement between four laboratories. A common set of spiked and authentic smoker and non-smoker urine samples were used. Each laboratory used their in-house LC-MS/MS method and a common internal standard. A comparison of the repeatability ('r', reproducibility ('R', and coefficient of variation for 3-HPMA demonstrated that within-laboratory variation was consistently lower than between-laboratory variation. The average inter-laboratory coefficient of variation was 7% for fortified urine samples and 16.2% for authentic urine samples. Together, this represents an inter-laboratory variation of 12.2%. Conclusion The results from this first inter-laboratory comparison for the measurement of 3-HPMA in urine demonstrate a reasonably good consensus between laboratories. However, some consistent measurement biases were still observed between laboratories, suggesting that additional work may be required to further reduce the inter-laboratory coefficient of variation.

  4. The Purdue Rare Isotope Measurement Laboratory

    International Nuclear Information System (INIS)

    Elmore, D.; Dep, L.; Flack, R.; Hawksworth, M.J.; Knies, D.L.; Ma, X.Z.; Michlovich, E.S.; Miller, T.E.; Mueller, K.A.; Rickey, F.A.; Sharma, P.; Simms, P.C.; Woo, H.-J.; Lipschutz, M.E.; Vogt, S.; Wang, M.-S.; Monaghan, M.C.

    1994-01-01

    Purdue University has brought into operation a new NSF/NASA facility dedicated to accelerator mass spectrometry. Based on a 7.5 MV FN tandem, 10 Be, 26 Al, and 36 Cl are being measured at a rate of 1500 samples per year. Research involves primarily 1) earth science studies using cosmogenic radionuclides produced in the atmosphere and measured in rain, groundwater, and soils, 2) Quaternary geomorphology and climatology studies using in-situ produced radionuclides, 3) planetary science studies using a wide variety of meteorites and radionuclides, and 4) biomedical tracer studies using 26 Al. ((orig.))

  5. Storage-ring FEL for the vuv

    International Nuclear Information System (INIS)

    Peterson, J.M.; Bisognano, J.J.; Garren, A.A.; Halbach, K.; Kim, K.J.; Sah, R.C.

    1984-09-01

    A free-electron laser for the vuv operating in a storage ring requires an electron beam of high density and low energy spread and a short wavelength, narrow-gap undulator. These conditions tend to produce longitudinal and transverse beam instabilities, excessive beam growth through multiple intrabeam scattering, and a short gas-scattering lifetime. Passing the beam only occasionally through the undulator in a by-pass straight section, as proposed by Murphy and Pellegrini, allows operation in a high-gain, single-pass mode and a long gas-scattering lifetime. Several storage ring designs have been considered to see how best to satisfy the several requirements. Each features a by-pass, a low-emittance lattice, and built-in wigglers for enhanced damping to counteract the intra-beam scattering. 15 references, 3 figures, 2 tables

  6. Characterization of Vacuum Ultraviolet (VUV) Radiation for the Development of a Fluorescent Lamp

    International Nuclear Information System (INIS)

    Khatun, Hasina; Sharma, A. K.; Barhai, P. K.

    2011-01-01

    A negative unipolar pulsed voltage is applied to study internal electrical parameters of the xenon filled dielectric barrier discharge (DBD) sources. The VUV radiation emitted from these sources is characterized by means of the photoluminescence intensity of the red phosphor pellet. The red phosphor converts the VUV radiation into visible radiation and the emission spectra include a peak at 619.56 nm. The emission characteristics of the red phosphor are analyzed in terms of the pressure-distance (pd), rise time and frequency of the pulsed voltage waveform. The emission intensity measured at different operational conditions confirms that the formation and decay of the xenon excimer, Xe 2 *, increase with the increase in reduced electric field, E/N. After exceeding certain limits of E/N, the intensity of Xe 2 * decreases rapidly. (plasma technology)

  7. Experimental study of pyrolytic boron nitride at high temperature with and without proton and VUV irradiations

    International Nuclear Information System (INIS)

    Balat-Pichelin, M.; Eck, J.; Heurtault, S.; Glénat, H.

    2014-01-01

    Highlights: • New results for the high temperature study of pBN in high vacuum for the heat shield of solar probes. • Physico-chemical behavior of pBN studied up to 1700 K with proton and VUV irradiations. • Rather low effect of synergistic aggressions on the microstructure of pBN material. • The α/ε ratio of pBN coating on C/C measured up to 2200 K is 20% lower than for the C/C itself. - Abstract: In the frame of future exploration missions such as Solar Probe Plus (NASA) and PHOIBOS (ESA), research was carried out to study pyrolytic BN material envisaged as coating for their heat shields. The physico-chemical behavior of CVD pBN at very high temperature with or without hydrogen ions and VUV (Vacuum Ultra-Violet) irradiations was studied in high vacuum together with the in situ measurement of the thermal radiative properties conditioning the thermal equilibrium of the heat shield. Experimental results obtained on massive pBN samples are presented through in situ mass spectrometry and mass loss rate, and post-test microstructural characterization by XRD, SEM, AFM and nano-indentation techniques, some of them leading to mechanical properties. It could be concluded that synergistic effect of high temperature, protons and VUV radiation has an impact on the emission of gaseous species, the mass loss rate and the mechanical properties of the material

  8. Earth System Research Laboratory Long-Term Surface Aerosol Measurements

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Aerosol measurements began at the NOAA Earth System Research Laboratory (ESRL) Global Monitoring Division (GMD) baseline observatories in the mid-1970's with the...

  9. Measuring meaningful learning in the undergraduate chemistry laboratory

    Science.gov (United States)

    Galloway, Kelli R.

    The undergraduate chemistry laboratory has been an essential component in chemistry education for over a century. The literature includes reports on investigations of singular aspects laboratory learning and attempts to measure the efficacy of reformed laboratory curriculum as well as faculty goals for laboratory learning which found common goals among instructors for students to learn laboratory skills, techniques, experimental design, and to develop critical thinking skills. These findings are important for improving teaching and learning in the undergraduate chemistry laboratory, but research is needed to connect the faculty goals to student perceptions. This study was designed to explore students' ideas about learning in the undergraduate chemistry laboratory. Novak's Theory of Meaningful Learning was used as a guide for the data collection and analysis choices for this research. Novak's theory states that in order for meaningful learning to occur the cognitive, affective, and psychomotor domains must be integrated. The psychomotor domain is inherent in the chemistry laboratory, but the extent to which the cognitive and affective domains are integrated is unknown. For meaningful learning to occur in the laboratory, students must actively integrate both the cognitive domain and the affective domains into the "doing" of their laboratory work. The Meaningful Learning in the Laboratory Instrument (MLLI) was designed to measure students' cognitive and affective expectations and experiences within the context of conducting experiments in the undergraduate chemistry laboratory. Evidence for the validity and reliability of the data generated by the MLLI were collected from multiple quantitative studies: a one semester study at one university, a one semester study at 15 colleges and universities across the United States, and a longitudinal study where the MLLI was administered 6 times during two years of general and organic chemistry laboratory courses. Results from

  10. Availability of urinary albumin measurement in Southern Brazilian laboratories

    Directory of Open Access Journals (Sweden)

    Ariana Aguiar Soares

    2015-03-01

    Full Text Available Introduction: Diabetic kidney disease (DKD is the leading worldwide cause of end-stage renal disease. The current recommendation is to screen for DKD by evaluating estimated glomerular filtration rate (eGFR and measuring urinary albumin (UA levels in a spot sample. The aim of this study was to evaluate the availability of UA measurement in Southern Brazilian laboratories.   Methods: A cross-sectional study was conducted to assess the routine use of UA in all laboratories registered in the State Pharmacy Council ofRio Grande do Sul, the southernmost state ofBrazil. Data was collected by mail, e-mail, telephone, or personal interview. A sample size of at least 384 laboratories was necessary to achieve 5% precision at a 95% confidence level based on a fixed proportion of 0.5.   Results: Eight hundred and eighty laboratories currently registered in the state were invited to participate in the study; 548 (62% answered the technical specification questionnaire. Only 306 (55% of the 548 surveyed laboratories performed UA measurements. The laboratories were also required to provide the number of UA measurements performed per day, which ranged from less than one per week to 65 per day.  Conclusion: The availability of UA measurements is undesirably low inSouthern Brazil. This demonstrates the urgent need to increase the availability of this important test. It also reveals the gap between the current guidelines and the awareness about them among health care professionals.

  11. Fire preparedness measures in buildings with hot laboratories

    International Nuclear Information System (INIS)

    Oberlaender, B.C.

    2003-01-01

    Important hot laboratory safety issues are the general design/construction of the building with respect to fire, fire prevention, fire protection, administrative controls, and risk assessment. Within the network of the European Working Group Hot Laboratories and Remote Handling items concerning 'fire preparedness measures in hot laboratories' were screened and studied. Two questionnaires were sent to European hot laboratories; the first in November 2002 on 'fire preparedness measures, fire detection and fire suppression/extinguishing in lead shielded cells, concrete shielded cells' and the second in June 2003 on 'Fire preparedness measures in buildings with hot laboratories'. The questionnaires were filled in by a total of ten hot laboratories in seven European countries. On request of participants the answers were evaluated and 'anonymised' for presentation and discussion at the plenary meeting. The answers showed that many European hot laboratories are implementing improvements to their fire protection programmes to comply with more stringent requirements of the national authorities. The recommendations ('International guidelines for the fire protection of Nuclear Power Plants') given by the insurance pools are followed up with national variations. An ISO standard (ISO 17873) is in progress giving criteria for the design and the operation of ventilation systems as well as fire hazard management in nuclear installations others than reactors

  12. VUV Spectroscopy in DIII-D Divertor

    International Nuclear Information System (INIS)

    Alkesh Punjabi; Nelson Jalufka

    2004-01-01

    The research carried out on this grant was motivated by the high power emission from the CIV doublet at 155 nm in the DIII-D divertor and to study the characteristics of the radiative divertor. The radiative divertor is designed to reduce the heat load to the target plates of the divertor by reducing the energy in the divertor plasma using upstream scrape-off-layer (SOL) radiation. In some cases, particularly in Partially Detached Divertor (PDD) operations, this emission accounts for more than 50% of the total radiation from the divertor. In PDD operation, produced by neutral gas injection, the particle flow to the target plate and the divertor temperature are significantly reduced. A father motivation was to study the CIV emission distribution in the lower, open divertor and the upper baffled divertor. Two Vacuum Ultra Violet Tangential viewing Television cameras (VUV TTV) were constructed and installed in the upper, baffled and the lower, open divertor. The images recorded by these cameras were then inverted to produce two-dimensional distributions of CIV in the poloidal plane. Results obtained in the project are summarized in this report

  13. Intercomparison Measurements Exercises of Mobile Radiological Laboratories (invited paper)

    International Nuclear Information System (INIS)

    Martincic, R.

    2000-01-01

    After the reactor accident in Chernobyl, the importance of mobile radiological laboratories became evident and in situ gamma spectrometry became a common method for the rapid detection of gamma emitters in the environment. Since then different institutions in European countries have organised periodic intercomparison exercises of mobile radiological laboratories to improve the measurement methods and the preparedness of emergency monitoring teams. The general objectives of these workshops are to promote the knowledge and to exchange the experiences of emergency monitoring teams that use mobile radiological laboratories, as well as to foster the international harmonisation of emergency monitoring procedures and cooperation among teams. Finally, the results of intercomparison measurements have shown that such exercises are mandatory for rapid, efficient and correct environmental monitoring in nuclear or radiological emergencies. An overview of these intercomparison measurements is given, results from the 1999 intercomparison workshop are presented and lessons learned are discussed. (author)

  14. Environmental Measurements Laboratory fiscal year 1998: Accomplishments and technical activities

    Energy Technology Data Exchange (ETDEWEB)

    Erickson, M.D.

    1999-01-01

    The Environmental Measurements Laboratory (EML) is government-owned, government-operated, and programmatically under the DOE Office of Environmental Management. The Laboratory is administered by the Chicago Operations Office. EML provides program management, technical assistance and data quality assurance for measurements of radiation and radioactivity relating to environmental restoration, global nuclear nonproliferation, and other priority issues for the Department of Energy, as well as for other government, national, and international organizations. This report presents the technical activities and accomplishments of EML for Fiscal Year 1998.

  15. Measurement uncertainty. A practical guide for Secondary Standards Dosimetry Laboratories

    International Nuclear Information System (INIS)

    2008-05-01

    The need for international traceability for radiation dose measurements has been understood since the early nineteen-sixties. The benefits of high dosimetric accuracy were recognized, particularly in radiotherapy, where the outcome of treatments is dependent on the radiation dose delivered to patients. When considering radiation protection dosimetry, the uncertainty may be greater than for therapy, but proper traceability of the measurements is no less important. To ensure harmonization and consistency in radiation measurements, the International Atomic Energy Agency (IAEA) and the World Health Organization (WHO) created a Network of Secondary Standards Dosimetry Laboratories (SSDLs) in 1976. An SSDL is a laboratory that has been designated by the competent national authorities to undertake the duty of providing the necessary link in the traceability chain of radiation dosimetry to the international measurement system (SI, for Systeme International) for radiation metrology users. The role of the SSDLs is crucial in providing traceable calibrations; they disseminate calibrations at specific radiation qualities appropriate for the use of radiation measuring instruments. Historically, although the first SSDLs were established mainly to provide radiotherapy level calibrations, the scope of their work has expanded over the years. Today, many SSDLs provide traceability for radiation protection measurements and diagnostic radiology in addition to radiotherapy. Some SSDLs, with the appropriate facilities and expertise, also conduct quality audits of the clinical use of the calibrated dosimeters - for example, by providing postal dosimeters for dose comparisons for medical institutions or on-site dosimetry audits with an ion chamber and other appropriate equipment. The requirements for traceable and reliable calibrations are becoming more important. For example, for international trade where radiation products are manufactured within strict quality control systems, it is

  16. Comparative study of bedside and laboratory measurements of hemoglobin.

    Science.gov (United States)

    Krenzischek, D A; Tanseco, F V

    1996-11-01

    The purpose of this study was to examine the effects of variations in technique on measurements of hemoglobin level done at the bedside and to compare these results with laboratory measurements of hemoglobin. In accordance with hospital policy, procedure, and protocol, various techniques were used to obtain samples of capillary and venous blood and of blood from arterial and central venous catheters. Levels of hemoglobin were measured at the bedside and in the laboratory, and the results were compared. The Johns Hopkins Hospital adult postanesthesia care unit. A total of 187 blood samples were obtained from 62 adults who had undergone general surgery. Group I comprised 20 subjects with capillary and venous blood samples. Group II comprised 21 subjects with arterial blood samples. Group III comprised 21 subjects with central venous blood samples. The results showed that the amount of blood to be discarded before obtaining samples of arterial and central venous blood need not be any larger than double the dead space of the catheter, and that shaking the blood sample for 10 seconds was sufficient to mix the sample before measurement of hemoglobin levels. Results of bedside and laboratory measurements of hemoglobin level were comparable. Bedside measurement of hemoglobin increases efficiency in patient care, decreases risk of blood-transmitted infection for staff, and decreases cost to the patient. However, the persons who perform the assay must be responsible in adhering to the standard of practice to minimize errors in the measurements.

  17. Sequim Marine Research Laboratory routine environmental measurements during CY-1978

    International Nuclear Information System (INIS)

    Houston, J.R.; Blumer, P.J.

    1979-03-01

    Environmental data collected during 1978 in the vicinity of the Marine Research Laboratory show continued compliance with all applicable state and federal regulations and furthermore show no detectable change from conditions that existed in previous years. Samples collected for radiological analysis included soil, drinking water, bay water, clams, and seaweed. Radiation dose rates at 1 meter aboveground were also measured

  18. Laboratory Measured Behavioral Impulsivity Relates to Suicide Attempt History

    Science.gov (United States)

    Dougherty, Donald M.; Mathias, Charles W.; Marsh, Dawn M.; Papageorgiou, T. Dorina; Swann, Alan C.; Moeller, F. Gerard

    2004-01-01

    The purpose of this study was to examine the relationship between laboratory behavioral measured impulsivity (using the Immediate and Delayed Memory Tasks) and suicidal attempt histories. Three groups of adults were recruited, those with either: no previous suicide attempts (Control, n = 20), only a single suicide attempt (Single, n = 20), or…

  19. Modernization of laboratories of test of electric measurer

    International Nuclear Information System (INIS)

    Cuervo, Luis Felipe

    1999-01-01

    The paper presents to the companies that possess test laboratories and calibration of electric measurer, an economic alternative for their modernization, using the repontentiation like an economic solution that it liberates resources to be used in other areas that they want it

  20. Vacuum ultraviolet emission spectrum measurement of a microwave-discharge hydrogen-flow lamp in several configurations: Application to photodesorption of CO ice

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Y.-J.; Wu, C.-Y. R. [Space Sciences Center and Department of Physics and Astronomy, University of Southern California, Los Angeles, CA 90089-1341 (United States); Chuang, K.-J.; Chu, C.-C.; Yih, T.-S. [Department of Physics, National Central University, Jhongli City, Taoyuan County 32054, Taiwan (China); Muñoz Caro, G. M. [Centro de Astrobiología, INTA-CSIC, Torrejón de Ardoz, E-28850 Madrid (Spain); Nuevo, M. [NASA Ames Research Center, Moffett Field, CA 94035 (United States); Ip, W.-H., E-mail: yujung@usc.edu [Graduate Institute of Astronomy, National Central University, Jhongli City, Taoyuan County 32049, Taiwan (China)

    2014-01-20

    We report measurements of the vacuum ultraviolet (VUV) emission spectra of a microwave-discharge hydrogen-flow lamp (MDHL), a common tool in astrochemistry laboratories working on ice VUV photoprocessing. The MDHL provides hydrogen Ly-α (121.6 nm) and H{sub 2} molecular emission in the 110-180 nm range. We show that the spectral characteristics of the VUV light emitted in this range, in particular the relative proportion of Ly-α to molecular emission bands, strongly depend on the pressure of H{sub 2} inside the lamp, the lamp geometry (F type versus T type), the gas used (pure H{sub 2} versus H{sub 2} seeded in He), and the optical properties of the window used (MgF{sub 2} versus CaF{sub 2}). These different configurations are used to study the VUV irradiation of CO ice at 14 K. In contrast to the majority of studies dedicated to the VUV irradiation of astrophysical ice analogs, which have not taken into consideration the emission spectrum of the MDHL, our results show that the processes induced by photons in CO ice from a broad energy range are different and more complex than the sum of individual processes induced by monochromatic sources spanning the same energy range, as a result of the existence of multistate electronic transitions and discrepancy in absorption cross sections between parent molecules and products in the Ly-α and H{sub 2} molecular emission ranges.

  1. Vacuum ultraviolet emission spectrum measurement of a microwave-discharge hydrogen-flow lamp in several configurations: Application to photodesorption of CO ice

    International Nuclear Information System (INIS)

    Chen, Y.-J.; Wu, C.-Y. R.; Chuang, K.-J.; Chu, C.-C.; Yih, T.-S.; Muñoz Caro, G. M.; Nuevo, M.; Ip, W.-H.

    2014-01-01

    We report measurements of the vacuum ultraviolet (VUV) emission spectra of a microwave-discharge hydrogen-flow lamp (MDHL), a common tool in astrochemistry laboratories working on ice VUV photoprocessing. The MDHL provides hydrogen Ly-α (121.6 nm) and H 2 molecular emission in the 110-180 nm range. We show that the spectral characteristics of the VUV light emitted in this range, in particular the relative proportion of Ly-α to molecular emission bands, strongly depend on the pressure of H 2 inside the lamp, the lamp geometry (F type versus T type), the gas used (pure H 2 versus H 2 seeded in He), and the optical properties of the window used (MgF 2 versus CaF 2 ). These different configurations are used to study the VUV irradiation of CO ice at 14 K. In contrast to the majority of studies dedicated to the VUV irradiation of astrophysical ice analogs, which have not taken into consideration the emission spectrum of the MDHL, our results show that the processes induced by photons in CO ice from a broad energy range are different and more complex than the sum of individual processes induced by monochromatic sources spanning the same energy range, as a result of the existence of multistate electronic transitions and discrepancy in absorption cross sections between parent molecules and products in the Ly-α and H 2 molecular emission ranges.

  2. Science outside the laboratory measurement in field science and economics

    CERN Document Server

    Boumans, Marcel

    2015-01-01

    The conduct of most of social science occurs outside the laboratory. Such studies in field science explore phenomena that cannot for practical, technical, or ethical reasons be explored under controlled conditions. These phenomena cannot be fully isolated from their environment or investigated by manipulation or intervention. Yet measurement, including rigorous or clinical measurement, does provide analysts with a sound basis for discerning what occurs under field conditions, and why. In Science Outside the Laboratory, Marcel Boumans explores the state of measurement theory, its reliability, and the role expert judgment plays in field investigations from the perspective of the philosophy of science. Its discussion of the problems of passive observation, the calculus of observation, the two-model problem, and model-based consensus uses illustrations drawn primarily from economics. Rich in research and discussion, the volume clarifies the extent to which measurement provides valid information about objects an...

  3. User oriented end-station on VUV pump-probe magneto-optical ellipsometry at ELI beamlines

    Science.gov (United States)

    Espinoza, Shirly; Neuber, Gerd; Brooks, Christopher D.; Besner, Bastian; Hashemi, Maryam; Rübhausen, Michael; Andreasson, Jakob

    2017-11-01

    A state of the art ellipsometer for user operations is being implemented at ELI Beamlines in Prague, Czech Republic. It combines three of the most promising and exotic forms of ellipsometry: VUV, pump-probe and magneto-optical ellipsometry. This new ellipsometer covers a spectral operational range from the NIR up to the VUV, with high through-put between 1 and 40 eV. The ellipsometer also allows measurements of magneto-optical spectra with a 1 kHz switchable magnetic field of up to 1.5 T across the sample combining ellipsometry and Kerr spectroscopy measurements in an unprecedented spectral range. This form of generalized ellipsometry enables users to address diagonal and off-diagonal components of the dielectric tensor within one measurement. Pump-probe measurements enable users to study the dynamic behaviour of the dielectric tensor in order to resolve the time-domain phenomena in the femto to 100 ns range.

  4. Measurement Instruments and Software Used in Biotribology Research Laboratory

    Directory of Open Access Journals (Sweden)

    Tyurin Andrei

    2015-07-01

    Full Text Available Precision measurements of friction processes have a key role in a variety of industrial processes. The emergence of fine electronic circuit techniques greatly expands capabilities of control. There are some difficulties for their full implementation today, especially when it regards the accuracy and frequency of measurements. The motion-measuring method in real-time system is considered in this article, paying special attention to increased accuracy. This method is based on rapid analog digital converter (ADC, transmission program and digital signal processor (DSP algorithms. Description of laboratory devices is included: Tribal-T and universal friction machine (MTU-01 designed for “Pin on disc” tests. Great emphasis is placed on the usability of accelerometers. The present study examined the collected data via laboratory system for data acquisition and control, and processing it in the laboratory of Biotribology. Laboratory supervisory control and data acquisition (SCADA algorithms is described below. Task of regulation is not considered. This paper describes only methods of automatic control theory to analyze the frictional quality.

  5. A VUV photoionization organic aerosol mass spectrometric study with synchrotron radiation

    Energy Technology Data Exchange (ETDEWEB)

    Fang Wenzheng; Lei Gong; Shan Xiaobin; Liu Fuyi [School of Nuclear Science and Technology, National Synchrotron Radiation Laboratory, University of Science and Technology of China, Anhui, Hefei 230029 (China); Wang Zhenya [Laboratory of Environmental Spectroscopy, Anhui Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Hefei 230031 (China); Sheng Liusi, E-mail: lssheng@ustc.edu.cn [School of Nuclear Science and Technology, National Synchrotron Radiation Laboratory, University of Science and Technology of China, Anhui, Hefei 230029 (China)

    2011-04-15

    Research highlights: {yields} A photoionization aerosol time-of-flight mass spectrometer (ATOFMS) has been developed for on-line analysis of organic compounds in aerosol particles using tunable vacuum ultraviolet (VUV) synchrotron radiation. {yields} The degree of fragmentation of molecule can be controlled either by the heater temperature or by the photon energy. {yields} The direct determination of the IEs of benzopheneone (9.07 eV), salicylic acid (8.72 eV), and urea (9.85 eV) are measured from the photoionization efficiency spectra. {yields} The species can be identified by their molecular and fragment ions weights as well as by the comparisions between their theoretical and experimental ionization energies. - Abstract: A photoionization aerosol time-of-flight mass spectrometer (ATOFMS) has been developed for on-line analysis of organic compounds in aerosol particles using tunable vacuum ultraviolet (VUV) synchrotron radiation. Aerosol particles can be sampled directly from atmospheric pressure and are focused through an aerodynamic lens assembly into the mass spectrometer. The particles are vaporized when they impact on a heater, and then the nascent vapor is softly photoionized by synchrotron radiation. The degree of fragmentation of molecule can be controlled either by the heater temperature or by the photon energy. Thus, fragment-free tunable VUV mass spectra are obtained by tuning the photon energy close to the ionization energies (IEs) of the sample molecules. The direct determination of the IEs of benzophenone (9.07 eV), salicylic acid (8.72 eV), and urea (9.85 eV) are measured from the photoionization efficiency spectra with uncertainties of {+-}50 meV. Ab initio calculations have been employed to predict the theoretical ionization energy.

  6. Characteristics and performance of the Los Alamos VUV beamline at the NSLS

    International Nuclear Information System (INIS)

    Bartlett, R.J.; Trela, W.J.; Michaud, F.D.; Southworth, S.H.; Alkire, R.W.; Roy, P.; Rothe, R.; Walsh, P.J.; Shinn, N.

    1988-01-01

    We describe the design and performance of the Los Alamos VUV synchrotron radiation beamline, U3C, on the VUV ring of the National Synchrotron Light Source at Brookhaven National Laboratory. The beamline uses separate function optics to collect and focus the horizontally and vertically diverging beam. The monochromator is a grazing incidence Rowland circle instrument of the extended grasshopper design (ERG). A postmonochromator refocusing mirror is used to focus or collimate the diverging beam from the monochromator. The beamline control and diagnostics systems are also discussed. Particular emphasis in the design has been placed on the reduction of stray and harmonic light. Higher order light is reduced by a grazing angle mirror low pass filter installed immediately downstream from the monochromator while stray light is reduced through the use of baffles and thin film filters. Also included in the line is a differential pumping section that permits gas phase and other experiments requiring pressures in the 10 -5 to 10 -4 Torr range to be coupled to the beamline. (orig.)

  7. A Laboratory Goniometer System for Measuring Reflectance and Emittance Anisotropy

    Directory of Open Access Journals (Sweden)

    Arjan de Jong

    2012-12-01

    Full Text Available In this paper, a laboratory goniometer system for performing multi-angular measurements under controlled illumination conditions is described. A commercially available robotic arm enables the acquisition of a large number of measurements over the full hemisphere within a short time span making it much faster than other goniometers. In addition, the presented set-up enables assessment of anisotropic reflectance and emittance behaviour of soils, leaves and small canopies. Mounting a spectrometer enables acquisition of either hemispherical measurements or measurements in the horizontal plane. Mounting a thermal camera allows directional observations of the thermal emittance. This paper also presents three showcases of these different measurement set-ups in order to illustrate its possibilities. Finally, suggestions for applying this instrument and for future research directions are given, including linking the measured reflectance anisotropy with physically-based anisotropy models on the one hand and combining them with field goniometry measurements for joint analysis with remote sensing data on the other hand. The speed and flexibility of the system offer a large added value to the existing pool of laboratory goniometers.

  8. Porosity measurements of crystalline rocks by laboratory and geophysical methods

    International Nuclear Information System (INIS)

    Alexander, J.; Hall, D.H.; Storey, B.C.

    1981-12-01

    Porosity values of igneous and metamorphic crystalline rocks have been determined from core samples taken at specific depths from Altnabreac, by a combination of laboratory and geophysical techniques. Using resaturation and mercury injection methods in three laboratories within I.G.S., porosity values have been derived and the effect of variations in the measuring techniques and results obtained have been compared. Comparison of inter-laboratory porosity values illustrates that systematic errors are present, resulting in higher porosity values for samples subjected to re-testing. This is considered to be caused by the variable nature of the initial samples combined with the inability to completely dry or resaturate samples during a second testing. Geophysical techniques for determining in situ porosity using the neutron log have been carried out in borehole ALA. The neutron log has been calibrated with laboratory derived porosity values and an empirical formula derived enabling porosity values to be ascribed throughout the logged borehole ALA. Comparison of the porosity results from Altnabreac with crystalline samples elsewhere in America, Europe and the U.K. suggest that porosities at Altnabreac are lower than average. However, very few publications concerned with water movement in crystalline areas actually state the method used. (author)

  9. Neutron background measurements in the underground laboratory of Modane

    International Nuclear Information System (INIS)

    Chazal, V.; Chambon, B.; De Jesus, M.; Drain, D.; Pastor, C.; Vagneron, L.; Brissot, R.; Cavaignac, J.F.; Stutz, A.; Giraud-Heraud, Y.

    1997-07-01

    Measurements of the background neutron environment, at a depth of 1780 m (4800 mWe) in the Underground Laboratory of Modane (L.S.M) are reported. Using a 6 Li liquid scintillator, the energy spectrum of the fast neutron flux has been determined. Monte-Carlo calculations of the (α,n) and spontaneous fission processes in the surrounding rock has been performed and compared to the experimental result. In addition, using two 3 He neutron counters, the thermal neutron flux has been measured. (author)

  10. Measuring the opacity of stellar interior matter in terrestrial laboratories

    Science.gov (United States)

    Bailey, James

    2015-11-01

    How does energy propagate from the core to the surface of the Sun, where it emerges to warm the Earth? Nearly a century ago Eddington recognized that the attenuation of radiation by stellar matter controls the internal structure of stars like the sun. Opacities for high energy density (HED) matter are challenging to calculate because accurate and complete descriptions of the energy levels, populations, and plasma effects such as continuum lowering and line broadening are needed for partially ionized atoms. This requires approximations, in part because billions of bound-bound and bound-free electronic transitions can contribute to the opacity. Opacity calculations, however, have never been benchmarked against laboratory measurements at stellar interior conditions. Laboratory opacity measurements were limited in the past by the challenges of creating and diagnosing sufficiently large and uniform samples at the extreme conditions found inside stars. In research conducted over more than 10 years, we developed an experimental platform on the Z facility and measured wavelength-resolved iron opacity at electron temperatures Te = 156-195 eV and densities ne = 0.7-4.0 x 1022 cm-3 - conditions very similar to the radiation/convection boundary zone within the Sun. The wavelength-dependent opacity in the 975-1775 eV photon energy range is 30-400% higher than models predict. This raises questions about how well we understand the behavior of atoms in HED plasma. These measurements may also help resolve decade-old discrepancies between solar model predictions and helioseismic observations. This talk will provide an overview of the measurements, investigations of possible errors, and ongoing experiments aimed at testing hypotheses to resolve the model-data discrepancy. Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy under contract DE-AC04-94AL85000.

  11. Measurement of the gravitational constant in an orbiting laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Farinella, P [Osservatorio Astronomico di Merate, Milan (Italy); Milani, A [Pisa Univ. (Italy). Ist. di Matematica; Nobili, A M [Pisa Univ. (Italy). Ist. di Scienze dell' Informazione

    1980-12-01

    We propose to measure the gravitational constant G by putting in an orbiting laboratory a known mass of very high density and by tracking the motion of a small test mass under the gravitational influence of the primary mass. We analyze the different sources of perturbation: the consideration of the Earth's gravity gradient leads us to conclude that, if the laboratory is in a low Earth orbit, we cannot get stable satellite-like orbits of the test mass, but we must study only a process of gravitational scattering. In order to maximize the time of interaction it is proposed to use the practical stability of a collinear equilibrium point of the system Earth-primary mass, by putting the test mass as close as possible to the stable manifold of an equilibrium point. This method will allow the determination of the value of G withing a few parts over 10/sup 5/ as shown by some computer simulations of the experiment taking into account also some unknown perturbation and random noise. Two main problems are involved in this experiment: (a) refined numerical methods are needed to take into account all significant perturbations and to extract the result about G from the experimental data; (b) during the motion of the test mass, the primary mass must always be free-falling inside the laboratory, so that this experiment needs a drag-free satellite technique of the same type which is necessary for high-precision gravimetric measurement.

  12. Dose measurements in laboratory of Physics department, University of Khartoum

    International Nuclear Information System (INIS)

    Hamid, Maria Mohammed

    1999-05-01

    Personal monitoring in University of Khartoum is being conducted using thermoluminescent dosimetry. The purpose of the study is to measure the dose of radiation in laboratory of Physics in physics department. TL phosphors LiF: Mg, Ti (card) and LiF Mg, Cu, P (GR-200) and mini-rad dosimeter are used to measure the dose in laboratory. The total dose for students form the laboratory bu using card, GR-200 and mini-rad dosimeter was found to be 2.2μ sv/year. 2.5 μ sv/year and 2.6 μ sv respectively, and for the teacher about 4.0 μ sv/year, 5.8 μ sv/year and 13.6 μ sv/year respectively, and for the dose near junk room about 3.9 μ sv/year, 2.9 μ sv/year and 2.8 μ sv/year by using card, GR-200 and mini-rad dosimeter respectively. There is just a background radiation in the main library and the applied nuclear.(Author)

  13. Design and implementation of a virtual laboratory of radiation measurement

    International Nuclear Information System (INIS)

    Alvarez T, J. R.; Morales S, J. B.

    2009-10-01

    The work involves the implementation of a virtual laboratory, this project is conducted in the Faculty of Engineering of National Autonomous University of Mexico with the name of LANUVI. It is intended that the laboratory can be used by students who have interest in the nuclear radiation knowledge as well as in its detection and attenuation, in addition serve as and introduction to nuclear systems. In the first part of project will conduct a source that can simulate the particle radiation of Alfa, beta, neutrons and gamma rays. The project will take sources used in class laboratories and elements that are dangerous but are used in different practical applications. After taking the source analyzing the particles behaviour in different media like air, animal tissue, aluminium, lead, etc. The analysis is done in different ways in order to know with which material can stop or mitigate the different types of radiation. Finally shall be measure radioactivity with different types of detectors. At this point, has the behaviour of ionization chamber but in the future is expected to make the simulation of some other radiation detectors. The mathematical models we represent the behaviour of these cases were implemented in free software. The program will be used to implement the virtual laboratory with radiation sources, detectors and different types of shields will be Blender which is a free software that is used by many users for the embodiment of games but try to use as a tool to help visualize the different equipment that is widely used in a radioactive materials laboratory. (Author)

  14. Latest developments at the ALBA magnetic measurements laboratory

    Science.gov (United States)

    Marcos, J.; Massana, V.; García, L.; Campmany, J.

    2018-02-01

    ALBA is a third-generation synchrotron light source that has been in operation since 2012 near Barcelona. A magnetic measurements laboratory has been associated with the facility since its very early stages and has been active for the last 20 years. In the first part of this work, the different instruments available at the laboratory are described, and a brief overview of the measurement campaigns carried out during its 20 years of history is presented. In the second part, a more detailed description of the approach to Hall probe measurements adopted at ALBA is offered, with an explanation of the methods and ancillary equipment that have been developed along the years in order to improve the accuracy of the system. In the third part, a new concept of Hall probe bench devoted to the measurement of closed structures is presented. The in-house design and building of a prototype for such a bench is described, together with its mechanical and magnetic characterization. As a conclusion, the first results obtained with this bench are discussed.

  15. The New Brunswick Laboratory Safeguards Measurement Evaluation Program

    International Nuclear Information System (INIS)

    Cacic, C.G.; Trahey, N.M.; Zook, A.C.

    1987-01-01

    The New Brunswick Laboratory (NBL) has been tasked by the U.S. Department of Energy (DOE) Office of Safeguards and Security (OSS) to assess and evaluate the adequacy of measurement technology as applied to materials accounting in DOE nuclear facilities. The Safeguards Measurement Evaluation (SME) Program was developed as a means to monitor and evaluate the quality and effectiveness of accounting measurements by site, material balance area (MBA), or unit process. Phase I of the SME Program, initiated during 1985, involved evaluation of the primary accountability measurement methods at six DOE Defense Programs facilities: Savannah River Plant, Portsmouth Gaseous Diffusion Plant, Y-12 Plant, Rocky Flats Plant, Rockwell Hanford Operations, and NBL. Samples of uranyl nitrate solution, dried plutonium nitrates, and plutonium oxides were shipped to the participants for assay and isotopic abundance measurements. Resulting data are presented and evaluated as indicators of current state-of-the-practice accountability measurement methodology, deficiencies in materials accounting practices, and areas for possible assistance in upgrading measurement capabilities. Continuing expansion of the SME Program to include materials which are representative of specific accountability measurement points within the DOE complex is discussed

  16. Photodissociation of Small Molecules and Photoionization of Free Radicals Using the VUV Velocity-Map Imaging Photoion and Photoelectron Method

    Science.gov (United States)

    Gao, Hong

    The tunable vacuum ultraviolet (VUV) laser generated through the two-photon resonance-enhanced four-wave mixing scheme is combined with the newly developed time-slice velocity map imaging photoion method to study the photodissociation of small molecules in the VUV region, and with the velocity map imaging photoelectron method to study the photoionization of free radicals. The photodissociation dynamics of NO in the energy region around 13.5 eV has been investigated. Branching ratios of the three lowest dissociation channels of 12C 16O that produce C(3P) + O(3P), C( 1D) + O(3P) and C(3P) + O(1D) are measured for the first time in the VUV region from 102,500 cm-1 to 110,500 cm-1, valuable information of the dissociation dynamics for this prototype system has been deduced. We demonstrated an experiment that has two independently tunable VUV lasers and a time-slice velocity map imaging setup, this provides us a global way to perform systematic state-selected photodissociation of small molecules via state-selected detection of the atomic products in the VUV region. The velocity map imaging photoelectron method was successfully used to obtain the photoelectron spectrum of the propargyl radical (C3H3) via a single VUV photoionization process. The propargyl radical is generated by the 193 nm laser photodissociation of the precursor C3H3Cl. This is the first time that the velocity map imaging photoelectron method is used to get the photoelectron spectra of free radicals, indicating that it is a powerful technique for studying the photoionization of free radicals which are always hard to be produced with high enough number densities for spectroscopic studies. This dissertation is mainly based on the following peer-reviewed journal articles: 1. Hong Gao, Yang Pan, Lei Yang, Jingang Zhou, C. Y. Ng and William M. Jackson. "Time-slice velocity-map ion imaging studies of the Photodissociation of NO in the vacuum ultraviolet region", the Journal of Chemical Physics, 136, 134302

  17. Laboratory Measurements of Particulate Matter Concentrations from Asphalt Pavement Abrasion

    Directory of Open Access Journals (Sweden)

    Fullová Daša

    2016-12-01

    Full Text Available The issue of emissions from road traffic is compounded by the fact that the number of vehicles and driven kilometres increase each year. Road traffic is one of the main sources of particulate matter and traffic volume is still increasing and has unpleasant impact on longevity of the pavements and the environment. Vehicle motions cause mechanical wearing of the asphalt pavement surface - wearing course by vehicle tyres. The contribution deals with abrasion of bituminous wearing courses of pavements. The asphalt mixtures of wearing courses are compared in terms of mechanically separated particulate matter. The samples of asphalt mixtures were rutted in wheel tracking machine. The particulate matter measurements were performed in laboratory conditions. The experimental laboratory measurements make it possible to sample particulates without contamination from exhaust emissions, abraded particles from vehicles, resuspension of road dust and climate affects. The contribution offers partial results of measurements on six trial samples of asphalt mixtures with different composition. It presents particulate matter morphology and the comparison of rutted asphalt samples in terms of PM mass concentrations and chemical composition.

  18. Gaerttner LINAC Laboratory report on international nuclear data measurements

    International Nuclear Information System (INIS)

    Mesh, D.W.; Block, R.C.

    1999-04-01

    The Gaerttner LINAC Laboratory has made neutron transmission and capture measurements up to several hundred eV on samples of Zr, Nb, Mo, Sm, Nd, Ho, Er, Tm, Hf, and W. A new neutron time-of-flight target has been built and installed and a new 6 Li glass transmission detector is under construction. The electron linear accelerator is being refurbished with new klystrons, a new RF transport system and the reinstallation of the ninth accelerating section. These improvements are intended to provide a more powerful and monoenergetic electron beam

  19. Laboratory Measurements of Electrostatic Solitary Structures Generated by Beam Injection

    International Nuclear Information System (INIS)

    Lefebvre, Bertrand; Chen, Li-Jen; Gekelman, Walter; Pribyl, Patrick; Vincena, Stephen; Kintner, Paul; Pickett, Jolene; Chiang, Franklin; Judy, Jack

    2010-01-01

    Electrostatic solitary structures are generated by injection of a suprathermal electron beam parallel to the magnetic field in a laboratory plasma. Electric microprobes with tips smaller than the Debye length (λ De ) enabled the measurement of positive potential pulses with half-widths 4 to 25λ De and velocities 1 to 3 times the background electron thermal speed. Nonlinear wave packets of similar velocities and scales are also observed, indicating that the two descend from the same mode which is consistent with the electrostatic whistler mode and result from an instability likely to be driven by field-aligned currents.

  20. Recent development of VUV-based processes for air pollutants degradation

    Directory of Open Access Journals (Sweden)

    Haibao eHuang

    2016-03-01

    Full Text Available As air pollution become more and more serious nowadays, it is essential to find out a way to efficiently degrade the air pollutants. Vacuum ultraviolet (VUV-based processes are an emerging and promising technologies for environmental remediation such as air cleaning, wastewater treatment and air/water disinfection. With VUV irradiation, photolysis, photocatalyst is and ozone-assisted oxidation are involved at the same time, resulting in the fast degradation of air pollutants because of their strong oxidizing capacity. The mechanisms of how the oxidants are produced and reacted are discussed in this review. This paper mainly focuses on the three VUV-based oxidation processes including VUV photolysis, VUV combined with ozone-assisted oxidation and VUV-PCO with emphasis on their mechanisms and applications. Also, the outlooks of these processes are outlined in this paper.

  1. Photoluminescence of phosphors for PDP with VUV excitation

    International Nuclear Information System (INIS)

    Lu, H.-C.; Chen, H.-K.; Tseng, T.-Y.; Kuo, W.-L.; Alam, M.S.; Cheng, B.-M.

    2005-01-01

    In a plasma display panel (PDP) He-Xe or Ne-Xe gaseous mixtures are subjected to electric discharge between two glass panels, so to generate VUV light. Red, green and blue phosphors absorb this VUV radiation and re-radiate the energy as visible light to produce the colors that appear on the screen. The phosphor plays an important role in the working of a PDP. To improve the efficiency of phosphors, we have established a photoluminescence end station coupled to the beam line of a synchrotron to study the luminescence of PDP phosphors. This luminescence is analyzed with a 0.32 m monochromator having maximum resolution 0.04 nm, and is monitored with a photomultiplier tube operated in a photon-counting mode. Preliminary data demonstrate the powerful performance of this end-station for studying PDP phosphors

  2. LABORATORY MEASUREMENTS OF WHITE DWARF PHOTOSPHERIC SPECTRAL LINES: Hβ

    International Nuclear Information System (INIS)

    Falcon, Ross E.; Gomez, T. A.; Montgomery, M. H.; Winget, D. E.; Rochau, G. A.; Bailey, J. E.; Nagayama, T.

    2015-01-01

    We spectroscopically measure multiple hydrogen Balmer line profiles from laboratory plasmas to investigate the theoretical line profiles used in white dwarf (WD) atmosphere models. X-ray radiation produced at the Z Pulsed Power Facility at Sandia National Laboratories initiates plasma formation in a hydrogen-filled gas cell, replicating WD photospheric conditions. Here we present time-resolved measurements of Hβ and fit this line using different theoretical line profiles to diagnose electron density, n e , and n = 2 level population, n 2 . Aided by synthetic tests, we characterize the validity of our diagnostic method for this experimental platform. During a single experiment, we infer a continuous range of electron densities increasing from n e ∼ 4 to ∼30 × 10 16 cm −3 throughout a 120-ns evolution of our plasma. Also, we observe n 2 to be initially elevated with respect to local thermodynamic equilibrium (LTE); it then equilibrates within ∼55 ns to become consistent with LTE. This supports our electron-temperature determination of T e ∼ 1.3 eV (∼15,000 K) after this time. At n e ≳ 10 17 cm −3 , we find that computer-simulation-based line-profile calculations provide better fits (lower reduced χ 2 ) than the line profiles currently used in the WD astronomy community. The inferred conditions, however, are in good quantitative agreement. This work establishes an experimental foundation for the future investigation of relative shapes and strengths between different hydrogen Balmer lines

  3. Beam line design for synchrotron spectroscopy in the VUV

    Energy Technology Data Exchange (ETDEWEB)

    Howells, M R

    1980-01-01

    The character of the radiation source provided by an electron storage ring is briefly reviewed from the point of view of utilization for VUV spectroscopy. The design of beam line components is then considered with special reference to the problems of contamination of optical surfaces and vacuum protection. The issues involved in designing mirrors for use with storage rings are considered with emphasis on the questions of power dissipation, image quality and materials selection.

  4. Beam line design for synchrotron spectroscopy in the VUV

    International Nuclear Information System (INIS)

    Howells, M.R.

    1980-01-01

    The character of the radiation source provided by an electron storage ring is briefly reviewed from the point of view of utilization for VUV spectroscopy. The design of beam line components is then considered with special reference to the problems of contamination of optical surfaces and vacuum protection. The issues involved in designing mirrors for use with storage rings are considered with emphasis on the questions of power dissipation, image quality and materials selection

  5. Atomic and molecular effects in the VUV spectra of solids

    International Nuclear Information System (INIS)

    Sonntag, B.

    1977-10-01

    The VUV spectra of solids are often dominated by atomic or molecular effects, which clearly manifest themselves in the gross features of the spectra and the fine structure at inner shell excitation thresholds. Evidence for the influence of atomic and molecular matrix elements, multiplet-splitting and correlation is presented. Special emphasis is given to the direct experimental verification based on the comparison of atomic and solid state spectra. (orig.) [de

  6. Environmental gamma background measurements in China Jinping Underground Laboratory

    International Nuclear Information System (INIS)

    Zhi Zeng; Jian Su; Hao Ma; Hengguan Yi; Jianping Cheng; Qian Yue; Junli Li; Hui Zhang

    2014-01-01

    To determine the environmental gamma background levels which affects rare events experiments, we measured in situ gamma spectrum at four locations in the China Jinping Underground Laboratory. The integral background count rates (40-2,700 keV) varied from 3.76 to 74.1 cps. The average count rate of the measurements inside the CJPL was 73.4 cps. The spectrometer was calibrated with a 152 Eu point source and Monte Carlo simulation to obtain the activity conversion factors for the rock and the air, respectively. The rocks that surrounded the CJPL was characterized by very low activity concentrations of 238 U (3.69-4.21 Bq kg -1 ), 232 Th (0.52-0.64 Bq kg -1 ) and 40 K (4.28 Bq kg -1 ). (author)

  7. Production and detection of axion-like particles at the VUV-FEL. Letter of intent

    International Nuclear Information System (INIS)

    Koetz, U.; Ringwald, A.; Tschentscher, T.

    2006-06-01

    Recently, the PVLAS collaboration has reported evidence for an anomalously large rotation of the polarization of light generated in vacuum in the presence of a transverse magnetic field. This may be explained through the production of a new light spin-zero particle coupled to two photons. In this Letter of Intent, we propose to test this hypothesis by setting up a photon regeneration experiment which exploits the photon beam of the Vacuum-UltraViolet Free-Electron Laser VUV-FEL, sent along the transverse magnetic field of a linear arrangement of dipole magnets of size B L ∼ 30 Tm. The high photon energies available at the VUV-FEL increase substantially the expected photon regeneration rate in the mass range implied by the PVLAS anomaly, in comparison to the rate expected at visible lasers of similar power. We find that the particle interpretation of the PVLAS result can be tested within a short running period. The pseudoscalar vs. scalar nature can be determined by varying the direction of the magnetic field with respect to the laser polarization. The mass of the particle can be measured by running at different photon energies. The proposed experiment offers a window of opportunity for a firm establishment or exclusion of the particle interpretation of the PVLAS anomaly before other experiments can compete. (Orig.)

  8. Cataclastic effects in rock salt laboratory and in situ measurements

    International Nuclear Information System (INIS)

    Gramberg, J.; Roest, J.P.A.

    1984-01-01

    The aim of the research is the determination of eventual cataclastic effects in environmental rock salt of a heated part of a vertical deep test bore hole, a model for HLW disposal. Known cataclastic systems from hard rock mining and rock salt mines will form the starting point for the explanation of convergence of underground cavity walls. In rock salt, however, different elements seem to prevail: crystal plasticity and micro-cataclasis. The environmental measurements at the deep bore hole have to be carried out from a distance. To this end the acoustic micro-seismic method will be a suitable one. The appropriate equipment for micro-seismic cross hole measurement is designed, constructed and tested in the laboratory as well as underground. Acoustic velocity data form a crucial point. A micro-seismic acoustic P-wave model, adapted to the process of structural changes, is developed. P-wave velocity measurements in rock salt cubes in the laboratory are described. An underground cross hole measurement in the wall of a gallery with semi-circular section is treated and analysed. A conclusion was that, in this case, no macro-cataclasis (systematic large fractures) will be involved in the process of gallery convergence, but that the mechanism proved to be a combination of crystal plasticity and micro-cataclasis. The same mechanism might be expected to be present in the environmental rock salt of the HLW-disposal deep bore hole. As a result this environmental rock salt might be expected to be impermeable. A plan for the application of the developed equipment during the heating test on the ECN-deep-bore-hole is shown. A theory on ''disking'' or ''rim cracks'' is presented in an annex

  9. A measurement evaluation program to support nuclear material control and accountability measurements in Brazilian laboratories

    Energy Technology Data Exchange (ETDEWEB)

    Dias, Fabio C., E-mail: fabio@ird.gov.br [Comissao Nacional de Energia Nuclear (CNEN-RJ), Rio de Janeiro, RJ (Brazil); Mason, Peter, E-mail: peter.mason@ch.doe.gov [New Brunswick Laboratory (DOE/NBL), Argonne, IL (United States)

    2013-07-01

    A measurement evaluation program (MEP) is one of a number of valuable tools that analytical chemists can use to ensure that the data produced in the laboratory are fit for their intended purpose and consistent with expected performance values at a given time. As such, participation in a MEP is an important indicator of the quality of analytical data, and is recognized as such by independent regulatory and/or accreditation bodies. With the intent to implement such a program in Brazil, in November 2012 the Nuclear Energy Commission of Brazil (CNEN), with support from the Department of Energy of the United States' (US-DOE International Safeguards and Engagement Program), decided to initiate a technical cooperation project aiming at organizing a Safeguards Measurement Evaluation Program (SMEP) for Brazilian facilities. The project, entitled Action Sheet 23, was formalized under the terms of the Agreement between the US-DOE and the CNEN concerning research and development in nuclear material control, accountancy, verification, physical protection, and advanced containment and surveillance technologies for International Safeguards Applications. The work, jointly performed by the CNEN's Safeguards Laboratory (LASAL) and the New Brunswick Laboratory (NBL), has the objective to strengthen the traceability of accountability measurements and ensure adequate quality of safeguards measurements for facilities within Brazil, utilizing test samples characterized and provided by NBL. Recommendations to participants included measurement frequency, number of results per sample and format for reporting results using ISO methods for calculating and expressing measurement uncertainties. In this paper, we discuss the main steps taken by CNEN and NBL aiming at implementing such a program and the expected results, in particular the impact of uncertainty estimation on the evaluation of performance of each participant laboratory. The program is considered by Brazilian safeguards

  10. A measurement evaluation program to support nuclear material control and accountability measurements in Brazilian laboratories

    International Nuclear Information System (INIS)

    Dias, Fabio C.; Mason, Peter

    2013-01-01

    A measurement evaluation program (MEP) is one of a number of valuable tools that analytical chemists can use to ensure that the data produced in the laboratory are fit for their intended purpose and consistent with expected performance values at a given time. As such, participation in a MEP is an important indicator of the quality of analytical data, and is recognized as such by independent regulatory and/or accreditation bodies. With the intent to implement such a program in Brazil, in November 2012 the Nuclear Energy Commission of Brazil (CNEN), with support from the Department of Energy of the United States' (US-DOE International Safeguards and Engagement Program), decided to initiate a technical cooperation project aiming at organizing a Safeguards Measurement Evaluation Program (SMEP) for Brazilian facilities. The project, entitled Action Sheet 23, was formalized under the terms of the Agreement between the US-DOE and the CNEN concerning research and development in nuclear material control, accountancy, verification, physical protection, and advanced containment and surveillance technologies for International Safeguards Applications. The work, jointly performed by the CNEN's Safeguards Laboratory (LASAL) and the New Brunswick Laboratory (NBL), has the objective to strengthen the traceability of accountability measurements and ensure adequate quality of safeguards measurements for facilities within Brazil, utilizing test samples characterized and provided by NBL. Recommendations to participants included measurement frequency, number of results per sample and format for reporting results using ISO methods for calculating and expressing measurement uncertainties. In this paper, we discuss the main steps taken by CNEN and NBL aiming at implementing such a program and the expected results, in particular the impact of uncertainty estimation on the evaluation of performance of each participant laboratory. The program is considered by Brazilian safeguards authorities

  11. Low-k films modification under EUV and VUV radiation

    International Nuclear Information System (INIS)

    Rakhimova, T V; Rakhimov, A T; Mankelevich, Yu A; Lopaev, D V; Kovalev, A S; Vasil'eva, A N; Zyryanov, S M; Kurchikov, K; Proshina, O V; Voloshin, D G; Novikova, N N; Krishtab, M B; Baklanov, M R

    2014-01-01

    Modification of ultra-low-k films by extreme ultraviolet (EUV) and vacuum ultraviolet (VUV) emission with 13.5, 58.4, 106, 147 and 193 nm wavelengths and fluences up to 6 × 10 18  photons cm −2 is studied experimentally and theoretically to reveal the damage mechanism and the most ‘damaging’ spectral region. Organosilicate glass (OSG) and organic low-k films with k-values of 1.8–2.5 and porosity of 24–51% are used in these experiments. The Si–CH 3 bonds depletion is used as a criterion of VUV damage of OSG low-k films. It is shown that the low-k damage is described by two fundamental parameters: photoabsorption (PA) cross-section σ PA and effective quantum yield φ of Si–CH 3 photodissociation. The obtained σ PA and φ values demonstrate that the effect of wavelength is defined by light absorption spectra, which in OSG materials is similar to fused silica. This is the reason why VUV light in the range of ∼58–106 nm having the highest PA cross-sections causes strong Si–CH 3 depletion only in the top part of the films (∼50–100 nm). The deepest damage is observed after exposure to 147 nm VUV light since this emission is located at the edge of Si–O absorption, has the smallest PA cross-section and provides extensive Si–CH 3 depletion over the whole film thickness. The effective quantum yield slowly increases with the increasing porosity but starts to grow quickly when the porosity exceeds the critical threshold located close to a porosity of ∼50%. The high degree of pore interconnectivity of these films allows easy movement of the detached methyl radicals. The obtained results have a fundamental character and can be used for prediction of ULK material damage under VUV light with different wavelengths. (paper)

  12. Laboratory Activity on Sample Handling and Maintaining a Laboratory Notebook through Simple pH Measurements

    Science.gov (United States)

    Erdmann, Mitzy A.; March, Joe L.

    2016-01-01

    Sample handling and laboratory notebook maintenance are necessary skills but can seem abstract if not presented to students in context. An introductory exercise focusing on proper sample handling, data collection and laboratory notebook keeping for the general chemistry laboratory was developed to emphasize the importance of keeping an accurate…

  13. A straightforward method for Vacuum-Ultraviolet flux measurements: The case of the hydrogen discharge lamp and implications for solid-phase actinometry

    International Nuclear Information System (INIS)

    Fulvio, D.; Brieva, A. C.; Jäger, C.; Cuylle, S. H.; Linnartz, H.; Henning, T.

    2014-01-01

    Vacuum-Ultraviolet (VUV) radiation is responsible for the photo-processing of simple and complex molecules in several terrestrial and extraterrestrial environments. In the laboratory such radiation is commonly simulated by inexpensive and easy-to-use microwave-powered hydrogen discharge lamps. However, VUV flux measurements are not trivial and the methods/devices typically used for this purpose, mainly actinometry and calibrated VUV silicon photodiodes, are not very accurate or expensive and lack of general suitability to experimental setups. Here, we present a straightforward method for measuring the VUV photon flux based on the photoelectric effect and using a gold photodetector. This method is easily applicable to most experimental setups, bypasses the major problems of the other methods, and provides reliable flux measurements. As a case study, the method is applied to a microwave-powered hydrogen discharge lamp. In addition, the comparison of these flux measurements to those obtained by O 2 actinometry experiments allow us to estimate the quantum yield (QY) values QY 122  = 0.44 ± 0.16 and QY 160  = 0.87 ± 0.30 for solid-phase O 2 actinometry.

  14. A straightforward method for Vacuum-Ultraviolet flux measurements: The case of the hydrogen discharge lamp and implications for solid-phase actinometry

    Energy Technology Data Exchange (ETDEWEB)

    Fulvio, D., E-mail: daniele.fulvio@uni-jena.de, E-mail: dfu@oact.inaf.it; Brieva, A. C.; Jäger, C. [Laboratory Astrophysics Group of the Max Planck Institute for Astronomy at the Friedrich Schiller University Jena, Institute of Solid State Physics, Helmholtzweg 3, D-07743 Jena (Germany); Cuylle, S. H.; Linnartz, H. [Raymond and Beverly Sackler Laboratory for Astrophysics, Leiden Observatory, Leiden University, P.O. box 9513, 2300 RA Leiden (Netherlands); Henning, T. [Max Planck Institute for Astronomy, Königstuhl 17, D-69117 Heidelberg (Germany)

    2014-07-07

    Vacuum-Ultraviolet (VUV) radiation is responsible for the photo-processing of simple and complex molecules in several terrestrial and extraterrestrial environments. In the laboratory such radiation is commonly simulated by inexpensive and easy-to-use microwave-powered hydrogen discharge lamps. However, VUV flux measurements are not trivial and the methods/devices typically used for this purpose, mainly actinometry and calibrated VUV silicon photodiodes, are not very accurate or expensive and lack of general suitability to experimental setups. Here, we present a straightforward method for measuring the VUV photon flux based on the photoelectric effect and using a gold photodetector. This method is easily applicable to most experimental setups, bypasses the major problems of the other methods, and provides reliable flux measurements. As a case study, the method is applied to a microwave-powered hydrogen discharge lamp. In addition, the comparison of these flux measurements to those obtained by O{sub 2} actinometry experiments allow us to estimate the quantum yield (QY) values QY{sub 122} = 0.44 ± 0.16 and QY{sub 160} = 0.87 ± 0.30 for solid-phase O{sub 2} actinometry.

  15. Environmental Audit of the Environmental Measurements Laboratory (EML)

    International Nuclear Information System (INIS)

    1992-02-01

    This document contains the findings identified during the Environmental Audit of the Environmental Measurements Laboratory (EML), conducted from December 2 to 13, 1991. The Audit included the EML facility located in a fifth-floor General Services Administration (GSA) office building located in New York City, and a remote environmental monitoring station located in Chester, New Jersey. The scope of this Environmental Audit was comprehensive, covering all areas of environmental activities and waste management operations, with the exception of the National Environmental Policy Act (NEPA), which is the responsibility of the DOE Headquarters Office of NEPA Oversight. Compliance with applicable Federal, state, and local requirements; applicable DOE Orders; and internal facility requirements was addressed

  16. Results from laboratory and field testing of nitrate measuring spectrophotometers

    Science.gov (United States)

    Snazelle, Teri T.

    2015-01-01

    Five ultraviolet (UV) spectrophotometer nitrate analyzers were evaluated by the U.S. Geological Survey (USGS) Hydrologic Instrumentation Facility (HIF) during a two-phase evaluation. In Phase I, the TriOS ProPs (10-millimeter (mm) path length), Hach NITRATAX plus sc (5-mm path length), Satlantic Submersible UV Nitrate Analyzer (SUNA, 10-mm path length), and S::CAN Spectro::lyser (5-mm path length) were evaluated in the HIF Water-Quality Servicing Laboratory to determine the validity of the manufacturer's technical specifications for accuracy, limit of linearity (LOL), drift, and range of operating temperature. Accuracy specifications were met in the TriOS, Hach, and SUNA. The stock calibration of the S::CAN required two offset adjustments before the analyzer met the manufacturer's accuracy specification. Instrument drift was observed only in the S::CAN and was the result of leaching from the optical path insert seals. All tested models, except for the Hach, met their specified LOL in the laboratory testing. The Hach's range was found to be approximately 18 milligrams nitrogen per liter (mg-N/L) and not the manufacturer-specified 25 mg-N/L. Measurements by all of the tested analyzers showed signs of hysteresis in the operating temperature tests. Only the SUNA measurements demonstrated excessive noise and instability in temperatures above 20 degrees Celsius (°C). The SUNA analyzer was returned to the manufacturer at the completion of the Phase II field deployment evaluation for repair and recalibration, and the performance of the sensor improved significantly.

  17. Argonne National Laboratory's thermal plume measurements: instruments and techniques

    International Nuclear Information System (INIS)

    Van Loon, L.S.; Frigo, A.A.; Paddock, R.A.

    1977-12-01

    Instrumentation and techniques were developed at Argonne National Laboratory for measuring the three-dimensional temperature structure of thermal plumes from power plants, along with the limnological, meteorological, and plant operating conditions affecting their behavior. The equipment and procedures were designed to provide field data for use in evaluating predictive models that describe thermal plume behavior, and over 100 sets of these data have been collected. The instrument systems and techniques employed in a typical thermal discharge survey are highly integrated. Continuous monitoring of ambient and plant conditions is coupled with plume mapping from a moving survey boat. The instantaneous location of the boat together with subsurface temperature measurements from a towed thermistor chain provide a quasisynoptic view of the plume structure. Real-time, onboard display of the boat path and vertical temperatures supply feedback to investigators for determining the extent and spatial resolution of measurements required. The unique design, reliability, accuracy, calibration, and historical development of the components of these integrated systems are described. Survey system interfaces with data handling and processing techniques are also explained. Special supportive studies to investigate plume dynamics, values of eddy diffusivities, time-temperature histories of water parcels in thermal plumes, and rapid changes in plume shape are also described along with instrumentation used

  18. Measuring Dynamic Kidney Function in an Undergraduate Physiology Laboratory

    Science.gov (United States)

    Medler, Scott; Harrington, Frederick

    2013-01-01

    Most undergraduate physiology laboratories are very limited in how they treat renal physiology. It is common to find teaching laboratories equipped with the capability for high-resolution digital recordings of physiological functions (muscle twitches, ECG, action potentials, respiratory responses, etc.), but most urinary laboratories still rely on…

  19. The NRPB Chilton Calibration Laboratory for radiological protection measurements

    International Nuclear Information System (INIS)

    Iles, W.J.

    1982-01-01

    The Calibration Laboratory in NRPB Headquarters is intended as an authoritative reference laboratory for all aspects of radiation protection level instrument calibrations for X-, gamma and beta radiations and to be complementary to the national primary standards of the National Physical Laboratory. The gamma ray, filtered X-ray, fluorescence X-ray and beta ray facilities are described. (U.K.)

  20. Laboratory measurements of grain-bedrock interactions using inertial sensors.

    Science.gov (United States)

    Maniatis, Georgios; Hoey, Trevor; Hodge, Rebecca; Valyrakis, Manousos; Drysdale, Tim

    2016-04-01

    Sediment transport in steep mountain streams is characterized by the movement of coarse particles (diameter c.100 mm) over beds that are not fully sediment-covered. Under such conditions, individual grain dynamics become important for the prediction of sediment movement and subsequently for understanding grain-bedrock interaction. Technological advances in micro-mechanical-electrical systems now provide opportunities to measure individual grain dynamics and impact forces from inside the sediments (grain inertial frame of reference) instead of trying to infer them indirectly from water flow dynamics. We previously presented a new prototype sensor specifically developed for monitoring sediment transport [Maniatis et al. EGU 2014], and have shown how the definition of the physics of the grain using the inertial frame and subsequent derived measurements which have the potential to enhance the prediction of sediment entrainment [Maniatis et al. 2015]. Here we present the latest version of this sensor and we focus on beginning of the cessation of grain motion: the initial interaction with the bed after the translation phase. The sensor is housed in a spherical case, diameter 80mm, and is constructed using solid aluminum (density = 2.7 kg.m-3) after detailed 3D-CAD modelling. A complete Inertial Measurement Unit (a combination of micro- accelerometer, gyroscope and compass) was placed at the center of the mass of the assembly, with measurement ranges of 400g for acceleration, and 1200 rads/sec for angular velocity. In a 0.9m wide laboratory flume, bed slope = 0.02, the entrainment threshold of the sensor was measured, and the water flow was then set to this value. The sensor was then rolled freely from a static cylindrical bar positioned exactly on the surface of the flowing water. As the sensor enters the flow we record a very short period of transport (1-1.5 sec) followed by the impact on the channel bed. The measured Total Kinetic Energy (Joules) includes the

  1. Implementing planetary protection measures on the Mars Science Laboratory.

    Science.gov (United States)

    Benardini, James N; La Duc, Myron T; Beaudet, Robert A; Koukol, Robert

    2014-01-01

    The Mars Science Laboratory (MSL), comprising a cruise stage; an aeroshell; an entry, descent, and landing system; and the radioisotope thermoelectric generator-powered Curiosity rover, made history with its unprecedented sky crane landing on Mars on August 6, 2012. The mission's primary science objective has been to explore the area surrounding Gale Crater and assess its habitability for past life. Because microbial contamination could profoundly impact the integrity of the mission and compliance with international treaty was required, planetary protection measures were implemented on MSL hardware to verify that bioburden levels complied with NASA regulations. By applying the proper antimicrobial countermeasures throughout all phases of assembly, the total bacterial endospore burden of MSL at the time of launch was kept to 2.78×10⁵ spores, well within the required specification of less than 5.0×10⁵ spores. The total spore burden of the exposed surfaces of the landed MSL hardware was 5.64×10⁴, well below the allowed limit of 3.0×10⁵ spores. At the time of launch, the MSL spacecraft was burdened with an average of 22 spores/m², which included both planned landed and planned impacted hardware. Here, we report the results of a campaign to implement and verify planetary protection measures on the MSL flight system.

  2. National synchrotron light source user's manual: Guide to the VUV and x-ray beamlines: Third edition

    International Nuclear Information System (INIS)

    Gmuer, N.F.; Thomlinson, W.; White-DePace, S.

    1989-01-01

    This report contains information on the following topics: A Word on the Writing of Beamline Descriptions; Beamline Equipment Utilization for General Users; the Vacuum Ultraviolet (VUV) Storage Ring and Beamlines; VUV Beamline Descriptions--An Explanation; VUV Beamline Descriptions; X-Ray Storage Ring and Beamlines; X-Ray Beamline Descriptions--An Explanation; and X-Ray Beamline Descriptions

  3. VUV optical ring resonator for Duke storage ring free electron laser

    Energy Technology Data Exchange (ETDEWEB)

    Park, S.H.; Litvinenko, V.N.; Madey, J.M.J. [Duke Univ., Durham, NC (United States)] [and others

    1995-12-31

    The conceptual design of the multifaceted-mirror ring resonator for Duke storage ring VUV FEL is presented. The expected performance of the OK-4 FEL with ring resonator is described. We discuss in this paper our plans to study reflectivity of VUV mirrors and their resistivity to soft X-ray spontaneous radiation from OK-4 undulator.

  4. VUV photoionization cross sections of HO2, H2O2, and H2CO.

    Science.gov (United States)

    Dodson, Leah G; Shen, Linhan; Savee, John D; Eddingsaas, Nathan C; Welz, Oliver; Taatjes, Craig A; Osborn, David L; Sander, Stanley P; Okumura, Mitchio

    2015-02-26

    The absolute vacuum ultraviolet (VUV) photoionization spectra of the hydroperoxyl radical (HO2), hydrogen peroxide (H2O2), and formaldehyde (H2CO) have been measured from their first ionization thresholds to 12.008 eV. HO2, H2O2, and H2CO were generated from the oxidation of methanol initiated by pulsed-laser-photolysis of Cl2 in a low-pressure slow flow reactor. Reactants, intermediates, and products were detected by time-resolved multiplexed synchrotron photoionization mass spectrometry. Absolute concentrations were obtained from the time-dependent photoion signals by modeling the kinetics of the methanol oxidation chemistry. Photoionization cross sections were determined at several photon energies relative to the cross section of methanol, which was in turn determined relative to that of propene. These measurements were used to place relative photoionization spectra of HO2, H2O2, and H2CO on an absolute scale, resulting in absolute photoionization spectra.

  5. Probing colliding Calcium plasmas with emission and VUV absorption imaging

    International Nuclear Information System (INIS)

    Kavanagh, K.D.; Hirsch, J.S.; Kennedy, E.T.; Costello, T.; Poletto, L.; Nicolosi, P.

    2004-01-01

    Full text: Laser produced plasmas are formed when a short pulse and high power laser is focused onto a surface. Applications range from VUV/X-ray sources for lithography, microscopy and radiography to X-ray lasers, thin film deposition, analytical spectroscopy and electron/ion beam generation (and even acceleration). A battery of particle and optical techniques are now used to diagnose laser plasmas. One highly successful technique is gated-CCD (Charged Coupled Device) imaging of plasma plumes. It provides critical data on the early (creation) and late (expansion) phases of plasma plumes. However, this technique is limited to detecting only the excited (emitting) species in the plume. Recently, we developed a vacuum-UV (VUV) photoabsorption imaging facility called VPIF which enables one can track the evolution of dark plume matter or non-emitting plasma species residing in ground and metastable states. Although much is known about the dynamics of single laser plasma plumes expanding freely, little is known about the overlap between colliding plasma plumes. We are currently performing combined conventional gated CCD imaging and spectroscopy with VUV absorption imaging to map the evolution of the overlap volume of two colliding and interpenetrating plasma plumes. We are specifically tracking ground state singly ionized calcium in the plasmas by tuning into the inner shell 3p to 3d transition at 33.2 eV while the excited state species are tracked using transitions in the UV -NIR spectral range. The experiment may be cast as a model system for atmospheric and/or astrophysical colliding systems, e.g., when tracer elements are injected into supersonic winds at high altitude or when supernovae eject plasma into the solar wind

  6. Rydberg states of chloroform studied by VUV photoabsorption spectroscopy

    Science.gov (United States)

    Singh, Param Jeet; Shastri, Aparna; D'Souza, R.; Jagatap, B. N.

    2013-11-01

    The VUV photoabsorption spectra of CHCl3 and CDCl3 in the energy region 6.2-11.8 eV (50,000-95,000 cm-1) have been investigated using synchrotron radiation from the Indus-1 source. Rydberg series converging to the first four ionization limits at 11.48, 11.91, 12.01 and 12.85 eV corresponding to excitation from the 1a2, 4a1, 4e, 3e, orbitals of CHCl3 respectively are identified and analyzed. Quantum defect values are observed to be consistent with excitation from the chlorine lone pair orbitals. Vibrational progressions observed in the region of 72,500-76,500 cm-1 have been reassigned to ν3 and combination modes of ν3+ν6 belonging to the 1a2→4p transition in contrast to earlier studies where they were assigned to a ν3 progression superimposed on the 3e→4p Rydberg transition. The assignments are further confirmed based on isotopic substitution studies on CDCl3 whose VUV photoabsorption spectrum is reported here for the first time. The frequencies of the ν3 and ν6 modes in the 4p Rydberg state of CHCl3 (CDCl3) are proposed to be ~454 (409) cm-1 and~130 (129) cm-1 respectively based on the vibronic analysis. DFT calculations of neutral and ionic ground state vibrational frequencies support the vibronic analysis. Experimental spectrum is found to be in good agreement with that predicted by TDDFT calculations. This work presents a consolidated analysis of the VUV photoabsorption spectrum of chloroform.

  7. Environmental Measurements Laboratory annual report, calendar year 1980

    International Nuclear Information System (INIS)

    Volchok, H.L.

    1981-05-01

    The 1980 Annual Report is presented as a series of abstracts, organized by broad programmatic headings under the five technical Laboratory Divisions and one Branch. In addition, a short section appears at the end of the report describing the organization, staff, outside activities and our publications and presentations for the year. Research performaed by the Environmental Studies Division is reported under the following categories: high altitude sampling program, deposition and surface air, and the biosphere. Measurement methods research and air quality field studies are reported by the Aerosol Studies Division. The Radiation Physics Division reported research on radiation transport theory, radiation dosimetry, environmental radioactivity, and the assessment of non-nuclear energy technologies. Research in the Analytical Chemistry Division is reported on quality assurance, analytical support of research projects, analytical development for research projects, and programmatic research. The Instrumentation Division reported research on the development of instrumentation in various categories. The Applied Mathematics Branch reported results of programs for aerosol studies, analytical chemistry, environmental studies, and radiation physics

  8. Rydberg states of chloroform studied by VUV photoabsorption spectroscopy

    International Nuclear Information System (INIS)

    Singh, Param Jeet; Shastri, Aparna; D’Souza, R.; Jagatap, B.N.

    2013-01-01

    The VUV photoabsorption spectra of CHCl 3 and CDCl 3 in the energy region 6.2–11.8 eV (50,000–95,000 cm −1 ) have been investigated using synchrotron radiation from the Indus-1 source. Rydberg series converging to the first four ionization limits at 11.48, 11.91, 12.01 and 12.85 eV corresponding to excitation from the 1a 2 , 4a 1 , 4e, 3e, orbitals of CHCl 3 respectively are identified and analyzed. Quantum defect values are observed to be consistent with excitation from the chlorine lone pair orbitals. Vibrational progressions observed in the region of 72,500–76,500 cm −1 have been reassigned to ν 3 and combination modes of ν 3 +ν 6 belonging to the 1a 2 →4p transition in contrast to earlier studies where they were assigned to a ν 3 progression superimposed on the 3e→4p Rydberg transition. The assignments are further confirmed based on isotopic substitution studies on CDCl 3 whose VUV photoabsorption spectrum is reported here for the first time. The frequencies of the ν 3 and ν 6 modes in the 4p Rydberg state of CHCl 3 (CDCl 3 ) are proposed to be ∼454 (409) cm −1 and∼130 (129) cm −1 respectively based on the vibronic analysis. DFT calculations of neutral and ionic ground state vibrational frequencies support the vibronic analysis. Experimental spectrum is found to be in good agreement with that predicted by TDDFT calculations. This work presents a consolidated analysis of the VUV photoabsorption spectrum of chloroform. -- Highlights: •VUV photoabsorption spectra of CHCl 3 and CDCl 3 studied using synchrotron radiation. •Quantum defect analysis of Rydberg series converging to first four ionization limits. •Vibronic bands in 72,500–76,500 cm −1 region assigned to 1a 2 →4p Rydberg transition. •Vibrational progressions assigned to ν 3 and ν 3 +ν 6 using ab initio calculations. •Excellent agreement of TDDFT vertical excited energies with experimental spectrum

  9. Error prevention at a radon measurement service laboratory

    International Nuclear Information System (INIS)

    Cohen, B.L.; Cohen, F.

    1989-01-01

    This article describes the steps taken at a high volume counting laboratory to avoid human, instrument, and computer errors. The laboratory analyzes diffusion barrier charcoal adsorption canisters which have been used to test homes and commercial buildings. A series of computer and human cross-checks are utilized to assure that accurate results are reported to the correct client

  10. Toward a direct comparison of field and laboratory goniometer measurements

    NARCIS (Netherlands)

    Dangel, S.; Verstraete, M.; Schopfer, J.; Kneubuehler, M.; Schaepman, M.E.; Itten, K.I.

    2005-01-01

    Field and laboratory goniometers are widely used in the remote sensing community to assess spectrodirectional reflection properties of selected targets. Even when the same target and goniometer system are used, field and laboratory results cannot directly be compared due to inherent differences,

  11. Laboratory measurements and astronomical search for the HSO radical.

    Science.gov (United States)

    Cazzoli, Gabriele; Lattanzi, Valerio; Kirsch, Till; Gauss, Jürgen; Tercero, Belén; Cernicharo, José; Puzzarini, Cristina

    2016-07-01

    Despite the fact that many sulfur-bearing molecules, ranging from simple diatomic species up to astronomical complex molecules, have been detected in the interstellar medium, the sulfur chemistry in space is largely unknown and a depletion in the abundance of S-containing species has been observed in the cold, dense interstellar medium (ISM). The chemical form of the missing sulfur has yet to be identified. For these reasons, in view of the fact that there is a large abundance of triatomic species harbouring sulfur, oxygen, and hydrogen, we decided to investigate the HSO radical in the laboratory to try its astronomical detection. High-resolution measurements of the rotational spectrum of the HSO radical were carried out within a frequency range well up into the THz region. Subsequently, a rigorous search for HSO in the two most studied high-mass star-forming regions, Orion KL and Sagittarius (Sgr) B2, and in the cold dark cloud Barnard 1 (B1-b) was performed. The frequency coverage and the spectral resolution of our measurements allowed us to improve and extend the existing dataset of spectroscopic parameters, thus enabling accurate frequency predictions up to the THz range. These were used to derive the synthetic spectrum of HSO, by means of the MADEX code, according to the physical parameters of the astronomical source under consideration. For all sources investigated, the lack of HSO lines above the confusion limit of the data is evident. The derived upper limit to the abundance of HSO clearly indicates that this molecule does not achieve significant abundances in either the gas phase or in the ice mantles of dust grains.

  12. Directed energy deflection laboratory measurements of common space based targets

    Science.gov (United States)

    Brashears, Travis; Lubin, Philip; Hughes, Gary B.; Meinhold, Peter; Batliner, Payton; Motta, Caio; Madajian, Jonathan; Mercer, Whitaker; Knowles, Patrick

    2016-09-01

    We report on laboratory studies of the effectiveness of directed energy planetary defense as a part of the DE-STAR (Directed Energy System for Targeting of Asteroids and exploRation) program. DE-STAR and DE-STARLITE are directed energy "stand-off" and "stand-on" programs, respectively. These systems consist of a modular array of kilowatt-class lasers powered by photovoltaics, and are capable of heating a spot on the surface of an asteroid to the point of vaporization. Mass ejection, as a plume of evaporated material, creates a reactionary thrust capable of diverting the asteroid's orbit. In a series of papers, we have developed a theoretical basis and described numerical simulations for determining the thrust produced by material evaporating from the surface of an asteroid. In the DESTAR concept, the asteroid itself is used as the deflection "propellant". This study presents results of experiments designed to measure the thrust created by evaporation from a laser directed energy spot. We constructed a vacuum chamber to simulate space conditions, and installed a torsion balance that holds a common space target sample. The sample is illuminated with a fiber array laser with flux levels up to 60 MW/m2 , which allows us to simulate a mission level flux but on a small scale. We use a separate laser as well as a position sensitive centroid detector to readout the angular motion of the torsion balance and can thus determine the thrust. We compare the measured thrust to the models. Our theoretical models indicate a coupling coefficient well in excess of 100 μN/Woptical, though we assume a more conservative value of 80 μN/Woptical and then degrade this with an optical "encircled energy" efficiency of 0.75 to 60 μN/Woptical in our deflection modeling. Our measurements discussed here yield about 45 μN/Wabsorbed as a reasonable lower limit to the thrust per optical watt absorbed. Results vary depending on the material tested and are limited to measurements of 1 axis, so

  13. Relaxation and excitation electronic processes in dielectrics irradiated by ultrafast IR and VUV pulses

    International Nuclear Information System (INIS)

    Gaudin, J.

    2005-11-01

    We studied excitation and relaxation of electrons involved during interaction of visible and VUV femtosecond pulses with dielectrics. The generated population of hot electrons, having energy of few eV to few tens of eV above the bottom of the conduction band, is responsible of phenomena ranging to defect creation to optical breakdown. Owing to two techniques: photoemission and transient photoconductivity we improve the understanding of the The first photoemission experiments deal with dielectrics irradiated by 30 fs IR pulses. The photoemission spectra measured show a large population of electrons which energy rise up to 40 eV. We interpret this result in terms of a new absorption process: direct multi-photons inter-branch transitions. The 2. type of photoemission experiments are time resolved 'pump/probe' investigation. We study the relaxation of electrons excited by a VUV pulses. We used the high order harmonics (HOH) as light sources. We found surprisingly long decay time in the range of ps timescale. Last type of experiments is photoconductivity studies of diamond samples. Using HOH as light source we measure the displacement current induced by excited electrons in the conduction band. Those electrons relax mainly by impact ionisation creating secondary electrons. Hence by probing the number of electrons we were able to measure the efficiency of these relaxation processes. We observe a diminution of this efficiency when the energy of exciting photons is above 20 eV. Owing to Monte-Carlo simulation we interpret this result in terms of band structure effect. (author)

  14. Optical Signature Analysis of Tumbling Rocket Bodies via Laboratory Measurements

    Science.gov (United States)

    Cowardin, H.; Lederer, S.; Liou, J.-C.; Ojakangas, G.; Mulrooney, M.

    2012-09-01

    The NASA Orbital Debris Program Office has acquired telescopic lightcurve data on massive intact objects, specifically spent rocket bodies (R/Bs), to ascertain tumble rates in support of the Active Debris Removal (ADR) studies to help remediate the LEO environment. Tumble rates are needed to plan and develop proximity and docking operations for potential future ADR operations. To better characterize and model optical data acquired from ground-based telescopes, the Optical Measurements Center (OMC) at NASA/JSC emulates illumination conditions in space using equipment and techniques that parallel telescopic observations and source-target-sensor orientations. The OMC employs a 75-W Xenon arc lamp as a solar simulator, an SBIG CCD camera with standard Johnson/Bessel filters, and a robotic arm to simulate an object's position and rotation. The OMC does not attempt to replicate the rotation rates, but focuses on ascertaining how an object is rotating as seen from multiple phase angles. The two targets studied are scaled (1:48) SL-8 Cosmos 3M second stages. The first target is painted in the standard Russian government "gray" scheme and the second target is white/orange as used for commercial missions. This paper summarizes results of the two scaled rocket bodies, each observed in three independent rotation states: (a) spin-stabilized rotation (about the long axis), (b) end-over-end rotation, and (c) a 10 degree wobble about the center of mass. The first two cases represent simple spin about either primary axis. The third - what we call "wobble" - represents maximum principal axis rotation, with an inertia tensor that is offset from the symmetry axes. By comparing the resultant phase and orientation-dependent laboratory signatures with actual lightcurves derived from telescopic observations of orbiting R/Bs, we intend to assess the intrinsic R/B rotation states. In the simplest case, simulated R/B behavior coincides with principal axis spin states, while more complex R

  15. 172 nm excimer VUV-triggered photodegradation and micropatterning of aminosilane films

    International Nuclear Information System (INIS)

    Elsner, Christian; Naumov, Sergej; Zajadacz, Joachim; Buchmeiser, Michael R.

    2009-01-01

    Emission from Xe 2 * excimers exhibiting photon energies between 7 and 10 eV can be used to induce strong surface modification effects on polymeric materials in the top 100 nm layer. In order to identify suitable monomers for this VUV-based process, the photodegradation mechanism of different organosilanes of the general structure R-CH 2 -Si(OCH 3 ) 3 was elucidated by quantum chemical calculations. Herein, the photodegradation of 3-aminopropyltrimethoxysilane films by the use of a 172 nm excimer lamp under different irradiation conditions is described and completed by micropatterning experiments. The presence of 1000-5000 ppm oxygen was found to promote the transformation process to an inorganic-like surface. The films obtained were analyzed by X-ray photoelectron spectroscopy, contact angle measurements and fluorescence microscopy after covalent attachment of a fluorescent dye to the remaining amino groups. Complementary, silver staining was used to visualize photopatterning.

  16. The nuclear isomer transition in Thorium-229. Search for the VUV photon

    Energy Technology Data Exchange (ETDEWEB)

    Stellmer, Simon [TU Wien (Austria). Atominstitut; VCQ, Vienna (Austria); Schreitl, Matthias; Schumm, Thorsten [TU Wien (Austria). Atominstitut; Yoshimura, Koji [Okayama University (Japan)

    2015-07-01

    The isotope {sup 229}Th is believed to possess a low-lying nuclear excitation, at an energy of about 7.8(5) eV, corresponding to a wavelength of 160(10) nm. Convincing direct evidence of the existence of this state, for instance by observation of its excitation or decay, is still pending. Optical excitation of the isomer state is an exceptional challenge, as the required wavelength is not known, the transition is believed to be extremely narrow, and the choice of suitable lasers is limited. Instead, we use synchrotron radiation at 29 keV to populate the second excited state, which then decays into the desired isomer state. This state proceeds further into the ground state under emission of the much sought-after VUV photon. This photon is detected in a spectrometer. The measurements are performed at the SPring-8 facility in Japan; we will report on the latest status of the experiment.

  17. VUV photo-processing of PAH cations: quantitative study on the ionization versus fragmentation processes

    Science.gov (United States)

    Zhen, Junfeng; Castillo, Sarah Rodriguez; Joblin, Christine; Mulas, Giacomo; Sabbah, Hassan; Giuliani, Alexandre; Nahon, Laurent; Martin, Serge; Champeaux, Jean-Philippe; Mayer, Paul M.

    2016-01-01

    Interstellar polycyclic aromatic hydrocarbons (PAHs) are strongly affected by the absorption of vacuum ultraviolet (VUV) photons in the interstellar medium (ISM), yet the branching ratio between ionization and fragmentation is poorly studied. This is crucial for the stability and charge state of PAHs in the ISM in different environments, affecting in turn the chemistry, the energy balance, and the contribution of PAHs to the extinction and emission curves. We studied the interaction of PAH cations with VUV photons in the 7 – 20 eV range from the synchrotron SOLEIL beamline, DESIRS. We recorded by action spectroscopy the relative intensities of photo-fragmentation and photo-ionization for a set of eight PAH cations ranging in size from 14 to 24 carbon atoms, with different structures. At photon energies below ~13.6 eV fragmentation dominates for the smaller species, while for larger species ionization is immediately competitive after the second ionization potential (IP). At higher photon energies, all species behave similarly, the ionization yield gradually increases, leveling off between 0.8 and 0.9 at ~18 eV. Among isomers, PAH structure appears to mainly affect the fragmentation cross section, but not the ionization cross section. We also measured the second IP for all species and the third IP for two of them, all are in good agreement with theoretical ones confirming that PAH cations can be further ionized in the diffuse ISM. Determining actual PAH dication abundances in the ISM will require detailed modeling. Our measured photo-ionization yields for several PAH cations provide a necessary ingredient for such models. PMID:27212712

  18. VUV photo-processing of PAH cations: quantitative study on the ionization versus fragmentation processes.

    Science.gov (United States)

    Zhen, Junfeng; Castillo, Sarah Rodriguez; Joblin, Christine; Mulas, Giacomo; Sabbah, Hassan; Giuliani, Alexandre; Nahon, Laurent; Martin, Serge; Champeaux, Jean-Philippe; Mayer, Paul M

    2016-05-10

    Interstellar polycyclic aromatic hydrocarbons (PAHs) are strongly affected by the absorption of vacuum ultraviolet (VUV) photons in the interstellar medium (ISM), yet the branching ratio between ionization and fragmentation is poorly studied. This is crucial for the stability and charge state of PAHs in the ISM in different environments, affecting in turn the chemistry, the energy balance, and the contribution of PAHs to the extinction and emission curves. We studied the interaction of PAH cations with VUV photons in the 7 - 20 eV range from the synchrotron SOLEIL beamline, DESIRS. We recorded by action spectroscopy the relative intensities of photo-fragmentation and photo-ionization for a set of eight PAH cations ranging in size from 14 to 24 carbon atoms, with different structures. At photon energies below ~13.6 eV fragmentation dominates for the smaller species, while for larger species ionization is immediately competitive after the second ionization potential (IP). At higher photon energies, all species behave similarly, the ionization yield gradually increases, leveling off between 0.8 and 0.9 at ~18 eV. Among isomers, PAH structure appears to mainly affect the fragmentation cross section, but not the ionization cross section. We also measured the second IP for all species and the third IP for two of them, all are in good agreement with theoretical ones confirming that PAH cations can be further ionized in the diffuse ISM. Determining actual PAH dication abundances in the ISM will require detailed modeling. Our measured photo-ionization yields for several PAH cations provide a necessary ingredient for such models.

  19. VUV PHOTO-PROCESSING OF PAH CATIONS: QUANTITATIVE STUDY ON THE IONIZATION VERSUS FRAGMENTATION PROCESSES

    International Nuclear Information System (INIS)

    Zhen, Junfeng; Castillo, Sarah Rodriguez; Joblin, Christine; Mulas, Giacomo; Sabbah, Hassan; Giuliani, Alexandre; Nahon, Laurent; Martin, Serge; Champeaux, Jean-Philippe; Mayer, Paul M.

    2016-01-01

    Interstellar polycyclic aromatic hydrocarbons (PAHs) are strongly affected by the absorption of vacuum ultraviolet (VUV) photons in the interstellar medium (ISM), yet the branching ratio between ionization and fragmentation is poorly studied. This is crucial for the stability and charge state of PAHs in the ISM in different environments, affecting in turn the chemistry, the energy balance, and the contribution of PAHs to the extinction and emission curves. We studied the interaction of PAH cations with VUV photons in the 7–20 eV range from the synchrotron SOLEIL beamline, DESIRS. We recorded by action spectroscopy the relative intensities of photo-fragmentation and photo-ionization for a set of eight PAH cations ranging in size from 14 to 24 carbon atoms, with different structures. At photon energies below ∼13.6 eV fragmentation dominates for the smaller species, while for larger species ionization is immediately competitive after the second ionization potential (IP). At higher photon energies all species behave similarly; the ionization yield gradually increases, leveling off between 0.8 and 0.9 at ∼18 eV. Among isomers, PAH structure appears to mainly affect the fragmentation cross section but not the ionization cross section. We also measured the second IP for all species and the third IP for two of them; all are in good agreement with theoretical ones, confirming that PAH cations can be further ionized in the diffuse ISM. Determining actual PAH dication abundances in the ISM will require detailed modeling. Our measured photo-ionization yields for several PAH cations provide a necessary ingredient for such models.

  20. VUV PHOTO-PROCESSING OF PAH CATIONS: QUANTITATIVE STUDY ON THE IONIZATION VERSUS FRAGMENTATION PROCESSES

    Energy Technology Data Exchange (ETDEWEB)

    Zhen, Junfeng; Castillo, Sarah Rodriguez; Joblin, Christine; Mulas, Giacomo; Sabbah, Hassan [Université de Toulouse, UPS-OMP, Institut de Recherche en Astrophysique et Planétologie, Toulouse (France); Giuliani, Alexandre; Nahon, Laurent [Synchrotron SOLEIL, LOrme des Merisiers, F-91192 Gif sur Yvette Cedex (France); Martin, Serge [Institut Lumière Matière, Université Lyon 1-CNRS, Université de Lyon, F-69622 Villeurbanne cedex (France); Champeaux, Jean-Philippe [Laboratoire Collisions Agrégats Réactivité, Université de Toulouse, UPS-IRSAMC, CNRS, 118 Route de Narbonne, Bat 3R1B4, F-31062 Toulouse Cedex 9 (France); Mayer, Paul M., E-mail: christine.joblin@irap.omp.eu [Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa K1N 6N5 (Canada)

    2016-05-10

    Interstellar polycyclic aromatic hydrocarbons (PAHs) are strongly affected by the absorption of vacuum ultraviolet (VUV) photons in the interstellar medium (ISM), yet the branching ratio between ionization and fragmentation is poorly studied. This is crucial for the stability and charge state of PAHs in the ISM in different environments, affecting in turn the chemistry, the energy balance, and the contribution of PAHs to the extinction and emission curves. We studied the interaction of PAH cations with VUV photons in the 7–20 eV range from the synchrotron SOLEIL beamline, DESIRS. We recorded by action spectroscopy the relative intensities of photo-fragmentation and photo-ionization for a set of eight PAH cations ranging in size from 14 to 24 carbon atoms, with different structures. At photon energies below ∼13.6 eV fragmentation dominates for the smaller species, while for larger species ionization is immediately competitive after the second ionization potential (IP). At higher photon energies all species behave similarly; the ionization yield gradually increases, leveling off between 0.8 and 0.9 at ∼18 eV. Among isomers, PAH structure appears to mainly affect the fragmentation cross section but not the ionization cross section. We also measured the second IP for all species and the third IP for two of them; all are in good agreement with theoretical ones, confirming that PAH cations can be further ionized in the diffuse ISM. Determining actual PAH dication abundances in the ISM will require detailed modeling. Our measured photo-ionization yields for several PAH cations provide a necessary ingredient for such models.

  1. Atmospheric pressure photoionization using tunable VUV synchrotron radiation

    International Nuclear Information System (INIS)

    Giuliani, A.; Giorgetta, J.-L.; Ricaud, J.-P.; Jamme, F.; Rouam, V.; Wien, F.; Laprévote, O.; Réfrégiers, M.

    2012-01-01

    Highlights: ► Coupling of an atmospheric pressure photoionization source with a vacuum ultra-violet (VUV) beamline. ► The set up allows photoionization up to 20 eV. ► Compared to classical atmospheric pressure photoionization (APPI), our set up offers spectral purity and tunability. ► Allows photoionization mass spectrometry on fragile and hard to vaporize molecules. - Abstract: We report here the first coupling of an atmospheric pressure photoionization (APPI) source with a synchrotron radiation beamline in the vacuum ultra-violet (VUV). A commercial APPI source of a QStar Pulsar i from AB Sciex was modified to receive photons from the DISCO beamline at the SOLEIL synchrotron radiation facility. Photons are delivered at atmospheric pressure in the 4–20 eV range. The advantages of this new set up, termed SR-APPI, over classical APPI are spectral purity and continuous tunability. The technique may also be used to perform tunable photoionization mass spectrometry on fragile compounds difficult to vaporize by classical methods.

  2. Future prospects for studies in the VUV-SX region

    International Nuclear Information System (INIS)

    Tanaka, Kenichiro; Kitajima, Yoshinori

    1989-09-01

    This book carries papers presented at a workshop 'Future Prospects for Studies in the VUV-SX Region' held on March 22 and 23, 1989. The workshop focussed particularly on the promotion of research in the VUV and soft X-ray regions. Three sessions were held: Session 1 for studies in peripheral areas, Session 2 for theoretical studies, and Session 3 for recent developments. Session 1 covered five studies: 'Laser Spectroscopy: High-Resolution Observation of Highly Electronically Excited Gaseous Molecule', 'High-Resolution Electron Spectroscopy: Surface Phonon Spectroscopy', 'Experimental Study on Atoms and Molecules through Ion Trap', 'Basic Mechanism of Photo-Induced CVD', and 'Application of Circularly Polarized Light'. Session 2 covered five studies: 'Electronic State of High Tc Superconducting Oxide', 'Surface Condition and Electronic State', 'XES and XAS Study of Rare Earth Compound', 'Resonance Photoelectric Spectroscopy on Strongly Correlated Electronic System', and 'Circularly Polarized Light and Atomic Process in Soft X-Ray Region'. Session 3 covered six studies: 'Prospects of Application of Supercritical Liquid to Research on Physical Characteristics', 'Application of Orbit Radiation to Polarization Spectroscopy', 'XES Research for La Compounds', 'Characteristics of Ultra-Fine Particles', 'Surface Study by Angular-Resolution Photoelectric Spectroscopy', and 'EXAFS Study of Light Element'. (N.K.)

  3. An XUV/VUV free-electron laser oscillator

    Science.gov (United States)

    Goldstein, J. C.; Newnam, B. E.; Cooper, R. K.; Comly, J. C., Jr.

    Problems regarding the extension of free-electron laser technology from the visible and near infrared region, where such devices are currently operating, to the ultraviolet have recently been extensively discussed. It was found that significant technical problems must be overcome before free-electron lasers (FELs) can be operated in the VUV (100-200 nm) and the XUV (50-100). However, the present lack of other intense and tunable sources of coherent radiation at these wavelengths together with the intrinsic properties of FELs make the development of such devices potentially very rewarding. The properties of FELs include continuous tunability in wavelength and output in the form of a train of picosecond pulses. An investigation is conducted regarding the feasibility of an operation of a FEL in the XUV/VUV regions, taking into account a theoretical model. It is found that modest improvements in electron beam and optical mirror technologies will make the design of a FEL for operation in the 50-200-nm range of optical wavelength possible.

  4. PHYSICAL PROPERTY MEASUREMENTS OF LABORATORY PREPARED SALTSTONE GROUT

    Energy Technology Data Exchange (ETDEWEB)

    Hansen, E.; Cozzi, A.; Edwards, T.

    2014-05-05

    The Saltstone Production Facility (SPF) built two new Saltstone Disposal Units (SDU), SDU 3 and SDU 5, in 2013. The variable frequency drive (VFD) for the grout transfer hose pump tripped due to high current demand by the motor during the initial radioactive saltstone transfer to SDU 5B on 12/5/2013. This was not observed during clean cap processing on July 5, 2013 to SDU 3A, which is a slightly longer distance from the SPF than is SDU 5B. Saltstone Design Authority (SDA) is evaluating the grout pump performance and capabilities to transfer the grout processed in SPF to SDU 3/5. To assist in this evaluation, grout physical properties are required. At this time, there are no rheological data from the actual SPF so the properties of laboratory prepared samples using simulated salt solution or Tank 50 salt solution will be measured. The physical properties of grout prepared in the laboratory with de-ionized water (DI) and salt solutions were obtained at 0.60 and 0.59 water to premix (W/P) ratios, respectively. The yield stress of the DI grout was greater than any salt grout. The plastic viscosity of the DI grout was lower than all of the salt grouts (including salt grout with admixture). When these physical data were used to determine the pressure drop and fluid horsepower for steady state conditions, the salt grouts without admixture addition required a higher pressure drop and higher fluid horsepower to transport. When 0.00076 g Daratard 17/g premix was added, both the pressure drop and fluid horsepower were below that of the DI grout. Higher concentrations of Daratard 17 further reduced the pressure drop and fluid horsepower. The uncertainty in the single point Bingham Plastic parameters is + 4% of the reported values and is the bounding uncertainty. Two different mechanical agitator mixing protocols were followed for the simulant salt grout, one having a total mixing time of three minutes and the other having a time of 10 minutes. The Bingham Plastic parameters

  5. Statistical properties of SASE FEL radiation: experimental results from the VUV FEL at the TESLA test facility at DESY

    International Nuclear Information System (INIS)

    Yurkov, M.V.

    2002-01-01

    This paper presents an experimental study of the statistical properties of the radiation from a SASE FEL. The experiments were performed at the TESLA Test Facility VUV SASE FEL at DESY operating in a high-gain linear regime with a gain of about 10 6 . It is shown that fluctuations of the output radiation energy follows a gamma-distribution. We also measured for the first time the probability distribution of SASE radiation energy after a narrow-band monochromator. The experimental results are in good agreement with theoretical predictions, the energy fluctuations after the monochromator follow a negative exponential distribution

  6. Comparison of field-measured radon diffusion coefficients with laboratory-measured coefficients

    International Nuclear Information System (INIS)

    Lepel, E.A.; Silker, W.B.; Thomas, V.W.; Kalkwarf, D.R.

    1983-04-01

    Experiments were conducted to compare radon diffusion coefficients determined for 0.1-m depths of soils by a steady-state method in the laboratory and diffusion coefficients evaluated from radon fluxes through several-fold greater depths of the same soils covering uranium-mill tailings. The coefficients referred to diffusion in the total pore volume of the soils and are equivalent to values for the quantity, D/P, in the Generic Environmental Impact Statement on Uranium Milling prepared by the US Nuclear Regulatory Commission. Two soils were tested: a well-graded sand and an inorganic clay of low plasticity. For the flux evaluations, radon was collected by adsorption on charcoal following passive diffusion from the soil surface and also from air recirculating through an aluminum tent over the soil surface. An analysis of variance in the flux evaluations showed no significant difference between these two collection methods. Radon diffusion coefficients evaluated from field data were statistically indistinguishable, at the 95% confidence level, from those measured in the laboratory; however, the low precision of the field data prevented a sensitive validation of the laboratory measurements. From the field data, the coefficients were calculated to be 0.03 +- 0.03 cm 2 /s for the sand cover and 0.0036 +- 0.0004 cm 2 /s for the clay cover. The low precision in the coefficients evaluated from field data was attributed to high variation in radon flux with time and surface location at the field site

  7. New measurements of G using the measurement standards laboratory torsion balance

    International Nuclear Information System (INIS)

    Armstrong, T.R.; Fitzgerald, M.P.

    2003-01-01

    This Letter presents the results of a series of measurements of the Newtonian gravitational constant G using the compensated torsion balance developed at the Measurement Standards Laboratory. Since our last published result using the torsion balance in the compensated mode of operation [Meas. Sci. Technol. 10, 439 (1999)], several improvements have been made to reduce the uncertainty in the final result. The new measurements have used both stainless steel and copper large masses. The values of G for the two sets of masses are in good agreement. After combining all of the measurements we get a value of G=6.673 87(0.000 27)x10 -11 m 3 kg -1 s -2 . This new value is 5 parts in 10 5 smaller than our previous published values

  8. DOE/DMS workshop on future synchrotron VUV and x-ray beam Lines

    International Nuclear Information System (INIS)

    Green, P.H.

    1992-03-01

    This document contains an overview of the participating DOE Laboratory beam line interests and the projected science to be addressed on these beam lines, both at new and existing synchrotron facilities. The scientific programs associated with present and planned synchrotron research by DOE Laboratories are discussed in chapters titled ''VUV and Soft X-Ray Research'' and ''Hard X-Ray Research.'' This research encompasses a broad range of the nation's scientific and technical research needs from fundamental to applied, in areas including environmental, biological, and physical sciences; new materials; and energy-related technologies. The projected cost of this proposed construction has been provided in tabular form using a uniform format so that anticipated DOE and outside funding agency contributions for construction and for research and development can be determined. The cost figures are, of course, subject to uncertainties of detailed design requirements and the availability of facility-designed generic components and outside vendors. The report also contains a compendium (as submitted by the beam line proposers) of the design capabilities, the anticipated costs, and the scientific programs of projected beam line construction at the four synchrotron facilities. A summary of the projected cost of these beam lines to be requested of DOE is compiled

  9. Update on VUV and soft X-ray facilities at SSRL

    International Nuclear Information System (INIS)

    Waldhauer, A.

    1988-01-01

    The number of experimental stations at SSRL devoted to the VUV and soft X-ray region is increasing rapidly. In 1986 there were five VUV/soft X-ray beam lines in regular operation. These consisted of two grasshopper lines, a Seya-Namioka line, a white light lithography line, and the UHV double crystal line, Jumbo. By 1988 ten beam lines, including two with insertion devices, covering the spectral range 5-4000 eV in five overlapping ranges will be operational. With the addition of these new stations, SSRL will have increased dramatically its facilities for performing VUV and soft X-ray research. (orig.)

  10. Fluorescence quantum yield measurements of fluorescent proteins: a laboratory experiment for a biochemistry or molecular biophysics laboratory course.

    Science.gov (United States)

    Wall, Kathryn P; Dillon, Rebecca; Knowles, Michelle K

    2015-01-01

    Fluorescent proteins are commonly used in cell biology to assess where proteins are within a cell as a function of time and provide insight into intracellular protein function. However, the usefulness of a fluorescent protein depends directly on the quantum yield. The quantum yield relates the efficiency at which a fluorescent molecule converts absorbed photons into emitted photons and it is necessary to know for assessing what fluorescent protein is the most appropriate for a particular application. In this work, we have designed an upper-level, biochemistry laboratory experiment where students measure the fluorescence quantum yields of fluorescent proteins relative to a standard organic dye. Four fluorescent protein variants, enhanced cyan fluorescent protein (ECFP), enhanced green fluorescent protein (EGFP), mCitrine, and mCherry, were used, however the methods described are useful for the characterization of any fluorescent protein or could be expanded to fluorescent quantum yield measurements of organic dye molecules. The laboratory is designed as a guided inquiry project and takes two, 4 hr laboratory periods. During the first day students design the experiment by selecting the excitation wavelength, choosing the standard, and determining the concentration needed for the quantum yield experiment that takes place in the second laboratory period. Overall, this laboratory provides students with a guided inquiry learning experience and introduces concepts of fluorescence biophysics into a biochemistry laboratory curriculum. © 2014 The International Union of Biochemistry and Molecular Biology.

  11. Sequim Marine Research Laboratory routine environmental measurements during CY-1977

    International Nuclear Information System (INIS)

    Fix, J.J.; Blumer, P.J.

    1978-06-01

    Beginning in 1976, a routine environmental program was established at the Marine Research Laboratory (MRL) at Sequim, Washington. The program is intended to demonstrate the negligible impact of current MRL operations on the surrounding environs and to provide baseline data through which any cumulative impact could be detected. The sampling frequency is greater during the first 2 years of the program to provide sufficient initial information to allow reliable estimates of observed radionuclide concentrations and to construct a long-term sampling program. The program is designed, primarily, to determine levels of radioactivity present in selected biota in Sequim Bay. The biota were selected because of their presence near the laboratory and their capacity to concentrate trace elements. Other samples were obtained to determine the radionuclides in Sequim Bay and laboratory drinking water, as well as the ambient radiation exposure levels and surface deposition of fallout radionuclides for the laboratory area. Appendix A provides a summary of the analytical methods used. The present document includes data obtained during CY 1977 in addition to CY-1976 data published previously

  12. VUV photoionization of acetamide studied by electron/ion coincidence spectroscopy in the 8–24 eV photon energy range

    International Nuclear Information System (INIS)

    Schwell, Martin; Bénilan, Yves; Fray, Nicolas; Gazeau, Marie-Claire; Es-Sebbar, Et.; Garcia, Gustavo A.; Nahon, Laurent; Champion, Norbert; Leach, Sydney

    2012-01-01

    Highlights: ► We study the VUV photoionization of acetamide in the 8–24 eV photon energy range. ► Electron/ion coincidence measurements are performed using synchrotron radiation. ► The adiabatic ionization energy of acetamide is determined by TPEPICO measurements. ► VUV induced fragmentation pathways of acetamide are assigned and discussed. - Abstract: A VUV photoionization study of acetamide was carried out over the 8–24 eV photon energy range using synchrotron radiation and photoelectron/photoion coincidence (PEPICO) spectroscopy. Threshold photoelectron photoion coincidence (TPEPICO) measurements were also made. Photoion yield curves and branching ratios were measured for the parent ion and six fragment ions. The adiabatic ionization energy of acetamide was determined as I.E. (1 2 A′) = (9.71 ± 0.02) eV, in agreement with an earlier reported photoionization mass spectrometry (PIMS) value. The adiabatic energy of the first excited state of the ion, 1 2 A″, was determined to be ≈10.1 eV. Assignments of the fragment ions and the pathways of their formation by dissociative photoionization were made. The neutral species lost in the principal dissociative photoionization processes are CH 3 , NH 2 , NH 3 , CO, HCCO and NH 2 CO. Heats of formation are derived for all ions detected and are compared with literature values. Some astrophysical implications of these results are discussed.

  13. Measuring Meaningful Learning in the Undergraduate Chemistry Laboratory: A National, Cross-Sectional Study

    Science.gov (United States)

    Galloway, Kelli R.; Bretz, Stacey Lowery

    2015-01-01

    Research on laboratory learning points to the need to better understand what and how students learn in the undergraduate chemistry laboratory. The Meaningful Learning in the Laboratory Instrument (MLLI) was administered to general and organic chemistry students from 15 colleges and universities across the United States in order to measure the…

  14. Measuring Meaningful Learning in the Undergraduate General Chemistry and Organic Chemistry Laboratories: A Longitudinal Study

    Science.gov (United States)

    Galloway, Kelli R.; Bretz, Stacey Lowery

    2015-01-01

    Understanding how students learn in the undergraduate chemistry teaching laboratory is an essential component to developing evidence-based laboratory curricula. The Meaningful Learning in the Laboratory Instrument (MLLI) was developed to measure students' cognitive and affective expectations and experiences for learning in the chemistry…

  15. Laboratory fire behavior measurements of chaparral crown fire

    Science.gov (United States)

    C. Sanpakit; S. Omodan; D. Weise; M Princevac

    2015-01-01

    In 2013, there was an estimated 9,900 wildland fires that claimed more than 577,000 acres of land. That same year, about 542 prescribed fires were used to treat 48,554 acres by several agencies in California. Being able to understand fires using laboratory models can better prepare individuals to combat or use fires. Our research focused on chaparral crown fires....

  16. VUV Optics Development for the Elettra Storage Ring FEL

    CERN Document Server

    Guenster, Stefan

    2004-01-01

    Vacuum ultraviolet optical components for the storage ring FEL at Elettra are under continuous development in the European research consortium EUFELE. Target of the project is the progress to shorter lasing wavelengths in the VUV spectral range. The current status allows lasing with oxide mirror systems down to 190 nm. The main obstacles for the development of optical coatings for shorter wavelengths is the high energetic background of the synchrotron radiation impinging onto the front mirror in the laser cavity. Investigations in single layer systems and multilayer stacks of oxide or fluoride materials demonstrate that fluoride mirrors reach highest reflectivity values down to 140 nm, and oxide coatings possess a satisfactory resistance against the high energetic background irradiation. However, pure oxide multilayer stacks exhibit significant absorption below 190 nm and pure fluoride stacks suffer from strong degradation effects under synchrotron radiation. A solution could be hybrid systems, combining fluo...

  17. VUV Spectroscopy of the Sun as a Star

    Science.gov (United States)

    Kankelborg, Charles; Philip, Judge; Winebarger, Amy R.; Kobayashi, Ken; Smart, Roy

    2017-08-01

    We describe a new sounding rocket mission to obtain the first high resolution, high quality VUV (100-200 nm) spectrum of the Sun-as-a-star. Our immediate science goal is to understand better the processes of chromospheric and coronal heating. HST data exist for a dozen or so Sun-like stars of a quality already beyond our ability to construct a comparable sun-as-a-star UV spectrum. The solar spectrum we obtain will enable us to understand the nature of magnetic energy dissipation as a Sun-like star evolves, and the dependence of magnetic activity on stellar mass and metallicity. This poster presents the instrument design, scientific prospects, and broader impacts of the proposed mission.

  18. Vacuum ultraviolet (VUV) absorption spectra of chromatin and its components

    International Nuclear Information System (INIS)

    Dodonova, N.Y.; Kiseleva, M.N.; Petrov, M.Y.; Tsyganenko, N.M.; Bubyakina, V.V.; Chikhirzhina, G.I.

    1984-01-01

    The electron absorption spectra of thin films of chromatin and chromatin components in the ultraviolet region (140-280 nm) were investigated. The absorption coefficients μ(lambda) of chromatin, nucleosomes with and without histone H1, total histones (TH), and DNA were compared. The spectra of nucleosomes differ from the sum-spectrum of DNA plus TH. The chromatin and nucleosome spectra are not similar in the spectral region of 190-160 nm. The lack of additivity of absorption coefficients at different wavelengths may be explained by different conformational changes of DNA, TH in nucleosomes and chromatin during the process of drying aqueous solutions for the preparation of thin films. The μ(lambda) values are useful for an estimate of the DNA and TH absorption in chromatin and nucleosomes in discussing UV and VUV irradiation damages. (Auth.)

  19. Uncooled Radiation Hard SiC Schottky VUV Detectors Capable of Single Photon Sensing, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — This project seeks to design, fabricate, characterize and commercialize very large area, uncooled and radiative hard 4H-SiC VUV detectors capable of near single...

  20. New perspectives for organic chemistry and biochemistry in VUV: reaction kinetics, chirality and thermochemistry. Summaries

    International Nuclear Information System (INIS)

    Nahon, Laurent; Field, David; Gerber, Thomas; Knopp, Gregor; Beaud, Paul; Radi, Peter; Tulej, Marek; Dedonder-Lardeux, Claude; Jung, J.M.; Laprevote, Olivier; Thissen, Roland; Le Barbu, K.; Lahmani, F.; Zehnacker, A.; Maurizot, Jean Claude; Barbier, Bernard; Kagan, Henri B.

    2001-10-01

    The aim of this workshop was to examine the conditions of use of VUV for the study of complex molecular systems, and notably bio-molecules, a domain which is greatly expanding. The conclusions of this one-day workshop should allow to define new fields of utilization of the synchrotron radiation in VUV, to precise certain performances that are needed for the transferred line, to establish the complementarities with other VUV sources (lasers, free electron lasers, lamps) and to determine the eventual need for a second low energy light line at SOLEIL. The titles of the various abstract papers presented are (two papers are in English, the rest is in French): SU5, a high resolution and variable polarization VUV line that should be transferred at SOLEIL; Interstellar organic chemistry (in English); Application of spectroscopic techniques in the VUV to combustion relevant molecules (in English); Gaseous phase reaction kinetics (bi-molecular reactions in collision and in aggregates); Liquids of biological interest (excitation and relaxation close to the ionization threshold); Successes and impediments in protein mass spectrometry (the potential contribution of VUV synchrotron radiation); Stereo-specific effects; Complexes between chiral molecules; circular dichroism of biomolecules; Exobiology; asymmetric synthesis (principles and recent results)

  1. EUV-VUV photochemistry in the upper atmospheres of Titan and the early Earth

    Science.gov (United States)

    Imanaka, H.; Smith, M. A.

    2010-12-01

    Titan, the organic-rich moon of Saturn, possesses a thick atmosphere of nitrogen, globally covered with organic haze layers. The recent Cassini’s INMS and CAPS observations clearly demonstrate the importance of complex organic chemistry in the ionosphere. EUV photon radiation is the major driving energy source there. Our previous laboratory study of the EUV-VUV photolysis of N2/CH4 gas mixtures demonstrates a unique role of nitrogen photoionization in the catalytic formation of complex hydrocarbons in Titan’s upper atmosphere (Imanaka and Smith, 2007, 2009). Such EUV photochemistry could also have played important roles in the formation of complex organic molecules in the ionosphere of the early Earth. It has been suggested that the early Earth atmosphere may have contained significant amount of reduced species (CH4, H2, and CO) (Kasting, 1990, Pavlov et al., 2001, Tian et al., 2005). Recent experimental study, using photon radiation at wavelengths longer than 110 nm, demonstrates that photochemical organic haze could have been generated from N2/CO2 atmospheres with trace amounts of CH4 or H2 (Trainer et al., 2006, Dewitt et al., 2009). However, possible EUV photochemical processes in the ionosphere are not well understood. We have investigated the effect of CO2 in the possible EUV photochemical processes in simulated reduced early Earth atmospheres. The EUV-VUV photochemistry using wavelength-tunable synchrotron light between 50 - 150 nm was investigated for gas mixtures of 13CO2/CH4 (= 96.7/3.3) and N2/13CO2/CH4 (= 90/6.7/3.3). The onsets of unsaturated hydrocarbon formation were observed at wavelengths shorter than the ionization potentials of CO2 and N2, respectively. This correlation indicates that CO2 can play a similar catalytic role to N2 in the formation of heavy organic species, which implies that EUV photochemistry might have significant impact on the photochemical generation of organic haze layers in the upper atmosphere of the early Earth.

  2. Automation of measurements in the dclf laboratory of the CSIR NML

    CSIR Research Space (South Africa)

    Marais, EL

    2006-01-01

    Full Text Available At the end of 2005 it was decided that a number of measurements performed in the dc Low Frequency (dclf) Laboratory of the CSIR National Metrology Laboratory (CSIR NML) could benefit from automation. The measurements identified were typically highly...

  3. Individual laboratory-measured discount rates predict field behavior.

    Science.gov (United States)

    Chabris, Christopher F; Laibson, David; Morris, Carrie L; Schuldt, Jonathon P; Taubinsky, Dmitry

    2008-12-01

    We estimate discount rates of 555 subjects using a laboratory task and find that these individual discount rates predict inter-individual variation in field behaviors (e.g., exercise, BMI, smoking). The correlation between the discount rate and each field behavior is small: none exceeds 0.28 and many are near 0. However, the discount rate has at least as much predictive power as any variable in our dataset (e.g., sex, age, education). The correlation between the discount rate and field behavior rises when field behaviors are aggregated: these correlations range from 0.09-0.38. We present a model that explains why specific intertemporal choice behaviors are only weakly correlated with discount rates, even though discount rates robustly predict aggregates of intertemporal decisions.

  4. New radiocarbon measurement methods in the Hertelendi Laboratory, Hungary

    Science.gov (United States)

    Janovics, Róbert; Major, István; Rinyu, László; Veres, Mihály; Molnár, Mihály

    2013-04-01

    In this paper we present two very different and novel methods for C-14 measurement from dissolved inorganic carbonate (DIC) of water samples. A new LSC sample preparation method for liquid scintillation C-14 measurements was implemented in the ATOMKI. The first method uses direct absorption into a special absorbent (Carbosorb E®) and a following liquid scintillation measurement. Typical sample size is 20-40 litre of water. The developed CO2 absorption method is fast, and simple. The C-14 activities is measured by an ultra low background LSC (TRI-CARB 3170 TR/SL, Perkin Elmer) including quenching parameter (tSIE).The corresponding limit of C-14 dating is 31200 year. Several tests were executed with old borehole CO2 gas without significant content of C-14 and also performed on samples of known C-14 activities between 29 and 7000 pMC, previously measured by GPC. The combined uncertainty of the described determination is about 2 % in the case of recent carbon. It is a very cost-effective and easy to use method based on a novel and simple static absorption process for the CO2 extracted from groundwater. The other very sensitive method is based on accelerator mass spectrometry (AMS) using gas ion source. This method does not require graphite generation and a small volume of water sample (1-20mL) is enough for the radiocarbon measurement. The procedure is very similar to pre-treatment of carbonate contained sample preparation for stable isotope measurement with gasbench technique. We applied a MICADAS type accelerator mass spectrometry (AMS) with gas ion source for C-14 analysis. The radiocarbon content of water was sat free with phosphoric acid and then the headspace gas was rinsed vials. The whole measurement needs only 20 min of each sample. The precision of measurement is better than 1% for modern samples. The preparation is vastly reduced compared to the other AMS methods and principally allows fully automated measurements of groundwater samples with an auto

  5. Verification of Electromagnetic Field Measurements via Inter-laboratory Comparison Measurements

    Directory of Open Access Journals (Sweden)

    M. Mann

    2005-01-01

    Full Text Available An inter-laboratory comparison of field strength measurements was conducted in order to verify the comparability of high-frequency electromagnetic field measurements. For this purpose, 17 participating teams hosted by the working group "procedures of exposure determination" of the LAI (Länderausschuss für Immissionsschutz, state committee on immission control determined the field strength at given stations around a hospital situation. At those stations very different signals were generated, such as sine wave signals at 27MHz and 433MHz, signals from a diathermy device in Continuous-Wave (CW and Pulse-Width-Modulation (PWM mode, from a GSM base station at 900MHz and 1800MHz, from a UMTS base station, from a babyphone device and from a DECT cordless phone. This contribution describes the evaluation of the measured values and the approach to the computation of a reference value. Considering various sources of electromagnetic fields in the areas of personal safety at work and of immission control, the most important results are presented and the conclusions drawn are discussed.

  6. Laboratory Measurements of Single-Particle Polarimetric Spectrum

    Science.gov (United States)

    Gritsevich, M.; Penttila, A.; Maconi, G.; Kassamakov, I.; Helander, P.; Puranen, T.; Salmi, A.; Hæggström, E.; Muinonen, K.

    2017-12-01

    Measuring scattering properties of different targets is important for material characterization, remote sensing applications, and for verifying theoretical results. Furthermore, there are usually simplifications made when we model targets and compute the scattering properties, e.g., ideal shape or constant optical parameters throughout the target material. Experimental studies help in understanding the link between the observed properties and computed results. Experimentally derived Mueller matrices of studied particles can be used as input for larger-scale scattering simulations, e.g., radiative transfer computations. This method allows to bypass the problem of using an idealized model for single-particle optical properties. While existing approaches offer ensemble- and orientation-averaged particle properties, our aim is to measure individual particles with controlled or known orientation. With the newly developed scatterometer, we aim to offer novel possibility to measure single, small (down to μm-scale) targets and their polarimetric spectra. This work presents an experimental setup that measures light scattered by a fixed small particle with dimensions ranging between micrometer and millimeter sizes. The goal of our setup is nondestructive characterization of such particles by measuring light of multiple wavelengths scattered in 360° in a horizontal plane by an ultrasonically levitating sample, whilst simultaneously controlling its 3D position and orientation. We describe the principles and design of our instrument and its calibration. We also present example measurements of real samples. This study was conducted under the support from the European Research Council, in the frame of the Advanced Grant project No. 320773 `Scattering and Absorption of Electromagnetic Waves in Particulate Media' (SAEMPL).

  7. Measuring the Earth's Magnetic Field in a Laboratory

    Science.gov (United States)

    Cartacci, A.; Straulino, S.

    2008-01-01

    Two methods for measuring the Earth's magnetic field are described. In the former, according to Gauss, the Earth's magnetic field is compared with that of a permanent magnet; in the latter, a well-known method, the comparison is made with the magnetic field generated by a current. As all the used instruments are available off the shelf, both…

  8. Laboratory Accreditation and the Calibration of Radiologic Measuring Tools

    International Nuclear Information System (INIS)

    Vancsura, P.; Kovago, J.

    1998-01-01

    In this paper is presented that accreditation in our days is a strict requirement for a lab for its results could be accepted on international level. Accreditation itself brings to new requirements, among them some are related to the calibration of the radiological measuring equipment

  9. Performance audits and laboratory comparisons for SCOS97-NARSTO measurements of speciated volatile organic compounds

    Science.gov (United States)

    Fujita, Eric M.; Harshfield, Gregory; Sheetz, Laurence

    Performance audits and laboratory comparisons were conducted as part of the quality assurance program for the 1997 Southern California Ozone Study (SCOS97-NARSTO) to document potential measurement biases among laboratories measuring speciated nonmethane hydrocarbons (NMHC), carbonyl compounds, halogenated compounds, and biogenic hydrocarbons. The results show that measurements of volatile organic compounds (VOC) made during SCOS97-NARSTO are generally consistent with specified data quality objectives. The hydrocarbon comparison involved nine laboratories and consisted of two sets of collocated ambient samples. The coefficients of variation among laboratories for the sum of the 55 PAM target compounds and total NMHC ranged from ±5 to 15 percent for ambient samples from Los Angeles and Azusa. Abundant hydrocarbons are consistently identified by all laboratories, but discrepancies occur for olefins greater than C 4 and for hydrocarbons greater than C 8. Laboratory comparisons for halogenated compounds and biogenic hydrocarbons consisted of both concurrent ambient sampling by different laboratories and round-robin analysis of ambient samples. The coefficients of variation among participating laboratories were about 10-20 percent. Performance audits were conducted for measurement of carbonyl compounds involving sampling from a standard mixture of carbonyl compounds. The values reported by most of the laboratories were within 10-20 percent of those of the reference laboratory. Results of field measurement comparisons showed larger variations among the laboratories ranging from 20 to 40 percent for C 1-C 3 carbonyl compounds. The greater variations observed in the field measurement comparison may reflect potential sampling artifacts, which the performance audits did not address.

  10. Combined Reactor and Microelectrode Measurements in Laboratory Grown Biofilms

    DEFF Research Database (Denmark)

    Larsen, Tove; Harremoës, Poul

    1994-01-01

    A combined biofilm reactor-/microelectrode experimental set-up has been constructed, allowing for simultaneous reactor mass balances and measurements of concentration profiles within the biofilm. The system consists of an annular biofilm reactor equipped with an oxygen microelectrode. Experiments...... were carried out with aerobic glucose and starch degrading biofilms. The well described aerobic glucose degradation biofilm system was used to test the combined reactor set-up. Results predicted from known biofilm kinetics were obtained. In the starch degrading biofilm, basic assumptions were tested...... with the microelectrode measurements. It was established, that even with a high molecular weight, non-diffusible substrate, degradation took place in the depths of the biofilm. Intrinsic enzymatic hydrolysis was not limiting and the volumetric removal rate of oxygen was zero order....

  11. Measurement of photoemission and secondary emission from laboratory dust grains

    Science.gov (United States)

    Hazelton, Robert C.; Yadlowsky, Edward J.; Settersten, Thomas B.; Spanjers, Gregory G.; Moschella, John J.

    1995-01-01

    The overall goal of this project is experimentally determine the emission properties of dust grains in order to provide theorists and modelers with an accurate data base to use in codes that predict the charging of grains in various plasma environments encountered in the magnetospheres of the planets. In general these modelers use values which have been measured on planar, bulk samples of the materials in question. The large enhancements expected due to the small size of grains can have a dramatic impact upon the predictions and the ultimate utility of these predictions. The first experimental measurement of energy resolved profiles of the secondary electron emission coefficient, 6, of sub-micron diameter particles has been accomplished. Bismuth particles in the size range of .022 to .165 micrometers were generated in a moderate pressure vacuum oven (average size is a function of oven temperature and pressure) and introduced into a high vacuum chamber where they interacted with a high energy electron beam (0.4 to 20 keV). Large enhancements in emission were observed with a peak value, delta(sub max) = 4. 5 measured for the ensemble of particles with a mean size of .022 micrometers. This is in contrast to the published value, delta(sub max) = 1.2, for bulk bismuth. The observed profiles are in general agreement with recent theoretical predictions made by Chow et al. at UCSD.

  12. NOAA Mobile Laboratory Measures Oil and Gas Emissions

    Science.gov (United States)

    Kofler, J. D.; Petron, G.; Dube, W. P.; Edwards, P. M.; Brown, S. S.; Geiger, F.; Patrick, L.; Crepinsek, S.; Chen, H.; Miller, B. R.; Montzka, S. A.; Lang, P. M.; Newberger, T.; Higgs, J. A.; Sweeney, C.; Guenther, D.; Karion, A.; Wolter, S.; Williams, J.; Jordan, A.; Tans, P. P.; Schnell, R. C.

    2012-12-01

    A van capable of continuous real time measurements of CH4 , CO2, CO, Water Vapor, Ozone, NO, NO2, Volatile Organic Compounds VOCs including aromatics and other traces gases was driven in the oil and gas fields of the Uintah Basin in northeastern Utah. Compressor Stations, processing plants, oil and gas well heads. Separators, condensate tanks, evaporation pond disposal facilities, holding tanks, hydraulic fracturing sites, gas pipelines and more were studied using the van. The mobile measurements provide a powerful tool to get to the source of the emissions and reveal the unique chemical signature of each of the stages and components of oil and gas production as well as the overall basin and background gas concentrations. In addition to a suite of gas analyzers, the van includes a meteorological system (temperature, humidity, and wind speed and direction), GPS tracking, flask sampling system and a batter power system. Aspects of the vans hardware, sampling methods and operations are discussed along with a few highlights of the measurements.

  13. Trends in instrumentation for environmental radiation measurements at Los Alamos Scientific Laboratory

    International Nuclear Information System (INIS)

    Hiebert, R.D.; Wolf, M.A.

    1980-01-01

    Recent instruments developed to fulfill radiation monitoring needs at Los Alamos Scientific Laboratory are described. Laboratory instruments that measure tritium gas effluents alone, or in the presence of activated air from D-T fusion reactors are discussed. Fully portable systems for gamma, x-ray, and alpha analyses in the field are described. Also included are descriptions of survey instruments that measure low levels of transuranic contaminants and that measure pulsed-neutron dose rates

  14. VUV spectroscopy and photochemistry of five interstellar and putative prebiotic molecules

    Science.gov (United States)

    Schwell, M.; Gaie-Levrel, F.; Bénilan, Y.; Gazeau, M.-C.; Fray, N.; Saul, G.; Champion, N.; Leach, S.; Guillemin, J.-C.

    2012-02-01

    For many years, our group has been investigating the VUV spectroscopy and photochemistry of molecules of astrophysical (Jochims et al. 2006a,b; Leach et al. 2008; Schwell et al. 2012) and prebiotic interest (Schwell et al. 2006). Polyynes and cyano-polyynes that are abundant in the interstellar medium (ISM) and in planetary atmospheres, have been investigated too (e.g. Fray et al. 2010). An aerosol source for reactive and thermo-labile compounds has been developed (Gaie-Levrel et al. 2011) to perform gas-phase measurements. These are necessary to measure intrinsic molecular properties and to compare to quantum chemical calculations. Besides measuring absolute absorption and photoionization cross sections, dissociative channels and their involved excited states are identified for a number of molecules of interstellar interest. Branching ratios of the respective elementary photoreactions are determined in order to understand and model the photochemistry occurring in the ISM. Some very recent results on the dissociative photoionization of methylformate (MF), glycolaldehyde (GA), dimethylether (DIM), aminoacetonitrile (AAC) and cyanoacetylene (CA), are presented here.

  15. UV and VUV photolysis vs. UV/H2O2 and VUV/H2O2, treatment for removal of clofibric acid from aqueous solution.

    Science.gov (United States)

    Li, Wenzhen; Lu, Shuguang; Qiu, Zhaofu; Lin, Kuangfei

    2011-07-01

    Clofibric acid (CA), a metabolite of lipid regulators, was investigated in ultra-pure water and sewage treatment plant (STP) effluent at 10 degrees C under UV, vacuum UV (VUV), UV/H2O2 and VUV/H2O2 processes. The influences of NO3-, HCO3- and humic acid (HA) on CA photolysis in all processes were examined. The results showed that all the experimental data well fitted the pseudo-first-order kinetic model, and the apparent rate constant (k(ap)) and half-life time (t(1/2)) were calculated accordingly. Direct photolysis of CA through UV irradiation was the main process, compared with the indirect oxidation of CA due to the slight generation of hydroxyl radicals dissociated from water molecules under UV irradiation below 200 nm monochromatic wavelength emission. In contrast, indirect oxidation was the main CA degradation mechanism in UV/H2O2 and VUV/H2O2, and VUV/H2O2 was the most effective process for CA degradation. The addition of 20 mg L(-1) HA could significantly inhibit CA degradation, whereas, except for UV irradiation, the inhibitive effects of NO3- and HCO3- (1.0 x 10(-3) and 0.1 mol L(-1), respectively) on CA degradation were observed in all processes, and their adverse effects were more significant in UV/H2O2 and VUV/H2O2 processes, particularly at the high NO3- and HCO3- concentrations. The degradation rate decreased 1.8-4.9-fold when these processes were applied to a real STP effluent owing to the presence of complex constituents. Of the four processes, VUV/H2O2 was the most effective, and the CA removal efficiency reached over 99% after 40 min in contrast to 80 min in both the UV/H2O2 and VUV processes and 240 min in the UV process.

  16. Radon measurements during the building of a low-level laboratory

    CERN Document Server

    Antanasijevic, R; Bikit, I; Banjanac, R; Dragic, A; Joksimovic, D; Krmpotic, D; Udovicic, V; Vukovic, J

    1999-01-01

    Radon measurements were provided during the different stages of building of a low-level laboratory in Belgrade. The depth of the laboratory is 12 m, equivalent to 30 m of water with an area of 45 m sup 2. The whole of the laboratory is hermetically lined with 1 mm A1 foil and is ventilated with filtered air. Radon concentrations were measured with the CR-39 detector as well as via the gamma-ray spectroscopic measurements. The radon concentrations in the air were achieved to 20 Bqm sup - sup 3 and reduction of secondary and tertiary cosmic-ray fluxes is five times when ventilation, filtering and sealing was applied.

  17. Radon measurements during the building of a low-level laboratory

    International Nuclear Information System (INIS)

    Antanasijevic, R.; Anicin, I.; Bikit, I.; Banjanac, R.; Dragic, A.; Joksimovic, D.; Krmpotic, D.; Udovicic, V.; Vukovic, J.

    1999-01-01

    Radon measurements were provided during the different stages of building of a low-level laboratory in Belgrade. The depth of the laboratory is 12 m, equivalent to 30 m of water with an area of 45 m 2 . The whole of the laboratory is hermetically lined with 1 mm A1 foil and is ventilated with filtered air. Radon concentrations were measured with the CR-39 detector as well as via the gamma-ray spectroscopic measurements. The radon concentrations in the air were achieved to 20 Bqm -3 and reduction of secondary and tertiary cosmic-ray fluxes is five times when ventilation, filtering and sealing was applied

  18. Conception of the Instrument Calibration Laboratory of Ionizing Radiation Measurement (LACIMRI) of CTMSP - Sao Paulo, SP

    International Nuclear Information System (INIS)

    Silva, Raimundo Dias da; Kibrit, Eduardo

    2009-01-01

    The present work describes the phases of implantation of calibration laboratory of ionizing radiation measurement instruments at the CTMSP, Sao Paulo, in a priory approved by CNEN, Brazil. That laboratory will allow and enhance the present metrological capacity for the attendance to the growing demand for calibration services of the instruments

  19. Investigation and Analysis of Hemoglobin A1c Measurement Systems' Performance for 135 Laboratories in China

    Directory of Open Access Journals (Sweden)

    Hai-Jian Zhao

    2017-01-01

    Conclusions: This study indicated that, although participating laboratories were laboratories with better performance in China, the performances were still unsatisfactory. Actions should be taken to improve HbA1c measurement performance before we can include HbA1c assays in diabetes diagnosis in China.

  20. Clinical evaluation of analytical variations in serum creatinine measurements : why laboratories should abandon Jaffe techniques

    NARCIS (Netherlands)

    Drion, Iefke; Cobbaert, Christa; Groenier, Klaas H.; Weykamp, Cas; Bilo, Henk J. G.; Wetzels, Jack F. M.; Kleefstra, Nanne

    2012-01-01

    Background: Non-equivalence in serum creatinine (SCr) measurements across Dutch laboratories and the consequences hereof on chronic kidney disease (CKD) staging were examined. Methods: National data from the Dutch annual external quality organization of 2009 were used. 144 participating laboratories

  1. A study of enhanced performance of VUV/UV process for the degradation of micropollutants from contaminated water

    Energy Technology Data Exchange (ETDEWEB)

    Bagheri, Mehdi; Mohseni, Madjid, E-mail: madjid.mohseni@ubc.ca

    2015-08-30

    Highlights: • Developing a comprehensive CFD simulation tool for VUV/UV photoreactors modeling. • Analysing impact of reactor hydrodynamics on the AOP performance of VUV/UV process. • Cutting the energy cost of VUV/UV process by means of improved-photoreactor design. • Experimentally verifying the CFD results using a VUV/UV prototype photoreactor. - Abstract: VUV/UV is a chemical-free and straightforward solution for the degradation of emerging contaminants from water sources. The objective of this work was to investigate the feasibility of VUV/UV advanced oxidation process for the effective degradation of a target micropollutant, atrazine, under continuous flow operation of 0.5–6.5 L/min. To provide an in-depth understanding of process, a comprehensive computational fluid dynamics (CFD) model, incorporating flow hydrodynamics, 185 nm VUV and 254 nm UV radiation propagation along with a complete kinetic scheme, was developed and validated experimentally. The experimental degradation rates and CFD predicted values showed great consistency with less than 2.9% average absolute relative deviation (AARD). Utilizing the verified model, energy-efficiency of the VUV/UV process under a wide range of reactor configurations was assessed in terms of electrical energy-per-order (EEO), ·OH concentration as well as delivered UV and VUV dose distributions. Thereby, the extent of mixing and circulation zones was found as key parameter controlling the treatment economy and energy-efficiency of the VUV/UV process. Utilizing a CFD-driven baffle design strategy, an improved VUV/UV process with up to 72% reduction in the total electrical energy requirement of atrazine degradation was introduced and verified experimentally.

  2. Performance of a novel VUV bending magnet beamline

    CERN Document Server

    Song, Y F; Hsieh, T F; Huang, L R; Chung, S C; Cheng, N F; Hsiung, G Y; Wang, D J; Chen, C T; Tsang, K L

    2001-01-01

    A novel high resolution, high flux bending magnet beamline with an energy range from 5 to 40 eV has been constructed at SRRC. This Dragon-like beamline, which horizontally collects 50 mrad of synchrotron radiation from a bending magnet source, uses four cylindrical gratings with an included angle of 140 deg. and a movable curved exit slit. The average photon flux with an energy resolving power of 1000 is about 2x10 sup 1 sup 2 photons/s, which is among the highest of all existing VUV bending magnet beamlines. An energy resolving power of 24,000 at 6.8 eV has been obtained from the Schumann-Runge bands (B sup 3 limit construction operator in a limit construction/sum L: summation operator operator End lower limit of a limit construction u lower limit End limit End sup - /leftarrow/gets A: =leftward arrow X sup 3 limit construction operator in a limit construction/sum L: summation operator operator End lower limit of a limit construction g lower limit End limit End sup -) absorption spectra of O sub 2 gas. A pho...

  3. VUV-sensitive silicon-photomultipliers for the nEXO-experiment

    Energy Technology Data Exchange (ETDEWEB)

    Wrede, Gerrit; Bayerlein, Reimund; Hufschmidt, Patrick; Jamil, Ako; Schneider, Judith; Wagenpfeil, Michael; Ziegler, Tobias; Hoessl, Juergen; Anton, Gisela; Michel, Thilo [ECAP, Friedrich-Alexander-Universitaet Erlangen-Nuernberg (Germany)

    2016-07-01

    The nEXO (next Enriched Xenon Observatory) experiment will search for the neutrinoless double beta decay of Xe-136 with a liquid xenon TPC (Time ProjectionChamber). The sensitivity of the experiment is related to the energy resolution, which itself depends on the accuracies of the measurements of the amount of drifting electrons and the number of scintillation photons with their wavelength being in the vacuum ultraviolet band. Silicon Photomultipliers (SiPM) shall be used for the detection of the scintillation light, since they can be produced extremely radiopure. Commercially available SiPM do not fulfill all requirements of the nEXO experiment, thus a dedicated development is necessary. To characterize the silicon photomultipliers, we have built a test apparatus for xenon liquefaction, in which a VUV-sensitive photomultiplier tube can be operated together with the SiPM. In this contribution we present our apparatus for the SiPM characterization measurements and our latest results on the test of the silicon photomultipliers for the detection of xenon scintillation light.

  4. Performance of the RAD-57 pulse CO-oximeter compared with standard laboratory carboxyhemoglobin measurement.

    Science.gov (United States)

    Touger, Michael; Birnbaum, Adrienne; Wang, Jessica; Chou, Katherine; Pearson, Darion; Bijur, Polly

    2010-10-01

    We assess agreement between carboxyhemoglobin levels measured by the Rad-57 signal extraction pulse CO-oximeter (RAD), a Food and Drug Administration-approved device for noninvasive bedside measurement, and standard laboratory arterial or venous measurement in a sample of emergency department (ED) patients with suspected carbon monoxide poisoning. The study was a cross-sectional cohort design using a convenience sample of adult and pediatric ED patients in a Level I trauma, burn, and hyperbaric oxygen referral center. Measurement of RAD carboxyhemoglobin was performed simultaneously with blood sampling for laboratory determination of carboxyhemoglobin level. The difference between the measures for each patient was calculated as laboratory carboxyhemoglobin minus carboxyhemoglobin from the carbon monoxide oximeter. The limits of agreement from a Bland-Altman analysis are calculated as the mean of the differences between methods ±1.96 SDs above and below the mean. Median laboratory percentage carboxyhemoglobin level was 2.3% (interquartile range 1 to 8.5; range 0% to 38%). The mean difference between laboratory carboxyhemoglobin values and RAD values was 1.4% carboxyhemoglobin (95% confidence interval [CI] 0.2% to 2.6%). The limits of agreement of differences of measurement made with the 2 devices were -11.6% and 14.4% carboxyhemoglobin. This range exceeded the value of ±5% carboxyhemoglobin defined a priori as clinically acceptable. RAD correctly identified 11 of 23 patients with laboratory values greater than 15% carboxyhemoglobin (sensitivity 48%; 95% CI 27% to 69%). There was one case of a laboratory carboxyhemoglobin level less than 15%, in which the RAD device gave a result greater than 15% (specificity of RAD 96/97=99%; 95% CI 94% to 100%). In the range of carboxyhemoglobin values measured in this sample, the level of agreement observed suggests RAD measurement may not be used interchangeably with standard laboratory measurement. Copyright © 2010 American

  5. Optical Signature Analysis of Tumbling Rocket Bodies via Laboratory Measurements

    Science.gov (United States)

    Cowardin, H.; Lederer, S.; Liou, J.-C.

    2012-01-01

    The NASA Orbital Debris Program Office has acquired telescopic lightcurve data on massive intact objects, specifically spent rocket bodies, in order to ascertain tumble rates in support of the Active Debris Removal (ADR) task to help remediate the LEO environment. Rotation rates are needed to plan and develop proximity operations for potential future ADR operations. To better characterize and model optical data acquired from ground-based telescopes, the Optical Measurements Center (OMC) at NASA/JSC emulates illumination conditions in space using equipment and techniques that parallel telescopic observations and source-target-sensor orientations. The OMC employs a 75-watt Xenon arc lamp as a solar simulator, an SBIG CCD camera with standard Johnson/Bessel filters, and a robotic arm to simulate an object's position and rotation. The light source is mounted on a rotary arm, allowing access any phase angle between 0 -- 360 degrees. The OMC does not attempt to replicate the rotation rates, but focuses on how an object is rotating as seen from multiple phase angles. The two targets studied are scaled (1:48), SL-8 Cosmos 3M second stages. The first target is painted in the standard government "gray" scheme and the second target is primary white, as used for commercial missions. This paper summarizes results of the two scaled rocket bodies, each rotated about two primary axes: (a) a spin-stabilized rotation and (b) an end-over-end rotation. The two rotation states are being investigated as a basis for possible spin states of rocket bodies, beginning with simple spin states about the two primary axes. The data will be used to create a database of potential spin states for future works to convolve with more complex spin states. The optical signatures will be presented for specific phase angles for each rocket body and shown in conjunction with acquired optical data from multiple telescope sources.

  6. The Gran Sasso underground laboratories (measurements of rock radioactivity and neutron fluxes)

    International Nuclear Information System (INIS)

    Bellotti, E.; Buraschi, M.; Fiorini, E.; Liguori, C.

    1985-01-01

    The authors report on measurements of rock radioactivity and neutron flux performed in the Gran Sasso underground laboratories of the INFN in Italy. The Gran Sasso' Laboratories of the INFN are located underground, in galleries which have been excavated under the Gran Sasso mountain range. The minimum rock thickness covering the laboratories is about 1400 m of rock of average density 2.8 g cm/sup -3/, corresponding to a thickness of some 4000 m of water equivalent. The laboratories are located at about 1000 m above sea level. The main destination of these laboratories is to shelter very huge particle detectors which shall detect extremely rare nuclear events of extraordinary interest for particle physics as well as for astrophysics and cosmology. In these laboratories, the radiation background is expected to be extremely low, which is the main condition for performing the proposed experiments

  7. Gas-filled cell as a narrow bandwidth bandpass filter in the VUV wavelength range

    Energy Technology Data Exchange (ETDEWEB)

    Geloni, Gianluca [European XFEL GmbH, Hamburg (Germany); Kocharyan, Vitali; Saldin, Evgeni [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany)

    2011-04-15

    We propose a method for spectrally filtering radiation in the VUV wavelength range by means of a monochromator constituted by a cell filled with a resonantly absorbing rare gas. Around particular wavelengths, the gas exhibits narrow-bandwidth absorbing resonances following the Fano profile. In particular, within the photon energy range 60 eV-65 eV, the correlation index of the Fano profiles for the photoionization spectra in Helium is equal to unity, meaning that the minimum of the cross-section is exactly zero. For sufficiently large column density in the gas cell, the spectrum of the incoming radiation will be attenuated by the background cross-section of many orders of magnitude, except for those wavelengths close to the point where the cross-section is zero. Remarkable advantages of a gas monochromator based on this principle are simplicity, efficiency and narrow-bandwidth. A gas monochromator installed in the experimental hall of a VUV SASE FEL facility would enable the delivery of a single-mode VUV laser beam. The design is identical to that of already existing gas attenuator systems for VUV or X-ray FELs. We present feasibility study and exemplifications for the FLASH facility in the VUV regime. (orig.)

  8. Laboratory microwave measurement of the moisture content in seed cotton and ginned cotton fiber

    Science.gov (United States)

    The timely and accurate measurement of cotton fiber moisture content is important, but the measurement is often performed by laborious, time-consuming laboratory oven drying methods. Microwave technology for measuring fiber moisture content directly (not for drying only) offers potential advantages...

  9. Methods of Estimation the Reliability and Increasing the Informativeness of the Laboratory Results (Analysis of the Laboratory Case of Measurement the Indicators of Thyroid Function)

    OpenAIRE

    N A Kovyazina; N A Alhutova; N N Zybina; N M Kalinina

    2014-01-01

    The goal of the study was to demonstrate the multilevel laboratory quality management system and point at the methods of estimating the reliability and increasing the amount of information content of the laboratory results (on the example of the laboratory case). Results. The article examines the stages of laboratory quality management which has helped to estimate the reliability of the results of determining Free T3, Free T4 and TSH. The measurement results are presented by the expanded unce...

  10. PTB’s radiometric scales for UV and VUV source calibration based on synchrotron radiation

    Science.gov (United States)

    Klein, Roman; Kroth, Simone; Paustian, Wolfgang; Richter, Mathias; Thornagel, Reiner

    2018-06-01

    The radiant intensity of synchrotron radiation can be accurately calculated with classical electrodynamics. This primary realization of the spectral radiant intensity has been used by PTB at several electron storage rings which have been optimized to be operated as primary source standards for the calibration of transfer sources in the spectral range of UV and VUV for almost 30 years. The transfer sources are compared to the primary source standard by means of suitable wavelength-dispersive transfer stations. The spectral range covered by deuterium lamps, which represent transfer sources that are easy to handle, is of particular relevance in practice. Here, we report on developments in the realization and preservation of the radiometric scales for spectral radiant intensity and spectral radiance in the wavelength region from 116 nm to 400 nm, based on a set of deuterium reference lamps, over the last few decades. An inside view and recommendations on the operation of the D2 lamps used for the realization of the radiometric scale are presented. The data has been recently compiled to illustrate the chronological behaviour at various wavelengths. Moreover, an overview of the internal and external validation measurements and intercomparisons is given.

  11. VUV photoemission studies of candidate Large Hadron Collider vacuum chamber materials

    CERN Document Server

    Cimino, R; Baglin, V

    1999-01-01

    In the context of future accelerators and, in particular, the beam vacuum of the Large Hadron Collider (LHC), a 27 km circumference proton collider to be built at CERN, VUV synchrotron radiation (SR) has been used to study both qualitatively and quantitatively candidate vacuum chamber materials. Emphasis is given to show that angle and energy resolved photoemission is an extremely powerful tool to address important issues relevant to the LHC, such as the emission of electrons that contributes to the creation of an electron cloud which may cause serious beam instabilities and unmanageable heat loads on the cryogenic system. Here we present not only the measured photoelectron yields from the proposed materials, prepared on an industrial scale, but also the energy and in some cases the angular dependence of the emitted electrons when excited with either a white light (WL) spectrum, simulating that in the arcs of the LHC, or monochromatic light in the photon energy range of interest. The effects on the materials ...

  12. VUV emission spectroscopy diagnostics of a 14 GHz ECR negative hydrogen ion source

    Energy Technology Data Exchange (ETDEWEB)

    Tamura, R., E-mail: duo0364@mail4.doshisha.ac.jp; Ichikawa, T.; Kasuya, T.; Wada, M. [Graduate School of Science and Engineering, Doshisha University, Kyotanabe, Kyoto 610-0394 (Japan); Nishiura, M. [Graduate School of Frontier Sciences The University of Tokyo, Kashiwara, Chiba 277-8561 (Japan); Shimozuma, T. [National lnstitute for Fusion Science, Toki, Gifu 509-5292 (Japan)

    2015-04-08

    Vacuum Ultra Violet(VUV) emission from a 4 cm diameter 2 cm long compact ion source excited by 14 GHz microwave has been investigated. Intensity ratio of band spectrum emission near Ly-α to Ly-α line spectrum is determined from the measured spectrum. which shows preferential excitation of molecules near the entrance of microwave input power. The ratio does not depend strongly upon pressure nor the input microwave power when the intensity is integrated over the volume of the plasma. The spatial distribution of the spectrum intensity ratio exhibits concentrations near microwave inlet and the opposite side where the microwave matching structure is located. The ratio at these peripheral regions is about two times as high as that of the central region. The ratio increased in proportion to the ion source pressure up to about 3.0 Pa, indicating efficient production of high energy electrons by ECR up to this pressure.

  13. Development of performance assessment instrument based contextual learning for measuring students laboratory skills

    Science.gov (United States)

    Susilaningsih, E.; Khotimah, K.; Nurhayati, S.

    2018-04-01

    The assessment of laboratory skill in general hasn’t specific guideline in assessment, while the individual assessment of students during a performance and skill in performing laboratory is still not been observed and measured properly. Alternative assessment that can be used to measure student laboratory skill is use performance assessment. The purpose of this study was to determine whether the performance assessment instrument that the result of research can be used to assess basic skills student laboratory. This research was conducted by the Research and Development. The result of the data analysis performance assessment instruments developed feasible to implement and validation result 62.5 with very good categories for observation sheets laboratory skills and all of the components with the very good category. The procedure is the preliminary stages of research and development stages. Preliminary stages are divided in two, namely the field studies and literature studies. The development stages are divided into several parts, namely 1) development of the type instrument, 2) validation by an expert, 3) a limited scale trial, 4) large-scale trials and 5) implementation of the product. The instrument included in the category of effective because 26 from 29 students have very high laboratory skill and high laboratory skill. The research of performance assessment instrument is standard and can be used to assess basic skill student laboratory.

  14. Implementing and measuring the level of laboratory service integration in a program setting in Nigeria.

    Science.gov (United States)

    Mbah, Henry; Negedu-Momoh, Olubunmi Ruth; Adedokun, Oluwasanmi; Ikani, Patrick Anibbe; Balogun, Oluseyi; Sanwo, Olusola; Ochei, Kingsley; Ekanem, Maurice; Torpey, Kwasi

    2014-01-01

    The surge of donor funds to fight HIV&AIDS epidemic inadvertently resulted in the setup of laboratories as parallel structures to rapidly respond to the identified need. However these parallel structures are a threat to the existing fragile laboratory systems. Laboratory service integration is critical to remedy this situation. This paper describes an approach to quantitatively measure and track integration of HIV-related laboratory services into the mainstream laboratory services and highlight some key intervention steps taken, to enhance service integration. A quantitative before-and-after study conducted in 122 Family Health International (FHI360) supported health facilities across Nigeria. A minimum service package was identified including management structure; trainings; equipment utilization and maintenance; information, commodity and quality management for laboratory integration. A check list was used to assess facilities at baseline and 3 months follow-up. Level of integration was assessed on an ordinal scale (0 = no integration, 1 = partial integration, 2 = full integration) for each service package. A composite score grading expressed as a percentage of total obtainable score of 14 was defined and used to classify facilities (≤ 80% FULL, 25% to 79% PARTIAL and laboratory systems were 64 (52.5%) and 0 (0.0%) at baseline, compared to 100 (82.0%) and 3 (2.4%) respectively at 3 months follow-up (p = 0.000). This project showcases our novel approach to measure the status of each laboratory on the integration continuum.

  15. Photochemical decomposition of perfluorooctanoic acid in aqueous periodate with VUV and UV light irradiation

    International Nuclear Information System (INIS)

    Cao, M.H.; Wang, B.B.; Yu, H.S.; Wang, L.L.; Yuan, S.H.; Chen, J.

    2010-01-01

    The photochemical decomposition of perfluorooctanoic acid (PFOA) in aqueous periodate (IO 4 - ) was investigated under two types of low-pressure mercury lamps: one emits at 254 nm light (UV light) and the other emits both 254 nm and 185 nm light (VUV light). PFOA decomposed efficiently under VUV light irradiation while it decomposed poorly under UV light irradiation. The addition of IO 4 - significantly increased the rate of decomposition and defluorination of PFOA irradiated with UV light whereas it decreased both processes under VUV irradiation. Reactive radical (IO 3 ·) generated by photolysis of IO 4 - initiated the oxidation of PFOA in UV process. Aquated electrons (e aq - ), generated from water homolysis, scavenged IO 4 - resulting in decrease of reactive radical species production and PFOA decomposition. The shorter-chain perfluorocarboxylic acids (PFCAs) formed in a stepwise manner from long-chain PFCAs.

  16. National Synchrotron Light Source user's manual: Guide to the VUV and x-ray beamlines

    International Nuclear Information System (INIS)

    Gmuer, N.F.

    1993-04-01

    The success of the National Synchrotron Light Source is based, in large part, on the size of the user community and the diversity of the scientific and technical disciplines represented by these users. As evidence of this success, the VUV Ring has just celebrated its 10th anniversary and the X-ray Ring will do the same in 1995. In order to enhance this success, the NSLS User's Manual: Guide to the VUV and X-Ray Beamlines - Fifth Edition, is being published. This Manual presents to the scientific community-at-large the current and projected architecture, capabilities and research programs of the various VUV and X-ray beamlines. Also detailed is the research and computer equipment a General User can expect to find and use at each beamline when working at the NSLS. The Manual is updated periodically in order to keep pace with the constant changes on these beamlines

  17. Matrix diffusion studies by electrical conductivity methods. Comparison between laboratory and in-situ measurements

    International Nuclear Information System (INIS)

    Ohlsson, Y.; Neretnieks, I.

    1998-01-01

    Traditional laboratory diffusion experiments in rock material are time consuming, and quite small samples are generally used. Electrical conductivity measurements, on the other hand, provide a fast means for examining transport properties in rock and allow measurements on larger samples as well. Laboratory measurements using electrical conductivity give results that compare well to those from traditional diffusion experiments. The measurement of the electrical resistivity in the rock surrounding a borehole is a standard method for the detection of water conducting fractures. If these data could be correlated to matrix diffusion properties, in-situ diffusion data from large areas could be obtained. This would be valuable because it would make it possible to obtain data very early in future investigations of potentially suitable sites for a repository. This study compares laboratory electrical conductivity measurements with in-situ resistivity measurements from a borehole at Aespoe. The laboratory samples consist mainly of Aespoe diorite and fine-grained granite and the rock surrounding the borehole of Aespoe diorite, Smaaland granite and fine-grained granite. The comparison shows good agreement between laboratory measurements and in-situ data

  18. VUV light induced valence degeneration in Sm over-layer on HOPG

    International Nuclear Information System (INIS)

    Kutluk, G; Nakatake, M; Arita, M; Namatame, H; Taniguchi, M; Ishitobi, Y; Sumida, H

    2013-01-01

    Systematic investigation of the influence of vacuum ultraviolet (VUV) irradiation on the valence degeneration in a Sm over-layer on a HOPG substrate was performed using in-situ photoemission spectroscopy (XPS, UPS, and ARPES) for the Sm coverage regime of 0.05-3.6 Å. This investigation confirmed that VUV irradiation-induced degeneration of divalent Sm exerts a more profound effect than Sm contamination during photoemission spectroscopy even under UHV. We found that the charge transfer occurs mainly from divalent Sm to the HOPG surface.

  19. Methods of Estimation the Reliability and Increasing the Informativeness of the Laboratory Results (Analysis of the Laboratory Case of Measurement the Indicators of Thyroid Function

    Directory of Open Access Journals (Sweden)

    N A Kovyazina

    2014-06-01

    Full Text Available The goal of the study was to demonstrate the multilevel laboratory quality management system and point at the methods of estimating the reliability and increasing the amount of information content of the laboratory results (on the example of the laboratory case. Results. The article examines the stages of laboratory quality management which has helped to estimate the reliability of the results of determining Free T3, Free T4 and TSH. The measurement results are presented by the expanded uncertainty and the evaluation of the dynamics. Conclusion. Compliance with mandatory measures for laboratory quality management system enables laboratories to obtain reliable results and calculate the parameters that are able to increase the amount of information content of laboratory tests in clinical decision making.

  20. Active Radiation Level Measurement on New Laboratory Instrument for Evaluating the Antibacterial Activity of Radioisotope

    International Nuclear Information System (INIS)

    Joh, Eunha; Park, Jang Guen

    2014-01-01

    A disc method has been widely used to measure the antibacterial effect of chemical agents. However, it is difficult to measure the antibacterial effect of radioisotopes using a disc method. A disc method is a method for diffusing a drug by placing the drug containing disc on the medium. In this method, radioisotopes are diffused on the medium and it is difficult to measure the exact effect by radiation. Thus, new laboratory equipment needs to evaluate the antibacterial activity by the radioisotopes. In this study, we measured the radiation level of radioisotopes on a new laboratory instrument using a MCNP. A disc method has been widely used to measure the antibacterial effect of chemical agents. This method uses a drug diffusion system for the measurement of anti-bacterial antibiotics. To measure the antimicrobial activity of a radioisotope, a new type of laboratory instrument is necessary to prevent the drug from spreading. The radioisotopes are used to diagnose and treat cancer. However, studies for anti-biotical use have not progressed. The radiation of radioisotopes has the effect of killing bacteria. Before this study proceeds further, it is necessary to be able to measure the antimicrobial activity of the radioisotope easily in the laboratory. However, in this study, it was possible to measure the antimicrobial activity of the radioisotope in the laboratory using a new laboratory instrument. We intend to start evaluation studies of the antibacterial activity of specific radioisotopes. In addition, it will be possible to develop research to overcome diseases caused by bacteria in the future

  1. Active Radiation Level Measurement on New Laboratory Instrument for Evaluating the Antibacterial Activity of Radioisotope

    Energy Technology Data Exchange (ETDEWEB)

    Joh, Eunha; Park, Jang Guen [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2014-05-15

    A disc method has been widely used to measure the antibacterial effect of chemical agents. However, it is difficult to measure the antibacterial effect of radioisotopes using a disc method. A disc method is a method for diffusing a drug by placing the drug containing disc on the medium. In this method, radioisotopes are diffused on the medium and it is difficult to measure the exact effect by radiation. Thus, new laboratory equipment needs to evaluate the antibacterial activity by the radioisotopes. In this study, we measured the radiation level of radioisotopes on a new laboratory instrument using a MCNP. A disc method has been widely used to measure the antibacterial effect of chemical agents. This method uses a drug diffusion system for the measurement of anti-bacterial antibiotics. To measure the antimicrobial activity of a radioisotope, a new type of laboratory instrument is necessary to prevent the drug from spreading. The radioisotopes are used to diagnose and treat cancer. However, studies for anti-biotical use have not progressed. The radiation of radioisotopes has the effect of killing bacteria. Before this study proceeds further, it is necessary to be able to measure the antimicrobial activity of the radioisotope easily in the laboratory. However, in this study, it was possible to measure the antimicrobial activity of the radioisotope in the laboratory using a new laboratory instrument. We intend to start evaluation studies of the antibacterial activity of specific radioisotopes. In addition, it will be possible to develop research to overcome diseases caused by bacteria in the future.

  2. Measurement of cosmic ray flux in the China Jinping underground laboratory

    International Nuclear Information System (INIS)

    Wu Yucheng; Hao Xiqing; Yue Qian

    2013-01-01

    The China JinPing underground Laboratory (CJPL) is the deepest underground laboratory running in the world at present. In such a deep underground laboratory, the cosmic ray flux is a very important and necessary parameter for rare-event experiments. A plastic scintillator telescope system has been set up to measure the cosmic ray flux. The performance of the telescope system has been studied using the cosmic rays on the ground laboratory near the CJPL. Based on the underground experimental data taken from November 2010 to December 2011 in the CJPL, which has an effective live time of 171 days, the cosmic ray muon flux in the CJPL is measured to be (2.0±0.4)×10 -10 /(cm 2 ·s). The ultra-low cosmic ray background guarantees an ideal environment for dark matter experiments at the CJPL. (authors)

  3. Framework for laboratory harmonization of folate measurements in low- and middle-income countries and regions.

    Science.gov (United States)

    Pfeiffer, Christine M; Zhang, Mindy; Jabbar, Shameem

    2018-02-01

    The measurement of serum and red blood cell folate, two commonly used biomarkers of folate status in populations, is complicated by analytical and data interpretation challenges. Folate results show poor comparability across laboratories, even using the same analytical technique. The folate microbiologic assay produces accurate results and requires simple instrumentation. Thus, it could be set up and maintained in low- and middle-income country laboratories. However, the assay has to be harmonized through the use of common critical reagents (e.g., microorganism and folate calibrator) in order to produce comparable results across laboratories and over time, so that the same cutoff values can be applied across surveys. There is a limited need for blood folate measurements in a country owing to the periodic nature of surveys. Having a network of regional resource laboratories proficient in conducting the folate microbiologic assay and willing and able to perform service work for other countries will be the most efficient way to create an infrastructure wherein qualified laboratories produce reliable blood folate data. Continuous participation of these laboratories in a certification program can verify and document their proficiency. If the resource laboratories conduct the work on a fee-for-service basis, they could become self-sustaining in the long run. © 2018 This article is a U.S. Government work and is in the public domain in the USA.

  4. In-situ measurement of environment radioactivity by mobile nuclear field laboratory (MNFL)

    International Nuclear Information System (INIS)

    Gopalani, Deepak; Mathur, A.P.; Rawat, D.K.; Barala, S.S.; Singhal, K.P.; Singh, G.P.; Samant, R.P.

    2008-01-01

    In-situ measurement of environment radioactivity is useful tool for determine the unusual increase of radioactivity at any place due to any nuclear eventuality take place. A mobile nuclear field laboratory has been designed and developed for in-situ measurement of environment radioactivity at any desired location. This vehicle is equipped with different monitoring and analysis instruments. These equipment can be operated while vehicle is moving. The measured data can be stored in computer. This vehicle has the space for storage of various environmental matrices of affected area and these can analysis in laboratory. (author)

  5. Measurements of the background noise gamma at the Modane underground laboratory

    International Nuclear Information System (INIS)

    Morales, A.; Morales, J.; Nunez-Lagos, R.; Villar, J.A.

    1985-01-01

    Experimental measurements of the background have been performed at the Modane underground laboratory, in the Frejus tunnel, in order to locate here a neutrinoless double beta decay on 76 Ge experiment. The background reduction relative to the sea level laboratory at Bordeaux is studied, as well as the intrinsic radiactivity the INa and F 2 Ba scintillators to be selected as a 4 coincidence crown for the experiment. (author)

  6. Laboratory Measurement of the Brighter-fatter Effect in an H2RG Infrared Detector

    OpenAIRE

    Plazas, A. A.; Shapiro, C.; Smith, R.; Huff, E.; Rhodes, J.

    2018-01-01

    The "brighter-fatter" (BF) effect is a phenomenon (originally discovered in charge coupled devices) in which the size of the detector point spread function (PSF) increases with brightness. We present, for the first time, laboratory measurements demonstrating the existence of the effect in a Hawaii-2RG HgCdTe near infrared (NIR) detector. We use the Precision Projector Laboratory, a JPL facility for emulating astronomical observations with UV/VIS/NIR detectors, to project about 17,000 point so...

  7. The procedures manual of the Environmental Measurements Laboratory. Volume 1, 28. edition

    Energy Technology Data Exchange (ETDEWEB)

    Chieco, N.A. [ed.

    1997-02-01

    This manual covers procedures and technology currently in use at the Environmental Measurements Laboratory. An attempt is made to be sure that all work carried out will be of the highest quality. Attention is focused on the following areas: quality assurance; sampling; radiation measurements; analytical chemistry; radionuclide data; special facilities; and specifications.

  8. The procedures manual of the Environmental Measurements Laboratory. Volume 1, 28. edition

    International Nuclear Information System (INIS)

    Chieco, N.A.

    1997-02-01

    This manual covers procedures and technology currently in use at the Environmental Measurements Laboratory. An attempt is made to be sure that all work carried out will be of the highest quality. Attention is focused on the following areas: quality assurance; sampling; radiation measurements; analytical chemistry; radionuclide data; special facilities; and specifications

  9. The effect of noise in a performance measure on work motivation: A real effort laboratory experiment

    NARCIS (Netherlands)

    Sloof, R.; van Praag, C.M.

    2008-01-01

    This paper reports the results of an individual real effort laboratory experiment where subjects are paid for measured performance. Measured performance equals actual performance plus noise. We compare a stable environment where the noise is small with a volatile environment where the noise is

  10. The effect of noise in a performance measure on work motivation: A real effort laboratory experiment

    NARCIS (Netherlands)

    Sloof, R.; van Praag, C.M.

    2010-01-01

    This paper reports the results of an individual real effort laboratory experiment where subjects are paid for measured performance. Measured performance equals actual performance plus noise. We compare a stable environment where the noise is small with a volatile environment where the noise is

  11. Variability in baseline laboratory measurements of the Brazilian Longitudinal Study of Adult Health (ELSA-Brasil).

    Science.gov (United States)

    Ladwig, R; Vigo, A; Fedeli, L M G; Chambless, L E; Bensenor, I; Schmidt, M I; Vidigal, P G; Castilhos, C D; Duncan, B B

    2016-08-01

    Multi-center epidemiological studies must ascertain that their measurements are accurate and reliable. For laboratory measurements, reliability can be assessed through investigation of reproducibility of measurements in the same individual. In this paper, we present results from the quality control analysis of the baseline laboratory measurements from the ELSA-Brasil study. The study enrolled 15,105 civil servants at 6 research centers in 3 regions of Brazil between 2008-2010, with multiple biochemical analytes being measured at a central laboratory. Quality control was ascertained through standard laboratory evaluation of intra- and inter-assay variability and test-retest analysis in a subset of randomly chosen participants. An additional sample of urine or blood was collected from these participants, and these samples were handled in the same manner as the original ones, locally and at the central laboratory. Reliability was assessed with the intraclass correlation coefficient (ICC), estimated through a random effects model. Coefficients of variation (CV) and Bland-Altman plots were additionally used to assess measurement variability. Laboratory intra and inter-assay CVs varied from 0.86% to 7.77%. From test-retest analyses, the ICCs were high for the majority of the analytes. Notably lower ICCs were observed for serum sodium (ICC=0.50; 95%CI=0.31-0.65) and serum potassium (ICC=0.73; 95%CI=0.60-0.83), due to the small biological range of these analytes. The CVs ranged from 1 to 14%. The Bland-Altman plots confirmed these results. The quality control analyses showed that the collection, processing and measurement protocols utilized in the ELSA-Brasil produced reliable biochemical measurements.

  12. Key Performance Indicators to Measure Improvement After Implementation of Total Laboratory Automation Abbott Accelerator a3600.

    Science.gov (United States)

    Miler, Marijana; Nikolac Gabaj, Nora; Dukic, Lora; Simundic, Ana-Maria

    2017-12-27

    The aim of the study was to estimate improvement of work efficiency in the laboratory after implementation of total laboratory automation (TLA) by Abbott Accelerator a3600 in the laboratory with measuring different key performance indicators (KPIs) before and after TLA implementation. The objective was also to recommend steps for defining KPIs in other laboratories. For evaluation of improvement 10 organizational and/or technical KPIs were defined for all phases of laboratory work and measured before (November 2013) and after (from 2015 to 2017) TLA implementation. Out of 10 defined KPIs, 9 were successfully measured and significantly improved. Waiting time for registration of samples in the LIS was significantly reduced from 16 (9-28) to 9 (6-16) minutes after TLA (P performed at core biochemistry analyzers which significantly reduced walking distance for sample management (for more than 800 m per worker) and number of tube touches (for almost 50%). Analyzers downtime and engagement time for analyzers maintenance was reduced for 50 h and 28 h per month, respectively. TLA eliminated manual dilution of samples with extreme results with sigma values increment from 3.4 to >6 after TLA. Although median turnaround time TAT for potassium and troponin was higher (for approximately 20 min), number of outliers with TAT >60 min expressed as sigma values were satisfying (>3). Implementation of the TLA improved the most of the processes in our laboratory with 9 out of 10 properly defined and measured KPIs. With proper planning and defining of KPIs, every laboratory could measure changes in daily workflow.

  13. Radon measurements during the building of a low-level laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Antanasijevic, R.; Anicin, I.; Bikit, I.; Banjanac, R.; Dragic, A.; Joksimovic, D.; Krmpotic, D.; Udovicic, V.; Vukovic, J

    1999-06-01

    Radon measurements were provided during the different stages of building of a low-level laboratory in Belgrade. The depth of the laboratory is 12 m, equivalent to 30 m of water with an area of 45 m{sup 2}. The whole of the laboratory is hermetically lined with 1 mm A1 foil and is ventilated with filtered air. Radon concentrations were measured with the CR-39 detector as well as via the gamma-ray spectroscopic measurements. The radon concentrations in the air were achieved to 20 Bqm{sup -3} and reduction of secondary and tertiary cosmic-ray fluxes is five times when ventilation, filtering and sealing was applied.

  14. The bogus taste test: Validity as a measure of laboratory food intake

    OpenAIRE

    Robinson, Eric; Haynes, Ashleigh; Hardman, Charlotte A.; Kemps, Eva; Higgs, Suzanne; Jones, Andrew

    2017-01-01

    Because overconsumption of food contributes to ill health, understanding what affects how much people eat is of importance. The ?bogus? taste test is a measure widely used in eating behaviour research to identify factors that may have a causal effect on food intake. However, there has been no examination of the validity of the bogus taste test as a measure of food intake. We conducted a participant level analysis of 31 published laboratory studies that used the taste test to measure food inta...

  15. The performance test of NAA laboratory at radionuclide measure with low activity

    International Nuclear Information System (INIS)

    Sri Murniasih; Sukirno

    2016-01-01

    The performance test to measure the I-131 radionuclide activity has been carried out at CAST-NAA laboratory. The purpose of this activity is to know the performance of a laboratory in the testing of low radioactivity sample. The tested sample consists of the form I-131 radionuclide sources shaped thin plastic disk with a certain weight. Evaluation of laboratory performance test results carried out by the organizer of the program test appeal (PTKMR-BATAN). Evaluation results showed that testing of point source of the I-131 radionuclide with comparative method gives a good enough results with errors below 10%. The results of the performance test evaluation are useful as the external quality control to a testing method that is expected in NAA laboratory. (author)

  16. Note: Measurement system for the radiative forcing of greenhouse gases in a laboratory scale

    Energy Technology Data Exchange (ETDEWEB)

    Kawamura, Yoshiyuki [Department of Intelligent Mechanical Engineering, Fukuoka Institute of Technology, 3-30-1 Wajirohigashi, Higashiku, Fukuoka 811-0295 (Japan)

    2016-01-15

    The radiative forcing of the greenhouse gases has been studied being based on computational simulations or the observation of the real atmosphere meteorologically. In order to know the greenhouse effect more deeply and to study it from various viewpoints, the study on it in a laboratory scale is important. We have developed a direct measurement system for the infrared back radiation from the carbon dioxide (CO{sub 2}) gas. The system configuration is similar with that of the practical earth-atmosphere-space system. Using this system, the back radiation from the CO{sub 2} gas was directly measured in a laboratory scale, which roughly coincides with meteorologically predicted value.

  17. Note: Measurement system for the radiative forcing of greenhouse gases in a laboratory scale.

    Science.gov (United States)

    Kawamura, Yoshiyuki

    2016-01-01

    The radiative forcing of the greenhouse gases has been studied being based on computational simulations or the observation of the real atmosphere meteorologically. In order to know the greenhouse effect more deeply and to study it from various viewpoints, the study on it in a laboratory scale is important. We have developed a direct measurement system for the infrared back radiation from the carbon dioxide (CO2) gas. The system configuration is similar with that of the practical earth-atmosphere-space system. Using this system, the back radiation from the CO2 gas was directly measured in a laboratory scale, which roughly coincides with meteorologically predicted value.

  18. Best practice guide for radioactivity measurement laboratories in a post-accident situation

    International Nuclear Information System (INIS)

    2011-01-01

    Published for laboratories likely to be asked to perform radioactivity measurements at the time of or after a radiological or nuclear accident in France or abroad, this guide aims at defining the best practices in terms of laboratory organisation (sample flow management, personnel radioprotection, sample identification and recording, sample cross-contamination risks, result transmission, archiving of data, results and samples, waste dismissal), and in terms of metrology (adaptation to needs in terms of detection limit and measurement uncertainty, preferred use of gamma spectrometry, analysis strategies)

  19. X-ray measurement of residual stress in metals at Chalk River Nuclear Laboratories

    International Nuclear Information System (INIS)

    Winegar, J.E.

    1980-06-01

    X-ray diffraction is used at CRNL to measure residual stress in metals. This report summarizes the basic principles of stress measurement, and reviews factors affecting accuracy of measurement. The technique and equipment described were developed at CRNL to give reliable measurements. Accuracy of measurement is achieved by using fixed-count step-scanning and by computer analysis of intensity data using a cubic spline curve smoothing routine. Specific reference is made to the measurement of residual stress in Inconel-600 and Incoloy-800 boiler tubing. Because it measures stress in thin surface layers, the X-ray method can also be used to measure the depth profile of stresses. As there are no standardized procedures for measuring residual stress, this report will be useful both to those unfamiliar with the measurement of residual stress and to those already making such measurements in other laboratories. (auth)

  20. Time-resolved VUV spectroscopy in the EXTRAP-T2 reversed field pinch

    International Nuclear Information System (INIS)

    Hedqvist, A.; Rachlew-Kaellne, E.

    1998-01-01

    Time-resolved VUV spectroscopy has been used to investigate the effects of impurities in a reversed field pinch operating with a resistive shell. Results of electron temperature, impurity ion densities, particle confinement time and Z eff together with a description of the interpretation and the equipment are presented. (author)

  1. Time-resolved VUV spectroscopy in the EXTRAP-T2 reversed field pinch

    Science.gov (United States)

    Hedqvist, Anders; Rachlew-Källne, Elisabeth

    1998-09-01

    Time-resolved VUV spectroscopy has been used to investigate the effects of impurities in a reversed field pinch operating with a resistive shell. Results of electron temperature, impurity ion densities, particle confinement time and 0741-3335/40/9/004/img1 together with a description of the interpretation and the equipment are presented.

  2. Hydrocarbons in interstellar ice analogues : UV-vis spectroscopy and VUV photochemistry

    NARCIS (Netherlands)

    Cuylle, Steven Hendrik

    2015-01-01

    This thesis treats the chemical behaviour of carbonaceous molecules in water-dominated interstellar ices. VUV photons are considered as the chemical trigger to induce solid state chemistry as it is omnipresent. Lyman- radiation occurs even in dense molecular clouds as a result of cosmic ray

  3. Simultaneous removal of NO and SO2 using vacuum ultraviolet light (VUV)/heat/peroxymonosulfate (PMS).

    Science.gov (United States)

    Liu, Yangxian; Wang, Yan; Wang, Qian; Pan, Jianfeng; Zhang, Jun

    2018-01-01

    Simultaneous removal process of SO 2 and NO from flue gas using vacuum ultraviolet light (VUV)/heat/peroxymonosulfate (PMS) in a VUV spraying reactor was proposed. The key influencing factors, active species, reaction products and mechanism of SO 2 and NO simultaneous removal were investigated. The results show that vacuum ultraviolet light (185 nm) achieves the highest NO removal efficiency and yield of and under the same test conditions. NO removal is enhanced at higher PMS concentration, light intensity and oxygen concentration, and is inhibited at higher NO concentration, SO 2 concentration and solution pH. Solution temperature has a double impact on NO removal. CO 2 concentration has no obvious effect on NO removal. and produced from VUV-activation of PMS play a leading role in NO removal. O 3 and ·O produced from VUV-activation of O 2 also play an important role in NO removal. SO 2 achieves complete removal under all experimental conditions due to its very high solubility in water and good reactivity. The highest simultaneous removal efficiency of SO 2 and NO reaches 100% and 91.3%, respectively. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. A Cherenkov radiator for FEL-synchronized VUV-pulses at a linac-based FEL

    NARCIS (Netherlands)

    Goloviznin, V. V.; Oepts, D.; van der Wiel, M. J.

    1997-01-01

    A possible way to carry out two-color IR+VUV pump-probe experiments at linac-based FELs is proposed. The idea is to supply an FEL facility with a gas cell filled with helium or hydrogen, so that the electron beam, upon passage through the undulator, could be used to generate ultraviolet Cherenkov

  5. A Cherenkov radiator for FEL-synchronized VUV-pulses at a linac-based FEL

    NARCIS (Netherlands)

    Goloviznin, V.V.; Oepts, W.; Wiel, van der M.J.

    1997-01-01

    A possible way to carry out two-color IR + VUV pump-probe experiments at linac-based FELs is proposed. The idea is to supply an FEL facility with a gas cell filled with helium or hydrogen, so that the electron beam, upon passage through the undulator, could be used to generate ultraviolet Cherenkov

  6. Acoustics. Measurement of sound insulation in buildings and of building elements. Laboratory measurements of the reduction of transmitted impact noise by floor coverings on a heavyweight standard floor

    CERN Document Server

    British Standards Institution. London

    1998-01-01

    Acoustics. Measurement of sound insulation in buildings and of building elements. Laboratory measurements of the reduction of transmitted impact noise by floor coverings on a heavyweight standard floor

  7. Implementing and measuring the level of laboratory service integration in a program setting in Nigeria.

    Directory of Open Access Journals (Sweden)

    Henry Mbah

    Full Text Available The surge of donor funds to fight HIV&AIDS epidemic inadvertently resulted in the setup of laboratories as parallel structures to rapidly respond to the identified need. However these parallel structures are a threat to the existing fragile laboratory systems. Laboratory service integration is critical to remedy this situation. This paper describes an approach to quantitatively measure and track integration of HIV-related laboratory services into the mainstream laboratory services and highlight some key intervention steps taken, to enhance service integration.A quantitative before-and-after study conducted in 122 Family Health International (FHI360 supported health facilities across Nigeria. A minimum service package was identified including management structure; trainings; equipment utilization and maintenance; information, commodity and quality management for laboratory integration. A check list was used to assess facilities at baseline and 3 months follow-up. Level of integration was assessed on an ordinal scale (0 = no integration, 1 = partial integration, 2 = full integration for each service package. A composite score grading expressed as a percentage of total obtainable score of 14 was defined and used to classify facilities (≤ 80% FULL, 25% to 79% PARTIAL and <25% NO integration. Weaknesses were noted and addressed.We analyzed 9 (7.4% primary, 104 (85.2% secondary and 9 (7.4% tertiary level facilities. There were statistically significant differences in integration levels between baseline and 3 months follow-up period (p<0.01. Baseline median total integration score was 4 (IQR 3 to 5 compared to 7 (IQR 4 to 9 at 3 months follow-up (p = 0.000. Partial and fully integrated laboratory systems were 64 (52.5% and 0 (0.0% at baseline, compared to 100 (82.0% and 3 (2.4% respectively at 3 months follow-up (p = 0.000.This project showcases our novel approach to measure the status of each laboratory on the integration continuum.

  8. Field Measurements Indicate Unexpected, Serious Underestimation of Mussel Heart Rates and Thermal Tolerance by Laboratory Studies.

    Directory of Open Access Journals (Sweden)

    Morgana Tagliarolo

    Full Text Available Attempts to predict the response of species to long-term environmental change are generally based on extrapolations from laboratory experiments that inevitably simplify the complex interacting effects that occur in the field. We recorded heart rates of two genetic lineages of the brown mussel Perna perna over a full tidal cycle in-situ at two different sites in order to evaluate the cardiac responses of the two genetic lineages present on the South African coast to temperature and the immersion/emersion cycle. "Robomussel" temperature loggers were used to monitor thermal conditions at the two sites over one year. Comparison with live animals showed that robomussels provided a good estimate of mussel body temperatures. A significant difference in estimated body temperatures was observed between the sites and the results showed that, under natural conditions, temperatures regularly approach or exceed the thermal limits of P. perna identified in the laboratory. The two P. perna lineages showed similar tidal and diel patterns of heart rate, with higher cardiac activity during daytime immersion and minimal values during daytime emersion. Comparison of the heart rates measured in the field with data previously measured in the laboratory indicates that laboratory results seriously underestimate heart rate activity, by as much as 75%, especially during immersion. Unexpectedly, field estimates of body temperatures indicated an ability to tolerate temperatures considered lethal on the basis of laboratory measurements. This suggests that the interaction of abiotic conditions in the field does not necessarily raise vulnerability to high temperatures.

  9. Standard guide for qualification of measurement methods by a laboratory within the nuclear industry

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2003-01-01

    1.1 This guide provides guidance for selecting, validating, and qualifying measurement methods when qualification is required for a specific program. The recommended practices presented in this guide provide a major part of a quality assurance program for the laboratory data (see Fig. 1). Qualification helps to assure that the data produced will meet established requirements. 1.2 The activities intended to assure the quality of analytical laboratory measurement data are diagrammed in Fig. 1. Discussion and guidance related to some of these activities appear in the following sections: Section Selection of Measurement Methods 5 Validation of Measurement Methods 6 Qualification of Measurement Methods 7 Control 8 Personnel Qualification 9 1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitati...

  10. Variability of creatinine measurements in clinical laboratories: results from the CRIC study.

    Science.gov (United States)

    Joffe, Marshall; Hsu, Chi-yuan; Feldman, Harold I; Weir, Matthew; Landis, J R; Hamm, L Lee

    2010-01-01

    Estimating equations using serum creatinine (SCr) are often used to assess glomerular filtration rate (GFR). Such creatinine (Cr)-based formulae may produce biased estimates of GFR when using Cr measurements that have not been calibrated to reference laboratories. In this paper, we sought to examine the degree of this variation in Cr assays in several laboratories associated with academic medical centers affiliated with the Chronic Renal Insufficiency Cohort (CRIC) Study; to consider how best to correct for this variation, and to quantify the impact of such corrections on eligibility for participation in CRIC. Variability of Cr is of particular concern in the conduct of CRIC, a large multicenter study of subjects with chronic renal disease, because eligibility for the study depends on Cr-based assessment of GFR. A library of 5 large volume plasma specimens from apheresis patients was assembled, representing levels of plasma Cr from 0.8 to 2.4 mg/dl. Samples from this library were used for measurement of Cr at each of the 14 CRIC laboratories repetitively over time. We used graphical displays and linear regression methods to examine the variability in Cr, and used linear regression to develop calibration equations. We also examined the impact of the various calibration equations on the proportion of subjects screened as potential participants who were actually eligible for the study. There was substantial variability in Cr assays across laboratories and over time. We developed calibration equations for each laboratory; these equations varied substantially among laboratories and somewhat over time in some laboratories. The laboratory site contributed the most to variability (51% of the variance unexplained by the specimen) and variation with time accounted for another 15%. In some laboratories, calibration equations resulted in differences in eligibility for CRIC of as much as 20%. The substantial variability in SCr assays across laboratories necessitates calibration

  11. A FMEA clinical laboratory case study: how to make problems and improvements measurable.

    Science.gov (United States)

    Capunzo, Mario; Cavallo, Pierpaolo; Boccia, Giovanni; Brunetti, Luigi; Pizzuti, Sante

    2004-01-01

    The authors have experimented the application of the Failure Mode and Effect Analysis (FMEA) technique in a clinical laboratory. FMEA technique allows: a) to evaluate and measure the hazards of a process malfunction, b) to decide where to execute improvement actions, and c) to measure the outcome of those actions. A small sample of analytes has been studied: there have been determined the causes of the possible malfunctions of the analytical process, calculating the risk probability index (RPI), with a value between 1 and 1,000. Only for the cases of RPI > 400, improvement actions have been implemented that allowed a reduction of RPI values between 25% to 70% with a costs increment of FMEA technique can be applied to the processes of a clinical laboratory, even if of small dimensions, and offers a high potential of improvement. Nevertheless, such activity needs a thorough planning because it is complex, even if the laboratory already operates an ISO 9000 Quality Management System.

  12. Measurement comparisons of radioactivity among European monitoring laboratories for the environment and food stuff

    International Nuclear Information System (INIS)

    Waetjen, U.; Spasova, Y.; Altzitzoglou, T.

    2008-01-01

    For more than 15 years, European Union (EU) laboratories monitoring environmental radioactivity have been obliged to participate in measurement comparisons organised by the European Commission. After a short review of comparisons conducted during the 1990s, the approach of IRMM organising these comparisons since 2003 is presented. It relies on the provision of comparison samples with reference values traceable to the International Reference System for radionuclides (SIR). The results of the most recent comparison, the determination of 40 K, 90 Sr and 137 Cs in milk powder, are presented. The influence of repetitive participation in measurement comparisons on laboratory performance is studied on the basis of data from more than 20 laboratories having participated in several exercises during the last 15 years

  13. Genetic influence on blood pressure measured in the office, under laboratory stress and during real life

    NARCIS (Netherlands)

    Wang, Xiaoling; Ding, Xiuhua; Su, Shaoyong; Harshfield, Gregory; Treiber, Frank; Snieder, Harold

    To determine to what extent the genetic influences on blood pressure (BP) measured in the office, under psychologically stressful conditions in the laboratory and during real life are different from each other. Office BP, BP during a video game challenge and a social stressor interview, and 24-h

  14. The procedures manual of the Environmental Measurements Laboratory. Volume 2, 28. edition

    Energy Technology Data Exchange (ETDEWEB)

    Chieco, N.A. [ed.

    1997-02-01

    This report contains environmental sampling and analytical chemistry procedures that are performed by the Environmental Measurements Laboratory. The purpose of environmental sampling and analysis is to obtain data that describe a particular site at a specific point in time from which an evaluation can be made as a basis for possible action.

  15. Measurement of low radioactivity in underground laboratories by means of many-dimensional spectrometry

    International Nuclear Information System (INIS)

    Niese, Siegfried

    2008-01-01

    In this contribution beside the possibilities for the measurements in underground laboratories also the application of the many-dimensional spectrometry is considered, under which coincidence, anticoincidence, and time-resolving spectrometric are to be understood. Very extensively the interaction of cosmic radiation with matter is considered

  16. Application of peer instruction in the laboratory task of measuring the effective mass of a spring

    Science.gov (United States)

    Zhang, Chun-Ling; Hou, Zhen-Yu; Si, Yu-Chang; Wen, Xiao-Qing; Tang, Lei

    2017-11-01

    Peer instruction (PI) is an effective interactive approach to teaching and learning that has principally been used to modify the experience of learning in traditional physics lecture settings. This article further illustrates how the concept of PI can be effectively applied in the physics student laboratory setting. The setting used is a laboratory task that calls for the measurement of the effective mass of the spring of a Jolly balance. Through PI the students gain a better understanding of what is meant by the construct ‘effective mass of a spring’, and thereby competently work out how the mass, shape, wire diameter, and number of turns of the spring can all affect the effective mass of the spring. Furthermore, using stopwatches the students were also able to appreciate how recorded times at the equilibrium position had greater uncertainty than measurements made at the maximum displacement. This led to their calculations of the effective mass of the spring being impressively close to the theoretical value. Such laboratory tasks are extremely challenging to introductory level students and the success attained by the students in this study indicates that there is much potential in the application of PI in laboratory settings. PI should be used to teach in the laboratory and results should be reported in order for our community to build on these experiences. This article is a contribution to that effort.

  17. Correction of stream quality trends for the effects of laboratory measurement bias

    Science.gov (United States)

    Alexander, Richard B.; Smith, Richard A.; Schwarz, Gregory E.

    1993-01-01

    We present a statistical model relating measurements of water quality to associated errors in laboratory methods. Estimation of the model allows us to correct trends in water quality for long-term and short-term variations in laboratory measurement errors. An illustration of the bias correction method for a large national set of stream water quality and quality assurance data shows that reductions in the bias of estimates of water quality trend slopes are achieved at the expense of increases in the variance of these estimates. Slight improvements occur in the precision of estimates of trend in bias by using correlative information on bias and water quality to estimate random variations in measurement bias. The results of this investigation stress the need for reliable, long-term quality assurance data and efficient statistical methods to assess the effects of measurement errors on the detection of water quality trends.

  18. Effectiveness of a GUM-compliant course for teaching measurement in the introductory physics laboratory

    International Nuclear Information System (INIS)

    Pillay, Seshini; Buffler, Andy; Lubben, Fred; Allie, Saalih

    2008-01-01

    An evaluation of a course aimed at developing university students' understanding of the nature of scientific measurement and uncertainty is described. The course materials follow the framework for metrology as recommended in the Guide to the Expression of Uncertainty in Measurement (GUM). The evaluation of the course is based on responses to written questionnaires administered to a cohort of 76 first year physics students both pre- and post-instruction, which were interpreted in terms of 'point' or 'set' reasoning. These findings are compared with responses from a control group of 70 students who completed a similar laboratory course apart from the use of traditional approaches to measurement and data analysis. The results suggest that the GUM framework, together with the specific teaching strategies described, provides opportunities for more effective learning of measurement and uncertainty in the introductory laboratory

  19. Laboratory Measurements of Optical Properties of Micron Size Individual Dust Grains

    Science.gov (United States)

    Abbas, M. M.; Craven, P. D.; Spann, J. F.; Tankosic, D.; LeClair, A.; Witherow, W. K.; Camata, R.; Gerakines, P.

    2003-01-01

    A laboratory program is being developed at NASA Marshall Space Flight Center for experimental determination of the optical and physical properties individual dust grains in simulated astrophysical environments. The experimental setup is based on an electrodynamic balance that permits levitation of single 0.1 - 10 micron radii dust grains in a cavity evacuated to pressures of approx. 10(exp -6) torr. The experimental apparatus is equipped with observational ports for measurements in the UV, visible, and infrared spectral regions. A cryogenic facility for cooling the particles to temperature of approx. 10-50K is being installed. The current and the planned measurements include: dust charging processes, photoelectric emissions and yields with UV irradiation, radiation pressure measurements, infrared absorption and scattering properties, and condensation processes, involving the analogs of cosmic dust grains. Selected results based on photoemissions, radiation pressure, and other laboratory measurements will be presented.

  20. The LUT-Gauge for overcoring rock stress measurements - Technical description and laboratory evaluation

    International Nuclear Information System (INIS)

    Leijon, B.

    1988-03-01

    The development of the LUT-Gauge - a triaxial borehole instrument for overcoring rock stress measurements - is reported. The borehole gauge and the associated equipment is described in some detail. The experimental procedures applicable to field measurements with the device are presented. A series of laboratory tests, aimed at investigating the performance of the instrumentation, are reported, This included basic tests of mechanical and electrical reliability, as well as investigations of the thermal sensitivity of the measuring method. These factors are significant with respect to the applicability of the method under field conditions. The results from the laboratory tests showed that instrument performance was in all respects satisfactory. Furthermore, that the effects of temperature changes, expressed as the corresponding measuring error to be expected under typical field conditions, was less than ± 1 MPa. (author)

  1. DOOCS based control system for FPGA based cavity simulator and controller in VUV FEL

    International Nuclear Information System (INIS)

    Pucyk, P.

    2005-09-01

    The X-ray free-electron laser XFEL that is being planned at the DESY research center in cooperation with European partners will produce high-intensity ultra-short X-ray flashes with the properties of laser light. This new light source, which can only be described in terms of superlatives, will open up a whole range of new perspectives for the natural sciences. It could also offer very promising opportunities for industrial users. SIMCON (SIMulator and CONtroller) is the project of the fast, low latency digital controller dedicated for LLRF 1 system in VUV FEL experiment It is being developed by ELHEP 2 group in Institute of Electronic Systems at Warsaw University of Technology. The main purpose of the project is to create a controller for stabilizing the vector sum of fields in cavities of one cryo module in the experiment. The device can be also used as the simulator of the cavity and test bench for other devices. Ths paper describes the concept, implementation and tests of the DOOCS based control system for SIMCON. The designed system is based the concept of autonomic and extendable modules connected by well defined, unified interfaces. The communication module controls the access to the hardware. It is crucial, that all modules (this presented in thesis and developed in the future) use this interface. Direct access to the control tables let the engineers to perform algorithm development or diagnostic measurements of the LLRF system. Default control tables generator makes the whole SIMCON an autonomic device, which can start immediately the operation without any additional tools. (orig.)

  2. DOOCS based control system for FPGA based cavity simulator and controller in VUV FEL

    International Nuclear Information System (INIS)

    Pucyk, P.D.

    2006-03-01

    The X-ray free-electron laser XFEL that is being planned at the DESY research center in cooperation with European partners will produce high-intensity ultra-short X-ray flashes with the properties of laser light. This new light source, which can only be described in terms of superlatives, will open up a whole range of new perspectives for the natural sciences. It could also offer very promising opportunities for industrial users. SIMCON (SIMulator and CONtroller) is the project of the fast, low latency digital controller dedicated for LLRF 1 system in VUV FEL experiment It is being developed by ELHEP 2 group in Institute of Electronic Systems at Warsaw University of Technology. The main purpose of the project is to create a controller for stabilizing the vector sum of fields in cavities of one cryo module in the experiment. The device can be also used as the simulator of the cavity and test bench for other devices. This paper describes the concept, implementation and tests of the DOOCS based control system for SIMCON. The designed system is based the concept of autonomic and extendable modules connected by well defined, unified interfaces. The communication module controls the access to the hardware. It is crucial, that all modules (this presented in thesis and developed in the future) use this interface. Direct access to the control tables let the engineers to perform algorithm development or diagnostic measurements of the LLRF system. Default control tables generator makes the whole SIMCON an autonomic device, which can start immediately the operation without any additional tools. (Orig.)

  3. ADVANTAGES AND DISADVANTAGES OF MODERN LABORATORY MEASUREMENT OF THE COEFFICIENT OF PERMEABILITY FOR SOIL MATERIALS

    OpenAIRE

    Veinović, Želimir; Kovačević-Zelić, Biljana; Kvasnička, Predrag

    2003-01-01

    Permeability tests are one of the most often performed experiments in geotechnics. Conventional methods conducted by oedometer and triaxial apparatus have many disadvantages, the most significant being the test duration. As a consequence, errors in permeability measurements could occur. On the contrary, by applying modern flow-pump method, permeability measurements can be obtained much more rapidly. Moreover, the permeability/void ratio relation can be obtained by using adequate laboratory de...

  4. A simple laboratory experiment to measure the surface tension of a liquid in contact with air

    International Nuclear Information System (INIS)

    Riba, Jordi-Roger; Esteban, Bernat

    2014-01-01

    A simple and accurate laboratory experiment to measure the surface tension of liquids has been developed, which is well suited to teach the behaviour of liquids to first- or second-year students of physics, engineering or chemistry. The experimental setup requires relatively inexpensive equipment usually found in physics and chemistry laboratories, since it consists of a used or recycled burette, an analytical balance and a stereoscopic microscope or a micrometer. Experimental data and error analysis show that the surface tension of distilled water, 1-butanol and glycerol can be determined with accuracy better than 1.4%. (paper)

  5. Contribution to the RMTC in the field of tank calibration and measurements - the TAMSCA laboratory

    International Nuclear Information System (INIS)

    Hunt, B.A.; Landat, D.; Caviglia, M.; Silvapestana, L.

    1999-01-01

    The Russian Methodological and Training Centre (RMTC) is being established for training of personnel from the various Russian and CIS nuclear facilities organizations in the control and accountancy methods, utilised in EURATOM and in the IAEA. Under the project equipment and support will be provided in a number of areas, namely containment and surveillance, training, passive/active neutron assay and mass/volume methodologies. For the latter a mass/volume measurement laboratory - a Tank Measurements and Calibration Laboratory (TAMSCA) is being set-up in IPPE, Obninsk. The goal is to upgrade the methodology within the Russian Federation in the application of mass/volume measurement techniques and render a facility suitable adapted to carrying out training courses with specific orientation for the nuclear inspectors and operators of nuclear facilities for nuclear accountancy and control [ru

  6. Precise turnaround time measurement of laboratory processes using radiofrequency identification technology.

    Science.gov (United States)

    Mayer, Horst; Brümmer, Jens; Brinkmann, Thomas

    2011-01-01

    To implement Lean Six Sigma in our central laboratory we conducted a project to measure single pre-analytical steps influencing turnaround time (TAT) of emergency department (ED) serum samples. The traditional approach of extracting data from the Laboratory Information System (LIS) for a retrospective calculation of a mean TAT is not suitable. Therefore, we used radiofrequency identification (RFID) chips for real time tracking of individual samples at any pre-analytical step. 1,200 serum tubes were labelled with RFID chips and were provided to the emergency department. 3 RFID receivers were installed in the laboratory: at the outlet of the pneumatic tube system, at the centrifuge, and in the analyser area. In addition, time stamps of sample entry at the automated sample distributor and communication of results from the analyser were collected from LIS. 1,023 labelled serum tubes arrived at our laboratory. 899 RFID tags were used for TAT calculation. The following transfer times were determined (median 95th percentile in min:sec): pneumatic tube system --> centrifuge (01:25/04:48), centrifuge --> sample distributor (14:06/5:33), sample distributor --> analysis system zone (02:39/15:07), analysis system zone --> result communication (12:42/22:21). Total TAT was calculated at 33:19/57:40 min:sec. Manual processes around centrifugation were identified as a major part of TAT with 44%/60% (median/95th percentile). RFID is a robust, easy to use, and error-free technology and not susceptible to interferences in the laboratory environment. With this study design we were able to measure significant variations in a single manual sample transfer process. We showed that TAT is mainly influenced by manual steps around the centrifugation process and we concluded that centrifugation should be integrated in solutions for total laboratory automation.

  7. Technical report on levels of electromagnetic fields created by Linky meters. Part 1: laboratory measurements; Part 2: laboratory additional measurements; Part 3: field measurements

    International Nuclear Information System (INIS)

    2016-05-01

    The first part of this study reports measurements of electromagnetic radiations induced by remote-metering reading devices present in new power meters and using the Power-Line Communication (PLC or, in French, CPL) technology, such as the Linky meter. After a recall of legislation regarding exposure to electromagnetic waves, this first part present the two tested meters (Linky of first and third generation, G1 and G3), the performed tests, measurements devices and method. It more precisely reports investigations performed on these both meters, and a comparison with other home appliances. The second part reports additional measurements performed with both meters according to the same methodology, but with the use of a new electric field probe which allows more precise measurements. Maximum electric and magnetic fields have been measured. The third part reports field measurements performed with the same methodology but in dwellings equipped with Linky meters of first generation (G1). Exposure levels have been measured at the vicinity of meters and in other parts of the dwelling

  8. Laboratory Measurements of Charging of Apollo 17 Lunar Dust Grains by Low Energy Electrons

    Science.gov (United States)

    Abbas, Mian M.; Tankosic, Dragana; Spann, James F.; Dube, Michael J.; Gaskin, Jessica

    2007-01-01

    It is well recognized that the charging properties of individual micron/sub-micron size dust grains by various processes are expected to be substantially different from the currently available measurements made on bulk materials. Solar UV radiation and the solar wind plasma charge micron size dust grains on the lunar surface with virtually no atmosphere. The electrostatically charged dust grains are believed to be levitated and transported long distances over the lunar terminator from the day to the night side. The current models do not fully explain the lunar dust phenomena and laboratory measurements are needed to experimentally determine the charging properties of lunar dust grains. An experimental facility has been developed in the Dusty Plasma Laboratory at NASA Marshall Space Flight Center MSFC for investigating the charging properties of individual micron/sub-micron size positively or negatively charged dust grains by levitating them in an electrodynamic balance in simulated space environments. In this paper, we present laboratory measurements on charging of Apollo 17 individual lunar dust grains by low energy electron beams in the 5-100 eV energy range. The measurements are made by levitating Apollo 17 dust grains of 0.2 to 10 micrometer diameters, in an electrodynamic balance and exposing them to mono-energetic electron beams. The charging rates and the equilibrium potentials produced by direct electron impact and by secondary electron emission processes are discussed.

  9. Mounted Smartphones as Measurement and Control Platforms for Motor-Based Laboratory Test-Beds †

    Science.gov (United States)

    Frank, Jared A.; Brill, Anthony; Kapila, Vikram

    2016-01-01

    Laboratory education in science and engineering often entails the use of test-beds equipped with costly peripherals for sensing, acquisition, storage, processing, and control of physical behavior. However, costly peripherals are no longer necessary to obtain precise measurements and achieve stable feedback control of test-beds. With smartphones performing diverse sensing and processing tasks, this study examines the feasibility of mounting smartphones directly to test-beds to exploit their embedded hardware and software in the measurement and control of the test-beds. This approach is a first step towards replacing laboratory-grade peripherals with more compact and affordable smartphone-based platforms, whose interactive user interfaces can engender wider participation and engagement from learners. Demonstrative cases are presented in which the sensing, computation, control, and user interaction with three motor-based test-beds are handled by a mounted smartphone. Results of experiments and simulations are used to validate the feasibility of mounted smartphones as measurement and feedback control platforms for motor-based laboratory test-beds, report the measurement precision and closed-loop performance achieved with such platforms, and address challenges in the development of platforms to maintain system stability. PMID:27556464

  10. Mounted Smartphones as Measurement and Control Platforms for Motor-Based Laboratory Test-Beds

    Directory of Open Access Journals (Sweden)

    Jared A. Frank

    2016-08-01

    Full Text Available Laboratory education in science and engineering often entails the use of test-beds equipped with costly peripherals for sensing, acquisition, storage, processing, and control of physical behavior. However, costly peripherals are no longer necessary to obtain precise measurements and achieve stable feedback control of test-beds. With smartphones performing diverse sensing and processing tasks, this study examines the feasibility of mounting smartphones directly to test-beds to exploit their embedded hardware and software in the measurement and control of the test-beds. This approach is a first step towards replacing laboratory-grade peripherals with more compact and affordable smartphone-based platforms, whose interactive user interfaces can engender wider participation and engagement from learners. Demonstrative cases are presented in which the sensing, computation, control, and user interaction with three motor-based test-beds are handled by a mounted smartphone. Results of experiments and simulations are used to validate the feasibility of mounted smartphones as measurement and feedback control platforms for motor-based laboratory test-beds, report the measurement precision and closed-loop performance achieved with such platforms, and address challenges in the development of platforms to maintain system stability.

  11. Mounted Smartphones as Measurement and Control Platforms for Motor-Based Laboratory Test-Beds.

    Science.gov (United States)

    Frank, Jared A; Brill, Anthony; Kapila, Vikram

    2016-08-20

    Laboratory education in science and engineering often entails the use of test-beds equipped with costly peripherals for sensing, acquisition, storage, processing, and control of physical behavior. However, costly peripherals are no longer necessary to obtain precise measurements and achieve stable feedback control of test-beds. With smartphones performing diverse sensing and processing tasks, this study examines the feasibility of mounting smartphones directly to test-beds to exploit their embedded hardware and software in the measurement and control of the test-beds. This approach is a first step towards replacing laboratory-grade peripherals with more compact and affordable smartphone-based platforms, whose interactive user interfaces can engender wider participation and engagement from learners. Demonstrative cases are presented in which the sensing, computation, control, and user interaction with three motor-based test-beds are handled by a mounted smartphone. Results of experiments and simulations are used to validate the feasibility of mounted smartphones as measurement and feedback control platforms for motor-based laboratory test-beds, report the measurement precision and closed-loop performance achieved with such platforms, and address challenges in the development of platforms to maintain system stability.

  12. 2D X-ray scanner and its uses in laboratory reservoir characterization measurements

    Energy Technology Data Exchange (ETDEWEB)

    Maloney, D.; Doggett, K.

    1997-08-01

    X-ray techniques are used in petroleum laboratories for a variety of reservoir characterization measurements. This paper describes the configuration of a 2D X-ray scanner and many of the ways in which it simplifies and improves accuracy`s of laboratory measurements. Linear X-ray scanners are most often used to provide descriptions of fluid saturations within core plugs during flow tests. We configured our linear scanner for both horizontal and vertical movement. Samples can be scanned horizontally, vertically, or according to horizontal and vertical grids. X-ray measurements are fast, allowing measurements of two- and three-phase fluid saturations during both steady- and unsteady-state flow processes. Rock samples can be scanned while they are subjected to stress, pore pressure, and temperature conditions simulating those of a petroleum reservoir. Many types of measurements are possible by selecting appropriate X-ray power settings, dopes, filters, and collimator configurations. The scanner has been used for a variety of applications besides fluid saturation measurements. It is useful for measuring porosity distributions in rocks, concentrations of X-ray dopes within flow streams during tracer tests, gap widths in fracture flow cells, fluid interface levels in PVT cells and fluid separators, and other features and phenomena.

  13. Understanding water uptake in bioaerosols using laboratory measurements, field tests, and modeling

    Science.gov (United States)

    Chaudhry, Zahra; Ratnesar-Shumate, Shanna A.; Buckley, Thomas J.; Kalter, Jeffrey M.; Gilberry, Jerome U.; Eshbaugh, Jonathan P.; Corson, Elizabeth C.; Santarpia, Joshua L.; Carter, Christopher C.

    2013-05-01

    Uptake of water by biological aerosols can impact their physical and chemical characteristics. The water content in a bioaerosol can affect the backscatter cross-section as measured by LIDAR systems. Better understanding of the water content in controlled-release clouds of bioaerosols can aid in the development of improved standoff detection systems. This study includes three methods to improve understanding of how bioaerosols take up water. The laboratory method measures hygroscopic growth of biological material after it is aerosolized and dried. Hygroscopicity curves are created as the humidity is increased in small increments to observe the deliquescence point, then the humidity is decreased to observe the efflorescence point. The field component of the study measures particle size distributions of biological material disseminated into a large humidified chamber. Measurements are made with a Twin-Aerodynamic Particle Sizer (APS, TSI, Inc), -Relative Humidity apparatus where two APS units measure the same aerosol cloud side-by-side. The first operated under dry conditions by sampling downstream of desiccant dryers, the second operated under ambient conditions. Relative humidity was measured within the sampling systems to determine the difference in the aerosol water content between the two sampling trains. The water content of the bioaerosols was calculated from the twin APS units following Khlystov et al. 2005 [1]. Biological material is measured dried and wet and compared to laboratory curves of the same material. Lastly, theoretical curves are constructed from literature values for components of the bioaerosol material.

  14. IAEA intercomparison exercises of thyroid measurement: performance of Latin American and Caribbean laboratories

    International Nuclear Information System (INIS)

    Dantas, B.M.; Dantas, A.L.A.; Cruz-Suarez, R.

    2016-01-01

    131 I is widely used in Latin America and Caribbean Region in the field of nuclear medicine and has been recognised as one of the main sources of potential intake of radionuclides by the staff. The In Vivo Monitoring laboratory of the Institute for Radiation Protection and Dosimetry (IRD-CNEN-Brazil) organised three intercomparison exercises (2005, 2009 and 2013) in the scope of IAEA technical cooperation projects RLA9049 and RLA9066 aimed to disseminate and harmonise the technique for measuring 131 I in the human thyroid. The number of participants in Latin America increased from 9 to 20 institutions from 7 and 13 countries, respectively, over the last 10 y. The participants have improved significantly their ability on the in vivo measurement technique. In the 2013 round all laboratories which reported results presented performances in an acceptable range according to the ISO criteria indicating the benefit of such exercises in the region. (authors)

  15. The application of acoustic emission measurements on laboratory testpieces to large scale pressure vessel monitoring

    International Nuclear Information System (INIS)

    Ingham, T.; Dawson, D.G.

    1975-01-01

    A test pressure vessel containing 4 artificial defects was monitored for emission whilst pressure cycling to failure. Testpieces cut from both the failed vessel and from as-rolled plate material were tested in the laboratory. A marked difference in emission characteristics was observed between plate and vessel testpieces. Activity from vessel material was virtually constant after general yield and emission amplitudes were low. Plate testpieces showed maximum activity at general yield and more frequent high amplitude emissions. An attempt has been made to compare the system sensitivities between the pressure vessel test and laboratory tests. In the absence of an absolute calibration device, system sensitivities were estimated using dummy signals generated by the excitation of an emission sensor. The measurements have shown an overall difference in sensitivity between vessel and laboratory tests of approximately 25db. The reduced sensitivity in the vessel test is attributed to a combination of differences in sensors, acoustic couplant, attenuation, and dispersion relative to laboratory tests and the relative significance of these factors is discussed. Signal amplitude analysis of the emissions monitored from laboratory testpieces showed that, whith losses of the order of 25 to 30db, few emissions would be detected from the pressure vessel test. It is concluded that no reliable prediction of acoustic behaviour of a structure may be made from laboratory test unless testpieces of the actual structural material are used. A considerable improvement in detection sensitivity, is also required for reliable detection of defects in low strength ductile materials and an absolute method of system calibration is required between tests

  16. Long term indoor radon measurements in the pelletron laboratory at the UNAM physics institute

    OpenAIRE

    Espinosa, G.; Golzarri, J.I.; Lopez, K.; Rickards, J.

    2011-01-01

    The results of six months of continuous measurement of the indoor radon concentration levels in the building where the Instituto de Física 3 MV Pelletron particle accelerator is located are presented. This study has three major objectives: (a) to know the actual values of the levels of indoor radon in this installation, where personnel spend many hours and sometimes days; (b) assess the radiological risk from radon inhalation for personnel working permanently in the laboratory, as well as inc...

  17. Comparison of Laboratory and Field Remote Sensing Methods to Measure Forage Quality

    OpenAIRE

    Guo, Xulin; Wilmshurst, John F.; Li, Zhaoqin

    2010-01-01

    Recent research in range ecology has emphasized the importance of forage quality as a key indicator of rangeland condition. However, we lack tools to evaluate forage quality at scales appropriate for management. Using canopy reflectance data to measure forage quality has been conducted at both laboratory and field levels separately, but little work has been conducted to evaluate these methods simultaneously. The objective of this study is to find a reliable way of assessing grassland quality ...

  18. Mounted Smartphones as Measurement and Control Platforms for Motor-Based Laboratory Test-Beds

    OpenAIRE

    Jared A. Frank; Anthony Brill; Vikram Kapila

    2016-01-01

    Laboratory education in science and engineering often entails the use of test-beds equipped with costly peripherals for sensing, acquisition, storage, processing, and control of physical behavior. However, costly peripherals are no longer necessary to obtain precise measurements and achieve stable feedback control of test-beds. With smartphones performing diverse sensing and processing tasks, this study examines the feasibility of mounting smartphones directly to test-beds to exploit their em...

  19. A fast VUV light pulser for testing ring-imaging Cerenkov counters

    International Nuclear Information System (INIS)

    Margulies, S.; Ozelis, J.

    1986-01-01

    A simple, fast, VUV light pulser for testing a TMAE-based, time-projection-chamber-type photon detector for a ring-imaging Cerenkov counter is described. The pulser consists of an automobile spark plug fired in a controlled atmosphere by a relaxation oscillator. The resulting VUV spectrum, spark-current pulse, and light pulse were investigated for hydrogen, xenon, krypton, and nitrogen fills. The best pulse (3.5 ns FWHM) was obtained with hydrogen at 60 kPa absolute pressure. Xenon was, generally, unsuitable because it continued to emit light for more than a microsecond after excitation. With krypton and nitrogen, no light was emitted in the wavelength region of interest except for a series of sharp lines attributable to the electrodes

  20. National Synchrotron Light Source users manual: Guide to the VUV and x-ray beam lines

    International Nuclear Information System (INIS)

    Gmuer, N.F.; White-DePace, S.M.

    1987-08-01

    The success of the National Synchrotron Light Source in the years to come will be based, in large part, on the size of the users community and the diversity of the scientific disciplines represented by these users. In order to promote this philosophy, this National Synchrotron Light Source (NSLS) Users Manual: Guide to the VUV and X-Ray Beam Lines, has been published. This manual serves a number of purposes. In an effort to attract new research, it will present to the scientific community-at-large the current and projected architecture and capabilities of the various VUV and x-ray beam lines and storage rings. We anticipate that this publication will be updated periodically in order to keep pace with the constant changes at the NSLS

  1. An automated image analysis system to measure and count organisms in laboratory microcosms.

    Directory of Open Access Journals (Sweden)

    François Mallard

    Full Text Available 1. Because of recent technological improvements in the way computer and digital camera perform, the potential use of imaging for contributing to the study of communities, populations or individuals in laboratory microcosms has risen enormously. However its limited use is due to difficulties in the automation of image analysis. 2. We present an accurate and flexible method of image analysis for detecting, counting and measuring moving particles on a fixed but heterogeneous substrate. This method has been specifically designed to follow individuals, or entire populations, in experimental laboratory microcosms. It can be used in other applications. 3. The method consists in comparing multiple pictures of the same experimental microcosm in order to generate an image of the fixed background. This background is then used to extract, measure and count the moving organisms, leaving out the fixed background and the motionless or dead individuals. 4. We provide different examples (springtails, ants, nematodes, daphnia to show that this non intrusive method is efficient at detecting organisms under a wide variety of conditions even on faintly contrasted and heterogeneous substrates. 5. The repeatability and reliability of this method has been assessed using experimental populations of the Collembola Folsomia candida. 6. We present an ImageJ plugin to automate the analysis of digital pictures of laboratory microcosms. The plugin automates the successive steps of the analysis and recursively analyses multiple sets of images, rapidly producing measurements from a large number of replicated microcosms.

  2. Oceanic crustal velocities from laboratory and logging measurements of Integrated Ocean Drilling Program Hole 1256D

    Science.gov (United States)

    Gilbert, Lisa A.; Salisbury, Matthew H.

    2011-09-01

    Drilling and logging of Integrated Ocean Drilling Program (IODP) Hole 1256D have provided a unique opportunity for systematically studying a fundamental problem in marine geophysics: What influences the seismic structure of oceanic crust, porosity or composition? Compressional wave velocities (Vp) logged in open hole or from regional refraction measurements integrate both the host rock and cracks in the crust. To determine the influence of cracks on Vp at several scales, we first need an accurate ground truth in the form of laboratory Vp on crack-free, or nearly crack-free samples. We measured Vp on 46 water-saturated samples at in situ pressures to determine the baseline velocities of the host rock. These new results match or exceed Vp logs throughout most of the hole, especially in the lower dikes and gabbros, where porosities are low. In contrast, samples measured at sea under ambient laboratory conditions, had consistently lower Vp than the Vp logs, even after correction to in situ pressures. Crack-free Vp calculated from simple models of logging and laboratory porosity data for different lithologies and facies suggest that crustal velocities in the lavas and upper dikes are controlled by porosity. In particular, the models demonstrate significant large-scale porosity in the lavas, especially in the sections identified as fractured flows and breccias. However, crustal velocities in the lower dikes and gabbros are increasingly controlled by petrology as the layer 2-3 boundary is approached.

  3. Photometrics Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — Purpose:The Photometrics Laboratory provides the capability to measure, analyze and characterize radiometric and photometric properties of light sources and filters,...

  4. Characterization of Orbital Debris Photometric Properties Derived from Laboratory-Based Measurements

    Science.gov (United States)

    Cowardin, Heather; Seitzer, Pat; Abercromby, Kira; Barker, Ed; Schildknecht, Thomas

    2010-01-01

    Capitalizing on optical data products and applying them to generate a more complete understanding of orbital space objects, is a key objective of NASA's Optical Measurement Program, and a primary objective for the creation of the Optical Measurements Center(OMC). The OMC attempts to emulate space-based illumination conditions using equipment and techniques that parallel telescopic observations and source-target-sensor orientations. The data acquired in the OMC are a function of known shape, size, and material. These three physical parameters are key to understanding the orbital debris environment in more depth. For optical observations, one must rely on spectroscopic or photometric measurements to ascertain an object's material type. Determination of an object s shape using remote observations is more complicated due to the various light scattering properties each object present and is a subject that requires more study. It is much easier to look at the periodicity of the light curve and analyze its structure for rotation. In order to best simulate the orbital debris population, three main sources were used as test fragments for optical measurements: flight-ready materials, destructive hypervelocity testing (simulating on-orbit collisions) and destructive pressure testing (simulating on-orbit explosions). Laboratory optical characteristics of fragments were measured, including light curve shape, phase angle dependence, and photometric and spectroscopic color indices. These characteristics were then compared with similar optical measurements acquired from telescopic observations in order to correlate remote and laboratory properties with the intent of ascertaining the intrinsic properties of the observed orbital debris

  5. Laboratory Evaluation of Air Flow Measurement Methods for Residential HVAC Returns

    Energy Technology Data Exchange (ETDEWEB)

    Walker, Iain; Stratton, Chris

    2015-07-01

    This project improved the accuracy of air flow measurements used in commissioning California heating and air conditioning systems in Title 24 (Building and Appliance Efficiency Standards), thereby improving system performance and efficiency of California residences. The research team at Lawrence Berkeley National Laboratory addressed the issue that typical tools used by contractors in the field to test air flows may not be accurate enough to measure return flows used in Title 24 applications. The team developed guidance on performance of current diagnostics as well as a draft test method for use in future evaluations. The series of tests performed measured air flow using a range of techniques and devices. The measured air flows were compared to reference air flow measurements using inline air flow meters built into the test apparatus. The experimental results showed that some devices had reasonable results (typical errors of 5 percent or less) but others had much bigger errors (up to 25 percent).

  6. Degradation of Solar Array Components in a Combined UV/VUV High Temperature Test Environment

    Directory of Open Access Journals (Sweden)

    Nömayr Christel

    2017-01-01

    A design verification test under UV/VUV conditions of sun exposed materials and technologies on component level is presented which forms part of the overall verification and qualification of the solar array design of the MTM and MPO. The test concentrates on the self-contamination aspects and the resulting performance losses of the solar array under high intensity and elevated temperature environment representative for the photovoltaic assembly (PVA.

  7. Magnet power supply control of the NSLS VUV and x-ray storage rings transfer lines

    International Nuclear Information System (INIS)

    Klein, J.D.; Ramamoorthy, S.; Singh, O.; Smith, J.D.

    1985-01-01

    The transfer lines for NSLS VUV and x-ray storage rings have been split. New power supplies have been incorporated with existing ones. The existing microprocessor system has been upgraded in order to control the additional functions. This system expands the input/output port of the microprocessor to an addressable serial/parallel link to each magnet power supply. The implementation of this system will be discussed

  8. Luminescence mechanism in doubly Gd, Nd-codoped fluoride crystals for VUV scintillators

    Czech Academy of Sciences Publication Activity Database

    Pejchal, Jan; Fukuda, K.; Babin, Vladimir; Kurosawa, S.; Yokota, Y.; Yoshikawa, A.; Nikl, Martin

    2016-01-01

    Roč. 169, Jan (2016), s. 682-689 ISSN 0022-2313. [International Conference on Luminescence and Optical Spectroscopy of Condensed Matter /17./. Wroclaw, 13.07.2014-18.07.2014] R&D Projects: GA MŠk(CZ) LH14266 Institutional support: RVO:68378271 Keywords : barium –lutetium–yttrium fluoride * lutetium fluoride * scintillator * VUV luminescence Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 2.686, year: 2016

  9. Impact of a do-not-do intervention on 12 laboratory measurements.

    Science.gov (United States)

    Zambrana-García, J L; Macías Blanco, C; Fernández-Suárez, A; Peñacoba Masa, A; Olivares Durán, M J; Aguilar Benítez, J M; Zambrana-Luque, J L

    2017-11-01

    In recent years, various scientific societies and healthcare organisations have created recommendations aimed at decreasing the use of healthcare interventions that have shown no efficacy or effectiveness. The aim of this study was to assess the impact of an intervention on 12 do-not-do recommendations regarding the laboratory in 7 hospital centres. Before-after study conducted in 7 hospital centres of Cordoba and Jaen during 2015 and 2016. Based on the recommendations of existing scientific societies, a consensus was reached on various actions regarding laboratory measurements. We analysed the number and cost of measuring 6 tumour markers (carcinoembryonic antigen, prostate-specific antigen, carbohydrate antigen [CA] 15.3, CA125, CA19.9 and alpha-fetoprotein), thyrotropin, T3, T4, glycated haemoglobin, urea, ferritin and antigliadin antibodies, before and after implementing the consensus. Compared with the previous year, there were 55,902 fewer laboratory measurements (-19%) in 2016, with an overall savings of €82,100. The reduction in the number of measurements occurred mainly in plasma urea (-50.3%) and in the tumour markers CA125 (-16%), CA19.9 (-11.6%) and CA15.3 (-10.5%). The most pronounced savings were achieved in the measurements of urea (-€21,002), thyroid hormones (-€12,716) and thyrotropin (-€7,638). The adoption and consensus of do-not-do recommendations among healthcare levels resulted in a significant reduction in unnecessary measurements. Copyright © 2017 Elsevier España, S.L.U. and Sociedad Española de Medicina Interna (SEMI). All rights reserved.

  10. Meta-audit of laboratory ISO accreditation inspections: measuring the old emperor's clothes.

    Science.gov (United States)

    Wilson, Ian G; Smye, Michael; Wallace, Ian J C

    2016-02-01

    Accreditation to ISO/IEC 17025 is required for EC official food control and veterinary laboratories by Regulation (EC) No. 882/2004. Measurements in hospital laboratories and clinics are increasingly accredited to ISO/IEC 15189. Both of these management standards arose from command and control military standards for factory inspection during World War II. They rely on auditing of compliance and have not been validated internally as assessment bodies require of those they accredit. Neither have they been validated to criteria outside their own ideology such as the Cochrane principles of evidence-based medicine which might establish whether any benefit exceeds their cost. We undertook a retrospective meta-audit over 14 years of internal and external laboratory audits that checked compliance with ISO 17025 in a public health laboratory. Most noncompliances arose solely from clauses in the standard and would not affect users. No effect was likely from 91% of these. Fewer than 1% of noncompliances were likely to have consequences for the validity of results or quality of service. The ISO system of compliance auditing has the performance characteristics of a poor screening test. It adds substantially to costs and generates more noise (false positives) than informative signal. Ethical use of resources indicates that management standards should not be used unless proven to deliver the efficacy, effectiveness, and value required of modern healthcare interventions. © 2015 The Authors. MicrobiologyOpen published by John Wiley & Sons Ltd.

  11. A new broadly tunable (7.4-10.2 eV) laser based VUV light source and its first application to aerosol mass spectrometry

    Science.gov (United States)

    Hanna, S. J.; Campuzano-Jost, P.; Simpson, E. A.; Robb, D. B.; Burak, I.; Blades, M. W.; Hepburn, J. W.; Bertram, A. K.

    2009-01-01

    A laser based vacuum ultraviolet (VUV) light source using resonance enhanced four wave difference mixing in xenon gas was developed for near threshold ionization of organics in atmospheric aerosol particles. The source delivers high intensity pulses of VUV light (in the range of 1010 to 1013 photons/pulse depending on wavelength, 5 ns FWHM) with a continuously tunable wavelength from 122 nm (10.2 eV) to 168 nm (7.4 eV)E The setup allows for tight (caffeine aerosols vaporized by a pulsed CO2 laser in an ion trap mass spectrometer. Mass spectra from single particles down to 300 nm in diameter were collected. Excellent signal to noise characteristics for these small particles give a caffeine detection limit of 8 × 105 molecules which is equivalent to a single 75 nm aerosol, or approximately 1.5% of a 300 nm particleE The appearance energy of caffeine originating from the aerosol was also measured and found to be 7.91 ± 0.05 eV, in good agreement with literature values.

  12. On the possibility of measuring the Earth's gravitomagnetic force in a new laboratory experiment

    International Nuclear Information System (INIS)

    Iorio, Lorenzo

    2003-01-01

    In this letter we propose, in a preliminary way, a new Earth-based laboratory experiment aimed at the detection of the gravitomagnetic field of the Earth. It consists of the measurement of the difference between the circular frequencies of two rotators moving along identical circular paths, but in opposite directions, on a horizontal friction-free plane in a vacuum chamber placed at the South Pole. The accuracy to our knowledge of the Earth's rotation from VLBI and the possibility of measuring the rotators' periods over many revolutions should allow for the feasibility of the proposed experiment. (letter to the editor)

  13. Measurement Tools for the Immersive Visualization Environment: Steps Toward the Virtual Laboratory.

    Science.gov (United States)

    Hagedorn, John G; Dunkers, Joy P; Satterfield, Steven G; Peskin, Adele P; Kelso, John T; Terrill, Judith E

    2007-01-01

    This paper describes a set of tools for performing measurements of objects in a virtual reality based immersive visualization environment. These tools enable the use of the immersive environment as an instrument for extracting quantitative information from data representations that hitherto had be used solely for qualitative examination. We provide, within the virtual environment, ways for the user to analyze and interact with the quantitative data generated. We describe results generated by these methods to obtain dimensional descriptors of tissue engineered medical products. We regard this toolbox as our first step in the implementation of a virtual measurement laboratory within an immersive visualization environment.

  14. Measurements of energetic particle radiation in transit to Mars on the Mars Science Laboratory.

    Science.gov (United States)

    Zeitlin, C; Hassler, D M; Cucinotta, F A; Ehresmann, B; Wimmer-Schweingruber, R F; Brinza, D E; Kang, S; Weigle, G; Böttcher, S; Böhm, E; Burmeister, S; Guo, J; Köhler, J; Martin, C; Posner, A; Rafkin, S; Reitz, G

    2013-05-31

    The Mars Science Laboratory spacecraft, containing the Curiosity rover, was launched to Mars on 26 November 2011, and for most of the 253-day, 560-million-kilometer cruise to Mars, the Radiation Assessment Detector made detailed measurements of the energetic particle radiation environment inside the spacecraft. These data provide insights into the radiation hazards that would be associated with a human mission to Mars. We report measurements of the radiation dose, dose equivalent, and linear energy transfer spectra. The dose equivalent for even the shortest round-trip with current propulsion systems and comparable shielding is found to be 0.66 ± 0.12 sievert.

  15. VUV photoemission studies of candidate Large Hadron Collider vacuum chamber materials

    Directory of Open Access Journals (Sweden)

    R. Cimino

    1999-06-01

    Full Text Available In the context of future accelerators and, in particular, the beam vacuum of the Large Hadron Collider (LHC, a 27 km circumference proton collider to be built at CERN, VUV synchrotron radiation (SR has been used to study both qualitatively and quantitatively candidate vacuum chamber materials. Emphasis is given to show that angle and energy resolved photoemission is an extremely powerful tool to address important issues relevant to the LHC, such as the emission of electrons that contributes to the creation of an electron cloud which may cause serious beam instabilities and unmanageable heat loads on the cryogenic system. Here we present not only the measured photoelectron yields from the proposed materials, prepared on an industrial scale, but also the energy and in some cases the angular dependence of the emitted electrons when excited with either a white light (WL spectrum, simulating that in the arcs of the LHC, or monochromatic light in the photon energy range of interest. The effects on the materials examined of WL irradiation and /or ion sputtering, simulating the SR and ion bombardment expected in the LHC, were investigated. The studied samples exhibited significant modifications, in terms of electron emission, when exposed to the WL spectrum from the BESSY Toroidal Grating Monochromator beam line. Moreover, annealing and ion bombardment also induce substantial changes to the surface thereby indicating that such surfaces would not have a constant electron emission during machine operation. Such characteristics may be an important issue to define the surface properties of the LHC vacuum chamber material and are presented in detail for the various samples analyzed. It should be noted that all the measurements presented here were recorded at room temperature, whereas the majority of the LHC vacuum system will be maintained at temperatures below 20 K. The results cannot therefore be directly applied to these sections of the machine until

  16. Characterization of Orbital Debris Photometric Properties Derived from Laboratory-Based Measurements

    Science.gov (United States)

    Cowardin, H.; Abercromby, K.; Barker, E.; Seitzer, P.; Schildknecht, T.

    2010-01-01

    To better characterize and model optical data acquired from ground-based telescopes, the Optical Measurements Center (OMC) at NASA/JSC attempts to emulate illumination conditions seen in space using equipment and techniques that parallel telescopic observations and source-target-sensor orientations. The OMC uses a 75 Watt Xenon arc lamp as a solar simulator, an SBIG CCD camera with standard Johnson/Bessel filters, and a robotic arm to simulate an object's position and rotation. The laboratory uses known shapes, materials suspected to be consistent with the orbital debris population, and three phase angles to best match the lighting conditions of the telescope based data. The fourteen objects studied in the laboratory are fragments or materials acquired through ground-tests of scaled-model satellites/rocket bodies as well as material samples in more/less "flight-ready" condition. All fragments were measured at 10 increments in a full 360 rotation at 6 , 36 , and 60 phase angles. This paper will investigate published color photometric data for a series of orbital debris targets and compare it to the empirical photometric measurements generated in the OMC. Using the data acquired over specific rotational angles through different filters (B, V, R, I), a color index is acquired (B-R, R-I). Using these values and their associated lightcurves, this laboratory data is compared to observational data obtained on the 1 m telescope of the Astronomical Institute of the University of Bern (AUIB), the 0.9 m operated by the Small- and Medium-Aperture Research Telescope System (SMARTS) Consortium and the Curtis-Schmidt 0.6 m Michigan Orbital Debris Space Debris Telescope both located at Cerro Tololo Inter-American Observatory (CTIO). An empirical based optical characterization model will be presented to provide preliminary correlations between laboratory based and telescope-based data in the context of classification of GEO debris objects.

  17. VUV/UV light inducing accelerated phenol degradation with a low electric input.

    Science.gov (United States)

    Li, Mengkai; Wen, Dong; Qiang, Zhimin; Kiwi, John

    2017-01-23

    This study presents the first evidence for the accelerated degradation of phenol by Fenton's reagent in a mini-fluidic VUV/UV photoreaction system (MVPS). A low-pressure mercury lamp used in the MVPS led to a complete degradation of phenol within 4-6 min. The HO˙ and HO 2 ˙ originating from both Fenton's reagent and VUV photolysis of water were identified with suitable radical scavengers. The effects of initial concentrations of phenol, H 2 O 2 and Fe 3+ as well as solution pH on phenol degradation kinetics were examined. Increasing the initial phenol concentration slowed down the phenol degradation, whereas increasing the initial H 2 O 2 or Fe 3+ concentration accelerated the phenol degradation. The optimal solution pH was 3.7. At both 254 and 185 nm, increasing phenol concentration enhanced its absorption for the incident photons. The reaction mechanism for the degradation of phenol was suggested consistent with the results obtained. This study indicates that the VUV/UV photo-Fenton process has potential applications in the treatment of industrial wastewater containing phenol and related aromatic pollutants.

  18. UV-VUV laser induced phenomena in SiO2 glass

    International Nuclear Information System (INIS)

    Kajihara, Koichi; Ikuta, Yoshiaki; Oto, Masanori; Hirano, Masahiro; Skuja, Linards; Hosono, Hideo

    2004-01-01

    Creation and annihilation of point defects were studied for SiO 2 glass exposed to ultraviolet (UV) and vacuum UV (VUV) lights to improve transparency and radiation toughness of SiO 2 glass to UV-VUV laser light. Topologically disordered structure of SiO 2 glass featured by the distribution of Si-O-Si angle is a critical factor degrading transmittance near the fundamental absorption edge. Doping with terminal functional groups enhances the structural relaxation and reduces the number of strained Si-O-Si bonds by breaking up the glass network without creating the color centers. Transmittance and laser toughness of SiO 2 glass for F 2 laser is greatly improved in fluorine-doped SiO 2 glass, often referred as 'modified silica glass'. Interstitial hydrogenous species are mobile and reactive at ambient temperature, and play an important role in photochemical reactions induced by exposure to UV-VUV laser light. They terminate the dangling-bond type color centers, while enhancing the formation of the oxygen vacancies. These findings are utilized to develop a deep-UV optical fiber transmitting ArF laser photons with low radiation damage

  19. Report on interlaboratory comparisons of 14C measurements organized by the environmental research branch, Chalk River Laboratories

    International Nuclear Information System (INIS)

    Milton, G.M.; Kramer, S.J.; Cooper, E.L.; Rao, R.R.; Milton, J.C.D.

    1996-02-01

    The need for increased quality assurance for measurements performed by the monitoring laboratories at nuclear stations has spurred the introduction of a number of laboratory intercomparisons. This report provides details of two intercomparisons of 14 C measurements, including the preparation of potential secondary reference materials, the range of analytical techniques in use at the participating laboratories, and a statistical analysis of the results reported. The agreement evident in the two sets of materials - milk and vegetation - was good. (author)

  20. Measurement of the fast neutron background at the China Jinping Underground Laboratory

    Science.gov (United States)

    Du, Q.; Lin, S. T.; Liu, S. K.; Tang, C. J.; Wang, L.; Wei, W. W.; Wong, H. T.; Xing, H. Y.; Yue, Q.; Zhu, J. J.

    2018-05-01

    We report on the measurements of the fluxes and spectra of the environmental fast neutron background at the China Jinping Underground Laboratory (CJPL) with a rock overburden of about 6700 meters water equivalent, using a liquid scintillator detector doped with 0.5% gadolinium. The signature of a prompt nuclear recoil followed by a delayed high energy γ-ray cascade is used to identify neutron events. The large energy deposition of the delayed γ-rays from the (n , γ) reaction on gadolinium, together with the excellent n- γ discrimination capability provides a powerful background suppression which allows the measurement of a low intensity neutron flux. The neutron flux of (1 . 51 ± 0 . 03(stat .) ± 0 . 10(syst .)) × 10-7cm-2s-1 in the energy range of 1-10 MeV in the Hall A of CJPL was measured based on 356 days of data. In the same energy region, measurement with the same detector placed in a room surrounding with one meter thick polyethylene shielding gives a significantly lower flux of (4 . 9 ± 0 . 9(stat .) ± 0 . 5(syst .)) × 10-9cm-2s-1 with 174 days of data. This represents a measurement of the lowest environmental fast neutron background among the underground laboratories in the world, prior to additional experiment-specific attenuation. Additionally, the fast neutron spectra both in the Hall A and the polyethylene room were reconstructed with the help of GEANT4 simulations.

  1. Exposure to electromagnetic fields from smart utility meters in GB; part I) laboratory measurements.

    Science.gov (United States)

    Peyman, Azadeh; Addison, Darren; Mee, Terry; Goiceanu, Cristian; Maslanyj, Myron; Mann, Simon

    2017-05-01

    Laboratory measurements of electric fields have been carried out around examples of smart meter devices used in Great Britain. The aim was to quantify exposure of people to radiofrequency signals emitted from smart meter devices operating at 2.4 GHz, and then to compare this with international (ICNIRP) health-related guidelines and with exposures from other telecommunication sources such as mobile phones and Wi-Fi devices. The angular distribution of the electric fields from a sample of 39 smart meter devices was measured in a controlled laboratory environment. The angular direction where the power density was greatest was identified and the equivalent isotropically radiated power was determined in the same direction. Finally, measurements were carried out as a function of distance at the angles where maximum field strengths were recorded around each device. The maximum equivalent power density measured during transmission around smart meter devices at 0.5 m and beyond was 15 mWm -2 , with an estimation of maximum duty factor of only 1%. One outlier device had a maximum power density of 91 mWm -2 . All power density measurements reported in this study were well below the 10 W m -2 ICNIRP reference level for the general public. Bioelectromagnetics. 2017;38:280-294. © 2017 Crown copyright. BIOELECTROMAGNETICS © 2017 Wiley Periodicals, Inc. © 2017 Crown copyright. BIOELECTROMAGNETICS © 2017 Wiley Periodicals, Inc.

  2. Collection of URL measurement data in 2010 fiscal year at the Horonobe Underground Research Laboratory project

    International Nuclear Information System (INIS)

    Inagaki, Daisuke; Sawada, Sumiyuki; Tokiwa, Tetsuya; Tsusaka, Kimikazu; Amano, Yuki; Niinuma, Hiroaki

    2012-09-01

    The Horonobe Underground Research Laboratory (URL) Project has being pursued by the Japan Atomic Energy Agency (JAEA) to enhance the reliability of relevant disposal technologies through investigations of the deep geological environment within the host sedimentary formations at Horonobe, northern Hokkaido. The URL project consists of two major research areas, 'Geoscientific Research' and 'R and D on Geological Disposal Technologies', and proceeds in three overlapping phases, 'Phase I: Surface-based investigations', 'Phase II: Investigations during tunnel excavation' and 'Phase III: Investigations in the underground facilities', over a period of around 20 years. The Phase I geoscientific research was carried out from March 2001 to March 2006 in parallel with design and execution scheme on URL facilities. In addition, identifying key issues that need to be addressed in the Phase II/III investigations was planned. At the begining of the Phase II investigations, an investigation report titled 'Measurement Plan and Observational Construction Program on Shaft Excavation at the Horonobe Underground Research Laboratory Project' (hereinafter referred to as 'Observational Construction Program') and an investigation report titled 'Measurement Plan and Observational Construction Program on Drift Excavation at the Horonobe Underground Research Laboratory Project' were published. The Observational Construction Program summarizes the followings from the results of the Phase I investigations: measurements for safety and reasonable constructions, enhancement of shaft design and construction technologies and evaluation of appropriateness for the deep geological environment model estimated before shaft excavation. This report summarizes the measurements data acquired at the Ventilation Shaft, the East Shaft and the drifts in 2010 fiscal year based on the Observational Construction Program. The report summarizes the measurements data for the purpose of acquisition the basic data for

  3. Collection of URL measurement data in 2011 fiscal year at the Horonobe Underground Research Laboratory project

    International Nuclear Information System (INIS)

    Inagaki, Daisuke; Tokiwa, Tetsuya; Murakami, Hiroaki

    2013-02-01

    The Horonobe Underground Research Laboratory (URL) Project has being pursued by the Japan Atomic Energy Agency (JAEA) to enhance the reliability of relevant disposal technologies through investigations of the deep geological environment within the host sedimentary formations at Horonobe, northern Hokkaido. The URL project consists of two major research areas, 'Geoscientific Research' and 'R and D on Geological Disposal Technologies', and proceeds in three overlapping phases, 'Phase I: Surface-based investigations', 'Phase II: Investigations during tunnel excavation' and 'Phase III: Investigations in the underground facilities', over a period of around 20 years. The Phase I geoscientific research was carried out from March 2001 to March 2006 in parallel with design and execution scheme on URL facilities. In addition, identifying key issues that need to be addressed in the Phase II/III investigations was planned. At the beginning of the Phase II investigations, an investigation report titled 'Measurement Plan and Observational Construction Program on Shaft Excavation at the Horonobe Underground Research Laboratory Project' (hereinafter referred to as 'Observational Construction Program') and an investigation report titled 'Measurement Plan and Observational Construction Program on Drift Excavation at the Horonobe Underground Research Laboratory Project' were published. The Observational Construction Program summarizes the followings from the results of the Phase I investigations: measurements for safety and reasonable constructions, enhancement of shaft design and construction technologies and evaluation of appropriateness for the deep geological environment model estimated before shaft excavation. This report summarizes the measurements data acquired at the Ventilation Shaft, the East Shaft and the drifts in 2011 fiscal year based on the Observational Construction Program. The report summarizes the measurements data for the purpose of acquisition the basic data for

  4. Laboratory Measurements of the 940, 1130, and 1370 nm Water Vapor Absorption Band Profiles

    Science.gov (United States)

    Giver, Lawrence P.; Gore, Warren J.; Pilewskie, P.; Freedman, R. S.; Chackerian, C., Jr.; Varanasi, P.

    2001-01-01

    We have used the solar spectral flux radiometer (SSFR) flight instrument with the Ames 25 meter base-path White cell to obtain about 20 moderate resolution (8 nm) pure water vapor spectra from 650 to 1650 nm, with absorbing paths from 806 to 1506 meters and pressures up to 14 torr. We also obtained a set at 806 meters with several different air-broadening pressures. Model simulations were made for the 940, 1130, and 1370 nm absorption bands for some of these laboratory conditions using the Rothman, et al HITRAN-2000 linelist. This new compilation of HITRAN includes new intensity measurements for the 940 nm region. We compared simulations for our spectra of this band using HITRAN-2000 with simulations using the prior HITRAN-1996. The simulations of the 1130 nm band show about 10% less absorption than we measured. There is some evidence that the total intensity of this band is about 38% stronger than the sum of the HITRAN line intensities in this region. In our laboratory conditions the absorption depends approximately on the square root of the intensity. Thus, our measurements agree that the band is stronger than tabulated in HITRAN, but by about 20%, substantially less than the published value. Significant differences have been shown between Doppler-limited resolution spectra of the 1370 nm band obtained at the Pacific Northwest National Laboratory and HITRAN simulations. Additional new intensity measurements in this region are continuing to be made. We expect the simulations of our SSFR lab data of this band will show the relative importance of improving the HITRAN line intensities of this band for atmospheric measurements.

  5. Collection of measurement data in 2012 fiscal year at the Horonobe Underground Research Laboratory project

    International Nuclear Information System (INIS)

    Inagaki, Daisuke

    2014-03-01

    The Horonobe Underground Research Laboratory (URL) Project has being pursued by the Japan Atomic Energy Agency (JAEA) to enhance the reliability of relevant disposal technologies through investigations of the deep geological environment within the host sedimentary formations at Horonobe, northern Hokkaido. The URL project consists of two major research areas, 'Geoscientific Research' and 'R and D on Geological Disposal Technologies', and proceeds in three overlapping phases, 'Phase I: Surface-based investigations', 'Phase II: Investigations during tunnel excavation' and 'Phase III: Investigations in the underground facilities', over a period of around 20 years. The Phase I geoscientific research was carried out from March 2001 to March 2006 in parallel with design and execution scheme on URL facilities. In addition, identifying key issues that need to be addressed in the Phase II/III investigations was planned. At the begining of the Phase II investigations, an investigation report titled 'Measurement Plan and Observational Construction Program on Shaft Excavation at the Horonobe Underground Research Laboratory Project' (hereinafter referred to as 'Observational Construction Program') and an investigation report titled 'Measurement Plan and Observational Construction Program on Drift Excavation at the Horonobe Underground Research Laboratory Project' were published. The Observational Construction Program summarizes the followings from the results of the Phase I investigations: measurements for safety and reasonable constructions, enhancement of shaft design and construction technologies and evaluation of appropriateness for the deep geological environment model estimated before shaft excavation. This report summarizes the measurements data acquired at the Ventilation Shaft, the East Shaft and the drifts in 2012 fiscal year based on the Observational Construction Program. The report summarizes the measurements data for the purpose of acquisition of the basic data

  6. Methodologically controlled variations in laboratory and field pH measurements in waterlogged soils

    DEFF Research Database (Denmark)

    Elberling, Bo; Matthiesen, Henning

    2007-01-01

    artefacts is critical. But the study includes agricultural and forest soils for comparison. At a waterlogged site, Laboratory results were compared with three different field methods: calomel pH probes inserted in the soil from pits, pH measurements of soil solution extracted from the soil, and pH profiles...... using a solid-state pH electrode pushed into the soil from the surface. Comparisons between in situ and laboratory methods revealed differences of more than 1 pH unit. The content of dissolved ions in soil solution and field observations of O2 and CO2 concentrations were used in the speciation model...... PHREEQE in order to predict gas exchange processes. Changes in pH in soil solution following equilibrium in the laboratory could be explained mainly by CO2 degassing. Only soil pH measured in situ using either calomel or solid-state probes inserted directly into the soil was not affected by gas exchange...

  7. The Safeguards Analytical Laboratory (SAL) in the Agency's safeguards measurement system activity in 1990

    International Nuclear Information System (INIS)

    Bagliano, G.; Cappis, J.; Deron, S.; Parus, J.L.

    1991-05-01

    The IAEA applies Safeguards at the request of a Member State to whole or part of its nuclear materials. The verification of nuclear material accountability still constitutes the fundamental method of control, although sealing and surveillance procedures play an important complementary and increasing role in Safeguards. A small fraction of samples must still be analyzed at independent analytical laboratories using conventional Destructive Analytical (DA) methods of highest accuracy in order to verify that small potential biases in the declarations of the State are not masking protracted diversions of significant quantities of fissile materials. The Safeguards Analytical Laboratory (SAL) is operated by the Agency's Laboratories at Seibersdorf to provide to the Department of Safeguards and its inspectors such off-site Analytical Services, in collaboration with the Network of Analytical Laboratories (NWAL) of the Agency. In the last years SAL and the Safeguards DA Services have become more directly involved in the qualification and utilization of on-site analytical instrumentation such as K-edge X-Ray absorptiometers and quadrupole mass spectrometers. The nature and the origin of the samples analyzed, the measurements usually requested by the IAEA inspectors, the methods and the analytical techniques available at SAL and at the Network of Analytical Laboratories (NWAL) with the performances achieved during the past years are described and discussed in several documents. This report gives an evaluation compared with 1989 of the volume and the quality of the analyses reported in 1990 by SAL and by the NWAL in reply to requests of IAEA Safeguards inspectors. The reports summarizes also on-site DA developments and support provided by SAL to the Division of Safeguards Operation and special training courses to the IAEA Safeguards inspectors. 55 refs, 7 figs, 15 tabs

  8. Laboratory Evaluation of Air Flow Measurement Methods for Residential HVAC Returns for New Instrument Standards

    Energy Technology Data Exchange (ETDEWEB)

    Walker, Iain [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Stratton, Chris [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    2015-08-01

    This project improved the accuracy of air flow measurements used in commissioning California heating and air conditioning systems in Title 24 (Building and Appliance Efficiency Standards), thereby improving system performance and efficiency of California residences. The research team at Lawrence Berkeley National Laboratory addressed the issue that typical tools used by contractors in the field to test air flows may not be accurate enough to measure return flows used in Title 24 applications. The team developed guidance on performance of current diagnostics as well as a draft test method for use in future evaluations. The study team prepared a draft test method through ASTM International to determine the uncertainty of air flow measurements at residential heating ventilation and air conditioning returns and other terminals. This test method, when finalized, can be used by the Energy Commission and other entities to specify required accuracy of measurement devices used to show compliance with standards.

  9. The Laboratory Course Assessment Survey: A Tool to Measure Three Dimensions of Research-Course Design

    Science.gov (United States)

    Corwin, Lisa A.; Runyon, Christopher; Robinson, Aspen; Dolan, Erin L.

    2015-01-01

    Course-based undergraduate research experiences (CUREs) are increasingly being offered as scalable ways to involve undergraduates in research. Yet few if any design features that make CUREs effective have been identified. We developed a 17-item survey instrument, the Laboratory Course Assessment Survey (LCAS), that measures students’ perceptions of three design features of biology lab courses: 1) collaboration, 2) discovery and relevance, and 3) iteration. We assessed the psychometric properties of the LCAS using established methods for instrument design and validation. We also assessed the ability of the LCAS to differentiate between CUREs and traditional laboratory courses, and found that the discovery and relevance and iteration scales differentiated between these groups. Our results indicate that the LCAS is suited for characterizing and comparing undergraduate biology lab courses and should be useful for determining the relative importance of the three design features for achieving student outcomes. PMID:26466990

  10. LABORATORY EVALUATION OF AIR FLOW MEASUREMENT METHODS FOR RESIDENTIAL HVAC RETURNS

    Energy Technology Data Exchange (ETDEWEB)

    Walker, Iain; Stratton, Chris

    2015-02-01

    This project improved the accuracy of air flow measurements used in commissioning California heating and air conditioning systems in Title 24 (Building and Appliance Efficiency Standards), thereby improving system performance and efficiency of California residences. The research team at Lawrence Berkeley National Laboratory addressed the issue that typical tools used by contractors in the field to test air flows may not be accurate enough to measure return flows used in Title 24 applications. The team developed guidance on performance of current diagnostics as well as a draft test method for use in future evaluations. The series of tests performed measured air flow using a range of techniques and devices. The measured air flows were compared to reference air flow measurements using inline air flow meters built into the test apparatus. The experimental results showed that some devices had reasonable results (typical errors of 5 percent or less) but others had much bigger errors (up to 25 percent). Because manufacturers’ accuracy estimates for their equipment do not include many of the sources of error found in actual field measurements (and replicated in the laboratory testing in this study) it is essential for a test method that could be used to determine the actual uncertainty in this specific application. The study team prepared a draft test method through ASTM International to determine the uncertainty of air flow measurements at residential heating ventilation and air conditioning returns and other terminals. This test method, when finalized, can be used by the Energy Commission and other entities to specify required accuracy of measurement devices used to show compliance with standards.

  11. Understanding Women's Subjective Sexual Arousal Within the Laboratory: Definition, Measurement, and Manipulation.

    Science.gov (United States)

    Handy, Ariel B; Stanton, Amelia M; Meston, Cindy M

    2018-04-01

    Subjective sexual arousal (SSA) is positive, cognitive engagement in sexual activity. SSA is considered an important aspect of the sexual experience, as it has been found to facilitate sexual activity and, in situations of chronically low or absent arousal, potentially cause distress. Despite the clinical implications of SSA, a thorough review of how to manipulate SSA has yet to be conducted. To review the state of knowledge about SSA in women, including its definition, measurement, and the outcomes of studies attempting to manipulate SSA within a laboratory setting. A comprehensive search of the electronic databases of PubMed and PsycINFO was conducted. The generated list of articles was reviewed and duplicates were removed. Individual articles were assessed for inclusion and, when appropriate, relevant content was extracted. The potential effects of various manipulations of SSA in a laboratory setting was the main outcome. 44 studies were included in this review. Manipulations were grouped into 3 primary categories: pharmacological (n = 16), cognitive (n = 22), and those based on changes to the autonomic nervous system (n = 6). Results suggest that cognitive manipulation is the most effective method of increasing SSA. Altering the relative balance of the 2 branches of the autonomic nervous system (the sympathetic nervous system and the parasympathetic nervous system) also appears to be a promising avenue for increasing SSA. This review supports the use of cognitive manipulation for increasing women's SSA in a laboratory setting. Avenues for future research and recommendations for clinicians are discussed. Handy AB, Stanton AM, Meston CM. Understanding Women's Subjective Sexual Arousal Within the Laboratory: Definition, Measurement, and Manipulation. Sex Med Rev 2018;6:201-216. Copyright © 2017 International Society for Sexual Medicine. Published by Elsevier Inc. All rights reserved.

  12. Laboratory calibrations of airborne gamma-ray spectrometers. Measurements and discussions of important parameters

    International Nuclear Information System (INIS)

    Korsbech, U.

    1994-02-01

    This report is the fourth of reports from The Department of Electrophysics covering measurement and interpretation of airborne gamma-spectrometry measurements. It describes different topics concerning the construction of a suitable calibration setup in the laboratory. The goal is to build a simple and cheap laboratory setup that can produce most of the gamma-ray data needed for an interpretation of spectra measured 50 to 120 m above ground level. A simple calibration setup has been build and tested. It may produce gamma-ray spectra similar to those measured in the air - from surface contamination with artificial nuclides and from 'bulk' natural radioactivity. It is possible to investigate the influence of the air above an aircraft carrying the detector (skyshine: scattering of gamma photons in the air above the detector). In order to reduce the influence of non-detected pile-up the count rates are kept low without reaching levels where the background spectra (to be subtracted) would cause unacceptable counting statistical fluctuations. Sources selected for the calibrations are heavy minerals sand (with thorium and uranium), potassium nitrate (with 40 K). These sources are 'bulk sources' of natural radioactivity. Cesium-137 has been selected as the basic artifical surface contamination nuclide. The report also discusses methods for comparing two spectra a priori assumed equal. Finally the properties of some materials that could be used as 'air-substitutes' in the calibration setup have been tested with respect to stability against moisture sorption. (au)

  13. Comparison of laboratory and field remote sensing methods to measure forage quality.

    Science.gov (United States)

    Guo, Xulin; Wilmshurst, John F; Li, Zhaoqin

    2010-09-01

    Recent research in range ecology has emphasized the importance of forage quality as a key indicator of rangeland condition. However, we lack tools to evaluate forage quality at scales appropriate for management. Using canopy reflectance data to measure forage quality has been conducted at both laboratory and field levels separately, but little work has been conducted to evaluate these methods simultaneously. The objective of this study is to find a reliable way of assessing grassland quality through measuring forage chemistry with reflectance. We studied a mixed grass ecosystem in Grasslands National Park of Canada and surrounding pastures, located in southern Saskatchewan. Spectral reflectance was collected at both in-situ field level and in the laboratory. Vegetation samples were collected at each site, sorted into the green grass portion, and then sent to a chemical company for measuring forage quality variables, including protein, lignin, ash, moisture at 135 °C, Neutral Detergent Fiber (NDF), Acid Detergent Fiber (ADF), Total Digestible, Digestible Energy, Net Energy for Lactation, Net Energy for Maintenance, and Net Energy for Gain. Reflectance data were processed with the first derivative transformation and continuum removal method. Correlation analysis was conducted on spectral and forage quality variables. A regression model was further built to investigate the possibility of using canopy spectral measurements to predict the grassland quality. Results indicated that field level prediction of protein of mixed grass species was possible (r² = 0.63). However, the relationship between canopy reflectance and the other forage quality variables was not strong.

  14. Comparison of Laboratory and Field Remote Sensing Methods to Measure Forage Quality

    Directory of Open Access Journals (Sweden)

    Zhaoqin Li

    2010-09-01

    Full Text Available Recent research in range ecology has emphasized the importance of forage quality as a key indicator of rangeland condition. However, we lack tools to evaluate forage quality at scales appropriate for management. Using canopy reflectance data to measure forage quality has been conducted at both laboratory and field levels separately, but little work has been conducted to evaluate these methods simultaneously. The objective of this study is to find a reliable way of assessing grassland quality through measuring forage chemistry with reflectance. We studied a mixed grass ecosystem in Grasslands National Park of Canada and surrounding pastures, located in southern Saskatchewan. Spectral reflectance was collected at both in-situ field level and in the laboratory. Vegetation samples were collected at each site, sorted into the green grass portion, and then sent to a chemical company for measuring forage quality variables, including protein, lignin, ash, moisture at 135 ºC, Neutral Detergent Fiber (NDF, Acid Detergent Fiber (ADF, Total Digestible, Digestible Energy, Net Energy for Lactation, Net Energy for Maintenance, and Net Energy for Gain. Reflectance data were processed with the first derivative transformation and continuum removal method. Correlation analysis was conducted on spectral and forage quality variables. A regression model was further built to investigate the possibility of using canopy spectral measurements to predict the grassland quality. Results indicated that field level prediction of protein of mixed grass species was possible (r2 = 0.63. However, the relationship between canopy reflectance and the other forage quality variables was not strong.

  15. The structural analysis of zinc borate glass by laboratory EXAFS and X-ray diffraction measurements

    International Nuclear Information System (INIS)

    Kajinami, Akihiko; Harada, Yasushi; Inoue, Shinsuke; Deki, Shigehito; Umesaki, Norimasa

    1999-01-01

    The structure of zinc borate glass has been investigated by laboratory EXAFS and X-ray diffraction measurement as preliminary investigations for the detailed study in SPring-8. The zinc borate glass was prepared in the range from 40 to 65 mol% of zinc oxide content. The X-ray diffraction was measured by horizontal θ-θ goniometer with 60 kV and 300 mA output of Mo target. The EXAFS of zinc borate glass was measured by laboratory EXAFS system with 20 kV, 100 mA output of Mo target for the K absorption edge of zinc atom. From the X-ray diffraction and the EXAFS measurements, it is found that the zinc ion is surrounded by four oxygen atoms and formed a tetrahedral structure whose (Zn-O) distance is about 2 A and that the structure is unchanged with the zinc oxide content. The diffraction data show that the neighboring structure of boron atom transforms from BO 4 tetrahedra to BO 3 tetragonal planar structure with increasing of the zinc oxide content. (author)

  16. Collection of measurement data in 2013 fiscal year at the Horonobe Underground Research Laboratory project

    International Nuclear Information System (INIS)

    Aoyagi, Kazuhei; Kawate, Satoshi

    2015-12-01

    The Horonobe Underground Research Laboratory (URL) Project has being pursued by the Japan Atomic Energy Agency (JAEA) to enhance the reliability of relevant disposal technologies through investigations of the deep geological environment within the host sedimentary formations at Horonobe, northern Hokkaido. The URL project consists of two major research areas, “Geoscientific Research” and “R and D on Geological Disposal Technologies”, and proceeds in three overlapping phases, “Phase I: Surface-based investigations”, “Phase II: Investigations during tunnel excavation” and “Phase III: Investigations in the underground facilities”, over a period of around 20 years. The Phase I geoscientific research was carried out from March 2001 to March 2006 in parallel with design and execution scheme on URL facilities. In addition, identifying key issues that need to be addressed in the Phase II/III investigations were planned. At the beginning of the Phase II investigations, an investigation report titled “Measurement Plan and Observational Construction Program on Shaft Excavation at the Horonobe Underground Research Laboratory Project” (hereinafter referred to as “Observational Construction Programs”) and an investigation report titled “Measurement Plan and Observational Construction Program on Drift Excavation at the Horonobe Underground Research Laboratory Project” were published. The Observational Construction Program summarizes the followings from the results of the Phase I investigations: measurements for safety and reasonable constructions, enhancement of shaft design and construction technologies and evaluation of appropriateness for the deep geological environment model estimated before shaft excavation. This report summarizes the measurements data acquired at the Ventilation Shaft, the West Shaft and the drifts in 2013 fiscal year for the purpose of the basic data for carrying out the Observational Construction Program. A DVD-ROM is

  17. Measurement accuracy of weighing and tipping-bucket rainfall intensity gauges under dynamic laboratory testing

    Science.gov (United States)

    Colli, M.; Lanza, L. G.; La Barbera, P.; Chan, P. W.

    2014-07-01

    The contribution of any single uncertainty factor in the resulting performance of infield rain gauge measurements still has to be comprehensively assessed due to the high number of real world error sources involved, such as the intrinsic variability of rainfall intensity (RI), wind effects, wetting losses, the ambient temperature, etc. In recent years the World Meteorological Organization (WMO) addressed these issues by fostering dedicated investigations, which revealed further difficulties in assessing the actual reference rainfall intensity in the field. This work reports on an extensive assessment of the OTT Pluvio2 weighing gauge accuracy when measuring rainfall intensity under laboratory dynamic conditions (time varying reference flow rates). The results obtained from the weighing rain gauge (WG) were also compared with a MTX tipping-bucket rain gauge (TBR) under the same test conditions. Tests were carried out by simulating various artificial precipitation events, with unsteady rainfall intensity, using a suitable dynamic rainfall generator. Real world rainfall data measured by an Ogawa catching-type drop counter at a field test site located within the Hong Kong International Airport (HKIA) were used as a reference for the artificial rain generation system. Results demonstrate that the differences observed between the laboratory and field performance of catching-type gauges are only partially attributable to the weather and operational conditions in the field. The dynamics of real world precipitation events is responsible for a large part of the measurement errors, which can be accurately assessed in the laboratory under controlled environmental conditions. This allows for new testing methodologies and the development of instruments with enhanced performance in the field.

  18. Application of the MGAU code for measuring 235U enrichment at the Brazilian Safeguards Laboratory

    International Nuclear Information System (INIS)

    Grund, Marcos S.; Dias, Fabio C.

    2009-01-01

    MGAU is a software tool for conducting uranium enrichment measurements based on high-resolution gamma ray spectroscopy. The code is capable of analyzing spectra (90 - 120 KeV region) collected from a wide variety of sample geometries and compositions. The main advantage of the code is its ability to perform spectra evaluation without a requirement for calibration with representative standards. However, it does require that the daughter isotopes be in activity equilibrium with the 235 U and 238 U parent isotopes. In order for the code to be more versatile in overcoming its limitations, a modified version of the traditional 'enrichment meter' method has been also added. In order to perform confirmatory uranium enrichment measurements for safeguards purposes at a laboratory environment, the Brazilian Safeguards Laboratory is investigating the performance of a nondestructive technique based on the use of the MGAU code for analyzing of gamma-ray spectra collected from pure uranium samples (primarily natural and low enriched powders and pellets). Several new good practice procedures were implemented in order to optimize the performance of the method at the best achievable level. This includes positioning of both the high-purity germanium detector and the sample inside a lead chamber for reducing background influence, collection of replicate measurements, and application of robust statistical treatment of data to reduce random contributions from counting statistics to the final uncertainty. Also, temperature and humidity inside the laboratory were monitored so that significant influences in results could be observed. Based on the results arising from analysis of certified reference materials, this paper discusses the performance of the MGAU code version 4.0 with focus on the uncertainties related to sample-dependent effects (mass, density, matrix composition and enrichment level). The reliability of the MGAU predicted uncertainty for single measurements and the occurrence

  19. Measurements of cutter forces and cutter temperature of boring machine in Aespoe Hard Rock Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Z.X.; Kou, S.Q.; Lindqvist, P.-A. [Luleaa Univ. of Technology (Sweden)

    2001-04-01

    This report presents both the testing methods used and the testing results obtained for cutter forces and cutter temperature during field boring in Aespoe Hard Rock Laboratory. In order to estimate the strains induced by cutter forces in the cutter shaft and choose proper transducers, first a numerical simulation was performed. The simulation results indicated that the cutter forces should be measurable by ordinary strain gauges. Furthermore, an independent three-direction loading system for laboratory calibration was set up to solve force-coupling problems appearing in field measurements. By means of the established measuring system, which was proved successfully in the laboratory, the normal forces, tangential forces, and side forces of two button cutters in the boring machine were measured in the field. In addition, the temperature in the shaft of the front cutter was measured. After the measurements of the cutter forces and cutter temperature, rock core samples were taken from the bottom and the wall of the testing borehole. Then the samples were cut, polished, and examined by means of the Scanning Electron Microscope (SEM). After that, the lengths of major cracks induced by the cutters in the rock samples were measured, and an approximate relationship between the length of the medium cracks and the relevant cutter forces was obtained. This relationship was compared with the theoretical relationship established before. Finally, according to the measured results, the cracked zones around the borehole were described. The results show that: (1) there are two kinds of cracked zones: one in the borehole wall and the other in the bottom of the borehole. The depth of the cracked zone in the borehole bottom is much larger than that in the borehole wall because the maximum normal force of the front cutter is always much larger than that of the gauge cutter. (2) Each cracked zone includes a densely cracked zone and all the longest medium cracks caused by mechanical

  20. Computer Network Availability at Sandia National Laboratories, Albuquerque NM: Measurement and Perception; TOPICAL

    International Nuclear Information System (INIS)

    NELSON, SPENCER D.; TOLENDINO, LAWRENCE F.

    1999-01-01

    The desire to provide a measure of computer network availability at Sandia National Laboratories has existed for along time. Several attempts were made to build this measure by accurately recording network failures, identifying the type of network element involved, the root cause of the problem, and the time to repair the fault. Recognizing the limitations of available methods, it became obvious that another approach of determining network availability had to be defined. The chosen concept involved the periodic sampling of network services and applications from various network locations. A measure of ''network'' availability was then calculated based on the ratio of polling success to failure. The effort required to gather the information and produce a useful metric is not prohibitive and the information gained has verified long held feelings regarding network performance with real data

  1. Mars' Surface Radiation Environment Measured with the Mars Science Laboratory's Curiosity Rover

    Science.gov (United States)

    Hassler, Donald M.; Zeitlin, Cary; Wimmer-Schweingruber, Robert F.; Ehresmann, Bent; Rafkin, Scot; Eigenbrode, Jennifer L.; Brinza, David E.; Weigle, Gerald; Böttcher, Stephan; Böhm, Eckart; Burmeister, Soenke; Guo, Jingnan; Köhler, Jan; Martin, Cesar; Reitz, Guenther; Cucinotta, Francis A.; Kim, Myung-Hee; Grinspoon, David; Bullock, Mark A.; Posner, Arik; Gómez-Elvira, Javier; Vasavada, Ashwin; Grotzinger, John P.; MSL Science Team; Kemppinen, Osku; Cremers, David; Bell, James F.; Edgar, Lauren; Farmer, Jack; Godber, Austin; Wadhwa, Meenakshi; Wellington, Danika; McEwan, Ian; Newman, Claire; Richardson, Mark; Charpentier, Antoine; Peret, Laurent; King, Penelope; Blank, Jennifer; Schmidt, Mariek; Li, Shuai; Milliken, Ralph; Robertson, Kevin; Sun, Vivian; Baker, Michael; Edwards, Christopher; Ehlmann, Bethany; Farley, Kenneth; Griffes, Jennifer; Miller, Hayden; Newcombe, Megan; Pilorget, Cedric; Rice, Melissa; Siebach, Kirsten; Stack, Katie; Stolper, Edward; Brunet, Claude; Hipkin, Victoria; Léveillé, Richard; Marchand, Geneviève; Sánchez, Pablo Sobrón; Favot, Laurent; Cody, George; Steele, Andrew; Flückiger, Lorenzo; Lees, David; Nefian, Ara; Martin, Mildred; Gailhanou, Marc; Westall, Frances; Israël, Guy; Agard, Christophe; Baroukh, Julien; Donny, Christophe; Gaboriaud, Alain; Guillemot, Philippe; Lafaille, Vivian; Lorigny, Eric; Paillet, Alexis; Pérez, René; Saccoccio, Muriel; Yana, Charles; Armiens-Aparicio, Carlos; Rodríguez, Javier Caride; Blázquez, Isaías Carrasco; Gómez, Felipe Gómez; Hettrich, Sebastian; Malvitte, Alain Lepinette; Jiménez, Mercedes Marín; Martínez-Frías, Jesús; Martín-Soler, Javier; Martín-Torres, F. Javier; Jurado, Antonio Molina; Mora-Sotomayor, Luis; Caro, Guillermo Muñoz; López, Sara Navarro; Peinado-González, Verónica; Pla-García, Jorge; Manfredi, José Antonio Rodriguez; Romeral-Planelló, Julio José; Fuentes, Sara Alejandra Sans; Martinez, Eduardo Sebastian; Redondo, Josefina Torres; Urqui-O'Callaghan, Roser; Mier, María-Paz Zorzano; Chipera, Steve; Lacour, Jean-Luc; Mauchien, Patrick; Sirven, Jean-Baptiste; Manning, Heidi; Fairén, Alberto; Hayes, Alexander; Joseph, Jonathan; Squyres, Steven; Sullivan, Robert; Thomas, Peter; Dupont, Audrey; Lundberg, Angela; Melikechi, Noureddine; Mezzacappa, Alissa; Berger, Thomas; Matthia, Daniel; Prats, Benito; Atlaskin, Evgeny; Genzer, Maria; Harri, Ari-Matti; Haukka, Harri; Kahanpää, Henrik; Kauhanen, Janne; Kemppinen, Osku; Paton, Mark; Polkko, Jouni; Schmidt, Walter; Siili, Tero; Fabre, Cécile; Wray, James; Wilhelm, Mary Beth; Poitrasson, Franck; Patel, Kiran; Gorevan, Stephen; Indyk, Stephen; Paulsen, Gale; Gupta, Sanjeev; Bish, David; Schieber, Juergen; Gondet, Brigitte; Langevin, Yves; Geffroy, Claude; Baratoux, David; Berger, Gilles; Cros, Alain; d'Uston, Claude; Forni, Olivier; Gasnault, Olivier; Lasue, Jérémie; Lee, Qiu-Mei; Maurice, Sylvestre; Meslin, Pierre-Yves; Pallier, Etienne; Parot, Yann; Pinet, Patrick; Schröder, Susanne; Toplis, Mike; Lewin, Éric; Brunner, Will; Heydari, Ezat; Achilles, Cherie; Oehler, Dorothy; Sutter, Brad; Cabane, Michel; Coscia, David; Israël, Guy; Szopa, Cyril; Dromart, Gilles; Robert, François; Sautter, Violaine; Le Mouélic, Stéphane; Mangold, Nicolas; Nachon, Marion; Buch, Arnaud; Stalport, Fabien; Coll, Patrice; François, Pascaline; Raulin, François; Teinturier, Samuel; Cameron, James; Clegg, Sam; Cousin, Agnès; DeLapp, Dorothea; Dingler, Robert; Jackson, Ryan Steele; Johnstone, Stephen; Lanza, Nina; Little, Cynthia; Nelson, Tony; Wiens, Roger C.; Williams, Richard B.; Jones, Andrea; Kirkland, Laurel; Treiman, Allan; Baker, Burt; Cantor, Bruce; Caplinger, Michael; Davis, Scott; Duston, Brian; Edgett, Kenneth; Fay, Donald; Hardgrove, Craig; Harker, David; Herrera, Paul; Jensen, Elsa; Kennedy, Megan R.; Krezoski, Gillian; Krysak, Daniel; Lipkaman, Leslie; Malin, Michael; McCartney, Elaina; McNair, Sean; Nixon, Brian; Posiolova, Liliya; Ravine, Michael; Salamon, Andrew; Saper, Lee; Stoiber, Kevin; Supulver, Kimberley; Van Beek, Jason; Van Beek, Tessa; Zimdar, Robert; French, Katherine Louise; Iagnemma, Karl; Miller, Kristen; Summons, Roger; Goesmann, Fred; Goetz, Walter; Hviid, Stubbe; Johnson, Micah; Lefavor, Matthew; Lyness, Eric; Breves, Elly; Dyar, M. Darby; Fassett, Caleb; Blake, David F.; Bristow, Thomas; DesMarais, David; Edwards, Laurence; Haberle, Robert; Hoehler, Tori; Hollingsworth, Jeff; Kahre, Melinda; Keely, Leslie; McKay, Christopher; Wilhelm, Mary Beth; Bleacher, Lora; Brinckerhoff, William; Choi, David; Conrad, Pamela; Dworkin, Jason P.; Floyd, Melissa; Freissinet, Caroline; Garvin, James; Glavin, Daniel; Harpold, Daniel; Jones, Andrea; Mahaffy, Paul; Martin, David K.; McAdam, Amy; Pavlov, Alexander; Raaen, Eric; Smith, Michael D.; Stern, Jennifer; Tan, Florence; Trainer, Melissa; Meyer, Michael; Voytek, Mary; Anderson, Robert C.; Aubrey, Andrew; Beegle, Luther W.; Behar, Alberto; Blaney, Diana; Calef, Fred; Christensen, Lance; Crisp, Joy A.; DeFlores, Lauren; Ehlmann, Bethany; Feldman, Jason; Feldman, Sabrina; Flesch, Gregory; Hurowitz, Joel; Jun, Insoo; Keymeulen, Didier; Maki, Justin; Mischna, Michael; Morookian, John Michael; Parker, Timothy; Pavri, Betina; Schoppers, Marcel; Sengstacken, Aaron; Simmonds, John J.; Spanovich, Nicole; Juarez, Manuel de la Torre; Webster, Christopher R.; Yen, Albert; Archer, Paul Douglas; Jones, John H.; Ming, Douglas; Morris, Richard V.; Niles, Paul; Rampe, Elizabeth; Nolan, Thomas; Fisk, Martin; Radziemski, Leon; Barraclough, Bruce; Bender, Steve; Berman, Daniel; Dobrea, Eldar Noe; Tokar, Robert; Vaniman, David; Williams, Rebecca M. E.; Yingst, Aileen; Lewis, Kevin; Leshin, Laurie; Cleghorn, Timothy; Huntress, Wesley; Manhès, Gérard; Hudgins, Judy; Olson, Timothy; Stewart, Noel; Sarrazin, Philippe; Grant, John; Vicenzi, Edward; Wilson, Sharon A.; Hamilton, Victoria; Peterson, Joseph; Fedosov, Fedor; Golovin, Dmitry; Karpushkina, Natalya; Kozyrev, Alexander; Litvak, Maxim; Malakhov, Alexey; Mitrofanov, Igor; Mokrousov, Maxim; Nikiforov, Sergey; Prokhorov, Vasily; Sanin, Anton; Tretyakov, Vladislav; Varenikov, Alexey; Vostrukhin, Andrey; Kuzmin, Ruslan; Clark, Benton; Wolff, Michael; McLennan, Scott; Botta, Oliver; Drake, Darrell; Bean, Keri; Lemmon, Mark; Schwenzer, Susanne P.; Anderson, Ryan B.; Herkenhoff, Kenneth; Lee, Ella Mae; Sucharski, Robert; Hernández, Miguel Ángel de Pablo; Ávalos, Juan José Blanco; Ramos, Miguel; Malespin, Charles; Plante, Ianik; Muller, Jan-Peter; Navarro-González, Rafael; Ewing, Ryan; Boynton, William; Downs, Robert; Fitzgibbon, Mike; Harshman, Karl; Morrison, Shaunna; Dietrich, William; Kortmann, Onno; Palucis, Marisa; Sumner, Dawn Y.; Williams, Amy; Lugmair, Günter; Wilson, Michael A.; Rubin, David; Jakosky, Bruce; Balic-Zunic, Tonci; Frydenvang, Jens; Jensen, Jaqueline Kløvgaard; Kinch, Kjartan; Koefoed, Asmus; Madsen, Morten Bo; Stipp, Susan Louise Svane; Boyd, Nick; Campbell, John L.; Gellert, Ralf; Perrett, Glynis; Pradler, Irina; VanBommel, Scott; Jacob, Samantha; Owen, Tobias; Rowland, Scott; Atlaskin, Evgeny; Savijärvi, Hannu; García, César Martín; Mueller-Mellin, Reinhold; Bridges, John C.; McConnochie, Timothy; Benna, Mehdi; Franz, Heather; Bower, Hannah; Brunner, Anna; Blau, Hannah; Boucher, Thomas; Carmosino, Marco; Atreya, Sushil; Elliott, Harvey; Halleaux, Douglas; Rennó, Nilton; Wong, Michael; Pepin, Robert; Elliott, Beverley; Spray, John; Thompson, Lucy; Gordon, Suzanne; Newsom, Horton; Ollila, Ann; Williams, Joshua; Vasconcelos, Paulo; Bentz, Jennifer; Nealson, Kenneth; Popa, Radu; Kah, Linda C.; Moersch, Jeffrey; Tate, Christopher; Day, Mackenzie; Kocurek, Gary; Hallet, Bernard; Sletten, Ronald; Francis, Raymond; McCullough, Emily; Cloutis, Ed; ten Kate, Inge Loes; Kuzmin, Ruslan; Arvidson, Raymond; Fraeman, Abigail; Scholes, Daniel; Slavney, Susan; Stein, Thomas; Ward, Jennifer; Berger, Jeffrey; Moores, John E.

    2014-01-01

    The Radiation Assessment Detector (RAD) on the Mars Science Laboratory's Curiosity rover began making detailed measurements of the cosmic ray and energetic particle radiation environment on the surface of Mars on 7 August 2012. We report and discuss measurements of the absorbed dose and dose equivalent from galactic cosmic rays and solar energetic particles on the martian surface for ~300 days of observations during the current solar maximum. These measurements provide insight into the radiation hazards associated with a human mission to the surface of Mars and provide an anchor point with which to model the subsurface radiation environment, with implications for microbial survival times of any possible extant or past life, as well as for the preservation of potential organic biosignatures of the ancient martian environment.

  2. Electrical conductivity of pyroxene which contains trivalent cations: Laboratory measurements and the lunar temperature profile

    International Nuclear Information System (INIS)

    Huebner, J.S.; Duba, A.; Wiggins, L.B.

    1979-01-01

    Three natural orthopyroxene single crystals, measured in the laboratory over the temperature range 850 0 --1200 0 C, are more than 1/2 order of magnitude more electrically conducting than previously measured crystals. Small concentrations (1--2%) of Al 2 O 3 and Cr 2 O 3 present in these crystals may be responsible for their relatively high conductivity. Such pyroxenes, which contain trivalent elements, are more representative of pyroxenes expected to be present in the lunar mantle than those which have been measured by other investigators. The new conductivity values for pyroxene are responsible for a relatively large bulk conductivity calculated for (polymineralic) lunar mantle assemblages. The results permit a somewhat cooler lunar temperature profile than previously proposed. Such lower profiles, several hundred degrees Celsius below the solidus, are quite consistent with low seismic attenuation and deep moonquakes observed in the lunar mantle

  3. Mars' surface radiation environment measured with the Mars Science Laboratory's Curiosity rover.

    Science.gov (United States)

    Hassler, Donald M; Zeitlin, Cary; Wimmer-Schweingruber, Robert F; Ehresmann, Bent; Rafkin, Scot; Eigenbrode, Jennifer L; Brinza, David E; Weigle, Gerald; Böttcher, Stephan; Böhm, Eckart; Burmeister, Soenke; Guo, Jingnan; Köhler, Jan; Martin, Cesar; Reitz, Guenther; Cucinotta, Francis A; Kim, Myung-Hee; Grinspoon, David; Bullock, Mark A; Posner, Arik; Gómez-Elvira, Javier; Vasavada, Ashwin; Grotzinger, John P

    2014-01-24

    The Radiation Assessment Detector (RAD) on the Mars Science Laboratory's Curiosity rover began making detailed measurements of the cosmic ray and energetic particle radiation environment on the surface of Mars on 7 August 2012. We report and discuss measurements of the absorbed dose and dose equivalent from galactic cosmic rays and solar energetic particles on the martian surface for ~300 days of observations during the current solar maximum. These measurements provide insight into the radiation hazards associated with a human mission to the surface of Mars and provide an anchor point with which to model the subsurface radiation environment, with implications for microbial survival times of any possible extant or past life, as well as for the preservation of potential organic biosignatures of the ancient martian environment.

  4. Comparison between laboratory measurements, simulations, and analytical predictions of the transverse wall impedance at low frequencies

    CERN Document Server

    Roncarolo, F; Kroyer, T; Metral, E; Mounet, N; Salvant, B; Zotter, B

    2009-01-01

    The prediction of the transverse wall beam impedance at the first unstable betatron line (8 kHz) of the CERN Large Hadron Collider (LHC) is of paramount importance for understanding and controlling the related coupled-bunch instabilities. Until now only novel analytical formulas were available at this frequency. Recently, laboratory measurements and numerical simulations were performed to cross-check the analytical predictions. The experimental results based on the measurement of the variation of a probe coil inductance in the presence of (i) sample graphite plates, (ii) stand-alone LHC collimator jaws, and (iii) a full LHC collimator assembly are presented in detail. The measurement results are compared to both analytical theories and simulations. In addition, the consequences for the understanding of the LHC impedance are discussed.

  5. The uncertainty in physical measurements an introduction to data analysis in the physics laboratory

    CERN Document Server

    Fornasini, Paolo

    2008-01-01

    All measurements of physical quantities are affected by uncertainty. Understanding the origin of uncertainty, evaluating its extent and suitably taking it into account in data analysis is essential for assessing the degree of accuracy of phenomenological relationships and physical laws in both scientific research and technological applications. The Uncertainty in Physical Measurements: An Introduction to Data Analysis in the Physics Laboratory presents an introduction to uncertainty and to some of the most common procedures of data analysis. This book will serve the reader well by filling the gap between tutorial textbooks and highly specialized monographs. The book is divided into three parts. The first part is a phenomenological introduction to measurement and uncertainty: properties of instruments, different causes and corresponding expressions of uncertainty, histograms and distributions, and unified expression of uncertainty. The second part contains an introduction to probability theory, random variable...

  6. Potential for improved radiation thermometry measurement uncertainty through implementing a primary scale in an industrial laboratory

    Science.gov (United States)

    Willmott, Jon R.; Lowe, David; Broughton, Mick; White, Ben S.; Machin, Graham

    2016-09-01

    A primary temperature scale requires realising a unit in terms of its definition. For high temperature radiation thermometry in terms of the International Temperature Scale of 1990 this means extrapolating from the signal measured at the freezing temperature of gold, silver or copper using Planck’s radiation law. The difficulty in doing this means that primary scales above 1000 °C require specialist equipment and careful characterisation in order to achieve the extrapolation with sufficient accuracy. As such, maintenance of the scale at high temperatures is usually only practicable for National Metrology Institutes, and calibration laboratories have to rely on a scale calibrated against transfer standards. At lower temperatures it is practicable for an industrial calibration laboratory to have its own primary temperature scale, which reduces the number of steps between the primary scale and end user. Proposed changes to the SI that will introduce internationally accepted high temperature reference standards might make it practicable to have a primary high temperature scale in a calibration laboratory. In this study such a scale was established by calibrating radiation thermometers directly to high temperature reference standards. The possible reduction in uncertainty to an end user as a result of the reduced calibration chain was evaluated.

  7. Comparison of point-of-care versus central laboratory measurement of hematocrit, hemoglobin, and electrolyte concentrations.

    Science.gov (United States)

    Gavala, Alexandra; Myrianthefs, Pavlos

    We aimed to investigate the accuracy of certain laboratory examinations obtained by the ABG analyzer (ROCHE AVL OMNI S) as compared to hospital central laboratory (CL). We prospectively collected data obtained from the same arterial blood sample regarding hematocrit, hemoglobin, potassium, and sodium. ABG analyzer results were significantly lower (p < 0.0001) compared to CL values thus values between the two methods are not interchangeable. The mean bias for Hb, Na + and K + were within accepted by US Clinical Laboratory Improvement Amendment (USCLIA) differences (cut-off points) but not for Ht. In 8.0%, 17.5%, 37.5% and 56.0% of Hb, Na + , K + and Ht measurements respectively and 29.75% in sum the differences were over the USCLIA accepted limits. ABG analyzer significantly underestimate the values of Hb, Ht, Na + and K + , compared to CL and almost 30% of all examined parameters were beyond USCLIA accepted biases. ABG analyzer significantly underestimates the values of Hb, Ht, Na + and K + compared to CL and almost 30% for all examined parameters are beyond USCLIA accepted biases. These data do not support widespread or even careful use of POCT for making diagnostic and treatment decisions until technology improves and results in improved outcomes. Copyright © 2017 Elsevier Inc. All rights reserved.

  8. Sensor set-up for wireless measurement of automotive rim and wheel parameters in laboratory conditions

    Science.gov (United States)

    Borecki, M.; Prus, P.; Korwin-Pawlowski, M. L.; Rychlik, A.; Kozubel, W.

    2017-08-01

    Modern rims and wheels are tested at the design and production stages. Tests can be performed in laboratory conditions and on the ride. In the laboratory, complex and costly equipment is used, as for example wheel balancers and impact testers. Modern wheel balancers are equipped with electronic and electro-mechanical units that enable touch-less measurement of dimensions, including precision measurement of radial and lateral wheel run-out, automatic positioning and application of the counterweights, and vehicle wheel set monitoring - tread wear, drift angles and run-out unbalance. Those tests are performed by on-wheel axis measurements with laser distance meters. The impact tester enables dropping of weights from a defined height onto a wheel. Test criteria are the loss of pressure of the tire and generation of cracks in the wheel without direct impact of the falling weights. In the present paper, a set up composed of three accelerometers, a temperature sensor and a pressure sensor is examined as the base of a wheel tester. The sensor set-up configuration, on-line diagnostic and signal transmission are discussed.

  9. Incorporating spectroscopy and measurement technology into the high school chemistry laboratory

    Science.gov (United States)

    Harbert, Emily Ann

    Science and technology are becoming increasingly important in maintaining a healthy economy at home and a competitive edge on the world stage, though that is just one facet affected by inadequate science education in the United States. Engaging students in the pursuit of knowledge and giving them the skills to think critically are paramount. One small way to assist in achieving these goals is to increase the quality and variety of technology-rich activities conducted in high school classrooms. Incorporating more laboratory measurement technology into high schools may incite more student interest in the processes and practices of science and may allow students to learn to think more critically about their data and what it represents. The first objective of the work described herein was to determine what measurement technology is being used in schools and to what extent, as well as to determine other teacher needs and preferences. Second, the objective was to develop a new program to provide incoming freshmen (or rising seniors) with measurement technology training they did not receive in high school, and expose them to new research and career opportunities in science. The final objective was to create a technology-rich classroom laboratory activity for use in high schools.

  10. Quality improvement project in cervical cancer screening: practical measures for monitoring laboratory performance.

    Science.gov (United States)

    Tarkkanen, Jussi; Geagea, Antoine; Nieminen, Pekka; Anttila, Ahti

    2003-01-01

    We conducted a quality improvement project in a cervical cancer screening programme in Helsinki in order to see if detection of precancerous lesions could be influenced by external (participation rate) and internal (laboratory praxis) quality measures. In order to increase the participation rate, a second personal invitation to Pap-test was mailed to nonparticipants of the first call. In order to improve the quality of screening, the cytotechnicians monitored their performance longitudinally by recording the number of slides reviewed per day, the pick-up rate of abnormal smears, the report of the consulting cytopathologist, and the number of histologically verified lesions detected from the cases that they had screened. Regular sessions were held to compare the histological findings with the cytological findings of all cases referred for colposcopy. No pressure was applied on the cytotechnicians to ensure that they felt comfortable with their daily workload. A total of 110 000 smears were screened for cervical cancer at the Helsinki City Hospital during 1996-99. Initially, the overall participation rate increased from 62% to 71%. The number of histologically confirmed precancerous lesions (CIN 1-3) more than doubled and their detection rate increased from 0.32% to 0.72%. Continuous education and feedback from daily work performance were important, yet rather inexpensive means in increasing laboratory performance. Additional measures are needed to further increase the participation rate. Impact of the quality measures on cancer incidence needs to be assessed later on.

  11. Undergraduate Laboratory Experiment: Measuring Matter Antimatter Asymmetries at the Large Hadron Collider

    CERN Document Server

    Parkes, Chris; Gutierrez, J

    2015-01-01

    This document is the student manual for a third year undergraduate laboratory experiment at the University of Manchester. This project aims to measure a fundamental difference between the behaviour of matter and antimatter through the analysis of data collected by the LHCb experiment at the Large Hadron Collider. The three-body dmecays $B^\\pm \\rightarrow h^\\pm h^+ h^-$, where $h^\\pm$ is a $\\pi^\\pm$ or $K^\\pm$ are studied. The inclusive matter antimatter asymmetry is calculated, and larger asymmetries are searched for in localized regions of the phase-space.

  12. Laboratory measurements of the x-ray line emission from neon-like Fe XVII

    International Nuclear Information System (INIS)

    Brown, G V; Beiersdorfer, P; Chen, H; Scofield, J; Boyce, K R; Kelley, R L; Kilbourne, C A; Porter, F S; Gu, M F; Kahn, S M; Szymkowiak, A E

    2006-01-01

    The authors have conducted a systematic study of the dominant x-ray line emission from Fe XVII. These studies include relative line intensities in the optically thin limit, intensities in the presence of radiation from satellite lines from lower charge states of iron, and the absolute excitation cross sections of some of the strongest lines. These measurements were conducted at the Lawrence Livermore National Laboratory electron beam ion trap facility using crystal spectrometers and a NASA-Goddard Space Flight Center microcalorimeter array

  13. Vertical muon intensity measured with MACRO at the Gran Sasso laboratory

    International Nuclear Information System (INIS)

    Ambrosio, M.; Antolini, R.; Auriemma, G.; Baker, R.; Baldini, A.; Barbarino, G.C.; Barish, B.C.; Battistoni, G.; Bellotti, R.; Bemporad, C.; Bernardini, P.; Bilokon, H.; Bisi, V.; Bloise, C.; Bower, C.; Bussino, S.; Cafagna, F.; Calicchio, M.; Campana, D.; Carboni, M.; Castellano, M.; Cecchini, S.; Cei, F.; Celio, P.; Chiarella, V.; Corona, A.; Coutu, S.; De Cataldo, G.; Dekhissi, H.; De Marzo, C.; De Mitri, I.; De Vincenzi, M.; Di Credico, A.; Erriquez, O.; Favuzzi, C.; Forti, C.; Fusco, P.; Giacomelli, G.; Giannini, G.; Giglietto, N.; Grassi, M.; Grillo, A.; Guarino, F.; Guarnaccia, P.; Gustavino, C.; Habig, A.; Hanson, K.; Hawthorne, A.; Heinz, R.; Hong, J.T.; Iarocci, E.; Katsavounidis, E.; Kearns, E.; Kyriazopoulou, S.; Lamanna, E.; Lane, C.; Levin, D.S.; Lipari, P.; Liu, R.; Longley, N.P.; Longo, M.J.; Lu, Y.; Ludlam, G.; Mancarella, G.; Mandrioli, G.; Margiotta-Neri, A.; Marini, A.; Martello, D.; Marzari-Chiesa, A.; Mazziotta, M.N.; Michael, D.G.; Mikheyev, S.; Miller, L.; Mittelbrunn, M.; Monacelli, P.; Montaruli, T.; Monteno, M.; Mufson, S.; Musser, J.; Nicolo, D.; Nolty, R.; Okada, C.; Orth, C.; Osteria, G.; Palamara, O.; Parlati, S.; Patera, V.; Patrizii, L.; Pazzi, R.; Peck, C.W.; Petrera, S.; Pignatano, N.D.; Pistilli, P.; Popa, V.; Raino, A.; Reynoldson, J.; Ronga, F.; Sanzgiri, A.; Sartogo, F.; Satriano, C.; Satta, L.; Scapparone, E.; Scholberg, K.; Sciubba, A.; Serra-Lugaresi, P.; Severi, M.; Sitta, M.; Spinelli, P.; Spinetti, M.; Spurio, M.; Steinberg, R.; Stone, J.L.; Sulak, L.R.; Surdo, A.; Tarle, G.; Tassoni, F.; Togo, V.; Valente, V.; Walter, C.W.; Webb, R.

    1995-01-01

    The vertical underground muon intensity has been measured in the slant depth range 3200--7000 hg cm -2 (standard rock) with the completed lower part of the MACRO detector at the Gran Sasso laboratory, using a large sample of data. These observations are used to compute the surface muon flux and the primary ''all-nucleon'' spectrum. An analysis of systematic uncertainties introduced by the interaction models in the atmosphere and the underground propagation of muons is presented. A comparison of our results with published data is also presented

  14. Laboratory measurement of permeability upscaling: Results for the Topopah Spring Member of the Paintbrush Tuff

    International Nuclear Information System (INIS)

    Tidwell, V.C.; Wilson, J.L.

    1997-01-01

    Parameterization of predictive models is often complicated by the inability to make measurements at the same scale at which one wishes to perform the analysis. This disparity in scales necessitates the use of some averaging or upscaling model to compute the desired effective media properties. In efforts to better model permeability upscaling, laboratory experiments have been conducted on a series of rock samples with different genetic origins. These experiments involve the collection of exhaustive permeability data sets at different sample supports (i.e., sample volumes) using a specially designed minipermeameter test system. Here the authors present a synopsis of such a data set collected from a block of volcanic tuff

  15. Laboratory measurements of the influence of air treatment devices on radon daughters

    International Nuclear Information System (INIS)

    Rajala, M.; Janka, K.; Graeffe, G.; Kulmala, V.; Lehtimaeki, M.

    1984-01-01

    This paper presents laboratory measurements in which the effect of air cleaners on radon decay products has been studied. Experiments show that both a high-efficiency particulate air filter and an electrostatic precipitator substantially decrease the total airborne radon daughter concentration leading to a situation where most of the decay products are unattached. However, in some situations the concentration of fine particles generated by the corona discharge in the electronic air cleaner becomes high enough to increase the total radon daughter concentration and decrease the free decay product concentration. Impurities in the air may have a notable role in the formation of these condensation nuclei. (Author)

  16. A new method of measuring gravitational acceleration in an undergraduate laboratory program

    Science.gov (United States)

    Wang, Qiaochu; Wang, Chang; Xiao, Yunhuan; Schulte, Jurgen; Shi, Qingfan

    2018-01-01

    This paper presents a high accuracy method to measure gravitational acceleration in an undergraduate laboratory program. The experiment is based on water in a cylindrical vessel rotating about its vertical axis at a constant speed. The water surface forms a paraboloid whose focal length is related to rotational period and gravitational acceleration. This experimental setup avoids classical source errors in determining the local value of gravitational acceleration, so prevalent in the common simple pendulum and inclined plane experiments. The presented method combines multiple physics concepts such as kinematics, classical mechanics and geometric optics, offering the opportunity for lateral as well as project-based learning.

  17. In Situ Measurement of Atmospheric Krypton and Xenon on Mars with Mars Science Laboratory

    Science.gov (United States)

    Conrad, P. G.; Malespin, C. A.; Franz, H. B.; Pepin, R. O.; Trainer, M. G.; Schwenzer, S. P.; Atreya, S. K.; Freissinet, C.; Jones, J. H.; Manning, H.; hide

    2016-01-01

    Mars Science Laboratorys Sample Analysis at Mars (SAM) investigation has measured all of the stable isotopes of the heavy noble gases krypton and xenon in the martian atmosphere, in situ, from the Curiosity Rover at Gale Crater, Mars. Previous knowledge of martian atmospheric krypton and xenon isotope ratios has been based upon a combination of the Viking missions krypton and xenon detections and measurements of noble gas isotope ratios in martian meteorites. However, the meteorite measurements reveal an impure mixture of atmospheric, mantle, and spallation contributions. The xenon and krypton isotopic measurements reported here include the complete set of stable isotopes, unmeasured by Viking. The new results generally agree with Mars meteorite measurements but also provide a unique opportunity to identify various non-atmospheric heavy noble gas components in the meteorites. Kr isotopic measurements define a solar-like atmospheric composition, but deviating from the solar wind pattern at 80Kr and 82Kr in a manner consistent with contributions originating from neutron capture in Br. The Xe measurements suggest an intriguing possibility that isotopes lighter than 132Xe have been enriched to varying degrees by spallation and neutron capture products degassed to the atmosphere from the regolith, and a model is constructed to explore this possibility. Such a spallation component, however, is not apparent in atmospheric Xe trapped in the glassy phases of martian meteorites.

  18. Collection of URL measurement data in 2006 at the Horonobe Underground Research Laboratory project

    International Nuclear Information System (INIS)

    Kumagai, Yasuhito; Funaki, Hironori; Yamasaki, Masanao; Yamaguchi, Takehiro; Sanada, Hiroyuki; Abe, Hironobu; Orukawa, Go

    2008-07-01

    The Horonobe Underground Research Laboratory (URL) Project is being pursued by the Japan Atomic Energy Agency (JAEA) to enhance the reliability of relevant disposal technologies through investigations of the deep geological environment within the host sedimentary formations at Horonobe, northern Hokkaido. The project consists two major research area, Geoscientific Research' and 'R and D on Geological Disposal', and proceeds in three overlapping phases, 'Phase I: Surface-based investigation', 'Phase II: Construction' and 'Phase III: Operation', over a period of 20 years. The Phase I geoscientific research was carried out from March 2001 to March 2005 in parallel with design and execution scheme on URL facilities. In addition, identifying key issues that need to be addressed in the Phase II/III investigations was carried out. At the inception of the Phase II investigations, an investigation report titled 'Measurement Plan and Observational Construction Program on Shaft Excavation at the Horonobe Underground Research Laboratory Project' (hereinafter referred to as Observational Construction Program') was published. The Observational Construction Program summarizes followings lessons learnt from the Phase I investigations: measurements for safety/reasonable construction, measurements for R and D on enhancement of shaft design/construction technology, and measurements for verification of the deep geological environment estimated before shaft excavation. This report summarizes the measurements data acquired at the Ventilation Shaft (to approx. 50m depth) and the East Shaft (to approx. 40m depth) in 2006 based on the Observational Construction Program. CD-ROM and DVD-ROM are attached as an appendix. (J.P.N.)

  19. Measuring the Bed Load velocity in Laboratory flumes using ADCP and Digital Cameras

    Science.gov (United States)

    Conevski, Slaven; Guerrero, Massimo; Rennie, Colin; Bombardier, Josselin

    2017-04-01

    Measuring the transport rate and apparent velocity of the bedload is notoriously hard and there is not a certain technique that would obtain continues data. There are many empirical models, based on the estimation of the shear stress, but only few involve direct measurement of the bed load velocity. The bottom tracking (BT) mode of an acoustic Doppler current profiler (ADCP) has been used many times to estimate the apparent velocity of the bed load. Herein is the basic idea, to exploit the bias of the BT signal towards the bed load movement and to calibrate this signal with traditional measuring techniques. These measurements are quite scarce and seldom reliable since there are not taken in controlled conditions. So far, no clear confirmation has been conducted in laboratory-controlled conditions that would attest the assumptions made in the estimation of the apparent bed load velocity, nor in the calibration of the empirical equations. Therefore, this study explores several experiments under stationary conditions, where the signal of the ADCP BT mode is recorded and compared to the bed load motion recorded by digital camera videography. The experiments have been performed in the hydraulic laboratories of Ottawa and Bologna, using two different ADCPs and two different high resolution cameras. In total, more then 30 experiments were performed for different sediment mixtures and different hydraulic conditions. In general, a good match is documented between the apparent bed load velocity measured by the ADCP and the videography. The slight deviation in single experiments can be explained by gravel particles inhomogeneity, difficult in reproducing the same hydro-sedimentological conditions and the randomness of the backscattering strength.

  20. Routine internal- and external-quality control data in clinical laboratories for estimating measurement and diagnostic uncertainty using GUM principles.

    Science.gov (United States)

    Magnusson, Bertil; Ossowicki, Haakan; Rienitz, Olaf; Theodorsson, Elvar

    2012-05-01

    Healthcare laboratories are increasingly joining into larger laboratory organizations encompassing several physical laboratories. This caters for important new opportunities for re-defining the concept of a 'laboratory' to encompass all laboratories and measurement methods measuring the same measurand for a population of patients. In order to make measurement results, comparable bias should be minimized or eliminated and measurement uncertainty properly evaluated for all methods used for a particular patient population. The measurement as well as diagnostic uncertainty can be evaluated from internal and external quality control results using GUM principles. In this paper the uncertainty evaluations are described in detail using only two main components, within-laboratory reproducibility and uncertainty of the bias component according to a Nordtest guideline. The evaluation is exemplified for the determination of creatinine in serum for a conglomerate of laboratories both expressed in absolute units (μmol/L) and relative (%). An expanded measurement uncertainty of 12 μmol/L associated with concentrations of creatinine below 120 μmol/L and of 10% associated with concentrations above 120 μmol/L was estimated. The diagnostic uncertainty encompasses both measurement uncertainty and biological variation, and can be estimated for a single value and for a difference. This diagnostic uncertainty for the difference for two samples from the same patient was determined to be 14 μmol/L associated with concentrations of creatinine below 100 μmol/L and 14 % associated with concentrations above 100 μmol/L.

  1. Contact Thermocouple Methodology and Evaluation for Temperature Measurement in the Laboratory

    Science.gov (United States)

    Brewer, Ethan J.; Pawlik, Ralph J.; Krause, David L.

    2013-01-01

    Laboratory testing of advanced aerospace components very often requires highly accurate temperature measurement and control devices, as well as methods to precisely analyze and predict the performance of such components. Analysis of test articles depends on accurate measurements of temperature across the specimen. Where possible, this task is accomplished using many thermocouples welded directly to the test specimen, which can produce results with great precision. However, it is known that thermocouple spot welds can initiate deleterious cracks in some materials, prohibiting the use of welded thermocouples. Such is the case for the nickel-based superalloy MarM-247, which is used in the high temperature, high pressure heater heads for the Advanced Stirling Converter component of the Advanced Stirling Radioisotope Generator space power system. To overcome this limitation, a method was developed that uses small diameter contact thermocouples to measure the temperature of heater head test articles with the same level of accuracy as welded thermocouples. This paper includes a brief introduction and a background describing the circumstances that compelled the development of the contact thermocouple measurement method. Next, the paper describes studies performed on contact thermocouple readings to determine the accuracy of results. It continues on to describe in detail the developed measurement method and the evaluation of results produced. A further study that evaluates the performance of different measurement output devices is also described. Finally, a brief conclusion and summary of results is provided.

  2. Accuracy of finite-difference modeling of seismic waves : Simulation versus laboratory measurements

    Science.gov (United States)

    Arntsen, B.

    2017-12-01

    The finite-difference technique for numerical modeling of seismic waves is still important and for some areas extensively used.For exploration purposes is finite-difference simulation at the core of both traditional imaging techniques such as reverse-time migration and more elaborate Full-Waveform Inversion techniques.The accuracy and fidelity of finite-difference simulation of seismic waves are hard to quantify and meaningfully error analysis is really onlyeasily available for simplistic media. A possible alternative to theoretical error analysis is provided by comparing finite-difference simulated data with laboratory data created using a scale model. The advantage of this approach is the accurate knowledge of the model, within measurement precision, and the location of sources and receivers.We use a model made of PVC immersed in water and containing horizontal and tilted interfaces together with several spherical objects to generateultrasonic pressure reflection measurements. The physical dimensions of the model is of the order of a meter, which after scaling represents a model with dimensions of the order of 10 kilometer and frequencies in the range of one to thirty hertz.We find that for plane horizontal interfaces the laboratory data can be reproduced by the finite-difference scheme with relatively small error, but for steeply tilted interfaces the error increases. For spherical interfaces the discrepancy between laboratory data and simulated data is sometimes much more severe, to the extent that it is not possible to simulate reflections from parts of highly curved bodies. The results are important in view of the fact that finite-difference modeling is often at the core of imaging and inversion algorithms tackling complicatedgeological areas with highly curved interfaces.

  3. Laboratory Measurement of the Brighter-fatter Effect in an H2RG Infrared Detector

    Science.gov (United States)

    Plazas, A. A.; Shapiro, C.; Smith, R.; Huff, E.; Rhodes, J.

    2018-06-01

    The “brighter-fatter” (BF) effect is a phenomenon—originally discovered in charge coupled devices—in which the size of the detector point-spread function (PSF) increases with brightness. We present, for the first time, laboratory measurements demonstrating the existence of the effect in a Hawaii-2RG HgCdTe near-infrared (NIR) detector. We use JPL’s Precision Projector Laboratory, a facility for emulating astronomical observations with UV/VIS/NIR detectors, to project about 17,000 point sources onto the detector to stimulate the effect. After calibrating the detector for nonlinearity with flat-fields, we find evidence that charge is nonlinearly shifted from bright pixels to neighboring pixels during exposures of point sources, consistent with the existence of a BF-type effect. NASAs Wide Field Infrared Survey Telescope (WFIRST) will use similar detectors to measure weak gravitational lensing from the shapes of hundreds of million of galaxies in the NIR. The WFIRST PSF size must be calibrated to ≈0.1% to avoid biased inferences of dark matter and dark energy parameters; therefore further study and calibration of the BF effect in realistic images will be crucial.

  4. Compendium of the Environmental Measurements Laboratory's research projects related to the Chernobyl nuclear accident

    Energy Technology Data Exchange (ETDEWEB)

    Volchok, H L; Chieco, N [comps.

    1986-10-01

    Following the accident at the Chernobyl nuclear reactor power station in the USSR on April 26, 1986, the Environmental Measurements Laboratory (EML) initiated a number of research projects as follows: (1) selected sites in both the Deposition and Surface Air networks were alerted and their sampling protocols adjusted to accommodate the anticipated arrival times and activity concentrations of the Chernobyl debris; (2) a number of cooperative programs involving field work, sampling, analysis and data interpretation were set up with institutions and scientists in other countries; (3) EML's Regional Baseline Station at Chester, NJ, as well as the roof of the Laboratory in New York City, provided bases for sampling and measurements to study the radionuclide concentrations, radiation levels, physical characteristics and potential biological implications of the Chernobyl fallout on the northeastern United States; and (4) the resulting fallout from the Chernobyl accident provided an 'experiment of opportunity' in that it enabled us to study fresh fission product deposition using collection systems resurrected from the 1950's and 1960's for comparison with current state-of-the-art methodology. The 13 reports of this volume have been entered separately into the data base.

  5. Measurements of copper corrosion in the LOT Project at the Aespoe Hard Rock Laboratory

    International Nuclear Information System (INIS)

    Rosborg, B.; Karnland, O.; Quirk, G.; Werme, L.

    2003-01-01

    Real-time monitoring, of corrosion by means of electrochemical noise and other electrochemical techniques may offer interesting possibilities to estimate the kind and degree of corrosion in a sample or component, and further visualize the corrosion resistance of pure copper in repository environments. As a pilot effort, three cylindrical copper electrodes for such measurements, each of about 100 cm 2 surface area, have been installed in a test parcel in the Aespoe Hard Rock Laboratory and electrochemical measurements using InterCorr's SmartCET system were initiated in May 2001. The first results from real-time monitoring of copper corrosion in the Aespoe HRL under actual repository environment conditions by means of linear polarisation resistance, harmonic distortion analysis and electrochemical noise techniques are presented, and compared with the results obtained from one of the retrieved test parcels. (authors)

  6. Long term indoor radon measurements in the pelletron laboratory at the UNAM physics institute

    International Nuclear Information System (INIS)

    Espinosa, G.; Golzarri, J. I.; Lopez, K.; Rickards, J.

    2011-01-01

    The results of six months of continuous measurement of the indoor radon concentration levels in the building where the Physics Institute 3 MV Pelletron particle accelerator is located are presented. This study has three major objectives: a) to know the actual values of the levels of indoor radon in this installation, where personnel spend many hours and sometimes days; b) assess the radiological risk from radon inhalation for personnel working permanently in the laboratory, as well as incidental users; and c) establish, if necessary, time limits for continuous permanence on the location for indoor radon exposure. Passive nuclear track detectors and dynamic systems were employed, covering six months (August, 2009 to January, 2010). For the calculation of internal dose the Radon Individual Dose Calculator was used. The results indicate that the indoor radon levels are below the US EPA recommended levels (400 Bq/m 3 ) in workplaces. The measurements help to establish levels for workplaces in Mexico. (Author)

  7. Mean glandular dose measurement on various breast phantom using mammography machine in MINT Medical Physics Laboratory

    International Nuclear Information System (INIS)

    Wan Hazlinda Ismail; Asmaliza Hashim; Abd Aziz Mhd Ramli

    2005-01-01

    Until recently, mammography have been the primary means of detecting early breast cancer. Although there is a risk of radiation- induced carcinogenesis associated with the x-ray examination of the female breast, but this risk is small compared to its benefits with modern equipment and technique. Therefore, it is important to determine the dose of the tissue at risk from radiation exposure by measuring the mean glandular dose (MGD). This can help minimize the risk to the patient. This paper describe the MGD measurement done on various types and thickness of breast phantom using a Bennett mammography machine model DMF-150 in the Medical Physics laboratory at the Malaysian Institute for Nuclear Technology Research (MINT). Results of this study are discussed in this paper. (Author)

  8. Blast damage predictions from vibration measurements at the SKB underground laboratories at Aespoe in Sweden

    International Nuclear Information System (INIS)

    Ouchterlony, F.; Sjoeberg, C.; Jonsson, B.A.

    1993-01-01

    This contribution reports an investigation of the blasting damage in the contour of an access ramp to a Swedish underground laboratory for nuclear waste related studies. Near zone vibration measurements were made for 7 rounds and the results converted to a site specific scaling law. A simple engineering correction for the influence of the charge length was developed and the resulting equations used to predict the damage zone depths of three different drilling and charging patterns. These predictions were then compared with actual blast damage measurements. The agreement with geophysical borehole logging results is remarkably good. This gives good support to the engineering method in which a critical vibration velocity is used to predict the zones of blast damage around bore holes

  9. Development of volumetric methane measurement instrument for laboratory scale anaerobic reactors

    International Nuclear Information System (INIS)

    Sahito, A.R.

    2015-01-01

    In the present study, a newly developed VMMI (volumetric Methane-Measuring Instrument) for laboratory scale anaerobic reactors is presented. The VMMI is a reliable, inexpensive, easy to construct, easy to use, corrosion resistant device that does not need maintenance, can measure a wide flow range of gas at varying pressure and temperature. As per the results of the error analysis, the accuracy of the VMMI is unilateral, i.e. -6.91 %. The calibration of VMMI was investigated and a linear variation was found; hence, in situ calibration is recommended for this type of instrument. As per chromatographic analysis, it absorbs almost 100% of the carbon dioxide present in the biogas, results only the methane, and thus eliminates the need of cost intensive composition analysis of biogas through gas chromatograph. (author)

  10. Intercalibration of radiological measurements for surveillance purposes of the internal dosimetry laboratory coordinated by the IAEA

    International Nuclear Information System (INIS)

    Alfaro L, M.M.

    2002-07-01

    The ININ of Mexico participated in this intercomparison organized by the IAEA in 2000. The objective of this activity is that the dosimetry laboratories that participate can validate the programs of internal dosimetry, with the purpose of improving its capacity in the evaluation of the internal dose and have access to a mechanism to evaluate its dosimetry system under real conditions. The specific objectives of this intercomparison were: 1. To evaluate the participant's capacity to manage the measurements of individual monitoring in terms of the activity in the phantom. 2. To provide the access to the unique calibration resources that otherwise would not be available. 3. To compare the operation of several detection systems, the geometry, phantoms, calibration methods and methods for the evaluation of activity of the radionuclide used by each institution. 4. To provide the independent verification of the direct measurement methods of the dosimetry service. (Author)

  11. Rock stress measurements in the Grimsel Underground Rock Laboratory and their geological interpretation

    International Nuclear Information System (INIS)

    Braeuer, V.; Heusermann, S.; Pahl, A.

    1989-01-01

    Rock stress is being studied as part of the Swiss-German cooperation between the National Cooperative for the Storage of Radioactive Waste (NAGRA), the Research Centre for Environmental Sciences (GSF), and the Federal Institute for Geosciences and Natural Resources (BGR) in the Grimsel Rock Laboratory in Switzerland. Several methods and various equipment for measuring rock stress have been developed and tested in an approximately 200-m borehole drilled from a gallery at a depth of 450 m. The measurements were made continually during overcoring; the data were recorded and processed in a computer located downhole or outside the borehole. The results of the overcoring tests and of frac tests indicate a principle horizontal stress of 25-40 MPa, directed mainly NW-SE. Detailed geological mapping shows relationships between stress and rock structure. A zone of nearly unfractured rock exhibits an increase in stress and a change in stress direction. (orig.)

  12. Collection of URL measurement data in 2007 at the Horonobe Underground Research Laboratory project

    International Nuclear Information System (INIS)

    Yamasaki, Masanao; Funaki, Hironori; Niinuma, Hiroaki; Fujikawa, Daisuke; Sanada, Hiroyuki; Hiraga, Naoto; Tsusaka, Kimikazu; Yamaguchi, Takehiro

    2008-11-01

    The Horonobe Underground Research Laboratory (URL) Project has being pursued by the Japan Atomic Energy Agency (JAEA) to enhance the reliability of relevant disposal technologies through investigations of the deep geological environment within the host sedimentary formations at Horonobe, northern Hokkaido. The project consists of two major research areas, Geoscientific Research' and 'R and D on Geological Disposal', and proceeds in three overlapping phases, 'Phase I: Surface-based investigation', 'Phase II: Construction' and 'Phase III: Operation', over a period of 20 years. The Phase I geoscientific research was planned from March 2001 to March 2006 in parallel with design and execution scheme on URL facilities. In addition, identifying key issues that need to be addressed in the Phase II/III investigations was planned. At the beginning of the Phase II investigations, an investigation report titled 'Measurement Plan and Observational Construction Program on Shaft Excavation at the Horonobe Underground Research Laboratory Project' (hereinafter referred to as 'Observational Construction Program') was published. The Observational Construction Program summarizes the followings from the results of the Phase I investigations: measurements for safety and reasonable constructions, enhancement of shaft design and construction technologies and evaluation of appropriateness for the deep geological environment model estimated before shaft excavation. This report summarizes the measurements data acquired at the Ventilation Shaft, the East Shaft and the drifts in 2007 based on the Observational Construction Program. The report summarizes for the purpose of the following: sharing the investigation and measurements data, preventing the loss of them and acquisition the basic data for carrying out the Observational Construction Program. Two DVD-ROMs are attached as an appendix. (J.P.N.)

  13. Demonstration of two-electron (shake-up) photoionization and population inversions in the visible and VUV

    International Nuclear Information System (INIS)

    Silfvast, W.T.; Wood, O.R. II; Al-Salameh, D.Y.

    1986-01-01

    The two-electron (shake-up) photoionization process has been shown to be an effective mechanism for producing large population inversions in He/sup +/ with gain at 164 nm and in Ar/sup +/ with gain at 428 and 477 nm and for observing the first autoionizing states in Cd/sup +/. Such a mechanism was recently proposed as an excitation mechanism for a VUV laser in lithium. In each species the rapid excitation and detection using broadband emission from a 30-mJ 100-ps duration laser-produced plasma and a detection system with subnanosecond time resolution were essential in observing these effects. In He, gains of up to 0.8 cm/sup -1/ for durations of 2-4 ns at 164.0 nm on the He-like (n = 3-2) transition in He/sup +/ were measured by comparing the plasma emission from a well-defined volume with and without the presence of a mirror of known reflectivity. The n = 3 upper laser level is pumped not only directly via two-electron photoionization from the neutral ground state but also indirectly (in times of the order of 1-2 ns) via electron collisions from photoionization-pumped higher-lying levels. The decay rate of the photoionization-pumped radiation-trapped lower laser level is increased by a unique process involving absorption of radiation via photoionization of ground state neutral helium atoms

  14. Inter-laboratory comparison of HITU power measurement methods and capabilities

    Energy Technology Data Exchange (ETDEWEB)

    Jenderka, K V [Physikalisch-Technische Bundesanstalt (PTB), Bundesallee 100, 38116 Braunschweig (Germany); Durando, G [Istituto Nazionale di Ricerca Metrologica (INRIM), Strada delle Cacce 91, 10135 Torino (Italy); Karaboece, B [Tuebitak Ulusal Metroloji Enstituesue (UME), P.K. 54 41470 Gebze-Kocaeli (Turkey); Rajagopal, S; Shaw, A, E-mail: kvjend@ieee.org [National Physical Laboratory (NPL), Hampton Road, Teddington, TW11 0LW (United Kingdom)

    2011-02-01

    High Intensity Therapeutic Ultrasound (HITU) is gaining in importance among the spectrum of therapeutic options to combat cancer. HITU has already been approved and is in clinical use for the treatment of organs like the prostate, the liver and the uterus. Nevertheless, the metrology of the applied high power ultrasound fields, and in consequence, reliable treatment planning and monitoring, is still a challenge. As part of a European Metrology Research Programme project, the four National Metrology Institutes from the UK, Germany, Italy and Turkey conducted an inter-laboratory comparison of their power measurement capabilities at power levels of 5, 25, 75 and 150 W each at frequencies of 1.1, 1.5 and 3.3 MHz. The task was to measure the total, time-averaged ultrasonic output power, emitted by the circulated transducers under specified electrical excitation conditions into an anechoic water load, and the actual rms transducer input voltage. The output value to be reported was the electro-acoustic radiation conductance including the associated standard and expanded uncertainties. Several different measurement techniques were applied to gain further insight into HITU power measurement. The deviations from the calculated comparison reference value found for the different techniques are discussed and conclusions for the further improvement of measuring procedures are drawn.

  15. Inter-laboratory comparison of HITU power measurement methods and capabilities

    International Nuclear Information System (INIS)

    Jenderka, K V; Durando, G; Karaboece, B; Rajagopal, S; Shaw, A

    2011-01-01

    High Intensity Therapeutic Ultrasound (HITU) is gaining in importance among the spectrum of therapeutic options to combat cancer. HITU has already been approved and is in clinical use for the treatment of organs like the prostate, the liver and the uterus. Nevertheless, the metrology of the applied high power ultrasound fields, and in consequence, reliable treatment planning and monitoring, is still a challenge. As part of a European Metrology Research Programme project, the four National Metrology Institutes from the UK, Germany, Italy and Turkey conducted an inter-laboratory comparison of their power measurement capabilities at power levels of 5, 25, 75 and 150 W each at frequencies of 1.1, 1.5 and 3.3 MHz. The task was to measure the total, time-averaged ultrasonic output power, emitted by the circulated transducers under specified electrical excitation conditions into an anechoic water load, and the actual rms transducer input voltage. The output value to be reported was the electro-acoustic radiation conductance including the associated standard and expanded uncertainties. Several different measurement techniques were applied to gain further insight into HITU power measurement. The deviations from the calculated comparison reference value found for the different techniques are discussed and conclusions for the further improvement of measuring procedures are drawn.

  16. Measurements of the neutron spectrum in transit to Mars on the Mars Science Laboratory.

    Science.gov (United States)

    Köhler, J; Ehresmann, B; Zeitlin, C; Wimmer-Schweingruber, R F; Hassler, D M; Reitz, G; Brinza, D E; Appel, J; Böttcher, S; Böhm, E; Burmeister, S; Guo, J; Lohf, H; Martin, C; Posner, A; Rafkin, S

    2015-04-01

    The Mars Science Laboratory spacecraft, containing the Curiosity rover, was launched to Mars on 26 November 2011. Although designed for measuring the radiation on the surface of Mars, the Radiation Assessment Detector (RAD) measured the radiation environment inside the spacecraft during most of the 253-day, 560-million-kilometer cruise to Mars. An important factor for determining the biological impact of the radiation environment inside the spacecraft is the specific contribution of neutrons with their high biological effectiveness. We apply an inversion method (based on a maximum-likelihood estimation) to calculate the neutron and gamma spectra from the RAD neutral particle measurements. The measured neutron spectrum (12-436 MeV) translates into a radiation dose rate of 3.8±1.2 μGy/day and a dose equivalent of 19±5 μSv/day. Extrapolating the measured spectrum (0.1-1000 MeV), we find that the total neutron-induced dose rate is 6±2 μGy/day and the dose equivalent rate is 30±10 μSv/day. For a 360 day round-trip from Earth to Mars with comparable shielding, this translates into a neutron induced dose equivalent of about 11±4 mSv. Copyright © 2015 The Committee on Space Research (COSPAR). Published by Elsevier Ltd. All rights reserved.

  17. VUV action spectroscopy of protonated leucine-enkephalin peptide in the 6-14 eV range

    Energy Technology Data Exchange (ETDEWEB)

    Ranković, M. Lj. [Institute of Physics Belgrade, University of Belgrade, Pregrevica 118, 11080 Belgrade (Serbia); Canon, F. [INRA, UMR1324 Centre des Sciences du Goût et de l’Alimentation, F-21000 Dijon (France); Nahon, L. [SOLEIL, l’Orme des Merisiers, St Aubin, BP48, 91192 Gif sur Yvette Cedex (France); Giuliani, A. [SOLEIL, l’Orme des Merisiers, St Aubin, BP48, 91192 Gif sur Yvette Cedex (France); INRA, UAR1008, CEPIA, Rue de la Géraudière, BP 71627, 44316 Nantes (France); Milosavljević, A. R., E-mail: vraz@ipb.ac.rs [Institute of Physics Belgrade, University of Belgrade, Pregrevica 118, 11080 Belgrade (Serbia); Radiation Laboratory, University of Notre Dame, Notre Dame, Indiana 46556 (United States)

    2015-12-28

    We have studied the Vacuum Ultraviolet (VUV) photodissociation of gas-phase protonated leucine-enkephalin peptide ion in the 5.7 to 14 eV photon energy range by coupling a linear quadrupole ion trap with a synchrotron radiation source. We report VUV activation tandem mass spectra at 6.7, 8.4, and 12.8 eV photon energies and photodissociation yields for a number of selected fragments. The obtained results provide insight into both near VUV radiation damage and electronic properties of a model peptide. We could distinguish several absorption bands and assign them to particular electronic transitions, according to previous theoretical studies. The photodissociation yields appear to be very different for the various observed fragmentation channels, depending on both the types of fragments and their position along the peptide backbone. The present results are discussed in light of recent gas-phase spectroscopic data on peptides.

  18. Efficient degradation of H2S over transition metal modified TiO2 under VUV irradiation: Performance and mechanism

    Science.gov (United States)

    Liu, Gaoyuan; Ji, Jian; Hu, Peng; Lin, Sixin; Huang, Haibao

    2018-03-01

    Odor pollution causes great harm to the atmospheric environment and human health. H2S, as an odor gas, is highly toxic and corrosive and thus requires removal efficiently. In this study, TiO2 catalysts modified by transition metals including Mn, Cu, Ni and Co, were prepared using a modified sol-gelatin method and tested under UV-PCO or VUV-PCO process. H2S degradation was great enhanced in VUV-PCO compared with conventional UV-PCO. Among the catalysts, 1 wt% Mn-TiO2 showed the highest removal efficiency of 89.9%, which is 30 times higher than that under 254 nm UV irradiation. Residual ozone in the outlet can be completely eliminated by Mn-TiO2. Photocatalytic oxidation, photolysis and ozone-assisted catalytic oxidation all involved in the VUV-PCO process and their contribution were determined by H2S removal efficiency.

  19. VUV photo-oxidation of gaseous benzene combined with ozone-assisted catalytic oxidation: Effect on transition metal catalyst

    Science.gov (United States)

    Huang, Haibao; Lu, Haoxian; Zhan, Yujie; Liu, Gaoyuan; Feng, Qiuyu; Huang, Huiling; Wu, Muyan; Ye, Xinguo

    2017-01-01

    Volatile organic compounds (VOCs) cause the major air pollution concern. In this study, a series of ZSM-5 supported transition metals were prepared by impregnation method. They were combined with vacuum UV (VUV) photo-oxidation in a continuous-flow packed-bed reactor and used for the degradation of benzene, a typical toxic VOCs. Compared with VUV photo-oxidation alone, the introduction of catalysts can greatly enhance benzene oxidation under the help of O3, the by-products from VUV irradiation, via ozone-assisted catalytic oxidation (OZCO). The catalytic activity of transition metals towards benzene oxidation followed the order: Mn > Co > Cu > Ni > Fe. Mn achieved the best catalytic activity due to the strongest capability for O3 catalytic decomposition and utilization. Benzene and O3 removal efficiency reached as high as 97% and 100% after 360 min, respectively. O3 was catalytically decomposed, generating highly reactive oxidants such as rad OH and rad O for benzene oxidation.

  20. Combined UV-C/H2O2-VUV processes for the treatment of an actual slaughterhouse wastewater.

    Science.gov (United States)

    Naderi, Kambiz Vaezzadeh; Bustillo-Lecompte, Ciro Fernando; Mehrvar, Mehrab; Abdekhodaie, Mohammad Jafar

    2017-05-04

    In this study, a three-factor, three-level Box-Behnken design with response surface methodology were used to maximize the TOC removal and minimize the H 2 O 2 residual in the effluent of the combined UV-C/H 2 O 2 -VUV system for the treatment of an actual slaughterhouse wastewater (SWW) collected from one of the meat processing plants in Ontario, Canada. The irradiation time and the initial concentrations of total organic carbon (TOC o ) and hydrogen peroxide (H 2 O 2o ) were the three predictors, as independent variables, studied in the design of experiments. The multiple response approach was used to obtain desirability response surfaces at the optimum factor settings. Subsequently, the optimum conditions to achieve the maximum percentage TOC removal of 46.19% and minimum H 2 O 2 residual of 1.05% were TOC o of 213 mg L -1 , H 2 O 2o of 450 mg L -1 , and irradiation time of 9 min. The attained optimal operating conditions were validated with a complementary test. Consequently, the TOC removal of 45.68% and H 2 O 2 residual of 1.03% were achieved experimentally, confirming the statistical model reliability. Three individual processes, VUV alone, VUV/H 2 O 2 , and UV-C/H 2 O 2 , were also evaluated to compare their performance for the treatment of the actual SWW using the optimum parameters obtained in combined UV-C/H 2 O 2 -VUV processes. Results confirmed that an adequate combination of the UV-C/H 2 O 2 -VUV processes is essential for an optimized TOC removal and H 2 O 2 residual. Finally, respirometry analyses were also performed to evaluate the biodegradability of the SWW and the BOD removal efficiency of the combined UV-C/H 2 O 2 -VUV processes.

  1. Gain length dependence on phase shake in the VUV-FEL at the TESLA Test Facility

    Energy Technology Data Exchange (ETDEWEB)

    Pflueger, J. [DESY/HASYLAB, Hamburg (Germany); Schneidmiller, E.A. [Automatic Systems Corporation, Samara (Russian Federation); Pierini, P. [INFN, Milano (Italy)

    1995-12-31

    The TTF VUV FEL, which is in its design stage at DESY, consists of a 30 m long SASE FEL which will radiate around 6 nm, driven by a superconducting linac with final energy of 1 GeV. One of the important issues in its design is the undulator performance, which is studied in this paper. The present setup, including FODO lattice, is discussed in this paper. Results of simulations, including the realistic wiggler field errors and beam stearing, are presented. Dependence of the performance, in particular the gain and saturation length as well as the saturation peak power, on the wiggler field errors is discussed.

  2. The linear lattice design of an advanced VUV/SXR photon source for Daresbury

    International Nuclear Information System (INIS)

    Clarke, J.A.; Corlett, J.N.; Poole, M.W.; Smith, S.L.; Suller, V.P.; Welbourne, L.A.

    1992-01-01

    The linear lattice design of an advanced synchrotron radiation source in the VUV/SXR region, optimised to produce undulator radiation with high brilliance over the range 5-1000 eV, is discussed. The photon source is based on a 10 cell double bend achromat which will operate over the range 0.5-1.2 GeV. The linear lattice properties over the total available working region are presented for this structure. It is demonstrated that the circular lattice can be extended to a racetrack configuration by the inclusion of two long matched straights with free lengths of over 15 m each. (author) 8 refs.; 5 figs.; 1 tab

  3. Methyl Radicals in Oxidative Coupling of Methane Directly Confirmed by Synchrotron VUV Photoionization Mass Spectroscopy

    Science.gov (United States)

    Luo, Liangfeng; Tang, Xiaofeng; Wang, Wendong; Wang, Yu; Sun, Shaobo; Qi, Fei; Huang, Weixin

    2013-01-01

    Gas-phase methyl radicals have been long proposed as the key intermediate in catalytic oxidative coupling of methane, but the direct experimental evidence still lacks. Here, employing synchrotron VUV photoionization mass spectroscopy, we have directly observed the formation of gas-phase methyl radicals during oxidative coupling of methane catalyzed by Li/MgO catalysts. The concentration of gas-phase methyl radicals correlates well with the yield of ethylene and ethane products. These results lead to an enhanced fundamental understanding of oxidative coupling of methane that will facilitate the exploration of new catalysts with improved performance. PMID:23567985

  4. Cryogenic readout for multiple VUV4 Multi-Pixel Photon Counters in liquid xenon

    Science.gov (United States)

    Di Giovanni, A.

    2018-03-01

    This work concerned the preliminary tests and characterization of a cryogenic preamplifier board for an array made of 16 S13370-3050CN (VUV4 family) Multi-Pixel Photon Counters manufactured by Hamamatsu and operated at liquid xenon temperature. The proposed prototype is based on the use of the Analog Devices AD8011 current feedback operational amplifier. The detector allows for single photon detection, making this device a promising choice for the future generation of neutrino and dark matter detectors based on liquid xenon targets.

  5. Simultaneous nitrate reduction and acetaminophen oxidation using the continuous-flow chemical-less VUV process as an integrated advanced oxidation and reduction process

    Energy Technology Data Exchange (ETDEWEB)

    Moussavi, Gholamreza, E-mail: moussavi@modares.ac.ir; Shekoohiyan, Sakine

    2016-11-15

    Highlights: • Simultaneous advanced oxidation and reduction processes were explored in VUV system. • Complete reduction of nitrate to N{sub 2} was achieved at the presence of acetaminophen. • Complete degradation of acetaminophen was achieved at the presence of nitrate. • Over 95% of acetaminophen was mineralized in the VUV photoreactor. • VUV is a chemical-less advanced process for treating water emerging contaminants. - Abstract: This work was aimed at investigating the performance of the continuous-flow VUV photoreactor as a novel chemical-less advanced process for simultaneously oxidizing acetaminophen (ACT) as a model of pharmaceuticals and reducing nitrate in a single reactor. Solution pH was an important parameter affecting the performance of VUV; the highest ACT oxidation and nitrate reduction attained at solution pH between 6 and 8. The ACT was oxidized mainly by HO· while the aqueous electrons were the main working agents in the reduction of nitrate. The performance of VUV photoreactor improved with the increase of hydraulic retention time (HRT); the complete degradation of ACT and ∼99% reduction of nitrate with 100% N{sub 2} selectivity achieved at HRT of 80 min. The VUV effluent concentrations of nitrite and ammonium at HRT of 80 min were below the drinking water standards. The real water sample contaminated with the ACT and nitrate was efficiently treated in the VUV photoreactor. Therefore, the VUV photoreactor is a chemical-less advanced process in which both advanced oxidation and advanced reduction reactions are accomplished. This unique feature possesses VUV photoreactor as a promising method of treating water contaminated with both pharmaceutical and nitrate.

  6. Simultaneous nitrate reduction and acetaminophen oxidation using the continuous-flow chemical-less VUV process as an integrated advanced oxidation and reduction process

    International Nuclear Information System (INIS)

    Moussavi, Gholamreza; Shekoohiyan, Sakine

    2016-01-01

    Highlights: • Simultaneous advanced oxidation and reduction processes were explored in VUV system. • Complete reduction of nitrate to N_2 was achieved at the presence of acetaminophen. • Complete degradation of acetaminophen was achieved at the presence of nitrate. • Over 95% of acetaminophen was mineralized in the VUV photoreactor. • VUV is a chemical-less advanced process for treating water emerging contaminants. - Abstract: This work was aimed at investigating the performance of the continuous-flow VUV photoreactor as a novel chemical-less advanced process for simultaneously oxidizing acetaminophen (ACT) as a model of pharmaceuticals and reducing nitrate in a single reactor. Solution pH was an important parameter affecting the performance of VUV; the highest ACT oxidation and nitrate reduction attained at solution pH between 6 and 8. The ACT was oxidized mainly by HO· while the aqueous electrons were the main working agents in the reduction of nitrate. The performance of VUV photoreactor improved with the increase of hydraulic retention time (HRT); the complete degradation of ACT and ∼99% reduction of nitrate with 100% N_2 selectivity achieved at HRT of 80 min. The VUV effluent concentrations of nitrite and ammonium at HRT of 80 min were below the drinking water standards. The real water sample contaminated with the ACT and nitrate was efficiently treated in the VUV photoreactor. Therefore, the VUV photoreactor is a chemical-less advanced process in which both advanced oxidation and advanced reduction reactions are accomplished. This unique feature possesses VUV photoreactor as a promising method of treating water contaminated with both pharmaceutical and nitrate.

  7. Influence of climatic factors and pollution on the atmospheric corrosion of steels. Laboratory measurements

    International Nuclear Information System (INIS)

    Muylder, Jean van; Pourbaix, Marcel

    1977-01-01

    The influence of climatic and polluting factors on the atmospheric corrosion of four steels has been examined in the laboratory by an original accelerated electrochemical testing method. This research has led notably to the following conclusions: the corrosion behavior of the steels very much depends on the chloride- and SO 2 -contents of the rain water, as well as on the temperature of the metal during the drying periods. The best patinas have been obtained by submitting the steel successively to the corroding action of a solution of bisulphite and to the alternate actions of non-polluted rains and of drying, preferably at about 60 0 C. As a result of this, the formation of a protective patina may be accelerated by different methods. The relative merits of different steels under different conditions of atmospheric exposure may be predetermined by laboratory tests lasting several weeks. It is useful, when exposing steels in natural exposure sites, to measure as often as feasible the electrode potentials and the temperature of the steel specimens

  8. Low-Level Plutonium Bioassay Measurements at the Lawrence Livermore National Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Hamilton, T; Brown, T; Hickman, D; Marchetti, A; Williams, R; Kehl, S

    2007-06-18

    Plutonium-239 ({sup 239}Pu) and plutonium-240 ({sup 240}Pu) are important alpha emitting radionuclides contained in radioactive debris from nuclear weapons testing. {sup 239}Pu and {sup 240}Pu are long-lived radionuclides with half-lives of 24,400 years and 6580 years, respectively. Concerns over human exposure to plutonium stem from knowledge about the persistence of plutonium isotopes in the environment and the high relative effectiveness of alpha-radiation to cause potential harm to cells once incorporated into the human body. In vitro bioassay tests have been developed to assess uptakes of plutonium based on measured urinary excretion patterns and modeled metabolic behaviors of the absorbed radionuclides. Systemic plutonium absorbed by the deep lung or from the gastrointestinal tract after ingestion is either excreted or distributed to other organs, primarily to the liver and skeleton, where it is retained for biological half-times of around 20 and 50 years, respectively. Dose assessment and atoll rehabilitation programs in the Marshall Islands have historically given special consideration to residual concentrations of plutonium in the environment even though the predicted dose from inhalation and/or ingestion of plutonium accounts for less than 5% of the annual effective dose from exposure to fallout contamination. Scientists from the Lawrence Livermore National Laboratory (LLNL) have developed a state-of-the-art bioassay test to assess urinary excretion rates of plutonium from Marshallese populations. This new heavy-isotope measurement system is based on Accelerator Mass Spectrometry (AMS). The AMS system at LLNL far exceeds the standard measurement requirements established under the latest United States Department of Energy (DOE) regulation, 10CFR 835, for occupational monitoring of plutonium, and offers several advantages over classical as well as competing new technologies for low-level detection and measurement of plutonium isotopes. The United States

  9. Behaviour of large-area avalanche photodiodes under intense magnetic fields for VUV- visible- and X-ray photon detection

    International Nuclear Information System (INIS)

    Fernandes, L.M.P.; Antognini, A.; Boucher, M.; Conde, C.A.N.; Huot, O.; Knowles, P.; Kottmann, F.; Ludhova, L.; Mulhauser, F.; Pohl, R.; Schaller, L.A.; Santos, J.M.F. dos; Taqqu, D.; Veloso, J.F.C.A.

    2003-01-01

    The behaviour of large-area avalanche photodiodes for X-rays, visible and vacuum-ultra-violet (VUV) light detection in magnetic fields up to 5 T is described. For X-rays and visible light detection, the photodiode pulse amplitude and energy resolution were unaffected from 0 to 5 T, demonstrating the insensitivity of this type of detector to strong magnetic fields. For VUV light detection, however, the photodiode relative pulse amplitude decreases with increasing magnetic field intensity reaching a reduction of about 24% at 5 T, and the energy resolution degrades noticeably with increasing magnetic field

  10. Technique and equipment for measuring volume activity of radon in the air of radon laboratories and clinics

    International Nuclear Information System (INIS)

    Vorob'ev, I.B.; Krivokhatskij, A.S.; Nekrasov, E.V.; Nikolaev, V.A.; Potapov, V.G.; Terent'ev, M.V.

    1990-01-01

    Usability of a new equipment-technique combination for measuring radon activity in the air of radon laboratories and balneological clinics is studied. The complex includes nitrate-cellulose detector, radon chamber, Aist, Istra type spark counters and technique of spark counting. The method sensitivity is 50 Bqxm 3 , the error is 30%. Usability and advisability of track method in radon laboratories and balneological clinics for simultaneous measurement in several points of integral volumetric radon activities are confirmred. The method permits to carry out rapid and accurate bulk investigations. The results of determining mean volumetric radon activity in the air in different points of radon laboratory and radon clinics are presented

  11. Energy Yield Determination of Concentrator Solar Cells using Laboratory Measurements: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Geisz, John F.; Garcia, Ivan; McMahon, William E.; Steiner, Myles A.; Ochoa, Mario; France, Ryan M.; Habte, Aron; Friedman, Daniel J.

    2015-09-14

    The annual energy conversion efficiency is calculated for a four junction inverted metamorphic solar cell that has been completely characterized in the laboratory at room temperature using measurements fit to a comprehensive optoelectronic model of the multijunction solar cells. A simple model of the temperature dependence is used to predict the performance of the solar cell under varying temperature and spectra characteristic of Golden, CO for an entire year. The annual energy conversion efficiency is calculated by integrating the predicted cell performance over the entire year. The effects of geometric concentration, CPV system thermal characteristics, and luminescent coupling are highlighted. temperature and spectra characteristic of Golden, CO for an entire year. The annual energy conversion efficiency is calculated by integrating the predicted cell performance over the entire year. The effects of geometric concentration, CPV system thermal characteristics, and luminescent coupling are highlighted.

  12. Measurements of Ozone, Lightning, and Electric Fields within Thunderstorms over Langmuir Laboratory, New Mexico

    Science.gov (United States)

    Eack, K. B.; Winn, W. P.; Rust, W. D.; Minschwaner, K.; Fredrickson, S.; Kennedy, D.; Edens, H. E.; Kalnajs, L. E.; Rabin, R. M.; Lu, G. P.; Bonin, D.

    2008-12-01

    A field project was conducted at the Langmuir Laboratory for Atmospheric Research during the summer of 2008 in an effort to better understand the direct production of ozone within electrically active storms. Five balloon flights were successfully launched into thunderstorms during this project. In situ measurements from the balloon instrument package included ozone mixing ratio, electric field strength, meteorological variables, and GPS location and timing. Lightning discharges were identified within each storm using a ground based lightning mapping array. The data show that the instruments ascended through regions of high electric fields within the sampled storms, and in some cases the balloon was in very close proximity to lightning. Relationships between electric field, lightning, and ozone observed during these flights will be discussed.

  13. Laboratory measurements of shock propagation through spherical cavities in an optically accessible polymer.

    Energy Technology Data Exchange (ETDEWEB)

    Chojnicki, Kirsten; Cooper, Marcia A.; Guo, Shuyue

    2017-11-01

    Pore-scale aperture effects on flow in pore networks was studied in the laboratory to provide a parameterization for use in transport models. Four cases were considered: regular and irregular pillar/pore alignment with and without an aperture. The velocity field of each case was measured and simulated, providing quantitatively comparable results. Two aperture effect parameterizations were considered: permeability and transmission. Permeability values varied by an order of magnitude between the cases with and without apertures. However, transmission did not correlate with permeability. Despite having much greater permeability the regular aperture case permitted less transmission than the regular case. Moreover, both irregular cases had greater transmission than the regular cases, a difference not supported by the permeabilities. Overall, these findings suggest that pore-scale aperture effects on flow though a pore-network may not be adequately captured by properties such as permeability for applications that are interested in determining particle transport volume and timing.

  14. Quality control for radionuclide determinations in the Saxon state laboratories for environmental radioactivity by intercomparison and comparative measurements

    International Nuclear Information System (INIS)

    Knobus, B.

    2001-01-01

    Quality control for radionuclide analysis is necessary and essential for the quality assurance of the measuring results executing the measuring programmes of surveillance of the radioactivity in the environment and from installations. Acts, ordinances and guidelines require the participation in intercomparisons for authorized institutions detecting the demanded quality of measurements (e.g. trueness, reproducibility) for Federal Authorities. These are mainly those intercomparisons which are prepared, practised and evaluated by the federal laboratories. Comparative measurements are generally organized and executed by the state laboratory itself with a few participants for special measuring tasks. In this paper are described and discussed extend and special results of those intercomparisons and comparative measurements of the Saxon state laboratories for environmental radioactivity from 1992 until 2000. If necessary, there are following improvements for quality assurance. (orig.) [de

  15. Performance testing of radiobioassay laboratories: in-vivo measurements, pilot study report

    Energy Technology Data Exchange (ETDEWEB)

    Robinson, A.V.; Fisher, D.R.; Reece, W.D.; MacLellan, J.A.

    1986-10-01

    This document describes a project to evaluate the in-vivo counting performance criteria of draft ANSI Standard N13.30, Performance Criteria for Radiobioassay. The draft ANSI Standard provides guidance to in-vivo counting facilities regarding the precision and accuracy of measurements for certain categories of commonly assayed radionuclides and critical regions of the body. The draft ANSI Standard was evaluated by conducting an intercomparison test involving a number of whole-body counting facilities. The testing involved three types of measurements: chest counting for detection of radioactive materials in the lung, whole-body counting for detection of uniformly distributed activity, and neck counting for detection of radioactive material concentrated in the thyroid. Results of the first-round intercomparison test are presented in this report. The appropriateness of the draft Standard performance criteria was judged by the measurement results reported by participating in-vivo counting facilities. The intercomparison testing showed that some laboratories had difficulty meeting the performance criteria specified in the draft ANSI Standard N13.30.

  16. Dust ablation laboratory experiments to measure the plasma and light production of meteoroids in the atmosphere

    Science.gov (United States)

    Sternovsky, Z.; DeLuca, M.; Janches, D.; Marshall, R. A.; Munsat, T.; Plane, J. M. C.; Horanyi, M.

    2017-12-01

    Radars play an important role in characterizing the distribution of meteoroids entering Earth's atmosphere, and they are sensitive to the size range where most of the mass input occurs. The interpretation of meteor radar measurements, however, is handicapped by the incomplete understanding of the microphysical processes relevant to meteoric ablation. A facility has been developed to simulate the ablation of small dust particles in laboratory conditions and to determine the most critical parameters. An electrostatic dust accelerator is used to generate iron, aluminum and meteoric analog particles with velocities of 1-70 km/s. The particles are then introduced into a cell filled with nitrogen, air, oxygen, or carbon dioxide gas with pressures adjustable in the 0.02 - 0.5 Torr range, where partial or complete ablation occurs over a short distance. An array of biased electrodes is used to collect the ionized products with spatial resolution along the ablating particles' path. An optical observation setup using a 64 channel PMT system allows direct observation of the particle and estimating the light output. A new addition to the facility, using pickup tube detectors and precise timing, allows measurement of the drag coefficient of the particle's slowdown, which we find to be significantly higher than commonly used in existing models. Measurements also indicated that the ionization efficiency of iron and aluminum at low velocities is larger than previously expected.

  17. Performance testing of radiobioassay laboratories: in-vivo measurements, pilot study report

    International Nuclear Information System (INIS)

    Robinson, A.V.; Fisher, D.R.; Reece, W.D.; MacLellan, J.A.

    1986-10-01

    This document describes a project to evaluate the in-vivo counting performance criteria of draft ANSI Standard N13.30, Performance Criteria for Radiobioassay. The draft ANSI Standard provides guidance to in-vivo counting facilities regarding the precision and accuracy of measurements for certain categories of commonly assayed radionuclides and critical regions of the body. The draft ANSI Standard was evaluated by conducting an intercomparison test involving a number of whole-body counting facilities. The testing involved three types of measurements: chest counting for detection of radioactive materials in the lung, whole-body counting for detection of uniformly distributed activity, and neck counting for detection of radioactive material concentrated in the thyroid. Results of the first-round intercomparison test are presented in this report. The appropriateness of the draft Standard performance criteria was judged by the measurement results reported by participating in-vivo counting facilities. The intercomparison testing showed that some laboratories had difficulty meeting the performance criteria specified in the draft ANSI Standard N13.30

  18. Scan-free grazing emission XRF measurements in the laboratory using a CCD

    International Nuclear Information System (INIS)

    Szwedowski, Veronika; Baumann, Jonas; Mantouvalou, Ioanna; Bauer, Leona; Malzer, Wolfgang; Kanngiesser, Birgit

    2017-01-01

    The rapid development of new classes of nanomaterials calls for easy access methods in order to quantify properties essential for their functionality, e.g., interdiffusion of elements at interfaces, or elemental dopant, or depth profiles. Non-destructive methods, like X-ray fluorescence (XRF), are of special interest, for preserving materials and offering the possibility to incorporate the analysis in a production process. In-depth XRF methods for the characterization of nanomaterials are up until now limited to synchrotron radiation facilities. A novel scan-free grazing emission XRF (GEXRF) setup is presented utilizing conventional and low-cost hardware, acting as a transfer of a synchrotron method into the laboratory. A chromium target X-ray tube with a polycapillary lens is used as X-ray source and a conventional CCD as the 2D energy-dispersive detector. To confirm the feasibility of the described setup a nanometer-layered titanium-aluminium sample is measured. An energy-dispersive spectrum is obtained in single-photon-counting-mode from the CCD measurements and first GEXRF profiles generated. A semi-quantitative evaluation of this setup is implemented by comparing the measured results with simulations, allowing conclusions about the investigated samples' elemental, compositional, and structural layer-by-layer characteristics. (copyright 2017 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  19. JCL roundtable: Future of the lipid laboratory: Choosing valuable measures among the lipoproteins (part 1).

    Science.gov (United States)

    Brown, William Virgil; Handelsman, Yehuda; Martin, Seth S; Morris, Pamela B

    The measurement of cholesterol and triglycerides as indicators of metabolic disorders and most particularly of vascular disease risk has been of growing importance to physicians and epidemiologists over the past century. This was refocused on the lipoproteins, the specific packages in blood that carry these lipids, by John Gofman, MD, PhD, and Don Fredrickson, MD, more than 50 years ago. We continue to learn about the metabolism of these large molecular structures and their relationship to arteriosclerosis as new genetic and interventional studies are published. The clinical laboratory has evolved to provide more focused information with measures that can help us assess risk and target our therapy more effectively. In this roundtable discussion, I had the opportunity to talk with physicians who consider lipoprotein management to be central features of their practice every day. They personally care for patients with metabolic disorders in which the lipoproteins have caused disease or are predicted to do so. They are well-versed on the way that science is leading us in our field. I believe that you will learn from their view of current needs regarding lipoprotein measures and the changes that may derive from ongoing scientific studies in our field. Copyright © 2017 National Lipid Association. Published by Elsevier Inc. All rights reserved.

  20. Dosimeter calibration facilities and methods at the Radiation Measurement Laboratory of the Centre d'etudes nucleaires, Grenoble

    International Nuclear Information System (INIS)

    Choudens, H. de; Herbaut, Y.; Haddad, A.; Giroux, J.; Rouillon, J.; CEA Centre d'Etudes Nucleaires de Grenoble, 38

    1975-01-01

    At the Centre d'etudes nucleaires, Grenoble, the Radiation Measurement Laboratory, which forms part of the Environmental Protection and Research Department, serves the entire Centre for purposes of dosimetry and the calibration of dose meters. The needs of radiation protection are such that one must have facilities for checking periodically the calibration of radiation-monitoring instruments and developing special dosimetry techniques. It was thought a good idea to arrange for the dosimetry and radiation protection team to assist other groups working at the Centre - in particular, the staff of the biology and radiobiology laboratories - and also bodies outside the framework of the French Commissariat a l'energie atomique. Thus, technical collaboration has been established with, for example, Grenoble's Centre hospitalier universitaire (university clinic), which makes use of the facilities and skills available at the Radiation Measurement Laboratory for solving special dosimetry problems. With the Laboratory's facilities it is possible to calibrate dose meters for gamma, beta and neutron measurements

  1. How compliant are technicians with universal safety measures in medical laboratories in Croatia?--A pilot study.

    Science.gov (United States)

    Dukic, Kristina; Zoric, Matea; Pozaic, Petra; Starcic, Jelena; Culjak, Marija; Saracevic, Andrea; Miler, Marijana

    2015-01-01

    This pilot study aimed to investigate the use of personal protective equipment (PPE) and compliance to the code of conduct (rules defined in institutional, governmental and professional guidelines) among laboratory technicians in Croatian medical laboratories. In addition, we explored the differences in compliance between participants of different age groups, laboratory ownership and accreditation status. An anonymous and voluntary survey with 15 questions was conducted among Croatian medical laboratory technicians (N=217). The questions were divided into two groups: demographic characteristics and the use of PPE. The questions of the second part were graded according to the Likert scale (1-4) and an overall score, shown as median and range (min-max), was calculated for each participant. Differences between the overall scores were tested for each group of participants. The majority of participants always wear protective clothes at work, 38.7% of them always wear gloves in daily routine, more than 30.0% consume food and almost half of them drink beverages at workplace. A significantly lower overall score was found for participants working in public compared to private laboratories (36 (16-40) vs. 40 (31-40), Plaboratory accreditation status (P=0.081). A considerable percentage of laboratory technicians in Croatian medical laboratories do not comply with safety measures. Lack of compliance is observed in all personnel regardless laboratory accreditation and participants' age. However, those working in private laboratories adhere more to the code of conduct.

  2. Laboratory measurements and model sensitivity studies of dust deposition ice nucleation

    Directory of Open Access Journals (Sweden)

    G. Kulkarni

    2012-08-01

    Full Text Available We investigated the ice nucleating properties of mineral dust particles to understand the sensitivity of simulated cloud properties to two different representations of contact angle in the Classical Nucleation Theory (CNT. These contact angle representations are based on two sets of laboratory deposition ice nucleation measurements: Arizona Test Dust (ATD particles of 100, 300 and 500 nm sizes were tested at three different temperatures (−25, −30 and −35 °C, and 400 nm ATD and kaolinite dust species were tested at two different temperatures (−30 and −35 °C. These measurements were used to derive the onset relative humidity with respect to ice (RHice required to activate 1% of dust particles as ice nuclei, from which the onset single contact angles were then calculated based on CNT. For the probability density function (PDF representation, parameters of the log-normal contact angle distribution were determined by fitting CNT-predicted activated fraction to the measurements at different RHice. Results show that onset single contact angles vary from ~18 to 24 degrees, while the PDF parameters are sensitive to the measurement conditions (i.e. temperature and dust size. Cloud modeling simulations were performed to understand the sensitivity of cloud properties (i.e. ice number concentration, ice water content, and cloud initiation times to the representation of contact angle and PDF distribution parameters. The model simulations show that cloud properties are sensitive to onset single contact angles and PDF distribution parameters. The comparison of our experimental results with other studies shows that under similar measurement conditions the onset single contact angles are consistent within ±2.0 degrees, while our derived PDF parameters have larger discrepancies.

  3. The bogus taste test: Validity as a measure of laboratory food intake.

    Science.gov (United States)

    Robinson, Eric; Haynes, Ashleigh; Hardman, Charlotte A; Kemps, Eva; Higgs, Suzanne; Jones, Andrew

    2017-09-01

    Because overconsumption of food contributes to ill health, understanding what affects how much people eat is of importance. The 'bogus' taste test is a measure widely used in eating behaviour research to identify factors that may have a causal effect on food intake. However, there has been no examination of the validity of the bogus taste test as a measure of food intake. We conducted a participant level analysis of 31 published laboratory studies that used the taste test to measure food intake. We assessed whether the taste test was sensitive to experimental manipulations hypothesized to increase or decrease food intake. We examined construct validity by testing whether participant sex, hunger and liking of taste test food were associated with the amount of food consumed in the taste test. In addition, we also examined whether BMI (body mass index), trait measures of dietary restraint and over-eating in response to palatable food cues were associated with food consumption. Results indicated that the taste test was sensitive to experimental manipulations hypothesized to increase or decrease food intake. Factors that were reliably associated with increased consumption during the taste test were being male, have a higher baseline hunger, liking of the taste test food and a greater tendency to overeat in response to palatable food cues, whereas trait dietary restraint and BMI were not. These results indicate that the bogus taste test is likely to be a valid measure of food intake and can be used to identify factors that have a causal effect on food intake. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  4. Laboratory Measurements of Optical and Physical Properties of Individual Lunar Dust Grains

    Science.gov (United States)

    Abbas, M. M.; Tankosic, D.; Craven, P. D.; Hoover, R. B.

    2006-01-01

    The lunar surface is covered with a thick layer of sub-micron/micron size dust grains formed by meteoritic impact over billions of years. The fine dust grains are levitated and transported on the lunar surface, and transient dust clouds over the lunar horizon were observed by experiments during the Apollo 17 mission. Theoretical models suggest that the dust grains on the lunar surface are charged by the solar UV radiation as well as the solar wind. Even without any physical activity, the dust grains are levitated by electrostatic fields and transported away from the surface in the near vacuum environment of the Moon. The current dust charging and levitation models, however, do not fully explain the observed phenomena. Since the abundance of dust on the Moon's surface with its observed adhesive characteristics has the potential of severe impact on human habitat and operations and lifetime of a variety of equipment, it is necessary to investigate the charging properties and the lunar dust phenomena in order to develop appropriate mitigating strategies. Photoelectric emission induced by the solar UV radiation with photon energies higher than the work function of the grain materials is recognized to be the dominant process for charging of the lunar dust, and requires measurements of the photoelectric yields to determine the charging and equilibrium potentials of individual dust grains. In this paper, we present the first laboratory measurements of the photoelectric yields of individual sub-micron/micron size dust grains selected from sample returns of Apollo 17, and Luna 24 missions, as well as similar size dust grains from the JSC-1 simulants. The experimental results were obtained on a laboratory facility based on an electrodynamic balance that permits a variety of experiments to be conducted on individual sub-micron/micron size dust grains in simulated space environments. The photoelectric emission measurements indicate grain size dependence with the yield

  5. Dynamics of synchrotron VUV-induced intracluster reactions

    Energy Technology Data Exchange (ETDEWEB)

    Grover, J.R. [Brookhaven National Laboratory, Upton, NY (United States)

    1993-12-01

    Photoionization mass spectrometry (PIMS) using the tunable vacuum ultraviolet radiation available at the National Synchrotron Light Source is being exploited to study photoionization-induced reactions in small van der Waals mixed complexes. The information gained includes the observation and classification of reaction paths, the measurement of onsets, and the determination of relative yields of competing reactions. Additional information is obtained by comparison of the properties of different reacting systems. Special attention is given to finding unexpected features, and most of the reactions investigated to date display such features. However, understanding these reactions demands dynamical information, in addition to what is provided by PIMS. Therefore the program has been expanded to include the measurement of kinetic energy release distributions.

  6. Effects of photoirradiation in UV and VUV regions during plasma exposure to polymers

    International Nuclear Information System (INIS)

    Cho, Ken; Setsuhara, Yuichi; Takenaka, Kosuke; Shiratani, Masaharu; Sekine, Makoto; Hori, Masaru

    2011-01-01

    Interactions between photons irradiated from Ar-O 2 mixture plasmas and polymer surfaces were investigated on the basis of depth analyses of chemical bonding states in the nano-surface layer of polyethylene terephthalate (PET) films via hard X-ray photoelectron spectroscopy (HXPES) and conventional X-ray photoelectron spectroscopy (XPS). The PET films were exposed to photons from the Ar-O 2 mixture plasmas by covering the PET samples with MgF 2 and quartz windows as optical filters for evaluation of photoirradiation effects in ultraviolet (UV) and vacuum ultraviolet (VUV) regions. The HXPES results indicated that the degradation of the chemical bonding states due to photoirradiation in regions was insignificant in deeper regions up to about 50 nm from the surface. Whereas, conventional XPS analysis showed that C-O bond, O=C-O bond and C=O bond increased after photoirradiation in UV and VUV regions. These results suggest that the increase in oxygen functionalities (C-O bond, O=C-O bond and C=O bond) may be attributed to chemical reactions and/or terminations of scissed bonds via photodecompositions of the polymer with oxygen and/or OH species (oxygen molecules and radicals during plasma exposure and/or oxygen molecules and moisture after taking the PET samples out of the plasma reactor to the ambient air) in the vicinity of the sample surface.

  7. VUV photoionization and dissociative photoionization of the prebiotic molecule acetyl cyanide: Theory and experiment

    International Nuclear Information System (INIS)

    Bellili, A.; Hochlaf, M.; Schwell, M.; Bénilan, Y.; Fray, N.; Gazeau, M.-C.; Mogren Al-Mogren, M.; Guillemin, J.-C.; Poisson, L.

    2014-01-01

    The present combined theoretical and experimental investigation concerns the single photoionization of gas-phase acetyl cyanide and the fragmentation pathways of the resulting cation. Acetyl cyanide (AC) is inspired from both the chemistry of cyanoacetylene and the Strecker reaction which are thought to be at the origin of medium sized prebiotic molecules in the interstellar medium. AC can be formed by reaction from cyanoacetylene and water but also from acetaldehyde and HCN or the corresponding radicals. In view of the interpretation of vacuum ultraviolet (VUV) experimental data obtained using synchrotron radiation, we explored the ground potential energy surface (PES) of acetyl cyanide and of its cation using standard and recently implemented explicitly correlated methodologies. Our PES covers the regions of tautomerism (between keto and enol forms) and of the lowest fragmentation channels. This allowed us to deduce accurate thermochemical data for this astrobiologically relevant molecule. Unimolecular decomposition of the AC cation turns out to be very complex. The implications for the evolution of prebiotic molecules under VUV irradiation are discussed

  8. Digital low level RF control system for the DESY TTF VUV-FEL Linac

    International Nuclear Information System (INIS)

    Ayvazyan, V.; Choroba, S.; Matyushin, A.; Moeller, G.; Petrosyan, G.; Rehlich, K.; Simrock, S.N.; Vetrov, P.

    2005-01-01

    In the RF system for the Vacuum Ultraviolet Free Electron Laser (VUV-FEL) Linac each klystron supplies RF power to up to 32 cavities. The superconducting cavities are operated in pulsed mode and high accelerating gradients close to the performance limit. The RF control of the cavity fields to the level of 10 -4 for amplitude and 0.1 degree for phase however presents a significant technical challenge due to the narrow bandwidth of the cavities which results in high sensitivity to perturbations of the resonance frequency by mechanical vibrations (microphonics) and Lorenz force detuning. The VUV-FEL Linac RF control system employs a completely digital feedback system to provide flexibility in the control algorithms, precise calibration of the accelerating field vector-sum, and extensive diagnostics and exception handling capabilities. The RF control algorithm is implemented in DSP (Digital Signal Processor) firmware and DOOCS (Distributed Object Oriented Control System) servers. The RF control system design objectives are discussed. Hardware and software design of the DSP based RF control are presented. (orig.)

  9. Photofragmentation spectra of halogenated methanes in the VUV photon energy range

    Energy Technology Data Exchange (ETDEWEB)

    Cartoni, Antonella, E-mail: antonella.cartoni@uniroma1.it [Dipartimento di Chimica e Tecnologie del Farmaco, Sapienza Università di Roma, P.le Aldo Moro 5, Roma 00185 (Italy); Bolognesi, Paola; Fainelli, Ettore; Avaldi, Lorenzo [CNR-IMIP, Area della Ricerca di Roma 1, Monterotondo Scalo (Rm) 00015 (Italy)

    2014-05-14

    In this paper an investigation of the photofragmentation of dihalomethanes CH{sub 2}X{sub 2} (X = F, Cl, Br, I) and chlorinated methanes (CH{sub n}Cl{sub 4−n} with n = 0–3) with VUV helium, neon, and argon discharge lamps is reported and the role played by the different halogen atoms is discussed. Halogenated methanes are a class of molecules used in several fields of chemistry and the study of their physical and chemical proprieties is of fundamental interest. In particular their photodissociation and photoionization are of great importance since the decomposition of these compounds in the atmosphere strongly affects the environment. The results of the present work show that the halogen-loss is the predominant fragmentation channel for these molecules in the VUV photon energy range and confirm their role as reservoir of chlorine, bromine, and iodine atoms in the atmosphere. Moreover, the results highlight the peculiar feature of CH{sub 2}F{sub 2} as a source of both fluorine and hydrogen atoms and the characteristic formation of I{sub 2}{sup +} and CH{sub 2}{sup +} ions from the photofragmentation of the CH{sub 2}I{sub 2} molecule.

  10. Weak carbonyl-methyl intermolecular interactions in acetone clusters explored by IR plus VUV spectroscopy

    International Nuclear Information System (INIS)

    Guan, Jiwen; Hu, Yongjun; Xie, Min; Bernstein, Elliot R.

    2012-01-01

    Highlights: ► The carbonyl overtone of acetone clusters is observed by IR-VUV spectroscopy. ► Acetone molecules in the dimer are stacked with an antiparallel way. ► The structure of the acetone trimer and the tetramer are the cyclic structures. ► The carbonyl groups would interact with the methyl groups in acetone clusters. ► These weak interactions are further confirmed by H/D substitution experiment. -- Abstract: Size-selected IR–VUV spectroscopy is employed to detect vibrational characteristics in the region 2850 ∼ 3550 cm −1 of neutral acetone and its clusters (CH 3 COCH 3 ) n (n = 1–4). Features around 3440 cm −1 in the spectra of acetone monomer and its clusters are assigned to the carbonyl stretch (CO) overtone. These features red-shift from 3455 to 3433 cm −1 as the size of the clusters increases from the monomer to the tetramer. Based on calculations, the experimental IR spectra in the C=O overtone region suggest that the dominant structures for the acetone trimer and tetramer should be cyclic in the supersonic expansion sample. This study also suggests that the carbonyl groups interact with the methyl groups in the acetone clusters. These weak interactions are further confirmed by the use of deuterium substitution.

  11. VUV photoionization and dissociative photoionization of the prebiotic molecule acetyl cyanide: Theory and experiment

    Energy Technology Data Exchange (ETDEWEB)

    Bellili, A.; Hochlaf, M., E-mail: hochlaf@univ-mlv.fr, E-mail: martin.schwell@lisa.u-pec.fr [Laboratoire Modélisation et Simulation Multi Echelle, MSME UMR 8208 CNRS, Université Paris-Est, 5 bd Descartes, 77454 Marne-la-Vallée (France); Schwell, M., E-mail: hochlaf@univ-mlv.fr, E-mail: martin.schwell@lisa.u-pec.fr; Bénilan, Y.; Fray, N.; Gazeau, M.-C. [Laboratoire Interuniversitaire des Systèmes Atmosphériques (LISA), UMR 7583 CNRS, Institut Pierre et Simon Laplace, Universités Paris-Est Créteil et Paris Diderot, 61 Avenue du Général de Gaulle, 94010 Créteil (France); Mogren Al-Mogren, M. [Chemistry Department, Faculty of Science, King Saud University, P.O. Box 2455, Riyadh 11451 (Saudi Arabia); Guillemin, J.-C. [Institut des Sciences Chimiques de Rennes, Ecole Nationale Supérieure de Chimie de Rennes, CNRS, UMR 6226, Allée de Beaulieu, CS 50837, 35708 Rennes Cedex 7 (France); Poisson, L. [Laboratoire Francis Perrin, CNRS URA 2453, CEA, IRAMIS, Laboratoire Interactions Dynamique et Lasers, Bât 522, F-91191 Gif/Yvette (France)

    2014-10-07

    The present combined theoretical and experimental investigation concerns the single photoionization of gas-phase acetyl cyanide and the fragmentation pathways of the resulting cation. Acetyl cyanide (AC) is inspired from both the chemistry of cyanoacetylene and the Strecker reaction which are thought to be at the origin of medium sized prebiotic molecules in the interstellar medium. AC can be formed by reaction from cyanoacetylene and water but also from acetaldehyde and HCN or the corresponding radicals. In view of the interpretation of vacuum ultraviolet (VUV) experimental data obtained using synchrotron radiation, we explored the ground potential energy surface (PES) of acetyl cyanide and of its cation using standard and recently implemented explicitly correlated methodologies. Our PES covers the regions of tautomerism (between keto and enol forms) and of the lowest fragmentation channels. This allowed us to deduce accurate thermochemical data for this astrobiologically relevant molecule. Unimolecular decomposition of the AC cation turns out to be very complex. The implications for the evolution of prebiotic molecules under VUV irradiation are discussed.

  12. Experience with a high-brightness storage ring: the NSLS 750 MeV vuv ring

    International Nuclear Information System (INIS)

    Galayda, J.

    1984-01-01

    The NSLS vuv ring is the first implementation of the proposals of R. Chasman and G.K. Green for a synchrotron radiation source with enhanced brightness: its lattice is a series of achromatic bends with two zero-gradient dipoles each, giving small damped emittance; and these bends are connected by straight sections with zero dispersion to accommodate wigglers and undulators without degrading the radiation damping properties of the ring. The virtues of the Chasman-Green lattice, its small betatron and synchrotron emittances, may be understood with some generality; e.g. the electron γm 0 c 2 energy and the number of achromatic bends M sets a lower limit on the betatron emittance of e/sub x/ > 7.7 x 10 -13 γ 2 /M meter-radians. There is strong interest in extrapolation of this type of lattice to 6 GeV and to 32 achromatic bends. The subject of this report is the progress toward achieving performance in the vuv ring limited by the radiation damping parameters optimized in its design. 14 refs., 4 figs., 1 tab

  13. Digital low level RF control system for the DESY TTF VUV-FEL Linac

    Energy Technology Data Exchange (ETDEWEB)

    Ayvazyan, V.; Choroba, S.; Matyushin, A.; Moeller, G.; Petrosyan, G.; Rehlich, K.; Simrock, S.N.; Vetrov, P.

    2005-07-01

    In the RF system for the Vacuum Ultraviolet Free Electron Laser (VUV-FEL) Linac each klystron supplies RF power to up to 32 cavities. The superconducting cavities are operated in pulsed mode and high accelerating gradients close to the performance limit. The RF control of the cavity fields to the level of 10{sup -4} for amplitude and 0.1 degree for phase however presents a significant technical challenge due to the narrow bandwidth of the cavities which results in high sensitivity to perturbations of the resonance frequency by mechanical vibrations (microphonics) and Lorenz force detuning. The VUV-FEL Linac RF control system employs a completely digital feedback system to provide flexibility in the control algorithms, precise calibration of the accelerating field vector-sum, and extensive diagnostics and exception handling capabilities. The RF control algorithm is implemented in DSP (Digital Signal Processor) firmware and DOOCS (Distributed Object Oriented Control System) servers. The RF control system design objectives are discussed. Hardware and software design of the DSP based RF control are presented. (orig.)

  14. Collection of measurement data in 2014 fiscal year at the Horonobe Underground Research Laboratory Project

    International Nuclear Information System (INIS)

    Sakurai, Akitaka; Aoyagi, Kazuhei

    2016-07-01

    The Horonobe Underground Research Laboratory (URL) Project has being pursued by Japan Atomic Energy Agency (JAEA) to enhance the reliability of relevant disposal technologies through investigations of the deep geological environment within the host sedimentary formations at Horonobe, northern Hokkaido. The URL project consists of two major research areas, 'Geoscientific Research' and 'R and D on Geological Disposal Technologies', and proceeds in three overlapping phases, 'Phase I: Surface-based investigations', 'Phase II: Investigations during tunnel excavation' and 'Phase III: Investigations in the underground facilities', over a period of around 20 years. The Phase I geoscientific research was carried out from March 2001 to March 2006 in parallel with design and execution scheme on URL facilities. In addition, identifying key issues that need to be addressed in the Phase II/III investigations were planned. At the beginning of the Phase II investigations, investigation reports related to measurement plan and observational construction program on shaft and drift excavation were published. The observational construction program summarizes the followings from the results of the Phase I investigations: measurements for safety and reasonable constructions, enhancement of shaft design and construction technologies and evaluation of appropriateness for the deep geological environment model estimated before shaft excavation. Currently, Phase III investigation related to geological disposal in underground facilities has been conducting. Also, measurement for consideration of long-term stability of the tunnel has been continued. This report summarizes the measurements data acquired at the West Shaft in 2014 fiscal year for the purpose of the basic data for carrying out the Observational Construction Program. A DVD-ROM is attached as an appendix. (J.P.N.)

  15. Laboratory measurements of radon diffusion through multilayered cover systems for uranium tailings

    International Nuclear Information System (INIS)

    Nielson, K.K.; Rogers, V.C.; Rich, D.C.; Nederhand, F.A.; Sandquist, G.M.; Jensen, C.M.

    1981-12-01

    Laboratory measurements of radon fluxes and radon concentration profiles were conducted to characterize the effectiveness of multilayer cover systems for uranium tailings. The cover systems utilized soil and clay materials from proposed disposal sites for the Vitro, Durango, Shiprock, Grand Junction and Riverton tailings piles. Measured radon fluxes were in reasonable agreement with values predicted by multilayer diffusion theory. Results obtained by using air-filled porosities in the diffusion calculations were similar to those obtained by using total porosities. Measured diffusion coefficients were a better basis for predicting radon fluxes than were correlations of diffusion coefficient with moisture or with air porosity. Radon concentration profiles were also fitted by equations for multilayer diffusion in the air-filled space. Layer-order effects in the multilayer cover systems were examined and estimated to amount to 10 to 20 percent for the systems tested. Quality control measurements in support of the multilayer diffusion tests indicated that moisture absorption was not a significant problem in radon flux sampling with charcoal canisters, but that the geometry of the sampler was critical. The geometric design of flux-can samplers was also shown to be important. Enhanced radon diffusion along the walls of the test columns was examined and was found to be insignificant except when the columns had been physically disturbed. Additional moisture injected into two test columns decreased the radon flux, as expected, but appeared to migrate into surrounding materials or to be lost by evaporation. Control of moisture content and compaction in the test columns appeared to be the critical item affecting the accuracies of the experiments

  16. An Assessment of GEO Orbital Debris Photometric Properties Derived from Laboratory-Based Measurements

    Science.gov (United States)

    Rodriquez-Cowardin, H.; Abercromby, K.; Barker, E.; Mulrooney, M.; Seitzer, P.; Schildknecht, T.

    2009-01-01

    objects can vary greatly (even for the same object under different illumination conditions). For example, specular reflections from multiple facets of the target surface (e.g. Mylar or Aluminized Kapton) can lead to erratic, orientation-dependent light curves. This paper will investigate published color photometric data for a series of orbital debris targets and compare it to the empirical photometric measurements generated in the OMC. The specific materials investigated (known to exist in GEO) are: an intact piece of MLI, separated layers of MLI, and multiple solar cells materials. Using the data acquired over specific rotational angles through different filters (B, V, R, I), a color index is acquired (B-R, R-I). As a secondary check, the spectrometer is used to define color indexes for the same material. Using these values and their associated lightcurves, this laboratory data is compared to observational data obtained on the 1m telescope of the Astronomical Institute of the University of Bern (AUIB) and the 0.9 m Small and Moderate Aperture Research Telescope System (SMARTS) telescope at Cerro Tololo Inter-American Observatory (CTIO). We will present laboratory generated lightcurves with color indexes of the high A/m materials alongside telescopic data of targets with high A/m values. We will discuss the relationship of laboratory to telescope data in the context of classification of GEO debris objects.

  17. Heat transfer through particulated media in stagnant gases model and laboratory measurements: Application to Mars

    Science.gov (United States)

    Piqueux, Sylvain Loic Lucien

    The physical characterization of the upper few centimeters to meters of the Martian surface has greatly benefited from remote temperature measurements. Typical grain sizes, rock abundances, subsurface layering, soil cementation, bedrock exposures, and ice compositions have been derived and mapped using temperature data in conjunction with subsurface models of heat conduction. Yet, these models of heat conduction are simplistic, precluding significant advances in the characterization of the physical nature of the Martian surface. A new model of heat conduction for homogeneous particulated media accounting for the grain size, porosity, gas pressure and composition, temperature, and the effect of any cementing phase is presented. The incorporation of the temperature effect on the bulk conductivity results in a distortion of the predicted diurnal and seasonal temperatures when compared to temperatures predicted with a temperature-independent conductivity model. Such distortions have been observed and interpreted to result from subsurface heterogeneities, but they may simply be explained by a temperature-dependency of the thermal inertia, with additional implications on the derived grain sizes. Cements are shown to significantly increase the bulk conductivity of a particulated medium and bond fractions duricrust. A laboratory setup has been designed, built, calibrated and used to measure the thermal conductivity of particulated samples in order to test and refine the models mentioned above. Preliminary results confirm the influence of the temperature on the bulk conductivity, as well as the effect of changing the gas composition. Cemented samples are shown to conduct heat more efficiently than their uncemented counterparts.

  18. Laboratory-scale measurements of effective relative permeability for layered sands

    Energy Technology Data Exchange (ETDEWEB)

    Butts, M.G.; Korsgaard, S.

    1996-12-31

    Predictions of the impact of remediation or the extent of contamination resulting from spills of gasoline, solvents and other petroleum products, must often be made in complex geological environments. Such problems can be treated by introducing the concept of effective parameters that incorporate the effects of soil layering or other heterogeneities into a large-scale flow description. Studies that derive effective multiphase parameters are few, and approximations are required to treat the non-linear multiphase flow equations. The purpose of this study is to measure effective relative permeabilities for well-defined multi-layered soils at the laboratory scale. Relative permeabilities were determined for homogeneous and layered, unconsolidated sands using the method of Jones and Roszelle (1978). The experimental data show that endpoint relative permeabilities are important in defining the shape of the relative permeability curves, but these cannot be predicted by estimation methods base on capillary pressure data. The most significant feature of the measured effective relative permeability curves is that the entrapped (residual) oil saturation is significantly larger than the residual saturation of the individual layers. This observation agrees with previous theoretical predictions of large-scale entrapment Butts, 1993 and (1995). Enhanced entrapment in heterogeneous soils has several important implications for spill remediation, for example, the reduced efficiency of direct recovery. (au) 17 refs.

  19. An integrated performance measure for environmental restoration at Oak Ridge National Laboratory

    International Nuclear Information System (INIS)

    Boston, H.L.; Kuhaida, A.J. Jr.; Garland, S.B.

    1992-01-01

    A number of contaminated sites at the Oak Ridge National Laboratory (ORNL) require remediation. A strategy has been developed to support the remediation of individual sites, while providing an integrated measure of contaminant release from all sites and serving as a performance measure for remedial efforts. Most ORNL facilities are in one watershed and groundwater pathways are known to be localized within the watershed. Thus the stream system is the receptor for contaminants released from individual sites and a conduit for contaminant transport off site. Monitoring at key locations in the watershed is linked with information from environmental investigations to: (1) identify and quantify contaminant fluxes; (2) identify the pathways of greatest concern for human health and ecological risk; (3) improve conceptual models of contaminant movement; (4) evaluate remedial alternatives; (5) prioritize sites for remediation; and, (6) document reduced contaminant fluxes following remediation. The contaminants of greatest concern are associated with soil and aquatic sediment. The subjects of investigations range from soil processes and bioindicators of contaminant exposure, to phenomena at the watershed-level such as models predicting contaminant movement during large storms and predicting groundwater transport of contaminants. These efforts provide the foundation needed to coordinate the remediation of individual sites and to assess the overall performance of remedial actions

  20. Advances in the measurement of mud flocs within turbulent suspensions in both the laboratory and field

    Science.gov (United States)

    Strom, K.; Tran, D. A.; Dillon, B.

    2017-12-01

    Predicting the size and settling velocity of mud suspensions under the influence of flocculation is crucial for the accurate prediction of mud movement and deposition in sediment transport modeling of environments such as agricultural streams, large coastal rivers, estuaries, river plumes, boundary currents, and turbidity currents. Yet, collecting accurate and high resolution data on mud flocs is difficult. For example, measurement of flocs with camera systems generally provide the best avenue for preserving floc structure and obtaining accurate information about true floc sizes. However, capturing images of flocs in swirling turbulent flows can be difficult and often limited to suspensions where concentrations are low (automated image processing. The combination of these elements allows for high-resolution times series of floc size populations to be measured in turbulent suspensions over a much broader range of suspended sediment concentration than has previously been possible — all without the need to transfer samples to a separate imaging container. We show applications and results from these developments in laboratory experiments and highlight their use in a newly-developed, low-cost, and field-deployable floc camera system.

  1. Upgrade of a radiation measurement laboratory course at the University of Florida

    International Nuclear Information System (INIS)

    Thomsen, L.M.; Bolch, W.E.; Wagner, T.H.

    1996-01-01

    The open-quotes Nuclear Radiation Detection and Instrumentation Laboratoryclose quotes course at the University of Florida provides health physics students with virtually their only hands-on exposure to the radiation measurement equipment used in professional practice. To better prepare students for employment, the course is currently under revision, with implementation of the revised course scheduled for fall semester 1996. The primary goal is to improve student understanding of the inherent strengths and limitations of various gas-filled, scintillation, and semiconductor detectors. A secondary goal is to improve student writing skills. To devise lab exercises that meet these goals, a six-step method for systematic laboratory course improvement was developed and used to guide the revision process. First, course objectives were delineated. Second, obstacles to achieving these course objectives were candidly assessed. Third, the course objectives were prioritized to ensure that the most important ones were met within the given time and equipment constraints. Fourth, performance-based learning objectives were written for each exercise. Fifth, exercises were developed that enable students to achieve the learning objectives specified. Sixth, when the revised course is implemented, its teaching effectiveness will be measured and steps will be taken to improve further. Course revision is nearly complete, and the new exercises promise to significantly improve both student technical knowledge and communication skill

  2. Timelapse ultrasonic tomography for measuring damage localization in geomechanics laboratory tests.

    Science.gov (United States)

    Tudisco, Erika; Roux, Philippe; Hall, Stephen A; Viggiani, Giulia M B; Viggiani, Gioacchino

    2015-03-01

    Variation of mechanical properties in materials can be detected non-destructively using ultrasonic measurements. In particular, changes in elastic wave velocity can occur due to damage, i.e., micro-cracking and particles debonding. Here the challenge of characterizing damage in geomaterials, i.e., rocks and soils, is addressed. Geomaterials are naturally heterogeneous media in which the deformation can localize, so that few measurements of acoustic velocity across the sample are not sufficient to capture the heterogeneities. Therefore, an ultrasonic tomography procedure has been implemented to map the spatial and temporal variations in propagation velocity, which provides information on the damage process. Moreover, double beamforming has been successfully applied to identify and isolate multiple arrivals that are caused by strong heterogeneities (natural or induced by the deformation process). The applicability of the developed experimental technique to laboratory geomechanics testing is illustrated using data acquired on a sample of natural rock before and after being deformed under triaxial compression. The approach is then validated and extended to time-lapse monitoring using data acquired during plane strain compression of a sample including a well defined layer with different mechanical properties than the matrix.

  3. Laboratory-scale measurements of effective relative permeability for layered sands

    International Nuclear Information System (INIS)

    Butts, M.G.; Korsgaard, S.

    1996-01-01

    Predictions of the impact of remediation or the extent of contamination resulting from spills of gasoline, solvents and other petroleum products, must often be made in complex geological environments. Such problems can be treated by introducing the concept of effective parameters that incorporate the effects of soil layering or other heterogeneities into a large-scale flow description. Studies that derive effective multiphase parameters are few, and approximations are required to treat the non-linear multiphase flow equations. The purpose of this study is to measure effective relative permeabilities for well-defined multi-layered soils at the laboratory scale. Relative permeabilities were determined for homogeneous and layered, unconsolidated sands using the method of Jones and Roszelle (1978). The experimental data show that endpoint relative permeabilities are important in defining the shape of the relative permeability curves, but these cannot be predicted by estimation methods base on capillary pressure data. The most significant feature of the measured effective relative permeability curves is that the entrapped (residual) oil saturation is significantly larger than the residual saturation of the individual layers. This observation agrees with previous theoretical predictions of large-scale entrapment Butts, 1993 and (1995). Enhanced entrapment in heterogeneous soils has several important implications for spill remediation, for example, the reduced efficiency of direct recovery. (au) 17 refs

  4. High-resolution Laboratory Measurements of Coronal Lines near the Fe IX Line at 171 Å

    Science.gov (United States)

    Beiersdorfer, Peter; Träbert, Elmar

    2018-02-01

    We present high-resolution laboratory measurements in the spectral region between 165 and 175 Å that focus on the emission from various ions of C, O, F, Ne, S, Ar, Fe, and Ni. This wavelength region is centered on the λ171 Fe IX channel of the Atmospheric Imaging Assembly on the Solar Dynamics Observatory, and we place special emphasis on the weaker emission lines of Fe IX predicted in this region. In general, our measurements show a multitude of weak lines missing in the current databases, where the emission lines of Ni are probably most in need of further identification and reclassification. We also find that the wavelengths of some of the known lines need updating. Using the multi-reference Møller–Plesset method for wavelength predictions and collisional-radiative modeling of the line intensities, we have made tentative assignments of more than a dozen lines to the spectrum of Fe IX, some of which have formerly been identified as Fe VII, Fe XIV, or Fe XVI lines. Several Fe features remain unassigned, although they appear to be either Fe VII or Fe X lines. Further work will be needed to complete and correct the spectral line lists in this wavelength region.

  5. Measurements of air contaminants during the Cerro Grande fire at Los Alamos National Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Eberhart, Craig

    2010-08-01

    Ambient air sampling for radioactive air contaminants was continued throughout the Cerro Grande fire that burned part of Los Alamos National Laboratory. During the fire, samples were collected more frequently than normal because buildup of smoke particles on the filters was decreasing the air flow. Overall, actual sampling time was 96% of the total possible sampling time for the May 2000 samples. To evaluate potential human exposure to air contaminants, the samples were analyzed as soon as possible and for additional specific radionuclides. Analyses showed that the smoke from the fire included resuspended radon decay products that had been accumulating for many years on the vegetation and the forest floor that burned. Concentrations of plutonium, americium, and depleted uranium were also measurable, but at locations and concentrations comparable to non-fire periods. A continuous particulate matter sampler measured concentrations that exceeded the National Ambient Air Quality Standard for PM-10 (particles less than 10 micrometers in diameter). These high concentrations were caused by smoke from the fire when it was close to the sampler.

  6. An international marine-atmospheric 222Rn measurement intercomparison in Bermuda. Part 2: Results for the participating laboratories

    International Nuclear Information System (INIS)

    Colle, R.; Unterweger, M.P.; Hutchinson, J.M.R.

    1996-01-01

    As part of an international measurement intercomparison of instruments used to measure atmospheric 222 Rn, four participating laboratories made nearly simultaneous measurements of 222 Rn activity concentration in commonly sampled, ambient air over approximately a 2 week period, and three of these four laboratories participated in the measurement comparison of 14 introduced samples with known, but undisclosed (blind) 222 Rn activity concentration. The exercise was conducted in Bermuda in October 1991. The 222 Rn activity concentrations in ambient Bermudian air over the course of the intercomparison ranged from a few hundredths of a Bq · m -3 to about 2 Bq · m -3 , while the standardized sample additions covered a range from approximately 2.5 Bq · m -3 to 35 Bq · m -3 . The overall uncertainty in the latter concentrations was in the general range of 10%, approximating a 3 standard deviation uncertainty interval. The results of the intercomparison indicated that two of the laboratories were within very good agreement with the standard additions, and almost within expected statistical variations. These same two laboratories, however, at lower ambient concentrations, exhibited a systematic difference with an averaged offset of roughly 0.3 Bq · m -3 . The third laboratory participating in the measurement of standardized sample additions was systematically low by about 65% to 70%, with respect to the standard addition which was also confirmed in their ambient air concentration measurements. The fourth laboratory, participating in only the ambient measurement part of the intercomparison, was also systematically low by at least 40% with respect to the first two laboratories

  7. Second Order Harmonics Suppression With Glass Filters for Synchrotron UV Radiation Calibration Measurement

    CERN Document Server

    Burattini, E; Gambicorti, L; Malvezzi, F; Marcelli, A; Monti, F; Pace, E

    2005-01-01

    This development is the latest result of the cooperation between the National Laboratories of Frascati and the Department of Astronomy and Space Science of the University of Florence to improve the capabilities of the existing DXR-2 beam line at the DAΦNE-LIGHT laboratories. This collaboration has assessed a new facility in order to characterize optics and sensors in a wide spectral range (ranging from VUV to IR). Previous measurements [1] have highlighted some limitations in the present setup, as higher signal levels due to the diffracted radiation of the grating in the second order have to be removed to allow an accurate detection. In this work a glass filter is used to remove such spurious signal present in the spectral region with λ > 360 nm. The characteristics of the filter and its application to the optical system used to measure the sensitivity of a diamond-based photoconductor have been discussed.

  8. Simultaneous nitrate reduction and acetaminophen oxidation using the continuous-flow chemical-less VUV process as an integrated advanced oxidation and reduction process.

    Science.gov (United States)

    Moussavi, Gholamreza; Shekoohiyan, Sakine

    2016-11-15

    This work was aimed at investigating the performance of the continuous-flow VUV photoreactor as a novel chemical-less advanced process for simultaneously oxidizing acetaminophen (ACT) as a model of pharmaceuticals and reducing nitrate in a single reactor. Solution pH was an important parameter affecting the performance of VUV; the highest ACT oxidation and nitrate reduction attained at solution pH between 6 and 8. The ACT was oxidized mainly by HO while the aqueous electrons were the main working agents in the reduction of nitrate. The performance of VUV photoreactor improved with the increase of hydraulic retention time (HRT); the complete degradation of ACT and ∼99% reduction of nitrate with 100% N2 selectivity achieved at HRT of 80min. The VUV effluent concentrations of nitrite and ammonium at HRT of 80min were below the drinking water standards. The real water sample contaminated with the ACT and nitrate was efficiently treated in the VUV photoreactor. Therefore, the VUV photoreactor is a chemical-less advanced process in which both advanced oxidation and advanced reduction reactions are accomplished. This unique feature possesses VUV photoreactor as a promising method of treating water contaminated with both pharmaceutical and nitrate. Copyright © 2016 Elsevier B.V. All rights reserved.

  9. Geomechanics Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — The Geomechanics Laboratory allows its users to measure rock properties under a wide range of simulated service conditions up to very high pressures and complex load...

  10. A laboratory assessment of the measurement accuracy of weighing type rainfall intensity gauges

    Science.gov (United States)

    Colli, M.; Chan, P. W.; Lanza, L. G.; La Barbera, P.

    2012-04-01

    In recent years the WMO Commission for Instruments and Methods of Observation (CIMO) fostered noticeable advancements in the accuracy of precipitation measurement issue by providing recommendations on the standardization of equipment and exposure, instrument calibration and data correction as a consequence of various comparative campaigns involving manufacturers and national meteorological services from the participating countries (Lanza et al., 2005; Vuerich et al., 2009). Extreme events analysis is proven to be highly affected by the on-site RI measurement accuracy (see e.g. Molini et al., 2004) and the time resolution of the available RI series certainly constitutes another key-factor in constructing hyetographs that are representative of real rain events. The OTT Pluvio2 weighing gauge (WG) and the GEONOR T-200 vibrating-wire precipitation gauge demonstrated very good performance under previous constant flow rate calibration efforts (Lanza et al., 2005). Although WGs do provide better performance than more traditional Tipping Bucket Rain gauges (TBR) under continuous and constant reference intensity, dynamic effects seem to affect the accuracy of WG measurements under real world/time varying rainfall conditions (Vuerich et al., 2009). The most relevant is due to the response time of the acquisition system and the derived systematic delay of the instrument in assessing the exact weight of the bin containing cumulated precipitation. This delay assumes a relevant role in case high resolution rain intensity time series are sought from the instrument, as is the case of many hydrologic and meteo-climatic applications. This work reports the laboratory evaluation of Pluvio2 and T-200 rainfall intensity measurements accuracy. Tests are carried out by simulating different artificial precipitation events, namely non-stationary rainfall intensity, using a highly accurate dynamic rainfall generator. Time series measured by an Ogawa drop counter (DC) at a field test site

  11. The influence of uncertainties of measurements in laboratory performance evaluation using an intercomparison program of radionuclide assays in environmental samples

    International Nuclear Information System (INIS)

    Tauhata, Luiz; Elizabeth Couto Machado Vianna, Maria; Eduardo de Oliveira, Antonio; Cristina de Melo Ferreira, Ana; Julia Camara da Silva Braganca, Maura; Faria Clain, Almir

    2006-01-01

    To show the influence of measurement uncertainties in performance evaluation of laboratories, data from 42 comparison runs were evaluated using two statistical criteria. The normalized standard deviation, D, used by US EPA, that mainly takes into account the accuracy, and the normalized deviation, E, that includes the individual laboratory uncertainty used for performance evaluation in the key-comparisons by BIPM. The results show that data evaluated by the different criteria give a significant deviation of laboratory performance in each radionuclide assay when we analyse a large quantity of data

  12. Comparison of different undulator schemes with superimposed alternating gradients for the VUV-FEL at the TESLA Test Facility

    Energy Technology Data Exchange (ETDEWEB)

    Pflueger, J.; Nikitina, Y.M. [DESY/HASYLAB, Hamburg (Germany)

    1995-12-31

    For the VUV-FEL at the TESLA Test Facility an undulator with a total length of 30 m is needed. In this study three different approaches to realize an undulator with a sinusoidal plus a superimposed quadrupolar field were studied with the 3D code MAFIA.

  13. VUV photo-oxidation of gaseous benzene combined with ozone-assisted catalytic oxidation: Effect on transition metal catalyst

    International Nuclear Information System (INIS)

    Huang, Haibao; Lu, Haoxian; Zhan, Yujie; Liu, Gaoyuan; Feng, Qiuyu; Huang, Huiling; Wu, Muyan; Ye, Xinguo

    2017-01-01

    Graphical abstract: Mn nanoparticles are highly dispersed on ZSM-5 and most efficient in benzene degradation in the VUV-OZCO process. - Highlights: • Vacuum UV irradiation is well combined with O_3 catalytic oxidation. • O_3 byproducts was used to enhance catalytic oxidation of VOCs. • Mn/ZSM-5 achieved the best catalytic activity for benzene degradation. - Abstract: Volatile organic compounds (VOCs) cause the major air pollution concern. In this study, a series of ZSM-5 supported transition metals were prepared by impregnation method. They were combined with vacuum UV (VUV) photo-oxidation in a continuous-flow packed-bed reactor and used for the degradation of benzene, a typical toxic VOCs. Compared with VUV photo-oxidation alone, the introduction of catalysts can greatly enhance benzene oxidation under the help of O_3, the by-products from VUV irradiation, via ozone-assisted catalytic oxidation (OZCO). The catalytic activity of transition metals towards benzene oxidation followed the order: Mn > Co > Cu > Ni > Fe. Mn achieved the best catalytic activity due to the strongest capability for O_3 catalytic decomposition and utilization. Benzene and O_3 removal efficiency reached as high as 97% and 100% after 360 min, respectively. O_3 was catalytically decomposed, generating highly reactive oxidants such as ·OH and ·O for benzene oxidation.

  14. VUV photo-oxidation of gaseous benzene combined with ozone-assisted catalytic oxidation: Effect on transition metal catalyst

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Haibao, E-mail: seabao8@gmail.com [School of Environmental Science and Engineering, Sun Yat-Sen University (China); Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology (Sun Yat-sen University) (China); Lu, Haoxian; Zhan, Yujie; Liu, Gaoyuan; Feng, Qiuyu; Huang, Huiling; Wu, Muyan; Ye, Xinguo [School of Environmental Science and Engineering, Sun Yat-Sen University (China)

    2017-01-01

    Graphical abstract: Mn nanoparticles are highly dispersed on ZSM-5 and most efficient in benzene degradation in the VUV-OZCO process. - Highlights: • Vacuum UV irradiation is well combined with O{sub 3} catalytic oxidation. • O{sub 3} byproducts was used to enhance catalytic oxidation of VOCs. • Mn/ZSM-5 achieved the best catalytic activity for benzene degradation. - Abstract: Volatile organic compounds (VOCs) cause the major air pollution concern. In this study, a series of ZSM-5 supported transition metals were prepared by impregnation method. They were combined with vacuum UV (VUV) photo-oxidation in a continuous-flow packed-bed reactor and used for the degradation of benzene, a typical toxic VOCs. Compared with VUV photo-oxidation alone, the introduction of catalysts can greatly enhance benzene oxidation under the help of O{sub 3}, the by-products from VUV irradiation, via ozone-assisted catalytic oxidation (OZCO). The catalytic activity of transition metals towards benzene oxidation followed the order: Mn > Co > Cu > Ni > Fe. Mn achieved the best catalytic activity due to the strongest capability for O{sub 3} catalytic decomposition and utilization. Benzene and O{sub 3} removal efficiency reached as high as 97% and 100% after 360 min, respectively. O{sub 3} was catalytically decomposed, generating highly reactive oxidants such as ·OH and ·O for benzene oxidation.

  15. VUV Pump and Probe of Phase Separation and Oxygen Interstitials in La2NiO4+y Using Spectromicroscopy

    Directory of Open Access Journals (Sweden)

    Antonio Bianconi

    2018-02-01

    Full Text Available While it is known that strongly correlated transition metal oxides described by a multi-band Hubbard model show microscopic multiscale phase separation, little is known about the possibility to manipulate them with vacuum ultraviolet (VUV, 27 eV lighting. We have investigated the photo-induced effects of VUV light illumination of a super-oxygenated La2NiO4+y single crystal by means of scanning photoelectron microscopy. VUV light exposure induces the increase of the density of states (DOS in the binding energy range around Eb = 1.4 eV below EF. The photo-induced states in this energy region have been predicted due to clustering of oxygen interstitials by band structure calculations for large supercell of La2CuO4.125. We finally show that it is possible to generate and manipulate oxygen rich domains by VUV illumination as it was reported for X-ray illumination of La2CuO4+y. This phenomenology is assigned to oxygen-interstitials ordering and clustering by photo-illumination forming segregated domains in the La2NiO4+y surface.

  16. Photocatalytic oxidation of indoor toluene: Process risk analysis and influence of relative humidity, photocatalysts, and VUV irradiation

    International Nuclear Information System (INIS)

    Zhao, Weirong; Dai, Jiusong; Liu, Feifei; Bao, Jiaze; Wang, Yan; Yang, Yong; Yang, Yanan; Zhao, Dongye

    2012-01-01

    Concentrations of 13 gaseous intermediates in photocatalytic oxidation (PCO) of toluene in indoor air were determined in real-time by proton transfer reaction mass spectrometry and desorption intensities of 7 adsorbed intermediates on the surface of photocatalysts were detected by temperature‐programmed desorption‐mass spectrometry. Effects of relative humidity (RH), photocatalysts, and vacuum ultraviolet (VUV) irradiation on the distribution and category of the intermediates and health risk influence index (η) were investigated. RH enhances the formation rate of hydroxide radicals, leading to more intermediates with higher oxidation states in gas phase. N doping promotes the separation of photo-generated electrons and holes and enhances PCO activity accordingly. VUV irradiation results in higher mineralization rate and more intermediates with higher oxidation states and lower toxicity e.g. carboxylic acids. Health risk analysis indicates that higher RH, N doping of TiO 2 , and VUV lead to “greener” intermediates and smaller η. Finally, a conceptual diagram was proposed to exhibit the scenario of η varied with extent of mineralization for various toxicities of inlet pollutants. Highlights: ► 13 volatile intermediates in PCO of toluene were determined in real-time by PTR-MS. ► 7 adsorbed intermediates on surface of photocatalyst were determined by TPD-MS. ► Higher RH, N doping of TiO 2 , and VUV irradiation lead to “greener” intermediates. ► Health risk index relies on extent of mineralization and toxicities of inlet VOCs.

  17. Remotely sensed detection of sulfates on Mars: Laboratory measurements and spacecraft observations

    Science.gov (United States)

    Cooper, Christopher David

    Visible, near-infrared, and mid-infrared spectroscopic measurements were made of physically realistic analogs of Martian soil containing silicates and sulfates. These measurements indicate that the physical structure of soil will control its spectroscopic properties. Orbital measurements from the Thermal Emission Spectrometer (TES) identified features similar to those seen in the laboratory mixtures. Maps were made of this sulfate-cemented soil which indicated that the presence of this material is not geographically controlled and hints at an origin for duricrust in atmosphere-surface interactions. Further confirmation comes from combining data from TES and the Imaging Spectrometer for Mars (ISM). This data shows a congruence between sulfate spectral features and water features. The likely form of the mappable sulfate in Martian soils is therefore a cemented mixture of hydrated sulfate mixed with silicates and oxides derived from crustal rocks. The combination of ISM and TES spectra in particular and spectra from multiple wavelength regimes in general also is an excellent technique for addressing other problems of interest regarding the geology of Mars. A number of topics including rock coatings in Syrtis Major and the nature of low albedo rock assemblages are addressed. Syrtis Major is found to behave differently in the thermal and near infrared, likely indicating that the spectral features are not related to simple coatings but perhaps processes like penetrative oxidation. TES Type I rocks are found to be high in pyroxene, but TES Type II rocks do not have a correlation with pyroxene. Spectral mixing trends indicate that dust and rock are the dominant two variables in surface composition on a large scale. A smaller mixing trend involves the physical breakup of sulfate-cemented soils into a loose, fine-grained, but still hydrated form. In all, this work provides strong evidence for the global identification and distribution of sulfate minerals in the Martian soil.

  18. Inter-laboratory comparisons of hexenuronic acid measurements in kraft eucalyptus pulps using a UV-Vis spectroscopic method

    Science.gov (United States)

    J.Y. Zhu; H.F Zhou; Chai X.S.; Donna Johannes; Richard Pope; Cristina Valls; M. Blanca Roncero

    2014-01-01

    An inter-laboratory comparison of a UV-Vis spectroscopic method (TAPPI T 282 om-13 “Hexeneuronic acid content of chemical pulp”) for hexeneuronic acid measurements was conducted using three eucalyptus kraft pulps. The pulp samples were produced in a laboratory at kappa numbers of approximately 14, 20, and 35. The hexeneuronic acid contents of the three pulps were...

  19. VUV spectroscopy of rare gas van der Waals dimers

    International Nuclear Information System (INIS)

    Dehmer, P.M.; Pratt, S.T.

    1982-01-01

    We have undertaken a systematic study of the photoionization spectra of the homonuclear and heteronuclear rare gas dimers in order to better understand the nature of the bonding in the Rydberg states adnd ions of these molecules. We have obtained results for Ar 2 , Kr 2 , Xe 2 , NeAr, NeKr, NeXe, ArKr, ArXe, and KrXe. Of the remaining dimer species (Ne 2 and the Herare gas dimers), only Ne 2 has been studied using photoionization mass spectrometry. The results of the present series of experiments provide information both on the excited states of the neutral dimers and on the ground and excited states of the dimer ions. Using the data obtained in these measurements, we are able to compile for the first time a nearly complete list of ground state dissociation energies for the homonuclear and heteronuclear rare gas dimer ions. Somewhat less complete results are obtained for the excited states of these species. The observed trends in binding energy provide an excellent example of the systematic changes that occur as a result of changes in atomic orbital energies, polarizability, and internuclear distance, and these trends can be explained qualitatively in terms of simple molecular orbital theory

  20. VUV photoemission studies of candidate LHC vacuum chamber materials

    CERN Document Server

    Baglin, V; Collins, I R

    1998-01-01

    In the context of future accelerators and, in particular, the beam vacuum of the LargeHadron Collider (LHC), a 27 km circumference proton collider to be built at CERN, VUVsynchrotron radiation (SR) has been used to study both qualitatively and quantitatively candidatevacuum chamber materials. Emphasis is given to show that angle and energy resolvedphotoemission is an extremely powerful tool to address important issues relevant to the LHC, suchas the emission of electrons that contribute to the creation of an electron cloud which may causeserious beam instabilities. Here we present not only the measured photoelectron yields (PY)from the proposed materials, prepared on an industrial scale, but also the energy and, in some cases,the angular dependence of the emitted electrons when excited with either a white light (WL)spectrum, simulating that in the arcs of the LHC or monochromatic light in the photon energy rangeof interest. The effects on the materials examined of WL irradiation and/or ion sputtering,simulati...

  1. Laboratory measurements of the solute transport properties of samples from the Bradwell, Elstow, Fulbeck and Killingholme site investigations

    International Nuclear Information System (INIS)

    Gilling, D.; Jefferies, N.L.; Lineham, T.R.

    1987-12-01

    The diffusivity and hydraulic conductivity of geological samples collected during the site investigations at Bradwell, Elstow, Fulbeck and Killingholme have been determined. Comparison between laboratory permeability measurements and in-situ permeability measurements for the mudstone units may give some indication of the importance of fissure flow at the sites. (author)

  2. NEW APPROACHES: Measurement of the mean lifetime of cosmic ray muons in the A-level laboratory

    Science.gov (United States)

    Dunne, Peter; Costich, David; O'Sullivan, Sean

    1998-09-01

    The Turning Points in Physics module from the NEAB A-level Modular Physics syllabus requires students to have an understanding of relativistic time dilation and offers the measurement of the mean lifetime of cosmic ray muons as an example of supporting experimental evidence. This article describes a direct measurement of muon lifetime carried out in the A-level laboratory.

  3. Heat Fluxes and Evaporation Measurements by Multi-Function Heat Pulse Probe: a Laboratory Experiment

    Science.gov (United States)

    Sharma, V.; Ciocca, F.; Hopmans, J. W.; Kamai, T.; Lunati, I.; Parlange, M. B.

    2012-04-01

    Multi Functional Heat Pulse Probes (MFHPP) are multi-needles probes developed in the last years able to measure temperature, thermal properties such as thermal diffusivity and volumetric heat capacity, from which soil moisture is directly retrieved, and electric conductivity (through a Wenner array). They allow the simultaneous measurement of coupled heat, water and solute transport in porous media, then. The use of only one instrument to estimate different quantities in the same volume and almost at the same time significantly reduces the need to interpolate different measurement types in space and time, increasing the ability to study the interdependencies characterizing the coupled transports, especially of water and heat, and water and solute. A three steps laboratory experiment is realized at EPFL to investigate the effectiveness and reliability of the MFHPP responses in a loamy soil from Conthey, Switzerland. In the first step specific calibration curves of volumetric heat capacity and thermal conductivity as function of known volumetric water content are obtained placing the MFHPP in small samplers filled with the soil homogeneously packed at different saturation degrees. The results are compared with literature values. In the second stage the ability of the MFHPP to measure heat fluxes is tested within a homemade thermally insulated calibration box and results are matched with those by two self-calibrating Heatflux plates (from Huxseflux), placed in the same box. In the last step the MFHPP are used to estimate the cumulative subsurface evaporation inside a small column (30 centimeters height per 8 centimeters inner diameter), placed on a scale, filled with the same loamy soil (homogeneously packed and then saturated) and equipped with a vertical array of four MFHPP inserted close to the surface. The subsurface evaporation is calculated from the difference between the net sensible heat and the net heat storage in the volume scanned by the probes, and the

  4. Variation in the measurement of DNA damage by comet assay measured by the ECVAG dagger inter-laboratory validation trial

    DEFF Research Database (Denmark)

    Forchhammer, Lykke; Johansson, Clara; Loft, Steffen

    2010-01-01

    the level of DNA damage in monocyte-derived THP-1 cells by either visual classification or computer-aided image analysis of pre-made slides, coded cryopreserved samples of cells and reference standard cells (calibration curve samples). The reference standard samples were irradiated with ionizing radiation...... by the different laboratories as evidenced by an inter-laboratory coefficient of variation (CV) of 47%. Adjustment of the primary comet assay end points by a calibration curve prepared in each laboratory reduced the CV to 28%, a statistically significant reduction (P test). A large fraction...

  5. Pre-Harvest Sugarcane Burning: Determination of Emission Factors through Laboratory Measurements

    Directory of Open Access Journals (Sweden)

    João Andrade Carvalho

    2012-02-01

    Full Text Available Sugarcane is an important crop for the Brazilian economy and roughly 50% of its production is used to produce ethanol. However, the common practice of pre-harvest burning of sugarcane straw emits particulate material, greenhouse gases, and tropospheric ozone precursors to the atmosphere. Even with policies to eliminate the practice of pre-harvest sugarcane burning in the near future, there is still significant environmental damage. Thus, the generation of reliable inventories of emissions due to this activity is crucial in order to assess their environmental impact. Nevertheless, the official Brazilian emissions inventory does not presently include the contribution from pre-harvest sugarcane burning. In this context, this work aims to determine sugarcane straw burning emission factors for some trace gases and particulate material smaller than 2.5 μm in the laboratory. Excess mixing ratios for CO2, CO, NOX, UHC (unburned hydrocarbons, and PM2.5 were measured, allowing the estimation of their respective emission factors. Average estimated values for emission factors (g kg−1 of burned dry biomass were 1,303 ± 218 for CO2, 65 ± 14 for CO, 1.5 ± 0.4 for NOX, 16 ± 6 for UHC, and 2.6 ± 1.6 for PM2.5. These emission factors can be used to generate more realistic emission inventories and therefore improve the results of air quality models.

  6. Environmental Measurements Laboratory. Environmental report, September 1, 1980-March 1, 1981

    International Nuclear Information System (INIS)

    Hardy, E.P. Jr.

    1981-01-01

    This report presents current information from the EML environmental programs, the Air Monitoring Section of the Bhabha Atomic Research Centre in India, the NASA Lewis Research Center and the Radiological and Environmental Research Division at Argonne National Laboratory. The initial section consists of interpretive reports and notes dealing with global movement of radioactive debris from nuclear tests, vertical distribution of short-lived radionuclides in the lower stratosphere at the end of 1980, stratospheric radionuclide and trace gas inventories, plutonium isotopes in stratospheric filtered air, sulfur dioxide measurements in New York City, estimates of lead, manganese, aluminum and iron in atmospheric deposition at American Samoa, chemical composition of deposition at seven US locations, intercomparison of trace element analyses of commercially available reference materials, evaluation of analytical methods for polycyclic aromatic hydrocarbons in sediment, and quality control assessments of radionuclide analyses of surface air filters, biological and deposition samples and of chemical analyses of precipitation. Subsequent sections include tabulations of Sr-90 fallout, chemical constituents of wet and dry deposition, radionuclides and trace metals in surface air, radioactivity and trace gases sampled in the stratosphere by aircraft and balloons, Sr-90 in San Francisco and New York diet, milk and tap water, and Cs-137 in Chicago foods. A bibliography of recent publications related to environmental studies is also presented

  7. Laboratory Evaluation of Low-Cost Wearable Sensors for Measuring Head Impacts in Sports.

    Science.gov (United States)

    Tyson, Abigail M; Duma, Stefan M; Rowson, Steven

    2018-04-03

    Advances in low-cost wearable head impact sensor technology provide potential benefits regarding sports safety for both consumers and researchers. However, previous laboratory evaluations are not directly comparable and don't incorporate test conditions representative of unhelmeted impacts. This study addresses those limitations. The xPatch by X2 Biosystems and the SIM-G by Triax Technologies were placed on a NOCSAE headform with a Hybrid III neck which underwent impacts tests using a pendulum. Impact conditions included helmeted, padded impactor to bare head, and rigid impactor to bare head to represent long and short-duration impacts seen in helmeted and unhelmeted sports. The wearable sensors were evaluated on their kinematic accuracy by comparing results to reference sensors located at the headform center of gravity. Statistical tests for equivalence were performed on the slope of the linear regression between wearable sensors and reference. The xPatch gave equivalent measurements to the reference in select longer-duration impacts whereas the SIM-G had large variance leading to no equivalence. For the short-duration impacts, both wearable sensors underpredicted the reference. This error can be improved with increases in sampling rate from 1 to 1.5 kHz. Follow-up evaluations should be performed on the field to identify error in vivo. (197/200).

  8. A three-dimensional laboratory steam injection model allowing in situ saturation measurements

    Energy Technology Data Exchange (ETDEWEB)

    Demiral, B.M.R.; Pettit, P.A.; Castanier, L.M.; Brigham, W.E.

    1992-08-01

    The CT imaging technique together with temperature and pressure measurements were used to follow the steam propagation during steam and steam foam injection experiments in a three dimensional laboratory steam injection model. The advantages and disadvantages of different geometries were examined to find out which could best represent radial and gravity override flows and also fit the dimensions of the scanning field of the CT scanner. During experiments, steam was injected continuously at a constant rate into the water saturated model and CT scans were taken at six different cross sections of the model. Pressure and temperature data were collected with time at three different levels in the model. During steam injection experiments, the saturations obtained by CT matched well with the temperature data. That is, the steam override as observed by temperature data was also clearly seen on the CT pictures. During the runs where foam was present, the saturation distributions obtained from CT pictures showed a piston like displacement. However, the temperature distributions were different depending on the type of steam foam process used. The results clearly show that the pressure/temperature data alone are not sufficient to study steam foam in the presence of non-condensible gas.

  9. Measuring the spatial resolution of an optical system in an undergraduate optics laboratory

    Science.gov (United States)

    Leung, Calvin; Donnelly, T. D.

    2017-06-01

    Two methods of quantifying the spatial resolution of a camera are described, performed, and compared, with the objective of designing an imaging-system experiment for students in an undergraduate optics laboratory. With the goal of characterizing the resolution of a typical digital single-lens reflex (DSLR) camera, we motivate, introduce, and show agreement between traditional test-target contrast measurements and the technique of using Fourier analysis to obtain the modulation transfer function (MTF). The advantages and drawbacks of each method are compared. Finally, we explore the rich optical physics at work in the camera system by calculating the MTF as a function of wavelength and f-number. For example, we find that the Canon 40D demonstrates better spatial resolution at short wavelengths, in accordance with scalar diffraction theory, but is not diffraction-limited, being significantly affected by spherical aberration. The experiment and data analysis routines described here can be built and written in an undergraduate optics lab setting.

  10. Measurement of Chlorophyll Loss Due to Phytoremediation of Ag Nanoparticles in the First-Year Laboratory

    Science.gov (United States)

    Winkelmann, Kurt; Bernas, Leonard; Swiger, Brendan; Brown, Shannon

    2017-01-01

    A two-week experiment is presented in which students can observe the impact of nanoparticles on the concentration of chlorophyll in plants. First-year students in an introductory nanotechnology laboratory course and a general chemistry laboratory course synthesized silver nanoparticles and then exposed stalks of "Egeria densa" ("E.…

  11. The Himalayas of Nepal, a natural laboratory for the search and measurement of CO2 discharge

    Science.gov (United States)

    Girault, Frédéric; Koirala, Bharat P.; Bhattarai, Mukunda; Rajaure, Sudhir; Richon, Patrick; Perrier, Frédéric

    2010-05-01

    Large CO2 flux has been found in the Trisuli Valley, North of Kathmandu, Central Nepal, in 2005. This leakage zone is located in the vicinity of the Syabru-Bensi hot springs, and is characterized by an average flux of CO2 of 6500±1100 g m-2 day-1 over an area of 15 m × 15 m (Perrier et al., Earth and Planetary Science Letters, 2009). The site is also located close to the Main Central Thrust Zone (MCT Zone), one of the large Himalayan thrust, connected at depth to the Main Himalayan Thrust, the main thrust currently accommodating the India-Tibet collision (Bollinger et al., Journal of Geophysical Research, 2004). Isotopic carbon ratios (δ13C) indicate that this CO2 may come from metamorphic reactions at about 15 km of depth (Becker et al., Earth and Planetary Science Letters, 2008; Evans et al., Geochemistry Geophysics Geosystems, 2008). Actually, this zone was originally found because of the large δ13C found in the water of the hot springs suggesting degassing (Evans et al., Geochemistry Geophysics Geosystems, 2008). In 2007, another zone of CO2 discharge was discovered 250 m away from the main Syabru-Bensi hot springs. This new zone, located next to the road and easy to access all over the year, was intensely studied, from the end of 2007 to the beginning of 2009. In this zone, an average value of CO2 flux of 1700±300 g m-2 d-1 was obtained over an area of about 40 m × 10 m. Using CO2 flux data from repeated measurements, similar flux values were observed during the dry winter season and the wet summer period (monsoon) (Girault et al., Journal of Environmental Radioactivity, 2009). Thus, in addition to fundamental issues related to global CO2 balance in orogenic belts and tectonically active zones, these small scale (100-meter) CO2 discharge sites emerge as a potentially useful laboratory for detailed methodological studies of diffusive and advective gas transport. Recently, the search for further gas discharge zones has been carried out using various clues

  12. Mobile laboratory for near real-time measurements of very low-level radioactivity

    International Nuclear Information System (INIS)

    Sigg, R.A.

    1984-01-01

    The Tracking Radioactive Atmospheric Contaminants (TRAC) System is a mobile laboratory, developed by Savannah River Laboratory (SRL) to improve emergency response and environmental research capabilities at the Savannah River Plant (SRP). In the event of an atmospheric release, the TRAC laboratory can confirm the location and radionuclide composition of the downwind cloud by analyzing samples in near real-time in the field. Specialized monitoring systems were developed to analyze most radionuclides produced in SRP's diverse operations. Sensitivities are radionuclide dependent and can be below maximum permissible concentration (MPC) values by factors as large as one hundred thousand. 6 references, 6 figures

  13. Intensity calibrations of the broadband VUV impurity survey spectrometer - KT2

    International Nuclear Information System (INIS)

    Hawkes, N.; Peacock, N.; Lawson, K.

    1991-08-01

    Since first becoming operational in 1984 the survey spectrometer, KT2, has undergone slight modifications on the Joint European Torus Joint Undertaking (JET), and following a failure at one point the original spectrometer-'A', was exchanged for an almost identical instrument-'B'. Periodically, calibrations have been performed on the diagnostic using the diverse techniques of charge exchange branching ratios, deuterium lamp transfer irradiance standard, branching ratios from visible transitions, VUV transfer radiance standard and model calculations of line intensities in low Z ions from JET. Comparisons have been made with the theoretical instrument performance and with the prototype instruments of similar construction. This report summarises these various calibrations, carried out by the Culham Task Agreement team, until the end of 1990 when the responsability for the operation of the diagnostic was handed over to JET staff. (author)

  14. Interaction ligand – proteine : la sensation d’astringence sous les rayons VUV de DESIRS

    OpenAIRE

    Canon, Francis

    2013-01-01

    L’astringence est la sensation d’assèchement et de rugosité à l’intérieur de la bouche qui accompagne la consommation de produits d’origine végétale, tels que le vin ou le thé, ou certains fruits peu mûrs. Les tanins, métabolites secondaires des végétaux, sont à l’origine de cette sensation, qui reste encore mal caractérisée. Une nouvelle approche utilisant la spectrométrie de masse couplée au rayonnement VUV, développée sur les lignes DESIRS et DISCO, a permis de mieux comprendre les mécanis...

  15. Cryogenic readout for multiple VUV4 Multi-Pixel Photon Counters in liquid xenon

    Science.gov (United States)

    Arneodo, F.; Benabderrahmane, M. L.; Bruno, G.; Conicella, V.; Di Giovanni, A.; Fawwaz, O.; Messina, M.; Candela, A.; Franchi, G.

    2018-06-01

    We present the performances and characterization of an array made of S13370-3050CN (VUV4 generation) Multi-Pixel Photon Counters manufactured by Hamamatsu and equipped with a low power consumption preamplifier operating at liquid xenon temperature (∼ 175 K). The electronics is designed for the readout of a matrix of maximum dimension of 8 × 8 individual photosensors and it is based on a single operational amplifier. The detector prototype presented in this paper utilizes the Analog Devices AD8011 current feedback operational amplifier, but other models can be used depending on the application. A biasing correction circuit has been implemented for the gain equalization of photosensors operating at different voltages. The results show single photon detection capability making this device a promising choice for future generation of large scale dark matter detectors based on liquid xenon, such as DARWIN.

  16. VUV spectroscopy of pure LiCaAlF6 crystals

    International Nuclear Information System (INIS)

    Kirm, M.; True, M.; Vielhauer, S.; Zimmerer, G.; Shiran, N.V.; Shpinkov, I.; Spassky, D.; Shimamura, K.; Ichinose, N.

    2005-01-01

    Reflection, excitation and luminescence spectra of as-grown and X-ray irradiated high-purity LiCaAlF 6 crystals were studied in the temperature range of 10-300 K using synchrotron radiation in VUV. The intrinsic luminescence of samples at 10 K consists of a non-elementary broad band with maximum at 4.4 eV under excitation at 11.45 eV. It is ascribed to the radiative decay of self-trapped excitons. The energy gap is estimated to be 12.65 eV in LiCaAlF 6 . Under interband excitation a red shift of luminescence was observed. The electron-hole recombination leads to the emission peaking at 3.7 eV. The excitation processes and origin of overlapping emissions of LiCaAlF 6 are discussed

  17. Laboratory and field measurements of enantiomeric monoterpene emissions as a function of chemotype, light and temperature

    Science.gov (United States)

    Song, W.; Staudt, M.; Bourgeois, I.; Williams, J.

    2014-03-01

    Plants emit significant amounts of monoterpenes into the earth's atmosphere, where they react rapidly to form a multitude of gas phase species and particles. Many monoterpenes exist in mirror-image forms or enantiomers. In this study the enantiomeric monoterpene profile for several representative plants (Quercus ilex L., Rosmarinus officinalis L., and Pinus halepensis Mill.) was investigated as a function of chemotype, light and temperature both in the laboratory and in the field. Analysis of enantiomeric monoterpenes from 19 Quercus ilex individuals from Southern France and Spain revealed four regiospecific chemotypes (genetically fixed emission patterns). In agreement with previous work, only Quercus ilex emissions increased strongly with light. However, for all three plant species no consistent enantiomeric variation was observed as a function of light, and the enantiomeric ratio of α-pinene was found to vary by less than 20% from 100 and 1000 μmol m-2 s-1 PAR (photosynthetically active radiation). The rate of monoterpene emission increased with temperature from all three plant species, but little variation in the enantiomeric distribution of α-pinene was observed with temperature. There was more enantiomeric variability between individuals of the same species than could be induced by either light or temperature. Field measurements of α-pinene enantiomer mixing ratios in the air, taken at a Quercus ilex forest in Southern France, and several other previously reported field enantiomeric ratio diel cycle profiles are compared. All show smoothly varying diel cycles (some positive and some negative) even over changing wind directions. This is surprising in comparison with variations of enantiomeric emission patterns shown by individuals of the same species.

  18. Historical milestones in measurement of HDL-cholesterol: impact on clinical and laboratory practice.

    Science.gov (United States)

    Langlois, Michel R; Blaton, Victor H

    2006-07-23

    High-density lipoprotein cholesterol (HDL-C) comprises a family of particles with differing physicochemical characteristics. Continuing progress in improving HDL-C analysis has originated from two separate fields-one clinical, reflecting increased attention to HDL-C in estimating risk for coronary heart disease (CHD), and the other analytical, reflecting increased emphasis on finding more reliable and cost-effective HDL-C assays. Epidemiologic and prospective studies established the inverse association of HDL-C with CHD risk, a relationship that is consistent with protective mechanisms demonstrated in basic research and animal studies. Atheroprotective and less atheroprotective HDL subpopulations have been described. Guidelines on primary and secondary CHD prevention, which increased the workload in clinical laboratories, have led to a revolution in HDL-C assay technology. Many analytical techniques including ultracentrifugation, electrophoresis, chromatography, and polyanion precipitation methods have been developed to separate and quantify HDL-C and HDL subclasses. More recently developed homogeneous assays enable direct measurement of HDL-C on an automated analyzer, without the need for manual pretreatment to separate non-HDL. Although homogeneous assays show improved accuracy and precision in normal serum, discrepant results exist in samples with atypical lipoprotein characteristics. Hypertriglyceridemia and monoclonal paraproteins are important interfering factors. A novel approach is nuclear magnetic resonance spectroscopy that allows rapid and reliable analysis of lipoprotein subclasses, which may improve the identification of individuals at increased CHD risk. Apolipoprotein A-I, the major protein of HDL, has been proposed as an alternative cardioprotective marker avoiding the analytical limitations of HDL-C.

  19. Laboratory measurements of immersion freezing abilities of non-proteinaceous and proteinaceous biological particulate proxies

    Science.gov (United States)

    Cory, K.; Tobo, Y.; Murata, K.; Whiteside, C. L.; McCauley, B.; Bouma, C.; Hiranuma, N.

    2017-12-01

    Non-proteinaceous and proteinaceous biological aerosols are abundant within the atmosphere and have the potential to impact the climate through cloud and precipitation formation. In this study, we present the differences in the laboratory-measured freezing capabilities of the non-proteinaceous and proteinaceous biological materials to determine which has more potential to impact the ice nucleation in the clouds. As non-proteinaceous surrogates, we examined multiple cellulose materials (e.g., microcrystalline and nanocrystalline cellulose) whose sizes range from 100 nm to >100 μm (according to manufacturer report). For proteinaceous proxies, we looked at different gram-negative bacteria, such as Pseudamonas aeruginosa, Escherichia coli, Serratia marcescens, Citrobacter freundii, and Snomax, (which contains P. syringae) that can be found around the proximity of the Texas Panhandle. By using the Cryogenic Refrigeration Applied Freezing Test (CRAFT) system, we estimated immersion freezing efficiency (i.e., ice nucleation activity scaled to a unit of mass) of each sample at the temperatures greater than -30°C. We have observed that not all gram-negative bacteria has high immersion freezing activity, but the few do have a warmer temperature onset (>-20 °C) than the cellulose used. For those that did not exhibit substantial freezing efficiencies, they had similar freezing properties as the broth, in which the bacteria were incubated, as well as the cellulose materials examined. These observations suggest the presence and potential importance of bacterial cellulose in the atmospheric ice nucleation. From here, we need to conduct more in-depth investigation in the effects of a wider variety of atmospherically relevant biological aerosols to get a better understanding of the effects of said aerosols on overall aerosol-cloud interactions. Acknowledgments: K. Cory would like to acknowledge NSF-EAPSI and JSPS Summer Program for the travel fellowship support. N. Hiranuma

  20. Explaining differences between Bioaccumulation Measurements in laboratory and field data through use of probabilistic modeling approach

    NARCIS (Netherlands)

    Selck, H.; Drouillard, K.; Eisenreich, K.; Koelmans, A.A.; Palmqvist, A.; Ruus, A.; Salvito, D.; Schultz, I.; Stewart, R.; Weisbrod, A.; Brink, van den N.W.; Heuvel-Greve, van den M.J.

    2012-01-01

    In the regulatory context, bioaccumulation assessment is often hampered by substantial data uncertainty as well as by the poorly understood differences often observed between results from laboratory and field bioaccumulation studies. Bioaccumulation is a complex, multifaceted process, which calls

  1. Guidelines for Member States concerning radiation measurement standards and Secondary Standard Dosimetry Laboratories

    International Nuclear Information System (INIS)

    1986-01-01

    In the early nineteen-sixties an acute need developed for higher dosimetric accuracy in radiation therapy, particularly in developing countries. This need led to the establishment of a number of dosimetry laboratories around the world, specializing in the calibration of radiation therapy dosimeters. In order to co-ordinate the provision of guidance and assistance to such laboratories, the International Atomic Energy Agency (IAEA) and the World Health Organization (WHO) set up a Network of Secondary Standard Dosimetry Laboratories (SSDLs) under their joint aegis, as described in the IAEA booklet 'SSDLs: Development and Trends' (1985). This publication includes detailed criteria for the establishment of these laboratories. The present guidelines deal with the functions and status of SSDLs, in particular with the need for recognition and support by the competent national authorities. (author)

  2. Laser-Induced Fluorescence Measurements within a Laboratory Hall Thruster (Postprint)

    National Research Council Canada - National Science Library

    Hargus, Jr., W. A; Cappelli, M. A

    1999-01-01

    In this paper, we describe the results of a study of laser induced fluorescence velocimetry of ionic xenon in the plume and interior acceleration channel of a laboratory Hall type thruster operating...

  3. VUV treatment combined with mechanical strain of stretchable polymer foils resulting in cell alignment

    Energy Technology Data Exchange (ETDEWEB)

    Barb, R.-A. [Institute of Applied Physics, Johannes Kepler University Linz (Austria); Magnus, B. [Innovacell Biotechnologie AG, Innsbruck (Austria); Innerbichler, S. [Innerbichler GmbH, Breitenbach am Inn (Austria); Greunz, T. [CDL-MS-MACH, Johannes Kepler University Linz (Austria); Wiesbauer, M. [Institute of Applied Physics, Johannes Kepler University Linz (Austria); Marksteiner, R. [Innovacell Biotechnologie AG, Innsbruck (Austria); Stifter, D. [CDL-MS-MACH, Johannes Kepler University Linz (Austria); Heitz, J., E-mail: johannes.heitz@jku.at [Institute of Applied Physics, Johannes Kepler University Linz (Austria)

    2015-01-15

    Highlights: • Elastic polyurethane (PU) foils were exposed to the vacuum-UV in reactive atmosphere. • The photomodification resulted in improved cytocompatibilty. • Parallel microgrooves formed on the irradiated PU surfaces after strong elongation. • Cells seeded onto microgrooves aligned their shapes in the direction of the grooves. • Elongation occurred also for cells on PU subjected to cyclic mechanical stretching. - Abstract: Cell-alignment along a defined direction can have a direct effect on the cell functionality and differentiation. Oriented micro- or nanotopographic structures on cell culture substrates can induce cell-alignment. Surface chemistry, wettability, and stiffness of the substrate are also important material features as they strongly influence the cell–substrate interactions. For improved bio-compatibility, highly elastic polyurethane (PU) foils were exposed to the vacuum-UV (VUV) light of a Xe{sub 2}{sup *} excimer lamp at 172 nm in a nitrogen containing atmosphere (N{sub 2} or NH{sub 3}). The irradiation resulted in a change in the chemical surface composition. Additionally, the formation of regular parallel microgrooves was observed on the irradiated surfaces after strong uni-axial deformation (i.e., more than about 50% strain) of the photo-modified PU foils. Cell seeding experiments demonstrated that the VUV modified polymer foils strongly enhance cell adhesion and proliferation. Cells seeded onto microgrooves aligned their shapes and elongated in the direction of the grooves. A similar effect was observed for cells seeded on photo-modified PU foils subjected to cyclic mechanical stretching at lower strain levels (i.e., typically 10% strain) without groove-formation. The cells had also here an elongated shape, however they not always align in a defined direction relative to the stretching.

  4. The influence of uncertainties of measurements in laboratory performance evaluation by intercomparison program in radionuclide analyses of environmental samples

    International Nuclear Information System (INIS)

    Tauhata, L.; Vianna, M.E.; Oliveira, A.E. de; Clain, A.F.; Ferreira, A.C.M.; Bernardes, E.M.

    2000-01-01

    The accuracy and precision of results of the radionuclide analyses in environmental samples are widely claimed internationally due to its consequences in the decision process coupled to evaluation of environmental pollution, impact, internal and external population exposure. These characteristics of measurement of the laboratories can be shown clearly using intercomparison data, due to the existence of a reference value and the need of three determinations for each analysis. In intercomparison studies accuracy in radionuclide assays in low-level environmental samples has usually been the main focus in performance evaluation and it can be estimated by taking into account the deviation between the experimental laboratory mean value and the reference value. The laboratory repeatability of measurements or their standard deviation is seldom included in performance evaluation. In order to show the influence of the uncertainties in performance evaluation of the laboratories, data of 22 intercomparison runs which distributed 790 spiked environmental samples to 20 Brazilian participant laboratories were compared, using the 'Normalised Standard Deviation' as statistical criteria for performance evaluation of U.S.EPA. It mainly takes into account the laboratory accuracy and the performance evaluation using the same data classified by normalised standard deviation modified by a weight reactor that includes the individual laboratory uncertainty. The results show a relative decrease in laboratory performance in each radionuclide assay: 1.8% for 65 Zn, 2.8% for 40 K, 3.4 for 60 Co, 3.7% for 134 Cs, 4.0% for 137 Cs, 4.4% for Th and U nat , 4.5% for 3 H, 6.3% for 133 Ba, 8.6% for 90 Sr, 10.6% for Gross Alpha, 10.9% for 106 Ru, 11.1% for 226 Ra, 11.5% for Gross Beta and 13.6% for 228 Ra. The changes in the parameters of the statistical distribution function were negligible and the distribution remained as Gaussian type for all radionuclides analysed. Data analyses in terms of

  5. COMPARABLE MEASURES OF COGNITIVE FUNCTION IN HUMAN INFANTS AND LABORATORY ANIMALS TO IDENTIFY ENVIRONMENTAL HEALTH RISKS TO CHILDREN

    Science.gov (United States)

    The importance of including neurodevelopmental end points in environmental studies is clear. A validated measure of cognitive function in human infants that also has a homologous or parallel test in laboratory animal studies will provide a valuable approach for large-scale studie...

  6. HOMOLOGOUS MEASURES OF COGNITIVE FUNCTION IN HUMAN INFANTS AND LABORATORY ANIMALS TO IDENTIFY ENVIRONMENTAL HEALTH RISKS TO CHILDREN

    Science.gov (United States)

    The importance of including neurodevelopmental endpoints in environmental studies is clear. A validated measure of cognitive fucntion in human infants that also has a parallel test in laboratory animal studies will provide a valuable approach for largescale studies. Such a ho...

  7. Laboratory Measures of Filtration by Freshwater Mussels: An Activity to Introduce Biology Students to an Increasingly Threatened Group of Organisms

    Science.gov (United States)

    Smith, Michael J.; Shaffer, Julie J.; Koupal, Keith D.; Hoback, W. Wyatt

    2012-01-01

    Many aquatic organisms survive by filter feeding from the surrounding water and capturing food particles. We developed a laboratory exercise that allows students to measure the effects of filtering by fresh water mussels on water turbidity. Mussels were acquired from Wards Scientific and exposed to a solution of baker's yeast. Over a period of one…

  8. Comparison of a New Cobinamide-Based Method to a Standard Laboratory Method for Measuring Cyanide in Human Blood

    Science.gov (United States)

    Swezey, Robert; Shinn, Walter; Green, Carol; Drover, David R.; Hammer, Gregory B.; Schulman, Scott R.; Zajicek, Anne; Jett, David A.; Boss, Gerry R.

    2013-01-01

    Most hospital laboratories do not measure blood cyanide concentrations, and samples must be sent to reference laboratories. A simple method is needed for measuring cyanide in hospitals. The authors previously developed a method to quantify cyanide based on the high binding affinity of the vitamin B12 analog, cobinamide, for cyanide and a major spectral change observed for cyanide-bound cobinamide. This method is now validated in human blood, and the findings include a mean inter-assay accuracy of 99.1%, precision of 8.75% and a lower limit of quantification of 3.27 µM cyanide. The method was applied to blood samples from children treated with sodium nitroprusside and it yielded measurable results in 88 of 172 samples (51%), whereas the reference laboratory yielded results in only 19 samples (11%). In all 19 samples, the cobinamide-based method also yielded measurable results. The two methods showed reasonable agreement when analyzed by linear regression, but not when analyzed by a standard error of the estimate or paired t-test. Differences in results between the two methods may be because samples were assayed at different times on different sample types. The cobinamide-based method is applicable to human blood, and can be used in hospital laboratories and emergency rooms. PMID:23653045

  9. Comparison of CO/sub 2/ measurements by two laboratories on air from bubbles in polar ice

    Energy Technology Data Exchange (ETDEWEB)

    Barnola, J.M.; Raynaud, D.; Neftel, A.; Oeschger, H.

    1983-06-02

    The CO/sub 2/ content of air enclosed in bubbles in polar ice has been reported by two laboratories (in Grenoble and Bern) to be representative of the atmospheric CO/sub 2/ concentration at the time the ice was formed. Such ice core studies indicate lower concentrations in ice formed at the end of the ice age, around 18,000 yr BP, and several explanations have been proposed for such a change. Both laboratories are currently measuring various ice cores in order to determine the pre-AD 1850 CO/sub 2/ level in the atmosphere, which relates to the partitioning of anthropogenic CO/sub 2/ among the atmospheric, biospheric and oceanic reservoirs. The two laboratories use different ice cores and different analytical procedures and, therefore, there is a need to know to what extent the measurements are quantitatively comparable. The results are presented of a comparison between the two laboratories based on measurements from the same ice core sections, which indicate that the measurements can be compared with great confidence. The results suggest that the mean CO/sub 2/ level recorded by Antartic ice for the period 800-2500 yr BP is about 260 p.p.m.v.

  10. Hydraulic Hybrid and Conventional Parcel Delivery Vehicles' Measured Laboratory Fuel Economy on Targeted Drive Cycles

    Energy Technology Data Exchange (ETDEWEB)

    Lammert, M. P.; Burton, J.; Sindler, P.; Duran, A.

    2014-10-01

    This research project compares laboratory-measured fuel economy of a medium-duty diesel powered hydraulic hybrid vehicle drivetrain to both a conventional diesel drivetrain and a conventional gasoline drivetrain in a typical commercial parcel delivery application. Vehicles in this study included a model year 2012 Freightliner P100H hybrid compared to a 2012 conventional gasoline P100 and a 2012 conventional diesel parcel delivery van of similar specifications. Drive cycle analysis of 484 days of hybrid parcel delivery van commercial operation from multiple vehicles was used to select three standard laboratory drive cycles as well as to create a custom representative cycle. These four cycles encompass and bracket the range of real world in-use data observed in Baltimore United Parcel Service operations. The NY Composite cycle, the City Suburban Heavy Vehicle Cycle cycle, and the California Air Resources Board Heavy Heavy-Duty Diesel Truck (HHDDT) cycle as well as a custom Baltimore parcel delivery cycle were tested at the National Renewable Energy Laboratory's Renewable Fuels and Lubricants Laboratory. Fuel consumption was measured and analyzed for all three vehicles. Vehicle laboratory results are compared on the basis of fuel economy. The hydraulic hybrid parcel delivery van demonstrated 19%-52% better fuel economy than the conventional diesel parcel delivery van and 30%-56% better fuel economy than the conventional gasoline parcel delivery van on cycles other than the highway-oriented HHDDT cycle.

  11. Full Scale Earth Fault Experiments on 10 kV laboratory network with comparative Measurements on Conventional CT's and VT's

    DEFF Research Database (Denmark)

    Sørensen, Stefan; Nielsen, Hans Ove; Bak-Jensen, Birgitte

    2002-01-01

    In this paper we present a result of a full scale earth fault carried out on the 10 kV research/laboratory distribution network at Kyndbyvaerket Denmark in May 2001. The network is compensated through a Petersen-Coil and current and voltage measurements were measured on conventional current....... The necessity of high bandwidth measurement equipment for earth fault measurements on compensated distribution networks can be undermined, since it will be shown that the transient signal transfer through conventional CT?s and VT?s for further signal analysis is sufficient. Caused the inadequacy three phase...

  12. Enabling three-dimensional densitometric measurements using laboratory source X-ray micro-computed tomography

    Science.gov (United States)

    Pankhurst, M. J.; Fowler, R.; Courtois, L.; Nonni, S.; Zuddas, F.; Atwood, R. C.; Davis, G. R.; Lee, P. D.

    2018-01-01

    We present new software allowing significantly improved quantitative mapping of the three-dimensional density distribution of objects using laboratory source polychromatic X-rays via a beam characterisation approach (c.f. filtering or comparison to phantoms). One key advantage is that a precise representation of the specimen material is not required. The method exploits well-established, widely available, non-destructive and increasingly accessible laboratory-source X-ray tomography. Beam characterisation is performed in two stages: (1) projection data are collected through a range of known materials utilising a novel hardware design integrated into the rotation stage; and (2) a Python code optimises a spectral response model of the system. We provide hardware designs for use with a rotation stage able to be tilted, yet the concept is easily adaptable to virtually any laboratory system and sample, and implicitly corrects the image artefact known as beam hardening.

  13. Dose measurements in controlled area and laboratory of TRIGA IPR-R1 reactor

    International Nuclear Information System (INIS)

    Maretti Junior, Fausto; Alvarenga, Frederico Ladeia

    2005-01-01

    The workers doses in exposure areas to the radiation are so important for a Radioprotection Quality Program, as well as to guarantee the workers safety. For that it is necessary to raise the doses in the radiation areas, to obtain the accumulated dose in certain procedures for detailed studies. Several risings were accomplished to obtain the radiation levels in the areas where the workers are exposed due the operation of a research nuclear reactor and in the radioisotopes manipulation laboratories of a nuclear institute. The radiation levels and doses can be observed through graphs in the dependences of the Controlled Area 1 (AC-1) and the Reactor Laboratory. Those limits are in according of the CNEN-NE-3.01 work limits rules. The conclusion of the work allowed to demonstrate that the Laboratory of the Reactor and AC-1, have booth an effective radiological program with efficient operational practices that contributes with low doses to the workers. (author)

  14. Water and organic nitrate detection in an AMS. Laboratory characterization and application to ambient measurements

    Energy Technology Data Exchange (ETDEWEB)

    Mensah, Amewu A.

    2011-08-12

    Atmospheric aerosols were studied by three different means. Laboratory experiments determined the relative ionization efficiency of water (RIE{sub H2O}) in an Aerodyne Aerosol Mass Spectrometers (AMS), simulation chamber experiments gave insight to the reaction products of biogenic volatile organic compounds (BVOC) oxidation products, and the findings were applied to two field campaign measurements at Cabauw, NL, in May 2008 and February 2009. Knowing the liquid water content of aerosol particles is vital for the assessment of their climate forcing potential. A value of 2 for RIE{sub H2O} was determined by studying oxalate salts with different amounts of crystal water. BVOCs contribute much more to the global budget of VOCs than anthropogenic ones but oxidation products in terms of secondary organic aerosol often correlate to anthropogenic tracers such as NO{sub x} from fossil fuel burning. In atmospheric simulation chamber experiments, organic nitrates from BVOC-NO{sub 3} oxidation showed higher vapor pressures than pure organic compounds produced in the same reactions. Organic nitrates comprised up to approx. 41 % of the particulate phase. A specific fragmentation ratio of nitrate (NO{sub 2}{sup +}/NO{sup +}) of 0.1 was found by high resolution AMS analysis differing strongly from the value of 0.4 known for the most abundant ambient NO{sub 3} specie (NH{sub 4}NO{sub 3}). Ambient average particulate mass loadings were 9.72 {mu}g/m{sup 3} dominated by organics (40 %) in 2008 and 5.62 {mu}g/m{sup 3} dominated by nitrate (42 %) in 2009. Data comparison to collocated instruments showed good agreement. Positive Matrix Factorization analysis of the particulate organic fraction distinguished semi and low volatile oxygenated organic aerosol (OOA) as well as hydrocarbon like organic aerosol (HOA) in both campaigns. An additional highly oxygenated OA with a mass spectrum very similar to fulvic acid was found in 2008. The average contribution of organic nitrate to the

  15. Measurement control is one component of laboratory quality assurance: What are the others

    International Nuclear Information System (INIS)

    Delvin, W.L.

    1986-01-01

    The value of a quality assurance program is that the overlooking, ignoring, or downgrading of useful functions and practices will be minimized. The principles of quality assurance make a great tool for minimizing problems and for helping to find and correct deficiencies and problems when they occur. Finding and correcting deficiencies and problems while they are still small - before they become monsters - will certainly make life easier in the operation of a laboratory. This takes diligence in being aware of what is going on in the laboratory and firm resolve by management to take effective corrective actions when necessary. It takes more than applying band aids to problems. 4 refs

  16. Results of laboratory and in-situ measurements for the description of coupled thermo-hydro-mechanical processes in clays

    Energy Technology Data Exchange (ETDEWEB)

    Goebel, Ingeborg; Alheid, Hans-Joachim [BGR Hannover, Stilleweg 2, D-30655 Hannover (Germany); Jockwer, Norbert [Gesellschaft fuer Anlagen- und Reaktorsicherheit (GRS) mbH, Theodor-Heuss-Str. 4, 38122 Braunschweig (Germany); Mayor, Juan Carlos [ENRESA, Emilio Vargas 7, E-Madrid (Spain); Garcia-Sineriz, Jose Luis [AITEMIN, c/ Alenza, 1 - 28003 Madrid (Spain); Alonso, Eduardo [International Center for Numerical Methods in Engineering, CIMNE, Edificio C-1, Campus Norte UPC, C/Gran Capitan, s/n, 08034 Barcelona (Spain); Weber, Hans Peter [NAGRA, Hardstrasse 73, CH-5430 Wettingen (Switzerland); Ploetze, Michael [ETHZ, Eidgenoessische Technische Hochschule Zuerich, ETH Zentrum, HG Raemistrasse 101, CH-8092 Zuerich (Switzerland); Klubertanz, Georg [COLENCO Power Engineering Ltd, CPE, Taefern Str. 26, 5405 Baden-Daettwil (Switzerland); Ammon, Christian [Rothpletz, Lienhard, Cie AG, Schifflaendestrasse 35, 5001 Aarau (Switzerland)

    2004-07-01

    The Heater Experiment at the Mont Terri Underground Laboratory aims at producing a validated model of thermo-hydro-mechanically (THM) coupled processes. The experiment consists of an engineered barrier system where in a vertical borehole, a heater is embedded in bentonite blocks, surrounded by the host rock, Opalinus Clay. The experimental programme comprises permanent monitoring before, during, and after the heating phase, complemented by geotechnical, hydraulic, and seismic in-situ measurements as well as laboratory analyses of mineralogical and rock mechanics properties. After the heating, the experiment was dismantled for further investigations. Major results of the experimental findings are outlined. (authors)

  17. Influence of ambient meteorology on the accuracy of radiation measurements: insights from field and laboratory experiments

    Science.gov (United States)

    Oswald, Sandro M.; Pietsch, Helga; Baumgartner, Dietmar J.; Rieder, Harald E.

    2016-04-01

    A precise knowledge of the surface energy budget, which includes the solar and terrestrial radiation fluxes, is needed to accurately characterize the global energy balance which is largely determining Earth's climate. To this aim national and global monitoring networks for surface radiative fluxes have been established in recent decades. The most prominent among these networks is the so-called Baseline Surface Radiation Network (BSRN) operating under the auspices of the World Climate Research Programme (WCRP) (Ohmura et al., 1998). National monitoring networks such as the Austrian RADiation Monitoring Network (ARAD), which has been established in 2010 by a consortium of the Central Agency of Meteorology and Geodynamics (ZAMG), the University of Graz, the University of Innsbruck, and the University of Natural Resources and Applied Sciences, Vienna (BOKU), orient themselves on BSRN standards (McArthur, 2005). ARAD comprises to date five sites (Wien Hohe Warte, Graz/University, Innsbruck/University, Kanzelhöhe Observatory and Sonnblick (which is also a BSRN site)) and aims to provide long-term monitoring of radiation budget components at highest accuracy and to capture the spatial patterns of radiation climate in Austria (Olefs et al., 2015). Given the accuracy requirement for the local monitoring of radiative fluxes instrument offsets, triggered by meteorological factors and/or instrumentation, pose a major challenge in radiation monitoring. Within this study we investigate effects of ambient meteorology on the accuracy of radiation measurements performed with pyranometers contained in various heating/ventilation systems (HV-systems), all of which used in regular operation within the ARAD network. We focus particularly on instrument offsets observed following precipitation events. To quantify pyranometer responses to precipitation we performed a series of controlled laboratory experiments as well as targeted field campaigns in 2015 and 2016. Our results indicate

  18. Development of an Assessment Tool to Measure Students' Meaningful Learning in the Undergraduate Chemistry Laboratory

    Science.gov (United States)

    Galloway, Kelli R.; Bretz, Stacey Lowery

    2015-01-01

    Research on learning in the undergraduate chemistry laboratory necessitates an understanding of students' perspectives of learning. Novak's Theory of Meaningful Learning states that the cognitive (thinking), affective (feeling), and psychomotor (doing) domains must be integrated for meaningful learning to occur. The psychomotor domain is the…

  19. A Measure of the Effectiveness of Incorporating 3D Human Anatomy into an Online Undergraduate Laboratory

    Science.gov (United States)

    Hilbelink, Amy J.

    2009-01-01

    Results of a study designed to determine the effectiveness of implementing three-dimensional (3D) stereo images of a human skull in an undergraduate human anatomy online laboratory were gathered and analysed. Mental model theory and its applications to 3D relationships are discussed along with the research results. Quantitative results on 62 pairs…

  20. Environmental Measurements Laboratory. Environmental report, September 1, 1981-March 1, 1982

    International Nuclear Information System (INIS)

    Hardy, E.P. Jr.; Toonkel, L.E.

    1982-01-01

    This report presents current information from the EML environmental programs, the Radiological and Environmental Research Division at Argonne National Laboratory and the Los Alamos National Laboratory. Two reports on radionuclide data quality assurance are presented in the initial section: one dealing with fallout and biological samples and the other with filtered air samples. These are followed by a report on stratospheric tritium injection by the October 1980 Chinese test. The second section presents recent data from EML progams strontium-90 fallout, radionuclides and trace metals in surface air, radioactivity and trace gases sampled in the stratosphere by aircraft and balloons, strontium-90 in San Francisco and New York diet, milk, and tap water, and cesium-137 in tap water. The third section presents data from Argonne National Laboratory on cesium-137 in Chicago food and from Los Alamos National Laboratory on tritium in the stratosphere. A bibliography of recent publications related to environmental studies is presented. Each section has been abstracted and indexed individually for ERA/EDB

  1. Final report on the proficiency test of the Analytical Laboratories for the Measurement of Environmental Radioactivity (ALMERA) network

    International Nuclear Information System (INIS)

    Shakhashiro, A.; Radecki, Z.; Trinkl, A.; Sansone, U.; Benesch, T.

    2005-08-01

    This report presents the statistical evaluation of results from the analysis of 12 radionuclides in 8 samples within the frame of the First Proficiency Test of Analytical Laboratories for the Measurement Environmental RAdioactivity (ALMERA) organized in 2001-2002 by the Chemistry Unit, Agency's Laboratory in Seibersdorf. The results were evaluated by using appropriate statistical means to assess laboratory analytical performance and to estimate the overall performance for the determination of each radionuclide. Evaluation of the analytical data for gamma emitting radionuclides showed that 68% of data obtained a 'Passed' final score for both the trueness and precision criteria applied to this exercise. However, transuranic radionuclides obtained only 58% for the same criteria. (author)

  2. Demonstration of resonant photopumping of Mo VII by Mo XII for a VUV laser near 600 Angstrom

    International Nuclear Information System (INIS)

    Ilcisin, K.J.; Aumayr, F.; Schwob, J.L.; Suckewer, S.

    1993-09-01

    We present data of experiments on the resonant photopumping of Mo VII by Mo XII as a method of generating a coherent VUV source near 600 angstrom. The experiment is based on a scheme proposed by Feldman and Reader in which the 4p 6 -- 4p 5 6s transition in Mo VII in resonantly photopumped by the 5s 2 S 1/2 -- 4p 2 P 1/2 transition in Mo XII. Results of the laser produced plasma experiments show the successful enhancement of the population of the Mo VII 4p 5 6s upper lasing level when pumped by an adjacent Mo VII plasma. No enhancement was seen in a control experiment where the Mo VII plasma was pumped by a Zr X plasma. Improvements of the intensity of the Mo XII pump source, achieved using an additional pump laser, lead to the generation of a population inversion for the VUV transition

  3. Laboratory Spectroscopy of Large Carbon Molecules and Ions in Support of Space Missions. A New Generation of Laboratory & Space Studies

    Science.gov (United States)

    Salama, Farid; Tan, Xiaofeng; Cami, Jan; Biennier, Ludovic; Remy, Jerome

    2006-01-01

    Polycyclic Aromatic Hydrocarbons (PAHs) are an important and ubiquitous component of carbon-bearing materials in space. A long-standing and major challenge for laboratory astrophysics has been to measure the spectra of large carbon molecules in laboratory environments that mimic (in a realistic way) the physical conditions that are associated with the interstellar emission and absorption regions [1]. This objective has been identified as one of the critical Laboratory Astrophysics objectives to optimize the data return from space missions [2]. An extensive laboratory program has been developed to assess the properties of PAHs in such environments and to describe how they influence the radiation and energy balance in space. We present and discuss the gas-phase electronic absorption spectra of neutral and ionized PAHs measured in the UV-Visible-NIR range in astrophysically relevant environments and discuss the implications for astrophysics [1]. The harsh physical conditions of the interstellar medium characterized by a low temperature, an absence of collisions and strong VUV radiation fields - have been simulated in the laboratory by associating a pulsed cavity ringdown spectrometer (CRDS) with a supersonic slit jet seeded with PAHs and an ionizing, penning-type, electronic discharge. We have measured for the {\\it first time} the spectra of a series of neutral [3,4] and ionized [5,6] interstellar PAHs analogs in the laboratory. An effort has also been attempted to quantify the mechanisms of ion and carbon nanoparticles production in the free jet expansion and to model our simulation of the diffuse interstellar medium in the laboratory [7]. These experiments provide {\\it unique} information on the spectra of free, large carbon-containing molecules and ions in the gas phase. We are now, for the first time, in the position to directly compare laboratory spectral data on free, cold, PAH ions and carbon nano-sized carbon particles with astronomical observations in the

  4. Workers’ Exposure to Nano-Objects with Different Dimensionalities in R&D Laboratories: Measurement Strategy and Field Studies

    Directory of Open Access Journals (Sweden)

    Fabio Boccuni

    2018-01-01

    Full Text Available With the increasing interest in the potential benefits of nanotechnologies, concern is still growing that they may present emerging risks for workers. Various strategies have been developed to assess the exposure to nano-objects and their agglomerates and aggregates (NOAA in the workplace, integrating different aerosol measurement instruments and taking into account multiple parameters that may influence NOAA toxicity. The present study proposes a multi-metric approach for measuring and sampling NOAA in the workplace, applied to three case studies in laboratories each dedicated to materials with different shapes and dimensionalities: graphene, nanowires, and nanoparticles. The study is part of a larger project with the aim of improving risk management tools in nanomaterials research laboratories. The harmonized methodology proposed by the Organization for Economic Cooperation and Development (OECD has been applied, including information gathering about materials and processes, measurements with easy-to-use and hand-held real-time devices, air sampling with personal samplers, and off-line analysis using scanning electron microscopy. Significant values beyond which an emission can be attributed to the NOAA production process were identified by comparison of the particle number concentration (PNC time series and the corresponding background levels in the three laboratories. We explored the relations between background PNC and microclimatic parameters. Morphological and elemental analysis of sampled filters was done to identify possible emission sources of NOAA during the production processes: rare particles, spherical, with average diameter similar to the produced NOAA were identified in the nanoparticles laboratory, so further investigation is recommended to confirm the potential for worker exposure. In conclusion, the information obtained should provide a valuable basis for improving risk management strategies in the laboratory at work.

  5. UV and VUV characteristics of (YGd)2O3:Eu phosphor particles prepared by spray pyrolysis from polymeric precursors

    International Nuclear Information System (INIS)

    Kim, E.J.; Kang, Y.C.; Park, H.D.; Ryu, S.K.

    2003-01-01

    Red-emitting (YGd) 2 O 3 :Eu phosphor particles, with high luminescence efficiency under vacuum ultraviolet (VUV) and ultraviolet (UV) excitation, were prepared by a large-scale spray pyrolysis process. To control the morphology of phosphor particles under severe preparation conditions, spray solution with polymeric precursors were introduced in spray pyrolysis. The prepared (YGd) 2 O 3 :Eu phosphor particles had spherical shape and filled morphology even after post-treatment irrespective of Gd/Y ratio. In the case of solution with polymeric precursors, long polymeric chains formed by esterification reaction in a hot tubular reactor; the droplets turned into viscous gel, which retarded the precipitation of nitrate salts and promoted the volume precipitation of droplets. The brightness of (YGd) 2 O 3 :Eu phosphor particles increased with increasing gadolinium content, and the Gd 2 O 3 :Eu phosphor had the highest luminescence intensity under UV and VUV excitation. The maximum peak intensity of Gd 2 O 3 :Eu phosphor particles under UV and VUV were 118 and 110% of the commercial Y 2 O 3 :Eu phosphor particles, respectively

  6. VUV testing of science cameras at MSFC: QE measurement of the CLASP flight cameras

    Science.gov (United States)

    Champey, P.; Kobayashi, K.; Winebarger, A.; Cirtain, J.; Hyde, D.; Robertson, B.; Beabout, B.; Beabout, D.; Stewart, M.

    2015-08-01

    The NASA Marshall Space Flight Center (MSFC) has developed a science camera suitable for sub-orbital missions for observations in the UV, EUV and soft X-ray. Six cameras were built and tested for the Chromospheric Lyman-Alpha Spectro-Polarimeter (CLASP), a joint MSFC, National Astronomical Observatory of Japan (NAOJ), Instituto de Astrofisica de Canarias (IAC) and Institut D'Astrophysique Spatiale (IAS) sounding rocket mission. The CLASP camera design includes a frame-transfer e2v CCD57-10 512 × 512 detector, dual channel analog readout and an internally mounted cold block. At the flight CCD temperature of -20C, the CLASP cameras exceeded the low-noise performance requirements (UV, EUV and X-ray science cameras at MSFC.

  7. Laboratory and field measurements of organic aerosols with the photoionization aerosol mass spectrometer

    Science.gov (United States)

    Dreyfus, Matthew A.

    Analytical methods developed to sample and characterize ambient organic aerosols often face the trade-off between long sampling times and the loss of detailed information regarding specific chemical species present. The soft, universal ionization scheme of the Photoionization Aerosol Mass Spectrometer (PIAMS) allows for identification of various chemical compounds by a signature ion, often the molecular ion. The goal of this thesis work is to apply PIAMS to both laboratory and field experiments to answer questions regarding the formation, composition, and behavior of organic aerosols. To achieve this goal, a variety of hardware and software upgrades were administered to PIAMS to optimize the instrument. Data collection and processing software were either refined or built from the ground up to simplify difficult or monotonous tasks. Additional components were added to PIAMS with the intent to automate the instrument, enhance the results, and make the instrument more rugged and user-friendly. These changes, combined with the application of an external particle concentration system (mini-Versatile Aerosol Concentration Enrichment System, m-VACES), allowed PIAMS to be suitable for field measurements of organic aerosols. Two such field campaigns were completed, both at the State of Delaware Air Quality Monitoring Site in Wilmington, Delaware: a one week period in June, 2006, and an 18 day period in October and November of 2007. A sampling method developed was capable of collecting sufficient ambient organic aerosol and analyzing it with a time resolution of 3.5 minutes. Because of this method, short term concentration changes of individual species can be tracked. Combined with meteorological data, the behavior of these species can be analyzed as a function of time or wind direction. Many compounds are found at enhanced levels during the evening/night-time hours; potentially due to the combined effects of temperature inversion, and fresh emissions in a cooler environment

  8. A Monte Carlo Simulation of the in vivo measurement of lung activity in the Lawrence Livermore National Laboratory torso phantom.

    Science.gov (United States)

    Acha, Robert; Brey, Richard; Capello, Kevin

    2013-02-01

    A torso phantom was developed by the Lawrence Livermore National Laboratory (LLNL) that serves as a standard for intercomparison and intercalibration of detector systems used to measure low-energy photons from radionuclides, such as americium deposited in the lungs. DICOM images of the second-generation Human Monitoring Laboratory-Lawrence Livermore National Laboratory (HML-LLNL) torso phantom were segmented and converted into three-dimensional (3D) voxel phantoms to simulate the response of high purity germanium (HPGe) detector systems, as found in the HML new lung counter using a Monte Carlo technique. The photon energies of interest in this study were 17.5, 26.4, 45.4, 59.5, 122, 244, and 344 keV. The detection efficiencies at these photon energies were predicted for different chest wall thicknesses (1.49 to 6.35 cm) and compared to measured values obtained with lungs containing (241)Am (34.8 kBq) and (152)Eu (10.4 kBq). It was observed that no statistically significant differences exist at the 95% confidence level between the mean values of simulated and measured detection efficiencies. Comparisons between the simulated and measured detection efficiencies reveal a variation of 20% at 17.5 keV and 1% at 59.5 keV. It was found that small changes in the formulation of the tissue substitute material caused no significant change in the outcome of Monte Carlo simulations.

  9. Advanced laboratory for testing plasma thrusters and Hall thruster measurement campaign

    Directory of Open Access Journals (Sweden)

    Szelecka Agnieszka

    2016-06-01

    Full Text Available Plasma engines are used for space propulsion as an alternative to chemical thrusters. Due to the high exhaust velocity of the propellant, they are more efficient for long-distance interplanetary space missions than their conventional counterparts. An advanced laboratory of plasma space propulsion (PlaNS at the Institute of Plasma Physics and Laser Microfusion (IPPLM specializes in designing and testing various electric propulsion devices. Inside of a special vacuum chamber with three performance pumps, an environment similar to the one that prevails in space is created. An innovative Micro Pulsed Plasma Thruster (LμPPT with liquid propellant was built at the laboratory. Now it is used to test the second prototype of Hall effect thruster (HET operating on krypton propellant. Meantime, an improved prototype of krypton Hall thruster is constructed.

  10. Laboratory measures of methylphenidate effects in cocaine-dependent patients receiving treatment.

    Science.gov (United States)

    Roache, J D; Grabowski, J; Schmitz, J M; Creson, D L; Rhoades, H M

    2000-02-01

    Two experiments examined the effects of methylphenidate in male and female patients enrolled in an outpatient treatment program for primary cocaine dependence. The first study was a component of a double-blind efficacy trial wherein 57 patients were first tested in a human laboratory for their initial responsiveness to medication. Patients were randomly assigned to receive either placebo or methylphenidate treatment and received their first dose in the human laboratory environment before continuing in outpatient treatment. Methylphenidate was given as a 20-mg sustained-release dose (twice daily) plus an additional 5-mg immediate-release dose combined with the morning dose. Methylphenidate increased heart rate and subjective ratings; however, the subjective effects were primarily of a "dysphoric" nature, and significant effects were limited to increases in anxiety, depression, and anger on the Profile of Mood States; shaky/jittery ratings on a visual analog scale; and dysphoria on the lysergic acid diethylamide (LSD) scale of the Addiction Research Center Inventory. Methylphenidate did not increase cocaine craving nor ratings suggesting abuse potential (i.e., Morphine-Benzedrine Group or drug-liking scores, etc.). None of the drug effects observed in the human laboratory was of clinical concern, and no subject was precluded from continuing in the outpatient study. After outpatient treatment completion, 12 patients were brought back into a second double-blind human laboratory study in which three doses (15, 30, and 60 mg) of immediate-release methylphenidate were administered in an ascending series preceded and followed by placebo. Methylphenidate produced dose-related increases in heart rate, subjective ratings of shaky/jittery, and LSD/dysphoria without significantly altering cocaine craving or stimulant euphoria ratings. These results suggest that stimulant substitution-type approaches to the treatment of cocaine dependence are not necessarily contraindicated

  11. Nabilone Decreases Marijuana Withdrawal and a Laboratory Measure of Marijuana Relapse

    OpenAIRE

    Haney, Margaret; Cooper, Ziva D; Bedi, Gillinder; Vosburg, Suzanne K; Comer, Sandra D; Foltin, Richard W

    2013-01-01

    Few individuals seeking treatment for marijuana use achieve sustained abstinence. The cannabinoid receptor agonist, Δ9-tetrahydrocannabinol (THC; dronabinol), decreases marijuana withdrawal symptoms, yet does not decrease marijuana use in the laboratory or clinic. Dronabinol has poor bioavailability, which may contribute to its poor efficacy. The FDA-approved synthetic analog of THC, nabilone, has higher bioavailability and clearer dose-linearity than dronabinol. This study tested whether nab...

  12. Inter-laboratory validation of an inexpensive streamlined method to measure inorganic arsenic in rice grain.

    Science.gov (United States)

    Chaney, Rufus L; Green, Carrie E; Lehotay, Steven J

    2018-05-04

    With the establishment by CODEX of a 200 ng/g limit of inorganic arsenic (iAs) in polished rice grain, more analyses of iAs will be necessary to ensure compliance in regulatory and trade applications, to assess quality control in commercial rice production, and to conduct research involving iAs in rice crops. Although analytical methods using high-performance liquid chromatography-inductively coupled plasma-mass spectrometry (HPLC-ICP-MS) have been demonstrated for full speciation of As, this expensive and time-consuming approach is excessive when regulations are based only on iAs. We report a streamlined sample preparation and analysis of iAs in powdered rice based on heated extraction with 0.28 M HNO 3 followed by hydride generation (HG) under control of acidity and other simple conditions. Analysis of iAs is then conducted using flow-injection HG and inexpensive ICP-atomic emission spectroscopy (AES) or other detection means. A key innovation compared with previous methods was to increase the acidity of the reagent solution with 4 M HCl (prior to reduction of As 5+ to As 3+ ), which minimized interferences from dimethylarsinic acid. An inter-laboratory method validation was conducted among 12 laboratories worldwide in the analysis of six shared blind duplicates and a NIST Standard Reference Material involving different types of rice and iAs levels. Also, four laboratories used the standard HPLC-ICP-MS method to analyze the samples. The results between the methods were not significantly different, and the Horwitz ratio averaged 0.52 for the new method, which meets official method validation criteria. Thus, the simpler, more versatile, and less expensive method may be used by laboratories for several purposes to accurately determine iAs in rice grain. Graphical abstract Comparison of iAs results from new and FDA methods.

  13. OH reactivity and potential SOA yields from volatile organic compounds and other trace gases measured in controlled laboratory biomass burns

    Science.gov (United States)

    J. B. Gilman; C. Warneke; W. C. Kuster; P. D. Goldan; P. R. Veres; J. M. Roberts; J. A. de Gouw; I. R. Burling; R. J. Yokelson

    2010-01-01

    A comprehensive suite of instruments were used to characterize volatile organic compounds (VOCs) and other trace gases (e.g., CO, CH4, NO2, etc.) emitted from controlled burns of various fuel types common to the Southeastern and Southwestern United States. These laboratory-based measurements were conducted in February 2009 at the U.S. Department of Agriculture’s Fire...

  14. Development and application of a mobile laboratory for measuring emissions from diesel engines. 1. Regulated gaseous emissions.

    Science.gov (United States)

    Cocker, David R; Shah, Sandip D; Johnson, Kent; Miller, J Wayne; Norbeck, Joseph M

    2004-04-01

    Information about in-use emissions from diesel engines remains a critical issue for inventory development and policy design. Toward that end, we have developed and verified the first mobile laboratory that measures on-road or real-world emissions from engines at the quality level specified in the U.S. Congress Code of Federal Regulations. This unique mobile laboratory provides information on integrated and modal regulated gaseous emission rates and integrated emission rates for speciated volatile and semivolatile organic compounds and particulate matter during real-world operation. Total emissions are captured and collected from the HDD vehicle that is pulling the mobile laboratory. While primarily intended to accumulate data from HDD vehicles, it may also be used to measure emission rates from stationary diesel sources such as back-up generators. This paper describes the development of the mobile laboratory, its measurement capabilities, and the verification process and provides the first data on total capture gaseous on-road emission measurements following the California Air Resources Board (ARB) 4-mode driving cycle, the hot urban dynamometer driving schedule (UDDS), the modified 5-mode cycle, and a 53.2-mi highway chase experiment. NOx mass emission rates (g mi(-1)) for the ARB 4-mode driving cycle, the hot UDDS driving cycle, and the chase experimentwerefoundto exceed current emission factor estimates for the engine type tested by approximately 50%. It was determined that congested traffic flow as well as "off-Federal Test Procedure cycle" emissions can lead to significant increases in per mile NOx emission rates for HDD vehicles.

  15. Fully automated laboratory and field-portable goniometer used for performing accurate and precise multiangular reflectance measurements

    Science.gov (United States)

    Harms, Justin D.; Bachmann, Charles M.; Ambeau, Brittany L.; Faulring, Jason W.; Ruiz Torres, Andres J.; Badura, Gregory; Myers, Emily

    2017-10-01

    Field-portable goniometers are created for a wide variety of applications. Many of these applications require specific types of instruments and measurement schemes and must operate in challenging environments. Therefore, designs are based on the requirements that are specific to the application. We present a field-portable goniometer that was designed for measuring the hemispherical-conical reflectance factor (HCRF) of various soils and low-growing vegetation in austere coastal and desert environments and biconical reflectance factors in laboratory settings. Unlike some goniometers, this system features a requirement for "target-plane tracking" to ensure that measurements can be collected on sloped surfaces, without compromising angular accuracy. The system also features a second upward-looking spectrometer to measure the spatially dependent incoming illumination, an integrated software package to provide full automation, an automated leveling system to ensure a standard frame of reference, a design that minimizes the obscuration due to self-shading to measure the opposition effect, and the ability to record a digital elevation model of the target region. This fully automated and highly mobile system obtains accurate and precise measurements of HCRF in a wide variety of terrain and in less time than most other systems while not sacrificing consistency or repeatability in laboratory environments.

  16. Intercomparison of the GOS approach, superposition T-matrix method, and laboratory measurements for black carbon optical properties during aging

    International Nuclear Information System (INIS)

    He, Cenlin; Takano, Yoshi; Liou, Kuo-Nan; Yang, Ping; Li, Qinbin; Mackowski, Daniel W.

    2016-01-01

    We perform a comprehensive intercomparison of the geometric-optics surface-wave (GOS) approach, the superposition T-matrix method, and laboratory measurements for optical properties of fresh and coated/aged black carbon (BC) particles with complex structures. GOS and T-matrix calculations capture the measured optical (i.e., extinction, absorption, and scattering) cross sections of fresh BC aggregates, with 5–20% differences depending on particle size. We find that the T-matrix results tend to be lower than the measurements, due to uncertainty in theoretical approximations of realistic BC structures, particle property measurements, and numerical computations in the method. On the contrary, the GOS results are higher than the measurements (hence the T-matrix results) for BC radii 100 nm. We find good agreement (differences 100 nm. We find small deviations (≤10%) in asymmetry factors computed from the two methods for most BC coating structures and sizes, but several complex structures have 10–30% differences. This study provides the foundation for downstream application of the GOS approach in radiative transfer and climate studies. - Highlights: • The GOS and T-matrix methods capture laboratory measurements of BC optical properties. • The GOS results are consistent with the T-matrix results for BC optical properties. • BC optical properties vary remarkably with coating structures and sizes during aging.

  17. Production and loss of HC3N in interstellar clouds: some relevant laboratory measurements

    International Nuclear Information System (INIS)

    Knight, J.S.; Freeman, C.G.; McEwan, M.J.; Smith, S.C.; Adams, N.G.; Smith, D.

    1986-01-01

    The results of recent selected ion flow tube (SIFT) experiments on the ion-molecule chemistry of cyanoacetylene are considered in the context of the chemistry of HC 3 N in the interstellar environment. Important errors revealed by this SIFT investigation, following an earlier flowing afterglow study in the authors' laboratory, have led to a different perception of the ion-molecule chemistry that HC 3 N may undergo in interstellar clouds. It is now evident that insertion and association occur in the reactions of hydrocarbon ions with HC 3 N. (author)

  18. Measurement of the sound absorption coefficient for an advanced undergraduate physics laboratory

    Science.gov (United States)

    Macho-Stadler, E.; Elejalde-García, M. J.

    2017-09-01

    We present a simple experiment that allows advanced undergraduates to learn the basics of the acoustic properties of materials. The impedance tube-standing wave method is applied to study the normal absorption coefficient of acoustics insulators. The setup includes a tube, a speaker, a microphone, a digital function generator and an oscilloscope, material available in an undergraduate laboratory. Results of the change of the absorption coefficient with the frequency, the sample thickness and the sample density are analysed and compared with those obtained with a commercial system.

  19. Electron/positron measurements obtained with the Mars Science Laboratory Radiation Assessment Detector on the surface of Mars

    Energy Technology Data Exchange (ETDEWEB)

    Koehler, J.; Wimmer-Schweingruber, R.F.; Appel, J. [Kiel Univ. (Germany). Inst. of Experimental and Applied Physics; and others

    2016-04-01

    The Radiation Assessment Detector (RAD), on board the Mars Science Laboratory (MSL) rover Curiosity, measures the energetic charged and neutral particles and the radiation dose rate on the surface of Mars. Although charged and neutral particle spectra have been investigated in detail, the electron and positron spectra have not been investigated yet. The reason for that is that they are difficult to separate from each other and because of the technical challenges involved in extracting energy spectra from the raw data. We use GEANT4 to model the behavior of the RAD instrument for electron/positron measurements.We compare Planetocosmics predictions for different atmospheric pressures and different modulation parameters Φ with the obtained RAD electron/positron measurements.We find that the RAD electron/positron measurements agree well with the spectra predicted by Planetocosmics. Both RAD measurements and Planetocosmics simulation show a dependence of the electron/positron fluxes on both atmospheric pressure and solar modulation potential.

  20. Measurement of organ doses from external γ-radiation in the environment of a nuclear research laboratory

    International Nuclear Information System (INIS)

    Jones, A.R.

    1978-06-01

    Thermoluminescent dosimeters (TLD) are used to monitor the γ-ray exposure in the environment at the Chalk River Nuclear Laboratories. To relate the exposure to the doses absorbed by humans in this environment a set of measurements has been made of the doses at various sites within a phantom, placed out-of-doors, while measuring the exposure simultaneously. The measurements have been made with sensitized LiF-TLD's for exposures lasting several months in order to obtain adequate accuracy at the low exposure rates (5 - 50 μR/h) encountered. The exposure was measured with TLD's placed one metre from the ground and on four sides of the phantom and two metres away. Measurements made of the internal radioactivity of the phantom showed that this contributed less than 0.2 μR/h to the TLD's lodged within the phantom

  1. Inter-laboratory validation of the measurement of follicle stimulating hormone (FSH after various lengths of frozen storage

    Directory of Open Access Journals (Sweden)

    Behr Barry

    2010-11-01

    Full Text Available Abstract Background Serum follicle stimulating hormone (FSH levels are used clinically to evaluate infertility, pituitary and gonadal disorders. With increased frequency of research collaborations across institutions, it is essential that inter-laboratory validation is addressed. Methods An inter-laboratory validation of three commercial FSH immunoassays was performed with human serum samples of varying frozen storage length (2 batches of 15 samples each at -25 degree C. Percentage differences and Bland-Altman limits of agreement were calculated. Results The inter- and intra-laboratory consistency of FSH values with the same assay manufacturer was much higher after shorter-term storage (frozen for less than 11 months, mean percentage degradation less than 4% than after long-term storage (2-3 years, mean percentage degradation = 23%. Comparing assay results from different manufacturers, there was similar overall long term degradation as seen with the same manufacturer (-25%, however the degradation was greater when the original FSH was greater than 20 mIU/mL relative to less than 10 mIU/mL (p Conclusion The findings suggest that degradation of serum samples stored between 11 months and 2-3 years at -25 degrees C can lead to unstable FSH measurements. Inter-laboratory variability due to frozen storage time and manufacturer differences in assay results should be accounted for when designing and implementing research or clinical quality control activities involving serum FSH at multiple study sites.

  2. Blood gas testing and related measurements: National recommendations on behalf of the Croatian Society of Medical Biochemistry and Laboratory Medicine.

    Science.gov (United States)

    Dukić, Lora; Kopčinović, Lara Milevoj; Dorotić, Adrijana; Baršić, Ivana

    2016-10-15

    Blood gas analysis (BGA) is exposed to risks of errors caused by improper sampling, transport and storage conditions. The Clinical and Laboratory Standards Institute (CLSI) generated documents with recommendations for avoidance of potential errors caused by sample mishandling. Two main documents related to BGA issued by the CLSI are GP43-A4 (former H11-A4) Procedures for the collection of arterial blood specimens; approved standard - fourth edition, and C46-A2 Blood gas and pH analysis and related measurements; approved guideline - second edition. Practices related to processing of blood gas samples are not standardized in the Republic of Croatia. Each institution has its own protocol for ordering, collection and analysis of blood gases. Although many laboratories use state of the art analyzers, still many preanalytical procedures remain unchanged. The objective of the Croatian Society of Medical Biochemistry and Laboratory Medicine (CSMBLM) is to standardize the procedures for BGA based on CLSI recommendations. The Working Group for Blood Gas Testing as part of the Committee for the Scientific Professional Development of the CSMBLM prepared a set of recommended protocols for sampling, transport, storage and processing of blood gas samples based on relevant CLSI documents, relevant literature search and on the results of Croatian survey study on practices and policies in acid-base testing. Recommendations are intended for laboratory professionals and all healthcare workers involved in blood gas processing.

  3. The Mars Science Laboratory APXS calibration target: Comparison of Martian measurements with the terrestrial calibration

    International Nuclear Information System (INIS)

    Campbell, J.L.; King, P.L.; Burkemper, L.; Berger, J.A.; Gellert, R.; Boyd, N.I.; Perrett, G.M.; Pradler, I.; Thompson, L.; Edgett, K.S.; Yingst, R.A.

    2014-01-01

    The Mars Science Laboratory Curiosity rover carries a basalt calibration target for monitoring the performance of the alpha particle X-ray spectrometer. The spectrum acquired on Sol 34 shows increased contributions from Mg, S, Cl and Fe relative to laboratory spectra recorded before launch. Mars Hand Lens Imager images confirm changes in the appearance of the surface. Spectra taken on Sols 179 and 411 indicate some loss of the deposited material. The observations suggest deposition of a surface film likely consisting of dust mobilized by impingement of the sky crane’s terminal descent engine plumes with surface fines during Curiosity’s landing. New APXS software has been used to model the thin film that coated the calibration target on landing. The results suggest that a film of about 100 nm thickness, and containing predominantly MgO, Fe 2 O 3 , SO 3 , Cl and Na 2 O could give rise to the observed spectral changes. If this film is also present on the alpha particle sources within the APXS, then its effect is negligible and the terrestrial calibration remains appropriate

  4. The Mars Science Laboratory APXS calibration target: Comparison of Martian measurements with the terrestrial calibration

    Energy Technology Data Exchange (ETDEWEB)

    Campbell, J.L., E-mail: icampbel@uoguelph.ca [Guelph-Waterloo Physics Institute, University of Guelph, Ontario N1G2W1 (Canada); King, P.L. [Guelph-Waterloo Physics Institute, University of Guelph, Ontario N1G2W1 (Canada); Institute of Meteoritics, University of New Mexico, NM 87131 (United States); Department of Earth Sciences, Western University, London, Ontario N6A3K7 (Canada); Burkemper, L. [Institute of Meteoritics, University of New Mexico, NM 87131 (United States); Berger, J.A. [Institute of Meteoritics, University of New Mexico, NM 87131 (United States); Department of Earth Sciences, Western University, London, Ontario N6A3K7 (Canada); Gellert, R.; Boyd, N.I.; Perrett, G.M.; Pradler, I. [Guelph-Waterloo Physics Institute, University of Guelph, Ontario N1G2W1 (Canada); Thompson, L. [Planetary and Space Science Centre, University of New Brunswick, Fredericton, NB E3B5A3 (Canada); Edgett, K.S. [Malin Space Science Systems, San Diego, CA 92191-0148 (United States); Yingst, R.A. [Planetary Science Institute, Tucson, AZ 85719-2395 (United States)

    2014-03-15

    The Mars Science Laboratory Curiosity rover carries a basalt calibration target for monitoring the performance of the alpha particle X-ray spectrometer. The spectrum acquired on Sol 34 shows increased contributions from Mg, S, Cl and Fe relative to laboratory spectra recorded before launch. Mars Hand Lens Imager images confirm changes in the appearance of the surface. Spectra taken on Sols 179 and 411 indicate some loss of the deposited material. The observations suggest deposition of a surface film likely consisting of dust mobilized by impingement of the sky crane’s terminal descent engine plumes with surface fines during Curiosity’s landing. New APXS software has been used to model the thin film that coated the calibration target on landing. The results suggest that a film of about 100 nm thickness, and containing predominantly MgO, Fe{sub 2}O{sub 3}, SO{sub 3}, Cl and Na{sub 2}O could give rise to the observed spectral changes. If this film is also present on the alpha particle sources within the APXS, then its effect is negligible and the terrestrial calibration remains appropriate.

  5. Preliminary assessment of laboratory techniques for measurement of volatiles through soils at hazardous waste sites

    International Nuclear Information System (INIS)

    Breckenridge, R.P.; Case, J.T.

    1985-01-01

    This study was conducted to determine if an inexpensive laboratory screening technique could be developed to detect the presence of hazardous volatile compounds without disturbing the soil over buried waste. A laboratory investigation was designed to evaluate the movement of two volatile organics through packed soil columns. Six soil columns were filled with three different soils. Two volatile organics, trichloroethylene (TCE) and dichloroethylene (1, 2 DCE), were placed at the base of the columns as a saturated water solution. Column headspace analysis was performed by purging the top of the columns with nitrogen gas and bubbling this gas through a pentane trap. Samples in the air space were also collected using 25 and 100 microliter gas tight syringes. All samples were analyzed using Electron Capture Detector (ECD) by gas chromatography. Results indicate that the volatile organic compounds can be detected through a five foot column of soil in concentrations down to parts-per-billion (ppb) for both TCE and DCE. Distribution coefficients (Kd) experiments were also conducted to assess breakthrough time and related concentration with soil type

  6. Pacific Northwest Laboratory Gulfstream I measurements of the Kuwait oil-fire plume, July--August 1991

    Energy Technology Data Exchange (ETDEWEB)

    Busness, K.M.; Hales, J.M.; Hannigan, R.V.; Thorp, J.M.; Tomich, S.D.; Warren, M.J. (Pacific Northwest Lab., Richland, WA (United States)); Al-Sunaid, A.A. (Saudi ARAMCO, Dhahran (Saudi Arabia)); Daum, P.H.; Mazurek, M. (Brookhaven National Lab., Upton, NY (United States))

    1992-11-01

    In 1991, the Pacific Northwest Laboratory conducted a series of aircraft measurements to determine pollutant and radiative properties of the smoke plume from oil fires in Kuwait. This work was sponsored by the US Department emanating of Energy, in cooperation with several other agencies as part of an extensive effort coordinated by the World Meteorological Organization, to obtain a comprehensive data set to assess the characteristics of the plume and its environmental impact. This report describes field measurement activities and introduces the various data collected, but provides only limited analyses of these data. Results of further data analyses will be presented in subsequent open-literature publications.

  7. Tactical Approaches for Trading Science Objectives Against Measurements and Mission Design: Science Traceability Techniques at the Jet Propulsion Laboratory

    Science.gov (United States)

    Nash, A. E., III

    2017-12-01

    The most common approaches to identifying the most effective mission design to maximize science return from a potential set of competing alternative design approaches are often inefficient and inaccurate. Recently, Team-X at the Jet Propulsion Laboratory undertook an effort to improve both the speed and quality of science - measurement - mission design trade studies. We will report on the methodology & processes employed and their effectiveness in trade study speed and quality. Our results indicate that facilitated subject matter expert peers are the keys to speed and quality improvements in the effectiveness of science - measurement - mission design trade studies.

  8. Study on the Effects of Sample Density on Gamma Spectrometry System Measurement Efficiency at Radiochemistry and Environment Laboratory

    International Nuclear Information System (INIS)

    Wo, Y.M.; Dainee Nor Fardzila Ahmad Tugi; Khairul Nizam Razali

    2015-01-01

    The effects of sample density on the measurement efficiency of the gamma spectrometry system were studied by using four sets multi nuclide standard sources of various densities between 0.3 - 1.4 g/ ml. The study was conducted on seven unit 25 % coaxial HPGe detector gamma spectrometry systems in Radiochemistry and Environment Laboratory (RAS). Difference on efficiency against gamma emitting radionuclides energy and measurement systems were compared and discussed. Correction factor for self absorption caused by difference in sample matrix density of the gamma systems were estimated. The correction factors are to be used in quantification of radionuclides concentration in various densities of service and research samples in RAS. (author)

  9. Laser-plasma sourced, temperature dependent, VUV spectrophotometer using dispersive analysis

    International Nuclear Information System (INIS)

    French, R.H.

    1990-01-01

    We have developed a vacuum ultraviolet spectrophotometer with wide energy and temperature range coverage, utilizing a laser-plasma light source (LPLS), CO 2 -laser sample heating and time-resolved dispersive analysis. Reflection and transmission spectra can be taken from 1.7 to 40 eV (31-700 nm) on samples at 15-1800 K with a time resolution of 20-400 ns. These capabilities permit the study of the temperature dependence of the electronic structure, encompassing the effects of thermal lattice expansion and electron-phonon interaction, and changes in the electronic structure associated with equilibrium and metastable phase transitions and stress relaxation. The LPLS utilizes a samarium laser-plasma created by a Q-switched Nd:YAG laser (500 mJ/pulse) to produce high brightness, stable, continuum radiation. The spectrophotometer is of a single beam design using calibrated iridium reference mirrors. White light is imaged off the sample in to the entrance slit of a 1-m polychromator. The resolution is 0.1 to 0.3 nm. The dispersed light is incident on a focal plane phosphor, fiber-optic-coupled to an image-intensified reticon detector. For spectroscopy between 300 and 1800 K, the samples are heated in situ with a 150 Watt CO 2 laser. The signal to noise ratio in the VUV, for samples at 1800 K, is excellent. From 300 K to 15 K samples are cooled using a He cryostat. (orig.)

  10. Evaluation of 1024 channel VUV-photo-diodes for soft x-ray diagnostic applications

    International Nuclear Information System (INIS)

    Molvik, A.W.

    1997-01-01

    We tested the operation of 1024 channel diode arrays (Model AXUV-1024, from IRD, Inc.) in subdued room light to establish that they worked and to determine the direction and speed of the scan of the 1024 channels. Further tests were performed in vacuum in the HAP, High-Average-Power Facility. There we found that the bare or glass covered diodes detected primarily visible light as expected, but diodes filtered by aluminized parylene, produced a signal consistent with soft x-rays. It is probable that the spectral response and sensitivity, as discussed below, reproduce that previously demonstrated by 1 to 16 channel VUV-photodiodes; however, significantly more effort would be required to establish that experimentally. These detectors appear to be worth further evaluation where 25 w spatial resolution bolometers or spectrograph detectors of known sensitivity are required, and single-shot or 0.02-0.2s time response is adequate. (Presumably, faster readout would be available with custom drive circuitry.)

  11. Vacuum-ultraviolet (VUV) photoionization of small methanol and methanol-water clusters

    International Nuclear Information System (INIS)

    Ahmed, Musahid; Ahmed, Musahid; Wilson, Kevin R.; Belau, Leonid; Kostko, Oleg

    2008-01-01

    In this work we report on the vacuum-ultraviolet (VUV) photoionization of small methanol and methanol-water clusters. Clusters of methanol with water are generated via co-expansion of the gas phase constituents in a continuous supersonic jet expansion of methanol and water seeded in Ar. The resulting clusters are investigated by single photon ionization with tunable vacuum ultraviolet synchrotron radiation and mass analyzed using reflectron mass spectrometry. Protonated methanol clusters of the form (CH3OH)nH + (n=1-12) dominate the mass spectrum below the ionization energy of the methanol monomer. With an increase in water concentration, small amounts of mixed clusters of the form (CH3OH)n(H2O)H + (n=2-11) are detected. The only unprotonated species observed in this work are the methanol monomer and dimer. Appearance energies are obtained from the photoionization efficiency (PIE) curves for CH3OH +, (CH 3OH)2 +, (CH3OH)nH + (n=1-9), and (CH 3OH)n(H2O)H + (n=2-9 ) as a function of photon energy. With an increase in the water content in the molecular beam, there is an enhancement of photoionization intensity for methanol dimer and protonated methanol monomer at threshold. These results are compared and contrasted to previous experimental observations

  12. Interaction of VUV-photons with molecules. Spectroscopy and dynamics of molecular superexcited states

    International Nuclear Information System (INIS)

    Hatano, Y.

    2002-01-01

    Complete text of publication follows. A survey is given of recent progress in experimental studies of the interaction of VUV-photons with molecules, i.e., those of photoabsorption, photoionization, and photodissociation of molecules in the excitation photon energy range of 10-50 eV, with a particular emphasis placed on current understanding of the spectroscopy and dynamics of formed molecular superexcited states. These studies are of great importance in understanding the interaction of ionizing radiation with matter. Molecules studied are ranged from simple diatomic and triatomic molecules to polyatomic molecules such as hydrocarbons. Most of the observed molecular superexcited states are assigned to high Rydber states which are vibrationally, doubly, or inner-core excited and converge to each of ion states. Non-Rydberg superexcited states are also observed. Dissociation into neutral fragments in comparison with ionization is of unexpectedly great importance in the observed decay of each of these state-assigned superexcited molecules. Dissociation dynamics as well as its products of superexcited states are remarkably different from those of lower excited states below about ionization thresholds. Some remarks are also presented of molecules in the condensed phase

  13. A HIGH REPETITION RATE VUV-SOFT X-RAY FEL CONCEPT

    International Nuclear Information System (INIS)

    Corlett, J.; Byrd, J.; Fawley, W.M.; Gullans, M.; Li, D.; Lidia, S.M.; Padmore, H.; Penn, G.; Pogorelov, I.; Qiang, J.; Robin, D.; Sannibale, F.; Staples, J.W.; Steier, C.; Venturini, M.; Virostek, S.; Wan, W.; Wells, R.; Wilcox, R.; Wurtele, J.; Zholents, A.

    2007-01-01

    We report on design studies for a seeded FEL light source that is responsive to the scientific needs of the future. The FEL process increases radiation flux by several orders of magnitude above existing incoherent sources, and offers the additional enhancements attainable by optical manipulations of the electron beam: control of the temporal duration and bandwidth of the coherent output, reduced gain length in the FEL, utilization of harmonics to attain shorter wavelengths, and precise synchronization of the x-ray pulse with seed laser systems. We describe an FEL facility concept based on a high repetition rate RF photocathode gun, that would allow simultaneous operation of multiple independent FEL's, each producing high average brightness, tunable over the VUV-soft x-ray range, and each with individual performance characteristics determined by the configuration of the FEL. SASE, enhanced-SASE (ESASE), seeded, harmonic generation, and other configurations making use of optical manipulations of the electron beam may be employed, providing a wide range of photon beam properties to meet varied user demands

  14. VUV Fourier-transform absorption study of the Lyman and Werner bands in D2

    Science.gov (United States)

    de Lange, Arno; Dickenson, Gareth D.; Salumbides, Edcel J.; Ubachs, Wim; de Oliveira, Nelson; Joyeux, Denis; Nahon, Laurent

    2012-06-01

    An extensive survey of the D2 absorption spectrum has been performed with the high-resolution VUV Fourier-transform spectrometer employing synchrotron radiation. The frequency range of 90 000-119 000 cm-1 covers the full depth of the potential wells of the B sideset{^1}{+u}{Σ}, B^' } sideset{^1}{+u}{Σ}, and C 1Πu electronic states up to the D(1s) + D(2ℓ) dissociation limit. Improved level energies of rovibrational levels have been determined up to respectively v = 51, v = 13, and v = 20. Highest resolution is achieved by probing absorption in a molecular gas jet with slit geometry, as well as in a liquid helium cooled static gas cell, resulting in line widths of ≈0.35 cm-1. Extended calibration methods are employed to extract line positions of D2 lines at absolute accuracies of 0.03 cm-1. The D 1Πu and B^' ' } sideset{^1}{+u}{Σ} electronic states correlate with the D(1s) + D(3ℓ) dissociation limit, but support a few vibrational levels below the second dissociation limit, respectively, v = 0-3 and v = 0-1, and are also included in the presented study. The complete set of resulting level energies is the most comprehensive and accurate data set for D2. The observations are compared with previous studies, both experimental and theoretical.

  15. Collimation system for the VUV free-electron laser at the TESLA test facility

    International Nuclear Information System (INIS)

    Schlarb, H.

    2001-11-01

    To perform a proof-of-principle experiment for a Free Electron Laser operating at VUV wavelengths an undulator has been installed in the TESLA Test Facility linac phase I. To meet the requirements on the magnetic field quality in the undulator, a hybrid type structure with NdFeB permanent magnets has been chosen. The permanent magnets are sensitive to radiation by high energy particles. In order to perform the various experiments planned at the TESLA Test Facility linac, a collimator section has been installed to protect the undulator from radiation. In this thesis the design, performance and required steps for commissioning the collimator system are presented. To identify potential difficulties for the linac operation, the beam halo and the dark current transport through the entire linac is discussed. Losses of primary electrons caused by technical failures, component misalignments, and operation errors are investigated by tracking simulations, in order to derive a complete understanding of the absorbed dose in the permanent magnets of the undulator. Various topics related to a collimator system such as the removal of secondary particles produced at the collimators, generation and shielding of neutrons, excitation of wake fields, and beam based alignment concepts are important subjects of this thesis. (orig.)

  16. High resolution VUV matrix isolation spectroscopy using synchrotron radiation: N2 in Ne

    International Nuclear Information System (INIS)

    Guertler, P.; Koch, E.E.

    1980-01-01

    We have investigated the VUV absorption spectrum of nitrogen in a neon matrix exploiting the intense synchrotron radiation continuum of the storage ring DORIS and the high resolving power of a 3 m normal incidence monochromator. With an improved sample preparation technique we were able to observe both the allowed transitions b 1 PIsub(u) and b 1 Σ + sub(u) between 12.4 and 14.0 eV and even the forbidden transitions w 1 Δsub(u) and a 1 PIsub(g) between 8.0 and 11.0 eV. All four transitions consist of long progressions of sharp bands (GAMMA approx. 10 meV) which are deperturbed in the matrix due to the suppression of nearby Rydberg states. Using symmetry arguments, our analysis of the spectra leads us to the conclusion that the N 2 molecule is oriented along the (1,1,1) direction in the host lattice. A detailed fine structure is observed for most bands of the first time. This fine structure is caused by dynamical interactions of the excited molecules with the matrix and is interpreted as excitation of librational modes of the N 2 molecule and a selective coupling to phonon modes of the neon lattice. (orig.)

  17. Brominated Tyrosine and Polyelectrolyte Multilayer Analysis by Laser Desorption VUV Postionization and Secondary Ion Mass Spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    University of Illinois at Chicago; Blaze, Melvin M. T.; Takahashi, Lynelle; Zhou, Jia; Ahmed, Musahid; Gasper, Gerald; Pleticha, F. Douglas; Hanley, Luke

    2011-03-14

    The small molecular analyte 3,5-dibromotyrosine (Br2Y) and chitosan-alginate polyelectrolyte multilayers (PEM) with and without adsorbed Br2Y were analyzed by laser desorption postionization mass spectrometry (LDPI-MS). LDPI-MS using 7.87 eV laser and tunable 8 ? 12.5 eV synchrotron vacuum ultraviolet (VUV) radiation found that desorption of clusters from Br2Y films allowed detection by≤8 eV single photon ionization. Thermal desorption and electronic structure calculations determined the ionization energy of Br2Y to be ~;;8.3?0.1 eV and further indicated that the lower ionization energies of clusters permitted their detection at≤8 eV photon energies. However, single photon ionization could only detect Br2Y adsorbed within PEMs when using either higher photon energies or matrix addition to the sample. All samples were also analyzed by 25 keV Bi3 + secondary ion mass spectrometry (SIMS), with the negative ion spectra showing strong parent ion signal which complemented that observed by LDPI-MS. The negative ion SIMS depended strongly on the high electron affinity of this specific analyte and the analyte?s condensed phase environment.

  18. VUV study of impurity generation during ICRF heating experiments on the Alcator C tokamak

    International Nuclear Information System (INIS)

    Manning, H.L.

    1986-06-01

    A 2.2 meter grazing incidence VUV monochromator has been converted into a time-resolving spectrograph by the addition of a new detector system, based on a microchannel plate image intensifier linked to a 1024-element linear photodiode array. The system covers the wavelength range 15 to 1200 A (typically 40 A at a time) with resolution of up to .3 A FWHM. Time resolution is selectable down to 0.5 msec. The system sensitivity was absolutely calibrated below 150 A by a soft x-ray calibration facility. The spectrograph was installed on the Alcator C tokamak at MIT to monitor plasma impurity emission. There, cross-calibration with a calibrated EUV monochromator was performed above 400 A. Calibration results, system performance characteristics, and data from Alcator C are presented. Observations of impurity behavior are presented from a series of ICRF heating experiments (180 MHz, 50 to 400 kW) performed on the Alcator C tokamak, using graphite limiters and stainless steel antenna Faraday shields

  19. Ice nucleating particles measured during the laboratory and field intercomparisons FIN-2 and FIN-3 by the diffusion chamber FRIDGE

    Science.gov (United States)

    Weber, Daniel; Schrod, Jann; Curtius, Joachim; Haunold, Werner; Thomson, Erik; Bingemer, Heinz

    2016-04-01

    The measurement of atmospheric ice nucleating particles (INP) is still challenging. In the absence of easily applicable INP standards the intercomparison of different methods during collaborative laboratory and field workshops is a valuable tool that can shine light on the performance of individual methods for the measurement of INP [1]. FIN-2 was conducted in March 2015 at the AIDA facility in Karlsruhe as an intercomparison of mobile instruments for measuring INP [2]. FIN-3 was a field campaign at the Desert Research Institutes Storm Peak Laboratory in Colorado in September 2015 [3]. The FRankfurt Ice nucleation Deposition freezinG Experiment (FRIDGE) participated in both experiments. FRIDGE measures ice nucleating particles by electrostatic precipitation of aerosol particles onto Si-wafers in a collection unit, followed by activation, growth, and optical detection of ice crystals on the substrate in an isostatic diffusion chamber [4,5]. We will present and discuss results of our measurements of deposition/condensation INP and of immersion INP with FRIDGE during FIN-2 and FIN-3. Acknowledgements: The valuable contributions of the FIN organizers and their institutions, and of the FIN Workshop Science team are gratefully acknowledged. Our work was supported by Deutsche Forschungsgemeinschaft (DFG) under the Research Unit FOR 1525 (INUIT) and the EU FP7-ENV- 2013 BACCHUS project under Grant Agreement 603445.

  20. Surrogate indicators of sensitivity in gynecologic cytology: Can they be used to improve the measurement of sensitivity in the laboratory?

    Directory of Open Access Journals (Sweden)

    Renshaw Andrew

    2009-01-01

    Full Text Available Background: Measuring the sensitivity of screening in gynecologic cytology in real life is problematic. However, other quality measures may correlate with sensitivity, including the atypical squamous cells (ASC/squamous intraepithelial lesion (SIL ratio. Whether these other measures can function as "surrogate indicators" for sensitivity and improve the assessment of sensitivity in the laboratory is not known. Materials and Methods: We compared multiple quality measures with true screening sensitivity in a variety of situations. Results: The abnormal rate, ASC rate, and ASC/SIL ratio were all highly correlated (r = .83 or greater with sensitivity when the overall laboratory sensitivity was low (85% but became less correlated (.64 or less or uncorrelated when the screening sensitivity was higher (88% or 95%, respectively. Sensitivity was more highly correlated with the abnormal rate than the ASC/SIL ratio at low screening sensitivity. While thresholds could be set that were highly sensitive and specific for suboptimal screening, these thresholds were often less than one standard deviation away from the mean. Conclusion: The correlation of the abnormal rate and the ASC/SIL ratio with sensitivity depends on overall sensitivity. Standards to define minimum screening sensitivity can be defined, but these standards are relatively narrow. These features may limit the utility of these quality measures as surrogates for sensitivity.

  1. In situ and laboratory measurements of very low permeability in the Tournemine argilites (Aveyron). Comparison of methodologies and scale effect

    International Nuclear Information System (INIS)

    Boisson, J.Y.; Cabrera, J.

    1998-01-01

    At the request of the Institut de Protection et de Surete Nucleaire (IPSN - Institute of Nuclear Safety and Protection), ANTEA visited the Tournemire site (Aveyron) to carry out an hydraulic characterization of the 200 m-thick Toarcian and Domerian formations accessible by tunnel. Permeability measurements were made using the borehole pulse-test method either in the global hole or perpendicular to more permeable fractured zones. The tests yielded an approximate value for the hydraulic head and an order of magnitude for the permeability at 1 to 10 metre scale (10 -11 to 10 -13 m/s). A borehole was then equipped for a long-duration (6 months) measurement of the hydraulic head in the rock body. Laboratory measurements were made on 4 cm-diameter core samples taken from different boreholes. The tests, carried out under triaxial stress, required preliminary saturation-consolidation of the test samples. Through applying steady-state flow or hydraulic pulse, it was possible to measure a permeability in order of 10 -14 m/s for the matrix of the clayey material. The difference between laboratory and in situ values is explained by the presence of fractures in the rock body. Moreover, it seems that the hydraulic conditions of measurement in the field around the hole could have an influence on the final result. (authors)

  2. REFLECTANCE ANISOTROPY MEASUREMENTS USING A PUSHBROOM SPECTROMETER MOUNTED ON UAV AND A LABORATORY GONIOMETER – PRELIMINARY RESULTS

    Directory of Open Access Journals (Sweden)

    J. Suomalainen

    2015-08-01

    Full Text Available During 2014–2015 we have developed a new method to measure reflectance factor anisotropy using a pushbroom spectrometer mounted on a multicopter UAV. In this paper/presentation we describe the acquisition method and show the preliminary results of the experiment. To validate the measurements the same targets have also been measured with a laboratory goniometer system. The first experiments over sugar beet fields in 2014 show similar trends in both UAV and laboratory anisotropy data, but also some differences caused by differences in sampling and diffuse illumination. In 2015 a more extensive study on wheat, barley and potato fields were performed. The measurements were repeated on three days over the growth of the crops allowing linking the development of the crops to the anisotropy signals. On each day the anisotropy measurement was repeated 4–5 times with different solar zenith angles ranging from 60° to 40° allowing analysis how the solar angle affects the anisotropy. The first results of these experiments will be presented in this conference.

  3. VUV photoionization of acetamide studied by electron/ion coincidence spectroscopy in the 8-24 eV photon energy range

    KAUST Repository

    Schwell, Martin; Bé nilan, Yves; Fray, Nicolas; Gazeau, Marie Claire; Es-sebbar, Et-touhami; Garcí a, Gustavo A.; Nahon, Laurent; Champion, Norbert; Leach, Sydney Sydney

    2012-01-01

    A VUV photoionization study of acetamide was carried out over the 8-24 eV photon energy range using synchrotron radiation and photoelectron/photoion coincidence (PEPICO) spectroscopy. Threshold photoelectron photoion coincidence (TPEPICO) measurements were also made. Photoion yield curves and branching ratios were measured for the parent ion and six fragment ions. The adiabatic ionization energy of acetamide was determined as I.E. (1 2A′) = (9.71 ± 0.02) eV, in agreement with an earlier reported photoionization mass spectrometry (PIMS) value. The adiabatic energy of the first excited state of the ion, 1 2A″, was determined to be ≈10.1 eV. Assignments of the fragment ions and the pathways of their formation by dissociative photoionization were made. The neutral species lost in the principal dissociative photoionization processes are CH 3, NH 2, NH 3, CO, HCCO and NH 2CO. Heats of formation are derived for all ions detected and are compared with literature values. Some astrophysical implications of these results are discussed. © 2011 Elsevier B.V. All rights reserved.

  4. Effect of the methyl substitution on the combustion of two methylheptane isomers: Flame chemistry using vacuum-ultraviolet (VUV) photoionization mass spectrometry

    KAUST Repository

    Selim, Hatem

    2015-04-16

    Alkanes with one or more methyl substitutions are commonly found in liquid transportation fuels, so a fundamental investigation of their combustion chemistry is warranted. In the present work, stoichiometric low-pressure (20 Torr) burner-stabilized flat flames of 2-methylheptane and 3-methylheptane were investigated. Flame species were measured via time-of-flight molecular-beam mass spectrometry, with vacuum-ultraviolet (VUV) synchrotron radiation as the ionization source. Mole fractions of major end-products and intermediate species (e.g., alkanes, alkenes, alkynes, aldehydes, and dienes) were quantified axially above the burner surface. Mole fractions of several free radicals were also measured (e.g., CH3, HCO, C2H3, C3H3, and C3H5). Isomers of different species were identified within the reaction pool by an energy scan between 8 and 12 eV at a distance of 2.5 mm away from the burner surface. The role of methyl substitution location on the alkane chain was determined via comparisons of similar species trends obtained from both flames. The results revealed that the change in CH3 position imposed major differences on the combustion of both fuels. Comparison with numerical simulations was performed for kinetic model testing. The results provide a comprehensive set of data about the combustion of both flames, which can enhance the erudition of both fuels combustion chemistry and also improve their chemical kinetic reaction mechanisms. © 2015 American Chemical Society.

  5. Non-exhaust emission measurement system of the mobile laboratory SNIFFER

    Science.gov (United States)

    Pirjola, L.; Kupiainen, K. J.; Perhoniemi, P.; Tervahattu, H.; Vesala, H.

    In this paper we describe and quality assure the sampling system of a mobile research laboratory SNIFFER which was shown to be a useful tool for studying emission levels of respirable dust from street surfaces. The dust plume had bimodal structure; another mode rising to higher altitudes whereas the other mode remained at lower altitudes. The system was tested on a route in Helsinki, Finland, during spring 2005 and 2006. The PM 2.5 and PM 10 were positively correlated and the PM levels increased with the vehicle speed. SNIFFER was able to identify the characteristic emission levels on different streets. A clear downward trend in the concentrations was observed in all street locations between April and June. The composition of the street dust collected by SNIFFER was compared with springtime PM 10 aerosol samples from the air quality monitoring stations in Helsinki. The results showed similarities in the abundance and composition of the mineral fraction but contained significantly more salt particles.

  6. Response to the evolution of NDT: The laboratory for studying measurement systems

    International Nuclear Information System (INIS)

    Pons, F.; Georgel, B.; Jossinet, J.; Lebrun, A.

    1985-01-01

    The procedures used have been defined taking into account the work of other laboratories in this field and the choice of a reference probe has been particularly looked at. The equipment are controlled by a mini-computer and the users have at their disposal many types of programs, depending upon their needs and a lot of software for data processing. The results are summarized on paper or recorded on a mass memory. So the evolution of the characteristics of the systems is followed. The results on some NDT systems used in nuclear power plants, are presented and the last part of the paper deals with new developments in the field of characterization (how to apply some procedures in the plant itself) as well as in NDT methods (ultrasonic waves laser generation, dynamic focusing)

  7. Laboratory measurement of secondary pollutant yields from ozone reaction with HVAC filters

    International Nuclear Information System (INIS)

    Destaillats, Hugo; Chen, Wenhao; Apte, Michael; Li, Nuan; Spears, Michael; Almosni, Jeremie; Zhang, Jianshun Jensen; Fisk, William J.

    2009-01-01

    We used Proton Transfer Reaction - Mass Spectrometry (PTR-MS) and conventional sampling methods to monitor and identify trace level organic pollutants formed in heterogeneous reactions between ozone and HVAC filters in real time. Experiments were carried out using a bench-scale flow tube reactor operating with dry air and humidified air (50% RH), at realistically high ozone concentrations (150 ppbv). We explored different filter media (i.e., fiberglass and cotton/polyester blends) and different particle loadings (i.e., clean filter and filters loaded with particles for 3 months at the Lawrence Berkeley National Laboratory and the Port of Oakland, CA). Detailed emission dynamics of very low levels of certain organic pollutants from filter media upon ozone exposure in the presence of moisture have been obtained and analyzed.

  8. Field and laboratory calibration of neutron probes for soil moisture measurements on a deep loess chernozem soil

    International Nuclear Information System (INIS)

    Schaecke, B.; Schaecke, E.

    1979-01-01

    In the case of a varying profile structure it is necessary to use different calibration curves and adequate correction factors, respectively. The bulk density of the soil had the greatest influence on the calibration. An increase in bulk density by 0.2 g/cm 3 at a clay content of 18% resulted in an apparent increase in the values of moisture measurements by 1.5 to 2.0% of the volume of water. In naturally stratified soil the humus content of the chernozem horizon, being 3% higher than that of the underlying loess horizon, was found to influence the measuring results obtained by the probe. The calibration curves determined for chernozem and loess horizons in the laboratory agreed well with those obtained in the field. The measured values read from the probe and the gravimetrically determined values of the soil moisture were of great significance in all measured depths of the profile. (author)

  9. Vision in laboratory rodents-Tools to measure it and implications for behavioral research.

    Science.gov (United States)

    Leinonen, Henri; Tanila, Heikki

    2017-07-29

    Mice and rats are nocturnal mammals and their vision is specialized for detection of motion and contrast in dim light conditions. These species possess a large proportion of UV-sensitive cones in their retinas and the majority of their optic nerve axons target superior colliculus rather than visual cortex. Therefore, it was a widely held belief that laboratory rodents hardly utilize vision during day-time behavior. This dogma is being questioned as accumulating evidence suggests that laboratory rodents are able to perform complex visual functions, such as perceiving subjective contours, and that declined vision may affect their performance in many behavioral tasks. For instance, genetic engineering may have unexpected consequences on vision as mouse models of Alzheimer's and Huntington's diseases have declined visual function. Rodent vision can be tested in numerous ways using operant training or reflex-based behavioral tasks, or alternatively using electrophysiological recordings. In this article, we will first provide a summary of visual system and explain its characteristics unique to rodents. Then, we present well-established techniques to test rodent vision, with an emphasis on pattern vision: visual water test, optomotor reflex test, pattern electroretinography and pattern visual evoked potentials. Finally, we highlight the importance of visual phenotyping in rodents. As the number of genetically engineered rodent models and volume of behavioral testing increase simultaneously, the possibility of visual dysfunctions needs to be addressed. Neglect in this matter potentially leads to crude biases in the field of neuroscience and beyond. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. The first results of measurements in military hospital laboratory for gamma spectrometry analysis

    International Nuclear Information System (INIS)

    Jankovic, Lj.; Pantelic, G.; Misovic, M.

    1997-01-01

    In this paper we present the basic features of the equipment for gamma spectrometry analysis and the first measurements results of the 134 Cs and 137 Cs activities. Gamma spectrum is measured using HP GE Detector. The obtained results show low level activities of the 134 Cs and 137 Cs in the environment. (author)

  11. Mars' surface radiation environment measured with the Mars science laboratory's curiosity rover

    NARCIS (Netherlands)

    Hassler, D.M.; Zeitlin, C.; Wimmer-Schweingruber, R.F.; Ehresmann, B.; Rafkin, S.; Eigenbrode, J.L.; Brinza, D.E.; Weigle, G.; Böttcher, S.; Böhm, E.; Burmeister, S.; Guo, J.; Köhler, J.; Martin, C.; Reitz, G.; Cucinotta, F.A.; Kim, M.-H.; Grinspoon, D.; Bullock, M.A.; Posner, A.; Gómez-Elvira, J.; Vasavada, A.; Grotzinger, J.P.; MSL Science Team, the|info:eu-repo/dai/nl/292012217

    2014-01-01

    The Radiation Assessment Detector (RAD) on the Mars Science Laboratory’s Curiosity rover began making detailed measurements of the cosmic ray and energetic particle radiation environment on the surface of Mars on 7 August 2012. We report and discuss measurements of the absorbed dose and dose

  12. The measurement of internal conversion electrons of selected nuclei: A physics undergraduate laboratory experience

    International Nuclear Information System (INIS)

    Nagy, P.; Duggan, J.L.; Desmarais, D.

    1992-01-01

    Thin sources are now commercially available for a wide variety of isotopes that have measurable internal conversion coefficients. The authors have used standard surface barrier detectors, NIM electronics, and a personal computer analyzer to measure conversion electrons from a few of these sources. Conversion electrons energy and intensity were measured for 113 Sn, 133 Ba, 137 Cs, and 207 Bi. From the measured spectra the innershell binding energies of the K ampersand L Shell electrons from the daughter nuclei were determined and compared to theory. The relative conversion coefficients a k /a L and the K/L ration were also measured. The spin and parity change of the transitions will also be assigned based on the selection rules of the transitions

  13. Polarization-based enhancement of ocean color signal for estimating suspended particulate matter: radiative transfer simulations and laboratory measurements.

    Science.gov (United States)

    Liu, Jia; He, Xianqiang; Liu, Jiahang; Bai, Yan; Wang, Difeng; Chen, Tieqiao; Wang, Yihao; Zhu, Feng

    2017-04-17

    Absorption and scattering by molecules, aerosols and hydrosols, and the reflection and transmission over the sea surface can modify the original polarization state of sunlight. However, water-leaving radiance polarization, containing embedded water constituent information, has largely been neglected. Here, the efficiency of the parallel polarization radiance (PPR) for enhancing ocean color signal of suspended particulate matter is examined via vector radiative transfer simulations and laboratory experiments. The simulation results demonstrate that the PPR has a slightly higher ocean color signal at the top-of-atmosphere as compared with that of the total radiance. Moreover, both the simulations and laboratory measurements reveal that, compared with total radiance, PPR can effectively enhance the normalized ocean color signal for a large range of observation geometries, wavelengths, and suspended particle concentrations. Thus, PPR has great potential for improving the ocean color signal detection from satellite.

  14. The measurement of activity-weighted size distributions of radon progeny: methods and laboratory intercomparison studies

    International Nuclear Information System (INIS)

    Hopke, P.K.; Strydom, R.; Ramamurthi, M.; Knutson, E.O.; Tu, K.W.; Scofield, P.; Holub, R.F.; Cheng, Y.S.; Su, Y.F.; Winklmayr, W.

    1992-01-01

    Over the past 5 y, there have been significant improvements in measurement of activity-weighted size distributions of airborne radon decay products. The modification of screen diffusion batteries to incorporate multiple screens of differing mesh number, called graded screen arrays, have permitted improved size resolution below 10 nm such that the size distributions can now be determined down to molecular sized activities (0.5 nm). In order to ascertain the utility and reliability of such systems, several intercomparison tests have been performed in a 2.4 m3 radon chamber in which particles of varying size have been produced by introducing SO2 and H2O along with the radon to the chamber. In April 1988, intercomparison studies were performed between direct measurements of the activity-weighted size distributions as measured by graded screen arrays and an indirect measurement of the distribution obtained by measuring the number size distribution with a differential mobility analyzer and multiplying by the theoretical attachment rate. Good agreement was obtained in these measurements. A second set of intercomparison studies among a number of groups with graded screen array systems was made in April 1989 with the objective of resolving spectral structure below 10 nm. Again, generally good agreement among the various groups was obtained although some differences were noted. It is thus concluded that such systems can be constructed and can be useful in making routine measurements of activity-weighted size distributions with reasonable confidence in the results obtained

  15. The relationship between internet-gaming experience and executive functions measured by virtual environment compared with conventional laboratory multitasks.

    Directory of Open Access Journals (Sweden)

    Yong-Quan Chen

    Full Text Available The aim of this study was to investigate if individuals with frequent internet gaming (IG experience exhibited better or worse multitasking ability compared with those with infrequent IG experience. The individuals' multitasking abilities were measured using virtual environment multitasks, such as Edinburgh Virtual Errands Test (EVET, and conventional laboratory multitasks, such as the dual task and task switching. Seventy-two young healthy college students participated in this study. They were split into two groups based on the time spent on playing online games, as evaluated using the Internet Use Questionnaire. Each participant performed EVET, dual-task, and task-switching paradigms on a computer. The current results showed that the frequent IG group performed better on EVET compared with the infrequent IG group, but their performance on the dual-task and task-switching paradigms did not differ significantly. The results suggest that the frequent IG group exhibited better multitasking efficacy if measured using a more ecologically valid task, but not when measured using a conventional laboratory multitasking task. The differences in terms of the subcomponents of executive function measured by these task paradigms were discussed. The current results show the importance of the task effect while evaluating frequent internet gamers' multitasking ability.

  16. Review of ultraviolet damage threshold measurements at Lawrence Livermore National Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Lowdermilk, W.H.; Milam, D.

    1984-01-01

    The results of damage threshold measurements made at LLNL using ultraviolet wavelength laser pulses are reviewed. Measurements were made with pulses from a krypton fluoride laser with wavelength of 248 nm and pulse duration of 20 ns and with Nd-glass laser pulses converted to the third harmonic wavelength of 355 nm with duration of 0.6 ns. Measurements are presented for transparent window materials, crystals and harmonic generation, single layer dielectric films of oxide and fluoride materials and multilayer high reflectivity and antireflective coatings.

  17. Review of ultraviolet damage threshold measurements at Lawrence Livermore National Laboratory

    International Nuclear Information System (INIS)

    Lowdermilk, W.H.; Milam, D.

    1984-01-01

    The results of damage threshold measurements made at LLNL using ultraviolet wavelength laser pulses are reviewed. Measurements were made with pulses from a krypton fluoride laser with wavelength of 248 nm and pulse duration of 20 ns and with Nd-glass laser pulses converted to the third harmonic wavelength of 355 nm with duration of 0.6 ns. Measurements are presented for transparent window materials, crystals and harmonic generation, single layer dielectric films of oxide and fluoride materials and multilayer high reflectivity and antireflective coatings

  18. PV/T slates - Laboratory measurements; PV/T-Schiefer. Labormessungen

    Energy Technology Data Exchange (ETDEWEB)

    Kropf, S.

    2003-07-01

    This comprehensive, illustrated report for the Swiss Federal Office of Energy (SFOE) is one a series of five reports dealing with increasing the overall efficiency of photovoltaic (PV) installations by also using the heat collected by the dark-coloured PV panels. The work reported on addresses open questions on the use of the heat and its optimal use. This report deals with an experimental outdoor set-up and reviews in-situ measurements made on a prototype of a ventilated PV-tile system (PV/T-Slates). The report describes the configuration and construction of the experimental PV-tiled roof and the measurement system used to measure its electrical and thermal performance. The results of the measurements made are presented in detail in graphical form. The influence of various factors such as air-slit width and mounting angle are discussed.

  19. Unsaturated soil moisture drying and wetting diffusion coefficient measurements in the laboratory.

    Science.gov (United States)

    2009-09-01

    ABSTRACTTransient moisture flow in an unsaturated soil in response to suction changes is controlled by the unsaturated moisture diffusion coefficient. The moisture diffusion coefficient can be determined by measuring suction profiles over time. The l...

  20. Lawrence Livermore National Laboratory Experience Using 30-Gallon Drum Neutron Multiplicity Counter for Measuring Plutonium-Bearing Salts

    International Nuclear Information System (INIS)

    Dearborn, D M; Keeton, S C

    2004-01-01

    Lawrence Livermore National Laboratory (LLNL) has been performing accountability measurements of plutonium (Pu) -bearing items with the 30-gallon drum neutron multiplicity counter (NMC) since August 1998. A previous paper focused on the LLNL experience with Pu-bearing oxide and metal items. This paper expands on the LLNL experience with Pu-bearing salts containing low masses of Pu. All Pu-bearing salts used in this study were measured using calorimetry and gamma isotopic analyses (Cal/Iso) as well as the 30-gallon drum NMC. The Cal/Iso values were treated as being the true measure of Pu content because of the inherent high accuracy of the Cal/Iso technique, even at low masses of Pu, when measured over a sufficient period of time. Unfortunately, the long time period required to achieve high accuracy from Cal/Iso can impact other required accountability measurements. The 30-gallon drum NMC is a much quicker system for making accountability measurements of a Pu-bearing salt and might be a desirable tradeoff. The accuracy of 30-gallon drum NMC measurements of Pu-bearing salts, relative to that of Cal/Iso, is presented in relation to the mass range and alpha associated with each item. Conclusions drawn from the use of the 30-gallon drum NMC for accountability measurements of salts are also included