WorldWideScience

Sample records for vuv double photoionization

  1. Atmospheric pressure photoionization using tunable VUV synchrotron radiation

    Energy Technology Data Exchange (ETDEWEB)

    Giuliani, A., E-mail: alexandre.giuliani@synchrotron-soleil.fr [Synchrotron SOLEIL, L' Orme des Merisiers, Saint Aubin, 91192 Gif-sur-Yvette (France); INRA, U1008 CEPIA, Rue de la Geraudiere, F-44316 Nantes (France); Giorgetta, J.-L.; Ricaud, J.-P. [Synchrotron SOLEIL, L' Orme des Merisiers, Saint Aubin, 91192 Gif-sur-Yvette (France); Jamme, F. [Synchrotron SOLEIL, L' Orme des Merisiers, Saint Aubin, 91192 Gif-sur-Yvette (France); INRA, U1008 CEPIA, Rue de la Geraudiere, F-44316 Nantes (France); Rouam, V.; Wien, F. [Synchrotron SOLEIL, L' Orme des Merisiers, Saint Aubin, 91192 Gif-sur-Yvette (France); Laprevote, O. [Laboratoire de Spectrometrie de Masse, ICSN-CNRS, 1 Avenue de la Terrasse, 91190 Gif-sur-Yvette (France); Laboratoire de Chimie-Toxicologie Analytique et cellulaire, IFR 71, Faculte des Sciences Pharmaceutiques et Biologiques, Universite Paris Descartes, 4 Avenue de l' Observatoire, 75006 Paris (France); Refregiers, M. [Synchrotron SOLEIL, L' Orme des Merisiers, Saint Aubin, 91192 Gif-sur-Yvette (France)

    2012-05-15

    Highlights: Black-Right-Pointing-Pointer Coupling of an atmospheric pressure photoionization source with a vacuum ultra-violet (VUV) beamline. Black-Right-Pointing-Pointer The set up allows photoionization up to 20 eV. Black-Right-Pointing-Pointer Compared to classical atmospheric pressure photoionization (APPI), our set up offers spectral purity and tunability. Black-Right-Pointing-Pointer Allows photoionization mass spectrometry on fragile and hard to vaporize molecules. - Abstract: We report here the first coupling of an atmospheric pressure photoionization (APPI) source with a synchrotron radiation beamline in the vacuum ultra-violet (VUV). A commercial APPI source of a QStar Pulsar i from AB Sciex was modified to receive photons from the DISCO beamline at the SOLEIL synchrotron radiation facility. Photons are delivered at atmospheric pressure in the 4-20 eV range. The advantages of this new set up, termed SR-APPI, over classical APPI are spectral purity and continuous tunability. The technique may also be used to perform tunable photoionization mass spectrometry on fragile compounds difficult to vaporize by classical methods.

  2. VUV photoionization and dissociative photoionization of the prebiotic molecule acetyl cyanide: Theory and experiment

    Energy Technology Data Exchange (ETDEWEB)

    Bellili, A.; Hochlaf, M., E-mail: hochlaf@univ-mlv.fr, E-mail: martin.schwell@lisa.u-pec.fr [Laboratoire Modélisation et Simulation Multi Echelle, MSME UMR 8208 CNRS, Université Paris-Est, 5 bd Descartes, 77454 Marne-la-Vallée (France); Schwell, M., E-mail: hochlaf@univ-mlv.fr, E-mail: martin.schwell@lisa.u-pec.fr; Bénilan, Y.; Fray, N.; Gazeau, M.-C. [Laboratoire Interuniversitaire des Systèmes Atmosphériques (LISA), UMR 7583 CNRS, Institut Pierre et Simon Laplace, Universités Paris-Est Créteil et Paris Diderot, 61 Avenue du Général de Gaulle, 94010 Créteil (France); Mogren Al-Mogren, M. [Chemistry Department, Faculty of Science, King Saud University, P.O. Box 2455, Riyadh 11451 (Saudi Arabia); Guillemin, J.-C. [Institut des Sciences Chimiques de Rennes, Ecole Nationale Supérieure de Chimie de Rennes, CNRS, UMR 6226, Allée de Beaulieu, CS 50837, 35708 Rennes Cedex 7 (France); Poisson, L. [Laboratoire Francis Perrin, CNRS URA 2453, CEA, IRAMIS, Laboratoire Interactions Dynamique et Lasers, Bât 522, F-91191 Gif/Yvette (France)

    2014-10-07

    The present combined theoretical and experimental investigation concerns the single photoionization of gas-phase acetyl cyanide and the fragmentation pathways of the resulting cation. Acetyl cyanide (AC) is inspired from both the chemistry of cyanoacetylene and the Strecker reaction which are thought to be at the origin of medium sized prebiotic molecules in the interstellar medium. AC can be formed by reaction from cyanoacetylene and water but also from acetaldehyde and HCN or the corresponding radicals. In view of the interpretation of vacuum ultraviolet (VUV) experimental data obtained using synchrotron radiation, we explored the ground potential energy surface (PES) of acetyl cyanide and of its cation using standard and recently implemented explicitly correlated methodologies. Our PES covers the regions of tautomerism (between keto and enol forms) and of the lowest fragmentation channels. This allowed us to deduce accurate thermochemical data for this astrobiologically relevant molecule. Unimolecular decomposition of the AC cation turns out to be very complex. The implications for the evolution of prebiotic molecules under VUV irradiation are discussed.

  3. Photodissociation of Small Molecules and Photoionization of Free Radicals Using the VUV Velocity-Map Imaging Photoion and Photoelectron Method

    Science.gov (United States)

    Gao, Hong

    The tunable vacuum ultraviolet (VUV) laser generated through the two-photon resonance-enhanced four-wave mixing scheme is combined with the newly developed time-slice velocity map imaging photoion method to study the photodissociation of small molecules in the VUV region, and with the velocity map imaging photoelectron method to study the photoionization of free radicals. The photodissociation dynamics of NO in the energy region around 13.5 eV has been investigated. Branching ratios of the three lowest dissociation channels of 12C 16O that produce C(3P) + O(3P), C( 1D) + O(3P) and C(3P) + O(1D) are measured for the first time in the VUV region from 102,500 cm-1 to 110,500 cm-1, valuable information of the dissociation dynamics for this prototype system has been deduced. We demonstrated an experiment that has two independently tunable VUV lasers and a time-slice velocity map imaging setup, this provides us a global way to perform systematic state-selected photodissociation of small molecules via state-selected detection of the atomic products in the VUV region. The velocity map imaging photoelectron method was successfully used to obtain the photoelectron spectrum of the propargyl radical (C3H3) via a single VUV photoionization process. The propargyl radical is generated by the 193 nm laser photodissociation of the precursor C3H3Cl. This is the first time that the velocity map imaging photoelectron method is used to get the photoelectron spectra of free radicals, indicating that it is a powerful technique for studying the photoionization of free radicals which are always hard to be produced with high enough number densities for spectroscopic studies. This dissertation is mainly based on the following peer-reviewed journal articles: 1. Hong Gao, Yang Pan, Lei Yang, Jingang Zhou, C. Y. Ng and William M. Jackson. "Time-slice velocity-map ion imaging studies of the Photodissociation of NO in the vacuum ultraviolet region", the Journal of Chemical Physics, 136, 134302

  4. VUV photoionization of acetamide studied by electron/ion coincidence spectroscopy in the 8-24 eV photon energy range

    Energy Technology Data Exchange (ETDEWEB)

    Schwell, Martin, E-mail: Martin.Schwell@lisa.u-pec.fr [LISA UMR CNRS 7583, Universite Paris Est Creteil and Universite Paris Diderot, Institut Pierre Simon Laplace, 61 Avenue du General de Gaulle, 94010 Creteil (France); Benilan, Yves; Fray, Nicolas; Gazeau, Marie-Claire; Es-Sebbar, Et. [LISA UMR CNRS 7583, Universite Paris Est Creteil and Universite Paris Diderot, Institut Pierre Simon Laplace, 61 Avenue du General de Gaulle, 94010 Creteil (France); Garcia, Gustavo A.; Nahon, Laurent [Synchrotron SOLEIL, L' Orme des Merisiers, St. Aubin, B.P. 48, 91192 Gif-sur-Yvette Cedex (France); Champion, Norbert [LERMA UMR CNRS 8112, Observatoire de Paris-Meudon, 5 place Jules-Jansen, 92195 Meudon (France); Leach, Sydney, E-mail: Sydney.Leach@obspm.fr [LERMA UMR CNRS 8112, Observatoire de Paris-Meudon, 5 place Jules-Jansen, 92195 Meudon (France)

    2012-01-17

    Highlights: Black-Right-Pointing-Pointer We study the VUV photoionization of acetamide in the 8-24 eV photon energy range. Black-Right-Pointing-Pointer Electron/ion coincidence measurements are performed using synchrotron radiation. Black-Right-Pointing-Pointer The adiabatic ionization energy of acetamide is determined by TPEPICO measurements. Black-Right-Pointing-Pointer VUV induced fragmentation pathways of acetamide are assigned and discussed. - Abstract: A VUV photoionization study of acetamide was carried out over the 8-24 eV photon energy range using synchrotron radiation and photoelectron/photoion coincidence (PEPICO) spectroscopy. Threshold photoelectron photoion coincidence (TPEPICO) measurements were also made. Photoion yield curves and branching ratios were measured for the parent ion and six fragment ions. The adiabatic ionization energy of acetamide was determined as I.E. (1{sup 2}A Prime ) = (9.71 {+-} 0.02) eV, in agreement with an earlier reported photoionization mass spectrometry (PIMS) value. The adiabatic energy of the first excited state of the ion, 1{sup 2}A Double-Prime , was determined to be Almost-Equal-To 10.1 eV. Assignments of the fragment ions and the pathways of their formation by dissociative photoionization were made. The neutral species lost in the principal dissociative photoionization processes are CH{sub 3}, NH{sub 2}, NH{sub 3}, CO, HCCO and NH{sub 2}CO. Heats of formation are derived for all ions detected and are compared with literature values. Some astrophysical implications of these results are discussed.

  5. Real-time monitoring of trace-level VOCs by an ultrasensitive compact lamp-based VUV photoionization mass spectrometer

    Science.gov (United States)

    Sun, W. Q.; Shu, J. N.; Zhang, P.; Li, Z.; Li, N. N.; Liang, M.; Yang, B.

    2015-06-01

    In this study, we report on the development of a compact lamp-based vacuum ultraviolet (VUV) photoionization mass spectrometer (PIMS; hereafter referred to as VUV-PIMS) in our laboratory; it is composed of a radio frequency-powered VUV lamp, a VUV photoionizer, an ion-immigration region, and a reflection time-of-flight mass spectrometer. By utilizing the novel photoionizer consisting of a photoionization cavity and a VUV light baffle, extremely low background noise was obtained. An ultrasensitive detection limit (2σ) of 3 pptv was achieved for benzene after an acquisition time of 10 s. To examine its potential for application in real-time sample monitoring, the developed VUV-PIMS was employed for the continuous measurement of urban air for six days in Beijing, China. Strong signals of trace-level volatile organic compounds such as benzene and its alkylated derivatives were observed in the mass spectra. These initial experimental results reveal that the instrument can be used for the online monitoring of trace-level species in the atmosphere.

  6. Real-time monitoring of trace-level VOCs by an ultrasensitive lamp-based VUV photoionization mass spectrometer

    Science.gov (United States)

    Sun, W. Q.; Shu, J. N.; Zhang, P.; Li, Z.; Li, N. N.; Liang, M.; Yang, B.

    2015-11-01

    In this study, we report on the development of a lamp-based vacuum ultraviolet photoionization mass spectrometer (VUV-PIMS) in our laboratory; it is composed of a radio-frequency-powered VUV lamp, a VUV photoionizer, an ion-migration lens assembly, and a reflection time-of-flight mass spectrometer. By utilizing the novel photoionizer consisting of a photoionization cavity and a VUV light baffle, the baselines of the mass spectra decreased from 263.6 ± 15.7 counts to 4.1 ± 1.8 counts. A detection limit (2σ) of 3 pptv was achieved for benzene after an acquisition time of 10 s. To examine its potential for real-time monitoring applications of samples, the developed VUV-PIMS was employed for the continuous measurement of urban air for 6 days in Beijing, China. Strong signals of trace-level volatile organic compounds, such as benzene and its alkylated derivatives, were observed in the mass spectra. These initial experimental results reveal that the instrument can be used for the online monitoring of trace-level species in the atmosphere.

  7. A VUV photoionization measurement and ab-initio calculation of the ionization energy of gas phase SiO2

    Energy Technology Data Exchange (ETDEWEB)

    Kostko, Oleg; Ahmed, Musahid; Metz, Ricardo B.

    2008-12-05

    In this work we report on the detection and vacuum-ultraviolet (VUV) photoionization of gas phase SiO2 generated in situ via laser ablation of silicon in a CO2 molecular beam. The resulting species are investigated by single photon ionization with tunable VUV synchrotron radiation and mass analyzed using reflectron mass spectrometry. Photoionization efficiency (PIE) curves are recorded for SiO and SiO2 and ionization energy estimates are revealed from such measurements. A state-to-state ionizationenergy of 12.60 (+-0.05) eV is recorded by fitting two prominent peaks in the PIE curve for the following process: 1SUM O-Si-O --> 2PRODg [O-Si-O]+. Electronic structure calculations aid in the interpretation of the photoionization process and allow for identification of the symmetric stretch of 2PRODg [O-Si-O]+ which is observed in the PIE spectrum to be 0.11 eV (890 cm-1) above the ground state of the cation and agrees with the 892 cm-1 symmetric stretch frequency calculated at the CCSD(T)/aug-cc-pVTZ level.

  8. Ionization of cytosine monomer and dimer studied by VUV photoionization and electronic structure calculations

    Energy Technology Data Exchange (ETDEWEB)

    Kostko, Oleg; Bravaya, Ksenia; Krylov, Anna; Ahmed, Musahid

    2009-12-14

    We report a combined theoretical and experimental study of ionization of cytosine monomers and dimers. Gas-phase molecules are generated by thermal vaporization of cytosine followed by expansion of the vapor in a continuous supersonic jet seeded in Ar. The resulting species are investigated by single photon ionization with tunable vacuum-ultraviolet (VUV) synchrotron radiation and mass analyzed using reflectron mass spectrometry. Energy onsets for the measured photoionization efficiency (PIE) spectra are 8.60+-0.05 eV and 7.6+-0.1 eV for the monomer and the dimer, respectively, and provide an estimate for the adiabatic ionization energies (AIE). The first AIE and the ten lowest vertical ionization energies (VIEs) for selected isomers of cytosine dimer computed using equation-of-motion coupled-cluster (EOM-IP-CCSD) method are reported. The comparison of the computed VIEs with the derivative of the PIE spectra, suggests that multiple isomers of the cytosine dimer are present in the molecular beam. The calculations reveal that the large red shift (0.7 eV) of the first IE of the lowest-energy cytosine dimer is due to strong inter-fragment electrostatic interactions, i.e., the hole localized on one of the fragments is stabilized by the dipole moment of the other. A sharp rise in the CH+ signal at 9.20+-0.05 eV is ascribed to the formation of protonated cytosine by dissociation of the ionized dimers. The dominant role of this channel is supported by the computed energy thresholds for the CH+ appearance and the barrierless or nearly barrierless ionization-induced proton transfer observed for five isomers of the dimer.

  9. Tabletop Femtosecond VUV Photoionization and PEPICO Detection of Microreactor Pyrolysis Products.

    Science.gov (United States)

    Couch, David E; Buckingham, Grant T; Baraban, Joshua H; Porterfield, Jessica P; Wooldridge, Laura A; Ellison, G Barney; Kapteyn, Henry C; Murnane, Margaret M; Peters, William K

    2017-07-20

    We report the combination of tabletop vacuum ultraviolet photoionization with photoion-photoelectron coincidence spectroscopy for sensitive, isomer-specific detection of nascent products from a pyrolysis microreactor. Results on several molecules demonstrate two essential capabilities that are very straightforward to implement: the ability to differentiate isomers and the ability to distinguish thermal products from dissociative ionization. Here, vacuum ultraviolet light is derived from a commercial tabletop femtosecond laser system, allowing data to be collected at 10 kHz; this high repetition rate is critical for coincidence techniques. The photoion-photoelectron coincidence spectrometer uses the momentum of the ion to identify dissociative ionization events and coincidence techniques to provide a photoelectron spectrum specific to each mass, which is used to distinguish different isomers. We have used this spectrometer to detect the pyrolysis products that result from the thermal cracking of acetaldehyde, cyclohexene, and 2-butanol. The photoion-photoelectron spectrometer can detect and identify organic radicals and reactive intermediates that result from pyrolysis. Direct comparison of laboratory and synchrotron data illustrates the advantages and potential of this approach.

  10. VUV photoionization of acetamide studied by electron/ion coincidence spectroscopy in the 8-24 eV photon energy range

    KAUST Repository

    Schwell, Martin

    2012-01-01

    A VUV photoionization study of acetamide was carried out over the 8-24 eV photon energy range using synchrotron radiation and photoelectron/photoion coincidence (PEPICO) spectroscopy. Threshold photoelectron photoion coincidence (TPEPICO) measurements were also made. Photoion yield curves and branching ratios were measured for the parent ion and six fragment ions. The adiabatic ionization energy of acetamide was determined as I.E. (1 2A′) = (9.71 ± 0.02) eV, in agreement with an earlier reported photoionization mass spectrometry (PIMS) value. The adiabatic energy of the first excited state of the ion, 1 2A″, was determined to be ≈10.1 eV. Assignments of the fragment ions and the pathways of their formation by dissociative photoionization were made. The neutral species lost in the principal dissociative photoionization processes are CH 3, NH 2, NH 3, CO, HCCO and NH 2CO. Heats of formation are derived for all ions detected and are compared with literature values. Some astrophysical implications of these results are discussed. © 2011 Elsevier B.V. All rights reserved.

  11. Imaging with Mass Spectrometry: A SIMS and VUV-Photoionization Study of Ion-Sputtered Atoms and Clusters from GaAs and Au

    Energy Technology Data Exchange (ETDEWEB)

    Takahashi, Lynelle; Zhou, Jia; Wilson, Kevin R.; Leone, Stephen R.; Ahmed, Musahid

    2008-12-05

    A new mass spectrometry surface imaging method is presented in which ion-sputtered neutrals are postionized by wavelength-tunable vacuum ultraviolet (VUV) light from a synchrotron source. Mass spectra and signal counts of the photoionized neutrals from GaAs (100) and Au are compared to those of the secondary ions. While clusters larger than dimers are more efficiently detected as secondary ions, certain species, such as As2, Au and Au2, are more efficiently detected through the neutral channel. Continuously tuning the photon wavelength allows photoionization efficiency (PIE) curves to be obtained for sputtered Asm (m=1,2) and Aun (n=1-4). From the observed ionization thresholds, sputtered neutral As and Au show no clear evidence of electronic excitation, while neutral clusters have photoionization onsets shifted to lower energies by ~;;0.3 eV. These shifts are attributed to unresolved vibrational and rotational excitations. High-spatial resolution chemical imaging with synchrotron VUV postionization is demonstrated at two different photon energies using a copper TEM grid embedded in indium. The resulting images are used to illustrate the use of tunable VUV light for verifying mass peak assignments by exploiting the unique wavelength-dependent PIE of each sputtered neutral species. This capability is valuable for identifying compounds when imaging chemically complex systems with mass spectrometry-based techniques.

  12. Synchrotron-based double imaging photoelectron/photoion coincidence spectroscopy of radicals produced in a flow tube: OH and OD

    Energy Technology Data Exchange (ETDEWEB)

    Garcia, Gustavo A.; Tang, Xiaofeng; Gil, Jean-François; Nahon, Laurent [Synchrotron SOLEIL, L’Orme des Merisiers, St. Aubin, BP 48, 91192 Gif sur Yvette (France); Ward, Michael; Batut, Sebastien; Fittschen, Christa [PC2A, Université de Lille 1, UMR CNRS-USTL 8522, Cité Scientifique Bât. C11, F-59655 Villeneuve d’Ascq (France); Taatjes, Craig A.; Osborn, David L. [Combustion Research Facility, Mail Stop 9055, Sandia National Laboratories, Livermore, California 94551-0969 (United States); Loison, Jean-Christophe [ISM, Université Bordeaux 1, CNRS, 351 cours de la Libération, 33405 Talence Cedex (France)

    2015-04-28

    We present a microwave discharge flow tube coupled with a double imaging electron/ion coincidence device and vacuum ultraviolet (VUV) synchrotron radiation. The system has been applied to the study of the photoelectron spectroscopy of the well-known radicals OH and OD. The coincidence imaging scheme provides a high selectivity and yields the spectra of the pure radicals, removing the ever-present contributions from excess reactants, background, or secondary products, and therefore obviating the need for a prior knowledge of all possible byproducts. The photoelectron spectra encompassing the X{sup 3}Σ{sup −} ground state of the OH{sup +} and OD{sup +} cations have been extracted and the vibrational constants compared satisfactorily to existing literature values. Future advantages of this approach include measurement of high resolution VUV spectroscopy of radicals, their absolute photoionization cross section, and species/isomer identification in chemical reactions as a function of time.

  13. Determination of ionization energies of CnN (n=4-12): Vacuum-ultraviolet (VUV) photoionization experiments and theoretical calculations

    Energy Technology Data Exchange (ETDEWEB)

    Kostko, Oleg; Zhou, Jia; Sun, Bian Jian; Lie, Jie Shiuan; Chang, Agnes H.H.; Kaiser, Ralf I.; Ahmed, Musahid

    2010-06-10

    Results from single photon vacuum ultraviolet photoionization of astrophysically relevant CnN clusters, n = 4 - 12, in the photon energy range of 8.0 eV to 12.8 eV are presented. The experimental photoionization efficiency curves, combined with electronic structure calculations, provide improved ionization energies of the CnN species. A search through numerous nitrogen-terminated CnN isomers for n=4-9 indicates that the linear isomer has the lowest energy, and therefore should be the most abundant isomer in the molecular beam. Comparison with calculated results also shed light on the energetics of the linear CnN clusters, particularly in the trends of the even-carbon and the odd-carbon series. These results can help guide the search of potential astronomical observations of these neutral molecules together with their cations in highly ionized regions or regions with a high UV/VUV photon flux (ranging from the visible to VUV with flux maxima in the Lyman- region) in the interstellar medium.

  14. Determination of ionization energies of CnN (n=4-12): Vacuum-ultraviolet (VUV) photoionization experiments and theoretical calculations

    Energy Technology Data Exchange (ETDEWEB)

    Kostko, Oleg; Zhou, Jia; Sun, Bian Jian; Lie, Jie Shiuan; Chang, Agnes H.H.; Kaiser, Ralf I.; Ahmed, Musahid

    2010-03-02

    Results from single photon vacuum ultraviolet photoionization of astrophysically relevant CnN clusters, n = 4 - 12, in the photon energy range of 8.0 eV to 12.8 eV are presented. The experimental photoionization efficiency curves, combined with electronic structure calculations, provide improved ionization energies of the CnN species. A search through numerous nitrogen-terminated CnN isomers for n=4-9 indicates that the linear isomer has the lowest energy, and therefore should be the most abundant isomer in the molecular beam. Comparison with calculated results also shed light on the energetics of the linear CnN clusters, particularly in the trends of the even-carbon and the odd-carbon series. These results can help guide the search of potential astronomical observations of these neutral molecules together with their cations in highly ionized regions or regions with a high UV/VUV photon flux (ranging from the visible to VUV with flux maxima in the Lyman-a region) in the interstellar medium.

  15. Pyrolysis of methyl tert-butyl ether (MTBE). 1. Experimental study with molecular-beam mass spectrometry and tunable synchrotron VUV photoionization.

    Science.gov (United States)

    Zhang, Taichang; Wang, Jing; Yuan, Tao; Hong, Xin; Zhang, Lidong; Qi, Fei

    2008-10-23

    An experimental study of methyl tert-butyl ether (MTBE) pyrolysis (3.72% MTBE in argon) has been performed at low pressure (267 Pa) within the temperature range from 700 to 1420 K. The pyrolysis process was detected with the tunable synchrotron vacuum ultraviolet (VUV) photoionization and molecular-beam mass spectrometry (MBMS). About thirty intermediates are identified from near-threshold measurements of photoionization mass spectrum and photoionization efficiency spectrum. Among them, H2, CO, CH4, CH3OH and C4H8 are the major pyrolysis products. The radicals such as methyl, methoxy, propargyl, allyl, C4H5 and C4H7 are detected. The isomers of pyrolysis products are identified as well, i.e., propyne and allene, 1,2,3-butatriene and vinylacetylene, isobutene and 1-butene, propanal and acetone. Furthermore, the mole fractions of the pyrolysis products have been evaluated under various temperatures. Meanwhile, the initial formation temperatures of different pyrolysis products can be obtained. This work is anticipated to present a new experimental method for pyrolysis study and help understand the pyrolysis and combustion chemistry of MTBE and other oxygenated fuels.

  16. Dominant conformer of tetrahydropyran-2-methanol and its clusters in the gas phase explored by the use of VUV photoionization and vibrational spectroscopy

    Science.gov (United States)

    Zhan, Huaqi; Hu, Yongjun; Wang, Pengchao; Chen, Jiaxin

    2017-04-01

    Tetrahydropyran-2-methanol (THPM) is a typical alcohol containing a six-member cyclic ether, which can be considered as the model molecule of cyclic sugar. Herein, vacuum ultraviolet (VUV) photodissociation spectroscopy is employed to study fragmentation pathways and infrared (IR) plus VUV photoionization spectroscopy to investigate the structures of neutral THPM and its clusters with the size up to the trimer. Qualitative structural assignments are confirmed for the neutral species and ions based on MP2/aug-cc-pVTZ and ωB97X-D/cc-pVTZ calculations. The fragment cations at m/z = 84, 85, and 98 arise by the losing of CH2OH, CH3OH, and H2O from the monomer, respectively, as a result of C-C bond and C-O bond dissociation under the VUV (118 nm) radiation. It is found that the loss of CH3OH and H2O involves hydrogen transfer from the CH2 group to the dissociating CH2 and OH groups. Comparing the observed and calculated spectra of the monomer THPM, it suggests that the conformer containing a chair tetrahydropyran ring and an intramolecular hydrogen bond would be dominantly survived in a supersonic beam. Moreover, the IR spectra of larger clusters n > 1 (n = 2, 3) show only the broad hydrogen bonded OH stretch mode, and thus these larger clusters would form a closed-cyclic structure, where all OH groups are participating in hydrogen bonding. Partially the CH stretch positions of THPM clusters do not change significantly with the increasing of cluster size, thus the CH and CH2 groups are not involved in H-bonding interactions.

  17. Photoionization-photoelectron research

    Energy Technology Data Exchange (ETDEWEB)

    Berkowitz, J.; Ruscic, B. [Argonne National Laboratory, IL (United States)

    1993-12-01

    The photoionization research program is aimed at understanding the basic processes of interaction of vacuum ultraviolet (VUV) light with atoms and molecules. This research provides valuable information on both thermochemistry and dynamics. Recent studies include atoms, clusters, hydrides, sulfides and an important fluoride.

  18. First Principles Study of Double Photoionization of H2 UsingExterior Complex Scaling

    Energy Technology Data Exchange (ETDEWEB)

    Rescigno, Thomas N.; Vanroose, Wim; Horner, Daniel A.; Martin,Fernando; McCurdy, C. William

    2006-07-21

    Exterior complex scaling provides a practical path forfirst-principles studies of atomic and molecular ionizationproblemssince it avoids explicit enforcement of asymptotic boundary conditionsfor 3-body Coulomb breakup. We have used the method of exterior complexscaling, implemented with both the discrete variable representation andB-splines, to obtain the first-order wave function for molecular hydrogencorresponding to a single photon having been absorbed by a correlatedinitial state. These wave functions are used to construct convergedtriple differential cross sections for double photoionization of alignedH2 molecules.

  19. Relativistic calculations of double $K$-shell photoionization for neutral medium-$Z$ atoms

    CERN Document Server

    Yerokhin, V A; Fritzsche, S

    2014-01-01

    Fully relativistic calculations are presented for the double $K$-shell photoionization cross section for several neutral medium-$Z$ atoms, from magnesium ($Z = 10$) up to silver ($Z = 47$). The calculations take into account all multipoles of the absorbed photon as well as the retardation of the electron-electron interaction. The approach is based on the partial-wave representation of the Dirac continuum states and uses the Green-function technique to represent the full Dirac spectrum of intermediate states. The method is strictly gauge invariant, which is used as an independent cross check of the computational procedure. The calculated ratios of the double-to-single $K$-shell ionization cross sections are compared with the experimental data and with previous computations.

  20. Entanglement of mixed quantum states for qubits and qudit in double photoionization of atoms

    Energy Technology Data Exchange (ETDEWEB)

    Chakraborty, M., E-mail: bminakshi@yahoo.com [Department of Physics, Asansol Girls’ College, Asansol 713304 (India); Sen, S. [Department of Physics, Triveni Devi Bhalotia College, Raniganj 713347 (India)

    2015-08-15

    Highlights: • We study tripartite entanglement between two electronic qubits and an ionic qudit. • We study bipartite entanglement between any two subsystems of a tripartite system. • We have presented a quantitative application of entangled properties in Neon atom. - Abstract: Quantum entanglement and its paradoxical properties are genuine physical resources for various quantum information tasks like quantum teleportation, quantum cryptography, and quantum computer technology. The physical characteristic of the entanglement of quantum-mechanical states, both for pure and mixed, has been recognized as a central resource in various aspects of quantum information processing. In this article, we study the bipartite entanglement of one electronic qubit along with the ionic qudit and also entanglement between two electronic qubits. The tripartite entanglement properties also have been investigated between two electronic qubits and an ionic qudit. All these studies have been done for the single-step double photoionization from an atom following the absorption of a single photon without observing spin orbit interaction. The dimension of the Hilbert space of the qudit depends upon the electronic state of the residual photoion A{sup 2+}. In absence of SOI, when Russell–Saunders coupling (L–S coupling) is applicable, dimension of the qudit is equal to the spin multiplicity of A{sup 2+}. For estimations of entanglement and mixedness, we consider the Peres–Horodecki condition, concurrence, entanglement of formation, negativity, linear and von Neumann entropies. In case of L–S coupling, all the properties of a qubit–qudit system can be predicted merely with the knowledge of the spins of the target atom and the residual photoion.

  1. Theoretical treatment of double photoionization of helium using a B-spline implementation of exterior complex scaling

    Energy Technology Data Exchange (ETDEWEB)

    McCurdy, C. William; Horner, Daniel A.; Rescigno, Thomas N.; Martin, Fernando

    2004-02-19

    Calculations of absolute triple differential and single differential cross sections for helium double photoionization are performed using an implementation of exterior complex scaling in B-splines. Results for cross sections, well-converged in partial waves, are presented and compared with both experiment and earlier theoretical calculations. These calculations establish the practicality and effectiveness of the complex B-spline approach to calculations of double ionization of atomic and molecular systems.

  2. Effect of the methyl substitution on the combustion of two methylheptane isomers: Flame chemistry using vacuum-ultraviolet (VUV) photoionization mass spectrometry

    KAUST Repository

    Selim, Hatem

    2015-04-16

    Alkanes with one or more methyl substitutions are commonly found in liquid transportation fuels, so a fundamental investigation of their combustion chemistry is warranted. In the present work, stoichiometric low-pressure (20 Torr) burner-stabilized flat flames of 2-methylheptane and 3-methylheptane were investigated. Flame species were measured via time-of-flight molecular-beam mass spectrometry, with vacuum-ultraviolet (VUV) synchrotron radiation as the ionization source. Mole fractions of major end-products and intermediate species (e.g., alkanes, alkenes, alkynes, aldehydes, and dienes) were quantified axially above the burner surface. Mole fractions of several free radicals were also measured (e.g., CH3, HCO, C2H3, C3H3, and C3H5). Isomers of different species were identified within the reaction pool by an energy scan between 8 and 12 eV at a distance of 2.5 mm away from the burner surface. The role of methyl substitution location on the alkane chain was determined via comparisons of similar species trends obtained from both flames. The results revealed that the change in CH3 position imposed major differences on the combustion of both fuels. Comparison with numerical simulations was performed for kinetic model testing. The results provide a comprehensive set of data about the combustion of both flames, which can enhance the erudition of both fuels combustion chemistry and also improve their chemical kinetic reaction mechanisms. © 2015 American Chemical Society.

  3. IR + VUV double resonance spectroscopy and extended density functional theory studies of ketone solvation by alcohol: 2-butanone.(methanol)n, n = 1-4 clusters

    Science.gov (United States)

    Shin, Joong-Won; Bernstein, Elliot R.

    2017-09-01

    Infrared plus vacuum ultraviolet (IR + VUV) photoionization vibrational spectroscopy of 2-butanone/methanol clusters [MEK.(MeOH)n, n = 1-4] is performed to explore structures associated with hydrogen bonding of MeOH molecules to the carbonyl functional group of the ketone. IR spectra and X3LYP/6-31++G(d,p) calculations show that multiple isomers of MEK.(MeOH)n are generated in the molecular beam as a result of several hydrogen bonding sites available to the clusters throughout the size range investigated. Isomer interconversion involving solvating MeOH rearrangement should probably occur for n = 1 and 2. The mode energy for a hydrogen bonded OH stretching transition gradually redshifts as the cluster size increases. Calculations suggest that the n = 3 cluster isomers adopt structures in which the MEK molecule is inserted into the cyclic MeOH hydrogen bond network. In larger structures, the cyclic network may be preserved.

  4. Symmetrized complex amplitudes for He double photoionization from the time-dependent close coupling and exterior complex scaling methods

    Energy Technology Data Exchange (ETDEWEB)

    Horner, D.A.; Colgan, J.; Martin, F.; McCurdy, C.W.; Pindzola, M.S.; Rescigno, T.N.

    2004-06-01

    Symmetrized complex amplitudes for the double photoionization of helium are computed by the time-dependent close-coupling and exterior complex scaling methods, and it is demonstrated that both methods are capable of the direct calculation of these amplitudes. The results are found to be in excellent agreement with each other and in very good agreement with results of other ab initio methods and experiment.

  5. Hybrid Orbital and Numerical Grid Representationfor Electronic Continuum Processes: Double Photoionization of Atomic Beryllium

    Energy Technology Data Exchange (ETDEWEB)

    Yip, Frank L; McCurdy, C. William; Rescigno, Thomas N

    2010-04-19

    A general approach for ab initio calculations of electronic continuum processes is described in which the many-electron wave function is expanded using a combination of orbitals at short range and the finite-element discrete variable representation(FEM-DVR) at larger distances. The orbital portion of the basis allows the efficient construction of many-electron configurations in which some of the electrons are bound, but because the orbitals are constructed from an underlying FEM-DVR grid, the calculation of two-electron integrals retains the efficiency of the primitive FEM-DVR approach. As an example, double photoionization of beryllium is treated in a calculation in which the 1s{sup 2} core is frozen. This approach extends the use of exterior complex scaling (ECS) successfully applied to helium and H{sub 2} to calculations with two active electrons on more complicated targets. Integrated, energy-differential and triply-differential cross sections are exhibited, and the results agree well with other theoretical investigations.

  6. CRF-PEPICO: Double velocity map imaging photoelectron photoion coincidence spectroscopy for reaction kinetics studies

    Science.gov (United States)

    Sztáray, Bálint; Voronova, Krisztina; Torma, Krisztián G.; Covert, Kyle J.; Bodi, Andras; Hemberger, Patrick; Gerber, Thomas; Osborn, David L.

    2017-07-01

    Photoelectron photoion coincidence (PEPICO) spectroscopy could become a powerful tool for the time-resolved study of multi-channel gas phase chemical reactions. Toward this goal, we have designed and tested electron and ion optics that form the core of a new PEPICO spectrometer, utilizing simultaneous velocity map imaging for both cations and electrons, while also achieving good cation mass resolution through space focusing. These optics are combined with a side-sampled, slow-flow chemical reactor for photolytic initiation of gas-phase chemical reactions. Together with a recent advance that dramatically increases the dynamic range in PEPICO spectroscopy [D. L. Osborn et al., J. Chem. Phys. 145, 164202 (2016)], the design described here demonstrates a complete prototype spectrometer and reactor interface to carry out time-resolved experiments. Combining dual velocity map imaging with cation space focusing yields tightly focused photoion images for translationally cold neutrals, while offering good mass resolution for thermal samples as well. The flexible optics design incorporates linear electric fields in the ionization region, surrounded by dual curved electric fields for velocity map imaging of ions and electrons. Furthermore, the design allows for a long extraction stage, which makes this the first PEPICO experiment to combine ion imaging with the unimolecular dissociation rate constant measurements of cations to detect and account for kinetic shifts. Four examples are shown to illustrate some capabilities of this new design. We recorded the threshold photoelectron spectrum of the propargyl and the iodomethyl radicals. While the former agrees well with a literature threshold photoelectron spectrum, we have succeeded in resolving the previously unobserved vibrational structure in the latter. We have also measured the bimolecular rate constant of the CH2I + O2 reaction and observed its product, the smallest Criegee intermediate, CH2OO. Finally, the second

  7. Dissociative photoionization of quinoline and isoquinoline

    NARCIS (Netherlands)

    Bouwman, J.; Sztáray, B.; Oomens, J.; Hemberger, P.; Bodi, A.

    2015-01-01

    Two nitrogen-containing polycyclic aromatic hydrocarbon isomers of C9H7N composition, quinoline, and isoquinoline have been studied by imaging photoelectron photoion coincidence spectroscopy at the VUV beamline of the Swiss Light Source. High resolution threshold photoelectron spectra have been

  8. Vacuum Ultraviolet Photoionization of Complex Chemical Systems.

    Science.gov (United States)

    Kostko, Oleg; Bandyopadhyay, Biswajit; Ahmed, Musahid

    2016-05-27

    Tunable vacuum ultraviolet (VUV) radiation coupled to mass spectrometry is applied to the study of complex chemical systems. The identification of novel reactive intermediates and radicals is revealed in flame, pulsed photolysis, and pyrolysis reactors, leading to the elucidation of spectroscopy, reaction mechanisms, and kinetics. Mass-resolved threshold photoelectron photoion coincidence measurements provide unprecedented access to vibrationally resolved spectra of free radicals present in high-temperature reactors. Photoionization measurements in water clusters, nucleic acid base dimers, and their complexes with water provide signatures of proton transfer in hydrogen-bonded and π-stacked systems. Experimental and theoretical methods to track ion-molecule reactions and fragmentation pathways in intermolecular and intramolecular hydrogen-bonded systems in sugars and alcohols are described. Photoionization of laser-ablated molecules, clusters, and their reaction products inform thermodynamics and spectroscopy that are relevant to astrochemistry and catalysis. New directions in coupling VUV radiation to interrogate complex chemical systems are discussed.

  9. Single and Triple Differential Cross Sections for DoublePhotoionization of H-

    Energy Technology Data Exchange (ETDEWEB)

    Yip, Frank L.; Horner, Daniel A.; McCurdy, C. William; Rescigno,Thomas N.

    2007-02-15

    The hydride anion H- would not be bound in the absence ofelectron correlation. Electron correlation drives the doublephotoionization process and, thus should impact double photoionizationresults most strongly for H-. We present fully differential crosssections for the three-body breakup of H- by single photon absorption.The absolute triple-differential and single-differential cross sectionswere yielded by ab initio calculations making use of exterior complexscaling within a discrete variable representation partialwave basis.Results calculated at photon energies of 18eV and 30eV are compared withreported cross sections for helium calculated at 20eV above the doubleionization threshold. These comparisons show a clear signature of initialstate correlation that differentiate the He and H- cases.

  10. Photoionization sensors for non-invasive medical diagnostics

    Science.gov (United States)

    Mustafaev, Aleksandr; Rastvorova, Iuliia; Khobnya, Kristina; Podenko, Sofia

    2016-09-01

    The analysis of biomarkers can help to identify the significant number of diseases: lung cancer, tuberculosis, diabetes, high levels of stress, psychosomatic disorders etc. To implement continuous monitoring of the state of human health, compact VUV photoionization detector with current-voltage measurement is designed by Saint-Petersburg Mining University Plasma Research Group. This sensor is based on the patented method of stabilization of electric parameters - CES (Collisional Electron Spectroscopy). During the operation at atmospheric pressure VUV photoionization sensor measures the energy of electrons, produced in the ionization with the resonance photons, whose wavelength situated in the vacuum ultraviolet (VUV). A special software was developed to obtain the second-order derivative of the I-U characteristics, taken by the VUV sensor, to construct the energy spectra of the characteristic electrons. VUV photoionization detector has an unique set of parameters: small size (10*10*1 mm), low cost, wide range of recognizable molecules, as well as accuracy, sufficient for using this instrument for the medical purposes. This device can be used for non-invasive medical diagnostics without compromising the quality of life, for control of environment and human life. Work supported by Foundation for Assistance to Small Innovative Enterprises in Science and Technology.

  11. Test of a q-fractional V{sup (N-q)} Hartree-Fock potential for the calculation of double photoionization cross sections of neon

    Energy Technology Data Exchange (ETDEWEB)

    Kilin, V.A. [Tomsk Polytechnic University, Tomsk (Russian Federation); Lazarev, D.V.; Lazarev, Dm.A.; Zelichenko, V.M. [Tomsk Pedagogic University, Tomsk (Russian Federation); Amusia, M. Ya. [A.F. Ioffe Physico-Technical Institute, St. Petersburg (Russian Federation); Schartner, K.-H. [I Physikalisches Institut, Justus-Liebig-Universitaet, Giessen (Germany); Ehresmann, A.; Schmoranzer, H. [Fachbereich Physik, Universitaet Kaiserslautern, Kaiserslautern (Germany)

    2001-10-28

    The approach of a parametric V{sup (N-q)} Hartree-Fock potential with fractional q is developed and applied for the first time for the calculation of the double photoionization cross sections of Ne. A minimum of the squared difference between the length-form and velocity-form cross sections is used as a criterion for calculating the values of q. It is found that the minimization procedure leads to a practically exact equality of the length-form and velocity-form cross sections for the Ne III 2s{sup 2}2p{sup 4}[{sup 3}P,{sup 1}D,{sup 1}S], 2s{sup 1}2p{sup 5}[{sup 3}P,{sup 1}P] and 2s{sup 0}2p{sup 6}[{sup 1}S] states in the exciting-photon energy region from the double-ionization threshold up to 325 eV, if q is considered as a function of the exciting-photon energy. The calculated V{sup (N-q)} cross sections are in better agreement with the experimental data than those for the V{sup (N-1)} and V{sup (N-2)} potentials. (author)

  12. SINGLE AND DOUBLE PHOTOIONIZATION AND PHOTODISSOCIATION OF TOLUENE BY SOFT X-RAYS IN A CIRCUMSTELLAR ENVIRONMENT

    Energy Technology Data Exchange (ETDEWEB)

    Monfredini, T.; Boechat-Roberty, H. M. [Observatório do Valongo, Universidade Federal do Rio de Janeiro, Ladeira Pedro Antonio, 43, Rio de Janeiro (Brazil); Fantuzzi, F.; Nascimento, M. A. C. [Instituto de Química, Universidade Federal do Rio de Janeiro, Av. Athos da Silveira Ramos, 149, Rio de Janeiro (Brazil); Wolff, W., E-mail: heloisa@astro.ufrj.br [Instituto de Física, Universidade Federal do Rio de Janeiro, Av. Athos da Silveira Ramos, 149, Rio de Janeiro (Brazil)

    2016-04-10

    The formation of polycyclic aromatic hydrocarbons (PAHs) and their methyl derivatives mainly occurs in the dust shells of asymptotic giant branch (AGB) stars. The bands at 3.3 and 3.4 μm, observed in infrared emission spectra of several objects, are attributed C–H vibrational modes in aromatic and aliphatic structures, respectively. In general, the feature at 3.3 μm is more intense than that at 3.4 μm. Photoionization and photodissociation processes of toluene, the precursor of methylated PAHs, were studied using synchrotron radiation at soft X-ray energies around the carbon K edge using time-of-flight mass spectrometry. Partial ion yields of a large number of ionic fragments were extracted from single and 2D-spectra, where electron-ion coincidences have revealed the doubly charged parent molecule and several doubly charged fragments containing seven carbon atoms with considerable abundance. Ab initio calculations based on density functional theory were performed in order to elucidate the chemical structure of these stable dicationic species. The survival of the dications subjected to hard inner shell ionization suggests that they could be observed in the interstellar medium, especially in regions where PAHs are detected. The ionization and destruction of toluene induced by X-rays were examined in the T Dra conditions, a carbon-rich AGB star. In this context, a minimum photodissociation radius and the half-life of toluene subjected to the incidence of the soft X-ray flux emitted from a companion white dwarf star were determined.

  13. Protonation enhancement by dichloromethane doping in low-pressure photoionization

    Science.gov (United States)

    Shu, Jinian; Zou, Yao; Xu, Ce; Li, Zhen; Sun, Wanqi; Yang, Bo; Zhang, Haixu; Zhang, Peng; Ma, Pengkun

    2016-12-01

    Doping has been used to enhance the ionization efficiency of analytes in atmospheric pressure photoionization, which is based on charge exchange. Compounds with excellent ionization efficiencies are usually chosen as dopants. In this paper, we report a new phenomenon observed in low-pressure photoionization: Protonation enhancement by dichloromethane (CH2Cl2) doping. CH2Cl2 is not a common dopant due to its high ionization energy (11.33 eV). The low-pressure photoionization source was built using a krypton VUV lamp that emits photons with energies of 10.0 and 10.6 eV and was operated at ~500-1000 Pa. Protonation of water, methanol, ethanol, and acetaldehyde was respectively enhanced by 481.7 ± 122.4, 197.8 ± 18.8, 87.3 ± 7.8, and 93.5 ± 35.5 times after doping 291 ppmv CH2Cl2, meanwhile CH2Cl2 almost does not generate noticeable ions itself. This phenomenon has not been documented in the literature. A new protonation process involving in ion-pair and H-bond formations was proposed to expound the phenomenon. The observed phenomenon opens a new prospect for the improvement of the detection efficiency of VUV photoionization.

  14. High-Resolution Photoionization, Photoelectron and Photodissociation Studies. Determination of Accurate Energetic and Spectroscopic Database for Combustion Radicals and Molecules

    Energy Technology Data Exchange (ETDEWEB)

    Ng, Cheuk-Yiu [Univ. of California, Davis, CA (United States)

    2016-04-25

    The main goal of this research program was to obtain accurate thermochemical and spectroscopic data, such as ionization energies (IEs), 0 K bond dissociation energies, 0 K heats of formation, and spectroscopic constants for radicals and molecules and their ions of relevance to combustion chemistry. Two unique, generally applicable vacuum ultraviolet (VUV) laser photoion-photoelectron apparatuses have been developed in our group, which have used for high-resolution photoionization, photoelectron, and photodissociation studies for many small molecules of combustion relevance.

  15. Molecular beam studies of unimolecular and bimolecular chemical reaction dynamics using VUV synchrotron radiation as a product probe

    Energy Technology Data Exchange (ETDEWEB)

    Blank, David Andrew [Univ. of California, Berkeley, CA (United States)

    1997-08-01

    This dissertation describes the use of a new molecular beam apparatus designed to use tunable VUV synchrotron radiation for photoionization of the products from scattering experiments. The apparatus was built at the recently constructed Advanced Light Source at Lawrence Berkeley National Laboratory, a third generation 1-2 GeV synchrotron radiation source. The new apparatus is applied to investigations of the dynamics of unimolecular reactions, photodissociation experiments, and bimolecular reactions, crossed molecular beam experiments. The first chapter describes the new apparatus and the VUV radiation used for photoionization. This is followed by a number of examples of the many advantages provided by using VUV photoionization in comparison with the traditional technique of electron bombardment ionization. At the end of the chapter there is a discussion of the data analysis employed in these scattering experiments. The remaining four chapters are complete investigations of the dynamics of four chemical systems using the new apparatus and provide numerous additional examples of the advantages provided by VUV photoionizaiton of the products. Chapters 2-4 are photofragment translational spectroscopy studies of the photodissociation dynamics of dimethyl sulfoxide, acrylonitrile, and vinyl chloride following absorption at 193 mn. All of these systems have multiple dissociation channels and provide good examples of the ability of the new apparatus to unravel the complex UV photodissociation dynamics that can arise in small polyatomic molecules.

  16. PREFACE: International Symposium on (e,2e), Double Photoionization and Related Topics & 15th International Symposium on Polarization and Correlation in Electronic and Atomic Collisions

    Science.gov (United States)

    Martin, Nicholas L. S.; deHarak, Bruno A.

    2010-01-01

    From 30 July to 1 August 2009, over a hundred scientists from 18 countries attended the International Symposium on (e,2e), Double Photoionization and Related Topics and the 15th International Symposium on Polarization and Correlation in Electronic and Atomic Collisions which were held at the W T Young Library of the University of Kentucky, USA. Both conferences were satellite meetings of the XXVI International Conference on Photonic, Electronic and Atomic Collisions (ICPEAC) held in Kalamazoo, Michigan, USA, 21-28 July 2009. These symposia covered a broad range of experimental and theoretical topics involving excitation, ionization (single and multiple), and molecular fragmentation, of a wide range of targets by photons and charged particles (polarized and unpolarized). Atomic targets ranged from hydrogen to the heavy elements and ions, while molecular targets ranged from H2 to large molecules of biological interest. On the experimental front, cold target recoil ion momentum spectroscopy (COLTRIMS), also known as the Reaction Microscope because of the complete information it gives about a wide variety of reactions, is becoming commonplace and has greatly expanded the ability of researchers to perform previously inaccessible coincidence experiments. Meanwhile, more conventional spectrometers are also advancing and have been used for increasingly sophisticated and exacting measurements. On the theoretical front great progress has been made in the description of target states, and in the scattering calculations used to describe both simple and complex reactions. The international nature of collaborations between theorists and experimentalists is exemplified by, for example, the paper by Ren et al which has a total of 13 authors of whom the experimental group of six is from Heidelberg, Germany, one theoretical group is from Australia, with the remainder of the theoreticians coming from several different institutions in the United States. A total of 52 invited talks and

  17. Vacuum-Ultraviolet Photoionization and Mass Spectrometric Characterization of Lignin Monomers Coniferyl and Sinapyl Alcohols

    Energy Technology Data Exchange (ETDEWEB)

    Takahashi, Lynelle K.; Zhou, Jia; Kostko, Oleg; Golan, Amir; Leone, Stephen R.; Ahmed, Musahid

    2011-02-09

    The fragmentation mechanisms of monolignols under various energetic processes are studied with jet-cooled thermal desorption molecular beam (TDMB) mass spectrometry (MS), 25 keV Bi3+ secondary ion MS (SIMS), synchrotron vacuum-ultraviolet secondary neutral MS (VUV-SNMS) and theoretical methods. Experimental and calculated appearance energies of fragments observed in TDMB MS indicate that the coniferyl alcohol photoionization mass spectra contain the molecular parent and several dissociative photoionization products. Similar results obtained for sinapyl alcohol are also discussed briefly. Ionization energies of 7.60 eV ? 0.05 eV for coniferyl alcohol and<7.4 eV for both sinapyl and dihydrosinapyl alcohols are determined. The positive ion SIMS spectrum of coniferyl alcohol shares few characteristic peaks (m/z = 137 and 151) with the TDMB mass spectra, shows extensive fragmentation, and does not exhibit clear molecular parent signals. VUV-SNMS spectra, on the other hand, are dominated by the parent ion and main fragments also present in the TDMB spectra. Molecular fragmentation in VUV-SNMS spectra can be reduced by increasing the extraction delay time. Some features resembling the SIMS spectra are also observed in the desorbed neutral products. The monolignol VUV-SNMS peaks shared with the TDMB mass spectra suggest that dissociative photoionization of ion-sputtered neutral molecules predominate in the VUV-SNMS mass spectra, despite the extra internal energy imparted in the initial ion impact. The potential applications of these results to imaging mass spectrometry of bio-molecules are discussed.

  18. Real-time ultrasensitive VUV-PIMS detection of representative endogenous volatile markers in cancers.

    Science.gov (United States)

    Li, Zhen; Shu, Jinian; Zhang, Peng; Sun, Wanqi; Yang, Bo; Zhang, Haixu

    2016-01-01

    Identifying endogenous volatile organic compounds (VOCs) as markers for different cancers currently requires time-consuming procedures and specialized operators. The objective of this study was to develop a rapid and simple method for measuring VOCs at trace levels. A simple vacuum ultraviolet photoionization mass spectrometer (VUV-PIMS) was used to detect trace levels of dimethyl trisulfide (DMTS), dimethyl sulfide (DMS), and 2-butanone, which correspond to volatile biomarker candidates present in the exhaled breath of patients with breast, liver, and lung cancers, respectively. The practicality of measuring endogenous VOCs using VUV-PIMS was confirmed by detecting them in cultured cell lines. The abovementioned VOCs were detected with high sensitivity by VUV-PIMS. The limits of detection (LODs) for DMTS, DMS, and 2-butanone were 3.1, 3.9, and 23.2 pptv, respectively, under ambient conditions, which surpass the sensitivity of nearly all other MS-based techniques. Moreover, relatively high concentrations of 2-butanone and DMS were observed in VOCs emitted from the A549 lung cancer cell line and the HepG2 liver cancer cell line, respectively. Our results show that VUV-PIMS may serve as a reliable method for real-time measurement of endogenous volatile cancer biomarkers.

  19. VUV photon-induced ionization/dissociation of antipyrine and propyphenazone: mass spectrometric and theoretical insights.

    Science.gov (United States)

    Deng, Liulin; Zhang, Lidong; Guo, Huijun; Jia, Liangyuan; Pan, Yang; Yin, Hao; Qi, Fei

    2010-07-01

    Two analgesic and anti-inflammatory drugs, antipyrine and propyphenazone, were investigated with infrared laser desorption/tunable synchrotron vacuum ultraviolet (VUV) photoionization mass spectrometry (IR LD/VUV PIMS) and theoretical calculations. Mass spectra of the two drugs were measured at various photon energies. Fragment ions were gradually produced as photon energy increases. The structural assignment of the dominant fragment ions was supported by the results from a commercial electron impact time-of-flight mass spectrometer (EI-TOF MS). Primary fragmentation pathways were established from experimental observations combining with theoretical calculations. Methyl radical elimination is a common fragmentation pathway for two analytes. However, for propyphenazone cation, isopropyl group elimination to form antipyrine cation is another competitive pathway. 2010 John Wiley & Sons, Ltd.

  20. About the photoionization of methyl bromide (CH{sub 3}Br). Photoelectron and photoionization mass spectrometric investigation

    Energy Technology Data Exchange (ETDEWEB)

    Locht, R. [Laboratoire de Dynamique Moleculaire, Departement de Chimie, Institut de Chimie, Bat. B6c, Universite de Liege, Sart-Tilman par B-4000 Liege 1 (Belgium)], E-mail: robert.locht@ulg.ac.be; Leyh, B. [Laboratoire de Dynamique Moleculaire, Departement de Chimie, Institut de Chimie, Bat. B6c, Universite de Liege, Sart-Tilman par B-4000 Liege 1 (Belgium); Dehareng, D. [Centre d' Ingenierie des Proteines, Institut de Chimie, Bat. B6a, Universite de Liege, Sart-Tilman par B-4000 Liege 1 (Belgium); Hottmann, K. [Institut fuer Chemie, Physikalische und Theoretische Chemie, Freie Universitaet Berlin, Takustrasse 3, D-14195 Berlin (Germany); Jochims, H.W. [Institut fuer Chemie, Physikalische und Theoretische Chemie, Freie Universitaet Berlin, Takustrasse 3, D-14195 Berlin (Germany); Baumgaertel, H. [Institut fuer Chemie, Physikalische und Theoretische Chemie, Freie Universitaet Berlin, Takustrasse 3, D-14195 Berlin (Germany)

    2006-04-21

    The threshold photoelectron (TPES) and the photoionization mass spectrometric study of CH{sub 3}Br in the 8-20eV photon energy range is presented. The interpretation and assignments are supported by ab initio calculations. The TPES shows several new discrete features in the Jahn-Teller split ground state X-bar {sup 2}E({sup 2}A{sup '}-{sup 2}A{sup '}') of CH{sub 3}Br{sup +}. An additional continuous band starts at about 11.8eV. These observations are both correlated with direct ionization and autoionizing transitions. This is supported by constant ion state (CIS) spectroscopy. A large enhancement of the transitions to the A-bar {sup 2}A and B-bar {sup 2}E states is ascribed to important autoionizing contributions. Based on the present calculations, the weak to very weak bands in the 17.5-22.0eV photon energy range were mainly assigned to 2a{sub 1}{sup -1} ionization and to double excitations described essentially by the 2e{sup -2}4a{sub 1}{sup 1} and 1e{sup -1}2e{sup -1}4a{sub 1}{sup 1} configurations. The photoionization mass spectrometric study allowed us to investigate in detail the ionization and dissociation of CH{sub 3}Br{sup +} leading to CH{sub 2}{sup +}, CH{sub 3}{sup +}, Br{sup +} and CH{sub 2}Br{sup +} from threshold up to 20eV photon energy. The experimental data are compared to ab initio dissociation energies. At the onset, the CH{sub 3}{sup +} and CH{sub 2}Br{sup +} fragment ion production is correlated with the ground state of CH{sub 3}Br{sup +} and both fragment ions have to appear through dissociative autoionization from the (3a{sub 1}{sup 1}/1e{sup 3})6s or 5s Rydberg state. This interpretation is supported by the photoabsorption spectrum measured recently in the same photon energy range. At higher energies, beside a likely direct (pre)dissociation of the A-bar {sup 2}A{sub 1} and B-bar {sup 2}E states of CH{sub 3}Br{sup +}, autoionization also contributes to the fragmentation in all decay channels. Avoided crossings in a manifold

  1. Real-time analysis of soot emissions from bituminous coal pyrolysis and combustion with a vacuum ultraviolet photoionization aerosol time-of-flight mass spectrometer.

    Science.gov (United States)

    Gao, Shaokai; Zhang, Yang; Meng, Junwang; Shu, Jinian

    2009-01-15

    This paper reports on-line analyses of the soot emissions from the Inner Mongolia bituminous coal combustion and pyrolysis processes with a vacuum ultraviolet photoionization aerosol time-of-flight mass spectrometer (VUV-ATOFMS). The soot particles are generated by heating a small amount of screened coal powder in synthetic air and nitrogen atmosphere in a tubular oven. The vacuum ultraviolet photoionization time-of-flight (VUV-TOF) mass spectra of the soot particles emitted from combustion and pyrolysis at different oven temperatures and different stages are obtained. The VUV-TOF mass spectra are assigned with the references of the results of the off-line GC/MS analysis.

  2. Solvent jet desorption capillary photoionization-mass spectrometry.

    Science.gov (United States)

    Haapala, Markus; Teppo, Jaakko; Ollikainen, Elisa; Kiiski, Iiro; Vaikkinen, Anu; Kauppila, Tiina J; Kostiainen, Risto

    2015-03-17

    A new ambient mass spectrometry method, solvent jet desorption capillary photoionization (DCPI), is described. The method uses a solvent jet generated by a coaxial nebulizer operated at ambient conditions with nitrogen as nebulizer gas. The solvent jet is directed onto a sample surface, from which analytes are extracted into the solvent and ejected from the surface in secondary droplets formed in collisions between the jet and the sample surface. The secondary droplets are directed into the heated capillary photoionization (CPI) device, where the droplets are vaporized and the gaseous analytes are ionized by 10 eV photons generated by a vacuum ultraviolet (VUV) krypton discharge lamp. As the CPI device is directly connected to the extended capillary inlet of the MS, high ion transfer efficiency to the vacuum of MS is achieved. The solvent jet DCPI provides several advantages: high sensitivity for nonpolar and polar compounds with limit of detection down to low fmol levels, capability of analyzing small and large molecules, and good spatial resolution (250 μm). Two ionization mechanisms are involved in DCPI: atmospheric pressure photoionization, capable of ionizing polar and nonpolar compounds, and solvent assisted inlet ionization capable of ionizing larger molecules like peptides. The feasibility of DCPI was successfully tested in the analysis of polar and nonpolar compounds in sage leaves and chili pepper.

  3. Photoinduced intermolecular dynamics and subsequent fragmentation in VUV-ionized acetamide clusters

    Science.gov (United States)

    Tarkanovskaja, Marta; Kooser, Kuno; Levola, Helena; Nõmmiste, Ergo; Kukk, Edwin

    2016-09-01

    Photofragmentation of small gas-phase acetamide clusters (CH3CONH2)n (n ≤ 10) produced by a supersonic expansion source has been studied using time-of-flight ion mass spectroscopy combined with tunable vacuum-ultraviolet (VUV) synchrotron radiation. Fragmentation channels of acetamide clusters under VUV photoionization resulting in protonated and ammoniated clusters formation were identified with the discussion about the preceding intramolecular rearrangements. Acetamide-2,2,2-d3 clusters were also studied in an experiment with a gas discharge lamp as a VUV light source; comparison with the main experiment gave insights into the mechanism of formation of protonated acetamide clusters, indicating that proton transfer from amino group plays a dominant role in that process. Geometry of the acetamide dimer was discussed and the most stable arrangement was concluded to be achieved when subunits of the dimer are connected via two N—H⋯O —C hydrogen bonds. Also, the influence of the photon energy on the stability of the clusters and their fragmentation channels has been examined.

  4. Ultra-compact photoionization analyzers. Ecological monitoring application at hazardous production facilities

    Science.gov (United States)

    Mustafaev, Alexander; Rastvorova, Iuliia; Arslanova, Fatima

    2017-10-01

    It is generally recognized that careful implementation of ecological monitoring should be provided at hazardous production facilities continuously to protect the surrounding environment as well as health and safety of employees. However, the existing devices may not be able to control the environmental situation uninterruptedly due to their technical characteristics or measurement methods. Developed by The Mining University Plasma Research Group ultra-compact photoionization analyzer is proposed as innovative equipment which creates the basis for a new measuring approach. The general operating principle is based on the patented method of stabilization of electric parameters - CES (Collisional Electron Spectroscopy). During the operation at the atmospheric pressure, the vacuum ultraviolet (VUV) photoionization sensor measures the energy of electrons produced by means of ionization with the resonance photons whose wavelength is situated in the VUV. A special software tool was developed to obtain the second-order derivative of the I-U characteristics, taken by the VUV sensor, to construct the characteristic electrons energy spectra. The portable analyzer with a unique set of parameters such as small size (10*10*1 mm), low cost, a wide range of recognizable molecules, great measurement accuracy at the atmospheric pressure can be effectively used both for rapid testing of air pollution load and the study of noxious factors that influence oil and gas industry employees. Dr. Sci., Ph.D, Principal Scientist, Professor.

  5. Photoionization microplasma sensor

    Science.gov (United States)

    Mustafaev, A. S.; Rastvorova, I. V.; Podenko, S. S.; Tsyganov, A. B.

    2017-11-01

    New developments in the physics of plasma are presented, specifically, research of completely new method of atoms’ and molecules’ detection in gaseous phase – collisional electron spectroscopy. As a result, the microplasma sensor for quality and quantity analysis of the gaseous mixture was created. It works in the discharge afterglow mode using He as a buffer gas. In addition, the modification of the sensor using resonance photon photoionization was developed. This consideration gives the opportunity for wide practical appliance as an individual gas analyzer for industrial and medical purposes.

  6. Internal Energies of Ion-Sputtered Neutral Tryptophan and Thymine Molecules Determined by Vacuum Ultraviolet Photoionization

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Jia; Takahashi, Lynelle; Wilson, Kevin R.; Leone, Stephen R.; Ahmed, Musahid

    2010-03-11

    Vacuum ultraviolet photoionization coupled to secondary neutral mass spectrometry (VUV-SNMS) of deposited tryptophan and thymine films are performed at the Chemical Dynamics Beamline. The resulting mass spectra show that while the intensity of the VUV-SNMS signal is lower than the corresponding secondary ion mass spectroscopy (SIMS) signal, the mass spectra are significantly simplified in VUV-SNMS. A detailed examination of tryptophan and thymine neutral molecules sputtered by 25 keV Bi3 + indicates that the ion-sputtered parent molecules have ~;;2.5 eV of internal energy. While this internal energy shifts the appearance energy of the photofragment ions for both tryptophan and thymine, it does not change the characteristic photoionizaton efficiency (PIE) curves of thymine versus photon energy. Further analysis of the mass spectral signals indicate that approximately 80 neutral thymine molecules and 400 tryptophan molecules are sputtered per incident Bi3 + ion. The simplified mass spectra and significant characteristic ion contributions to the VUV-SNMS spectra indicate the potential power of the technique for organic molecule surface analysis.

  7. Attosecond photoionization dynamics in neon

    Science.gov (United States)

    Omiste, Juan J.; Madsen, Lars Bojer

    2018-01-01

    We study the role of electron-electron correlation in the ground state of Ne, as well as in photoionization dynamics induced by an attosecond XUV pulse. For a selection of central photon energies around 100 eV, we find that while the mean-field time-dependent Hartree-Fock method provides qualitatively correct results for the total ionization yield, the photoionization cross section, the photoelectron momentum distribution, as well as for the time delay in photoionization, electron-electron correlation is important for a quantitative description of these quantities.

  8. High-resolution threshold photoelectron-photoion coincidence experiments performed on beamline 9.0.2.2: Kinetic energy release study of the process SF{sub 6} + hv {yields} SF{sub 5}{sup +} F + e{sup -}

    Energy Technology Data Exchange (ETDEWEB)

    Evans, M.; Ng, C.Y. [Ames Lab., IA (United States); Hsu, C.W.; Heimann, P. [Lawrence Berkeley National Lab., CA (United States)

    1997-04-01

    Vacuum ultraviolet (VUV) photoionization mass spectrometry has been used extensively to determine the energetics of neutral radicals and radical cations, as well as to study the dynamics of the dissociative photoionization process. Very often these measurements are concerned with determining the appearance energy (AE) for a dissociative ionization process, as well as determining the heats of formation of the species involved. One such photoionization mass spectrometric technique employed on End Station 2 of the Chemical Dynamics Beamline (9.0.2.2) at the Advanced Light Source is the threshold photoelectron-photoion coincidence (TPEPICO) method. TPEPICO involves measuring the time-of-flight (TOF) mass spectrum of a given cation in coincidence with threshold photoelectrons at a known photoionization energy.

  9. EUV optics in photoionization experiments

    Science.gov (United States)

    Bartnik, Andrzej; Wachulak, Przemysław; Fiedorowicz, Henryk; Fok, Tomasz; Jarocki, Roman; Kostecki, Jerzy; Szczurek, Anna; Szczurek, Mirosław; Pina, Ladislav; Sveda, Libor

    2013-05-01

    In this work photoionized plasmas were created by irradiation of He, Ne and Ar gases with a focused EUV beam from one of two laser-plasma sources employing Nd:YAG laser systems of different parameters. First of them was a 10-Hz laser-plasma EUV source, based on a double-stream gas-puff target, irradiated with the 3-ns/0.8J laser pulse. EUV radiation in this case was focused using a gold-plated grazing incidence ellipsoidal collector in the wavelength range λ = 9÷70 nm. The most intense emission was in the relatively narrow spectral region centred at λ = 11 +/- 1 nm. The second source was based on a 10 ns/10 J/10 Hz laser system. In this case EUV radiation was focused using a gold-plated grazing incidence multifoil collector or a Mo-coated ellipsoidal collector. The most intense emission in this case was in the 5 ÷ 15 nm spectral region. Radiation fluence ranged from 60 mJ/cm2 to 400 mJ/cm2. Different gases were injected into the interaction region, perpendicularly to an optical axis of the irradiation system, using an auxiliary gas puff valve. Irradiation of the gases resulted in ionization and excitation of atoms and ions. Spectra in EUV range were measured using a grazing incidence, flat-field spectrometer (McPherson Model 251), equipped with a 450 lines/mm toroidal grating. In all cases the most intense emission lines were assigned to singly charged ions. The other emission lines belong to atoms or doubly charged ions. The spectra were excited in low density gases of the order of 1 ÷ 10% atmospheric density.

  10. Simultaneous removal of NO and SO2 using vacuum ultraviolet light (VUV)/heat/peroxymonosulfate (PMS).

    Science.gov (United States)

    Liu, Yangxian; Wang, Yan; Wang, Qian; Pan, Jianfeng; Zhang, Jun

    2018-01-01

    Simultaneous removal process of SO2 and NO from flue gas using vacuum ultraviolet light (VUV)/heat/peroxymonosulfate (PMS) in a VUV spraying reactor was proposed. The key influencing factors, active species, reaction products and mechanism of SO2 and NO simultaneous removal were investigated. The results show that vacuum ultraviolet light (185 nm) achieves the highest NO removal efficiency and yield of and under the same test conditions. NO removal is enhanced at higher PMS concentration, light intensity and oxygen concentration, and is inhibited at higher NO concentration, SO2 concentration and solution pH. Solution temperature has a double impact on NO removal. CO2 concentration has no obvious effect on NO removal. and produced from VUV-activation of PMS play a leading role in NO removal. O3 and ·O produced from VUV-activation of O2 also play an important role in NO removal. SO2 achieves complete removal under all experimental conditions due to its very high solubility in water and good reactivity. The highest simultaneous removal efficiency of SO2 and NO reaches 100% and 91.3%, respectively. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Photofragmentation spectra of halogenated methanes in the VUV photon energy range

    Energy Technology Data Exchange (ETDEWEB)

    Cartoni, Antonella, E-mail: antonella.cartoni@uniroma1.it [Dipartimento di Chimica e Tecnologie del Farmaco, Sapienza Università di Roma, P.le Aldo Moro 5, Roma 00185 (Italy); Bolognesi, Paola; Fainelli, Ettore; Avaldi, Lorenzo [CNR-IMIP, Area della Ricerca di Roma 1, Monterotondo Scalo (Rm) 00015 (Italy)

    2014-05-14

    In this paper an investigation of the photofragmentation of dihalomethanes CH{sub 2}X{sub 2} (X = F, Cl, Br, I) and chlorinated methanes (CH{sub n}Cl{sub 4−n} with n = 0–3) with VUV helium, neon, and argon discharge lamps is reported and the role played by the different halogen atoms is discussed. Halogenated methanes are a class of molecules used in several fields of chemistry and the study of their physical and chemical proprieties is of fundamental interest. In particular their photodissociation and photoionization are of great importance since the decomposition of these compounds in the atmosphere strongly affects the environment. The results of the present work show that the halogen-loss is the predominant fragmentation channel for these molecules in the VUV photon energy range and confirm their role as reservoir of chlorine, bromine, and iodine atoms in the atmosphere. Moreover, the results highlight the peculiar feature of CH{sub 2}F{sub 2} as a source of both fluorine and hydrogen atoms and the characteristic formation of I{sub 2}{sup +} and CH{sub 2}{sup +} ions from the photofragmentation of the CH{sub 2}I{sub 2} molecule.

  12. Photoionization studies with molecular beams

    Energy Technology Data Exchange (ETDEWEB)

    Ng, C.Y.

    1976-09-01

    A molecular beam photoionization apparatus which combines the advantages of both the molecular beam method with photoionization mass spectrometry has been designed and constructed for carrying out some unique photoionization experiments. Rotational cooling during the supersonic expansion has resulted in high resolution photoionization efficiency curves for NO, ICl, C/sub 2/H/sub 2/ and CH/sub 3/I. The analysis of these spectra has yielded ionization potentials for these molecules to an accuracy of +- 3 MeV. Detailed autoionization structures were also resolved. This allows the investigation of the selection rules for autoionization, and the identification of the Rydberg series which converge to the excited states of the molecular ions. The degree of relaxation for thermally populated excited states has been examined using NO and ICl as examples. As a result of adiabatic cooling, a small percentage of dimers is also formed during the expansion. The photoionization efficiency curves for (NO)/sub 2/, ArICl, Ar/sub 2/, Kr/sub 2/ and Xe/sub 2/ have been obtained near the thresholds. Using the known dissociation energies of the (NO)/sub 2/, Ar/sub 2/, Kr/sub 2/ and Xe/sub 2/ van der Waals molecules, the corresponding dissociation energies for NO-NO/sup +/, Ar/sub 2//sup +/, Kr/sub 2//sup +/, and Xe/sub 2//sup +/ have been determined. The ionization mechanisms for this class of molecules are examined and discussed.

  13. Time Delay in Molecular Photoionization

    CERN Document Server

    Hockett, P; Villeneuve, D M; Corkum, P B

    2015-01-01

    Time-delays in the photoionization of molecules are investigated. As compared to atomic ionization, the time-delays expected from molecular ionization present a much richer phenomenon, with a strong spatial dependence due to the anisotropic nature of the molecular scattering potential. We investigate this from a scattering theory perspective, and make use of molecular photoionization calculations to examine this effect in representative homonuclear and hetronuclear diatomic molecules, nitrogen and carbon monoxide. We present energy and angle-resolved maps of the Wigner delay time for single-photon valence ionization, and discuss the possibilities for experimental measurements.

  14. The characterization of selected drugs with infrared laser desorption/tunable synchrotron vacuum ultraviolet photoionization mass spectrometry.

    Science.gov (United States)

    Pan, Yang; Yin, Hao; Zhang, Taichang; Guo, Huijun; Sheng, Liusi; Qi, Fei

    2008-08-01

    Some selected drugs including captopril, fudosteine and racecadotril have been analyzed by infrared (IR) laser desorption/tunable synchrotron vacuum ultraviolet (VUV) photoionization mass spectrometry (PIMS). The molecular ions of captopril and racecadotril are exclusively observed without any fragments at near threshold single-photon ionization (SPI). However, fudosteine easily forms fragments even at a photon energy near the ionization threshold, indicating the instability of its molecular ion. For these drugs, a number of fragments are yielded with the increase of photon energy. The structures of such fragments proposed by IR LD/VUV PIMS are supported by electron ionization time-of-flight mass spectrometry (EI-TOFMS) results. Fragmentation pathways are discussed in detail. Copyright (c) 2008 John Wiley & Sons, Ltd.

  15. Degradation of naproxen by UV, VUV photolysis and their combination

    Energy Technology Data Exchange (ETDEWEB)

    Arany, Eszter [Research Group of Environmental Chemistry, Institute of Chemistry, University of Szeged, Rerrich Béla tér 1, H-6720 Szeged (Hungary); Szabó, Rita Katalin [Research Group of Environmental Chemistry, Institute of Chemistry, University of Szeged, Rerrich Béla tér 1, H-6720 Szeged (Hungary); Laboratoire de Chimie et Microbiologie de l’Eau (LCME), CNRS UMR 6008, ESIP Université de Poitiers, Poitiers (France); Apáti, László [Research Group of Environmental Chemistry, Institute of Chemistry, University of Szeged, Rerrich Béla tér 1, H-6720 Szeged (Hungary); Alapi, Tünde [Research Group of Environmental Chemistry, Institute of Chemistry, University of Szeged, Rerrich Béla tér 1, H-6720 Szeged (Hungary); Department of Inorganic and Analytical Chemistry, University of Szeged, Dóm tér 7, H-6720 Szeged (Hungary); Ilisz, István [Department of Inorganic and Analytical Chemistry, University of Szeged, Dóm tér 7, H-6720 Szeged (Hungary); Mazellier, Patrick [Institut des Sciences Moléculaires, Laboratoire de Physico et Toxico Chimie de l’Environnement, CNRS UMR 5255, Université de Bordeaux, Bordeaux (France); Dombi, András [Research Group of Environmental Chemistry, Institute of Chemistry, University of Szeged, Rerrich Béla tér 1, H-6720 Szeged (Hungary); and others

    2013-11-15

    Highlights: • The efficiency of the methods increased in the following order: UV < VUV < UV/VUV. • The degradation inhibiting effect of dissolved O{sub 2} increased in the order: UV < UV/VUV < VUV. • In absence of dissolved O{sub 2} the radical pathway dominates during the UV/VUV photolysis. • In presence of dissolved O{sub 2} some synergistic effect of UV and VUV lights occurs. • VUV irradiation results in complete mineralization of NAP. -- Abstract: Naproxen is a widely used nonsteroidal anti-inflammatory drug. Recently, this medicine was detected both in natural waters (up to 1.5 μg L{sup −1}) and in sewage treatment plant effluents (up to 5.2 μg L{sup −1}). Moreover, naproxen is only partly eliminated by classical processes used in sewage treatment plants. Therefore, its degradation is of utmost interest. Advanced oxidation processes proved to be the most suitable methods for the elimination of persistent organic contaminants. In this work ultraviolet (UV, 254 nm), vacuum ultraviolet photolysis (VUV, 172 nm) and their combination (UV/VUV, 254/185 nm) were investigated. The efficiency of the methods increased in the following order: UV < VUV < UV/VUV photolysis. However, VUV irradiation was found to mineralize the contaminant molecule most effectively. The chemical structures of three out of four aromatic by-products and of some aliphatic carboxylic acids were presumed. The effects of dissolved O{sub 2} and the initial concentration of naproxen on the degradation were also investigated.

  16. Attosecond photoionization dynamics in neon

    DEFF Research Database (Denmark)

    Omiste, Juan J.; Madsen, Lars Bojer

    2018-01-01

    We study the role of electron-electron correlation in the ground-state of Ne, as well as in photoionization dynamics induced by an attosecond XUV pulse. For a selection of central photon energies around 100 eV, we find that while the mean-field time-dependent Hartree-Fock method provides qualitat...

  17. Electron Interference in Molecular Circular Polarization Attosecond XUV Photoionization

    Directory of Open Access Journals (Sweden)

    Kai-Jun Yuan

    2015-01-01

    Full Text Available Two-center electron interference in molecular attosecond photoionization processes is investigated from numerical solutions of time-dependent Schrödinger equations. Both symmetric H\\(_2^+\\ and nonsymmetric HHe\\(^{2+}\\ one electron diatomic systems are ionized by intense attosecond circularly polarized XUV laser pulses. Photoionization of these molecular ions shows signature of interference with double peaks (minima in molecular attosecond photoelectron energy spectra (MAPES at critical angles \\(\\vartheta_c\\ between the molecular \\(\\textbf{R}\\ axis and the photoelectron momentum \\(\\textbf{p}\\. The interferences are shown to be a function of the symmetry of electronic states and the interference patterns are sensitive to the molecular orientation and pulse polarization. Such sensitivity offers possibility for imaging of molecular structure and orbitals.

  18. Thermal desorption/tunable vacuum-ultraviolet time-of-flight photoionization aerosol mass spectrometry for investigating secondary organic aerosols in chamber experiments.

    Science.gov (United States)

    Fang, Wenzheng; Gong, Lei; Shan, Xiaobin; Liu, Fuyi; Wang, Zhenya; Sheng, Liusi

    2011-12-01

    This paper describes thermal desorption/tunable vacuum-ultraviolet photoionization time-of-flight aerosol mass spectrometry (TD-VUV-TOF-PIAMS) for the real-time analysis of secondary organic aerosols (SOAs) in smog chamber experiments. SOAs are sampled directly from atmospheric pressure and are focused through an aerodynamic lens assembly into the mass spectrometer. Once the particles have entered the source region, they impact on a heater and are vaporized. The nascent vapor is then softly ionized by tunable VUV synchrotron radiation. TD-VUV-TOF-PIAMS was used in conjunction with the smog chamber to study SOA formation from the photooxidation of toluene with hydroxyl radicals. The ionization energies (IEs) of these SOA products are sometimes very different with each other. As the ideal photon source is tunable, its energy can be adjusted for each molecular to be ionized. The mass spectra obtained at different photon energies are then to be useful for molecular identification. Real-time analysis of the mass spectra of SOAs is compared with previous off-line measurements. These results illustrate the potential of TD-VUV-TOF-PIAMS for direct molecular characterization of SOAs in smog chamber experiments.

  19. Performance of diamond detectors for VUV applications

    Science.gov (United States)

    BenMoussa, A.; Theissen, A.; Scholze, F.; Hochedez, J. F.; Schühle, U.; Schmutz, W.; Haenen, K.; Stockman, Y.; Soltani, A.; McMullin, D.; Vest, R. E.; Kroth, U.; Laubis, C.; Richter, M.; Mortet, V.; Gissot, S.; Delouille, V.; Dominique, M.; Koller, S.; Halain, J. P.; Remes, Z.; Petersen, R.; D'Olieslaeger, M.; Defise, J.-M.

    2006-11-01

    We report on experimental results with photodetectors made of diamond. the Large Yield Radiometer (LYRA), will use such detectors for the first time for a solar physics space instrument. A (LYRA) set of measurement campaigns was carried out to obtain their XUV-to-VIS characterization (responsivity, linearity, stability, homogeneity). The responsivity has been measured from the XUV to the NIR, in the wavelength range 1-1127 nm (i.e. 1240-1.1 eV). The diamond detectors exhibit a photoresponse varying in the 40-75 mA/W range at 7 nm and demonstrate a visible rejection ratio (200 versus 500 nm) larger than four orders of magnitude. We show that diamond photodetectors are sensitive sensors for VUV photons, stable within a few percent, with a good linearity and moderate homogeneity.

  20. Performance of diamond detectors for VUV applications

    Energy Technology Data Exchange (ETDEWEB)

    BenMoussa, A. [Royal Observatory of Belgium, Circular Avenue 3, B-1180 Brussels (Belgium)]. E-mail: ali.benmoussa@oma.be; Theissen, A.; Hochedez, J.F.; Gissot, S.; Delouille, V.; Dominique, M. [Royal Observatory of Belgium, Circular Avenue 3, B-1180 Brussels (Belgium); Scholze, F. [Physikalisch-Technische Bundesanstalt (PTB), Abbestr. 2-12, D-10587 Berlin (Germany); Schuehle, U. [Max-Planck-Institut fuer Sonnensystemforschung, D-37191 Katlenburg-Lindau (Germany); Schmutz, W. [Physikalisch-Meteorologisches Observatorium Davos, World Radiation Center, CH-7260 Davos Dorf (Switzerland); Haenen, K.; D' Olieslaeger, M. [Institute for Materials Research, Limburgs Universitair Centrum, Wetenschapspark 1, B-3590 Diepenbeek (Belgium)]|[Division IMOMEC, IMEC vzw, Wetenschapspark 1, B-3590 Diepenbeek (Belgium); Stockman, Y. [Centre Spatial de Liege, Av. Pre Aily B-4031 Angleur (Belgium); Soltani, A. [Institut d' Electronique, de Microelectronique et de Nanotechnologie (IEMN) F-59652 Villeneuve d' Ascq (France); McMullin, D. [Naval Research Laboratory (NRL), 4555 Overlook Avenue, S.W., Washington, DC 20375 (United States); Vest, R.E. [National Institute of Standards and Technology (NIST), 100 Bureau Drive, Gaithersburg, MD 20899 (United States); Kroth, U.; Laubis, C.; Richter, M. [Physikalisch-Technische Bundesanstalt (PTB), Abbestr. 2-12, D-10587 Berlin (Germany); Mortet, V. [Institute for Materials Research, Limburgs Universitair Centrum, Wetenschapspark 1, B-3590 Diepenbeek (Belgium); Koller, S. [Physikalisch-Meteorologisches Observatorium Davos, World Radiation Center, CH-7260 Davos Dorf (Switzerland); Halain, J.P; Defise, J.-M. [Centre Spatial de Liege, Av. Pre Aily B-4031 Angleur (Belgium); Remes, Z. [Institute for Materials Research, Limburgs Universitair Centrum, Wetenschapspark 1, B-3590 Diepenbeek (Belgium); Petersen, R. [Division IMOMEC, IMEC vzw, Wetenschapspark 1, B-3590 Diepenbeek (Belgium)

    2006-11-30

    We report on experimental results with photodetectors made of diamond. the Large Yield Radiometer (LYRA), will use such detectors for the first time for a solar physics space instrument. A (LYRA) set of measurement campaigns was carried out to obtain their XUV-to-VIS characterization (responsivity, linearity, stability, homogeneity). The responsivity has been measured from the XUV to the NIR, in the wavelength range 1-1127 nm (i.e. 1240-1.1 eV). The diamond detectors exhibit a photoresponse varying in the 40-75 mA/W range at 7 nm and demonstrate a visible rejection ratio (200 versus 500 nm) larger than four orders of magnitude. We show that diamond photodetectors are sensitive sensors for VUV photons, stable within a few percent, with a good linearity and moderate homogeneity.

  1. Comparison of direct and alternating current vacuum ultraviolet lamps in atmospheric pressure photoionization.

    Science.gov (United States)

    Vaikkinen, Anu; Haapala, Markus; Kersten, Hendrik; Benter, Thorsten; Kostiainen, Risto; Kauppila, Tiina J

    2012-02-07

    A direct current induced vacuum ultraviolet (dc-VUV) krypton discharge lamp and an alternating current, radio frequency (rf) induced VUV lamp that are essentially similar to lamps in commercial atmospheric pressure photoionization (APPI) ion sources were compared. The emission distributions along the diameter of the lamp exit window were measured, and they showed that the beam of the rf lamp is much wider than that of the dc lamp. Thus, the rf lamp has larger efficient ionization area, and it also emits more photons than the dc lamp. The ionization efficiencies of the lamps were compared using identical spray geometries with both lamps in microchip APPI mass spectrometry (μAPPI-MS) and desorption atmospheric pressure photoionization-mass spectrometry (DAPPI-MS). A comprehensive view on the ionization was gained by studying six different μAPPI solvent compositions, five DAPPI spray solvents, and completely solvent-free DAPPI. The observed reactant ions for each solvent composition were very similar with both lamps except for toluene, which showed a higher amount of solvent originating oxidation products with the rf lamp than with the dc lamp in μAPPI. Moreover, the same analyte ions were detected with both lamps, and thus, the ionization mechanisms with both lamps are similar. The rf lamp showed a higher ionization efficiency than the dc lamp in all experiments. The difference between the lamp ionization efficiencies was greatest when high ionization energy (IE) solvent compositions (IEs above 10 eV), i.e., hexane, methanol, and methanol/water, (1:1 v:v) were used. The higher ionization efficiency of the rf lamp is likely due to the larger area of high intensity light emission, and the resulting larger efficient ionization area and higher amount of photons emitted. These result in higher solvent reactant ion production, which in turn enables more efficient analyte ion production. © 2012 American Chemical Society

  2. A syncrhronized FIR/VUV light source at Jefferson Lab

    Energy Technology Data Exchange (ETDEWEB)

    Shinn, Michelle D. [JLAB, Newport News, VA (United States)

    2013-05-31

    This slide show presents an introduction to Free-Electron Lasers (FELs) and what makes the JLab FELs unique. Ways of exploring the nature of matter with the FEL are shown, including applications in the THz, IR, UV, and VUV. The Jefferson Lab FEL Facility is unique in its high average brightness in the THz, and IR -- VUV spectral regions and Sub ps-pulses at MHz repetition rates. With an installation of a rebuilt 'F100' cryomodule the linac energy will increase to > 150MeV. This will permit lasing further into the UV and extend VUV. With the swap of our CEBAF-style cryounit for an improved booster, we could lase in the VUV. Addition of a wiggler and optical cavity slightly canted from the UV beamline would allow simultaneous lasing of UV and THz for high E-field 2 color experiments.

  3. Extreme ultraviolet-induced photoionized plasmas

    Science.gov (United States)

    Bartnik, Andrzej; Wachulak, Przemyslaw; Fiedorowicz, Henryk; Fok, Tomasz; Jarocki, Roman; Szczurek, Miroslaw

    2014-05-01

    In this work photoionized plasmas were created by irradiation of He or Ne gases with a focused extreme ultraviolet (EUV) beam from one of two laser-plasma sources employing Nd:YAG laser systems. The first of them was a 10 Hz laser-plasma EUV source, based on a double-stream gas-puff target, irradiated with a 3 ns per 0.8 J laser pulse. EUV radiation in this case was focused using a gold-plated grazing incidence ellipsoidal collector. The second source was based on a 10 ns per 10 J per 10 Hz laser system. In this case EUV radiation was focused using a gold-plated grazing incidence multifoil collector. Gases were injected into the interaction region, perpendicularly to an optical axis of the irradiation system, using an auxiliary gas puff valve. Spectral measurements in the EUV range were performed. In all cases the most intense emission lines were assigned to singly charged ions. The other emission lines belong to atoms or doubly charged ions.

  4. Ultrafast Dynamics of Photoionized Acetylene

    Science.gov (United States)

    Madjet, Mohamed El-Amine; Vendrell, Oriol; Santra, Robin

    2011-12-01

    Acetylene cations [HCCH]+ produced in the A2Σg+ state by extreme ultraviolet (XUV) photoionization are investigated theoretically, based on a mixed quantum-classical approach. We show that the decay of the A2Σg+ state occurs via both ultrafast isomerization and nonradiative electronic relaxation. We find a time scale for hydrogen migration and electronic decay of about 60 fs, in good agreement with recent XUV-pump/XUV-probe time-resolved experiments on the same system [Phys. Rev. Lett. 105, 263002 (2010)PRLTAO0031-900710.1103/PhysRevLett.105.263002]. Moreover, we predict an efficient vibrational energy redistribution mechanism that quickly transfers excess energy from the isomerization coordinates to slower modes in a few hundred femtoseconds, leading to a partial regeneration of acetylenelike conformations.

  5. New developments on diamond photodetector for VUV solar observations

    Science.gov (United States)

    Ben Moussa, A.; Soltani, A.; Haenen, K.; Kroth, U.; Mortet, V.; Barkad, H. A.; Bolsee, D.; Hermans, C.; Richter, M.; DeJaeger, J. C.; Hochedez, J. F.

    2008-03-01

    A new large-size metal-semiconductor-metal photoconductor device of 4.6 mm in diameter based on diamond material has been reprocessed and characterized in the vacuum-ultraviolet (VUV) wavelength range. The metal finger contacts have been processed to 2 µm in width with spacing between the contacts of 5 µm for a bias voltage of 5 V. The responsivity, stability, linearity and homogeneity have been tested. Solutions and progresses on diamond processing are identified and are reported. In the VUV wavelength range of interest, the diamond photodetector is sensitive with a maximum response of 48 mA W-1 at 210 nm with a corresponding external quantum efficiency of 42%, homogenous and stable under short irradiation. It indicates a 200-400 nm rejection ratio of more than four orders of magnitude and demonstrates the advantages of diamond-based detectors in terms of high rejection ratio and high output signal for VUV solar observation missions.

  6. CIV VUV FPI Interferometer for Transition Region Magnetography

    Science.gov (United States)

    Gary, G. A.

    2005-01-01

    Much in the same way photonics harnesses light for engineering and technology applications, solar physics harnesses light for the remote sensing of the sun. In photonics the vacuum ultraviolet region offers shorter wavelength and higher energies per photon, while in solar physics the VUV allows the remote sensing of the upper levels of the solar atmosphere where magnetic fields dominate the physics. Understanding solar magnetism is a major aim for astrophysics and for understanding solar-terrestrial interaction. The poster is on our instrument development program for a high-spectral-resolution, high-finesse, Vacuum Ultraviolet Fabry-Perot Interferometer (VUV FPI) for obtaining narrow-passband images, magnetograms, and Dopplergrams of the transition region emission line of CIV (155nm). The poster will cover how the V W interferometer will allow us to understand solar magnetism, what is special about the MSFC VUV FPI, and why the University of Toronto F2 eximer has been of particular value to this program.

  7. Photoion mass spectroscopy and valence photoionization of hypoxanthine, xanthine and caffeine

    Science.gov (United States)

    Feyer, Vitaliy; Plekan, Oksana; Richter, Robert; Coreno, Marcello; Prince, Kevin C.

    2009-03-01

    Photoionization mass spectra of hypoxanthine, xanthine and caffeine were measured using the photoelectron-photoion coincidence technique and noble gas resonance radiation at energies from 8.4 to 21.2 eV for ionization. The fragmentation patterns for these compounds show that hydrogen cyanide is the main neutral loss species at higher photon energies, while photoionization below 16.67 eV led predominantly to the parent ion. The valence photoelectron spectra of this family of molecules were measured over an extended energy range, including the inner C, N and O 2s valence orbitals. The observed ion fragments were related to ionization of the valence orbitals.

  8. Electron impact dissociation and VUV photoabsorption of frozen formamide

    DEFF Research Database (Denmark)

    Sivaraman, Bhala; Raja Sekhar, B. N.; Nair, B. G.

    2014-01-01

    We report the results of an extensive study of formamide (HCONH2) ices carried out under experimental conditions that simulate those found in the interstellar medium (ISM). Vacuum Ultraviolet (VUV) and Infrared (IR) spectroscopic techniques were used to measure photoabsorption cross sections of t...

  9. Use of VUV Radiation to Control Elastomer Seal Adhesion

    Science.gov (United States)

    deGroh, Henry C., III; Puleo, Bernadette J.; Waters, Deborah L.

    2013-01-01

    Due to their wide operating temperatures and low leakage rates, silicone elastomers are the only class of flight qualified elastomer materials that currently meet NASA's needs for various seal applications, which include docking and hatch seals for future space exploration vehicles. However, silicone elastomers are naturally sticky and exhibit sizeable adhesion when mated against metals and other silicone surfaces. This undesirable adhesion can make undocking spacecraft or opening a hatch problematic. Two approaches that can be used to reduce seal adhesion include use of grease or, application of low doses of atomic oxygen (AO). This paper investigates a third approach: the application of light doses of vacuum ultraviolet (VUV) radiation. Presented are the adhesion and leakage characteristics of S0383-70 silicone elastomer exposed to various VUV doses in the 115 to 200 nm wavelength range. The data indicate that adhesion is expected to be less than the target threshold maximum of 2 lb/in(exp2) after about 1 J/cm(exp2) of VUV exposure for seal-to-metal configurations and after 2 J/cm(exp2) for seal-to-seal configurations with no significant damage, or increase in seal leakage. This paper shows that VUV, without AO or grease, can be an effective means to reduce adhesion to the desired levels necessary for space seals with minimal change in seal leak rates.

  10. VUV free electron laser with a distributed feedback cavity

    Energy Technology Data Exchange (ETDEWEB)

    Chen, J.; Fujita, M.; Asakawa, M. [Osaka Univ. (Japan)] [and others

    1995-12-31

    Development of FEL to the VUV/x-ray regime is looked as one of the possible directions to its success. For eliminating the need for optical cavities, difficult to be built at that regime, we propose a VUV (50nm) SASE FEL. According to Pellegrini`s scaling law, for a 290MeV/200A e-beam passing through a 10.8m long and 2cm period wiggler, a high peak power 85.5MW and a high average brightness 2.44 X 10{sup +21} (photons/[mm{sup 2}.mrad{sup 2}.bw]) can be obtained. However, it requires {epsilon} n=2.3mm.mrad and {Delta}{gamma}/{gamma} = 0.15% about one order above the practical parameters we can realize. For enhancing the efficiency and decreasing the requirements on the e-beam quality and the wiggler length, we put forward a concept of VUV FEL with a distributed feedback cavity. In x-ray region, the natural periodicity of crystals provides strong Bragg coupling and it has been demonstrated as the parametric radiation. In vuv region, current intense research on superlattice can provide a periodical structure with a short period in 250 {Angstrom} order. High-performance vuv multilayer coatings on the inner-wall of the waveguide are used to guide the spontaneous emission and decrease the x-ray ohmic losses on the roundtrip passes. By this DFB cavity structure, it is expected to realize the lasing in a smaller size. Other practical methods such as the optical klystron for shortening the wiggler length and the tapper wiggler for enhancing the saturation power are also considered. The analytical considerations are based on the 1-D FEL equations and 1-D perturbation theory of dielectric waveguide.

  11. Correlation between photoeletron and photoion in ultrafast multichannel photoionization of Ar

    Energy Technology Data Exchange (ETDEWEB)

    Itakura, R. [Kansai Photon Science Institute, Japan Atomic Energy Agency, Kizugawa, Kyoto 619-0215 (Japan); Fushitani, M.; Hishikawa, A. [Nagoya University, Nagoya, Aichi 464-8602 (Japan); Sako, T. [Nihon University, Funabashi, Chiba 274-8501 (Japan)

    2015-12-31

    We theoretically investigate coherent dynamics of ions created through ultrafast multichannel photoionization from a viewpoint of photoelectron-photoion correlation. The model calculation on single-photon ionization of Ar reveals that the coherent hole dynamics in Ar{sup +} associated with a superposition of the spin-orbit states {sup 2}PJ (J = 3/2 and 1/2) can be identified by monitoring only the photoion created by a Fourier-transform limited extreme ultraviolet (EUV) pulse with the fs pulse duration, while the coherence is lost by a chirped EUV pulse. It is demonstrated that by coincidence detection of the photoelectron and photoion the coherent hole dynamics can be extracted even in the case of ionization by a chirped EUV pulse with the sufficiently wide bandwidth.

  12. A photoelectron-photoion coincidence method for the investigation of decay probabilities after innershell photoionization

    CERN Document Server

    Kanngiesser, B; Godehusen, K; Gerth, C; Malzer, W; Richter, M; Zimmermann, P

    2001-01-01

    The photoelectron-photoion method presented is shown to be very successful for the quantitative investigation of decay probabilities after innershell photoionization. Especially for the determination of K-shell fluorescence yields of light elements, where only scarce data exist up to now, this method opens up new ways. For all elements we present a general approach to determine fluorescence yields. As an example the investigation of the 1 s decay of free sodium atoms is presented.

  13. Rovibrationally selected ion-molecule collision study using the molecular beam vacuum ultraviolet laser pulsed field ionization-photoion method: charge transfer reaction of N2(+)(X 2Σg+; v+ = 0-2; N+ = 0-9) + Ar.

    Science.gov (United States)

    Chang, Yih Chung; Xu, Yuntao; Lu, Zhou; Xu, Hong; Ng, C Y

    2012-09-14

    We have developed an ion-molecule reaction apparatus for state-selected absolute total cross section measurements by implementing a high-resolution molecular beam vacuum ultraviolet (VUV) laser pulsed field ionization-photoion (PFI-PI) ion source to a double-quadrupole double-octopole ion-guide mass spectrometer. Using the total cross section measurement of the state-selected N(2)(+)(v(+), N(+)) + Ar charge transfer (CT) reaction as an example, we describe in detail the design of the VUV laser PFI-PI ion source used, which has made possible the preparation of reactant N(2)(+)(X (2)Σ(g)(+), v(+) = 0-2, N(+) = 0-9) PFI-PIs with high quantum state purity, high intensity, and high kinetic energy resolution. The PFI-PIs and prompt ions produced in the ion source are shown to have different kinetic energies, allowing the clean rejection of prompt ions from the PFI-PI beam by applying a retarding potential barrier upstream of the PFI-PI source. By optimizing the width and amplitude of the pulsed electric fields employed to the VUV-PFI-PI source, we show that the reactant N(2)(+) PFI-PI beam can be formed with a laboratory kinetic energy resolution of ΔE(lab) = ± 50 meV. As a result, the total cross section measurement can be conducted at center-of-mass kinetic energies (E(cm)'s) down to thermal energies. Absolute total rovibrationally selected cross sections σ(v(+) = 0-2, N(+) = 0-9) for the N(2)(+)(X (2)Σ(g)(+); v(+) = 0-2, N(+) = 0-9) + Ar CT reaction have been measured in the E(cm) range of 0.04-10.0 eV, revealing strong vibrational enhancements and E(cm)-dependencies of σ(v(+) = 0-2, N(+) = 0-9). The thermochemical threshold at E(cm) = 0.179 eV for the formation of Ar(+) from N(2)(+)(X; v(+) = 0, N(+)) + Ar was observed by the measured σ(v(+) = 0), confirming the narrow ΔE(cm) spread achieved in the present study. The σ(v(+) = 0-2; N(+)) values obtained here are compared with previous experimental and theoretical results. The theoretical predictions

  14. Intershell correlations in photoionization of outer shells

    Energy Technology Data Exchange (ETDEWEB)

    Amusia, M.Ya. [The Racah Institute of Physics, The Hebrew University of Jerusalem, Jerusalem 91904 (Israel); A.F. Ioffe Physical-Technical Institute, St. Petersburg 194021 (Russian Federation); Chernysheva, L.V. [A.F. Ioffe Physical-Technical Institute, St. Petersburg 194021 (Russian Federation); Drukarev, E.G. [National Research Center “Kurchatov Institute”, Konstantinov Petersburg Nuclear Physics Institute, St. Petersburg 188300 (Russian Federation)

    2016-02-15

    We demonstrate that the cross sections for photoionization of the outer shells are noticeably modified at the photon energies close to the thresholds of ionization of the inner shells due to correlations with the latter. The correlations may lead to increase or to decrease of the cross sections just above the ionization thresholds.

  15. Dissociative Photoionization of the Elusive Vinoxy Radical.

    Science.gov (United States)

    Adams, Jonathan D; Scrape, Preston G; Lee, Shih-Huang; Butler, Laurie J

    2017-08-24

    These experiments report the dissociative photoionization of vinoxy radicals to m/z = 15 and 29. In a crossed laser-molecular beam scattering apparatus, we induce C-Cl bond fission in 2-chloroacetaldehyde by photoexcitation at 157 nm. Our velocity measurements, combined with conservation of angular momentum, show that 21% of the C-Cl photofission events form vinoxy radicals that are stable to subsequent dissociation to CH3 + CO or H + ketene. Photoionization of these stable vinoxy radicals, identified by their velocities, which are momentum-matched with the higher-kinetic-energy Cl atom photofragments, shows that the vinoxy radicals dissociatively photoionize to give signal at m/z = 15 and 29. We calibrated the partial photoionization cross section of vinoxy to CH3+ relative to the bandwidth-averaged photoionization cross section of the Cl atom at 13.68 eV to put the partial photoionization cross sections on an absolute scale. The resulting bandwidth-averaged partial cross sections are 0.63 and 1.3 Mb at 10.5 and 11.44 eV, respectively. These values are consistent with the upper limit to the cross section estimated from a study by Savee et al. on the O(3P) + propene bimolecular reaction. We note that the uncertainty in these values is primarily dependent on the signal attributed to C-Cl primary photofission in the m/z = 35 (Cl+) time-of-flight data. While the value is a rough estimate, the bandwidth-averaged partial photoionization cross section of vinoxy to HCO+ calculated from the signal at m/z = 29 at 11.53 eV is approximately half that of vinoxy to CH3+. We also present critical points on the potential energy surface of the vinoxy cation calculated at the G4//B3LYP/6-311++G(3df,2p) level of theory to support the observation of dissociative ionization of vinoxy to both CH3+ and HCO+.

  16. Recent development of VUV-based processes for air pollutants degradation

    Directory of Open Access Journals (Sweden)

    Haibao eHuang

    2016-03-01

    Full Text Available As air pollution become more and more serious nowadays, it is essential to find out a way to efficiently degrade the air pollutants. Vacuum ultraviolet (VUV-based processes are an emerging and promising technologies for environmental remediation such as air cleaning, wastewater treatment and air/water disinfection. With VUV irradiation, photolysis, photocatalyst is and ozone-assisted oxidation are involved at the same time, resulting in the fast degradation of air pollutants because of their strong oxidizing capacity. The mechanisms of how the oxidants are produced and reacted are discussed in this review. This paper mainly focuses on the three VUV-based oxidation processes including VUV photolysis, VUV combined with ozone-assisted oxidation and VUV-PCO with emphasis on their mechanisms and applications. Also, the outlooks of these processes are outlined in this paper.

  17. VUV photochemistry simulation of planetary upper atmosphere using synchrotron radiation.

    Science.gov (United States)

    Carrasco, Nathalie; Giuliani, Alexandre; Correia, Jean Jacques; Cernogora, Guy

    2013-07-01

    The coupling of a gas reactor, named APSIS, with a vacuum-ultraviolet (VUV) beamline at the SOLEIL synchrotron radiation facility, for a photochemistry study of gas mixtures, is reported. The reactor may be irradiated windowless with gas pressures up to hundreds of millibar, and thus allows the effect of energetic photons below 100 nm wavelength to be studied on possibly dense media. This set-up is perfectly suited to atmospheric photochemistry investigations, as illustrated by a preliminary report of a simulation of the upper atmospheric photochemistry of Titan, the largest satellite of Saturn. Titan's atmosphere is mainly composed of molecular nitrogen and methane. Solar VUV irradiation with wavelengths no longer than 100 nm on the top of the atmosphere enables the dissociation and ionization of nitrogen, involving a nitrogen chemistry specific to nitrogen-rich upper atmospheres.

  18. Duke storage rink UV/VUV FEL: Status and prospects

    Energy Technology Data Exchange (ETDEWEB)

    Litvinenko, V.N.; Burnham, B.; Madey, J.M.J. [Duke Univ., Durham, NC (United States)] [and others

    1995-12-31

    The 1 GeV Duke storage ring was successfully commissioned with parameters exceeding initial specification. The OK-4 FEL has arrived at the Duke FEL laboratory from the Novosibirsk Institute of Nuclear Physics. The OK-4 installation and commissioning is in progress. In this paper we describe the up-to-date status of the Duke storage ring and the OK-4 FEL. The projected performance of the OK-4 UV/VUV FEL is presented based on the electron beam parameters achieved. Initial plans to operate the OK-4 UV/VUV FEL at the Duke 1 GeV storage ring are outlined. Future plans and prospects of both the OK-4 FEL and the Duke storage ring are discussed.

  19. A Microwave Plasma Discharge in Rare Gases as a VUV Source for Planetary Atmospheric Photochemistry

    OpenAIRE

    Tigrine, Sarah; Carrasco, Nathalie; Vettier, Ludovic; Cernogora, Guy

    2016-01-01

    International audience; The aim of this work is to show that micro-wave discharges in rare gases, can be an efficient windowless VUV photon source for planetaryatmospheric photochemistry experiments. In this context, we perform a microwave discharge (surfatron) in a neon gas flow. We characterizethe VUV photon flux emitted in different conditions, when working in the mbar pressure range, and compare it to synchrotron VUV fluxes alsoused for similar applications.

  20. A quantum-rovibrational-state-selected study of the proton-transfer reaction H2+(X2Σ: v+ = 1-3; N+ = 0-3) + Ne → NeH+ + H using the pulsed field ionization-photoion method: observation of the rotational effect near the reaction threshold.

    Science.gov (United States)

    Xiong, Bo; Chang, Yih-Chung; Ng, Cheuk-Yiu

    2017-07-19

    Using the sequential electric field pulsing scheme for vacuum ultraviolet (VUV) laser pulsed field ionization-photoion (PFI-PI) detection, we have successfully prepared H2+(X2Σ: v+ = 1-3; N+ = 0-5) ions in the form of an ion beam in single quantum-rovibrational-states with high purity, high intensity, and narrow laboratory kinetic energy spread (ΔElab ≈ 0.05 eV). This VUV-PFI-PI ion source, when coupled with the double-quadrupole double-octupole ion-molecule reaction apparatus, has made possible a systematic examination of the vibrational- as well as rotational-state effects on the proton transfer reaction of H2+(X2Σ: v+; N+) + Ne. Here, we present the integral cross sections [σ(v+; N+)'s] for the H2+(v+ = 1-3; N+ = 0-3) + Ne → NeH+ + H reaction observed in the center-of-mass kinetic energy (Ecm) range of 0.05-2.00 eV. The σ(v+ = 1, N+ = 1) exhibits a distinct Ecm onset, which is found to agree with the endothermicity of 0.27 eV for the proton transfer process after taking into account of experimental uncertainties. Strong v+-vibrational enhancements are observed for σ(v+ = 1-3, N+) in the Ecm range of 0.05-2.00 eV. While rotational excitations appear to have little effect on σ(v+ = 3, N+), a careful search leads to the observation of moderate N+-rotational enhancements at v+ = 2: σ(v+ = 2; N+ = 0) v+ = 2; N+ = 1) v+ = 2; N+ = 2) v+ = 2; N+ = 3), where the formation of NeH+ is near thermal-neutral. The σ(v+ = 1-3, N+ = 0-3) values obtained here are compared with previous experimental results and the most recent state-of-the-art quantum dynamics predictions. We hope that these new experimental results would further motivate more rigorous theoretical calculations on the dynamics of this prototypical ion-molecule reaction.

  1. Photoionization of cobalt impuritiesin zinc oxide

    Czech Academy of Sciences Publication Activity Database

    Ivanov, V.; Godlewski, M.; Dejneka, Alexandr

    2015-01-01

    Roč. 252, č. 9 (2015), s. 1988-1992 ISSN 0370-1972 R&D Projects: GA MŠk(CZ) LM2011029; GA ČR GAP108/12/1941 Grant - others:SAFMAT(XE) CZ.2.16/3.1.00/22132 Institutional support: RVO:68378271 Keywords : absorption band * cobalt * photoionization * electron spin resonance * pulsed mode * ZnO Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 1.522, year: 2015

  2. Photoionization of onion-type endohedrals

    Science.gov (United States)

    Amusia, Miron; Chernysheva, Larissa; Liverts, Evgeniy

    2009-05-01

    We developed a program that permits to treat endohedral atoms with two fullerenes shells and performed corresponding calculations for Ar atom stuffed inside two spherically symmetric shells that consists of sixty and two hundred forty carbon atoms. To describe the action of the C60 shell upon the photoionization of an atom located inside the fullerene, the zero-thickness (``orange skin'') potential model was extensively used. This simple model permits to present the results of C60 action as an oscillating factor that permits to present all characteristics of the endohedral photoionization as corresponding atomic characteristic multiplied by the above-mentioned factor. This model potential is valid only for slow photoelectrons, the wavelength of which is much bigger than the thickness of the C60 shell. It is necessary also that the radius of C60 exceeds considerably the thickness of C60. We derived analytic expressions for the factor that takes into account both shells of an onion-type fullerene. Concrete calculations are performed for Xe atom stuffed into the onion-type structure --Ar@C60C240. The induced oscillations of the photoionization cross-section became much more complex and stronger than in Ar@C60.

  3. Double Photoionization of Spatially Aligned D{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Doerner, R.; Jagutzki, O.; Mergel, V.; Achler, M.; Moshammer, R.; Braeuning-Demian, A.; Spielberger, L.; McGuire, J.H.; Schmidt-Boecking, H. [Institut fuer Kernphysik, Universitaet Frankfurt, August Euler Strasse 6, D60486 Frankfurt (Germany); Braeuning, H.; Osipov, T.; Cocke, C.L. [Department of Physics, Kansas State University, Manhattan, Kansas 66506 (United States); Braeuning, H.; Prior, M.H.; Bozek, J.D. [Lawrence Berkeley National Laboratory, Berkeley, California 94720 (United States); Feagin, J.M. [Department of Physics, California State University-Fullerton, Fullerton, California 92834 (United States); Berrah, N. [Department of Physics, Western Michigan University, Kalamazoo, Michigan 49008 (United States)

    1998-12-01

    The four-body breakup of spatially aligned D{sub 2} by 58.8 eV photons from the Advanced Light Source has been investigated by measuring the three dimensional momentum vectors of both fragment ions and one of the two electrons in coincidence. Energy and angular correlation between ions and electrons is discussed. We find rotational symmetry of the electron angular distribution around the polarization vector of the light and significant differences between helium and D{sub 2} as well as between molecular alignment parallel and perpendicular to the polarization axis. {copyright} {ital 1998} {ital The American Physical Society }

  4. VUV optical ring resonator for Duke storage ring free electron laser

    Energy Technology Data Exchange (ETDEWEB)

    Park, S.H.; Litvinenko, V.N.; Madey, J.M.J. [Duke Univ., Durham, NC (United States)] [and others

    1995-12-31

    The conceptual design of the multifaceted-mirror ring resonator for Duke storage ring VUV FEL is presented. The expected performance of the OK-4 FEL with ring resonator is described. We discuss in this paper our plans to study reflectivity of VUV mirrors and their resistivity to soft X-ray spontaneous radiation from OK-4 undulator.

  5. The VUV instrument SPICE for Solar Orbiter: performance ground testing

    Science.gov (United States)

    Caldwell, Martin E.; Morris, Nigel; Griffin, Douglas K.; Eccleston, Paul; Anderson, Mark; Pastor Santos, Carmen; Bruzzi, Davide; Tustain, Samuel; Howe, Chris; Davenne, Jenny; Grundy, Timothy; Speight, Roisin; Sidher, Sunil D.; Giunta, Alessandra; Fludra, Andrzej; Philippon, Anne; Auchere, Frederic; Hassler, Don; Davila, Joseph M.; Thompson, William T.; Schuehle, Udo H.; Meining, Stefan; Walls, Buddy; Phelan, P.; Dunn, Greg; Klein, Roman M.; Reichel, Thomas; Gyo, Manfred; Munro, Grant J.; Holmes, William; Doyle, Peter

    2017-08-01

    SPICE is an imaging spectrometer operating at vacuum ultraviolet (VUV) wavelengths, 70.4 - 79.0 nm and 97.3 - 104.9 nm. It is a facility instrument on the Solar Orbiter mission, which carries 10 science instruments in all, to make observations of the Sun's atmosphere and heliosphere, at close proximity to the Sun, i.e to 0.28 A.U. at perihelion. SPICE's role is to make VUV measurements of plasma in the solar atmosphere. SPICE is designed to achieve spectral imaging at spectral resolution >1500, spatial resolution of several arcsec, and two-dimensional FOV of 11 x16arcmins. The many strong constraints on the instrument design imposed by the mission requirements prevent the imaging performance from exceeding those of previous instruments, but by being closer to the sun there is a gain in spatial resolution. The price which is paid is the harsher environment, particularly thermal. This leads to some novel features in the design, which needed to be proven by ground test programs. These include a dichroic solar-transmitting primary mirror to dump the solar heat, a high in-flight temperature (60deg.C) and gradients in the optics box, and a bespoke variable-line-spacing grating to minimise the number of reflective components used. The tests culminate in the systemlevel test of VUV imaging performance and pointing stability. We will describe how our dedicated facility with heritage from previous solar instruments, is used to make these tests, and show the results, firstly on the Engineering Model of the optics unit, and more recently on the Flight Model. For the keywords, select up to 8 key terms for a search on your manuscript's subject.

  6. VUV photoabsorption spectroscopy of amorphous and crystalline sulphur dioxide films

    Science.gov (United States)

    Holtom, P. D.; Dawes, A.; Davis, M. P.; Webb, S. M.; Hoffmann, S. V.; Mukerji, R. J.; Mason, N. J.

    Sulphur dioxide, SO2 is one of the simplest sulphur compounds and has been observed widely in the interstellar medium and in the solar system. It has also been observed in the atmospheres of Venus and Io and on the surface of Europa. Gaseous sulphur dioxide has recently been observed for the first time in the extragalactic medium. (Martin et al 1979). Five SO2 transitions detected towards NGC 253 with a total column density of 7 x 1013 cm-1 have been reported. SO2 is also present on Io, in solid, liquid and gaseous form. For example solid phase SO2 was suggested as the source for the 4.05-4.08 μm feature of SO2 seen in the spectrum of Io (Smythe, Nelson & Nash 1979),(Fanale et al 1979). To date most studies of SO2 spectroscopy have been in the gaseous phase with only a few experiments reported on solid SO2. We have used the UV1 beam line on the ASTRID synchrotron based at the University of Aarhus in Denmark to measure the VUV spectrum of condensed phase SO2 over the range of 120 - 350 nm and in the temperature range of 25 - 80 K. (For a full description of our equipment see Dawes, Holtom & Mason 2003). In this poster we report the results of a detailed study of the spectroscopy of solid SO2 in the VUV and UV. At 25 K the VUV spectrum for a fast deposited film (2.8 μm/hr) suggests an amorphous ice layer is formed, in contrast a slow deposition (0.21 μ m/hr) suggests that a more crystalline ice is formed. Annealing (heating of the 25 K fast deposited ice) to 80 K revealed a phase change producing crystalline SO2 ice from the originally amorphous sample. Such spectroscopic features might be used to determine thermal histories of planetary ice. Further details will be presented at the conference.

  7. Dynamics of synchrotron VUV-induced intracluster reactions

    Energy Technology Data Exchange (ETDEWEB)

    Grover, J.R. [Brookhaven National Laboratory, Upton, NY (United States)

    1993-12-01

    Photoionization mass spectrometry (PIMS) using the tunable vacuum ultraviolet radiation available at the National Synchrotron Light Source is being exploited to study photoionization-induced reactions in small van der Waals mixed complexes. The information gained includes the observation and classification of reaction paths, the measurement of onsets, and the determination of relative yields of competing reactions. Additional information is obtained by comparison of the properties of different reacting systems. Special attention is given to finding unexpected features, and most of the reactions investigated to date display such features. However, understanding these reactions demands dynamical information, in addition to what is provided by PIMS. Therefore the program has been expanded to include the measurement of kinetic energy release distributions.

  8. Molecular Frame Reconstruction Using Time-Domain Photoionization Interferometry

    Science.gov (United States)

    Marceau, Claude; Makhija, Varun; Platzer, Dominique; Naumov, A. Yu.; Corkum, P. B.; Stolow, Albert; Villeneuve, D. M.; Hockett, Paul

    2017-08-01

    Photoionization of molecular species is, essentially, a multipath interferometer with both experimentally controllable and intrinsic molecular characteristics. In this work, XUV photoionization of impulsively aligned molecular targets (N2 ) is used to provide a time-domain route to "complete" photoionization experiments, in which the rotational wave packet controls the geometric part of the photoionization interferometer. The data obtained is sufficient to determine the magnitudes and phases of the ionization matrix elements for all observed channels, and to reconstruct molecular frame interferograms from lab frame measurements. In principle, this methodology provides a time-domain route to complete photoionization experiments and the molecular frame, which is generally applicable to any molecule (no prerequisites), for all energies and ionization channels.

  9. Reconstructing the Solar VUV Irradiance over the Past 60 Years

    Science.gov (United States)

    Chamberlin, Phillip

    2010-01-01

    The Flare Irradiance Spectral Model (FISM) is an empirical model of the solar irradiance spectrum from 0.1 to 190 nm at I nm spectral resolution and on a 1-minute time cadence. The goal of FISM is to provide accurate solar spectral irradiances over the vacuum ultraviolet (VUV: 0-200 nm) range as input for ionospheric and thermospheric models, as well as climate studies over 60 years. A brief overview of the FISM model will be given, and also discussed is how the Solar Dynamics Observatory (SDO) EUV Variability Experiment (EVE) will contribute to improving FISM and its accuracies. Results will also be shown quantifying the VUV contributions to the total flare energy budget, and more importantly discuss the increased errors associated by not including flares in the solar energy input to the Earth's system. Concluding the talk will be a discussion of the proxies, and their associated uncertainties, used for solar spectral reconstructions prior to 1947 going back hundreds of years.

  10. Cooling and Heating Functions of Photoionized Gas

    Energy Technology Data Exchange (ETDEWEB)

    Gnedin, Nickolay Y.; /Chicago U., EFI /Fermilab /Chicago U., Astron. Astrophys. Ctr. /Chicago U., KICP; Hollon, Nicholas; /Chicago U., EFI /Chicago U., Astron. Astrophys. Ctr. /Chicago U., KICP

    2012-01-01

    Cooling functions of cosmic gas are a crucial ingredient for any study of gas dynamics and thermodynamics in the interstellar and intergalactic medium. As such, they have been studied extensively in the past under the assumption of collisional ionization equilibrium. However, for a wide range of applications, the local radiation field introduces a non-negligible, often dominant, modification to the cooling and heating functions. In the most general case, these modifications cannot be described in simple terms, and would require a detailed calculation with a large set of chemical species using a radiative transfer code (the well-known code Cloudy, for example). We show, however, that for a sufficiently general variation in the spectral shape and intensity of the incident radiation field, the cooling and heating functions can be approximated as depending only on (1) the photodissociation rate of molecular hydrogen, (2) the hydrogen photo-ionization rate, and (3) the photo-ionization rate of OVIII;more complex and more accurate approximations also exist. Such dependence is easy to tabulate and implement in cosmological or galactic-scale simulations, thus economically accounting for an important but rarely-included factor in the evolution of cosmic gas. We also show a few examples where the radiation environment has a large effect, the most spectacular of which is a quasar that suppresses gas cooling in its host halo without any mechanical or non-radiative thermal feedback.

  11. Photoionization Dynamics in Pure Helium Droplets

    Energy Technology Data Exchange (ETDEWEB)

    Peterka, Darcy S.; Kim, Jeong Hyun; Wang, Chia C.; Poisson,Lionel; Neumark, Daniel M.

    2007-02-04

    The photoionization and photoelectron spectroscopy of pure He droplets are investigated at photon energies between 24.6 eV (the ionization energy of He) and 28 eV. Time-of-flight mass spectra and photoelectron images were obtained at a series of molecular beam source temperatures and pressures to assess the effect of droplet size on the photoionization dynamics. At source temperatures below 16 K, the photoelectron images are dominated by fast electrons produced via direct ionization of He atoms, with a small contribution from very slow electrons with kinetic energies below 1 meV arising from an indirect mechanism. The fast photoelectrons have as much as 0.5 eV more kinetic energy than those from atomic He at the same photon energy. This result is interpreted and simulated within the context of a 'dimer model', in which one assumes vertical ionization from two nearest neighbor He atoms to the attractive region of the He2+ potential energy curve. Possible mechanism for the slow electrons, which were also seen at energies below IE(He), are discussed, including vibrational autoionizaton of Rydberg states comprising an electron weakly bound to the surface of a large HeN+ core.

  12. Beam Line Commissioning of a UV/VUV FEL at Jefferson Lab

    Energy Technology Data Exchange (ETDEWEB)

    Benson, Stephen; Blackburn, Keith; Bullard, Daniel; Clavero Perez, Cesar; Coleman, James; Dickover, Cody; Douglas, David; Ellingsworth, Forrest; Evtushenko, Pavel; Hernandez-Garcia, Carlos; Gould, Christopher; Gubeli, Joseph; Hardy, David; Jordan, Kevin; Klopf, John; James, Kortze; Legg, Robert; Marchlik, Matthew; Moore, Steven; Neil, George; Powers, Thomas; Sexton, Daniel; Shinn, Michelle D; Tennant, Christopher; Walker, Richard; Williams, Gwyn; Wilson, Frederick

    2011-08-01

    Many novel applications in photon sciences require very high brightness and/or short pulses in the vacuum ultra-violet (VUV). Jefferson Lab has commissioned a UV oscillator with high gain and has transported the third harmonic of the UV to a user lab. The experimental performance of the UV FEL is much better than simulated performance in both gain and efficiency. This success is important for efforts to push towards higher gain FELs at short wavelengths where mirrors absorb strongly. We will report on efforts to characterize the UV laser and the VUV coherent harmonics as well as designs to lase directly in the VUV wavelength range.

  13. VUV/UV/Chlorine as an Enhanced Advanced Oxidation Process for Organic Pollutant Removal from Water: Assessment with a Novel Mini-Fluidic VUV/UV Photoreaction System (MVPS).

    Science.gov (United States)

    Li, Mengkai; Qiang, Zhimin; Hou, Pin; Bolton, James R; Qu, Jiuhui; Li, Peng; Wang, Chen

    2016-06-07

    Vacuum ultraviolet (VUV) and ultraviolet (UV)/chlorine processes are regarded as two of many advanced oxidation processes (AOPs). Because of the similar cost of VUV/UV and UV lamps, a combination of VUV and UV/chlorine (i.e., VUV/UV/chlorine) may enhance the removal of organic pollutants in water but without any additional power input. In this paper, a mini-fluidic VUV/UV photoreaction system (MVPS) was developed for bench-scale experiments, which could emit both VUV (185 nm) and UV (254 nm) or solely UV beams with a nearly identical UV photon fluence. The photon fluence rates of UV and VUV output by the MVPS were determined to be 8.88 × 10(-4) and 4.93 × 10(-5) einstein m(-2) s(-1), respectively. The VUV/UV/chlorine process exhibited a strong enhancement concerning the degradation of methylene blue (MB, a model organic pollutant) as compared to the total performance of the VUV/UV and UV/chlorine processes, although the photon fluence of the VUV only accounted for 5.6% of that of the UV. An acidic pH favored MB degradation by the VUV/UV/chlorine process. The synergistic mechanism of the VUV/UV/chlorine process was mainly ascribed to the effective use of (•)OH for pollutant removal through formation of longer-lived secondary radicals (e.g., (•)OCl). This study demonstrates that the new VUV/UV/chlorine process, as an enhanced AOP, can be applied as a highly effective and energy-saving technology for small-scale water and wastewater treatment.

  14. Photodetachment and photoionization rainbows and glories

    Science.gov (United States)

    Cohen, S.; Kalaitzis, P.; Danakas, S.; Lépine, F.; Bordas, C.

    2017-03-01

    Quantum scattering has many similarities with the physics of the atmospheric rainbow. Diffraction effects, including rainbows and glories, have long been introduced in the physics of scattering, and particularly in nuclear, atomic and molecular physics. In this paper we describe the striking similarity between the optics of the primary rainbow and supernumerary bows and photodetachment microscopy, with the latter term referring to the photodetachment of a structureless anion in the presence of a static electric field. Further, we extend the aforementioned analogy to the more complex and fertile case of photoionization microscopy. Despite the fact that in the latter situation the analogy is only approximate, we demonstrate the emergence of additional features that are also found in classical optics, like higher-order bows and glories. Finally, based on the conclusions drawn from the above analyses, we discuss the significant contribution of glories in threshold photoelectron spectroscopy.

  15. A SYNCHRONIZED FIR/VUV LIGHT SOURCE AT JEFFERSON LAB

    Energy Technology Data Exchange (ETDEWEB)

    Stephen Benson, David Douglas, George Neil, Michelle D. Shinn, Gwyn Williams

    2012-07-01

    We describe a dual free-electron laser (FEL) configuration on the UV Demo FEL at Jefferson Lab that allows simultaneous lasing at FIR/THz and UV wavelengths. The FIR/THz source would be an FEL oscillator with a short wiggler providing nearly diffraction-limited pulses with pulse energy exceeding 50 microJoules. The FIR source would use the exhaust beam from a UVFEL. The coherent harmonics in the VUV from the UVFEL are out-coupled through a hole. The FIR source uses a shorter resonator with either hole or edge coupling to provide very high power FIR pulses. Simulations indicate excel-lent spectral brightness in the FIR region with over 100 W/cm-1 output.

  16. A VUV prism spectrometer for RICH radiator refractometry

    CERN Document Server

    Moyssides, P G; Fokitis, E

    2000-01-01

    A prism spectrometer has been developed to operate in the VUV wavelength range from 120 to 200 nm. It can be used as a pre- disperser in conjunction with a Fabry-Perot based gas refractometer. This instrument has also been used to measure the refractive index of the liquid radiator C/sub 6/F/sub 14/ in various spectral lines. This radiator is used in the RICH detectors of the DELPHI experiment and has been proposed for ALICE, and LHCb experiments. The spectral resolution of the system is improved as the wavelength decreases and the data are consistent with a wavelength accuracy about 0.4 nm at 140 nm. The results for the dispersion curve of the above liquid are presented. (17 refs).

  17. VUV Spectroscopy of the Sun as a Star

    Science.gov (United States)

    Kankelborg, Charles; Philip, Judge; Winebarger, Amy R.; Kobayashi, Ken; Smart, Roy

    2017-08-01

    We describe a new sounding rocket mission to obtain the first high resolution, high quality VUV (100-200 nm) spectrum of the Sun-as-a-star. Our immediate science goal is to understand better the processes of chromospheric and coronal heating. HST data exist for a dozen or so Sun-like stars of a quality already beyond our ability to construct a comparable sun-as-a-star UV spectrum. The solar spectrum we obtain will enable us to understand the nature of magnetic energy dissipation as a Sun-like star evolves, and the dependence of magnetic activity on stellar mass and metallicity. This poster presents the instrument design, scientific prospects, and broader impacts of the proposed mission.

  18. Reconstructing the Solar VUV Irradiance Over the Past 60 Years

    Science.gov (United States)

    Chamberlin, Phillip C.

    2011-01-01

    Actual observations of the solar spectral irradiance are extremely limited on climate time scales; therefore, various empirical models use solar proxies to reconstruct the actual output of the Sun over long time scales. The Flare Irradiance Spectral Model (FISM) is an empirical model of the solar irradiance spectrum from 0.1 to 190 nm at 1 nm spectral resolution and on a I-minute time cadence. The goal of FISM is to provide accurate solar spectral irradiances over the vacuum ultraviolet (VUV: 0-200 nm) range as input for ionospheric and thermospheric. A brief overview of the proxies used in the FISM model will be given, and also discussed is how the Solar Dynamics Observatory (SDO) EUV Variability Experiment (EVE) will contribute to improving FISM estimates and its accuracies. Also presented will be a discussion of other solar irradiance proxies and measurements, and their associated uncertainties, used for solar spectral reconstructions.

  19. Deuterium Enrichment of PAHs by VUV Irradiation of Interstellar Ices

    Science.gov (United States)

    Bernstein, Max P.; Sandford, Scott A.; Allamandola, Louis J.; Gillette, J. Seb; Zare, Richard N.; DeVincenzi, Donald (Technical Monitor)

    1998-01-01

    Laboratory results demonstrate that polycyclic aromatic hydrocarbons (PAHs) rapidly exchange their hydrogen atoms with those of nearby molecules when they are frozen into low-temperature ices and exposed to vacuum ultraviolet radiation. As a result, PAHs quickly become deuterium-enriched when VUV irradiated in D-containing ices. This mechanism has important consequences for several astrophysical issues owing to the ubiquitous nature of PAHs in the interstellar medium. For example, this process may explain the deuterium enrichments found in PAHs in meteorites and interplanetary dust particles. These results also provide general predictions about the molecular siting of the deuterium on aromatic materials in meteorites if this process produced a significant fraction of their D-enrichment.

  20. Uncooled Radiation Hard SiC Schottky VUV Detectors Capable of Single Photon Sensing Project

    Data.gov (United States)

    National Aeronautics and Space Administration — This project seeks to design, fabricate, characterize and commercialize very large area, uncooled and radiative hard 4H-SiC VUV detectors capable of near single...

  1. Relations between photoionization cross sections and photon radius

    CERN Document Server

    Liu, Shan-Liang

    2016-01-01

    The relations between photoionization cross sections and photon radius are obtained on basis of quantum mechanics and the particle-like properties of a photon. The photoionization cross sections of H atom and H-like ions, He atom and He like ions, alkali metal atoms, and Rydberg atoms are calculated using the relations. The calculation results are found to be good agreement with the known experimental data. The results show that the photoionization cross section is always smaller than the cross section of the photon to ionize the atom or ion and can be expressed as the product of the cross section of the photon and the probability that electron meets with the photon. These provide the intuitive understanding for the photoionization phenomena and open a new avenue of research on interaction between a photon and an atom or ion.

  2. Design of ITER divertor VUV spectrometer and prototype test at KSTAR tokamak

    Science.gov (United States)

    Seon, Changrae; Hong, Joohwan; Song, Inwoo; Jang, Juhyeok; Lee, Hyeonyong; An, Younghwa; Kim, Bosung; Jeon, Taemin; Park, Jaesun; Choe, Wonho; Lee, Hyeongon; Pak, Sunil; Cheon, MunSeong; Choi, Jihyeon; Kim, Hyeonseok; Biel, Wolfgang; Bernascolle, Philippe; Barnsley, Robin; O'Mullane, Martin

    2017-12-01

    Design and development of the ITER divertor VUV spectrometer have been performed from the year 1998, and it is planned to be installed in the year 2027. Currently, the design of the ITER divertor VUV spectrometer is in the phase of detail design. It is optimized for monitoring of chord-integrated VUV signals from divertor plasmas, chosen to contain representative lines emission from the tungsten as the divertor material, and other impurities. Impurity emission from overall divertor plasmas is collimated through the relay optics onto the entrance slit of a VUV spectrometer with working wavelength range of 14.6-32 nm. To validate the design of the ITER divertor VUV spectrometer, two sets of VUV spectrometers have been developed and tested at KSTAR tokamak. One set of spectrometer without the field mirror employs a survey spectrometer with the wavelength ranging from 14.6 nm to 32 nm, and it provides the same optical specification as the spectrometer part of the ITER divertor VUV spectrometer system. The other spectrometer with the wavelength range of 5-25 nm consists of a commercial spectrometer with a concave grating, and the relay mirrors with the same geometry as the relay mirrors of the ITER divertor VUV spectrometer. From test of these prototypes, alignment method using backward laser illumination could be verified. To validate the feasibility of tungsten emission measurement, furthermore, the tungsten powder was injected in KSTAR plasmas, and the preliminary result could be obtained successfully with regard to the evaluation of photon throughput. Contribution to the Topical Issue "Atomic and Molecular Data and their Applications", edited by Gordon W.F. Drake, Jung-Sik Yoon, Daiji Kato, Grzegorz Karwasz.

  3. Hydrated electron based decomposition of perfluorooctane sulfonate (PFOS) in the VUV/sulfite system.

    Science.gov (United States)

    Gu, Yurong; Liu, Tongzhou; Wang, Hongjie; Han, Huili; Dong, Wenyi

    2017-12-31

    As one of the most reactive species, hydrated electron (eaq(-)) is promising for reductive decomposition of recalcitrant organic pollutants, such as perfluorooctane sulfonate (PFOS). In this study, PFOS decomposition using a vacuum ultraviolet (VUV)/sulfite system was systematically investigated in comparison with sole VUV and ultraviolet (UV)/sulfite systems. A fast and nearly complete (97.3%) PFOS decomposition was observed within 4h from its initial concentration of 37.2μM in the VUV/sulfite system. The observed rate constant (kobs) for PFOS decomposition in the studied system was 0.87±0.0060h(-1), which was nearly 7.5 and 2 folds faster than that in sole VUV and UV/sulfite systems, respectively. Compared to previously studied UV/sulfite system, VUV/sulfite system enhanced PFOS decomposition in both weak acidic and alkaline pH conditions. In weak acidic condition (pH6.0), PFOS predominantly decomposed via direct VUV photolysis, whereas in alkaline condition (pH>9.0), PFOS decomposition was mainly induced by eaq(-) generated from both sulfite and VUV photolytic reactions. At a fixed initial solution pH (pH10.0), PFOS decomposition kinetics showed a positive linear dependence with sulfite dosage. The co-presence of humic acid (HA) and NO3(-) obviously suppressed PFOS decomposition, whereas HCO3(-) showed marginal inhibition. A few amount of short chain perfluorocarboxylic acids (PFCAs) were detected in PFOS decomposition process, and a high defluorination efficiency (75.4%) was achieved. These results suggested most fluorine atoms in PFOS molecule ultimately mineralized into fluoride ions, and the mechanisms for PFOS decomposition in the VUV/sulfite system were proposed. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. Photoionization of a Statistic Atom by Ultrashort Wavelet Pulses

    Science.gov (United States)

    Astapenko, V. A.; Ionichev, E. Yu.; Yakovets, A. V.

    2017-10-01

    Photoionization of atoms by ultrashort electromagnetic wavelet pulses is investigated within the framework of a statistical model. Integral representations of the total probability of atom ionization are obtained within the time over which the pulse acts. It is shown that the dependence of this probability on the pulse duration in the considered case is bell-shaped. The wavelet pulse duration at which the maximum photoionization probability is reached is determined for different charges of atomic nuclii.

  5. Unexpected methyl migrations of ethanol dimer under synchrotron VUV radiation

    Energy Technology Data Exchange (ETDEWEB)

    Xiao, Weizhan; Hu, Yongjun, E-mail: yjhu@scnu.edu.cn, E-mail: lssheng@ustc.edu.cn; Li, Weixing; Guan, Jiwen [MOE Key Laboratory of Laser Life Science and Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou 510631 (China); Liu, Fuyi; Shan, Xiaobin; Sheng, Liusi, E-mail: yjhu@scnu.edu.cn, E-mail: lssheng@ustc.edu.cn [National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, Anhui 230029 (China)

    2015-01-14

    While methyl transfer is well known to occur in the enzyme- and metal-catalyzed reactions, the methyl transfer in the metal-free organic molecules induced by the photon ionization has been less concerned. Herein, vacuum ultraviolet single photon ionization and dissociation of ethanol dimer are investigated with synchrotron radiation photoionization mass spectroscopy and theoretical methods. Besides the protonated clusters cation (C{sub 2}H{sub 5}OH) ⋅ H{sup +} (m/z = 47) and the β-carbon-carbon bond cleavage fragment CH{sub 2}O ⋅ (C{sub 2}H{sub 5}OH)H{sup +} (m/z = 77), the measured mass spectra revealed that a new fragment (C{sub 2}H{sub 5}OH) ⋅ (CH{sub 3}){sup +} (m/z = 61) appeared at the photon energy of 12.1 and 15.0 eV, where the neutral dimer could be vertically ionized to higher ionic state. Thereafter, the generated carbonium ions are followed by a Wagner-Meerwein rearrangement and then dissociate to produce this new fragment, which is considered to generate after surmounting a few barriers including intra- and inter-molecular methyl migrations by the aid of theoretical calculations. The appearance energy of this new fragment is measured as 11.55 ± 0.05 eV by scanning photoionization efficiency curve. While the signal intensity of fragment m/z = 61 starts to increase, the fragments m/z = 47 and 77 tend to slowly incline around 11.55 eV photon energy. This suggests that the additional fragment channels other than (C{sub 2}H{sub 5}OH) ⋅ H{sup +} and CH{sub 2}O ⋅ (C{sub 2}H{sub 5}OH)H{sup +} have also been opened, which consume some dimer cations. The present report provides a clear description of the photoionization and dissociation processes of the ethanol dimer in the range of the photon energy 12-15 eV.

  6. COOLING AND HEATING FUNCTIONS OF PHOTOIONIZED GAS

    Energy Technology Data Exchange (ETDEWEB)

    Gnedin, Nickolay Y. [Particle Astrophysics Center, Fermi National Accelerator Laboratory, Batavia, IL 60510 (United States); Hollon, Nicholas, E-mail: gnedin@fnal.gov [Department of Astronomy and Astrophysics, University of Chicago, Chicago, IL 60637 (United States)

    2012-10-15

    Cooling and heating functions of cosmic gas are crucial ingredients for any study of gas dynamics and thermodynamics in the interstellar and intergalactic media. As such, they have been studied extensively in the past under the assumption of collisional ionization equilibrium. However, for a wide range of applications, the local radiation field introduces a non-negligible, often dominant, modification to the cooling and heating functions. In the most general case, these modifications cannot be described in simple terms and would require a detailed calculation with a large set of chemical species using a radiative transfer code (the well-known code Cloudy, for example). We show, however, that for a sufficiently general variation in the spectral shape and intensity of the incident radiation field, the cooling and heating functions can be approximated as depending only on several photoionization rates, which can be thought of as representative samples of the overall radiation field. This dependence is easy to tabulate and implement in cosmological or galactic-scale simulations, thus economically accounting for an important but rarely included factor in the evolution of cosmic gas. We also show a few examples where the radiation environment has a large effect, the most spectacular of which is a quasar that suppresses gas cooling in its host halo without any mechanical or non-radiative thermal feedback.

  7. Study of photoionization and dissociative photoionization of carbon monoxide from ionization threshold to 38 eV by using synchrotron radiation

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Yujie, E-mail: jackzyj@ustc.edu.cn [National Synchrotron Radiation Laboratory, School of Nuclear Science and Technology, University of Science and Technology of China, Hefei 230029 (China); College of Physics and Electronic Engineering, Henan Normal University, Xinxiang 453007 (China); Cao, Maoqi; Li, Yuquan; Shan, Xiaobin; Liu, Fuyi [National Synchrotron Radiation Laboratory, School of Nuclear Science and Technology, University of Science and Technology of China, Hefei 230029 (China); Sheng, Liusi, E-mail: lssheng@ustc.edu.cn [National Synchrotron Radiation Laboratory, School of Nuclear Science and Technology, University of Science and Technology of China, Hefei 230029 (China); Li, Li; Liu, Wanfang [College of Physics and Electronic Engineering, Henan Normal University, Xinxiang 453007 (China)

    2014-10-15

    Highlights: • The high resolution photoionization spectrum of carbon monoxide has been investigated using tunable synchrotron radiation. • This work has investigated comprehensively almost all kinds of photo excitation processes of CO in wide photon region. • The mechanisms of photoionization and dissociative photoionization of CO have been researched in detail. - Abstract: The vacuum-ultraviolet photoionization and dissociative photoionization of carbon monoxide in a region 14–38 eV have been investigated with time-of-flight (TOF) photoionization mass spectrometry (PIMS) using tunable synchrotron radiation (SR). The adiabatic ionization energy (IE) of carbon monoxide and appearance energies (AE) for its fragment ions in different states are determined by measurements of photoionization efficiency spectra (PIES). Ab initio calculations have been performed to investigate the reaction mechanism of dissociative photoionization of carbon monoxide. On the basis of experimental and predicted theoretical results, the mechanisms of photoionization and dissociative photoionization of molecular CO are discussed, and sixteen dissociative photoionization processes are proposed. The equilibrium geometries and harmonic vibrational frequencies of CO molecule, and its parent cation were calculated by using MP2 (full) method. The differences of configurations between them are also discussed on the basis of theoretical calculations. According to our results, the experimental IE of CO molecule, and dissociation energies (E{sub d}) of possible dissociative channels are in reasonable agreement with the calculated values of the proposed photodissociation channels.

  8. Performance of a novel VUV bending magnet beamline

    CERN Document Server

    Song, Y F; Hsieh, T F; Huang, L R; Chung, S C; Cheng, N F; Hsiung, G Y; Wang, D J; Chen, C T; Tsang, K L

    2001-01-01

    A novel high resolution, high flux bending magnet beamline with an energy range from 5 to 40 eV has been constructed at SRRC. This Dragon-like beamline, which horizontally collects 50 mrad of synchrotron radiation from a bending magnet source, uses four cylindrical gratings with an included angle of 140 deg. and a movable curved exit slit. The average photon flux with an energy resolving power of 1000 is about 2x10 sup 1 sup 2 photons/s, which is among the highest of all existing VUV bending magnet beamlines. An energy resolving power of 24,000 at 6.8 eV has been obtained from the Schumann-Runge bands (B sup 3 limit construction operator in a limit construction/sum L: summation operator operator End lower limit of a limit construction u lower limit End limit End sup - /leftarrow/gets A: =leftward arrow X sup 3 limit construction operator in a limit construction/sum L: summation operator operator End lower limit of a limit construction g lower limit End limit End sup -) absorption spectra of O sub 2 gas. A pho...

  9. Depth-resolved subcycle dynamics of photoionization in solids

    Science.gov (United States)

    Zhokhov, P. A.; Zheltikov, A. M.

    2017-09-01

    We develop a theoretical framework for the analysis of ultrafast dynamics of photoionization in solids that treats the electron density buildup resolved within the field cycle jointly with the propagation dynamics of the laser driver. We show that while the standard, cycle-averaging photoionization models predict a monotonic buildup of the electron density within the driver pulse, the cycle-resolved photoionization model used in this work reveals a subcycle modulation of optical properties of a solid, giving rise to complex patterns of reflected and transmitted fields and providing a source for optical harmonic generation. Propagation effects are shown to heavily distort the spectra of high-order harmonics. Still, the analysis of harmonic spectra and the temporal structure of the harmonic field reveals physically significant properties of the nonlinear-optical response, suggesting the existence of attosecond bursts of interband optical-harmonic emission.

  10. Design of Laboratory Experiments to Study Photoionization Fronts

    Science.gov (United States)

    Gray, William James; Davis, Josh; Drake, R. Paul

    2017-06-01

    Here we present the theoretical foundation for a laboratory experiment to study photoionization fronts. Photoionization fronts play important roles in the formation and evolution of structure in the Universe. A properly designed experiment will have to control the recombination rate, electron impact ionization rate, and the initial thermal spectrum. We show that such an experiment can be designed, but requires the use of the largest high-energy-density laser facilities, such as Omega, Z, and NIF. We also show that prior experiments do not actually generate photoionization fronts, rather a heat front is produced by heat conductions. We show some initial simulation results of the current experimental design and characterize the ionization front.

  11. Triggering Excimer Lasers by Photoionization from Corona Discharges

    Science.gov (United States)

    Xiong, Zhongmin; Duffey, Thomas; Brown, Daniel; Kushner, Mark

    2009-10-01

    High repetition rate ArF (192 nm) excimer lasers are used for photolithography sources in microelectronics fabrication. In highly attaching gas mixtures, preionization is critical to obtaining stable, reproducible glow discharges. Photoionization from a separate corona discharge is one technique for preionization which triggers the subsequent electron avalanche between the main electrodes. Photoionization triggering of an ArF excimer laser sustained in multi-atmosphere Ne/Ar/F2/Xe gas mixtures has been investigated using a 2-dimensional plasma hydrodynamics model including radiation transport. Continuity equations for charged and neutral species, and Poisson's equation are solved coincident with the electron temperature with transport coefficients obtained from solutions of Boltzmann's equation. Photoionizing radiation is produced by a surface discharge which propagates along a corona-bar located adjacent to the discharge electrodes. The consequences of pulse power waveform, corona bar location, capacitance and gas mixture on uniformity, symmetry and gain of the avalanche discharge will be discussed.

  12. VUV irradiance measurement of a 2.45 GHz microwave-driven hydrogen discharge

    CERN Document Server

    Komppula, J; Kalvas, T; Koivisto, H; Kronholm, R; Laulainen, J; Myllyperkiö, P

    2015-01-01

    Absolute values of VUV-emission of a 2.45 GHz microwave-driven hydrogen discharge are reported. The measurements were performed with a robust and straightforward method based on a photodiode and optical filters. It was found that the volumetric photon emission rate in the VUV-range (80-250 nm) is $10^{16}$-$10^{17}$ 1/cm$^3$s, which corresponds to approximately 8% dissipation of injected microwave power by VUV photon emission. The volumetric emission of characteristic emission bands was utilized to diagnostics of molecular plasma processes including volumetric rates of ionization, dissociation and excitation to high vibrational levels and metastable states. The estimated reaction rates imply that each injected molecule experiences several inelastic electron impact collisions. The upper limit for the total density of metastable neutrals ($2S$ atoms and $c^3\\Pi_u$ molecules) was estimated to be approximately 0.5% of the neutral gas density.

  13. Optimization of a seeding option for the VUV free electron laser at DESY

    CERN Document Server

    Saldin, E L; Yurkov, M V

    2000-01-01

    In order to get fully coherent radiation from the Free Electron Laser (FEL) amplifier starting from the shot noise, it is foreseen to implement a seeding option into the VUV FEL being under construction at DESY (DESY print TESLA-FEL 95-03, Hamburg, DESY, 1995, Seeding option for the VUV free electron laser at DESY: joint DESY and GKSS proposal; Available at DESY upon request only). It consists of an additional undulator, a bypass for electrons and an X-ray monochromator. This paper presents the results of optimization of the seeding option for the VUV FEL providing maximal spectral brightness at minimal shot-to-shot intensity fluctuations. Calculations are performed with three-dimensional, time-dependent simulation code FAST (Nucl. Instr. and Meth. A 429 (1999) 233).

  14. Time resolved 3D momentum imaging of ultrafast dynamics by coherent VUV-XUV radiation

    Energy Technology Data Exchange (ETDEWEB)

    Sturm, F. P., E-mail: fpsturm@lbl.gov [Ultrafast X-Ray Science Lab, Lawrence Berkeley National Laboratory, Berkeley, California 94720 (United States); Institut für Kernphysik, Universität Frankfurt, Max-von-Laue Str. 1, D-60438 Frankfurt (Germany); Wright, T. W.; Ray, D.; Zalyubovskaya, I.; Shivaram, N.; Slaughter, D. S.; Belkacem, A.; Weber, Th. [Ultrafast X-Ray Science Lab, Lawrence Berkeley National Laboratory, Berkeley, California 94720 (United States); Ranitovic, P. [Ultrafast X-Ray Science Lab, Lawrence Berkeley National Laboratory, Berkeley, California 94720 (United States); ELI-ALPS, ELI-Hu Nkft, Dugonics ter 13, Szeged H6720 (Hungary)

    2016-06-15

    We present a new experimental setup for measuring ultrafast nuclear and electron dynamics of molecules after photo-excitation and ionization. We combine a high flux femtosecond vacuum ultraviolet (VUV) and extreme ultraviolet (XUV) source with an internally cold molecular beam and a 3D momentum imaging particle spectrometer to measure electrons and ions in coincidence. We describe a variety of tools developed to perform pump-probe studies in the VUV-XUV spectrum and to modify and characterize the photon beam. First benchmark experiments are presented to demonstrate the capabilities of the system.

  15. Photoionization of excited states of neon-like Mg III

    Indian Academy of Sciences (India)

    . In the present work we have used the close coupling R-matrix method [8,11] to ob- tain accurate photoionization cross-section from the first three excited 1s22s22p53s 3 1P0,. 1s22s22p53p 3Se states of Mg III, allowing for the residual ion to ...

  16. Photoionization of excited states of neon-like Mg III

    Indian Academy of Sciences (India)

    The close coupling -matrix method is used to calculate cross-sections for photoionization of Mg III from its first three excited states. Configuration interaction wave functions are used to represent two target states of Mg III retained in the -matrix expansion. The positions and effective quantum numbers for the Rydberg ...

  17. Photodissociation and photoionization studies of the OH free radical

    NARCIS (Netherlands)

    Radenovi´c, Dragana C.

    2007-01-01

    In this PhD thesis photodissociation, photoionization and fluorescence emission of the hydroxyl (OH) free radical is studied. The hydroxyl radical, as in intermediate species in many chemical reactions, play a key role in astrophysics,atmospheric chemistry, combustion and many other chemical

  18. Negative ion-atmospheric pressure photoionization-mass spectrometry

    NARCIS (Netherlands)

    Kauppila, T.J.; Kotiaho, T.; Kostiainen, R; Bruins, A.P.

    The ionization mechanism in the novel atmospheric pressure photoionization mass spectrometry (APPI-MS) in negative ion mode was studied thoroughly by the analysis of seven compounds in 17 solvent systems. The compounds possessed either gas-phase acidity or positive electron affinity, whereas the

  19. Intermediate obtained from photoionization, serving as precursor for ...

    African Journals Online (AJOL)

    In this article, we have introduced an intermediate benzyl carbocation (formed as a result of photoionization) which serves as precursor for the synthesis of Schiff's base. Lifetimes of many carbocations were determined from our laboratory. During the determination of the lifetimes, our endeavor was to obtain a carbocation ...

  20. Atomic kinetics of a neon photoionized plasma experiment at Z

    Science.gov (United States)

    Mayes, D. C.; Mancini, R. C.; Schoenfeld, R. P.; Bailey, J. E.; Loisel, G. P.; Rochau, G. A.; ZAPP Collaboration

    2017-10-01

    We discuss an experimental effort to study the atomic kinetics in neon photoionized plasmas via K-shell line absorption spectroscopy. The experiment employs the intense x-ray flux emitted at the collapse of a Z-pinch to heat and backlight a photoionized plasma contained within a cm-scale gas cell placed at various distances from the Z-pinch and filled with neon gas pressures in the range from 3.5 to 120 Torr. The experimental platform affords an order of magnitude range in the ionization parameter characterizing the photoionized plasma from about 5 to 80 erg*cm/s. Thus, the experiment allows for the study of trends in ionization distribution as a function of the ionization parameter. An x-ray crystal spectrometer capable of collecting both time-integrated and time-gated data is used to collect absorption spectra. The spectra show line absorption by several ionization stages of neon, including Be-, Li-, He-, and H-like ions. Analysis of these spectra yields ion areal-densities and charge state distributions, which can be compared with results from atomic kinetics codes. In addition, the electron temperature is extracted from level population ratios of nearby energy levels in Li- and Be-like ions, which can be used to test heating models of photoionized plasmas. This work was sponsored in part by DOE Office of Science Grant DE-SC0014451, and the Z Facility Fundamental Science Program of SNL.

  1. VUV photoionization aerosol mass spectrometric study on the iodine oxide particles formed from O3-initiated photooxidation of diiodomethane (CH2I2)

    Czech Academy of Sciences Publication Activity Database

    Wei, N.; Hu, Ch.; Zhou, S.; Ma, Q.; Mikuška, Pavel; Večeřa, Zbyněk; Gai, Y.; Lin, X.; Gu, X.; Zhao, W.; Fang, B.; Zhang, W.; Chen, J.; Liu, F.; Shan, X.; Sheng, L.

    2017-01-01

    Roč. 7, č. 89 (2017), s. 56779-56787 ISSN 2046-2069 Institutional support: RVO:68081715 Keywords : iodine oxide particles * photooxidation * aerosol mass spectrometer Subject RIV: CB - Analytical Chemistry, Separation OBOR OECD: Analytical chemistry Impact factor: 3.108, year: 2016

  2. Dissociative and non-dissociative photoionization of molecular fluorine from inner and valence shells

    Energy Technology Data Exchange (ETDEWEB)

    Ayuso, D.; Palacios, A. [Departamento de Química, Módulo 13, Universidad Autónoma de Madrid, Cantoblanco, 28049 Madrid (Spain); Decleva, P. [Dipartimento di Scienze Chimiche e Farmaceutiche, Università di Trieste, 34127 Trieste (Italy); CNR-IOM, Trieste (Italy); Martín, F., E-mail: fernando.martin@uam.es [Departamento de Química, Módulo 13, Universidad Autónoma de Madrid, Cantoblanco, 28049 Madrid (Spain); Instituto Madrileño de Estudios Avanzados en Nanociencia, Cantoblanco, 28049 Madrid (Spain)

    2014-08-15

    Highlights: • We theoretically analyze the angle-integrated photoionization cross sections of the fluorine molecule, which have been computed up to hundreds of eV using a DFT-like methodology that takes into account the nuclear degrees of freedom. • We have considered electron ejection from all the molecular orbitals and found that the corresponding cross sections show an oscillatory behavior as a function of the photoelectron momentum, which is the result of the double-slit type interferences. • We further compute dissociative and non-dissociative ionization channels. • Dissociative ionization is negligible in other diatomic molecules such N{sub 2} or CO, whereas is visible for F{sub 2} when the electron is ejected from the 1u or the 3σ{sub g} molecular orbitals. - Abstract: We present a theoretical study of F{sub 2} photoionization in the range 0–40 a.u. of photoelectron energy, where the undulatory behavior of the corresponding angle-integrated cross sections due to electron emission from equivalent centers is apparent. These double-slit type interferences are observed in both inner- and valence-shell ionization. We analyze confinement effects that appear at given energies when the electron is ejected parallel to the molecular axis. Since we account for the nuclear degrees of freedom, we evaluate and discuss the vibrationally resolved cross sections, including both dissociative and non-dissociative ionization channels. We also analyze the ratios between the latter cross sections and the relationship between the observed oscillations and the structure of the molecule.

  3. Photoionization and electron impact excitation cross sections for Fe I

    Science.gov (United States)

    Bautista, Manuel A.; Lind, Karin; Bergemann, Maria

    2017-10-01

    Context. Iron is a major contributor to the opacity in the atmospheres of late-type stars, as well as a major contributor to the observed lines in their visible spectrum. Iron lines are commonly used to derive basic stellar parameters from medium/high resolution spectroscopy, that is, spectroscopy which shows metal content, effective temperature, and surface gravity. Aims: Here we present large R-matrix calculations for photoionization cross sections and electron impact collision strengths. Methods: The photoionization calculations included 35 configurations and 134 LS close coupling terms of the target ion. The eigenfunction expansion accounts for the photoionization of the outer nl subshells, with n ≥ 4, as well as the open inner 3d subshell. Our results include total and partial (term-to-term) photoionization cross sections for 936 energy terms of iron with principal quantum number ≤10, and total angular momentum from zero to seven. Our electron impact collision strengths include the lowest 46 LS terms of the atom. Results: The present photoionization cross sections should be considerably more accurate than those currently available in the literature. On the other hand, the electron impact cross sections, which are being reported for the first time, are needed in non-local thermodynamic equilibrium (NLTE) modeling of the solar spectrum and late-type stars in general. Tables 5 and 6 are only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (http://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/606/A127

  4. Communication: Direct measurements of nascent O({sup 3}P{sub 0,1,2}) fine-structure distributions and branching ratios of correlated spin-orbit resolved product channels CO(ã{sup 3}Π; v) + O({sup 3}P{sub 0,1,2}) and CO(Χ{sup ~1}Σ{sup +}; v) + O({sup 3}P{sub 0,1,2}) in VUV photodissociation of CO{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Lu, Zhou; Chang, Yih Chung; Gao, Hong; Benitez, Yanice; Song, Yu; Ng, C. Y., E-mail: cyng@chem.ucdavis.edu, E-mail: wmjackson@ucdavis.edu; Jackson, W. M., E-mail: cyng@chem.ucdavis.edu, E-mail: wmjackson@ucdavis.edu [Department of Chemistry, University of California, Davis, Davis, California 95616 (United States)

    2014-06-21

    We present a generally applicable experimental method for the direct measurement of nascent spin-orbit state distributions of atomic photofragments based on the detection of vacuum ultraviolet (VUV)-excited autoionizing-Rydberg (VUV-EAR) states. The incorporation of this VUV-EAR method in the application of the newly established VUV-VUV laser velocity-map-imaging-photoion (VMI-PI) apparatus has made possible the branching ratio measurement for correlated spin-orbit state resolved product channels, CO(ã{sup 3}Π; v) + O({sup 3}P{sub 0,1,2}) and CO(Χ{sup ~1}Σ{sup +}; v) + O({sup 3}P{sub 0,1,2}), formed by VUV photoexcitation of CO{sub 2} to the 4s(1{sub 0}{sup 1}) Rydberg state at 97,955.7 cm{sup −1}. The total kinetic energy release (TKER) spectra obtained from the O{sup +} VMI-PI images of O({sup 3}P{sub 0,1,2}) reveal the formation of correlated CO(ã{sup 3}Π; v = 0–2) with well-resolved v = 0–2 vibrational bands. This observation shows that the dissociation of CO{sub 2} to form the spin-allowed CO(ã{sup 3}Π; v = 0–2) + O({sup 3}P{sub 0,1,2}) channel has no potential energy barrier. The TKER spectra for the spin-forbidden CO(Χ{sup ~1}Σ{sup +}; v) + O({sup 3}P{sub 0,1,2}) channel were found to exhibit broad profiles, indicative of the formation of a broad range of rovibrational states of CO(Χ{sup ~1}Σ{sup +})  with significant vibrational populations for v = 18–26. While the VMI-PI images for the CO(ã{sup 3}Π; v = 0–2) + O({sup 3}P{sub 0,1,2}) channel are anisotropic, indicating that the predissociation of CO{sub 2} 4s(1{sub 0}{sup 1}) occurs via a near linear configuration in a time scale shorter than the rotational period, the angular distributions for the CO(Χ{sup ~1}Σ{sup +}; v) + O({sup 3}P{sub 0,1,2}) channel are close to isotropic, revealing a slower predissociation process, which possibly occurs on a triplet surface via an intersystem crossing mechanism.

  5. A study of enhanced performance of VUV/UV process for the degradation of micropollutants from contaminated water.

    Science.gov (United States)

    Bagheri, Mehdi; Mohseni, Madjid

    2015-08-30

    VUV/UV is a chemical-free and straightforward solution for the degradation of emerging contaminants from water sources. The objective of this work was to investigate the feasibility of VUV/UV advanced oxidation process for the effective degradation of a target micropollutant, atrazine, under continuous flow operation of 0.5-6.5L/min. To provide an in-depth understanding of process, a comprehensive computational fluid dynamics (CFD) model, incorporating flow hydrodynamics, 185nm VUV and 254nm UV radiation propagation along with a complete kinetic scheme, was developed and validated experimentally. The experimental degradation rates and CFD predicted values showed great consistency with less than 2.9% average absolute relative deviation (AARD). Utilizing the verified model, energy-efficiency of the VUV/UV process under a wide range of reactor configurations was assessed in terms of electrical energy-per-order (EEO), OH concentration as well as delivered UV and VUV dose distributions. Thereby, the extent of mixing and circulation zones was found as key parameter controlling the treatment economy and energy-efficiency of the VUV/UV process. Utilizing a CFD-driven baffle design strategy, an improved VUV/UV process with up to 72% reduction in the total electrical energy requirement of atrazine degradation was introduced and verified experimentally. Copyright © 2015 Elsevier B.V. All rights reserved.

  6. Hydrocarbons in interstellar ice analogues : UV-vis spectroscopy and VUV photochemistry

    NARCIS (Netherlands)

    Cuylle, Steven Hendrik

    2015-01-01

    This thesis treats the chemical behaviour of carbonaceous molecules in water-dominated interstellar ices. VUV photons are considered as the chemical trigger to induce solid state chemistry as it is omnipresent. Lyman- radiation occurs even in dense molecular clouds as a result of cosmic ray

  7. Time-resolved VUV spectroscopy in the EXTRAP-T2 reversed field pinch

    Science.gov (United States)

    Hedqvist, Anders; Rachlew-Källne, Elisabeth

    1998-09-01

    Time-resolved VUV spectroscopy has been used to investigate the effects of impurities in a reversed field pinch operating with a resistive shell. Results of electron temperature, impurity ion densities, particle confinement time and 0741-3335/40/9/004/img1 together with a description of the interpretation and the equipment are presented.

  8. The high-resolution absorption spectroscopy branch on the VUV beamline DESIRS at SOLEIL.

    Science.gov (United States)

    de Oliveira, Nelson; Joyeux, Denis; Roudjane, Mourad; Gil, Jean François; Pilette, Bertrand; Archer, Lucy; Ito, Kenji; Nahon, Laurent

    2016-07-01

    A VUV absorption spectroscopy facility designed for ultra-high spectral resolution is in operation as a dedicated branch on the DESIRS beamline at Synchrotron SOLEIL. This branch includes a unique VUV Fourier transform spectrometer (FTS) and a dedicated versatile gas sample chamber. The FTS instrument can cover a large UV-VUV spectral range from 4 to 30 eV, with an ultimate line width of 0.08 cm(-1) on a large spectral window, ΔE/E = 7%, over which all spectral features can be acquired in a multiplex way. The performance can be considered to be a middle ground between broadband moderate-resolution spectrometers based on gratings and ultra-high-spectral-resolution VUV tunable-laser-based techniques over very narrow spectral windows. The various available gaseous-sample-handling setups, which function over a wide range of pressures and temperatures, and the acquisition methodology are described. A selection of experimental results illustrates the performance and limitations of the FTS-based facility.

  9. Silicon photomultipliers for the detection of VUV scintillation light in LXe for the nEXO experiment

    Energy Technology Data Exchange (ETDEWEB)

    Ziegler, Tobias; Jamil, Ako; Bayerlein, Reimund; Hoessl, Juergen; Hufschmidt, Patrick; Schneider, Judith; Wagenpfeil, Michael; Wrede, Gerrit; Anton, Gisela; Michel, Thilo [Erlangen Centre for Astroparticle Physics, Erlangen 91058 (Germany)

    2016-07-01

    The future nEXO (next Enriched Xenon Observatory) experiment with a single phase TPC design will use about 4 m{sup 2} of SiPMs for the detection of the VUV (vacuum ultraviolet) scintillation light (λ=175 nm) from LXe to search for the neutrinoless double beta (0νββ) decay of {sup 136}Xe. Commercially available SiPMs are not sensitive to ultraviolet light, because of an antireflective coating on top of the sensitive area. In addition, they suffer from relatively high dark count rate at room temperature and correlated avalanches, such as crosstalk and afterpulsing. The core criteria, for having an energy resolution of about 1% (σ) at the Q-value of the 0νββ decay of {sup 136}Xe (2457.8 keV), are a photon detection efficiency (PDE) of at least 15% at 175 nm and a correlated avalanche probability (CAP) of less than 20% at -100 C. We considered different approaches for optimizing both PDE and CAP. These improved SiPMs from several vendors were tested in different test setups at temperatures of about -100 C with respect to the criteria required in the nEXO experiment.

  10. Vacuum ultraviolet photoionization and photodissociation of polyatomic molecules and radicals

    Energy Technology Data Exchange (ETDEWEB)

    Ng, C.Y. [Iowa State Univ., Ames (United States)

    1993-12-01

    In the past decade, tremendous progress has been made in understanding the photodissociation (PD) dynamics of triatomic molecules. However, the PD study of radicals, especially polyatomic radicals, has remained essentially an unexplored research area. Detailed state-to-state PD cross sections for radicals in the UV and VUV provide challenges not only for dynamical calculations, but also for ab initio quantum chemical studies. The authors have developed a laser based pump-probe apparatus for the measurement of absolute PD cross sections for CH{sub 3}S and HS is summarized.

  11. Photoionization and electron-ion recombination of P II

    Science.gov (United States)

    Nahar, Sultana N.

    2017-08-01

    A study of the inverse processes of photoionization and electron-ion recombination of P II is reported. Phosphorus, a little studied cosmic element, requires atomic parameters such as those presented here for spectral analysis. The unified method of Nahar and Pradhan, which incorporates two methods of recombination - radiative recombination (RR) and dielectronic recombination (DR) - and the interference between them, is used to obtain the total electron-ion recombination. This method implements the framework of the {R}-matrix close-coupling approximation. The present results include the partial photoionization cross-sections σPI(Jπ) leaving the residual ion in the ground level and level-specific recombination rate coefficients, αRC(Jπ), of 475 fine-structure levels of P II with n ≤10. In photoionization of the ground and many excited levels, a sharp resonance is found to form at the ionization threshold from couplings of relativistic fine-structure channels. These, with other resonances in the near-threshold energy region, yield a slight curvature, in contrast to typical smooth decay, at a very low temperature of about 330 K in the total recombination rate coefficient αRC. The presence of other Rydberg and Seaton resonances in the photoionization cross-section introduces features in the level-specific recombination rate coefficients and a DR bump at high temperature at 105 K for the total recombination rate coefficient. Considerable interference between RR and DR is noted around 6700 K. The recombination spectrum with respect to photoelectron energy αRC(E) is also presented. The results are expected to provide accurate models for astrophysical plasmas up to ˜1 MK.

  12. Synthesis and photoluminescence of inorganic borate host red emitting VUV phosphor YCaBO4:Eu3+

    Science.gov (United States)

    Ingle, J. T.; Gawande, A. B.; Sonekar, R. P.; Nagpure, P. A.; Omanwar, S. K.

    2013-06-01

    The red emitting borate host phosphor YCaBO4:Eu3+ has been prepared by a novel solution combustion technique. The synthesis is based on the exothermic reaction between the fuel (Urea) and Oxidizer (Ammonium nitrate). The photoluminescence properties of the powder samples of YCaBO4:Eu3+ has been investigated under UV and VUV excitation. The phosphor shows strong absorption in UV and VUV region and exhibits intense red emission upon excited by 254 nm UV and 173 nm VUV radiation. Under UV 254 nm excitation, YCaBO4:Eu3+ exhibits intense red emission around 610 nm. Under VUV excitation of 173 nm, the phosphor emits intense red emission around 610 nm and few weak emissions. These weak emissions could be suppressed by annealing the sample repeatedly at proper temperature and the borate phosphor YCaBO4:Eu3+ could be a good red emitting phosphor for PDP display and mercury free lamps.

  13. Photoionization Modeling and the K Lines of Iron

    Science.gov (United States)

    Kallman, T. R.; Palmeri, P.; Bautista, M. A.; Mendoza, C.; Krolik, J. H.

    2004-01-01

    We calculate the efficiency of iron K line emission and iron K absorption in photoionized models using a new set of atomic data. These data are more comprehensive than those previously applied to the modeling of iron K lines from photoionized gases, and allow us to systematically examine the behavior of the properties of line emission and absorption as a function of the ionization parameter, density and column density of model constant density clouds. We show that, for example, the net fluorescence yield for the highly charged ions is sensitive to the level population distribution produced by photoionization, and these yields are generally smaller than those predicted assuming the population is according to statistical weight. We demonstrate that the effects of the many strongly damped resonances below the K ionization thresholds conspire to smear the edge, thereby potentially affecting the astrophysical interpretation of absorption features in the 7-9 keV energy band. We show that the centroid of the ensemble of K(alpha) lines, the K(beta) energy, and the ratio of the K(alpha(sub 1)) to K(alpha(sub 2)) components are all diagnostics of the ionization parameter of our model slabs.

  14. A non-invasive online photoionization spectrometer for FLASH2

    Energy Technology Data Exchange (ETDEWEB)

    Braune, Markus, E-mail: markus.braune@desy.de [Deutsches Elektronen-Synchrotron DESY, Notkestrasse 85, 22607 Hamburg (Germany); Brenner, Günter [Paul Scherrer Institut, 5232 Villigen PSI (Switzerland); Dziarzhytski, Siarhei [Deutsches Elektronen-Synchrotron DESY, Notkestrasse 85, 22607 Hamburg (Germany); Juranić, Pavle [Paul Scherrer Institut, 5232 Villigen PSI (Switzerland); Sorokin, Andrey; Tiedtke, Kai [Deutsches Elektronen-Synchrotron DESY, Notkestrasse 85, 22607 Hamburg (Germany)

    2016-01-01

    A description of the design of an instrument for FEL wavelength monitoring based on photoionization of rare gases is given, as well as a report on calibration and characterization studies. The stochastic nature of the self-amplified spontaneous emission (SASE) process of free-electron lasers (FELs) effects pulse-to-pulse fluctuations of the radiation properties, such as the photon energy, which are determinative for processes of photon–matter interactions. Hence, SASE FEL sources pose a great challenge for scientific investigations, since experimenters need to obtain precise real-time feedback of these properties for each individual photon bunch for interpretation of the experimental data. Furthermore, any device developed to deliver the according information should not significantly interfere with or degrade the FEL beam. Regarding the spectral properties, a device for online monitoring of FEL wavelengths has been developed for FLASH2, which is based on photoionization of gaseous targets and the measurements of the corresponding electron and ion time-of-flight spectra. This paper presents experimental studies and cross-calibration measurements demonstrating the viability of this online photoionization spectrometer.

  15. Measurements of the absolute photoionization cross section of Fe{sup +} ions from 15.8 to 180 eV

    Energy Technology Data Exchange (ETDEWEB)

    Kjeldsen, H. [Institute of Physics and Astronomy, University of Aarhus, Aarhus (Germany)]. E-mail: kjeldsen@ifa.au.dk; Kristensen, B.; Folkmann, F.; Andersen, T. [Institute of Physics and Astronomy, University of Aarhus, Aarhus (Germany)

    2002-09-14

    The absolute single-and double-photoionization cross sections of singly charged Fe ions have been measured from 15.8 to 180 eV using the merged-beam technique. The data yield information about the photoionization continua and the resonance structures resulting from excitation of the outer 3d and 4s electrons as well as the inner 3p and 3s electrons. The vast majority of the Fe{sup +} target ions were present in the ground-state configuration, 3d{sup 6}4s, and term,{sup 6}D. The experimental data have been compared with several calculations, for example R-matrix calculations from the Opacity Project and data obtained using the central-field approximations. The experimental data are available at http://www.iop.orgww.ifa.au.dk/amo/atomphys/atomphys.htm. (author)

  16. Molecular beam photoionization and gas-surface scattering

    Energy Technology Data Exchange (ETDEWEB)

    Ceyer, S.T.

    1979-09-01

    The energetics of the ethylene ion-molecule reactions was investigated in more detail than previously possible in two body collision experiments by photoionization of the neutral van der Waals ethylene dimer. The stability of the (C/sub 2/H/sub 4/)/sup +/C/sub 2/H/sub 4/ ion-molecule collision complex has been determined to be 18.2 +- 0.5 kcal. The highest potential barriers along the reaction coordinate for decomposition of this collision complex into C/sub 4/H/sub 7//sup +/ + H and C/sub 3/H/sub 5//sup +/ + CH/sub 3/ have been determined to be 0 +- 1.5 and 8.7 +- 1.5 kcal. In a similar manner, the energetics of the solvated ethylene dimer ion was investigated by the photoionization of the ethylene trimer. The absolute proton affinity of NH/sub 3/ (203.6 +- 1.3 kcal/mole) and the proton solvation energies by more than one NH/sub 3/ have been determined by molecular beam photoionization. In addition, the NH/sub 3//sup +/-NH/sub 3/ interaction energy (0.79 +- 0.05 eV) was measured by photoionization of the neutral van der Waals dimer. These experiments have shown that photoionization of van der Waals clusters is a very powerful method of determining the energetics of gas phase proton solvation. The scattering of helium atomic beams from a high Miller index platinum surface that exhibits ordered, periodic steps on the atomic scale to probe the effect of atomic steps on the scattering distribution is explored. Rainbow scattering is observed when the step edges are perpendicular to the incident helium atoms. The design, construction and operation of a beam-surface scattering apparatus are described. The first data obtained in this apparatus are presented and the interesting dynamical aspects of the oxidation of D, D/sub 2/ and CO are discussed. 75 references.

  17. Simulation of VUV electroluminescence in micropattern gaseous detectors: the case of GEM and MHSP

    CERN Document Server

    Oliveira, C.A.B.; Schindler, H.; Ferreira, A.L.; Monteiro, C.M.B.; dos Santos, J.M.F.; Biagi, S.; Veenhof, R.; Veloso, J.F.C.A.

    2012-01-01

    Electroluminescence produced during avalanche development in gaseous avalanche detectors is an useful information for triggering, calorimetry and tracking in gaseous detectors. Noble gases present high electroluminescence yields, emitting mainly in the VUV region. The photons can provide signal readout if appropriate photosensors are used. Micropattern gaseous detectors are good candidates for signal amplification in high background and/or low rate experiments due to their high electroluminescence yields and radiopurity. In this work, the VUV light responses of the Gas Electron Multiplier and of the Micro-Hole Strip Plate, working with pure xenon, are simulated and studied in detail using a new and versatile C++ toolkit. It is shown that the solid angle subtended by a photosensor placed bellow the microstructures depends on the operating conditions. The obtained absolute EL yields, determined for different gas pressures and as functions of the applied voltage, are compared with those determined experimentally...

  18. Characterization of Vacuum Ultraviolet (VUV) Radiation for the Development of a Fluorescent Lamp

    Science.gov (United States)

    Hasina, Khatun; K. Sharma, A.; K. Barhai, P.

    2011-08-01

    A negative unipolar pulsed voltage is applied to study internal electrical parameters of the xenon filled dielectric barrier discharge (DBD) sources. The VUV radiation emitted from these sources is characterized by means of the photoluminescence intensity of the red phosphor pellet. The red phosphor converts the VUV radiation into visible radiation and the emission spectra include a peak at 619.56 nm. The emission characteristics of the red phosphor are analyzed in terms of the pressure-distance (pd), rise time and frequency of the pulsed voltage waveform. The emission intensity measured at different operational conditions confirms that the formation and decay of the xenon excimer, Xe2*, increase with the increase in reduced electric field, E/N. After exceeding certain limits of E/N, the intensity of Xe2* decreases rapidly.

  19. Integration of monitoring layer in control measurement system for VUV-FEL

    Science.gov (United States)

    Pozniak, Krzysztof

    2005-09-01

    The work presents an 8-channel control system for a superconducting cavity accelerating module ACC1 of the VUVFEL machine. The integration was described of a monitoring layer with the DSP control layer realized in the programmable Xilinx VirtexII V4000 circuit. The implementation was realized in the VHDL. The hardware multiplication blocks were used which are embedded in the FPGA circuit. The final implementation of the device was presented. The device works in the real time, according to the nominal demands of the VUV-FEL machine. The paper describes the monitoring layer. There were shortly characterized particular functional blocks of the layers implemented in the FPGA circuit. There was presented a computer process of system supervision which uses the monitoring layer. Some chosen examples were presented to illustrate the real-time monitoring processes during the nominal work conditions of the VUV-FEL machine.

  20. Degradation of Solar Array Components in a Combined UV/VUV High Temperature Test Environment

    Directory of Open Access Journals (Sweden)

    Nömayr Christel

    2017-01-01

    A design verification test under UV/VUV conditions of sun exposed materials and technologies on component level is presented which forms part of the overall verification and qualification of the solar array design of the MTM and MPO. The test concentrates on the self-contamination aspects and the resulting performance losses of the solar array under high intensity and elevated temperature environment representative for the photovoltaic assembly (PVA.

  1. Image Evaluation of the High Resolution VUV Spectrometer at SURF II by Ray Tracing

    OpenAIRE

    Das, N. C.; Madden, R. P.; Seyoum, H. M.

    1998-01-01

    A high resolution VUV spectroscopic facility has been in use for several years at SURF II, the Synchrotron Ultraviolet Radiation Facility at the National Institute of Standards and Technology in Gaithersburg, Maryland. At this facility, a combination of three cylindrical mirrors is utilized to focus the light originating in the storage ring onto the horizontal entrance slit of the spectrometer. The spectrometer uses a 6.65 m concave grating having a groove density of 4800 lines/mm in the off-...

  2. The role of VUV radiation in the inactivation of bacteria with an atmospheric pressure plasma jet

    CERN Document Server

    Schneider, Simon; Ellerweg, Dirk; Denis, Benjamin; Narberhaus, Franz; Bandow, Julia E; Benedikt, Jan

    2011-01-01

    A modified version of a micro scale atmospheric pressure plasma jet (\\mu-APPJ) source, so-called X-Jet, is used to study the role of plasma generated VUV photons in the inactivation of E. coli bacteria. The plasma is operated in He gas or a He/O2 mixture and the X-Jet modification of the jet geometry allows effective separation of heavy reactive particles (such as O atoms or ozone molecules) from the plasma-generated photons. The measurements of the evolution of zone of inhibitions formed in monolayers of vegetative E. coli bacteria, of VUV emission intensity and of positive ion spectra show that photochemistry in the gas phase followed by photochemistry products impacting on bacteria can result in bacterial inactivation. Interestingly, this process is more effective than direct inactivation by VUV radiation damage. Mainly protonated water cluster ions are detected by mass spectrometry indicating that water impurity has to be carefully considered. The measurements indicate that the combination of the presence...

  3. Photochemical decomposition of perfluorooctanoic acid in aqueous periodate with VUV and UV light irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Cao, M.H.; Wang, B.B.; Yu, H.S.; Wang, L.L.; Yuan, S.H. [Environmental Science Research Institution, College of Environment Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074 (China); Chen, J., E-mail: chenjing@mail.hust.edu.cn [Environmental Science Research Institution, College of Environment Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074 (China)

    2010-07-15

    The photochemical decomposition of perfluorooctanoic acid (PFOA) in aqueous periodate (IO{sub 4}{sup -}) was investigated under two types of low-pressure mercury lamps: one emits at 254 nm light (UV light) and the other emits both 254 nm and 185 nm light (VUV light). PFOA decomposed efficiently under VUV light irradiation while it decomposed poorly under UV light irradiation. The addition of IO{sub 4}{sup -} significantly increased the rate of decomposition and defluorination of PFOA irradiated with UV light whereas it decreased both processes under VUV irradiation. Reactive radical (IO{sub 3}{center_dot}) generated by photolysis of IO{sub 4}{sup -} initiated the oxidation of PFOA in UV process. Aquated electrons (e{sub aq}{sup -}), generated from water homolysis, scavenged IO{sub 4}{sup -} resulting in decrease of reactive radical species production and PFOA decomposition. The shorter-chain perfluorocarboxylic acids (PFCAs) formed in a stepwise manner from long-chain PFCAs.

  4. The photoionization spectrum of neutral aluminium, Al I

    Science.gov (United States)

    Roig, R. A.

    1975-01-01

    The absorption spectrum of Al I has been studied for the wavelength range 1160 to 2000 A by the flash pyrolysis technique. Wavelengths and derived energy levels are reported for 70 new lines converging on the 3s3p(3)P(0) limits of Al II. The autoionization parameters of the 3p(2)P(0)-3p(2)(2)S doublet have been measured. Good agreement is obtained with the experiment of Kohl and Parkinson and the recent calculation of Le Dourneuf et al. The relative photoionization cross section has been measured in the wavelength region 1200 A to 2000 A.

  5. Molecular photoionization studies of nucleobases and correlated systems

    Energy Technology Data Exchange (ETDEWEB)

    Poliakoff, Erwin D. [Louisiana State Univ., Baton Rouge, LA (United States)

    2015-03-11

    We proposed molecular photoionization studies in order to probe correlated events in fundamental scattering phenomena. In particular, we suggested that joint theoretical-experimental studies would provide a window into the microscopic aspects that are of central importance in AMO and chemical physics generally, and would generate useful data for wide array of important DOE topics, such as ultrafast dynamics, high harmonic generation, and probes of nonadiabatic processes. The unifying theme is that correlations between electron scattering dynamics and molecular geometry highlight inherently molecular aspects of the photoelectron behavior.

  6. Photoionization cross-section of dominant defects in CVD diamond

    OpenAIRE

    Rosa, J.; Vanecek, M.; Nesladek, Milos; STALS, Lambert

    1999-01-01

    Main defects in the gap of free standing optical-quality CVD diamond have been investigated with the help of electron paramagnetic resonance (EPR) and the constant photocurrent method (CPM). The EPR and CPM measurements reveal well-defined substitutional nitrogen defect state in the gap with a photoionization energy E-i = 2.2 eV. Another set of defect states comes from the presence of hydrogen. CPM shows a significant effect of the hydrogenation, which generates a bulk defect with a photoioni...

  7. Beyond Naphthenic Acids: Environmental Screening of Water from Natural Sources and the Athabasca Oil Sands Industry Using Atmospheric Pressure Photoionization Fourier Transform Ion Cyclotron Resonance Mass Spectrometry.

    Science.gov (United States)

    Barrow, Mark P; Peru, Kerry M; Fahlman, Brian; Hewitt, L Mark; Frank, Richard A; Headley, John V

    2015-09-01

    There is a growing need for environmental screening of natural waters in the Athabasca region of Alberta, Canada, particularly in the differentiation between anthropogenic and naturally-derived organic compounds associated with weathered bitumen deposits. Previous research has focused primarily upon characterization of naphthenic acids in water samples by negative-ion electrospray ionization methods. Atmospheric pressure photoionization is a much less widely used ionization method, but one that affords the possibility of observing low polarity compounds that cannot be readily observed by electrospray ionization. This study describes the first usage of atmospheric pressure photoionization Fourier transform ion cyclotron resonance mass spectrometry (in both positive-ion and negative-ion modes) to characterize and compare extracts of oil sands process water, river water, and groundwater samples from areas associated with oil sands mining activities. When comparing mass spectra previously obtained by electrospray ionization and data acquired by atmospheric pressure photoionization, there can be a doubling of the number of components detected. In addition to polar compounds that have previously been observed, low-polarity, sulfur-containing compounds and hydrocarbons that do not incorporate a heteroatom were detected. These latter components, which are not amenable to electrospray ionization, have potential for screening efforts within monitoring programs of the oil sands.

  8. Infrared laser ablation atmospheric pressure photoionization mass spectrometry.

    Science.gov (United States)

    Vaikkinen, Anu; Shrestha, Bindesh; Kauppila, Tiina J; Vertes, Akos; Kostiainen, Risto

    2012-02-07

    In this paper we introduce laser ablation atmospheric pressure photoionization (LAAPPI), a novel atmospheric pressure ion source for mass spectrometry. In LAAPPI the analytes are ablated from water-rich solid samples or from aqueous solutions with an infrared (IR) laser running at 2.94 μm wavelength. Approximately 12 mm above the sample surface, the ablation plume is intercepted with an orthogonal hot solvent (e.g., toluene or anisole) jet, which is generated by a heated nebulizer microchip and directed toward the mass spectrometer inlet. The ablated analytes are desolvated and ionized in the gas-phase by atmospheric pressure photoionization using a 10 eV vacuum ultraviolet krypton discharge lamp. The effect of operational parameters and spray solvent on the performance of LAAPPI is studied. LAAPPI offers ~300 μm lateral resolution comparable to, e.g., matrix-assisted laser desorption ionization. In addition to polar compounds, LAAPPI efficiently ionizes neutral and nonpolar compounds. The bioanalytical application of the method is demonstrated by the direct LAAPPI analysis of rat brain tissue sections and sour orange (Citrus aurantium) leaves. © 2012 American Chemical Society

  9. Photoionization of the valence shells of the neutral tungsten atom

    CERN Document Server

    Ballance, Connor P

    2015-01-01

    Results from large-scale theoretical cross section calculations for the total photoionization of the 4f, 5s, 5p and 6s orbitals of the neutral tungsten atom using the Dirac Coulomb R-matrix approximation (DARC: Dirac-Atomic R-matrix codes) are presented. Comparisons are made with previous theoretical methods and prior experimental measurements. In previous experiments a time-resolved dual laser approach was employed for the photo-absorption of metal vapours and photo-absorption measurements on tungsten in a solid, using synchrotron radiation. The lowest ground state level of neutral tungsten is $\\rm 5p^6 5d^4 6s^2 \\; {^5}D_{\\it J}$, with $\\it J$=0, and requires only a single dipole matrix for photoionization. To make a meaningful comparison with existing experimental measurements, we statistically average the large-scale theoretical PI cross sections from the levels associated with the ground state $\\rm 5p^6 5d^4 6s^2 \\; {^5}D_{\\it J}[{\\it J}=0,1,2,3,4]$ levels and the $\\rm 5d^56s \\; ^7S_3$ excited metastable...

  10. Kr photoionized plasma induced by intense extreme ultraviolet pulses

    Energy Technology Data Exchange (ETDEWEB)

    Bartnik, A., E-mail: andrzej.bartnik@wat.edu.pl; Wachulak, P.; Fiedorowicz, H.; Skrzeczanowski, W. [Institute of Optoelectronics, Military University of Technology, Kaliskiego 2, 00–908 Warsaw (Poland)

    2016-04-15

    Irradiation of any gas with an intense EUV (extreme ultraviolet) radiation beam can result in creation of photoionized plasmas. The parameters of such plasmas can be significantly different when compared with those of the laser produced plasmas (LPP) or discharge plasmas. In this work, the photoionized plasmas were created in a krypton gas irradiated using an LPP EUV source operating at a 10 Hz repetition rate. The Kr gas was injected into the vacuum chamber synchronously with the EUV radiation pulses. The EUV beam was focused onto a Kr gas stream using an axisymmetrical ellipsoidal collector. The resulting low temperature Kr plasmas emitted electromagnetic radiation in the wide spectral range. The emission spectra were measured either in the EUV or an optical range. The EUV spectrum was dominated by emission lines originating from Kr III and Kr IV ions, and the UV/VIS spectra were composed from Kr II and Kr I lines. The spectral lines recorded in EUV, UV, and VIS ranges were used for the construction of Boltzmann plots to be used for the estimation of the electron temperature. It was shown that for the lowest Kr III and Kr IV levels, the local thermodynamic equilibrium (LTE) conditions were not fulfilled. The electron temperature was thus estimated based on Kr II and Kr I species where the partial LTE conditions could be expected.

  11. Photoion-photoelectron coincidence studies clusters and transient molecules

    Energy Technology Data Exchange (ETDEWEB)

    Norwood, K.

    1990-11-16

    Experimental photoion-photoelectron coincidence (PIPECO) spectra have been obtained at different nozzle stagnation pressures for Ar, Kr, Xe, and CO dimers and trimers in the wavelength regions corresponding to the respective ground states through all states accessible with a photon energy of 20 eV. Ionization energies for all ground states were measured and agree well with previously reported values. The formation of stable dimer ions from fragmentation of larger cluster ions initially produced by photoionization is efficient. For nozzle expansion conditions which minimize the formation of clusters larger than dimers, the intensities of the excited PIPECO bands for all clusters, except Ar{sub 2}{sup +} and Ar{sub 3}{sup +}, are found to be negligible with respect to the ground state PIPECO bands. The PIPECO technique has been used successfully to obtain the mass-selected threshold photoelectron spectra of the SO and S{sub 2}O transient molecules formed from a microwave discharge, effusive beam source. Analysis of the PIPECO spectra of all the clusters and transient molecules are presented. 177 refs., 32 figs., 6 tabs.

  12. Vibrational autoionization of state-selective jet-cooled methanethiol (CH3SH) investigated with infrared vacuum-ultraviolet photoionization

    Energy Technology Data Exchange (ETDEWEB)

    Xie, Min; Sen, Zhitao; Pratt, S. T.; Lee, Yuan-Pern

    2017-11-21

    Vibrational autoionization of Rydberg states provides key information about nonadiabatic processes above an ionization threshold. We employed time-of-flight mass detection of CH3SH+ to record vibrational-state selective photo-ionization efficiency (PIE) spectra of jet-cooled methanethiol (CH3SH) on exciting CH3SH to a specific vibrationally excited state with an infrared (IR) laser, followed by excitation with a tunable laser in the vacuum-ultraviolet (VUV) region for ionization. Autoionizing Rydberg states assigned to the ns, np, nd and nf series are identified. When IR light at 2601 (ν3, SH stretching mode) and 2948 cm-12, CH3 symmetric stretching mode) was employed, the Rydberg series converged to the respective vibrationally excited (ν3 and ν2) states of CH3SH+. When IR light at 3014 cm-1 (overlapped ν19, CH3 antisymmetric stretching and CH2 antisymmetric stretching modes) was employed, two converging limits towards vibrationally excited states (ν1 and ν9) of CH3SH+ were observed. In contrast, when IR light at 2867 cm-1 (2ν10, overtone of CH3 deformation mode) and 2892 cm-1 (2ν4, overtone of CH2 scissoring mode) was employed, both Δν = -1 and Δν = -2 ionization transitions were observed; there is evidence for direct ionization from the initial state into the CH3SH+ (v4+ = 1) continuum. In all observed IR-VUV-PIE spectra, the ns and nd series show intensity greater than the other Rydberg series, which is consistent with the fact that the highest-occupied molecular orbital of CH3SH is a p-like lone pair orbital on the S atom. The quantum yields for autoionization of various vibrational excited states are discussed.

  13. National Synchrotron Light Source user`s manual: Guide to the VUV and x-ray beamlines. Fifth edition

    Energy Technology Data Exchange (ETDEWEB)

    Gmuer, N.F. [ed.

    1993-04-01

    The success of the National Synchrotron Light Source is based, in large part, on the size of the user community and the diversity of the scientific and technical disciplines represented by these users. As evidence of this success, the VUV Ring has just celebrated its 10th anniversary and the X-ray Ring will do the same in 1995. In order to enhance this success, the NSLS User`s Manual: Guide to the VUV and X-Ray Beamlines - Fifth Edition, is being published. This Manual presents to the scientific community-at-large the current and projected architecture, capabilities and research programs of the various VUV and X-ray beamlines. Also detailed is the research and computer equipment a General User can expect to find and use at each beamline when working at the NSLS. The Manual is updated periodically in order to keep pace with the constant changes on these beamlines.

  14. Role of the recoil effect in two-center interference in X-ray photoionization

    Energy Technology Data Exchange (ETDEWEB)

    Ueda, K. [Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Sendai 980-8577 (Japan)], E-mail: ueda@tagen.tohoku.ac.jp; Liu, X.-J. [Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Sendai 980-8577 (Japan); Pruemper, G. [Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Sendai 980-8577 (Japan); Lischke, T. [Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Sendai 980-8577 (Japan); Tanaka, T. [Department of Physics, Sophia University, Tokyo 102-8554 (Japan); Hoshino, M. [Department of Physics, Sophia University, Tokyo 102-8554 (Japan); Tanaka, H. [Department of Physics, Sophia University, Tokyo 102-8554 (Japan); Minkov, I. [School of Biotechnology, Royal Institute of Technology, S-106 91 Stockholm (Sweden); Kimberg, V. [School of Biotechnology, Royal Institute of Technology, S-106 91 Stockholm (Sweden); Gel' mukhanov, F. [Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Sendai 980-8577 (Japan); School of Biotechnology, Royal Institute of Technology, S-106 91 Stockholm (Sweden)

    2006-10-26

    X-ray photoelectron spectra of the N{sub 2} molecule are studied both experimentally and theoretically in the extended energy region up to 1 keV. The ratio of the photoionization cross sections for the gerade and ungerade core levels displays a modulation in the high energy region caused by the two-center interference, as predicted by Cohen and Fano (CF) in 1966. The physical background of this CF effect is the same as in Young's double-slit experiment. We have found that the interference pattern deviates significantly from the CF prediction. The origin of such a breakdown of the CF formula is the scattering of the photoelectron inside the molecule and the momentum transfer from the emitted fast photoelectron to the nuclei. Usually the recoil effect is small. We show that the electron recoil strongly affects the two-center interference pattern. Both stationary and dynamical aspects of the recoil effect shed light on the role of the momentum exchange in the two-center interference.

  15. Combined UV-C/H2O2-VUV processes for the treatment of an actual slaughterhouse wastewater.

    Science.gov (United States)

    Naderi, Kambiz Vaezzadeh; Bustillo-Lecompte, Ciro Fernando; Mehrvar, Mehrab; Abdekhodaie, Mohammad Jafar

    2017-05-04

    In this study, a three-factor, three-level Box-Behnken design with response surface methodology were used to maximize the TOC removal and minimize the H2O2 residual in the effluent of the combined UV-C/H2O2-VUV system for the treatment of an actual slaughterhouse wastewater (SWW) collected from one of the meat processing plants in Ontario, Canada. The irradiation time and the initial concentrations of total organic carbon (TOCo) and hydrogen peroxide (H2O2o) were the three predictors, as independent variables, studied in the design of experiments. The multiple response approach was used to obtain desirability response surfaces at the optimum factor settings. Subsequently, the optimum conditions to achieve the maximum percentage TOC removal of 46.19% and minimum H2O2 residual of 1.05% were TOCo of 213 mg L-1, H2O2o of 450 mg L-1, and irradiation time of 9 min. The attained optimal operating conditions were validated with a complementary test. Consequently, the TOC removal of 45.68% and H2O2 residual of 1.03% were achieved experimentally, confirming the statistical model reliability. Three individual processes, VUV alone, VUV/H2O2, and UV-C/H2O2, were also evaluated to compare their performance for the treatment of the actual SWW using the optimum parameters obtained in combined UV-C/H2O2-VUV processes. Results confirmed that an adequate combination of the UV-C/H2O2-VUV processes is essential for an optimized TOC removal and H2O2 residual. Finally, respirometry analyses were also performed to evaluate the biodegradability of the SWW and the BOD removal efficiency of the combined UV-C/H2O2-VUV processes.

  16. Temperature-dependent absorption cross-section measurements of 1-butene (1-C4H8) in VUV and IR

    KAUST Repository

    Es-sebbar, Et-touhami

    2013-01-01

    Vacuum ultraviolet (VUV) and infrared (IR) absorption cross-section measurements of 1-butene (1-C4H8; CH2=CHCH2CH3; Butylene) are reported over the temperature range of 296-529K. The VUV measurements are performed between 115 and 205nm using synchrotron radiation as a tunable VUV light source. Fourier Transform Infrared (FTIR) spectroscopy is employed to measure absorption cross-section and band strengths in the IR region between 1.54 and 25μm (~6500-400cm-1). The measured room-temperature VUV and IR absorption cross-sections are compared with available literature data and are found to be in good agreement. The oscillator strength for the electronic transition (A1A\\'→X1A\\') around 150-205nm is determined to be 0.32±0.01.The gas temperature has a strong effect on both VUV and IR spectra. Measurements made in the VUV region show that the peak value of the band cross-section decreases and the background continuum increases with increasing gas temperature. This behavior is due to a change in the rotational and vibrational population distribution of 1-butene molecule. Similar changes in rotational population are observed in the IR spectra. Moreover, variation of the IR spectra with temperature is used to measure the enthalpy difference between syn and skew conformations of 1-butene and is found to be 0.24±0.03. kcal/mol, which is in excellent agreement with values reported in the literature. The measurements reported in this work will provide the much-needed spectroscopic information for the development of high-temperature quantitative diagnostics in combustion applications and validation of atmospheric chemistry models of extra-solar planets. © 2012 Elsevier Ltd.

  17. Gain length dependence on phase shake in the VUV-FEL at the TESLA Test Facility

    Energy Technology Data Exchange (ETDEWEB)

    Pflueger, J. [DESY/HASYLAB, Hamburg (Germany); Schneidmiller, E.A. [Automatic Systems Corporation, Samara (Russian Federation); Pierini, P. [INFN, Milano (Italy)

    1995-12-31

    The TTF VUV FEL, which is in its design stage at DESY, consists of a 30 m long SASE FEL which will radiate around 6 nm, driven by a superconducting linac with final energy of 1 GeV. One of the important issues in its design is the undulator performance, which is studied in this paper. The present setup, including FODO lattice, is discussed in this paper. Results of simulations, including the realistic wiggler field errors and beam stearing, are presented. Dependence of the performance, in particular the gain and saturation length as well as the saturation peak power, on the wiggler field errors is discussed.

  18. Sc-Si normal incidence mirrors for a VUV interval of 35-50 nm

    CERN Document Server

    Uspenskii, Y A; Vinogradov, A V; Fedorenko, A I; Kondratenko, V V; Pershin, Y P; Zubarev, E N; Mrowka, S; Schäfers, F

    2000-01-01

    The Sc/Si multilayers are suggested as high-reflectivity coatings for a VUV interval of 35-50 nm. Fabricated mirrors show the normal incidence reflectivity of 30-50% which is high enough to effectively manipulate the beams of synchrotron radiation and compact discharge and laser-driven X-ray lasers. The obtained values are not, however, limiting for the Sc/Si coatings. Theoretical estimations as well as electron microscopy studies of Sc-Si interfaces indicate a large potential for further raising the reflectivity.

  19. Simultaneous nitrate reduction and acetaminophen oxidation using the continuous-flow chemical-less VUV process as an integrated advanced oxidation and reduction process

    Energy Technology Data Exchange (ETDEWEB)

    Moussavi, Gholamreza, E-mail: moussavi@modares.ac.ir; Shekoohiyan, Sakine

    2016-11-15

    Highlights: • Simultaneous advanced oxidation and reduction processes were explored in VUV system. • Complete reduction of nitrate to N{sub 2} was achieved at the presence of acetaminophen. • Complete degradation of acetaminophen was achieved at the presence of nitrate. • Over 95% of acetaminophen was mineralized in the VUV photoreactor. • VUV is a chemical-less advanced process for treating water emerging contaminants. - Abstract: This work was aimed at investigating the performance of the continuous-flow VUV photoreactor as a novel chemical-less advanced process for simultaneously oxidizing acetaminophen (ACT) as a model of pharmaceuticals and reducing nitrate in a single reactor. Solution pH was an important parameter affecting the performance of VUV; the highest ACT oxidation and nitrate reduction attained at solution pH between 6 and 8. The ACT was oxidized mainly by HO· while the aqueous electrons were the main working agents in the reduction of nitrate. The performance of VUV photoreactor improved with the increase of hydraulic retention time (HRT); the complete degradation of ACT and ∼99% reduction of nitrate with 100% N{sub 2} selectivity achieved at HRT of 80 min. The VUV effluent concentrations of nitrite and ammonium at HRT of 80 min were below the drinking water standards. The real water sample contaminated with the ACT and nitrate was efficiently treated in the VUV photoreactor. Therefore, the VUV photoreactor is a chemical-less advanced process in which both advanced oxidation and advanced reduction reactions are accomplished. This unique feature possesses VUV photoreactor as a promising method of treating water contaminated with both pharmaceutical and nitrate.

  20. A theoretical study on the photoionization of the valence orbitals of phosphine

    Directory of Open Access Journals (Sweden)

    Nascimento Edmar M.

    2006-01-01

    Full Text Available We report a theoretical study on the photoionization of phosphine in the static-exchange level and frozen core approximation, using the method of continued fractions. The main subject of the present study is to investigate in which extent the Hartree-Fock description of the target applied to molecular photoionization is valid. Also, the role played by multichannel coupling is analysed. Our study shows that single-channel Hartree-Fock calculations can provide reliable results except for photon energies near the photoionization threshold.

  1. Benchmarking the Resonances in Photoionization of O II

    Energy Technology Data Exchange (ETDEWEB)

    Montenegro, Maximiliano; Nahar, Sultana N; Pradhan, Anil K [Department of Astronomy, Ohio State University, Columbus, OH 43210 (United States); Eissner, Werner, E-mail: montenegro.3@osu.ed, E-mail: nahar@astronomy.ohio-state.ed, E-mail: we@theo1.physik.uni-stuttgart.d, E-mail: pradhan@astronomy.ohio-state.ed [Institut fuer Theoretische Physik, Teilinstitut 1, 70550 Stuttgart (Germany)

    2009-11-01

    Study of accurate resonant features of O II is crucial in predicting its abundances in nebular plasmas and for its diagnostic role. A well known large discrency exists in the predicted abundance of the ion depending on the radiative or collisional processes taken in to consideration. We will report new calculations for resonant structures in photoionization of O II where we have noted important features not seen before, especially in the low-energy region of the three fine structure components of 2s{sup 2}2p{sup 23}P of core O III. These are expected to make considerable differences in the low temperature recombination. Preliminary comparison of the new results with experiments shows improved agreement.

  2. Synchrontron VUV and Soft X-Ray Radiation Effects on Aluminized Teflon FEP

    Science.gov (United States)

    Dever, Joyce A.; Townsend, Jacqueline A.; Gaier, James R.; Jalics, Alice I.

    1998-01-01

    Surfaces of the aluminized Teflon FEP multi-layer thermal insulation on the Hubble Space Telescope (HST) were found to be cracked and curled in some areas at the time of the second servicing, mission in February 1997, 6.8 years after HST was deployed in low Earth orbit (LEO). As part of a test program to assess environmental conditions which would produce embrittlement sufficient to cause cracking of Teflon on HST, samples of Teflon FEP with a backside layer of vapor deposited aluminum were exposed to vacuum ultraviolet (VUV) and soft x-ray radiation of various energies using facilities at the National Synchrotron Light Source. Brookhaven National Laboratory. Samples were exposed to synchrotron radiation of narrow energy bands centered on energies between 69 eV and 1900 eV. Samples were analyzed for ultimate tensile strength and elongation. Results will be compared to those of aluminized Teflon FEP retrieved from HST after 3.6 years and 6.8 years on orbit and will he referenced to estimated HST mission doses of VUV and soft x-ray radiation.

  3. Characteristics and performance of the Los Alamos VUV beamline at the NSLS

    Science.gov (United States)

    Bartlett, R. J.; Trela, W. J.; Michaud, F. D.; Southworth, S. H.; Alkire, R. W.; Roy, P.; Rothe, R.; Walsh, P. J.; Shinn, N.

    1988-04-01

    We describe the design and performance of the Los Alamos VUV synchrotron radiation beamline, U3C, on the VUV ring of the National Synchrotron Light Source at Brookhaven National Laboratory. The beamline uses separate function optics to collect and focus the horizontally and vertically diverging beam. The monochromator is a grazing incidence Rowland circle instrument of the extended grasshopper design (ERG). A postmonochromator refocusing mirror is used to focus or collimate the diverging beam from the monochromator. The beamline control and diagnostics systems are also discussed. Particular emphasis in the design has been placed on the reduction of stray and harmonic light. Higher order light is reduced by a grazing angle mirror low pass filter installed immediately downstream from the monochromator while stray light is reduced through the use of baffles and thin film filters. Also included in the line is a differential pumping section that permits gas phase and other experiments requiring pressures in the 10 -5 to 10 -4 Torr range to be coupled to the beamline.

  4. VUV photo-oxidation of gaseous benzene combined with ozone-assisted catalytic oxidation: Effect on transition metal catalyst

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Haibao, E-mail: seabao8@gmail.com [School of Environmental Science and Engineering, Sun Yat-Sen University (China); Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology (Sun Yat-sen University) (China); Lu, Haoxian; Zhan, Yujie; Liu, Gaoyuan; Feng, Qiuyu; Huang, Huiling; Wu, Muyan; Ye, Xinguo [School of Environmental Science and Engineering, Sun Yat-Sen University (China)

    2017-01-01

    Graphical abstract: Mn nanoparticles are highly dispersed on ZSM-5 and most efficient in benzene degradation in the VUV-OZCO process. - Highlights: • Vacuum UV irradiation is well combined with O{sub 3} catalytic oxidation. • O{sub 3} byproducts was used to enhance catalytic oxidation of VOCs. • Mn/ZSM-5 achieved the best catalytic activity for benzene degradation. - Abstract: Volatile organic compounds (VOCs) cause the major air pollution concern. In this study, a series of ZSM-5 supported transition metals were prepared by impregnation method. They were combined with vacuum UV (VUV) photo-oxidation in a continuous-flow packed-bed reactor and used for the degradation of benzene, a typical toxic VOCs. Compared with VUV photo-oxidation alone, the introduction of catalysts can greatly enhance benzene oxidation under the help of O{sub 3}, the by-products from VUV irradiation, via ozone-assisted catalytic oxidation (OZCO). The catalytic activity of transition metals towards benzene oxidation followed the order: Mn > Co > Cu > Ni > Fe. Mn achieved the best catalytic activity due to the strongest capability for O{sub 3} catalytic decomposition and utilization. Benzene and O{sub 3} removal efficiency reached as high as 97% and 100% after 360 min, respectively. O{sub 3} was catalytically decomposed, generating highly reactive oxidants such as ·OH and ·O for benzene oxidation.

  5. Temporal VUV Emission Characteristics Related to Generations and Losses of Metastable Atoms in Xenon Pulsed Barrier Discharge

    Science.gov (United States)

    Motomura, Hideki; Loo, Ka Hong; Ikeda, Yoshihisa; Jinno, Masafumi; Aono, Masaharu

    Although xenon pulsed dielectric barrier discharge is one of the most promising substitutes for mercury low-pressure discharge for fluorescent lamps, the efficacy of xenon fluorescent lamp is not enough for practical use for general lighting. To improve the efficacy it is indispensable to clarify mechanisms of vacuum ultraviolet (VUV) emissions, which excite phosphor, from xenon discharge related to plasma characteristics. In this paper emission waveforms and temporal change of metastable atom density are measured and temporal VUV emission characteristics related to generations and losses of metastable atoms in xenon pulsed barrier discharge is investigated. It is shown that the lamp efficacy is improved by about 10% with shorter pulse in which the two VUV emission peaks in a pulse are overlapped. It is also shown that at the lower pressure of 1.3 kPa metastable atoms generated during on-period of the voltage pulse are not efficiently consumed for VUV emissions in the off-period of the voltage pulse because of lower rate of three-body collision and quenching. This fact is thought to be one of the reasons why the lamp efficacy is low at lower pressure.

  6. Comparison of different undulator schemes with superimposed alternating gradients for the VUV-FEL at the TESLA Test Facility

    Energy Technology Data Exchange (ETDEWEB)

    Pflueger, J.; Nikitina, Y.M. [DESY/HASYLAB, Hamburg (Germany)

    1995-12-31

    For the VUV-FEL at the TESLA Test Facility an undulator with a total length of 30 m is needed. In this study three different approaches to realize an undulator with a sinusoidal plus a superimposed quadrupolar field were studied with the 3D code MAFIA.

  7. Application of VUV-PIMS coupled with GC-MS in chemical characterization, identification and comparative analysis of organic components in both vehicular-derived SOA and haze particles

    Science.gov (United States)

    Zhang, Peng; Ma, Pengkun; Zhang, Haixu; Shu, Jinian; Yang, Bo; Li, Zhen

    2017-09-01

    Gasoline vehicle exhaust is a significant source of volatile organic compounds (VOCs) in megacities. In this study, chemical characterization of secondary aerosol particles from the oxidation of gasoline vehicular exhaust by O3, OH, and NO3 radicals and the airborne aerosol particles collected during a heavy haze episode (23-25 December 2015) in Beijing were elaborately investigated. The secondary organic aerosols (SOAs) collected from the exhaust and airborne aerosol particles were characterized with a newly built vacuum ultraviolet photoionization mass spectrometer (VUV-PIMS) after thermal desorption, and identified by gas chromatography mass spectrometry (GC-MS). The obtained photoionization mass spectra revealed that the SOAs from the oxidation of gasoline vehicular exhaust and airborne aerosol particles possess a series of common characteristic mass peaks at m/z 98, 112, 126, and 140. The components at m/z 98, 112, 126, 140 were further identified to be carbonyl species after PFBHA derivatization followed by GC-MS analyses. The carbonyl species from exhaust SOAs were found to be responsible for 51.7%, 57.5%, 36.3%, and 27.9% of the chemical components in haze particles at m/z 98, 112, 126, and 140, respectively, which indicates that these SOA components from the oxidation of gasoline vehicular exhaust are a major factor that affects the air quality in Beijing. Among the exhaust SOAs, the carbonyl species detected simultaneously in two (P(O3/OH)) or three kinds of exhaust oxidation reactions (P(O3/NO3/OH)) make a significant contributions to these carbonyl species in haze particles (10.6% for m/z 98, 18.3% for m/z 112, 23.4% for m/z 126, and 20.5% for m/z 140). These results implies that the unsaturated VOCs (i.e. alkenes) from exhaust may be one kind of important SOA precursor and that their chemical degradation in the atmosphere may have an important impact on urban air quality in heavy polluted cities such as Beijing, especially during severe winter haze

  8. A Benchmark Experiment for Photoionized Plasma Emission from Accretion-Powered X-ray Sources

    Science.gov (United States)

    Loisel, G.; Bailey, J.; Nagayama, T.; Hansen, S.; Rochau, G.; Liedahl, D.; Fontes, C.; Kallman, T.; Mancini, R.

    2017-10-01

    Accretion-powered emission from X-ray binaries or black-hole accretion in Active Galactic Nuclei is a powerful diagnostic for their behavior and structure. Interpretation of x-ray emission from these objects requires a spectral synthesis model for photoionized plasma. Models must predict the photoionized charge state distribution, the photon emission processes, and the radiation transport influence on the observed emission. At the Z facility, we have measured simultaneously emission and absorption from a photoionized silicon plasma suitable to benchmark photoionization and spectrum formation models with +/-5% reproducibility and E/dE >2500 spectral resolution. Plasma density, temperature, and charge state distribution are determined with absorption spectroscopy. Self-emission measured at adjustable column densities tests radiation transport effects. Observation of 14 transitions in He-like silicon will help understand population mechanisms in a photoionized plasma. First observation of radiative recombination continuum in a photoionized plasma will be presented. Sandia National Laboratories is a multi-mission laboratory managed and operated by National Technology and Engineering Solutions of Sandia, LLC., a wholly owned subsidiary of Honeywell International, Inc., for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-NA-0003525.

  9. Studies of electron correlation in the photoionization process

    Energy Technology Data Exchange (ETDEWEB)

    Rosenberg, Richard Allen [Univ. of California, Berkeley, CA (United States)

    1979-03-01

    Electron correlation is a result of the interaction of two or more electrons confined in a region of space, and may conveniently be treated under the formalism of configuration interaction (CI). Photoionization provides a rather direct experimental method for studying configuration interaction. The types of CI involved in the photoionization process can be divided into three categories: initial state configuration interaction (ISCI), final ionic state configuration interaction (FISCI), and continuum state configuration interaction (CSCI). This thesis deals with experimental studies which reveal how the various types of CI may become manifested in photoionization. The experimental methods utilized in this work are photoelectron spectroscopy (PES), electron impact spectroscopy (EIS), and time-resolved fluorescence spectroscopy. The EIS was carried out following the discovery that the UV lamp on a Perkin-Elmer photoelectron spectrometer could be utilized as a source of low energy electrons. The time-resolved fluorescence work utilized both the tunability and the time structure of the radiation available at the Stanford Synchrotron Radiation Laboratory (SSRL). A commercial photoelectron spectrometer equipped with a conventional UV lamp (Hei, Nei) was employed for some of the PES studies, and a novel time-of-flight photoelectron spectrometer was developed for the PES work performed using synchrotron radiation. The PES of Ba, Sm, Eu, and Yb was studied using both Hei (22.22 eV) and Nei (16.85 eV) radiation. Satellite structure observed in these spectra using Nei (and for Yb, Hei also) radiation could be satisfactorily explained by ISCI alone. The Hei spectra of Sm, Eu, and, in particular, Ba showed dramatic changes in the satellite population which could only be explained by a new mechanism, autoionization, which is a special form of CSCI. The detailed nature of this mechanism was explored in Ba using synchrotron radiation. It was found that the autoionizing level decays

  10. The electronic states of 1,2,5-oxadiazole studied by VUV absorption spectroscopy and CI, CCSD(T) and DFT methods

    Science.gov (United States)

    Palmer, Michael H.

    2009-06-01

    The 1,2,5-oxadiazole VUV absorption spectrum in the range 5-11.5 eV, shows broad bands centred near 6.2, 7.1, 8.3, 8.8, 10.6 and 11.3 eV. Rydberg states associated with three ionisation energies (IE) were identified in the complex fine structure above 8.7 eV. Electronic vertical excitation energies for singlet and triplet valence, and Rydberg states were computed using ab initio multi-reference multi-root CI methods. There is generally a good correlation between the envelope of the theoretical intensities and the experimental spectrum. The nature of the more intense calculated Rydberg states, and positions of the main valence and Rydberg bands are discussed. The lowest triplet, singlet and Rydberg 3s excited states have equilibrium structures that are non-planar with CS symmetry, in a chair-like orientation where the O and H atoms lie out of the NCCN plane. This finding is consistent with the doubling of the low energy UV spectral lines [B.J. Forrest, A.W. Richardson, Can. J. Chem., 50 (1972) 2088]. The nearly degenerate IE of the UV-photoelectron spectrum (UV-PES, Palmer et al. 1977) makes analysis of the VUV spectrum difficult, leading to the necessity for reinvestigation. Vertical studies (IEV) using CI, Tamm-Dancoff (TDA) and Green's Function (GF) methods all gave similar results, with near degeneracy of the first 3IEV confirming the earlier study. Studies of the adiabatic IE (IEA) using CCSD(T) and B3LYP methods, showed the energy sequence 2A2 < 2B1 < 2B2, but these states are all saddle points, in contrast to the 4th state (2A1) which is a minimum. In contrast, MP2 study of the 2B2 state showed a minimum, with only two saddle points. Complete minima were found after minor twisting of the structures. The lowest energy cationic state is 2A″ (CS), which closely resembles the 2B2 state. The O-N-C-C skeleton is twisted by 8°. The corresponding 2A‧ state (CS) is effectively identical to the 2B1 state. Attempts to find minima for other symmetry states were

  11. Isotopically selective RIMS of rare radionuclides by double-resonance excitation with cw lasers

    Energy Technology Data Exchange (ETDEWEB)

    Bushaw, B.A.; Munley, J.T.

    1990-09-01

    Double-resonance, Resonance Ionization Mass Spectroscopy (RIMS) using two single-frequency dye lasers and a CO{sub 2} laser for photoionization has been shown to be both extremely sensitive and highly selective. Measurements on the radioisotope {sup 210}Pb have demonstrated optical selectivity in excess of 10{sup 9} and detection limits of less than 1 femtogram.

  12. Molecular beam mass spectrometry with tunable vacuum ultraviolet (VUV) synchrotron radiation

    Energy Technology Data Exchange (ETDEWEB)

    Golan, Amir; Ahmed, Musahid

    2012-01-01

    Tunable soft ionization coupled to mass spectroscopy is a powerful method to investigate isolated molecules, complexes and clusters and their spectroscopy and dynamics.[1-4] Fundamental studies of photoionization processes of biomolecules provide information about electronic structure of these systems. Furthermore determinations of ionization energies and other properties of biomolecules in the gas phase are not trivial, and these experiments provide a platform to generate these data. We have developed a thermal vaporization technique coupled with supersonic molecular beams that provides a gentle way to transport these species into the gas phase. Judicious combination of source gas and temperature allows for formation of dimers and higher clusters of the DNA bases. The focus of this particular work is on the effects of non-covalent interactions, i.e., hydrogen bonding, stacking, and electrostatic interactions, on the ionization energies and proton transfer of individual biomolecules, their complexes and upon micro-hydration by water.[1, 5-9] We have performed experimental and theoretical characterization of the photoionization dynamics of gas-phase uracil and 1,3-methyluracil dimers using molecular beams coupled with synchrotron radiation at the Chemical Dynamics Beamline[10] located at the Advanced Light Source and the experimental details are visualized here. This allowed us to observe the proton transfer in 1,3-dimethyluracil dimers, a system with pi stacking geometry and with no hydrogen bonds[1]. Molecular beams provide a very convenient and efficient way to isolate the sample of interest from environmental perturbations which in return allows accurate comparison with electronic structure calculations[11, 12]. By tuning the photon energy from the synchrotron, a photoionization efficiency (PIE) curve can be plotted which informs us about the cationic electronic states. These values can then be compared to theoretical models and calculations and in turn, explain

  13. High-brightness VUV sources based on plasma-dynamic magnetoplasma compressor discharges in gases

    Science.gov (United States)

    Kamrukov, A. S.; Kozlov, N. P.; Protasov, Iu. S.; Shashkovskii, S. G.

    1989-02-01

    The paper is concerned with the physical and technical aspects of the use of plasma-dynamic methods for generating high-power electromagnetic pulses over a wide spectral region, particularly in the UV and VUV spectral bands. In the experimental studies reviewed here, these methods are implemented by using high-current discharges of an erosion-type magnetoplasma compressor in gases. Approaches to the optimization of the energy and spectral-brightness characteristics of such discharges are discussed. The development of high power (1.5 GW) open-type plasma sources with a tunable emission spectrum and a light efficiency of 40-60 percent which can operate in the repetitively pulsed mode is reported.

  14. UV-VUV diagnostics for the Advanced Photon Source SASE FEL

    CERN Document Server

    Hartog, P D; Benson, C; Erdmann, M; Lumpkin, Alex H; Makarov, O; Petra, M; Tieman, B; Trakhtenberg, E; Wiemerslage, G

    2002-01-01

    The Advanced Photon Source self-amplified spontaneous emission (SASE) free-electron laser (FEL) uses diagnostics between undulator sections to characterize the light and the electron beam. These diagnostics enable z-dependent measurements of the exponential growth of the radiation and of the microbunching. The original diagnostics were designed for visible light. To enable measurements down to 265 nm, UV-enhanced cameras and fused-silica lenses have been installed. We have now designed a diagnostics suite that will enable us to continue measurements down to 50 nm using reflective optics and back-illuminated CCD cameras operating in vacuum. We describe the enhancements to the diagnostics for operation in the UV and VUV.

  15. The measurement of various molecules of pyrolysis gas of coal by using VUV-SPI-TOFMS

    Science.gov (United States)

    Tsuji, Norihiro; Nishifuji, Masayuki; Hayash, Shun-ichi

    2013-04-01

    We developed and tested a system that combines a vacuum ultraviolet single photon ionization time-of-flight mass spectrometer (VUV-SPI-TOFMS) with a Fourier transform-infrared (FT-IR) spectrometer and used it for the simultaneous detection of the various compounds generated during the pyrolysis of coal. We characterized the performance of the system, including its limits of detection and time resolution. We also determined the various compounds that could be detected using the system. The instrument exhibited a laboratory-determined detection limit that was in the parts per billion volume (ppbv) range and a detection time of 10 s for most of the aromatic compounds generated during the pyrolysis process. In addition, using this system, it was possible to determine the correlation between the pyrolysis temperature and the various compounds generated from different types of coals during the pyrolysis process.

  16. Effects of inorganics on the degradation of micropollutants with vacuum UV (VUV) advanced oxidation.

    Science.gov (United States)

    Duca, Clara; Imoberdorf, Gustavo; Mohseni, Madjid

    2017-05-12

    This research focused on the effects of inorganic water constituents on the efficiency of vacuum UV (VUV) for the degradation of micropollutants in surface water supplies. Atrazine was used as a model miropollutant, and bicarbonate, sulphate, and nitrate were used as the most common inorganic constituents in the water matrix. First, the absorbance of radiation at 254 and 185 nm was measured in the presence of different ions. At 254 nm, only nitrate showed a measurable absorption coefficient of [Formula: see text] = 3.51 M[Formula: see text] cm[Formula: see text], and all other ions showed a molar absorption coefficient below the detection limit. However, at 185 nm, all the ions showed high absorption coefficients, with nitrate giving the highest absorption coefficient of [Formula: see text] = 5568 M[Formula: see text] cm[Formula: see text]. Second, the hydroxyl radical (HO[Formula: see text]) scavenging effects of the same inorganic ions were evaluated; nitrate and bicarbonate showed a negative effect during the UV/H2O2 and VUV advanced oxidation processes. Sulfate was photolyzed with 185 nm UV to form HO[Formula: see text], and for this reason, it assisted the degradation of the target micropollutant, as demonstrated by increases in the degradation rate constant. An additional component of this work involved developing a method for measuring the quantum yield of atrazine at 185 nm. This made it possible to distinguish the contribution of OH radical attach from that of direct photolysis towards the degradation of atrazine.

  17. VUV treatment combined with mechanical strain of stretchable polymer foils resulting in cell alignment

    Energy Technology Data Exchange (ETDEWEB)

    Barb, R.-A. [Institute of Applied Physics, Johannes Kepler University Linz (Austria); Magnus, B. [Innovacell Biotechnologie AG, Innsbruck (Austria); Innerbichler, S. [Innerbichler GmbH, Breitenbach am Inn (Austria); Greunz, T. [CDL-MS-MACH, Johannes Kepler University Linz (Austria); Wiesbauer, M. [Institute of Applied Physics, Johannes Kepler University Linz (Austria); Marksteiner, R. [Innovacell Biotechnologie AG, Innsbruck (Austria); Stifter, D. [CDL-MS-MACH, Johannes Kepler University Linz (Austria); Heitz, J., E-mail: johannes.heitz@jku.at [Institute of Applied Physics, Johannes Kepler University Linz (Austria)

    2015-01-15

    Highlights: • Elastic polyurethane (PU) foils were exposed to the vacuum-UV in reactive atmosphere. • The photomodification resulted in improved cytocompatibilty. • Parallel microgrooves formed on the irradiated PU surfaces after strong elongation. • Cells seeded onto microgrooves aligned their shapes in the direction of the grooves. • Elongation occurred also for cells on PU subjected to cyclic mechanical stretching. - Abstract: Cell-alignment along a defined direction can have a direct effect on the cell functionality and differentiation. Oriented micro- or nanotopographic structures on cell culture substrates can induce cell-alignment. Surface chemistry, wettability, and stiffness of the substrate are also important material features as they strongly influence the cell–substrate interactions. For improved bio-compatibility, highly elastic polyurethane (PU) foils were exposed to the vacuum-UV (VUV) light of a Xe{sub 2}{sup *} excimer lamp at 172 nm in a nitrogen containing atmosphere (N{sub 2} or NH{sub 3}). The irradiation resulted in a change in the chemical surface composition. Additionally, the formation of regular parallel microgrooves was observed on the irradiated surfaces after strong uni-axial deformation (i.e., more than about 50% strain) of the photo-modified PU foils. Cell seeding experiments demonstrated that the VUV modified polymer foils strongly enhance cell adhesion and proliferation. Cells seeded onto microgrooves aligned their shapes and elongated in the direction of the grooves. A similar effect was observed for cells seeded on photo-modified PU foils subjected to cyclic mechanical stretching at lower strain levels (i.e., typically 10% strain) without groove-formation. The cells had also here an elongated shape, however they not always align in a defined direction relative to the stretching.

  18. Photoionization of open-shell Cl@C60

    Science.gov (United States)

    Shields, Dakota; de, Ruma; Madjet, Mohamed; Manson, Steven T.; Chakraborty, Himadri

    2017-04-01

    The ground state of the atomically open-shell Cl@C60 endofullerene molecule is modeled in a spherical local density approximation (LDA) augmented by the Leeuwen and Baerends exchange-correlation functional where the core of sixty C4+ ions is jelliumized. A time-dependent LDA (TDLDA) method is subsequently applied to calculate the dipole photoionization parameters of the endohedral molecule. Cross sections for the photoemission from atom-fullerene hybrid levels show the effects of both C60 plasmon and atomic Coulomb dynamics, as well as the interference between them. At higher energies, the coherence of confinement and cavity oscillations dominates the structures of the spectra. Detailed comparison with the results from Ar@C60, which involves the nearby close-shell atom in the periodic table, provides deeper insights into the role of a single shell-closing electron to noticeably influence the ionization dynamics. The work is supported by the US National Science foundation and the US Department of Energy.

  19. Time delays for attosecond streaking in photoionization of neon

    CERN Document Server

    Feist, Johannes; Nagele, Stefan; Pazourek, Renate; Burgdörfer, Joachim; Guan, Xiaoxu; Bartschat, Klaus; Schneider, Barry I

    2014-01-01

    We revisit the time-resolved photoemission in neon atoms as probed by attosecond streaking. We calculate streaking time shifts for the emission of 2p and 2s electrons and compare the relative delay as measured in a recent experiment by Schultze et al. [Science 328, 1658 (2010)]. The B-spline R-matrix method is employed to calculate accurate Eisenbud-Wigner-Smith time delays from multi- electron dipole transition matrix elements for photoionization. The additional laser field-induced time shifts in the exit channel are obtained from separate, time-dependent simulations of a full streaking process by solving the time-dependent Schr\\"odinger equation on the single-active-electron level. The resulting accurate total relative streaking time shifts between 2s and 2p emission lie well below the experimental data. We identify the presence of unresolved shake-up satellites in the experiment as a potential source of error in the determination of streaking time shifts.

  20. Photoionization of Yb(NH3)n complexes.

    Science.gov (United States)

    Guttridge, Matthew J; Don, Sadna H; Ellis, Andrew M

    2013-03-18

    The ionization energies of complexes between a rare-earth metal (Yb) and ammonia were measured for the first time. Using photoionization mass spectrometry under molecular-beam conditions, the adiabatic ionization energies of Yb(NH3)n were determined for n=1-10. Ab initio calculations were also carried out in support of this work and were found to be in excellent agreement with experiment. The combined findings from theory and experiment are consistent with formation of "interior" complexes in which the Yb atom is embedded within a shell of NH3 molecules, rather than sitting on the surface of an (NH3)n cluster. The calculations also suggest that Yb can accommodate up to eight NH3 molecules in its first solvation shell before steric repulsion makes occupancy of the second solvation shell more favourable energetically. The experimental ionization data are consistent with this prediction, as demonstrated by below-trend adiabatic ionization energies for the n=9 and 10 complexes. The ionization energies of Yb(NH3)n complexes closely follow those for complexes of alkali metal atoms with NH3, which suggests that a valence electron will eventually detach from the Yb atom to form a solvated electron in Yb(NH3)n when n is sufficiently large. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Long Duration Directional Drives for Star Formation and Photoionization

    Energy Technology Data Exchange (ETDEWEB)

    Kane, J. O. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Martinez, D. A. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Pound, M. W. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Heeter, R. F. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Villette, B. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Casner, A. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Mancini, R. C. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2015-06-18

    This research will; confirm the possibility of studying the structure and evolution of star-forming regions of molecular clouds in the laboratory; test the cometary model for the formation of the pillar structures in molecular clouds; assess the effect of magnetic fields on the evolution of structures in molecular clouds; and develop and demonstrate a new, long-duration (60-100 ns), directional source of x-ray radiation that can be used for the study of deeply nonlinear hydrodynamics, hydrodynamic instabilities that occur in the presence of directional radiation, shock-driven and radiatively-driven collapse of dense cores, and photoionization. Due to the iconic status of the pillars of the Eagle Nebula, this research will bring popular attention to plasma physics, HED laboratory physics, and fundamental science at NIF and other experimental facilities. The result will be to both to bring new perspectives to the studies of hydrodynamics in inertial confinement fusion and HED scenarios in general, and to promote interest in the STEM disciplines.

  2. A discharge flow-photoionization mass spectrometric study of the FO(X 2 Pi i) radical. Photoionization efficiency spectrum and ionization energy

    Science.gov (United States)

    Zhang, Zhengyu; Kuo, Szu-Cherng; Klemm, R. Bruce; Monks, Paul S.; Stief, Louis J.

    1994-01-01

    Photoionization efficiency spectra of FO were measured over the wavelength range 80.0-100.0 nm and in the ionization threshold region, 94.0-100.0 nm, using a discharge flow-photoionization mass spectrometer apparatus coupled to a synchrotron radiation source. FO was generated by the reaction of F2P atoms with NO3 and via a F2O2 discharge. A value of 12.78 +/- 0.03 eV was obtained for the adiabatic ionization energy of FO from photoion thresholds which corresponds to FO(+)(X 3 Sigma -) from FO(X 2 Pi i). These results, which are the first to be obtained by direct Photo-ionization mass spectrometry (PIMS) measurements, corroborate those of a photoelectron spectroscopy (PES) study; however, the ionization energy determined here is free from interferences due to other species which complicated the PES measurement. A value of 109.5 +/- 8.0 kJ/mol for Delta f H 0 298(FO) is computed from the present value of IE(FO) and a previous appearance energy measurement, and a value for the proton affinity of FO is calculated to be 511.5 +/- 10.0 kJ/mol.

  3. Determination of ionization energies of small silicon clusters with vacuum?ultraviolet (VUV) radiation

    Energy Technology Data Exchange (ETDEWEB)

    Kostko, Oleg; Leone, Stephen R.; Duncan, Michael A.; Ahmed, Musahid

    2009-09-23

    In this work we report on single photon vacuum ultraviolet photoionization of small silicon clusters (n=1-7) produced via laser ablation of Si. The adiabatic ionization energies (AIE) are extracted from experimental photoionization efficiency (PIE) curves with the help of Frank?Condon simulations, used to interpret the shape and onset of the PIE curves. The obtained AIEs are (all energies are in eV): Si (8.13+-0.05), Si2 (7.92+-0.05), Si3 (8.12+-0.05), Si4 (8.2+-0.1), Si5 (7.96+-0.07), Si6 (7.8+-0.1), and Si7 (7.8+-0.1). Most of the experimental AIE values are in good agreement with ab initio electronic structure calculations. To explain observed deviations between the experimental and theoretical AIEs for Si4 and Si6, a theoretical search of different isomers of these species is performed. Electronic structure calculations aid in the interpretation of the a2PIu state of Si2+ dimer in the PIE spectrum. Time dependent density functional theory (TD-DFT) calculations are performed to reveal the energies of electronically excited states in the cations for a number of Si clusters.

  4. Probing combustion chemistry in a miniature shock tube with synchrotron VUV photo ionization mass spectrometry.

    Science.gov (United States)

    Lynch, Patrick T; Troy, Tyler P; Ahmed, Musahid; Tranter, Robert S

    2015-02-17

    Tunable synchrotron-sourced photoionization time-of-flight mass spectrometry (PI-TOF-MS) is an important technique in combustion chemistry, complementing lab-scale electron impact and laser photoionization studies for a wide variety of reactors, typically at low pressure. For high-temperature and high-pressure chemical kinetics studies, the shock tube is the reactor of choice. Extending the benefits of shock tube/TOF-MS research to include synchrotron sourced PI-TOF-MS required a radical reconception of the shock tube. An automated, miniature, high-repetition-rate shock tube was developed and can be used to study high-pressure reactive systems (T > 600 K, P shock waves. In this paper, we present results of a PI-TOF-MS study at the Advanced Light Source at Lawrence Berkeley National Laboratory. Dimethyl ether pyrolysis (2% CH3OCH3/Ar) was observed behind the reflected shock (1400 shock tube studies. The signal levels attained and data throughput rates with this technique are comparable to those with other synchrotron-based PI-TOF-MS reactors, and it is anticipated that this high pressure technique will greatly complement those lower pressure techniques.

  5. Accelerated degradation of sulfamethazine in water by VUV/UV photo-Fenton process: Impact of sulfamethazine concentration on reaction mechanism.

    Science.gov (United States)

    Wen, Dong; Wu, Zhengdi; Tang, Yubin; Li, Mengkai; Qiang, Zhimin

    2018-02-15

    The degradation of sulfamethazine (SMN) by VUV/UV photo-Fenton (VPF) process was investigated with a mini-fluidic VUV/UV photoreaction system. Compared with the conventional UV photo-Fenton process, the VPF process significantly enhanced the degradation and mineralization of SMN, because the VUV irradiation photolyzed H2O and accelerated the redox cycle of Fe3+/Fe2+ to generate more reactive oxygen species (ROS). Initial pH and concentrations of SMN, H2O2, Fe3+, inorganic anions (NO3-, HCO3-, and Cl-), and humic acid all considerably impacted SMN degradation in the VPF process. In particular, the initial SMN concentration significantly affected the absorption distributions of UV and VUV photons in the reaction solution, thus inducing a different reaction mechanism. At a lower SMN concentration (1.8μM), most of UV and VUV photons were absorbed by Fe3+ and H2O, respectively, so indirect oxidation by ROS mainly accounted for SMN degradation. However, at a higher SMN concentration (90μM), 89.2% of UV photons and 59.0% of VUV photons were absorbed by SMN, so direct photolysis also played an important role. In addition, HO and HO2 were identified as the main ROS in the VPF process. This study demonstrates that the VPF process can effectively remove organic micropollutants from water. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Microfabricated planar glass gas chromatography with photoionization detection.

    Science.gov (United States)

    Lewis, Alastair C; Hamilton, Jacqueline F; Rhodes, Christopher N; Halliday, Jaydene; Bartle, Keith D; Homewood, Philip; Grenfell, Robin J P; Goody, Brian; Harling, Alice M; Brewer, Paul; Vargha, Gergely; Milton, Martin J T

    2010-01-29

    We report the development of a microfabricated gas chromatography system suitable for the separation of volatile organic compounds (VOCs) and compatible with use as a portable measurement device. Hydrofluoric acid etching of 95x95mm Schott B270 wafers has been used to give symmetrical hemi-spherical channels within a glass substrate. Two matching glass plates were subsequently cold bonded with the channels aligned; the flatness of the glass surfaces resulted in strong bonding through van der Waals forces. The device comprised gas fluidic interconnections, injection zone and 7.5 and 1.4m long, 320microm internal diameter capillaries. Optical microscopy confirmed the capillaries to have fully circular channel profiles. Direct column heating and cooling could be achieved using a combination of resistive heaters and Peltier devices. The low thermal conductivity of glass allowed for multiple uniform temperature zones to be achieved within a single glass chip. Temperature control over the range 10-200 degrees C was achieved with peak power demand of approximately 25W. The 7.5m capillary column was static coated with a 2microm film of non-polar dimethylpolysiloxane stationary phase. A standard FID and a modified lightweight 100mW photoionization detector (PID) were coupled to the column and performance tested with gas mixtures of monoaromatic and monoterpene species at the parts per million concentration level. The low power GC-PID device showed good performance for a small set of VOCs and sub ng detection sensitivity to monoaromatics. Copyright (c) 2009 Elsevier B.V. All rights reserved.

  7. Red-F* Laser and VUV-F2 Emission Pumped at Low Pressure by Longitudinal, Lamp-Like Discharge

    Science.gov (United States)

    Uno, Kazuyuki; Nakamura, Kenshi; Goto, Tatsumi; Jitsuno, Takahisa

    Red-fluorine-atom (Red-F* ) laser oscillation (λ = 630-780 nm) and strong fluorescence of VUV-F2 emission (λ = 157 nm) are observed in a lamp-like discharge in a longitudinal discharge excitation tube. The laser tube consists of a 30 cm long Pyrex glass pipe with an inner diameter of 2 mm, and a step-up transformer coupled directly to the discharge tube without a high-voltage switch. Excitation is produced by wall-coupled discharge. The laser pulse width is 6.1 ns at 100 Torr (13.3 kPa, with an F2 concentration of 5 %) when a slow-rising voltage pulse of -40 kV (rise time: 253 ns) is applied. VUV-F2 emission of a 24.5 ns (FWHM) pulse width was generated simultaneously with the red-F* laser.

  8. THE APSIS EXPERIMENT: SIMULATING TITAN'S UPPER ATMOSPHERE AND ITS PHOTOCHEMISTRY IN THE VACUUM ULTRA-VIOLET (VUV)

    OpenAIRE

    Tigrine, Sarah; Carrasco, Nathalie; Vettier, Ludovic; Nahon, Laurent

    2015-01-01

    International audience; Titan, the largest moon of Saturn, has a dense atmosphere whose upper layers are mainly composed of methane (CH4) and molecular nitrogen (N2). The Cassini mission revealed that the interaction between those molecules and the solar VUV photons, as well as the electrons from Saturn’s magnetosphere, leads to a complex chemistry.Moreover, this naturally ionized environment contains heavy organic molecules like benzene (C6H6) even at altitudes higher than 900 km.The presenc...

  9. Photocatalytic oxidation of indoor toluene: Process risk analysis and influence of relative humidity, photocatalysts, and VUV irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Weirong, E-mail: weirong@mail.hz.zj.cn [Department of Environmental Engineering, Zhejiang University, Hangzhou 310058 (China); Dai, Jiusong; Liu, Feifei; Bao, Jiaze; Wang, Yan; Yang, Yong; Yang, Yanan [Department of Environmental Engineering, Zhejiang University, Hangzhou 310058 (China); Zhao, Dongye [Environmental Engineering Program, Department of Civil Engineering, Auburn University, Auburn, AL 36849 (United States)

    2012-11-01

    Concentrations of 13 gaseous intermediates in photocatalytic oxidation (PCO) of toluene in indoor air were determined in real-time by proton transfer reaction mass spectrometry and desorption intensities of 7 adsorbed intermediates on the surface of photocatalysts were detected by temperature-programmed desorption-mass spectrometry. Effects of relative humidity (RH), photocatalysts, and vacuum ultraviolet (VUV) irradiation on the distribution and category of the intermediates and health risk influence index ({eta}) were investigated. RH enhances the formation rate of hydroxide radicals, leading to more intermediates with higher oxidation states in gas phase. N doping promotes the separation of photo-generated electrons and holes and enhances PCO activity accordingly. VUV irradiation results in higher mineralization rate and more intermediates with higher oxidation states and lower toxicity e.g. carboxylic acids. Health risk analysis indicates that higher RH, N doping of TiO{sub 2}, and VUV lead to 'greener' intermediates and smaller {eta}. Finally, a conceptual diagram was proposed to exhibit the scenario of {eta} varied with extent of mineralization for various toxicities of inlet pollutants. Highlights: Black-Right-Pointing-Pointer 13 volatile intermediates in PCO of toluene were determined in real-time by PTR-MS. Black-Right-Pointing-Pointer 7 adsorbed intermediates on surface of photocatalyst were determined by TPD-MS. Black-Right-Pointing-Pointer Higher RH, N doping of TiO{sub 2}, and VUV irradiation lead to 'greener' intermediates. Black-Right-Pointing-Pointer Health risk index relies on extent of mineralization and toxicities of inlet VOCs.

  10. Photoionized plasmas induced in neon with extreme ultraviolet and soft X-ray pulses produced using low and high energy laser systems

    Energy Technology Data Exchange (ETDEWEB)

    Bartnik, A.; Wachulak, P.; Fok, T.; Węgrzyński, Ł.; Fiedorowicz, H. [Institute of Optoelectronics, Military University of Technology, Kaliskiego 2, 00-908 Warsaw (Poland); Pisarczyk, T.; Chodukowski, T.; Kalinowska, Z. [Institute of Plasma Physics and Laser Microfusion, 23 Hery St., 00-908 Warsaw (Poland); Dudzak, R.; Dostal, J.; Krousky, E.; Skala, J.; Ullschmied, J.; Hrebicek, J.; Medrik, T. [Institute of Plasma Physics ASCR, Prague, Czech Republic and Institute of Physics ASCR, Prague (Czech Republic)

    2015-04-15

    A comparative study of photoionized plasmas created by two soft X-ray and extreme ultraviolet (SXR/EUV) laser plasma sources with different parameters is presented. The two sources are based on double-stream Xe/He gas-puff targets irradiated with high (500 J/0.3 ns) and low energy (10 J/1 ns) laser pulses. In both cases, the SXR/EUV beam irradiated the gas stream, injected into a vacuum chamber synchronously with the radiation pulse. Irradiation of gases resulted in formation of photoionized plasmas emitting radiation in the SXR/EUV range. The measured Ne plasma radiation spectra are dominated by emission lines corresponding to radiative transitions in singly charged ions. A significant difference concerns origin of the lines: K-shell or L-shell emissions occur in case of the high and low energy irradiating system, respectively. In high energy system, the electron density measurements were also performed by laser interferometry, employing a femtosecond laser system. A maximum electron density for Ne plasma reached the value of 2·10{sup 18 }cm{sup −3}. For the low energy system, a detection limit was too high for the interferometric measurements, thus only an upper estimation for electron density could be made.

  11. Photo-ionization and photo-excitation of curcumin investigated by laser flash photolysis

    Science.gov (United States)

    Qian, Tingting; Kun, Li; Gao, Bo; Zhu, Rongrong; Wu, Xianzheng; Wang, ShiLong

    2013-12-01

    Curcumin (Cur) has putative antitumor properties. In the current study, we examined photophysical and photochemical properties of Cur using laser flash photolysis. The results demonstrated that Cur could be photo-ionized at 355 nm laser pulse to produce radical cation (Currad +) and solvated electron esol- in 7:3 ethanol-water mixtures. The quantum yield of Cur photo-ionization and the ratio of photo-ionization to photo-excitation were also determined. Currad + could be transferred into neutral radical of Cur (Currad ) via deprotonation with the pKa 4.13. The excited singlet of Cur (1Cur*) could be transferred into excited triplet (3Cur*), which could be quenched by oxygen to produce singlet oxygen 1O2∗. Reaction of 3Cur* with tryptophan was confirmed. The results encourage developing curcumin as a photosensitive antitumor agent.

  12. Effect of quantum interference on tunneling photoionization rates of N2 and O2 molecules.

    Science.gov (United States)

    Mishima, K; Nagaya, K; Hayashi, M; Lin, S H

    2005-03-08

    In this work, we reexamine the photoionization rates of N(2) and O(2) molecules using the previously published photoionization rate theory which is based on the original atomic Keldysh theory [K. Mishima et al., Phys. Rev. A 66, 033401 (2002); ibid.66, 053408 (2002)]. We have found that the constructive quantum interference takes place for N(2) molecule while the destructive quantum interference plays an important role for O(2) molecule. This is consistent with the experimental and theoretical results reported in the literature. The formulas derived in this paper clearly show that this is due to the different symmetries of the valence orbitals of N(2) and O(2) molecules.

  13. Absolute single photoionization cross-section measurements of Rb 2+ ions: experiment and theory

    Energy Technology Data Exchange (ETDEWEB)

    Macaluso, D. A. [Univ. of Montana, Missoula, MT (United States). Dept. of Physics and Astronomy; Bogolub, K. [Univ. of Montana, Missoula, MT (United States). Dept. of Physics and Astronomy; Johnson, A. [Univ. of Montana, Missoula, MT (United States). Dept. of Physics and Astronomy; Aguilar, A. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Advanced Light Source (ALS); Kilcoyne, A. L. D. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Advanced Light Source (ALS); Bilodeau, R. C. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Advanced Light Source (ALS); Univ. of Connecticut, Storrs, CT (United States). Dept. of Physics; Bautista, M. [Western Michigan Univ., Kalamazoo MI (United States). Dept. of Physics; Kerlin, A. B. [Univ. of West Georgia, Carrolton, GA (United States). Dept. of Physics; Sterling, N. C. [Univ. of West Georgia, Carrolton, GA (United States). Dept. of Physics

    2017-05-05

    Absolute single photoionization cross-section measurements of Rb 2+ ions were performed at the Advanced Light Source at Lawrence Berkeley National Laboratory using synchrotron radiation and the photo-ion, merged-beams technique. Measurements were made at a photon energy resolution of 13.5 2.5 meV from 37.31 to 44.08 eV spanning the 2 P ground state and 2 P metastable state ionization thresholds. Multiple autoionizing resonance series arising from each initial state are identified using quantum defect theory. The measurements are compared to Breit-Pauli R-matrix calculations with excellent agreement between theory and experiment.

  14. Charge distribution of Kr ions produced upon photoionization around the 2s edge

    Energy Technology Data Exchange (ETDEWEB)

    Santos, A.C.F., E-mail: toni@if.ufrj.br [Instituto de Física, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21991-972 (Brazil); Pilling, S. [Laboratório Nacional de Luz Síncroton, Campinas 13084-971 (Brazil); Almeida, D.P. [Departamento de Física, Universidade Federal de Santa Catarina, Florianópolis 88040-979 (Brazil)

    2015-08-15

    Highlights: • Charge spectra of Kr after photoionization of the L shell have been measured. • Multiple photoionization of krypton around the 2s edge is a collective process. • Electron correlation plays an important role in multiple ionization of heavy atoms. - Abstract: Charge state spectra of krypton ions generated after ionization (by a single photon) of the L shell have been measured by using the PEPICO technique. Relative abundances of Kr{sup q+} ions in charge state up to 8+ were obtained using monochromatized synchrotron radiation. A comparison with other experimental and theoretical data is presented.

  15. A vacuum ultraviolet photoionization study on the thermal decomposition of ammonium perchlorate

    Science.gov (United States)

    Góbi, Sándor; Zhao, Long; Xu, Bo; Ablikim, Utuq; Ahmed, Musahid; Kaiser, Ralf I.

    2018-01-01

    Pyrolysis products of ammonium perchlorate (NH4ClO4) at 483 K were monitored on line and in situ via single photon photoionization reflectron time-of-flight spectrometry (PI-ReTOF-MS) in the photon energy range of 9.00-17.50 eV. The photoionization efficiency curves (PIE) of the subliming product molecules were collected and allowed for detection of three class of products containing chlorine, nitrogen, and oxygen including atoms and free radicals. These results suggest a new insight into possible low-temperature decomposition pathways of NH4ClO4.

  16. Atomic shell structures observed in photoionization spectra of nickel and cobalt clusters

    Energy Technology Data Exchange (ETDEWEB)

    Vialle, J.L. [Lyon-1 Univ., 69 - Villeurbanne (France). Lab. de Spectrometrie Ionique et Moleculaire; Pellarin, M. [Lyon-1 Univ., 69 - Villeurbanne (France). Lab. de Spectrometrie Ionique et Moleculaire; Baguenard, B. [Lyon-1 Univ., 69 - Villeurbanne (France). Lab. de Spectrometrie Ionique et Moleculaire; Lerme, J. [Lyon-1 Univ., 69 - Villeurbanne (France). Lab. de Spectrometrie Ionique et Moleculaire; Broyer, M. [Lyon-1 Univ., 69 - Villeurbanne (France). Lab. de Spectrometrie Ionique et Moleculaire

    1995-12-31

    Nickel and cobalt clusters have been studied by near threshold laser-photoionization and time-of-flight mass spectrometry. In the size domain from 50 up to 800 atoms, the mass distributions of the photoionized products look very similar for nickel and cobalt clusters. In both cases a regular structure is observed which is periodic on a N{sup 1/3} scale. It is found to be consistent with the filling of successive icosahedral shells of atoms. The recurring details of this structure agree with the so-called umbrellas model. (orig.)

  17. Photoionization Models of Bromine, Rubidium, and Xenon in Planetary Nebulae

    Science.gov (United States)

    Sterling, Nicholas C.; Porter, Ryan; Spencer, Courteney; Sherrard, Cameroun G.

    2017-06-01

    We present numerical simulations of the Br, Rb, and Xe ionization balance in five planetary nebulae (PNe). These neutron-capture elements (atomic number Z > 30) can be enriched by s-process nucleosynthesis during the asymptotic giant branch (AGB) evolutionary stage of PN progenitor stars. Recent calculations of photoionization cross sections and rate coefficients for radiative recombination, dielectronic recombination, and charge transfer (Kerlin et al. 2017, in preparation; Sterling & Kerlin 2016, 227th AAS, #238.02; Sterling & Stancil 2011, A&A, 535, A117) allow the Br, Rb, and Xe ionization equilibria to be modeled in PNe for the first time. We have added these elements and their atomic data to Cloudy (Ferland et al. 2013, RMxA&A, 49, 137). We model the PNe IC 418, IC 2501, IC 4191, NGC 2440, and NGC 7027, all of which exhibit emission from multiple Xe ions in the optical data of Sharpee et al. (2007, ApJ, 659, 1265). Multiple Br and Rb ions were also detected in NGC 7027. The model central star temperatures and luminosities, and nebular densities, outer radii, and abundances were optimized to best reproduce the observed intensities of Sharpee et al. We find that IC 418 and NGC 7027 are enriched in Br, Rb, and Xe, in accordance with results for Se and Kr (Sterling et al. 2015, ApJS, 218, 25). Given the small sample size and the weakness of the lines involved, it is not clear whether discrepancies between modeled and observed intensities are due to observational, model, or atomic data uncertainties. This sample will be expanded to include other PNe, such as those in our optical survey (Sherrard et al. poster, this session), which will allow us to test the veracity of the new atomic data for Xe and, for a smaller number of PNe, Br and Rb. Following the methods of Sterling et al. (2015), grids of Cloudy models will be computed to derive ionization correction factors for Br, Rb, and Xe for the first time, allowing their abundances to be determined with higher

  18. Impact of hydrodynamics on pollutant degradation and energy efficiency of VUV/UV and H2O2/UV oxidation processes.

    Science.gov (United States)

    Bagheri, Mehdi; Mohseni, Madjid

    2015-12-01

    The Vacuum-UV/UV process, an incipient catalyst/chemical-free advanced oxidation process (AOP), is potentially a cost-effective solution for the removal of harmful micropollutants from water. Utilizing a novel mechanistic numerical model, this work aimed to establish a thorough understanding of the degradation mechanisms in the VUV/UV process operating under continuous flow conditions, when compared with the widely applied H2O2/UV AOP. Of particular interest was the examination of the impact of flow characteristics (hydrodynamics) on the degradation efficacy of a target micropollutant during the VUV/UV and H2O2/UV AOPs. While hydroxyl radical (OH) oxidation was the dominant degradation pathway in both processes, the degradation efficacy of the VUV/UV process showed much stronger correlation with the extent of mixing in the photoreactor. Under a uniform flow regime, the degradation efficiency of the target pollutant achieved by the H2O2/UV process with 2- and 5 ppm H2O2 was greater than that provided by the VUV/UV process. Nonetheless, introduction of mixing and circulation zones to the VUV/UV reactor resulted in superior performance compared with the H2O2/UV AOP. Based on the electrical energy-per-order (EEO) analysis, incorporation of circulation zones resulted in a reduction of up to 50% in the overall energy cost of the VUV/UV AOP, while the corresponding reduction for the 5-ppm H2O2/UV system was less than 5%. Furthermore, the extent of OH scavenging of natural organic matter (NOM) on energy efficiency of the VUV/UV and H2O2/UV AOPs under continuous flow conditions was assessed using the EEO analysis. Copyright © 2015 Elsevier Ltd. All rights reserved.

  19. Solar-Blind Diamond Detectors for Lyra, the Solar VUV Radiometer on Board Proba II

    Science.gov (United States)

    Benmoussa, A.; Hochedez, J.-F.; Schmutz, W. K.; Schühle, U.; Nesládek, M.; Stockman, Y.; Kroth, U.; Richter, M.; Theissen, A.; Remes, Z.; Haenen, K.; Mortet, V.; Koller, S.; Halain, J. P.; Petersen, R.; Dominique, M.; D'Olieslaeger, M.

    2003-12-01

    Fabrication, packaging and experimental results on the calibration of metal-semiconductor-metal (MSM) photodetectors made on diamond are reported. LYRA (Lyman-α RAdiometer onboard PROBA-2) will use diamond detectors for the first time in space for a solar physics instrument. A set of measurement campaigns was designed to obtain the XUV-to-VIS responsivity of the devices and other characterizations. The measurements of responsivity in EUV and VUV spectral ranges (40 240 nm) have been carried out by the Physkalisch-Technische Bundesanstalt (PTB) in Germany at the electron storage ring BESSY II. The longer wavelength range from 210 to 1127 nm was measured with monochromatic light by using a Xe-lamp at IMO-IMOMEC. The diamond detectors exhibit a photoresponse which lie in the 35 65 mA/W range at 200 nm (corresponding to an external quantum efficiency of 20 40%) and indicate a visible rejection ratio (200 500 nm) higher than four orders of magnitude.

  20. Brominated Tyrosine and Polyelectrolyte Multilayer Analysis by Laser Desorption VUV Postionization and Secondary Ion Mass Spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    University of Illinois at Chicago; Blaze, Melvin M. T.; Takahashi, Lynelle; Zhou, Jia; Ahmed, Musahid; Gasper, Gerald; Pleticha, F. Douglas; Hanley, Luke

    2011-03-14

    The small molecular analyte 3,5-dibromotyrosine (Br2Y) and chitosan-alginate polyelectrolyte multilayers (PEM) with and without adsorbed Br2Y were analyzed by laser desorption postionization mass spectrometry (LDPI-MS). LDPI-MS using 7.87 eV laser and tunable 8 ? 12.5 eV synchrotron vacuum ultraviolet (VUV) radiation found that desorption of clusters from Br2Y films allowed detection by≤8 eV single photon ionization. Thermal desorption and electronic structure calculations determined the ionization energy of Br2Y to be ~;;8.3?0.1 eV and further indicated that the lower ionization energies of clusters permitted their detection at≤8 eV photon energies. However, single photon ionization could only detect Br2Y adsorbed within PEMs when using either higher photon energies or matrix addition to the sample. All samples were also analyzed by 25 keV Bi3 + secondary ion mass spectrometry (SIMS), with the negative ion spectra showing strong parent ion signal which complemented that observed by LDPI-MS. The negative ion SIMS depended strongly on the high electron affinity of this specific analyte and the analyte?s condensed phase environment.

  1. Image Evaluation of the High Resolution VUV Spectrometer at SURF II by Ray Tracing.

    Science.gov (United States)

    Das, N C; Madden, R P; Seyoum, H M

    1998-01-01

    A high resolution VUV spectroscopic facility has been in use for several years at SURF II, the Synchrotron Ultraviolet Radiation Facility at the National Institute of Standards and Technology in Gaithersburg, Maryland. At this facility, a combination of three cylindrical mirrors is utilized to focus the light originating in the storage ring onto the horizontal entrance slit of the spectrometer. The spectrometer uses a 6.65 m concave grating having a groove density of 4800 lines/mm in the off-plane Eagle mounting. In preparation for the installation of an array detector in the exit image plane, a ray tracing program has been formulated and spot diagrams have been constructed by plotting the coordinates of the points of intersection of the diffracted rays with the image plane, which is tangent to the Rowland circle. In creating the spot diagrams, we have considered both parallel and tilted configurations of the entrance slit with respect to the grating grooves. It is shown that the line widths of the spectral images can be reduced when the entrance slit is properly tilted. Finally, we have estimated the spectral widths of the images when they are recorded on an array detector placed tangent to the Rowland circle. We conclude that an image spectral width of 0.41 pm to 0.88 pm in first order can be achieved over the wavelength region of 40 nm to 120 nm.

  2. VUV-SX spherical grating monochromator beam lines at BEPC and HESYRL

    Science.gov (United States)

    Shu, Deming; Wang, Wei; Wang, Motuo; Liu, Jing; He, Wei; Zhang, Yijuan; Liu, Wumin; Sao, Beibei; Xie, Qi; Zheng, Hongwei; Wu, Chuancou; Cong, Zhibing; Zong, Congcang; Xu, Pengsou; Cai, Yong

    1990-05-01

    Two VUV-SX spherical grating monochromator (SGM) beam lines have been designed and constructed for laboratories in China; one for the Beijing Electron-Positron Collider (BEPC) and one for the Hefei Synchrotron Radiation Laboratory (HESYRL). Each of them will cover a wide spectral range, approximately 10-1000 eV, with four or five spherical laminar gratings. Tuning of the wavelength in the monochromators is achieved by rotation of the grating and translation of a pair of stepping-motor-driven slits to follow the Rowland circle to improve the monochromator's performance. The prefocusing mirrors are different on the BEPC and HESYRL beam lines. To accept 20 mrad of the synchrotron radiation horizontally from the 800-MeV HESYRL ring, a combined Kirkpatrick-Baez-type mirror set has been developed. The 1240-mm-long horizontal prefocusing mirror consists of four 310 mm × 70 mm × 40 mm gold-coated Zerodur spherical mirrors, each of which is independently adjustable in three dimensions. In the BEPC SGM beam line, a toroidal nickel-coated aluminum prefocusing mirror intercepts up to 4.5 mrad at a distance of 12 m from the source. A heat-pipe cooling system has also been designed for this mirror to accommodate the higher power from the 2.2-2.8 GeV beam stored in BEPC in its dedicated SR mode. The optical ray tracing results, the mechanics, and control systems are described in this paper.

  3. Langmuir probing studies of UV-photoionized CO2 laser mixtures

    Science.gov (United States)

    Pei-Liang, Xie; Yu-Zhi, Wang; Feng Yun, Wang; Xi-Gang, Zhang; Jing-Xing, Dong

    1985-03-01

    A Langmuir probe incorporated with a boxcar averager is used to measure the temporally and spatially resolved electron density and electron temperature in a UV-photoionization device for several gases and gas mixtures. The predominant ionization mechanism is determined. The data provides information to optimize the effectiveness of the UV preionization operation in high-pressure lasers.

  4. Absolute cross section for photoionization of Mn{sup +} in the 3p region

    Energy Technology Data Exchange (ETDEWEB)

    Kjeldsen, H [Department of Physics and Astronomy, University of Aarhus, DK-8000 Aarhus C (Denmark); Folkmann, F [Department of Physics and Astronomy, University of Aarhus, DK-8000 Aarhus C (Denmark); Kristensen, B [Department of Physics and Astronomy, University of Aarhus, DK-8000 Aarhus C (Denmark); West, J B [Daresbury Laboratory, Warrington WA4 4AD (United Kingdom); Hansen, J E [Department of Physics and Astronomy, University of Amsterdam, NIKHEF, PO box 41882, NL-1009 DB Amsterdam (Netherlands)

    2004-03-28

    The absolute cross section for photoionization of Mn{sup +} has been measured using the merged-beam technique, focusing on the region of the 'giant' 3p {yields} 3d resonance. The main discrepancy between theory and earlier experiments has been removed. However, more extensive relativistic calculations are required for a rigorous comparison with theory.

  5. Photoionized Features in the X-ray Spectrum of EX Hydrae

    Energy Technology Data Exchange (ETDEWEB)

    Luna, G M; Raymond, J C; Brickhouse, N S; Mauche, C W; Proga, D; Steeghs, D; Hoogerwerf, R

    2009-09-28

    We present the first results from a long (496 ks) Chandra High Energy Transmission Grating observation of the intermediate polar EX Hydrae. In addition to the narrow emission lines from the cooling post-shock gas, for the first time we have detected a broad component in some of the X-ray emission lines, namely O VIII {lambda}18.97, Mg XII {lambda}8.42, Si XIV {lambda}6.18, and Fe XVII {lambda}16.78. The broad and narrow components have widths of {approx} 1600 km s{sup -1} and {approx} 150 km s{sup -1}, respectively. We also find that the flux of the broad component is modulated at the white dwarf spin period, constraining the region where the gas is formed. We propose a scenario where the broad component is formed in the pre-shock flow photoionized by radiation from the post-shock flow. Because the photoionized region has to be close to the radiation source in order to produce strong photoionized emission lines from ions like O VIII, Mg XII, and Si XIV, our photoionization model constrains the height of the standing shock above the white dwarf surface.

  6. Heats of vaporization of room temperature ionic liquids by tunable vacuum ultraviolet photoionization

    Energy Technology Data Exchange (ETDEWEB)

    Chambreau, Steven D.; Vaghjiani, Ghanshyam L.; To, Albert; Koh, Christine; Strasser, Daniel; Kostko, Oleg; Leone, Stephen R.

    2009-11-25

    The heats of vaporization of the room temperature ionic liquids (RTILs) N-butyl-N-methylpyrrolidinium bistrifluorosulfonylimide, N-butyl-N-methylpyrrolidinium dicyanamide, and 1-butyl-3-methylimidazolium dicyanamide are determined using a heated effusive vapor source in conjunction with single photon ionization by a tunable vacuum ultraviolet synchrotron source. The relative gas phase ionic liquid vapor densities in the effusive beam are monitored by clearly distinguished dissociative photoionization processes via a time-of-flight mass spectrometer at a tunable vacuum ultraviolet beamline 9.0.2.3 (Chemical Dynamics Beamline) at the Advanced Light Source synchrotron facility. Resulting in relatively few assumptions, through the analysis of both parent cations and fragment cations, the heat of vaporization of N-butyl-N-methylpyrrolidinium bistrifluorosulfonylimide is determined to be Delta Hvap(298.15 K) = 195+-19 kJ mol-1. The observed heats of vaporization of 1-butyl-3-methylimidazolium dicyanamide (Delta Hvap(298.15 K) = 174+-12 kJ mol-1) and N-butyl-N-methylpyrrolidinium dicyanamide (Delta Hvap(298.15 K) = 171+-12 kJ mol-1) are consistent with reported experimental values using electron impact ionization. The tunable vacuum ultraviolet source has enabled accurate measurement of photoion appearance energies. These appearance energies are in good agreement with MP2 calculations for dissociative photoionization of the ion pair. These experimental heats of vaporization, photoion appearance energies, and ab initio calculations corroborate vaporization of these RTILs as intact cation-anion ion pairs.

  7. Line broadening in a photoionization spectrometer due to elastic electron--atom collisions

    Energy Technology Data Exchange (ETDEWEB)

    Butikov, E.I.; Mishchenko, E.D.; Tumarkin, Y.N.

    1984-02-01

    Line broadening in a photoionization spectrometer due to elastic collisions between photoelectrons and atoms of the working gas is considered. Expressions are obtained for the stationary electron energy distribution function and for the initial part of the current-voltage characteristic in the case of monochromatic ionizing radiation for intensities of the retarding field close to the initial photoelectron energy.

  8. Photoionization Cross-Section of Chlorine-like Iron Sunny Aggarwal ...

    Indian Academy of Sciences (India)

    Photoionization Cross-Section of Chlorine-like Iron. Sunny Aggarwal. ∗. , Jagjit Singh, A. K. S. Jha & Man Mohan. Department of Physics and Astrophysics, University of Delhi, Delhi 110 007, India. ∗ e-mail: Sunny.kmc87@gmail.com. Received 2012 April 17; accepted 2012 July 25. Abstract. Semi-relativistic calculations are ...

  9. Photoionization modelling of planetary nebulae - II. Galactic bulge nebulae, a comparison with literature results

    NARCIS (Netherlands)

    van Hoof, PAM; Van de Steene, GC

    1999-01-01

    We have constructed photoionization models of five galactic bulge planetary nebulae using our automatic method, which enables a fully self-consistent determination of the physical parameters of a planetary nebula. The models are constrained using the spectrum, the IRAS and radio fluxes and the

  10. CI-RMBPT calculations of photoionization cross sections from quasi-continuum oscillator strengths

    CERN Document Server

    Savukov, I M

    2014-01-01

    Many applications are in need of accurate photoionization cross-sections, especially in the case of complex atoms. Configuration-interaction relativistic many-body perturbation theory (CI-RMBPT) that has been successful in predicting atomic energies, matrix elements between discrete states, and other properties is quite promising, but it has not been applied to photo-ionization problems owing to extra complications arising from continuum states. In this paper a method that will allow the conversion of discrete CI-(R)MPBT oscillator strengths (OS) to photo-ionization cross sections with minimal modifications of the codes is introduced and CI-RMBPT cross sections of Ne, Ar, Kr, Xe are calculated. A consistent agreement with experiment is found. RMBPT corrections are particularly significant for Ar, Kr, and Xe and improve agreement with experiment compared to the particle-hole CI method. The demonstrated conversion method can be applied to CI-RMBPT photo-ionization calculations for a large number of multi-valenc...

  11. Atmospheric pressure photoionization for enhanced compatibility in on-line micellar electrokinetic chromatography-mass spectrometry

    NARCIS (Netherlands)

    Mol, Roelof; De Jong, Gerhardus J.; Somsen, Govert W.

    2005-01-01

    Atmospheric pressure photoionization (APPI) is presented as a novel means for the combination of micellar electrokinetic chromatography (MEKC) and mass spectrometry (MS). The on-line coupling is achieved using an adapted sheath flow interface installed on an orthogonal APPI source. Acetone or

  12. Photoionization research on atomic radiation. 3: The ionization cross section of atomic nitrogen

    Science.gov (United States)

    Comes, F. J.; Elzer, A.

    1982-01-01

    The photoionization cross section of atomic nitrogen was measured between the ionization limit and 432 A. The experimental values are well fitted by those from a calculation of HENRY due to the dipole velocity approximation. A Rydberg series converging to the 5S-state of the ion is clearly identified from the ionization measurements and is shown to ionize.

  13. Beam-surface scattering studies of the individual and combined effects of VUV radiation and hyperthermal O, O2, or Ar on FEP Teflon surfaces.

    Science.gov (United States)

    Brunsvold, Amy L; Zhang, Jianming; Upadhyaya, Hari P; Minton, Timothy K

    2009-01-01

    Beam-surface scattering experiments were used to probe products that scattered from FEP Teflon surfaces during bombardment by various combinations of atomic and molecular oxygen, Ar atoms, and vacuum ultraviolet (VUV) light. A laser-breakdown source was used to create hyperthermal (translational energies in the range 4-13 eV) beams of argon and atomic/molecular oxygen. The average incidence energy of these beams was tunable and was controlled precisely with a synchronized chopper wheel. A filtered deuterium lamp provided a source of VUV light in a narrow-wavelength range centered at 161 nm. Volatile products that exited the surfaces were monitored with a rotatable mass spectrometer detector. Hyperthermal O atoms with average translational energies above approximately 4 eV may react directly with a pristine FEP Teflon surface, and the reactivity appears to increase with the translational energy of the incident O atoms. VUV light or highly energetic collisions of O2 or Ar may break chemical bonds and lead to the ejection of volatile products; the ejection of volatile products is enhanced when the surface is subjected to VUV light and energetic collisions simultaneously. Exposure to VUV light or to hyperthermal O2 or Ar may increase the reactivity of an FEP Teflon surface to O atoms.

  14. Near-threshold photoionization of hydrogenlike uranium studied in ion-atom collisions via the time-reversed process.

    Science.gov (United States)

    Stöhlker, T; Ma, X; Ludziejewski, T; Beyer, H F; Bosch, F; Brinzanescu, O; Dunford, R W; Eichler, J; Hagmann, S; Ichihara, A; Kozhuharov, C; Krämer, A; Liesen, D; Mokler, P H; Stachura, Z; Swiat, P; Warczak, A

    2001-02-05

    Radiative electron capture, the time-reversed photoionization process occurring in ion-atom collisions, provides presently the only access to photoionization studies for very highly charged ions. By applying the deceleration mode of the ESR storage ring, we studied this process in low-energy collisions of bare uranium ions with low- Z target atoms. This technique allows us to extend the current information about photoionization to much lower energies than those accessible for neutral heavy elements in the direct reaction channel. The results prove that for high- Z systems, higher-order multipole contributions and magnetic corrections persist even at energies close to the threshold.

  15. Separation of VUV/UV photons and reactive particles in the effluent of a He/O2 atmospheric pressure plasma jet

    CERN Document Server

    Schneider, S; Narberhaus, F; Bandow, J E; Denis, B; Benedikt, J

    2011-01-01

    Cold atmospheric pressure plasmas can be used for treatment of living tissues or for inactivation of bacteria or biological macromolecules. The treatment is usually characterized by a combined effect of UV and VUV radiation, reactive species, and ions. This combination is usually beneficial for the effectiveness of the treatment but it makes the study of fundamental interaction mechanisms very difficult. Here we report on an effective separation of VUV/UV photons and heavy reactive species in the effluent of a micro scale atmospheric pressure plasma jet ($\\mu$-APPJ). The separation is realized by an additional flow of helium gas under well-defined flow conditions, which deflects heavy particles in the effluent without affecting the VUV and UV photons. Both components of the effluent, the photons and the reactive species, can be used separately or in combination for sample treatment. The results of treatment of a model plasma polymer film and vegetative Bacillus subtilis and Escherichia coli cells are shown an...

  16. Precision VUV Spectro-Polarimetry for Solar Chromospheric Magnetic Field Measurements

    Science.gov (United States)

    Ishikawa, R.; Bando, T.; Hara, H.; Ishikawa, S.; Kano, R.; Kubo, M.; Katsukawa, Y.; Kobiki, T.; Narukage, N.; Suematsu, Y.; Tsuneta, S.; Aoki, K.; Miyagawa, K.; Ichimoto, K.; Kobayashi, K.; Auchère, F.; Clasp Team

    2014-10-01

    The Chromospheric Lyman-Alpha Spectro-Polarimeter (CLASP) is a VUV spectro-polarimeter optimized for measuring the linear polarization of the Lyman-α line (121.6 nm) to be launched in 2015 with NASA's sounding rocket (Ishikawa et al. 2011; Narukage et al. 2011; Kano et al. 2012; Kobayashi et al. 2012). With this experiment, we aim to (1) observe the scattering polarization in the Lyman-α line, (2) detect the Hanle effect, and (3) assess the magnetic fields in the upper chromosphere and transition region for the first time. The polarization measurement error consists of scale error δ a (error in amplitude of linear polarization), azimuth error Δφ (error in the direction of linear polarization), and spurious polarization ɛ (false linear polarization signals). The error ɛ should be suppressed below 0.1% in the Lyman-α core (121.567 nm ±0.02 nm), and 0.5% in the Lyman-α wing (121.567 nm ±0.05 nm), based on our scientific requirements shown in Table 2 of Kubo et al. (2014). From scientific justification, we adopt Δ φzero at the Sun center due to symmetric geometry. In order to clarify whether we will be able to achieve the required polarization sensitivity and accuracy via these steps, we exercise polarization error budget, by investigating all the possible causes and their magnitudes of polarization errors, all of which are not necessarily verified by the polarization calibration. Based on these error budgets, we conclude that a polarization sensitivity of 0.1% in the line core, δ abudgets throughout the course of these tests.

  17. Generation of multiple VUV dispersive waves using a tapered gas-filled hollow-core anti-resonant fiber

    DEFF Research Database (Denmark)

    Habib, Md Selim; Markos, Christos; Bang, Ole

    2017-01-01

    Hollow-core anti-resonant (HC-AR) fibers are perhaps the best platform for ultrafast nonlinear optics based on light-gas interactions because they offer broadband guidance and low-loss guidance. The main advantage of using gases inside HC fibers is that both the dispersion and nonlinearity can...... the nonlinear process to further blue-shift the generated DWs towards vacuum ultra-violet (VUV), here we numerically demonstrate for the first time (to the best of our knowledge) how the use of a tapered Ar-filled HC-AR fiber leads to multiple DWs in the extreme wavelength region from 143 to 280 nm....

  18. Measuring the temporal coherence of a high harmonic generation setup employing a Fourier transform spectrometer for the VUV/XUV

    Energy Technology Data Exchange (ETDEWEB)

    Terschlüsen, J.A., E-mail: Joachim.Terschluesen@physics.uu.se; Agåker, M.; Svanqvist, M.; Plogmaker, S.; Nordgren, J.; Rubensson, J.-E.; Siegbahn, H.; Söderström, J.

    2014-12-21

    In this experiment we used an 800 nm laser to generate high-order harmonics in a gas cell filled with Argon. Of those photons, a harmonic with 42 eV was selected by using a time-preserving grating monochromator. Employing a modified Mach–Zehnder type Fourier transform spectrometer for the VUV/XUV it was possible to measure the temporal coherence of the selected photons to about 6 fs. We demonstrated that not only could this kind of measurement be performed with a Fourier transform spectrometer, but also with some spatial resolution without modifying the XUV source or the spectrometer.

  19. Measurement of Odor-Plume Structure in a Wind Tunnel Using a Photoionization Detector and a Tracer Gas

    National Research Council Canada - National Science Library

    Justus, Kristine

    2002-01-01

    The patterns of stimulus available to moths flying along pheromone plumes in a 3-m-long wind tunnel were characterized using a high frequency photoionization detector in conjunction with an inert tracer gas...

  20. Development of a high-speed vacuum ultraviolet (VUV) imaging system for the Experimental Advanced Superconducting Tokamak

    Science.gov (United States)

    Zhou, Fan; Ming, Tingfeng; Wang, Yumin; Wang, Zhijun; Long, Feifei; Zhuang, Qing; Li, Guoqiang; Liang, Yunfeng; Gao, Xiang

    2017-07-01

    A high-speed vacuum ultraviolet (VUV) imaging system for edge plasma studies is being developed on the Experimental Advanced Superconducting Tokamak (EAST). Its key optics is composed of an inverse type of Schwarzschild telescope made of a set of Mo/Si multilayer mirrors, a micro-channel plate (MCP) equipped with a P47 phosphor screen and a high-speed camera with CMOS sensors. In order to remove the contribution from low-energy photons, a Zr filter is installed in front of the MCP detector. With this optics, VUV photons with a wavelength of 13.5 nm, which mainly come from the line emission from intrinsic carbon (C vi: n = 4-2 transition) or the Ly-α line emission from injected Li iii on the EAST, can be selectively measured two-dimensionally with both high temporal and spatial resolutions. At present, this system is installed to view the plasma from the low field side in a horizontal port in the EAST. It has been operated routinely during the 2016 EAST experiment campaign, and the first result is shown in this work. To roughly evaluate the system performance, synthetic images are created. And it indicates that this system mainly measures the edge localized emissions by comparing the synthetic images and experimental data.

  1. Run-away electron preionized diffuse discharge as a source of efficient laser emission in the IR, UV, VUV

    Science.gov (United States)

    Panchenko, A. N.; Panchenko, N. A.; Tarasenko, V. F.

    2017-05-01

    REP DD was suggested as an excitation source of various gas lasers. The efficient lasing was obtained in the IR, UV, and VUV spectral ranges. The ultimate intrinsic efficiency of non-chain chemical lasers on HF(DF) molecules was achieved. REP DD pumped N2 laser with an ultimate electrical efficiency of 0.2% was developed. Lasing on N2 molecules with 2 or 3 peaks in successive REP DD current oscillations was obtained for the first time. The laser action on F2* at 157 nm and rare gas fluorides (KrF*, XeF*) under REP DD pumping was obtained for the first time, as well. It has been shown that the volume stage of REP DD in mixtures with fluorine can last over 50 ns during several current half-cycles. Therewith, the efficiency and the pulse duration of lasers on rare gas fluorides and VUV F2* laser parameters under REP DD excitation are comparable with those obtained in suitable transverse discharges. The results allow the conclusion that the REP DD homogeneity in mixtures with F2 and SF6 is high enough for attaining high laser efficiency.

  2. Photophysical and photochemical effects of UV and VUV photo-oxidation and photolysis on PET and PEN

    Science.gov (United States)

    Morgan, Andrew

    Polyethylene Terephthalate (PET) is a widely used polymer in the bottling, packaging, and clothing industry. In recent years an increasing global demand for PET has taken place due to the Solar Disinfection (SODIS) process. SODIS is a method of sterilizing fresh water into drinkable water. The PET bottles are used in the process to contain the water during solar irradiation due to its highly transparent optical property. Alongside PET, polyethylene 2,6-napthalate (PEN) is used in bottling and flexible electronic applications. The surface of PEN would need to be modified to control the hydrophilicity and the interaction it exudes as a substrate. The UV light absorption properties of PET and PEN are of great importance for many applications, and thus needs to be studied along with its photochemical resistance. The optical and chemical nature of PET was studied as it was treated by UV photo-oxidation, photo-ozonation, and photolysis under atmospheric pressure. Another investigation was also used to study PEN and PET as they are treated by vacuum UV (VUV) photo-oxidation, VUV photolysis, and remote oxygen reactions. The extent of the photoreactions' effect into the depth of the polymers is examined as treatment conditions are changed. The different experimental methods established the rate of several competing photoreactions on PET and PEN during irradiance, and their effect on the optical quality of the polymers.

  3. Photochemical defluorination of aqueous perfluorooctanoic acid (PFOA) by Fe(0)/GAC micro-electrolysis and VUV-Fenton photolysis.

    Science.gov (United States)

    Zhang, Li-Hong; Cheng, Jian-Hua; You, Xia; Liang, Xiao-Yan; Hu, Yong-You

    2016-07-01

    Perfluorooctanoic acid (PFOA) is extremely persistent and bioaccumulative in the environment; thus, it is very urgent to investigate an effective and moderate technology to treat the pollution of PFOA. In this study, a process combined iron and granular activated carbon (Fe(0)/GAC) micro-electrolysis with VUV-Fenton system is employed for the remediation of PFOA. Approximately 50 % PFOA (10 mg L(-1)) could be efficiently defluorinated under the following conditions: pH 3.0, dosage of Fe 7.5 g L(-1), dosage of GAC 12.5 g L(-1), and concentration of H2O2 22.8 mmol L(-1). Meanwhile, during the process, evident defluorination was observed and the concentration of fluoride ion was eventually 3.23 mg L(-1). The intermediates including five shorter-chain perfluorinated carboxylic acids (PFCAs), i.e., C7, C6, C5, C4, and C3, were also analyzed by high-performance liquid chromatography tandem mass spectrometry (HPLC/MS/MS) and defluorination mechanisms of PFOA was proposed, which involved photochemical of OH·, direct photolysis (185-nm VUV), and photocatalytic degradation of PFOA in the presence of Fe(3+) (254-nm UV).

  4. Investigating the Fundamentals of Molecular Depth Profiling Using Strong-field Photoionization of Sputtered Neutrals.

    Science.gov (United States)

    Willingham, D; Brenes, D A; Winograd, N; Wucher, A

    2011-01-01

    Molecular depth profiles of model organic thin films were performed using a 40 keV C 60 + cluster ion source in concert with TOF-SIMS. Strong-field photoionization of intact neutral molecules sputtered by 40 keV C 60 + primary ions was used to analyze changes in the chemical environment of the guanine thin films as a function of ion fluence. Direct comparison of the secondary ion and neutral components of the molecular depth profiles yields valuable information about chemical damage accumulation as well as changes in the molecular ionization probability. An analytical protocol based on the erosion dynamics model is developed and evaluated using guanine and trehalose molecular secondary ion signals with and without comparable laser photoionization data.

  5. A virtual observatory for photoionized nebulae: the Mexican Million Models database (3MdB).

    Science.gov (United States)

    Morisset, C.; Delgado-Inglada, G.; Flores-Fajardo, N.

    2015-04-01

    Photoionization models obtained with numerical codes are widely used to study the physics of the interstellar medium (planetary nebulae, HII regions, etc). Grids of models are performed to understand the effects of the different parameters used to describe the regions on the observables (mainly emission line intensities). Most of the time, only a small part of the computed results of such grids are published, and they are sometimes hard to obtain in a user-friendly format. We present here the Mexican Million Models dataBase (3MdB), an effort to resolve both of these issues in the form of a database of photoionization models, easily accessible through the MySQL protocol, and containing a lot of useful outputs from the models, such as the intensities of 178 emission lines, the ionic fractions of all the ions, etc. Some examples of the use of the 3MdB are also presented.

  6. Photoionization cross section measurements of the excited states of cobalt in the near-threshold region

    Directory of Open Access Journals (Sweden)

    Xianfeng Zheng

    2014-10-01

    Full Text Available We present measurements of photoionization cross-sections of the excited states of cobalt using a two-color, two-step resonance ionization technique in conjunction with a molecular beam time of flight (TOF mass spectrometer. The atoms were produced by the laser vaporization of a cobalt rod, coupled with a supersonic gas jet. The absolute photoionization cross-sections at threshold and near-threshold regions (0-1.2 eV were measured, and the measured values ranged from 4.2±0.7 Mb to 10.5±1.8 Mb. The lifetimes of four odd parity energy levels are reported for the first time.

  7. Hartree-Fock calculation of the differential photoionization cross sections of small Li clusters.

    Science.gov (United States)

    Galitskiy, S A; Artemyev, A N; Jänkälä, K; Lagutin, B M; Demekhin, Ph V

    2015-01-21

    Cross sections and angular distribution parameters for the single-photon ionization of all electron orbitals of Li2-8 are systematically computed in a broad interval of the photoelectron kinetic energies for the energetically most stable geometry of each cluster. Calculations of the partial photoelectron continuum waves in clusters are carried out by the single center method within the Hartree-Fock approximation. We study photoionization cross sections per one electron and analyze in some details general trends in the photoionization of inner and outer shells with respect to the size and geometry of a cluster. The present differential cross sections computed for Li2 are in a good agreement with the available theoretical data, whereas those computed for Li3-8 clusters can be considered as theoretical predictions.

  8. Photoionization cross section in a spherical quantum dot: Effects of some parabolic confining electric potentials

    Directory of Open Access Journals (Sweden)

    M. Tshipa

    2017-12-01

    Full Text Available A theoretical investigation of the effects of spatial variation of confining electric potential on photoionization cross section (PCS in a spherical quantum dot is presented. The potential profiles considered here are the shifted parabolic potential and the inverse lateral shifted parabolic potential compared with the well-studied parabolic potential. The primary findings are that parabolic potential and the inverse lateral shifted parabolic potential blue shift the peaks of the PCS while the shifted parabolic potential causes a red shift.

  9. Studies of photoionization processes from ground-state and excited-state atoms and molecules

    Energy Technology Data Exchange (ETDEWEB)

    Ederer, D.L.; Parr, A.C.; West, J.B.

    1982-01-01

    Recent triply-differential photoelectron spectroscopy experiments designed for the study of correlation effects in atoms and molecules are described. Final-state symmetry of the n=2 state of helium has been determined. The non-Franck-Condon behavior of vibrational branching ratios and large variations of the angular asymmetry parameter has been observed for shape resonances and autoionizing resonances in CO and other molecules. Recent observations of the photoionization of excited sodium atoms are also described.

  10. Sturmian approach to the study of photoionization of atoms and molecules

    Science.gov (United States)

    Granados Castro, Carlos Mario; Ancarani, Lorenzo Ugo; Gasaneo, Gustavo; Mitnik, Dario M.

    2013-09-01

    In this presentation we study the photoionization of atoms and molecules using ultrashort laser pulses, solving the time-independent Schrödinger equation (TISE) in a first order perturbation theory. The interaction laser-matter is described with the dipolar operator in the velocity gauge. Generalized Sturmian functions are used to solve the driven equation for a scattering wave function which includes all the information about the ionization problem. For the atomic case, we study the photoionization of He atom using the Hermann-Skillman potential together with the one-active electron approximation. For molecular systems (CH4 in this work), we use first a spherically symmetric potential Ui(r), and then a more realistic potential that includes all the nuclei and other electrons interaction, as in. For each molecular orbital we use Moccia's wave functions, solve the TISE with an initial molecular orbital i of the ground state and extract the corresponding photoionization cross sections. For both atomic and molecular systems we compare our results with previous calculations and available experimental data.

  11. Study of photoionization of supersonic gas jets at the pulsed power generator

    Science.gov (United States)

    Swanson, Kyle; Ivanov, Vladimir; Mancini, Roberto; Mayes, Daniel

    2017-10-01

    Supersonic, nitrogen, neon and argon, gas jets photoionized by a broadband x-ray flux were studied at the University of Nevada, Reno. The x-ray flux was produced by the collapse of a wire-array z-pinch implosion on the 1MA Zebra pulsed power accelerator, with photons mostly under 1keV and photon-energy integrated energy between 12kJ -16kJ. A Mach-Zehnder interferometer at 266 nm was set up to extract the atom number density profile of the jet before the Zebra shot. Air-wedge interferometers, at 266 and 532 nm, were used to determine the electron number density of the plasma during the Zebra shot. The ratio of electron to atom number densities provide the average ionization state of the plasma. A program has been developed to automate the extraction of phase shift maps from both types of interferometers. Preliminary results from the experiment are promising and show that a photoionized plasma has been created in the gas jet, thus demonstrating a new experimental platform to study photoionized plasmas in the laboratory. This work was sponsored by DOE Office of Science Grant DE-SC0014451.

  12. Photoionization of 3d electrons of Xe, Cs and Ba endohedral atoms: comparative analyses

    Science.gov (United States)

    Amusia, Miron; Baltenkov, Arkadiy; Chernysheva, Larissa

    2008-03-01

    We demonstrate rather interesting manifestations of co-existence of resonance features in characteristics of the photoionization of 3d-electrons in Xe, Cs and Ba endohedral atoms. It is shown that for all of the considered atoms the reflection by the fullerene shell of photoelectrons produced by the 3d subshell photoionization affects greatly partial photoionization cross-sections of 3d 5/2 and 3d 3/2 levels and respective angular anisotropy parameters, both dipole and non-dipole adding to all of them additional maximums and minimums. The results obtained demonstrate distinctive differences between the three atoms. The calculations are performed treating the 3/2 and 5/2 electrons as electrons of different kinds with their spins "up" and "down". The effect of the C60 shell is accounted for in the frame of the "orange" skin potential model. It is essential that in the considered photon frequency region the presented resonance features are not affected by the C60polarization.

  13. Photoionization of positive and negative ions stuffed inside C60 fullerene

    Science.gov (United States)

    Amusia, Miron Ya.; Chernysheva, Larissa V.

    2009-05-01

    We performed calculations of photoionization cross-section and other parameters characterizing this process for endohedrals consisting of C60 and located at the center inside noble gas atom and adjacent positive and negative ions. We have considered outer p- and s- subshells for the groups (F^-, Ne, Na^+), (Cl^-, Ar, K^+) and outer p- , s- and d- subshells for the groups (Br^-, Kr, Rb^+) and (I^-, Xe, Cs^+). The possibility that the outer electron from the negative ion goes to the fullerenes shell was neglected. The fullerenes shell was described by the zero-thickness ``orange-type'' potential that was taken into account non-perturbatively, in the RPAE frame. In all considered cases, as it should be, the inclusion of the fullerenes shell transformed the smooth atomic photoionization cross-section (and other photoionization parameters) curves into strongly oscillating curves. There appeared a systematic difference between negative ions on the one hand and neutral atoms and particularly positive ions on the other. Namely, the negative ions presented much richer near threshold structure than their isoelectronic neighbors.

  14. Comparison of the disinfection effects of vacuum-UV (VUV) and UV light on Bacillus subtilis spores in aqueous suspensions at 172, 222 and 254 nm.

    Science.gov (United States)

    Wang, Ding; Oppenländer, Thomas; El-Din, Mohamed Gamal; Bolton, James R

    2010-01-01

    The efficacy of UV and vacuum-UV (VUV) disinfection of Bacillus subtilis spores in aqueous suspensions at wavelengths of 172, 222 and 254 nm was evaluated. A Xe(2)* excilamp, a KrCl* excilamp and a low-pressure mercury lamp were used as almost monochromatic light sources at these three wavelengths. The first-order inactivation rate constants at 172, 222 and 254 nm were 0.0023, 0.122 and 0.069 cm(2) mJ(-1), respectively. Therefore, a 2 log reduction of B. subtilis spores was reached with fluences (UV doses) of 870, 21.6 and 40.4 mJ cm(-2) at these individual wavelengths. Consequently, for the inactivation of B. subtilis spores, VUV exposure at 172 nm is much less efficient than exposure at the other two wavelengths, while exposure at 222 nm is more efficient than that at 254 nm, which is probably because triplet energy transfer from DPA to thymine bases at 222 nm is higher than that at 254 nm. This research indicated quantitatively that VUV light is not practicable for microorganism disinfection in water and wastewater treatment. However, in comparison with other advanced oxidation processes (e.g. UV/TiO(2), UV/H(2)O(2) or O(3)/H(2)O(2)) the VUV-initiated photolysis of water is likely more efficient in generating hydroxyl radicals and more effective for the inactivation of microorganisms.

  15. Coherent Spectroscopy of Ultra-Cold Mercury for the UV to VUV

    Science.gov (United States)

    2015-11-20

    frequency  doubled  in  a  single  pass  using  periodically-­‐poled  lithium  niobate  ( PPLN ).   This  provides  a  reliable...lithium niobate ( PPLN ). This provides a reliable, nearly turn-key source of green light. A resonant doubling cavity is then used to generate >10mW of

  16. Synthetic oligomer analysis using atmospheric pressure photoionization mass spectrometry at different photon energies

    Energy Technology Data Exchange (ETDEWEB)

    Desmazières, Bernard [Global Bioenergies, 5 rue Henri Desbruyeres, 91030 Evry (France); Legros, Véronique [CNRS, UMR8587, Université d’Evry-Val-d’Essonne, Laboratoire Analyse et Modélisation pour la Biologie et l’Environnement, F-91025 Evry (France); Giuliani, Alexandre [Synchrotron SOLEIL, L’Orme des Merisiers, Saint-Aubin, 91192 Gif-sur-Yvette (France); UAR1008, CEPIA, INRA, Rue de la Geraudiere, F-44316 Nantes (France); Buchmann, William, E-mail: william.buchmann@univ-evry.fr [CNRS, UMR8587, Université d’Evry-Val-d’Essonne, Laboratoire Analyse et Modélisation pour la Biologie et l’Environnement, F-91025 Evry (France)

    2014-01-15

    Graphical abstract: Atmospheric pressure photoIonization mass spectra of synthetic oligomers were recorded in the negative mode by varying the photon energy using synchrotron radiation. Photon energy required for an efficient ionization of the polymer was correlated to ionization potential of the solvent (for example 9.4 eV for tetrahydrofuran). -- Highlights: •Atmospheric pressure photoionization was performed using synchrotron radiation. •Photoionization of oligomers in THF with 10% CH{sub 2}Cl{sub 2} produces intact [M + Cl]{sup −} ions. •The photon energy required corresponds to ionization potential of the solvent. •Polymer distributions depend on source parameters such T °C and applied voltages. •Liquid chromatography was coupled to MS using an APPI interface for polymer analysis. -- Abstract: Atmospheric pressure photoionization (APPI) followed by mass spectrometric detection was used to ionize a variety of polymers: polyethylene glycol, polymethyl methacrylate, polystyrene, and polysiloxane. In most cases, whatever the polymer or the solvent used (dichloromethane, tetrahydrofuran, hexane, acetone or toluene), only negative ion mode produced intact ions such as chlorinated adducts, with no or few fragmentations, in contrast to the positive ion mode that frequently led to important in-source fragmentations. In addition, it was shown that optimal detection of polymer distributions require a fine tuning of other source parameters such as temperature and ion transfer voltage. Series of mass spectra were recorded in the negative mode, in various solvents (dichloromethane, tetrahydrofuran, hexane, toluene, and acetone), by varying the photon energy from 8 eV up to 10.6 eV using synchrotron radiation. To these solvents, addition of a classical APPI dopant (toluene or acetone) was not necessary. Courtesy of the synchrotron radiation, it was demonstrated that the photon energy required for an efficient ionization of the polymer was correlated to the

  17. Film of lignocellulosic carbon material for self-supporting electrodes in electric double-layer capacitors

    Directory of Open Access Journals (Sweden)

    Tsubasa Funabashi

    2013-09-01

    Full Text Available A novel thin, wood-based carbon material with heterogeneous pores, film of lignocellulosic carbon material (FLCM, was successfully fabricated by carbonizing softwood samples of Picea jezoensis (Jezo spruce. Simultaneous increase in the specific surface area of FLCM and its affinity for electrolyte solvents in an electric double-layer capacitor (EDLC were achieved by the vacuum ultraviolet/ozone (VUV/O3 treatment. This treatment increased the specific surface area of FLCM by 50% over that of original FLCM. The results obtained in this study confirmed that FLCM is an appropriate self-supporting EDLC electrode material without any warps and cracks.

  18. VUV-absorption cross section of carbon dioxide from 150 to 800 K and applications to warm exoplanetary atmospheres

    Science.gov (United States)

    Venot, O.; Bénilan, Y.; Fray, N.; Gazeau, M.-C.; Lefèvre, F.; Es-sebbar, Et.; Hébrard, E.; Schwell, M.; Bahrini, C.; Montmessin, F.; Lefèvre, M.; Waldmann, I. P.

    2018-01-01

    Context. Most exoplanets detected so far have atmospheric temperatures significantly higher than 300 K. Often close to their star, they receive an intense UV photons flux that triggers important photodissociation processes. The temperature dependency of vacuum ultraviolet (VUV) absorption cross sections are poorly known, leading to an undefined uncertainty in atmospheric models. Similarly, data measured at low temperatures similar to those of the high atmosphere of Mars, Venus, and Titan are often lacking. Aims: Our aim is to quantify the temperature dependency of the VUV absorption cross sections of important molecules in planetary atmospheres. We want to provide high-resolution data at temperatures prevailing in these media, and a simple parameterisation of the absorption in order to simplify its use in photochemical models. This study focuses on carbon dioxide (CO2). Methods: We performed experimental measurements of CO2 absorption cross sections with synchrotron radiation for the wavelength range (115-200 nm). For longer wavelengths (195-230 nm), we used a deuterium lamp and a 1.5 m Jobin-Yvon spectrometer. We used these data in our one-dimensional (1D) thermo-photochemical model in order to study their impact on the predicted atmospheric compositions. Results: The VUV absorption cross section of CO2 increases with the temperature. The absorption we measured at 150 K seems to be close to the absorption of CO2 in the fundamental ground state. The absorption cross section can be separated into two parts: a continuum and a fine structure superimposed on the continuum. The variation in the continuum of absorption can be represented by the sum of three Gaussian functions. Using data at high temperature in thermo-photochemical models significantly modifies the abundance and the photodissociation rates of many species in addition to CO2, such as methane and ammonia. These deviations have an impact on synthetic transmission spectra, leading to variations of up to 5 ppm

  19. A photoionization mass spectrometric and threshold photoelectron-photoion coincidence study of vinylbromide (C{sub 2}H{sub 3}Br) in the vacuum ultraviolet range of 6-21 eV

    Energy Technology Data Exchange (ETDEWEB)

    Hoxha, A.; Yu, S.-Y. [Laboratoire de Dynamique Moleculaire, Departement de Chimie, Institut de Chimie Bat.B6c, Universite de Liege, Sart-Tilman par B-4000 Liege 1 (Belgium); Locht, R., E-mail: Robert.Locht@ulg.ac.be [Laboratoire de Dynamique Moleculaire, Departement de Chimie, Institut de Chimie Bat.B6c, Universite de Liege, Sart-Tilman par B-4000 Liege 1 (Belgium); Jochims, H.-W. [Institut fuer Physikalische und Theoretische Chemie, Freie Universitaet Berlin, Takustrasse 3, D-14195 Berlin (Germany); Leyh, B., E-mail: Bernard.Leyh@ulg.ac.be [Laboratoire de Dynamique Moleculaire, Departement de Chimie, Institut de Chimie Bat.B6c, Universite de Liege, Sart-Tilman par B-4000 Liege 1 (Belgium)

    2011-01-24

    Graphical abstract: Fragmentation dynamics of photoionized C{sub 2}H{sub 3}Br is investigated. Dissociative photoionization mass spectrometry and TPEPICO data are combined. Thresholds and breakdown diagram are measured and discussed for all detected ions. The role of electronic excitation and isomerization is analyzed. Research highlights: {yields} Fragmentation dynamics of photoionized C{sub 2}H{sub 3}Br is investigated. {yields} Dissociative photoionization mass spectrometry and TPEPICO data are combined. {yields} Thresholds and breakdown diagram are measured and discussed for all detected ions. {yields} The role of electronic excitation and isomerization is analyzed. - Abstract: The dissociative photoionization of vinyl bromide (C{sub 2}H{sub 3}Br) has been investigated by photoionization mass spectrometry (PIMS) and time-of-flight threshold photoelectron-photoion coincidence (TOF-TPEPICO) spectrometry using synchrotron radiation. The photoionization efficiency curves of the three most abundant ions, i.e. C{sub 2}H{sub 3}Br{sup +}, C{sub 2}H{sub 3}{sup +} and C{sub 2}H{sub 2}{sup +}, are measured and analyzed in detail. A C{sub 2}H{sub 3}{sup +}/Br{sup -} photoion-pair formation process has been detected for the first time. Some arguments are provided in favor of the electronic excitation of the C{sub 2}H{sub 3}{sup +} fragment and of the isomerization of the C{sub 2}H{sub 2}{sup +} ions. The breakdown diagram for these ions in the 9.8-21 eV photon energy range, derived from TOF-TPEPICO mass spectra, is discussed. The involvement of the successive C{sub 2}H{sub 3}Br{sup +} ionic states and the role of autoionization of C{sub 2}H{sub 3}Br Rydberg states are emphasized. For the two minor HBr{sup +} and Br{sup +} fragment ions only the breakdown diagrams are measured and appearance energies are derived.

  20. V.U.V. plasma spectroscopy diagnostic of electron cyclotron resonance multicharged ion sources; Diagnostic de plasmas crees dans des sources d'ions multicharges a resonance cyclotronique electronique par spectroscopie V.U.V

    Energy Technology Data Exchange (ETDEWEB)

    Berreby, R

    1997-12-15

    To characterize the multicharged ions within the plasma of an E.C.R. ion source, the V.U.V. spectroscopy is used as a non invasive diagnostic of excited matter. In E.C.R.I. S. (electron cyclotron resonance ion source) electrons are heated and magnetically confined within the mirror machine to overcome the successive ionization potentials of the desired elements. As the electrons bounce inside the magnetic configuration in their gyration movement, they interact with the microwaves injected into the source at the resonance frequency. To enhance the performances in high charge states and extracted currents delivered by E.C.R.I.S., the fundamental parameters of the plasma created in these machines must be known. The goal of spectroscopic diagnostics in the V.U.V. range installed on the sources is to determine electron density and temperature on one hand, and the ionic densities and confinement time on the other hand. We used microchannel plates as detector on a 3 meter grazing incidence spectrometer equipped with a 600 lines/mm holographic grating. The calibration of the whole grating with detector was performed by two different methods. These are the branching ratio and charge exchange methods. Identification of lines emitted by a plasma, which gather the whole charge states of ions is necessary to make an exhaustive study of the plasma state. And finally, the determination of plasma parameters like electron density and temperature and ion densities and confinement times that uses theoretical models were the aim of this work. (author)

  1. Operation of the European FEL at ELETTRA Below 190 nm A Tunable Laser Source for VUV Spectroscopy

    CERN Document Server

    De Ninno, G; Curbis, F; Danailov, M B; Diviacco, B; Marsi, M; Trovò, M

    2005-01-01

    Thanks to an intensive technological effort in the framework of the EEC Contract HPRI CT-2001-50025 (EUFELE), the European FEL at ELETTRA was able to break the previous record for the shortest wavelength of an FEL oscillator. Novel solutions were adopted for multilayer mirrors to allow FEL operation in the wavelength region between 160 and 190 nm, which is one of the main targets of the project. The characteristics of the FEL pulses measured at 176 nm (spectral profiles, high intensity, meV bandpass, MHz repetition rate) make it a competitive light source for spectroscopy, in particular for fluorescence studies in the VUV spectral range. Proof of principle experiments have been performed on different types of silica glasses, yielding information on the mechanisms of light absorption in this material.

  2. Application of sampling theory in modeling of continuum processes: photoionization cross-sections of atoms

    CERN Document Server

    Kozlov, Alex; Quiney, Harry

    2016-01-01

    We describe a method for the calculation of photoionization cross-sections using square-integrable amplitudes obtained from the diagonalization of finite-basis set representations of the electronic Hamiltonian. Three examples are considered: a model example in which the final state is a free particle, the hydrogen atom and neutral atomic sodium. The method exploits the Whittaker-Shannon-Kotel'nikov sampling theorem, which is widely used in digital signal sampling and reconstruction. The approach reproduces known data with very good accuracy and converges to the exact solution with increase of the basis set size.

  3. Atomic photoionization in weak and strong two-color radiation fields

    Energy Technology Data Exchange (ETDEWEB)

    Meyer, M; Cubaynes, D [LIXAM/CNRS, UMR8624, Centre Universitaire Paris-Sud, Batiment 350, 91405 Orsay (France); Dardis, J; Hayden, P; Hough, P; Richardson, V; Kennedy, E T; Costello, J T [NCPST and School of Physical Science, Dublin City University, Dublin (Ireland); Duesterer, S; Li, W B; Azima, A; Redlin, H; Feldhaus, J [HASYLAB at DESY, Notkestr. 85, D-22607 Hamburg (Germany); Taieb, R; Maquet, A [UPMC, Universite Paris 6, CNRS, UMR7614, LCPMR, 11 Rue Pierre et Marie Curie, 75231 Paris cedex 05 (France); Strakhova, S I; Gryzlova, E V; Grum-Grzhimailo, A N, E-mail: michael.meyer@u-psud.f [Institute of Nuclear Physics, Moscow State University, Moscow 119991 (Russian Federation)

    2009-11-01

    Two-color photoionization processes in rare gases have been studied using the combination of XUV pulses from the Free Electron Laser in Hamburg (FLASH) and intense femtosecond pulses from an external synchronized near infrared laser. In the low field regime of the NIR dressing laser (<10{sup 11} W/cm{sup 2}), the partial cross sections of the two-photon ionization were determined by measuring the polarization dependence of the Above Threshold Ionization (ATI). In the high field regime (>11{sup 11} W/cm{sup 2}), multi-photon processes are dominant and theoretical descriptions beyond time-dependent second order perturbation formalism have to be applied.

  4. Photoionization instability of the Fe K absorbing plasma in the neutron star transient AX J1745.6-2901

    Science.gov (United States)

    Bianchi, Stefano; Ponti, Gabriele; Muñoz-Darias, Teo; Petrucci, Pierre-Olivier

    2017-12-01

    AX J1745.6-2901 is a Low Mass X-ray Binary with an accreting neutron star, showing clear evidence for highly ionized absorption. Strong ionized Fe K$\\alpha$ and K$\\beta$ absorption lines are always observed during the soft state, whereas they disappear during the hard states. We computed photoionization stability curves for the hard and the soft state, under different assumptions on the adopted spectral energy distributions and the physical parameters of the plasma. We observe that the ionized absorber lies always on a stable branch of the photoionization stability curve during the soft state, while it becomes unstable during the hard state. This suggests that photoionization instability plays a key role in defining the observable properties of the ionized absorber. The same process might explain the disappearance of the high ionization absorber/wind, during the hard state in other accreting neutron stars and black holes.

  5. Photoionization of Co$^{+}$ and electron-impact excitation of Co$^{2+}$ using the Dirac R-matrix method

    CERN Document Server

    Tyndall, N B; Ballance, C P; Hibbert, A

    2016-01-01

    Modelling of massive stars and supernovae (SNe) plays a crucial role in understanding galaxies. From this modelling we can derive fundamental constraints on stellar evolution, mass-loss processes, mixing, and the products of nucleosynthesis. Proper account must be taken of all important processes that populate and depopulate the levels (collisional excitation, de-excitation, ionization, recombination, photoionization, bound-bound processes). For the analysis of Type Ia SNe and core collapse SNe (Types Ib, Ic and II) Fe group elements are particularly important. Unfortunately little data is currently available and most noticeably absent are the photoionization cross-sections for the Fe-peaks which have high abundances in SNe. Important interactions for both photoionization and electron-impact excitation are calculated using the relativistic Dirac Atomic $R$-matrix Codes (DARC) for low ionization stages of cobalt. All results are calculated up to photon energies of 45 eV and electron energies up to 20 eV. The w...

  6. A measurement of the photoionization cross section of CH2Cl via photofragment translational spectroscopy of dichloromethane

    Science.gov (United States)

    Scrape, Preston G.; Xu, Rosalind J.; Adams, Jonathan D.; Lee, Shih-Huang; Butler, Laurie J.

    2017-11-01

    We characterize the 157 nm photodissociation of dichloromethane (CH2Cl2) using photofragment translational spectroscopy, detecting the products with photoionization mass spectrometry. The major photodissociation products are Cl + CH2Cl and HCl + CHCl. Comparing the integrated ion signal at m/e = 35 (Cl+) and m/e = 49 (CH2Cl+) gives the partial photoionization cross section of CH2Cl to parent ion to be σ = 26.6 Mb at 13.7 eV. This value is a quantitative anchor point of the energy-dependent photoionization cross section. In recent work we used this result to quantify the product branching to HCO + CH2Cl in the photodissociation of 2-chloroacetaldehyde.

  7. K-shell Photoionization of Na-like to Cl-like Ions of Mg, Si, S, Ar, and Ca

    Science.gov (United States)

    Witthoeft, M. C.; Garcia, J.; Kallman, T. R.; Bautista, M. A.; Mendoza, C.; Palmeri, P.; Quinet, P.

    2010-01-01

    We present R-matrix calculations of photoabsorption and photoionization cross sections across the K edge of Mg, Si, S, Ar, and Ca ions with more than 10 electrons. The calculations include the effects of radiative and Auger damping by means of an optical potential. The wave functions are constructed from single-electron. orbital bases obtained using a Thomas-Fermi-Dirac statistical model potential. Configuration interaction is considered among all states up to n = 3. The damping processes affect the resonances converging to the K-thresholds causing them to display symmetric profiles of constant width that smear the otherwise sharp edge at the photoionization threshold. These data are important for the modeling of features found in photoionized plasmas.

  8. A photoionization study of the formation of NO2/+/ by reaction of excited O2/+/ ions with NO

    Science.gov (United States)

    Ajello, J. M.; Rayermann, P.

    1977-01-01

    Photoionization mass spectrometer results are presented for the first observation of the ion-molecule reaction in which O2(+) + NO yields NO2(+) + O. The reaction is energetically possible for ground state O2(+) ions in the lowest vibrational level. Photoionization efficiency curves for NO(+), O2(+), and NO2(+) are presented and compared, with special emphasis on autoionization features. In addition to the production of NO2(+) by the cited reaction, there is also a possibility for NO2(+) formation by the process O2 + NO(+) yielding NO2(+) + O. This reaction is calculated to be exothermic for incident photon energies of 11.73 eV.

  9. Inner-shell photoionization and core-hole decay of Xe and XeF$_2$

    CERN Document Server

    Southworth, Stephen H; Picón, Antonio; Lehmann, C Stefan; Cheng, Lan; Stanton, John F

    2015-01-01

    Photoionization cross sections and partial ion yields of Xe and XeF$_2$ from Xe 3d$_{5/2}$, Xe 3d$_{3/2}$, and F 1s subshells in the 660--740 eV range are compared to explore effects of the F ligands. The Xe 3d - $\\epsilon$f continuum shape resonances dominate the photoionization cross sections of both the atom and molecule, but prominent resonances appear in the XeF$_2$ cross section due to nominal excitation of Xe 3d and F 1s electrons to the lowest unoccupied molecular orbital (LUMO), a delocalized anti-bonding MO. The subshell ionization thresholds, the LUMO resonance energies and their oscillator strengths are calculated by relativistic coupled-cluster methods. Several charge states and fragment ions are produced from the atom and molecule due to alternative decay pathways from the inner-shell holes. Total and partial ion yields vary in response to the shape resonances and LUMO resonances. Previous calculations and measurements of atomic Xe 3d core-hole decay channels and our calculated results for XeF$_...

  10. DESIGN OF LABORATORY EXPERIMENTS TO STUDY PHOTOIONIZATION FRONTS DRIVEN BY THERMAL SOURCES

    Energy Technology Data Exchange (ETDEWEB)

    Drake, R. P.; Keiter, P. A.; Davis, J. S.; Patterson, C. R [Climate and Space Science, University of Michigan, Ann Arbor, MI 48109 (United States); Hazak, G. [Physics Department, Nuclear Research Center-Negev (Israel); Frank, A.; Blackman, E. G. [Physics and Astronomy, University of Rochester, Rochester, NY 14611 (United States); Busquet, Michel, E-mail: rpdrake@umich.edu [ARTEP Incorporated, Ellicot City, MD 21042 (United States)

    2016-12-20

    This paper analyzes the requirements of a photoionization-front experiment that could be driven in the laboratory, using thermal sources to produce the necessary flux of ionizing photons. It reports several associated conclusions. Such experiments will need to employ the largest available facilities, capable of delivering many kJ to MJ of energy to an X-ray source. They will use this source to irradiate a volume of neutral gas, likely of N, on a scale of a few mm to a few cm, increasing with source energy. For a gas pressure of several to ten atmospheres at room temperature, and a source temperature near 100 eV, one will be able to drive a photoionization front through a system of tens to hundreds of photon mean free paths. The front should make the familiar transition from the so-called R-Type to D-Type as the radiation flux diminishes with distance. The N is likely to reach the He-like state. Preheating from the energetic photons appears unlikely to become large enough to alter the essential dynamics of the front beyond some layer near the surface. For well-chosen experimental conditions, competing energy transport mechanisms are small.

  11. Molecular Structure and Dynamics Probed by Photoionization Out of Rydberg States

    Science.gov (United States)

    Rudakov, Fedor

    2017-06-01

    Probing the structure of a molecule as a chemical reaction unfolds has been a long standing goal in chemical physics. Most spectroscopic and diffraction techniques work well when the molecules are cold and thus vibrational motion is minimized. Yet, the very ability of a molecule to undergo structural changes implies that a significant amount of energy resides within the molecule. In order to probe structures of even medium sized molecules on an ultrafast time scale a technique that is sensitive to the molecular structure, yet insensitive to the vibrational motion is required. In our research we demonstrated that Rydberg electrons are remarkably sensitive to the molecular structure. Photoionization of a molecule out of Rydberg states reveals a purely electronic spectrum which is largely insensitive to vibrational motion. The talk illustrates how Rydberg electrons can serve as a probe for ultrafast structural dynamics in polyatomic molecules. The talk also demonstrates that photoionization through Rydberg states can be utilized for non-intrusive detection of polyatomic combustion intermediates in flames.

  12. A photoionization method for estimating BLR “size” in quasars

    Science.gov (United States)

    Negrete, C. Alenka; Dultzin, Deborah; Marziani, Paola; Sulentic, Jack W.

    2014-10-01

    We describe an alternate way to estimate Broad Line Region (BLR) radii for type-1 AGN based on determination of physical conditions in the BLR under the assumption that the line emitting gas is photoionized by a central continuum source. We derive “diagnostic” intensity ratios involving UV lines AlIIIλ1860, SiIII]λ1892 and CIVλ1549 which enable us to compute the ionizing photon flux, and hence BLR radius from the ionization parameter definition. We compare our estimates of BLR radii with values independently obtained from reverberation monitoring of Hβ and, in a few cases, of C IVλ1549. We analyze the interpretation of the photoionization estimates in the 4D eigenvector 1 context, and discuss in some detail the case of 3C 390.3. For this object we are able to provide not only the ionizing photon flux, but also an estimate of density and ionization parameter from the measured diagnostic ratios. We also compare black hole masses obtained from this method with values derived from widely-applied correlations between mass, line broadening and luminosity. Good agreement is found for both radius and black hole mass comparisons.

  13. Valence-shell single photoionization of Chlorine-like K$^{2+}$ ions: Experiment and Theory

    CERN Document Server

    Alna'Washi, G A; Habibi, M; Esteves-Macaluso, D; Wang, J C; Phaneuf, R A; Kilcoyne, A L D; Cisneros, C; McLaughlin, B M

    2014-01-01

    The absolute single photoionization cross-section was measured for Cl-like K$^{2+}$ over the photon energy range from 44.2 - 69.7 eV at a constant energy resolution of 0.045 eV. The experiments were performed by merging an ion beam with a beam of synchrotron radiation from an undulator. The ground-state ionization threshold was measured at 0.004 eV energy resolution to be 45.717 $\\pm$ 0.030 eV. The measurements are rich in resonance structure due to multiple Rydberg series of transitions to autoionizing states. These series are assigned spectroscopically using the quantum defect method, guided by pseudo-relativistic Hartree-Fock calculations for the energies and oscillator strengths of transitions to autoionizing states. The experimental results, which include significant contributions from K$^{2+}$ ions initially in metastable states, are in satisfactory agreement with a linear superposition of semi-relativistic R-matrix calculations of photoionization cross sections from these initial states.

  14. ACTIVE MEDIA: BaY2F8 single crystals doped with rare-earth ions as promising up-conversion media for UV and VUV lasers

    Science.gov (United States)

    Pushkar', A. A.; Uvarova, T. V.; Molchanov, V. N.

    2008-04-01

    BaY2F8 crystals are studied as promising active media for UV and VUV lasers. The up-conversion pumping of rare-earth activators is proposed to solve problems related to the solarisation of the medium and the selection of pump sources. The technology of growing oriented BaY2F8 single crystals is developed and the influence of the crystal orientation on the growth rate and quality of single crystals is determined.

  15. Characterization of Damage to Bacteria and Bio-macromolecules Caused by (V)UV Radiation and Particles Generated by a Microscale Atmospheric Pressure Plasma Jet

    Science.gov (United States)

    Lackmann, Jan-Wilm; Schneider, Simon; Narberhaus, Franz; Benedikt, Jan; Bandow, Julia E.

    Atmospheric pressure plasma jets effectively inactivate bacteria on ­surfaces including infected tissues. This is due to the combined effects of (V)UV radiation, reactive oxygen and nitrogen species, ions, and high electric fields. A well-characterized microscale atmospheric pressure plasma jet (μ-APPJ) operated with He/O2 gas mixture has been modified so that (V)UV radiation and heavy reactive particles (mainly O3 molecules and O atoms) emitted from the plasma source can be separated effectively. The separation is achieved by an additional lateral He flow, which diverts the heavy particles from the jet axis. The new jet geometry is called X-Jet. Separation of different plasma components allows studying their effects on living cells and bio-macromolecules separately. First, the effectiveness of the separation of different plasma components was demonstrated by treatment of monolayers of vegetative Bacillus subtilis cells. To characterize effects on nucleic acids, dried plasmid DNA and total cellular RNA were treated with the separated plasma components. Dried bovine serum albumin was used to study etching effects of (V)UV radiation and heavy particles on proteins. We found that heavy particles emitted from the X-Jet kill vegetative cells more effectively than the (V)UV radiation from this type of plasma source. All bio-macromolecules investigated, DNA, RNA, and proteins, are affected by plasma treatment. DNA exposed to the (V)UV-channel of the jet seems to be prone to thymine dimer formation not only in vitro but also in vivo as indicated by induction of the photolyase in Escherichia coli, while DNA strand breaks occur under both jet channels. Heavy particles seem more effective in degrading RNA and in etching protein in vitro.

  16. VUV photochemistry of the H2OCO complex in noble-gas matrices: formation of the OHCO complex and the HOCO radical.

    Science.gov (United States)

    Ryazantsev, Sergey V; Duarte, Luís; Feldman, Vladimir I; Khriachtchev, Leonid

    2016-12-21

    Vacuum ultraviolet (VUV, 130-170 nm) photochemistry of the H2OCO complex is studied by matrix-isolation infrared spectroscopy. The H2OCO complexes in Ne, Ar, Kr, and Xe matrices are generated by ultraviolet (UV, 193 and 250 nm) photolysis of formic acid (HCOOH). VUV photolysis of the H2OCO complexes is found to lead to the formation of the OHCO radical-molecule complexes and trans-HOCO radicals. It is shown that the matrix material, local matrix morphology, and possibly the H2OCO complex geometry strongly affect the VUV photolysis pathways. The intrinsic reactivity of the matrix-isolated OHCO complex resulting in the formation of trans-HOCO is directly demonstrated for the first time. This reaction occurs in Ar, Kr, and Xe matrices upon annealing above 25 K and may proceed over the barrier. The case of a Ne matrix is very special because the formation of trans-HOCO from the OHCO complex is observed even at the lowest experimental temperature (4.5 K), which is in sharp contrast to the other matrices. It follows that quantum tunneling is probably involved in this process in the Ne matrix at such a low temperature. Infrared light also promotes this reaction in the Ne matrix at 4.5 K, which is not the case in the other matrices. The last findings show the effect of the environment on the tunneling and infrared-induced rates of this fundamental chemical reaction.

  17. In situ measurement of VUV/UV radiation from low-pressure microwave-produced plasma in Ar/O2 gas mixtures

    Science.gov (United States)

    Iglesias, E. J.; Mitschker, F.; Fiebrandt, M.; Bibinov, N.; Awakowicz, P.

    2017-08-01

    Ultraviolet (UV) and vacuum ultraviolet (VUV) spectral irradiance is determined in low-pressure microwave-produced plasma, which is regularly used for polymer surface treatment. The re-emitted fluorescence in the UV/VIS spectral range from a sodium salicylate layer is measured. This fluorescence is related to VUV/UV radiation in different spectral bands based on cut-off filters. The background produced by direct emitted radiation in the fluorescence spectral region is quantified using a specific background filter, thus enabling the use of the whole fluorescence spectral range. A novel procedure is applied to determine the absolute value of the VUV/UV irradiance on a substrate. For that, an independent measurement of the absolute spectral emissivity of the plasma in the UV is performed. The measured irradiances on a substrate from a 25 Pa Ar/O2-produced plasma are in the range of 1015-1016 (photon~ s-1 cm-2). These values include the contribution from impurities present in the discharge.

  18. A new instrument of VUV laser desorption/ionization mass spectrometry imaging with micrometer spatial resolution and low level of molecular fragmentation

    Science.gov (United States)

    Wang, Jia; Liu, Feng; Mo, Yuxiang; Wang, Zhaoying; Zhang, Sichun; Zhang, Xinrong

    2017-11-01

    Mass spectrometry imaging (MSI) has important applications in material research, biology, and medicine. The MSI method based on UV laser desorption/ionization (UVLDI) can obtain images of intact samples, but has a high level of molecular fragmentation. In this work, we report a new MSI instrument that uses a VUV laser (125.3 nm) as a desorption/ionization source to exploit its advantages of high single photon energy and small focus size. The new instrument was tested by the mass spectra of Nile red and FGB (Fibrinogen beta chain) samples and mass spectrometric images of a fly brain section. For the tested samples, the VUVDI method offers lower levels of molecular fragmentations and higher sensitivities than those of the UVLDI method and second ion mass spectrometry imaging method using a Bi3+ beam. The ablation crater produced by the focused VUV laser on a quartz plate has an area of 10 μm2. The VUV laser is prepared based on the four-wave mixing method using three collimated laser beams and a heated Hg cell.

  19. Combined use of VUV and UVC photoreactors for the treatment of hospital laundry wastewaters: Reduction of load parameters, detoxification and life cycle assessment of different configurations.

    Science.gov (United States)

    de Oliveira Schwaickhardt, Rômulo; Machado, Ênio Leandro; Lutterbeck, Carlos Alexandre

    2017-07-15

    The present research investigated the treatment of hospital laundry wastewaters by the combined use of photochemical VUV and UVC reactors. Seven different configurations were tested and the performances of each of them were evaluated based on the removal of the load parameters, detoxification and life cycle assessment (LCA). The characterization of studied wastewaters included analysis of the following parameters: COD, BOD5, TKN, total P, pH, turbidity and conductivity. Acute ecotoxicity was evaluated using Daphnia magna. Ultraviolet-Visible (UV-Vis) spectroscopy was performed to determine the organic fraction and chromatography coupled to the mass spectrometer (GC-MS) was used for the qualitative characterization of priority pollutants. Characterization parameters showed the presence of drugs like lidocaine and dipyrone and a high organic load with a poor biodegradability. Wastewaters presented an extreme acute toxicity against D. magna (EC50 6.7%). The ozonation process (mainly generated by the VUV reactor) obtained the best results concerning the ratio between the consumed energy and the removed COD and the UVC process presented the lowest environmental impacts for the characterization and normalization parameters of the LCA. Normalization revealed that the highest environmental burdens were associated with human toxicity, ecotoxicity and eutrophication of surface waters as well as to the use of non-renewable resources. VUV/UVC/O3 process presented the best results considering detoxification (EC50 100%). Copyright © 2017 Elsevier B.V. All rights reserved.

  20. A new broadly tunable (7.4-10.2 eV) laser based VUV light source and its first application to aerosol mass spectrometry

    Science.gov (United States)

    Hanna, S. J.; Campuzano-Jost, P.; Simpson, E. A.; Robb, D. B.; Burak, I.; Blades, M. W.; Hepburn, J. W.; Bertram, A. K.

    2009-01-01

    A laser based vacuum ultraviolet (VUV) light source using resonance enhanced four wave difference mixing in xenon gas was developed for near threshold ionization of organics in atmospheric aerosol particles. The source delivers high intensity pulses of VUV light (in the range of 1010 to 1013 photons/pulse depending on wavelength, 5 ns FWHM) with a continuously tunable wavelength from 122 nm (10.2 eV) to 168 nm (7.4 eV)E The setup allows for tight (energies spanning the full wavelength range of the VUV source. The measured appearance energies are very close to the literature values of the ionization energies for all seven species. The effectiveness of the source for single particle studies was demonstrated by analysis of individual caffeine aerosols vaporized by a pulsed CO2 laser in an ion trap mass spectrometer. Mass spectra from single particles down to 300 nm in diameter were collected. Excellent signal to noise characteristics for these small particles give a caffeine detection limit of 8 × 105 molecules which is equivalent to a single 75 nm aerosol, or approximately 1.5% of a 300 nm particleE The appearance energy of caffeine originating from the aerosol was also measured and found to be 7.91 ± 0.05 eV, in good agreement with literature values.

  1. The photoionization dynamics of methyl iodide (CH{sub 3}I): a joint photoelectron and mass spectrometric investigation

    Energy Technology Data Exchange (ETDEWEB)

    Locht, R; Leyh, B [Departement de Chimie, Institut de Chimie, Laboratoire de Dynamique Moleculaire, Bat. B6c, Universite de Liege, Sart-Tilman par B-4000 Liege 1 (Belgium); Dehareng, D [Centre d' Ingenierie des Proteines, Institut de Chimie, Bat. B6a, Universite de Liege, Sart-Tilman par B-4000 Liege 1 (Belgium); Hottmann, K; Jochims, H W; Baumgaertel, H, E-mail: robert.locht@ulg.ac.b [Institut fuer Physikalische und Theoretische Chemie, Freie Universitaet Berlin, Takustrasse 3, D-14195 Berlin (Germany)

    2010-05-28

    Threshold photoelectron (TPES) and photoionization mass spectrometric (PIMS) studies of CH{sub 3}I in the 8-20 eV photon energy range are presented. The interpretation and assignments are supported by ab initio calculations. The TPES study shows many new discrete features in the Jahn-Teller split ground (tilde X) {sup 2}E ({sup 2}A'-{sup 2}A'') state of CH{sub 3}I{sup +}. A new continuous band starting at about 11.7 eV is detected. These observations are essentially correlated with autoionizing transitions. This interpretation is supported by constant ion state (CIS) spectroscopy. A large enhancement of the transitions to the (tilde A) {sup 2}A and (tilde B) {sup 2}E is ascribed to large autoionizing contributions. Based on the present calculations, the weak to very weak bands in the 18.0-23.0 eV photon energy range are mainly assigned to 2a{sup -1}{sub 1} ionization and to double excitations corresponding essentially to the 2e{sup -2} 4a{sup 1}{sub 1} and 3a{sup -1}{sub 1}2e{sup -1}4a{sup 1}{sub 1} configurations. The PIMS study allowed us to investigate in detail the ionization and dissociation of CH{sub 3}I{sup +} leading to CH{sup +}{sub 2}, CH{sup +}{sub 3}, I{sup +} and CH{sub 2}I{sup +} from the threshold up to 20 eV photon energy. The experimental data are compared to ab initio calculated dissociation energies. The threshold of appearance of CH{sup +}{sub 3}, I{sup +} and CH{sub 2}I{sup +} fragments is concentrated in the 12.2-12.7 eV photon energy range. All three exit channels are correlated with the ground state of CH{sub 3}I{sup +} via non-adiabatic transitions. All three fragment ions have to appear through predissociation of the ionic (tilde X){sup 2}E state and autoionizing dissociation from the ({sup 2}E{sub 3/2})6p Rydberg state. This interpretation is strongly supported by the photoabsorption spectrum measured recently in the same photon energy range. At higher energies, besides direct or predissociation of the (tilde A) {sup 2}A

  2. Anisole, a new dopant for atmospheric pressure photoionization mass spectrometry of low proton affinity, low ionization energy compounds

    NARCIS (Netherlands)

    Kauppila, TJ; Kostiainen, R; Bruins, AP

    2004-01-01

    Atmospheric pressure photoionization (APPI) is a novel method of ionization in liquid chromatography/mass spectrometry (LC/MS). It was originally developed in order to broaden the range of LC/MS ionizable compounds towards less polar compounds that cannot be analyzed by electrospray (ESI) and

  3. X-Ray Spectral Study of the Photoionized Stellar Wind in Vela X-1

    Energy Technology Data Exchange (ETDEWEB)

    Watanabe, Shin; Sako, Masao; Ishida, Manabu; Ishisaki, Yoshitaka; Kahn, Steven M.; Kohmura, Takayoshi; Nagase, Fumiaki; Paerels, Frederik; Takahashi, Tadayuki; /JAXA,

    2006-07-10

    We present results from quantitative modeling and spectral analysis of the high mass X-ray binary system Vela X-1 obtained with the Chandra High Energy Transmission Grating Spectrometer. The observations cover three orbital phase ranges within a single binary orbit. The spectra exhibit emission lines from H-like and He-like ions driven by photoionization, as well as fluorescent emission lines from several elements in lower charge states. The properties of these X-ray lines are measured with the highest accuracy to date. In order to interpret and make full use of the high-quality data, we have developed a simulator, which calculates the ionization and thermal structure of a stellar wind photoionized by an X-ray source, and performs Monte Carlo simulations of X-ray photons propagating through the wind. The emergent spectra are then computed as a function of the viewing angle accurately accounting for photon transport in three dimensions including dynamics. From comparisons of the observed spectra with results from the simulator, we are able to find the ionization structure and the geometrical distribution of material in the stellar wind of Vela X-1 that can reproduce the observed spectral line intensities and continuum shapes at different orbital phases remarkably well. We find that the stellar wind profile can be represented by a CAK-model with a star mass loss rate of (1.5-2.0) x 10{sup -6} M{sub {circle_dot}} yr{sup -1}, assuming a terminal velocity of 1100 km s{sup -1}. It is found that a large fraction of X-ray emission lines from highly ionized ions are formed in the region between the neutron star and the companion star. We also find that the fluorescent X-ray lines must be produced in at least three distinct regions: (1) the extended stellar wind, (2) reflection off the stellar photosphere, and (3) in a distribution of dense material partially covering and possibly trailing the neutron star, which may be associated with an accretion wake. Finally, from

  4. Double Swing

    DEFF Research Database (Denmark)

    Clausen, Lisbeth

    2017-01-01

    There are two main streams of understanding intercultural communication. The “classic” transmission models include the basic elements of communication involved in sending messages from a sender to a receiver. These models enable analysis of all communication elements and effects by focusing...... on sameness in communication. In contrast, Muneo Jay Yoshikawa's “double-swing” model of intercultural communication between the East and West is based on an eastern understanding of dialogue, collaborative communication, and co-creation of meaning. The double-swing model enables an understanding...... of communication as an ongoing encounter where both sender and receiver have mutual respect. It has four modes of communication: the ethnocentric, the dialectic, the control, and the dialogic. Both models have something to offer intercultural communication, but the double-swing model enables a worldview...

  5. Measurements of isotope effects in the photoionization of N2 and implications for Titan's atmosphere

    Energy Technology Data Exchange (ETDEWEB)

    Croteau, Philip; Randazzo, John B.; Kostko, Oleg; Ahmed, Musahid; Liang, Mao-Chang; Yung, Yuk L.; Boering, Kristie A.

    2010-12-30

    Isotope effects in the non-dissociative photoionization of molecular nitrogen (N2 + h nu -> N2+ + e-) may play a role in determining the relative abundances of isotopic species containing nitrogen in interstellar clouds and planetary atmospheres but have not been previously measured. Measurements of the photoionization efficiency spectra of 14N2, 15N14N, and 15N2 from 15.5 to 18.9 eV (65.6-80.0 nm) using the Advanced Light Source at Lawrence Berkeley National Laboratory show large differences in peak energies and intensities, with the ratio of the energy-dependent photoionization cross-sections, sigma(14N2)/sigma(15N14N), ranging from 0.4 to 3.5. Convolving the cross-sections with the solar flux and integrating over the energies measured, the ratios of photoionization rate coefficients are J(15N14N)/J(14N2)=1.00+-0.02 and J(15N2)/J(14N2)=1.00+-0.02, suggesting that isotopic fractionation between N2 and N2+ should be small under such conditions. In contrast, in a one-dimensional model of Titan's atmosphere, isotopic self-shielding of 14N2 leads to values of J(15N14N)/J(14N2) as large as ~;;1.17, larger than under optically thin conditions but still much smaller than values as high as ~;;29 predicted for N2 photodissociation. Since modeled photodissociation isotope effects overpredict the HC15N/HC14N ratio in Titan's atmosphere, and since both N atoms and N2+ ions may ultimately lead to the formation of HCN, estimates of the potential of including N2 photoionization to contribute to a more quantitative explanation of 15N/14N for HCN in Titan's atmosphere are explored.

  6. Atomic Data for Neutron-capture Elements I. Photoionization and Recombination Properties of Low-charge Selenium Ions

    Science.gov (United States)

    Sterling, N. C.; Witthoeft, Michael

    2011-01-01

    We present multi-configuration Breit-Pauli AUTOSTRUCTURE calculations of distorted-wave photoionization (PI) cross sections. and total and partial final-state resolved radiative recombination (RR) and dielectronic recombination (DR) rate coefficients for the first six ions of the trans-iron element Se. These calculations were motivated by the recent detection of Se emission lines in a large number of planetary nebulae. Se is a potentially useful tracer of neutron-capture nucleosynthesis. but accurate determinations of its abundance in photoionized nebulae have been hindered by the lack of atomic data governing its ionization balance. Our calculations were carried out in intermediate coupling with semi re1ativistic radial wavefunctions. PI and recombination data were determined for levels within the ground configuration of each ion, and experimental PI cross-section measurements were used to benchmark our results. For DR, we allowed (Delta)n = 0 core excitations, which are important at photoionized plasma temperatures. We find that DR is the dominant recombination process for each of these Se ions at temperatures representative of photoionized nebulae (approx.10(exp 4) K). In order to estimate the uncertainties of these data, we compared results from three different configuration-interaction expansions for each ion, and also tested the sensitivity of the results to the radial scaling factors in the structure calculations. We find that the internal uncertainties are typically 30-50% for the direct PI cross sections and approx.10% for the computed RR rate coefficients, while those for low-temperature DR can be considerably larger (from 15-30% up to two orders of magnitude) due to the unknown energies of near-threshold autoionization resonances. These data are available at the CDS, and fitting coefficients to the total RR and DR rate coefficients are presented. The results are suitable for incorporation into photoionization codes used to numerically simulate

  7. Systematic Comparison of Photoionized Plasma Codes with Application to Spectroscopic Studies of AGN in X-Rays

    Science.gov (United States)

    Mehdipour, M.; Kaastra, J. S.; Kallman, T.

    2016-01-01

    Atomic data and plasma models play a crucial role in the diagnosis and interpretation of astrophysical spectra, thus influencing our understanding of the Universe. In this investigation we present a systematic comparison of the leading photoionization codes to determine how much their intrinsic differences impact X-ray spectroscopic studies of hot plasmas in photoionization equilibrium. We carry out our computations using the Cloudy, SPEX, and XSTAR photoionization codes, and compare their derived thermal and ionization states for various ionizing spectral energy distributions. We examine the resulting absorption-line spectra from these codes for the case of ionized outflows in active galactic nuclei. By comparing the ionic abundances as a function of ionization parameter, we find that on average there is about 30 deviation between the codes in where ionic abundances peak. For H-like to B-like sequence ions alone, this deviation in is smaller at about 10 on average. The comparison of the absorption-line spectra in the X-ray band shows that there is on average about 30 deviation between the codes in the optical depth of the lines produced at log 1 to 2, reducing to about 20 deviation at log 3. We also simulate spectra of the ionized outflows with the current and upcoming high-resolution X-ray spectrometers, on board XMM-Newton, Chandra, Hitomi, and Athena. From these simulations we obtain the deviation on the best-fit model parameters, arising from the use of different photoionization codes, which is about 10 to40. We compare the modeling uncertainties with the observational uncertainties from the simulations. The results highlight the importance of continuous development and enhancement of photoionization codes for the upcoming era of X-ray astronomy with Athena.

  8. A VUV detection system for the direct photonic identification of the first excited isomeric state of 229Th

    Science.gov (United States)

    Seiferle, Benedict; von der Wense, Lars; Laatiaoui, Mustapha; Thirolf, Peter G.

    2016-03-01

    With an expected energy of 7.6(5) eV, 229Th possesses the lowest excited nuclear state in the landscape of all presently known nuclei. The energy corresponds to a wavelength of about 160 nm and would conceptually allow for an optical laser excitation of a nuclear transition. We report on a VUV optical detection system that was designed for the direct detection of the isomeric ground-state transition of 229Th. 229(m)Th ions originating from a 233U α-recoil source are collected on a micro electrode that is placed in the focus of an annular parabolic mirror. The latter is used to parallelize the UV fluorescence that may emerge from the isomeric ground-state transition of 229Th. The parallelized light is then focused by a second annular parabolic mirror onto a CsI-coated position-sensitive MCP detector behind the mirror exit. To achieve a high signal-to-background ratio, a small spot size on the MCP detector needs to be achieved. Besides extensive ray-tracing simulations of the optical setup, we present a procedure for its alignment, as well as test measurements using a D2 lamp, where a focal-spot size of ≈100 μm has been achieved. Assuming a purely photonic decay, a signal-to-background ratio of ≈7000:1 could be achieved.

  9. Design of a multi-axis cryogenic sample manipulator for soft X-ray and VUV spectroscopy

    Science.gov (United States)

    Wang, D. J.; Chiu, C. C.; Cheng, C. M.

    2013-03-01

    We have designed and constructed several manipulators for cryogenic samples and soft X-ray and VUV spectra. These manipulators are compatible with ultrahigh vacuum and up to six axis motions - three translational and three angular motions. Three translational and the polar angular motions are implemented with commercial stages. The azimuthal (in the beam direction) and tilting motions are driven with separate gear trains and connected to stepping motors on the top flange (100 CF). The azimuthal angular range is about ±180°, and the tilting range is from 75° to -25° the resolution is better than 0.1°. The sample position is designed to be situated at the center of the polar and azimuthal rotation axes. The tilting axis is designed with an offset to decrease the spatial interference with the analyzer for photoemission spectra. The sample is attached to the sample holder and transferred to the cryogenic stage via a load-lock system. The sample holder is cooled with a continuous-flow cryostat (Janis ST-400) via flexible copper braids. With liquids helium and nitrogen for the cryostat, the lowest temperature of the sample holder attains 9.15 K and 82.4 K, respectively. During tests, the rate of consumption of liquid helium is less than 0.8 L/h.

  10. One-photon two-electron processes in helium close to the double ionization threshold; Diexcitation electronique de l'helium par un photon au voisinage du seuil de double ionisation

    Energy Technology Data Exchange (ETDEWEB)

    Bouri, C

    2007-04-15

    This work presents a study of the {sup 1}P{sup 0} excited states of He that can be reached by absorption of a single photon carrying an energy close to the double ionization threshold (DIT) (79 eV). Above the DIT, these states are the double continuum states; below, they are the double excited states. These two types of states are tightly coupled to the single continuum states with or without excitation of the residual ion He{sup +}, owing to their degeneracy in energy. In a one-photon process, these states can only be formed owing to the electronic correlations in the system which must be well described to obtain quantitative good results. Our study is a part of the work which aims at a united description of all these doubly excited, ionized-excited, and double continuum states. We use the Hyperspherical R-Matrix with Semiclassical Outgoing Waves (HRM-SOW) method, initially dedicated to double photoionization studies. We extend it to extract information on the single continuum. This extension allows us to compute cross sections of single photoionization with or without excitation up to n 50 for an excess of 100 meV just above the double ionization threshold. A deep insight into this process is given by a partial waves analysis. The results obtained shed light on the key role of angular and radial correlations. The numerous data we obtain on double and single ionization allow us to establish a continuity relation between these two processes. We show that single ionization with an infinite excitation of the residual ion merges into double photoionization when the excess energy is redistributed between the two electrons. It appears that this relation is valid not only for low but also for high photon energies. Since the HRM-SOW can produce the integrated cross section for double photoionization with high accuracy in the low energy domain, we check the Wannier threshold law. The parameters extracted support strongly this threshold law, and are in good agreement with

  11. Photo-Ionization of Noble Gases: A Demonstration of Hybrid Coupled Channels Approach

    Directory of Open Access Journals (Sweden)

    Vinay Pramod Majety

    2015-01-01

    Full Text Available We present here an application of the recently developed hybrid coupled channels approach to study photo-ionization of noble gas atoms: Neon and Argon. We first compute multi-photon ionization rates and cross-sections for these inert gas atoms with our approach and compare them with reliable data available from R-matrix Floquet theory. The good agreement between coupled channels and R-matrix Floquet theory show that our method treats multi-electron systems on par with the well established R-matrix theory. We then apply the time dependent surface flux (tSURFF method with our approach to compute total and angle resolved photo-electron spectra from Argon with linearly and circularly polarized 12 nm wavelength laser fields, a typical wavelength available from Free Electron Lasers (FELs.

  12. Ultrafast vibrational spectroscopic studies on the photoionization of the α-tocopherol analogue trolox C.

    Science.gov (United States)

    Parker, Anthony W; Bisby, Roger H; Greetham, Gregory M; Kukura, Philipp; Scherer, Kathrin M; Towrie, Michael

    2014-10-23

    The initial events after photoexcitation and photoionization of α-tocopherol (vitamin E) and the analogue Trolox C have been studied by femtosecond stimulated Raman spectroscopy, transient absorption spectroscopy and time-resolved infrared spectroscopy. Using these techniques it was possible to follow the formation and decay of the excited state, neutral and radical cation radicals and the hydrated electron that are produced under the various conditions examined. α-Tocopherol and Trolox C in methanol solution appear to undergo efficient homolytic dissociation of the phenolic -OH bond to directly produce the tocopheroxyl radical. In contrast, Trolox C photochemistry in neutral aqueous solutions involves intermediate formation of a radical cation and the hydrated electron which undergo geminate recombination within 100 ps in competition with deprotonation of the radical cation. The results are discussed in relation to recently proposed mechanisms for the reaction of α-tocopherol with peroxyl radicals, which represents the best understood biological activity of this vitamin.

  13. MPI_XSTAR: MPI-based Parallelization of the XSTAR Photoionization Program

    Science.gov (United States)

    Danehkar, Ashkbiz; Nowak, Michael A.; Lee, Julia C.; Smith, Randall K.

    2018-02-01

    We describe a program for the parallel implementation of multiple runs of XSTAR, a photoionization code that is used to predict the physical properties of an ionized gas from its emission and/or absorption lines. The parallelization program, called MPI_XSTAR, has been developed and implemented in the C++ language by using the Message Passing Interface (MPI) protocol, a conventional standard of parallel computing. We have benchmarked parallel multiprocessing executions of XSTAR, using MPI_XSTAR, against a serial execution of XSTAR, in terms of the parallelization speedup and the computing resource efficiency. Our experience indicates that the parallel execution runs significantly faster than the serial execution, however, the efficiency in terms of the computing resource usage decreases with increasing the number of processors used in the parallel computing.

  14. Revised interpretation of the photoionization of Cr{sup +} in the 3p excitation region

    Energy Technology Data Exchange (ETDEWEB)

    West, J B [Daresbury Laboratory, Warrington WA4 4AD (United Kingdom); Hansen, J E [Department of Physics and Astronomy, University of Amsterdam, NIKHEF, PO Box 41882, NL-1009 DB Amsterdam, The (Netherlands); Kristensen, B [Institute of Physics and Astronomy, Aarhus University, DK-8000 Aarhus C (Denmark); Folkmann, F [Institute of Physics and Astronomy, Aarhus University, DK-8000 Aarhus C (Denmark); Kjeldsen, H [Institute of Physics and Astronomy, Aarhus University, DK-8000 Aarhus C (Denmark)

    2003-10-14

    The absolute cross section for photoionization of Cr{sup +} has been measured using the merged-beam technique, focusing on the region of the 'giant' 3p {yields} 3d resonance. These new absolute data differ considerably from previous experimental data, with the result that the agreement between experiment and existing calculations has improved substantially. The neutral and ionized Cr spectra, previously believed to be completely different, are shown here to be rather similar. The role of the 3d{sup 5}({sup 6}S) state in determining the special position of Cr among the 3d elements is emphasized. The experimental data are available at http://www.phys.au.dk/amo/atomphys/atomphys.htm. (letter to the editor)

  15. A model for a photoionized, conical jet from a young, massive star

    Science.gov (United States)

    Raga, A. C.; Cantó, J.; Tinoco-Arenas, A.; Rodríguez-Ramírez, J. C.; Rodríguez, L. F.; Lizano, S.

    2017-11-01

    We consider a conical jet from a massive, young star, which also powers a compact H II region. The high density at the base of the jet traps the stellar, ionizing radiation, so that the jet beam is neutral (at larger distances). This neutral beam then becomes progressively photoionized by the diffuse, ionizing radiation field emitted by the surrounding H II region. We derive a simple, analytic model for this flow, and use it to calculate the contrast between the free-free emission of the jet and the background H II region. We find that for appropriate parameters, the jet is brighter by ˜20 per cent, which should be relatively straightforward to detect in interferometric maps of regions around massive, young stars.

  16. Measuring the angle-dependent photoionization cross section of nitrogen using high-harmonic generation

    Science.gov (United States)

    Ren, Xiaoming; Makhija, Varun; Le, Anh-Thu; Troß, Jan; Mondal, Sudipta; Jin, Cheng; Kumarappan, Vinod; Trallero-Herrero, Carlos

    2013-10-01

    We exploit the relationship between high harmonic generation (HHG) and the molecular photorecombination dipole to extract the molecular-frame differential photoionization cross section (PICS) in the extreme ultraviolet (XUV) for molecular nitrogen. A shape resonance and a Cooper-type minimum are reflected in the pump-probe time delay measurements of different harmonic orders, where high-order rotational revivals are observed in N2. We observe the energy- and angle-dependent Cooper minimum and shape resonance directly in the laboratory-frame HHG yield by achieving a high degree of alignment, ≥0.8. The interplay between PICS and rotational revivals is confirmed by simulations using the quantitative rescattering theory. Our method of extracting molecular-frame structural information points the way to similar measurements in more complex molecules.

  17. Data for First Responder Use of Photoionization Detectors for Vapor Chemical Constituents

    Energy Technology Data Exchange (ETDEWEB)

    Keith A. Daum; Matthew G. Watrous; M. Dean Neptune; Daniel I. Michael; Kevin J. Hull; Joseph D. Evans

    2006-11-01

    First responders need appropriate measurement technologies for evaluating incident scenes. This report provides information about photoionization detectors (PIDs), obtained from manufacturers and independent laboratory tests, and the use of PIDs by first responders, obtained from incident commanders in the United States and Canada. PIDs are valued for their relatively low cost, light weight, rapid detection response, and ease of use. However, it is clear that further efforts are needed to provide suitable instruments and decision tools to incident commanders and first responders for assessing potential hazardous chemical releases. Information provided in this report indicates that PIDs should always be part of a decision-making context in which other qualitative and more definitive tests and instruments are used to confirm a finding. Possible amelioratory actions ranging from quick and relatively easy fixes to those requiring significant additional effort are outlined in the report.

  18. An ultrasensitive and element specific photoionization detection system for environmental analysis

    Science.gov (United States)

    Zlatkis, A.

    1985-03-01

    The problem of trace analysis at the parts per trillion level in environmental samples has been a challenging one for analytical chemists during the past two decades. The presence of substances in very low concentrations in a complex matrix demands the development of both selective and sensitive detectors for their determination by gas chromatography. The photoionization detector (PID) now commercially available is capable of providing the very high sensitivity desired for trace level analysis. Indeed its low volume ionization chamber make it suitable for use with capillary columns. The PID also lends itself to the development of an element selective detector. This could be expected by catalytic conversion of the effluent to H2S, PH3, and NH3. Scrubbers to remove unwanted gases could yield e.g., PH3 only thereby making the detector P selective. Sensitivities at the pg level could be possible.

  19. Attosecond delay of xenon $4d$ photoionization at the giant resonance and Cooper minimum

    CERN Document Server

    Magrakvelidze, Maia; Chakraborty, Himadri S

    2016-01-01

    A Kohn-Sham time-dependent local-density-functional scheme is utilized to predict attosecond time delays of xenon 4d photoionization that involves the 4d giant dipole resonance and Cooper minimum. The fundamental effect of electron correlations to uniquely determine the delay at both regions is demonstrated. In particular, for the giant dipole resonance, the delay underpins strong collective effect, emulating the recent prediction at C60 giant plasmon resonance [T. Barillot et al, Phys. Rev. A 91, 033413 (2015)]. For the Cooper minimum, a qualitative similarity with a photorecombination experiment near argon 3p minimum [S. B. Schoun et al, Phys. Rev. Lett. 112, 153001 (2014)] is found. The result should encourage attosecond measurements of Xe 4d photoemission.

  20. From iron pentacarbonyl to the iron ion by imaging photoelectron photoion coincidence.

    Science.gov (United States)

    Russell, Eileen M; Cudjoe, Elvis; Mastromatteo, Michael E; Kercher, James P; Sztáray, Bálint; Bodi, Andras

    2013-06-06

    The dissociation dynamics of internal energy selected iron pentacarbonyl cations, Fe(CO)5(+), have been investigated using the imaging photoelectron photoion coincidence (iPEPICO) spectrometer at the Swiss Light Source. The molecular ion loses all five carbonyl ligands in sequential dissociations in the 8.5-20 eV photon energy range. The Fe(CO)5(+) parent ion is metastable at the onset of the first dissociation reaction on the time scale of the experiment. The slightly asymmetric and broad daughter ion time-of-flight distributions indicate parent ion lifetimes in the microsecond range, and are used to obtain an experimental dissociation rate curve. Further carbonyl losses were found to be fast at threshold. The fractional parent and daughter ion abundances as a function of the photon energy, that is, breakdown diagram, as well as the dissociation rates for the first CO loss were modeled using the statistical Rice-Ramsperger-Kassel-Marcus (RRKM) and statistical adiabatic channel model (SSACM) theories. The excess energy redistribution in the products was also taken into account in a statistical framework. The 0 K dissociative photoionization thresholds for the five carbonyl-loss channels were found to be 9.015 ± 0.024 eV, 10.199 ± 0.027 eV, 10.949 ± 0.033 eV, 12.282 ± 0.39 eV, and 13.821 ± 0.045 eV for the processes leading to Fe(CO)4(+), Fe(CO)3(+), Fe(CO)2(+), Fe(CO)(+), and Fe(+), respectively. The iron cation thermochemistry is well-known, and these onsets connect the bare metal ion to the other fragment ions as well as to the gas phase neutral Fe(CO)5.

  1. Near L-edge Single and Multiple Photoionization of Singly Charged Iron Ions

    Science.gov (United States)

    Schippers, Stefan; Martins, Michael; Beerwerth, Randolf; Bari, Sadia; Holste, Kristof; Schubert, Kaja; Viefhaus, Jens; Savin, Daniel Wolf; Fritzsche, Stephan; Müller, Alfred

    2017-11-01

    Absolute cross-sections for m-fold photoionization (m=1, \\ldots , 6) of Fe+ by a single photon were measured employing the photon-ion merged-beams setup PIPE at the PETRA III synchrotron light source, operated by DESY in Hamburg, Germany. Photon energies were in the range 680-920 eV, which covers the photoionization resonances associated with 2p and 2s excitation to higher atomic shells as well as the thresholds for 2p and 2s ionization. The corresponding resonance positions were measured with an uncertainty of ±0.2 eV. The cross-section for Fe+ photoabsorption is derived as the sum of the individually measured cross-sections for m-fold ionization. Calculations of the Fe+ absorption cross-sections were carried out using two different theoretical approaches, Hartree-Fock including relativistic extensions and fully relativistic multiconfiguration Dirac-Fock. Apart from overall energy shifts of up to about 3 eV, the theoretical cross-sections are in good agreement with each other and with the experimental results. In addition, the complex de-excitation cascades after the creation of inner-shell holes in the Fe+ ion were tracked on the atomic fine-structure level. The corresponding theoretical results for the product charge-state distributions are in much better agreement with the experimental data than previously published configuration-average results. The present experimental and theoretical results are valuable for opacity calculations and are expected to pave the way to a more accurate determination of the iron abundance in the interstellar medium.

  2. REVERBERATION AND PHOTOIONIZATION ESTIMATES OF THE BROAD-LINE REGION RADIUS IN LOW-z QUASARS

    Energy Technology Data Exchange (ETDEWEB)

    Negrete, C. Alenka [Instituto Nacional de Astrofisica, Optica y Electronica (Mexico); Dultzin, Deborah [Instituto de Astronomia, Universidad Nacional Autonoma de Mexico (Mexico); Marziani, Paola [INAF, Astronomical Observatory of Padova, I-35122 Padova (Italy); Sulentic, Jack W., E-mail: cnegrete@inaoep.mx, E-mail: deborah@astro.unam.mx, E-mail: paola.marziani@oapd.inaf.it, E-mail: sulentic@iaa.es [Instituto de Astrofisica de Andalucia, E-18008 Granada (Spain)

    2013-07-01

    Black hole mass estimation in quasars, especially at high redshift, involves the use of single-epoch spectra with signal-to-noise ratio and resolution that permit accurate measurement of the width of a broad line assumed to be a reliable virial estimator. Coupled with an estimate of the radius of the broad-line region (BLR) this yields the black hole mass M{sub BH}. The radius of the BLR may be inferred from an extrapolation of the correlation between source luminosity and reverberation-derived r{sub BLR} measures (the so-called Kaspi relation involving about 60 low-z sources). We are exploring a different method for estimating r{sub BLR} directly from inferred physical conditions in the BLR of each source. We report here on a comparison of r{sub BLR} estimates that come from our method and from reverberation mapping. Our ''photoionization'' method employs diagnostic line intensity ratios in the rest-frame range 1400-2000 A (Al III {lambda}1860/Si III] {lambda}1892, C IV {lambda}1549/Al III {lambda}1860) that enable derivation of the product of density and ionization parameter with the BLR distance derived from the definition of the ionization parameter. We find good agreement between our estimates of the density, ionization parameter, and r{sub BLR} and those from reverberation mapping. We suggest empirical corrections to improve the agreement between individual photoionization-derived r{sub BLR} values and those obtained from reverberation mapping. The results in this paper can be exploited to estimate M{sub BH} for large samples of high-z quasars using an appropriate virial broadening estimator. We show that the width of the UV intermediate emission lines are consistent with the width of H{beta}, thereby providing a reliable virial broadening estimator that can be measured in large samples of high-z quasars.

  3. Double screening

    Energy Technology Data Exchange (ETDEWEB)

    Gratia, Pierre [Department of Physics, University of Chicago,South Ellis Avenue, Chicago, IL 60637 (United States); Hu, Wayne [Department of Astronomy and Astrophysics, University of Chicago,South Ellis Avenue, Chicago, IL 60637 (United States); Enrico Fermi Institute and Kavli Institute for Cosmological Physics, University of Chicago,South Ellis Avenue, Chicago, IL 60637 (United States); Joyce, Austin [Enrico Fermi Institute and Kavli Institute for Cosmological Physics, University of Chicago,South Ellis Avenue, Chicago, IL 60637 (United States); Ribeiro, Raquel H. [School of Physics and Astronomy, Queen Mary University of London,Mile End Road, London, E1 4NS (United Kingdom)

    2016-06-15

    Attempts to modify gravity in the infrared typically require a screening mechanism to ensure consistency with local tests of gravity. These screening mechanisms fit into three broad classes; we investigate theories which are capable of exhibiting more than one type of screening. Specifically, we focus on a simple model which exhibits both Vainshtein and kinetic screening. We point out that due to the two characteristic length scales in the problem, the type of screening that dominates depends on the mass of the sourcing object, allowing for different phenomenology at different scales. We consider embedding this double screening phenomenology in a broader cosmological scenario and show that the simplest examples that exhibit double screening are radiatively stable.

  4. Optical transmittance investigation of 1-keV ion-irradiated sapphire crystals as potential VUV to NIR window materials of fusion reactors

    Directory of Open Access Journals (Sweden)

    Keisuke Iwano

    2016-10-01

    Full Text Available We investigate the optical transmittances of ion-irradiated sapphire crystals as potential vacuum ultraviolet (VUV to near-infrared (NIR window materials of fusion reactors. Under potential conditions in fusion reactors, sapphire crystals are irradiated with hydrogen (H, deuterium (D, and helium (He ions with 1-keV energy and ∼ 1020-m-2 s-1 flux. Ion irradiation decreases the transmittances from 140 to 260 nm but hardly affects the transmittances from 300 to 1500 nm. H-ion and D-ion irradiation causes optical absorptions near 210 and 260 nm associated with an F-center and an F+-center, respectively. These F-type centers are classified as Schottky defects that can be removed through annealing above 1000 K. In contrast, He-ion irradiation does not cause optical absorptions above 200 nm because He-ions cannot be incorporated in the crystal lattice due to the large ionic radius of He-ions. Moreover, the significant decrease in transmittance of the ion-irradiated sapphire crystals from 140 to 180 nm is related to the light scattering on the crystal surface. Similar to diamond polishing, ion irradiation modifies the crystal surface thereby affecting the optical properties especially at shorter wavelengths. Although the transmittances in the VUV wavelengths decrease after ion irradiation, the transmittances can be improved through annealing above 1000 K. With an optical transmittance in the VUV region that can recover through simple annealing and with a high transparency from the ultraviolet (UV to the NIR region, sapphire crystals can therefore be used as good optical windows inside modern fusion power reactors in terms of light particle loadings of hydrogen isotopes and helium.

  5. Characteristics of a nanosecond-barrier-discharge-pumped multiwave UV – VUV lamp on a mixture of argon, krypton and vapours of freon

    Energy Technology Data Exchange (ETDEWEB)

    Shuaibov, A K; Minya, A I; Hrytsak, R V; Gomoki, Z T [Uzhgorod National University, Uzhgorod (Ukraine)

    2015-02-28

    We present the results of investigation of the characteristics of a nanosecond-barrier-discharge-pumped multiwave lamp based on a gas mixture of Ar – Kr – CCl{sub 4}, which emits in the spectral range of 170 – 260 nm. The main emission bands in the lamp spectrum are ArCl (B → X) near 175 nm, KrCl (B → X) near 222 nm and Cl{sub 2} (D' → A') near 258 nm. The lamp intensity with respect to pressure, working mixture composition and pump regime is optimised. (uv - vuv emitters)

  6. Binding energy and photoionization cross-section of hydrogen-like donor impurity in strongly oblate ellipsoidal quantum dot

    Science.gov (United States)

    Hayrapetyan, D. B.; Ohanyan, G. L.; Baghdasaryan, D. A.; Sarkisyan, H. A.; Baskoutas, S.; Kazaryan, E. M.

    2018-01-01

    Hydrogen-like donor impurity states in strongly oblate ellipsoidal quantum dot have been studied. The hydrogen-like donor impurity states are investigated within the framework of variational method. The trial wave function constructed on the base of wave functions of the system without impurity. The dependence of the energy and binding energy for the ground and first excited states on the geometrical parameters of the ellipsoidal quantum dot and on the impurity position have been calculated. The behavior of the oscillator strength for different angles of incident light and geometrical parameters have been revealed. Photoionization cross-section of the electron transitions from the impurity ground state to the size-quantized ground and first excited states have been studied. The effects of impurity position and the geometrical parameters of the ellipsoidal quantum dot on the photoionization cross section dependence on the photon energy have been considered.

  7. A photoionization study of the formation of CO2/+/ by reaction of excited O2/+/ ions with CO

    Science.gov (United States)

    Ajello, J. M.

    1975-01-01

    The production of CO2(+) by the ion-molecule reaction O2(+) + CO yields CO2(+) + O has been investigated using a photoionization mass spectrometer. The photoionization efficiency for production of CO2(+) by this reaction was measured from threshold at 924 A (13.42 eV) to 650 A (19.07 eV). The appearance potential corresponds to reaction of ground vibronic O2(+) ions formed in the nu-prime = 6 level. The high-vibrational-level ions of the ground ionic state are most likely produced by autoionization of O2. At wavelengths shorter than 760 A, there is a large increase in the reaction cross section associated with formation of ions in the metastable state. The peak reaction cross section occurs at 720 A.

  8. Measurements of fluorescence and Coster-Kronig yields for 66Dy using synchrotron radiation induced selective photoionization method

    Science.gov (United States)

    Kaur, Rajnish; Kumar, Anil; Czyzycki, M.; Migliori, A.; Karydas, A. G.; Puri, Sanjiv

    2017-09-01

    The L shell fluorescence (ω1, ω2, ω3) and Coster-Kronig (f12, f13, f23) yields for 66Dy have been deduced from the Li (i = 1-3) sub-shell X-ray intensities measured at different incident photon energies across its Li absorption edge energies. Three sets of photoionization cross sections used for determination of these yields include two sets of theoretical values based on the non-relativistic Hartree-Fock-Slater model and the self-consistent Dirac-Hartree-Fock model, and the third one is that deduced from independently measured mass attenuation coefficients of 66Dy. The present experimental fluorescence and Coster-Kronig yields deduced using the self-consistent Dirac-Hartree-Fock model based photoionization cross sections have been found to be in good agreement with the semi-empirical values tabulated by Krause [1] and the Dirac-Hartree-Slater model based values.

  9. Stepwise contraction of the nf Rydberg shells in the 3d photoionization of multiply-charged xenon ions

    CERN Document Server

    Schippers, S; Buhr, T; Hellhund, J; Holste, K; Kilcoyne, A L D; Klumpp, S; Martins, M; Müller, A; Ricz, S; Fritzsche, S

    2014-01-01

    Triple photoionization of Xe3+, Xe4+ and Xe5+ ions has been studied in the energy range 670-750 eV, including the 3d ionization threshold. The photon-ion merged-beam technique was used at a synchrotron light source to measure the absolute photoionization cross sections. These cross sections exhibit a progressively larger number of sharp resonances as the ion charge state is increased. This clearly visualizes the re-ordering of the $\\epsilon$f continuum into a regular series of (bound) Rydberg orbitals as the ionic core becomes more attractive. The energies and strengths of the resonances are extracted from the experimental data and are further analyzed by relativistic atomic-structure calculations.

  10. Modern methods for calculations of photoionization and electron impact ionization of two-electron atoms and molecules

    CERN Document Server

    Serov, Vladislav V; Sergeeva, Tatiana A; Vinitsky, Sergue I

    2012-01-01

    A review of some recently developed methods of calculating multiple differential cross-sections of photoionization and electron impactionization of atoms and molecules having two active electrons is presented. The methods imply original approaches to calculating three-particle Coulomb wave functions. The external complex scaling method and the formalism of the Schroedinger equation with a source in the right-hand side are considered. Efficiency of the time-dependent approaches to the scattering problem, such as the paraxial approximation and the time-dependent scaling, is demonstrated. An original numerical method elaborated by the authors for solving the 6D Schroedinger equation for an atom with two active electrons, based on the Chang-Fano transformation and the discrete variable representation, is formulated. Basing on numerical simulations, the threshold behavior of angular distributions of two-electron photoionization of the negative hydrogen ion and helium atom, and multiple differential cross-sections ...

  11. Dissociative Photoionization of Dimethyl Carbonate: The More It Is Cut, the Bigger the Fragment Ion.

    Science.gov (United States)

    Wu, Xiangkun; Zhou, Xiaoguo; Hemberger, Patrick; Bodi, Andras

    2017-04-13

    The dissociation of internal energy selected dimethyl carbonate (DMC) cations was studied by imaging photoelectron photoion coincidence spectroscopy (iPEPICO) in the 10.3-12.5 eV photon energy range. Vibrational fine structure is observed in the ground state band of the threshold photoelectron spectrum up to the dissociation threshold, and Franck-Condon simulations identify the O-C-O bend mode, in particular in combination with the C═O stretch mode, to be active. The DMC ionization energy was determined to be 10.47 ± 0.01 eV. The first dissociative photoionization product, CH2OH(+), dominates the breakdown diagram from 11.0 to 11.8 eV and is also the lightest fragment ion at m/z = 31. Statistical modeling of the PEPICO data yields a 0 K appearance energy of E0 = 11.14 ± 0.01 eV. At higher photon energies, parallel dissociation channels are observed, leading to the daughter ions C2H6O2(+), probably OHCH2CH2OH(+) (m/z = 62, E0 = 11.16 eV), CH3CHOH(+) (m/z = 45, E0 = 11.46 eV), and CH3OCO(+) (m/z = 59, E0 = 11.47 eV). The m/z = 62 ethylene glycol ion may lose a CHO fragment and yield CH3OH2(+) (m/z = 33) in a sequential dissociation at E0 = 11.54 ± 0.03 eV. Reaction path calculations explain the observed dissociation processes, except for the formation of the ethylene glycol cation. Composite method calculations of isodesmic and isomerization reaction energies are used to obtain the enthalpy of formation of dimethyl carbonate at ΔfH(o)0K(DMC(g)) = -548.3 ± 1.5 kJ mol(-1). This puts the heat of formation of the cation at ΔfH(o)0K(DMC(+)(g)) = 461.9 ± 1.8 kJ mol(-1).

  12. Combination of electrospray ionization, atmospheric pressure photoionization and laser desorption ionization Fourier transform ion cyclotronic resonance mass spectrometry for the investigation of complex mixtures – Application to the petroleomic analysis of bio-oils

    Energy Technology Data Exchange (ETDEWEB)

    Hertzog, Jasmine [LCP-A2MC, FR 2843 Institut Jean Barriol de Chimie et Physique Moléculaires et Biomoléculaires, FR 3624 Réseau National de Spectrométrie de Masse FT-ICR à très haut champ, Université de Lorraine, ICPM, 1 boulevard Arago, 57078 Metz Cedex 03 (France); Carré, Vincent, E-mail: vincent.carre@univ-lorraine.fr [LCP-A2MC, FR 2843 Institut Jean Barriol de Chimie et Physique Moléculaires et Biomoléculaires, FR 3624 Réseau National de Spectrométrie de Masse FT-ICR à très haut champ, Université de Lorraine, ICPM, 1 boulevard Arago, 57078 Metz Cedex 03 (France); Le Brech, Yann [LRGP, CNRS, Université de Lorraine, ENSIC, 1, Rue Grandville, 54000 Nancy (France); Mackay, Colin Logan [SIRCAMS, School of Chemistry, University of Edinburgh, Edinburgh, EH9 3FJ, Scotland (United Kingdom); Dufour, Anthony [LRGP, CNRS, Université de Lorraine, ENSIC, 1, Rue Grandville, 54000 Nancy (France); Mašek, Ondřej [UK Biochar Research Center, School of Geosciences, University of Edinburgh, Kings Buildings, Edinburgh, EH9 3JN (United Kingdom); and others

    2017-05-29

    The comprehensive description of complex mixtures such as bio-oils is required to understand and improve the different processes involved during biological, environmental or industrial operation. In this context, we have to consider how different ionization sources can improve a non-targeted approach. Thus, the Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS) has been coupled to electrospray ionization (ESI), laser desorption ionization (LDI) and atmospheric pressure photoionization (APPI) to characterize an oak pyrolysis bio-oil. Close to 90% of the all 4500 compound formulae has been attributed to C{sub x}H{sub y}O{sub z} with similar oxygen class compound distribution. Nevertheless, their relative abundance in respect with their double bound equivalent (DBE) value has evidenced significant differences depending on the ion source used. ESI has allowed compounds with low DBE but more oxygen atoms to be ionized. APPI has demonstrated the efficient ionization of less polar compounds (high DBE values and less oxygen atoms). The LDI behavior of bio-oils has been considered intermediate in terms of DBE and oxygen amounts but it has also been demonstrated that a significant part of the features are specifically detected by this ionization method. Thus, the complementarity of three different ionization sources has been successfully demonstrated for the exhaustive characterization by petroleomic approach of a complex mixture. - Highlights: • Non-targeted mass spectrometry by combining electrospray ionization, atmospheric pressure photoionization and laser/desorption ionization. • Exhaustive description of pyrolytic bio-oil components. • Distinction of sugaric derivatives, lignin derivatives and lipids contained in a woody-based pyrolytic bio-oil.

  13. Bipolar ionization source for ion mobility spectrometry based on vacuum ultraviolet radiation induced photoemission and photoionization.

    Science.gov (United States)

    Chen, Chuang; Dong, Can; Du, Yongzhai; Cheng, Shasha; Han, Fenglei; Li, Lin; Wang, Weiguo; Hou, Keyong; Li, Haiyang

    2010-05-15

    A novel bipolar ionization source based on a commercial vacuum-UV Kr lamp has been developed for ion mobility spectrometry (IMS), which can work in both negative and positive ion mode. Its reactant ions formed in negative ion mode were predominantly assigned to be O(3)(-)(H(2)O)(n), which is different from that of the (63)Ni source with purified air as carrier and drift gases. The formation of O(3)(-)(H(2)O)(n) was due to the production of ozone caused by ultraviolet radiation, and the ozone concentration was measured to be about 1700 ppmv by iodometric titration method. Inorganic molecules such as SO(2), CO(2), and H(2)S can be easily detected in negative ion mode, and a linear dynamic range of 3 orders of magnitude and a limit of detection (S/N = 3) of 150 pptv were obtained for SO(2). Its performance as a negative ion source was investigated by the detection of ammonium nitrate fuel oil explosive, N-nitrobis(2-hydroxyethyl)amine dinitrate, cyclo-1,3,5-trimethylene-2,4,6-trinitramine, and pentaerythritol tetranitrate (PETN) at 150 degrees C. The limit of detection was reached at 45 pg for PETN, which was much lower than the 190 pg using (63)Ni ion mobility spectrometry under the same experimental condition. Also, its performance as an ordinary photoionization source was investigated in detecting benzene, toluene, and m-xylene.

  14. Analysis of nitrogen-based explosives with desorption atmospheric pressure photoionization mass spectrometry.

    Science.gov (United States)

    Kauppila, T J; Flink, A; Pukkila, J; Ketola, R A

    2016-02-28

    Fast methods that allow the in situ analysis of explosives from a variety of surfaces are needed in crime scene investigations and home-land security. Here, the feasibility of the ambient mass spectrometry technique desorption atmospheric pressure photoionization (DAPPI) in the analysis of the most common nitrogen-based explosives is studied. DAPPI and desorption electrospray ionization (DESI) were compared in the direct analysis of trinitrotoluene (TNT), trinitrophenol (picric acid), octogen (HMX), cyclonite (RDX), pentaerythritol tetranitrate (PETN), and nitroglycerin (NG). The effect of different additives in DAPPI dopant and in DESI spray solvent on the ionization efficiency was tested, as well as the suitability of DAPPI to detect explosives from a variety of surfaces. The analytes showed ions only in negative ion mode. With negative DAPPI, TNT and picric acid formed deprotonated molecules with all dopant systems, while RDX, HMX, PETN and NG were ionized by adduct formation. The formation of adducts was enhanced by addition of chloroform, formic acid, acetic acid or nitric acid to the DAPPI dopant. DAPPI was more sensitive than DESI for TNT, while DESI was more sensitive for HMX and picric acid. DAPPI could become an important method for the direct analysis of nitroaromatics from a variety of surfaces. For compounds that are thermally labile, or that have very low vapor pressure, however, DESI is better suited. Copyright © 2016 John Wiley & Sons, Ltd.

  15. On-line product analysis of pine wood pyrolysis using synchrotron vacuum ultraviolet photoionization mass spectrometry.

    Science.gov (United States)

    Weng, Junjie; Jia, Liangyuan; Sun, Shaobo; Wang, Yu; Tang, Xiaofeng; Zhou, Zhongyue; Qi, Fei

    2013-09-01

    The pyrolysis process of pine wood, a promising biofuel feedstock, has been studied with tunable synchrotron vacuum ultraviolet photoionization mass spectrometry. The mass spectra at different photon energies and temperatures as well as time-dependent profiles of several selected species during pine wood pyrolysis process were measured. Based on the relative contents of three lignin subunits, the data indicate that pine wood is typical of softwood. As pyrolysis temperature increased from 300 to 700 °C, some more details of pyrolysis chemistry were observed, including the decrease of oxygen content in high molecular weight species, the observation of high molecular weight products from cellulose chain and lignin polymer, and potential pyrolysis mechanisms for some key species. The formation of polycyclic aromatic hydrocarbons (PAHs) was also observed, as well as three series of pyrolysis products derived from PAHs with mass difference of 14 amu. The time-dependent profiles show that the earliest products are formed from lignin, followed by hemicellulose products, and then species from cellulose.

  16. Assessment of Electron Propagator Methods for the Simulation of Vibrationally Resolved Valence and Core Photoionization Spectra.

    Science.gov (United States)

    Baiardi, A; Paoloni, L; Barone, V; Zakrzewski, V G; Ortiz, J V

    2017-07-11

    The analysis of photoelectron spectra is usually facilitated by quantum mechanical simulations. Because of the recent improvement of experimental techniques, the resolution of experimental spectra is rapidly increasing, and the inclusion of vibrational effects is usually mandatory to obtain a reliable reproduction of the spectra. With the aim of defining a robust computational protocol, a general time-independent formulation to compute different kinds of vibrationally resolved electronic spectra has been generalized to also support photoelectron spectroscopy. The electronic structure data underlying the simulation are computed using different electron propagator approaches. In addition to the more standard approaches, a new and robust implementation of the second-order self-energy approximation of the electron propagator based on a transition operator reference (TOEP2) is presented. To validate our implementation, a series of molecules has been used as test cases. The result of the simulations shows that, for ultraviolet photoionization spectra, the more accurate nondiagonal approaches are needed to obtain a reliable reproduction of vertical ionization energies but that diagonal approaches are sufficient for energy gradients and pole strengths. For X-ray photoelectron spectroscopy, the TOEP2 approach, besides being more efficient, is also the most accurate in the reproduction of both vertical ionization energies and vibrationally resolved bandshapes.

  17. First results on Ge resonant laser photoionization in hollow cathode lamp

    Energy Technology Data Exchange (ETDEWEB)

    Scarpa, Daniele, E-mail: daniele.scarpa@lnl.infn.it; Andrighetto, Alberto [INFN-LNL, Viale Universita’ 2, Legnaro, 35020 Padova (Italy); Barzakh, Anatoly; Fedorov, Dmitry [Petersburg Nuclear Physics Institute (PNPI), NRC Kurchatov Institute, Gatchina 188300 (Russian Federation); Mariotti, Emilio [CNISM, University of Siena DSFTA, 53100 Siena (Italy); Nicolosi, Piergiorgio [Department Information Engineering, University of Padova, IFN-CNR UOF Padova, 35122 Padova (Italy); Tomaselli, Alessandra [Department of Electrical, Computer, and Biomedical Engineering, University of Pavia, 27100 Pavia (Italy)

    2016-02-15

    In the framework of the research and development activities of the SPES project regarding the optimization of the radioactive beam production, a dedicated experimental study has been recently started in order to investigate the possibility of in-source ionization of germanium using a set of tunable dye lasers. Germanium is one of the beams to be accelerated by the SPES ISOL facility, which is under construction at Legnaro INFN Laboratories. The three-step, two color ionization schemes have been tested using a Ge hollow cathode lamp. The slow and the fast optogalvanic signals were detected and averaged by an oscilloscope as a proof of the laser ionization inside the lamp. As a result, several wavelength scans across the resonances of ionization schemes were collected with the fast optogalvanic signal. Some comparisons of ionization efficiency for different ionization schemes were made. Furthermore, saturation curves of the first excitation transitions have been obtained. This investigation method and the setup built in the laser laboratory of the SPES project can be applied for the photo-ionization scheme studies also for the other possible radioactive elements.

  18. Valence-shell photoionization of Ag-like Xe$^{7+}$ ions : experiment and theory

    CERN Document Server

    Mueller, A; Esteves-Macaluso, D; Habibi, M; Aguilar, A; Kilcoyn, A L D; Phaneuf, R A; Ballance, C P; McLaughlin, B M

    2014-01-01

    We report on experimental and theoretical results for the photoionization of Ag-like xenon ions, Xe$^{7+}$, in the photon energy range 95 to 145~eV. The measurements were carried out at the Advanced Light Source at an energy resolution of $\\Delta$E = 65 meV with additional measurements made at $\\Delta$E = 28 meV and 39 meV. Small resonance features below the ground-state ionization threshold, at about 106 eV, are due to the presence of metastable Xe$^{7+} (4d^{10} 4f~^2{\\rm F}^{\\circ}_{5/2,7/2})$ ions in the ion beam. On the basis of the accompanying theoretical calculations using the Dirac Atomic R-matrix Codes (DARC), an admixture of only a few percent of metastable ions in the parent ion beam is inferred, with almost 100\\% of the parent ions in the $(4d^{10}5s ~^2{\\rm S_{1/2}})$ ground level. The cross-section is dominated by a very strong resonance associated with $4d \\rightarrow 5f$ excitation and subsequent autoionization. This prominent feature in the measured spectrum is the $4d^95s5f ~^2{\\rm P}^{\\cir...

  19. Calculation of photoionization differential cross sections using complex Gauss-type orbitals.

    Science.gov (United States)

    Matsuzaki, Rei; Yabushita, Satoshi

    2017-09-05

    Accurate theoretical calculation of photoelectron angular distributions for general molecules is becoming an important tool to image various chemical reactions in real time. We show in this article that not only photoionization total cross sections but also photoelectron angular distributions can be accurately calculated using complex Gauss-type orbital (cGTO) basis functions. Our method can be easily combined with existing quantum chemistry techniques including electron correlation effects, and applied to various molecules. The so-called two-potential formula is applied to represent the transition dipole moment from an initial bound state to a final continuum state in the molecular coordinate frame. The two required continuum functions, the zeroth-order final continuum state and the first-order wave function induced by the photon field, have been variationally obtained using the complex basis function method with a mixture of appropriate cGTOs and conventional real Gauss-type orbitals (GTOs) to represent the continuum orbitals as well as the remaining bound orbitals. The complex orbital exponents of the cGTOs are optimized by fitting to the outgoing Coulomb functions. The efficiency of the current method is demonstrated through the calculations of the asymmetry parameters and molecular-frame photoelectron angular distributions of H2+ and H2 . In the calculations of H2 , the static exchange and random phase approximations are employed, and the dependence of the results on the basis functions is discussed. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  20. The effect of ionizing photons (VUV + soft X-rays) in the equatorial and polar surfaces of the Europa moon

    Science.gov (United States)

    Pilling, Sergio; Alexandre Souza Bergantini, M.

    Europa is the sixth-closest moon of the planet Jupiter, and the smallest of the four Galilean satellites, but still the sixth-largest moon in the Solar System being only slightly smaller than Earth's Moon. Its cold surface is covered mainly by water ice and a small fraction of other molecular frozen species such as CO _{2}, NH _{3}, and SO _{2}. Since Europa has only a very thin O _{2} rich atmosphere, the surface is constantly exposed to space ionizing agents such as UV and soft X-rays photons, electrons and ions. In this work we investigate the effects produced by vacuum ultraviolet (VUV) and soft X-rays (and possibly secondary electrons) on the surface of Europa Moon, simulating this way the space weathering and the prebiotic photochemistry induced by solar photons on this moon. The experiments have been performed using a high vacuum portable chamber from the Laboratorio de Astroquimica e Astrobiologia (LASA/UNIVAP) coupled to the spherical grating monochromator (SGM) beamline in the Brazilian Synchrotron Light Source (LNLS) at Campinas, Brazil. The beamline was operated in off-focus and white beam mode, which produces a wide band spectral range of photons, mainly from 6 eV up to 1200 eV, with the total average flux at the sample of about 1x10 (14) photons cm (-2) s (-1) . The experiments simulate roughly 10.7 years of solar irradiation (energy delivered) on the Europa surface. In-situ sample analyses were performed by a Fourier transform infrared spectrometer. The samples were produced by the adsorption of a gaseous mixture containing H _{2}O:CO _{2}:NH _{3}:SO _{2} (10:1:1:1) at very low temperature (12 K) and than were slowly heated (2 K/min) to the temperatures in which the irradiation occur, i.e. at 90K and 50K, simulating this way the equatorial and polar regions of the moon. This scenario simulates the cold molecular delivery from comets in the early phases of this Jupiter’s moon. The infrared spectra of irradiated samples have presented the formation

  1. Photoionization Energies and Oscillator Strengths of Helium and Helium-like Ions

    Science.gov (United States)

    Faye, N. A. B.; Ndao, A. S.; Konte, A.; Biaye, M.; Wague, A.

    2005-10-01

    We first studied the resonant photoionization of helium-like ions, such as C4+, N5+, and O6+, and determined the wave functions, the excitation energies, and the partial and total widths of the autoionizing states of these ions lying under the n = 3 thresholds of the residual ion. For more detailed analysis of the theory, and a better comprehension of the internal dynamics of atomic resonances and electronic phenomena of correlation, we extended these calculations to other helium-like ions, under higher thresholds (n = 4 and 5) of the hydrogen ions H-, and of Li+, C4+, N5+, and O6+. We were also interested in oscillator strengths. These parameters are important for interpreting the spectra and diagnosing astrophysical and laboratory plasmas, as well as for analyzing the spectra coming from space and determining the composition and relative abundance from the various elements of the stellar and interstellar environment. We sought a better comprehension of the coupling between autoionizing and continuum states and of the phenomena of electronic correlations. We used the method of diagonalization that has been used below the n = 2 threshold of the residual ion. The results are important for astrophysicists and physicists studying matter-radiation interaction and for the invention of new laser systems. We also measured laser-induced chlorophyll fluorescence (LICF) emission spectra of the leaves of some tropical plants using a compact fiber-optic fluorosensor with a continuous-wave violet diode laser as the exciting source and an integrated digital spectrometer to analyze the state of stress of the plants.

  2. Ultrasonic nebulization extraction/low pressure photoionization mass spectrometry for direct analysis of chemicals in matrices.

    Science.gov (United States)

    Liu, Chengyuan; Zhu, Yanan; Zhou, Zhongyue; Yang, Jiuzhong; Qi, Fei; Pan, Yang

    2015-09-03

    A novel ultrasonic nebulization extraction/low-pressure photoionization (UNE-LPPI) system has been designed and employed for the rapid mass spectrometric analysis of chemicals in matrices. An ultrasonic nebulizer was used to extract the chemicals in solid sample and nebulize the solvent in the nebulization cell. Aerosols formed by ultrasonic were evaporated by passing through a transferring tube, and desolvated chemicals were ionized by the emitted light (10.6 eV) from a Krypton discharge lamp at low pressure (∼68 Pa). First, a series of semi/non-volatile compounds with different polarities, such as polycyclic aromatic hydrocarbons (PAHs), amino acids, dipeptides, drugs, nucleic acids, alkaloids, and steroids were used to test the system. Then, the quantification capability of UNE-LPPI was checked with: 1) pure chemicals, such as 9,10-phenanthrenequinone and 1,4-naphthoquinone dissolved in solvent; 2) soil powder spiked with different amounts of phenanthrene and pyrene. For pure chemicals, the correlation coefficient (R(2)) for the standard curve of 9,10-phenanthrenequinone in the range of 3 ng-20 μg mL(-1) was 0.9922, and the measured limits of detection (LOD) was 1 ng ml(-1). In the case of soil powder, linear relationships for phenanthrene and pyrene from 10 to 400 ng mg(-1) were obtained with correlation coefficients of 0.9889 and 0.9893, respectively. At last, the feasibility of UNE-LPPI for the detection of chemicals in real matrices such as tablets and biological tissues (tea, Citrus aurantium peel and sage (Salvia officinalis) leaf) were successfully demonstrated. Copyright © 2015 Elsevier B.V. All rights reserved.

  3. Photoionization modelling of the giant broad-line region in NGC 3998

    Science.gov (United States)

    Devereux, Nick

    2018-01-01

    Prior high angular resolution spectroscopic observations of the Low-ionization nuclear emission-line region (Liner) in NGC 3998 obtained with the Space Telescope Imaging Spectrograph (STIS) aboard the Hubble Space Telescope (HST) revealed a rich UV-visible spectrum consisting of broad permitted and broad forbidden emission lines. The photoionization code XSTAR is employed together with reddening-insensitive emission line diagnostics to constrain a dynamical model for the broad-line region (BLR) in NGC 3998. The BLR is modelled as a large H+ region ∼ 7 pc in radius consisting of dust-free, low-density ∼ 104 cm-3, low-metallicity ∼ 0.01 Z/Z⊙ gas. Modelling the shape of the broad H α emission line significantly discriminates between two independent measures of the black hole (BH) mass, favouring the estimate of de Francesco, Capetti & Marconi (2006). Interpreting the broad H α emission line in terms of a steady-state spherically symmetric inflow leads to a mass inflow rate of 1.4 × 10-2 M⊙ yr-1, well within the present uncertainty of calculations that attempt to explain the observed X-ray emission in terms of an advection-dominated accretion flow (ADAF). Collectively, the model provides an explanation for the shape of the H α emission line, the relative intensities and luminosities for the H Balmer, [O III], and potentially several of the broad UV emission lines, as well as refining the initial conditions needed for future modelling of the ADAF.

  4. Radiative Recombination and Photoionization Data for Tungsten Ions. Electron Structure of Ions in Plasmas

    Directory of Open Access Journals (Sweden)

    Malvina B. Trzhaskovskaya

    2015-05-01

    Full Text Available Theoretical studies of tungsten ions in plasmas are presented. New calculations of the radiative recombination and photoionization cross-sections, as well as radiative recombination and radiated power loss rate coefficients have been performed for 54 tungsten ions for the range W6+–W71+. The data are of importance for fusion investigations at the reactor ITER, as well as devices ASDEX Upgrade and EBIT. Calculations are fully relativistic. Electron wave functions are found by the Dirac–Fock method with proper consideration of the electron exchange. All significant multipoles of the radiative field are taken into account. The radiative recombination rates and the radiated power loss rates are determined provided the continuum electron velocity is described by the relativistic Maxwell–Jüttner distribution. The impact of the core electron polarization on the radiative recombination cross-section is estimated for the Ne-like iron ion and for highly-charged tungsten ions within an analytical approximation using the Dirac–Fock electron wave functions. The effect is shown to enhance the radiative recombination cross-sections by ≲20%. The enhancement depends on the photon energy, the principal quantum number of polarized shells and the ion charge. The influence of plasma temperature and density on the electron structure of ions in local thermodynamic equilibrium plasmas is investigated. Results for the iron and uranium ions in dense plasmas are in good agreement with previous calculations. New calculations were performed for the tungsten ion in dense plasmas on the basis of the average-atom model, as well as for the impurity tungsten ion in fusion plasmas using the non-linear self-consistent field screening model. The temperature and density dependence of the ion charge, level energies and populations are considered.

  5. Direct sampling of chemical weapons in water by photoionization mass spectrometry.

    Science.gov (United States)

    Syage, Jack A; Cai, Sheng-Suan; Li, Jianwei; Evans, Matthew D

    2006-05-01

    The vulnerability of water supplies to toxic contamination calls for fast and effective means for screening water samples for multiple threats. We describe the use of photoionization (PI) mass spectrometry (MS) for high-speed, high-throughput screening and molecular identification of chemical weapons (CW) threats and other hazardous compounds. The screening technology can detect a wide range of compounds at subacute concentrations with no sample preparation and a sampling cycle time of approximately 45 s. The technology was tested with CW agents VX, GA, GB, GD, GF, HD, HN1, and HN3, in addition to riot agents and precursors. All are sensitively detected and give simple PI mass spectra dominated by the parent ion. The target application of the PI MS method is as a routine, real-time early warning system for CW agents and other hazardous compounds in air and in water. In this work, we also present comprehensive measurements for water analysis and report on the system detection limits, linearity, quantitation accuracy, and false positive (FP) and false negative rates for concentrations at subacute levels. The latter data are presented in the form of receiver operating characteristic curves of the form of detection probability P(D) versus FP probability P(FP). These measurements were made using the CW surrogate compounds, DMMP, DEMP, DEEP, and DIMP. Method detection limits (3sigma) obtained using a capillary injection method yielded 1, 6, 3, and 2 ng/mL, respectively. These results were obtained using 1-microL injections of water samples without any preparation, corresponding to mass detection limits of 1, 6, 3, and 2 pg, respectively. The linear range was about 3-4 decades and the dynamic range about 4-5 decades. The relative standard deviations were generally <10% at CW subacute concentrations levels.

  6. Evaluation of photoionization detector performance in photocatalytic studies for removing volatile organic compounds

    Directory of Open Access Journals (Sweden)

    Masoud Rismanchian

    2012-01-01

    Full Text Available Aims: The aim of this study was to evaluate the performance of photoionization detector (PID system as a substitution for gas chromatography in the measurement of a 3 xylene isomer mixtures as a representative of the volatile organic compounds in photocatalytic studies. Materials and Methods: This study has been carried out by using test setup for generating known concentrations from equal ratio of 3 xylene isomers. The concentration values to be evaluated were classified into 4 concentration ranges from 0.1 of threshold limit values (TLV to 2 of TLV to evaluate the PID system appliance compared with that in the reference method. The test was done 4 times for each evaluation concentration in 3 relative humidity levels (0%, 20%, and 80%. Results: The correlation between the PID results and the National Institue of Occupational Safety and Health (NIOSH reference method results in an atmosphere with relative humidity of 0%, 20%, and 80% were good and, respectively, were 0.993, 0.992, and 0.991 and total correlation was 0.989. The paired t test indicates a significant difference between actual concentrations in reference method and the extracted concentration from PID. Conclusions: Although the results presented by PID in the present study are different from those extracted from the reference method (from 10 to 260 ppm, the equipment response is linear. So, the results are acceptable in photocatalytic studies in case the contaminant concentration is measured by the same equipment either before or after the reactor for calculation of the removal efficiency. PID calibration with the test material(s is recommended.

  7. Time-Dependent Photoionization of Gaseous Nebulae: The Pure Hydrogen Case

    Science.gov (United States)

    Garcia, J.; Elhoussieny, E. E.; Bautista, M. A.; Kallman, Timothy R.

    2013-01-01

    We study the problem of time-dependent photoionization of low density gaseous nebulae subjected to sudden changes in the intensity of ionizing radiation. To this end, we write a computer code that solves the full timedependent energy balance, ionization balance, and radiation transfer equations in a self-consistent fashion for a simplified pure hydrogen case. It is shown that changes in the ionizing radiation yield ionizationthermal fronts that propagate through the cloud, but the propagation times and response times to such fronts vary widely and nonlinearly from the illuminated face of the cloud to the ionization front (IF). IFthermal fronts are often supersonic, and in slabs initially in pressure equilibrium such fronts yield large pressure imbalances that are likely to produce important dynamical effects in the cloud. Further, we studied the case of periodic variations in the ionizing flux. It is found that the physical conditions of the plasma have complex behaviors that differ from any steady-state solution. Moreover, even the time average of ionization and temperature is different from any steady-state case. This time average is characterized by overionization and a broader IF with respect to the steady-state solution for a mean value of the radiation flux. Around the time average of physical conditions there is a large dispersion in instantaneous conditions, particularly across the IF, which increases with the period of radiation flux variations. Moreover, the variations in physical conditions are asynchronous along the slab due to the combination of nonlinear propagation times for thermal frontsIFs and equilibration times.

  8. Desorption atmospheric pressure photoionization with polydimethylsiloxane as extraction phase and sample plate material

    Energy Technology Data Exchange (ETDEWEB)

    Vaikkinen, A. [Division of Pharmaceutical Chemistry, Faculty of Pharmacy, P.O. Box 56, FIN-00014 University of Helsinki (Finland); Kotiaho, T. [Division of Pharmaceutical Chemistry, Faculty of Pharmacy, P.O. Box 56, FIN-00014 University of Helsinki (Finland); Laboratory of Analytical Chemistry, Department of Chemistry, P.O. Box 55, FIN-00014 University of Helsinki (Finland); Kostiainen, R. [Division of Pharmaceutical Chemistry, Faculty of Pharmacy, P.O. Box 56, FIN-00014 University of Helsinki (Finland); Kauppila, T.J., E-mail: tiina.kauppila@helsinki.fi [Division of Pharmaceutical Chemistry, Faculty of Pharmacy, P.O. Box 56, FIN-00014 University of Helsinki (Finland)

    2010-12-03

    Desorption atmospheric pressure photoionization (DAPPI) is an ambient ionization technique for mass spectrometry (MS) that can be used to ionize polar as well as neutral and completely non-polar analytes. In this study polydimethylsiloxane (PDMS) was used as a solid phase extraction sorbent for DAPPI-MS analysis. Pieces of PDMS polymer were soaked in an aqueous sample, where the analytes were sorbed from the sample solution to PDMS. After this, the extracted analytes were desorbed directly from the polymer by the hot DAPPI spray solvent plume, without an elution step. Swelling and extracting the PDMS with a cleaning solvent prior to extraction diminished the high background in the DAPPI mass spectrum caused by PDMS oligomers. Acetone, hexane, pentane, toluene, diisopropylamine and triethylamine were tested for this purpose. The amines were most efficient in reducing the PDMS background, but they also suppressed the signals of low proton affinity analytes. Toluene was chosen as the optimum cleaning solvent, since it reduced the PDMS background efficiently and gave intensive signals of most of the studied analytes. The effects of DAPPI spray solvents toluene, acetone and anisole on the PDMS background and the ionization of analytes were also compared and extraction conditions were optimized. Anisole gave a low background for native PDMS, but toluene ionized the widest range of analytes. Analysis of verapamil, testosterone and anthracene from purified, spiked wastewater was performed to demonstrate that the method is suited for in-situ analysis of water streams. In addition, urine spiked with several analytes was analyzed by the PDMS method and compared to the conventional DAPPI procedure, where sample droplets are applied on PMMA surface. With the PDMS method the background ion signals caused by the urine matrix were lower, the S/N ratios of analytes were 2-10 times higher, and testosterone, anthracene and benzo[a]pyrene that were not detected from PMMA in urine

  9. Double inflation

    Energy Technology Data Exchange (ETDEWEB)

    Silk, J.; Turner, M.S.

    1986-04-01

    The Zel'dovich spectrum of adiabatic density perturbations is a generic prediction of inflation. There is increasing evidence that when the spectrum is normalized by observational data on small scales, there is not enough power on large scales to account for the observed large-scale structure in the Universe. Decoupling the spectrum on large and small scales could solve this problem. As a means of decoupling the large and small scales we propose double inflation (i.e., two episodes of inflation). In this scenario the spectrum on large scales is determined by the first episode of inflation and those on small scales by a second episode of inflation. We present three models for such a scenario. By nearly saturating the large angular-scale cosmic microwave anisotropy bound, we can easily account for the observed large-scale structure. We take the perturbations on small scales to be very large, deltarho/rho approx. = 0.1 to 0.01, which results in the production of primordial black holes (PBHs), early formation of structure, reionization of the Universe, and a rich array of astrophysical events. The ..cap omega..-problem is also addressed by our scenario. Allowing the density perturbations produced by the second episode of inflation to be large also lessens the fine-tuning required in the scalar potential and makes reheating much easier. We briefly speculate on the possibility that the second episode of inflation proceeds through the nucleation of bubbles, which today manifest themselves as empty bubbles whose surfaces are covered with galaxies. 37 refs., 1 fig.

  10. Seeing Double

    Science.gov (United States)

    Pesic, Peter

    2003-10-01

    The separateness and connection of individuals is perhaps the central question of human life: What, exactly, is my individuality? To what degree is it unique? To what degree can it be shared, and how? To the many philosophical and literary speculations about these topics over time, modern science has added the curious twist of quantum theory, which requires that the elementary particles of which everything consists have no individuality at all. All aspects of chemistry depend on this lack of individuality, as do many branches of physics. From where, then, does our individuality come? In Seeing Double, Peter Pesic invites readers to explore this intriguing set of questions. He draws on literary and historical examples that open the mind (from Homer to Martin Guerre to Kafka), philosophical analyses that have helped to make our thinking and speech more precise, and scientific work that has enabled us to characterize the phenomena of nature. Though he does not try to be all-inclusive, Pesic presents a broad range of ideas, building toward a specific point of view: that the crux of modern quantum theory is its clash with our ordinary concept of individuality. This represents a departure from the usual understanding of quantum theory. Pesic argues that what is bizarre about quantum theory becomes more intelligible as we reconsider what we mean by individuality and identity in ordinary experience. In turn, quantum identity opens a new perspective on us. Peter Pesic is a Tutor and Musician-in-Residence at St. John's College, Santa Fe, New Mexico. He has a Ph.D. in physics from Stanford University.

  11. Photoionization mass spectrometric study of the prebiotic species formamide in the 10-20 eV photon energy range.

    Science.gov (United States)

    Leach, Sydney; Jochims, Hans-Werner; Baumgärtel, Helmut

    2010-04-15

    A photoion mass spectrometry study of the prebiotic species formamide was carried out using synchrotron radiation over the photon energy range 10-20 eV. Photoion yield curves were measured for the parent ion and seven fragment ions. The ionization energy of formamide was determined as IE (1(2)A') = 10.220 +/- 0.005 eV, in agreement with a value obtained by high resolution photoelectron spectroscopy. The adiabatic energy of the first excited state of the ion, 1(2)A'', was revised to 10.55 eV. A comparison of the ionization energies of related formamides, amino acids, and polypeptides provides useful information on the varied effects of methylation and shows that polymerization does not substantially alter the ionization properties of the amino acid monomer units. Assignments of the fragment ions and the pathways of their formation by dissociative photoionization were made on the basis of ion appearance energies in conjunction with thermochemical data and the results of earlier electron impact mass spectral studies. Some of the dissociation pathways are considered to involve coupling between the 1(2)A' ground state and the low-lying 1(2)A'' excited state of the cation. Heats of formation are derived for all ions detected and are compared with literature values where they exist. Formation of the HNCO(+) ion occurs by two separate paths, one involving H(2) loss, the other H + H. In the conclusion a brief discussion is given of some astrophysical implications of these results.

  12. Vacuum ultraviolet photoionization and ab initio Investigations of methyl tert-butyl ether (MTBE) clusters and MTBE-water clusters

    Science.gov (United States)

    Di Palma, Tonia M.; Bende, Attila

    2013-03-01

    The structures and energetics of neutral, ionized and protonated methyl tert-butyl ether (MTBE) clusters and (MTBE)m(H2O)n clusters are investigated by tunable vacuum-UV photoionization mass spectrometry and DFT calculations. While the mass spectra of bare MTBE clusters show unprotonated and protonated clusters ions, the mass spectra of mixed clusters show protonated ions that exhibit magic numbers that correspond to n = m - 2 combinations. Ab initio calculations show that in the larger clusters a multiple proton transfer leads to a protonated water core where all available hydrogen bonds interact with MTBE molecules. The resulting bond structure explains the cluster stability.

  13. Short pulse carrier-envelope phase absolute single-shot measurement by photoionization of gases with a guided laser beam.

    Science.gov (United States)

    Strelkov, V V; Mével, E; Constant, E

    2014-03-24

    We present an all optical approach to measure the value of the carrier-envelope phase (CEP) of a short intense laser pulse. This method relies on photo-ionization of gases with a guided laser beam. This approach that provides the absolute value of the CEP, is compatible with single shot characterization, is scalable in wavelength, does not suffer from bandwidth limitation and is largely intensity independent. It has also the potential to provide a full characterization of the pulse profile via high order autocorrelation on a single shot basis.

  14. Photoionization of atoms and small molecules using synchrotron radiation. [SF/sub 6/, SiF/sub 4/

    Energy Technology Data Exchange (ETDEWEB)

    Ferrett, T.A.

    1986-11-01

    The combination of synchrotron radiation and time-of-flight electron spectroscopy has been used to study the photoionization dynamics of atoms (Li) and small molecules (SF/sub 6/, SiF/sub 4/, and SO/sub 2/). Partial cross sections and angular distribution asymmetry parameters have been measured for Auger electrons and photoelectrons as functions of photon energy. Emphasis is on the basic understanding of electron correlation and resonant effects as manifested in the photoemission spectra for these systems. 254 refs., 46 figs., 10 tabs.

  15. Flame chemistry of alkane-rich gasoline fuels and a surrogate using photoionization mass spectrometry: I. Primary reference fuel

    KAUST Repository

    Selim, H.

    2015-03-30

    Improving the gasoline engines performance requires thorough understanding of their fundamental chemistry of combustion. Since the actual gasoline fuels are difficult to examine, due to the lack of knowledge about their exact composition as well as their numerous fuel components, the approach of using simpler gasoline fuels with limited number of components or using surrogate fuels has become more common. In this study, the combustion chemistry of laminar premixed flame of different gasoline fuels/surrogate has been examined. In this particular paper, the primary reference fuel, PRF84, has been examined at equivalence ratio of 1 and pressure of 20 Torr. The gas analysis was conducted using vacuum ultraviolet photoionization mass spectrometry.

  16. Design and performance of the vacuum chambers for the undulator of the VUV FEL at the TESLA test facility at DESY

    CERN Document Server

    Hahn, U; Pflüger, J; Rüter, M; Schmidt, G; Trakhtenberg, E

    2000-01-01

    Three vacuum chambers for the VUV SASE FEL undulator sections at the TESLA Test Facility (TTF) were designed, built, tested and installed. Each chamber is 4.5 m long and of 11.5 mm thick. The inner diameter of the beam pipe is 9.5 mm. The rectangular chamber profile with a width of 128 mm is used to integrate beam position monitors and steerers. This is needed to provide a good overlap between the electron and the photon beam over the entire undulator length. The chambers are built in an aluminum extrusion technology developed for the insertion device vacuum chambers of the Advanced Photon Source. After manufacturing, special processing was performed to reach low outgassing rates (<1x10 sup - sup 1 sup 1 mbar centre dot l/s centre dot cm sup 2) and particle-free chambers. Mounting of the chambers at TTF were performed under clean room conditions better class 100.

  17. The spectral characteristics of Gd sub 2 SiO sub 5 :Eu sup 3 sup + in VUV-UV range

    CERN Document Server

    Chen Yong; Wei Ya Guang; Tao Ye

    2002-01-01

    Synchrotron radiation source was used to investigated the spectral characteristics of Gd sub 2 SiO sub 5 :Eu sup 3 sup + in VUV-UV range. The various energy transfers at room temperature and 10 K, including from host or Gd sup 3 sup + ions to Eu sup 3 sup + ions and transfer between Eu sup 3 sup + ions at two different lattice sites, were discussed. In addition the emission spectra under 186 nm and 276 nm excitation were compared from the view of quantum cutting. The results indicate that Gd sub 2 SiO sub 5 :Eu sup 3 sup + is a kind of material with potential high efficiency quantum cutting

  18. Double hard scattering without double counting

    Science.gov (United States)

    Diehl, Markus; Gaunt, Jonathan R.; Schönwald, Kay

    2017-06-01

    Double parton scattering in proton-proton collisions includes kinematic regions in which two partons inside a proton originate from the perturbative splitting of a single parton. This leads to a double counting problem between single and double hard scattering. We present a solution to this problem, which allows for the definition of double parton distributions as operator matrix elements in a proton, and which can be used at higher orders in perturbation theory. We show how the evaluation of double hard scattering in this framework can provide a rough estimate for the size of the higher-order contributions to single hard scattering that are affected by double counting. In a numeric study, we identify situations in which these higher-order contributions must be explicitly calculated and included if one wants to attain an accuracy at which double hard scattering becomes relevant, and other situations where such contributions may be neglected.

  19. Double hard scattering without double counting

    Energy Technology Data Exchange (ETDEWEB)

    Diehl, Markus [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Gaunt, Jonathan R. [VU Univ. Amsterdam (Netherlands). NIKHEF Theory Group; Schoenwald, Kay [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany)

    2017-02-15

    Double parton scattering in proton-proton collisions includes kinematic regions in which two partons inside a proton originate from the perturbative splitting of a single parton. This leads to a double counting problem between single and double hard scattering. We present a solution to this problem, which allows for the definition of double parton distributions as operator matrix elements in a proton, and which can be used at higher orders in perturbation theory. We show how the evaluation of double hard scattering in this framework can provide a rough estimate for the size of the higher-order contributions to single hard scattering that are affected by double counting. In a numeric study, we identify situations in which these higher-order contributions must be explicitly calculated and included if one wants to attain an accuracy at which double hard scattering becomes relevant, and other situations where such contributions may be neglected.

  20. Effects of exchange-correlation potentials on the density-functional description of C60 versus C240 photoionization

    Science.gov (United States)

    Choi, Jinwoo; Chang, EonHo; Anstine, Dylan M.; Madjet, Mohamed El-Amine; Chakraborty, Himadri S.

    2017-02-01

    We study the photoionization properties of the C60 versus C240 molecule in a spherical jellium frame of the density-functional method. Two prototypical approximations of the exchange-correlation (xc) functional are used: (i) the Gunnarsson-Lundqvist parametrization [Gunnarsson and Lundqvist, Phys. Rev. B 13, 4274 (1976), 10.1103/PhysRevB.13.4274] with a correction for the electron self-interaction (SIC) introduced artificially from the outset and (ii) a gradient-dependent augmentation of approximation (i) using the van Leeuwen and Baerends model potential [van Leeuwen and Baerends, Phys. Rev. A 49, 2421 (1994), 10.1103/PhysRevA.49.2421], in lieu of SIC, that restores electrons' asymptotic properties intrinsically within the formalism. Ground-state results from the two schemes for both molecules show differences in the shapes of mean-field potentials and bound-level properties. The choice of an xc scheme also significantly alters the dipole single-photoionization cross sections obtained by an ab initio method that incorporates linear-response dynamical correlations. Differences in the structures and ionization responses between C60 and C240 uncover the effect of molecular size on the underlying physics. Analysis indicates that the collective plasmon resonances with the gradient-based xc option produce results noticeably closer to the experimental data available for C60.

  1. Relativistic R-matrix calculations for photoionization cross-sections of C IV: implications for photorecombination of C V

    Science.gov (United States)

    Sardar, Shahid; Xu, Xin; Xu, Long-Quan; Zhu, Lin-Fan

    2018-02-01

    In this paper we present photoionization cross-sections of the ground and excited states of Li-like carbon (C IV) in the framework of fully relativistic R-matrix formalism as implemented in Dirac atomic R-matrix code. For target wavefunctions expansion, Multiconfiguration Dirac Hartree Fock calculations are performed for the lowest 17 target states of He-like carbon (C V) arising from 1s2 and 1snl, with n = 2, 3 and l = s, p, d configurations. Our target energy levels and transition parameters belonging to these levels are ascertained to be in excellent agreement with the experimental and the well-established theoretical results. We use the principle of detailed balance to get the photorecombination (PR) cross-sections of the ground state of C V. Both photoionization and PR cross-sections manifest important KLL and KLM resonance structures which are in very good agreement with the accurate measurements at Advanced Light Source (ion photon end beam station) and CRYRING (synchrotron storage ring).

  2. Experimental and theoretical study on emission spectra of a nitrogen photoionized plasma induced by intense EUV pulses

    Directory of Open Access Journals (Sweden)

    Saber Ismail

    2018-01-01

    Full Text Available Spectral lines of low-temperature nitrogen photoionized plasma were investigated. The photoionized plasma was created in the result of irradiation N2 gas using laser plasma EUV radiation pulses. The source was based on a 10J/10ns Nd:YAG (λ = 1064 nm laser system and a gas puff target. The EUV radiation pulses were collected and focused using a grazing incidence multifoil EUV collector. The emission spectra were measured in the ultraviolet and visible (UV/Vis range. It was found that the plasma emission lines in the lower region of the UV range are relativley weak. Nonetheless, a part of the spectra contains strong molecular band in the 300 - 430 nm originated from second positive and first negative systems band transitions of nitrogen. These molecular band transitions were identified using a code for study the diatomic molecules, LIFBASE. The vibrational band of Δv = 0 and ±1 transitions were significantly populated than of that with Δv = ±2 and 3 transitions. A comparison of the calculated and measured spectrum is presented. With an assumption of a local thermodynamic equilibrium (LTE, the vibrational temperature was determined from the integrated band intensities with the help of the Boltzmann plot method and compared to the temperature predicted by SPECAIR and LIFBASE simulations. A summary of the results and the variations in the vibrational temperatures was discussed.

  3. Communication: Ultrafast time-resolved ion photofragmentation spectroscopy of photoionization-induced proton transfer in phenol-ammonia complex

    Energy Technology Data Exchange (ETDEWEB)

    Shen, Ching-Chi; Tsai, Tsung-Ting; Ho, Jr-Wei; Chen, Yi-Wei; Cheng, Po-Yuan, E-mail: pycheng@mx.nthu.edu.tw [Department of Chemistry, National Tsing Hua University, Hsinchu 30043, Taiwan (China)

    2014-11-07

    Photoionization-induced proton transfer (PT) in phenol-ammonia (PhOH-NH{sub 3}) complex has been studied using ultrafast time-resolved ion photofragmentation spectroscopy. Neutral PhOH-NH{sub 3} complexes prepared in a free jet are photoionized by femtosecond [1+1] resonance-enhanced multiphoton ionization via the S{sub 1} state, and the subsequent dynamics occurring in the cations is probed by delayed pulses that result in ion fragmentation. The observed temporal evolutions of the photofragmentation spectra are consistent with an intracomplex PT reaction. The experiments revealed that PT in [PhOH-NH{sub 3}]{sup +} cation proceeds in two distinct steps: an initial impulsive wave-packet motion in ∼70 fs followed by a slower relaxation of about 1 ps that stabilizes the system into the final PT configuration. These results indicate that for a barrierless PT system, even though the initial PT motions are impulsive and ultrafast, the reaction may take a much longer time scale to complete.

  4. Feasibility of capillary liquid chromatography/microchip atmospheric pressure photoionization mass spectrometry in analyzing anabolic steroids in urine samples.

    Science.gov (United States)

    Ahonen, Linda L; Haapala, Markus; Saarela, Ville; Franssila, Sami; Kotiaho, Tapio; Kostiainen, Risto

    2010-04-15

    We examined the feasibility of capillary liquid chromatography/microchip atmospheric pressure photoionization tandem mass spectrometry (capLC/microAPPI-MS/MS) for the analysis of anabolic steroids in human urine. The urine samples were pretreated by enzymatic hydrolysis (with beta-glucuronidase from Helix pomatia), and the compounds were liquid-liquid extracted with diethyl ether. After separation the compounds were vaporized by microchip APPI, photoionized by a 10 eV krypton discharge lamp, and detected by selected reaction monitoring. The capLC/microAPPI-MS/MS method showed good sensitivity with detection limits at the level of 1.0 ng mL(-1), good linearity with correlation coefficients between 0.9954 and 0.9990, and good repeatability with relative standard deviations below 10%. These results demonstrate that microchip APPI combined with capLC/MS/MS provides a new potential method for analyzing non-polar and neutral compounds in biological samples. 2010 John Wiley & Sons, Ltd.

  5. Experimental and theoretical study on emission spectra of a nitrogen photoionized plasma induced by intense EUV pulses

    Science.gov (United States)

    Saber, Ismail; Bartnik, Andrzej; Skrzeczanowski, Wojciech; Wachulak, Przemyslaw; Jarocki, Roman; Fiedorowicz, Henryk; Limpouch, Jiri

    2018-01-01

    Spectral lines of low-temperature nitrogen photoionized plasma were investigated. The photoionized plasma was created in the result of irradiation N2 gas using laser plasma EUV radiation pulses. The source was based on a 10J/10ns Nd:YAG (λ = 1064 nm) laser system and a gas puff target. The EUV radiation pulses were collected and focused using a grazing incidence multifoil EUV collector. The emission spectra were measured in the ultraviolet and visible (UV/Vis) range. It was found that the plasma emission lines in the lower region of the UV range are relativley weak. Nonetheless, a part of the spectra contains strong molecular band in the 300 - 430 nm originated from second positive and first negative systems band transitions of nitrogen. These molecular band transitions were identified using a code for study the diatomic molecules, LIFBASE. The vibrational band of Δv = 0 and ±1 transitions were significantly populated than of that with Δv = ±2 and 3 transitions. A comparison of the calculated and measured spectrum is presented. With an assumption of a local thermodynamic equilibrium (LTE), the vibrational temperature was determined from the integrated band intensities with the help of the Boltzmann plot method and compared to the temperature predicted by SPECAIR and LIFBASE simulations. A summary of the results and the variations in the vibrational temperatures was discussed.

  6. Effect of photoions on the line shape of the Foerster resonance lines and microwave transitions in cold rubidium Rydberg atoms

    Energy Technology Data Exchange (ETDEWEB)

    Tretyakov, D. B.; Beterov, I. I.; Entin, V. M.; Yakshina, E. A.; Ryabtsev, I. I., E-mail: ryabtsev@isp.nsc.ru [Russian Academy of Sciences, Institute of Semiconductor Physics, Siberian Branch (Russian Federation); Dyubko, S. F.; Alekseev, E. A.; Pogrebnyak, N. L. [National Academy of Sciences of Ukraine, Institute of Radio Astronomy (Ukraine); Bezuglov, N. N. [St. Petersburg State University (Russian Federation); Arimondo, E. [Universita di Pisa (Italy)

    2012-01-15

    Experiments are carried out on the spectroscopy of the Foerster resonance lines Rb(37P) + Rb(37P) {yields} Rb(37S) + Rb(38S) and microwave transitions nP {yields} n Prime S, n Prime D between Rydberg states of cold rubidium atoms in a magneto-optical trap (MOT). Under ordinary conditions, all spectra exhibit a linewidth of 2-3 MHz irrespective of the interaction time between atoms or between atoms and microwave radiation, although the limit resonance width should be determined by the inverse interaction time. The analysis of experimental conditions has shown that the main source of line broadening is the inhomogeneous electric field of cold photoions that are generated under the excitation of initial nP Rydberg states by broadband pulsed laser radiation. The application of an additional electric-field pulse that rapidly extracts photoions produced by a laser pulse leads to a considerable narrowing of lines of microwave resonances and the Foerster resonance. Various sources of line broadening in cold Rydberg atoms are analyzed.

  7. The influence of the positronium photoionization rate on the polar cap X-ray luminosity of radio pulsars

    Science.gov (United States)

    Barsukov, D. P.; Vorontsov, M. V.

    2017-12-01

    The influence of the positronium photoionization rate on the polar cap X-ray luminosity of old radio pulsars is considered. It is assumed that the polar cap is heated only by reverse positrons accelerated in the pulsar diode. It is supposed that the pulsar diode is in a stationary state with the lower plate located near the star surface (polar cap model) occupies all the pulsar tube cross section and operates in the regime of steady space charge by the limited electron flow. The influence of a small-scale magnetic field on the electric field inside the pulsar diode is taken into account. The reverse positron current is calculated in the framework of two models: rapid and gradual screening. To calculate the production rate of electron-positron pairs we take into account only the curvature radiation of primary electrons and its absorption in the magnetic field. It is assumed that some fraction of electron-positron pairs is created in a bound state (positronium). Later, such positroniums are photoionized by thermal photons from the polar cap.

  8. Photoionization study of doubly-excited helium at ultra-high resolution

    Energy Technology Data Exchange (ETDEWEB)

    Kaindl, G.; Schulz, K.; Domke, M. [Freie Universitaet Berlin (Germany)] [and others

    1997-04-01

    Ever since the pioneering work of Madden & Codling and Cooper, Fano & Prats on doubly-excited helium in the early sixties, this system may be considered as prototypical for the study of electron-electron correlations. More detailed insight into these states could be reached only much later, when improved theoretical calculations of the optically-excited {sup 1}P{sup 0} double-excitation states became available and sufficiently high energy resolution ({delta}E=4.0 meV) was achieved. This allowed a systematic investigation of the double-excitation resonances of He up to excitation energies close to the double-ionization threshold, I{sub infinity}=79.003 eV, which stimulated renewed theoretical interest into these correlated electron states. The authors report here on striking progress in energy resolution in this grazing-incidence photon-energy range of grating monochromators and its application to hitherto unobservable states of doubly-excited He. By monitoring an extremely narrow double-excitation resonance of He, with a theoretical lifetime width of less than or equal to 5 {mu}eV, a resolution of {delta}E=1.0 meV (FWHM) at 64.1 eV could be achieved. This ultra-high spectral resolution, combined with high photon flux, allowed the investigation of new Rydberg resonances below the N=3 ionization threshold, I{sub 3}, as well as a detailed comparison with ab-initio calculations.

  9. Polycyclic aromatic hydrocarbons (PAHs) in ambient aerosols from Beijing: characterization of low volatile PAHs by positive-ion atmospheric pressure photoionization (APPI) coupled with Fourier transform ion cyclotron resonance.

    Science.gov (United States)

    Jiang, Bin; Liang, Yongmei; Xu, Chunming; Zhang, Jingyi; Hu, Miao; Shi, Quan

    2014-05-06

    Aromatic fractions derived from aerosol samples were characterized by gas chromatography and mass spectrometry (GC-MS), high temperature simulated distillation (SIMDIS), and positive-ion atmospheric pressure photoionization (APPI) Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS), respectively. It was found that about 27 wt % compounds in aromatic fractions could not be eluted from a GC column and some large molecule PAHs were neglected in GC-MS analysis. APPI FT-ICR MS was proven to be a powerful approach for characterizing the molecular composition of aromatics, especially for the large molecular species. An aromatic sample from Beijing urban aerosol was successfully characterized by APPI FT-ICR MS. Results showed that most abundant aromatic compounds in PM2.5 (particles with aerodynamic diameter ≤ 2.5 μm) were highly condensed hydrocarbons with 4-8 aromatic rings and their homologues with very short alkyl chains. Furthermore, heteroatom-containing hydrocarbons were found as the significant components of the aromatic fractions: O1, O2, N1, and S1 class species with 10-28 DBEs (double bond equivalents) and 14-38 carbon numbers were identified by APPI FT-ICR MS. The heteroatom PAHs had similar DBEs and carbon number distribution as regular PAHs.

  10. Photo-ionization cross-section of donor-related in (In,Ga)N/GaN core/shell under hydrostatic pressure and electric field effects

    Science.gov (United States)

    El Ghazi, Haddou; John Peter, A.

    2017-04-01

    Hydrogenic-like donor-impurity related self and induced polarizations, bending energy and photo-ionization cross section in spherical core/shell zinc blende (In,Ga)N/GaN are computed. Based on the variational approach and within effective-mass and one parabolic approximations, the calculations are made under finite potential barrier taking into account of the discontinuity of the effective-mass and the constant dielectric. The photo-ionization cross section is studied according to the photon incident energy considering the effects of hydrostatic pressure, applied electric field, structure's radius, impurity's position and indium composition in the core. It is obtained that the influences mentioned above lead to either blue shifts or redshifts of the resonant peak of the photo-ionization cross section spectrum. The unusual behavior related to the structure radius is discussed which is as a consequence of the finite potential confinement. We have shown that the photo-ionization cross section can be controlled with adjusting the internal and external factors. These properties can be useful for producing some device applications such as quantum dot infrared photodetectors.

  11. Revealing isomerism in sodium-water clusters: Photoionization spectra of Na(H2O)n (n = 2-90)

    Science.gov (United States)

    Dierking, Christoph W.; Zurheide, Florian; Zeuch, Thomas; Med, Jakub; Parez, Stanislav; Slavíček, Petr

    2017-06-01

    Soft ionization of sodium tagged polar clusters is increasingly used as a powerful technique for sizing and characterization of small aerosols with possible application, e.g., in atmospheric chemistry or combustion science. Understanding the structure and photoionization of the sodium doped clusters is critical for such applications. In this work, we report on measurements of photoionization spectra for sodium doped water clusters containing 2-90 water molecules. While most of the previous studies focused on the ionization threshold of the Na(H2O)n clusters, we provide for the first time full photoionization spectra, including the high-energy region, which are used as reference for a comparison with theory. As reported in previous work, we have seen an initial drop of the appearance ionization energy with cluster size to values of about 3.2 eV for n electron cloud. The appearance ionization energy is determined by isomers with fully solvated sodium and a highly delocalized electron cloud, while both fully and incompletely solvated isomers with localized electron clouds can contribute to the high energy part of the photoionization spectrum. Simulations at elevated temperatures show an increased abundance of isomers with low ionization energies, an entropic effect enabling size selective infrared action spectroscopy, based on near threshold photoionization of Na(H2O)n clusters. In addition, simulations of the sodium pick-up process were carried out to study the gradual formation of the hydrated electron which is the basis of the sodium-tagging sizing.

  12. VUV/UV light inducing accelerated phenol degradation with a low electric input† †Electronic supplementary information (ESI) available. See DOI: 10.1039/c6ra26043h Click here for additional data file.

    Science.gov (United States)

    Li, Mengkai; Wen, Dong

    2017-01-01

    This study presents the first evidence for the accelerated degradation of phenol by Fenton's reagent in a mini-fluidic VUV/UV photoreaction system (MVPS). A low-pressure mercury lamp used in the MVPS led to a complete degradation of phenol within 4–6 min. The HO˙ and HO2˙ originating from both Fenton's reagent and VUV photolysis of water were identified with suitable radical scavengers. The effects of initial concentrations of phenol, H2O2 and Fe3+ as well as solution pH on phenol degradation kinetics were examined. Increasing the initial phenol concentration slowed down the phenol degradation, whereas increasing the initial H2O2 or Fe3+ concentration accelerated the phenol degradation. The optimal solution pH was 3.7. At both 254 and 185 nm, increasing phenol concentration enhanced its absorption for the incident photons. The reaction mechanism for the degradation of phenol was suggested consistent with the results obtained. This study indicates that the VUV/UV photo-Fenton process has potential applications in the treatment of industrial wastewater containing phenol and related aromatic pollutants. PMID:28496972

  13. Effects of Solvent and Ion Source Pressure on the Analysis of Anabolic Steroids by Low Pressure Photoionization Mass Spectrometry

    Science.gov (United States)

    Liu, Chengyuan; Zhu, Yanan; Yang, Jiuzhong; Zhao, Wan; Lu, Deen; Pan, Yang

    2017-04-01

    Solvent and ion source pressure were two important factors relating to the photon induced ion-molecule reactions in low pressure photoionization (LPPI). In this work, four anabolic steroids were analyzed by LPPI mass spectrometry. Both the ion species present and their relative abundances could be controlled by switching the solvent and adjusting the ion source pressure. Whereas M•+, MH+, [M - H2O]+, and solvent adducts were observed in positive LPPI, [M - H]- and various oxidation products were abundant in negative LPPI. Changing the solvent greatly affected formation of the ion species in both positive and negative ion modes. The ion intensities of the solvent adduct and oxygen adduct were selectively enhanced when the ion source pressure was elevated from 68 to 800 Pa. The limit of detection could be decreased by increasing the ion source pressure.

  14. Ionic dissociation dynamics and energetics of hexamethyldigermanium, (CH3)6Ge2, by threshold photoelectron-photoion coincidence spectroscopy

    Science.gov (United States)

    Dávalos, Juan Z.; Baer, Tomas; Blancas, Carlos

    2017-09-01

    Threshold Photoelectron-Photoion Coincidence Spectroscopy (TPEPICO) has been used to study the ionic dissociation dynamics and energetics of Me6Ge2 (Me = CH3). Ions are energy-selected and the 0 K dissociation onsets for methyl and Me3Ge loss are obtained from the breakdown diagram and mass spectra distributions, both of them analyzed and modeled with statistical SSACM theory and quantum chemical (DFT, MP2) calculations. An updated value for the enthalpy of formation, ΔfHm0 (g) of Me6Ge2, is used to derive Δf Hm0 (Me3Ge,g) = 70.8 ± 8.9 kJ·mol-1. The bond dissociation enthalpies, BDE (Gesbnd X), of Me3Gesbnd X (X = Me, GeMe3, Cl and Br) were also derived in this study.

  15. A multireference configuration interaction study of CuB and CuAl molecular constants and photoionization spectra.

    Science.gov (United States)

    Ferrão, Luiz F A; Spada, Rene F K; Roberto-Neto, Orlando; Machado, Francisco B C

    2013-09-28

    Accurate potential energy curves and molecular constants for the low-lying electronic states of CuX(y) (X = B, Al; y = 0, +1) were investigated using the complete active space self-consistent field/multireference configuration interaction (MRCI) methodology with aug-cc-pV5Z basis set. The photoionization spectra of CuX were computed, showing electron detachment in the region of far ultraviolet. The results complement the previous theoretical characterizations and the few experimental studies. A comparative analysis was carried out concerning the different choices of reference configuration state functions in the MRCI calculations with and without the contribution of scalar relativistic effects. The results obtained with a small reference set adequately constructed are competitive to those using a much larger number of configuration state functions, and also the scalar relativistic effects improve significantly the molecular constants in this kind of system containing a 3d metal atom.

  16. Herschel Planetary Nebula Survey (HerPLaNS): Construction of a Detailed Dusty Photoionization Model of NGC6781

    Science.gov (United States)

    Otsuka, Masaaki; Ueta, Toshiya; Chu, You-Hua; Asano, Kentaro; HerPLaNS Consortium

    2017-10-01

    As one of the follow-up studies of Herschel Planetary Nebula Survey (HerPlaNS; Ueta et al. 2014), we focus on a bipolar planetary nebula (PN) NGC6781 to characterize the dusty nebula and the central star based on our own Herschel data and the rich archival spectroscopic/photometric image data in the wavelengths from UV to far-IR. With CLOUDY, we constructed a comprehensive photoionization model of NGC6781 ever made including data from UV to radio. We succeeded to reproduce the observed spectral energy distribution (SED) and the atomic gas, H2, CO, and OH molecular line fluxes. We found that about 40% of the total dust mass would be from warm-cold dust components.

  17. Double outlet right ventricle

    Science.gov (United States)

    ... medlineplus.gov/ency/article/007328.htm Double outlet right ventricle To use the sharing features on this page, please enable JavaScript. Double outlet right ventricle (DORV) is a heart disease that is ...

  18. Ionization of EPA Contaminants in Direct and Dopant-Assisted Atmospheric Pressure Photoionization and Atmospheric Pressure Laser Ionization

    Science.gov (United States)

    Kauppila, Tiina J.; Kersten, Hendrik; Benter, Thorsten

    2015-06-01

    Seventy-seven EPA priority environmental pollutants were analyzed using gas chromatography-mass spectrometry (GC-MS) equipped with an optimized atmospheric pressure photoionization (APPI) and an atmospheric pressure laser ionization (APLI) interface with and without dopants. The analyzed compounds included e.g., polycyclic aromatic hydrocarbons (PAHs), nitro compounds, halogenated compounds, aromatic compounds with phenolic, acidic, alcohol, and amino groups, phthalate and adipatic esters, and aliphatic ethers. Toluene, anisole, chlorobenzene, and acetone were tested as dopants. The widest range of analytes was ionized using direct APPI (66/77 compounds). The introduction of dopants decreased the amount of compounds ionized in APPI (e.g., 54/77 with toluene), but in many cases the ionization efficiency increased. While in direct APPI the formation of molecular ions via photoionization was the main ionization reaction, dopant-assisted (DA) APPI promoted ionization reactions, such as charge exchange and proton transfer. Direct APLI ionized a much smaller amount of compounds than APPI (41/77 compounds), showing selectivity towards compounds with low ionization energies (IEs) and long-lived resonantly excited intermediate states. DA-APLI, however, was able to ionize a higher amount of compounds (e.g. 51/77 with toluene), as the ionization took place entirely through dopant-assisted ion/molecule reactions similar to those in DA-APPI. Best ionization efficiency in APPI and APLI (both direct and DA) was obtained for PAHs and aromatics with O- and N-functionalities, whereas nitro compounds and aliphatic ethers were the most difficult to ionize. Halogenated aromatics and esters were (mainly) ionized in APPI, but not in APLI.

  19. Theoretical photoionization spectra in the UV photon energy range for a Mg-like Al{sup +} ion

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Dae-Soung [e-Business Department, Kyonggi Institute of Technology, Siheung, Jungwang-Dong 2121-3, Kyonggi-Do 429-792 (Korea, Republic of); Kim, Young Soon [Department of Physics, Myongji University, San 38-2 Namdong, Cheoin-gu, Yongin, Kyonggi-Do 449-728 (Korea, Republic of)], E-mail: dskim@kinst.ac.kr

    2008-08-28

    In the present work, we report the photoionization cross sections of the Al{sup +} ion calculated for the photon energy range 20-26 eV and 30-50 eV. We have expanded our previous calculation (2007 J. Phys. Soc. Japan 76 014302) with an optimized admixture of the initial ground state 3s{sup 21}S and exited states 3s3p{sup 1,3}P, 3s3d{sup 1,3}D and 3s4s{sup 1,3}S, and obtained significantly improved predictions for the main background and autoionizing resonance structures of the reported experimental spectra. The absolute measurements of the photoionization cross sections of the Al{sup +} ion in these energy ranges have been performed by West et al (2001 Phys. Rev. A 63 052719), and they reported that the prominent peaks around 21 eV were attributed to the effects of the significant influence of the small fraction of the fourth-order radiation with energies around 84 eV from the synchrotron source. In our previous work, the main shape for these cross sections was calculated assuming an admixture of initial 3s{sup 21}S and 3s3p{sup 3}P states, only with a rough overall estimate for the experimental spectra in the photon energy range 20-26 eV, and without these peaks around 21 eV. The report of the experimental assignment attributes these peaks to the excitation of a 2p electron from the core. However, our present results with the new admixture reveal similar peaks without considering the possibility of the core excitation.

  20. Double Outlet Right Ventricle

    Science.gov (United States)

    ... Right Ventricle Menu Topics Topics FAQs Double Outlet Right Ventricle Double outlet right ventricle (DORV) is a rare form of congenital heart disease. Article Info En español Double outlet right ventricle (DORV) is a rare form of congenital ...

  1. Vibrational spectroscopy of the mass-selected tetrahydrofurfuryl alcohol monomers and its dimers in gas phase using IR depletion and VUV single photon ionization

    Science.gov (United States)

    Wang, Pengchao; Hu, Yongjun; Zhan, Huaqi; Chen, Jiaxin; Jin, Shan; Song, Wentao; Li, Yujian

    2017-10-01

    Tetrahydrofurfuryl alcohol (THFA, C5H10O2) is a close chemical analog of the sugar rings present in the phosphate-deoxyribose backbone structure of the nucleic acids. In present report, the infrared (IR) spectra of the size-selected THFA monomer and its dimer have been investigated in a pulsed supersonic jet using infrared-vacuum ultraviolet (VUV) ionization. Herein, the laser light at 118 nm wavelength served as the source of ;soft; ionization in a time-of-flight mass spectrometer. The IR features for the monomers located at 3622 cm- 1 can be assigned to the intramolecular hydrogen bonding stretch vibrations mainly referring to A and C conformers. Compared with the monomer, however, characteristic peaks for the dimer centered at 3415 and 3453 cm- 1, red shifted 207 and 169 cm- 1, respectively, were associated with the intermolecular hydrogen bonding stretch vibrations. Combined with the quantum-chemical calculations, the dimer in the gas phase preferred cyclic AC conformer stabled by forming two strong intermolecular hydrogen bonds, which shown the high hydrogen bond selectivity in the cluster. The conclusions drawn from the role played in the conformational flexibility by the hydroxyl and ether groups may be extended to other biomolecules.

  2. Potential applications of a dual-sweep streak camera system for characterizing particle and photon beams of VUV, XUV, and x-ray FELS

    Energy Technology Data Exchange (ETDEWEB)

    Lumpkin, A. [Argonne National Lab., IL (United States)

    1995-12-31

    The success of time-resolved imaging techniques in the Characterization of particle beams and photon beams of the recent generation of L-band linac-driven or storage ring FELs in the infrared, visible, and ultraviolet wavelength regions can be extended to the VUV, XUV, and x-ray FELs. Tests and initial data have been obtained with the Hamamatsu C5680 dual-sweep streak camera system which includes a demountable photocathode (thin Au) assembly and a flange that allows windowless operation with the transport vacuum system. This system can be employed at wavelengths shorter than 100 nm and down to 1 {Angstrom}. First tests on such a system at 248-nm wavelengths have been performed oil the Argonne Wakefield Accelerator (AWA) drive laser source. A quartz window was used at the tube entrance aperture. A preliminary test using a Be window mounted on a different front flange of the streak tube to look at an x-ray bremsstrahlung source at the AWA was limited by photon statistics. This system`s limiting resolution of {sigma}{approximately}1.1 ps observed at 248 nm would increase with higher incoming photon energies to the photocathode. This effect is related to the fundamental spread in energies of the photoelectrons released from the photocathodes. Possible uses of the synchrotron radiation sources at the Advanced Photon Source and emerging short wavelength FELs to test the system will be presented.

  3. DSP integrated, parameterized, FPGA based cavity simulator and controller for VUV-FEL. SIMCON ver.2.1. installation and configuration procedures - User's manual

    Energy Technology Data Exchange (ETDEWEB)

    Koprek, W.; Pucyk, P.; Czarski, T.; Pozniak, K.T.; Romaniuk, R.S. [Warsaw Univ. of Technology (Poland). Inst. of Electronic Systems

    2005-07-01

    The note describes integrated system of hardware controller and simulator of the resonant superconducting, narrowband niobium cavity, originally considered for the TTF and TESLA in DESY, Hamburg (now predicted for the VUV and X-Ray FEL). The controller bases on a programmable circuit Xilinx VirtexII V3000 embedded on a PCB XtremeDSP Development Kit by Nallatech. The FPGA circuit configuration was done in the VHDL language. The internal hardware multiplication components, present in Virtex II chips, were used, to improve the floating point calculation efficiency. The implementation was achieved of a device working in the real time, according to the demands of the LLRF control system for the TESLA Test Facility. The device under consideration will be referred to as superconducting cavity (SCCav) SIMCON throughout this work. This document is intended to be used by end users and operators. It describes step by step how to install SIMCON in specific configuration, how and what software to copy to computer. There is described set of basic Matlab functions for developers of control algorithms. This paper also contains brief description how to use Matlab function of one algorithm with its graphic user panels. (orig.)

  4. Time-resolved multi-mass ion imaging: Femtosecond UV-VUV pump-probe spectroscopy with the PImMS camera

    Science.gov (United States)

    Forbes, Ruaridh; Makhija, Varun; Veyrinas, Kévin; Stolow, Albert; Lee, Jason W. L.; Burt, Michael; Brouard, Mark; Vallance, Claire; Wilkinson, Iain; Lausten, Rune; Hockett, Paul

    2017-07-01

    The Pixel-Imaging Mass Spectrometry (PImMS) camera allows for 3D charged particle imaging measurements, in which the particle time-of-flight is recorded along with (x, y) position. Coupling the PImMS camera to an ultrafast pump-probe velocity-map imaging spectroscopy apparatus therefore provides a route to time-resolved multi-mass ion imaging, with both high count rates and large dynamic range, thus allowing for rapid measurements of complex photofragmentation dynamics. Furthermore, the use of vacuum ultraviolet wavelengths for the probe pulse allows for an enhanced observation window for the study of excited state molecular dynamics in small polyatomic molecules having relatively high ionization potentials. Herein, preliminary time-resolved multi-mass imaging results from C2F3I photolysis are presented. The experiments utilized femtosecond VUV and UV (160.8 nm and 267 nm) pump and probe laser pulses in order to demonstrate and explore this new time-resolved experimental ion imaging configuration. The data indicate the depth and power of this measurement modality, with a range of photofragments readily observed, and many indications of complex underlying wavepacket dynamics on the excited state(s) prepared.

  5. Ionic fragmentation of the isoprene molecule in the VUV energy range (12 to 310 eV)

    Energy Technology Data Exchange (ETDEWEB)

    Bernini, R.B., E-mail: rafael.bernini@ifrj.edu.br [Instituto Federal de Ciência e Tecnologia do Rio de Janeiro (IFRJ), 25050-100 Duque de Caxias, RJ (Brazil); Coutinho, L.H. [Instituto de Física, Universidade Federal do Rio De Janeiro (UFRJ), 21941-972 Rio de Janeiro, RJ (Brazil); Nunez, C.V. [Laboratório de Bioprospecção e Biotecnologia, Coordenação de Tecnologia e Inovação, Instituto Nacional de Pesquisas da Amazônia (INPA), 69060-001 Manaus, AM (Brazil); Castilho, R.B. de [Departamento de Química, Instituto de Ciências Exatas, Universidade Federal do Amazonas (UFAM), 69077-000 Manaus, AM (Brazil); Souza, G.G.B. de [Instituto de Química, Universidade Federal do Rio de Janeiro (UFRJ), 21949-900 Rio de Janeiro, RJ (Brazil)

    2015-07-15

    Highlights: • Ionic fragmentation of isoprene following valence-shell and C 1s excitation. • Experimental observation of single and double ionization processes. • Large increase in fragmentation following core excitation. • Similar dissociation pattern bellow (270 eV) and above (310 eV) core edge. • Stable molecular ion observed at all photon energies. - Abstract: Isoprene, C{sub 5}H{sub 8}, is a biogenic volatile compound emitted from plants and animals, playing an important role in atmospheric chemistry. In this work, we have studied the ionic fragmentation of the isoprene molecule induced by high energy photons (synchrotron radiation), both at the valence (12.0, 14.0, 16.0, 18.0, and 21.0 eV) and carbon 1s edge (270 and 310 eV, respectively, below and above edge) energies. The ionic fragments were mass-analyzed using a Wiley–McLaren time-of-flight spectrometer (TOF) and single (PEPICO) and double ionization coincidence (PEPIPICO) spectra were obtained. As expected, the fragmentation degree increases with increasing energy. Below and above the carbon 1s edge, the fragmentation patterns are quite similar, and basically the same fragments are observed as compared to the spectra following valence-shell ionization. Stable doubly-charged ions were not observed. A PEPIPICO spectrum has shown that the main dissociation route for doubly-ionized species corresponds to the [CH{sub 3}]{sup +}/[C{sub 4}H{sub 2–5}]{sup +} ion pair. Intense fragmentation of the isoprene molecule has been observed following valence shell and core electron ionization. The observance of basically the same fragments when moving from valence to inner-shell suggests that basically the same fragmentation routes are present in both cases. All doubly (or multiply)-charged cations are unstable, at least on a microsecond scale.

  6. Terahertz photoconductivity of double acceptors in narrow gap HgCdTe epitaxial films grown by molecular beam epitaxy on GaAs(013) and Si(013) substrates

    Science.gov (United States)

    Rumyantsev, V. V.; Kozlov, D. V.; Morozov, S. V.; Fadeev, M. A.; Kadykov, A. M.; Teppe, F.; Varavin, V. S.; Yakushev, M. V.; Mikhailov, N. N.; Dvoretskii, S. A.; Gavrilenko, V. I.

    2017-09-01

    The energy spectra of the mercury vacancy, the most common acceptor in HgCdTe material, is studied via numerical calculations and low temperature photoconductivity (PC) measurements of ‘vacancy-doped’ HgCdTe films with low cadmium content. Since the Hg vacancy is known to be a double acceptor, the model for the helium atom was adopted for degerate valence band of zinc blende semiconductors to classify the observed PC bands. This approach provides a fairly good description of the photoionization of both neutral and singly-ionized vacancy when the central cell potential is taken into account.

  7. The double identity of linguistic doubling.

    Science.gov (United States)

    Berent, Iris; Bat-El, Outi; Brentari, Diane; Dupuis, Amanda; Vaknin-Nusbaum, Vered

    2016-11-29

    Does knowledge of language consist of abstract principles, or is it fully embodied in the sensorimotor system? To address this question, we investigate the double identity of doubling (e.g., slaflaf, or generally, XX; where X stands for a phonological constituent). Across languages, doubling is known to elicit conflicting preferences at different levels of linguistic analysis (phonology vs. morphology). Here, we show that these preferences are active in the brains of individual speakers, and they are demonstrably distinct from sensorimotor pressures. We first demonstrate that doubling in novel English words elicits divergent percepts: Viewed as meaningless (phonological) forms, doubling is disliked (e.g., slaflaf Language, and their capacity to do so depends on the structure of their spoken language (English vs. Hebrew). These results demonstrate that linguistic preferences doubly dissociate from sensorimotor demands: A single stimulus can elicit diverse percepts, yet these percepts are invariant across stimulus modality--for speech and signs. These conclusions are in line with the possibility that some linguistic principles are abstract, and they apply broadly across language modality.

  8. Project Half Double

    DEFF Research Database (Denmark)

    Svejvig, Per; Ehlers, Michael; Adland, Karoline Thorp

    activities carried out within the framework of the projects. The formal part of Project Half Double was initiated in June 2015. We started out by developing, refining and testing the Half Double methodology on seven pilot projects in the first phase of the project, which will end June 2016. The current...... many of the key performance indicators associated with them can be evaluated (Grundfos and Siemens Wind Power). In addition to the current status of delivering impact faster for the seven pilot projects, it is important to highlight that Project Half Double phase 1 has planted many seeds in the pilot...... organisations concerning project methodology and beyond. The many learning points from each pilot project show that Project Half Double has left its clear footprint in the pilot organisations, and that the Half Double methodology has evolved and developed very much during Project Half Double phase 1....

  9. Double sequence core theorems

    Directory of Open Access Journals (Sweden)

    Richard F. Patterson

    1999-01-01

    Full Text Available In 1900, Pringsheim gave a definition of the convergence of double sequences. In this paper, that notion is extended by presenting definitions for the limit inferior and limit superior of double sequences. Also the core of a double sequence is defined. By using these definitions and the notion of regularity for 4-dimensional matrices, extensions, and variations of the Knopp Core theorem are proved.

  10. Photoionization and third-order susceptibility of a neutral donor in ZnS/InP/ZnSe core/shell spherical quantum dots

    Energy Technology Data Exchange (ETDEWEB)

    Xie, Wenfang, E-mail: xiewf@vip.163.com

    2014-09-15

    The optical properties of a neutral donor in a ZnS/InP/ZnSe core/shell spherical quantum dot have been investigated using the variational method and the compact density-matrix approach. Two parametric potential is chosen as a confinement potential for the shell. Considering the band structure of the system it is assumed that electron is localized in InP shell. It is assumed that the impurity is located in the center of quantum dot core (ZnS). The photoionization cross section as well as the third-order nonlinear optical susceptibility of third harmonic generation has been calculated. The results show that the photoionization and the third-order nonlinear optical susceptibility of a donor in a core/shell spherical quantum dot are strongly affected by the shell thickness. We found that small applied shell thickness will lead to a significant blue shift of the peak positions in the optical spectrum. This kind of structure gives an opportunity to tune and control the photoionization and the third-order nonlinear optical susceptibility of third harmonic generation of a donor impurity by changing the shell thickness.

  11. PHOTOIONIZATION MODELING OF OXYGEN K ABSORPTION IN THE INTERSTELLAR MEDIUM: THE CHANDRA GRATING SPECTRA OF XTE J1817-330

    Energy Technology Data Exchange (ETDEWEB)

    Gatuzz, E.; Mendoza, C. [Centro de Fisica, Instituto Venezolano de Investigaciones Cientificas (IVIC), P.O. Box 20632, Caracas 1020A (Venezuela, Bolivarian Republic of); Garcia, J.; Lohfink, A. [Department of Astronomy and Maryland Astronomy Center for Theory and Computation, University of Maryland, College Park, MD 20742 (United States); Kallman, T. R.; Witthoeft, M. [NASA Goddard Space Flight Center, Greenbelt, MD 20771 (United States); Bautista, M. A. [Department of Physics, Western Michigan University, Kalamazoo, MI 49008 (United States); Palmeri, P.; Quinet, P., E-mail: egatuzz@ivic.gob.ve, E-mail: claudio@ivic.gob.ve, E-mail: javier@astro.umd.edu, E-mail: alohfink@astro.umd.edu, E-mail: timothy.r.kallman@nasa.gov, E-mail: michael.c.witthoeft@nasa.gov, E-mail: manuel.bautista@wmich.edu, E-mail: palmeri@umons.ac.be, E-mail: quinet@umons.ac.be [Astrophysique et Spectroscopie, Universite de Mons-UMONS, B-7000 Mons (Belgium)

    2013-05-01

    We present detailed analyses of oxygen K absorption in the interstellar medium (ISM) using four high-resolution Chandra spectra toward the X-ray low-mass binary XTE J1817-330. The 11-25 A broadband is described with a simple absorption model that takes into account the pile-up effect and results in an estimate of the hydrogen column density. The oxygen K-edge region (21-25 A) is fitted with the physical warmabs model, which is based on a photoionization model grid generated with the XSTAR code with the most up-to-date atomic database. This approach allows a benchmark of the atomic data which involves wavelength shifts of both the K lines and photoionization cross sections in order to fit the observed spectra accurately. As a result we obtain a column density of N{sub H} = 1.38 {+-} 0.01 Multiplication-Sign 10{sup 21} cm{sup -2}; an ionization parameter of log {xi} = -2.70 {+-} 0.023; an oxygen abundance of A{sub O}= 0.689{sup +0.015}{sub -0.010}; and ionization fractions of O I/O = 0.911, O II/O = 0.077, and O III/O = 0.012 that are in good agreement with results from previous studies. Since the oxygen abundance in warmabs is given relative to the solar standard of Grevesse and Sauval, a rescaling with the revision by Asplund et al. yields A{sub O}=0.952{sup +0.020}{sub -0.013}, a value close to solar that reinforces the new standard. We identify several atomic absorption lines-K{alpha}, K{beta}, and K{gamma} in O I and O II and K{alpha} in O III, O VI, and O VII-the last two probably residing in the neighborhood of the source rather than in the ISM. This is the first firm detection of oxygen K resonances with principal quantum numbers n > 2 associated with ISM cold absorption.

  12. Isotope effects and spectroscopic assignments in the non-dissociative photoionization spectrum of N{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Randazzo, John B.; Croteau, Philip [Department of Chemistry, University of California, Berkeley, California 94720 (United States); Kostko, Oleg; Ahmed, Musahid [Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720 (United States); Boering, Kristie A. [Department of Chemistry, University of California, Berkeley, California 94720 (United States); Department of Earth and Planetary Science, University of California, Berkeley, California 94720 (United States)

    2014-05-21

    Photoionization efficiency spectra of {sup 14}N{sub 2}, {sup 15}N{sup 14}N, and {sup 15}N{sub 2} from 15.5 to 18.9 eV were measured using synchrotron radiation at the Advanced Light Source at Lawrence Berkeley National Laboratory with a resolution of 6 meV, and significant changes in peak energies and intensities upon isotopic substitution were observed. Previously, we reported the isotope shifts and their applications to Titan's atmosphere. Here, we report more extensive experimental details and tabulate the isotope shifts of many transitions in the N{sub 2} spectrum, including those for {sup 15}N{sup 14}N, which have not been previously reported. The isotope shifts are used to address several long-standing ambiguities in spectral peak assignments just above the ionization threshold of N{sub 2}. The feature at 15.677 eV (the so-called second “cathedral” peak) is of particular interest in this respect. The measured isotope shifts for this peak relative to {sup 14}N{sub 2} are 0.015 ± 0.001 eV for {sup 15}N{sub 2} and 0.008 ± 0.001 eV for {sup 15}N{sup 14}N, which match most closely with the isotope shifts predicted for transitions to the (A {sup 2}Π{sub u} v{sup ′} = 2)4sσ{sub g} {sup 1}Π{sub u} state using Herzberg equations for the isotopic differences in harmonic oscillator energy levels plus the first anharmonic correction of 0.0143 eV for {sup 15}N{sub 2} and 0.0071 eV for {sup 15}N{sup 14}N. More generally, the isotope shifts measured for both {sup 15}N{sub 2} and {sup 15}N{sup 14}N relative to {sup 14}N{sub 2} provide new benchmarks for theoretical calculations of interferences between direct and indirect autoionization states which can interact to produce intricate resonant structures in molecular photoionization spectra in regions near ionization thresholds.

  13. Dissociation of internal energy-selected methyl bromide ion revealed from threshold photoelectron-photoion coincidence velocity imaging

    Energy Technology Data Exchange (ETDEWEB)

    Tang, Xiaofeng [Hefei National Laboratory for Physical Sciences at the Microscale and Department of Chemical Physics, University of Science and Technology of China, Hefei 230026 (China); National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei 230029 (China); Zhou, Xiaoguo, E-mail: xzhou@ustc.edu.cn, E-mail: yanbing@jlu.edu.cn; Liu, Shilin [Hefei National Laboratory for Physical Sciences at the Microscale and Department of Chemical Physics, University of Science and Technology of China, Hefei 230026 (China); Synergetic Innovation Center of Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei, Anhui 230026 (China); Sun, Zhongfa [Hefei National Laboratory for Physical Sciences at the Microscale and Department of Chemical Physics, University of Science and Technology of China, Hefei 230026 (China); Liu, Fuyi; Sheng, Liusi [National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei 230029 (China); Yan, Bing, E-mail: xzhou@ustc.edu.cn, E-mail: yanbing@jlu.edu.cn [Institute of Atomic and Molecular Physics, Jilin University, Changchun 130012 (China)

    2014-01-28

    Dissociative photoionization of methyl bromide (CH{sub 3}Br) in an excitation energy range of 10.45–16.90 eV has been investigated by using threshold photoelectron-photoion coincidence (TPEPICO) velocity imaging. The coincident time-of-flight mass spectra indicate that the ground state X{sup 2}E of CH{sub 3}Br{sup +} is stable, and both A{sup 2}A{sub 1} and B{sup 2}E ionic excited states are fully dissociative to produce the unique fragment ion of CH{sub 3}{sup +}. From TPEPICO 3D time-sliced velocity images of CH{sub 3}{sup +} dissociated from specific state-selected CH{sub 3}Br{sup +} ion, kinetic energy release distribution (KERD) and angular distribution of CH{sub 3}{sup +} fragment ion are directly obtained. Both spin-orbit states of Br({sup 2}P) atom can be clearly observed in fast dissociation of CH{sub 3}Br{sup +}(A{sup 2}A{sub 1}) ion along C–Br rupture, while a KERD of Maxwell-Boltzmann profile is obtained in dissociation of CH{sub 3}Br{sup +}(B{sup 2}E) ion. With the aid of the re-calculated potential energy curves of CH{sub 3}Br{sup +} including spin-orbit coupling, dissociation mechanisms of CH{sub 3}Br{sup +} ion in A{sup 2}A{sub 1} and B{sup 2}E states along C–Br rupture are revealed. For CH{sub 3}Br{sup +}(A{sup 2}A{sub 1}) ion, the CH{sub 3}{sup +} + Br({sup 2}P{sub 1/2}) channel is occurred via an adiabatic dissociation by vibration, while the Br({sup 2}P{sub 3/2}) formation is through vibronic coupling to the high vibrational level of X{sup 2}E state followed by rapid dissociation. C–Br bond breaking of CH{sub 3}Br{sup +}(B{sup 2}E) ion can occur via slow internal conversion to the excited vibrational level of the lower electronic states and then dissociation.

  14. Photoionization Modeling of Oxygen K Absorption in the Interstellar Medium:. [The Chandra Grating Spectra of XTE J1817-330

    Science.gov (United States)

    Gatuzz, E.; Garcia, J.; Mendoza, C.; Kallman, T. R.; Witthoeft, M.; Lohfink, A.; Bautista, M. A.; Palmeri, P.; Quinet, P.

    2013-01-01

    We present detailed analyses of oxygen K absorption in the interstellar medium (ISM) using four high-resolution Chandra spectra toward the X-ray low-mass binary XTE J1817-330. The 11-25 Angstrom broadband is described with a simple absorption model that takes into account the pile-up effect and results in an estimate of the hydrogen column density. The oxygen K-edge region (21-25 Angstroms) is fitted with the physical warmabs model, which is based on a photoionization model grid generated with the xstar code with the most up-to-date atomic database. This approach allows a benchmark of the atomic data which involves wavelength shifts of both the K lines and photoionization cross sections in order to fit the observed spectra accurately. As a result we obtain a column density of N(sub H) = 1.38 +/- 0.01 × 10(exp 21) cm(exp -2); an ionization parameter of log xi = -2.70 +/- 0.023; an oxygen abundance of A(sub O) = 0.689 (+0.015/-0.010); and ionization fractions of O(sub I)/O = 0.911, O(sub II)/O = 0.077, and O(sub III)/O = 0.012 that are in good agreement with results from previous studies. Since the oxygen abundance in warmabs is given relative to the solar standard of Grevesse & Sauval, a rescaling with the revision by Asplund et al. yields A(sub O) = 0.952(+0.020/-0.013), a value close to solar that reinforces the new standard.We identify several atomic absorption lines-K(alpha), K(beta), and K(gamma) in O(sub I) and O(sub II) and K(alpha) in O(sub III), O(sub VI), and O(sub VII)-the last two probably residing in the neighborhood of the source rather than in the ISM. This is the first firm detection of oxygen K resonances with principal quantum numbers n greater than 2 associated with ISM cold absorption.

  15. Photoionization Modeling of Oxygen K Absorption in the Interstellar Medium: The Chandra Grating Spectra of XTE J1817-330

    Science.gov (United States)

    Gatuzz, E.; Garcia, J.; Menodza, C.; Kallman, T. R.; Witthoeft, M.; Lohfink, A.; Bautista, M. A.; Palmeri, P.; Quinet, P.

    2013-01-01

    We present detailed analyses of oxygen K absorption in the interstellar medium (ISM) using four high-resolution Chandra spectra towards the X-ray low-mass binary XTE J1817-330. The 11-25 A broadband is described with a simple absorption model that takes into account the pileup effect and results in an estimate of the hydrogen column density. The oxygen K-edge region (21-25 A) is fitted with the physical warmabs model, which is based on a photoionization model grid generated with the XSTAR code with the most up-to-date atomic database. This approach allows a benchmark of the atomic data which involves wavelength shifts of both the K lines and photoionization cross sections in order to fit the observed spectra accurately. As a result we obtain: a column density of N(sub H) = 1.38 +/- 0.01 x 10(exp 21) cm(exp -2); ionization parameter of log xi = .2.70 +/- 0.023; oxygen abundance of A(sub O) = 0.689(exp +0.015./-0.010); and ionization fractions of O I/O = 0.911, O II/O = 0.077, and O III/O = 0.012 that are in good agreement with previous studies. Since the oxygen abundance in warmabs is given relative to the solar standard of Grevesse and Sauval (1998), a rescaling with the revision by Asplund et al. (2009) yields A(sub O) = 0.952(exp +0.020/-0.013, a value close to solar that reinforces the new standard. We identify several atomic absorption lines.K-alpha , K-beta, and K-gamma in O I and O II; and K-alpha in O III, O VI, and O VII--last two probably residing in the neighborhood of the source rather than in the ISM. This is the first firm detection of oxygen K resonances with principal quantum numbers n greater than 2 associated to ISM cold absorption.

  16. Synthesis, structural characterization and VUV excited luminescence properties of LixNa(1-x)Sm(PO3)4 polyphosphates

    Science.gov (United States)

    Sebai, S.; Hammami, S.; Megriche, A.; Zambon, D.; Mahiou, R.

    2016-12-01

    Stoichiometric phosphors Li(x)Na(1-x)Sm(PO3)4(x = 0, 0.5, 1) were prepared in the solid state and were characterized at room temperature using X-ray diffraction, infrared and Raman spectroscopy. The obtained LiSm(PO3)4 and NaSm(PO3)4 polycrystalline samples are single-phased and have centrosymmetric monoclinic structure. The observed results show the presence of characteristic bands due to (PO2)- terminal and P-O-P bridging groups. However, the Li0.5Na0.5Sm(PO3)4 material seems to be a mixture of the Li and Na homologues. The VUV excitation and emission spectra of as-synthesized compounds were measured. It was found that the Sm3+ ions show an orange-red emission which corresponds to the group transitions 4G5/2 → 6HJ (J = 5/2, 7/2, 9/2, 11/2), with the strongest transition (4G5/2 → 6H7/2) peaking at around 597 nm. The decay curves were pure exponential. The derived time constants are comprise between 14 μs and 31 μs, the lowest value is for NaSm(PO3)4. The decays were modeled in the frame of fast diffusion model with a rough estimation of fast cross-relaxation mechanism which returns a cross-relaxation rate of 3-7 × 104 s-1 and diffusion constant of 1-2 × 10-9 cm2 s-1.

  17. Neutrinoless double beta decay

    Indian Academy of Sciences (India)

    2012-10-06

    Oct 6, 2012 ... The physics potential of neutrinoless double beta decay is discussed. Furthermore, experimental considerations as well as the current status of experiments are presented. Finally, an outlook towards the future, work on nuclear matrix elements and alternative processes is given. Keywords. Double beta ...

  18. Feasibility of gas chromatography-microchip atmospheric pressure photoionization-mass spectrometry in analysis of anabolic steroids.

    Science.gov (United States)

    Hintikka, Laura; Haapala, Markus; Franssila, Sami; Kuuranne, Tiia; Leinonen, Antti; Kostiainen, Risto

    2010-12-24

    Mass spectrometers equipped with atmospheric pressure ion sources (API-MS) have been designed to be interfaced with liquid chromatographs (LC) and have rarely been connected to gas chromatographs (GC). Recently, we introduced a heated nebulizer microchip and showed its potential to interface liquid microseparation techniques and GC with API-MS. This study demonstrates the feasibility of GC-microchip atmospheric pressure photoionization-tandem mass spectrometry (GC-μAPPI-MS/MS) in the analysis of underivatized anabolic steroids in urine. The APPI microchip provides high ionization efficiency and produces abundant protonated molecules or molecular ions with minimal fragmentation. The feasibility of GC-μAPPI-MS/MS in the analysis of six selected anabolic steroids in urine samples was studied with respect to intra-batch repeatability, linearity, linear range, and limit of detection (LOD). The method showed good sensitivity (LODs 0.2-1 ng/mL), repeatability (relative standard deviationanabolic steroids. Quantitative performance of the method was tested with two authentic urine samples, and the results were in good agreement with those obtained with conventional GC-electron ionization-MS after derivatization. Copyright © 2010 Elsevier B.V. All rights reserved.

  19. Photoionization and Velocity Map Imaging spectroscopy of atoms, molecules and clusters with Synchrotron and Free Electron Laser radiation at Elettra

    Science.gov (United States)

    Di Fraia, M.; Sergo, R.; Stebel, L.; Giuressi, D.; Cautero, G.; Tudor, M.; Callegari, C.; O'Keeffe, P.; Ovcharenko, Y.; Lyamayev, V.; Feyer, V.; Moise, A.; Devetta, M.; Piseri, P.; Grazioli, C.; Coreno, M.

    2015-12-01

    Advances in laser and Synchrotron Radiation instrumentation are continuously boosting fundamental research on the electronic structure of matter. At Elettra the collaboration between several groups active in the field of atomic, molecular and cluster physics and the Instrumentation and Detector Laboratory has resulted in an experimental set-up that successfully tackles the challenges posed by the investigation of the electronic structure of isolated species in the gas phase. The use of Synchrotron Radiation (SR) and Free Electron Laser (FEL) light, allows to cover a wide spectrum of targets from energetic to dynamics. We developed a Velocity Map Imaging (VMI) spectrometer that allows to perform as well SR as FEL experiments, just by changing part of the detection system. In SR experiments, at the Gasphase beamline of Elettra, a cross delay line detector is used, coupled to a 4-channel time-to-digital converter that reconstructs the position of the electrons. Simultaneously, a Time-of-Flight (TOF) mass spectrometer is used to acquire photoion spectra. Such a system allows PhotoElectron-PhotoIon-Coincidence (PEPICO) spectroscopy of atoms, molecules and clusters. In FEL experiments (notably differing from SR experiments in the much higher rate of events produced and detected, which forces one to forfeit coincidence detection), at the Low Density Matter (LDM) beamline of FERMI, a Micro Channel Plate (MCP) a phosphor screen and a CCD camera are used instead, capable of shot-by-shot collection of practically all events, albeit without time resolution.

  20. Photoionization mass spectrometry for the investigation of combustion generated nascent nanoparticles and their relation to laser induced incandescence

    Science.gov (United States)

    Grotheer, H.-H.; Wolf, K.; Hoffmann, K.

    2011-08-01

    Premixed laminar flat ethylene flames were investigated for nascent nanoparticles through photoionization mass spectrometry (PIMS). Using an atmospheric McKenna burner and ethylene air flames coupled to an atmospheric sampling system, within a relatively narrow C/O range two modes of these particles were found, which can be clearly distinguished with regard to their temperature dependence, their reactivity, and their ionization behaviour. Behind a diesel engine the same particles were observed. These results were corroborated using a low pressure ethylene-O2 flame coupled to a high resolution mass spectrometer. In this case, due to a special inlet system, it was possible to operate the flame in a fairly wide C/O range without clogging of the inlet nozzles. This allowed pursuing the development of particle size distribution functions (PSDF) well into the regime of mature soot. In addition, on the low mass side of the particle spectra measurements with unity resolution were possible and this allowed gaining information concerning their growth mechanism and structure. Finally, in an attempt to mimic Laser Induced Incandescence (LII) experiments the soot-laden molecular beam was exposed to IR irradiation. This resulted in a near complete destruction of nascent particles under LII typical fluences. Small C clusters between 3 and 17 C atoms were found. In addition and with much higher intensities, clusters comprising several hundreds of C atoms were also detected, the latter even at very low fluences when small clusters were totally absent.

  1. Online study on the co-pyrolysis of coal and corn with vacuum ultraviolet photoionization mass spectrometry.

    Science.gov (United States)

    Weng, Jun-Jie; Liu, Yue-Xi; Zhu, Ya-Nan; Pan, Yang; Tian, Zhen-Yu

    2017-11-01

    With the aim to support the experimental tests in a circulating fluidized bed pilot plant, the pyrolysis processes of coal, corn, and coal-corn blend have been studied with an online pyrolysis photoionization time-of-flight mass spectrometry (Py-PI-TOFMS). The mass spectra at different temperatures (300-800°C) as well as time-evolved profiles of selected species were measured. The pyrolysis products such as alkanes, alkenes, phenols, aromatics, as well as nitrogen- and sulfur-containing species were detected. As temperature rises, the relative ion intensities of high molecular weight products tend to decrease, while those of aromatics increase significantly. During the co-pyrolysis, coal can promote the reaction temperature of cellulose in corn. Time-evolved profiles demonstrate that coal can affect pyrolysis rate of cellulose, hemicellulose, and lignin of corn in blend. This work shows that Py-PI-TOFMS is a powerful approach to permit a better understanding of the mechanisms underlying the co-pyrolysis of coal and biomass. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. B-spline algebraic diagrammatic construction: application to photoionization cross-sections and high-order harmonic generation.

    Science.gov (United States)

    Ruberti, M; Averbukh, V; Decleva, P

    2014-10-28

    We present the first implementation of the ab initio many-body Green's function method, algebraic diagrammatic construction (ADC), in the B-spline single-electron basis. B-spline versions of the first order [ADC(1)] and second order [ADC(2)] schemes for the polarization propagator are developed and applied to the ab initio calculation of static (photoionization cross-sections) and dynamic (high-order harmonic generation spectra) quantities. We show that the cross-section features that pose a challenge for the Gaussian basis calculations, such as Cooper minima and high-energy tails, are found to be reproduced by the B-spline ADC in a very good agreement with the experiment. We also present the first dynamic B-spline ADC results, showing that the effect of the Cooper minimum on the high-order harmonic generation spectrum of Ar is correctly predicted by the time-dependent ADC calculation in the B-spline basis. The present development paves the way for the application of the B-spline ADC to both energy- and time-resolved theoretical studies of many-electron phenomena in atoms, molecules, and clusters.

  3. Feasibility of desorption atmospheric pressure photoionization and desorption electrospray ionization mass spectrometry to monitor urinary steroid metabolites during pregnancy.

    Science.gov (United States)

    Vaikkinen, Anu; Rejšek, Jan; Vrkoslav, Vladimír; Kauppila, Tiina J; Cvačka, Josef; Kostiainen, Risto

    2015-06-23

    Steroids have important roles in the progress of pregnancy, and their study in maternal urine is a non-invasive method to monitor the steroid metabolome and its possible abnormalities. However, the current screening techniques of choice, namely immunoassays and gas and liquid chromatography-mass spectrometry, do not offer means for the rapid and non-targeted multi-analyte studies of large sample sets. In this study, we explore the feasibility of two ambient mass spectrometry methods in steroid fingerprinting. Urine samples from pregnant women were screened by desorption electrospray ionization (DESI) and desorption atmospheric pressure photoionization (DAPPI) Orbitrap high resolution mass spectrometry (HRMS). The urine samples were processed by solid phase extraction for the DESI measurements and by enzymatic hydrolysis and liquid-liquid-extraction for DAPPI. Consequently, steroid glucuronides and sulfates were detected by negative ion mode DESI-HRMS, and free steroids by positive ion mode DAPPI-HRMS. In DESI, signals of eleven steroid metabolite ions were found to increase as the pregnancy proceeded, and in DAPPI ten steroid ions showed at least an order of magnitude increase during pregnancy. In DESI, the increase was seen for ions corresponding to C18 and C21 steroid glucuronides, while DAPPI detected increased excretion of C19 and C21 steroids. Thus both techniques show promise for the steroid marker screening in pregnancy. Copyright © 2015 Elsevier B.V. All rights reserved.

  4. Photon momentum sharing between an electron and an ion in photoionization: from one-photon (photoelectric effect) to multiphoton absorption.

    Science.gov (United States)

    Chelkowski, Szczepan; Bandrauk, André D; Corkum, Paul B

    2014-12-31

    We investigate photon-momentum sharing between an electron and an ion following different photoionization regimes. We find very different partitioning of the photon momentum in one-photon ionization (the photoelectric effect) as compared to multiphoton processes. In the photoelectric effect, the electron acquires a momentum that is much greater than the single photon momentum ℏω/c [up to (8/5) ℏω/c] whereas in the strong-field ionization regime, the photoelectron only acquires the momentum corresponding to the photons absorbed above the field-free ionization threshold plus a momentum corresponding to a fraction (3/10) of the ionization potential Ip. In both cases, due to the smallness of the electron-ion mass ratio, the ion takes nearly the entire momentum of all absorbed N photons (via the electron-ion center of mass). Additionally, the ion takes, as a recoil, the photoelectron momentum resulting from mutual electron-ion interaction in the electromagnetic field. Consequently, the momentum partitioning of the photofragments is very different in both regimes. This suggests that there is a rich, unexplored physics to be studied between these two limits which can be generated with current ultrafast laser technology.

  5. Congenital maxillary double lip

    Directory of Open Access Journals (Sweden)

    Dinesh Singh Chauhan

    2012-01-01

    Full Text Available Double lip, also referred to as "macrocheilia," is a rare anomaly which affects the upper lip more commonly than the lower lip. It consists of a fold of excess or redundant hypertrophic tissue on the mucosal side of the lip. The congenital double lip is believed to be present at birth and becomes more prominent after eruption of teeth. It affects esthetics and also interferes with speech and mastication. Simple surgical excision produces good functional and cosmetic results. We report a case of a non-syndromic congenital maxillary double lip in a 21-year-old male patient.

  6. The detection and mapping of the spatial distribution of insect defense compounds by desorption atmospheric pressure photoionization Orbitrap mass spectrometry.

    Science.gov (United States)

    Rejšek, Jan; Vrkoslav, Vladimír; Hanus, Robert; Vaikkinen, Anu; Haapala, Markus; Kauppila, Tiina J; Kostiainen, Risto; Cvačka, Josef

    2015-07-30

    Many insects use chemicals synthesized in exocrine glands and stored in reservoirs to protect themselves. Two chemically defended insects were used as models for the development of a new rapid analytical method based on desorption atmospheric pressure photoionization-mass spectrometry (DAPPI-MS). The distribution of defensive chemicals on the insect body surface was studied. Since these chemicals are predominantly nonpolar, DAPPI was a suitable analytical method. Repeatability of DAPPI-MS signals and effects related to non-planarity and roughness of samples were investigated using acrylic sheets uniformly covered with an analyte. After that, analytical figures of merit of the technique were determined. The spatial distribution of (E)-1-nitropentadec-1-ene, a toxic nitro compound synthesized by soldiers of the termite Prorhinotermes simplex, was investigated. Then, the spatial distribution of the unsaturated aldehydes (E)-hex-2-enal, (E)-4-oxohex-2-enal, (E)-oct-2-enal, (E,E)-deca-2,4-dienal and (E)-dec-2-enal was monitored in the stink bug Graphosoma lineatum. Chemicals present on the body surface were scanned along the median line of the insect from the head to the abdomen and vice versa, employing either the MS or MS(2) mode. In this fast and simple way, the opening of the frontal gland on the frons of termite soldiers and the position of the frontal gland reservoir, extending deep into the abdominal cavity, were localized. In the stink bug, the opening of the metathoracic scent glands (ostiole) on the ventral side of the thorax as well as the gland reservoir in the median position under the ventral surface of the anterior abdomen were detected and localized. The developed method has future prospects in routine laboratory use in life sciences. Copyright © 2015 Elsevier B.V. All rights reserved.

  7. The Herschel Planetary Nebula Survey (HerPlaNS): A Comprehensive Dusty Photoionization Model of NGC6781.

    Science.gov (United States)

    Otsuka, Masaaki; Ueta, Toshiya; van Hoof, Peter A M; Sahai, Raghvendra; Aleman, Isabel; Zijlstra, Albert A; Chu, You-Hua; Villaver, Eva; Leal-Ferreira, Marcelo L; Kastner, Joel; Szczerba, Ryszard; Exter, Katrina M

    2017-08-01

    We perform a comprehensive analysis of the planetary nebula (PN) NGC 6781 to investigate the physical conditions of each of its ionized, atomic, and molecular gas and dust components and the object's evolution, based on panchromatic observational data ranging from UV to radio. Empirical nebular elemental abundances, compared with theoretical predictions via nucleosynthesis models of asymptotic giant branch (AGB) stars, indicate that the progenitor is a solar-metallicity, 2.25-3.0 M⊙ initial-mass star. We derive the best-fit distance of 0.46 kpc by fitting the stellar luminosity (as a function of the distance and effective temperature of the central star) with the adopted post-AGB evolutionary tracks. Our excitation energy diagram analysis indicates high-excitation temperatures in the photodissociation region (PDR) beyond the ionized part of the nebula, suggesting extra heating by shock interactions between the slow AGB wind and the fast PN wind. Through iterative fitting using the Cloudy code with empirically derived constraints, we find the best-fit dusty photoionization model of the object that would inclusively reproduce all of the adopted panchromatic observational data. The estimated total gas mass (0.41 M⊙) corresponds to the mass ejected during the last AGB thermal pulse event predicted for a 2.5 M⊙ initial-mass star. A significant fraction of the total mass (about 70%) is found to exist in the PDR, demonstrating the critical importance of the PDR in PNe that are generally recognized as the hallmark of ionized/H(+) regions.

  8. A new method for total OH reactivity measurements using a fast Gas Chromatographic Photo-Ionization Detector (GC-PID)

    Science.gov (United States)

    Nölscher, A. C.; Sinha, V.; Bockisch, S.; Klüpfel, T.; Williams, J.

    2012-05-01

    The primary and most important oxidant in the atmosphere is the hydroxyl radical (OH). Currently OH sinks, particularly gas phase reactions, are poorly constrained. One way to characterize the overall sink of OH is to measure directly the ambient loss rate of OH, the total OH reactivity. To date direct measurements of total OH reactivity have been either performed using a Laser Induced Fluorescence (LIF) system ("pump-and-probe" or "flow reactor") or the Comparative Reactivity Method (CRM) with a Proton Transfer Reaction Mass Spectrometer (PTR-MS). Both techniques require large, complex and expensive detection systems. This study presents a feasibility assessment for CRM total OH reactivity measurements using a new detector, a Gas Chromatographic Photo-Ionization Detector (GC-PID). Such a system is smaller, more portable, less power consuming and less expensive than other total OH reactivity measurement techniques. Total OH reactivity is measured by the CRM using a competitive reaction between a reagent (here pyrrole) with OH alone and in the presence of atmospheric reactive molecules. The new CRM method for total OH reactivity has been tested with parallel measurements of the GC-PID and the previously validated PTR-MS as detector for the reagent pyrrole during laboratory experiments, plant chamber and boreal field studies. Excellent agreement of both detectors was found when the GC-PID was operated under optimum conditions. Time resolution (60-70 s), sensitivity (LOD 3-6 s-1) and overall uncertainty (25% in optimum conditions) for total OH reactivity were equivalent to PTR-MS based total OH reactivity measurements. One drawback of the GC-PID system was the steady loss of sensitivity and accuracy during intensive measurements lasting several weeks, and a possible toluene interference. Generally, the GC-PID system has been shown to produce closely comparable results to the PTR-MS and thus in suitable environments (e.g. forests) it presents a viably economical

  9. Total OH reactivity measurements using a new fast Gas Chromatographic Photo-Ionization Detector (GC-PID)

    Science.gov (United States)

    Nölscher, A. C.; Sinha, V.; Bockisch, S.; Klüpfel, T.; Williams, J.

    2012-12-01

    The primary and most important oxidant in the atmosphere is the hydroxyl radical (OH). Currently OH sinks, particularly gas phase reactions, are poorly constrained. One way to characterize the overall sink of OH is to measure directly the ambient loss rate of OH, the total OH reactivity. To date, direct measurements of total OH reactivity have been either performed using a Laser-Induced Fluorescence (LIF) system ("pump-and-probe" or "flow reactor") or the Comparative Reactivity Method (CRM) with a Proton-Transfer-Reaction Mass Spectrometer (PTR-MS). Both techniques require large, complex and expensive detection systems. This study presents a feasibility assessment for CRM total OH reactivity measurements using a new detector, a Gas Chromatographic Photoionization Detector (GC-PID). Such a system is smaller, more portable, less power consuming and less expensive than other total OH reactivity measurement techniques. Total OH reactivity is measured by the CRM using a competitive reaction between a reagent (here pyrrole) with OH alone and in the presence of atmospheric reactive molecules. The new CRM method for total OH reactivity has been tested with parallel measurements of the GC-PID and the previously validated PTR-MS as detector for the reagent pyrrole during laboratory experiments, plant chamber and boreal field studies. Excellent agreement of both detectors was found when the GC-PID was operated under optimum conditions. Time resolution (60-70 s), sensitivity (LOD 3-6 s-1) and overall uncertainty (25% in optimum conditions) for total OH reactivity were similar to PTR-MS based total OH reactivity measurements. One drawback of the GC-PID system was the steady loss of sensitivity and accuracy during intensive measurements lasting several weeks, and a possible toluene interference. Generally, the GC-PID system has been shown to produce closely comparable results to the PTR-MS and thus in suitable environments (e.g. forests) it presents a viably economical

  10. Microwave discharge electrodeless lamps (MDEL). III. A novel tungsten-triggered MDEL device emitting VUV and UVC radiation for use in wastewater treatment.

    Science.gov (United States)

    Horikoshi, Satoshi; Miura, Takashi; Kajitani, Masatsugu; Serpone, Nick

    2008-03-01

    Exposure to low doses of the xenoestrogen bisphenol A (BPA) and to the hormonal 2,4-dichlorophenoxyacetic acid (2,4-D) herbicide, an environmental endocrine disruptor, can have serious health consequences such as the induction of mammary gland ductal hyperplasias and carcinoma (LaChapelle et al., Reprod. Toxicol., 2007, 23, 20; Murray et al., Reprod. Toxicol., 2007, 23, 383). To the extent that these toxins are present in wastewaters (Donald et al., Sci. Total Environ. 1999, 231, 173; Brotons et al., Environ. Health Perspect. 1994, 103, 608; Olea et al., Environ. Health Perspect. 1996, 104, 298; Biles et al., J. Agric. Food Chem. 1997, 45, 3541; Markey et al., J. Steroid Biochem. Mol. Biol., 2003, 83, 235), we examined their oxidative destruction in aqueous media by a novel light source. A tungsten-triggered microwave discharge electrodeless lamp (W-MDEL) was fabricated for possible use in wastewater treatment using vacuum UV-transparent quartz in which a tungsten trigger, also embedded in quartz, was attached to the MDEL to aid in the self-ignition of the lamp on irradiation at low microwave power levels. The quantity of mercury gas in the W-MDEL was optimized by monitoring the continuous radiation and peak intensities of the emitted light in the vacuum UV (VUV) and UVC regions. The usefulness of the W-MDEL device was assessed through the degradation of 2,4-D and BPA in air-equilibrated aqueous media and in oxygen-saturated aqueous media. Enhanced degradation of these two xenoestrogenic toxins was achieved by increasing the number of W-MDEL devices while keeping constant the microwave radiation feeding each W-MDEL lamp. This novel lamp provides an additional light source in the photooxidation of environmental contaminants without the need for a metal-oxide photocatalyst. Under our conditions, process dynamics using the W-MDEL light source are greater than with the more conventional photochemical methods that employ low-pressure Hg arc electrode lamps in synthetic

  11. Formation of Double Neutron Stars, Millisecond Pulsars and Double ...

    Indian Academy of Sciences (India)

    Edward P. J. Heuvel

    2017-09-12

    Sep 12, 2017 ... the double neutron stars and of double black holes is given. 2. Double neutron stars and millisecond pulsars. 2.1 Double neutron stars. In the period 1978 to 1980, Srinivasan and van den. Heuvel profoundly discussed the possible ways in which the Hulse–Taylor binary pulsar could have been formed.

  12. Multicomponent mixed dopant optimization for rapid screening of polycyclic aromatic hydrocarbons using ultra high performance liquid chromatography coupled to atmospheric pressure photoionization high-resolution mass spectrometry

    KAUST Repository

    Sioud, Salim

    2012-05-04

    RATIONALE To enhance the ionization efficiencies in atmospheric pressure photoionization mass spectrometry a dopant with favorable ionization energy such as chlorobenzene is typically used. These dopants are typically toxic and difficult to mix with water-soluble organic solvents. In order to achieve a more efficient and less toxic dopant, a multicomponent mixed dopant was explored. METHODS A multicomponent mixed dopant for non-targeted rapid screening of polycyclic aromatic hydrocarbons (PAHs) was developed and optimized using ultra high performance liquid chromatography (UPLC) coupled to atmospheric pressure photoionization high-resolution mass spectrometry. Various single and multicomponent mixed dopants consisting of ethanol, chlorobenzene, bromobenzene, anisole and toluene were evaluated. RESULTS Fourteen out of eighteen PAHs were successfully separated and detected at low pg/μL levels within 5 min with high mass accuracy ≤4 ppm. The optimal mixed multicomponent dopant consisted of ethanol/chlorobenzene/bromobenzene/anisole (98.975:0.1:0.9:0.025, v/v %) and it improved the limit of detection (LOD) by 2- to 10-fold for the tested PAHs compared to those obtained with pure chlorobenzene. CONCLUSIONS A novel multicomponent dopant that contains 99% ethanol and 1% mixture of chlorobenzene, bromobenzene and anisole was found to be an effective dopant mixture to ionize PAHs. The developed UPLC multicomponent dopant assisted atmospheric pressure photoionization high-resolution mass spectrometry offered a rapid non targeted screening method for detecting the PAHs at low pg/;μL levels within a 5 min run time with high mass accuracy a;circ4 ppm. Copyright © 2012 John Wiley & Sons, Ltd.

  13. Multicomponent mixed dopant optimization for rapid screening of polycyclic aromatic hydrocarbons using ultra high performance liquid chromatography coupled to atmospheric pressure photoionization high-resolution mass spectrometry.

    Science.gov (United States)

    Sioud, Salim; Amad, Ma'an; Al-Talla, Zeyad A

    2012-06-30

    To enhance the ionization efficiencies in atmospheric pressure photoionization mass spectrometry a dopant with favorable ionization energy such as chlorobenzene is typically used. These dopants are typically toxic and difficult to mix with water-soluble organic solvents. In order to achieve a more efficient and less toxic dopant, a multicomponent mixed dopant was explored. A multicomponent mixed dopant for non-targeted rapid screening of polycyclic aromatic hydrocarbons (PAHs) was developed and optimized using ultra high performance liquid chromatography (UPLC) coupled to atmospheric pressure photoionization high-resolution mass spectrometry. Various single and multicomponent mixed dopants consisting of ethanol, chlorobenzene, bromobenzene, anisole and toluene were evaluated. Fourteen out of eighteen PAHs were successfully separated and detected at low pg/μL levels within 5 min with high mass accuracy ≤4 ppm. The optimal mixed multicomponent dopant consisted of ethanol/chlorobenzene/bromobenzene/anisole (98.975:0.1:0.9:0.025, v/v %) and it improved the limit of detection (LOD) by 2- to 10-fold for the tested PAHs compared to those obtained with pure chlorobenzene. A novel multicomponent dopant that contains 99% ethanol and 1% mixture of chlorobenzene, bromobenzene and anisole was found to be an effective dopant mixture to ionize PAHs. The developed UPLC multicomponent dopant assisted atmospheric pressure photoionization high-resolution mass spectrometry offered a rapid non targeted screening method for detecting the PAHs at low pg/μL levels within a 5 min run time with high mass accuracy ≤4 ppm. Copyright © 2012 John Wiley & Sons, Ltd.

  14. Photoionization pathways and thresholds in generation of Lyman-α radiation by resonant four-wave mixing in Kr-Ar mixture

    OpenAIRE

    Oleg A. Louchev; Norihito Saito; Yu Oishi; Koji Miyazaki; Kotaro Okamura; Jumpei Nakamura; Masahiko Iwasaki; Satoshi Wada

    2016-01-01

    We develop a set of analytical approximations for the estimation of the combined effect of various photoionization processes involved in the resonant four-wave mixing generation of ns pulsed Lyman-α (L-α) radiation by using 212.556 nm and 820-845 nm laser radiation pulses in Kr-Ar mixture: (i) multi-photon ionization, (ii) step-wise (2+1)-photon ionization via the resonant 2-photon excitation of Kr followed by 1-photon ionization and (iii) laser-induced avalanche ionization produced by genera...

  15. John Deakin: Double Exposures

    Directory of Open Access Journals (Sweden)

    Paul Rousseau

    2015-11-01

    Full Text Available In this series of short films made by Jonathan Law, the art historian James Boaden, and the curator of The John Deakin Archive, Paul Rousseau, discuss the double-exposure images made by the photographer John Deakin (1912-1972 in the 1950s and 1960s. The films ask you, firstly, to look closely at the images being discussed. Each one begins with a sustained and intense shot of a single image before opening up to a wide-ranging discussion about Deakin, double exposures, and photography.

  16. Double arch mirror study

    Science.gov (United States)

    Vukobratovich, D.; Hillman, D.

    1983-01-01

    The development of a method of mounting light weight glass mirrors for astronomical telescopes compatible with the goals of the Shuttle Infrared Telescope Facility (SIRTF) was investigated. A 20 in. diameter double arch lightweight mirror previously fabricated was modified to use a new mount configuration. This mount concept was developed and fabricated. The mounting concept of the double mounting mirror is outlined. The modifications made to the mirror, fabrication of the mirror mount, and room temperature testing of the mirror and mount and the extension of the mirror and mount concept to a full size (40 in. diameter) primary mirror for SIRTF are discussed.

  17. Double-Barred Galaxies

    OpenAIRE

    Erwin, Peter

    2009-01-01

    I present a brief review of what is known about double-barred galaxies, where a small ("inner") bar is nested inside a larger ("outer") bar; the review is focused primarily on their demographics and photometric properties. Roughly 20% of S0--Sb galaxies are double-barred; they may be rarer in later Hubble types. Inner bars are typically ~ 500 pc in radius (~ 12% the size of outer bars), but sizes range from ~ 100 pc to > 1 kpc. The structure of at least some inner bars appears very similar to...

  18. 8-channel, FPGA based, DSP integrated cavity simulator and controller for VUV-FEL. SIMCON 3.0 Ver. 3.0. rev. 1, 06.2005 - Hardware manual

    Energy Technology Data Exchange (ETDEWEB)

    Pozniak, K.T.; Czarski, T.; Koprek, W.; Giergusiewicz, W.; Romaniuk, R.S. [Warsaw Univ. of Technology (Poland). Inst. of Electronic Systems ELHEP Laboratory

    2005-07-01

    The note describes integrated, eight channel system of hardware controller and simulator of the resonant superconducting, narrowband niobium cavity, originally considered for the TTF and TESLA in DESY, Hamburg (now tested for the VUV FEL and developed for X-Ray FEL). The controller bases on a programmable circuit Xilinx VirtexII V4000. The solution uses DSP EMBEDDED BOARD module positioned on a Modular LLRF Control Platform. The algorithm and FPGA circuit configuration was done in the VHDL language. The internal hardware multiplication components, present in Virtex II chips, were used, to improve the floating point calculation efficiency. The implementation was achieved of a device working in the real time, according to the demands of the LLRF control system for the TESLA Test Facility (now associated with the VUV FEL machine). The device under consideration will be referred to as superconducting cavity (SCCav) SIMCON throughout this work. The manual describes hardware features of SIMCON, ver. 3.0 in modular solution. The following components are described here in detail: functional layer, parameter programming, foundations of control of particular blocks and monitoring of the real time processes. This note is accompanied by the one describing the multichannel DOOCS interface for the described hardware system. The interface was prepared in DOOCS for Solaris and in Windows. The hardware and software of 8-channel SIMCON was tested in CHECIA and ACC1 module of VUV FEL linac. The measurements results are presented. While giving all necessary technical details required to understand the work of the integrated hardware controller and simulator and to enable its practical copying, this document is a unity with other TESLA technical notes published by the same team on the subject. Thus, some modeling and other subjects were omitted, as they were addressed in detail in the quoted references. Keywords: Super conducting cavity, cavity simulator, CAVITIES CONTROLLER, SIMCON

  19. Experimental and theoretical studies of the VUV emission and absorption spectra of H{sub 2}, HD and D{sub 2} molecules; Etude experimentale et theorique des spectres d'emission et d'absorption VUV des molecules H{sub 2}, D{sub 2} et HD

    Energy Technology Data Exchange (ETDEWEB)

    Roudjane, M

    2007-12-15

    The aim of this thesis is to carry out an experimental study of the absorption and emission spectra of the D{sub 2} and HD isotopes, with high resolution, in the VUV domain and to supplement it by a theoretical study of the excited electronic states involved in the observed transitions. The emission spectra of HD and D{sub 2} are produced by Penning discharge source operating under low pressure and are recorded in the spectral range 78 - 170 nm. The recorded spectra contains more than 20.000 lines. The analysis of the spectrum consists in identifying and assigning the lines to the electronic transitions between energy levels of the molecule. The present analysis is based on our theoretical calculations of the ro-vibrational energy levels of the excited electronic states and the transition probabilities from these states towards the energy levels of the fundamental state. The theoretical results are obtained by resolving the coupled equations between the excited electronic states B{sup 1}{sigma}{sub u}{sup 1}, B'{sup 1}{sigma}{sub u}{sup 1}, C{sup 1}{pi}{sub u}{sup 1} and D{sup 1}{pi}{sub u}{sup 1}, taking into account the nonadiabatic couplings between these states, and they are obtained in the adiabatic approximation for the excited electronic states B''B-bar{sup 1}{sigma}{sub u}{sup +}, D'{sup 1}{pi}{sub u}{sup 1} and D''{sup 1}{pi}{sub u}{sup 1}. The equations are resolved using a modern method based on the discretization variables representation method. In addition, we have carried out a study of the absorption spectra of the HD and D{sub 2} molecules.

  20. Total OH reactivity measurements using a new fast Gas Chromatographic Photo-Ionization Detector (GC-PID

    Directory of Open Access Journals (Sweden)

    V. Sinha

    2012-12-01

    Full Text Available The primary and most important oxidant in the atmosphere is the hydroxyl radical (OH. Currently OH sinks, particularly gas phase reactions, are poorly constrained. One way to characterize the overall sink of OH is to measure directly the ambient loss rate of OH, the total OH reactivity. To date, direct measurements of total OH reactivity have been either performed using a Laser-Induced Fluorescence (LIF system ("pump-and-probe" or "flow reactor" or the Comparative Reactivity Method (CRM with a Proton-Transfer-Reaction Mass Spectrometer (PTR-MS. Both techniques require large, complex and expensive detection systems. This study presents a feasibility assessment for CRM total OH reactivity measurements using a new detector, a Gas Chromatographic Photoionization Detector (GC-PID. Such a system is smaller, more portable, less power consuming and less expensive than other total OH reactivity measurement techniques.

    Total OH reactivity is measured by the CRM using a competitive reaction between a reagent (here pyrrole with OH alone and in the presence of atmospheric reactive molecules. The new CRM method for total OH reactivity has been tested with parallel measurements of the GC-PID and the previously validated PTR-MS as detector for the reagent pyrrole during laboratory experiments, plant chamber and boreal field studies. Excellent agreement of both detectors was found when the GC-PID was operated under optimum conditions. Time resolution (60–70 s, sensitivity (LOD 3–6 s−1 and overall uncertainty (25% in optimum conditions for total OH reactivity were similar to PTR-MS based total OH reactivity measurements. One drawback of the GC-PID system was the steady loss of sensitivity and accuracy during intensive measurements lasting several weeks, and a possible toluene interference. Generally, the GC-PID system has been shown to produce closely comparable results to the PTR-MS and thus in suitable environments (e.g. forests it

  1. Analysis of anabolic steroids in urine by gas chromatography-microchip atmospheric pressure photoionization-mass spectrometry with chlorobenzene as dopant.

    Science.gov (United States)

    Hintikka, Laura; Haapala, Markus; Kuuranne, Tiia; Leinonen, Antti; Kostiainen, Risto

    2013-10-18

    A gas chromatography-microchip atmospheric pressure photoionization-tandem mass spectrometry (GC-μAPPI-MS/MS) method was developed for the analysis of anabolic androgenic steroids in urine as their trimethylsilyl derivatives. The method utilizes a heated nebulizer microchip in atmospheric pressure photoionization mode (μAPPI) with chlorobenzene as dopant, which provides high ionization efficiency by producing abundant radical cations with minimal fragmentation. The performance of GC-μAPPI-MS/MS was evaluated with respect to repeatability, linearity, linear range, and limit of detection (LOD). The results confirmed the potential of the method for doping control analysis of anabolic steroids. Repeatability (RSD<10%), linearity (R(2)≥0.996) and sensitivity (LODs 0.05-0.1ng/mL) were acceptable. Quantitative performance of the method was tested and compared with that of conventional GC-electron ionization-MS, and the results were in good agreement. Copyright © 2013 Elsevier B.V. All rights reserved.

  2. Vibrationally resolved photoionization of the 1{sigma}{sub g} and 1{sigma}{sub u} shells of N{sub 2} molecule

    Energy Technology Data Exchange (ETDEWEB)

    Semenov, S K [State University of Aerospace Instrumentation, 190000 St Petersburg (Russian Federation); Cherepkov, N A [State University of Aerospace Instrumentation, 190000 St Petersburg (Russian Federation); Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Sendai 980-8577 (Japan); Matsumoto, M [Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Sendai 980-8577 (Japan); Fujiwara, K [Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Sendai 980-8577 (Japan); Ueda, K [Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Sendai 980-8577 (Japan); Kukk, E [Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Sendai 980-8577 (Japan); Department of Physics, University of Turku, FIN-20014, Turku (Finland); Tahara, F [Department of Physical Science, Hiroshima University, Higashi-Hiroshima 739-8526 (Japan); Sunami, T [Department of Physical Science, Hiroshima University, Higashi-Hiroshima 739-8526 (Japan); Yoshida, H [Department of Physical Science, Hiroshima University, Higashi-Hiroshima 739-8526 (Japan); Tanaka, T [Department of Physics, Sophia University, Tokyo 102-8554 (Japan); Nakagawa, K [Department of Physics, Sophia University, Tokyo 102-8554 (Japan); Kitajima, M [Department of Physics, Sophia University, Tokyo 102-8554 (Japan); Tanaka, H [Department of Physics, Sophia University, Tokyo 102-8554 (Japan); De Fanis, A [Japan Synchrotron Radiation Research Institute, Sayo-gun, Hyogo 679-5198 (Japan)

    2006-01-28

    Theoretical and experimental study of vibrationally resolved partial photoionization cross sections and angular asymmetry parameter {beta} for the 1{sigma}{sub g} and 1{sigma}{sub u} shells of N{sub 2} molecule in the region of the {sigma}* shape resonance is reported. The measurements were made at the synchrotron radiation facility SPring-8 in Japan. The calculations in the random phase approximation have been performed using the relaxed core Hartree-Fock wavefunctions with the fractional charge of the ion core equal to 0.7. With its help, the role of interchannel coupling between the closely spaced 1{sigma}{sub g} and 1{sigma}{sub u} shells was studied. The experiment demonstrates the existence of a correlational maximum in the 1{sigma}{sub u} shell photoionization cross section induced by the {sigma}* shape resonance in the 1{sigma}{sub g} shell. This maximum reveals itself even more clearly in the angular asymmetry parameter {beta} for the v' = 0 and v' = 1 vibrational states of the ion. The calculation in the random phase approximation gives a consistent interpretation of the experimental data.

  3. Photoionization pathways and thresholds in generation of Lyman-α radiation by resonant four-wave mixing in Kr-Ar mixture

    Science.gov (United States)

    Louchev, Oleg A.; Saito, Norihito; Oishi, Yu; Miyazaki, Koji; Okamura, Kotaro; Nakamura, Jumpei; Iwasaki, Masahiko; Wada, Satoshi

    2016-09-01

    We develop a set of analytical approximations for the estimation of the combined effect of various photoionization processes involved in the resonant four-wave mixing generation of ns pulsed Lyman-α (L-α ) radiation by using 212.556 nm and 820-845 nm laser radiation pulses in Kr-Ar mixture: (i) multi-photon ionization, (ii) step-wise (2+1)-photon ionization via the resonant 2-photon excitation of Kr followed by 1-photon ionization and (iii) laser-induced avalanche ionization produced by generated free electrons. Developed expressions validated by order of magnitude estimations and available experimental data allow us to identify the area for the operation under high input laser intensities avoiding the onset of full-scale discharge, loss of efficiency and inhibition of generated L-α radiation. Calculations made reveal an opportunity for scaling up the output energy of the experimentally generated pulsed L-α radiation without significant enhancement of photoionization.

  4. Photoionization pathways and thresholds in generation of Lyman-α radiation by resonant four-wave mixing in Kr-Ar mixture

    Directory of Open Access Journals (Sweden)

    Oleg A. Louchev

    2016-09-01

    Full Text Available We develop a set of analytical approximations for the estimation of the combined effect of various photoionization processes involved in the resonant four-wave mixing generation of ns pulsed Lyman-α (L-α radiation by using 212.556 nm and 820-845 nm laser radiation pulses in Kr-Ar mixture: (i multi-photon ionization, (ii step-wise (2+1-photon ionization via the resonant 2-photon excitation of Kr followed by 1-photon ionization and (iii laser-induced avalanche ionization produced by generated free electrons. Developed expressions validated by order of magnitude estimations and available experimental data allow us to identify the area for the operation under high input laser intensities avoiding the onset of full-scale discharge, loss of efficiency and inhibition of generated L-α radiation. Calculations made reveal an opportunity for scaling up the output energy of the experimentally generated pulsed L-α radiation without significant enhancement of photoionization.

  5. Aristotle and Double Effect

    DEFF Research Database (Denmark)

    Di Nucci, Ezio

    2014-01-01

    There are some interesting similarities between Aristotle’s ‘mixed actions’ in Book III of the Nicomachean Ethics and the actions often thought to be justifiable with the Doctrine of Double Effect. Here I analyse these similarities by comparing Aristotle’s examples of mixed actions with standard ...

  6. Neutrinoless double beta decay

    Indian Academy of Sciences (India)

    2015-11-27

    Nov 27, 2015 ... Abstract. The physics potential of neutrinoless double beta decay is discussed. Furthermore, experimental considerations as well as the current status of experiments are presented. Finally, an outlook towards the future, work on nuclear matrix elements and alternative processes is given.

  7. Double-Glazing Interferometry

    Science.gov (United States)

    Toal, Vincent; Mihaylova, Emilia M.

    2009-01-01

    This note describes how white light interference fringes can be seen by observing the Moon through a double-glazed window. White light interferometric fringes are normally observed only in a well-aligned interferometer whose optical path difference is less than the coherence length of the light source, which is approximately one micrometer for…

  8. Double beta decay

    Energy Technology Data Exchange (ETDEWEB)

    Bryman, D.; Picciotto, C.

    1978-01-01

    The problem of double beta decay is reviewed with emphasis on its relevance to lepton number conservation. Recently, the ratio of the double beta-decay half-lives of /sup 128/Te and /sup 130/Te has been measured in a geological experiment and a limit for the ratio of the neutrinoless rate to the total rate for /sup 82/Se decay has been obtained from a direct-detection experiment. For the first time, these results show conclusively that double beta decay is not primarily a lepton-number-violating neutrinoless process. However, they also do not agree with calculations which assume that only lepton-number-conserving two-neutrino double beta decay occurs. The conclusion that lepton number conservation is violated is suggested by limited experimental information. By considering contributions to the total rate from both the two-neutrino and the neutrinoless channels, we obtain data which are consistent with a lepton nonconservation parameter of order eta=3.5 x 10/sup -5/. Roughly the same value of eta is obtained by assuming that the decay occurs either via lepton emission from two nucleons or via emission from a resonance in the nucleus.

  9. Design for Double Rainbow

    Science.gov (United States)

    Thomas, Lisa Carlucci

    2011-01-01

    Rare is the inspirational, spontaneous, transformative moment shared among 20 million people. In the summer of 2010, people around the world were moved by the sighting of a double rainbow--almost a triple rainbow--"all the way across the sky" in Yosemite National Park. Caught on video and posted to by YouTube by Paul Vasquez in January 2010, the…

  10. Generalizing double graphs

    Directory of Open Access Journals (Sweden)

    Zagaglia Salvi, Norma

    2007-10-01

    Full Text Available In this paper we study the graphs which are direct product of a simple graph G with the graphs obtained by the complete graph Kk adding a loop to each vertex; thus these graphs turn out to be a generalization of the double graphs.

  11. Hybrid Double Quantum Dots

    DEFF Research Database (Denmark)

    Sherman, D.; Yodh, J. S.; Albrecht, S. M.

    2016-01-01

    Epitaxial semiconductor-superconductor hybrid materials are an excellent basis for studying mesoscopic and topological superconductivity, as the semiconductor inherits a hard superconducting gap while retaining tunable carrier density. Here, we investigate double-quantum-dot devices made from InA...... that the individual dots host weakly hybridized Majorana modes....

  12. Infrared absorption of methanol-water clusters (CH3OH)n(H2O), n = 1-4, recorded with the VUV-ionization/IR-depletion technique

    Science.gov (United States)

    Lee, Yu-Fang; Kelterer, Anne-Marie; Matisz, Gergely; Kunsági-Máté, Sándor; Chung, Chao-Yu; Lee, Yuan-Pern

    2017-04-01

    We recorded infrared (IR) spectra in the CH- and OH-stretching regions of size-selected clusters of methanol (M) with one water molecule (W), represented as MnW, n = 1-4, in a pulsed supersonic jet using the photoionization/IR-depletion technique. Vacuum ultraviolet emission at 118 nm served as the source of ionization in a time-of-flight mass spectrometer to detect clusters MnW as protonated forms Mn-1WH+. The variations in intensities of Mn-1WH+ were monitored as the wavelength of the IR laser light was tuned across the range 2700-3800 cm-1. IR spectra of size-selected clusters were obtained on processing of the observed action spectra of the related cluster-ions according to a mechanism that takes into account the production and loss of each cluster due to IR photodissociation. Spectra of methanol-water clusters in the OH region show significant variations as the number of methanol molecules increases, whereas those in the CH region are similar for all clusters. Scaled harmonic vibrational wavenumbers and relative IR intensities predicted with the M06-2X/aug-cc-pVTZ method for the methanol-water clusters are consistent with our experimental results. For dimers, absorption bands of a structure WM with H2O as a hydrogen-bond donor were observed at 3570, 3682, and 3722 cm-1, whereas weak bands of MW with methanol as a hydrogen-bond donor were observed at 3611 and 3753 cm-1. For M2W, the free OH band of H2O was observed at 3721 cm-1, whereas a broad feature was deconvoluted to three bands near 3425, 3472, and 3536 cm-1, corresponding to the three hydrogen-bonded OH-stretching modes in a cyclic structure. For M3W, the free OH shifted to 3715 cm-1, and the hydrogen-bonded OH-stretching bands became much broader, with a weak feature near 3179 cm-1 corresponding to the symmetric OH-stretching mode of a cyclic structure. For M4W, the observed spectrum agrees unsatisfactorily with predictions for the most stable cyclic structure, indicating significant contributions from

  13. International Conference on Vacuum Ultraviolet Radiation Physics, 8th, Lunds Universitet, Sweden, Aug. 4-8, 1986, Proceedings

    Science.gov (United States)

    Nilsson, Per-Olof (Editor); Nordgren, Joseph (Editor)

    1987-01-01

    The interactions of VUV radiation with solids are explored in reviews and reports of recent theoretical and experimental investigations from the fields of atomic and molecular physics, solid-state physics, and VUV instrumentation. Topics examined include photoabsorption and photoionization, multiphoton processes, plasma physics, VUV lasers, time-resolved spectroscopy, synchrotron radiation centers, solid-state spectroscopy, and dynamical processes involving localized levels. Consideration is given to the fundamental principles of photoemission, spin-polarized photoemission, inverse photoemission, semiconductors, organic materials, and adsorbates.

  14. Competitive and synergistic effects between excimer VUV radiation and O radicals on the etching mechanisms of polyethylene and fluoropolymer surfaces treated by atmospheric He-O$_2$ post-discharge

    CERN Document Server

    Dufour, Thierry; Vandencasteele, Nicolas; Viville, Pascal; Lazzaroni, Roberto; Reniers, François

    2016-01-01

    Among various surface modification techniques, plasma can be used as a source for tailoring the surface properties of diverse materials. HDPE and fluoropolymer surfaces have been treated by the post-discharge of an atmospheric RF-plasma torch supplied with helium and oxygen gases. The plasma-treated surfaces were characterized by measurements of mass losses, water contact angles, x-ray photoelectron spectroscopy and atomic force microscopy. This experimental approach correlated with an optical characterization of the plasma phase allowed us to propose etching mechanisms occurring at the post-discharge/polymer interface. We discuss how competitive and synergistic effects can result from the oxidation and/or the roughening of the surface but also from the excimer VUV radiation, the He metastable species and the O radicals reaching the plasma-polymer interface.

  15. Compact ultrafast orthogonal acceleration time-of-flight mass spectrometer for on-line gas analysis by electron impact ionization and soft single photon ionization using an electron beam pumped rare gas excimer lamp as VUV-light source.

    Science.gov (United States)

    Mühlberger, F; Saraji-Bozorgzad, M; Gonin, M; Fuhrer, K; Zimmermann, R

    2007-11-01

    Orthogonal acceleration time-of-flight mass spectrometers (oaTOFMS), which are exhibiting a pulsed orthogonal extraction of ion bunches into the TOF mass analyzer from a continuous primary ion beam, are well-suited for continuous ionization methods such as electron impact ionization (EI). Recently an electron beam pumped rare gas excimer lamp (EBEL) was introduced, which emits intensive vacuum UV (VUV) radiation at, e.g., 126 nm (argon excimer) and is well suited as the light source for soft single photon ionization (SPI) of organic molecules. In this paper, a new compact oaTOFMS system which allows switching between SPI, using VUV-light from an EBEL-light source, and conventional EI is described. With the oaTOFMS system, EBEL-SPI and EI mass spectral transients can be recorded at very high repetition rates (up to 100 kHz), enabling high duty cycles and therefore good detection efficiencies. By using a transient recorder card with the capability to perform on-board accumulation of the oaTOF transients, final mass spectra with a dynamic range of 106 can be saved to the hard disk at a rate of 10 Hz. As it is possible to change the ionization modes (EI and SPI) rapidly, a comprehensive monitoring of complex gases with highly dynamic compositions, such as cigarette smoke, is possible. In this context, the EI based mass spectra address the bulk composition (compounds such as water, oxygen, carbon dioxide, etc. in the up to percentage concentration range) as well as some inorganic trace gases such as argon, sulfur dioxide, etc. down to the low ppm level. The EBEL-SPI mass spectra on the other hand are revealing the organic composition down to the lower ppb concentration range.

  16. Relaxation and excitation electronic processes in dielectrics irradiated by ultrafast IR and VUV pulses; Processus electroniques d'excitation et de relaxation dans les solides dielectriques excites par des impulsions IR et XUV ultracourtes

    Energy Technology Data Exchange (ETDEWEB)

    Gaudin, J

    2005-11-15

    We studied excitation and relaxation of electrons involved during interaction of visible and VUV femtosecond pulses with dielectrics. The generated population of hot electrons, having energy of few eV to few tens of eV above the bottom of the conduction band, is responsible of phenomena ranging to defect creation to optical breakdown. Owing to two techniques: photoemission and transient photoconductivity we improve the understanding of the The first photoemission experiments deal with dielectrics irradiated by 30 fs IR pulses. The photoemission spectra measured show a large population of electrons which energy rise up to 40 eV. We interpret this result in terms of a new absorption process: direct multi-photons inter-branch transitions. The 2. type of photoemission experiments are time resolved 'pump/probe' investigation. We study the relaxation of electrons excited by a VUV pulses. We used the high order harmonics (HOH) as light sources. We found surprisingly long decay time in the range of ps timescale. Last type of experiments is photoconductivity studies of diamond samples. Using HOH as light source we measure the displacement current induced by excited electrons in the conduction band. Those electrons relax mainly by impact ionisation creating secondary electrons. Hence by probing the number of electrons we were able to measure the efficiency of these relaxation processes. We observe a diminution of this efficiency when the energy of exciting photons is above 20 eV. Owing to Monte-Carlo simulation we interpret this result in terms of band structure effect. (author)

  17. Decoherence in attosecond photoionization.

    Science.gov (United States)

    Pabst, Stefan; Greenman, Loren; Ho, Phay J; Mazziotti, David A; Santra, Robin

    2011-02-04

    The creation of superpositions of hole states via single-photon ionization using attosecond extreme-ultraviolet pulses is studied with the time-dependent configuration-interaction singles (TDCIS) method. Specifically, the degree of coherence between hole states in atomic xenon is investigated. We find that interchannel coupling not only affects the hole populations, but it also enhances the entanglement between the photoelectron and the remaining ion, thereby reducing the coherence within the ion. As a consequence, even if the spectral bandwidth of the ionizing pulse exceeds the energy splittings among the hole states involved, perfectly coherent hole wave packets cannot be formed. For sufficiently large spectral bandwidth, the coherence can only be increased by increasing the mean photon energy.

  18. Delay in atomic photoionization

    CERN Document Server

    Kheifets, A S

    2010-01-01

    We analyze the time delay between emission of photoelectrons from the outer valence $ns$ and $np$ sub-shells in noble gas atoms following absorption of an attosecond XUV pulse. By solving the time dependent Schr\\"odinger equation and carefully examining the time evolution of the photoelectron wave packet, we establish the apparent "time zero" when the photoelectron leaves the atom. Various processes such as elastic scattering of the photoelectron on the parent ion and many-electron correlation affect the quantum phase of the dipole transition matrix element, the energy dependence of which defines the emission timing. This qualitatively explains the time delay between photoemission from the $2s$ and $2p$ sub-shells of Ne as determined experimentally by attosecond streaking [{\\em Science} {\\bf 328}, 1658 (2010)]. However, with our extensive numerical modeling, we were only able to account for less than a half of the measured time delay of $21\\pm5$~as. We argue that the XUV pulse alone cannot produce such a larg...

  19. Applications of Diamonded Double Negation

    OpenAIRE

    Yli-Jyrä, Anssi

    2008-01-01

    Nested complementation plays an important role in expressing counter- i.e. star-free and first-order definable languages and their hierarchies. In addition, methods that compile phonological rules into finite-state networks use double-nested complementation or “double negation”. This paper reviews how the double-nested complementation extends to a relatively new operation, generalized restriction (GR), coined by the author (Yli-Jyrä and Koskenniemi 2004). This operation encapsulates a double-...

  20. Double Cortex Syndrome

    OpenAIRE

    J Gordon Millichap

    1999-01-01

    The incidence of mutations in the X-linked gene doublecortin in patients with “double cortex” syndrome (DC; also called subcortical band heterotopia or laminar heterotopia) and familial DC with lissencephaly was investigated in a cohort of 8 pedigrees and 47 sporadic patients with DC examined at the Division of Neurogenics, Beth Israel Deaconess Medical Center, Boston, and multiple centers in the US and abroad.

  1. Algebra of Majorana doubling.

    Science.gov (United States)

    Lee, Jaehoon; Wilczek, Frank

    2013-11-27

    Motivated by the problem of identifying Majorana mode operators at junctions, we analyze a basic algebraic structure leading to a doubled spectrum. For general (nonlinear) interactions the emergent mode creation operator is highly nonlinear in the original effective mode operators, and therefore also in the underlying electron creation and destruction operators. This phenomenon could open up new possibilities for controlled dynamical manipulation of the modes. We briefly compare and contrast related issues in the Pfaffian quantum Hall state.

  2. Results of double contrast enema

    Energy Technology Data Exchange (ETDEWEB)

    Czembirek, H.; Sommer, G.; Wittich, G.; Tscholakoff, D.; Salomonowitz, E.

    1983-07-01

    Experiences and results of double contrast enemas are reported. The accuracy of double contrast enemas is proved by 500 consecutive investigations. Correlation of endoscopic and roentgenologic investigations showed, that the double contrast enema is a reliable method concerning the detection of polyps, carcinomas and inflammatory colon diseases. Advantages and disadvantages of roentgenology and endoscopy of the colon are discussed.

  3. Photoionization using the xchem approach: Total and partial cross sections of Ne and resonance parameters above the 2 s22 p5 threshold

    Science.gov (United States)

    Marante, Carlos; Klinker, Markus; Kjellsson, Tor; Lindroth, Eva; González-Vázquez, Jesús; Argenti, Luca; Martín, Fernando

    2017-08-01

    The XCHEM approach interfaces well established quantum chemistry packages with scattering numerical methods in order to describe single-ionization processes in atoms and molecules. This should allow one to describe electron correlation in the continuum at the same level of accuracy as quantum chemistry methods do for bound states. Here we have applied this method to study multichannel photoionization of Ne in the vicinity of the autoionizing states lying between the 2 s22 p5 and 2 s 2 p6 ionization thresholds. The calculated total photoionization cross sections are in very good agreement with the absolute measurement of Samson et al. [J. Electron Spectrosc. Relat. Phenom. 123, 265 (2002), 10.1016/S0368-2048(02)00026-9], and with independent benchmark calculations performed at the same level of theory. From these cross sections, we have extracted resonance positions, total autoionization widths, Fano profile parameters, and correlation parameters for the lowest three autoionizing states. The values of these parameters are in good agreement with those reported in earlier theoretical and experimental work. We have also evaluated β asymmetry parameter and partial photoionization cross sections and, from the latter, partial autoionization widths and Starace parameters for the same resonances, not yet available in the literature. Resonant features in the calculated β parameter are in good agreement with the experimental observations. We have found that the three lowest resonances preferentially decay into the 2 p-1ɛ d continuum rather than into the 2 p-1ɛ s one [Phys. Rev. A 89, 043415 (2014), 10.1103/PhysRevA.89.043415], in agreement with previous expectations, and that in the vicinity of the resonances the partial 2 p-1ɛ s cross section can be larger than the 2 p-1ɛ d one, in contrast with the accepted idea that the latter should amply dominate in the whole energy range. These results show the potential of the XCHEM approach to describe highly correlated process

  4. Ac-induced disruption of the doubleDs structure in tomato

    NARCIS (Netherlands)

    Rommens, Caius M.T.; Biezen, Erik A. van der; Ouwerkerk, Pieter B.F.; Nijkamp, H. John J.; Hille, Jacques

    1991-01-01

    The maize doubleDs element is stably maintained in the tomato genome. Upon the subsequent introduction of Ac into a plant containing doubleDs, disruption of the doubleDs structure and DNA rearrangements at the site of the doubleDs element were observed. No indications were obtained for excision of

  5. Liquid chromatography/mass spectrometry in anabolic steroid analysis--optimization and comparison of three ionization techniques: electrospray ionization, atmospheric pressure chemical ionization and atmospheric pressure photoionization.

    Science.gov (United States)

    Leinonen, Antti; Kuuranne, Tiia; Kostiainen, Risto

    2002-07-01

    The applicability of liquid chromatography/tandem mass spectrometry (LC/MS/MS) for the detection of the free anabolic steroid fraction in human urine was examined. Electrospray ionization (ESI), atmospheric pressure chemical ionization and atmospheric pressure photoionization methods were optimized regarding eluent composition, ion source parameters and fragmentation. The methods were compared with respect to specificity and detection limit. Although all methods proved suitable, LC/ESI-MS/MS with a methanol-water gradient including 5 mM ammonium acetate and 0.01% acetic acid was found best for the purpose. Multiple reaction monitoring allowed the determination of steroids in urine at low nanogram per milliliter levels. LC/MS/MS exhibited high sensitivity and specificity for the detection of free steroids and may be a suitable technique for screening for the abuse of anabolic steroids in sports. Copyright 2002 John Wiley & Sons, Ltd.

  6. Measurements of mass attenuation coefficients and determination of photoionization cross sections at energies across the Li (i=1-3) edges of 66Dy

    Science.gov (United States)

    Kaur, Rajnish; Kumar, Anil; Osan, Janos; Czyzycki, M.; Karydas, A. G.; Puri, Sanjiv

    2017-07-01

    The absolute values of the mass attenuation coefficients have been measured at sixty two photon energies across the Li (i=1-3) sub-shell absorption edges of 66Dy covering the region 7.6-14.0 keV in order to investigate the influence of near-edge processes on the attenuation coefficients. The present measured attenuation coefficients are found to be higher by up to 10% than the theoretical values evaluated from the computer code XCOM (Berger et al., 2010) and the self-consistent Dirac-Hartree-Slater (DHS) model based values tabulated by Chantler (1995) over the energy region 7.6-14.0 keV, except at energies in vicinity (few eV) of the Li (i=1-3) sub-shell absorption edge energies where the measured values are significantly higher (up to 37%) than both the sets of theoretical values. Further, the Li (i=1-3) sub-shell photoionization cross sections, (σLiP)exp, deduced from the present measured mass attenuation coefficients are compared with the non-relativistic Hartree-Fock-Slater (HFS) model based values tabulated by Scofield (1973) and those evaluated from the theoretical total photoionization attenuation coefficients tabulated by Chantler (1995). The deduced (σLiP)exp(i=1-3) values are found to be in better agreement with those evaluated from the tabulations given by Chantler (1995) than the values given by Scofield (1973) over the energy region 7.8 - 14.0 keV included in this study. However, at photon energies up to few eV above the Li edges, the deduced (σLiP)exp(i=1-3) values are found to be significantly higher (up to 32%) than both the sets of theoretical values.

  7. The Double Star mission

    Directory of Open Access Journals (Sweden)

    Liu

    2005-11-01

    Full Text Available The Double Star Programme (DSP was first proposed by China in March, 1997 at the Fragrant Hill Workshop on Space Science, Beijing, organized by the Chinese Academy of Science. It is the first mission in collaboration between China and ESA. The mission is made of two spacecraft to investigate the magnetospheric global processes and their response to the interplanetary disturbances in conjunction with the Cluster mission. The first spacecraft, TC-1 (Tan Ce means "Explorer", was launched on 29 December 2003, and the second one, TC-2, on 25 July 2004 on board two Chinese Long March 2C rockets. TC-1 was injected in an equatorial orbit of 570x79000 km altitude with a 28° inclination and TC-2 in a polar orbit of 560x38000 km altitude. The orbits have been designed to complement the Cluster mission by maximizing the time when both Cluster and Double Star are in the same scientific regions. The two missions allow simultaneous observations of the Earth magnetosphere from six points in space. To facilitate the comparison of data, half of the Double Star payload is made of spare or duplicates of the Cluster instruments; the other half is made of Chinese instruments. The science operations are coordinated by the Chinese DSP Scientific Operations Centre (DSOC in Beijing and the European Payload Operations Service (EPOS at RAL, UK. The spacecraft and ground segment operations are performed by the DSP Operations and Management Centre (DOMC and DSOC in China, using three ground station, in Beijing, Shanghai and Villafranca.

  8. Layered double hydroxides

    DEFF Research Database (Denmark)

    López Rayo, Sandra; Imran, Ahmad; Hansen, Hans Chr. Bruun

    2017-01-01

    A novel zinc (Zn) fertilizer concept based on Zn doped layered double hydroxides (Zn-doped Mg-Fe-LDHs) has been investigated. Zn-doped Mg-Fe-LDHs were synthetized, their chemical composition was analyzed and their nutrient release was studied in buffered solutions with different pH values. Uptake...... the long-term Zn release capacity of LDHs complying with a release-on-demand behavior and serves as proof-of-concept that Zn-doped Mg-Fe-LDHs can be used as Zn fertilizers....

  9. Double conjugate laser amplifier

    Energy Technology Data Exchange (ETDEWEB)

    Chandra, S.; Daunt, G.H.

    1991-01-29

    This paper describes a double conjugate laser amplifier system for producing a stable output laser beam in line with a laser oscillator input beam. It comprises: a laser oscillator which produces a low energy oscillator laser beam therefrom directly along a laser beam axis of the system; an amplification means comprised of double conjugate laser amplifiers further comprised of a first and a second singly phase conjugate amplifiers laterally opposite each other about the laser beam axis; polarizers with one of the polarizers positioned between each of the first and second singly phase conjugate amplifiers on the laser beam axis; Pockels cells with on of the Pockels cells positioned on the laser beam axis immediately prior to one of the polarizers; and a means for selectively switching the amplifier means comprised of applying a half-wave voltage at each of the Pockels cells to provide a polarization rotation of the input beam through 90{degrees} for routing of the oscillator laser beam directly through or reflected off the polarizes as an input beam to the amplification means wherein the amplification means amplifies the input beam twice in each of the first and second singly phase conjugate amplifiers and reflects the amplified laser beam off the polarizers as an amplified laser output beam in exactly the same direction as the input laser beam.

  10. Investigation of the ionization mechanism of polycyclic aromatic hydrocarbons using an ethanol/bromobenzene/chlorobenzene/anisole mixture as a dopant in liquid chromatography/atmospheric pressure photoionization mass spectrometry

    KAUST Repository

    Amad, Maan H.

    2012-09-23

    RATIONALE An ethanol-based multicomponent dopant consisting of ethanol/chlorobenzene/bromobenzene/anisole (98.975:0.1:0.9:0.025, v/v/v/v) has been used as a dopant for atmospheric pressure photoionization (APPI) of polycyclic aromatic hydrocarbons (PAHs). In this study the mechanism of ionization of PAHs assisted by the ethanol-based multicomponent dopant is investigated. METHODS The reactant background cluster ions of the ethanol-based multicomponent dopant observed in the positive ion APPI were studied. These studies were performed to investigate the mechanism behind the generation of a molecular radical cation (M +•) for PAHs by APPI assisted by the ethanol-based multicomponent dopant. Full scan and MS/MS analyses were conducted using an LTQ Orbitrap mass spectrometer. The effect of acidification of the mobile phase on the dopant cluster ion formation was also investigated. RESULTS With the ethanol-based multicomponent dopant, a single type of molecular radical cation M +• was observed for the studied PAHs. The characteristic ion signal of the multicomponent dopant mixture consisted of mainly anisole photoions at m/z 108.05697 and its adduct ions at m/z 124.05188 and 164.07061. The anisole ion response at m/z 108.05697 was stable in the presence of acetonitrile, methanol, water and 0.1% formic acid mobile phase composition. CONCLUSIONS The abundance formation of anisole photoions shows the universality of this multicomponent dopant in ionizing compounds with ionization energy ranging from 7.1-8.2 eV. Since the ionization energy of anisole is 8.2 eV and is lower than those of chlorobenzene (9.07 eV) and bromobenzene (9.0 eV), the mechanism of formation of anisole photoions even with its very minute amounts was not only governed by its photoionization by the krypton lamp photon energy (10.0 eV and 10.6 eV), but also by charge transfer from bromobenzene and chlorobenzene radical cations. PAH molecules were mainly ionized by charge transfer reaction from

  11. PREPARATION OF LAYERED DOUBLE HYDROXIDES

    National Research Council Canada - National Science Library

    OGAWA, MAKOTO; INOMATA, KAZUYA

    2011-01-01

    Layered double hydroxides (LDHs) are class of materials with useful properties associated with their anion exchange abilities for a wide range of applications including bio and environmental problems...

  12. Colored Flag by Double Refraction.

    Science.gov (United States)

    Reid, Bill

    1994-01-01

    Describes various demonstrations that illustrate double refraction and rotation of the plane of polarization in stressed, transparent plastics, with the consequent production of colored designs. (ZWH)

  13. Double-Skin Facade

    DEFF Research Database (Denmark)

    Kalyanova, Olena

    Double-Skin Facades (DSF) are gaining popularity that, in fact, appears to be independent from sturdy critics of the concept in the past years. DSF buildings are being built in Europe and worldwide, DSF concept is being taught at schools of architecture and fully glazed office buildings are being...... favored by companies and their employees. To bring the reduction of energy use in these buildings application of suitable tools and methods is necessary to achieve successful design solutions. Earlier work on the topic of DSF modelling was examined from various publications. As a result, the main...... difficulties experienced by scientists when attempting to model DSF thermal and energy performance were examined. In addition, the lack of experimental studies and empirical validation of models was realized, many numerical models have not been empirically validated and most of them require an expert knowledge...

  14. Layered double hydroxides

    DEFF Research Database (Denmark)

    López Rayo, Sandra; Imran, Ahmad; Hansen, Hans Chr. Bruun

    2017-01-01

    A novel zinc (Zn) fertilizer concept based on Zn doped layered double hydroxides (Zn-doped Mg-Fe-LDHs) has been investigated. Zn-doped Mg-Fe-LDHs were synthetized, their chemical composition was analyzed and their nutrient release was studied in buffered solutions with different pH values. Uptake...... of Zn by barley (Hordeum vulgare cv. Antonia) was evaluated in short- (8 weeks), medium- (11 weeks) and long-term (28 weeks) experiments in quartz sand and in a calcareous soil enriched with Zn-doped Mg-Fe-LDHs. The Zn release rate of the Zn-doped Mg-Fe-LDHs was described by a first-order kinetics...

  15. Dual double field theory

    Energy Technology Data Exchange (ETDEWEB)

    Bergshoeff, Eric A. [Centre for Theoretical Physics, University of Groningen,Nijenborgh 4, 9747 AG Groningen (Netherlands); Hohm, Olaf [Simons Center for Geometry and Physics, Stony Brook University,Stony Brook, NY 11794-3636 (United States); Penas, Victor A. [Centre for Theoretical Physics, University of Groningen,Nijenborgh 4, 9747 AG Groningen (Netherlands); Riccioni, Fabio [INFN - Sezione di Roma, Dipartimento di Fisica, Università di Roma “La Sapienza”,Piazzale Aldo Moro 2, 00185 Roma (Italy)

    2016-06-06

    We present the dual formulation of double field theory at the linearized level. This is a classically equivalent theory describing the duals of the dilaton, the Kalb-Ramond field and the graviton in a T-duality or O(D,D) covariant way. In agreement with previous proposals, the resulting theory encodes fields in mixed Young-tableau representations, combining them into an antisymmetric 4-tensor under O(D,D). In contrast to previous proposals, the theory also requires an antisymmetric 2-tensor and a singlet, which are not all pure gauge. The need for these additional fields is analogous to a similar phenomenon for “exotic' dualizations, and we clarify this by comparing with the dualizations of the component fields. We close with some speculative remarks on the significance of these observations for the full non-linear theory yet to be constructed.

  16. Coupled Double Quantum Wells

    Directory of Open Access Journals (Sweden)

    Élder Mantovani Lopes

    2010-12-01

    Full Text Available The progress of the semiconductor growth techniques allows the opportunity to produce new semiconductors devices that may contribute to the development of the nanotechnology. The fabrication of semiconductor heterostructures with high quality allows the obtaining of new effects based on the quantum properties of those systems, which have stimulated great technological interest, especially on the optoelectronic and telecommunications fields. In this work some basic concepts related to one of those heterostructures are discussed: the Coupled Double Quantum Well (CDQW. The deduction of the expression for the determination of the energy levels in CDQWs is presented in details. The results obtained through this expression are compared with experimental results obtained through photoluminescence (PL measurements, complementing the work.

  17. Draping Double-Layer Woven Fabrics Onto Double-Curvature ...

    African Journals Online (AJOL)

    Draping woven fabrics to complex parts with double curvature leads to complex redistribution and reorientation of the yarns in composites reinforced with woven preforms. To reduce the risk of fabric tearing or wrinkling we propose to use double-layer woven fabrics. This paper presents a simulation model for draping

  18. Orbits of four double stars

    Directory of Open Access Journals (Sweden)

    Novaković B.

    2006-01-01

    Full Text Available We present orbits of four double stars. Orbits of stars WDS 23516+4205 = ADS 17050 and WDS 18239+5848 = ADS 11336 were calculated for the first time. Orbits of double stars WDS 02022+3643 = ADS 1613 and WDS 18443+3940 = ADS 11635 were revised. We have also determined their masses, dynamical parallaxes and ephemerides.

  19. Empirically Unbinding the Double Bind.

    Science.gov (United States)

    Olson, David H.

    The theoretical concept of the double bind and the possibilities for researching it are discussed. The author has observed that theory and research, which should be reciprocal and mutually beneficial, have been working, as concerns the double bind, at odds with one another. Two approaches to empirically investigating the concept are considered via…

  20. Hedging Double Barriers with Singles

    NARCIS (Netherlands)

    Sbuelz, A.

    2000-01-01

    Double barrier options provide risk managers with good-deal flexibility in tailoring portfolio returns.Their hedges offer full protection only if unwound along the barriers.This work provides non-dynamic hedges that project the risk of double barriers on to single barriers.Non-dynamic hedges

  1. Double layer relaxation in colloids

    NARCIS (Netherlands)

    Kijlstra, J.

    1992-01-01

    The purpose of the present study is to improve our insight into the relaxation of the electrical double layer around particles in hydrophobic sols. A detailed knowledge of the relaxation mechanisms is required to explain the behaviour of sols under conditions where the double layer is

  2. Double parton scattering theory overview

    NARCIS (Netherlands)

    Diehl, Markus; Gaunt, Jonathan R.

    2017-01-01

    The dynamics of double hard scattering in proton-proton collisions is quite involved compared with the familiar case of single hard scattering. In this contribution, we review our theoretical understanding of double hard scattering and of its interplay with other reaction mechanisms.

  3. Natural double inflation

    Science.gov (United States)

    Occhionero, F.; Litterio, M.; Capozziello, S.; Amendola, L.

    The astronomical interest of double inflation stems from the possibility it gives of inserting a feature in an otherwise featureless (or scale invariant) perturbation spectrum, precisely at the scale (100 Mpc, say) that goes through the horizon at the (sharp) separations between the two successive inflations. Double inflation occurs when two scalar fields (or inflatons) dominate sequentially the cosmic expansion or when vacuum polarization — Ricci scalar R squared added to the Lagrangian — is taken into account and only one inflaton ψ is present. (This perhaps is more natural as it exploits quantum effects to reduce to one the number of the ad hoc ingredients.) In that case we know from Starobinsky's pioneering work that the first inflation is driven by R — rightly called then scalaron — under the rules of Fourth Order Gravity, (FOG), while the second is driven by ψ under the rules of ordinary General Relativity, (GR). Unfortunately most of the appeal of the scalaron-inflaton scenario in relation to the feature in the perturbation spectrum, is lost because a delicate fine tuning of the value of the (second) inflaton at the beginning of the second inflation is required, in the absence of which the two inflations merge in one and no scale is singled out. In order to overcome this difficulty, we introduce in the Lagrangian density a new scalar coupling between ψ and R2, analogous to the well known non minimal coupling between ψ and R of canonical GR. We show that in this way the two inflationary episodes of FOG and GR may be neatly distinguished from each other, regardless of the initial value of ψ. This is due to the influence of the coupling on the shape of the conformal potential, in which one can easily carve a channel of evolution, consisting in fact of two orthogonal valleys. Then, for most of phase space the attractor is this doubly inflationary trajectory that lies at the bottom of the two valleys (Fig. 1). In fact, in this case the Universe first

  4. Characteristics of photoionization in the XUV domain for the excited 1s{sup 2}2s2p{sup 1,3}P{sup o} states of the Be-like C{sup 2+} ion

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Dae-Soung [e-Business Department, Kyonggi Institute of Technology, Siheung, Jungwang-Dong 2121-3, Kyonggi-Do 429-450 (Korea, Republic of); Kim, Young Soon [Department of Physics, Myongji University, Yongin 449-728 (Korea, Republic of)

    2007-10-14

    Resonance structures and their characteristics in the photoionization of the first excited p-states of Be-like C{sup 2+} ion which interact with the even-parity continua have been studied up to the C{sup 3+} 3d threshold limit. Using the variational R-matrix method, calculations have been performed in the initial 20 and final 22 state close-coupling approximations in the photon wavelength range 15-35 nm. The detailed photoionization processes of included multichannels are displayed in the partial photoionization cross sections, which contain a number of autoionizing Rydberg series of resonances converging to the C{sup 3+} 2p, 3s, 3p and 3d thresholds. In particular, the lower members of the Rydberg series showing irregular patterns of resonances, which lie above the C{sup 3+} 2p threshold, are identified and resonance positions E{sub r}, effective quantum numbers n*, and widths {gamma} are presented. Excellent agreement between length and velocity gauge results is found, along with overall good agreement with previous work, except for the discrepancies with the threshold behaviour of the OP (opacity project) result.

  5. Dissociation dynamics and thermochemistry of tin species, (CH3)4Sn and (CH3)6Sn2, by threshold photoelectron-photoion coincidence spectroscopy.

    Science.gov (United States)

    Dávalos, Juan Z; Herrero, Rebeca; Shuman, Nicholas S; Baer, Tomas

    2011-02-03

    The dissociative photoionization of tetramethyltin (Me₄Sn) and hexamethylditin (Me₆Sn₂) has been investigated by threshold photoelectron-photoion coincidence (TPEPICO). Ions are energy-selected, and their 0 K dissociation onsets are measured by monitoring the mass spectra as a function of ion internal energy. Me₄Sn(+) dissociates rapidly by methyl loss, with a 0 K onset of E₀ = 9.382 ± 0.020 eV. The hexamethylditin ion dissociates slowly on the time scale of the experiment (i.e., during the 40 μs flight time to the detector) so that dissociation rate constants are measured as a function of the ion energy. RRKM and the simplified statistical adiabatic channel model (SSACM) are used to extrapolate the measured rate constants for methyl and Me₃Sn(•) loss to their 0 K dissociation onsets, which were found to be 8.986 ± 0.050 and 9.153 ± 0.075 eV, respectively. Updated values for the heats of formation of the neutral Me₄Sn and Me₆Sn₂ are used to derive the following 298.15 K gas-phase standard heats of formation, in kJ·mol⁻¹: Δ(f)H(m)(o)(Me₃Sn(+),g) = 746.3 ± 2.9; Δ(f)H(m)(o)(Me₅Sn₂(+),g) = 705.1 ± 7.5; Δ(f)H(m)(o)(Me₃Sn(•),g) = 116.6 ± 9.7; Δ(f)H(m)(o)(Me₂Sn,g) = 123.0 ± 16.5; Δ(f)H(m)(o)(MeSn(+),g) = 877.8 ± 16.4. These energetic values also lead to the following 298.15 K bond dissociation enthalpies, in kJ·mol⁻¹: BDE(Me₃Sn-Me) = 284.1 ± 9.9; BDE(Me₃Sn-SnMe₃) = 252.6 ± 14.8.

  6. A Handbook of Double Stars

    Science.gov (United States)

    Crossley, Edward; Gledhill, Joseph; Wilson, James M.

    2011-11-01

    Preface; Part I. Historical, and Descriptive of Instruments and Methods: 1. Historical introduction; 2. The Equatorial: its construction and adjustments; 3. Some account of the Equatorials which have been used by double-star observers; 4. The micrometer; 5. Methods of observing double stars; Part II. On the Calculation of the Orbit of a Binary Star: 1. Introduction; 2. Example of an orbit worked by a graphical method; 3. Dr. Doberck's example of an orbit worked by analytical methods; 4. On relative rectilinear motion; 5. On the effect of proper motion and parallax on the observed position angles and distance of an optically double star; 6. On the errors of observation and the combination of observations; Part III. The Catalogue and Measures: Introductory remarks; A catalogue of binary and other double starts deserving of attention; Lists of measures, with historical notes, etc.; Supplementary list of measures; Appendix; Additional notes to measures; Binary stars classified; Note on systematic errors in the measures of angle and distance of double stars; Part IV. Bibliography: A. Some of the most important works and papers on double stars; B. Some papers on the micrometer; C. Some papers on the colours of double stars; Additional notes; Corrections 1880.

  7. Field ionization of high-Rydberg fragments produced after inner-shell photoexcitation and photoionization of the methane molecule

    Energy Technology Data Exchange (ETDEWEB)

    Kivimäki, A., E-mail: kivimaki@iom.cnr.it [Consiglio Nazionale delle Ricerche–Istituto Officina dei Materiali, Laboratorio TASC, 34149 Trieste (Italy); Sankari, A. [Department of Physics, Lund University, P.O. Box 118, 22100 Lund (Sweden); Kettunen, J. A. [Department of Physics, University of Oulu, P.O. Box 3000, 90014 Oulu (Finland); Stråhlman, C. [MAX IV Laboratory, Lund University, P.O. Box 118, 22100 Lund (Sweden); Álvarez Ruiz, J. [Colegio Los Naranjos, Fuenlabrada, 28941 Madrid (Spain); Richter, R. [Elettra-Sincrotrone Trieste, Area Science Park Basovizza, 34149 Trieste (Italy)

    2015-09-21

    We have studied the production of neutral high-Rydberg (HR) fragments from the CH{sub 4} molecule at the C 1s → 3p excitation and at the C 1s ionization threshold. Neutral fragments in HR states were ionized using a pulsed electric field and the resulting ions were mass-analyzed using an ion time-of-flight spectrometer. The atomic fragments C(HR) and H(HR) dominated the spectra, but molecular fragments CH{sub x}(HR), x = 1-3, and H{sub 2}(HR) were also observed. The production of HR fragments is attributed to dissociation of CH{sub 4}{sup +} and CH{sub 4}{sup 2+} ions in HR states. Just above the C 1s ionization threshold, such molecular ionic states are created when the C 1s photoelectron is recaptured after single or double Auger decay. Similar HR states may be reached directly following resonant Auger decay at the C 1s → 3p resonance. The energies and geometries of the parent and fragment ions have been calculated in order to gain insight into relevant dissociation pathways.

  8. Creative Double Bind in Oral Interpretation.

    Science.gov (United States)

    Peterson, Eric E.; Langellier, Kristin M.

    1982-01-01

    Explains how oral interpretation is uniquely communicative and how the double bind theory of communication can include creativity. Discusses (1) double bind and oral interpretation, (2) creating aesthetic text, and (3) the performance of double bind. (PD)

  9. Photoionization of water molecules by a train of attosecond pulses assisted by a near-infrared laser: delay and polarization control

    Science.gov (United States)

    Martini, Lara; Boll, Diego I. R.; Fojón, Omar A.

    2017-08-01

    Basic reactions involving water molecules are essential to understand the interaction between radiation and the biological tissue because living cells are composed mostly by water. Therefore, the knowledge of ionization of the latter is crucial in many domains of Biology and Physics. So, we study theoretically the photoionization of water molecules by extreme ultraviolet attopulse trains assisted by lasers in the near-infrared range. We use a separable Coulomb-Volkov model in which the temporal evolution of the system can be divided into three stages allowing spatial and temporal separation for the Coulomb and Volkov final state wavefunctions. First, we analyze photoelectron angular distributions for different delays between the attopulse train and the assistant laser field. We compare our results for water and Ne atoms as they belong to the same isoelectronic series. Moreover, we contrast our calculations with previous theoretical and experimental work for Ar atoms due to the similarities of the orbitals involved in the reaction. Second, we study the effect of varying the relative orientations of the attopulse and laser field polarizations and we compare our predictions with other theories and experiments. We expect these studies contribute to the improvement of polarization experiments and the development of the attopulse trains and assistant laser fields technologies. Finally, we hope our work promote progress on the control of the chemical reactivity of water molecules since this could be useful in different fields such as radiobiology and medical physics.

  10. Ionic fragmentation of a natural product, limonene (C{sub 10}H{sub 16}), following core [C 1s] photoionization

    Energy Technology Data Exchange (ETDEWEB)

    Castilho, R.B. de [Instituto de Quimica, Universidade Federal do Rio de Janeiro, Cidade Universitaria, Ilha do Fundao, 21949-900 Rio de Janeiro, RJ (Brazil); Nunez, C.V. [Instituto Nacional de Pesquisas da Amazonia, INPA, Manaus, Amazonas (Brazil); Coutinho, L.H. [Instituto de Quimica, Universidade Federal do Rio de Janeiro, Cidade Universitaria, Ilha do Fundao, 21949-900 Rio de Janeiro, RJ (Brazil); Lago, A.F. [Laboratorio Nacional de Luz Sincrotron (LNLS), Campinas, SP (Brazil); Bernini, R.B. [Instituto de Quimica, Universidade Federal do Rio de Janeiro, Cidade Universitaria, Ilha do Fundao, 21949-900 Rio de Janeiro, RJ (Brazil); Souza, G.G.B. de [Instituto de Quimica, Universidade Federal do Rio de Janeiro, Cidade Universitaria, Ilha do Fundao, 21949-900 Rio de Janeiro, RJ (Brazil)], E-mail: gerson@iq.ufrj.br

    2007-03-15

    Photoionization of the limonene [C{sub 10}H{sub 16}] molecule was studied for the first time following C 1s ionization, using synchrotron radiation and time-of-fight mass spectrometry. As a reference for further analysis of the photon induced fragmentation of the limonene molecule, the He(I) mass spectrum was also obtained. Previously unreported singly charged species have been observed at 310 eV: H{sup +}, C{sup +}, CH{sup +}, CH{sub 2}{sup +}, CH{sub 3}{sup +}. A close similarity has been observed between the high photon energy mass spectrum and the standard electron impact mass spectrum of limonene, obtained at 70 eV. In particular, the base peak [C{sub 5}H{sub 8}{sup +}, m/q = 68], known to result from a Retro Diels-Alder reaction, remains the same in both cases. Approximate values for the mean kinetic energy were determined for all ionic species.

  11. Design and Validation of In-Source Atmospheric Pressure Photoionization Hydrogen/Deuterium Exchange Mass Spectrometry with Continuous Feeding of D2O

    Science.gov (United States)

    Acter, Thamina; Lee, Seulgidaun; Cho, Eunji; Jung, Maeng-Joon; Kim, Sunghwan

    2017-10-01

    In this study, continuous in-source hydrogen/deuterium exchange (HDX) atmospheric pressure photoionization (APPI) mass spectrometry (MS) with continuous feeding of D2O was developed and validated. D2O was continuously fed using a capillary line placed on the center of a metal plate positioned between the UV lamp and nebulizer. The proposed system overcomes the limitations of previously reported APPI HDX-MS approaches where deuterated solvents were premixed with sample solutions before ionization. This is particularly important for APPI because solvent composition can greatly influence ionization efficiency as well as the solubility of analytes. The experimental parameters for APPI HDX-MS with continuous feeding of D2O were optimized, and the optimized conditions were applied for the analysis of nitrogen-, oxygen-, and sulfur-containing compounds. The developed method was also applied for the analysis of the polar fraction of a petroleum sample. Thus, the data presented in this study clearly show that the proposed HDX approach can serve as an effective analytical tool for the structural analysis of complex mixtures. [Figure not available: see fulltext.

  12. Technical report Development of a piezoelectric inkjet dopant delivery device for an atmospheric pressure photoionization source with liquid chromatography/mass spectrometry

    KAUST Repository

    Amad, Maan H.

    2013-01-01

    This paper describes a simple robust and integrated piezoelectric actuated printhead as a dopant delivery system for atmospheric pressure photoionization with liquid chromatography/mass spectrometry The newly designed dopant delivery system avoids problems associated with traditional liquid delivery systems such as solvent immiscibility backpressure and increased post-column dead volume issues The performance of the new device was tested and evaluated using chlorobenzene as a dopant with a test mixture consisting of 18 different polycyclic aromatic hydrocarbons (PAHs) The results show that the new system works robustly at low dopant consumption level (16 uL min-1) consuming only approximately 5% of the amount used by conventional sources The low dopant consumption has resulted in up to a 20-fold reduction in signal intensity of tested PAH molecules but has led to less presence of background cluster ions and dopant trace contaminant background ions in the source area Consequently all tested PAHs were detected with excellent signal-to-noise ratio with at least two-to ten-fold improvements in the limit of detection and quantification compared to those obtained with traditional dopant assistance using a post-column addition method © IM Publications LLP 2013.

  13. Relativistic effects on the linear polarization and angular distribution of x-ray radiation emitted by inner-shell photoionization of atoms

    Science.gov (United States)

    Ma, Kun; Chen, Zhan-Bin; Xie, Lu-You; Dong, Chen-Zhong; Qu, Yi-Zhi

    2017-11-01

    We present a theoretical study of relativistic effects on the linear polarization and angular distribution of x-ray radiation for the L {α }2 (3{d}3/2\\to 2{p}3/2) characteristic line following inner-shell single photoionization of Cd, Ba, Yb and Ra atoms. The analysis is performed based on the multi-configuration Dirac–Fock method and the density matrix theory. To explore the nature of these effects, calculations are carried out based on detailed analyses of the total and magnetic sublevel cross sections, the linear polarization, and the angular distribution of the x-ray photoemission, as well as on corresponding data calculated in the nonrelativistic limit. Our results show a significant difference in the above parameters compared to the nonrelativistic treatment, which is mainly due to the relativistic treatment of the target. Higher multipole contributions are also estimated, and found to be generally weaker. The importance of inclusion of the relativistic effects grows with increasing atomic number and the incoming photon energy.

  14. Photoionization-induced water migration in the amide group of trans-acetanilide-(H2O)1 in the gas phase.

    Science.gov (United States)

    Sakota, Kenji; Harada, Satoshi; Shimazaki, Yuiga; Sekiya, Hiroshi

    2011-02-10

    IR-dip spectra of trans-acetanilide-water 1:1 cluster, AA-(H(2)O)(1), have been measured for the S(0) and D(0) state in the gas phase. Two structural isomers, where a water molecule binds to the NH group or the CO group of AA, AA(NH)-(H(2)O)(1) and AA(CO)-(H(2)O)(1), are identified in the S(0) state. One-color resonance-enhanced two-photon ionization, (1 + 1) RE2PI, of AA(NH)-(H(2)O)(1) via the S(1)-S(0) origin generates [AA(NH)-(H(2)O)(1)](+) in the D(0) state, however, photoionization of [AA(CO)-(H(2)O)(1)] does not produce [AA(CO)-(H(2)O)(1)](+), leading to [AA(NH)-(H(2)O)(1)](+). This observation explicitly indicates that the water molecule in [AA-(H(2)O)(1)](+) migrates from the CO group to the NH group in the D(0) state. The reorganization of the charge distribution from the neutral to the D(0) state of AA induces the repulsive force between the water molecule and the CO group of AA(+), which is the trigger of the water migration in [AA-(H(2)O)(1)](+).

  15. Dopant-assisted atmospheric pressure photoionization of patulin in apple juice and apple-based food with liquid chromatography-tandem mass spectrometry.

    Science.gov (United States)

    Zhang, Kai; Wong, Jon W; Mai, Huy; Trucksess, Mary W

    2014-05-07

    A dopant-assisted atmospheric pressure photoionization (APPI) with liquid chromatography tandem mass spectrometry (LC-MS/MS) method was developed to determine patulin in apple juice and apple-based food. Different dopants, dopant flow rates, and LC separation conditions were evaluated. Using toluene as the dopant, the LC-APPI-MS/MS method achieved a linear calibration from 12.5 to 2000 μg/L (r(2) > 0.99). Matrix-dependent limits of quantitation (LOQs) were from 8 μg/L (solvent) to 12 μg/L (apple juice). [(13)C]-Patulin-fortified apple juice samples were directly analyzed by the LC-APPI-MS/MS method. Other apple-based food was fortified with [(13)C]-patulin, diluted using water (1% formic acid), centrifuged, and filtered, followed by LC-APPI-MS/MS analysis. In clear apple juice, unfiltered apple cider, applesauce, and apple-based baby food, average recoveries were 101 ± 6% (50 μg/kg), 103 ± 5% (250 μg/kg), and 102 ± 5% (1000 μg/kg) (av ± SD, n = 16). Using the suggested method, patulin was detected in 3 of 30 collected market samples with concentrations ranging from patulin allowed quantitation using solvent calibration standards with satisfactory precision and accuracy.

  16. Fast analysis of 29 polycyclic aromatic hydrocarbons (PAHs) and nitro-PAHs with ultra-high performance liquid chromatography-atmospheric pressure photoionization-tandem mass spectrometry

    Science.gov (United States)

    Lung, Shih-Chun Candice; Liu, Chun-Hu

    2015-01-01

    Polycyclic aromatic hydrocarbons (PAHs) and nitro-PAHs are ubiquitous in the environment. Some of them are probable carcinogens and some are source markers. This work presents an ultra-high performance liquid chromatography-atmospheric pressure photoionization-tandem mass spectrometry (UHPLC-APPI-MS/MS) method for simultaneous analysis of 20 PAHs and nine nitro-PAHs. These compounds are separated in 15 minutes in the positive mode and 11 minutes in the negative mode, one half of GC/MS analysis time. Two pairs of precursor/product ions are offered, which is essential for confirmation. This method separates and quantifies benzo[a]pyrene (the most toxic PAHs) and non-priority benzo[e]pyrene (isomers, little toxicity) to avoid overestimation of toxin levels, demonstrating its importance for health-related researches. With 0.5% 2,4-difluoroanisole in chlorobenzene as the dopant, limits of detection of PAHs except acenaphthylene and those of nitro-PAHs except 2-nitrofluoranthene are below 10 pg and 3 pg, respectively, mostly lower than or comparable to those reported using LC-related systems. The responses were linear over two orders of magnitude with fairly good accuracy and precision. Certified reference materials and real aerosol samples were analyzed to demonstrate its applicability. This fast, sensitive, and reliable method is the first UHPLC-APPI-MS/MS method capable of simultaneously analyzing 29 environmentally and toxicologically important PAHs and nitro-PAHs. PMID:26265155

  17. Hitchcock’s queer doubles

    Directory of Open Access Journals (Sweden)

    Alessandra Brandão

    2013-12-01

    Full Text Available http://dx.doi.org/10.5007/2175-8026.2013n65p17   The “double” is a well-known Hitchcockian motif. Widelyreviewed under a psychoanalytical perspective, the issue ofthe double still presents other important challenges and thisarticle aims at discussing the queer doubles in Hitchcock’s films as “falsifiers” who are opposed to non-queer doubles thatemphasise narrative coherence and legibility. In films such asRebeca, Rope, Vertigo, The Birds, Psycho, and Frenzy, a doublecondenses impulses that are well described by Lee Edelman: “theviolent undoing of meaning, the loss of identity and coherence,the unnatural access to jouissance” (132. These doubles releasethe powers of the false as they complicate the return to an “order”.Therefore, we could argue that such characters are closer tobeing Deleuzian simulacra than psychoanalytical doppelgängers.

  18. Species doubling and effective Lagrangians

    Energy Technology Data Exchange (ETDEWEB)

    Creutz, M.; Tytgat, M.

    1996-09-01

    Coupling gauge fields to the chiral currents from an effective Lagrangian for pseudoscalar mesons naturally gives rise to a species doubling phenomenon similar to that seen with fermionic fields in lattice gauge theory. 17 refs.

  19. The Double Love Commandment

    Directory of Open Access Journals (Sweden)

    Francois P. Viljoen

    2015-03-01

    Full Text Available The Gospel of Matthew was written during a period of dispute between the Matthean community and their fellow Jews, with the Pharisees playing a leading role. The Matthean community was heir to the same scriptures as its opponents. They continued to have a firm commitment to the Torah, but they developed a distinctive understanding of it based on Jesus’ teaching. The formation of this community is investigated in this article, considering the Mediterranean perspectives of group-oriented societies prevalent in the first century. Such a group provided a sense of self and an interactive support system, where love functioned to bind the group together. The subordinates showed their undivided loyalty towards their superiors because of the favours they received from them, whilst they supported and cared for other members within the group as they care for themselves. Reading the double love commandment of Matthew 22:34−40 from this perspective reveals significant aspects of the community’s identity with regard to their commitment to God and their view of their neighbours. Die Dubbele Liefdesgebod. Die Matteusevangelie is gedurende ’n periode van konfliktussen die Matteusgemeenskap en mede-Jode geskryf met die Fariseërs in ’n leidende rol. Die Matteusgemeenskap het van dieselfde geskrifte as hulle opponente gebruik gemaak. Hulle was steeds aan die Torah lojaal, maar het ’n unieke interpretasie daarvan gehuldig, gebaseer op die onderrig van Jesus. In hierdie artikel word die vorming van die Matteusgemeenskap ondersoek met inagneming van die Mediterreense beskouing van die groepgeoriënteerde gemeenskappe wat tipies van die eerste eeu was. So ’n groep het aan individue ’n bewustheid van eie waarde verskaf te midde van ’n interaktiewe ondersteuningsisteem waarin liefde as samebindende faktor gefunksioneer het. Ondergeskiktes het onverdeelde lojaliteit teenoor hulle meerderes betoon vanweë die gunste wat hulle van die meerderes geniet het

  20. The Double Love Commandment

    Directory of Open Access Journals (Sweden)

    Francois P. Viljoen

    2015-03-01

    Full Text Available The Gospel of Matthew was written during a period of dispute between the Matthean community and their fellow Jews, with the Pharisees playing a leading role. The Matthean community was heir to the same scriptures as its opponents. They continued to have a firm commitment to the Torah, but they developed a distinctive understanding of it based on Jesus’ teaching. The formation of this community is investigated in this article, considering the Mediterranean perspectives of group-oriented societies prevalent in the first century. Such a group provided a sense of self and an interactive support system, where love functioned to bind the group together. The subordinates showed their undivided loyalty towards their superiors because of the favours they received from them, whilst they supported and cared for other members within the group as they care for themselves. Reading the double love commandment of Matthew 22:34−40 from this perspective reveals significant aspects of the community’s identity with regard to their commitment to God and their view of their neighbours.Die Dubbele Liefdesgebod. Die Matteusevangelie is gedurende ’n periode van konfliktussen die Matteusgemeenskap en mede-Jode geskryf met die Fariseërs in ’n leidende rol. Die Matteusgemeenskap het van dieselfde geskrifte as hulle opponente gebruik gemaak. Hulle was steeds aan die Torah lojaal, maar het ’n unieke interpretasie daarvan gehuldig, gebaseer op die onderrig van Jesus. In hierdie artikel word die vorming van die Matteusgemeenskap ondersoek met inagneming van die Mediterreense beskouing van die groepgeoriënteerde gemeenskappe wat tipies van die eerste eeu was. So ’n groep het aan individue ’n bewustheid van eie waarde verskaf te midde van ’n interaktiewe ondersteuningsisteem waarin liefde as samebindende faktor gefunksioneer het. Ondergeskiktes het onverdeelde lojaliteit teenoor hulle meerderes betoon vanweë die gunste wat hulle van die meerderes geniet het

  1. Keepers of the Double Stars

    OpenAIRE

    Tenn, Joseph S.

    2013-01-01

    Astronomers have long tracked double stars in efforts to find those that are gravitationally-bound binaries and then to determine their orbits. Early catalogues by the Herschels, Struves, and others began with their own discoveries. In 1906 court reporter and amateur astronomer Sherburne Wesley Burnham published a massive double star catalogue containing data from many observers on more than 13,000 systems. Lick Observatory astronomer Robert Grant Aitken produced a much larger catalogue in 19...

  2. Double parton scattering in CMS

    CERN Document Server

    Sunar Cerci, Deniz

    2017-01-01

    Recent results on the double parton scattering measurements performed using the proton-proton collision data collected with the CMS detector are presented. The observables, which are sensitive to double parton scattering, are investigated after being corrected for detector effects and selection efficiencies. Multivariate analysis techniques are used for increasing the sensitivity. The effective cross section, $\\sigma_{eff}$ is also extracted using different processes at various center-of-mass energies.

  3. Supermagic Generalized Double Graphs 1

    Directory of Open Access Journals (Sweden)

    Ivančo Jaroslav

    2016-02-01

    Full Text Available A graph G is called supermagic if it admits a labelling of the edges by pairwise di erent consecutive integers such that the sum of the labels of the edges incident with a vertex is independent of the particular vertex. In this paper we will introduce some constructions of supermagic labellings of some graphs generalizing double graphs. Inter alia we show that the double graphs of regular Hamiltonian graphs and some circulant graphs are supermagic.

  4. Photoionization of isooctane and n-octane in intense laser fields: The effect of irradiance on ionization rates and electron dynamics

    Science.gov (United States)

    Healy, Andrew T.

    Thin path length jets (60 mum) of liquid isooctane and n-octane have been photoionized with 36-70 fs pulses of 3.1 eV photons. The population of electrons ejected post ionization is investigated over a large range of ionizing irradiance, Iex, though transient absorption (TA) measurements at wavelengths in the range 570 nm (2.17 eV) to 1315 nm (0.94 eV). As Iex is varied over a range from 3 TW/cm2 to 410 TW/cm2, the dependence of the TA intensity on Iex at time delays 0.7 ps and 2.5 ps exhibits the periodic structure theoretically predicted to develop as a result of multiphoton channel closings. At low Iex ( 9 TW/cm2, n declines with increasing Iex up to Iex = 13 TW/cm2, at which point n abruptly increases to 4. The pattern is repeated at Iex > 13 TW/cm 2, albeit with n declining from 4 and then abruptly increasing to 5 as Iex becomes greater than 100 TW/cm2. A similar trend is observed in n-octane. The decay of the TA intensity in both liquids has been measured from 0.50 ps to 180 ps over the same range of irradiance. Via comparison of the two liquids, and electron quenching studies, the TA at wavelengths longer than 800 nm has been assigned to be predominantly due to absorption by the electron. At the lowest irradiances, where n = 3 photons are required for photoionization, the TA decay in isooctane is characteristic of a geminate ion pair decaying via diffusive recombination in a Coulomb field. As the irradiance is increased, an early time, rapid, exponential decay of the TA begins to develop until an irradiance is reached (≅ 13 TW/cm2) at which our studies indicate that the n = 3 channel closes. At this irradiance, the TA decay returns to purely diffusive-like. As the irradiance is further increased, there is a reappearance of the early time exponential decay until the n = 4 channel closes (≅ 100 TW/cm2) when again the exponential disappears and the temporal behavior returns to diffusive-like. With further increase of the irradiance, the exponential decay

  5. Alternate Double Single Track Lines

    Energy Technology Data Exchange (ETDEWEB)

    Moraga Contreras, P.; Grande Andrade, Z.; Castillo Ron, E.

    2016-07-01

    The paper discusses the advantages and shortcomings of alternate double single track (ADST) lines with respect to double track lines for high speed lines. ADST lines consists of sequences of double and single track segments optimally selected in order to reduce the construction and maintenance costs of railway lines and to optimize the timetables used to satisfy a given demand. The single tracks are selected to coincide with expensive segments (tunnels and viaducts) and the double tracks are chosen to coincide with flat areas and only where they are necessary. At the same time, departure times are adjusted for trains to cross at the cheap double track segments. This alternative can be used for new lines and also for existing conventional lines where some new tracks are to be constructed to reduce travel time (increase speed). The ADST proposal is illustrated with some examples of both types (new lines and where conventional lines exist), including the Palencia-Santander, the Santiago-Valparaíso-Viña del Mar and the Dublin-Belfast lines, where very important reductions (90 %) are obtained, especially where a railway infrastructure already exist. (Author)

  6. Reflective optics for effective collection of x-ray and EUV radiation: use for creation of photoionized plasmas and detection of weak signals

    Science.gov (United States)

    Bartnik, A.; Skrzeczanowski, W.; Wachulak, P.; Saber, I.; Fiedorowicz, H.; Fok, T.; Wegrzyński, Ł.

    2017-05-01

    In this work different kinds of reflective optical systems were used for creation and investigation of low temperature, photoionized plasmas. The plasmas were created in gases, irradiated with a focused beam of extreme ultraviolet (EUV) or soft X-ray (SXR) radiation, from laser-plasma sources employing 10 Hz Nd:YAG laser systems (0.8 J/ 4 ns and 10 J/ 1-10 ns). In both cases, the EUV radiation was focused using a gold-plated grazing incidence ellipsoidal collector in the wavelength range λ = 9÷70 nm or a gold-plated grazing incidence multifoil collector in the wavelength range λ = 5 ÷ 70 nm. Additionally, in case of the 10 J Nd:YAG laser with the pulse duration 1 ns, a paraboloidal collector optimized for the wavelength range λ >= 1 nm was employed. Different gases were injected into the vacuum chamber, perpendicularly to an optical axis of the irradiation system at the focal region, using an auxillary gas puff valve. Irradiation of the gases resulted in ionization and excitation of atoms/molecules. Spectra in SXR/EUV range were measured using a grazing incidence, flat-field spectrometer (McPherson Model 251), equipped with a 450 lines/mm toroidal grating or a home-made spectrograph based on the 5000 l/mm transmission grating. Optical spectra were recorded using the Echelle Spectra Analyzer ESA 4000. In all cases the most intense emission lines were assigned to singly charged ions, however, lines corresponding to ions with higher charge were also recorded. Based on spectral lines originating from ions electron temperature was estimated.

  7. Azeglio Bemporad and the "BEM" Double Stars

    Science.gov (United States)

    Smith, Steven; Prunotto, Marco

    2017-07-01

    This paper aims to describe the scientific context and the life of early 20th century Italian astronomer Azeglio Bemporad (1875-1945), his work on double stars, and how the “BEM” doubles were incorporated into the Washington Double Star catalog. Included are new measures, a complete photo gallery of all 61 of his double star systems, and copies of his double star publications.

  8. The Doubling Undone? Double Effect in Recent Medical Ethics ...

    African Journals Online (AJOL)

    This article treats recent bioethical discussions of double effect reasoning (DER), offering a summary account of DER and construing it as rooted in a sensible view of what is central to someone's identity as a moral agent. It then treats objections raised in recent years by Judith Thomson, Alison McIntyre, and Frances Kamm ...

  9. Doubled-ended ceramic thyratron

    CERN Multimedia

    1974-01-01

    The double-ended ceramic thyratron CX 1171 B, with its coaxial voltage divider for the SPS. Such a switch, paralleled by three ignitrons in series forms the "thyragnitron" arrangement, and can switch 10 kA, 25 ms pulses, with very fast rise times.

  10. Magnetoresistance stories of double perovskites

    Indian Academy of Sciences (India)

    out. Keywords. Tunnelling magnetoresistance; tunnel boundary; disorder; double perovskite. PACS Nos 75.47.−m; 73.40.Gk; 72.80.Ga. 1. Introduction. Magnetoresistance (MR) is the property of a material to change the value of its electri- cal resistance when an external magnetic field is applied. This phenomenon was first.

  11. Double Coffee opens in China

    Index Scriptorium Estoniae

    2009-01-01

    Läti suursaadik Ingrida Levrence avas esimese Double Coffee kohviku Hiina pealinnas Pekingi südames. Rahvusvaheline kohvikukett kavatseb laieneda mõne kohviku võrra igal aastal. Seni tegutsetakse Lätis, Eestis, Leedus, Ukrainas ja Valgevenes

  12. Micrometer measurements of double stars

    Directory of Open Access Journals (Sweden)

    Zulević D.J.

    2000-01-01

    Full Text Available A set of 71 measurements of double and multiple stars, carried out with the Large Zeiss Refractor 65/1055 cm of the Belgrade Observatory, is communicated. The bulk of these measurements, 41 in all, unpublished yet, is due to late D. Zulević.

  13. A Double-Minded Fractal

    Science.gov (United States)

    Simoson, Andrew J.

    2009-01-01

    This article presents a fun activity of generating a double-minded fractal image for a linear algebra class once the idea of rotation and scaling matrices are introduced. In particular the fractal flip-flops between two words, depending on the level at which the image is viewed. (Contains 5 figures.)

  14. State-Resolved Dynamics of the CN(B2Sigma+) and CH(A2Delta)Excited Products Resulting from the VUV Photodissociation of CH3CN

    Energy Technology Data Exchange (ETDEWEB)

    Howle, Chris R.; Arrowsmith, Alan N.; Chikan, Viktor; Leone,Stephen R.

    2007-01-18

    Fourier transform visible spectroscopy, in conjunction withVUV photons produced by a synchrotron, is employed to investigate thephotodissociation of CH3CN. Emission is observed from both theCN(B2Sigma+ - X2Sigma+) and CH(A2Delta - X2PI) transitions; only theformer is observed in spectra recorded at 10.2 and 11.5 eV, whereas bothare detected in the 16 eV spectrum. The rotational and vibrationaltemperatures of both the CN(B2Sigma+) and CH(A2Delta) radical productsare derived using a combination of spectral simulations and Boltzmannplots. The CN(B2Sigma+) fragment displays a bimodal rotationaldistribution in all cases. Trot(CN(B2Sigma+)) ranges from 375 to 600 K atlower K' and from 1840 to 7700 K at higher K' depending on the photonenergy used. Surprisal analyses indicate clear bimodal rotationaldistributions, suggesting CN(B2Sigma+) is formed via either linear orbent transition states, respectively, depending on the extent ofrotational excitation in this fragment. CH(A2Delta) has a singlerotational distribution when produced at 16 eV which results inTrot(CH(A2Delta)) = 4895 +- 140 K in nu' = 0 and 2590 +- 110 K in nu' =1. From thermodynamic calculations, it is evident that CH(A2Delta) isproduced along with CN(X2Sigma+) + H2. These products can be formed by atwo step mechanism (via excited CH3* and ground state CN(X2Sigma+) or aprocess similar to the "roaming" atom mechanism; the data obtained hereare insufficient to definitively conclude whether either pathway occurs.A comparison of the CH(A2Delta) and CN(B2Sigma+) rotational distributionsproduced by 16 eV photons allows the ratio between the two excitedfragments at this energy to be determined. An expression that considersthe rovibrational populations of both band systems results in aCH(A2Delta):CN(B2Sigma+) ratio of (1.2 +- 0.1):1 at 16 eV, therebyindicating that production of CH(A2Delta) is significant at 16eV.

  15. Pathways to doubled haploidy: chromosome doubling during androgenesis.

    Science.gov (United States)

    Seguí-Simarro, J M; Nuez, F

    2008-01-01

    Production of doubled haploid (DH) plants through androgenesis induction is a promising and convenient alternative to conventional selfing techniques for the generation of pure lines for breeding programs. This process comprises two main steps: induction of androgenesis and duplication of the haploid genome. Such duplication is sometimes indirectly induced by the treatments used to promote androgenic development. But usually, an additional step of direct chromosome doubling must be included in the protocol. Duplication of the haploid genome of androgenic individuals has been thought to occur through three mechanisms: endoreduplication, nuclear fusion and c-mitosis. In this review we will revise and analyze the evidences supporting each of the proposed mechanisms and their relevance during androgenesis induction, embryo/callus development and plant regeneration. Special attention will be devoted to nuclear fusion, whose evidences are accumulating in the last years. 2008 S. Karger AG, Basel

  16. Lightweight Double Neutron Star Found

    Science.gov (United States)

    Kohler, Susanna

    2018-02-01

    More than forty years after the first discovery of a double neutron star, we still havent found many others but a new survey is working to change that.The Hunt for PairsThe observed shift in the Hulse-Taylor binarys orbital period over time as it loses energy to gravitational-wave emission. [Weisberg Taylor, 2004]In 1974, Russell Hulse and Joseph Taylor discovered the first double neutron star: two compact objects locked in a close orbit about each other. Hulse and Taylors measurements of this binarys decaying orbit over subsequent years led to a Nobel prize and the first clear evidence of gravitational waves carrying energy and angular momentum away from massive binaries.Forty years later, we have since confirmed the existence of gravitational waves directly with the Laser Interferometer Gravitational-Wave Observatory (LIGO). Nonetheless, finding and studying pre-merger neutron-star binaries remains a top priority. Observing such systems before they merge reveals crucial information about late-stage stellar evolution, binary interactions, and the types of gravitational-wave signals we expect to find with current and future observatories.Since the Hulse-Taylor binary, weve found a total of 16 additional double neutron-star systems which represents only a tiny fraction of the more than 2,600 pulsars currently known. Recently, however, a large number of pulsar surveys are turning their eyes toward the sky, with a focus on finding more double neutron stars and at least one of them has had success.The pulse profile for PSR J1411+2551 at 327 MHz. [Martinez et al. 2017]A Low-Mass DoubleConducted with the 1,000-foot Arecibo radio telescope in Puerto Rico, the Arecibo 327 MHz Drift Pulsar Survey has enabled the recent discovery of dozens of pulsars and transients. Among them, as reported by Jose Martinez (Max Planck Institute for Radio Astronomy) and coauthors in a recent publication, is PSR J1411+2551: a new double neutron star with one of the lowest masses ever measured

  17. Analysis of C60-fullerene derivatives and pristine fullerenes in environmental samples by ultrahigh performance liquid chromatography-atmospheric pressure photoionization-mass spectrometry.

    Science.gov (United States)

    Astefanei, Alina; Núñez, Oscar; Galceran, Maria Teresa

    2014-10-24

    In this work, a method is proposed for the simultaneous analysis of several pristine fullerenes (C60, C70, C76, C78, and C84) and three C60-fullerene derivatives (N-methyl fulleropyrrolidine, [6,6]-phenyl C61 butyric acid methyl ester and [6,6]-phenyl C61 butyric acid butyl ester) in environmental samples. The method involves the use of ultrahigh performance liquid chromatography coupled to atmospheric pressure photoionization mass spectrometry (UHPLC-APPI-MS) and allowed the chromatographic separation in less than 4.5min. The product ions from tandem mass spectrometry studies of fullerene derivatives were characterized and the most abundant one (m/z 720), corresponding to [C60](-), was selected for quantitation. Selected reaction monitoring (SRM at 0.7m/z FWHM) by acquiring two transitions using both isotopic cluster ions [M](-) and [M+1](-) as precursor ions was proposed for quantitation and confirmation purposes. For pristine fullerenes, highly selective selected ion monitoring (H-SIM) acquisition mode by monitoring the isotopic cluster ions [M](-) and [M+1](-) was used. Pressurized solvent extraction conditions were optimized in order to improve recoveries of the studied fullerene compounds from sediment samples. Values up to 87-92% for C60-fullerene derivatives and lower but still acceptable, 70-80%, for pristine fullerenes were obtained. Method limits of quantitation (MLOQs) ranging from 1.5pgL(-1) to 5.5ngL(-1) in water samples and from 0.1ngkg(-1) to 523ngkg(-1) in sediments were obtained with good precision (relative standard deviations always lower than 13%). The applicability of the developed method was evaluated by analyzing several environmental samples such as sediments and pond water and the detected levels for C60-fullerene derivatives were of 0.1-2.7ngkg(-1) and 1.5-8.5pgL(-1), respectively. C60 and C70 were the only pristine fullerenes detected in the analyzed samples (0.1-7.2ngkg(-1) in sediments and 9-330pgL(-1) in water pond samples). Copyright

  18. K-shell photoabsorption and photoionization of trace elements. II. Isoelectronic sequences with electron number 12 ≤N ≤ 18

    Science.gov (United States)

    Mendoza, C.; Bautista, M. A.; Palmeri, P.; Quinet, P.; Witthoeft, M. C.; Kallman, T. R.

    2017-08-01

    Context. We are concerned with improving the diagnostic potential of the K lines and edges of elements with low cosmic abundances, namely F, Na, P, Cl, K, Sc, Ti, V, Cr, Mn, Co, Cu, and Zn, that are observed in the X-ray spectra of supernova remnants, galaxy clusters, and accreting black holes and neutron stars. Aims: Since accurate photoabsorption and photoionization cross sections are needed in their spectral models, they have been computed for isoelectronic sequences with electron number 12 ≤ N ≤ 18 using a multi-channel method. Methods: Target representations are obtained with the atomic structure code autostructure, and ground-state cross sections are computed with the Breit-Pauli R-matrix method (bprm) in intermediate coupling, including damping (radiative and Auger) effects. Results: Following the findings in our earlier work on sequences with 2 ≤ N ≤ 11, the contributions from channels associated with the 2s-hole [2s] μ target configurations and those containing 3d orbitals are studied in the Mg (N = 12) and Ar (N = 18) isoelectronic sequences. Cross sections for the latter ions are also calculated in the isolated-resonance approximation as implemented in autostructure and compared with bprm to test their accuracy. Conclusions: It is confirmed that the collisional channels associated with the [2s] μ target configurations must be taken into account owing to significant increases in the monotonic background cross section between the L and K edges. Target configurations with 3d orbitals give rise to fairly conspicuous unresolved transition arrays in the L-edge region, but to a much lesser extent in the K-edge that is our main concern; therefore, they have been neglected throughout owing to their computationally intractable channel inventory, thus allowing the computation of cross sections for all the ions with 12 ≤ N ≤ 18 in intermediate coupling with bprm. We find that the isolated-resonance approximations performs satisfactorily and will be our

  19. Evidence for Ultra-Fast Outflows in Radio-Quiet AGNs. 2; Detailed Photoionization Modeling of Fe K-Shell Absorption Lines

    Science.gov (United States)

    Tombesi, Francesco; Clapp, M.; Reeves, J. N.; Palumbo, G. G. C.; Braito, V.; Dadina, M.

    2011-01-01

    X-ray absorption line spectroscopy has recently shown evidence for previously unknown Ultra-fast Outflows (UFOs) in radio-quiet AGNs. In the previous paper of this series we defined UFOs as those absorbers with an outflow velocity higher than 10,000km/s and assessed the statistical significance of the associated blue shifted FeK absorption lines in a large sample of 42 local radio-quiet AGNs observed with XMM-Newton. In the present paper we report a detailed curve of growth analysis and directly model the FeK absorbers with the Xstar photo-ionization code. We confirm that the frequency of sources in the radio-quiet sample showing UFOs is >35%. The outflow velocity distribution spans from \\sim10,000km/s (\\sim0.03c) up to \\siml00,000kmis (\\sim0.3c), with a peak and mean value of\\sim42,000km/s (\\sim0.14c). The ionization parameter is very high and in the range log\\xi 3-6 erg s/cm, with a mean value of log\\xi 4.2 erg s/cm. The associated column densities are also large, in the range N_H\\siml0(exp 22)-10(exp 24)/sq cm, with a mean value of N_H\\siml0(exp23)/sq cm. We discuss and estimate how selection effects, such as those related to the limited instrumental sensitivity at energies above 7keV, may hamper the detection of even higher velocities and higher ionization absorbers. We argue that, overall, these results point to the presence of extremely ionized and possibly almost Compton thick outflowing material in the innermost regions of AGNs. This also suggests that UFOs may potentially play a significant role in the expected cosmological feedback from AGNs and their study can provide important clues on the connection between accretion disks, winds and jets.

  20. Alignment of Ar{sup +} [{sup 3}P]4p{sup 2}P{sup 0}{sub 3/2} satellite state from the polarization analysis of fluorescent radiation after photoionization

    Energy Technology Data Exchange (ETDEWEB)

    Yenen, O.; McLaughlin, K.W.; Jaecks, D.H. [Univ. of Nebraska, Lincoln, NE (United States)] [and others

    1997-04-01

    The measurement of the polarization of radiation from satellite states of Ar{sup +} formed after the photoionization of Ar provides detailed information about the nature of doubly excited states, magnetic sublevel cross sections and partial wave ratios of the photo-ejected electrons. Since the formation of these satellite states is a weak process, it is necessary to use a high flux beam of incoming photons. In addition, in order to resolve the many narrow doubly excited Ar resonances, the incoming photons must have a high resolution. The characteristics of the beam line 9.0.1 of the Advanced Light Source fulfill these requirements. The authors determined the polarization of 4765 {Angstrom} fluorescence from the Ar{sup +} [{sup 3}P] 4p {sup 2}P{sub 3/2}{sup 0} satellite state formed after photoionization of Ar by photons from the 9.0.1 beam line of ALS in the 35.620-38.261 eV energy range using a resolution of approximately 12,700. This is accomplished by measuring the intensities of the fluorescent light polarized parallel (I{parallel}) and perpendicular (I{perpendicular}) to the polarization axis of the incident synchrotron radiation using a Sterling Optics 105MB polarizing filter. The optical system placed at 90{degrees} with respect to the polarization axis of the incident light had a narrow band interference filter ({delta}{lambda}=0.3 nm) to isolate the fluorescent radiation.

  1. TOPICAL REVIEW: Double beta decay

    Science.gov (United States)

    Faessler, Amand; Simkovic, Fedor

    1998-12-01

    We review the recent developments in the field of nuclear double beta decay, which is presently an important topic in both nuclear and particle physics. The mechanism of lepton number violation within the neutrinoless double beta decay (0954-3899/24/12/001/img5-decay) is discussed in the context of the problem of neutrino mixing and the R-parity violating supersymmetric extensions of the standard model. The problem of reliable determination of the nuclear matrix elements governing both two-neutrino and neutrinoless modes of the double beta decay is addressed. The validity of different approximation schemes in the considered nuclear structure studies is analysed and the role of the Pauli exclusion principle for a correct treatment of nuclear matrix elements is emphasized. The constraints on different lepton-number violating parameters such as effective electron neutrino mass, effective right-handed weak interaction parameters, effective Majoron coupling constant and R-parity violating SUSY parameters are derived from the best presently available experimental limits on the half-life of 0954-3899/24/12/001/img5-decay.

  2. Double-Critical Graphs and Complete Minors

    DEFF Research Database (Denmark)

    Kawarabayashi, Ken-ichi; Pedersen, Anders Sune; Toft, Bjarne

    2010-01-01

      A connected $k$-chromatic graph $G$ is double-critical if for all edges $uv$ of $G$ the graph $G - u - v$ is $(k-2)$-colourable. The only known double-critical $k$-chromatic graph is the complete $k$-graph $K_k$. The conjecture that there are no other double-critical graphs is a special case of...

  3. Double Modals as Single Lexical Items.

    Science.gov (United States)

    Di Paolo, Marianna

    1989-01-01

    Study of East and West Texans' (N=62) use of double modals as single lexical items and their syntactic and semantic characteristics found that neither Aux nor subcategorization analysis could account for both single-modal and double-modal dialects. Double modals, however, could conceivably be analyzed as two-word lexical items such as idioms or…

  4. Double pot and double compartment: integrating two approaches to study nutrient uptake by arbuscular mycorrhizal fungi

    NARCIS (Netherlands)

    Cardoso, I.M.; Boddington, C.L.; Janssen, B.H.; Oenema, O.; Kuyper, T.W.

    2004-01-01

    The double compartment technique has been commonly used in studies on nutrient uptake by mycorrhizas whereas the double pot technique has been used to assess the nutritional stress of plants grown in different soils. A combination of the double pot and the double compartment technique was used as a

  5. Photoionization affected by chemical anisotropy

    Science.gov (United States)

    Gladkikh, V. S.; Burshtein, A. I.

    2007-01-01

    The kinetic constants of rhodamine 3B quenching by N,N-dimethyl aniline were extracted from the very beginning of the quenching kinetics, recently studied in a few solvents of different viscosities. They were well fitted with the conventional kinetic constant definition, provided the radial distribution function of simple liquids was ascribed to the reactant pair distribution and the contact electron transfer rate was different in all the cases. This difference was attributed to the chemical anisotropy averaging by the rotation of reactants, which is the faster in solvents of lower viscosity. With the proper choice of a space dependent encounter diffusion, the whole quenching kinetics was well fitted with an encounter theory, using the Marcus [J. Chem. Phys. 24, 966 (1956); 43, 679 (1965)] transfer rate instead of the contact Collins-Kimball [J. Colloid. Sci. 4, 425 (1949)] approximation. Not only the beginning and middle part of the quenching were equally well fitted, but the long time (Markovian) rate constant was also found to be the same as previously obtained. Moreover, the concentration dependencies of the fluorescence quantum yield and the Stern-Volmer constant were specified and await their experimental verification.

  6. Single- and double-strand breaks induced in plasmid DNA irradiated by ultra-soft X-rays

    Science.gov (United States)

    Fayard, B.; Touati, A.; Sage, E.; Abel, F.; Champion, C.; Chetoui, A.

    1999-01-01

    In order to investigate the molecular consequences of a carbon K photo-ionization located on DNA, dry pBS plasmid samples were irradiated with ultra-soft X-rays at energies below and above the carbon K-threshold (E_K=278 eV). Single- and double-strand breaks (ssb and dsb) were quantified after resolution of the three plasmid forms (supercoiled, relaxed circular, linear) by gel electrophoresis. A factor of 1.2 was found between the doses required at 250 eV and 380 eV to induce the same number of dsb per plasmid. Dans le but d'étudier les conséquences à l'échelle moléculaire d'une photo- ionisation en couche K du carbone de l'ADN, des dépots de plasmides ont été irradiés à sec par des X ultra-mous d'énergies situées de part et d'autre du seuil d'ionisation en couche interne du carbone (E_K=278 eV). Les taux de cassures simple- et double-brin (ssb et dsb) ont été quantifiées après résolution des trois formes de plasmide (surenroulé, circulaire relaché, linéaire) par électrophorèse. Un facteur de 1.2 a été mesuré entre les doses nécessaires à 250 eV et 380 eV pour produire le même nombre de dsb par plasmide.

  7. Attosecond VUV Coherent Control of Molecular Dynamics

    CERN Document Server

    Ranitovic, P; Riviere, P; Palacios, A; Tong, X M; Toshima, N; Gonzalez-Castrillo, A; Martin, L; Martin, F; Murnane, M M; Kapteyn, H C

    2014-01-01

    High harmonic light sources make it possible to access attosecond time-scales, thus opening up the prospect of manipulating electronic wave packets for steering molecular dynamics. However, two decades after the birth of attosecond physics, the concept of attosecond chemistry has not yet been realized. This is because excitation and manipulation of molecular orbitals requires precisely controlled attosecond waveforms in the deep ultraviolet, which have not yet been synthesized. Here, we present a novel approach using attosecond vacuum ultraviolet pulse-trains to coherently excite and control the outcome of a simple chemical reaction in a deuterium molecule in a non-Born Oppenheimer regime. By controlling the interfering pathways of electron wave packets in the excited neutral and singly-ionized molecule, we unambiguously show that we can switch the excited electronic state on attosecond timescales, coherently guide the nuclear wave packets to dictate the way a neutral molecule vibrates, and steer and manipula...

  8. High power UV and VUV pulsed excilamps

    Science.gov (United States)

    Tarasenko, V.; Erofeev, M.; Lomaev, M.; Rybka, D.

    2008-07-01

    Emission characteristics of a nanosecond discharge in inert gases and its halogenides without preionization of the gap from an auxiliary source have been investigated. A volume discharge, initiated by an avalanche electron beam (VDIAEB) was realized at pressures up to 12 atm. In xenon at pressure of 1.2 atm, the energy of spontaneous radiation in the full solid angle was sim 45 mJ/cm^3, and the FWHM of a radiation pulse was sim 110 ns. The spontaneous radiation power rise in xenon was observed at pressures up to 12 atm. Pulsed radiant exitance of inert gases halogenides excited by VDIAEB was sim 4.5 kW/cm^2 at efficiency up to 5.5 %.

  9. Experiments on double beta decay

    Energy Technology Data Exchange (ETDEWEB)

    Busto, J. [Neuchatel Univ. (Switzerland). Inst. de Physique

    1996-11-01

    The Double Beta Decay, and especially ({beta}{beta}){sub 0{nu}} mode, is an excellent test of Standard Model as well as of neutrino physics. From experimental point of view, a very large number of different techniques are or have been used increasing the sensitivity of this experiments quite a lot (the factor of 10{sup 4} in the last 20 years). In future, in spite of several difficulties, the sensitivity would be increased further, keeping the interest of this very important process. (author) 4 figs., 5 tabs., 21 refs.

  10. Reconfigurable Double-Curved Mould

    DEFF Research Database (Denmark)

    Raun, Christian; Kirkegaard, Poul Henning

    2012-01-01

    , double curved surfaces like facades or walls, where the curvature of each element is relatively small in comparison to the overall shape. In the proposed dynamic mould system, where only a set of points is defined, a stiff membrane interpolates the surface between points. To function as a surface...... suitable for casting concrete or other substances against without the need for further manual treatment, the membrane should be durable and maintain a perfectly smooth and non-porous surface as well. A membrane with these properties has been developed for this project, and it is the core of the dynamic...

  11. Booster Double Harmonic Setup Notes

    Energy Technology Data Exchange (ETDEWEB)

    Gardner, C. J. [Brookhaven National Lab. (BNL), Upton, NY (United States). Collider-Accelerator Dept.

    2015-02-17

    The motivation behind implementing a booster double harmonic include the reduced transverse space charge force from a reduced peak beam current and reduced momentum spread of the beam, both of which can be achieved from flattening the RF bucket. RF capture and acceleration of polarized protons (PP) is first set up in the single harmonic mode with RF harmonic h=1. Once capture and acceleration have been set up in the single harmonic mode, the second harmonic system is brought on and programmed to operate in concert with the single harmonic system.

  12. Challenges in Double Beta Decay

    Directory of Open Access Journals (Sweden)

    Oliviero Cremonesi

    2014-01-01

    Full Text Available In the past ten years, neutrino oscillation experiments have provided the incontrovertible evidence that neutrinos mix and have finite masses. These results represent the strongest demonstration that the electroweak Standard Model is incomplete and that new Physics beyond it must exist. In this scenario, a unique role is played by the Neutrinoless Double Beta Decay searches which can probe lepton number conservation and investigate the Dirac/Majorana nature of the neutrinos and their absolute mass scale (hierarchy problem with unprecedented sensitivity. Today Neutrinoless Double Beta Decay faces a new era where large-scale experiments with a sensitivity approaching the so-called degenerate-hierarchy region are nearly ready to start and where the challenge for the next future is the construction of detectors characterized by a tonne-scale size and an incredibly low background. A number of new proposed projects took up this challenge. These are based either on large expansions of the present experiments or on new ideas to improve the technical performance and/or reduce the background contributions. In this paper, a review of the most relevant ongoing experiments is given. The most relevant parameters contributing to the experimental sensitivity are discussed and a critical comparison of the future projects is proposed.

  13. Photoionization of the Be-like O{sup 4} {sup +} ion: total and partial cross sections for the ground 2s{sup 2} {sup 1}S and excited 2s2p {sup 1,} {sup 3}P states

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Dae-Soung [e-Business Department. Kyonggi Institute of Technology, Siheung, Jungwang-Dong 2121-3, Kyonggi-Do 429-792 (Korea, Republic of); Manson, Steven T, E-mail: dskim@kinst.ac.k [Department of Physics and Astronomy, Georgia State University, Atlanta, GA 30303 (United States)

    2010-08-14

    Photoionization cross sections of the Be-like O{sup 4} {sup +} ion in the photon energy region from the first threshold up to the O{sup 5} {sup +} 3d threshold have been calculated using a non-iterative variational R-matrix method combined with multichannel quantum-defect theory for the ground 2s{sup 2} {sup 1}S and excited 2s2p {sup 1,} {sup 3}P states. The partial cross sections are presented and the autoionizing resonance structures arising from the ground and excited states are identified and characterized. Our calculational results, which show excellent agreement between length and velocity gauges, are compared with the available experiment and previous calculations, and good agreement is found.

  14. Additivity of detector responses of a portable direct-reading 10. 2 eV photoionization detector and a flame ionization gas chromatograph for atmospheres of multicomponent organics: use of PID/FID ratios

    Energy Technology Data Exchange (ETDEWEB)

    Lee, I.N.; Hee, S.S.Q.; Clark, C.S.

    1987-05-01

    The H-Nu PI-101 with a photoionization detector (PID) of 10.2 eV and Century OVA-128 equipped with a flame ionization detector (FID) were evaluated for the additivity of their responses to a defined mixtures of dissimilar organic vapors at a 0 and 90% relative humidity (RH). The responses of both instruments were additive as long as the effect of RH was accounted for the PID. The PI-101 was not as precise as the Century OVA-128 for 90% RH atmospheres. PID/FID ratios did not change in the presence of 90% RH as long as the effect of RH also was accounted for in the PID reading. The compounds investigated included: toluene, benzaldehyde; 1,2,4-trichlorobenzene, methyl chloroform, methylene dichloride, methyl ethyl ketone, ethanol and acetonitrile.

  15. Dynamical Aspects of Electrostatic Double Layers

    DEFF Research Database (Denmark)

    Raadu, M.A.; Juul Rasmussen, J.

    1988-01-01

    Electrostatic double layers have been proposed as an acceleration mechanism in solar flares and other astrophysical objects. They have been extensively studied in the laboratory and by means of computer simulations. The theory of steady-state double layers implies several existence criteria...... plasma, at least for strong double layers, and it is argued that such conditions must be used with care when applied to real plasmas. Laboratory double layers, and by implication those arising in astrophysical plasmas often produce instabilities in the surrounding plasma and are generally time......-dependent structures. Naturally occuring double layers should, therefore, be far more common than the restrictions deduced from idealised time-independent models would imply. In particular it is necessary to understand more fully the time-dependent behaviour of double layers. In the present paper the dynamics of weak...

  16. Double Dirac cones in phononic crystals

    KAUST Repository

    Li, Yan

    2014-07-07

    A double Dirac cone is realized at the center of the Brillouin zone of a two-dimensional phononic crystal (PC) consisting of a triangular array of core-shell-structure cylinders in water. The double Dirac cone is induced by the accidental degeneracy of two double-degenerate Bloch states. Using a perturbation method, we demonstrate that the double Dirac cone is composed of two identical and overlapping Dirac cones whose linear slopes can also be accurately predicted from the method. Because the double Dirac cone occurs at a relatively low frequency, a slab of the PC can be mapped onto a slab of zero refractive index material by using a standard retrieval method. Total transmission without phase change and energy tunneling at the double Dirac point frequency are unambiguously demonstrated by two examples. Potential applications can be expected in diverse fields such as acoustic wave manipulations and energy flow control.

  17. Optics design for CEPC double ring scheme

    Science.gov (United States)

    Wang, Yiwei; Su, Feng; Bai, Sha; Yu, Chenghui; Gao, Jie

    2017-12-01

    The CEPC is a future Circular Electron and Positron Collider proposed by China to mainly study the Higgs boson. Its baseline design is a double ring scheme and an alternative design is a partial double ring scheme. This paper will present the optics design for the main ring of the double ring scheme. The CEPC will also work as a W and Z factory. Compatible optics designs for a W and a Z modes will be presented as well.

  18. Double Helix Nodal Line Superconductor

    Science.gov (United States)

    Sun, Xiao-Qi; Lian, Biao; Zhang, Shou-Cheng

    2017-10-01

    Time-reversal invariant superconductors in three dimensions may contain nodal lines in the Brillouin zone, which behave as Wilson loops of 3D momentum-space Chern-Simons theory of the Berry connection. Here we study the conditions of realizing linked nodal lines (Wilson loops), which yield a topological contribution to the thermal magnetoelectric coefficient that is given by the Chern-Simons action. We find the essential conditions are the existence of torus or higher genus Fermi surfaces and spiral spin textures. We construct such a model with two torus Fermi surfaces, where a generic spin-dependent interaction leads to double-helix-like linked nodal lines as the superconductivity is developed.

  19. CERN celebrates a double anniversary

    CERN Multimedia

    2003-01-01

    A symposium will celebrate the double anniversary of the observation of neutral currents in 1973 and the discovery of W and Z bosons in 1983. The symposium will also provide an opportunity to discuss future discoveries at CERN. The symposium will be held on 16 September in the Main Auditorium from 9:00 hrs and will be open to the public. If you cannot access the Main Auditorium, the symposium will be broadcast live in the following conference rooms: AB Auditorium II (Bldg 864) in Prévessin IT Auditorium (Bldg 31) AT Auditorium (Bldg 30) You can also follow it online with the Webcast accessible from the CERN home page. See the complete programme under Seminars.

  20. Double Helix Nodal Line Superconductor.

    Science.gov (United States)

    Sun, Xiao-Qi; Lian, Biao; Zhang, Shou-Cheng

    2017-10-06

    Time-reversal invariant superconductors in three dimensions may contain nodal lines in the Brillouin zone, which behave as Wilson loops of 3D momentum-space Chern-Simons theory of the Berry connection. Here we study the conditions of realizing linked nodal lines (Wilson loops), which yield a topological contribution to the thermal magnetoelectric coefficient that is given by the Chern-Simons action. We find the essential conditions are the existence of torus or higher genus Fermi surfaces and spiral spin textures. We construct such a model with two torus Fermi surfaces, where a generic spin-dependent interaction leads to double-helix-like linked nodal lines as the superconductivity is developed.

  1. The concept of double inlet-double outlet right ventricle: a distinct congenital heart disease

    OpenAIRE

    Spadotto, V; Frescura, C; Ho, SY; Thiene, G

    2016-01-01

    The aim of this study was to estimate the incidence and to analyze the anatomy of double inlet-double outlet right ventricle complex and its associated cardiac anomalies in our autopsy series. Among the 1640 hearts with congenital heart disease of our Anatomical Collection, we reviewed the specimens with double inlet-double outlet right ventricle, according to the sequential-segmental analysis, identifying associated cardiac anomalies and examining lung histology to assess the presence of pul...

  2. Double meanings will not save the principle of double effect.

    Science.gov (United States)

    Douglas, Charles D; Kerridge, Ian H; Ankeny, Rachel A

    2014-06-01

    In an article somewhat ironically entitled "Disambiguating Clinical Intentions," Lynn Jansen promotes an idea that should be bewildering to anyone familiar with the literature on the intention/foresight distinction. According to Jansen, "intention" has two commonsense meanings, one of which is equivalent to "foresight." Consequently, questions about intention are "infected" with ambiguity-people cannot tell what they mean and do not know how to answer them. This hypothesis is unsupported by evidence, but Jansen states it as if it were accepted fact. In this reply, we make explicit the multiple misrepresentations she has employed to make her hypothesis seem plausible. We also point out the ways in which it defies common sense. In particular, Jansen applies her thesis only to recent empirical research on the intentions of doctors, totally ignoring the widespread confusion that her assertion would imply in everyday life, in law, and indeed in religious and philosophical writings concerning the intention/foresight distinction and the Principle of Double Effect. © The Author 2014. Published by Oxford University Press, on behalf of the Journal of Medicine and Philosophy Inc. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  3. Finite difference order doubling in two dimensions

    Energy Technology Data Exchange (ETDEWEB)

    Killingbeck, John P [Mathematics Centre, University of Hull, Hull HU6 7RX (United Kingdom); Jolicard, Georges [Universite de Franche-Comte, Institut Utinam (UMR CNRS 6213), Observatoire de Besancon, 41 bis Avenue de l' Observatoire, BP1615, 25010 Besancon cedex (France)

    2008-03-28

    An order doubling process previously used to obtain eighth-order eigenvalues from the fourth-order Numerov method is applied to the perturbed oscillator in two dimensions. A simple method of obtaining high order finite difference operators is reported and an odd parity boundary condition is found to be effective in facilitating the smooth operation of the order doubling process.

  4. Double Chooz and Reactor Theta13 Experiments

    CERN Document Server

    ,

    2016-01-01

    This is a contribution paper from the Double Chooz experiment to the special issue of NPB on neutrino oscillations. The physics and history of the reactor theta13 experiments, as well as Double Chooz experiment and its neutrino oscillation analyses are reviewed.

  5. Modelling the formation of double white dwarfs

    NARCIS (Netherlands)

    van der Sluijs, M.V.; Verbunt, F.W.M.|info:eu-repo/dai/nl/068970374; Pols, O.|info:eu-repo/dai/nl/111811155

    2006-01-01

    We investigate the formation of the ten double-lined double white dwarfs that have been observed so far. A detailed stellar evolution code is used to calculate grids of single-star and binary models and we use these to reconstruct possible evolutionary scenarios. We apply various criteria to select

  6. The homozygosity verification for doubled haploid Japanese ...

    African Journals Online (AJOL)

    ELOHO

    2012-09-18

    Sep 18, 2012 ... coefficients of variation of doubled haploids were significantly higher than those of normal diploids. Key words: Doubled haploids, gynogenesis, Japanese flounder, Paralichthys olivaceus. INTRODUCTION. Mitotic gynogenesis in fish has been used to produce completely homozygous progenies (Thorgaad ...

  7. 7 CFR 3560.460 - Double damages.

    Science.gov (United States)

    2010-01-01

    ... DIRECT MULTI-FAMILY HOUSING LOANS AND GRANTS Special Servicing, Enforcement, Liquidation, and Other Actions § 3560.460 Double damages. (a) Action to recover assets or income. (1) The Agency may request to... 7 Agriculture 15 2010-01-01 2010-01-01 false Double damages. 3560.460 Section 3560.460 Agriculture...

  8. Double pulse Thomson scattering system at RTP

    NARCIS (Netherlands)

    Beurskens, M. N. A.; Barth, C. J.; Chu, C.C.; Donne, A. J. H.; Herranz, J. A.; Cardozo, N. J. L.; van der Meiden, H. J.; Pijper, F.J.

    1997-01-01

    In this article a double pulse multiposition Thomson scattering diagnostic, under construction at RTP, is discussed. Light from a double pulsed ruby laser (pulse separation: 10-800 mu s, max. 2x12.5 J) is scattered by the free electrons of the tokamak plasma and relayed to a Littrow polychromator

  9. Intrateam Communication and Performance in Doubles Tennis

    Science.gov (United States)

    Lausic, Domagoj; Tennebaum, Gershon; Eccles, David; Jeong, Allan; Johnson, Tristan

    2009-01-01

    Verbal and nonverbal communication is a critical mediator of performance in team sports and yet there is little extant research in sports that involves direct measures of communication. Our study explored communication within NCAA Division I female tennis doubles teams. Video and audio recordings of players during doubles tennis matches captured…

  10. Three Dimensional Double Layers in Magnetized Plasmas

    DEFF Research Database (Denmark)

    Jovanovic, D.; Lynov, Jens-Peter; Michelsen, Poul

    1982-01-01

    Experimental results are presented which demonstrate the formation of fully three dimensional double layers in a magnetized plasma. The measurements are performed in a magnetized stationary plasma column with radius 1.5 cm. Double layers are produced by introducing an electron beam with radius 0...

  11. The Sexual Double Standard: How Prevalent Today?

    Science.gov (United States)

    Sack, Alan R.; And Others

    1981-01-01

    Studied the sexual double standard among university students. Females showed a stronger association between premarital intercourse and affection and perceived less approval from five reference groups for their sexual behavior than did males. Results indicate the sexual double standard is still evident among the present group of college students.…

  12. The Doubling Moment: Resurrecting Edgar Allan Poe

    Science.gov (United States)

    Minnick, J. Bradley; Mergil, Fernando

    2008-01-01

    This article expands upon Jeffrey Wilhelm's and Brian Edmiston's (1998) concept of a doubling of viewpoints by encouraging middle level students to use dramatization to take on multiple perspectives, to pose interpretive questions, and to enhance critical inquiry from inside and outside of texts. The doubling moment is both the activation of…

  13. Reliability Estimation for Double Containment Piping

    Energy Technology Data Exchange (ETDEWEB)

    L. Cadwallader; T. Pinna

    2012-08-01

    Double walled or double containment piping is considered for use in the ITER international project and other next-generation fusion device designs to provide an extra barrier for tritium gas and other radioactive materials. The extra barrier improves confinement of these materials and enhances safety of the facility. This paper describes some of the design challenges in designing double containment piping systems. There is also a brief review of a few operating experiences of double walled piping used with hazardous chemicals in different industries. This paper recommends approaches for the reliability analyst to use to quantify leakage from a double containment piping system in conceptual and more advanced designs. The paper also cites quantitative data that can be used to support such reliability analyses.

  14. Agreement, dominance and doubling : the morphosyntax of DP

    NARCIS (Netherlands)

    Schoorlemmer, Erik

    2009-01-01

    This thesis investigates doubling and agreement in Romance and Germanic nominal constituents. In Swedish, Norwegian, and Faroese, the definite article is doubled in case an adjective modifies the noun. This doubling is known as double definiteness. This thesis proposes that double definiteness is

  15. Double layers in contactor plasmas

    Science.gov (United States)

    Cooke, David L.

    1990-01-01

    The concept of using a hollow cathode to establish a low impedance contact between a spacecraft and the ambient plasma continues to gain in popularity, and is often then referred to as a plasma contactor. A growing number of studies indicate that large contact currents can be supported with small potential difference between the contactor and the ambient plasma. Results will be presented from a simple one-dimensional spherical model that obtains potentials from the solution of Poisson's equation, and particle densities from a turning point formalism that includes particle angular momentum. The neglect of collisions and magnetic field limits the realism. However, the results illustrate the effect of double layers that can form at the interface between contactor and ambient plasmas, when there is any voltage differential between the contactor and the ambient. The I-V characteristic of this model shows the usual space charge depends upon collection when the contactor flux is lower than some threshold; independence of I from variation in V when the flux is slightly greater than that threshold, and (numerical ?) instability for excessive flux suggesting the possibility of negative resistance. Even if a real I-V characteristic does not exhibit negative resistance, flat spots or high resistance regions may still be troublesome (or useful) to the total circuit.

  16. Contact double-contrast cholangiography.

    Science.gov (United States)

    Hishida, Y

    1979-05-01

    Recently operative cholangiography has become an essential step in biliary surgery. However, an usual technique in which x-ray film is set beneath the patient has its limitation in visualization of fine changes. The author devised a new technique to resolve this problem. A triangular mammography film designed for good positioning is vaccum-packed, coupled with an intensifying screen of the same size, and then is sterilized in advance. Barium solution mixed with Gascon drop (a defoaming agent) is used as contrast material. The duodenum and head of the pancreas are mobilized. Usual cholangiography is performed at first, introducing angiographic media through a catheter placed into the catheter placed into the common duct via the cystic duct. After this study a triangle film pack is set beneath the second part of the duodenum. Two to three milliliters of barium, 1 to 2 ml of Gascon, and 15 ml of air are pushed in; thus a contact double-contrast cholangiogram is obtained. This technique promises clear demonstration of the distal bile duct without risk, and even fine mucosal plicae may be discernible in the film.

  17. Renormalization of minimally doubled fermions

    Science.gov (United States)

    Capitani, Stefano; Creutz, Michael; Weber, Johannes; Wittig, Hartmut

    2010-09-01

    We investigate the renormalization properties of minimally doubled fermions, at one loop in perturbation theory. Our study is based on the two particular realizations of Boriçi-Creutz and Karsten-Wilczek. A common feature of both formulations is the breaking of hyper-cubic symmetry, which requires that the lattice actions are supplemented by suitable counterterms. We show that three counterterms are required in each case and determine their coefficients to one loop in perturbation theory. For both actions we compute the vacuum polarization of the gluon. It is shown that no power divergences appear and that all contributions which arise from the breaking of Lorentz symmetry are cancelled by the counterterms. We also derive the conserved vector and axial-vector currents for Karsten-Wilczek fermions. Like in the case of the previously studied Boriçi-Creutz action, one obtains simple expressions, involving only nearest-neighbour sites. We suggest methods how to fix the coefficients of the counterterms non-perturbatively and discuss the implications of our findings for practical simulations.

  18. Indefinite Determiner Doubling: Data and Methods

    DEFF Research Database (Denmark)

    Wood, Johanna; Vikner, Sten

    2017-01-01

    , and double definiteness, found in some Scandinavian languages. In this chapter, we focus on doubling of indefinite determiners in the Germanic languages, that is, on nominal expressions in which the indefinite article occurs more than once within the same DP (determiner phrase, i.e. nominal expression).......Syntactic doubling, expressing a constituent twice (or more) when a single occurrence should suffice, is surprisingly common, especially where functional elements are concerned (Barbiers 2008:5). Some well-known examples include multiple negation/negative concord, found in many languages...

  19. Double-reed exhaust valve engine

    Science.gov (United States)

    Bennett, Charles L.

    2015-06-30

    An engine based on a reciprocating piston engine that extracts work from pressurized working fluid. The engine includes a double reed outlet valve for controlling the flow of low-pressure working fluid out of the engine. The double reed provides a stronger force resisting closure of the outlet valve than the force tending to open the outlet valve. The double reed valve enables engine operation at relatively higher torque and lower efficiency at low speed, with lower torque, but higher efficiency at high speed.

  20. The Dissolution of Double Holliday Junctions

    DEFF Research Database (Denmark)

    Bizard, Anna H; Hickson, Ian D

    2014-01-01

    as "double Holliday junction dissolution." This reaction requires the cooperative action of a so-called "dissolvasome" comprising a Holliday junction branch migration enzyme (Sgs1/BLM RecQ helicase) and a type IA topoisomerase (Top3/TopoIIIα) in complex with its OB (oligonucleotide/oligosaccharide binding......Double Holliday junctions (dHJS) are important intermediates of homologous recombination. The separate junctions can each be cleaved by DNA structure-selective endonucleases known as Holliday junction resolvases. Alternatively, double Holliday junctions can be processed by a reaction known...