WorldWideScience

Sample records for vpu involves binding

  1. Interaction between the cytoplasmic domains of HIV-1 Vpu and CD4: role of Vpu residues involved in CD4 interaction and in vitro CD4 degradation.

    Science.gov (United States)

    Margottin, F; Benichou, S; Durand, H; Richard, V; Liu, L X; Gomas, E; Benarous, R

    1996-09-15

    The Vpu and CD4 cytoplasmic domains were found, by using a two-hybrid assay in yeast, to interact in the absence of their membrane anchor domains. Studies on several deletion and point mutants revealed that the overall structure of the Vpu cytoplasmic domain is required for this interaction. The Vpu amino acid residues involved in the interaction with CD4 were identified. Deletion of the C-terminal residues of Vpu, required for CD4 degradation, as well as the double mutation on the casein kinase II phosphorylation sites S52N-S56N, also involved in CD4 degradation, resulted in the loss of interaction with CD4 and in the inability to induce CD4 degradation. These results suggest that the ability of Vpu to mediate the degradation of CD4 is linked to its capacity to physically interact with CD4. However, additional mutagenesis on the S52 site revealed that the interaction between the cytoplasmic domains of Vpu and CD4 is not sufficient for in vitro Vpu-mediated CD4 degradation.

  2. HIV-1 Vpu neutralizes the antiviral factor Tetherin/BST-2 by binding it and directing its beta-TrCP2-dependent degradation.

    Directory of Open Access Journals (Sweden)

    Bastien Mangeat

    2009-09-01

    Full Text Available Host cells impose a broad range of obstacles to the replication of retroviruses. Tetherin (also known as CD317, BST-2 or HM1.24 impedes viral release by retaining newly budded HIV-1 virions on the surface of cells. HIV-1 Vpu efficiently counteracts this restriction. Here, we show that HIV-1 Vpu induces the depletion of tetherin from cells. We demonstrate that this phenomenon correlates with the ability of Vpu to counteract the antiviral activity of both overexpressed and interferon-induced endogenous tetherin. In addition, we show that Vpu co-immunoprecipitates with tetherin and beta-TrCP in a tri-molecular complex. This interaction leads to Vpu-mediated proteasomal degradation of tetherin in a beta-TrCP2-dependent manner. Accordingly, in conditions where Vpu-beta-TrCP2-tetherin interplay was not operative, including cells stably knocked down for beta-TrCP2 expression or cells expressing a dominant negative form of beta-TrCP, the ability of Vpu to antagonize the antiviral activity of tetherin was severely impaired. Nevertheless, tetherin degradation did not account for the totality of Vpu-mediated counteraction against the antiviral factor, as binding of Vpu to tetherin was sufficient for a partial relief of the restriction. Finally, we show that the mechanism used by Vpu to induce tetherin depletion implicates the cellular ER-associated degradation (ERAD pathway, which mediates the dislocation of ER membrane proteins into the cytosol for subsequent proteasomal degradation. In conclusion, we show that Vpu interacts with tetherin to direct its beta-TrCP2-dependent proteasomal degradation, thereby alleviating the blockade to the release of infectious virions. Identification of tetherin binding to Vpu provides a potential novel target for the development of drugs aimed at inhibiting HIV-1 replication.

  3. Expression, purification and characterization of a full-length recombinant HIV-1 Vpu from inclusion bodies.

    Science.gov (United States)

    Njengele, Zikhona; Kleynhans, Ronel; Sayed, Yasien; Mosebi, Salerwe

    2016-12-01

    Vpu is one of four accessory proteins encoded by human immunodeficiency virus type I (HIV-1). Vpu modulates the expression of several cellular restriction factors within the HIV-1 infected cell including CD4, CD74, the bone marrow stromal antigen 2 (BST-2) and NK-T-and-B antigen. The interaction of HIV-1 Vpu with these proteins interferes with the innate immune response directed against HIV-1; thereby promoting viral persistence. The involvement of HIV-1 Vpu in manipulating the cellular environment in ways that favor viral replication makes it an attractive target for anti-HIV drug intervention. This paper describes the over-expression and purification of a soluble HIV-1 Vpu from inclusion bodies by ion-exchange chromatography, allowing production of 6 mg of highly purified protein (>95% purity) per 10 mg of pelleted cells obtained from 1 L of bacterial culture. Far-UV circular dichroism showed that the recombinant protein is folded and retained its secondary structure. Moreover, using ELISA, known HIV-1 Vpu binding partners, BST-2 and CD74, showed that the refolded purified protein is functional or at least assumes a conformation that is capable of binding these putative binding partners. To our knowledge, this is the first report of the purification and successful solubilization of full-length, wild-type HIV-1 Vpu from inclusion bodies in Escherichia coli. Copyright © 2016 Elsevier Inc. All rights reserved.

  4. HIV-1 accessory proteins: Vpu and Vif.

    Science.gov (United States)

    Andrew, Amy; Strebel, Klaus

    2014-01-01

    HIV-1 Vif and Vpu are accessory factors involved in late stages of viral replication. Vif regulates viral infectivity by preventing virion incorporation of APOBEC3G and other members of the family of cytidine deaminases, while Vpu causes degradation of CD4 and promotes virus release by functionally inactivating the host factor BST-2. This chapter described techniques used for the characterization of Vif and Vpu and their functional interaction with host factors. Many of the techniques are, however, applicable to the functional analysis of other viral proteins.

  5. Genetic characterization of natural variants of Vpu from HIV-1 infected individuals from Northern India and their impact on virus release and cell death.

    Directory of Open Access Journals (Sweden)

    Sachin Verma

    Full Text Available BACKGROUND: Genetic studies reveal that vpu is one of the most variable regions in HIV-1 genome. Functional studies have been carried out mostly with Vpu derived from laboratory adapted subtype B pNL 4-3 virus. The rationale of this study was to characterize genetic variations that are present in the vpu gene from HIV-1 infected individuals from North-India (Punjab/Haryana and determine their functional relevance. METHODS: Functionally intact vpu gene variants were PCR amplified from genomic DNA of HIV-1 infected individuals. These variants were then subjected to genetic analysis and unique representative variants were cloned under CMV promoter containing expression vector as well as into pNL 4-3 HIV-1 virus for intracellular expression studies. These variants were characterized with respect to their ability to promote virus release as well as cell death. RESULTS: Based on phylogenetic analysis and extensive polymorphisms with respect to consensus Vpu B and C, we were able to arbitrarily assign variants into two major groups (B and C. The group B variants always showed significantly higher virus release activity and exhibited moderate levels of cell death. On the other hand, group C variants displayed lower virus release activity but greater cell death potential. Interestingly, Vpu variants with a natural S61A mutation showed greater intracellular stability. These variants also exhibited significant reduction in their intracellular ubiquitination and caused greater virus release. Another group C variant that possessed a non-functional β-TrcP binding motif due to two critical serine residues (S52 and S56 being substituted with isoleucine residues, showed reduced virus release activity but modest cytotoxic activity. CONCLUSIONS: The natural variations exhibited by our Vpu variants involve extensive polymorphism characterized by substitution and deletions that contribute toward positive selection. We identified two major groups and an extremely

  6. HIV-1 Vpu's lipid raft association is dispensable for counteraction of the particle release restriction imposed by CD317/Tetherin

    Energy Technology Data Exchange (ETDEWEB)

    Fritz, Joeelle V., E-mail: joelle.fritz@med.uni-heidelberg.de; Tibroni, Nadine, E-mail: nadine.tibroni@med.uni-heidelberg.de; Keppler, Oliver T., E-mail: oliver.keppler@med.uni-heidelberg.de; Fackler, Oliver T., E-mail: oliver.fackler@med.uni-heidelberg.de

    2012-03-01

    HIV-1 Vpu antagonizes the block to particle release mediated by CD317 (BST-2/HM1.24/Tetherin) via incompletely understood mechanisms. Vpu and CD317 partially reside in cholesterol-rich lipid rafts where HIV-1 budding preferentially occurs. Here we find that lipid raft association of ectopically expressed or endogenous CD317 was unaltered upon co-expression with Vpu or following HIV-1 infection. Similarly, Vpu's lipid raft association remained unchanged upon expression of CD317. We identify amino acids V25 and Y29 of Vpu as crucial for microdomain partitioning and single substitution of these amino acids resulted in Vpu variants with markedly reduced or undetectable lipid raft association. These mutations did not affect Vpu's subcellular distribution and binding capacity to CD317, nor its ability to downmodulate cell surface CD317 and promote HIV-1 release from CD317-positive cells. We conclude that (i) lipid raft incorporation is dispensable for Vpu-mediated CD317 antagonism and (ii) Vpu does not antagonize CD317 by extraction from lipid rafts.

  7. Viral replication is enhanced by an HIV-1 intersubtype recombination-derived Vpu protein

    Directory of Open Access Journals (Sweden)

    Salomón Horacio

    2010-10-01

    Full Text Available Abstract Background Multiple HIV-1 intersubtype recombinants have been identified in human populations. Previous studies from our lab group have shown that the epidemic in Argentina is characterized by the high prevalence of a circulating recombinant form, CRF12_BF, and many related BF recombinant forms. In these genomic structures a recombination breakpoint frequently involved the vpu coding region. Due to the scarce knowledge of Vpu participation in the virion release process and its impact on pathogenesis and of the functional capacities of intersubtype recombinant Vpu proteins, the aim of this work was to perform a comparative analysis on virion release capacity and relative replication capacity among viral variants harboring either a BF recombinant Vpu or a subtype B Vpu. Results Our results showed that BF recombinant Vpu was associated to an increased viral particles production when compared to WT B variant in tetherin-expressing cell lines. This observation was tested in the context of a competition assay between the above mentioned variants. The results showed that the replication of the BF Vpu-harboring variant was more efficient in cell cultures than subtype B, reaching a higher frequency in the viral population in a short period of time. Conclusion This study showed that as a result of intersubtype recombination, a structurally re-organized HIV-1 Vpu has an improved in vitro capacity of enhancing viral replication, and provides evidence of the changes occurring in this protein function that could play an important role in the successful spread of intersubtype recombinant variants.

  8. Specific VpU Codon Changes were Significantly associated with gp120 V3 Tropic Signatures in HIV-1 B-subtype

    Institute of Scientific and Technical Information of China (English)

    Salvatore Dimonte; Muhammed Babakir-Mina; Stefano Aquaro; Carlo-Federico Perno

    2012-01-01

    After infection and integration steps,HIV-1 transcriptions increase sharply and singly-spliced mRNAs are produced.These encode Env (gpl20 and gp41) and auxiliary proteins Vif,Vpr and VpU.The same localization within the unique structure of the mRNAs suggests that the VpU sequence prior to the Env could affect the Env polyprotein expression.The HIV-1 infection process begins when the gp120 subunit of the envelope glycoprotein complex interacts with its receptor(s) on the target cell.The V3 domain of gp120 is the major determinant of cellular co-receptor binding.According to phenotypic information of HIV-1 isolates,sequences from the VpU to V3 regions (119 in R5-and 120 X4-tropic viruses; oneper patient) were analysed.The binomial correlation phi coefficient was used to assess covariation among VpU and gp120v3 signatures.Subsequently,average linkage hierarchical agglomerative clustering was performed.Beyond the classical V3 signatures (R5-viruses:S11,E25D; X4-viruses:S11KR,E25KRQ),other specific V3 and novel VpU signatures were found to be statistically associated with co-receptor usage.Several statistically significant associations between V3 and VpU mutations were also observed.The dendrogram showed two distinct large clusters:one associated with R5-tropic sequences (bootstrap=0.94),involving:(a) H13NPV3,E25DV3,S11V3,T22AV3 and Q61HVpU,(b) E25AV3 and L12FVpU:,(c) D44EVpU,R18QV3 and D80NVpU; and another associated with X4-tropic sequences (bootstrap=0.97),involving:(i) E25Iv3 and V10AvpU,(ii)0-1insVVpU,H13Rv3,146LVpU,I30Mv3 and 60-62delVpU,(iii) S11KRV3 and E25KRQV3.Some of these pairs of mutations were encoded always by one specific codon.These data indicate the possible VpU mutational patterns contributing to regulation of HIV-1 tropism.

  9. Characterization of the interface of the bone marrow stromal cell antigen 2-Vpu protein complex via computational chemistry.

    Science.gov (United States)

    Zhou, Jinming; Zhang, Zhixin; Mi, Zeyun; Wang, Xin; Zhang, Quan; Li, Xiaoyu; Liang, Chen; Cen, Shan

    2012-02-14

    Bone marrow stromal cell antigen 2 (BST-2) inhibits the release of enveloped viruses from the cell surface. Various viral counter measures have been discovered, which allow viruses to escape BST-2 restriction. Human immunodeficiency virus type 1 (HIV-1) encodes viral protein U (Vpu) that interacts with BST-2 through their transmembrane domains and causes the downregulation of cell surface BST-2. In this study, we used a computer modeling method to establish a molecular model to investigate the binding interface of the transmembrane domains of BST-2 and Vpu. The model predicts that the interface is composed of Vpu residues I6, A10, A14, A18, V25, and W22 and BST-2 residues L23, I26, V30, I34, V35, L41, I42, and T45. Introduction of mutations that have been previously reported to disrupt the Vpu-BST-2 interaction led to a calculated higher binding free energy (MMGBSA), which supports our molecular model. A pharmacophore was also generated on the basis of this model. Our results provide a precise model that predicts the detailed interaction occurring between the transmembrane domains of Vpu and BST-2 and should facilitate the design of anti-HIV agents that are able to disrupt this interaction.

  10. β-TrCP is dispensable for Vpu's ability to overcome the CD317/Tetherin-imposed restriction to HIV-1 release

    Directory of Open Access Journals (Sweden)

    Fritz Joëlle V

    2011-02-01

    Full Text Available Abstract Background The cellular transmembrane protein CD317/BST-2/HM1.24/Tetherin restricts HIV-1 infection by physically tethering mature virions to the surface of infected cells. HIV-1 counteracts this restriction by expressing the accessory protein Vpu, yet the mechanism of this antagonism is incompletely understood. β-TrCP is the substrate recognition domain of an E3 ubiquitin ligase complex that interacts with the di-serine motif S52/S56 in the cytoplasmic tail of Vpu to target the CD4 receptor for proteasomal degradation. Recently, it has been suggested that β-TrCP is also critically involved in Vpu's ability to overcome the CD317-mediated virion release block. Results To test this model, we analyzed the consequences of several experimental strategies to interfere with the Vpu-β-TrCP protein-protein interaction. Under these conditions, we studied effects of Vpu on expression and localization of CD317 and CD4, as well as on its ability to promote HIV-1 release. Our results demonstrate a strict requirement for Vpu's di-serine motif for degradation of CD4 and also CD317, reduction of cell surface exposure of CD317, and HIV-1 release enhancement. We further show a critical role of β-TrCP2, but not of the structurally related β-TrCP1 isoform, for Vpu-mediated degradation of both receptors. Most importantly, Vpu remained active in downregulating CD317 from the cell surface and in overcoming the HIV-1 release restriction in β-TrCP-depleted cells. Conclusions These results demonstrate that β-TrCP is not strictly required for Vpu's ability to counteract the CD317-imposed virion release block and support the relevance of cell surface down-modulation of the restriction factor as a central mechanism of Vpu antagonism. Moreover, we propose the existence of a critical, yet to be identified cellular factor that interacts with Vpu via its di-serine motif to alter the trafficking of the restriction factor.

  11. Vpu downmodulates two distinct targets, tetherin and gibbon ape leukemia virus envelope, through shared features in the Vpu cytoplasmic tail.

    Directory of Open Access Journals (Sweden)

    Tiffany M Lucas

    Full Text Available During human immunodeficiency virus-1 (HIV-1 assembly, the host proteins CD4 (the HIV-1 receptor and tetherin (an interferon stimulated anti-viral protein both reduce viral fitness. The HIV-1 accessory gene Vpu counteracts both of these proteins, but it is thought to do so through two distinct mechanisms. Modulation of CD4 likely occurs through proteasomal degradation from the endoplasmic reticulum. The exact mechanism of tetherin modulation is less clear, with possible roles for degradation and alteration of protein transport to the plasma membrane. Most investigations of Vpu function have used different assays for CD4 and tetherin. In addition, many of these investigations used exogenously expressed Vpu, which could result in variable expression levels. Thus, few studies have investigated these two Vpu functions in parallel assays, making direct comparisons difficult. Here, we present results from a rapid assay used to simultaneously investigate Vpu-targeting of both tetherin and a viral glycoprotein, gibbon ape leukemia virus envelope (GaLV Env. We previously reported that Vpu modulates GaLV Env and prevents its incorporation into HIV-1 particles through a recognition motif similar to that found in CD4. Using this assay, we performed a comprehensive mutagenic scan of Vpu in its native proviral context to identify features required for both types of activity. We observed considerable overlap in the Vpu sequences required to modulate tetherin and GaLV Env. We found that features in the cytoplasmic tail of Vpu, specifically within the cytoplasmic tail hinge region, were required for modulation of both tetherin and GaLV Env. Interestingly, these same regions features have been determined to be critical for CD4 downmodulation. We also observed a role for the transmembrane domain in the restriction of tetherin, as previously reported, but not of GaLV Env. We propose that Vpu may target both proteins in a mechanistically similar manner, albeit in

  12. Vpu Downmodulates Two Distinct Targets, Tetherin and Gibbon Ape Leukemia Virus Envelope, through Shared Features in the Vpu Cytoplasmic Tail

    Science.gov (United States)

    Stephens, Edward B.; Johnson, Marc C.

    2012-01-01

    During human immunodeficiency virus-1 (HIV-1) assembly, the host proteins CD4 (the HIV-1 receptor) and tetherin (an interferon stimulated anti-viral protein) both reduce viral fitness. The HIV-1 accessory gene Vpu counteracts both of these proteins, but it is thought to do so through two distinct mechanisms. Modulation of CD4 likely occurs through proteasomal degradation from the endoplasmic reticulum. The exact mechanism of tetherin modulation is less clear, with possible roles for degradation and alteration of protein transport to the plasma membrane. Most investigations of Vpu function have used different assays for CD4 and tetherin. In addition, many of these investigations used exogenously expressed Vpu, which could result in variable expression levels. Thus, few studies have investigated these two Vpu functions in parallel assays, making direct comparisons difficult. Here, we present results from a rapid assay used to simultaneously investigate Vpu-targeting of both tetherin and a viral glycoprotein, gibbon ape leukemia virus envelope (GaLV Env). We previously reported that Vpu modulates GaLV Env and prevents its incorporation into HIV-1 particles through a recognition motif similar to that found in CD4. Using this assay, we performed a comprehensive mutagenic scan of Vpu in its native proviral context to identify features required for both types of activity. We observed considerable overlap in the Vpu sequences required to modulate tetherin and GaLV Env. We found that features in the cytoplasmic tail of Vpu, specifically within the cytoplasmic tail hinge region, were required for modulation of both tetherin and GaLV Env. Interestingly, these same regions features have been determined to be critical for CD4 downmodulation. We also observed a role for the transmembrane domain in the restriction of tetherin, as previously reported, but not of GaLV Env. We propose that Vpu may target both proteins in a mechanistically similar manner, albeit in different cellular

  13. Functional conservation and coherence of HIV-1 subtype A Vpu alleles

    Science.gov (United States)

    Romani, Bizhan; Kavyanifard, Amirarsalan; Allahbakhshi, Elham

    2017-01-01

    Functional studies of HIV-1 proteins are normally conducted using lab adapted strains of HIV-1. The extent of those functions in clinical strains is sometimes unknown. In this study, we amplified and sequenced HIV-1 Vpu from 10 Iranian patients infected with HIV-1. Phylogenetic analysis indicated that the Vpu alleles were closely related to the CRF35_AD from Iran and subtype A Vpu. We addressed some of the well-established functions of the HIV-1 Vpu, as well as some of its recently reported functions. Ability of the clinical strains of subtype A Vpu alleles for downregulation of CD4 was similar to that of the lab adapted NL4.3 Vpu. Majority of the subtype A Vpu alleles performed stronger than NL4.3 Vpu for downregulation of SNAT1. The Vpu alleles differentially induced downregulation of HLA-C, ranging from no effect to 88% downregulation of surface HLA-C. Downregulation of tetherin and enhancement of virus release was similar for the subtype A Vpu alleles and NL4.3. Subtype A Vpu alleles were more potent when compared with NL4.3 for inhibition of NF-κB activation. Our study shows that subtype A Vpu alleles exert the classical functions of HIV-1 Vpu. PMID:28317943

  14. Differential Regulation of NF-κB-Mediated Proviral and Antiviral Host Gene Expression by Primate Lentiviral Nef and Vpu Proteins

    Directory of Open Access Journals (Sweden)

    Daniel Sauter

    2015-02-01

    Full Text Available NF-κB is essential for effective transcription of primate lentiviral genomes and also activates antiviral host genes. Here, we show that the early protein Nef of most primate lentiviruses enhances NF-κB activation. In contrast, the late protein Vpu of HIV-1 and its simian precursors inhibits activation of NF-κB, even in the presence of Nef. Although this effect of Vpu did not correlate with its ability to interact with β-TrCP, it involved the stabilization of IκB and reduced nuclear translocation of p65. Interestingly, however, Vpu did not affect casein kinase II-mediated phosphorylation of p65. Lack of Vpu was associated with increased NF-κB activation and induction of interferon and interferon-stimulated genes (ISGs in HIV-1-infected T cells. Thus, HIV-1 and its simian precursors employ Nef to boost NF-κB activation early during the viral life cycle to initiate proviral transcription, while Vpu is used to downmodulate NF-κB-dependent expression of ISGs at later stages.

  15. In COS cells Vpu can both stabilize tetherin expression and counteract its antiviral activity.

    Science.gov (United States)

    Waheed, Abdul A; Kuruppu, Nishani D; Felton, Kathryn L; D'Souza, Darren; Freed, Eric O

    2014-01-01

    The interferon-inducible cellular protein tetherin (CD317/BST-2) inhibits the release of a broad range of enveloped viruses. The HIV-1 accessory protein Vpu enhances virus particle release by counteracting this host restriction factor. While the antagonism of human tetherin by Vpu has been associated with both proteasomal and lysosomal degradation, the link between Vpu-mediated tetherin degradation and the ability of Vpu to counteract the antiviral activity of tetherin remains poorly understood. Here, we show that human tetherin is expressed at low levels in African green monkey kidney (COS) cells. However, Vpu markedly increases tetherin expression in this cell line, apparently by sequestering it in an internal compartment that bears lysosomal markers. This stabilization of tetherin by Vpu requires the transmembrane sequence of human tetherin. Although Vpu stabilizes human tetherin in COS cells, it still counteracts the ability of tetherin to suppress virus release. The enhancement of virus release by Vpu in COS cells is associated with a modest reduction in cell-surface tetherin expression, even though the overall expression of tetherin is higher in the presence of Vpu. This study demonstrates that COS cells provide a model system in which Vpu-mediated enhancement of HIV-1 release is uncoupled from Vpu-mediated tetherin degradation.

  16. Downmodulation of CCR7 by HIV-1 Vpu results in impaired migration and chemotactic signaling within CD4⁺ T cells.

    Science.gov (United States)

    Ramirez, Peter W; Famiglietti, Marylinda; Sowrirajan, Bharatwaj; DePaula-Silva, Ana Beatriz; Rodesch, Christopher; Barker, Edward; Bosque, Alberto; Planelles, Vicente

    2014-06-26

    The chemokine receptor CCR7 plays a crucial role in the homing of central memory and naive T cells to peripheral lymphoid organs. Here, we show that the HIV-1 accessory protein Vpu downregulates CCR7 on the surface of CD4(+) T cells. Vpu and CCR7 were found to specifically interact and colocalize within the trans-Golgi network, where CCR7 is retained. Downmodulation of CCR7 did not involve degradation or endocytosis and was strictly dependent on Vpu expression. Stimulation of HIV-1-infected primary CD4(+) T cells with the CCR7 ligand CCL19 resulted in reduced mobilization of Ca(2+), reduced phosphorylation of Erk1/2, and impaired migration toward CCL19. Specific amino acid residues within the transmembrane domain of Vpu that were previously shown to be critical for BST-2 downmodulation (A14, A18, and W22) were also necessary for CCR7 downregulation. These results suggest that BST-2 and CCR7 may be downregulated via similar mechanisms.

  17. HIV-1 Vpu - an ion channel in search of a job.

    Science.gov (United States)

    Strebel, Klaus

    2014-04-01

    Vpu is a small membrane protein encoded by HIV-1 and some SIV isolates. The protein is best known for its ability to degrade CD4 and to enhance the release of progeny virions from infected cells. However, Vpu also promotes host-cell apoptosis by deregulating the NFκB signaling pathway and it assembles into cation-conducting membrane pores. This review summarizes our current understanding of these various functions of Vpu with particular emphasis on recent progress in the Vpu field. This article is part of a Special Issue entitled: Viral Membrane Proteins - Channels for Cellular Networking. © 2013.

  18. HLA-C Downmodulation by HIV-1 Vpu.

    Science.gov (United States)

    Barker, Edward; Evans, David T

    2016-05-11

    It is widely held that HIV-1 Nef downmodulates HLA-A and -B to protect infected cells from CD8(+) T cells but leaves HLA-C on the cell surface to inhibit NK cells. In this issue of Cell Host & Microbe, Apps et al. (2016) revise this model by showing that the Vpu protein of primary HIV-1 isolates downmodulate HLA-C.

  19. HIV-1 Vpu promotes release and prevents endocytosis of nascent retrovirus particles from the plasma membrane.

    Directory of Open Access Journals (Sweden)

    2006-05-01

    Full Text Available The human immunodeficiency virus (HIV type-1 viral protein U (Vpu protein enhances the release of diverse retroviruses from human, but not monkey, cells and is thought to do so by ablating a dominant restriction to particle release. Here, we determined how Vpu expression affects the subcellular distribution of HIV-1 and murine leukemia virus (MLV Gag proteins in human cells where Vpu is, or is not, required for efficient particle release. In HeLa cells, where Vpu enhances HIV-1 and MLV release approximately 10-fold, concentrations of HIV-1 Gag and MLV Gag fused to cyan fluorescent protein (CFP were initially detected at the plasma membrane, but then accumulated over time in early and late endosomes. Endosomal accumulation of Gag-CFP was prevented by Vpu expression and, importantly, inhibition of plasma membrane to early endosome transport by dominant negative mutants of Rab5a, dynamin, and EPS-15. Additionally, accumulation of both HIV and MLV Gag in endosomes required a functional late-budding domain. In human HOS cells, where HIV-1 and MLV release was efficient even in the absence of Vpu, Gag proteins were localized predominantly at the plasma membrane, irrespective of Vpu expression or manipulation of endocytic transport. While these data indicated that Vpu inhibits nascent virion endocytosis, Vpu did not affect transferrin endocytosis. Moreover, inhibition of endocytosis did not restore Vpu-defective HIV-1 release in HeLa cells, but instead resulted in accumulation of mature virions that could be released from the cell surface by protease treatment. Thus, these findings suggest that a specific activity that is present in HeLa cells, but not in HOS cells, and is counteracted by Vpu, traps assembled retrovirus particles at the cell surface. This entrapment leads to subsequent endocytosis by a Rab5a- and clathrin-dependent mechanism and intracellular sequestration of virions in endosomes.

  20. HIV-1 Vpu protein mediates the transport of potassium in Saccharomyces cerevisiae.

    Science.gov (United States)

    Herrero, Laura; Monroy, Noemí; González, María Eugenia

    2013-01-01

    Human immunodeficiency virus type 1 (HIV-1) Vpu is an integral membrane protein that belongs to the viroporin family. Viroporins interact with cell membranes, triggering membrane permeabilization and promoting release of viral particles. In vitro electrophysiological methods have revealed changes in membrane ion currents when Vpu is present; however, in vivo the molecular mechanism of Vpu at the plasma membrane is still uncertain. We used the yeast Saccharomyces cerevisiae as a genetic model system to analyze how Vpu ion channel impacts cellular homeostasis. Inducible expression of Vpu impaired cell growth, suggesting that this viral protein is toxic to yeast cultures. This toxicity decreased with extracellular acidic pH. Also, Vpu toxicity diminished as the extracellular K(+) concentration was increased. However, expression of the Vpu protein suppresses the growth defect of K(+) uptake-deficient yeast (Δtrk1,2). The phenotype rescue of these highly hyperpolarized cells was almost total when they were grown in medium supplemented with high concentrations of KCl (100 mM) at pH 7.0 but was significantly reduced when the extracellular K(+) concentration or pH was decreased. These results indicate that Vpu has the ability to modify K(+) transport in both yeast strains. Here, we show also that Vpu confers tolerance to the aminoglycoside antibiotic hygromycin B in Δtrk1,2 yeast. Our results suggest that Vpu interferes with cell growth of wild-type yeast but improves proliferation of the hyperpolarized trk1,2 mutant by inducing plasma membrane depolarization. Furthermore, evaluation of the ion channel activity of the Vpu protein in Δtrk1,2 yeast could aid in the development of a high-throughput screening assay for molecules that target the retroviral protein.

  1. The HIV-1 Vpu protein induces apoptosis in Drosophila via activation of JNK signaling.

    Directory of Open Access Journals (Sweden)

    Christelle Marchal

    Full Text Available The genome of the human immunodeficiency virus type 1 (HIV-1 encodes the canonical retroviral proteins, as well as additional accessory proteins that enhance the expression of viral genes, the infectivity of the virus and the production of virions. The accessory Viral Protein U (Vpu, in particular, enhances viral particle production, while also promoting apoptosis of HIV-infected human T lymphocytes. Some Vpu effects rely on its interaction with the ubiquitin-proteasome protein degradation system, but the mechanisms responsible for its pro-apoptotic effects in vivo are complex and remain largely to be elucidated.We took advantage of the Drosophila model to study the effects of Vpu activity in vivo. Expression of Vpu in the developing Drosophila wing provoked tissue loss due to caspase-dependent apoptosis. Moreover, Vpu induced expression of the pro-apoptotic gene reaper, known to down-regulate Inhibitor of Apoptosis Proteins (IAPs which are caspase-antagonizing E3 ubiquitin ligases. Indeed, Vpu also reduced accumulation of Drosophila IAP1 (DIAP1. Though our results demonstrate a physical interaction between Vpu and the proteasome-addressing SLIMB/β-TrCP protein, as in mammals, both SLIMB/βTrCP-dependent and -independent Vpu effects were observed in the Drosophila wing. Lastly, the pro-apoptotic effect of Vpu in this tissue was abrogated upon inactivation of the c-Jun N-terminal Kinase (JNK pathway. Our results in the fly thus provide the first functional evidence linking Vpu pro-apoptotic effects to activation of the conserved JNK pathway.

  2. The HIV-1 Vpu protein induces apoptosis in Drosophila via activation of JNK signaling.

    Science.gov (United States)

    Marchal, Christelle; Vinatier, Gérald; Sanial, Matthieu; Plessis, Anne; Pret, Anne-Marie; Limbourg-Bouchon, Bernadette; Théodore, Laurent; Netter, Sophie

    2012-01-01

    The genome of the human immunodeficiency virus type 1 (HIV-1) encodes the canonical retroviral proteins, as well as additional accessory proteins that enhance the expression of viral genes, the infectivity of the virus and the production of virions. The accessory Viral Protein U (Vpu), in particular, enhances viral particle production, while also promoting apoptosis of HIV-infected human T lymphocytes. Some Vpu effects rely on its interaction with the ubiquitin-proteasome protein degradation system, but the mechanisms responsible for its pro-apoptotic effects in vivo are complex and remain largely to be elucidated.We took advantage of the Drosophila model to study the effects of Vpu activity in vivo. Expression of Vpu in the developing Drosophila wing provoked tissue loss due to caspase-dependent apoptosis. Moreover, Vpu induced expression of the pro-apoptotic gene reaper, known to down-regulate Inhibitor of Apoptosis Proteins (IAPs) which are caspase-antagonizing E3 ubiquitin ligases. Indeed, Vpu also reduced accumulation of Drosophila IAP1 (DIAP1). Though our results demonstrate a physical interaction between Vpu and the proteasome-addressing SLIMB/β-TrCP protein, as in mammals, both SLIMB/βTrCP-dependent and -independent Vpu effects were observed in the Drosophila wing. Lastly, the pro-apoptotic effect of Vpu in this tissue was abrogated upon inactivation of the c-Jun N-terminal Kinase (JNK) pathway. Our results in the fly thus provide the first functional evidence linking Vpu pro-apoptotic effects to activation of the conserved JNK pathway.

  3. Species-specific activity of HIV-1 Vpu and positive selection of tetherin transmembrane domain variants.

    Directory of Open Access Journals (Sweden)

    Matthew W McNatt

    2009-02-01

    Full Text Available Tetherin/BST-2/CD317 is a recently identified antiviral protein that blocks the release of nascent retrovirus, and other virus, particles from infected cells. An HIV-1 accessory protein, Vpu, acts as an antagonist of tetherin. Here, we show that positive selection is evident in primate tetherin sequences and that HIV-1 Vpu appears to have specifically adapted to antagonize variants of tetherin found in humans and chimpanzees. Tetherin variants found in rhesus macaques (rh, African green monkeys (agm and mice were able to inhibit HIV-1 particle release, but were resistant to antagonism by HIV-1 Vpu. Notably, reciprocal exchange of transmembrane domains between human and monkey tetherins conferred sensitivity and resistance to Vpu, identifying this protein domain as a critical determinant of Vpu function. Indeed, differences between hu-tetherin and rh-tetherin at several positions in the transmembrane domain affected sensitivity to antagonism by Vpu. Two alterations in the hu-tetherin transmembrane domain, that correspond to differences found in rh- and agm-tetherin proteins, were sufficient to render hu-tetherin completely resistant to HIV-1 Vpu. Interestingly, transmembrane and cytoplasmic domain sequences in primate tetherins exhibit variation at numerous codons that is likely the result of positive selection, and some of these changes coincide with determinants of HIV-1 Vpu sensitivity. Overall, these data indicate that tetherin could impose a barrier to viral zoonosis as a consequence of positive selection that has been driven by ancient viral antagonists, and that the HIV-1 Vpu protein has specialized to target the transmembrane domains found in human/chimpanzee tetherin proteins.

  4. Species-specific activity of HIV-1 Vpu and positive selection of tetherin transmembrane domain variants.

    Science.gov (United States)

    McNatt, Matthew W; Zang, Trinity; Hatziioannou, Theodora; Bartlett, Mackenzie; Fofana, Ismael Ben; Johnson, Welkin E; Neil, Stuart J D; Bieniasz, Paul D

    2009-02-01

    Tetherin/BST-2/CD317 is a recently identified antiviral protein that blocks the release of nascent retrovirus, and other virus, particles from infected cells. An HIV-1 accessory protein, Vpu, acts as an antagonist of tetherin. Here, we show that positive selection is evident in primate tetherin sequences and that HIV-1 Vpu appears to have specifically adapted to antagonize variants of tetherin found in humans and chimpanzees. Tetherin variants found in rhesus macaques (rh), African green monkeys (agm) and mice were able to inhibit HIV-1 particle release, but were resistant to antagonism by HIV-1 Vpu. Notably, reciprocal exchange of transmembrane domains between human and monkey tetherins conferred sensitivity and resistance to Vpu, identifying this protein domain as a critical determinant of Vpu function. Indeed, differences between hu-tetherin and rh-tetherin at several positions in the transmembrane domain affected sensitivity to antagonism by Vpu. Two alterations in the hu-tetherin transmembrane domain, that correspond to differences found in rh- and agm-tetherin proteins, were sufficient to render hu-tetherin completely resistant to HIV-1 Vpu. Interestingly, transmembrane and cytoplasmic domain sequences in primate tetherins exhibit variation at numerous codons that is likely the result of positive selection, and some of these changes coincide with determinants of HIV-1 Vpu sensitivity. Overall, these data indicate that tetherin could impose a barrier to viral zoonosis as a consequence of positive selection that has been driven by ancient viral antagonists, and that the HIV-1 Vpu protein has specialized to target the transmembrane domains found in human/chimpanzee tetherin proteins.

  5. Some human immunodeficiency virus type 1 Vpu proteins are able to antagonize macaque BST-2 in vitro and in vivo: Vpu-negative simian-human immunodeficiency viruses are attenuated in vivo.

    Science.gov (United States)

    Shingai, Masashi; Yoshida, Takeshi; Martin, Malcolm A; Strebel, Klaus

    2011-10-01

    Human immunodeficiency virus type 1 (HIV-1) Vpu enhances the release of viral particles from infected cells by targeting BST-2/tetherin, a cellular protein inhibiting virus release. The widely used HIV-1(NL4-3) Vpu functionally inactivates human BST-2 but not murine or monkey BST-2, leading to the notion that Vpu antagonism is species specific. Here we investigated the properties of the CXCR4-tropic simian-human immunodeficiency virus DH12 (SHIV(DH12)) and the CCR5-tropic SHIV(AD8), each of which carries vpu genes derived from different primary HIV-1 isolates. We found that virion release from infected rhesus peripheral blood mononuclear cells was enhanced to various degrees by the Vpu present in both SHIVs. Transfer of the SHIV(DH12) Vpu transmembrane domain to the HIV-1(NL4-3) Vpu conferred antagonizing activity against macaque BST-2. Inactivation of the SHIV(DH12) and SHIV(AD8) vpu genes impaired virus replication in 6 of 8 inoculated rhesus macaques, resulting in lower plasma viral RNA loads, slower losses of CD4(+) T cells, and delayed disease progression. The expanded host range of the SHIV(DH12) Vpu was not due to adaptation during passage in macaques but was an intrinsic property of the parental HIV-1(DH12) Vpu protein. These results demonstrate that the species-specific inhibition of BST-2 by HIV-1(NL4-3) Vpu is not characteristic of all HIV-1 Vpu proteins; some HIV-1 isolates encode a Vpu with a broader host range.

  6. Efficient Vpu-Mediated Tetherin Antagonism by an HIV-1 Group O Strain.

    Science.gov (United States)

    Mack, Katharina; Starz, Kathrin; Sauter, Daniel; Langer, Simon; Bibollet-Ruche, Frederic; Learn, Gerald H; Stürzel, Christina M; Leoz, Marie; Plantier, Jean-Christophe; Geyer, Matthias; Hahn, Beatrice H; Kirchhoff, Frank

    2017-03-15

    Simian immunodeficiency viruses (SIVs) use their Nef proteins to counteract the restriction factor tetherin. However, a deletion in human tetherin prevents antagonism by the Nef proteins of SIVcpz and SIVgor, which represent the ape precursors of human immunodeficiency virus type 1 (HIV-1). To promote virus release from infected cells, pandemic HIV-1 group M strains evolved Vpu as a tetherin antagonist, while the Nef protein of less widespread HIV-1 group O strains acquired the ability to target a region adjacent to this deletion. In this study, we identified an unusual HIV-1 group O strain (RBF206) that evolved Vpu as an effective antagonist of human tetherin. While both RBF206 Vpu and Nef exert anti-tetherin activity in transient-transfection assays, mainly Vpu promotes RBF206 release in infected CD4(+) T cells. Although mutations distinct from the adaptive changes observed in group M Vpus (M-Vpus) were critical for the acquisition of its anti-tetherin activity, RBF206 O-Vpu potently suppresses NF-κB activation and reduces CD4 cell surface expression. Interestingly, RBF206 Vpu counteracts tetherin in a largely species-independent manner, degrading both the long and short isoforms of human tetherin. Downmodulation of CD4, but not counteraction of tetherin, by RBF206 Vpu was dependent on the cellular ubiquitin ligase machinery. Our data present the first example of an HIV-1 group O Vpu that efficiently antagonizes human tetherin and suggest that counteraction by O-Nefs may be suboptimal.IMPORTANCE Previous studies showed that HIV-1 groups M and O evolved two alternative strategies to counteract the human ortholog of the restriction factor tetherin. While HIV-1 group M switched from Nef to Vpu due to a deletion in the cytoplasmic domain of human tetherin, HIV-1 group O, which lacks Vpu-mediated anti-tetherin activity, acquired a Nef protein that is able to target a region adjacent to the deletion. Here we report an unusual exception, identifying a strain of HIV-1

  7. Counteraction of tetherin antiviral activity by two closely related SIVs differing by the presence of a Vpu gene.

    Directory of Open Access Journals (Sweden)

    Kristina Nikovics

    Full Text Available In different primate lentiviruses, three proteins (Vpu, Env and Nef have been shown to have anti-tetherin activities. SIVden is a primate lentivirus harbored by a Cercopithecus denti (C. denti whose genome code for a Vpu gene. We have compared the activity of HIV-1 Vpu and of SIVden Vpu on tetherin proteins from humans, from C. denti and from Cercopithecus neglectus (C. neglectus, a monkey species that is naturally infected by SIVdeb, a virus closely related to SIVden but which does not encode a Vpu protein. Here, we demonstrate that SIVden Vpu, is active against C. denti tetherin, but not against human tetherin. Interestingly, C. neglectus tetherin was more sensitive to SIVden Vpu than to HIV-1 Vpu. We also identify residues in the tetherin transmembrane domains that are responsible for the species-specific Vpu effect. Simultaneous mutation (P40L and T45I of human tetherin conferred sensitivity to SIVden Vpu, while abolishing its sensitivity to HIV-1 Vpu. We next analyzed the anti-tetherin activity of the Nef proteins from HIV-1, SIVden and SIVdeb. All three Nef proteins were unable to rescue virus release in the presence of human or C. denti tetherin. Conversely, SIVdeb Nef enhanced virus release in the presence of C. neglectus tetherin, suggesting that SIVdeb relies on Nef in its natural host. Finally, while HIV-1 Vpu not only removed human tetherin from the cell surface but also directed it for degradation, SIVden Vpu only induced the redistribution of both C. denti and C. neglectus tetherins, resulting in a predominantly perinuclear localization.

  8. Purification of eukaryotic tetherin/Vpu proteins and detection of their interaction by ELISA.

    Science.gov (United States)

    Lv, Mingyu; Zhu, Yingzi; Wang, Jiawen; Zhang, Haihong; Wang, Xiaodan; Zuo, Tao; Liu, Donglai; Zhang, Jingyao; Wu, Jiaxin; Kong, Wei; Yu, Xianghui

    2013-10-01

    Tetherin/BST-2/CD317 inhibits HIV-1 release from infected cells, while HIV-1 Vpu efficiently antagonizes tetherin based on intermolecular interactions between the transmembrane domains of each protein. In this study, we successfully partially purified His-tagged tetherin with a glycophosphatidylinositol deletion (delGPI) and His-tagged full-length Vpu from transiently transfected 293T cells using affinity chromatography. The in vitro interaction between these purified proteins was observed by a pull-down assay and ELISA. Detection of the Vpu/tetherin interaction by ELISA is a novel approach that would be advantageous for inhibitor screening in vitro. Successful co-purification of the tetherin/Vpu complex also provides a basis for further structural studies.

  9. Validating Vegetable Production Unit (VPU) Plants, Protocols, Procedures and Requirements (P3R) using Currently Existing Flight Resources

    Science.gov (United States)

    Bingham, Gail; Bates, Scott; Bugbee, Bruce; Garland, Jay; Podolski, Igor; Levinskikh, Rita; Sychev, Vladimir; Gushin, Vadim

    2009-01-01

    Validating Vegetable Production Unit (VPU) Plants, Protocols, Procedures and Requirements (P3R) Using Currently Existing Flight Resources (Lada-VPU-P3R) is a study to advance the technology required for plant growth in microgravity and to research related food safety issues. Lada-VPU-P3R also investigates the non-nutritional value to the flight crew of developing plants on-orbit. The Lada-VPU-P3R uses the Lada hardware on the ISS and falls under a cooperative agreement between National Aeronautics and Space Administration (NASA) and the Russian Federal Space Association (FSA). Research Summary: Validating Vegetable Production Unit (VPU) Plants, Protocols, Procedures and Requirements (P3R) Using Currently Existing Flight Resources (Lada-VPU-P3R) will optimize hardware and

  10. Evidences for viral strain selection in late stages of HIV infection: an analysis of Vpu alleles.

    Science.gov (United States)

    Gondim, Marcos Vinícius Pereira; da Silva, Joaquim Xavier; Prosdocimi, Francisco; Leonardecz-Neto, Eduardo; Franco, Octávio Luiz; Argañaraz, Enrique Roberto

    2012-02-01

    One of the most studied topics about AIDS disease is the presence of different progression levels in patients infected by HIV. Several studies have shown that this progression is directly associated with host genetics, although viral factors are also known to play a role. Here we explore the contribution of Vpu protein in the evolution of viral population. The sequence variation of Vpu was analyzed during HIV infection in peripheral blood monocyte cells of 12 patients in different clinical stages of HIV-1 infection early and late stages of infections, separated by at least 4 years. The clustering analysis of Vpu sequences showed higher diversity of early alleles, non-random distribution of sequences, and viral evolution strains selection. Forty-two amino acid modifications were found in the multiple alignments of the 57 different alleles found for early stage were 23 modifications were found in the late stage dataset. Interestingly fourteen alteration of early stage were located in conserved site related with Vpu functions alterations while these alterations appear with less frequency in the late stage of infection. Moreover, late stage alleles tend to be similar with the Vpu wild type sequence, suggesting viral selection toward populations harboring more efficient variants during the course of infection. This would contribute to higher infectivity and viral replication actually observed at the aggressive late stages of infection. These data, in conjunction with in vitro experiments, will be important to elucidation of the physiological relevance of Vpu protein in the pathogenic mechanisms of AIDS.

  11. The human immunodeficiency virus (HIV) Rev-binding protein (HRB) is a co-factor for HIV-1 Nef-mediated CD4 downregulation.

    Science.gov (United States)

    Landi, Alessia; Timermans, Cristina Garcia; Naessens, Evelien; Vanderstraeten, Hanne; Stove, Veronique; Verhasselt, Bruno

    2016-03-01

    Human immunodeficiency virus type 1 (HIV-1)-mediated CD4 downregulation is an important determinant of viral replication in vivo. Research on cellular co-factors involved in this process could lead to the identification of potential therapeutic targets. We found that CD4 surface levels were significantly higher in HIV-1-infected cells knocked-down for the HIV Rev-binding protein (HRB) compared with control cells. HRB knock-down affected CD4 downregulation induced by Nef but not by HIV-1 Vpu. Interestingly, the knock-down of the related protein HRBL (HRB-like), but not of the HRB interaction partner EPS15 (epidermal growth factor receptor pathway substrate 15), increased CD4 levels in Vpu-expressing cells significantly. Both of these proteins are known to be involved in HIV-1-mediated CD4 downregulation as co-factors of HIV-1 Nef. These results identify HRB as a previously unknown co-factor for HIV-1 Nef-mediated CD4 downregulation and highlight differences with the related protein HRBL, which affects the CD4 downregulation in a dual role as co-factor of both HIV-1 Nef and Vpu.

  12. Pandemic HIV-1 Vpu overcomes intrinsic herd immunity mediated by tetherin.

    Science.gov (United States)

    Iwami, Shingo; Sato, Kei; Morita, Satoru; Inaba, Hisashi; Kobayashi, Tomoko; Takeuchi, Junko S; Kimura, Yuichi; Misawa, Naoko; Ren, Fengrong; Iwasa, Yoh; Aihara, Kazuyuki; Koyanagi, Yoshio

    2015-07-17

    Among the four groups of HIV-1 (M, N, O, and P), HIV-1M alone is pandemic and has rapidly expanded across the world. However, why HIV-1M has caused a devastating pandemic while the other groups remain contained is unclear. Interestingly, only HIV-1M Vpu, a viral protein, can robustly counteract human tetherin, which tethers budding virions. Therefore, we hypothesize that this property of HIV-1M Vpu facilitates human-to-human viral transmission. Adopting a multilayered experimental-mathematical approach, we demonstrate that HIV-1M Vpu confers a 2.38-fold increase in the prevalence of HIV-1 transmission. When Vpu activity is lost, protected human populations emerge (i.e., intrinsic herd immunity develops) through the anti-viral effect of tetherin. We also reveal that all Vpus of transmitted/founder HIV-1M viruses maintain anti-tetherin activity. These findings indicate that tetherin plays the role of a host restriction factor, providing 'intrinsic herd immunity', whereas Vpu has evolved in HIV-1M as a tetherin antagonist.

  13. Involvement of fibrinogen specific binding in erythrocyte aggregation

    OpenAIRE

    Lominadze, David; DEAN, WILLIAM L.

    2002-01-01

    Increased fibrinogen concentration and erythrocyte aggregation are significant risk factors during various cardiovascular diseases and cerebrovascular disorders. Currently, fibrinogen-induced erythrocyte aggregation is thought to be caused by a non-specific binding mechanism. However, the published data on changes in erythrocyte aggregation during hypertension point to the possible existence of other mechanism(s). Therefore, we tested the hypothesis that specific binding of fibrinogen is invo...

  14. Immune evasion activities of accessory proteins Vpu, Nef and Vif are conserved in acute and chronic HIV-1 infection.

    Science.gov (United States)

    Mlcochova, Petra; Apolonia, Luis; Kluge, Silvia F; Sridharan, Aishwarya; Kirchhoff, Frank; Malim, Michael H; Sauter, Daniel; Gupta, Ravindra K

    2015-08-01

    Heterosexual HIV-1 transmission has been identified as a genetic bottleneck and a single transmitted/founder (T/F) variant with reduced sensitivity to type I interferon initiates productive infection in most cases. We hypothesized that particularly active accessory protein(s) may confer T/F viruses with a selective advantage in establishing HIV infection. Thus, we tested vpu, vif and nef alleles from six T/F and six chronic (CC) viruses in assays for 9 immune evasion activities involving the counteraction of interferon-stimulated genes and modulation of ligands known to activate innate immune cells. All functions were highly conserved with no significant differences between T/F and CC viruses, suggesting that these accessory protein functions are important throughout the course of infection.

  15. Formyl peptide receptor chimeras define domains involved in ligand binding.

    Science.gov (United States)

    Perez, H D; Holmes, R; Vilander, L R; Adams, R R; Manzana, W; Jolley, D; Andrews, W H

    1993-02-05

    We have begun to study the structural requirements for the binding of formyl peptides to their specific receptors. As an initial approach, we constructed C5a-formyl peptide receptor chimeras. Unique (and identical) restriction sites were introduced within the transmembrane domains of these receptors that allowed for the exchange of specific areas. Four types of chimeric receptors were generated. 1) The C5a receptor was progressively substituted by the formyl peptide receptor. 2) The formyl peptide receptor was progressively substituted by the C5a receptor. 3) Specific domains of the C5a receptor were substituted by the corresponding domain of the formyl peptide receptor. 4) Specific domains of the formyl peptide receptor were replaced by the same corresponding domain of the C5a receptor. Wild type and chimeric receptors were transfected into COS 7 cells and their ability to bind formyl peptide determined, taking into account efficiency of transfection and expression of chimeric protein. Based on these results, a ligand binding model is presented in which the second, third, and fourth extracellular (and/or their transmembrane) domains together with the first transmembrane domain form a ligand binding pocket for formyl peptides. It is proposed that the amino-terminal domain plays a role by presumably providing a "lid" to the pocket. The carboxyl-terminal cytoplasmic tail appears to modulate ligand binding by regulating receptor affinity.

  16. Are odorant-binding proteins involved in odorant discrimination?

    Science.gov (United States)

    Steinbrecht, R A

    1996-12-01

    Pheromone-sensitive sensilla trichodea of nine moth species belonging to six families and three superfamilies of Lepidoptera were immunolabelled with an antiserum against the pheromone-binding protein of Antheraea polyphemus. Strong immunolabelling of the sensillum lymph was observed in all long sensilla trichodea of A. polyphemus, A. pernyi (Saturniidae), Bombyx mori (Bombycidae) and Manduca sexta (Sphingidae). Very weak labelling was found with all sensilla trichodea of Dendrolimus kikuchii (Lasiocampidae) and Lymantria dispar (Lymantriidae). In three noctuid species, some long sensilla trichodea were labelled strongly, some only weakly and some were not labelled at all. The fraction of long sensilla trichodea that were strongly labelled was large in Helicoverpa armigera, but small in Spodoptera littoralis and Autographa gamma. The observed cross-reactivity was not correlated with taxonomic relatedness of the species but rather with chemical relatedness of the pheromones used by these species, as a high labelling density was consistently observed in sensilla tuned to pheromones with an alcyl chain of 16 carbon atoms. The highly divergent specificity of pheromone-receptor cells in Noctuidae appears to be mirrored by a similar diversity of the pheromone-binding proteins in the sensilla trichodea. These data support the notion that pheromone-binding proteins participate in odorant discrimination.

  17. Identification of calcium-modulating cyclophilin ligand as a human host restriction to HIV-1 release overcome by Vpu

    Science.gov (United States)

    Varthakavi, Vasundhara; Heimann-Nichols, Ellen; Smith, Rita M; Sun, Yuehui; Bram, Richard J; Ali, Showkat; Rose, Jeremy; Ding, Lingmei; Spearman, Paul

    2008-01-01

    The HIV-1 Vpu protein is required for efficient viral release from human cells. For HIV-2, the envelope (Env) protein replaces the role of Vpu. Both Vpu and HIV-2 Env enhance virus release by counteracting an innate host-cell block within human cells that is absent in African green monkey (AGM) cells. Here we identify calcium-modulating cyclophilin ligand (CAML) as a Vpu-interacting host factor that restricts HIV-1 release. Expression of human CAML (encoded by CAMLG) in AGM cells conferred a strong restriction of virus release that was reversed by Vpu and HIV-2 Env, suggesting that CAML is the mechanistic link between these two viral regulators. Depletion of CAML in human cells eliminated the need for Vpu in enhancing HIV-1 and murine leukemia virus release. These results point to CAML as a Vpu-sensitive host restriction factor that inhibits HIV release from human cells. The ability of CAML to inhibit virus release should illuminate new therapeutic strategies against HIV. PMID:18500349

  18. Modest attenuation of HIV-1 Vpu alleles derived from elite controller plasma.

    Directory of Open Access Journals (Sweden)

    Jingyan Chen

    Full Text Available In the absence of antiretroviral therapy, infection with human immunodeficiency virus type 1 (HIV-1 can typically not be controlled by the infected host and results in the development of acquired immunodeficiency. In rare cases, however, patients spontaneously control HIV-1 replication. Mechanisms by which such elite controllers (ECs achieve control of HIV-1 replication include particularly efficient immune responses as well as reduced fitness of the specific virus strains. To address whether polymorphisms in the accessory HIV-1 protein Vpu are associated with EC status we functionally analyzed a panel of plasma-derived vpu alleles from 15 EC and 16 chronic progressor (CP patients. Antagonism of the HIV particle release restriction by the intrinsic immunity factor CD317/tetherin was well conserved among EC and CP Vpu alleles, underscoring the selective advantage of this Vpu function in HIV-1 infected individuals. In contrast, interference with CD317/tetherin induced NF-κB activation was little conserved in both groups. EC Vpus more frequently displayed reduced ability to downregulate cell surface levels of CD4 and MHC class I (MHC-I molecules as well as of the NK cell ligand NTB-A. Polymorphisms potentially associated with high affinity interactions of the inhibitory killer immunoglobulin-like receptor (KIR KIR2DL2 were significantly enriched among EC Vpus but did not account for these functional differences. Together these results suggest that in a subgroup of EC patients, some Vpu functions are modestly reduced, possibly as a result of host selection.

  19. Chlamydial entry involves TARP binding of guanine nucleotide exchange factors.

    Directory of Open Access Journals (Sweden)

    B Josh Lane

    2008-03-01

    Full Text Available Chlamydia trachomatis attachment to cells induces the secretion of the elementary body-associated protein TARP (Translocated Actin Recruiting Protein. TARP crosses the plasma membrane where it is immediately phosphorylated at tyrosine residues by unknown host kinases. The Rac GTPase is also activated, resulting in WAVE2 and Arp2/3-dependent recruitment of actin to the sites of chlamydia attachment. We show that TARP participates directly in chlamydial invasion activating the Rac-dependent signaling cascade to recruit actin. TARP functions by binding two distinct Rac guanine nucleotide exchange factors (GEFs, Sos1 and Vav2, in a phosphotyrosine-dependent manner. The tyrosine phosphorylation profile of the sequence YEPISTENIYESI within TARP, as well as the transient activation of the phosphatidylinositol 3-kinase (PI3-K, appears to determine which GEF is utilized to activate Rac. The first and second tyrosine residues, when phosphorylated, are utilized by the Sos1/Abi1/Eps8 and Vav2, respectively, with the latter requiring the lipid phosphatidylinositol 3,4,5-triphosphate. Depletion of these critical signaling molecules by siRNA resulted in inhibition of chlamydial invasion to varying degrees, owing to a possible functional redundancy of the two pathways. Collectively, these data implicate TARP in signaling to the actin cytoskeleton remodeling machinery, demonstrating a mechanism by which C.trachomatis invades non-phagocytic cells.

  20. A calmodulin-binding/CGCG box DNA-binding protein family involved in multiple signaling pathways in plants

    Science.gov (United States)

    Yang, Tianbao; Poovaiah, B. W.

    2002-01-01

    We reported earlier that the tobacco early ethylene-responsive gene NtER1 encodes a calmodulin-binding protein (Yang, T., and Poovaiah, B. W. (2000) J. Biol. Chem. 275, 38467-38473). Here we demonstrate that there is one NtER1 homolog as well as five related genes in Arabidopsis. These six genes are rapidly and differentially induced by environmental signals such as temperature extremes, UVB, salt, and wounding; hormones such as ethylene and abscisic acid; and signal molecules such as methyl jasmonate, H(2)O(2), and salicylic acid. Hence, they were designated as AtSR1-6 (Arabidopsis thaliana signal-responsive genes). Ca(2+)/calmodulin binds to all AtSRs, and their calmodulin-binding regions are located on a conserved basic amphiphilic alpha-helical motif in the C terminus. AtSR1 targets the nucleus and specifically recognizes a novel 6-bp CGCG box (A/C/G)CGCG(G/T/C). The multiple CGCG cis-elements are found in promoters of genes such as those involved in ethylene signaling, abscisic acid signaling, and light signal perception. The DNA-binding domain in AtSR1 is located on the N-terminal 146 bp where all AtSR1-related proteins share high similarity but have no similarity to other known DNA-binding proteins. The calmodulin-binding nuclear proteins isolated from wounded leaves exhibit specific CGCG box DNA binding activities. These results suggest that the AtSR gene family encodes a family of calmodulin-binding/DNA-binding proteins involved in multiple signal transduction pathways in plants.

  1. Studies on the biotin-binding sites of avidin and streptavidin. Tyrosine residues are involved in the binding site.

    Science.gov (United States)

    Gitlin, G; Bayer, E A; Wilchek, M

    1990-01-01

    The involvement of tyrosine in the biotin-binding sites of the egg-white glycoprotein avidin and the bacterial protein streptavidin was examined by using the tyrosine-specific reagent p-nitrobenzenesulphonyl fluoride (Nbs-F). Modification of an average of about 0.5 mol of tyrosine residue/mol of avidin subunit caused the complete loss of biotin binding. This indicates that the single tyrosine residue (Tyr-33) in the avidin subunit is directly involved in the biotin-binding site and that its modification by Nbs also abolishes the binding properties of a neighbouring subunit. This suggests that the tyrosine residues of the egg-white protein may also contribute to the stabilization of the native protein structure. In streptavidin, however, the modification of an average of 3 mol of tyrosine residue/mol of subunit was required to inactivate completely the biotin-binding activity of the protein, but only 1 mol (average) of tyrosine residue/mol of subunit was protected in the presence of biotin. The difference between the h.p.l.c. elution profiles of the enzymic digests of Nbs-modified streptavidin and the Nbs-modified streptavidin-biotin complex revealed two additional fractions in the unprotected protein that contain Nbs-modified tyrosine residues. These residues, Tyr-43 (major fraction) and Tyr-54 (minor fraction), appear to contribute to the biotin-binding site in streptavidin. PMID:2386489

  2. Studies on the biotin-binding sites of avidin and streptavidin. Tyrosine residues are involved in the binding site.

    Science.gov (United States)

    Gitlin, G; Bayer, E A; Wilchek, M

    1990-07-15

    The involvement of tyrosine in the biotin-binding sites of the egg-white glycoprotein avidin and the bacterial protein streptavidin was examined by using the tyrosine-specific reagent p-nitrobenzenesulphonyl fluoride (Nbs-F). Modification of an average of about 0.5 mol of tyrosine residue/mol of avidin subunit caused the complete loss of biotin binding. This indicates that the single tyrosine residue (Tyr-33) in the avidin subunit is directly involved in the biotin-binding site and that its modification by Nbs also abolishes the binding properties of a neighbouring subunit. This suggests that the tyrosine residues of the egg-white protein may also contribute to the stabilization of the native protein structure. In streptavidin, however, the modification of an average of 3 mol of tyrosine residue/mol of subunit was required to inactivate completely the biotin-binding activity of the protein, but only 1 mol (average) of tyrosine residue/mol of subunit was protected in the presence of biotin. The difference between the h.p.l.c. elution profiles of the enzymic digests of Nbs-modified streptavidin and the Nbs-modified streptavidin-biotin complex revealed two additional fractions in the unprotected protein that contain Nbs-modified tyrosine residues. These residues, Tyr-43 (major fraction) and Tyr-54 (minor fraction), appear to contribute to the biotin-binding site in streptavidin.

  3. A novel ligand-binding domain involved in allosteric regulation of amino acid metabolism in prokaryotes

    NARCIS (Netherlands)

    Ettema, T.J.G.; Brinkman, A.B.; Tani, T.H.; Rafferty, J.B.; Oost, van der J.

    2002-01-01

    A combination of sequence profile searching and structural protein analysis has revealed a novel type of small molecule binding domain that is involved in the allosteric regulation of prokaryotic amino acid metabolism. This domain, designated RAM, has been found to be fused to the DNA-binding domain

  4. Bacterial expression, correct membrane targeting and functional folding of the HIV-1 membrane protein Vpu using a periplasmic signal peptide.

    Science.gov (United States)

    Deb, Arpan; Johnson, William A; Kline, Alexander P; Scott, Boston J; Meador, Lydia R; Srinivas, Dustin; Martin-Garcia, Jose M; Dörner, Katerina; Borges, Chad R; Misra, Rajeev; Hogue, Brenda G; Fromme, Petra; Mor, Tsafrir S

    2017-01-01

    Viral protein U (Vpu) is a type-III integral membrane protein encoded by Human Immunodeficiency Virus-1 (HIV- 1). It is expressed in infected host cells and plays several roles in viral progeny escape from infected cells, including down-regulation of CD4 receptors. But key structure/function questions remain regarding the mechanisms by which the Vpu protein contributes to HIV-1 pathogenesis. Here we describe expression of Vpu in bacteria, its purification and characterization. We report the successful expression of PelB-Vpu in Escherichia coli using the leader peptide pectate lyase B (PelB) from Erwinia carotovora. The protein was detergent extractable and could be isolated in a very pure form. We demonstrate that the PelB signal peptide successfully targets Vpu to the cell membranes and inserts it as a type I membrane protein. PelB-Vpu was biophysically characterized by circular dichroism and dynamic light scattering experiments and was shown to be an excellent candidate for elucidating structural models.

  5. Bacterial expression, correct membrane targeting and functional folding of the HIV-1 membrane protein Vpu using a periplasmic signal peptide

    Science.gov (United States)

    Deb, Arpan; Johnson, William A.; Kline, Alexander P.; Scott, Boston J.; Meador, Lydia R.; Srinivas, Dustin; Martin-Garcia, Jose M.; Dörner, Katerina; Borges, Chad R.; Misra, Rajeev; Hogue, Brenda G.; Fromme, Petra

    2017-01-01

    Viral protein U (Vpu) is a type-III integral membrane protein encoded by Human Immunodeficiency Virus-1 (HIV- 1). It is expressed in infected host cells and plays several roles in viral progeny escape from infected cells, including down-regulation of CD4 receptors. But key structure/function questions remain regarding the mechanisms by which the Vpu protein contributes to HIV-1 pathogenesis. Here we describe expression of Vpu in bacteria, its purification and characterization. We report the successful expression of PelB-Vpu in Escherichia coli using the leader peptide pectate lyase B (PelB) from Erwinia carotovora. The protein was detergent extractable and could be isolated in a very pure form. We demonstrate that the PelB signal peptide successfully targets Vpu to the cell membranes and inserts it as a type I membrane protein. PelB-Vpu was biophysically characterized by circular dichroism and dynamic light scattering experiments and was shown to be an excellent candidate for elucidating structural models. PMID:28225803

  6. Vpu-Deficient HIV Strains Stimulate Innate Immune Signaling Responses in Target Cells

    OpenAIRE

    Doehle, Brian P.; Chang, Kristina; Fleming, Lamar; McNevin, John; Hladik, Florian; McElrath, M. Juliana; Gale, Michael

    2012-01-01

    Acute virus infection induces a cell-intrinsic innate immune response comprising our first line of immunity to limit virus replication and spread, but viruses have developed strategies to overcome these defenses. HIV-1 is a major public health problem; however, the virus-host interactions that regulate innate immune defenses against HIV-1 are not fully defined. We have recently identified the viral protein Vpu to be a key determinant responsible for HIV-1 targeting and degradation of interfer...

  7. The Q Motif Is Involved in DNA Binding but Not ATP Binding in ChlR1 Helicase.

    Directory of Open Access Journals (Sweden)

    Hao Ding

    Full Text Available Helicases are molecular motors that couple the energy of ATP hydrolysis to the unwinding of structured DNA or RNA and chromatin remodeling. The conversion of energy derived from ATP hydrolysis into unwinding and remodeling is coordinated by seven sequence motifs (I, Ia, II, III, IV, V, and VI. The Q motif, consisting of nine amino acids (GFXXPXPIQ with an invariant glutamine (Q residue, has been identified in some, but not all helicases. Compared to the seven well-recognized conserved helicase motifs, the role of the Q motif is less acknowledged. Mutations in the human ChlR1 (DDX11 gene are associated with a unique genetic disorder known as Warsaw Breakage Syndrome, which is characterized by cellular defects in genome maintenance. To examine the roles of the Q motif in ChlR1 helicase, we performed site directed mutagenesis of glutamine to alanine at residue 23 in the Q motif of ChlR1. ChlR1 recombinant protein was overexpressed and purified from HEK293T cells. ChlR1-Q23A mutant abolished the helicase activity of ChlR1 and displayed reduced DNA binding ability. The mutant showed impaired ATPase activity but normal ATP binding. A thermal shift assay revealed that ChlR1-Q23A has a melting point value similar to ChlR1-WT. Partial proteolysis mapping demonstrated that ChlR1-WT and Q23A have a similar globular structure, although some subtle conformational differences in these two proteins are evident. Finally, we found ChlR1 exists and functions as a monomer in solution, which is different from FANCJ, in which the Q motif is involved in protein dimerization. Taken together, our results suggest that the Q motif is involved in DNA binding but not ATP binding in ChlR1 helicase.

  8. Vpu serine 52 dependent counteraction of tetherin is required for HIV-1 replication in macrophages, but not in ex vivo human lymphoid tissue

    Directory of Open Access Journals (Sweden)

    Specht Anke

    2010-01-01

    Full Text Available Abstract Background The human immunodeficiency virus type 1 (HIV-1 Vpu protein degrades CD4 and counteracts a restriction factor termed tetherin (CD317; Bst-2 to enhance virion release. It has been suggested that both functions can be genetically separated by mutation of a serine residue at position 52. However, recent data suggest that the S52 phosphorylation site is also important for the ability of Vpu to counteract tetherin. To clarify this issue, we performed a comprehensive analysis of HIV-1 with a mutated casein kinase-II phosphorylation site in Vpu in various cell lines, primary blood lymphocytes (PBL, monocyte-derived macrophages (MDM and ex vivo human lymphoid tissue (HLT. Results We show that mutation of serine 52 to alanine (S52A entirely disrupts Vpu-mediated degradation of CD4 and strongly impairs its ability to antagonize tetherin. Furthermore, casein-kinase II inhibitors blocked the ability of Vpu to degrade tetherin. Overall, Vpu S52A could only overcome low levels of tetherin, and its activity decreased in a manner dependent on the amount of transiently or endogenously expressed tetherin. As a consequence, the S52A Vpu mutant virus was unable to replicate in macrophages, which express high levels of this restriction factor. In contrast, HIV-1 Vpu S52A caused CD4+ T-cell depletion and spread efficiently in ex vivo human lymphoid tissue and PBL, most likely because these cells express comparably low levels of tetherin. Conclusion Our data explain why the effect of the S52A mutation in Vpu on virus release is cell-type dependent and suggest that a reduced ability of Vpu to counteract tetherin impairs HIV-1 replication in macrophages, but not in tissue CD4+ T cells.

  9. Tetranectin-binding site on plasminogen kringle 4 involves the lysine-binding pocket and at least one additional amino acid residue

    DEFF Research Database (Denmark)

    Graversen, Jonas Heilskov; Sigurskjold, B W; Thøgersen, H C

    2000-01-01

    that all amino acid residues of plasminogen kringle 4 found to be involved in t-AMCHA binding are also involved in binding tetranectin. Notably, one amino acid residue of plasminogen kringle 4, Arg 32, not involved in binding t-AMCHA, is critical for binding tetranectin. We also find that Asp 57 and Asp 55......, we analyze the interaction of wild-type and six single-residue mutants of recombinant plasminogen kringle 4 expressed in Escherichia coli with the recombinant C-type lectin domain of tetranectin and trans-aminomethyl-cyclohexanoic acid (t-AMCHA) using isothermal titration calorimetry. We find...

  10. Alanine scanning mutagenesis of anti-TRAP (AT) reveals residues involved in binding to TRAP.

    Science.gov (United States)

    Chen, Yanling; Gollnick, Paul

    2008-04-11

    The trp RNA-binding attenuation protein (TRAP) regulates expression of the tryptophan biosynthetic (trp) genes in response to changes in intracellular levels of free l-tryptophan in many Gram-positive bacteria. When activated by binding tryptophan, TRAP binds to the mRNAs of several genes involved in tryptophan metabolism, and down-regulates transcription or translation of these genes. Anti-TRAP (AT) is an antagonist of TRAP that binds to tryptophan-activated TRAP and prevents it from binding to its RNA targets, and thereby up-regulates trp gene expression. The crystal structure shows that AT is a cone-shaped trimer (AT(3)) with the N-terminal residues of the three subunits assembled at the apex of the cone and that these trimers can further assemble into a dodecameric (AT(12)) structure. Using alanine-scanning mutagenesis we found four residues, all located on the "top" region of AT(3), that are essential for binding to TRAP. Fluorescent labeling experiments further suggest that the top region of AT is in close juxtaposition to TRAP in the AT-TRAP complex. In vivo studies confirmed the importance of these residues on the top of AT in regulating TRAP mediated gene regulation.

  11. Expression of HIV-1 Vpu leads to loss of the viral restriction factor CD317/Tetherin from lipid rafts and its enhanced lysosomal degradation.

    Directory of Open Access Journals (Sweden)

    Ruth Rollason

    Full Text Available CD317/tetherin (aka BST2 or HM1.24 antigen is an interferon inducible membrane protein present in regions of the lipid bilayer enriched in sphingolipids and cholesterol (often termed lipid rafts. It has been implicated in an eclectic mix of cellular processes including, most notably, the retention of fully formed viral particles at the surface of cells infected with HIV and other enveloped viruses. Expression of the HIV viral accessory protein Vpu has been shown to lead to intracellular sequestration and degradation of tetherin, thereby counteracting the inhibition of viral release. There is evidence that tetherin interacts directly with Vpu, but it remains unclear where in the cell this interaction occurs or if Vpu expression affects the lipid raft localisation of tetherin. We have addressed these points using biochemical and cell imaging approaches focused on endogenous rather than ectopically over-expressed tetherin. We find i no evidence for an interaction between Vpu and endogenous tetherin at the cell surface, ii the vast majority of endogenous tetherin that is at the cell surface in control cells is in lipid rafts, iii internalised tetherin is present in non-raft fractions, iv expression of Vpu in cells expressing endogenous tetherin leads to the loss of tetherin from lipid rafts, v internalised tetherin enters early endosomes, and late endosomes, in both control cells and cells expressing Vpu, but the proportion of tetherin molecules destined for degradation rather than recycling is increased in cells expressing Vpu vi lysosomes are the primary site for degradation of endogenous tetherin in cells expressing Vpu. Our studies underlie the importance of studying endogenous tetherin and let us propose a model in which Vpu intercepts newly internalised tetherin and diverts it for lysosomal destruction rather than recycling to the cell surface.

  12. Inhibition of corticosteroid-binding globulin gene expression by glucocorticoids involves C/EBPβ.

    Directory of Open Access Journals (Sweden)

    Nicolette Verhoog

    Full Text Available Corticosteroid-binding globulin (CBG, a negative acute phase protein produced primarily in the liver, is responsible for the transport of glucocorticoids (GCs. It also modulates the bioavailability of GCs, as only free or unbound steroids are biologically active. Fluctuations in CBG levels therefore can directly affect GC bioavailability. This study investigates the molecular mechanism whereby GCs inhibit the expression of CBG. GCs regulate gene expression via the glucocorticoid receptor (GR, which either directly binds to DNA or acts indirectly via tethering to other DNA-bound transcription factors. Although no GC-response elements (GRE are present in the Cbg promoter, putative binding sites for C/EBPβ, able to tether to the GR, as well as HNF3α involved in GR signaling, are present. C/EBPβ, but not HNF3α, was identified as an important mediator of DEX-mediated inhibition of Cbg promoter activity by using specific deletion and mutant promoter reporter constructs of Cbg. Furthermore, knockdown of C/EBPβ protein expression reduced DEX-induced repression of CBG mRNA, confirming C/EBPβ's involvement in GC-mediated CBG repression. Chromatin immunoprecipitation (ChIP after DEX treatment indicated increased co-recruitment of C/EBPβ and GR to the Cbg promoter, while C/EBPβ knockdown prevented GR recruitment. Together, the results suggest that DEX repression of CBG involves tethering of the GR to C/EBPβ.

  13. Species-specific activity of SIV Nef and HIV-1 Vpu in overcoming restriction by tetherin/BST2.

    Directory of Open Access Journals (Sweden)

    Bin Jia

    2009-05-01

    Full Text Available Tetherin, also known as BST2, CD317 or HM1.24, was recently identified as an interferon-inducible host-cell factor that interferes with the detachment of virus particles from infected cells. HIV-1 overcomes this restriction by expressing an accessory protein, Vpu, which counteracts tetherin. Since lentiviruses of the SIV(smm/mac/HIV-2 lineage do not have a vpu gene, this activity has likely been assumed by other viral gene products. We found that deletion of the SIV(mac239 nef gene significantly impaired virus release in cells expressing rhesus macaque tetherin. Virus release could be restored by expressing Nef in trans. However, Nef was unable to facilitate virus release in the presence of human tetherin. Conversely, Vpu enhanced virus release in the presence of human tetherin, but not in the presence of rhesus tetherin. In accordance with the species-specificity of Nef in mediating virus release, SIV Nef downregulated cell-surface expression of rhesus tetherin, but did not downregulate human tetherin. The specificity of SIV Nef for rhesus tetherin mapped to four amino acids in the cytoplasmic domain of the molecule that are missing from human tetherin, whereas the specificity of Vpu for human tetherin mapped to amino acid differences in the transmembrane domain. Nef alleles of SIV(smm, HIV-2 and HIV-1 were also able to rescue virus release in the presence of both rhesus macaque and sooty mangabey tetherin, but were generally ineffective against human tetherin. Thus, the ability of Nef to antagonize tetherin from these Old World primates appears to be conserved among the primate lentiviruses. These results identify Nef as the viral gene product of SIV that opposes restriction by tetherin in rhesus macaques and sooty mangabeys, and reveal species-specificity in the activities of both Nef and Vpu in overcoming tetherin in their respective hosts.

  14. RNA-binding proteins involved in post-transcriptional regulation in bacteria

    Directory of Open Access Journals (Sweden)

    Elke eVan Assche

    2015-03-01

    Full Text Available Post-transcriptional regulation is a very important mechanism to control gene expression in changing environments. In the past decade, a lot of interest has been directed towards the role of small RNAs in bacterial post-transcriptional regulation. However, small RNAs are not the only molecules controlling gene expression at this level, RNA-binding proteins play an important role as well. CsrA and Hfq are the two best studied bacterial proteins of this type, but recently, additional proteins involved in post-transcriptional control have been identified. This review focuses on the general working mechanisms of post-transcriptionally active RNA-binding proteins, which include (i adaptation of the susceptibility of mRNAs and sRNAs to RNases, (ii modulating the accessibility of the ribosome binding site of mRNAs, (iii recruiting and assisting in the interaction of mRNAs with other molecules and (iv regulating transcription terminator / antiterminator formation, and gives an overview of both the well-studied and the newly identified proteins that are involved in post-transcriptional regulatory processes. Additionally, the post-transcriptional mechanisms by which the expression or the activity of these proteins is regulated, are described. For many of the newly identified proteins, however, mechanistic questions remain. Most likely, more post-transcriptionally active proteins will be identified in the future.

  15. A homology model of Xyloglucan Xylosyltransferase 2 reveals critical amino acids involved in substrate binding.

    Science.gov (United States)

    Culbertson, Alan T; Tietze, Alesia A; Tietze, Daniel; Chou, Yi-Hsiang; Smith, Adrienne L; Young, Zachary T; Zabotina, Olga A

    2016-09-01

    In dicotyledonous plants, xyloglucan (XyG) is the most abundant hemicellulose of the primary cell wall. The enzymes involved in XyG biosynthesis have been identified through reverse-genetics and activity was characterized by heterologous expression. Currently, there is no information on the atomic structures or amino acids involved in activity or substrate binding of any of the Golgi-localized XyG biosynthetic enzymes. A homology model of the xyloglucan xylosyltransferase 2 (XXT2) catalytic domain was built on the basis of the crystal structure of A64Rp. Molecular dynamics simulations revealed that the homology model retains the glycosyltransferase (GT)-A fold of the template structure used to build the homology model indicating that XXT2 likely has a GT-A fold. According to the XXT2 homology model, six amino acids (Phe204, Lys207, Asp228, Ser229, Asp230, His378) were selected and their contribution in catalytic activity was investigated. Site-directed mutagenesis studies show that Asp228, Asp230 and His378 are critical for XXT2 activity and are predicted to be involved in coordination of manganese ion. Lys207 was also found to be critical for protein activity and the homology model indicates a critical role in substrate binding. Additionally, Phe204 mutants have less of an impact on XXT2 activity with the largest effect when replaced with a polar residue. This is the first study that investigates the amino acids involved in substrate binding of the XyG-synthesizing xylosyltransferases and contributes to the understanding of the mechanisms of polysaccharide-synthesizing GTs and XyG biosynthesis. © The Author 2016. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  16. Structural domains in NADPH: Protochlorophyllide oxidoreductases involved in catalysis and substrate binding. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Timko, Michael P.

    1999-09-24

    Until recently little direct information was available about specific structural determinants within the light-dependent NADPH: protochlorophyllide oxidoreductases (PORs) required for substrate and cofactor binding, catalytic activity, and thylakoid membrane localization. Based on our previous DOE-funded studies, during the past year we brought to fruition a number of ongoing experiments, initiated several new avenues of investigations, and overall have made considerable progress towards establishing the basic structural parameters governing POR function. Our studies to date have defined residues and domains involved in substrate and cofactor binding and catalysis, and elaborated on the mechanism for membrane localization of POR in developing plastids. Our results and their significance, as well as our work in progress, are detailed.

  17. Influenza A virus does not encode a tetherin antagonist with Vpu-like activity and induces IFN-dependent tetherin expression in infected cells.

    Directory of Open Access Journals (Sweden)

    Michael Winkler

    Full Text Available The interferon-induced host cell factor tetherin inhibits release of human immunodeficiency virus (HIV from the plasma membrane of infected cells and is counteracted by the HIV-1 protein Vpu. Influenza A virus (FLUAV also buds from the plasma membrane and is not inhibited by tetherin. Here, we investigated if FLUAV encodes a functional equivalent of Vpu for tetherin antagonism. We found that expression of the FLUAV protein NS1, which antagonizes the interferon (IFN response, did not block the tetherin-mediated restriction of HIV release, which was rescued by Vpu. Similarly, tetherin-mediated inhibition of HIV release was not rescued by FLUAV infection. In contrast, FLUAV infection induced tetherin expression on target cells in an IFN-dependent manner. These results suggest that FLUAV escapes the antiviral effects of tetherin without encoding a tetherin antagonist with Vpu-like activity.

  18. HIV-1 Group P is unable to antagonize human tetherin by Vpu, Env or Nef

    Directory of Open Access Journals (Sweden)

    Sauter Daniel

    2011-12-01

    Full Text Available Abstract Background A new subgroup of HIV-1, designated Group P, was recently detected in two unrelated patients of Cameroonian origin. HIV-1 Group P phylogenetically clusters with SIVgor suggesting that it is the result of a cross-species transmission from gorillas. Until today, HIV-1 Group P has only been detected in two patients, and its degree of adaptation to the human host is largely unknown. Previous data have shown that pandemic HIV-1 Group M, but not non-pandemic Group O or rare Group N viruses, efficiently antagonize the human orthologue of the restriction factor tetherin (BST-2, HM1.24, CD317 suggesting that primate lentiviruses may have to gain anti-tetherin activity for efficient spread in the human population. Thus far, three SIV/HIV gene products (vpu, nef and env are known to have the potential to counteract primate tetherin proteins, often in a species-specific manner. Here, we examined how long Group P may have been circulating in humans and determined its capability to antagonize human tetherin as an indicator of adaptation to humans. Results Our data suggest that HIV-1 Group P entered the human population between 1845 and 1989. Vpu, Env and Nef proteins from both Group P viruses failed to counteract human or gorilla tetherin to promote efficient release of HIV-1 virions, although both Group P Nef proteins moderately downmodulated gorilla tetherin from the cell surface. Notably, Vpu, Env and Nef alleles from the two HIV-1 P strains were all able to reduce CD4 cell surface expression. Conclusions Our analyses of the two reported HIV-1 Group P viruses suggest that zoonosis occurred in the last 170 years and further support that pandemic HIV-1 Group M strains are better adapted to humans than non-pandemic or rare Group O, N and P viruses. The inability to antagonize human tetherin may potentially explain the limited spread of HIV-1 Group P in the human population.

  19. Gemin5: A Multitasking RNA-Binding Protein Involved in Translation Control

    Directory of Open Access Journals (Sweden)

    David Piñeiro

    2015-04-01

    Full Text Available Gemin5 is a RNA-binding protein (RBP that was first identified as a peripheral component of the survival of motor neurons (SMN complex. This predominantly cytoplasmic protein recognises the small nuclear RNAs (snRNAs through its WD repeat domains, allowing assembly of the SMN complex into small nuclear ribonucleoproteins (snRNPs. Additionally, the amino-terminal end of the protein has been reported to possess cap-binding capacity and to interact with the eukaryotic initiation factor 4E (eIF4E. Gemin5 was also shown to downregulate translation, to be a substrate of the picornavirus L protease and to interact with viral internal ribosome entry site (IRES elements via a bipartite non-canonical RNA-binding site located at its carboxy-terminal end. These features link Gemin5 with translation control events. Thus, beyond its role in snRNPs biogenesis, Gemin5 appears to be a multitasking protein cooperating in various RNA-guided processes. In this review, we will summarise current knowledge of Gemin5 functions. We will discuss the involvement of the protein on translation control and propose a model to explain how the proteolysis fragments of this RBP in picornavirus-infected cells could modulate protein synthesis.

  20. Equatorial segment protein (ESP) is a human alloantigen involved in sperm-egg binding and fusion.

    Science.gov (United States)

    Wolkowicz, M J; Digilio, L; Klotz, K; Shetty, J; Flickinger, C J; Herr, J C

    2008-01-01

    The equatorial segment of the sperm head is known to play a role in fertilization; however, the specific sperm molecules contributing to the integrity of the equatorial segment and in binding and fusion at the oolemma remain incomplete. Moreover, identification of molecular mediators of fertilization that are also immunogenic in humans is predicted to advance both the diagnosis and treatment of immune infertility. We previously reported the cloning of Equatorial Segment Protein (ESP), a protein localized to the equatorial segment of ejaculated human sperm. ESP is a biomarker for a subcompartment of the acrosomal matrix that can be traced through all stages of acrosome biogenesis (Wolkowicz et al, 2003). In the present study, ESP immunoreacted on Western blots with 4 (27%) of 15 antisperm antibody (ASA)-positive serum samples from infertile male patients and 2 (40%) of 5 ASA-positive female sera. Immunofluorescent studies revealed ESP in the equatorial segment of 89% of acrosome-reacted sperm. ESP persisted as a defined equatorial segment band on 100% of sperm tightly bound to the oolemma of hamster eggs. Antisera to recombinant human ESP inhibited both oolemmal binding and fusion of human sperm in the hamster egg penetration assay. The results indicate that ESP is a human alloantigen involved in sperm-egg binding and fusion. Defined recombinant sperm immunogens, such as ESP, may offer opportunities for differential diagnosis of immune infertility.

  1. An intermolecular binding mechanism involving multiple LysM domains mediates carbohydrate recognition by an endopeptidase

    DEFF Research Database (Denmark)

    Wong, Jaslyn E M M; Midtgaard, Søren Roi; Gysel, Kira

    2015-01-01

    LysM domains, which are frequently present as repetitive entities in both bacterial and plant proteins, are known to interact with carbohydrates containing N-acetylglucosamine (GlcNAc) moieties, such as chitin and peptidoglycan. In bacteria, the functional significance of the involvement of multi......LysM domains, which are frequently present as repetitive entities in both bacterial and plant proteins, are known to interact with carbohydrates containing N-acetylglucosamine (GlcNAc) moieties, such as chitin and peptidoglycan. In bacteria, the functional significance of the involvement...... of multiple LysM domains in substrate binding has so far lacked support from high-resolution structures of ligand-bound complexes. Here, a structural study of the Thermus thermophilus NlpC/P60 endopeptidase containing two LysM domains is presented. The crystal structure and small-angle X-ray scattering...... solution studies of this endopeptidase revealed the presence of a homodimer. The structure of the two LysM domains co-crystallized with N-acetyl-chitohexaose revealed a new intermolecular binding mode that may explain the differential interaction between LysM domains and short or long chitin oligomers...

  2. An intermolecular binding mechanism involving multiple LysM domains mediates carbohydrate recognition by an endopeptidase

    Energy Technology Data Exchange (ETDEWEB)

    Wong, Jaslyn E. M. M. [Aarhus University, Gustav Wieds Vej 10C, 8000 Aarhus (Denmark); Midtgaard, Søren Roi [University of Copenhagen, Universitetsparken 5, 2100 Copenhagen (Denmark); Gysel, Kira [Aarhus University, Gustav Wieds Vej 10C, 8000 Aarhus (Denmark); Thygesen, Mikkel B.; Sørensen, Kasper K.; Jensen, Knud J. [University of Copenhagen, Thorvaldsensvej 40, 1871 Frederiksberg C (Denmark); Stougaard, Jens; Thirup, Søren; Blaise, Mickaël, E-mail: mickael.blaise@cpbs.cnrs.fr [Aarhus University, Gustav Wieds Vej 10C, 8000 Aarhus (Denmark)

    2015-03-01

    The crystal and solution structures of the T. thermophilus NlpC/P60 d, l-endopeptidase as well as the co-crystal structure of its N-terminal LysM domains bound to chitohexaose allow a proposal to be made regarding how the enzyme recognizes peptidoglycan. LysM domains, which are frequently present as repetitive entities in both bacterial and plant proteins, are known to interact with carbohydrates containing N-acetylglucosamine (GlcNAc) moieties, such as chitin and peptidoglycan. In bacteria, the functional significance of the involvement of multiple LysM domains in substrate binding has so far lacked support from high-resolution structures of ligand-bound complexes. Here, a structural study of the Thermus thermophilus NlpC/P60 endopeptidase containing two LysM domains is presented. The crystal structure and small-angle X-ray scattering solution studies of this endopeptidase revealed the presence of a homodimer. The structure of the two LysM domains co-crystallized with N-acetyl-chitohexaose revealed a new intermolecular binding mode that may explain the differential interaction between LysM domains and short or long chitin oligomers. By combining the structural information with the three-dimensional model of peptidoglycan, a model suggesting how protein dimerization enhances the recognition of peptidoglycan is proposed.

  3. New shrimp IgE-binding proteins involved in mite-seafood cross-reactivity.

    Science.gov (United States)

    Gámez, Cristina; Zafra, M Paz; Boquete, Manuel; Sanz, Verónica; Mazzeo, Carla; Ibáñez, M Dolores; Sánchez-García, Silvia; Sastre, Joaquín; del Pozo, Victoria

    2014-09-01

    Shrimp is a seafood consumed worldwide and the main cause of severe allergenic reactions to crustaceans. Seafood allergy has been related to mite sensitization, mainly mediated by tropomyosin, but other proteins could be involved. The aim of the study was to identify new shrimp allergens implicated in mite-seafood cross-reactivity (CR) in two different climate populations: dry and humid climates. Shrimp and mite IgE-binding profiles of patients from continental dry and humid climates were analyzed by immunoblotting, and the most frequently recognized Solenocera melantho shrimp proteins were identified by MS as α-actinin, β-actin, fructose biphosphate aldolase, arginine kinase, sarcoplasmic calcium-binding protein, and ubiquitin. Using inhibition immunoblot assays, we demonstrate that tropomyosin and ubiquitin were responsible for mite-seafood CR from both climates; but also α-actinin and arginine kinase are implicated in dry- and humid-climate populations, respectively. Reciprocal inhibition assays demonstrated that mites are the primary sensitizer in humid-climate, as shrimp is in continental dry-climate population. Several new shrimp allergens have been identified and should be considered in the diagnosis and treatment of shrimp allergy and mite-seafood CR. Differences in mite-seafood CR were founded to be based on the climate. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. An intermolecular binding mechanism involving multiple LysM domains mediates carbohydrate recognition by an endopeptidase.

    Science.gov (United States)

    Wong, Jaslyn E M M; Midtgaard, Søren Roi; Gysel, Kira; Thygesen, Mikkel B; Sørensen, Kasper K; Jensen, Knud J; Stougaard, Jens; Thirup, Søren; Blaise, Mickaël

    2015-03-01

    LysM domains, which are frequently present as repetitive entities in both bacterial and plant proteins, are known to interact with carbohydrates containing N-acetylglucosamine (GlcNAc) moieties, such as chitin and peptidoglycan. In bacteria, the functional significance of the involvement of multiple LysM domains in substrate binding has so far lacked support from high-resolution structures of ligand-bound complexes. Here, a structural study of the Thermus thermophilus NlpC/P60 endopeptidase containing two LysM domains is presented. The crystal structure and small-angle X-ray scattering solution studies of this endopeptidase revealed the presence of a homodimer. The structure of the two LysM domains co-crystallized with N-acetyl-chitohexaose revealed a new intermolecular binding mode that may explain the differential interaction between LysM domains and short or long chitin oligomers. By combining the structural information with the three-dimensional model of peptidoglycan, a model suggesting how protein dimerization enhances the recognition of peptidoglycan is proposed.

  5. A review of the electrophilic reaction chemistry involved in covalent protein binding relevant to toxicity.

    Science.gov (United States)

    Enoch, S J; Ellison, C M; Schultz, T W; Cronin, M T D

    2011-10-01

    Several pieces of legislation have led to an increased interest in the use of in silico methods, specifically the formation of chemical categories for the assessment of toxicological endpoints. For a number of endpoints, this requires a detailed knowledge of the electrophilic reaction chemistry that governs the ability of an exogenous chemical to form a covalent adduct. Historically, this chemistry has been defined as compilations of structural alerts without documenting the associated electrophilic chemistry mechanisms. To address this, this article has reviewed the literature defining the structural alerts associated with covalent protein binding and detailed the associated electrophilic reaction chemistry. This information is useful to both toxicologists and regulators when using the chemical category approach to fill data gaps for endpoints involving covalent protein binding. The structural alerts and associated electrophilic reaction chemistry outlined in this review have been incorporated into the OECD (Q)SAR Toolbox, a freely available software tool designed to fill data gaps in a regulatory environment without the need for further animal testing.

  6. Vimentin binds IRAP and is involved in GLUT4 vesicle trafficking

    Energy Technology Data Exchange (ETDEWEB)

    Hirata, Yohko [Department of Nutrition and Metabolism, Institute of Health Biosciences, Tokushima University, Tokushima (Japan); Hosaka, Toshio, E-mail: hosaka@nutr.med.tokushima-u.ac.jp [Department of Public Health and Applied Nutrition, Institute of Health Biosciences, Tokushima University, Tokushima (Japan); Iwata, Takeo [Department of Medical Pharmacology, Institute of Health Biosciences, Tokushima University, Tokushima (Japan); Le, Chung T.K.; Jambaldorj, Bayasgalan; Teshigawara, Kiyoshi; Harada, Nagakatsu; Sakaue, Hiroshi [Department of Nutrition and Metabolism, Institute of Health Biosciences, Tokushima University, Tokushima (Japan); Sakai, Tohru [Department of Public Health and Applied Nutrition, Institute of Health Biosciences, Tokushima University, Tokushima (Japan); Yoshimoto, Katsuhiko [Department of Medical Pharmacology, Institute of Health Biosciences, Tokushima University, Tokushima (Japan); Nakaya, Yutaka [Department of Nutrition and Metabolism, Institute of Health Biosciences, Tokushima University, Tokushima (Japan)

    2011-02-04

    Research highlights: {yields} Vimentin is shown to bind to the N-terminus of insulin-responsive aminopeptidase (IRAP), a major cargo protein of GLUT4 vesicles in 3T3-L1 adipocytes. {yields} GLUT4 translocation to the plasma membrane by insulin is decreased in vimentin-depleted adipocytes. {yields} An interaction between vimentin and IRAP functions to sequester GLUT4 vesicles to the peri-nuclear region of the cell. -- Abstract: Insulin-responsive aminopeptidase (IRAP) and GLUT4 are two major cargo proteins of GLUT4 storage vesicles (GSVs) that are translocated from a postendosomal storage compartment to the plasma membrane (PM) in response to insulin. The cytoplasmic region of IRAP is reportedly involved in retention of GSVs. In this study, vimentin was identified using the cytoplasmic domain of IRAP as bait. The validity of this interaction was confirmed by pull-down assays and immunoprecipitation in 3T3-L1 adipocytes. In addition, it was shown that GLUT4 translocation to the PM by insulin was decreased in vimentin-depleted adipocytes, presumably due to dispersing GSVs away from the cytoskeleton. These findings suggest that the IRAP binding protein, vimentin, plays an important role in retention of GSVs.

  7. AN ODORANT-BINDING PROTEIN INVOLVED IN PERCEPTION OF HOST PLANT ODORANTS IN LOCUST Locusta migratoria.

    Science.gov (United States)

    Li, Jia; Zhang, Long; Wang, Xiaoqi

    2016-04-01

    Locusts, Locusta migratoria (Orthoptera: Acrididae), are extremely destructive agricultural pests, but very little is known of their molecular aspects of perception to host plant odorants including related odorant-binding proteins (OBPs), though several OBPs have been identified in locust. To elucidate the function of LmigOBP1, the first OBP identified from locust, RNA interference was employed in this study to silence LmigOBP1, which was achieved by injection of dsRNA targeting LmigOBP1 into the hemolymph of male nymphs. Compared with LmigOBP1 normal nymphs, LmigOBP1 knockdown nymphs significantly decreased food (maize leaf, Zea mays) consumption and electro-antennography responses to five maize leaf volatiles, ((Z)-3-hexenol, linalool, nonanal, decanal, and (Z)-3-hexenyl acetate). These suggest that LmigOBP1 is involved in perception of host plant odorants.

  8. Vpu mediates depletion of interferon regulatory factor 3 during HIV infection by a lysosome-dependent mechanism.

    Science.gov (United States)

    Doehle, Brian P; Chang, Kristina; Rustagi, Arjun; McNevin, John; McElrath, M Juliana; Gale, Michael

    2012-08-01

    HIV has evolved sophisticated mechanisms to avoid restriction by intracellular innate immune defenses that otherwise serve to control acute viral infection and virus dissemination. Innate defenses are triggered when pattern recognition receptor (PRR) proteins of the host cell engage pathogen-associated molecule patterns (PAMPs) present in viral products. Interferon regulatory factor 3 (IRF3) plays a central role in PRR signaling of innate immunity to drive the expression of type I interferon (IFN) and interferon-stimulated genes (ISGs), including a variety of HIV restriction factors, that serve to limit viral replication directly and/or program adaptive immunity. Productive infection of T cells by HIV is dependent upon the targeted proteolysis of IRF3 that occurs through a virus-directed mechanism that results in suppression of innate immune defenses. However, the mechanisms by which HIV controls innate immune signaling and IRF3 function are not defined. Here, we examined the innate immune response induced by HIV strains identified through their differential control of PRR signaling. We identified viruses that, unlike typical circulating HIV strains, lack the ability to degrade IRF3. Our studies show that IRF3 regulation maps specifically to the HIV accessory protein Vpu. We define a molecular interaction between Vpu and IRF3 that redirects IRF3 to the endolysosome for proteolytic degradation, thus allowing HIV to avoid the innate antiviral immune response. Our studies reveal that Vpu is an important IRF3 regulator that supports acute HIV infection through innate immune suppression. These observations define the Vpu-IRF3 interface as a novel target for therapeutic strategies aimed at enhancing the immune response to HIV.

  9. Vpu Mediates Depletion of Interferon Regulatory Factor 3 during HIV Infection by a Lysosome-Dependent Mechanism

    Science.gov (United States)

    Doehle, Brian P.; Chang, Kristina; Rustagi, Arjun; McNevin, John; McElrath, M. Juliana

    2012-01-01

    HIV has evolved sophisticated mechanisms to avoid restriction by intracellular innate immune defenses that otherwise serve to control acute viral infection and virus dissemination. Innate defenses are triggered when pattern recognition receptor (PRR) proteins of the host cell engage pathogen-associated molecule patterns (PAMPs) present in viral products. Interferon regulatory factor 3 (IRF3) plays a central role in PRR signaling of innate immunity to drive the expression of type I interferon (IFN) and interferon-stimulated genes (ISGs), including a variety of HIV restriction factors, that serve to limit viral replication directly and/or program adaptive immunity. Productive infection of T cells by HIV is dependent upon the targeted proteolysis of IRF3 that occurs through a virus-directed mechanism that results in suppression of innate immune defenses. However, the mechanisms by which HIV controls innate immune signaling and IRF3 function are not defined. Here, we examined the innate immune response induced by HIV strains identified through their differential control of PRR signaling. We identified viruses that, unlike typical circulating HIV strains, lack the ability to degrade IRF3. Our studies show that IRF3 regulation maps specifically to the HIV accessory protein Vpu. We define a molecular interaction between Vpu and IRF3 that redirects IRF3 to the endolysosome for proteolytic degradation, thus allowing HIV to avoid the innate antiviral immune response. Our studies reveal that Vpu is an important IRF3 regulator that supports acute HIV infection through innate immune suppression. These observations define the Vpu-IRF3 interface as a novel target for therapeutic strategies aimed at enhancing the immune response to HIV. PMID:22593165

  10. C-terminus Methionene Specifically Involved in Binding Corn Odorants to Odorant Binding Protein4 in Macrocentrus cingulum

    Science.gov (United States)

    Ahmed, Tofael; Zhang, Tiantao; Wang, Zhenying; He, Kanglai; Bai, Shuxiong

    2017-01-01

    The soluble carrier proteins, OBPs carry odor components through sensilium lymph to specific receptors within the antennal sensilla to trigger behavioral responses. Herein, McinOBP4 was characterized from the Macrocentrus cingulum, which is the specialist parasitic insect of Ostrinia furnacalis for better understanding of olfactory recognition mechanism of this wasp. The classical odorant binding protein McinOBP4 showed good binding affinity to corn green leaf volatiles. RT-qPCR results showed that the McinOBP4 was primarily expressed in male and female wasp antennae, with transcripts levels differing by sex. Fluorescence assays indicate that, McinOBP4 binds corn green leaf volatiles including terpenoides and aliphatic alcohols as well as aldehydes with good affinity. We have also conducted series of binding assay with first mutant (M1), which lacked the last 8 residues and a second mutant (M2), with Met119 replaced by Leucine (Leu119). In the acidic conditions, affinity N-phenylnaphthylamine (1-NPN) to McinOBP4 and M1 were substantially decreased, but increase in basic condition with no significant differences. The lack of C-terminus showed reduced affinity to terpenoides and aliphatic alcohols as well as aldehydes compounds of corn odorants. The mutant M2 with Met119 showed significant reduction in binding affinity to tested odorants, it indicating that Met119 forming hydrophobic chain with the odorants functional group to binding. This finding provides detailed insight of chemosensory function of McinOBP4 in M. cingulum and help to develop low release agents that attract of this wasp to improve ecologically-friendly pest management strategy. PMID:28228732

  11. Simian-Human immunodeficiency viruses expressing chimeric subtype B/C Vpu proteins demonstrate the importance of the amino terminal and transmembrane domains in the rate of CD4(+) T cell loss in macaques.

    Science.gov (United States)

    Ruiz, Autumn; Schmitt, Kimberly; Culley, Nathan; Stephens, Edward B

    2013-01-20

    Previously, we reported that simian-human immunodeficiency viruses expressing either the lab adapted subtype B (SHIV(KU-1bMC33)) or subtype C (SHIV(SCVpu)) Vpu proteins of human immunodeficiency virus type 1 (HIV-1) had different rates of CD4(+) T cell loss following inoculation into macaques. In this study, we have generated SHIVs that express either the subtype B or subtype C N-terminal (NTD) and transmembrane (TMD) domains and the opposing cytoplasmic domain (SHIV(VpuBC), SHIV(VpuCB)). In culture systems, SHIV(VpuBC) replicated faster than SHIV(VpuCB) while both proteins exhibited similar ability to down-modulate CD4 surface expression. Following inoculation into macaques, SHIV(VpuBC) resulted in rapid CD4(+) T cell loss similar to the parental SHIV(KU-1bMC33), while the rate of CD4(+) T cell loss in those inoculated with SHIV(VpuCB) was intermediate of SHIV(SCVpu) and SHIV(KU-1bMC33). These results emphasize the importance of the Vpu NTD/TMD region in the rate of CD4(+) T cell loss in the pathogenic X4 SHIV/macaque model.

  12. Evidence that Vpu modulates HIV-1 Gag-envelope interaction towards envelope incorporation and infectivity in a cell type dependent manner.

    Directory of Open Access Journals (Sweden)

    Archana Gautam

    Full Text Available The HIV-1 Vpu is required for efficient virus particle release from the plasma membrane and intracellular CD4 degradation in infected cells. In the present study, we found that the loss of virus infectivity as a result of envelope (Env incorporation defect caused by a Gag matrix (MA mutation (L30E was significantly alleviated by introducing a start codon mutation in vpu. Inactivation of Vpu partially restored the Env incorporation defect imposed by L30E substitution in MA. This effect was found to be comparable in cell types such as 293T, HeLa, NP2 and GHOST as well as in peripheral blood mononuclear cells (PBMC and monocyte-derived macrophages (MDM. However, in HeLa cells BST-2 knockdown was found to further alleviate the effect of Vpu inactivation on infectivity of L30E mutant. Our data demonstrated that the impaired infectivity of virus particles due to Env incorporation defect caused by MA mutation was modulated by start codon mutation in Vpu.

  13. Glucose Transport in the Extremely Thermoacidophilic Sulfolobus solfataricus Involves a High-Affinity Membrane-Integrated Binding Protein

    NARCIS (Netherlands)

    Albers, Sonja-V.; Elferink, Marieke G.L.; Charlebois, Robert L.; Sensen, Christoph W.; Driessen, Arnold J.M.; Konings, Wil N.

    1999-01-01

    The archaeon Sulfolobus solfataricus grows optimally at 80°C and pH 2.5 to 3.5 on carbon sources such as yeast extracts, tryptone, and various sugars. Cells rapidly accumulate glucose. This transport activity involves a membrane-bound glucose-binding protein that interacts with its substrate with

  14. Site-directed mutagenesis of HIV-1 vpu gene demonstrates two clusters of replication-defective mutants with distinct ability to down-modulate cell surface CD4 and tetherin

    Directory of Open Access Journals (Sweden)

    Masako Nomaguchi

    2010-11-01

    Full Text Available HIV-1 Vpu acts positively on viral infectivity by mediating CD4 degradation in endoplasmic reticulum and enhances virion release by counteracting a virion release restriction factor, tetherin. In order to define the impact of Vpu activity on HIV-1 replication, we have generated a series of site-specific proviral vpu mutants. Of fifteen mutants examined, seven exhibited a replication-defect similar to that of a vpu-deletion mutant in a lymphocyte cell line H9. These mutations clustered in narrow regions within transmembrane domain (TMD and cytoplasmic domain (CTD. Replication-defective mutants displayed the reduced ability to enhance virion release from a monolayer cell line HEp2 without exception. Upon transfection with Vpu expression vectors, neither TMD mutants nor CTD mutants blocked CD4 expression at the cell surface in another monolayer cell line MAGI. While TMD mutants were unable to down-modulate cell surface tetherin in HEp2 cells, CTD mutants did quite efficiently. Confocal microscopy analysis revealed the difference of intracellular localization between TMD and CTD mutants. In total, replication capability of HIV-1 carrying vpu mutations correlates well with the ability of Vpu to enhance virion release and to impede the cell surface expression of CD4 but not with the ability to down-modulate cell surface tetherin. Our results here suggest that efficient viral replication requires not only down-regulation of cell surface tetherin but also its degradation.

  15. Mouse SLLP1, a sperm lysozyme-like protein involved in sperm-egg binding and fertilization.

    Science.gov (United States)

    Herrero, María Belén; Mandal, Arabinda; Digilio, Laura C; Coonrod, Scott A; Maier, Bernhard; Herr, John C

    2005-08-01

    This study demonstrates the retention of mouse sperm lysozyme-like protein (mSLLP1) in the equatorial segment of spermatozoa following the acrosome reaction and a role for mSLLP1 in sperm-egg binding and fertilization. Treatment of cumulus intact oocytes with either recmSLLP1 or its antiserum resulted in a significant (P sperm-oolemma binding. A complete inhibition of binding and fusion of spermatozoa to the oocyte occurred at 12.5 muM concentration of recmSLLP1, while conventional chicken and human lysozymes did not block sperm-egg binding. mSLLP1 showed receptor sites in the perivitelline space as well as on the microvillar region of the egg plasma membrane. The retention of mSLLP1 in the equatorial segment of acrosome-reacted sperm, the inhibitory effects of both recmSLLP1 and antibodies to SLLP1 on in vitro fertilization with both cumulus intact and zona-free eggs, and the definition of complementary SLLP1-binding sites on the egg plasma membrane together support the hypothesis that a c lysozyme-like protein is involved in the binding of spermatozoa to the egg plasma membrane during fertilization.

  16. Studies on the biotin-binding site of avidin. Lysine residues involved in the active site.

    Science.gov (United States)

    Gitlin, G; Bayer, E A; Wilchek, M

    1987-01-01

    Egg-white avidin was treated with 1-fluoro-2,4-dinitrobenzene. Modification of an average of one lysine residue per avidin subunit caused the complete loss of biotin binding. Tryptic peptides obtained from the 2,4-dinitrophenylated avidin were fractionated by reversed-phase h.p.l.c. Three peptides contained the 2,4-dinitrophenyl group. Amino acid analysis revealed that lysine residues 45, 94 and 111 are modified and probably comprise part of the biotin-binding site. PMID:3109401

  17. Studies on the biotin-binding site of avidin. Tryptophan residues involved in the active site.

    Science.gov (United States)

    Gitlin, G; Bayer, E A; Wilchek, M

    1988-01-01

    Egg-white avidin was modified with the tryptophan-specific reagent 2-hydroxy-5-nitrobenzyl bromide. The complete loss of biotin-binding activity was achieved upon modification of an average of one tryptophan residue per avidin subunit. The identity of the modified residues was determined by isolating the relevant tryptic and chymotryptic peptides from CNBr-cleaved avidin fragments. The results demonstrate that Trp-70 and Trp-110 are modified in approximately equivalent proportions. It is believed that these residues are located in the active site of avidin and take part in the binding of biotin. PMID:3355517

  18. Studies on the biotin-binding site of avidin. Lysine residues involved in the active site.

    OpenAIRE

    Gitlin, G; Bayer, E A; Wilchek, M

    1987-01-01

    Egg-white avidin was treated with 1-fluoro-2,4-dinitrobenzene. Modification of an average of one lysine residue per avidin subunit caused the complete loss of biotin binding. Tryptic peptides obtained from the 2,4-dinitrophenylated avidin were fractionated by reversed-phase h.p.l.c. Three peptides contained the 2,4-dinitrophenyl group. Amino acid analysis revealed that lysine residues 45, 94 and 111 are modified and probably comprise part of the biotin-binding site.

  19. Studies on the biotin-binding site of avidin. Tryptophan residues involved in the active site.

    Science.gov (United States)

    Gitlin, G; Bayer, E A; Wilchek, M

    1988-02-15

    Egg-white avidin was modified with the tryptophan-specific reagent 2-hydroxy-5-nitrobenzyl bromide. The complete loss of biotin-binding activity was achieved upon modification of an average of one tryptophan residue per avidin subunit. The identity of the modified residues was determined by isolating the relevant tryptic and chymotryptic peptides from CNBr-cleaved avidin fragments. The results demonstrate that Trp-70 and Trp-110 are modified in approximately equivalent proportions. It is believed that these residues are located in the active site of avidin and take part in the binding of biotin.

  20. Multiscale method for modeling binding phenomena involving large objects: application to kinesin motor domains motion along microtubules.

    Science.gov (United States)

    Li, Lin; Alper, Joshua; Alexov, Emil

    2016-03-18

    Many biological phenomena involve the binding of proteins to a large object. Because the electrostatic forces that guide binding act over large distances, truncating the size of the system to facilitate computational modeling frequently yields inaccurate results. Our multiscale approach implements a computational focusing method that permits computation of large systems without truncating the electrostatic potential and achieves the high resolution required for modeling macromolecular interactions, all while keeping the computational time reasonable. We tested our approach on the motility of various kinesin motor domains. We found that electrostatics help guide kinesins as they walk: N-kinesins towards the plus-end, and C-kinesins towards the minus-end of microtubules. Our methodology enables computation in similar, large systems including protein binding to DNA, viruses, and membranes.

  1. Mapping Escherichia coli elongation factor Tu residues involved in binding of aminoacyl-tRNA

    DEFF Research Database (Denmark)

    Wiborg, Ove; Andersen, C; Knudsen, Charlotte Rohde

    1996-01-01

    -tRNA, which suggested an important role of Lys-89 and Asn-90 in tRNA binding. Furthermore, our results indicate helix B to be an important target site for nucleotide exchange factor EF-Ts. Also the mutants His-66 to Ala and His-118 to either Ala or Glu were characterized in an in vitro translation assay...

  2. The asymmetric binding of PGC-1α to the ERRα and ERRγ nuclear receptor homodimers involves a similar recognition mechanism.

    Directory of Open Access Journals (Sweden)

    Maria Takacs

    Full Text Available BACKGROUND: PGC-1α is a crucial regulator of cellular metabolism and energy homeostasis that functionally acts together with the estrogen-related receptors (ERRα and ERRγ in the regulation of mitochondrial and metabolic gene networks. Dimerization of the ERRs is a pre-requisite for interactions with PGC-1α and other coactivators, eventually leading to transactivation. It was suggested recently (Devarakonda et al that PGC-1α binds in a strikingly different manner to ERRγ ligand-binding domains (LBDs compared to its mode of binding to ERRα and other nuclear receptors (NRs, where it interacts directly with the two ERRγ homodimer subunits. METHODS/PRINCIPAL FINDINGS: Here, we show that PGC-1α receptor interacting domain (RID binds in an almost identical manner to ERRα and ERRγ homodimers. Microscale thermophoresis demonstrated that the interactions between PGC-1α RID and ERR LBDs involve a single receptor subunit through high-affinity, ERR-specific L3 and low-affinity L2 interactions. NMR studies further defined the limits of PGC-1α RID that interacts with ERRs. Consistent with these findings, the solution structures of PGC-1α/ERRα LBDs and PGC-1α/ERRγ LBDs complexes share an identical architecture with an asymmetric binding of PGC-1α to homodimeric ERR. CONCLUSIONS/SIGNIFICANCE: These studies provide the molecular determinants for the specificity of interactions between PGC-1α and the ERRs, whereby negative cooperativity prevails in the binding of the coactivators to these receptors. Our work indicates that allosteric regulation may be a general mechanism controlling the binding of the coactivators to homodimers.

  3. Studies on the biotin-binding site of avidin. Tryptophan residues involved in the active site.

    OpenAIRE

    Gitlin, G; Bayer, E A; Wilchek, M

    1988-01-01

    Egg-white avidin was modified with the tryptophan-specific reagent 2-hydroxy-5-nitrobenzyl bromide. The complete loss of biotin-binding activity was achieved upon modification of an average of one tryptophan residue per avidin subunit. The identity of the modified residues was determined by isolating the relevant tryptic and chymotryptic peptides from CNBr-cleaved avidin fragments. The results demonstrate that Trp-70 and Trp-110 are modified in approximately equivalent proportions. It is beli...

  4. A New Metal Binding Domain Involved in Cadmium, Cobalt and Zinc Transport

    Energy Technology Data Exchange (ETDEWEB)

    Smith, Aaron T. [Northwestern Univ., Evanston, IL (United States); Barupala, Dulmini [Wayne State Univ., Detroit, MI (United States); Stemmler, Timothy L. [Wayne State Univ., Detroit, MI (United States); Rosenzweig, Amy C. [Northwestern Univ., Evanston, IL (United States)

    2015-07-20

    In the P1B-ATPases, which couple cation transport across membranes to ATP hydrolysis, are central to metal homeostasis in all organisms. An important feature of P1B-ATPases is the presence of soluble metal binding domains (MBDs) that regulate transport activity. Only one type of MBD has been characterized extensively, but bioinformatics analyses indicate that a diversity of MBDs may exist in nature. Here we report the biochemical, structural and functional characterization of a new MBD from the Cupriavidus metallidurans P1B-4-ATPase CzcP (CzcP MBD). The CzcP MBD binds two Cd2+, Co2+ or Zn2+ ions in distinct and unique sites and adopts an unexpected fold consisting of two fused ferredoxin-like domains. Both in vitro and in vivo activity assays using full-length CzcP, truncated CzcP and several variants indicate a regulatory role for the MBD and distinct functions for the two metal binding sites. Moreover, these findings elucidate a previously unknown MBD and suggest new regulatory mechanisms for metal transport by P1B-ATPases.

  5. Binding of Y-box proteins to RNA: involvement of different protein domains.

    Science.gov (United States)

    Ladomery, M; Sommerville, J

    1994-01-01

    Eukaryotic Y-box proteins are reported to interact with a wide variety of nucleic acid structures to act as transcription factors and mRNA masking proteins. The modular structure of Y-box proteins includes a highly conserved N-terminal cold-shock domain (CSD, equivalent to the bacterial cold-shock proteins) plus four basic C-terminal domains containing arginine clusters and aromatic residues. In addition, the basic domains are separated by acidic regions which contain several potential sites for serine/threonine phosphorylation. The interaction of Y-box proteins, isolated from Xenopus oocytes (FRGY2 type), with RNA molecules has been studied by UV crosslinking and protein fragmentation. We have identified two distinct binding activities. The CSD interacts preferentially with the polypurines poly(A,G) and poly(G) but not poly(A), this activity being sensitive to 5 mM MgCl2 but not to 5 mM spermidine. In the presence of 1 mM MgCl2 or 1 mM spermidine, the basic domains interact preferentially with poly(C,U), this activity being sensitive to 0.5 M NaCl. Binding of the basic domains is also sensitive to low concentrations of heparin. The basic domains can be crosslinked individually to labelled RNA. These results are discussed with reference to the various specificities noted in the binding of Y-box proteins to RNA and DNA. Images PMID:7530842

  6. The Binding of Syndapin SH3 Domain to Dynamin Proline-rich Domain Involves Short and Long Distance Elements.

    Science.gov (United States)

    Luo, Lin; Xue, Jing; Kwan, Ann; Gamsjaeger, Roland; Wielens, Jerome; von Kleist, Lisa; Cubeddu, Liza; Guo, Zhong; Stow, Jennifer L; Parker, Michael W; Mackay, Joel P; Robinson, Phillip J

    2016-04-29

    Dynamin is a GTPase that mediates vesicle fission during synaptic vesicle endocytosis. Its long C-terminal proline-rich domain contains 13 PXXP motifs, which orchestrate its interactions with multiple proteins. The SH3 domains of syndapin and endophilin bind the PXXP motifs called Site 2 and 3 (Pro-786-Pro-793) at the N-terminal end of the proline-rich domain, whereas the amphiphysin SH3 binds Site 9 (Pro-833-Pro-836) toward the C-terminal end. In some proteins, SH3/peptide interactions also involve short distance elements, which are 5-15 amino acid extensions flanking the central PXXP motif for high affinity binding. Here we found two previously unrecognized elements in the central and the C-terminal end of the dynamin proline-rich domain that account for a significant increase in syndapin binding affinity compared with a previously reported Site 2 and Site 3 PXXP peptide alone. The first new element (Gly-807-Gly-811) is short distance element on the C-terminal side of Site 2 PXXP, which might contact a groove identified under the RT loop of the SH3 domain. The second element (Arg-838-Pro-844) is located about 50 amino acids downstream of Site 2. These two elements provide additional specificity to the syndapin SH3 domain outside of the well described polyproline-binding groove. Thus, the dynamin/syndapin interaction is mediated via a network of multiple contacts outside the core PXXP motif over a previously unrecognized extended region of the proline-rich domain. To our knowledge this is the first example among known SH3 interactions to involve spatially separated and extended long-range elements that combine to provide a higher affinity interaction.

  7. GIL, a new c-di-GMP-binding protein domain involved in regulation of cellulose synthesis in enterobacteria.

    Science.gov (United States)

    Fang, Xin; Ahmad, Irfan; Blanka, Andrea; Schottkowski, Marco; Cimdins, Annika; Galperin, Michael Y; Römling, Ute; Gomelsky, Mark

    2014-08-01

    In contrast to numerous enzymes involved in c-di-GMP synthesis and degradation in enterobacteria, only a handful of c-di-GMP receptors/effectors have been identified. In search of new c-di-GMP receptors, we screened the Escherichia coli ASKA overexpression gene library using the Differential Radial Capillary Action of Ligand Assay (DRaCALA) with fluorescently and radioisotope-labelled c-di-GMP. We uncovered three new candidate c-di-GMP receptors in E. coli and characterized one of them, BcsE. The bcsE gene is encoded in cellulose synthase operons in representatives of Gammaproteobacteria and Betaproteobacteria. The purified BcsE proteins from E. coli, Salmonella enterica and Klebsiella pneumoniae bind c-di-GMP via the domain of unknown function, DUF2819, which is hereby designated GIL, GGDEF I-site like domain. The RxGD motif of the GIL domain is required for c-di-GMP binding, similar to the c-di-GMP-binding I-site of the diguanylate cyclase GGDEF domain. Thus, GIL is the second protein domain, after PilZ, dedicated to c-di-GMP-binding. We show that in S. enterica, BcsE is not essential for cellulose synthesis but is required for maximal cellulose production, and that c-di-GMP binding is critical for BcsE function. It appears that cellulose production in enterobacteria is controlled by a two-tiered c-di-GMP-dependent system involving BcsE and the PilZ domain containing glycosyltransferase BcsA.

  8. The thumb subdomain of yeast mitochondrial RNA polymerase is involved in processivity, transcript fidelity and mitochondrial transcription factor binding.

    Science.gov (United States)

    Velazquez, Gilberto; Sousa, Rui; Brieba, Luis G

    2015-01-01

    Single subunit RNA polymerases have evolved 2 mechanisms to synthesize long transcripts without falling off a DNA template: binding of nascent RNA and interactions with an RNA:DNA hybrid. Mitochondrial RNA polymerases share a common ancestor with T-odd bacteriophage single subunit RNA polymerases. Herein we characterized the role of the thumb subdomain of the yeast mtRNA polymerase gene (RPO41) in complex stability, processivity, and fidelity. We found that deletion and point mutants of the thumb subdomain of yeast mtRNA polymerase increase the synthesis of abortive transcripts and the probability that the polymerase will disengage from the template during the formation of the late initial transcription and elongation complexes. Mutations in the thumb subdomain increase the amount of slippage products from a homopolymeric template and, unexpectedly, thumb subdomain deletions decrease the binding affinity for mitochondrial transcription factor (Mtf1). The latter suggests that the thumb subdomain is part of an extended binding surface area involved in binding Mtf1.

  9. Three oligopeptide-binding proteins are involved in the oligopeptide transport of Streptococcus thermophilus.

    Science.gov (United States)

    Garault, Peggy; Le Bars, Dominique; Besset, Colette; Monnet, Veronique

    2002-01-04

    The functions necessary for bacterial growth strongly depend on the features of the bacteria and the components of the growth media. Our objective was to identify the functions essential to the optimum growth of Streptococcus thermophilus in milk. Using random insertional mutagenesis on a S. thermophilus strain chosen for its ability to grow rapidly in milk, we obtained several mutants incapable of rapid growth in milk. We isolated and characterized one of these mutants in which an amiA1 gene encoding an oligopeptide-binding protein (OBP) was interrupted. This gene was a part of an operon containing all the components of an ATP binding cassette transporter. Three highly homologous amiA genes encoding OBPs work with the same components of the ATP transport system. Their simultaneous inactivation led to a drastic diminution in the growth rate in milk and the absence of growth in chemically defined medium containing peptides as the nitrogen source. We constructed single and multiple negative mutants for AmiAs and cell wall proteinase (PrtS), the only proteinase capable of hydrolyzing casein oligopeptides outside the cell. Growth experiments in chemically defined medium containing peptides indicated that AmiA1, AmiA2, and AmiA3 exhibited overlapping substrate specificities, and that the whole system allows the transport of peptides containing from 3 to 23 residues.

  10. A novel PRD I and TG binding activity involved in virus-induced transcription of IFN-A genes.

    Science.gov (United States)

    Génin, P; Bragança, J; Darracq, N; Doly, J; Civas, A

    1995-01-01

    Comparative analysis of the inducible elements of the mouse interferon A4 and A11 gene promoters (IE-A4 and IE-A11) by transient transfection experiments, DNase 1 footprinting and electrophoretic mobility shift assays resulted in identification of a virus-induced binding activity suggested to be involved in NDV-induced activation of transcription of these genes. The virus-induced factor, termed VIF, is activated early by contact of virions with cells. It specifically recognizes the PRD I-like domain shared by both inducible elements, as well as the TG-like domain of IE-A4. This factor, distinct from the IRF-1, IRF-2 and the alpha F1 binding proteins and presenting a different affinity pattern from that of the TG protein, is proposed as a candidate for IFN-type I gene regulation. Images PMID:8559665

  11. A DNA-binding peroxiredoxin of Coxiella burnetii is involved in countering oxidative stress during exponential-phase growth.

    Science.gov (United States)

    Hicks, Linda D; Raghavan, Rahul; Battisti, James M; Minnick, Michael F

    2010-04-01

    Coxiella burnetii is a Gram-negative, obligate intracellular bacterial pathogen that resides within the harsh, acidic confines of a lysosome-like compartment of the host cell that is termed a parasitophorous vacuole. In this study, we characterized a thiol-specific peroxidase of C. burnetii that belongs to the atypical 2-cysteine subfamily of peroxiredoxins, commonly referred to as bacterioferritin comigratory proteins (BCPs). Coxiella BCP was initially identified as a potential DNA-binding protein by two-dimensional Southwestern (SW) blots of the pathogen's proteome, probed with biotinylated C. burnetii genomic DNA. Confirmation of the identity of the DNA-binding protein as BCP (CBU_0963) was established by matrix-assisted laser desorption ionization-tandem time of flight mass spectrometry (MALDI-TOF/TOF MS). Recombinant Coxiella BCP (rBCP) was generated, and its DNA binding was demonstrated by two independent methods, including SW blotting and electrophoretic mobility shift assays (EMSAs). rBCP also demonstrated peroxidase activity in vitro that required thioredoxin-thioredoxin reductase (Trx-TrxR). Both the DNA-binding and peroxidase activities of rBCP were lost upon heat denaturation (100 degrees C, 10 min). Functional expression of Coxiella bcp was demonstrated by trans-complementation of an Escherichia coli bcp mutant, as evidenced by the strain's ability to grow in an oxidative-stress growth medium containing tert-butyl hydroperoxide to levels that were indistinguishable from, or significantly greater than, those observed with its wild-type parental strain and significantly greater than bcp mutant levels (P exponential-growth phase in an experiment involving synchronized infection of an epithelial (Vero) host cell line. Taken as a whole, the results show that Coxiella BCP binds DNA and likely serves to detoxify endogenous hydroperoxide byproducts of Coxiella's metabolism during intracellular replication.

  12. A review of the electrophilic reaction chemistry involved in covalent DNA binding.

    Science.gov (United States)

    Enoch, S J; Cronin, M T D

    2010-09-01

    The need to assess the ability of a chemical to act as a mutagen or a genotoxic carcinogen (collectively termed genotoxicity) is one of the primary requirements in regulatory toxicology. Several pieces of legislation have led to an increased interest in the use of in silico methods, specifically the formation of chemical categories for the assessment of toxicological endpoints. A key step in the development of chemical categories for genotoxicity is defining the organic chemistry associated with the formation of a covalent bond between DNA and an exogenous chemical. This organic chemistry is typically defined as structural alerts. To this end, this article has reviewed the literature defining the structural alerts associated with covalent DNA binding. Importantly, this review article also details the mechanistic organic chemistry associated with each of the structural alerts. This information is extremely important in terms of meeting regulatory requirements for the acceptance of the chemical category approach. The structural alerts and associated mechanistic chemistry have been incorporated into the Organisation for Economic Co-operation and Development (OECD) (Q)SAR Application Toolbox.

  13. The actin binding cytoskeletal protein Moesin is involved in nuclear mRNA export.

    Science.gov (United States)

    Kristó, Ildikó; Bajusz, Csaba; Borsos, Barbara N; Pankotai, Tibor; Dopie, Joseph; Jankovics, Ferenc; Vartiainen, Maria K; Erdélyi, Miklós; Vilmos, Péter

    2017-10-01

    Current models imply that the evolutionarily conserved, actin-binding Ezrin-Radixin-Moesin (ERM) proteins perform their activities at the plasma membrane by anchoring membrane proteins to the cortical actin network. Here we show that beside its cytoplasmic functions, the single ERM protein of Drosophila, Moesin, has a novel role in the nucleus. The activation of transcription by heat shock or hormonal treatment increases the amount of nuclear Moesin, indicating biological function for the protein in the nucleus. The distribution of Moesin in the nucleus suggests a function in transcription and the depletion of mRNA export factors Nup98 or its interacting partner, Rae1, leads to the nuclear accumulation of Moesin, suggesting that the nuclear function of the protein is linked to mRNA export. Moesin localizes to mRNP particles through the interaction with the mRNA export factor PCID2 and knock down of Moesin leads to the accumulation of mRNA in the nucleus. Based on our results we propose that, beyond its well-known, manifold functions in the cytoplasm, the ERM protein of Drosophila is a new, functional component of the nucleus where it participates in mRNA export. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. CD163 Binding to Haptoglobin-Hemoglobin Complexes Involves a Dual-point Electrostatic Receptor-Ligand Pairing*

    Science.gov (United States)

    Nielsen, Marianne Jensby; Andersen, Christian Brix Folsted; Moestrup, Søren Kragh

    2013-01-01

    Formation of the haptoglobin (Hp)-hemoglobin (Hb) complex in human plasma leads to a high affinity recognition by the endocytic macrophage receptor CD163. A fast segregation of Hp-Hb from CD163 occurs at endosomal conditions (pH CD163 has previously been shown to involve the scavenger receptor cysteine-rich (SRCR) domain 3. This domain and the adjacent SRCR domain 2 of CD163 contain a consensus motif for a calcium-coordinated acidic amino acid triad cluster as originally identified in the SRCR domain of the scavenger receptor MARCO. Here we show that site-directed mutagenesis in each of these acidic triads of SRCR domains 2 and 3 abrogates the high affinity binding of recombinant CD163 to Hp-Hb. In the ligand, Hp Arg-252 and Lys-262, both present in a previously identified CD163 binding loop of Hp, were revealed as essential residues for the high affinity receptor binding. These findings are in accordance with pairing of the calcium-coordinated acidic clusters in SRCR domains 2 and 3 with the two basic Arg/Lys residues in the Hp loop. Such a two-point electrostatic pairing is mechanistically similar to the pH-sensitive pairings disclosed in crystal structures of ligands in complex with tandem LDL receptor repeats or tandem CUB domains in other endocytic receptors. PMID:23671278

  15. Prolactin regulatory element-binding protein is involved in suppression of the adiponectin gene in vivo.

    Science.gov (United States)

    Zhang, X Z; Imachi, H; Lyu, J Y; Fukunaga, K; Sato, S; Ibata, T; Kobayashi, T; Yoshimoto, T; Kikuchi, F; Dong, T; Murao, K

    2017-04-01

    Prolactin regulatory element-binding protein (PREB), a member of the WD-repeat protein family, has been recognized as a transcriptional factor that regulates prolactin promoter activity in the anterior pituitary of rats. PREB is expressed not only in the pituitary but also in various other tissues, including the adipose tissue. Previous studies have shown that PREB acts as a transcriptional regulator and suppresses the expression of the adiponectin gene in cultured 3T3L1 preadipocytes. The aim of this study was to further examine the potential role of PREB in adipose tissue in vivo. Transgenic mice that overexpressing PREB (PREB transgenic mice) were generated. Insulin resistance was evaluated in PREB transgenic mice using glucose and insulin tolerance tests. Adiponectin expression in the adipose tissue was examined by western blot analysis and quantitative polymerase chain reaction (qPCR). The expression levels of stearoyl-CoA desaturase (Scd) and adiponectin receptor 2(ADIPOR2) were quantified by qPCR. Glucose and insulin tolerance tests revealed insulin resistance in PREB transgenic mice. Serum adiponectin and leptin concentrations were decreased. Adiponectin gene expression was decreased in the adipose tissue, which was confirmed by the downregulation of the adiponectin-dependent hepatic Scd gene and upregulation of the ADIPOR2 gene in the liver of PREB transgenic mice. We also found that pioglitazone, an agonist for the peroxisome proliferator-activated receptor-r, improved the insulin resistance in the PREB transgenic mice after a 10-day feeding period. These results demonstrated that PREB might contribute to the regulation of adiponectin gene expression in vivo.

  16. TGD4 involved in endoplasmic reticulum-to-chloroplast lipid trafficking is a phosphatidic acid binding protein

    Energy Technology Data Exchange (ETDEWEB)

    Wang Z.; Xu C.; Benning, C.

    2012-05-01

    The synthesis of galactoglycerolipids, which are prevalent in photosynthetic membranes, involves enzymes at the endoplasmic reticulum (ER) and the chloroplast envelope membranes. Genetic analysis of trigalactosyldiacylglycerol (TGD) proteins in Arabidopsis has demonstrated their role in polar lipid transfer from the ER to the chloroplast. The TGD1, 2, and 3 proteins resemble components of a bacterial-type ATP-binding cassette (ABC) transporter, with TGD1 representing the permease, TGD2 the substrate binding protein, and TGD3 the ATPase. However, the function of the TGD4 protein in this process is less clear and its location in plant cells remains to be firmly determined. The predicted C-terminal {beta}-barrel structure of TGD4 is weakly similar to proteins of the outer cell membrane of Gram-negative bacteria. Here, we show that, like TGD2, the TGD4 protein when fused to DsRED specifically binds phosphatidic acid (PtdOH). As previously shown for tgd1 mutants, tgd4 mutants have elevated PtdOH content, probably in extraplastidic membranes. Using highly purified and specific antibodies to probe different cell fractions, we demonstrated that the TGD4 protein was present in the outer envelope membrane of chloroplasts, where it appeared to be deeply buried within the membrane except for the N-terminus, which was found to be exposed to the cytosol. It is proposed that TGD4 is either directly involved in the transfer of polar lipids, possibly PtdOH, from the ER to the outer chloroplast envelope membrane or in the transfer of PtdOH through the outer envelope membrane.

  17. Simiate is an Actin binding protein involved in filopodia dynamics and arborisation of neurons.

    Directory of Open Access Journals (Sweden)

    Kristin eDerlig

    2014-04-01

    Full Text Available The Actin cytoskeleton constitutes the functional base for a multitude of cellular processes extending from motility and migration to cell mechanics and morphogenesis. The latter is particularly important to neuronal cells since the accurate functioning of the brain crucially depends on the correct arborisation of neurons, a process that requires the formation of several dozens to hundreds of dendritic branches. Recently, a model was proposed where different transcription factors are detailed to distinct facets and phases of dendritogenesis and exert their function by acting on the Actin cytoskeleton, however, the proteins involved as well as the underlying molecular mechanisms are largely unknown.Here, we demonstrate that Simiate, a protein previously indicated to activate transcription, directly associates with both, G- and F-Actin and in doing so, affects Actin polymerisation and Actin turnover in living cells. Imaging studies illustrate that Simiate particularly influences filopodia dynamics and specifically increases the branching of proximal, but not distal dendrites of developing neurons. The data suggests that Simiate functions as a direct molecular link between transcription regulation on one side, and dendritogenesis on the other, wherein Simiate serves to coordinate the development of proximal and distal dendrites by acting on the Actin cytoskeleton of filopodia and on transcription regulation, hence supporting the novel model.

  18. Involvement of XZFP36L1,an RNA-binding protein,in Xenopus neural development%Involvement of XZFP36L1, an RNA-binding protein,in Xenopus neural development

    Institute of Scientific and Technical Information of China (English)

    Yingjie XIA; Shuhua ZHAO; Bingyu MAO

    2012-01-01

    Xenopus ZFP36L1 (zinc finger protein 36,C3H type-like 1) belongs to the ZFP36 family of RNA-binding proteins,which contains two characteristic tandem CCCH-type zinc-finger domains.The ZFP36 proteins can bind AU-rich elements in 3' untranslated regions of target mRNAs and promote their turnover.However,the expression and role of ZFP36 genes during neural development in Xenopus embryos remains largely tmknown.The present study showed that Xenopus ZFP36L1 was expressed at the dorsal part of the forebrain,forebrain-midbrain boundary,and midbrain-hindbrain boundary from late neurula stages to tadpole stages of embryonic development.Overexpression of XZFP36L1 in Xenopus embryos inhibited neural induction and differentiation,leading to severe neural tube defects.The function of XZP36L1 requires both its zinc finger and C terminal domains,which also affect its subcellular localization.These results suggest that XZFP36L1 is likely involved in neural development in Xenopus and might play an important role in post-transcriptional regulation.

  19. ATP-binding cassette-like transporters are involved in the transport of lignin precursors across plasma and vacuolar membranes

    Energy Technology Data Exchange (ETDEWEB)

    Miao, Y.C.; Liu, C.

    2010-12-28

    Lignin is a complex biopolymer derived primarily from the condensation of three monomeric precursors, the monolignols. The synthesis of monolignols occurs in the cytoplasm. To reach the cell wall where they are oxidized and polymerized, they must be transported across the cell membrane. However, the molecular mechanisms underlying the transport process are unclear. There are conflicting views about whether the transport of these precursors occurs by passive diffusion or is an energized active process; further, we know little about what chemical forms are required. Using isolated plasma and vacuolar membrane vesicles prepared from Arabidopsis, together with applying different transporter inhibitors in the assays, we examined the uptake of monolignols and their derivatives by these native membrane vesicles. We demonstrate that the transport of lignin precursors across plasmalemma and their sequestration into vacuoles are ATP-dependent primary-transport processes, involving ATP-binding cassette-like transporters. Moreover, we show that both plasma and vacuolar membrane vesicles selectively transport different forms of lignin precursors. In the presence of ATP, the inverted plasma membrane vesicles preferentially take up monolignol aglycones, whereas the vacuolar vesicles are more specific for glucoconjugates, suggesting that the different ATP-binding cassette-like transporters recognize different chemical forms in conveying them to distinct sites, and that glucosylation of monolignols is necessary for their vacuolar storage but not required for direct transport into the cell wall in Arabidopsis.

  20. Structure of Ca2+-binding protein-6 from Entamoeba histolytica and its involvement in trophozoite proliferation regulation.

    Science.gov (United States)

    Verma, Deepshikha; Murmu, Aruna; Gourinath, Samudrala; Bhattacharya, Alok; Chary, Kandala V R

    2017-05-01

    Cell cycle of Entamoeba histolytica, the etiological agent of amoebiasis, follows a novel pathway, which includes nuclear division without the nuclear membrane disassembly. We report a nuclear localized Ca2+-binding protein from E. histolytica (abbreviated hereafter as EhCaBP6), which is associated with microtubules. We determined the 3D solution NMR structure of EhCaBP6, and identified one unusual, one canonical and two non-canonical cryptic EF-hand motifs. The cryptic EF-II and EF-IV pair with the Ca2+-binding EF-I and EF-III, respectively, to form a two-domain structure similar to Calmodulin and Centrin proteins. Downregulation of EhCaBP6 affects cell proliferation by causing delays in transition from G1 to S phase, and inhibition of DNA synthesis and cytokinesis. We also demonstrate that EhCaBP6 modulates microtubule dynamics by increasing the rate of tubulin polymerization. Our results, including structural inferences, suggest that EhCaBP6 is an unusual CaBP involved in regulating cell proliferation in E. histolytica similar to nuclear Calmodulin.

  1. A highly Conserved Aspartic Acid Residue of the Chitosanase from Bacillus Sp. TS Is Involved in the Substrate Binding.

    Science.gov (United States)

    Zhou, Zhanping; Zhao, Shuangzhi; Liu, Yang; Chang, Zhengying; Ma, Yanhe; Li, Jian; Song, Jiangning

    2016-11-01

    The chitosanase from Bacillus sp. TS (CsnTS) is an enzyme belonging to the glycoside hydrolase family 8. The sequence of CsnTS shares 98 % identity with the chitosanase from Bacillus sp. K17. Crystallography analysis and site-direct mutagenesis of the chitosanase from Bacillus sp. K17 identified the important residues involved in the catalytic interaction and substrate binding. However, despite progress in understanding the catalytic mechanism of the chitosanase from the family GH8, the functional roles of some residues that are highly conserved throughout this family have not been fully elucidated. This study focused on one of these residues, i.e., the aspartic acid residue at position 318. We found that apart from asparagine, mutation of Asp318 resulted in significant loss of enzyme activity. In-depth investigations showed that mutation of this residue not only impaired enzymatic activity but also affected substrate binding. Taken together, our results showed that Asp318 plays an important role in CsnTS activity.

  2. CPP1, a DNA-binding protein involved in the expression of a soybean leghemoglobin c3 gene

    Science.gov (United States)

    Cvitanich, Cristina; Pallisgaard, Niels; Nielsen, Kirsten A.; Hansen, Anette Chemnitz; Larsen, Knud; Pihakaski-Maunsbach, Kaarina; Marcker, Kjeld A.; Jensen, Erik Østergaard

    2000-01-01

    Nodulin genes are specifically expressed in the nitrogen-fixing root nodules. We have identified a novel type of DNA-binding protein (CPP1) interacting with the promoter of the soybean leghemoglobin gene Gmlbc3. The DNA-binding domain of CPP1 contains two similar Cys-rich domains with 9 and 10 Cys, respectively. Genes encoding similar domains have been identified in Arabidopsis thaliana, Caenorhabditis elegans, the mouse, and human. The domains also have some homology to a Cys-rich region present in some polycomb proteins. The cpp1 gene is induced late in nodule development and the expression is confined to the distal part of the central infected tissue of the nodule. A constitutively expressed cpp1 gene reduces the expression of a Gmlbc3 promoter–gusA reporter construct in Vicia hirsuta roots. These data therefore suggest that CPP1 might be involved in the regulation of the leghemoglobin genes in the symbiotic root nodule. PMID:10859345

  3. Involvement of myeloperoxidase and NADPH oxidase in the covalent binding of amodiaquine and clozapine to neutrophils: implications for drug-induced agranulocytosis.

    Science.gov (United States)

    Lobach, Alexandra R; Uetrecht, Jack

    2014-04-21

    Amodiaquine (AQ) and clozapine (CLZ) are associated with a relatively high incidence of idiosyncratic agranulocytosis, a reaction that is suspected to involve covalent binding of reactive metabolites to neutrophils. Previous studies have shown that both AQ and CLZ are oxidized to reactive intermediates in vitro by activated neutrophils or by the combination of hydrogen peroxide and myeloperoxidase (MPO). Neutrophil activation leads to an oxidative burst with activation of NADPH oxidase and the production of hydrogen peroxide. However, the importance of this pathway in covalent binding in vivo has not been examined. In this study, we found that the binding of both AQ and CLZ to neutrophils from MPO knockout mice ex vivo decreased approximately 2-fold compared to neutrophils from wild-type mice, whereas binding to activated neutrophils from gp91 knockout (NADPH oxidase null) mice decreased 6-7-fold. When the AQ studies were performed in vivo, again the binding was decreased in MPO knockout mice to about 50% of the binding in wild-type mice; however, covalent binding was significant in the absence of MPO. Surprisingly, there was no significant decrease in covalent binding of AQ to neutrophils in vivo in gp91 knockout mice. In addition, there was extensive binding of AQ to many types of bone marrow cells and to peripheral lymphocytes. These results indicate that MPO is not the only neutrophil enzyme involved in the oxidation of AQ and that NADPH oxidase is not the major source of peroxide. There was also no decrease in AQ binding to neutrophils in COX-1 or COX-2 knockout mice. We were not able to readily reproduce the AQ in vivo studies with CLZ because of its acute toxicity in mice. These are the first studies to examine the enzymes involved in the bioactivation of AQ by neutrophils in vivo.

  4. Vitamin D Binding Protein Is Not Involved in Vitamin D Deficiency in Patients with Chronic Kidney Disease

    Directory of Open Access Journals (Sweden)

    Marta Kalousova

    2015-01-01

    Full Text Available Objective. This study was designed to evaluate vitamin D status with separate determination of 25-OH D2 and 25-OH D3 and its relationship to vitamin D binding protein (VDBP in patients with chronic kidney disease (CKD and long-term haemodialysis patients (HD. Methods. 45 CKD patients, 103 HD patients, and 25 controls (C were included. Plasma vitamin D concentrations were determined using chromatography and VDBP in serum and urine in CKD using enzyme immunoassay. Results. Plasma vitamin D levels were lower in CKD (30.16 ± 16.74 ng/mL and HD (18.85 ± 15.85 ng/mL versus C (48.72 ± 18.35 ng/mL, P<0.0001. 25-OH D3 was the dominant form of vitamin D. Serum VDBP was higher in CKD (273.2 ± 93.8 ug/mL versus C (222 ± 87.6 ug/mL and HD (213.8 ± 70.9 ug/mL, P=0.0003. Vitamin D/VDBP ratio was the highest in C and the lowest in HD; however, there was no correlation between vitamin D and VDBP. Urinary concentration of VDBP in CKD (0.25 ± 0.13 ug/mL correlated with proteinuria (r=0.43, P=0.003. Conclusions. Plasma levels of vitamin D are decreased in CKD patients and especially in HD patients. 25-OH D3 was the major form of vitamin D. Despite urinary losses of VDBP, CKD patients had higher serum VDBP concentrations, indicating compensatory enhanced production. Vitamin D binding protein is not involved in vitamin D deficiency.

  5. An early ethylene up-regulated gene encoding a calmodulin-binding protein involved in plant senescence and death

    Science.gov (United States)

    Yang, T.; Poovaiah, B. W.

    2000-01-01

    35S-Labeled calmodulin (CaM) was used to screen a tobacco anther cDNA library. A positive clone (NtER1) with high homology to an early ethylene-up-regulated gene (ER66) in tomato, and an Arabidopsis homolog was isolated and characterized. Based on the helical wheel projection, a 25-mer peptide corresponding to the predicted CaM-binding region of NtER1 (amino acids 796-820) was synthesized. The gel-mobility shift assay showed that the peptide formed a stable complex with CaM only in the presence of Ca(2+). CaM binds to NtER1 with high affinity (K(d) approximately 12 nm) in a calcium-dependent manner. Tobacco flowers at different stages of development were treated with ethylene or with 1-methylcyclopropene for 2 h before treating with ethylene. Northern analysis showed that the NtER1 was rapidly induced after 15 min of exposure to ethylene. However, the 2-h 1-methylcyclopropene treatment totally blocked NtER1 expression in flowers at all stages of development, suggesting that NtER1 is an early ethylene-up-regulated gene. The senescing leaves and petals had significantly increased NtER1 induction as compared with young leaves and petals, implying that NtER1 is developmentally regulated and acts as a trigger for senescence and death. This is the first documented evidence for the involvement of Ca(2+)/CaM-mediated signaling in ethylene action.

  6. Brassica RNA binding protein ERD4 is involved in conferring salt, drought tolerance and enhancing plant growth in Arabidopsis.

    Science.gov (United States)

    Rai, Archana N; Tamirisa, Srinath; Rao, K V; Kumar, Vinay; Suprasanna, P

    2016-03-01

    'Early responsive to dehydration' (ERD) genes are a group of plant genes having functional roles in plant stress tolerance and development. In this study, we have isolated and characterized a Brassica juncea 'ERD' gene (BjERD4) which encodes a novel RNA binding protein. The expression pattern of ERD4 analyzed under different stress conditions showed that transcript levels were increased with dehydration, sodium chloride, low temperature, heat, abscisic acid and salicylic acid treatments. The BjERD4 was found to be localized in the chloroplasts as revealed by Confocal microscopy studies. To study the function, transgenic Arabidopsis plants were generated and analyzed for various morphological and physiological parameters. The overexpressing transgenic lines showed significant increase in number of leaves with more leaf area and larger siliques as compared to wild type plants, whereas RNAi:ERD4 transgenic lines showed reduced leaf number, leaf area, dwarf phenotype and delayed seed germination. Transgenic Arabidopsis plants overexpressing BjERD4 gene also exhibited enhanced tolerance to dehydration and salt stresses, while the knockdown lines were susceptible as compared to wild type plants under similar stress conditions. It was observed that BjERD4 protein could bind RNA as evidenced by the gel-shift assay. The overall results of transcript analysis, RNA gel-shift assay, and transgenic expression, for the first time, show that the BjERD4 is involved in abiotic stress tolerance besides offering new clues about the possible roles of BjERD4 in plant growth and development.

  7. An early ethylene up-regulated gene encoding a calmodulin-binding protein involved in plant senescence and death

    Science.gov (United States)

    Yang, T.; Poovaiah, B. W.

    2000-01-01

    35S-Labeled calmodulin (CaM) was used to screen a tobacco anther cDNA library. A positive clone (NtER1) with high homology to an early ethylene-up-regulated gene (ER66) in tomato, and an Arabidopsis homolog was isolated and characterized. Based on the helical wheel projection, a 25-mer peptide corresponding to the predicted CaM-binding region of NtER1 (amino acids 796-820) was synthesized. The gel-mobility shift assay showed that the peptide formed a stable complex with CaM only in the presence of Ca(2+). CaM binds to NtER1 with high affinity (K(d) approximately 12 nm) in a calcium-dependent manner. Tobacco flowers at different stages of development were treated with ethylene or with 1-methylcyclopropene for 2 h before treating with ethylene. Northern analysis showed that the NtER1 was rapidly induced after 15 min of exposure to ethylene. However, the 2-h 1-methylcyclopropene treatment totally blocked NtER1 expression in flowers at all stages of development, suggesting that NtER1 is an early ethylene-up-regulated gene. The senescing leaves and petals had significantly increased NtER1 induction as compared with young leaves and petals, implying that NtER1 is developmentally regulated and acts as a trigger for senescence and death. This is the first documented evidence for the involvement of Ca(2+)/CaM-mediated signaling in ethylene action.

  8. APC/C-mediated degradation of dsRNA-binding protein 4 (DRB4 involved in RNA silencing.

    Directory of Open Access Journals (Sweden)

    Katia Marrocco

    Full Text Available BACKGROUND: Selective protein degradation via the ubiquitin-26S proteasome is a major mechanism underlying DNA replication and cell division in all Eukaryotes. In particular, the APC/C (Anaphase Promoting Complex or Cyclosome is a master ubiquitin protein ligase (E3 that targets regulatory proteins for degradation allowing sister chromatid separation and exit from mitosis. Interestingly, recent work also indicates that the APC/C remains active in differentiated animal and plant cells. However, its role in post-mitotic cells remains elusive and only a few substrates have been characterized. METHODOLOGY/PRINCIPAL FINDINGS: In order to identify novel APC/C substrates, we performed a yeast two-hybrid screen using as the bait Arabidopsis APC10/DOC1, one core subunit of the APC/C, which is required for substrate recruitment. This screen identified DRB4, a double-stranded RNA binding protein involved in the biogenesis of different classes of small RNA (sRNA. This protein interaction was further confirmed in vitro and in plant cells. Moreover, APC10 interacts with DRB4 through the second dsRNA binding motif (dsRBD2 of DRB4, which is also required for its homodimerization and binding to its Dicer partner DCL4. We further showed that DRB4 protein accumulates when the proteasome is inactivated and, most importantly, we found that DRB4 stability depends on APC/C activity. Hence, depletion of Arabidopsis APC/C activity by RNAi leads to a strong accumulation of endogenous DRB4, far beyond its normal level of accumulation. However, we could not detect any defects in sRNA production in lines where DRB4 was overexpressed. CONCLUSIONS/SIGNIFICANCE: Our work identified a first plant substrate of the APC/C, which is not a regulator of the cell cycle. Though we cannot exclude that APC/C-dependent degradation of DRB4 has some regulatory roles under specific growth conditions, our work rather points to a housekeeping function of APC/C in maintaining precise cellular

  9. The heparin-binding site in tetranectin is located in the N-terminal region and binding does not involve the carbohydrate recognition domain

    DEFF Research Database (Denmark)

    Lorentsen, R H; Graversen, Jonas Heilskov; Caterer, N R

    2000-01-01

    in three exons. Exon 3 encodes the carbohydrate recognition domain, which binds to kringle 4 in plasminogen at low levels of Ca(2+). Exon 2 encodes an alpha-helix, which is necessary and sufficient to govern the trimerization of tetranectin by assembling into a triple-helical coiled-coil structural element......Tetranectin is a homotrimeric plasma and extracellular-matrix protein that binds plasminogen and complex sulphated polysaccharides including heparin. In terms of primary and tertiary structure, tetranectin is related to the collectin family of Ca(2+)-binding C-type lectins. Tetranectin is encoded....... Here we show that the heparin-binding site in tetranectin resides not in the carbohydrate recognition domain but within the N-terminal region, comprising the 16 amino acid residues encoded by exon 1. In particular, the lysine residues in the decapeptide segment KPKKIVNAKK (tetranectin residues 6...

  10. From simple receptors to complex multimodal percepts: A first global picture on the mechanisms involved in perceptual binding

    Directory of Open Access Journals (Sweden)

    Rosemarie eVelik

    2012-07-01

    Full Text Available The binding problem in perception is concerned with answering the question how information from millions of sensory receptors, processed by millions of neurons working in parallel, can be merged into a unified percept. Binding in perception reaches from the lowest levels of feature binding up to the levels of multimodal binding of information coming from the different sensor modalities and also from other functional systems. The last 40 years of research have shown that the binding problem cannot be solved easily. Today, it is considered as one of the key questions to brain understanding. To date, various solutions have been suggested to the binding problem including: (1 combination coding, (2 binding by synchrony, (3 population coding, (4 binding by attention, (5 binding by knowledge, expectation, and memory, (6 hardwired versus on-demand binding, (7 bundling and binding of features, (8 the feature-integration theory of attention, (9 synchronization through top-down processes. Each of those hypotheses addresses important aspects of binding. However, each of them also suffers from certain weak points and can never give a complete explanation. This article gives a brief overview of the so far suggested solutions of perceptual binding and then shows that those are actually not mutually exclusive but can complement each other. A computationally verified model is presented which shows that, most likely, the different described mechanisms of binding act (1 at different hierarchical levels and (2 in different stages of perceptual knowledge acquisition. The model furthermore considers and explains a number of inhibitory filter mechanisms that suppress the activation of inappropriate or currently irrelevant information.

  11. Genome-wide analysis of glucocorticoid receptor binding regions in adipocytes reveal gene network involved in triglyceride homeostasis.

    Directory of Open Access Journals (Sweden)

    Chi-Yi Yu

    Full Text Available Glucocorticoids play important roles in the regulation of distinct aspects of adipocyte biology. Excess glucocorticoids in adipocytes are associated with metabolic disorders, including central obesity, insulin resistance and dyslipidemia. To understand the mechanisms underlying the glucocorticoid action in adipocytes, we used chromatin immunoprecipitation sequencing to isolate genome-wide glucocorticoid receptor (GR binding regions (GBRs in 3T3-L1 adipocytes. Furthermore, gene expression analyses were used to identify genes that were regulated by glucocorticoids. Overall, 274 glucocorticoid-regulated genes contain or locate nearby GBR. We found that many GBRs were located in or nearby genes involved in triglyceride (TG synthesis (Scd-1, 2, 3, GPAT3, GPAT4, Agpat2, Lpin1, lipolysis (Lipe, Mgll, lipid transport (Cd36, Lrp-1, Vldlr, Slc27a2 and storage (S3-12. Gene expression analysis showed that except for Scd-3, the other 13 genes were induced in mouse inguinal fat upon 4-day glucocorticoid treatment. Reporter gene assays showed that except Agpat2, the other 12 glucocorticoid-regulated genes contain at least one GBR that can mediate hormone response. In agreement with the fact that glucocorticoids activated genes in both TG biosynthetic and lipolytic pathways, we confirmed that 4-day glucocorticoid treatment increased TG synthesis and lipolysis concomitantly in inguinal fat. Notably, we found that 9 of these 12 genes were induced in transgenic mice that have constant elevated plasma glucocorticoid levels. These results suggested that a similar mechanism was used to regulate TG homeostasis during chronic glucocorticoid treatment. In summary, our studies have identified molecular components in a glucocorticoid-controlled gene network involved in the regulation of TG homeostasis in adipocytes. Understanding the regulation of this gene network should provide important insight for future therapeutic developments for metabolic diseases.

  12. Involvement of nitrogen functional groups in high-affinity copper binding in tomato and wheat root apoplasts: spectroscopic and thermodynamic evidence.

    Science.gov (United States)

    Guigues, Stéphanie; Bravin, Matthieu N; Garnier, Cédric; Masion, Armand; Chevassus-Rosset, Claire; Cazevieille, Patrick; Doelsch, Emmanuel

    2016-03-01

    Carboxylic groups located in plant cell walls (CW) are generally considered to be the main copper binding sites in plant roots, despite the presence of other functional groups. The aim of this study was to investigate sites responsible for copper binding in root apoplasts, i.e. CW and outer surface of the plasma membrane (PM) continuum. Binding sites in root apoplasts were investigated by comparing isolated CW of a monocotyledon (Triticum aestivum L.) and dicotyledon (Solanum lycopersicum L.) crop with their respective whole roots. Copper speciation was examined by X-ray absorption (XAS) and (13)C-nuclear magnetic resonance spectroscopies while the affinity of ligands involved in copper binding was investigated by modeling copper sorption isotherms. Homogeneous speciation and binding of copper was found in wheat and tomato root apoplasts. Only Cu-N and Cu-O bonds were detected in wheat and tomato root apoplasts. Nitrogen/oxygen ligands were identified in slightly higher proportions (40-70%) than single oxygen ligands. Furthermore, low- and high-affinity binding sites contributed in an almost equivalent proportion to copper binding in root apoplasts. The high-affinity N functional groups embedded in root apoplasts participated in copper binding in the same magnitude than the low-affinity carboxylic groups.

  13. [Rbf1 (RPG-box binding factor), a transcription factor involved in yeast-hyphal transition of Candida albicans].

    Science.gov (United States)

    Aoki, Y; Ishii, N; Watanabe, M; Yoshihara, F; Arisawa, M

    1998-01-01

    The major fungal pathogen for fungal diseases which have become a major medical problem in the last few years is Candida albicans, which can grow both in yeast and hyphae forms. This ability of C. albicans is thought to contribute to its colonization and dissemination within host tissues. In a recent few years, accompanying the introduction of molecular biological tools into C. albicans organism, several factors involved in the signal transduction pathway for yeast-hyphal transition have been identified. One MAP kinase pathway in C. albicans, similar to that leading to STE12 activation in Saccharomyces cerevisiae, has been reported. C. albicans strains mutant in these genes show retarded filamentous growth on a solid media but no impairment of filamentous growth in mice. These results suggest two scenarios that a kinase signaling cascade plays a part in stimulating the morphological transition in C. albicans, and that there would be another signaling pathway effective in animals. In this latter true hyphal pathway, although some candidate proteins, such as Efg1 (transcription factor), Int1 (integrin-like membrane protein), or Phr1 (pH-regulated membrane protein), have been identified, it is still too early to say that we understand the whole picture of that cascade. We have cloned a C. albicans gene encoding a novel DNA binding protein, Rbf1, that predominantly localizes in the nucleus, and shows transcriptional activation capability. Disruption of the functional RBF1 genes of C. albicans induced the filamentous growth on all solid and liquid media tested, suggesting that Rbf1 might be another candidate for the true hyphal pathway. Relationships with other factors described above, and the target (regulated) genes of Rbf1 is under investigation.

  14. A Tenebrio molitor GPI-anchored alkaline phosphatase is involved in binding of Bacillus thuringiensis Cry3Aa to brush border membrane vesicles.

    Science.gov (United States)

    Zúñiga-Navarrete, Fernando; Gómez, Isabel; Peña, Guadalupe; Bravo, Alejandra; Soberón, Mario

    2013-03-01

    Bacillus thuringiensis Cry toxins recognizes their target cells in part by the binding to glycosyl-phosphatidyl-inositol (GPI) anchored proteins such as aminopeptidase-N (APN) or alkaline phosphatases (ALP). Treatment of Tenebrio molitor brush border membrane vesicles (BBMV) with phospholipase C that cleaves out GPI-anchored proteins from the membranes, showed that GPI-anchored proteins are involved in binding of Cry3Aa toxin to BBMV. A 68 kDa GPI-anchored ALP was shown to bind Cry3Aa by toxin overlay assays. The 68 kDa GPI-anchored ALP was preferentially expressed in early instar larvae in comparison to late instar larvae. Our work shows for the first time that GPI-anchored ALP is important for Cry3Aa binding to T. molitor BBMV suggesting that the mode of action of Cry toxins is conserved in different insect orders.

  15. The Hinge Region of Bovine Zona Pellucida Glycoprotein ZP3 Is Involved in the Formation of the Sperm-Binding Active ZP3/ZP4 Complex.

    Science.gov (United States)

    Suzuki, Kaori; Tatebe, Nanami; Kojima, Sayuri; Hamano, Ayumi; Orita, Misaki; Yonezawa, Naoto

    2015-01-01

    The zona pellucida (ZP) surrounds the mammalian oocyte and mediates species-selective sperm-oocyte interactions. Bovine ZP consists of glycoproteins ZP2, ZP3, and ZP4. Neither ZP3 nor ZP4 alone shows inhibitory activity for the binding of sperm to the ZP; however, this activity is seen with the ZP3/ZP4 heterocomplex. Here, we constructed a series of bovine ZP3 mutants to identify the ZP4-binding site on ZP3. Each ZP3 mutant was co-expressed with ZP4 using a baculovirus-Sf9 cell expression system and examined for interaction with ZP4 as well as inhibitory activity for sperm-ZP binding. N-terminal fragment Arg-32 to Arg-160 of ZP3 interacted with ZP4 and inhibited sperm-ZP binding, whereas fragment Arg-32 to Thr-155 showed much weaker interaction with ZP4. Mutation of N-glycosylated Asn-146 to Asp in the N-terminal fragment Arg-32 to Glu-178 of ZP3 did not interrupt the interaction of this fragment with ZP4, but it did reduce the inhibitory activity of the complex for sperm-ZP binding. In contrast, mutation of N-glycosylated Asn-124 to Asp did not significantly reduce the activity. Taken together, these results suggest that one of the ZP4 binding sites exists in the flexible hinge region of ZP3 and that the N-glycosylation in this region is involved in the sperm binding.

  16. A tandem sequence motif acts as a distance-dependent enhancer in a set of genes involved in translation by binding the proteins NonO and SFPQ

    Directory of Open Access Journals (Sweden)

    Roepcke Stefan

    2011-12-01

    Full Text Available Abstract Background Bioinformatic analyses of expression control sequences in promoters of co-expressed or functionally related genes enable the discovery of common regulatory sequence motifs that might be involved in co-ordinated gene expression. By studying promoter sequences of the human ribosomal protein genes we recently identified a novel highly specific Localized Tandem Sequence Motif (LTSM. In this work we sought to identify additional genes and LTSM-binding proteins to elucidate potential regulatory mechanisms. Results Genome-wide analyses allowed finding a considerable number of additional LTSM-positive genes, the products of which are involved in translation, among them, translation initiation and elongation factors, and 5S rRNA. Electromobility shift assays then showed specific signals demonstrating the binding of protein complexes to LTSM in ribosomal protein gene promoters. Pull-down assays with LTSM-containing oligonucleotides and subsequent mass spectrometric analysis identified the related multifunctional nucleotide binding proteins NonO and SFPQ in the binding complex. Functional characterization then revealed that LTSM enhances the transcriptional activity of the promoters in dependency of the distance from the transcription start site. Conclusions Our data demonstrate the power of bioinformatic analyses for the identification of biologically relevant sequence motifs. LTSM and the here found LTSM-binding proteins NonO and SFPQ were discovered through a synergistic combination of bioinformatic and biochemical methods and are regulators of the expression of a set of genes of the translational apparatus in a distance-dependent manner.

  17. HIV Triggers a cGAS-Dependent, Vpu- and Vpr-Regulated Type I Interferon Response in CD4+ T Cells

    Directory of Open Access Journals (Sweden)

    Jolien Vermeire

    2016-10-01

    Full Text Available Several pattern-recognition receptors sense HIV-1 replication products and induce type I interferon (IFN-I production under specific experimental conditions. However, it is thought that viral sensing and IFN induction are virtually absent in the main target cells of HIV-1 in vivo. Here, we show that activated CD4+ T cells sense HIV-1 infection through the cytosolic DNA sensor cGAS and mount a bioactive IFN-I response. Efficient induction of IFN-I by HIV-1 infection requires proviral integration and is regulated by newly expressed viral accessory proteins: Vpr potentiates, while Vpu suppresses cGAS-dependent IFN-I induction. Furthermore, Vpr also amplifies innate sensing of HIV-1 infection in Vpx-treated dendritic cells. Our results identify cGAS as mediator of an IFN-I response to HIV-1 infection in CD4+ T cells and demonstrate that this response is modulated by the viral accessory proteins Vpr and Vpu. Thus, viral innate immune evasion is incomplete in the main target cells of HIV-1.

  18. GTP-blot analysis of small GTP-binding proteins. The C-terminus is involved in renaturation of blotted proteins.

    Science.gov (United States)

    Klinz, F J

    1994-10-01

    Recombinant c-Ha-ras, ralA and rap2, but not rap1A or rap1B proteins retained their ability to bind [alpha-32P]GTP after SDS/PAGE and transfer to nitrocellulose. Recombinant c-Has-ras missing the C-terminal 23 amino acid residues failed to bind [alpha-32P]GTP after the blot, and the ability of recombinant ralA missing the C-terminal 28 amino acid residues to bind [alpha-32P]GTP was decreased many-fold. The presence of nonionic detergents of the polyoxyethylene type such as Tween 20, Triton X-100, Nonidet P40 or Lubrol PX in the incubation buffer was necessary to induce renaturation of blotted recombinant c-Ha-ras protein, whereas other types of detergents were ineffective. We propose that detergents of the polyoxyethylene type induce the refolding of some types of blotted small GTP-binding proteins and that the C-terminus is involved in the refolding process. Membranes from NIH3T3 fibroblasts overexpressing c-Ha-ras protein showed much weaker binding of [alpha-32P]GTP as expected from the level of ras immunoreactivity. Treatment of fibroblasts with lovastatin, an inhibitor of hydroxymethylglutaryl-coenzyme A reductase, caused the accumulation of the unfarnesylated form of c-Ha-ras in the cytosol. Examination of [alpha-32P]GTP-binding and immunoreactivity for cytosolic and membrane-bound c-Ha-ras revealed that binding of [alpha-32P]GTP to unprocessed c-Ha-ras was increased about threefold compared to the same amount of processed c-Ha-ras. Our results demonstrate that detection and quantification of small GTP-binding proteins in eukaryotic cells by GTP-blot analysis is hampered by the fact that these proteins differ strongly in their ability to renature after blotting to nitrocellulose.

  19. Involvement of individual subsites and secondary substrate binding sites in multiple attack on amylose by barley alpha-amylase

    DEFF Research Database (Denmark)

    Kramhøft, Birte; Bak-Jensen, Kristian Sass; Mori, Haruhide

    2005-01-01

    Barley alpha-amylase 1 (AMY1) hydrolyzed amylose with a degree of multiple attack (DMA) of 1.9; that is, on average, 2.9 glycoside bonds are cleaved per productive enzyme-substrate encounter. Six AMY1 mutants, spanning the substrate binding cleft from subsites -6 to +4, and a fusion protein, AMY1...... can be manipulated by structural changes in the active site or by introduction of extra substrate binding sites....... translocation of substrate in the binding cleft upon the initial cleavage to produce G6-G10, essentially independent of subsite mutations, and short-distance moves resulting in individually very different rates of release of G1-G4. Accordingly, the degree of multiple attack as well as the profile of products...

  20. The cell recognition model in chlorolichens involving a fungal lectin binding to an algal ligand can be extended to cyanolichens.

    Science.gov (United States)

    Vivas, M; Sacristán, M; Legaz, M E; Vicente, C

    2010-07-01

    Leptogium corniculatum, a cyanolichen containing Nostoc as photobiont, produces and secretes arginase to culture medium containing arginine. This secreted arginase was pre-purified by affinity chromatography on beads of activated agarose to which a polygalactosylated urease, purified from Evernia prunastri, was attached. Arginase was eluted from the beads with 50 mm alpha-d-galactose. The eluted arginase binds preferentially to the cell surface of Nostoc isolated from this lichen thallus, although it is also able to bind, to some extent, to the cell surface of the chlorobiont isolated from E. prunastri. Previous studies in chlorolichens have shown that a fungal lectin that develops subsidiary arginase activity can be a factor in recognition of compatible algal cells through binding to a polygalactosylated urease, which acts as a lectin ligand in the algal cell wall. Our experiments demonstrate that this model can now be extended to cyanolichens.

  1. A novel cell binding site in the coiled‐coil domain of laminin involved in capillary morphogenesis

    DEFF Research Database (Denmark)

    Sanz, Laura; García-Bermejo, Laura; Blanco, Francisco J

    2003-01-01

    Recently, we reported the isolation and characterization of an anti‐laminin antibody that modulates the extracellular matrix‐dependent morphogenesis of endothelial cells. Here we use this antibody to precisely map the binding site responsible for mediating this biologically important interaction....

  2. Theoretical Study of Molecular Determinants Involved in Signal Binding to the TraR Protein of Agrobacterium tumefaciens

    Directory of Open Access Journals (Sweden)

    N. Kumar

    2005-10-01

    Full Text Available N-acylated homoserine lactone (AHL mediated cell-cell communication in bacteria is dependent on the recognition of the cognate signal by its receptor. This interaction allows the receptor-ligand complex to act as a transcriptional activator, controlling the expression of a range of bacterial phenotypes, including virulence factor expression and biofilm formation. One approach to determine the key features of signal- binding is to model the intermolecular interactions between the receptor and ligand using computational-based modeling software (LigandFit. In this communication, we have modeled the crystal structure of the AHL receptor protein TraR and its AHL signal N-(3- oxooctanoyl-homoserine lactone from Agrobacterium tumefaciens and compared it to the previously reported antagonist behaviour of a number of AHL analogues, in an attempt to determine structural constraints for ligand binding. We conclude that (i a common conformation of the AHL in the hydrophobic and hydrophilic region exists for ligand-binding, (ii a tail chain length threshold of 8 carbons is most favourable for ligand-binding affinity, (iii the positive correlation in the docking studies could be used a virtual screening tool.

  3. Vaccine-Elicited Tier 2 HIV-1 Neutralizing Antibodies Bind to Quaternary Epitopes Involving Glycan-Deficient Patches Proximal to the CD4 Binding Site.

    Directory of Open Access Journals (Sweden)

    Ema T Crooks

    2015-05-01

    Full Text Available Eliciting broad tier 2 neutralizing antibodies (nAbs is a major goal of HIV-1 vaccine research. Here we investigated the ability of native, membrane-expressed JR-FL Env trimers to elicit nAbs. Unusually potent nAb titers developed in 2 of 8 rabbits immunized with virus-like particles (VLPs expressing trimers (trimer VLP sera and in 1 of 20 rabbits immunized with DNA expressing native Env trimer, followed by a protein boost (DNA trimer sera. All 3 sera neutralized via quaternary epitopes and exploited natural gaps in the glycan defenses of the second conserved region of JR-FL gp120. Specifically, trimer VLP sera took advantage of the unusual absence of a glycan at residue 197 (present in 98.7% of Envs. Intriguingly, removing the N197 glycan (with no loss of tier 2 phenotype rendered 50% or 16.7% (n = 18 of clade B tier 2 isolates sensitive to the two trimer VLP sera, showing broad neutralization via the surface masked by the N197 glycan. Neutralizing sera targeted epitopes that overlap with the CD4 binding site, consistent with the role of the N197 glycan in a putative "glycan fence" that limits access to this region. A bioinformatics analysis suggested shared features of one of the trimer VLP sera and monoclonal antibody PG9, consistent with its trimer-dependency. The neutralizing DNA trimer serum took advantage of the absence of a glycan at residue 230, also proximal to the CD4 binding site and suggesting an epitope similar to that of monoclonal antibody 8ANC195, albeit lacking tier 2 breadth. Taken together, our data show for the first time that strain-specific holes in the glycan fence can allow the development of tier 2 neutralizing antibodies to native spikes. Moreover, cross-neutralization can occur in the absence of protecting glycan. Overall, our observations provide new insights that may inform the future development of a neutralizing antibody vaccine.

  4. The Hinge Region of Bovine Zona Pellucida Glycoprotein ZP3 Is Involved in the Formation of the Sperm-Binding Active ZP3/ZP4 Complex

    Directory of Open Access Journals (Sweden)

    Kaori Suzuki

    2015-11-01

    Full Text Available The zona pellucida (ZP surrounds the mammalian oocyte and mediates species-selective sperm-oocyte interactions. Bovine ZP consists of glycoproteins ZP2, ZP3, and ZP4. Neither ZP3 nor ZP4 alone shows inhibitory activity for the binding of sperm to the ZP; however, this activity is seen with the ZP3/ZP4 heterocomplex. Here, we constructed a series of bovine ZP3 mutants to identify the ZP4-binding site on ZP3. Each ZP3 mutant was co-expressed with ZP4 using a baculovirus-Sf9 cell expression system and examined for interaction with ZP4 as well as inhibitory activity for sperm-ZP binding. N-terminal fragment Arg-32 to Arg-160 of ZP3 interacted with ZP4 and inhibited sperm-ZP binding, whereas fragment Arg-32 to Thr-155 showed much weaker interaction with ZP4. Mutation of N-glycosylated Asn-146 to Asp in the N-terminal fragment Arg-32 to Glu-178 of ZP3 did not interrupt the interaction of this fragment with ZP4, but it did reduce the inhibitory activity of the complex for sperm-ZP binding. In contrast, mutation of N-glycosylated Asn-124 to Asp did not significantly reduce the activity. Taken together, these results suggest that one of the ZP4 binding sites exists in the flexible hinge region of ZP3 and that the N-glycosylation in this region is involved in the sperm binding.

  5. Interaction of the amyloid precursor protein-like protein 1 (APLP1) E2 domain with heparan sulfate involves two distinct binding modes

    Energy Technology Data Exchange (ETDEWEB)

    Dahms, Sven O., E-mail: sdahms@fli-leibniz.de [Leibniz Institute for Age Research (FLI), Beutenbergstrasse 11, 07745 Jena (Germany); Mayer, Magnus C. [Freie Universität Berlin, Thielallee 63, 14195 Berlin (Germany); Miltenyi Biotec GmbH, Robert-Koch-Strasse 1, 17166 Teterow (Germany); Roeser, Dirk [Leibniz Institute for Age Research (FLI), Beutenbergstrasse 11, 07745 Jena (Germany); Multhaup, Gerd [McGill University Montreal, Montreal, Quebec H3G 1Y6 (Canada); Than, Manuel E., E-mail: sdahms@fli-leibniz.de [Leibniz Institute for Age Research (FLI), Beutenbergstrasse 11, 07745 Jena (Germany)

    2015-03-01

    Two X-ray structures of APLP1 E2 with and without a heparin dodecasaccharide are presented, revealing two distinct binding modes of the protein to heparan sulfate. The data provide a mechanistic explanation of how APP-like proteins bind to heparan sulfates and how they specifically recognize nonreducing structures of heparan sulfates. Beyond the pathology of Alzheimer’s disease, the members of the amyloid precursor protein (APP) family are essential for neuronal development and cell homeostasis in mammals. APP and its paralogues APP-like protein 1 (APLP1) and APP-like protein 2 (APLP2) contain the highly conserved heparan sulfate (HS) binding domain E2, which effects various (patho)physiological functions. Here, two crystal structures of the E2 domain of APLP1 are presented in the apo form and in complex with a heparin dodecasaccharide at 2.5 Å resolution. The apo structure of APLP1 E2 revealed an unfolded and hence flexible N-terminal helix αA. The (APLP1 E2){sub 2}–(heparin){sub 2} complex structure revealed two distinct binding modes, with APLP1 E2 explicitly recognizing the heparin terminus but also interacting with a continuous heparin chain. The latter only requires a certain register of the sugar moieties that fits to a positively charged surface patch and contributes to the general heparin-binding capability of APP-family proteins. Terminal binding of APLP1 E2 to heparin specifically involves a structure of the nonreducing end that is very similar to heparanase-processed HS chains. These data reveal a conserved mechanism for the binding of APP-family proteins to HS and imply a specific regulatory role of HS modifications in the biology of APP and APP-like proteins.

  6. An immunogenic, surface-exposed domain of Haemophilus ducreyi outer membrane protein HgbA is involved in hemoglobin binding.

    Science.gov (United States)

    Nepluev, Igor; Afonina, Galyna; Fusco, William G; Leduc, Isabelle; Olsen, Bonnie; Temple, Brenda; Elkins, Christopher

    2009-07-01

    HgbA is the sole TonB-dependent receptor for hemoglobin (Hb) acquisition of Haemophilus ducreyi. Binding of Hb to HgbA is the initial step in heme acquisition from Hb. To better understand this step, we mutagenized hgbA by deletion of each of the 11 putative surface-exposed loops and expressed each of the mutant proteins in trans in host strain H. ducreyi FX547 hgbA. All mutant proteins were expressed, exported, and detected on the surface by anti-HgbA immunoglobulin G (IgG). Deletion of sequences in loops 5 and 7 of HgbA abolished Hb binding in two different formats. In contrast, HgbA proteins containing deletions in the other nine loops retained the ability to bind Hb. None of the clones expressing mutant proteins were able to grow on plates containing low concentrations of Hb. Previously we demonstrated in a swine model of chancroid infection that an HgbA vaccine conferred complete protection from a challenge infection. Using anti-HgbA IgG from this study and the above deletion mutants, we show that loops 4, 5, and 7 of HgbA were immunogenic and surface exposed and that IgG directed against loops 4 and 5 blocked Hb binding. Furthermore, loop 6 was cleaved by protease on intact H. ducreyi, suggesting surface exposure. These data implicate a central domain of HgbA (in respect to the primary amino acid sequence) as important in Hb binding and suggest that this region of the molecule might have potential as a subunit vaccine.

  7. Sterols and triterpenoids as potential anti-inflammatories: Molecular docking studies for binding to some enzymes involved in inflammatory pathways.

    Science.gov (United States)

    Loza-Mejía, Marco A; Salazar, Juan Rodrigo

    2015-11-01

    Triterpenes and sterols are good candidates for the development of anti-inflammatory drugs and use in chemoprevention or chemotherapy of cancer via the interaction with therapeutic targets related to inflammation, such as COX-1 and -2; LOX-5; MPO, PLA2 and i-NOS. In this study, we use molecular docking to evaluate the potential binding of a database of selected sterol and triterpenoid compounds with several skeletons against enzymes related to inflammation to propose structural requirements beneficial for anti-inflammatory activity that can be used for the design of more potent and selective anti-inflammatory and antitumor drugs. Our results suggest that the substitution pattern is important and that there is an important relationship between the class of sterol or triterpenoid skeleton and enzyme binding.

  8. Involvement of individual subsites and secondary substrate binding sites in multiple attack on amylose by barley alpha-amylase

    DEFF Research Database (Denmark)

    Kramhøft, Birte; Bak-Jensen, Kristian Sass; Mori, Haruhide;

    2005-01-01

    Barley alpha-amylase 1 (AMY1) hydrolyzed amylose with a degree of multiple attack (DMA) of 1.9; that is, on average, 2.9 glycoside bonds are cleaved per productive enzyme-substrate encounter. Six AMY1 mutants, spanning the substrate binding cleft from subsites -6 to +4, and a fusion protein, AMY1......-SBD, of AMY1 and the starch binding domain (SBD) of Aspergillus niger glucoamylase were also analyzed. DMA of the subsite -6 mutant Y105A and AMY1-SBD increased to 3.3 and 3.0, respectively. M53E, M298S, and T212W at subsites -2, +1/+2, and +4, respectively, and the double mutant Y105A/T212W had...

  9. The peripheral binding of 14-3-3γ to membranes involves isoform-specific histidine residues.

    Directory of Open Access Journals (Sweden)

    Helene J Bustad

    Full Text Available Mammalian 14-3-3 protein scaffolds include seven conserved isoforms that bind numerous phosphorylated protein partners and regulate many cellular processes. Some 14-3-3-isoforms, notably γ, have elevated affinity for membranes, which might contribute to modulate the subcellular localization of the partners and substantiate the importance of investigating molecular mechanisms of membrane interaction. By applying surface plasmon resonance we here show that the binding to phospholipid bilayers is stimulated when 14-3-3γ is complexed with its partner, a peptide corresponding to the Ser19-phosphorylated N-terminal region of tyrosine hydroxylase. Moreover, membrane interaction is dependent on salts of kosmotropic ions, which also stabilize 14-3-3γ. Electrostatic analysis of available crystal structures of γ and of the non-membrane-binding ζ-isoform, complemented with molecular dynamics simulations, indicate that the electrostatic potential distribution of phosphopeptide-bound 14-3-3γ is optimal for interaction with the membrane through amphipathic helices at the N-terminal dimerization region. In addition, His158, and especially His195, both specific to 14-3-3γ and located at the convex lateral side, appeared to be pivotal for the ligand induced membrane interaction, as corroborated by site-directed mutagenesis. The participation of these histidine residues might be associated to their increased protonation upon membrane binding. Overall, these results reveal membrane-targeting motifs and give insights on mechanisms that furnish the 14-3-3γ scaffold with the capacity for tuned shuffling from soluble to membrane-bound states.

  10. Pdx-1 regulation of the INGAP promoter involves sequestration of NeuroD into a non-DNA-binding complex.

    Science.gov (United States)

    Taylor-Fishwick, David A; Shi, Wenjing; Hughes, Laura; Vinik, Aaron

    2010-01-01

    Islet neogenesis-associated protein (INGAP) can enhance beta-cell mass to offset progression of diabetes. Identifying how transcription factors regulate INGAP gene expression could reveal key checkpoints governing islet neogenesis. Protein complex interactions at the INGAP promoter were detected using a beta-galactosidase reporter, these protein-DNA complexes being validated in competitive electrophoresis mobility shift assays. The relevance of the revealed promoter interactions was confirmed in small interfering RNA (siRNA) gene knockdown studies. Pdx-1 negatively regulates stimulation of the INGAP promoter by Pan-1/NeuroD. Independently, Pdx-1, Pan-1, and NeuroD bind to the INGAP promoter as revealed by electrophoresis mobility shift assay studies. In combination, Pdx-1 selectively displaces NeuroD from a DNA-binding complex with Pan-1 to form a non-DNA-binding unit. The importance of this interaction is shown in HIT cells that have a forced reduction of Pdx-1 expression. In siRNA/Pdx-1-depleted HIT cells, the interaction of Pan-1/NeuroD with the INGAP promoter is increased 6-fold. Furthermore, endogenous INGAP expression is detected in Pdx-1-depleted cells. These data reveal a dynamic interaction between Pdx-1, NeuroD, and Pan-1 for the regulation of INGAP promoter activity. Modulating molecular regulators of DNA expression may be a consideration in diabetic therapies that translate exogenous stimuli into new endogenous beta-cell mass.

  11. New Anti-Nodal Monoclonal Antibodies Targeting the Nodal Pre-Helix Loop Involved in Cripto-1 Binding

    Directory of Open Access Journals (Sweden)

    Annalia Focà

    2015-09-01

    Full Text Available Nodal is a potent embryonic morphogen belonging to the TGF-β superfamily. Typically, it also binds to the ALK4/ActRIIB receptor complex in the presence of the co-receptor Cripto-1. Nodal expression is physiologically restricted to embryonic tissues and human embryonic stem cells, is absent in normal cells but re-emerges in several human cancers, including melanoma, breast, and colon cancer. Our aim was to obtain mAbs able to recognize Nodal on a major CBR (Cripto-Binding-Region site and to block the Cripto-1-mediated signalling. To achieve this, antibodies were raised against hNodal(44–67 and mAbs generated by the hybridoma technology. We have selected one mAb, named 3D1, which strongly associates with full-length rhNodal (KD 1.4 nM and recognizes the endogenous protein in a panel of human melanoma cell lines by western blot and FACS analyses. 3D1 inhibits the Nodal-Cripto-1 binding and blocks Smad2/3 phosphorylation. Data suggest that inhibition of the Nodal-Cripto-1 axis is a valid therapeutic approach against melanoma and 3D1 is a promising and interesting agent for blocking Nodal-Cripto mediated tumor development. These findings increase the interest for Nodal as both a diagnostic and prognostic marker and as a potential new target for therapeutic intervention.

  12. Estrogen-mediated regulation of Igf1 transcription and uterine growth involves direct binding of estrogen receptor alpha to estrogen-responsive elements.

    Science.gov (United States)

    Hewitt, Sylvia C; Li, Yin; Li, Leping; Korach, Kenneth S

    2010-01-22

    Estrogen enables uterine proliferation, which depends on synthesis of the IGF1 growth factor. This proliferation and IGF1 synthesis requires the estrogen receptor (ER), which binds directly to target DNA sequences (estrogen-responsive elements or EREs), or interacts with other transcription factors, such as AP1, to impact transcription. We observe neither uterine growth nor an increase in Igf1 transcript in a mouse with a DNA-binding mutated ER alpha (KIKO), indicating that both Igf1 regulation and uterine proliferation require the DNA binding function of the ER. We identified several potential EREs in the Igf1 gene, and chromatin immunoprecipitation analysis revealed ER alpha binding to these EREs in wild type but not KIKO chromatin. STAT5 is also reported to regulate Igf1; uterine Stat5a transcript is increased by estradiol (E(2)), but not in KIKO or alpha ERKO uteri, indicating ER alpha- and ERE-dependent regulation. ER alpha binds to a potential Stat5a ERE. We hypothesize that E(2) increases Stat5a transcript through ERE binding; that ER alpha, either alone or together with STAT5, then acts to increase Igf1 transcription; and that the resulting lack of IGF1 impairs KIKO uterine growth. Treatment with exogenous IGF1, alone or in combination with E(2), induces proliferation in wild type but not KIKO uteri, indicating that IGF1 replacement does not rescue the KIKO proliferative response. Together, these observations suggest in contrast to previous in vitro studies of IGF-1 regulation involving AP1 motifs that direct ER alpha-DNA interaction is required to increase Igf1 transcription. Additionally, full ER alpha function is needed to mediate other cellular signals of the growth factor for uterine growth.

  13. Prolactin Regulatory Element Binding Protein Is Involved in Hepatitis C Virus Replication by Interaction with NS4B

    Science.gov (United States)

    Kong, Lingbao; Fujimoto, Akira; Nakamura, Mariko; Aoyagi, Haruyo; Matsuda, Mami; Watashi, Koichi; Suzuki, Ryosuke; Arita, Minetaro; Yamagoe, Satoshi; Dohmae, Naoshi; Suzuki, Takehiro; Sakamaki, Yuriko; Ichinose, Shizuko; Suzuki, Tetsuro; Wakita, Takaji

    2016-01-01

    ABSTRACT It has been proposed that the hepatitis C virus (HCV) NS4B protein triggers the membranous HCV replication compartment, but the underlying molecular mechanism is not fully understood. Here, we screened for NS4B-associated membrane proteins by tandem affinity purification and proteome analysis and identified 202 host proteins. Subsequent screening of replicon cells with small interfering RNA identified prolactin regulatory element binding (PREB) to be a novel HCV host cofactor. The interaction between PREB and NS4B was confirmed by immunoprecipitation, immunofluorescence, and proximity ligation assays. PREB colocalized with double-stranded RNA and the newly synthesized HCV RNA labeled with bromouridine triphosphate in HCV replicon cells. Furthermore, PREB shifted to detergent-resistant membranes (DRMs), where HCV replication complexes reside, in the presence of NS4B expression in Huh7 cells. However, a PREB mutant lacking the NS4B-binding region (PREBd3) could not colocalize with double-stranded RNA and did not shift to the DRM in the presence of NS4B. These results indicate that PREB locates at the HCV replication complex by interacting with NS4B. PREB silencing inhibited the formation of the membranous HCV replication compartment and increased the protease and nuclease sensitivity of HCV replicase proteins and RNA in DRMs, respectively. Collectively, these data indicate that PREB promotes HCV RNA replication by participating in the formation of the membranous replication compartment and by maintaining its proper structure by interacting with NS4B. Furthermore, PREB was induced by HCV infection in vitro and in vivo. Our findings provide new insights into HCV host cofactors. IMPORTANCE The hepatitis C virus (HCV) protein NS4B can induce alteration of the endoplasmic reticulum and the formation of a membranous web structure, which provides a platform for the HCV replication complex. The molecular mechanism by which NS4B induces the membranous HCV replication

  14. Identification of essential histidine residues involved in heme binding and Hemozoin formation in heme detoxification protein from Plasmodium falciparum.

    Science.gov (United States)

    Nakatani, Keisuke; Ishikawa, Haruto; Aono, Shigetoshi; Mizutani, Yasuhisa

    2014-08-20

    Malaria parasites digest hemoglobin within a food vacuole to supply amino acids, releasing the toxic product heme. During the detoxification, toxic free heme is converted into an insoluble crystalline form called hemozoin (Hz). Heme detoxification protein (HDP) in Plasmodium falciparum is one of the most potent of the hemozoin-producing enzymes. However, the reaction mechanisms of HDP are poorly understood. We identified the active site residues in HDP using a combination of Hz formation assay and spectroscopic characterization of mutant proteins. Replacement of the critical histidine residues His122, His172, His175, and His197 resulted in a reduction in the Hz formation activity to approximately 50% of the wild-type protein. Spectroscopic characterization of histidine-substituted mutants revealed that His122 binds heme and that His172 and His175 form a part of another heme-binding site. Our results show that the histidine residues could be present in the individual active sites and could be ligated to each heme. The interaction between heme and the histidine residues would serve as a molecular tether, allowing the proper positioning of two hemes to enable heme dimer formation. The heme dimer would act as a seed for the crystal growth of Hz in P. falciparum.

  15. Specific amino acid residues are involved in substrate discrimination and template binding of human REV1 protein.

    Science.gov (United States)

    Piao, Jinlian; Masuda, Yuji; Kamiya, Kenji

    2010-02-05

    REV1 is a member of the Y-family DNA polymerases, but is atypical in utilizing only dCTP with a preference for guanine (G) as the template. Crystallography of the REV1-DNA-dCTP ternary complex has revealed a unique mechanism by which template G is evicted from the DNA helix and incoming dCTP is recognized by an arginine residue in an alpha-loop, termed the N-digit. To better understand functions of its individual amino acid residues, we made a series of mutant human REV1 proteins. We found that R357 and L358 play vital roles in template binding. Furthermore, extensive mutation analysis revealed a novel function of R357 for substrate discrimination, in addition to previously proposed specific interaction with incoming dCTP. We found that the binding pocket for dCTP of REV1 has also significant but latent affinity for dGTP. The results suggest that the positive charge on R357 could prevent interaction with dGTP. We propose that both direct and indirect mechanisms mediated by R357 ensure specificity for dCTP.

  16. The galectin-3-binding protein of Cynoglossus semilaevis is a secreted protein of the innate immune system that binds a wide range of bacteria and is involved in host phagocytosis.

    Science.gov (United States)

    Chen, Cheng; Chi, Heng; Sun, Bo-guang; Sun, Li

    2013-04-01

    Galectin-3 binding protein (G3BP) is a secreted glycoprotein that binds galectin-3 and is involved in various pathological conditions including cancer and viral infection. In fish, G3BP-like sequences have been identified in very few species and their biological properties are entirely unknown. In this work, we reported for the first time the identification and analysis of a teleost G3BP, CsG3BP, from half-smooth tongue sole (Cynoglossus semilaevis). CsG3BP is composed of 565 amino acids and possesses a Scavenger Receptor Cysteine-rich (SRCR) domain, the latter containing six conserved cysteine residues that were predicted to form three intramolecular disulfide bridges. Expression of CsG3BP was detected in a wide range of tissues and upregulated by bacterial and megalocytivirus infection in a time-dependent manner. Immunoblot analysis detected CsG3BP in the culture medium of peripheral blood leukocytes (PBL) and in serum following bacterial stimulation. Purified recombinant CsG3BP (rCsG3BP) exhibited bacterial binding ability in a dose-dependent manner. In contrast, the mutant forms of CsG3BP that bear deletion of the SRCR domain or serine substitutions at three cysteine residues involved in disulfide bond formation lost the capacity of bacterial interaction. rCsG3BP displayed a certain substrate preference and bound more effectively to Gram-negative bacteria than to Gram-positive bacteria. Further study showed that when the CsG3BP produced by PBL was blocked by anti-rCsG3BP antibodies, the phagocytic activity of the cells was significantly reduced. Taken together, these results indicate that CsG3BP is a secreted protein that probably plays a role in innate immune defense by binding to bacterial cells via the SRCR domain and thereby facilitating host phagocytosis.

  17. Aspartic Acid 397 in Subunit B of the Na+-pumping NADH:Quinone Oxidoreductase from Vibrio cholerae Forms Part of a Sodium-binding Site, Is Involved in Cation Selectivity, and Affects Cation-binding Site Cooperativity

    Science.gov (United States)

    Shea, Michael E.; Juárez, Oscar; Cho, Jonathan; Barquera, Blanca

    2013-01-01

    The Na+-pumping NADH:quinone complex is found in Vibrio cholerae and other marine and pathogenic bacteria. NADH:ubiquinone oxidoreductase oxidizes NADH and reduces ubiquinone, using the free energy released by this reaction to pump sodium ions across the cell membrane. In a previous report, a conserved aspartic acid residue in the NqrB subunit at position 397, located in the cytosolic face of this protein, was proposed to be involved in the capture of sodium. Here, we studied the role of this residue through the characterization of mutant enzymes in which this aspartic acid was substituted by other residues that change charge and size, such as arginine, serine, lysine, glutamic acid, and cysteine. Our results indicate that NqrB-Asp-397 forms part of one of the at least two sodium-binding sites and that both size and charge at this position are critical for the function of the enzyme. Moreover, we demonstrate that this residue is involved in cation selectivity, has a critical role in the communication between sodium-binding sites, by promoting cooperativity, and controls the electron transfer step involved in sodium uptake (2Fe-2S → FMNC). PMID:24030824

  18. Identification of residues involved in binding of IL5 to betacom using betaIL3 and betacom chimeras.

    Science.gov (United States)

    Czabotar, P E; Holland, J; Sanderson, C J

    1999-10-22

    In mice there are two forms of the beta chain used in the IL3 receptor system, betacom and betaIL3. betacom is used by the IL3, IL5 and GM-CSF receptors whereas betaIL3 is only used in the IL3 receptor. In this work an assay was developed to identify residues of beta1L3 that restrict IL5 activity. It was found that such residues reside within the 2nd CRM of the molecule. Furthermore, when residues in the betaIL3 B'-C' loop were replaced with betacom sequence a form of betaIL3 was produced that was able to respond to IL5. This region is also responsible for IL3 binding to betaIL3 in the absence of alpha chain. It is therefore an important structural motif of betacom and betaIL3 responsible for both ligand interaction and specificity.

  19. Identification of multiple SNT-binding sites on NPM-ALK oncoprotein and their involvement in cell transformation.

    Science.gov (United States)

    Chikamori, M; Fujimoto, J; Tokai-Nishizumi, N; Yamamoto, T

    2007-05-01

    The t(2;5) chromosomal translocation occurs in anaplastic large-cell lymphoma arising from activated T lymphocytes. This genomic rearrangement generates the nucleophosmin (NPM)-anaplastic lymphoma kinase (ALK) oncoprotein that is a chimeric protein consisting of parts of the nuclear protein NPM and ALK receptor protein-tyrosine kinase. We used yeast two-hybrid screening to identify an adaptor protein Suc1-associated neurotrophic factor-induced tyrosine-phosphorylated target (SNT)-2 as a new partner that interacted with the cytoplasmic domain of ALK. Immunoprecipitation assay revealed that SNT-1 and SNT-2 interacted with NPM-ALK and kinase-negative NPM-ALK mutant. Y156, Y567 and a 19-amino-acid sequence (aa 631-649) of NPM-ALK were essential for this interaction. The interaction through Y156 and Y567 was dependent on phosphorylation of these tyrosines, whereas the interaction through the 19-amino-acid sequence was independent of phosphorylation. NPM-ALK mutant protein mutated at these three binding sites showed significantly reduced transforming activity. This transformation-defective NPM-ALK mutant still interacted with signal transducing proteins such as phospholipase C-gamma and phosphatidylinositol 3-kinase, which were previously reported to be relevant to NPM-ALK-dependent tumorigenesis. These observations indicate that the three SNT-binding sites of NPM-ALK are important for its transforming activity. This raises a possibility that SNT family proteins play significant roles in cellular transformation triggered by NPM-ALK, which though remains to be verified.

  20. Cloning of a novel phosphotyrosine binding domain containing molecule, Odin, involved in signaling by receptor tyrosine kinases

    DEFF Research Database (Denmark)

    Pandey, A.; Blagoev, B.; Kratchmarova, I.;

    2002-01-01

    We have used a proteomic approach using mass spectrometry to identify signaling molecules involved in receptor tyrosine kinase signaling pathways. Using affinity purification by anti-phosphotyrosine antibodies to enrich for tyrosine phosphorylated proteins, we have identified a novel signaling mo...

  1. Rho family GTP binding proteins are involved in the regulatory volume decrease process in NIH3T3 mouse fibroblasts

    DEFF Research Database (Denmark)

    Pedersen, Stine F; Beisner, Kristine H; Willumsen, Berthe M

    2002-01-01

    The role of Rho GTPases in the regulatory volume decrease (RVD) process following osmotic cell swelling is controversial and has so far only been investigated for the swelling-activated Cl- efflux. We investigated the involvement of RhoA in the RVD process in NIH3T3 mouse fibroblasts, using wild-...

  2. Mammalian sperm-egg fusion: the development of rat oolemma fusibility during oogenesis involves the appearance of binding sites for sperm protein "DE".

    Science.gov (United States)

    Cohen, D J; Munuce, M J; Cuasnicú, P S

    1996-07-01

    Rat epididymal protein DE mediates gamete fusion through complementary sites localized on the egg surface. To investigate whether these egg components are involved in the development of rat oolemma fusibility, both the presence of DE-binding components and the ability of the oolemma to fuse with sperm during oogenesis were examined. Localization of DE-complementary sites by indirect immunofluorescence revealed the absence of fluorescent labeling on growing oocytes with a diameter 50 microns. This localization of oolemma components changed progressively to a patchy distribution during maturation. Whereas sperm incorporation was observed only in maturing oocytes, the development of the Hoechst transfer technique to evaluate membrane fusion revealed that germinal vesicle oocytes with a diameter > 50 microns were already competent to fuse with sperm. The involvement of the DE-complementary sites in the oolemma fusibility of these oocytes was confirmed by the fact that the presence of DE during gamete coincubation significantly (p rat oolemma occurs during the growth period and involves the appearance of DE-binding components on the oocyte surface. This study provides novel information on the molecular mechanism by which the mammalian egg plasma membrane becomes competent to fuse with sperm during oogenesis.

  3. RNA-Binding Proteins in Trichomonas vaginalis: Atypical Multifunctional Proteins Involved in a Posttranscriptional Iron Regulatory Mechanism

    Science.gov (United States)

    Figueroa-Angulo, Elisa E.; Calla-Choque, Jaeson S.; Mancilla-Olea, Maria Inocente; Arroyo, Rossana

    2015-01-01

    Iron homeostasis is highly regulated in vertebrates through a regulatory system mediated by RNA-protein interactions between the iron regulatory proteins (IRPs) that interact with an iron responsive element (IRE) located in certain mRNAs, dubbed the IRE-IRP regulatory system. Trichomonas vaginalis, the causal agent of trichomoniasis, presents high iron dependency to regulate its growth, metabolism, and virulence properties. Although T. vaginalis lacks IRPs or proteins with aconitase activity, possesses gene expression mechanisms of iron regulation at the transcriptional and posttranscriptional levels. However, only one gene with iron regulation at the transcriptional level has been described. Recently, our research group described an iron posttranscriptional regulatory mechanism in the T. vaginalis tvcp4 and tvcp12 cysteine proteinase mRNAs. The tvcp4 and tvcp12 mRNAs have a stem-loop structure in the 5'-coding region or in the 3'-UTR, respectively that interacts with T. vaginalis multifunctional proteins HSP70, α-Actinin, and Actin under iron starvation condition, causing translation inhibition or mRNA stabilization similar to the previously characterized IRE-IRP system in eukaryotes. Herein, we summarize recent progress and shed some light on atypical RNA-binding proteins that may participate in the iron posttranscriptional regulation in T. vaginalis. PMID:26703754

  4. [Involvement of phosphatidylinositol-4,5-bisphosphate binding proteins in the generation of contractile oscillations in the Physarum polycephalum plasmodium].

    Science.gov (United States)

    Matveeva, N B; Beĭlina, S I; Kliueva, A A; Teplov, V A

    2014-01-01

    Using the Physarum polycephalum, plasmodium, a giant amoeboid cell with the strongly pronounced auto-oscillatory mode of motility, which exhibits regularities of motile behavior common with those of tissue cells and has the same signal systems, the possibility of the participation of phosphatidylinositol-4,5-bisphosphate in the regulation of the contractile activity has been studied. The effect of neomycin as a substrate inhibitor of phospholipase C, which binds with high affinity to phosphatidylinositol-4,5-bisphosphate in the membrane, on force oscillations generated by plasmodial strands under isometric conditions and after the addition of the protein kinase C inhibitors staurosporine, UCN-01, and Ro-318220, separatelyand in combination with the calmodulin inhibitor calmidazolium has been examined. It has been shown that neomycin at pH 7.0 and concentrations of 0.1-5.0 mM stops contractile oscillations for 10-30 min but then they begin to gradually restore; the oscillation period at the initial stage of the restoration is.shorter than it was earlier and then increases due to the elongation of the contraction phase. Analysis of data obtained is in favor of the assumption that the plasmodial membrane contains MARCKS-like proteins and protein kinase C-controlled pools of phosphatidylinositol-4,5-bisphosphate, which can participate in the generation of auto-oscillations observed in the plasmodium.

  5. Molecular characterization and expression analysis of Triticum aestivum squamosa-promoter binding protein-box genes involved in ear development

    Institute of Scientific and Technical Information of China (English)

    Bin Zhang; a Xia Liu; a Guangyao Zhao; Xinguo Mao; Ang Li; Ruilian Jing

    2014-01-01

    Wheat (Triticum aestivum L.) is one of the most important crops in the world. Squamosa-promoter binding protein (SBP)-box genes play a critical role in regulating flower and fruit development. In this study, 10 novel SBP-box genes (TaSPL genes) were isolated from wheat ((Triticum aestivum L.) cultivar Yanzhan 4110). Phylogenetic analysis classified the TaSPL genes into five groups (G1-G5). The motif combinations and expression patterns of the TaSPL genes varied among the five groups with each having own distinctive characteristics: TaSPL20/21 in G1 and TaSPL17 in G2 mainly expressed in the shoot apical meristem and the young ear, and their expression levels responded to development of the ear; TaSPL6/15 belonging to G3 were upregulated and TaSPL1/23 in G4 were downregulated during grain development; the gene in G5 (TaSPL3) expressed constitutively. Thus, the consistency of the phylogenetic analysis, motif compositions, and expression patterns of the TaSPL genes revealed specific gene structures and functions. On the other hand, the diverse gene structures and different expression patterns suggested that wheat SBP-box genes have a wide range of functions. The results also suggest a potential role for wheat SBP-box genes in ear development. This study provides a significant beginning of functional analysis of SBP-box genes in wheat.

  6. Relaxase DNA Binding and Cleavage Are Two Distinguishable Steps in Conjugative DNA Processing That Involve Different Sequence Elements of the nic Site*

    Science.gov (United States)

    Lucas, María; González-Pérez, Blanca; Cabezas, Matilde; Moncalian, Gabriel; Rivas, Germán; de la Cruz, Fernando

    2010-01-01

    TrwC, the relaxase of plasmid R388, catalyzes a series of concerted DNA cleavage and strand transfer reactions on a specific site (nic) of its origin of transfer (oriT). nic contains the cleavage site and an adjacent inverted repeat (IR2). Mutation analysis in the nic region indicated that recognition of the IR2 proximal arm and the nucleotides located between IR2 and the cleavage site were essential for supercoiled DNA processing, as judged either by in vitro nic cleavage or by mobilization of a plasmid containing oriT. Formation of the IR2 cruciform and recognition of the distal IR2 arm and loop were not necessary for these reactions to take place. On the other hand, IR2 was not involved in TrwC single-stranded DNA processing in vitro. For single-stranded DNA nic cleavage, TrwC recognized a sequence embracing six nucleotides upstream of the cleavage site and two nucleotides downstream. This suggests that TrwC DNA binding and cleavage are two distinguishable steps in conjugative DNA processing and that different sequence elements are recognized by TrwC in each step. IR2-proximal arm recognition was crucial for the initial supercoiled DNA binding. Subsequent recognition of the adjacent single-stranded DNA binding site was required to position the cleavage site in the active center of the protein so that the nic cleavage reaction could take place. PMID:20061574

  7. Involvement of the Acyl-CoA binding domain containing 7 in the control of food intake and energy expenditure in mice

    Science.gov (United States)

    Lanfray, Damien; Caron, Alexandre; Roy, Marie-Claude; Laplante, Mathieu; Morin, Fabrice; Leprince, Jérôme; Tonon, Marie-Christine; Richard, Denis

    2016-01-01

    Acyl-CoA binding domain-containing 7 (Acbd7) is a paralog gene of the diazepam-binding inhibitor/Acyl-CoA binding protein in which single nucleotide polymorphism has recently been associated with obesity in humans. In this report, we provide converging evidence indicating that a splice variant isoform of the Acbd7 mRNA is expressed and translated by some POMC and GABAergic-neurons in the hypothalamic arcuate nucleus (ARC). We have demonstrated that the ARC ACBD7 isoform was produced and processed into a bioactive peptide referred to as nonadecaneuropeptide (NDN) in response to catabolic signals. We have characterized NDN as a potent anorexigenic signal acting through an uncharacterized endozepine G protein-coupled receptor and subsequently via the melanocortin system. Our results suggest that ACBD7-producing neurons participate in the hypothalamic leptin signalling pathway. Taken together, these data suggest that ACBD7-producing neurons are involved in the hypothalamic control exerted on food intake and energy expenditure by the leptin-melanocortin pathway. DOI: http://dx.doi.org/10.7554/eLife.11742.001 PMID:26880548

  8. Relaxase DNA binding and cleavage are two distinguishable steps in conjugative DNA processing that involve different sequence elements of the nic site.

    Science.gov (United States)

    Lucas, María; González-Pérez, Blanca; Cabezas, Matilde; Moncalian, Gabriel; Rivas, Germán; de la Cruz, Fernando

    2010-03-19

    TrwC, the relaxase of plasmid R388, catalyzes a series of concerted DNA cleavage and strand transfer reactions on a specific site (nic) of its origin of transfer (oriT). nic contains the cleavage site and an adjacent inverted repeat (IR(2)). Mutation analysis in the nic region indicated that recognition of the IR(2) proximal arm and the nucleotides located between IR(2) and the cleavage site were essential for supercoiled DNA processing, as judged either by in vitro nic cleavage or by mobilization of a plasmid containing oriT. Formation of the IR(2) cruciform and recognition of the distal IR(2) arm and loop were not necessary for these reactions to take place. On the other hand, IR(2) was not involved in TrwC single-stranded DNA processing in vitro. For single-stranded DNA nic cleavage, TrwC recognized a sequence embracing six nucleotides upstream of the cleavage site and two nucleotides downstream. This suggests that TrwC DNA binding and cleavage are two distinguishable steps in conjugative DNA processing and that different sequence elements are recognized by TrwC in each step. IR(2)-proximal arm recognition was crucial for the initial supercoiled DNA binding. Subsequent recognition of the adjacent single-stranded DNA binding site was required to position the cleavage site in the active center of the protein so that the nic cleavage reaction could take place.

  9. GIL, a new c-di-GMP binding protein domain involved in regulation of cellulose synthesis in enterobacteria

    OpenAIRE

    Fang, Xin; Ahmad, Irfan; Blanka, Andrea; Schottkowski, Marco; Cimdins, Annika; Galperin, Michael Y.; Römling, Ute; Gomelsky, Mark

    2014-01-01

    In contrast to numerous enzymes involved in c-di-GMP synthesis and degradation in enterobacteria, only a handful of c-di-GMP receptors/effectors have been identified. In search of new c-di-GMP receptors, we screened the Escherichia coli ASKA overexpression gene library using the Differential Radial Capillary Action of Ligand Assay (DRaCALA) with fluorescently and radioisotope-labeled c-di-GMP. We uncovered three new candidate c-di-GMP receptors in E. coli and characterized one of them, BcsE. ...

  10. The Molecular Chaperone HSP70 Binds to and Stabilizes NOD2, an Important Protein Involved in Crohn Disease*

    Science.gov (United States)

    Mohanan, Vishnu; Grimes, Catherine Leimkuhler

    2014-01-01

    Microbes are detected by the pathogen-associated molecular patterns through specific host pattern recognition receptors. Nucleotide-binding oligomerization domain-containing protein 2 (NOD2) is an intracellular pattern recognition receptor that recognizes fragments of the bacterial cell wall. NOD2 is important to human biology; when it is mutated it loses the ability to respond properly to bacterial cell wall fragments. To determine the mechanisms of misactivation in the NOD2 Crohn mutants, we developed a cell-based system to screen for protein-protein interactors of NOD2. We identified heat shock protein 70 (HSP70) as a protein interactor of both wild type and Crohn mutant NOD2. HSP70 has previously been linked to inflammation, especially in the regulation of anti-inflammatory molecules. Induced HSP70 expression in cells increased the response of NOD2 to bacterial cell wall fragments. In addition, an HSP70 inhibitor, KNK437, was capable of decreasing NOD2-mediated NF-κB activation in response to bacterial cell wall stimulation. We found HSP70 to regulate the half-life of NOD2, as increasing the HSP70 level in cells increased the half-life of NOD2, and down-regulating HSP70 decreased the half-life of NOD2. The expression levels of the Crohn-associated NOD2 variants were less compared with wild type. The overexpression of HSP70 significantly increased NOD2 levels as well as the signaling capacity of the mutants. Thus, our study shows that restoring the stability of the NOD2 Crohn mutants is sufficient for rescuing the ability of these mutations to signal the presence of a bacterial cell wall ligand. PMID:24790089

  11. The molecular chaperone HSP70 binds to and stabilizes NOD2, an important protein involved in Crohn disease.

    Science.gov (United States)

    Mohanan, Vishnu; Grimes, Catherine Leimkuhler

    2014-07-04

    Microbes are detected by the pathogen-associated molecular patterns through specific host pattern recognition receptors. Nucleotide-binding oligomerization domain-containing protein 2 (NOD2) is an intracellular pattern recognition receptor that recognizes fragments of the bacterial cell wall. NOD2 is important to human biology; when it is mutated it loses the ability to respond properly to bacterial cell wall fragments. To determine the mechanisms of misactivation in the NOD2 Crohn mutants, we developed a cell-based system to screen for protein-protein interactors of NOD2. We identified heat shock protein 70 (HSP70) as a protein interactor of both wild type and Crohn mutant NOD2. HSP70 has previously been linked to inflammation, especially in the regulation of anti-inflammatory molecules. Induced HSP70 expression in cells increased the response of NOD2 to bacterial cell wall fragments. In addition, an HSP70 inhibitor, KNK437, was capable of decreasing NOD2-mediated NF-κB activation in response to bacterial cell wall stimulation. We found HSP70 to regulate the half-life of NOD2, as increasing the HSP70 level in cells increased the half-life of NOD2, and down-regulating HSP70 decreased the half-life of NOD2. The expression levels of the Crohn-associated NOD2 variants were less compared with wild type. The overexpression of HSP70 significantly increased NOD2 levels as well as the signaling capacity of the mutants. Thus, our study shows that restoring the stability of the NOD2 Crohn mutants is sufficient for rescuing the ability of these mutations to signal the presence of a bacterial cell wall ligand.

  12. Arabidopsis membrane-associated acyl-CoA-binding protein ACBP1 is involved in stem cuticle formation.

    Science.gov (United States)

    Xue, Yan; Xiao, Shi; Kim, Juyoung; Lung, Shiu-Cheung; Chen, Liang; Tanner, Julian A; Suh, Mi Chung; Chye, Mee-Len

    2014-10-01

    The membrane-anchored Arabidopsis thaliana ACYL-COA-BINDING PROTEIN1 (AtACBP1) plays important roles in embryogenesis and abiotic stress responses, and interacts with long-chain (LC) acyl-CoA esters. Here, AtACBP1 function in stem cuticle formation was investigated. Transgenic Arabidopsis transformed with an AtACBP1pro::GUS construct revealed β-glucuronidase (GUS) expression on the stem (but not leaf) surface, suggesting a specific role in stem cuticle formation. Isothermal titration calorimetry results revealed that (His)6-tagged recombinant AtACBP1 interacts with LC acyl-CoA esters (18:1-, 18:2-, and 18:3-CoAs) and very-long-chain (VLC) acyl-CoA esters (24:0-, 25:0-, and 26:0-CoAs). VLC fatty acids have been previously demonstrated to act as precursors in wax biosynthesis. Gas chromatography (GC)-flame ionization detector (FID) and GC-mass spectrometry (MS) analyses revealed that an acbp1 mutant showed a reduction in stem and leaf cuticular wax and stem cutin monomer composition in comparison with the wild type (Col-0). Consequently, the acbp1 mutant showed fewer wax crystals on the stem surface in scanning electron microscopy and an irregular stem cuticle layer in transmission electron microscopy in comparison with the wild type. Also, the mutant stems consistently showed a decline in expression of cuticular wax and cutin biosynthetic genes in comparison with the wild type, and the mutant leaves were more susceptible to infection by the necrotrophic pathogen Botrytis cinerea. Taken together, these findings suggest that AtACBP1 participates in Arabidopsis stem cuticle formation by trafficking VLC acyl-CoAs.

  13. Regulation of the CDP-choline pathway by sterol regulatory element binding proteins involves transcriptional and post-transcriptional mechanisms.

    Science.gov (United States)

    Ridgway, Neale D; Lagace, Thomas A

    2003-06-15

    The synthesis of phosphatidylcholine (PtdCho) by the CDP-choline pathway is under the control of the rate-limiting enzyme CTP:phosphocholine cytidylyltransferase (CCT). Sterol regulatory element binding proteins (SREBPs) have been proposed to regulate CCT at the transcriptional level, or via the synthesis of lipid activators or substrates of the CDP-choline pathway. To assess the contributions of these two mechanisms, we examined CCTalpha expression and PtdCho synthesis by the CDP-choline pathway in cholesterol and fatty acid auxotrophic CHO M19 cells inducibly expressing constitutively active nuclear forms of SREBP1a or SREBP2. Induction of either SREBP resulted in increased expression of mRNAs for sterol-regulated genes, elevated fatty acid and cholesterol synthesis (>10-50-fold) and increased PtdCho synthesis (2-fold). CCTalpha mRNA was increased 2-fold by enforced expression of SREBP1a or SREBP2. The resultant increase in CCTalpha protein and activity (2-fold) was restricted primarily to the soluble fraction of cells, and increased CCTalpha activity in vivo was not detected. Inhibition of the synthesis of fatty acids or their CoA esters by cerulenin or triacsin C respectively following SREBP induction effectively blocked the accompanying elevation in PtdCho synthesis. Thus PtdCho synthesis was driven by increased synthesis of fatty acids or a product thereof. These data show that transcriptional activation of CCTalpha is modest relative to that of other SREBP-regulated genes, and that stimulation of PtdCho synthesis by SREBPs in CHO cells is due primarily to increased fatty acid synthesis.

  14. Identification of regions within the Legionella pneumophila VipA effector protein involved in actin binding and polymerization and in interference with eukaryotic organelle trafficking.

    Science.gov (United States)

    Bugalhão, Joana N; Mota, Luís Jaime; Franco, Irina S

    2016-02-01

    The Legionella pneumophila effector protein VipA is an actin nucleator that co-localizes with actin filaments and early endosomes in infected macrophages and which interferes with organelle trafficking when expressed in yeast. To identify the regions of VipA involved in its subcellular localization and functions, we ectopically expressed specific VipA mutant proteins in eukaryotic cells. This indicated that the characteristic punctate distribution of VipA depends on its NH2 -terminal (amino acid residues 1-133) and central coiled-coil (amino acid residues 133-206) regions, and suggested a role for the COOH-terminal (amino acid residues 206-339) region in association with actin filaments and for the NH2 -terminal in co-localization with early endosomes. Co-immunoprecipitation and in vitro assays showed that the COOH-terminal region of VipA is necessary and sufficient to mediate actin binding, and is essential but insufficient to induce microfilament formation. Assays in yeast revealed that the NH2 and the COOH-terminal regions, and possibly an NPY motif within the NH2 region of VipA, are necessary for interference with organelle trafficking. Overall, this suggests that subversion of eukaryotic vesicular trafficking by VipA involves both its ability to associate with early endosomes via its NH2 -terminal region and its capacity to bind and polymerize actin through its COOH-terminal region.

  15. Rho family GTP binding proteins are involved in the regulatory volume decrease process in NIH3T3 mouse fibroblasts.

    Science.gov (United States)

    Pedersen, Stine F; Beisner, Kristine H; Hougaard, Charlotte; Willumsen, Berthe M; Lambert, Ian H; Hoffmann, Else K

    2002-06-15

    The role of Rho GTPases in the regulatory volume decrease (RVD) process following osmotic cell swelling is controversial and has so far only been investigated for the swelling-activated Cl- efflux. We investigated the involvement of RhoA in the RVD process in NIH3T3 mouse fibroblasts, using wild-type cells and three clones expressing constitutively active RhoA (RhoAV14). RhoAV14 expression resulted in an up to fourfold increase in the rate of RVD, measured by large-angle light scattering. The increase in RVD rate correlated with RhoAV14 expression. RVD in wild-type cells was unaffected by the Rho kinase inhibitor Y-27632 and the phosphatidyl-inositol 3 kinase (PI3K) inhibitor wortmannin. The maximal rates of swelling-activated K+ (86 Rb+ as tracer) and taurine ([3H]taurine as tracer) efflux after a 30 % reduction in extracellular osmolarity were increased about twofold in cells with maximal RhoAV14 expression compared to wild-type cells, but were unaffected by Y-27632. The volume set points for activation of release of both osmolytes appeared to be reduced by RhoAV14 expression. The maximal taurine efflux rate constant was potentiated by the tyrosine phosphatase inhibitor Na(3)VO(4), and inhibited by the tyrosine kinase inhibitor genistein. The magnitude of the swelling-activated Cl- current (I(Cl,swell) ) was higher in RhoAV14 than in wild-type cells after a 7.5 % reduction in extracellular osmolarity, but, in contrast to 86Rb+ and [3H]taurine efflux, similar in both strains after a 30 % reduction in extracellular osmolarity. I(Cl,swell) was inhibited by Y-27632 and strongly potentiated by the myosin light chain kinase inhibitors ML-7 and AV25. It is suggested that RhoA, although not the volume sensor per se, is an important upstream modulator shared by multiple swelling-activated channels on which RhoA exerts its effects via divergent signalling pathways.

  16. SENSITIVE TO PROTON RHIZOTOXICITY1, CALMODULIN BINDING TRANSCRIPTION ACTIVATOR2, and other transcription factors are involved in ALUMINUM-ACTIVATED MALATE TRANSPORTER1 expression.

    Science.gov (United States)

    Tokizawa, Mutsutomo; Kobayashi, Yuriko; Saito, Tatsunori; Kobayashi, Masatomo; Iuchi, Satoshi; Nomoto, Mika; Tada, Yasuomi; Yamamoto, Yoshiharu Y; Koyama, Hiroyuki

    2015-03-01

    In Arabidopsis (Arabidopsis thaliana) the root apex is protected from aluminum (Al) rhizotoxicity by excretion of malate, an Al chelator, by ALUMINUM-ACTIVATED MALATE TRANSPORTER1 (AtALMT1). AtALMT1 expression is fundamentally regulated by the SENSITIVE TO PROTON RHIZOTOXICITY1 (STOP1) zinc finger protein, but other transcription factors have roles that enable Al-inducible expression with a broad dynamic range. In this study, we characterized multiple cis-elements in the AtALMT1 promoter that interact with transcription factors. In planta complementation assays of AtALMT1 driven by 5' truncated promoters of different lengths showed that the promoter region between -540 and 0 (the first ATG) restored the Al-sensitive phenotype of atalm1 and thus contains cis-elements essential for AtALMT1 expression for Al tolerance. Computation of overrepresented octamers showed that eight regions in this promoter region contained potential cis-elements involved in Al induction and STOP1 regulation. Mutation in a position around -297 from the first ATG completely inactivated AtALMT1 expression and Al response. In vitro binding assays showed that this region contained the STOP1 binding site, which accounted for the recognition by four zinc finger domains of the protein. Other positions were characterized as cis-elements that regulated expression by repressors and activators and a transcription factor that determines root tip expression of AtALMT1. From the consensus of known cis-elements, we identified CALMODULIN-BINDING TRANSCRIPTION ACTIVATOR2 to be an activator of AtALMT1 expression. Al-inducible expression of AtALMT1 changed transcription starting sites, which increased the abundance of transcripts with a shortened 5' untranslated region. The present analyses identified multiple mechanisms that regulate AtALMT1 expression.

  17. Starch‐binding domains in the CBM45 family – low‐affinity domains from glucan, water dikinase and α‐amylase involved in plastidial starch metabolism

    DEFF Research Database (Denmark)

    Glaring, Mikkel Andreas; Baumann, Martin; Abou Hachem, Maher

    2011-01-01

    Starch‐binding domains are noncatalytic carbohydrate‐binding modules that mediate binding to granular starch. The starch‐binding domains from the carbohydrate‐binding module family 45 (CBM45, ) are found as N‐terminal tandem repeats in a small number of enzymes, primarily from photosynthesizing...... amylolytic enzymes. This suggests that low‐affinity starch‐binding domains are a recurring feature in plastidial starch metabolism, and supports the hypothesis that reversible binding, effectuated through low‐affinity interaction with starch granules, facilitates dynamic regulation of enzyme activities and...

  18. Involvement of lipopolysaccharide binding protein, CD14, and Toll-like receptors in the initiation of innate immune responses by Treponema glycolipids.

    Science.gov (United States)

    Schröder, N W; Opitz, B; Lamping, N; Michelsen, K S; Zähringer, U; Göbel, U B; Schumann, R R

    2000-09-01

    Culture supernatants from Treponema maltophilum associated with periodontitis in humans and Treponema brennaborense found in a bovine cattle disease accompanied with cachexia caused a dose-dependent TNF-alpha synthesis in human monocytes increasing with culture time. This activity could be reduced significantly by blocking the CD14-part of the LPS receptor using the My 4 mAb and by polymyxin B. In the murine macrophage cell line RAW 264.7, Treponema culture supernatants induced TNF-alpha secretion in a LPS binding protein (LBP)-dependent fashion. To enrich for active compounds, supernatants were extracted with butanol, while whole cells were extracted using a phenol/water method resulting in recovery of material exhibiting a similar activity profile. An LPS-LBP binding competition assay revealed an interaction of the treponeme phenol/water extracts with LBP, while precipitation studies implied an affinity to polymyxin B and endotoxin neutralizing protein. Macrophages obtained from C3H/HeJ mice carrying a Toll-like receptor (TLR)-4 mutation were stimulated with treponeme extracts for NO release to assess the role of TLRs in cell activation. Furthermore, NF-kappaB translocation in TLR-2-negative Chinese hamster ovary (CHO) cells was studied. We found that phenol/water-extracts of the two strains use TLRs differently with T. brennaborense-stimulating cells in a TLR-4-dependent fashion, while T. maltophilum-mediated activation apparently involved TLR-2. These results indicate the presence of a novel class of glycolipids in Treponema initiating inflammatory responses involving LBP, CD14, and TLRs.

  19. Integration Host Factor (IHF binds to the promoter region of the phtD operon involved in phaseolotoxin synthesis in P. syringae pv. phaseolicola NPS3121

    Directory of Open Access Journals (Sweden)

    Álvarez-Morales Ariel

    2011-05-01

    Full Text Available Abstract Background Pseudomonas syringae pv. phaseolicola, the causal agent of halo blight disease in beans, produces a toxin known as phaseolotoxin, in whose synthesis participate a group of genes organized within the genome in a region known as the "Pht cluster". This region, which is thought to have been acquired by horizontal gene transfer, includes 5 transcriptional units, two monocistronic (argK, phtL and three polycistronic (phtA, phtD, phtM, whose expression is temperature dependent. So far, the regulatory mechanisms involved in phaseolotoxin synthesis have not been elucidated and the only well-established fact is the requirement of low temperatures for its synthesis. In this work, we searched for regulatory proteins that could be involved in phaseolotoxin synthesis, focusing on the regulation of the phtD operon. Results In this study we identified the global regulator IHF (Integration Host Factor, which binds to the promoter region of the phtD operon, exerting a negative effect on the expression of this operon. This is the first regulatory protein identified as part of the phaseolotoxin synthesis system. Our findings suggest that the Pht cluster was similarly regulated in the ancestral cluster by IHF or similar protein, and integrated into the global regulatory mechanism of P. syringae pv. phaseolicola, after the horizontal gene transfer event by using the host IHF protein. Conclusion This study identifies the IHF protein as one element involved in the regulation of phaseolotoxin synthesis in P. syringae pv. phaseolicola NPS3121 and provides new insights into the regulatory mechanisms involved in phaseolotoxin production.

  20. In vitro recombination catalyzed by bacterial class 1 integron integrase IntI1 involves cooperative binding and specific oligomeric intermediates.

    Directory of Open Access Journals (Sweden)

    Véronique Dubois

    Full Text Available Gene transfer via bacterial integrons is a major pathway for facilitating the spread of antibiotic resistance genes across bacteria. Recently the mechanism underlying the recombination catalyzed by class 1 integron recombinase (IntI1 between attC and attI1 was highlighted demonstrating the involvement of a single-stranded intermediary on the attC site. However, the process allowing the generation of this single-stranded substrate has not been determined, nor have the active IntI1*DNA complexes been identified. Using the in vitro strand transfer assay and a crosslink strategy we previously described we demonstrated that the single-stranded attC sequences could be generated in the absence of other bacterial proteins in addition to IntI. This suggests a possible role for this protein in stabilizing and/or generating this structure. The mechanism of folding of the active IntI*DNA complexes was further analyzed and we show here that it involves a cooperative binding of the protein to each recombination site and the emergence of different oligomeric species specific for each DNA substrate. These findings provide further insight into the recombination reaction catalyzed by IntI1.

  1. Preliminary screening of differentially expressed genes involved in methyl-CpG-binding protein 2 gene-mediated proliferation in human osteosarcoma cells.

    Science.gov (United States)

    Meng, Gang; Li, Yi; Lv, YangFan; Dai, Huanzi; Zhang, Xi; Guo, Qiao-Nan

    2015-04-01

    Methyl-CpG-binding protein 2 (MeCP2) is essential in human brain development and has been linked to several cancer types and neuro-developmental disorders. This study aims to screen the MeCP2 related differentially expressed genes and discover the therapeutic targets for osteosarcoma. CCK8 assay was used to detect the proliferation and SaOS2 and U2OS cells. Apoptosis of cells was detected by flow cytometry analysis that monitored Annexin V-APC/7-DD binding and 7-ADD uptake simultaneously. Denaturing formaldehyde agarose gel electrophoresis was employed to examine the quality of total RNA 18S and 28S units. Gene chip technique was utilized to discover the differentially expressed genes correlated with MeCP2 gene. Differential gene screening criteria were used to screen the changed genes. The gene up-regulation or down-regulation more than 1.5 times was regarded as significant differential expression genes. The CCK8 results indicated that the cell proliferation of MeCP2 silencing cells (LV-MeCP2-RNAi) was significantly decreased compared to non-silenced cells (LV-MeCP2-RNAi-CN) (P genes were screened from a total of 49,395 transcripts. Among the total 107 transcripts, 34 transcripts were up-regulated and 73 transcripts were down-regulated. There were five significant differentially expressed genes, including IGFBP4, HOXC8, LMO4, MDK, and CTGF, which correlated with the MeCP2 gene. The methylation frequency of CpG in IGFBP4 gene could achieve 55%. In conclusion, the differentially expressed IGFBP4, HOXC8, LMO4, MDK, and CTGF genes may be involved in MeCP2 gene-mediated proliferation and apoptosis in osteosarcoma cells.

  2. Involvement of CjMDR1, a plant multidrug-resistance-type ATP-binding cassette protein, in alkaloid transport in Coptis japonica

    Science.gov (United States)

    Shitan, Nobukazu; Bazin, Ingrid; Dan, Kazuyuki; Obata, Kazuaki; Kigawa, Koji; Ueda, Kazumitsu; Sato, Fumihiko; Forestier, Cyrille; Yazaki, Kazufumi

    2003-01-01

    Alkaloids comprise one of the largest groups of plant secondary metabolites. Berberine, a benzylisoquinoline alkaloid, is preferentially accumulated in the rhizome of Coptis japonica, a ranunculaceous plant, whereas gene expression for berberine biosynthetic enzymes has been observed specifically in root tissues, which suggests that berberine synthesized in the root is transported to the rhizome, where there is high accumulation. We recently isolated a cDNA encoding a multidrug-resistance protein (MDR)-type ATP-binding cassette (ABC) transporter (Cjmdr1) from berberine-producing cultured C. japonica cells, which is highly expressed in the rhizome. Functional analysis of Cjmdr1 by using a Xenopus oocyte expression system showed that CjMDR1 transported berberine in an inward direction, resulting in a higher accumulation of berberine in Cjmdr1-injected oocytes than in the control. Typical inhibitors of ABC proteins, such as vanadate, nifedipine, and glibenclamide, as well as ATP depletion, clearly inhibited this CjMDR1-dependent berberine uptake, suggesting that CjMDR1 functioned as an ABC transporter. Conventional membrane separation methods showed that CjMDR1 was localized in the plasma membrane of C. japonica cells. In situ hybridization indicated that Cjmdr1 mRNA was expressed preferentially in xylem tissues of the rhizome. These findings strongly suggest that CjMDR1 is involved in the translocation of berberine from the root to the rhizome. PMID:12524452

  3. Octamer-binding protein 4 affects the cell biology and phenotypic transition of lung cancer cells involving β-catenin/E-cadherin complex degradation.

    Science.gov (United States)

    Chen, Zhong-Shu; Ling, Dong-Jin; Zhang, Yang-De; Feng, Jian-Xiong; Zhang, Xue-Yu; Shi, Tian-Sheng

    2015-03-01

    Clinical studies have reported evidence for the involvement of octamer‑binding protein 4 (Oct4) in the tumorigenicity and progression of lung cancer; however, the role of Oct4 in lung cancer cell biology in vitro and its mechanism of action remain to be elucidated. Mortality among lung cancer patients is more frequently due to metastasis rather than their primary tumors. Epithelial‑mesenchymal transition (EMT) is a prominent biological event for the induction of epithelial cancer metastasis. The aim of the present study was to investigate whether Oct4 had the capacity to induce lung cancer cell metastasis via the promoting the EMT in vitro. Moreover, the effect of Oct4 on the β‑catenin/E‑cadherin complex, associated with EMT, was examined using immunofluorescence and immunoprecipitation assays as well as western blot analysis. The results demonstrated that Oct4 enhanced cell invasion and adhesion accompanied by the downregulation of epithelial marker cytokeratin, and upregulation of the mesenchymal markers vimentin and N‑cadherin. Furthermore, Oct4 induced EMT of lung cancer cells by promoting β‑catenin/E‑cadherin complex degradation and regulating nuclear localization of β‑catenin. In conclusion, the present study indicated that Oct4 affected the cell biology of lung cancer cells in vitro through promoting lung cancer cell metastasis via EMT; in addition, the results suggested that the association and degradation of the β‑catenin/E‑cadherin complex was regulated by Oct4 during the process of EMT.

  4. Molecular Events Involved in a Single Cycle of Ligand Transfer from an ATP Binding Cassette Transporter, LolCDE, to a Molecular Chaperone, LolA*

    OpenAIRE

    Taniguchi, Naohiro; Tokuda, Hajime

    2008-01-01

    An ATP binding cassette transporter LolCDE complex releases lipoproteins from the inner membrane of Escherichia coli in an ATP-dependent manner, leading to the formation of a complex between a lipoprotein and a periplasmic chaperone, LolA. LolA is proposed to undergo a conformational change upon the lipoprotein binding. The lipoprotein is then transferred from the LolA-lipoprotein complex to the outer membrane via LolB. Unlike most ATP binding cassette transporters med...

  5. Starch-binding domains in the CBM45 family--low-affinity domains from glucan, water dikinase and α-amylase involved in plastidial starch metabolism.

    Science.gov (United States)

    Glaring, Mikkel A; Baumann, Martin J; Abou Hachem, Maher; Nakai, Hiroyuki; Nakai, Natsuko; Santelia, Diana; Sigurskjold, Bent W; Zeeman, Samuel C; Blennow, Andreas; Svensson, Birte

    2011-04-01

    Starch-binding domains are noncatalytic carbohydrate-binding modules that mediate binding to granular starch. The starch-binding domains from the carbohydrate-binding module family 45 (CBM45, http://www.cazy.org) are found as N-terminal tandem repeats in a small number of enzymes, primarily from photosynthesizing organisms. Isolated domains from representatives of each of the two classes of enzyme carrying CBM45-type domains, the Solanum tuberosumα-glucan, water dikinase and the Arabidopsis thaliana plastidial α-amylase 3, were expressed as recombinant proteins and characterized. Differential scanning calorimetry was used to verify the conformational integrity of an isolated CBM45 domain, revealing a surprisingly high thermal stability (T(m) of 84.8 °C). The functionality of CBM45 was demonstrated in planta by yellow/green fluorescent protein fusions and transient expression in tobacco leaves. Affinities for starch and soluble cyclodextrin starch mimics were measured by adsorption assays, surface plasmon resonance and isothermal titration calorimetry analyses. The data indicate that CBM45 binds with an affinity of about two orders of magnitude lower than the classical starch-binding domains from extracellular microbial amylolytic enzymes. This suggests that low-affinity starch-binding domains are a recurring feature in plastidial starch metabolism, and supports the hypothesis that reversible binding, effectuated through low-affinity interaction with starch granules, facilitates dynamic regulation of enzyme activities and, hence, of starch metabolism.

  6. Involvement of the Eukaryote-Like Kinase-Phosphatase System and a Protein That Interacts with Penicillin-Binding Protein 5 in Emergence of Cephalosporin Resistance in Cephalosporin-Sensitive Class A Penicillin-Binding Protein Mutants in Enterococcus faecium

    Directory of Open Access Journals (Sweden)

    Charlene Desbonnet

    2016-04-01

    Full Text Available The intrinsic resistance of Enterococcus faecium to ceftriaxone and cefepime (here referred to as “cephalosporins” is reliant on the presence of class A penicillin-binding proteins (Pbps PbpF and PonA. Mutants lacking these Pbps exhibit cephalosporin susceptibility that is reversible by exposure to penicillin and by selection on cephalosporin-containing medium. We selected two cephalosporin-resistant mutants (Cro1 and Cro2 of class A Pbp-deficient E. faecium CV598. Genome analysis revealed changes in the serine-threonine kinase Stk in Cro1 and a truncation in the associated phosphatase StpA in Cro2 whose respective involvements in resistance were confirmed in separate complementation experiments. In an additional effort to identify proteins linked to cephalosporin resistance, we performed tandem affinity purification using Pbp5 as bait in penicillin-exposed E. faecium; these experiments yielded a protein designated Pbp5-associated protein (P5AP. Transcription of the P5AP gene was increased after exposure to penicillin in wild-type strains and in Cro2 and suppressed in Cro2 complemented with the wild-type stpA. Transformation of class A Pbp-deficient strains with the plasmid-carried P5AP gene conferred cephalosporin resistance. These data suggest that Pbp5-associated cephalosporin resistance in E. faecium devoid of typical class A Pbps is related to the presence of P5AP, whose expression is influenced by the activity of the serine-threonine phosphatase/kinase system.

  7. Neonatal handling and the maternal odor preference in rat pups: involvement of monoamines and cyclic AMP response element-binding protein pathway in the olfactory bulb.

    Science.gov (United States)

    Raineki, C; De Souza, M A; Szawka, R E; Lutz, M L; De Vasconcellos, L F T; Sanvitto, G L; Izquierdo, I; Bevilaqua, L R; Cammarota, M; Lucion, A B

    2009-03-03

    Early-life environmental events, such as the handling procedure, can induce long-lasting alterations upon several behavioral and neuroendocrine systems. However, the changes within the pups that could be causally related to the effects in adulthood are still poorly understood. In the present study, we analyzed the effects of neonatal handling on behavioral (maternal odor preference) and biochemical (cyclic AMP response element-binding protein (CREB) phosphorylation, noradrenaline (NA), and serotonin (5-HT) levels in the olfactory bulb (OB)) parameters in 7-day-old male and female rat pups. Repeated handling (RH) abolished preference for the maternal odor in female pups compared with nonhandled (NH) and the single-handled (SH) ones, while in RH males the preference was not different than NH and SH groups. In both male and female pups, RH decreased NA activity in the OB, but 5-HT activity increased only in males. Since preference for the maternal odor involves the synergic action of NA and 5-HT in the OB, the maintenance of the behavior in RH males could be related to the increased 5-HT activity, in spite of reduction in the NA activity in the OB. RH did not alter CREB phosphorylation in the OB of both male and females compared with NH pups. The repeated handling procedure can affect the behavior of rat pups in response to the maternal odor and biochemical parameters related to the olfactory learning mechanism. Sex differences were already detected in 7-day-old pups. Although the responsiveness of the hypothalamic-pituitary-adrenal axis to stressors is reduced in the neonatal period, environmental interventions may impact behavioral and biochemical mechanisms relevant to the animal at that early age.

  8. A radial glia gene marker, fatty acid binding protein 7 (FABP7, is involved in proliferation and invasion of glioblastoma cells.

    Directory of Open Access Journals (Sweden)

    Antonella De Rosa

    Full Text Available Glioblastoma multiforme (GBM is among the most deadly cancers. A number of studies suggest that a fraction of tumor cells with stem cell features (Glioma Stem-like Cells, GSC might be responsible for GBM recurrence and aggressiveness. GSC similarly to normal neural stem cells, can form neurospheres (NS in vitro, and seem to mirror the genetic features of the original tumor better than glioma cells growing adherently in the presence of serum. Using cDNA microarray analysis we identified a number of relevant genes for glioma biology that are differentially expressed in adherent cells and neurospheres derived from the same tumor. Fatty acid-binding protein 7 (FABP7 was identified as one of the most highly expressed genes in NS compared to their adherent counterpart. We found that down-regulation of FABP7 expression in NS by small interfering RNAs significantly reduced cell proliferation and migration. We also evaluated the potential involvement of FABP7 in response to radiotherapy, as this treatment may cause increased tumor infiltration. Migration of irradiated NS was associated to increased expression of FABP7. In agreement with this, in vivo reduced tumorigenicity of GBM cells with down-regulated expression of FABP7 was associated to decreased expression of the migration marker doublecortin. Notably, we observed that PPAR antagonists affect FABP7 expression and decrease the migration capability of NS after irradiation. As a whole, the data emphasize the role of FABP7 expression in GBM migration and provide translational hints on the timing of treatment with anti-FABP7 agents like PPAR antagonists during GBM evolution.

  9. An external loop region of domain III of dengue virus type 2 envelope protein is involved in serotype-specific binding to mosquito but not mammalian cells.

    Science.gov (United States)

    Hung, Jan-Jong; Hsieh, Meng-Ti; Young, Ming-Jer; Kao, Chuan-Liang; King, Chwan-Chuen; Chang, Wen

    2004-01-01

    Dengue virus (DV) is a flavivirus and infects mammalian cells through mosquito vectors. This study investigates the roles of domain III of DV type 2 envelope protein (EIII) in DV binding to the host cell. Recombinant EIII interferes with DV infection to BHK21 and C6/36 cells by blocking dengue virion adsorption to these cells. Inhibition of EIII on BHK21 cells was broad with no serotype specificity; however, inhibition of EIII on C6/36 cells was relatively serotype specific. Soluble heparin completely blocks binding of EIII to BHK21 cells, suggesting that domain III binds mainly to cell surface heparan sulfates. This suggestion is supported by the observation that EIII binds very weakly to gro2C and sog9 mutant mammalian cell lines that lack heparan sulfate. In contrast, heparin does not block binding of EIII to mosquito cells. Furthermore, a synthetic peptide that includes amino acids (aa) 380 to 389 of EIII, IGVEPGQLKL, inhibits binding of EIII to C6/36 but not BHK21 cells. This peptide corresponds to a lateral loop region on domain III of E protein, indicating a possible role of this loop in binding to mosquito cells. In summary, these results suggest that EIII plays an important role in binding of DV type 2 to host cells. In addition, EIII interacts with heparan sulfates when binding to BHK21 cells, and a loop region containing aa 380 to 389 of EIII may participate in DV type 2 binding to C6/36 cells.

  10. Functional homology between the yeast regulatory proteins GAL4 and LAC9: LAC9-mediated transcriptional activation in Kluyveromyces lactis involves protein binding to a regulatory sequence homologous to the GAL4 protein-binding site.

    OpenAIRE

    Breunig, K D; Kuger, P

    1987-01-01

    As shown previously, the beta-galactosidase gene of Kluyveromyces lactis is transcriptionally regulated via an upstream activation site (UASL) which contains a sequence homologous to the GAL4 protein-binding site in Saccharomyces cerevisiae (M. Ruzzi, K.D. Breunig, A.G. Ficca, and C.P. Hollenberg, Mol. Cell. Biol. 7:991-997, 1987). Here we demonstrate that the region of homology specifically binds a K. lactis regulatory protein. The binding activity was detectable in protein extracts from wil...

  11. CCAAT/enhancer binding protein Beta-2 is involved in growth hormone-regulated insulin-like growth factor-II gene expression in the liver of rainbow trout (Oncorhynchus mykiss)

    Science.gov (United States)

    Previously, we showed that levels of different CCAAT/enhancer binding protein (C/EBP) mRNAs in the liver of rainbow trout were modulated by GH and suggested that C/EBPs might be involved in GH induced IGF-II gene expression. As a step toward further investigation, we have developed monospecific poly...

  12. Identification of the site of human mannan-binding lectin involved in the interaction with its partner serine proteases: the essential role of Lys55

    DEFF Research Database (Denmark)

    Teillet, F; Lacroix, M; Thiel, Steffen

    2007-01-01

    Mannan-binding lectin (MBL) is an oligomeric lectin that binds neutral carbohydrates on pathogens, forms complexes with MBL-associated serine proteases (MASP)-1, -2, and -3 and 19-kDa MBL-associated protein (MAp19), and triggers the complement lectin pathway through activation of MASP-2. To ident...... centered on residue Lys(55), which may form an ionic bond representing the major component of the MBL-MASP interaction. The binding sites for MASP-2/MAp19 and MASP-1/3 have common features but are not strictly identical....

  13. Structural determinants within residues 180-199 of the rodent. alpha. 5 nicotinic acetylcholine receptor subunit involved in. alpha. -bungarotoxin binding

    Energy Technology Data Exchange (ETDEWEB)

    McLane, K.E.; Xiadong Wu; Conti-Tronconi, B.M. (Univ. of Minnesota, St. Paul (United States))

    1991-11-05

    Synthetic peptides corresponding to sequence segments of the nicotinic acetylcholine receptor (nAChR) {alpha} subunits have been used to identify regions that contribute to formation of the binding sites for cholinergic ligands. The authors have previously defined {alpha}-bungarotoxin ({alpha}-BTX) binding sequences between residues 180 and 199 of a putative rat neuronal nAChR {alpha} subunit, designated {alpha}5, and between residues 181 and 200 of the chick neuronal {alpha}7 and {alpha}8 subunits. These sequences are relatively divergent compared with the Torpedo and muscle nAChR {alpha}1 {alpha}-BTX binding sites, which indicates a serious limitation of predicting functional domains of proteins based on homology in general. Given the highly divergent nature of the {alpha}5 sequence, they were interested in determining the critical amino acid residues for {alpha}-BTX binding. In the present study, the effects of single amino acid substitutions of Gly or Ala for each residue of the rat {alpha}(180-199) sequence were tested, using a competition assay, in which peptides compete for {sup 125}I-{alpha}-BTX binding with native Torpedo nAChR. These results indicate that a disulfide bridge between the vicinal cysteines at positions 191 and 192 of the {alpha}5 sequence is not an absolute requirement for {alpha}-BTX binding activity.

  14. Sequences in sigma(54) region I required for binding to early melted DNA and their involvement in sigma-DNA isomerisation.

    Science.gov (United States)

    Gallegos, M T; Buck, M

    2000-04-07

    The bacterial sigma(54) RNA polymerase functions in a transcription activation mechanism that fully relies upon nucleotide hydrolysis by an enhancer binding activator protein to stimulate open complex formation. Here, we describe results of DNA-binding assays used to probe the role of the sigma(54) amino terminal region I in activation. Of the 15 region I alanine substitution mutants assayed, several specifically failed to bind to a DNA structure representing an early conformation in DNA melting. The same mutants are defective in activated transcription and in forming an isomerised sigma-DNA complex on the early opened DNA. The mechanism of activation may therefore require tight binding of sigma(54) to particular early melted DNA structures. Where mutant sigma(54) binding to early melted DNA was detected, activator-dependent isomerisation generally occurred as efficiently as with the wild-type protein, suggesting that certain region I sequences are largely uninvolved in sigma isomerisation. DNA-binding, sigma isomerisation and transcription activation assays allow formulation of a functional map of region I.

  15. Trp[superscript 2313]-His[superscript 2315] of Factor VIII C2 Domain Is Involved in Membrane Binding Structure of a Complex Between the C[subscript 2] Domain and an Inhibitor of Membrane Binding

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Zhuo; Lin, Lin; Yuan, Cai; Nicolaes, Gerry A.F.; Chen, Liqing; Meehan, Edward J.; Furie, Bruce; Furie, Barbara; Huang, Mingdong (Harvard-Med); (UAH); (Maastricht); (Chinese Aca. Sci.)

    2010-11-03

    Factor VIII (FVIII) plays a critical role in blood coagulation by forming the tenase complex with factor IXa and calcium ions on a membrane surface containing negatively charged phospholipids. The tenase complex activates factor X during blood coagulation. The carboxyl-terminal C2 domain of FVIII is the main membrane-binding and von Willebrand factor-binding region of the protein. Mutations of FVIII cause hemophilia A, whereas elevation of FVIII activity is a risk factor for thromboembolic diseases. The C2 domain-membrane interaction has been proposed as a target of intervention for regulation of blood coagulation. A number of molecules that interrupt FVIII or factor V (FV) binding to cell membranes have been identified through high throughput screening or structure-based design. We report crystal structures of the FVIII C2 domain under three new crystallization conditions, and a high resolution (1.15 {angstrom}) crystal structure of the FVIII C2 domain bound to a small molecular inhibitor. The latter structure shows that the inhibitor binds to the surface of an exposed {beta}-strand of the C2 domain, Trp{sup 2313}-His{sup 2315}. This result indicates that the Trp{sup 2313}-His{sup 2315} segment is an important constituent of the membrane-binding motif and provides a model to understand the molecular mechanism of the C2 domain membrane interaction.

  16. Localization of the domains of the Haemophilus ducreyi trimeric autotransporter DsrA involved in serum resistance and binding to the extracellular matrix proteins fibronectin and vitronectin.

    Science.gov (United States)

    Leduc, Isabelle; Olsen, Bonnie; Elkins, Christopher

    2009-02-01

    Resisting the bactericidal activity of naturally occurring antibodies and complement of normal human serum is an important element in the evasion of innate immunity by bacteria. In the gram-negative mucosal pathogen Haemophilus ducreyi, serum resistance is mediated primarily by the trimeric autotransporter DsrA. DsrA also functions as an adhesin for the extracellular matrix proteins fibronectin and vitronectin and mediates attachment of H. ducreyi to keratinocytes. We sought to determine the domain(s) of the 236-residue DsrA protein required for serum resistance and extracellular matrix protein binding. A 140-amino-acid truncated protein containing only the C-terminal portion of the passenger domain and the entire translocator domain of DsrA exhibited binding to fibronectin and vitronectin and conferred serum resistance to an H. ducreyi serum-sensitive strain. A shorter DsrA construct consisting of only 128 amino acids was unable to bind to extracellular matrix proteins but was serum resistant. We concluded that neither fibronectin binding nor vitronectin binding is required for high-level serum resistance in H. ducreyi.

  17. Crystallographic evidence of a large ligand-induced hinge-twist motion between the two domains of the maltodextrin binding protein involved in active transport and chemotaxis.

    Science.gov (United States)

    Sharff, A J; Rodseth, L E; Spurlino, J C; Quiocho, F A

    1992-11-10

    The periplasmic maltodextrin binding protein of Escherichia coli serves as an initial receptor for the active transport of and chemotaxis toward maltooligosaccharides. The three-dimensional structure of the binding protein complexed with maltose has been previously reported [Spurlino, J. C., Lu, G.-Y., & Quiocho, F. A. (1991) J. Biol. Chem. 266, 5202-5219]. Here we report the structure of the unliganded form of the binding protein refined to 1.8-A resolution. This structure, combined with that for the liganded form, provides the first crystallographic evidence that a major ligand-induced conformational change occurs in a periplasmic binding protein. The unliganded structure shows a rigid-body "hinge-bending" between the two globular domains by approximately 35 degrees, relative to the maltose-bound structure, opening the sugar binding site groove located between the two domains. In addition, there is an 8 degrees twist of one domain relative to the other domain. The conformational changes observed between this structure and the maltose-bound structure are consistent with current models of maltose/maltodextrin transport and maltose chemotaxis and solidify a mechanism for receptor differentiation between the ligand-free and ligand-bound forms in signal transduction.

  18. Evidence that E. coli ribosomal protein S13 has two separable functional domains involved in 16S RNA recognition and protein S19 binding.

    Science.gov (United States)

    Schwarzbauer, J; Craven, G R

    1985-09-25

    We have found that E. coli ribosomal protein S13 recognizes multiple sites on 16S RNA. However, when protein S19 is included with a mixture of proteins S4, S7, S8, S16/S17 and S20, the S13 binds to the complex with measurably greater strength and with a stoichiometry of 1.5 copies per particle. This suggests that the protein may have two functional domains. We have tested this idea by cleaving the protein into two polypeptides. It was found that one of the fragments, composed of amino acid residues 84-117, retained the capacity to bind 16S RNA at multiple sites. Protein S19 had no affect on the strength or stoichiometry of the binding of this fragment. These data suggest that S13 has a C-terminal domain primarily responsible for RNA recognition and possibly that the N-terminal region is important for association with protein S19.

  19. Crystal structure of the N-terminal region of human Ash2L shows a winged-helix motif involved in DNA binding

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Yong; Wan, Bingbing; Wang, Kevin C.; Cao, Fang; Yang, Yuting; Protacio, Angeline; Dou, Yali; Chang, Howard Y.; Lei, Ming (Michigan-Med); (HHMI)

    2011-09-06

    Ash2L is a core component of the MLL family histone methyltransferases and has an important role in regulating the methylation of histone H3 on lysine 4. Here, we report the crystal structure of the N-terminal domain of Ash2L and reveal a new function of Ash2L. The structure shows that Ash2L contains an atypical PHD finger that does not have histone tail-binding activity. Unexpectedly, the structure shows a previously unrecognized winged-helix motif that directly binds to DNA. The DNA-binding-deficient mutants of Ash2L reduced Ash2L localization to the HOX locus. Strikingly, a single mutation in Ash2L{sub WH} (K131A) breaks the chromatin domain boundary, suggesting that Ash2L also has a role in chromosome demarcation.

  20. Structures of the activator of K. pneumonia biofilm formation, MrkH, indicates PilZ domains involved in c-di-GMP and DNA binding.

    Science.gov (United States)

    Schumacher, Maria A; Zeng, Wenjie

    2016-09-01

    The pathogenesis of Klebsiella pneumonia is linked to the bacteria's ability to form biofilms. Mannose-resistant Klebsiella-like (Mrk) hemagglutinins are critical for K pneumonia biofilm development, and the expression of the genes encoding these proteins is activated by a 3',5'-cyclic diguanylic acid (c-di-GMP)-regulated transcription factor, MrkH. To gain insight into MrkH function, we performed structural and biochemical analyses. Data revealed MrkH to be a monomer with a two-domain architecture consisting of a PilZ C-domain connected to an N domain that unexpectedly also harbors a PilZ-like fold. Comparison of apo- and c-di-GMP-bound MrkH structures reveals a large 138° interdomain rotation that is induced by binding an intercalated c-di-GMP dimer. c-di-GMP interacts with PilZ C-domain motifs 1 and 2 (RxxxR and D/NxSxxG) and a newly described c-di-GMP-binding motif in the MrkH N domain. Strikingly, these c-di-GMP-binding motifs also stabilize an open state conformation in apo MrkH via contacts from the PilZ motif 1 to residues in the C-domain motif 2 and the c-di-GMP-binding N-domain motif. Use of the same regions in apo structure stabilization and c-di-GMP interaction allows distinction between the states. Indeed, domain reorientation by c-di-GMP complexation with MrkH, which leads to a highly compacted structure, suggests a mechanism by which the protein is activated to bind DNA. To our knowledge, MrkH represents the first instance of specific DNA binding mediated by PilZ domains. The MrkH structures also pave the way for the rational design of inhibitors that target K pneumonia biofilm formation.

  1. LrABCF1, a GCN-type ATP-binding cassette transporter from Lilium regale, is involved in defense responses against viral and fungal pathogens

    Science.gov (United States)

    ATP-binding cassette (ABC) transporters are essential for membrane translocation in diverse biological processes, such as plant development and defense response. Here, a general control non-derepressible (GCN)-type ABC transporter gene, designated LrABCF1, was identified from Cucumber mosaic virus (...

  2. On the Involvement of Copper Binding to the N-Terminus of the Amyloid Beta Peptide of Alzheimer's Disease: A Computational Study on Model Systems

    Directory of Open Access Journals (Sweden)

    Samira Azimi

    2011-01-01

    Full Text Available Density functional and second order Moller-Plesset perturbation theoretical methods, coupled with a polarizable continuum model of water, were applied to determine the structures, binding affinities, and reduction potentials of Cu(II and Cu(I bound to models of the Asp1, Ala2, His6, and His13His14 regions of the amyloid beta peptide of Alzheimer's disease. The results indicate that the N-terminal Asp binds to Cu(II together with His6 and either His13 or His14 to form the lower pH Component I of Aβ. Component II of Aβ is the complex between Cu(II and His6, His13, and His14, to which an amide O (of Ala2 is also coordinated. Asp1 does not bind to Cu(II if three His residues are attached nor to any Cu(I species to which one or more His residues are bound. The most stable Cu(I species is one in which Cu(I bridges the Nδ of His13 and His14 in a linear fashion. Cu(I binds more strongly to Aβ than does Cu(II. The computed reduction potential that closely matches the experimental value for Cu(II/Aβ corresponds to reduction of Component II (without Ala2 to the Cu(I complex after endergonic attachment of His6.

  3. Phage phi 29 regulatory protein p4 stabilizes the binding of the RNA polymerase to the late promoter in a process involving direct protein-protein contacts.

    Science.gov (United States)

    Nuez, B; Rojo, F; Salas, M

    1992-12-01

    Transcription from the late promoter, PA3, of Bacillus subtilis phage phi 29 is activated by the viral regulatory protein p4. A kinetic analysis of the activation process has revealed that the role of protein p4 is to stabilize the binding of RNA polymerase to the promoter as a closed complex without significantly affecting further steps of the initiation process. Electrophoretic band-shift assays performed with a DNA fragment spanning only the protein p4 binding site showed that RNA polymerase could efficiently retard the complex formed by protein p4 bound to the DNA. Similarly, when a DNA fragment containing only the RNA polymerase-binding region of PA3 was used, p4 greatly stimulated the binding of RNA polymerase to the DNA. These results strongly suggest that p4 and RNA polymerase contact each other at the PA3 promoter. In the light of current knowledge of the p4 activation mechanism, we propose that direct contacts between the two proteins participate in the activation process.

  4. The Epstein-Barr virus-binding site on CD21 is involved in CD23 binding and interleukin-4-induced IgE and IgG4 production by human B cells.

    Science.gov (United States)

    Henchoz-Lecoanet, S; Jeannin, P; Aubry, J P; Graber, P; Bradshaw, C G; Pochon, S; Bonnefoy, J Y

    1996-01-01

    Human CD21 has previously been described as a receptor for the C3d,g and iC3b proteins of complement, as a receptor for the gp350/220 envelope glycoprotein of the Epstein-Barr virus (EBV) and also as a receptor for inerferon-alpha (IFN-alpha). Structurally, CD21 consists of 15 to 16 short consensus repeats (SCR) of 60 to 75 amino acids followed by a transmembrane domain and an intracytoplasmic region. We reported that CD23, a low-affinity receptor for IgE (Fc epsilon R2), is a new functional ligand for CD21. We recently found that the sites of interaction of CD23 on CD21 are on SCR 5 to 8 and 1-2. The first site is a lectin-sugar type of interaction and the second site is a protein-protein interaction. We report here that amongst the other ligands for CD21 (EBV, C3d,g and IFN-alpha), only EBV is able to inhibit the binding of CD23 to CD21. Furthermore, even a peptide from gp350/220 of EBV known to bind to CD21 is able to decrease CD23 binding to CD21. Since CD23/CD21 pairing is important in the control of IgE production, we tested the effect of the EBV-derived peptide on immunoglobulin production from peripheral blood mononuclear cells and purified tonsillar B cells. Interestingly, the EBV-peptide inhibited IgE and IgG4 production induced by interleukin-4, in a dose-dependent manner. The same results were obtained using either peripheral blood mononuclear cells or purified tonsillar B cells. Another CD21 ligand, C3, did not affect binding of CD23 to CD21 nor the production of IgE and IgG4. This study indicates that blocking CD23 binding to CD21 SCR 2 on human B cells selectively modulates immunoglobulin production. PMID:8707347

  5. A dual antibacterial mechanism involved in membrane disruption and DNA binding of 2R,3R-dihydromyricetin from pine needles of Cedrus deodara against Staphylococcus aureus.

    Science.gov (United States)

    Wu, Yanping; Bai, Jinrong; Zhong, Kai; Huang, Yina; Gao, Hong

    2017-03-01

    The antibacterial activity and mechanism of 2R,3R-dihydromyricetin (DMY) against Staphylococcus aureus were investigated. The minimum inhibitory concentration of DMY against S. aureus was 0.125mg/ml, and the growth inhibitory assay also revealed that DMY showed a potent antibacterial activity against S. aureus. Massive nucleotide leakage and flow cytometric analysis demonstrated that DMY disrupted the membrane integrity of S. aureus. Morphological changes and membrane hyperpolarization of S. aureus cells treated with DMY further suggested that DMY destroyed cell membrane. Meanwhile, DMY probably interacted with membrane lipids and proteins, causing a significant reduction in membrane fluidity and changes in conformation of membrane protein. Moreover, DMY could interact with S. aureus DNA through the groove binding mode. Overall, the results suggested that DMY could be applied as a candidate for the development of new food preservatives as it achieved bactericidal activity by damaging cell membrane and binding to intracellular DNA.

  6. Binding of hydrocarbons and other extremely weak ligands to transition metal complexes that coordinate hydrogen: Investigation of cis-interactions and delocalized bonding involving sigma bonds

    Energy Technology Data Exchange (ETDEWEB)

    Kubas, G.J.; Eckert, J.; Luo, X.L. [and others

    1997-07-01

    This is the final report of a three-year Laboratory Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL). At the forefront of chemistry are efforts to catalytically transform the inert C-H bonds in alkanes to more useful products using metal compounds. The goal is to observe binding and cleavage of alkane C-H bonds on metals or to use related silane Si-H bonding as models, analogous to the discovery of hydrogen (H{sub 2}) binding to metals. Studies of these unique sigma complexes (M{hor_ellipsis}H-Y; Y{double_bond}H, Si, C) will aid in developing new catalysts or technologies relevant to DOE interest, e.g., new methods for tritium isotope separation. Several transition metals (Mo, W, Mn, and Pt) were found to reversibly bind and cleave H{sub 2}, silanes, and halocarbons. The first metal-SiH{sub 4} complexes, thus serving as a model for methane reactions. A second goal is to study the dynamics and energetics of H-Y bonds on metals by neutron scattering, and evidence for interactions between bound H-Y and nearby H atoms on metal complexes has been found.

  7. Computer modelling reveals new conformers of the ATP binding loop of Na+/K+-ATPase involved in the transphosphorylation process of the sodium pump

    Science.gov (United States)

    Tejral, Gracian; Sopko, Bruno; Necas, Alois; Schoner, Wilhelm

    2017-01-01

    Hydrolysis of ATP by Na+/K+-ATPase, a P-Type ATPase, catalyzing active Na+ and K+ transport through cellular membranes leads transiently to a phosphorylation of its catalytical α-subunit. Surprisingly, three-dimensional molecular structure analysis of P-type ATPases reveals that binding of ATP to the N-domain connected by a hinge to the P-domain is much too far away from the Asp369 to allow the transfer of ATP’s terminal phosphate to its aspartyl-phosphorylation site. In order to get information for how the transfer of the γ-phosphate group of ATP to the Asp369 is achieved, analogous molecular modeling of the M4–M5 loop of ATPase was performed using the crystal data of Na+/K+-ATPase of different species. Analogous molecular modeling of the cytoplasmic loop between Thr338 and Ile760 of the α2-subunit of Na+/K+-ATPase and the analysis of distances between the ATP binding site and phosphorylation site revealed the existence of two ATP binding sites in the open conformation; the first one close to Phe475 in the N-domain, the other one close to Asp369 in the P-domain. However, binding of Mg2+•ATP to any of these sites in the “open conformation” may not lead to phosphorylation of Asp369. Additional conformations of the cytoplasmic loop were found wobbling between “open conformation”  “semi-open conformation  “closed conformation” in the absence of 2Mg2+•ATP. The cytoplasmic loop’s conformational change to the “semi-open conformation”—characterized by a hydrogen bond between Arg543 and Asp611—triggers by binding of 2Mg2+•ATP to a single ATP site and conversion to the “closed conformation” the phosphorylation of Asp369 in the P-domain, and hence the start of Na+/K+-activated ATP hydrolysis. PMID:28316890

  8. Computer modelling reveals new conformers of the ATP binding loop of Na+/K+-ATPase involved in the transphosphorylation process of the sodium pump

    Directory of Open Access Journals (Sweden)

    Gracian Tejral

    2017-03-01

    Full Text Available Hydrolysis of ATP by Na+/K+-ATPase, a P-Type ATPase, catalyzing active Na+ and K+ transport through cellular membranes leads transiently to a phosphorylation of its catalytical α-subunit. Surprisingly, three-dimensional molecular structure analysis of P-type ATPases reveals that binding of ATP to the N-domain connected by a hinge to the P-domain is much too far away from the Asp369 to allow the transfer of ATP’s terminal phosphate to its aspartyl-phosphorylation site. In order to get information for how the transfer of the γ-phosphate group of ATP to the Asp369 is achieved, analogous molecular modeling of the M4–M5 loop of ATPase was performed using the crystal data of Na+/K+-ATPase of different species. Analogous molecular modeling of the cytoplasmic loop between Thr338 and Ile760 of the α2-subunit of Na+/K+-ATPase and the analysis of distances between the ATP binding site and phosphorylation site revealed the existence of two ATP binding sites in the open conformation; the first one close to Phe475 in the N-domain, the other one close to Asp369 in the P-domain. However, binding of Mg2+•ATP to any of these sites in the “open conformation” may not lead to phosphorylation of Asp369. Additional conformations of the cytoplasmic loop were found wobbling between “open conformation”  “semi-open conformation  “closed conformation” in the absence of 2Mg2+•ATP. The cytoplasmic loop’s conformational change to the “semi-open conformation”—characterized by a hydrogen bond between Arg543 and Asp611—triggers by binding of 2Mg2+•ATP to a single ATP site and conversion to the “closed conformation” the phosphorylation of Asp369 in the P-domain, and hence the start of Na+/K+-activated ATP hydrolysis.

  9. An RNA-binding complex involved in ribosome biogenesis contains a protein with homology to tRNA CCA-adding enzyme.

    Directory of Open Access Journals (Sweden)

    Jinzhong Lin

    2013-10-01

    Full Text Available A multitude of proteins and small nucleolar RNAs transiently associate with eukaryotic ribosomal RNAs to direct their modification and processing and the assembly of ribosomal proteins. Utp22 and Rrp7, two interacting proteins with no recognizable domain, are components of the 90S preribosome or the small subunit processome that conducts early processing of 18S rRNA. Here, we determine the cocrystal structure of Utp22 and Rrp7 complex at 1.97 Å resolution and the NMR structure of a C-terminal fragment of Rrp7, which is not visible in the crystal structure. The structure reveals that Utp22 surprisingly resembles a dimeric class I tRNA CCA-adding enzyme yet with degenerate active sites, raising an interesting evolutionary connection between tRNA and rRNA processing machineries. Rrp7 binds extensively to Utp22 using a deviant RNA recognition motif and an extended linker. Functional sites on the two proteins were identified by structure-based mutagenesis in yeast. We show that Rrp7 contains a flexible RNA-binding C-terminal tail that is essential for association with preribosomes. RNA-protein crosslinking shows that Rrp7 binds at the central domain of 18S rRNA and shares a neighborhood with two processing H/ACA snoRNAs snR30 and snR10. Depletion of snR30 prevents the stable assembly of Rrp7 into preribosomes. Our results provide insight into the evolutionary origin and functional context of Utp22 and Rrp7.

  10. Involvement of a LysM and putative peptidoglycan-binding domain-containing protein in the antibacterial immune response of kuruma shrimp Marsupenaeus japonicus.

    Science.gov (United States)

    Shi, Xiu-Zhen; Feng, Xiao-Wu; Sun, Jie-Jie; Yang, Ming-Chong; Lan, Jiang-Feng; Zhao, Xiao-Fan; Wang, Jin-Xing

    2016-07-01

    Lysin motif (LysM) is a peptidoglycan and chitin-binding motif with multiple functions in bacteria, plants, and animals. In this study, a novel LysM and putative peptidoglycan-binding domain-containing protein was cloned from kuruma shrimp (Marsupenaeus japonicus) and named as MjLPBP. The cDNA of MjLPBP contained 1010 nucleotides with an open reading frame of 834 nucleotides encoding a protein of 277 amino acid residues. The deduced protein contained a Lysin motif and a transmembrane region, with a calculated molecular mass of 31.54 kDa and isoelectric point of 8.61. MjLPBP was ubiquitously distributed in different tissues of shrimp at the mRNA level. Time course expression assay showed that MjLPBP was upregulated in hemocytes of shrimp challenged with Vibrio anguillarum or Staphylococcus aureus. MjLPBP was also upregulated in hepatopancreas after white spot syndrome virus and bacteria challenge. The recombinant protein of MjLPBP could bind to some Gram-positive and Gram-negative bacteria and yeast. Further study found that rMjLPBP bound to bacterial cell wall components, including peptidoglycans, lipoteichoic acid, lipopolysaccharide, and chitin. The induction of several antimicrobial peptide genes and phagocytosis-related gene, such as anti-lipopolysaccharide factors and myosin, was depressed after knockdown of MjLPBP. MjLPBP could facilitate V. anguillarum clearance in vivo. All the results indicated that MjLPBP might play an important role in the innate immunity of shrimp. Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. An External Loop Region of Domain III of Dengue Virus Type 2 Envelope Protein Is Involved in Serotype-Specific Binding to Mosquito but Not Mammalian Cells

    OpenAIRE

    Hung, Jan-Jong; Hsieh, Meng-Ti; Young, Ming-Jer; Kao, Chuan-Liang; King, Chwan-Chuen; Chang, Wen

    2004-01-01

    Dengue virus (DV) is a flavivirus and infects mammalian cells through mosquito vectors. This study investigates the roles of domain III of DV type 2 envelope protein (EIII) in DV binding to the host cell. Recombinant EIII interferes with DV infection to BHK21 and C6/36 cells by blocking dengue virion adsorption to these cells. Inhibition of EIII on BHK21 cells was broad with no serotype specificity; however, inhibition of EIII on C6/36 cells was relatively serotype specific. Soluble heparin c...

  12. Involvement of 53BP1, a p53 Binding Protein, in Chk2 Phosphyorylation of p53 and DNA Damage Cell Cycle Checkpoints

    Science.gov (United States)

    2006-05-01

    20:4859-69. 24. Cote J, Utley RT, Workman JL. Basic analysis of transcription factor binding to nucleo - somes. Methods Mol Gen 1995; 6:108-27. 25...47755 (2001). 18. D. Cortez , Y. Wang, J. Qin, S. J. Elledge, Science 286, 1162 (1999). 19. R. DiTullio, T. Halazonetis, personal communication. 20. A...Cancer Res. 83, 209 (2001). 23. Antibodies to Chk2T68P provided by J. Chen; 53BP1, T. D. Halazonetis; and -H2AX, W. M. Bonner. 24. We thank D. Cortez

  13. T-antigen binding lectin with antibacterial activity from marine invertebrate, sea cucumber (Holothuria scabra): Possible involvement in differential recognition of bacteria

    Digital Repository Service at National Institute of Oceanography (India)

    Gowda, N.M.; Goswami, U.; Khan, M.I.

    glycoconjugates of bacteria are involved in lectin induction. HSL showed strong broad spectrum antibacterial activity against both grampositive and gram-negative bacteria. Under in vitro conditions, purified HSL mediate agglutination of the test bacteria...

  14. Evolutionary history of double-stranded RNA binding proteins in plants: identification of new cofactors involved in easiRNA biogenesis.

    Science.gov (United States)

    Clavel, Marion; Pélissier, Thierry; Montavon, Thomas; Tschopp, Marie-Aude; Pouch-Pélissier, Marie-Noëlle; Descombin, Julie; Jean, Viviane; Dunoyer, Patrice; Bousquet-Antonelli, Cécile; Deragon, Jean-Marc

    2016-05-01

    In this work, we retrace the evolutionary history of plant double-stranded RNA binding proteins (DRBs), a group of non-catalytic factors containing one or more double-stranded RNA binding motif (dsRBM) that play important roles in small RNA biogenesis and functions. Using a phylogenetic approach, we show that multiple dsRBM DRBs are systematically composed of two different types of dsRBMs evolving under different constraints and likely fulfilling complementary functions. In vascular plants, four distinct clades of multiple dsRBM DRBs are always present with the exception of Brassicaceae species, that do not possess member of the newly identified clade we named DRB6. We also identified a second new and highly conserved DRB family (we named DRB7) whose members possess a single dsRBM that shows concerted evolution with the most C-terminal dsRBM domain of the Dicer-like 4 (DCL4) proteins. Using a BiFC approach, we observed that Arabidopsis thaliana DRB7.2 (AtDRB7.2) can directly interact with AtDRB4 but not with AtDCL4 and we provide evidence that both AtDRB7.2 and AtDRB4 participate in the epigenetically activated siRNAs pathway.

  15. Involvement of the heterodimeric interface region of the nucleotide binding domain-2 (NBD2) in the CFTR quaternary structure and membrane stability.

    Science.gov (United States)

    Micoud, Julien; Chauvet, Sylvain; Scheckenbach, Klaus Ernst Ludwig; Alfaidy, Nadia; Chanson, Marc; Benharouga, Mohamed

    2015-10-01

    The cystic fibrosis transmembrane conductance regulator (CFTR) is the only member of the ATP-binding cassette (ABC) superfamily that functions as a chloride channel. The predicted structure of CFTR protein contains two membrane-spanning domains (MSDs), each followed by a nucleotide binding domain (NBD1 and NBD2). The opening of the Cl- channel is directly linked to ATP-driven tight dimerization of CFTR's NBD1 and NBD2 domains. The presence of a heterodimeric interfaces (HI) region in NBD1 and NBD2 generated a head to tail orientation necessary for channel activity. This process was also suggested to promote important conformational changes in the associated transmembrane domains of CFTR, which may impact the CFTR plasma membrane stability. To better understand the role of the individual HI region in this process, we generated recombinant CFTR protein with suppressed HI-NBD1 and HI-NBD2. Our results indicate that HI-NBD2 deletion leads to the loss of the dimerization profile of CFTR that affect its plasma membrane stability. We conclude that, in addition to its role in Cl- transport, HI-NBD2 domain confers membrane stability of CFTR by consolidating its quaternary structure through interactions with HI-NBD1 region.

  16. The transcriptional regulator Rok binds A+T-rich DNA and is involved in repression of a mobile genetic element in Bacillus subtilis.

    Directory of Open Access Journals (Sweden)

    Wiep Klaas Smits

    2010-11-01

    Full Text Available The rok gene of Bacillus subtilis was identified as a negative regulator of competence development. It also controls expression of several genes not related to competence. We found that Rok binds to extended regions of the B. subtilis genome. These regions are characterized by a high A+T content and are known or believed to have been acquired by horizontal gene transfer. Some of the Rok binding regions are in known mobile genetic elements. A deletion of rok resulted in higher excision of one such element, ICEBs1, a conjugative transposon found integrated in the B. subtilis genome. When expressed in the Gram negative E. coli, Rok also associated with A+T-rich DNA and a conserved C-terminal region of Rok contributed to this association. Together with previous work, our findings indicate that Rok is a nucleoid associated protein that serves to help repress expression of A+T-rich genes, many of which appear to have been acquired by horizontal gene transfer. In these ways, Rok appears to be functionally analogous to H-NS, a nucleoid associated protein found in Gram negative bacteria and Lsr2 of high G+C Mycobacteria.

  17. The transcriptional regulator Rok binds A+T-rich DNA and is involved in repression of a mobile genetic element in Bacillus subtilis.

    Directory of Open Access Journals (Sweden)

    Wiep Klaas Smits

    2010-11-01

    Full Text Available The rok gene of Bacillus subtilis was identified as a negative regulator of competence development. It also controls expression of several genes not related to competence. We found that Rok binds to extended regions of the B. subtilis genome. These regions are characterized by a high A+T content and are known or believed to have been acquired by horizontal gene transfer. Some of the Rok binding regions are in known mobile genetic elements. A deletion of rok resulted in higher excision of one such element, ICEBs1, a conjugative transposon found integrated in the B. subtilis genome. When expressed in the Gram negative E. coli, Rok also associated with A+T-rich DNA and a conserved C-terminal region of Rok contributed to this association. Together with previous work, our findings indicate that Rok is a nucleoid associated protein that serves to help repress expression of A+T-rich genes, many of which appear to have been acquired by horizontal gene transfer. In these ways, Rok appears to be functionally analogous to H-NS, a nucleoid associated protein found in Gram negative bacteria and Lsr2 of high G+C Mycobacteria.

  18. Regulation of GATA-binding protein 2 levels via ubiquitin-dependent degradation by Fbw7: involvement of cyclin B-cyclin-dependent kinase 1-mediated phosphorylation of THR176 in GATA-binding protein 2.

    Science.gov (United States)

    Nakajima, Tomomi; Kitagawa, Kyoko; Ohhata, Tatsuya; Sakai, Satoshi; Uchida, Chiharu; Shibata, Kiyoshi; Minegishi, Naoko; Yumimoto, Kanae; Nakayama, Keiichi I; Masumoto, Kazuma; Katou, Fuminori; Niida, Hiroyuki; Kitagawa, Masatoshi

    2015-04-17

    A GATA family transcription factor, GATA-binding protein 2 (GATA2), participates in cell growth and differentiation of various cells, such as hematopoietic stem cells. Although its expression level is controlled by transcriptional induction and proteolytic degradation, the responsible E3 ligase has not been identified. Here, we demonstrate that F-box/WD repeat-containing protein 7 (Fbw7/Fbxw7), a component of Skp1, Cullin 1, F-box-containing complex (SCF)-type E3 ligase, is an E3 ligase for GATA2. GATA2 contains a cell division control protein 4 (Cdc4) phosphodegron (CPD), a consensus motif for ubiquitylation by Fbw7, which includes Thr(176). Ectopic expression of Fbw7 destabilized GATA2 and promoted its proteasomal degradation. Substitution of threonine 176 to alanine in GATA2 inhibited binding with Fbw7, and the ubiquitylation and degradation of GATA2 by Fbw7 was suppressed. The CPD kinase, which mediates the phosphorylation of Thr(176), was cyclin B-cyclin-dependent kinase 1 (CDK1). Moreover, depletion of endogenous Fbw7 stabilized endogenous GATA2 in K562 cells. Conditional Fbw7 depletion in mice increased GATA2 levels in hematopoietic stem cells and myeloid progenitors at the early stage. Increased GATA2 levels in Fbw7-conditional knock-out mice were correlated with a decrease in a c-Kit high expressing population of myeloid progenitor cells. Our results suggest that Fbw7 is a bona fide E3 ubiquitin ligase for GATA2 in vivo.

  19. Prediction of glycolipid-binding domains from the amino acid sequence of lipid raft-associated proteins: application to HpaA, a protein involved in the adhesion of Helicobacter pylori to gastrointestinal cells.

    Science.gov (United States)

    Fantini, Jacques; Garmy, Nicolas; Yahi, Nouara

    2006-09-12

    Protein-glycolipid interactions mediate the attachment of various pathogens to the host cell surface as well as the association of numerous cellular proteins with lipid rafts. Thus, it is of primary importance to identify the protein domains involved in glycolipid recognition. Using structure similarity searches, we could identify a common glycolipid-binding domain in the three-dimensional structure of several proteins known to interact with lipid rafts. Yet the three-dimensional structure of most raft-targeted proteins is still unknown. In the present study, we have identified a glycolipid-binding domain in the amino acid sequence of a bacterial adhesin (Helicobacter pylori adhesin A, HpaA). The prediction was based on the major properties of the glycolipid-binding domains previously characterized by structural searches. A short (15-mer) synthetic peptide corresponding to this putative glycolipid-binding domain was synthesized, and we studied its interaction with glycolipid monolayers at the air-water interface. The synthetic HpaA peptide recognized LacCer but not Gb3. This glycolipid specificity was in line with that of the whole bacterium. Molecular modeling studies gave some insights into this high selectivity of interaction. It also suggested that Phe147 in HpaA played a key role in LacCer recognition, through sugar-aromatic CH-pi stacking interactions with the hydrophobic side of the galactose ring of LacCer. Correspondingly, the replacement of Phe147 with Ala strongly affected LacCer recognition, whereas substitution with Trp did not. Our method could be used to identify glycolipid-binding domains in microbial and cellular proteins interacting with lipid shells, rafts, and other specialized membrane microdomains.

  20. HtaA is an iron-regulated hemin binding protein involved in the utilization of heme iron in Corynebacterium diphtheriae.

    Science.gov (United States)

    Allen, Courtni E; Schmitt, Michael P

    2009-04-01

    Many human pathogens, including Corynebacterium diphtheriae, the causative agent of diphtheria, use host compounds such as heme and hemoglobin as essential iron sources. In this study, we examined the Corynebacterium hmu hemin transport region, a genetic cluster that contains the hmuTUV genes encoding a previously described ABC-type hemin transporter and three additional genes, which we have designated htaA, htaB, and htaC. The hmu gene cluster is composed of three distinct transcriptional units. The htaA gene appears to be part of an iron- and DtxR-regulated operon that includes hmuTUV, while htaB and htaC are transcribed from unique DtxR-regulated promoters. Nonpolar deletion of either htaA or the hmuTUV genes resulted in a reduced ability to use hemin as an iron source, while deletion of htaB had no effect on hemin iron utilization in C. diphtheriae. A comparison of the predicted amino acid sequences of HtaA and HtaB showed that they share some sequence similarity, and both proteins contain leader sequences and putative C-terminal transmembrane regions. Protein localization studies with C. diphtheriae showed that HtaA is associated predominantly with the cell envelope when the organism is grown in minimal medium but is secreted during growth in nutrient-rich broth. HtaB and HmuT were detected primarily in the cytoplasmic membrane fraction regardless of the growth medium. Hemin binding studies demonstrated that HtaA and HtaB are able to bind hemin, suggesting that these proteins may function as cell surface hemin receptors in C. diphtheriae.

  1. ø29 DNA polymerase residue Lys383, invariant at motif B of DNA-dependent polymerases, is involved in dNTP binding.

    Science.gov (United States)

    Saturno, J; Lázaro, J M; Esteban, F J; Blanco, L; Salas, M

    1997-06-13

    Bacteriophage ø29 DNA polymerase shares with other DNA-dependent DNA polymerases several regions of amino acid homology along the primary structure. Among them, motif B, characterized by the consensus +x3Kx(6-7)YG (+ being a positively charged amino acid), appears to be specifically conserved in those polymerases that use DNA but not RNA as template. In particular, the lysine residue of this motif is invariant in all members of DNA-dependent polymerases. In this paper we report a mutational analysis of this invariant residue of motif B with the construction and characterization of two mutant proteins in the corresponding residue (Lys383) of ø29 DNA polymerase. Mutant proteins (K383R and K383P) were overexpressed, purified and analyzed under steady-state conditions. In agreement with the modular organization proposed for ø29 DNA polymerase, the exonuclease activity was not affected in either mutant protein. Conversely, mutant K383P showed no detectable capacity to incorporate dNTP substrates using either DNA or TP as primer, although its affinity for DNA was not affected. The conservative substitution of Lys383 by arginine (K383R) resulted in a considerable impairment to use dNTPs, in both processive and non-processive DNA synthesis; the Km for dNTPs being 200-fold higher than that of the wild-type enzyme. Mutant K383R recovered the wild-type polymerase/exonuclease ratio when Mn2+ was used instead of Mg2+ as metal activator, indicating a distorted binding of the [dNTP-metal] chelate at the mutant enzyme active site. The positive charge at residue Lys383 was also critical in the catalysis of deoxynucleotidylation of the terminal protein by ø29 DNA polymerase. The results obtained suggest a direct role for the lysine residue in motif B in forming an evolutionarily conserved DNA templated dNTP binding pocket. Additionally, K383R mutant protein was also affected in the progression from protein-primed initiation to DNA elongation, a switch between two modes of

  2. TNF receptor-associated factor-2 binding site is involved in TNFR75-dependent enhancement of TNFR55-induced cell death

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    TNF recepter-55 is the main mediator of TNF-induced apoptosis. TNF receptor-75-dependent induction or enhancement of cytotoxicity has been explained by intracellular signaling, “ligand passing”, or induction of endogenous TNF. To study the function of human TNF receptor-75 (hTR75) and the interaction between human TNF receptor-55 (hTR55) and hTR75 in hTNFc-induced cytotoxicity, Hep-2 cells were transfected with bicistronic expression vector of hTR75 and its deletion mutants genes. hTNFα-induced cytotoxicity was determined by crystal violet colorimetric method. The expression of hTR75 and its deletion mutants in Hep-2 cells was demonstrated by RT-PCR and indirect ELISA. We found that the overexpressed hTR75 could significantly increase the susceptibility of Hep-2 cells to hTNFα which especiαlly required TRAF2 binding site. hTR75 could not only mediate partial hTNFα-induced cytotoxicity independently but also fulfill an accessory role in enhancing or synergizing hTR55-mediated cytotoxicity.

  3. Peroxiredoxins, thioredoxin, and Y-box-binding protein-1 are involved in the pathogenesis and progression of dialysis-associated renal cell carcinoma.

    Science.gov (United States)

    Fushimi, Fumiyoshi; Taguchi, Kenichi; Izumi, Hiroto; Kohno, Kimitoshi; Kuwano, Michihiko; Ono, Mayumi; Nakashima, Yutaka; Takesue, Tetsuro; Naito, Seiji; Oda, Yoshinao

    2013-10-01

    Patients with end-stage renal disease are exposed to increased oxidative stress and impairment of antioxidant mechanisms. We focused on dialysis renal cell carcinoma (RCC), including epithelial hyperplasia in acquired cystic disease of the kidney (ACDK). We attempted to obtain insight into the carcinogenesis and tumor progression in terms of cellular defense mechanisms associated with oxidative stress by investigating the expression of antioxidant proteins by immunohistochemistry. We evaluated retrospectively 43 cases of dialysis RCC and, as a control group, 49 cases of sporadic RCC. Peroxiredoxin (Prx) 1, 3, 4, 5, and 6 expression in dialysis RCC was positively correlated with the duration of dialysis. In epithelial hyperplasia, in 17 cases of acquired cystic disease of the kidney, Prxs and thioredoxin were highly expressed. Moreover, in dialysis RCC, Prx 3, 4, and 5 immunoreactivity and nuclear expression of Y-box-binding protein-1 were higher than in sporadic RCC. In dialysis RCC, Prx 3, 4, and 5 immunoreactivity positively correlated with the Fuhrman nuclear grade. These data suggest that oxidative stress during dialysis enhances antioxidant activity, with an inhibiting effect on carcinogenesis. Once cancer has developed, antioxidant activity might have a stimulating effect on the progression of dialysis RCC.

  4. Suppression of c-Myc is involved in multi-walled carbon nanotubes' down-regulation of ATP-binding cassette transporters in human colon adenocarcinoma cells.

    Science.gov (United States)

    Wang, Zhaojing; Xu, Yonghong; Meng, Xiangning; Watari, Fumio; Liu, Hudan; Chen, Xiao

    2015-01-01

    Over-expression of ATP-binding cassette (ABC) transporters, a large family of integral membrane proteins that decrease cellular drug uptake and accumulation by active extrusion, is one of the major causes of cancer multi-drug resistance (MDR) that frequently leads to failure of chemotherapy. Carbon nanotubes (CNTs)-based drug delivery devices hold great promise in enhancing the efficacy of cancer chemotherapy. However, CNTs' effects on the ABC transporters remain under-investigated. In this study, we found that multiwalled carbon nanotubes (MWCNTs) reduced transport activity and expression of ABC transporters including ABCB1/Pgp and ABCC4/MRP4 in human colon adenocarcinoma Caco-2 cells. Proto-oncogene c-Myc, which directly regulates ABC gene expression, was concurrently decreased in MWCNT-treated cells and forced over-expression of c-Myc reversed MWCNTs' inhibitory effects on ABCB1 and ABCC4 expression. MWCNT-cell membrane interaction and cell membrane oxidative damage were observed. However, antioxidants such as vitamin C, β-mecaptoethanol and dimethylthiourea failed to antagonize MWCNTs' down-regulation of ABC transporters. These data suggest that MWCNTs may act on c-Myc, but not through oxidative stress, to down-regulate ABC transporter expression. Our findings thus shed light on CNTs' novel cellular effects that may be utilized to develop CNTs-based drug delivery devices to overcome ABC transporter-mediated cancer chemoresistance.

  5. bZIP transcription factors in the oomycete phytophthora infestans with novel DNA-binding domains are involved in defense against oxidative stress.

    Science.gov (United States)

    Gamboa-Meléndez, Heber; Huerta, Apolonio I; Judelson, Howard S

    2013-10-01

    Transcription factors of the basic leucine zipper (bZIP) family control development and stress responses in eukaryotes. To date, only one bZIP has been described in any oomycete; oomycetes are members of the stramenopile kingdom. In this study, we describe the identification of 38 bZIPs from the Phytophthora infestans genome. Half contain novel substitutions in the DNA-binding domain at a site that in other eukaryotes is reported to always be Asn. Interspecific comparisons indicated that the novel substitutions (usually Cys, but also Val and Tyr) arose after oomycetes diverged from other stramenopiles. About two-thirds of P. infestans bZIPs show dynamic changes in mRNA levels during the life cycle, with many of the genes being upregulated in sporangia, zoospores, or germinated zoospore cysts. One bZIP with the novel Cys substitution was shown to reside in the nucleus throughout growth and development. Using stable gene silencing, the functions of eight bZIPs with the Cys substitution were tested. All but one were found to play roles in protecting P. infestans from hydrogen peroxide-induced injury, and it is proposed that the novel Cys substitution serves as a redox sensor. A ninth bZIP lacking the novel Asn-to-Cys substitution, but having Cys nearby, was also shown through silencing to contribute to defense against peroxide. Little effect on asexual development, plant pathogenesis, or resistance to osmotic stress was observed in transformants silenced for any of the nine bZIPs.

  6. NanR, a Transcriptional Regulator That Binds to the Promoters of Genes Involved in Sialic Acid Metabolism in the Anaerobic Pathogen Clostridium perfringens.

    Directory of Open Access Journals (Sweden)

    Blair Therit

    Full Text Available Among many other virulence factors, Clostridium perfringens produces three sialidases NanH, NanI and NanJ. NanH lacks a secretion signal peptide and is predicted to be an intracellular enzyme, while NanI and NanJ are secreted. Previously, we had identified part of an operon encoding NanE (epimerase and NanA (sialic acid lyase enzymes. Further analysis of the entire operon suggests that it encodes a complete pathway for the transport and metabolism of sialic acid along with a putative transcriptional regulator, NanR. The addition of 30 mM N-acetyl neuraminic acid (Neu5Ac to a semi-defined medium significantly enhanced the growth yield of strain 13, suggesting that Neu5Ac can be used as a nutrient. C. perfringens strain 13 lacks a nanH gene, but has NanI- and NanJ-encoding genes. Analysis of nanI, nanJ, and nanInanJ mutants constructed by homologous recombination revealed that the expression of the major sialidase, NanI, was induced by the addition of Neu5Ac to the medium, and that in separate experiments, the same was true of a nanI-gusA transcriptional fusion. For the nanI and nanJ genes, primer extension identified three and two putative transcription start sites, respectively. Gel mobility shift assays using purified NanR and DNA from the promoter regions of the nanI and nanE genes showed high affinity, specific binding by NanR. We propose that NanR is a global regulator of sialic acid-associated genes and that it responds, in a positive feedback loop, to the concentration of sialic acid in the cell.

  7. Liat1, an arginyltransferase-binding protein whose evolution among primates involved changes in the numbers of its 10-residue repeats.

    Science.gov (United States)

    Brower, Christopher S; Rosen, Connor E; Jones, Richard H; Wadas, Brandon C; Piatkov, Konstantin I; Varshavsky, Alexander

    2014-11-18

    The arginyltransferase Ate1 is a component of the N-end rule pathway, which recognizes proteins containing N-terminal degradation signals called N-degrons, polyubiquitylates these proteins, and thereby causes their degradation by the proteasome. At least six isoforms of mouse Ate1 are produced through alternative splicing of Ate1 pre-mRNA. We identified a previously uncharacterized mouse protein, termed Liat1 (ligand of Ate1), that interacts with Ate1 but does not appear to be its arginylation substrate. Liat1 has a higher affinity for the isoforms Ate1(1A7A) and Ate1(1B7A). Liat1 stimulated the in vitro N-terminal arginylation of a model substrate by Ate1. All examined vertebrate and some invertebrate genomes encode proteins sequelogous (similar in sequence) to mouse Liat1. Sequelogs of Liat1 share a highly conserved ∼30-residue region that is shown here to be required for the binding of Liat1 to Ate1. We also identified non-Ate1 proteins that interact with Liat1. In contrast to Liat1 genes of nonprimate mammals, Liat1 genes of primates are subtelomeric, a location that tends to confer evolutionary instability on a gene. Remarkably, Liat1 proteins of some primates, from macaques to humans, contain tandem repeats of a 10-residue sequence, whereas Liat1 proteins of other mammals contain a single copy of this motif. Quantities of these repeats are, in general, different in Liat1 of different primates. For example, there are 1, 4, 13, 13, 17, and 17 repeats in the gibbon, gorilla, orangutan, bonobo, neanderthal, and human Liat1, respectively, suggesting that repeat number changes in this previously uncharacterized protein may contribute to evolution of primates.

  8. Interleukin 1β Regulation of the System xc- Substrate-specific Subunit, xCT, in Primary Mouse Astrocytes Involves the RNA-binding Protein HuR.

    Science.gov (United States)

    Shi, Jingxue; He, Yan; Hewett, Sandra J; Hewett, James A

    2016-01-22

    System xc(-) is a heteromeric amino acid cystine/glutamate antiporter that is constitutively expressed by cells of the CNS, where it functions in the maintenance of intracellular glutathione and extracellular glutamate levels. We recently determined that the cytokine, IL-1β, increases the activity of system xc(-) in CNS astrocytes secondary to an up-regulation of its substrate-specific light chain, xCT, and that this occurs, in part, at the level of transcription. However, an in silico analysis of the murine xCT 3'-UTR identified numerous copies of adenine- and uridine-rich elements, raising the possibility that undefined trans-acting factors governing mRNA stability and translation may also contribute to xCT expression. Here we show that IL-1β increases the level of mRNA encoding xCT in primary cultures of astrocytes isolated from mouse cortex in association with an increase in xCT mRNA half-life. Additionally, IL-1β induces HuR translocation from the nucleus to the cytoplasm. RNA immunoprecipitation analysis reveals that HuR binds directly to the 3'-UTR of xCT in an IL-1β-dependent manner. Knockdown of endogenous HuR protein abrogates the IL-1β-mediated increase in xCT mRNA half-life, whereas overexpression of HuR in unstimulated primary mouse astrocytes doubles the half-life of constitutive xCT mRNA. This latter effect is accompanied by an increase in xCT protein levels, as well as a functional increase in system xc(-) activity. Altogether, these data support a critical role for HuR in mediating the IL-1β-induced stabilization of astrocyte xCT mRNA.

  9. CCAAT/enhancer binding protein beta2 is involved in growth hormone-regulated insulin-like growth factor-II gene expression in the liver of rainbow trout (Oncorhynchus mykiss).

    Science.gov (United States)

    Lo, Jay H; Chen, Thomas T

    2010-05-01

    Previously, we showed that levels of different CCAAT/enhancer binding protein (C/EBP) mRNAs in the liver of rainbow trout were modulated by GH and suggested that C/EBPs might be involved in GH-induced IGF-II gene expression. As a step toward further investigation, we have developed monospecific polyclonal antibodies to detect rainbow trout C/EBPalpha, -beta1, -beta2, and -delta2 isoform proteins. Injection of GH into adult rainbow trout resulted in a significant increase of C/EBPbeta1, C/EBPbeta2, and C/EBPdelta2 proteins in the liver. Chromatin immunoprecipitation analysis revealed that C/EBPbeta2 binds to multiple sites at the 5' promoter/regulatory region, introns, and the 3' untranslated region of the IGF-II gene. GH treatment reduced C/EBPbeta2 binding to several of these regions at 6 h after injection. The decreased occupancy of C/EBPbeta2 coincided well with an increase of histone H4 acetylation at the proximal promoter and elevation of the IGF-II mRNA level. Immunoblotting analysis showed that C/EBPbeta2 existed predominately as a truncated form in the liver, and cotransfection analysis further showed that the truncated C/EBPbeta2 acted as a negative regulator on IGF-II proximal promoter. GH treatment caused deacetylation of C/EBPbeta2 in the liver. In addition, we observed a GH-dependent interaction of C/EBPbeta2 with a complex involving histone H1. All together, these results suggest that C/EBPbeta2 was regulated at multiple levels by GH, and C/EBPbeta2 may play a suppressive role in mediating GH-induced IGF-II expression in the liver of rainbow trout.

  10. Detachment of the fucoxanthin chlorophyll a/c binding protein (FCP) antenna is not involved in the acclimative regulation of photoprotection in the pennate diatom Phaeodactylum tricornutum.

    Science.gov (United States)

    Giovagnetti, Vasco; Ruban, Alexander V

    2017-03-01

    When grown under intermittent light (IL), the pennate diatom Phaeodactylum tricornutum forms 'super' non-photochemical fluorescence quenching (NPQ) in response to excess light. The current model of diatom NPQ mechanism involves two quenching sites, one of which detaches from photosystem II reaction centres (RCIIs) and aggregates into oligomeric complexes. Here we addressed how antenna reorganisation controls NPQ kinetics in P. tricornutum cells grown under continuous light (CL) and IL. Overall, IL acclimation induced: (i) reorganisation of chloroplasts, containing greater pigment pools without a strongly enhanced operation of the xanthophyll cycle, and (ii) 'super NPQ' causing a remarkable reduction of the chlorophyll excited state lifetime at Fm'. Regardless of different levels of NPQ formed in both culture conditions, its dark recovery was rapid and similar fractions of their antenna uncoupled (~50%). Although antenna detachment relieved excitation pressure, it provided a minor protective contribution equivalent to NPQ~1, while the largest NPQ was 4.4±0.2 (CL) and 13±0.8 (IL). The PSII cross-section decrease took place only at relatively low NPQ values, beyond which the cross-section remained constant whilst NPQ continued to rise. This finding suggests that the energy trapping efficiency of diatom antenna quenchers cannot over-compete that of RCIIs, similarly to what has been observed on higher plants. We conclude that such 'economic photoprotection' operates to flexibly adjust the overall efficiency of diatom light harvesting.

  11. Involvement of the 5-HT(1A) receptor in the anti-immobility effects of fluvoxamine in the forced swimming test and mouse strain differences in 5-HT(1A) receptor binding.

    Science.gov (United States)

    Sugimoto, Yumi; Furutani, Sachiko; Kajiwara, Yoshinobu; Hirano, Kazufumi; Yamada, Shizuo; Tagawa, Noriko; Kobayashi, Yoshiharu; Hotta, Yoshihiro; Yamada, Jun

    2010-03-10

    We previously demonstrated the presence of strain differences in baseline immobility time and sensitivity to the selective serotonin reuptake inhibitor (SSRI) fluvoxamine in five strains of mice (ICR, ddY, C57BL, DBA/2 and BALB/c mice). Furthermore, variations in serotonin (5-HT) transporter binding in the brain were strongly related to strain differences in baseline immobility and sensitivity to fluvoxamine. In the present study, we examined the involvement of the 5-HT(1A) receptor in anti-immobility effects in DBA/2 mice, which show high sensitivity to fluvoxamine. The anti-immobility effects of fluvoxamine in DBA/2 mice were inhibited by the 5-HT(1A) receptor antagonist N-[2-[4-(2-methoxyphenyl)-1-piperazinyl]ethyl]-N-(2-pyridinyl)cyclohexanecarboxamide (WAY 100635). However, the 5-HT(1B) receptor antagonist 3-[3-(dimethylamino)propyl]-4-hydroxy-N-[4-(4-pyridinyl)phenyl]benzamide (GR55562), the 5-HT(2) receptor antagonist 6-methyl-1-(methylethyl)-ergoline-8beta-carboxylic acid 2-hydroxy-1-methylpropyl ester (LY 53857), the 5-HT(3) receptor antagonist ondansetron and the 5-HT(4) receptor antagonist 4-amino-5-chloro-2-methoxy-benzoic acid 2-(diethylamino)ethyl ester (SDZ 205,557) did not influence the anti-immobility effects of fluvoxamine in DBA/2 mice. These results suggest that fluvoxamine-induced antidepressant-like effects in DBA/2 mice are mediated by the 5-HT(1A) receptor. We analyzed 5-HT(1A) receptor binding in the brains of five strains of mice. Strain differences in 5-HT(1A) receptor binding were observed. 5-HT(1A) receptor binding in brain was not correlated with baseline immobility time in the five strains of mice examined. These results suggest that, although the anti-immobility effects of fluvoxamine in DBA/2 mice are mediated by the 5-HT(1A) receptor, strain differences in 5-HT(1A) receptor binding are not related to variation in immobility time and responses to fluvoxamine.

  12. Chromosomal localization of mitochondrial transcription factor A (TCF6), single-stranded DNA-binding protein (SSBP), and endonuclease G (ENDOG), three human housekeeping genes involving in mitochondrial biogenesis

    Energy Technology Data Exchange (ETDEWEB)

    Tiranti, V.; Rossi, G.; DiDonato, S. [Istituto Nazionale Neurologico, Carlo Besta (Italy)] [and others

    1995-01-20

    By using a PCR-based screening of a somatic cell hybrid panel and FISH, we have assigned the loci of mitochondrial single-stranded DNA-binding protein (SSBP), mitochondrial transcription factor A (TCF6), and mitochondrial endonuclease G (ENDOG) genes to human chromosomes 7q34, 10q21, and 9q34.1, respectively. The products of these three genes are involved in fundamental aspects of mitochondrial biogenesis, such as replication and transcription of the mitochondrial genome. The chromosomal localization of these genes is important to testing whether the corresponding proteins may play a role in the etiopathogenesis of human disorders associated with qualitative or quantitative abnormalities of mitochondrial DNA. 20 refs., 1 fig., 2 tabs.

  13. Megalin binds and mediates cellular internalization of folate binding protein

    DEFF Research Database (Denmark)

    Birn, Henrik; Zhai, Xiaoyue; Holm, Jan

    2005-01-01

    Folate is an essential vitamin involved in a number of biological processes. High affinity folate binding proteins (FBPs) exist both as glycosylphosphatidylinositol-linked, membrane associated folate binding proteins and as soluble FBPs in plasma and some secretory fluids such as milk, saliva...... to bind and mediate cellular uptake of FBP. Surface plasmon resonance analysis shows binding of bovine and human milk FBP to immobilized megalin, but not to low density lipoprotein receptor related protein. Binding of (125)I-labeled folate binding protein (FBP) to sections of kidney proximal tubule, known...

  14. Shutoff of RNA polymerase II transcription by poliovirus involves 3C protease-mediated cleavage of the TATA-binding protein at an alternative site: incomplete shutoff of transcription interferes with efficient viral replication.

    Science.gov (United States)

    Kundu, Pallob; Raychaudhuri, Santanu; Tsai, Weimin; Dasgupta, Asim

    2005-08-01

    The TATA-binding protein (TBP) plays a crucial role in cellular transcription catalyzed by all three DNA-dependent RNA polymerases. Previous studies have shown that TBP is targeted by the poliovirus (PV)-encoded protease 3C(pro) to bring about shutoff of cellular RNA polymerase II-mediated transcription in PV-infected cells. The processing of the majority of viral precursor proteins by 3C(pro) involves cleavages at glutamine-glycine (Q-G) sites. We present evidence that suggests that the transcriptional inactivation of TBP by 3C(pro) involves cleavage at the glutamine 104-serine 105 (Q104-S105) site of TBP and not at the Q18-G19 site as previously thought. The TBP Q104-S105 cleavage by 3C(pro) is greatly influenced by the presence of an aliphatic amino acid at the P4 position, a hallmark of 3C(pro)-mediated proteolysis. To examine the importance of host cell transcription shutoff in the PV life cycle, stable HeLa cell lines were created that express recombinant TBP resistant to cleavage by the viral proteases, called GG rTBP. Transcription shutoff was significantly impaired and delayed in GG rTBP cells upon infection with poliovirus compared with the cells that express wild-type recombinant TBP (wt rTBP). Infection of GG rTBP cells with poliovirus resulted in small plaques, significantly reduced viral RNA synthesis, and lower viral yields compared to the wt rTBP cell line. These results suggest that a defect in transcription shutoff can lead to inefficient replication of poliovirus in cultured cells.

  15. [The Role of Membrane-Bound Heat Shock Proteins Hsp90 in Migration of Tumor Cells in vitro and Involvement of Cell Surface Heparan Sulfate Proteoglycans in Protein Binding to Plasma Membrane].

    Science.gov (United States)

    Snigireva, A V; Vrublevskaya, V V; Skarga, Y Y; Morenkov, O S

    2016-01-01

    Heat shock protein Hsp90, detected in the extracellular space and on the membrane of cells, plays an important role in cell motility, migration, invasion and metastasis of tumor cells. At present, the functional role and molecular mechanisms of Hsp90 binding to plasma membrane are not elucidated. Using isoform-specific antibodies against Hsp90, Hsp9α and Hsp90β, we showed that membrane-bound Hsp90α and Hsp90β play a significant role in migration of human fibrosarcoma (HT1080) and glioblastoma (A-172) cells in vitro. Disorders of sulfonation of cell heparan sulfates, cleavage of cell heparan. sulfates by heparinase I/III as well as treatment of cells with heparin lead to an abrupt reduction in the expression level of Hsp90 isoforms. Furthermore, heparin significantly inhibits tumor cell migration. The results obtained demonstrate that two isoforms of membrane-bound Hsp90 are involved in migration of tumor cells in vitro and that cell surface heparan sulfate proteoglycans play a pivotal role in the "anchoring" of Hsp90α and Hsp90β to the plasma membrane.

  16. Binding Procurement

    Science.gov (United States)

    Rao, Gopalakrishna M.; Vaidyanathan, Hari

    2007-01-01

    This viewgraph presentation reviews the use of the binding procurement process in purchasing Aerospace Flight Battery Systems. NASA Engineering and Safety Center (NESC) requested NASA Aerospace Flight Battery Systems Working Group to develop a set of guideline requirements document for Binding Procurement Contracts.

  17. The binding site for regulatory 14-3-3 protein in plant plasma membrane H+-ATPase: Involvement of a region promoting phosphorylation-independent interaction in addition to the phosphorylation-dependent C-terminal end

    DEFF Research Database (Denmark)

    Fuglsang, Anja T; Borch, Jonas; Bych, Katrine

    2003-01-01

    ) in the extreme C-terminal end of the H+-ATPase interacts with the binding cleft of 14-3-3 protein (Wurtele, M., Jelich-Ottmann, C., Wittinghofer, A., and Oecking, C. (2003) EMBO J. 22, 987-994). We report binding of 14-3-3 protein to a nonphosphorylated peptide representing the 34 C-terminal residues...

  18. Involvement of 1,25D{sub 3}-MARRS (membrane associated, rapid response steroid-binding), a novel vitamin D receptor, in growth inhibition of breast cancer cells

    Energy Technology Data Exchange (ETDEWEB)

    Richard, Cynthia L. [Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, Ontario, Canada N1G2W1 (Canada); Farach-Carson, Mary C.; Rohe, Ben [Department of Biological Sciences, University of Delaware, Newark, DE 19716 (United States); Nemere, Ilka [Department of Nutrition and Food Sciences, Center for Integrated BioSystems, Utah State University, Logan, UT 84322 8700 (United States); Meckling, Kelly A., E-mail: kmecklin@uoguelph.ca [Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, Ontario, Canada N1G2W1 (Canada)

    2010-03-10

    In addition to classical roles in calcium homeostasis and bone development, 1,25 dihydroxyvitamin D{sub 3} [1,25(OH){sub 2}D{sub 3}] inhibits the growth of several cancer types, including breast cancer. Although cellular effects of 1,25(OH){sub 2}D{sub 3} traditionally have been attributed to activation of a nuclear vitamin D receptor (VDR), a novel receptor for 1,25(OH){sub 2}D{sub 3} called 1,25D{sub 3}-MARRS (membrane-associated, rapid response steroid-binding) protein was identified recently. The purpose of this study was to determine if the level of 1,25D{sub 3}-MARRS expression modulates 1,25(OH){sub 2}D{sub 3} activity in breast cancer cells. Relative levels of 1,25D{sub 3}-MARRS protein in MCF-7, MDA MB 231, and MCF-10A cells were estimated by real-time RT-PCR and Western blotting. To determine if 1,25D{sub 3}-MARRS receptor was involved in the growth inhibitory effects of 1,25(OH){sub 2}D{sub 3} in MCF-7 cells, a ribozyme construct designed to knock down 1,25D{sub 3}-MARRS mRNA was stably transfected into MCF-7 cells. MCF-7 clones in which 1,25D{sub 3}-MARRS receptor expression was reduced showed increased sensitivity to 1,25(OH){sub 2}D{sub 3} ( IC{sub 50} 56 {+-} 24 nM) compared to controls (319 {+-} 181 nM; P < 0.05). Reduction in 1,25D{sub 3}-MARRS receptor lengthened the doubling time in transfectants treated with 1,25(OH){sub 2}D{sub 3}. Knockdown of 1,25D{sub 3}-MARRS receptor also increased the sensitivity of MCF-7 cells to the vitamin D analogs KH1060 and MC903, but not to unrelated agents (all-trans retinoic acid, paclitaxel, serum/glucose starvation, or the isoflavone, pomiferin). These results suggest that 1,25D{sub 3}-MARRS receptor expression interferes with the growth inhibitory activity of 1,25(OH){sub 2}D{sub 3} in breast cancer cells, possibly through the nuclear VDR. Further research should examine the potential for pharmacological or natural agents that modify 1,25D{sub 3}-MARRS expression or activity as anticancer agents.

  19. Cry1A toxins of Bacillus thuringiensis bind specifically to a region adjacent to the membrane-proximal extracellular domain of BT-R(1) in Manduca sexta: involvement of a cadherin in the entomopathogenicity of Bacillus thuringiensis.

    Science.gov (United States)

    Dorsch, J A; Candas, M; Griko, N B; Maaty, W S A; Midboe, E G; Vadlamudi, R K; Bulla, L A

    2002-09-01

    Many subspecies of the soil bacterium Bacillus thuringiensis produce various parasporal crystal proteins, also known as Cry toxins, that exhibit insecticidal activity upon binding to specific receptors in the midgut of susceptible insects. One such receptor, BT-R(1) (210 kDa), is a cadherin located in the midgut epithelium of the tobacco hornworm, Manduca sexta. It has a high binding affinity (K(d) approximately 1nM) for the Cry1A toxins of B. thuringiensis. Truncation analysis of BT-R(1) revealed that the only fragment capable of binding the Cry1A toxins of B. thuringiensis was a contiguous 169-amino acid sequence adjacent to the membrane-proximal extracellular domain. The purified toxin-binding fragment acted as an antagonist to Cry1Ab toxin by blocking the binding of toxin to the tobacco hornworm midgut and inhibiting insecticidal action. Exogenous Cry1Ab toxin bound to intact COS-7 cells expressing BT-R(1) cDNA, subsequently killing the cells. Recruitment of BT-R(1) by B. thuringiensis indicates that the bacterium interacts with a specific cell adhesion molecule during its pathogenesis. Apparently, Cry toxins, like other bacterial toxins, attack epithelial barriers by targeting cell adhesion molecules within susceptible insect hosts.

  20. Parental Involvement

    OpenAIRE

    Ezra S Simon

    2008-01-01

    This study was conducted in Ghana to investigate, (1) factors that predict parental involvement, (2) the relationship between parental home and school involvement and the educational achievement of adolescents, (3) the relationship between parental authoritativeness and the educational achievement of adolescent students, (4) parental involvement serving as a mediator between their authoritativeness and the educational achievement of the students, and (5) whether parental involvement decreases...

  1. Involvement of three meningococcal surface-exposed proteins, the heparin-binding protein NhbA, the α-peptide of IgA protease and the autotransporter protease NalP, in initiation of biofilm formation

    KAUST Repository

    Arenas, Jesús

    2012-12-04

    Neisseria meningitidis is a common and usually harmless inhabitant of the mucosa of the human nasopharynx, which, in rare cases, can cross the epithelial barrier and cause meningitis and sepsis. Biofilm formation favours the colonization of the host and the subsequent carrier state. Two different strategies of biofilm formation, either dependent or independent on extracellular DNA (eDNA), have been described for meningococcal strains. Here, we demonstrate that the autotransporter protease NalP, the expression of which is phase variable, affects eDNA-dependent biofilm formation in N.meningitidis. The effect of NalP was found in biofilm formation under static and flow conditions and was dependent on its protease activity. Cleavage of the heparin-binding antigen NhbA and the α-peptide of IgA protease, resulting in the release of positively charged polypeptides from the cell surface, was responsible for the reduction in biofilm formation when NalP is expressed. Both NhbA and the α-peptide of IgA protease were shown to bind DNA. We conclude that NhbA and the α-peptide of IgA protease are implicated in biofilm formation by binding eDNA and that NalP is an important regulator of this process through the proteolysis of these surface-exposed proteins. © 2012 Blackwell Publishing Ltd.

  2. The Arabidopsis ABA-activated kinase OST1 phosphorylates the bZIP transcription factor ABF3 and creates a 14-3-3 binding site involved in its turnover.

    Directory of Open Access Journals (Sweden)

    Caroline Sirichandra

    Full Text Available BACKGROUND: Genetic evidence in Arabidopsis thaliana indicates that members of the Snf1-Related Kinases 2 family (SnRK2 are essential in mediating various stress-adaptive responses. Recent reports have indeed shown that one particular member, Open Stomata (OST1, whose kinase activity is stimulated by the stress hormone abscisic acid (ABA, is a direct target of negative regulation by the core ABA co-receptor complex composed of PYR/PYL/RCAR and clade A Protein Phosphatase 2C (PP2C proteins. METHODOLOGY/PRINCIPAL FINDINGS: Here, the substrate preference of OST1 was interrogated at a genome-wide scale. We phosphorylated in vitro a bank of semi-degenerate peptides designed to assess the relative phosphorylation efficiency on a positionally fixed serine or threonine caused by systematic changes in the flanking amino acid sequence. Our results designate the ABA-responsive-element Binding Factor 3 (ABF3, which controls part of the ABA-regulated transcriptome, as a genuine OST1 substrate. Bimolecular Fluorescence Complementation experiments indicate that ABF3 interacts directly with OST1 in the nuclei of living plant cells. In vitro, OST1 phosphorylates ABF3 on multiple LXRXXpS/T preferred motifs including T451 located in the midst of a conserved 14-3-3 binding site. Using an antibody sensitive to the phosphorylated state of the preferred motif, we further show that ABF3 is phosphorylated on at least one such motif in response to ABA in vivo and that phospho-T451 is important for stabilization of ABF3. CONCLUSIONS/SIGNIFICANCE: All together, our results suggest that OST1 phosphorylates ABF3 in vivo on T451 to create a 14-3-3 binding motif. In a wider physiological context, we propose that the long term responses to ABA that require sustained gene expression is, in part, mediated by the stabilization of ABFs driven by ABA-activated SnRK2s.

  3. Human polyoma JC virus minor capsid proteins, VP2 and VP3, enhance large T antigen binding to the origin of viral DNA replication: evidence for their involvement in regulation of the viral DNA replication.

    Science.gov (United States)

    Saribas, A Sami; Mun, Sarah; Johnson, Jaslyn; El-Hajmoussa, Mohammad; White, Martyn K; Safak, Mahmut

    2014-01-20

    JC virus (JCV) lytically infects the oligodendrocytes in the central nervous system in a subset of immunocompromized patients and causes the demyelinating disease, progressive multifocal leukoencephalopathy. JCV replicates and assembles into infectious virions in the nucleus. However, understanding the molecular mechanisms of its virion biogenesis remains elusive. In this report, we have attempted to shed more light on this process by investigating molecular interactions between large T antigen (LT-Ag), Hsp70 and minor capsid proteins, VP2/VP3. We demonstrated that Hsp70 interacts with VP2/VP3 and LT-Ag; and accumulates heavily in the nucleus of the infected cells. We also showed that VP2/VP3 associates with LT-Ag through their DNA binding domains resulting in enhancement in LT-Ag DNA binding to Ori and induction in viral DNA replication. Altogether, our results suggest that VP2/VP3 and Hsp70 actively participate in JCV DNA replication and may play critical roles in coupling of viral DNA replication to virion encapsidation.

  4. Community involvement

    Directory of Open Access Journals (Sweden)

    Editorial Office

    1979-09-01

    Full Text Available Community involvement is the main theme of Health Year. Governments have a responsibility for the health of their people, and in this country under the present 3-tier system of government, the responsibility for the rendering of health services is divided between central, provincial and local government. However, under our democratic system, all people have the right to, and it is indeed their duty, to participate individually and collectively in the planning and implementation of services to meet their health needs. Ultimately, through involvement of individuals, families and communities, greater self-reliance is achieved leading to greater responsibility being assumed by people for their own health.

  5. Role of Electrostatic Interactions in Binding of Peptides and Intrinsically Disordered Proteins to Their Folded Targets: 2. The Model of Encounter Complex Involving the Double Mutant of the c-Crk N-SH3 Domain and Peptide Sos.

    Science.gov (United States)

    Yuwen, Tairan; Xue, Yi; Skrynnikov, Nikolai R

    2016-03-29

    In the first part of this work (paper 1, Xue, Y. et al. Biochemistry 2014 , 53 , 6473 ), we have studied the complex between the 10-residue peptide Sos and N-terminal SH3 domain from adaptor protein c-Crk. In the second part (this paper), we designed the double mutant of the c-Crk N-SH3 domain, W169F/Y186L, with the intention to eliminate the interactions responsible for tight peptide-protein binding, while retaining the interactions that create the initial electrostatic encounter complex. The resulting system was characterized experimentally by measuring the backbone and side-chain (15)N relaxation rates, as well as binding shifts and (1)H(N) temperature coefficients. In addition, it was also modeled via a series of ∼5 μs molecular dynamics (MD) simulations recorded in a large water box under an Amber ff99SB*-ILDN force field. Similar to paper 1, we have found that the strength of arginine-aspartate and arginine-glutamate salt bridges is overestimated in the original force field. To address this problem we have applied the empirical force-field correction described in paper 1. Specifically, the Lennard-Jones equilibrium distance for the nitrogen-oxygen pair across Arg-to-Asp/Glu salt bridges has been increased by 3%. This modification led to MD models in good agreement with the experimental data. The emerging picture is that of a fuzzy complex, where the peptide "dances" over the surface of the protein, making transient contacts via salt-bridge interactions. Every once in a while the peptide assumes a certain more stable binding pose, assisted by a number of adventitious polar and nonpolar contacts. On the other hand, occasionally Sos flies off the protein surface; it is then guided by electrostatic steering to quickly reconnect with the protein. The dynamic interaction between Sos and the double mutant of c-Crk N-SH3 gives rise to only small binding shifts. The peptide retains a high degree of conformational mobility, although it is appreciably slowed down due

  6. Inhibitory effects of omega-3 fatty acids on early brain injury after subarachnoid hemorrhage in rats: Possible involvement of G protein-coupled receptor 120/β-arrestin2/TGF-β activated kinase-1 binding protein-1 signaling pathway.

    Science.gov (United States)

    Yin, Jia; Li, Haiying; Meng, Chengjie; Chen, Dongdong; Chen, Zhouqing; Wang, Yibin; Wang, Zhong; Chen, Gang

    2016-06-01

    Omega-3 fatty acids have been reported to improve neuron functions during aging and in patients affected by mild cognitive impairment, and mediate potent anti-inflammatory via G protein-coupled receptor 120 (GPR120) signal pathway. Neuron dysfunction and inflammatory response also contributed to the progression of subarachnoid hemorrhage (SAH)-induced early brain injury (EBI). This study was to examine the effects of omega-3 fatty acids on SAH-induced EBI. Two weeks before SAH, 30% Omega-3 fatty acids was administered by oral gavage at 1g/kg body weight once every 24h. Specific siRNA for GPR120 was exploited. Terminal deoxynucleotidyl transferase dUTP nick end labeling, fluoro-Jade B staining, and neurobehavioral scores and brain water content test showed that omega-3 fatty acids effectively suppressed SAH-induced brain cell apoptosis and neuronal degradation, behavioral impairment, and brain edema. Western blot, immunoprecipitation, and electrophoretic mobility shift assays results showed that omega-3 fatty acids effectively suppressed SAH-induced elevation of inflammatory factors, including cyclooxygenase-2, monocyte chemoattractant protein-1, and inducible nitric oxide synthase. In addition, omega-3 fatty acids could inhibit phosphorylation of transforming growth factor β activated kinase-1 (TAK1), MEK4, c-Jun N-terminal kinase, and IkappaB kinase as well as activation of nuclear factor kappa B through regulating GPR120/β-arrestin2/TAK1 binding protein-1 pathway. Furthermore, siRNA-induced GPR120 silencing blocked the protective effects of omega-3 fatty acids. Here, we show that stimulation of GPR120 with omega-3 fatty acids pretreatment causes anti-apoptosis and anti-inflammatory effects via β-arrestin2/TAK1 binding protein-1/TAK1 pathway in the brains of SAH rats. Fish omega-3 fatty acids as part of a daily diet may reduce EBI in an experimental rat model of SAH.

  7. Defining Starch Binding by Glucan Phosphatases

    DEFF Research Database (Denmark)

    Auger, Kyle; Raththagala, Madushi; Wilkens, Casper

    2015-01-01

    phosphatases. The main objective of this study was to quantify the binding affinity of different enzymes that are involved in this cyclic process. We established a protocol to quickly, reproducibly, and quantitatively measure the binding of the enzymes to glucans utilizing Affinity Gel Electrophoresis (AGE...... glucan phosphatases showed similar affinities for the short oligosaccharide β-cyclodextrin. We performed structure-guided mutagenesis to define the mechanism of these differences. We found that the carbohydrate binding module (CBM) domain provided a stronger binding affinity compared to surface binding...

  8. Suppression of c-Myc is involved in multi-walled carbon nanotubes' down-regulation of ATP-binding cassette transporters in human colon adenocarcinoma cells

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Zhaojing [Department of Pharmacology, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, 430030 Wuhan (China); Xu, Yonghong [Institute of Ophthalmological Research, Department of Ophthalmology, Renmin Hospital of Wuhan University, 430060 Wuhan (China); Meng, Xiangning [School of Materials and Metallurgy, Northeastern University, Shenyang 110819 (China); Watari, Fumio [Department of Biomedical, Dental Materials and Engineering, Graduate School of Dental Medicine, Hokkaido University, Sapporo 060-8586 (Japan); Liu, Hudan, E-mail: hudanliu@hust.edu.cn [Department of Pharmacology, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, 430030 Wuhan (China); Chen, Xiao, E-mail: mornsmile@yahoo.com [Department of Pharmacology, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, 430030 Wuhan (China)

    2015-01-01

    Over-expression of ATP-binding cassette (ABC) transporters, a large family of integral membrane proteins that decrease cellular drug uptake and accumulation by active extrusion, is one of the major causes of cancer multi-drug resistance (MDR) that frequently leads to failure of chemotherapy. Carbon nanotubes (CNTs)-based drug delivery devices hold great promise in enhancing the efficacy of cancer chemotherapy. However, CNTs' effects on the ABC transporters remain under-investigated. In this study, we found that multiwalled carbon nanotubes (MWCNTs) reduced transport activity and expression of ABC transporters including ABCB1/Pgp and ABCC4/MRP4 in human colon adenocarcinoma Caco-2 cells. Proto-oncogene c-Myc, which directly regulates ABC gene expression, was concurrently decreased in MWCNT-treated cells and forced over-expression of c-Myc reversed MWCNTs' inhibitory effects on ABCB1 and ABCC4 expression. MWCNT-cell membrane interaction and cell membrane oxidative damage were observed. However, antioxidants such as vitamin C, β-mecaptoethanol and dimethylthiourea failed to antagonize MWCNTs' down-regulation of ABC transporters. These data suggest that MWCNTs may act on c-Myc, but not through oxidative stress, to down-regulate ABC transporter expression. Our findings thus shed light on CNTs' novel cellular effects that may be utilized to develop CNTs-based drug delivery devices to overcome ABC transporter-mediated cancer chemoresistance.

  9. Retinoid-binding proteins: similar protein architectures bind similar ligands via completely different ways.

    Directory of Open Access Journals (Sweden)

    Yu-Ru Zhang

    Full Text Available BACKGROUND: Retinoids are a class of compounds that are chemically related to vitamin A, which is an essential nutrient that plays a key role in vision, cell growth and differentiation. In vivo, retinoids must bind with specific proteins to perform their necessary functions. Plasma retinol-binding protein (RBP and epididymal retinoic acid binding protein (ERABP carry retinoids in bodily fluids, while cellular retinol-binding proteins (CRBPs and cellular retinoic acid-binding proteins (CRABPs carry retinoids within cells. Interestingly, although all of these transport proteins possess similar structures, the modes of binding for the different retinoid ligands with their carrier proteins are different. METHODOLOGY/PRINCIPAL FINDINGS: In this work, we analyzed the various retinoid transport mechanisms using structure and sequence comparisons, binding site analyses and molecular dynamics simulations. Our results show that in the same family of proteins and subcellular location, the orientation of a retinoid molecule within a binding protein is same, whereas when different families of proteins are considered, the orientation of the bound retinoid is completely different. In addition, none of the amino acid residues involved in ligand binding is conserved between the transport proteins. However, for each specific binding protein, the amino acids involved in the ligand binding are conserved. The results of this study allow us to propose a possible transport model for retinoids. CONCLUSIONS/SIGNIFICANCE: Our results reveal the differences in the binding modes between the different retinoid-binding proteins.

  10. Multi-organ expression profiling uncovers a gene module in coronary artery disease involving transendothelial migration of leukocytes and LIM domain binding 2: The Stockholm Atherosclerosis Gene Expression (STAGE) study

    KAUST Repository

    Hägg, Sara

    2009-12-04

    Environmental exposures filtered through the genetic make-up of each individual alter the transcriptional repertoire in organs central to metabolic homeostasis, thereby affecting arterial lipid accumulation, inflammation, and the development of coronary artery disease (CAD). The primary aim of the Stockholm Atherosclerosis Gene Expression (STAGE) study was to determine whether there are functionally associated genes (rather than individual genes) important for CAD development. To this end, two-way clustering was used on 278 transcriptional profiles of liver, skeletal muscle, and visceral fat (n =66/tissue) and atherosclerotic and unaffected arterial wall (n =40/tissue) isolated from CAD patients during coronary artery bypass surgery. The first step, across all mRNA signals (n =15,042/12,621 RefSeqs/genes) in each tissue, resulted in a total of 60 tissue clusters (n= 3958 genes). In the second step (performed within tissue clusters), one atherosclerotic lesion (n =49/48) and one visceral fat (n =59) cluster segregated the patients into two groups that differed in the extent of coronary stenosis (P=0.008 and P=0.00015). The associations of these clusters with coronary atherosclerosis were validated by analyzing carotid atherosclerosis expression profiles. Remarkably, in one cluster (n =55/54) relating to carotid stenosis (P =0.04), 27 genes in the two clusters relating to coronary stenosis were confirmed (n= 16/17, P<10 -27and-30). Genes in the transendothelial migration of leukocytes (TEML) pathway were overrepresented in all three clusters, referred to as the atherosclerosis module (A-module). In a second validation step, using three independent cohorts, the Amodule was found to be genetically enriched with CAD risk by 1.8-fold (P<0.004). The transcription co-factor LIM domain binding 2 (LDB2) was identified as a potential high-hierarchy regulator of the A-module, a notion supported by subnetwork analysis, by cellular and lesion expression of LDB2, and by the

  11. Multi-organ expression profiling uncovers a gene module in coronary artery disease involving transendothelial migration of leukocytes and LIM domain binding 2: the Stockholm Atherosclerosis Gene Expression (STAGE study.

    Directory of Open Access Journals (Sweden)

    Sara Hägg

    2009-12-01

    Full Text Available Environmental exposures filtered through the genetic make-up of each individual alter the transcriptional repertoire in organs central to metabolic homeostasis, thereby affecting arterial lipid accumulation, inflammation, and the development of coronary artery disease (CAD. The primary aim of the Stockholm Atherosclerosis Gene Expression (STAGE study was to determine whether there are functionally associated genes (rather than individual genes important for CAD development. To this end, two-way clustering was used on 278 transcriptional profiles of liver, skeletal muscle, and visceral fat (n = 66/tissue and atherosclerotic and unaffected arterial wall (n = 40/tissue isolated from CAD patients during coronary artery bypass surgery. The first step, across all mRNA signals (n = 15,042/12,621 RefSeqs/genes in each tissue, resulted in a total of 60 tissue clusters (n = 3958 genes. In the second step (performed within tissue clusters, one atherosclerotic lesion (n = 49/48 and one visceral fat (n = 59 cluster segregated the patients into two groups that differed in the extent of coronary stenosis (P = 0.008 and P = 0.00015. The associations of these clusters with coronary atherosclerosis were validated by analyzing carotid atherosclerosis expression profiles. Remarkably, in one cluster (n = 55/54 relating to carotid stenosis (P = 0.04, 27 genes in the two clusters relating to coronary stenosis were confirmed (n = 16/17, P<10(-27 and-30. Genes in the transendothelial migration of leukocytes (TEML pathway were overrepresented in all three clusters, referred to as the atherosclerosis module (A-module. In a second validation step, using three independent cohorts, the A-module was found to be genetically enriched with CAD risk by 1.8-fold (P<0.004. The transcription co-factor LIM domain binding 2 (LDB2 was identified as a potential high-hierarchy regulator of the A-module, a notion supported by subnetwork analysis, by cellular and lesion expression of LDB2

  12. The mechanism of oxidative halophenol dehalogenation by Amphitrite ornata dehaloperoxidase is initiated by H2O2 binding and involves two consecutive one-electron steps: role of ferryl intermediates.

    Science.gov (United States)

    Osborne, Robert L; Coggins, Michael K; Raner, Gregory M; Walla, Mike; Dawson, John H

    2009-05-26

    The enzymatic globin, dehaloperoxidase (DHP), from the terebellid polychaete Amphitrite ornata is designed to catalyze the oxidative dehalogenation of halophenol substrates. In this study, the ability of DHP to catalyze this reaction by a mechanism involving two consecutive one-electron steps via the normal order of addition of the oxidant cosubstrate (H(2)O(2)) before organic substrate [2,4,6-trichlorophenol (TCP)] is demonstrated. Specifically, 1 equiv of H(2)O(2) will fully convert 1 equiv of TCP to 2,6-dichloro-1,4-benzoquinone, implicating the role of multiple ferryl [Fe(IV)O] species. A significant amount of heterolytic cleavage of the O-O bond of cumene hydroperoxide, consistent with transient formation of a Compound I [Fe(IV)O/porphyrin pi-cation radical] species, is observed upon its reaction with ferric DHP. In addition, a more stable high-valent Fe(IV)O-containing DHP intermediate [Compound II (Cpd II) or Compound ES] is characterized by UV-visible absorption and magnetic circular dichroism spectroscopy. Spectral similarities are seen between this intermediate and horse heart myoglobin Cpd II. It is also shown in single-turnover experiments that the DHP Fe(IV)O intermediate is an active oxidant in halophenol oxidative dehalogenation. Furthermore, reaction of DHP with 4-chlorophenol leads to a dimeric product. The results presented herein are consistent with a normal peroxidase order of addition of the oxidant cosubstrate (H(2)O(2)) followed by organic substrate (TCP) and indicate that the enzymatic mechanism of DHP-catalyzed oxidative halophenol dehalogenation involves two consecutive one-electron steps with a dissociable radical intermediate.

  13. Predicted metal binding sites for phytoremediation

    OpenAIRE

    Sharma, Ashok; Roy, Sudeep; Tripathi, Kumar Parijat; Roy, Pratibha; Mishra, Manoj; Khan, Feroz; Meena, Abha

    2009-01-01

    Metal ion binding domains are found in proteins that mediate transport, buffering or detoxification of metal ions. The objective of the study is to design and analyze metal binding motifs against the genes involved in phytoremediation. This is being done on the basis of certain pre-requisite amino-acid residues known to bind metal ions/metal complexes in medicinal and aromatic plants (MAP's). Earlier work on MAP's have shown that heavy metals accumulated by aromatic and medicinal plants do no...

  14. Analyzing binding data.

    Science.gov (United States)

    Motulsky, Harvey J; Neubig, Richard R

    2010-07-01

    Measuring the rate and extent of radioligand binding provides information on the number of binding sites, and their affinity and accessibility of these binding sites for various drugs. This unit explains how to design and analyze such experiments.

  15. Identification of specific sites involved in ligand binding by photoaffinity labeling of the receptor for the urokinase-type plasminogen activator. Residues located at equivalent positions in uPAR domains I and III participate in the assembly of a composite ligand-binding site

    DEFF Research Database (Denmark)

    Ploug, M

    1998-01-01

    PA binding (SLNFSQYLWS) were previously tagged by specific site-directed photoaffinity labeling [Ploug, M., Ostergaard, S., Hansen, L. B. L., Holm, A., and Dano, K. (1998) Biochemistry 37, 3612-3622]. Replacement of the key functional residues Phe4 and Trp9 with either benzophenone or (trifluoromethyl......)aryldiazirine rendered this peptide antagonist photoactivatable, and as a consequence, it incorporated covalently upon photolysis into either uPAR domain I or domain III depending on the actual position of the photophore in the sequence. The residues of uPAR specifically targeted by photoaffinity labeling were...... identified by matrix-assisted laser desorption mass spectrometry, NH2-terminal sequence analysis, and amino acid composition analysis after enzymatic fragmentation and HPLC purification. According to these data, the formation of the receptor-ligand complex positions Phe4 of the peptide antagonist very close...

  16. CTCF Binding Polarity Determines Chromatin Looping

    NARCIS (Netherlands)

    de Wit, Elzo; Vos, Erica S M; Holwerda, Sjoerd J B|info:eu-repo/dai/nl/344682218; Valdes-Quezada, Christian; Verstegen, Marjon J A M; Teunissen, Hans; Splinter, Erik; Wijchers, Patrick J; Krijger, Peter H L; de Laat, Wouter|info:eu-repo/dai/nl/169934497

    2015-01-01

    CCCTC-binding factor (CTCF) is an architectural protein involved in the three-dimensional (3D) organization of chromatin. In this study, we assayed the 3D genomic contact profiles of a large number of CTCF binding sites with high-resolution 4C-seq. As recently reported, our data also suggest that ch

  17. A novel cryptic binding motif, LRSKSRSFQVSDEQY, in the C-terminal fragment of MMP-3/7-cleaved osteopontin as a novel ligand for α9β1 integrin is involved in the anti-type II collagen antibody-induced arthritis.

    Directory of Open Access Journals (Sweden)

    Shigeyuki Kon

    Full Text Available Osteopontin (OPN is a multifunctional protein that has been linked to various intractable inflammatory diseases. One way by which OPN induces inflammation is the production of various functional fragments by enzyme cleavage. It has been well appreciated that OPN is cleaved by thrombin, and/or matrix metalloproteinase-3 and -7 (MMP-3/7. Although the function of thrombin-cleaved OPN is well characterized, little is known about the function of MMP-3/7-cleaved OPN. In this study, we found a novel motif, LRSKSRSFQVSDEQY, in the C-terminal fragment of MMP-3/7-cleaved mouse OPN binds to α9β1 integrin. Importantly, this novel motif is involved in the development of anti-type II collagen antibody-induced arthritis (CAIA. This study provides the first in vitro and in vivo evidence that OPN cleavage by MMP-3/7 is an important regulatory mechanism for CAIA.

  18. Bacterial periplasmic sialic acid-binding proteins exhibit a conserved binding site

    Energy Technology Data Exchange (ETDEWEB)

    Gangi Setty, Thanuja [Institute for Stem Cell Biology and Regenerative Medicine, NCBS Campus, GKVK Post, Bangalore, Karnataka 560 065 (India); Cho, Christine [Carver College of Medicine, University of Iowa, Iowa City, IA 52242-1109 (United States); Govindappa, Sowmya [Institute for Stem Cell Biology and Regenerative Medicine, NCBS Campus, GKVK Post, Bangalore, Karnataka 560 065 (India); Apicella, Michael A. [Carver College of Medicine, University of Iowa, Iowa City, IA 52242-1109 (United States); Ramaswamy, S., E-mail: ramas@instem.res.in [Institute for Stem Cell Biology and Regenerative Medicine, NCBS Campus, GKVK Post, Bangalore, Karnataka 560 065 (India)

    2014-07-01

    Structure–function studies of sialic acid-binding proteins from F. nucleatum, P. multocida, V. cholerae and H. influenzae reveal a conserved network of hydrogen bonds involved in conformational change on ligand binding. Sialic acids are a family of related nine-carbon sugar acids that play important roles in both eukaryotes and prokaryotes. These sialic acids are incorporated/decorated onto lipooligosaccharides as terminal sugars in multiple bacteria to evade the host immune system. Many pathogenic bacteria scavenge sialic acids from their host and use them for molecular mimicry. The first step of this process is the transport of sialic acid to the cytoplasm, which often takes place using a tripartite ATP-independent transport system consisting of a periplasmic binding protein and a membrane transporter. In this paper, the structural characterization of periplasmic binding proteins from the pathogenic bacteria Fusobacterium nucleatum, Pasteurella multocida and Vibrio cholerae and their thermodynamic characterization are reported. The binding affinities of several mutations in the Neu5Ac binding site of the Haemophilus influenzae protein are also reported. The structure and the thermodynamics of the binding of sugars suggest that all of these proteins have a very well conserved binding pocket and similar binding affinities. A significant conformational change occurs when these proteins bind the sugar. While the C1 carboxylate has been identified as the primary binding site, a second conserved hydrogen-bonding network is involved in the initiation and stabilization of the conformational states.

  19. FK506 binding protein 51 is involved in the depression-like behaviors induced by glucocorticoids%FK506binding protein51参与糖皮质激素介导的抑郁样行为的发生

    Institute of Scientific and Technical Information of China (English)

    陈姣; 楚世峰; 李婧; 陈乃宏

    2014-01-01

    目的 探讨FK506 binding protein 51(FKBP5)是否参与糖皮质激素介导的抑郁样行为的发生.方法 分别采用慢性轻度应激(chronic mild stress,CMS)和皮下注射40 mg·kg-1皮质酮诱导抑郁大鼠模型;行为学采用强迫游泳实验、糖水偏好实验、新奇觅食潜伏期实验、高架十字迷宫检测大鼠的无助绝望、兴趣缺失抑郁样行为和焦虑样行为; ELISA法检测大鼠血浆中糖皮质激素(CORT)的水平; Western blot检测大鼠海马(hippocampus)和前额叶皮质 (prefrontal cortex,PFC) 中FKBP5的表达变化.结果 CMS组大鼠在强迫游泳中表现出不动时间明显增加;糖水偏好实验中糖水消耗下降;新奇觅食潜伏期试验中觅食潜伏期延长;高架十字中停留在闭臂中的时间明显增加;CMS后海马和前额叶皮质中FKBP5表达上调,糖皮质激素水平升高;为验证FKBP5蛋白升高是否由于糖皮质激素升高所引起,我们采用皮下注射皮质酮(40 mg·kg-1,21 d),大鼠表现出糖水偏好明显降低的抑郁样行为,PFC区FKBP5蛋白表达上调.结论 FKBP5可能参与了糖皮质激素介导的抑郁样行为的发生.

  20. Adaptive evolution of transcription factor binding sites

    Directory of Open Access Journals (Sweden)

    Berg Johannes

    2004-10-01

    Full Text Available Abstract Background The regulation of a gene depends on the binding of transcription factors to specific sites located in the regulatory region of the gene. The generation of these binding sites and of cooperativity between them are essential building blocks in the evolution of complex regulatory networks. We study a theoretical model for the sequence evolution of binding sites by point mutations. The approach is based on biophysical models for the binding of transcription factors to DNA. Hence we derive empirically grounded fitness landscapes, which enter a population genetics model including mutations, genetic drift, and selection. Results We show that the selection for factor binding generically leads to specific correlations between nucleotide frequencies at different positions of a binding site. We demonstrate the possibility of rapid adaptive evolution generating a new binding site for a given transcription factor by point mutations. The evolutionary time required is estimated in terms of the neutral (background mutation rate, the selection coefficient, and the effective population size. Conclusions The efficiency of binding site formation is seen to depend on two joint conditions: the binding site motif must be short enough and the promoter region must be long enough. These constraints on promoter architecture are indeed seen in eukaryotic systems. Furthermore, we analyse the adaptive evolution of genetic switches and of signal integration through binding cooperativity between different sites. Experimental tests of this picture involving the statistics of polymorphisms and phylogenies of sites are discussed.

  1. Biomimetic supramolecular metallohosts for binding and activation of dioxygen

    NARCIS (Netherlands)

    Sprakel, Vera Stefanie Irene

    2004-01-01

    Host-guest chemistry involves the binding of a specific substrate in a receptor via molecular recognition based on supramolecular interactions. Metal-containing derivatives of receptors for the selective supramolecular binding of dihydroxybenzene substrates, which receptors model oxygen binding enz

  2. RNA Binding Proteins Posttranscriptionally Regulate Genes Involved In Oncogenesis

    Science.gov (United States)

    2010-06-01

    Cycle 9:3337-3346. 3. Heinonen, M., P. Bono , K. Narko, S. H. Chang, J. Lundin, H. Joensuu, H. Furneaux, T. Hla, C. Haglund, and A. Ristimaki...carcinoma. Clin Cancer Res 2004, 10(16):5580-5586. 37. Heinonen M, Bono P, Narko K, Chang SH, Lundin J, Joensuu H, Furneaux H, Hla T, Haglund C...111(1):15-25. 43. Saunus JM, French JD, Edwards SL, Beveridge DJ, Hatchell EC, Wagner SA, Stein SR, Davidson A, Simpson KJ, Francis GD, Leedman PJ

  3. Membrane binding domains

    OpenAIRE

    Hurley, James H.

    2006-01-01

    Eukaryotic signaling and trafficking proteins are rich in modular domains that bind cell membranes. These binding events are tightly regulated in space and time. The structural, biochemical, and biophysical mechanisms for targeting have been worked out for many families of membrane binding domains. This review takes a comparative view of seven major classes of membrane binding domains, the C1, C2, PH, FYVE, PX, ENTH, and BAR domains. These domains use a combination of specific headgroup inter...

  4. Analyzing radioligand binding data.

    Science.gov (United States)

    Motulsky, Harvey; Neubig, Richard

    2002-08-01

    Radioligand binding experiments are easy to perform, and provide useful data in many fields. They can be used to study receptor regulation, discover new drugs by screening for compounds that compete with high affinity for radioligand binding to a particular receptor, investigate receptor localization in different organs or regions using autoradiography, categorize receptor subtypes, and probe mechanisms of receptor signaling, via measurements of agonist binding and its regulation by ions, nucleotides, and other allosteric modulators. This unit reviews the theory of receptor binding and explains how to analyze experimental data. Since binding data are usually best analyzed using nonlinear regression, this unit also explains the principles of curve fitting with nonlinear regression.

  5. Bacterial oligopeptide-binding proteins.

    Science.gov (United States)

    Monnet, V

    2003-10-01

    This review focuses on bacterial oligopeptide-binding proteins, which form part of the oligopeptide transport system belonging to the ATP-binding cassette family of transporters. Depending on the bacterial species, these binding proteins (OppA) capture peptides ranging in size from 2 to 18 amino acids from the environment and pass them on to the other components of the oligopeptide transport system for internalisation. Bacteria have developed several strategies to produce these binding proteins, which are periplasmic in Gram- bacteria and membrane-anchored in Gram+, with a higher stoichiometry (probably necessary for efficient transport) than the other components in the transport system. The expression of OppA-encoding genes is clearly modulated by external factors, especially nitrogen compounds, but the mechanisms of regulation are not always clear. The best-understood roles played by OppAs are internalisation of peptides for nutrition and recycling of muropeptides. It has, however, recently become clear that OppAs are also involved in sensing the external medium via specific or non-specific peptides.

  6. Mediaeval manuscript bindings

    Directory of Open Access Journals (Sweden)

    Jedert Vodopivec

    1999-01-01

    Full Text Available The present article represents an excerpt from the final chapters of the research study titled "The development of structures in mediaeval manuscript bindings - interdependence with conservatory methods". In it, aims, methods of work, archive and library materials used and directions for conservatory methods are presented. Besides, the research study includes also a historcial overview of book bindings, detailed analysis of separate structural elements in Slovenian mediaeval bindings, comprehensive presentation of separate structures, the techniques of binding and materials of the preserved mediaeval bindings in Slovenian public archives and libraries, terminological dictionary of specific professional terms related to binding as a segment of a book, and a catalogue of all analysed bindings, containing a survey of ajI detectable data, sketches,graphite prints and photographs.

  7. Predicted metal binding sites for phytoremediation.

    Science.gov (United States)

    Sharma, Ashok; Roy, Sudeep; Tripathi, Kumar Parijat; Roy, Pratibha; Mishra, Manoj; Khan, Feroz; Meena, Abha

    2009-09-05

    Metal ion binding domains are found in proteins that mediate transport, buffering or detoxification of metal ions. The objective of the study is to design and analyze metal binding motifs against the genes involved in phytoremediation. This is being done on the basis of certain pre-requisite amino-acid residues known to bind metal ions/metal complexes in medicinal and aromatic plants (MAP's). Earlier work on MAP's have shown that heavy metals accumulated by aromatic and medicinal plants do not appear in the essential oil and that some of these species are able to grow in metal contaminated sites. A pattern search against the UniProtKB/Swiss-Prot and UniProtKB/TrEMBL databases yielded true positives in each case showing the high specificity of the motifs designed for the ions of nickel, lead, molybdenum, manganese, cadmium, zinc, iron, cobalt and xenobiotic compounds. Motifs were also studied against PDB structures. Results of the study suggested the presence of binding sites on the surface of protein molecules involved. PDB structures of proteins were finally predicted for the binding sites functionality in their respective phytoremediation usage. This was further validated through CASTp server to study its physico-chemical properties. Bioinformatics implications would help in designing strategy for developing transgenic plants with increased metal binding capacity. These metal binding factors can be used to restrict metal update by plants. This helps in reducing the possibility of metal movement into the food chain.

  8. Mannose-Binding Lectin Binds to Amyloid Protein and Modulates Inflammation

    Directory of Open Access Journals (Sweden)

    Mykol Larvie

    2012-01-01

    Full Text Available Mannose-binding lectin (MBL, a soluble factor of the innate immune system, is a pattern recognition molecule with a number of known ligands, including viruses, bacteria, and molecules from abnormal self tissues. In addition to its role in immunity, MBL also functions in the maintenance of tissue homeostasis. We present evidence here that MBL binds to amyloid β peptides. MBL binding to other known carbohydrate ligands is calcium-dependent and has been attributed to the carbohydrate-recognition domain, a common feature of other C-type lectins. In contrast, we find that the features of MBL binding to Aβ are more similar to the reported binding characteristics of the cysteine-rich domain of the unrelated mannose receptor and therefore may involve the MBL cysteine-rich domain. Differences in MBL ligand binding may contribute to modulation of inflammatory response and may correlate with the function of MBL in processes such as coagulation and tissue homeostasis.

  9. Transcriptional Regulation of Brain-Derived Neurotrophic Factor (BDNF) by Methyl CpG Binding Protein 2 (MeCP2): a Novel Mechanism for Re-Myelination and/or Myelin Repair Involved in the Treatment of Multiple Sclerosis (MS).

    Science.gov (United States)

    KhorshidAhmad, Tina; Acosta, Crystal; Cortes, Claudia; Lakowski, Ted M; Gangadaran, Surendiran; Namaka, Michael

    2016-03-01

    Multiple sclerosis (MS) is a chronic progressive, neurological disease characterized by the targeted immune system-mediated destruction of central nervous system (CNS) myelin. Autoreactive CD4+ T helper cells have a key role in orchestrating MS-induced myelin damage. Once activated, circulating Th1-cells secrete a variety of inflammatory cytokines that foster the breakdown of blood-brain barrier (BBB) eventually infiltrating into the CNS. Inside the CNS, they become reactivated upon exposure to the myelin structural proteins and continue to produce inflammatory cytokines such as tumor necrosis factor α (TNFα) that leads to direct activation of antibodies and macrophages that are involved in the phagocytosis of myelin. Proliferating oligodendrocyte precursors (OPs) migrating to the lesion sites are capable of acute remyelination but unable to completely repair or restore the immune system-mediated myelin damage. This results in various permanent clinical neurological disabilities such as cognitive dysfunction, fatigue, bowel/bladder abnormalities, and neuropathic pain. At present, there is no cure for MS. Recent remyelination and/or myelin repair strategies have focused on the role of the neurotrophin brain-derived neurotrophic factor (BDNF) and its upstream transcriptional repressor methyl CpG binding protein (MeCP2). Research in the field of epigenetic therapeutics involving histone deacetylase (HDAC) inhibitors and lysine acetyl transferase (KAT) inhibitors is being explored to repress the detrimental effects of MeCP2. This review will address the role of MeCP2 and BDNF in remyelination and/or myelin repair and the potential of HDAC and KAT inhibitors as novel therapeutic interventions for MS.

  10. Ureaplasma urealyticum binds mannose-binding lectin.

    Science.gov (United States)

    Benstein, Barbara D; Ourth, Donald D; Crouse, Dennis T; Shanklin, D Radford

    2004-10-01

    Mannose-binding C-type lectin (MBL) is an important component of innate immunity in mammals. Mannose-binding lectin (MBL), an acute phase protein, acts as an opsonin for phagocytosis and also activates the mannan-binding lectin complement pathway. It may play a particularly significant role during infancy before adequate specific protection can be provided by the adaptive immune system. Ureaplasma urealyticum has been linked to several diseases including pneumonia and chronic lung disease (CLD) in premature infants. We therefore investigated the ability of U. urealyticum to bind MBL. A guinea pig IgG anti-rabbit-MBL antiserum was produced. An immunoblot (dot-blot) assay done on nitrocellulose membrane determined that the anti-MBL antibody had specificity against both rabbit and human MBL. Pure cultures of U. urealyticum, serotype 3, were used to make slide preparations. The slides containing the organisms were then incubated with nonimmune rabbit serum containing MBL. Ureaplasma was shown to bind rabbit MBL with an immunocytochemical assay using the guinea pig IgG anti-rabbit MBL antiserum. Horseradish peroxidase (HRP)-labeled anti-guinea pig IgG was used to localize the reaction. The anti-MBL antiserum was also used in an immunocytochemical assay to localize U. urealyticum in histological sections of lungs from mice specifically infected with this organism. The same method also indicated binding of MBL by ureaplasma in human lung tissue obtained at autopsy from culture positive infants. Our results demonstrate that ureaplasma has the capacity to bind MBL. The absence of MBL may play a role in the predisposition of diseases related to this organism.

  11. Ligand binding mechanics of maltose binding protein.

    Science.gov (United States)

    Bertz, Morten; Rief, Matthias

    2009-11-13

    In the past decade, single-molecule force spectroscopy has provided new insights into the key interactions stabilizing folded proteins. A few recent studies probing the effects of ligand binding on mechanical protein stability have come to quite different conclusions. While some proteins seem to be stabilized considerably by a bound ligand, others appear to be unaffected. Since force acts as a vector in space, it is conceivable that mechanical stabilization by ligand binding is dependent on the direction of force application. In this study, we vary the direction of the force to investigate the effect of ligand binding on the stability of maltose binding protein (MBP). MBP consists of two lobes connected by a hinge region that move from an open to a closed conformation when the ligand maltose binds. Previous mechanical experiments, where load was applied to the N and C termini, have demonstrated that MBP is built up of four building blocks (unfoldons) that sequentially detach from the folded structure. In this study, we design the pulling direction so that force application moves the two MBP lobes apart along the hinge axis. Mechanical unfolding in this geometry proceeds via an intermediate state whose boundaries coincide with previously reported MBP unfoldons. We find that in contrast to N-C-terminal pulling experiments, the mechanical stability of MBP is increased by ligand binding when load is applied to the two lobes and force breaks the protein-ligand interactions directly. Contour length measurements indicate that MBP is forced into an open conformation before unfolding even if ligand is bound. Using mutagenesis experiments, we demonstrate that the mechanical stabilization effect is due to only a few key interactions of the protein with its ligand. This work illustrates how varying the direction of the applied force allows revealing important details about the ligand binding mechanics of a large protein.

  12. Protein Binding Pocket Dynamics.

    Science.gov (United States)

    Stank, Antonia; Kokh, Daria B; Fuller, Jonathan C; Wade, Rebecca C

    2016-05-17

    The dynamics of protein binding pockets are crucial for their interaction specificity. Structural flexibility allows proteins to adapt to their individual molecular binding partners and facilitates the binding process. This implies the necessity to consider protein internal motion in determining and predicting binding properties and in designing new binders. Although accounting for protein dynamics presents a challenge for computational approaches, it expands the structural and physicochemical space for compound design and thus offers the prospect of improved binding specificity and selectivity. A cavity on the surface or in the interior of a protein that possesses suitable properties for binding a ligand is usually referred to as a binding pocket. The set of amino acid residues around a binding pocket determines its physicochemical characteristics and, together with its shape and location in a protein, defines its functionality. Residues outside the binding site can also have a long-range effect on the properties of the binding pocket. Cavities with similar functionalities are often conserved across protein families. For example, enzyme active sites are usually concave surfaces that present amino acid residues in a suitable configuration for binding low molecular weight compounds. Macromolecular binding pockets, on the other hand, are located on the protein surface and are often shallower. The mobility of proteins allows the opening, closing, and adaptation of binding pockets to regulate binding processes and specific protein functionalities. For example, channels and tunnels can exist permanently or transiently to transport compounds to and from a binding site. The influence of protein flexibility on binding pockets can vary from small changes to an already existent pocket to the formation of a completely new pocket. Here, we review recent developments in computational methods to detect and define binding pockets and to study pocket dynamics. We introduce five

  13. Isothermal titration calorimetry: general formalism using binding polynomials.

    Science.gov (United States)

    Freire, Ernesto; Schön, Arne; Velazquez-Campoy, Adrian

    2009-01-01

    The theory of the binding polynomial constitutes a very powerful formalism by which many experimental biological systems involving ligand binding can be analyzed under a unified framework. The analysis of isothermal titration calorimetry (ITC) data for systems possessing more than one binding site has been cumbersome because it required the user to develop a binding model to fit the data. Furthermore, in many instances, different binding models give rise to identical binding isotherms, making it impossible to discriminate binding mechanisms using binding data alone. One of the main advantages of the binding polynomials is that experimental data can be analyzed by employing a general model-free methodology that provides essential information about the system behavior (e.g., whether there exists binding cooperativity, whether the cooperativity is positive or negative, and the magnitude of the cooperative energy). Data analysis utilizing binding polynomials yields a set of binding association constants and enthalpy values that conserve their validity after the correct model has been determined. In fact, once the correct model is validated, the binding polynomial parameters can be immediately translated into the model specific constants. In this chapter, we describe the general binding polynomial formalism and provide specific theoretical and experimental examples of its application to isothermal titration calorimetry.

  14. Python bindings for libcloudph++

    OpenAIRE

    Jarecka, Dorota; Arabas, Sylwester; Del Vento, Davide

    2015-01-01

    This technical note introduces the Python bindings for libcloudph++. The libcloudph++ is a C++ library of algorithms for representing atmospheric cloud microphysics in numerical models. The bindings expose the complete functionality of the library to the Python users. The bindings are implemented using the Boost.Python C++ library and use NumPy arrays. This note includes listings with Python scripts exemplifying the use of selected library components. An example solution for using the Python ...

  15. DNS & Bind Cookbook

    CERN Document Server

    Liu, Cricket

    2011-01-01

    The DNS & BIND Cookbook presents solutions to the many problems faced by network administrators responsible for a name server. Following O'Reilly's popular problem-and-solution cookbook format, this title is an indispensable companion to DNS & BIND, 4th Edition, the definitive guide to the critical task of name server administration. The cookbook contains dozens of code recipes showing solutions to everyday problems, ranging from simple questions, like, "How do I get BIND?" to more advanced topics like providing name service for IPv6 addresses. It's full of BIND configuration files that yo

  16. Python bindings for libcloudph++

    CERN Document Server

    Jarecka, Dorota; Del Vento, Davide

    2015-01-01

    This technical note introduces the Python bindings for libcloudph++. The libcloudph++ is a C++ library of algorithms for representing atmospheric cloud microphysics in numerical models. The bindings expose the complete functionality of the library to the Python users. The bindings are implemented using the Boost.Python C++ library and use NumPy arrays. This note includes listings with Python scripts exemplifying the use of selected library components. An example solution for using the Python bindings to access libcloudph++ from Fortran is presented.

  17. Elucidation of haem-binding sites in the actinobacterial protein HbpS

    NARCIS (Netherlands)

    Torda, Andrew E; Groves, Matthew R; Wedderhoff, Ina; Ortiz de Orué Lucana, Darío

    2013-01-01

    The extracellular haem-binding protein from Streptomyces reticuli (HbpS) has been shown to be involved in redox sensing and to bind haem. However, the residues involved in haem coordination are unknown. Structural alignments to distantly related haem-binding proteins from Mycobacterium tuberculosis

  18. On Binding Domains

    NARCIS (Netherlands)

    Everaert, M.B.H.

    2005-01-01

    In this paper I want to explore reasons for replacing Binding Theory based on the anaphor-pronoun dichotomy by a Binding Theory allowing more domains restricting/defining anaphoric dependencies. This will, thus, have consequences for the partitioning of anaphoric elements, presupposing more types of

  19. Melanin-binding radiopharmaceuticals

    Energy Technology Data Exchange (ETDEWEB)

    Packer, S; Fairchild, R G; Watts, K P; Greenberg, D; Hannon, S J

    1980-01-01

    The scope of this paper is limited to an analysis of the factors that are important to the relationship of radiopharmaceuticals to melanin. While the authors do not attempt to deal with differences between melanin-binding vs. melanoma-binding, a notable variance is assumed. (PSB)

  20. DNS BIND Server Configuration

    Directory of Open Access Journals (Sweden)

    Radu MARSANU

    2011-01-01

    Full Text Available After a brief presentation of the DNS and BIND standard for Unix platforms, the paper presents an application which has a principal objective, the configuring of the DNS BIND 9 server. The general objectives of the application are presented, follow by the description of the details of designing the program.

  1. Thermodynamics of fragment binding.

    Science.gov (United States)

    Ferenczy, György G; Keserű, György M

    2012-04-23

    The ligand binding pockets of proteins have preponderance of hydrophobic amino acids and are typically within the apolar interior of the protein; nevertheless, they are able to bind low complexity, polar, water-soluble fragments. In order to understand this phenomenon, we analyzed high resolution X-ray data of protein-ligand complexes from the Protein Data Bank and found that fragments bind to proteins with two near optimal geometry H-bonds on average. The linear extent of the fragment binding site was found not to be larger than 10 Å, and the H-bonding region was found to be restricted to about 5 Å on average. The number of conserved H-bonds in proteins cocrystallized with multiple different fragments is also near to 2. These fragment binding sites that are able to form limited number of strong H-bonds in a hydrophobic environment are identified as hot spots. An estimate of the free-energy gain of H-bond formation versus apolar desolvation supports that fragment sized compounds need H-bonds to achieve detectable binding. This suggests that fragment binding is mostly enthalpic that is in line with their observed binding thermodynamics documented in Isothermal Titration Calorimetry (ITC) data sets and gives a thermodynamic rationale for fragment based approaches. The binding of larger compounds tends to more rely on apolar desolvation with a corresponding increase of the entropy content of their binding free-energy. These findings explain the reported size-dependence of maximal available affinity and ligand efficiency both behaving differently in the small molecule region featured by strong H-bond formation and in the larger molecule region featured by apolar desolvation.

  2. Structure and localisation of drug binding sites on neurotransmitter transporters.

    Science.gov (United States)

    Ravna, Aina W; Sylte, Ingebrigt; Dahl, Svein G

    2009-10-01

    The dopamine (DAT), serotontin (SERT) and noradrenalin (NET) transporters are molecular targets for different classes of psychotropic drugs. The crystal structure of Aquifex aeolicus LeuT(Aa) was used as a template for molecular modeling of DAT, SERT and NET, and two putative drug binding sites (pocket 1 and 2) in each transporter were identified. Cocaine was docked into binding pocket 1 of DAT, corresponding to the leucine binding site in LeuT(Aa), which involved transmembrane helices (TMHs) 1, 3, 6 and 8. Clomipramine was docked into binding pocket 2 of DAT, involving TMHs 1, 3, 6, 10 and 11, and extracellular loops 4 and 6, corresponding to the clomipramine binding site in a crystal structure of a LeuT(Aa)-clomipramine complex. The structures of the proposed cocaine- and tricyclic antidepressant-binding sites may be of particular interest for the design of novel DAT interacting ligands.

  3. Eye Involvement in TSC

    Science.gov (United States)

    ... Privacy Policy Sitemap Learn Engage Donate About TSC Eyes Campbell (1905) first described the eye involvement in ... some form of eye involvement. Nonretinal and Retinal Eye Findings Facial angiofibromas may involve the eyelids of ...

  4. SHBG (Sex Hormone Binding Globulin)

    Science.gov (United States)

    ... as: Testosterone-estrogen Binding Globulin; TeBG Formal name: Sex Hormone Binding Globulin Related tests: Testosterone , Free Testosterone, ... I should know? How is it used? The sex hormone binding globulin (SHBG) test may be used ...

  5. Who and What Does Involvement Involve?

    DEFF Research Database (Denmark)

    Hansen, Jeppe Oute; Petersen, Anders; Huniche, Lotte

    2015-01-01

    elucidates how a psycho-ideological discourse positions the mentally ill person as weak, incapable, and ineffective. By contrast, the supporting relative is positioned as a strong, capable, and effective co-therapist. Furthermore, the analysis considers how this dominant discourse of involvement...... theoretical perspective laid out by Ernesto Laclau and Chantal Mouffe, the aim of this study is to show how the dominant discourse about involvement at the political and clinical sites is constituted by understandings of mentally ill individuals and by political objectives of involvement. The analysis...... the responsibility toward the mental health of the ill individual as well as toward the psychological milieu of the family....

  6. Zinc Binding by Lactic Acid Bacteria

    Directory of Open Access Journals (Sweden)

    Jasna Mrvčić

    2009-01-01

    Full Text Available Zinc is an essential trace element in all organisms. A common method for the prevention of zinc deficiency is pharmacological supplementation, especially in a highly available form of a metalloprotein complex. The potential of different microbes to bind essential and toxic heavy metals has recently been recognized. In this work, biosorption of zinc by lactic acid bacteria (LAB has been investigated. Specific LAB were assessed for their ability to bind zinc from a water solution. Significant amount of zinc ions was bound, and this binding was found to be LAB species-specific. Differences among the species in binding performance at a concentration range between 10–90 mg/L were evaluated with Langmuir model for biosorption. Binding of zinc was a fast process, strongly influenced by ionic strength, pH, biomass concentration, and temperature. The most effective metal-binding LAB species was Leuconostoc mesenteroides (27.10 mg of Zn2+ per gram of dry mass bound at pH=5 and 32 °C, during 24 h. FT-IR spectroscopy analysis and electron microscopy demonstrated that passive adsorption and active uptake of the zinc ions were involved.

  7. A Venom Gland Extracellular Chitin-Binding-Like Protein from Pupal Endoparasitoid Wasps, Pteromalus Puparum, Selectively Binds Chitin

    Science.gov (United States)

    Chitin-binding proteins (CBPs) existed in various species and involved in different biology processes. In the present study, we cloned a full length cDNA of chitin-binding protein-like (PpCBP-like) from Pteromalus puparum, a pupal endoparasitoid of Pieris rapae. PpCBP-like encoded a 96 putative amin...

  8. ProteDNA: a sequence-based predictor of sequence-specific DNA-binding residues in transcription factors

    OpenAIRE

    2009-01-01

    This article presents the design of a sequence-based predictor named ProteDNA for identifying the sequence-specific binding residues in a transcription factor (TF). Concerning protein–DNA interactions, there are two types of binding mechanisms involved, namely sequence-specific binding and nonspecific binding. Sequence-specific bindings occur between protein sidechains and nucleotide bases and correspond to sequence-specific recognition of genes. Therefore, sequence-specific bindings are esse...

  9. CARBOHYDRATE-CONTAINING COMPOUNDS WHICH BIND TO CARBOHYDRATE BINDING RECEPTORS

    DEFF Research Database (Denmark)

    1995-01-01

    Carbohydrate-containing compounds which contain saccharides or derivatives thereof and which bind to carbohydrate binding receptors are useful in pharmaceutical products for treatment of inflammatory diseases and other diseases.......Carbohydrate-containing compounds which contain saccharides or derivatives thereof and which bind to carbohydrate binding receptors are useful in pharmaceutical products for treatment of inflammatory diseases and other diseases....

  10. Detection of secondary binding sites in proteins using fragment screening.

    Science.gov (United States)

    Ludlow, R Frederick; Verdonk, Marcel L; Saini, Harpreet K; Tickle, Ian J; Jhoti, Harren

    2015-12-29

    Proteins need to be tightly regulated as they control biological processes in most normal cellular functions. The precise mechanisms of regulation are rarely completely understood but can involve binding of endogenous ligands and/or partner proteins at specific locations on a protein that can modulate function. Often, these additional secondary binding sites appear separate to the primary binding site, which, for example for an enzyme, may bind a substrate. In previous work, we have uncovered several examples in which secondary binding sites were discovered on proteins using fragment screening approaches. In each case, we were able to establish that the newly identified secondary binding site was biologically relevant as it was able to modulate function by the binding of a small molecule. In this study, we investigate how often secondary binding sites are located on proteins by analyzing 24 protein targets for which we have performed a fragment screen using X-ray crystallography. Our analysis shows that, surprisingly, the majority of proteins contain secondary binding sites based on their ability to bind fragments. Furthermore, sequence analysis of these previously unknown sites indicate high conservation, which suggests that they may have a biological function, perhaps via an allosteric mechanism. Comparing the physicochemical properties of the secondary sites with known primary ligand binding sites also shows broad similarities indicating that many of the secondary sites may be druggable in nature with small molecules that could provide new opportunities to modulate potential therapeutic targets.

  11. BindUP: a web server for non-homology-based prediction of DNA and RNA binding proteins.

    Science.gov (United States)

    Paz, Inbal; Kligun, Efrat; Bengad, Barak; Mandel-Gutfreund, Yael

    2016-07-08

    Gene expression is a multi-step process involving many layers of regulation. The main regulators of the pathway are DNA and RNA binding proteins. While over the years, a large number of DNA and RNA binding proteins have been identified and extensively studied, it is still expected that many other proteins, some with yet another known function, are awaiting to be discovered. Here we present a new web server, BindUP, freely accessible through the website http://bindup.technion.ac.il/, for predicting DNA and RNA binding proteins using a non-homology-based approach. Our method is based on the electrostatic features of the protein surface and other general properties of the protein. BindUP predicts nucleic acid binding function given the proteins three-dimensional structure or a structural model. Additionally, BindUP provides information on the largest electrostatic surface patches, visualized on the server. The server was tested on several datasets of DNA and RNA binding proteins, including proteins which do not possess DNA or RNA binding domains and have no similarity to known nucleic acid binding proteins, achieving very high accuracy. BindUP is applicable in either single or batch modes and can be applied for testing hundreds of proteins simultaneously in a highly efficient manner.

  12. Solution structure and binding specificity of the p63 DNA binding domain.

    Science.gov (United States)

    Enthart, Andreas; Klein, Christian; Dehner, Alexander; Coles, Murray; Gemmecker, Gerd; Kessler, Horst; Hagn, Franz

    2016-05-26

    p63 is a close homologue of p53 and, together with p73, is grouped into the p53 family of transcription factors. p63 is known to be involved in the induction of controlled apoptosis important for differentiation processes, germ line integrity and development. Despite its high homology to p53, especially within the DNA binding domain (DBD), p63-DBD does not show cooperative DNA binding properties and is significantly more stable against thermal and chemical denaturation. Here, we determined the solution structure of p63-DBD and show that it is markedly less dynamic than p53-DBD. In addition, we also investigate the effect of a double salt bridge present in p53-DBD, but not in p63-DBD on the cooperative binding behavior and specificity to various DNA sites. Restoration of the salt bridges in p63-DBD by mutagenesis leads to enhanced binding affinity to p53-specific, but not p63-specific response elements. Furthermore, we show that p63-DBD is capable of binding to anti-apoptotic BclxL via its DNA binding interface, a feature that has only been shown for p53 so far. These data suggest that all p53 family members - despite alterations in the specificity and binding affinity - are capable of activating pro-apoptotic pathways in a tissue specific manner.

  13. Distinct binding properties of TIAR RRMs and linker region.

    Science.gov (United States)

    Kim, Henry S; Headey, Stephen J; Yoga, Yano M K; Scanlon, Martin J; Gorospe, Myriam; Wilce, Matthew C J; Wilce, Jacqueline A

    2013-04-01

    The RNA-binding protein TIAR is an mRNA-binding protein that acts as a translational repressor, particularly important under conditions of cellular stress. It binds to target mRNA and DNA via its RNA recognition motif (RRM) domains and is involved in both splicing regulation and translational repression via the formation of "stress granules." TIAR has also been shown to bind ssDNA and play a role in the regulation of transcription. Here we show, using surface plasmon resonance and nuclear magnetic resonance spectroscopy, specific roles of individual TIAR domains for high-affinity binding to RNA and DNA targets. We confirm that RRM2 of TIAR is the major RNA- and DNA-binding domain. However, the strong nanomolar affinity binding to U-rich RNA and T-rich DNA depends on the presence of the six amino acid residues found in the linker region C-terminal to RRM2. On its own, RRM1 shows preferred binding to DNA over RNA. We further characterize the interaction between RRM2 with the C-terminal extension and an AU-rich target RNA sequence using NMR spectroscopy to identify the amino acid residues involved in binding. We demonstrate that TIAR RRM2, together with its C-terminal extension, is the major contributor for the high-affinity (nM) interactions of TIAR with target RNA sequences.

  14. Lung Involvement in TSC

    Science.gov (United States)

    ... Privacy Policy Sitemap Learn Engage Donate About TSC Lungs Lung involvement in tuberous sclerosis complex (TSC) has ... testing. (Krueger et al., 2013) What Are the Lung Features of TSC? Two forms of lung involvement ...

  15. ABP: a novel AMPA receptor binding protein.

    Science.gov (United States)

    Srivastava, S; Ziff, E B

    1999-04-30

    We review the cloning of a novel AMPA receptor binding protein (ABP) that interacts with GluR2/3 and is homologous to GRIP. ABP is enriched in the PSD with GluR2 and is localized to the PSD by EM. ABP binds GluR2 via the C-terminal VXI motif through a Class I PDZ interaction. ABP and GRIP can also homo- and heteromultimerize. Thus, ABP and GRIP may be involved in AMPA receptor regulation and localization, by linking it to other cytoskeletal or signaling molecules. We suggest that the ABP/GRIP and PSD-95 families form distinct scaffolds that anchor, respectively, AMPA and NMDA receptors. We are currently investigating proteins that bind ABP and that may regulate the AMPA receptor.

  16. Defining Starch Binding by Glucan Phosphatases

    DEFF Research Database (Denmark)

    Auger, Kyle; Raththagala, Madushi; Wilkens, Casper;

    2015-01-01

    Starch is a vital energy molecule in plants that has a wide variety of uses in industry, such as feedstock for biomaterial processing and biofuel production. Plants employ a three enzyme cyclic process utilizing kinases, amylases, and phosphatases to degrade starch in a diurnal manner. Starch...... is comprised of the branched glucan amylopectin and the more linear glucan amylose. Our lab has determined the first structures of these glucan phosphatases and we have defined their enzymatic action. Despite this progress, we lacked a means to quickly and efficiently quantify starch binding to glucan...... phosphatases. The main objective of this study was to quantify the binding affinity of different enzymes that are involved in this cyclic process. We established a protocol to quickly, reproducibly, and quantitatively measure the binding of the enzymes to glucans utilizing Affinity Gel Electrophoresis (AGE...

  17. Drug hypersensitivity reactions involving skin.

    Science.gov (United States)

    Hausmann, Oliver; Schnyder, Benno; Pichler, Werner J

    2010-01-01

    Immune reactions to drugs can cause a variety of diseases involving the skin, liver, kidney, lungs, and other organs. Beside immediate, IgE-mediated reactions of varying degrees (urticaria to anaphylactic shock), many drug hypersensitivity reactions appear delayed, namely hours to days after starting drug treatment, showing a variety of clinical manifestations from solely skin involvement to fulminant systemic diseases which may be fatal. Immunohistochemical and functional studies of drug-specific T cells in patients with delayed reactions confirmed a predominant role for T cells in the onset and maintenance of immune-mediated delayed drug hypersensitivity reactions (type IV reactions). In these reactions, drug-specific CD4+ and CD8+ T cells are stimulated by drugs through their T cell receptors (TCR). Drugs can stimulate T cells in two ways: they can act as haptens and bind covalently to larger protein structures (hapten-carrier model), inducing a specific immune response. In addition, they may accidentally bind in a labile, noncovalent way to a particular TCR of the whole TCR repertoire and possibly also major histocompatibility complex (MHC)-molecules - similar to their pharmacologic action. This seems to be sufficient to reactivate certain, probably in vivo preactivated T cells, if an additional interaction of the drug-stimulated TCR with MHC molecules occurs. The mechanism was named pharmacological interaction of a drug with (immune) receptor and thus termed the p-i concept. This new concept may explain the frequent skin symptoms in drug hypersensitivity to oral or parenteral drugs. Furthermore, the various clinical manifestations of T cell-mediated drug hypersensitivity may be explained by distinct T cell functions leading to different clinical phenotypes. These data allowed a subclassification of the delayed hypersensitivity reactions (type IV) into T cell reactions which, by releasing certain cytokines and chemokines, preferentially activate and recruit

  18. Terms of Binding

    NARCIS (Netherlands)

    Sevcenco, A.

    2006-01-01

    The present dissertation aimed at achieving two goals. First, it constitutes an attempt to widen the search for phenomena that bear relevance to the idea that binding has a syntactic residue and is not, therefore, an exclusively semantic matter. Second, it tried to provide the technical means to acc

  19. Cellulose binding domain proteins

    Science.gov (United States)

    Shoseyov, Oded; Shpiegl, Itai; Goldstein, Marc; Doi, Roy

    1998-01-01

    A cellulose binding domain (CBD) having a high affinity for crystalline cellulose and chitin is disclosed, along with methods for the molecular cloning and recombinant production thereof. Fusion products comprising the CBD and a second protein are likewise described. A wide range of applications are contemplated for both the CBD and the fusion products, including drug delivery, affinity separations, and diagnostic techniques.

  20. MD-2 binds cholesterol.

    Science.gov (United States)

    Choi, Soo-Ho; Kim, Jungsu; Gonen, Ayelet; Viriyakosol, Suganya; Miller, Yury I

    2016-02-19

    Cholesterol is a structural component of cellular membranes, which is transported from liver to peripheral cells in the form of cholesterol esters (CE), residing in the hydrophobic core of low-density lipoprotein. Oxidized CE (OxCE) is often found in plasma and in atherosclerotic lesions of subjects with cardiovascular disease. Our earlier studies have demonstrated that OxCE activates inflammatory responses in macrophages via toll-like receptor-4 (TLR4). Here we demonstrate that cholesterol binds to myeloid differentiation-2 (MD-2), a TLR4 ancillary molecule, which is a binding receptor for bacterial lipopolysaccharide (LPS) and is indispensable for LPS-induced TLR4 dimerization and signaling. Cholesterol binding to MD-2 was competed by LPS and by OxCE-modified BSA. Furthermore, soluble MD-2 in human plasma and MD-2 in mouse atherosclerotic lesions carried cholesterol, the finding supporting the biological significance of MD-2 cholesterol binding. These results help understand the molecular basis of TLR4 activation by OxCE and mechanisms of chronic inflammation in atherosclerosis.

  1. Binding and Bulgarian

    NARCIS (Netherlands)

    Schürcks-Grozeva, Lilia Lubomirova

    2003-01-01

    In haar proefschrift analyseert Lilia Schürcks de anaforische verschijnselen in de Bulgaarse taal. Het gaat dan om wederkerende aspecten, uitgedrukt bij woorden als ‘zich’ en ‘elkaar’. De situatie in het Bulgaars blijkt moeilijk in te passen in de klassieke Binding Theory van Noam Chomsky. Bron: RUG

  2. Sequential memory: Binding dynamics

    Science.gov (United States)

    Afraimovich, Valentin; Gong, Xue; Rabinovich, Mikhail

    2015-10-01

    Temporal order memories are critical for everyday animal and human functioning. Experiments and our own experience show that the binding or association of various features of an event together and the maintaining of multimodality events in sequential order are the key components of any sequential memories—episodic, semantic, working, etc. We study a robustness of binding sequential dynamics based on our previously introduced model in the form of generalized Lotka-Volterra equations. In the phase space of the model, there exists a multi-dimensional binding heteroclinic network consisting of saddle equilibrium points and heteroclinic trajectories joining them. We prove here the robustness of the binding sequential dynamics, i.e., the feasibility phenomenon for coupled heteroclinic networks: for each collection of successive heteroclinic trajectories inside the unified networks, there is an open set of initial points such that the trajectory going through each of them follows the prescribed collection staying in a small neighborhood of it. We show also that the symbolic complexity function of the system restricted to this neighborhood is a polynomial of degree L - 1, where L is the number of modalities.

  3. Lipid binding proteins from parasitic platyhelminthes.

    Science.gov (United States)

    Alvite, Gabriela; Esteves, Adriana

    2012-01-01

    TWO MAIN FAMILIES OF LIPID BINDING PROTEINS HAVE BEEN IDENTIFIED IN PARASITIC PLATYHELMINTHES: hydrophobic ligand binding proteins (HLBPs) and fatty acid binding proteins (FABPs). Members of the former family of proteins are specific to the Cestoda class, while FABPs are conserved across a wide range of animal species. Because Platyhelminthes are unable to synthesize their own lipids, these lipid-binding proteins are important molecules in these organisms. HLBPs are a high molecular mass complex of proteins and lipids. They are composed of subunits of low molecular mass proteins and a wide array of lipid molecules ranging from CoA esters to cholesterol. These proteins are excretory-secretory molecules and are key serological tools for diagnosis of diseases caused by cestodes. FABPs are mainly intracellular proteins of low molecular weight. They are also vaccine candidates. Despite that the knowledge of their function is scarce, the differences in their molecular organization, ligand preferences, intra/extracellular localization, evolution, and phylogenetic distribution, suggest that platyhelminths HLBPs and FABPs should play different functions. FABPs might be involved in the removal of fatty acids from the inner surface of the cell membrane and in their subsequent targeting to specific cellular destinations. In contrast, HLBPs might be involved in fatty acid uptake from the host environment.

  4. Singular Value Decomposition and Ligand Binding Analysis

    Directory of Open Access Journals (Sweden)

    André Luiz Galo

    2013-01-01

    Full Text Available Singular values decomposition (SVD is one of the most important computations in linear algebra because of its vast application for data analysis. It is particularly useful for resolving problems involving least-squares minimization, the determination of matrix rank, and the solution of certain problems involving Euclidean norms. Such problems arise in the spectral analysis of ligand binding to macromolecule. Here, we present a spectral data analysis method using SVD (SVD analysis and nonlinear fitting to determine the binding characteristics of intercalating drugs to DNA. This methodology reduces noise and identifies distinct spectral species similar to traditional principal component analysis as well as fitting nonlinear binding parameters. We applied SVD analysis to investigate the interaction of actinomycin D and daunomycin with native DNA. This methodology does not require prior knowledge of ligand molar extinction coefficients (free and bound, which potentially limits binding analysis. Data are acquired simply by reconstructing the experimental data and by adjusting the product of deconvoluted matrices and the matrix of model coefficients determined by the Scatchard and McGee and von Hippel equation.

  5. Lipid Binding Proteins from Parasitic Platyhelmithes

    Directory of Open Access Journals (Sweden)

    Gabriela eAlvite

    2012-09-01

    Full Text Available Two main families of lipid binding proteins have been identified in parasitic Platyhelminthes: hydrophobic ligand binding proteins (HLBPs and fatty acid binding proteins (FABPs. Members of the former family of proteins are specific to the Cestoda class, while FABPs are conserved across a wide range of animal species. Because Platyhelminthes are unable to synthesise their own lipids, these lipid-binding proteins are important molecules in these organisms.HLBPs are a high molecular mass complex of proteins and lipids. They are composed of subunits of low molecular mass proteins and a wide array of lipid molecules ranging from CoA esters to cholesterol. These proteins are excretory-secretory molecules and are key serological tools for diagnosis of diseases caused by cestodes. FABPs are mainly intracellular proteins of low molecular weight. They are also vaccine candidates.Despite that the knowledge of their function is scarce, the differences in their molecular organisation, ligand preferences, intra/extracellular localisation, evolution, and phylogenetic distribution, suggest that platyhelminths HLBPs and FABPs should play different functions. FABPs might be involved in the removal of fatty acids from the inner surface of the cell membrane and in their subsequent targeting to specific cellular destinations. In contrast, HLBPs might be involved in fatty acid uptake from the host environment.

  6. The Relationship between Albumin-Binding Capacity of Recombinant Polypeptide and Changes in the Structure of Albumin-Binding Domain.

    Science.gov (United States)

    Bormotova, E A; Gupalova, T V

    2015-07-01

    Many bacteria express surface proteins interacting with human serum albumin (HSA). One of these proteins, PAB from anaerobic bacteria, contains an albumin-binding domain consisting of 45 amino acid residues known as GA domain. GA domains are also found in G proteins isolated from human streptococcal strains (groups C and G) and of albumin-binding protein isolated from group G streptococcal strains of animal origin. The GA domain is a left-handed three-helix bundle structure in which amino acid residues of the second and third helixes are involved in albumin binding. We studied the relationship between HSA-binding activity of the recombinant polypeptide isolated from group G streptococcus of animal origin and structure of the GA domain is studied. Structural changes in GA domain significantly attenuated HAS-binding capacity of the recombinant polypeptide. Hence, affinity HSA-binding polypeptide depends on stability of GA domain structure.

  7. The binding cavity of mouse major urinary protein is optimised for a variety of ligand binding modes

    Energy Technology Data Exchange (ETDEWEB)

    Pertinhez, Thelma A.; Ferrari, Elena; Casali, Emanuela [Department of Experimental Medicine, University of Parma, Via Volturno, 39, 43100 Parma (Italy); Patel, Jital A. [Department of Chemistry, University of Oxford, Inorganic Chemistry Laboratory, South Parks Road, Oxford OX1 3QR (United Kingdom); Spisni, Alberto, E-mail: alberto.spisni@unipr.it [Department of Experimental Medicine, University of Parma, Via Volturno, 39, 43100 Parma (Italy); Smith, Lorna J., E-mail: lorna.smith@chem.ox.ac.uk [Department of Chemistry, University of Oxford, Inorganic Chemistry Laboratory, South Parks Road, Oxford OX1 3QR (United Kingdom)

    2009-12-25

    {sup 15}N and {sup 1}HN chemical shift data and {sup 15}N relaxation studies have been used to characterise the binding of N-phenyl-naphthylamine (NPN) to mouse major urinary protein (MUP). NPN binds in the {beta}-barrel cavity of MUP, hydrogen bonding to Tyr120 and making extensive non-bonded contacts with hydrophobic side chains. In contrast to the natural pheromone 2-sec-butyl-4,5-dihydrothiazole, NPN binding gives no change to the overall mobility of the protein backbone of MUP. Comparison with 11 different ligands that bind to MUP shows a range of binding modes involving 16 different residues in the {beta}-barrel cavity. These finding justify why MUP is able to adapt to allow for many successful binding partners.

  8. Further biochemical characterization of Mycobacterium leprae laminin-binding proteins

    Directory of Open Access Journals (Sweden)

    M.A.M. Marques

    2001-04-01

    Full Text Available It has been demonstrated that the alpha2 chain of laminin-2 present on the surface of Schwann cells is involved in the process of attachment of Mycobacterium leprae to these cells. Searching for M. leprae laminin-binding molecules, in a previous study we isolated and characterized the cationic proteins histone-like protein (Hlp and ribosomal proteins S4 and S5 as potential adhesins involved in M. leprae-Schwann cell interaction. Hlp was shown to bind alpha2-laminins and to greatly enhance the attachment of mycobacteria to ST88-14 Schwann cells. In the present study, we investigated the laminin-binding capacity of the ribosomal proteins S4 and S5. The genes coding for these proteins were PCR amplified and their recombinant products were shown to bind alpha2-laminins in overlay assays. However, when tested in ELISA-based assays and in adhesion assays with ST88-14 cells, in contrast to Hlp, S4 and S5 failed to bind laminin and act as adhesins. The laminin-binding property and adhesin capacity of two basic host-derived proteins were also tested, and only histones, but not cytochrome c, were able to increase bacterial attachment to ST88-14 cells. Our data suggest that the alanine/lysine-rich sequences shared by Hlp and eukaryotic H1 histones might be involved in the binding of these cationic proteins to laminin.

  9. Ligand Binding and Conformational Changes in the Purine-Binding Riboswitch Aptamer Domains

    Science.gov (United States)

    Noeske, Jonas; Buck, Janina; Wöhnert, Jens; Schwalbe, Harald

    Riboswitches are highly structured mRNA elements that regulate gene expression upon specific binding of small metabolite molecules. The purine-binding riboswitches bind different purine ligands by forming both canonical Watson—Crick and non-canonical intermolecular base pairs, involving a variety of hydrogen bonds between the riboswitch aptamer domain and the purine ligand. Here, we summarize work on the ligand binding modes of both purine-binding aptamer domains, their con-formational characteristics in the free and ligand-bound forms, and their ligand-induced folding. The adenine- and guanine-binding riboswitch aptamer domains display different conformations in their free forms, despite nearly identical nucleotide loop sequences that form a loop—loop interaction in the ligand-bound forms. Interestingly, the stability of helix II is crucial for the formation of the loop—loop interaction in the free form. A more stable helix II in the guanine riboswitch leads to a preformed loop—loop interaction in its free form. In contrast, a less stable helix II in the adenine riboswitch results in a lack of this loop—loop interaction in the absence of ligand and divalent cations.

  10. Annealing to sequences within the primer binding site loop promotes an HIV-1 RNA conformation favoring RNA dimerization and packaging

    OpenAIRE

    Seif, Elias; Niu, Meijuan; Kleiman, Lawrence

    2013-01-01

    Experiments are presented which suggest that the binding of the primer tRNA to the primer binding site of the HIV-1 5′ UTR is involved in the dimerization of the genome, as part of the packaging process.

  11. Doctors' involvement in torture

    DEFF Research Database (Denmark)

    Sonntag, Jesper

    2008-01-01

    Doctors from both non-democratic and democratic countries are involved in torture. The majority of doctors involved in torture are doctors at risk. Doctors at risk might compromise their ethical duty towards patients for the following possible reasons: individual factors (such as career, economic...

  12. Binding Principles A and B

    Institute of Scientific and Technical Information of China (English)

    陈源

    2014-01-01

    This paper focuses on the discussion of how Binding Principle A and Binding Principe B help with the interpretation of reference in English and Chinese. They are supposedly universal across languages.

  13. Autoantigenic proteins that bind recombinogenic sequences in Epstein-Barr virus and cellular DNA.

    OpenAIRE

    1994-01-01

    We have identified conserved autoantigenic cellular proteins that bind to G-rich sequence motifs in recombinogenic regions of Epstein-Barr virus (EBV) DNA. This binding activity, called TRBP, recognizes the EBV terminal repeats, a locus responsible for interconversion of linear and circular EBV DNA. We found that TRBP also binds to EBV DNA sequences involved in deletion of EBNA2, a gene product required for immortalization. We show that TRBP binds sequences present in repetitive cellular DNA,...

  14. Carboplatin binding to histidine

    Energy Technology Data Exchange (ETDEWEB)

    Tanley, Simon W. M. [University of Manchester, Brunswick Street, Manchester M13 9PL (United Kingdom); Diederichs, Kay [University of Konstanz, D-78457 Konstanz (Germany); Kroon-Batenburg, Loes M. J. [Utrecht University, Padualaan 8, 3584 CH Utrecht (Netherlands); Levy, Colin [University of Manchester, 131 Princess Street, Manchester M1 7DN (United Kingdom); Schreurs, Antoine M. M. [Utrecht University, Padualaan 8, 3584 CH Utrecht (Netherlands); Helliwell, John R., E-mail: john.helliwell@manchester.ac.uk [University of Manchester, Brunswick Street, Manchester M13 9PL (United Kingdom)

    2014-08-29

    An X-ray crystal structure showing the binding of purely carboplatin to histidine in a model protein has finally been obtained. This required extensive crystallization trials and various novel crystal structure analyses. Carboplatin is a second-generation platinum anticancer agent used for the treatment of a variety of cancers. Previous X-ray crystallographic studies of carboplatin binding to histidine (in hen egg-white lysozyme; HEWL) showed the partial conversion of carboplatin to cisplatin owing to the high NaCl concentration used in the crystallization conditions. HEWL co-crystallizations with carboplatin in NaBr conditions have now been carried out to confirm whether carboplatin converts to the bromine form and whether this takes place in a similar way to the partial conversion of carboplatin to cisplatin observed previously in NaCl conditions. Here, it is reported that a partial chemical transformation takes place but to a transplatin form. Thus, to attempt to resolve purely carboplatin binding at histidine, this study utilized co-crystallization of HEWL with carboplatin without NaCl to eliminate the partial chemical conversion of carboplatin. Tetragonal HEWL crystals co-crystallized with carboplatin were successfully obtained in four different conditions, each at a different pH value. The structural results obtained show carboplatin bound to either one or both of the N atoms of His15 of HEWL, and this particular variation was dependent on the concentration of anions in the crystallization mixture and the elapsed time, as well as the pH used. The structural details of the bound carboplatin molecule also differed between them. Overall, the most detailed crystal structure showed the majority of the carboplatin atoms bound to the platinum centre; however, the four-carbon ring structure of the cyclobutanedicarboxylate moiety (CBDC) remained elusive. The potential impact of the results for the administration of carboplatin as an anticancer agent are described.

  15. Identification and characterization of anion binding sites in RNA

    Energy Technology Data Exchange (ETDEWEB)

    Kieft, Jeffrey S.; Chase, Elaine; Costantino, David A.; Golden, Barbara L. (Purdue); (Colorado)

    2010-05-24

    Although RNA molecules are highly negatively charged, anions have been observed bound to RNA in crystal structures. It has been proposed that anion binding sites found within isolated RNAs represent regions of the molecule that could be involved in intermolecular interactions, indicating potential contact points for negatively charged amino acids from proteins or phosphate groups from an RNA. Several types of anion binding sites have been cataloged based on available structures. However, currently there is no method for unambiguously assigning anions to crystallographic electron density, and this has precluded more detailed analysis of RNA-anion interaction motifs and their significance. We therefore soaked selenate into two different types of RNA crystals and used the anomalous signal from these anions to identify binding sites in these RNA molecules unambiguously. Examination of these sites and comparison with other suspected anion binding sites reveals features of anion binding motifs, and shows that selenate may be a useful tool for studying RNA-anion interactions.

  16. Consumer Involvement in Rehabilitation

    Science.gov (United States)

    Daniels, Susan

    1976-01-01

    With the emphasis on consumer involvement in the Rehabilitation Act of 1973, changes in the counseling relationship must occur. This article discusses new interaction patterns for consumer and counselor. (Author)

  17. Information flow through calcium binding proteins

    Science.gov (United States)

    Bak, Ji Hyun; Bialek, William

    2013-03-01

    Calcium signaling is a ubiquitous mode of biological communication, which regulates a great variety of vital processes in living systems. Such a signal typically begins with an elementary event, in which calcium ions bind to a protein, inducing a change in the protein's structure. Information can only be lost, from what was conveyed through this initial event, as the signal is further transduced through the downstream networks. In the present work we analyze and optimize the information flow in the calcium binding process. We explicitly calculate the mutual information between the calcium concentration and the states of the protein, using a simple model for allosteric regulation in a dimeric protein. The optimal solution depends on the dynamic range of the input as well as on the timescale of signal integration. According to our result, the optimizing strategy involves allowing the calcium-binding protein to be ``activated'' by a partial occupation of its sites, and tuning independently the strengths of cooperative interactions in the binding and unbinding processes.

  18. Clinical studies involving probiotics

    OpenAIRE

    Degnan, Fred H

    2012-01-01

    Researchers from a diverse array of scientific disciplines have focused and continue to focus on opportunities and areas for responsible clinical research involving the possible beneficial health effects of “probiotics.” Investigators and researchers should be aware that not all clinical research involving probiotics reasonably falls within the requirements of the “investigational new drug” (IND) rubric administered and enforced by the US Food and Drug Administration. In determining whether a...

  19. Evaluation of binding strength depending on the adhesive binding methods

    Directory of Open Access Journals (Sweden)

    Suzana Pasanec Preprotić

    2015-05-01

    Full Text Available A book with a personal value is worth remembering since it represents specific interests of an individual - author of the book. Therefore the original is the first issue of a book which is always bound manually. Due to cost-effectiveness, adhesive binding is most commonly used in author’s edition in paperback and hardback. Adhesive binding methods differ only if a paper leaf is a binding unit in adhesive binding form. The subject of the research is the quality of book block binding for two binding methods with/without mull fabric. The assumption is that double-fan adhesive binding method shows an extraordinary binding quality as compared to the rough spine method. For the needs of this research book block parameters remained unaltered: paper type, size and book volume. The results related to strength were obtained by using an experimental method of tensile strength for individual paper leaves. The rating of book block quality was conducted in accordance with FOGRA Nr.71006 guidelines for page pull-test. Furthermore, strength results for both methods were compared in order to evaluate the importance of changing the quality of adhesive binding. Statistical method ANOVA analysis of variance and Fisher’s F-test were used to evaluate the quality of book block binding.

  20. Echinococcus granulosus fatty acid binding proteins subcellular localization.

    Science.gov (United States)

    Alvite, Gabriela; Esteves, Adriana

    2016-05-01

    Two fatty acid binding proteins, EgFABP1 and EgFABP2, were isolated from the parasitic platyhelminth Echinococcus granulosus. These proteins bind fatty acids and have particular relevance in flatworms since de novo fatty acids synthesis is absent. Therefore platyhelminthes depend on the capture and intracellular distribution of host's lipids and fatty acid binding proteins could participate in lipid distribution. To elucidate EgFABP's roles, we investigated their intracellular distribution in the larval stage by a proteomic approach. Our results demonstrated the presence of EgFABP1 isoforms in cytosolic, nuclear, mitochondrial and microsomal fractions, suggesting that these molecules could be involved in several cellular processes.

  1. Pancreatic Involvement in Melioidosis

    Directory of Open Access Journals (Sweden)

    Vui Heng Chong

    2010-07-01

    Full Text Available Context Melioidosis is endemic to tropical regions and, despite the common occurrence of intra-abdominal abscesses, pancreatic involvement in melioidosis has not previously been reported. Objective We report our experience with pancreatic melioidosis. Patients All 65 patients treated for melioidosis who had computed tomography (CT scans were identified from prospective databases and were retrospectively reviewed. Main outcome measures A detailed review of cases with pancreas involvement was carried out. Results There were four cases (three males and one female; median age 29.5 years, range: 25-48 years with pancreatic melioidosis, giving a prevalence of 6.2%. All had predisposing conditions (two had poorly controlled diabetes mellitus and two had thalassemia for melioidosis. Fever (100%, anorexia (100%, weight loss (100%, rigor (75% and abdominal pain (75% were the most common symptoms at presentation and the median duration of symptoms before presentation was six weeks (range: 2-8 weeks. All pancreatic abscesses were detected on CT scan. Multiple foci involvement was common (3 to 6 sites: blood (4 patients, liver (3 patients, psoas muscle (2 patients, spleen (2 patients, infected ascites (2 patients and lung (1 patient. Pancreatic involvement ranged from multi-focal micro-abscesses to focal large abscesses and involved all parts of the pancreas (body 100%, head 75% and tail 50%. Associated pancreatic findings included splenic vein thrombosis, peripancreatic inflammation and peripancreatic fat streaking. All the pancreatic abscesses were resolved with antibiotics without requiring pancreatic abscess drainage (including one patient who died from disseminated melioidosis. Conclusion Pancreatic involvement typically occurs as part of multi-organ involvement and commonly manifests as multifoci micro-abscesses. Associated pancreatic abnormalities were also common. All responded to treatment without requiring drainage

  2. [Pulmonary involvements of sarcoidosis].

    Science.gov (United States)

    Ohmichi, M; Hiraga, Y; Hirasawa, M

    1990-01-01

    We reported about intrathoracic changes and prognosis of 686 patients with sarcoidosis diagnosed in our hospital between 1963 and 1988. We evaluated CT findings in 135 patients with sarcoidosis and found pulmonary involvements in 81. We analyzed CT findings according to the classification by Tuengerthal which classified radiographic findings combining ILO classification of pneumoconiosis and characteristic findings of bronchovascular sheath with sarcoidosis. The CT findings were as follows: small opacities (44 out of 81 cases, 54.3%), large opacities (37 cases, 46.7%). Additional findings were as follows: peribronchial marking (42 cases, 51.9%), contraction (17 cases, 21.0%), pleural involvement (9 cases, 11.1%), bulla (5 cases, 6.2%). The characteristic CT findings of serious sarcoidosis were extasis of bronchus, thickening of the bronchial wall, unclearness of vascular shadow, atelectasis and thickening of pleura. Concerning the prognosis of pulmonary involvement, according to age, patients younger than 30 years old at initial diagnosis were better than those of 30 years and over in terms of disappearance of pulmonary involvements. According to stage, patients of stage I and stage II were better than those of stage III. Among the patients we were able to observe chest X-ray findings during five years according to the character of shadow, ill-defined shadow of small opacities and rounded shadows of large opacities had a higher disappearance rate of pulmonary involvements than irregular shadows of large opacities, atelectasis and contraction.

  3. Musculoskeletal involvement in sarcoidosis*, **

    Science.gov (United States)

    Nessrine, Akasbi; Zahra, Abourazzak Fatima; Taoufik, Harzy

    2014-01-01

    Sarcoidosis is a multisystem inflammatory disorder of unknown cause. It most commonly affects the pulmonary system but can also affect the musculoskeletal system, albeit less frequently. In patients with sarcoidosis, rheumatic involvement is polymorphic. It can be the presenting symptom of the disease or can appear during its progression. Articular involvement is dominated by nonspecific arthralgia, polyarthritis, and Löfgren's syndrome, which is defined as the presence of lung adenopathy, arthralgia (or arthritis), and erythema nodosum. Skeletal manifestations, especially dactylitis, appear mainly as complications of chronic, multiorgan sarcoidosis. Muscle involvement in sarcoidosis is rare and usually asymptomatic. The diagnosis of rheumatic sarcoidosis is based on X-ray findings and magnetic resonance imaging findings, although the definitive diagnosis is made by anatomopathological study of biopsy samples. Musculoskeletal involvement in sarcoidosis is generally relieved with nonsteroidal anti-inflammatory drugs or corticosteroids. In corticosteroid-resistant or -dependent forms of the disease, immunosuppressive therapy, such as treatment with methotrexate or anti-TNF-α, is employed. The aim of this review was to present an overview of the various types of osteoarticular and muscle involvement in sarcoidosis, focusing on their diagnosis and management. PMID:24831403

  4. Musculoskeletal involvement in sarcoidosis

    Directory of Open Access Journals (Sweden)

    Akasbi Nessrine

    2014-04-01

    Full Text Available Sarcoidosis is a multisystem inflammatory disorder of unknown cause. It most commonly affects the pulmonary system but can also affect the musculoskeletal system, albeit less frequently. In patients with sarcoidosis, rheumatic involvement is polymorphic. It can be the presenting symptom of the disease or can appear during its progression. Articular involvement is dominated by nonspecific arthralgia, polyarthritis, and Löfgren's syndrome, which is defined as the presence of lung adenopathy, arthralgia (or arthritis, and erythema nodosum. Skeletal manifestations, especially dactylitis, appear mainly as complications of chronic, multiorgan sarcoidosis. Muscle involvement in sarcoidosis is rare and usually asymptomatic. The diagnosis of rheumatic sarcoidosis is based on X-ray findings and magnetic resonance imaging findings, although the definitive diagnosis is made by anatomopathological study of biopsy samples. Musculoskeletal involvement in sarcoidosis is generally relieved with nonsteroidal anti-inflammatory drugs or corticosteroids. In corticosteroid-resistant or -dependent forms of the disease, immunosuppressive therapy, such as treatment with methotrexate or anti-TNF-α, is employed. The aim of this review was to present an overview of the various types of osteoarticular and muscle involvement in sarcoidosis, focusing on their diagnosis and management.

  5. The Receptor Binding Domain of Botulinum Neurotoxin Stereotype C Binds Phosphoinositides

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Yanfeng; Varnum, Susan M.

    2012-03-01

    Botulinum neurotoxins (BoNTs) are the most toxic proteins known for humans and animals with an extremely low LD50 of {approx} 1 ng/kg. BoNTs generally require a protein and a ganglioside on the cell membrane surface for binding, which is known as a 'dual receptor' mechanism for host intoxication. Recent studies have suggested that in addition to gangliosides, other membrane lipids such as phosphoinositides may be involved in the interactions with the receptor binding domain (HCR) of BoNTs for better membrane penetration. Here, using two independent lipid-binding assays, we tested the interactions of BoNT/C-HCR with lipids in vitro. BoNT/C-HCR was found to bind negatively charged phospholipids, preferentially phosphoinositides. Additional interactions to phosphoinositides may help BoNT/C bind membrane more tightly and transduct signals for subsequent steps of intoxication. Our results provide new insights into the mechanisms of host cell membrane recognition by BoNTs.

  6. Measuring Multivalent Binding Interactions by Isothermal Titration Calorimetry.

    Science.gov (United States)

    Dam, Tarun K; Talaga, Melanie L; Fan, Ni; Brewer, Curtis F

    2016-01-01

    Multivalent glycoconjugate-protein interactions are central to many important biological processes. Isothermal titration calorimetry (ITC) can potentially reveal the molecular and thermodynamic basis of such interactions. However, calorimetric investigation of multivalency is challenging. Binding of multivalent glycoconjugates to proteins (lectins) often leads to a stoichiometry-dependent precipitation process due to noncovalent cross-linking between the reactants. Precipitation during ITC titration severely affects the quality of the baseline as well as the signals. Hence, the resulting thermodynamic data are not dependable. We have made some modifications to address this problem and successfully studied multivalent glycoconjugate binding to lectins. We have also modified the Hill plot equation to analyze high quality ITC raw data obtained from multivalent binding. As described in this chapter, ITC-driven thermodynamic parameters and Hill plot analysis of ITC raw data can provide valuable information about the molecular mechanism of multivalent lectin-glycoconjugate interactions. The methods described herein revealed (i) the importance of functional valence of multivalent glycoconjugates, (ii) that favorable entropic effects contribute to the enhanced affinities associated with multivalent binding, (iii) that with the progression of lectin binding, the microscopic affinities of the glycan epitopes of a multivalent glycoconjugate decrease (negative cooperativity), (iv) that lectin binding to multivalent glycoconjugates, especially to mucins, involves internal diffusion jumps, (bind and jump) and (v) that scaffolds of glycoconjugates influence their entropy of binding. © 2016 Elsevier Inc. All rights reserved.

  7. Involve physicians in marketing.

    Science.gov (United States)

    Randolph, G T; Baker, K M; Laubach, C A

    1984-01-01

    Many everyday problems in medical group practice can be attacked by a marketing approach. To be successful, however, this kind of approach must have the full support of those involved, especially the physicians, since they are the principal providers of healthcare services. When marketing is presented in a broad context, including elements such as patient mix, population distribution, and research, physicians are more likely to be interested and supportive. The members of Geisinger Medical Center's Department of Cardiovascular Medicine addressed their patient appointment backlog problem with a marketing approach. Their method is chronicled here and serves as a fine example of how physician involvement in marketing can lead to a positive outcome.

  8. Analytic QCD Binding Potentials

    CERN Document Server

    Fried, H M; Grandou, T; Sheu, Y -M

    2011-01-01

    This paper applies the analytic forms of a recent non-perturbative, manifestly gauge- and Lorentz-invariant description (of the exchange of all possible virtual gluons between quarks ($Q$) and/or anti-quarks ($\\bar{Q}$) in a quenched, eikonal approximation) to extract analytic forms for the binding potentials generating a model $Q$-$\\bar{Q}$ "pion", and a model $QQQ$ "nucleon". Other, more complicated $Q$, $\\bar{Q}$ contributions to such color-singlet states may also be identified analytically. An elementary minimization technique, relevant to the ground states of such bound systems, is adopted to approximate the solutions to a more proper, but far more complicated Schroedinger/Dirac equation; the existence of possible contributions to the pion and nucleon masses due to spin, angular momentum, and "deformation" degrees of freedom is noted but not pursued. Neglecting electromagnetic and weak interactions, this analysis illustrates how the one new parameter making its appearance in this exact, realistic formali...

  9. Recombinant human MDM2 oncoprotein shows sequence composition selectivity for binding to both RNA and DNA.

    Science.gov (United States)

    Challen, Christine; Anderson, John J; Chrzanowska-Lightowlers, Zofia M A; Lightowlers, Robert N; Lunec, John

    2012-03-01

    MDM2 is a 90 kDa nucleo-phosphoprotein that binds p53 and other proteins contributing to its oncogenic properties. Its structure includes an amino proximal p53 binding site, a central acidic domain and a carboxy region which incorporates Zinc and Ring Finger domains suggestive of nucleic acid binding or transcription factor function. It has previously been reported that a bacculovirus expressed MDM2 protein binds RNA in a sequence-specific manner through the Ring Finger domain, however, its ability to bind DNA has yet to be examined. We report here that a bacterially expressed human MDM2 protein binds both DNA as well as the previously defined RNA consensus sequence. DNA binding appears selective and involves the carboxy-terminal domain of the molecule. RNA binding is inhibited by an MDM2 specific antibody, which recognises an epitope within the carboxy region of the protein. Selection cloning and sequence analysis of MDM2 DNA binding sequences, unlike RNA binding sequences, revealed no obvious DNA binding consensus sequence, but preferential binding to oligopurine:pyrimidine-rich stretches. Our results suggest that the observed preferential DNA binding may occur through the Zinc Finger or in a charge-charge interaction through the Ring Finger, thereby implying potentially different mechanisms for DNA and RNA MDM2 binding.

  10. Lipid raft involved in drug resistance: relationship between multidrug resistance ATP-binding cassette transporters and lipid raft%脂筏参与耐药: 多药耐药相关ABC转运蛋白与脂筏的关系

    Institute of Scientific and Technical Information of China (English)

    王琳; 贾宇; 姜远英

    2011-01-01

    Lipid rafts have been implicated in many cellular functions, including protein and lipid transport and signal transduction. Recently ATP-binding cassette (ABC) transporters, which are associated with multidrug resistance, have been found in lipid rafts; therefore they might be related to drug resistance. Here we introduce the relationship between the localization and functions of three multi-drug related ABC transporters, including two relevant to multidrug resistance in tumor cells(Pgp/ABCB1 and MRP1/ABCC1) and one relevant to multidrug resistance in Candida albicans (Cdrlp). We also discuss the influence of sphingolipids and cholesterol, two major components of lipid rafts, on the localization and function of the above three ABC transporters.%脂筏(lipid raft)和细胞的许多功能,如信号转导、蛋白质和脂类的转运等都相关.近来有研究发现,与多药耐药密切相关的ABC转运蛋白(ATP-binding cassette transporter)定位于脂筏中,因此推测脂筏可能与耐药性有一定关系.本文综述了3种和耐药相关的ABC转运蛋白的定位与其功能之间的联系,分别是和肿瘤细胞多药耐药相关的ABC转运蛋白Pgp/ABCB1、MRP1/ABCC1以及与白假丝酵母菌(白念珠菌)多药耐药相关的ABC转运蛋白Cdr1p;并进一步讨论了脂筏的重要组成成分胆固醇和鞘脂对上述3种ABC转运蛋白的定位和功能的影响.

  11. Total iron binding capacity

    Science.gov (United States)

    ... the intestines not properly absorbing vitamin B12 ( pernicious anemia ) Sickle cell anemia Risks There is very little risk involved with ... test Hemoglobin Hemolytic anemia Iron deficiency anemia Pernicious anemia Serum iron test Sickle cell anemia Review Date 2/11/2016 Updated by: ...

  12. Reaching Parents Through Involvement

    Science.gov (United States)

    Schmerber, Ronald J.

    1974-01-01

    The parent involvement program evolved from the needs of parents. Basic to the program is the concept of parenting, which implies taking positive action to facilitate and meet the needs of the children ahe family. Parents participate in the development, implementation, and evaluation of their child's program. (Author)

  13. Binding of ethyl pyruvate to bovine serum albumin: Calorimetric, spectroscopic and molecular docking studies

    Energy Technology Data Exchange (ETDEWEB)

    Pathak, Mallika [Department of Chemistry, Miranda House, University of Delhi, Delhi 11007 (India); Mishra, Rashmi; Agarwala, Paban K. [Department of Radiation Genetics and Epigenetics, Division of Radioprotective Drug Development Research, Institute of Nuclear Medicine and Allied Sciences, Delhi 110054 (India); Ojha, Himanshu, E-mail: himanshu.drdo@gmail.com [Department of Radiation Genetics and Epigenetics, Division of Radioprotective Drug Development Research, Institute of Nuclear Medicine and Allied Sciences, Delhi 110054 (India); Singh, Bhawna [Department of Radiation Genetics and Epigenetics, Division of Radioprotective Drug Development Research, Institute of Nuclear Medicine and Allied Sciences, Delhi 110054 (India); Singh, Anju; Kukreti, Shrikant [Nucleic Acid Research Laboratory, Department of Chemistry, University of Delhi, Delhi 11007 (India)

    2016-06-10

    Highlights: • ITC study showed binding of ethyl pyruvate with BSA with high binding affinity. • Ethyl pyruvate binding caused conformation alteration of BSA. • Fluorescence quenching mechanism is static in nature. • Electrostatic, hydrogen bonding and hydrophobic forces involved in binding. • Docking confirmed role of electrostatic, hydrogen bonding and hydrophobic forces. - Abstract: Various in vitro and in vivo studies have shown the anti-inflammatory and anticancer potential role of ethyl pyruvate. Bio-distribution of drugs is significantly influenced by the drug-serum protein binding. Therefore, the binding mechanism of the ethyl pyruvate with bovine serum albumin was investigated using UV–vis absorption, fluorescence, circular dichroism, isothermal titration calorimetry and molecular docking techniques. Absorption and fluorescence quenching studies indicated the binding of ethyl pyruvate with protein. Circular dichroism spectra of bovine serum albumin confirmed significant change in the conformation of protein upon binding. Thermodynamic data confirmed that ethyl pyruvate binds to bovine serum albumin at the two different sites with high affinity. Binding of ethyl pyruvate to bovine serum albumin involves hydrogen bonding, van der Waal and hydrophobic interactions. Further, docking studies indicated that ethyl pyruvate could bind significantly at the three binding sites. The results will definitely contribute to the development of ethyl pyruvate as drug.

  14. Quick and Simple Detection Technique to Assess the Binding of Antimicrotubule Agents to the Colchicine-Binding Site

    Directory of Open Access Journals (Sweden)

    Fortin Sébastien

    2010-04-01

    Full Text Available Abstract Development of antimitotic binding to the colchicine-binding site for the treatment of cancer is rapidly expanding. Numerous antimicrotubule agents are prepared every year, and the determination of their binding affinity to tubulin requires the use of purified tubulins and radiolabeled ligands. Such a procedure is costly and time-consuming and therefore is limited to the most promising candidates. Here, we report a quick and inexpensive method that requires only usual laboratory resources to assess the binding of antimicrotubules to colchicine-binding site. The method is based on the ability of N,N'-ethylene-bis(iodoacetamide (EBI to crosslink in living cells the cysteine residues at position 239 and 354 of β-tubulin, residues which are involved in the colchicine-binding site. The β-tubulin adduct formed by EBI is easily detectable by Western blot as a second immunoreacting band of β-tubulin that migrates faster than β-tubulin. The occupancy of colchicine-binding site by pertinent antimitotics inhibits the formation of the EBI: β-tubulin adduct, resulting in an assay that allows the screening of new molecules targeting this binding site.

  15. Quick and Simple Detection Technique to Assess the Binding of Antimicrotubule Agents to the Colchicine-Binding Site

    Directory of Open Access Journals (Sweden)

    Moreau Emmanuel

    2010-01-01

    Full Text Available Abstract Development of antimitotic binding to the colchicine-binding site for the treatment of cancer is rapidly expanding. Numerous antimicrotubule agents are prepared every year, and the determination of their binding affinity to tubulin requires the use of purified tubulins and radiolabeled ligands. Such a procedure is costly and time-consuming and therefore is limited to the most promising candidates. Here, we report a quick and inexpensive method that requires only usual laboratory resources to assess the binding of antimicrotubules to colchicine-binding site. The method is based on the ability of N,N'-ethylene-bis(iodoacetamide (EBI to crosslink in living cells the cysteine residues at position 239 and 354 of β-tubulin, residues which are involved in the colchicine-binding site. The β-tubulin adduct formed by EBI is easily detectable by Western blot as a second immunoreacting band of β-tubulin that migrates faster than β-tubulin. The occupancy of colchicine-binding site by pertinent antimitotics inhibits the formation of the EBI: β-tubulin adduct, resulting in an assay that allows the screening of new molecules targeting this binding site.

  16. Identification of consensus binding sites clarifies FMRP binding determinants.

    Science.gov (United States)

    Anderson, Bart R; Chopra, Pankaj; Suhl, Joshua A; Warren, Stephen T; Bassell, Gary J

    2016-08-19

    Fragile X mental retardation protein (FMRP) is a multifunctional RNA-binding protein with crucial roles in neuronal development and function. Efforts aimed at elucidating how FMRP target mRNAs are selected have produced divergent sets of target mRNA and putative FMRP-bound motifs, and a clear understanding of FMRP's binding determinants has been lacking. To clarify FMRP's binding to its target mRNAs, we produced a shared dataset of FMRP consensus binding sequences (FCBS), which were reproducibly identified in two published FMRP CLIP sequencing datasets. This comparative dataset revealed that of the various sequence and structural motifs that have been proposed to specify FMRP binding, the short sequence motifs TGGA and GAC were corroborated, and a novel TAY motif was identified. In addition, the distribution of the FCBS set demonstrates that FMRP preferentially binds to the coding region of its targets but also revealed binding along 3' UTRs in a subset of target mRNAs. Beyond probing these putative motifs, the FCBS dataset of reproducibly identified FMRP binding sites is a valuable tool for investigating FMRP targets and function. © The Author(s) 2016. Published by Oxford University Press on behalf of Nucleic Acids Research.

  17. GTPases involved in bacterial ribosome maturation.

    Science.gov (United States)

    Goto, Simon; Muto, Akira; Himeno, Hyouta

    2013-05-01

    The ribosome is an RNA- and protein-based macromolecule having multiple functional domains to facilitate protein synthesis, and it is synthesized through multiple steps including transcription, stepwise cleavages of the primary transcript, modifications of ribosomal proteins and RNAs and assemblies of ribosomal proteins with rRNAs. This process requires dozens of trans-acting factors including GTP- and ATP-binding proteins to overcome several energy-consuming steps. Despite accumulation of genetic, biochemical and structural data, the entire process of bacterial ribosome synthesis remains elusive. Here, we review GTPases involved in bacterial ribosome maturation.

  18. Involvement of serotonin system in bullimia

    Energy Technology Data Exchange (ETDEWEB)

    Marazziti, D.; Macchi, E.; Rotondo, A.; Placidi, G.F.; Cassano, G.B.

    1988-01-01

    Platelet /sup 3/H-imipramine binding was investigated in 8 patients affected by bulimia according to DSM III criteria, and in 7 health volunteers. The Bmax /+ -/SD (fmol/mg protein) was 356 /+ -/ 53 in patients, and 1144 /+ -/ 134 in controls. The Kd /+ -/ SD (nM) was 1.35 /+ -/ 0.44 in patients, and 1.90 /+ -/ 0.72 in controls. There was a significant difference in Bmax values in the two groups, whereas no significant difference was observed in Kd values. This study suggests the possible involvement of the indoleamine system in bullimia.

  19. NikA binds heme: a new role for an Escherichia coli periplasmic nickel-binding protein.

    Science.gov (United States)

    Shepherd, Mark; Heath, Mathew D; Poole, Robert K

    2007-05-01

    NikA is a periplasmic binding protein involved in nickel uptake in Escherichia coli. NikA was identified as a heme-binding protein in the periplasm of anaerobically grown cells overexpressing CydDC, an ABC transporter that exports reductant to the periplasm. CydDC-overexpressing cells accumulate a heme biosynthesis-derived pigment, P-574. For further biochemical and spectroscopic analysis, unliganded NikA was overexpressed and purified. NikA was found to comigrate with both hemin and protoporphyrin IX during gel filtration. Furthermore, tryptophan fluorescence quenching titrations demonstrated that both hemin and protoporphyrin IX bind to NikA with similar affinity. The binding affinity of NikA for these pigments (Kd approximately 0.5 microM) was unaltered in the presence and absence of saturating concentrations of nickel, suggesting that these tetrapyrroles bind to NikA in a manner independent of nickel. To test the hypothesis that NikA is required for periplasmic heme protein assembly, the effects of a nikA mutation (nikA::Tn5, Km(R) insertion) on accumulation of P-574 by CydDC-overexpressing cells was assessed. This mutation significantly lowered P-574 levels, implying that NikA may be involved in P-574 production. Thus, in the reducing environment of the periplasm, NikA may serve as a heme chaperone as well as a periplasmic nickel-binding protein. The docking of heme onto NikA was modeled using the published crystal structure; many of the predicted complexes exhibit a heme-binding cleft remote from the nickel-binding site, which is consistent with the independent binding of nickel and heme. This work has implications for the incorporation of heme into b- and c-type cytochromes.

  20. Microorganisms involved in MIC

    Energy Technology Data Exchange (ETDEWEB)

    Sorensen, K. [Danish Technological Institute (Denmark)

    2011-07-01

    Microbiologically influenced corrosion (MIC) is a widespread problem that is difficult to detect and assess because of its complex mechanism. This paper presents the involvement of microorganisms in MIC. Some of the mechanisms that cause MIC include hydrogen consumption, production of acids, anode-cathode formation and electron shuttling. A classic bio-corrosive microorganism in the oil and gas industry is sulphate-reducing prokaryotes (SRP). Methanogens also increase corrosion rates in metals. Some of the phylogenetic orders detected while studying SRP and methanogens are archaeoglobales, clostridiales, methanosarcinales and methanothermococcus. There were some implications, such as growth of SRP not being correlated with growth of methanogens; methanogens were included in MIC risk assessment. A few examples are used to display how microorganisms are involved in topside corrosion and microbial community in producing wells. From the study, it can be concluded that, MIC risk assessment includes system data and empirical knowledge of the distribution and number of microorganisms in the system.

  1. Involved Node Radiation Therapy

    DEFF Research Database (Denmark)

    Maraldo, Maja V; Aznar, Marianne C; Vogelius, Ivan R

    2012-01-01

    PURPOSE: The involved node radiation therapy (INRT) strategy was introduced for patients with Hodgkin lymphoma (HL) to reduce the risk of late effects. With INRT, only the originally involved lymph nodes are irradiated. We present treatment outcome in a retrospective analysis using this strategy...... to 36 Gy). Patients attended regular follow-up visits until 5 years after therapy. RESULTS: The 4-year freedom from disease progression was 96.4% (95% confidence interval: 92.4%-100.4%), median follow-up of 50 months (range: 4-71 months). Three relapses occurred: 2 within the previous radiation field......, and 1 in a previously uninvolved region. The 4-year overall survival was 94% (95% confidence interval: 88.8%-99.1%), median follow-up of 58 months (range: 4-91 months). Early radiation therapy toxicity was limited to grade 1 (23.4%) and grade 2 (13.8%). During follow-up, 8 patients died, none from HL, 7...

  2. Between Involvement and Detachment

    DEFF Research Database (Denmark)

    Thomasen, Gry

    Between Involvement and Detachment takes grasp with the Johnson administration’s (1963-1969) perceptions of and responses to the Western European realignments. Arguing that the Johnson administration set out to maintain the American unilateralist position in the transatlantic relation, not just a...... the administration maintained. Despite changed circumstances, the Nixon administration’s relation with and perceptions of the European allies largely resemble the traditionalist view of the Johnson administration....

  3. Joint involvement in Ochronosis

    OpenAIRE

    Biehl, Christoph; Thormann, U.; Madera, N.; Heiß, C

    2016-01-01

    Introduction: Ochronosis is a metabolic disorder that is usually associated with the typical brown-black colored urine and retention of phenol complexes in sclera and skin. Kidney and heart are also checked, the disease can also cause damage in these organs. The disease is less associated with degenerative changes in the joints of the limbs and the spine. Methods: We report on the progress of a patient with documented family history on alcaptonuria and joint involvement. In the age of 69 ...

  4. Involvement Without Participation?

    DEFF Research Database (Denmark)

    Olsén, Peter

    2012-01-01

    The article presents a case study of a knowledge-intensive company that launched a 2-year project to improve their psychosocial working environment. All parties agreed on the project, and the methods used aimed to promote the involvement of the employees. Surprisingly, the psychosocial working...... and participation. In order to develop a more sustainable and viable psychosocial working environment, a broader and more democratic notion of organisational learning and managing is proposed....

  5. Getting involved in research.

    Science.gov (United States)

    Banner, Davina; Grant, Lyle G

    2011-01-01

    The need for quality nursing research to promote evidence-based practice and optimize patient care is well recognized. This is particularly pertinent in cardiovascular nursing, where cardiovascular disease continues to be the leading cause of morbidity and mortality worldwide (World Health Organization, 2007). Across the spectrum of academic, clinical, and health care administration nursing roles, research remains fundamental to bridging theory, practice, and education (LoBiondo-Wood, Haber, Cameron, & Singh, 2009). Despite recognition of the importance of nursing research, the gap between research and practice continues to be an ongoing issue (Funk, Tornquist, & Champagne, 1995; Pettengill, Gillies, & Clark, 1994; Rizzuto, Bostrom, Suterm, & Chenitz, 1994; Rolfe, 1998). Nurses are appropriately situated to contribute to research that improves clinical outcomes and health service delivery. However, the majority of nurses in clinical practice do not have a significant research component structured into their nursing role. In this research column, the authors outline the importance of nurses being engaged in research and present some different levels of involvement that nurses may assume. A continuum of nursing research involvement includes asking researchable questions, being a savvy consumer of research evidence, finding your own level of research involvement, and aspiring to lead.

  6. Pressure locking and thermal binding of gate valves

    Energy Technology Data Exchange (ETDEWEB)

    Kelly, E.M.

    1996-12-01

    Pressure locking and thermal binding represent potential common mode failure mechanisms that can cause safety-related power-operated gate valves to fail in the closed position, thus rendering redundant safety-related systems incapable of performing their safety functions. Supplement 6 to Generic Letter 89-10, {open_quotes}Safety-Related Motor-Operated Gate Valve Testing and Surveillance,{close_quotes} provided an acceptable approach to addressing pressure locking and thermal binding of gate valves. More recently, the NRC has issued Generic Letter 95-07, {open_quotes}Pressure Locking and Thermal Binding of Safety-Related Power-Operated Gate Valves,{close_quotes} to request that licensees take certain actions to ensure that safety-related power-operated gate valves that are susceptible to pressure locking or thermal binding are capable of performing their safety functions within the current licensing bases. Over the past two years, several plants in Region I determined that valves in certain systems were potentially susceptible to pressure locking and thermal binding, and have taken various corrective actions. The NRC Region I Systems Engineering Branch has been actively involved in the inspection of licensee actions in response to the pressure locking and thermal binding issue. Region I continues to maintain an active involvement in this area, including participation with the Office of Nuclear Reactor Regulation in reviewing licensee responses to Generic Letter 95-07.

  7. Binding Properties of General Odorant Binding Proteins from the Oriental Fruit Moth, Grapholita molesta (Busck (Lepidoptera: Tortricidae.

    Directory of Open Access Journals (Sweden)

    Guangwei Li

    Full Text Available The oriental fruit moth Grapholita molesta is a host-switching pest species. The adults highly depend on olfactory cues in locating optimal host plants and oviposition sites. Odorant binding proteins (OBPs are thought to be responsible for recognizing and transporting hydrophobic odorants across the aqueous sensillum lymph to stimulate the odorant receptors (ORs within the antennal sensilla and activate the olfactory signal transduction pathway. Exploring the physiological function of these OBPs could facilitate understanding insect chemical communications.Two antennae-specific general OBPs (GOBPs of G. molesta were expressed and purified in vitro. The binding affinities of G. molesta GOBP1 and 2 (GmolGOBP1 and 2 for sex pheromone components and host plant volatiles were measured by fluorescence ligand-binding assays. The distribution of GmolGOBP1 and 2 in the antennal sensillum were defined by whole mount fluorescence immunohistochemistry (WM-FIHC experiments. The binding sites of GmolGOBP2 were predicted using homology modeling, molecular docking and site-directed mutagenesis. Both GmolGOBP1 and 2 are housing in sensilla basiconica and with no differences in male and female antennae. Recombinant GmolGOBP1 (rGmolGOBP1 exhibited broad binding properties towards host plant volatiles and sex pheromone components; rGmolGOBP2 could not effectively bind host plant volatiles but showed specific binding affinity with a minor sex pheromone component dodecanol. We chose GmolGOBP2 and dodecanol for further homology modeling, molecular docking, and site-directed mutagenesis. Binding affinities of mutants demonstrated that Thr9 was the key binding site and confirmed dodecanol bonding to protein involves a hydrogen bond. Combined with the pH effect on binding affinities of rGmolGOBP2, ligand binding and release of GmolGOBP2 were related to a pH-dependent conformational transition.Two rGmolGOBPs exhibit different binding characteristics for tested ligands. r

  8. Oligomerization of Mannan-binding Lectin Dictates Binding Properties and Complement Activation.

    Science.gov (United States)

    Kjaer, T R; Jensen, L; Hansen, A; Dani, R; Jensenius, J C; Dobó, J; Gál, P; Thiel, S

    2016-07-01

    The complement system is a part of the innate immune system and is involved in recognition and clearance of pathogens and altered-self structures. The lectin pathway of the complement system is initiated when soluble pattern recognition molecules (PRMs) with collagen-like regions bind to foreign or altered self-surfaces. Associated with the collagen-like stems of these PRMs are three mannan-binding lectin (MBL)-associated serine proteases (MASPs) and two MBL-associated proteins (MAps). The most studied of the PRMs, MBL, is present in serum mainly as trimeric and tetrameric oligomers of the structural subunit. We hypothesized that oligomerization of MBL may influence both the potential to bind to micro organisms and the interaction with the MASPs and MAps, thus influencing the ability to initiate complement activation. When testing binding at 37 °C, we found higher binding of tetrameric MBL to Staphylococcus aureus (S. aureus) than trimeric and dimeric MBL. In serum, we found that tetrameric MBL was the main oligomeric form present in complexes with the MASPs and MAp44. Such preference was confirmed using purified forms of recombinant MBL (rMBL) oligomers, where tetrameric rMBL interacted stronger with all of the MASPs and MAp44, compared to trimeric MBL. As a direct consequence of the weaker interaction with the MASPs, we found that trimeric rMBL was inferior to tetrameric rMBL in activating the complement system. Our data suggest that the oligomeric state of MBL is crucial both for the binding properties and the effector function of MBL.

  9. Binding Energy and Enzymatic Catalysis.

    Science.gov (United States)

    Hansen, David E.; Raines, Ronald T.

    1990-01-01

    Discussed is the fundamental role that the favorable free energy of binding of the rate-determining transition state plays in catalysis. The principle that all of the catalytic factors discussed are realized by the use of this binding energy is reviewed. (CW)

  10. Mechanisms of in vivo binding site selection of the hematopoietic master transcription factor PU.1.

    Science.gov (United States)

    Pham, Thu-Hang; Minderjahn, Julia; Schmidl, Christian; Hoffmeister, Helen; Schmidhofer, Sandra; Chen, Wei; Längst, Gernot; Benner, Christopher; Rehli, Michael

    2013-07-01

    The transcription factor PU.1 is crucial for the development of many hematopoietic lineages and its binding patterns significantly change during differentiation processes. However, the 'rules' for binding or not-binding of potential binding sites are only partially understood. To unveil basic characteristics of PU.1 binding site selection in different cell types, we studied the binding properties of PU.1 during human macrophage differentiation. Using in vivo and in vitro binding assays, as well as computational prediction, we show that PU.1 selects its binding sites primarily based on sequence affinity, which results in the frequent autonomous binding of high affinity sites in DNase I inaccessible regions (25-45% of all occupied sites). Increasing PU.1 concentrations and the availability of cooperative transcription factor interactions during lineage differentiation both decrease affinity thresholds for in vivo binding and fine-tune cell type-specific PU.1 binding, which seems to be largely independent of DNA methylation. Occupied sites were predominantly detected in active chromatin domains, which are characterized by higher densities of PU.1 recognition sites and neighboring motifs for cooperative transcription factors. Our study supports a model of PU.1 binding control that involves motif-binding affinity, PU.1 concentration, cooperativeness with neighboring transcription factor sites and chromatin domain accessibility, which likely applies to all PU.1 expressing cells.

  11. Serum mannan-binding lectin-associated serine protease 2 levels in colorectal cancer: relation to recurrence and mortality

    DEFF Research Database (Denmark)

    Ytting, Henriette; Christensen, Ib Jarle; Thiel, Steffen;

    2005-01-01

    PURPOSE: Mannan-binding lectin-associated serine protease 2 (MASP-2) is a plasma protein involved in inflammatory processes. MASP-2 circulates in complex with the protein mannan-binding lectin (MBL) or ficolins, and is activated to recruit the complement system when MBL binds to its targets...

  12. Extended HSR/CARD domain mediates AIRE binding to DNA

    Energy Technology Data Exchange (ETDEWEB)

    Maslovskaja, Julia, E-mail: julia.maslovskaja@ut.ee; Saare, Mario; Liiv, Ingrid; Rebane, Ana; Peterson, Pärt

    2015-12-25

    Autoimmune regulator (AIRE) activates the transcription of many genes in an unusual promiscuous and stochastic manner. The mechanism by which AIRE binds to the chromatin and DNA is not fully understood, and the regulatory elements that AIRE target genes possess are not delineated. In the current study, we demonstrate that AIRE activates the expression of transiently transfected luciferase reporters that lack defined promoter regions, as well as intron and poly(A) signal sequences. Our protein-DNA interaction experiments with mutated AIRE reveal that the intact homogeneously staining region/caspase recruitment domain (HSR/CARD) and amino acids R113 and K114 are key elements involved in AIRE binding to DNA. - Highlights: • Promoter and mRNA processing elements are not important for AIRE to activate gene expression from reporter plasmids. • AIRE protein fragment aa 1–138 mediates direct binding to DNA. • Integrity of the HSR/CARD domain is needed for AIRE binding to DNA.

  13. Identification of sucrose synthase as an actin-binding protein

    Science.gov (United States)

    Winter, H.; Huber, J. L.; Huber, S. C.; Davies, E. (Principal Investigator)

    1998-01-01

    Several lines of evidence indicate that sucrose synthase (SuSy) binds both G- and F-actin: (i) presence of SuSy in the Triton X-100-insoluble fraction of microsomal membranes (i.e. crude cytoskeleton fraction); (ii) co-immunoprecipitation of actin with anti-SuSy monoclonal antibodies; (iii) association of SuSy with in situ phalloidin-stabilized F-actin filaments; and (iv) direct binding to F-actin, polymerized in vitro. Aldolase, well known to interact with F-actin, interfered with binding of SuSy, suggesting that a common or overlapping binding site may be involved. We postulate that some of the soluble SuSy in the cytosol may be associated with the actin cytoskeleton in vivo.

  14. Factors Affecting the Binding of a Recombinant Heavy Metal-Binding Domain (CXXC motif Protein to Heavy Metals

    Directory of Open Access Journals (Sweden)

    Kamala Boonyodying

    2012-06-01

    Full Text Available A number of heavy metal-binding proteins have been used to study bioremediation. CXXC motif, a metal binding domain containing Cys-X-X-Cys motif, has been identified in various organisms. These proteins are capable of binding various types of heavy metals. In this study, heavy metal binding domain (CXXC motif recombinant protein encoded from mcsA gene of S. aureus were cloned and overexpressed in Escherichia coli. The factors involved in the metal-binding activity were determined in order to analyze the potential of recombinant protein for bioremediation. A recombinant protein can be bound to Cd2+, Co2+, Cu2+ and Zn2+. The thermal stability of a recombinant protein was tested, and the results showed that the metal binding activity to Cu2+ and Zn2+ still exist after treating the protein at 85ºC for 30 min. The temperature and pH that affected the metal binding activity was tested and the results showed that recombinant protein was still bound to Cu2+ at 65ºC, whereas a pH of 3-7 did not affect the metal binding E. coli harboring a pRset with a heavy metal-binding domain CXXC motif increased the resistance of heavy metals against CuCl2 and CdCl2. This study shows that metal binding domain (CXXC motif recombinant protein can be effectively bound to various types of heavy metals and may be used as a potential tool for studying bioremediation.

  15. Characterization of 6-mercaptopurine binding to bovine serum albumin and its displacement from the binding sites by quercetin and rutin

    Energy Technology Data Exchange (ETDEWEB)

    Ehteshami, Mehdi [Nutrition Research Center, School of Health and Nutrition, Tabriz University of Medical Sciences, Tabriz 51644-14766 (Iran, Islamic Republic of); Rasoulzadeh, Farzaneh [Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz 51644-14766 (Iran, Islamic Republic of); Mahboob, Soltanali [Nutrition Research Center, School of Health and Nutrition, Tabriz University of Medical Sciences, Tabriz 51644-14766 (Iran, Islamic Republic of); Rashidi, Mohammad-Reza, E-mail: rashidi@tbzmed.ac.ir [Research Center for Pharmaceutical Nanotechnology, Tabriz University of Medical Sciences, Tabriz 51644-14766 (Iran, Islamic Republic of)

    2013-03-15

    Binding of a drug to the serum albumins as major serum transport proteins can be influenced by other ligands leading to alteration of its pharmacological properties. In the present study, binding characteristics of 6-mercaptopurine (6-MP) with bovine serum albumin (BSA) together with its displacement from its binding site by quercetin and rutin have been investigated by the spectroscopic method. According to the binding parameters, a static quenching component in overall dynamic quenching process is operative in the interaction between 6-MP and BSA. The binding of 6-MP to BSA occurred spontaneously due to entropy-driven hydrophobic interactions. The synchronous fluorescence spectroscopy study revealed that the secondary structure of BSA is changed in the presence of 6-MP and both Tyr and Trp residues participate in the interaction between 6-MP and BSA with the later one being more dominant. The binding constant value of 6-MP-BSA in the presence of quercetin and rutin increased. 6-MP was displaced by ibuprofen indicating that the binding site of 6-MP on albumin is site II. Therefore, the change of the pharmacokinetic and pharmacodynamic properties of 6-MP by quercetin and rutin through alteration of binding capacity of 6-MP to the serum albumin cannot be ruled out. In addition, the displacement study showed that 6-MP is located in site II of BSA. - Highlights: Black-Right-Pointing-Pointer Participation of both Tyr and particularly Trp residues in the interaction between 6-MP and BSA. Black-Right-Pointing-Pointer Involvement of a static quenching component in an overall dynamic quenching process. Black-Right-Pointing-Pointer Ability of quercetin and rutin to change the binding constants of 6-MP-BSA complex. Black-Right-Pointing-Pointer Binding of 6-MP to BSA through entropy-driven hydrophobic interactions.

  16. Isothermal Titration Calorimetry Measurements of Metal Ions Binding to Proteins.

    Science.gov (United States)

    Quinn, Colette F; Carpenter, Margaret C; Croteau, Molly L; Wilcox, Dean E

    2016-01-01

    ITC measurements involving metal ions are susceptible to a number of competing reactions (oxidation, precipitation, and hydrolysis) and coupled reactions involving the buffer and protons. Stabilization and delivery of the metal ion as a well-defined and well-characterized complex with the buffer, or a specific ligand, can suppress undesired solution chemistry and, depending on the stability of the metal complex, allow accurate measurements of higher affinity protein-binding sites. This requires, however, knowledge of the thermodynamics of formation of the metal complex and accounting for its contribution to the experimentally measured values (KITC and ΔHITC) through a post hoc analysis that provides the condition-independent binding thermodynamics (K, ΔG(o), ΔH, ΔS, and ΔCP). This analysis also quantifies the number of protons that are displaced when the metal ion binds to the protein. © 2016 Elsevier Inc. All rights reserved.

  17. Involvement in Physical Activity

    Directory of Open Access Journals (Sweden)

    James Gavin

    2013-04-01

    Full Text Available A total of 1,096 adolescents participated in 123 focus groups regarding the perceived outcomes of their involvement in sports and physical activity (PA. The groups, segmented by grade level, sex, and school types, were conducted in both public and private high schools in Montreal, Quebec. We sought to understand, through the participants’ own words, their perception of the outcome matrix of involvement in sports and PA. Focus group questions emphasized changes that adolescents associated with such engagement. In particular, participants were asked how sports and PA might influence behaviors, emotional states, personal characteristics, and other outcomes. Twelve themes were identified in the responses: Positive Health and Physical Changes (18.5%, Activity-Related Positive Emotions (15.6%, and Personal Learning (11.3% were most prevalent in the discussions. A cluster of deeper personal changes thematically described as Self-Identity, Autonomy, and Positive Character Development accounted for another 16.5% of the responses. Relatively few commentaries emphasized negative effects (7.1%. Converting the proportions of qualitative data into a quantitative index allowed us to analyze potential differences in emphasis according to sex, age, and school type. Though a few significant findings emerged, the larger pattern was of a uniform perceptual map across the variables for this adolescent sample. Implications drawn from this investigation highlight the need to clearly articulate concrete pathways to positive nonphysical changes (e.g., mood states, autonomy, positive character development from engagements in sports and PA.

  18. Inhibition of cell-cell binding by lipid assemblies

    Energy Technology Data Exchange (ETDEWEB)

    Nagy, Jon O. (Rodeo, CA); Bargatze, Robert F. (Bozeman, MT)

    2001-05-22

    This invention relates generally to the field of therapeutic compounds designed to interfere between the binding of ligands and their receptors on cell surface. More specifically, it provides products and methods for inhibiting cell migration and activation using lipid assemblies with surface recognition elements that are specific for the receptors involved in cell migration and activation.

  19. Inhibition Of Call-Cell Binding By Kipid Assemblies

    Energy Technology Data Exchange (ETDEWEB)

    Nagy, Jon O. (Rodeo, CA), Bargatze, Robert F. (Bozeman, MT)

    2003-12-16

    This invention relates generally to the field of therapeutic compounds designed to interfere between the binding of ligands and their receptors on cell surface. More specifically, it provides products and methods for inhibiting cell migration and activation using lipid assemblies with surface recognition elements that are specific for the receptors involved in cell migration and activation.

  20. Binding affinity of five PBPs to Ostrinia sex pheromones

    Science.gov (United States)

    Pheromone binding proteins (PBPs) of Lepidoptera function in chemical communication, mate attraction and recognition, and may be involved in reinforcement of sexual isolation between recently diverged species. Directional selection was previously predicted between PBP3 orthologs of the corn borer si...

  1. Mannose-Binding Lectin Deficiency Is Associated with Myocardial Infarction

    DEFF Research Database (Denmark)

    Vengen, Inga Thorsen; Madsen, Hans O; Garred, Peter;

    2012-01-01

    Mannose-binding lectin (MBL) and ficolins activate the complement cascade, which is involved in atherogenesis. Based on a pilot study, we hypothesized that functional polymorphisms in the MBL gene (MBL2) leading to dysfunctional protein are related to development of myocardial infarction (MI...

  2. Cooperative binding: a multiple personality.

    Science.gov (United States)

    Martini, Johannes W R; Diambra, Luis; Habeck, Michael

    2016-06-01

    Cooperative binding has been described in many publications and has been related to or defined by several different properties of the binding behavior of the ligand to the target molecule. In addition to the commonly used Hill coefficient, other characteristics such as a sigmoidal shape of the overall titration curve in a linear plot, a change of ligand affinity of the other binding sites when a site of the target molecule becomes occupied, or complex roots of the binding polynomial have been used to define or to quantify cooperative binding. In this work, we analyze how the different properties are related in the most general model for binding curves based on the grand canonical partition function and present several examples which highlight differences between the cooperativity characterizing properties which are discussed. Our results mainly show that among the presented definitions there are not two which fully coincide. Moreover, this work poses the question whether it can make sense to distinguish between positive and negative cooperativity based on the macroscopic binding isotherm only. This article shall emphasize that scientists who investigate cooperative effects in biological systems could help avoiding misunderstandings by stating clearly which kind of cooperativity they discuss.

  3. A unique bivalent binding and inhibition mechanism by the yatapoxvirus interleukin 18 binding protein.

    Directory of Open Access Journals (Sweden)

    Brian Krumm

    Full Text Available Interleukin 18 (IL18 is a cytokine that plays an important role in inflammation as well as host defense against microbes. Mammals encode a soluble inhibitor of IL18 termed IL18 binding protein (IL18BP that modulates IL18 activity through a negative feedback mechanism. Many poxviruses encode homologous IL18BPs, which contribute to virulence. Previous structural and functional studies on IL18 and IL18BPs revealed an essential binding hot spot involving a lysine on IL18 and two aromatic residues on IL18BPs. The aromatic residues are conserved among the very diverse mammalian and poxviruses IL18BPs with the notable exception of yatapoxvirus IL18BPs, which lack a critical phenylalanine residue. To understand the mechanism by which yatapoxvirus IL18BPs neutralize IL18, we solved the crystal structure of the Yaba-Like Disease Virus (YLDV IL18BP and IL18 complex at 1.75 Å resolution. YLDV-IL18BP forms a disulfide bonded homo-dimer engaging IL18 in a 2∶2 stoichiometry, in contrast to the 1∶1 complex of ectromelia virus (ECTV IL18BP and IL18. Disruption of the dimer interface resulted in a functional monomer, however with a 3-fold decrease in binding affinity. The overall architecture of the YLDV-IL18BP:IL18 complex is similar to that observed in the ECTV-IL18BP:IL18 complex, despite lacking the critical lysine-phenylalanine interaction. Through structural and mutagenesis studies, contact residues that are unique to the YLDV-IL18BP:IL18 binding interface were identified, including Q67, P116 of YLDV-IL18BP and Y1, S105 and D110 of IL18. Overall, our studies show that YLDV-IL18BP is unique among the diverse family of mammalian and poxvirus IL-18BPs in that it uses a bivalent binding mode and a unique set of interacting residues for binding IL18. However, despite this extensive divergence, YLDV-IL18BP binds to the same surface of IL18 used by other IL18BPs, suggesting that all IL18BPs use a conserved inhibitory mechanism by blocking a putative receptor-binding

  4. Intervention or Involvement

    DEFF Research Database (Denmark)

    Liebst, Lasse Suonperä; Ejbye-Ernst, Peter; Heinskou, Marie Bruvik

    patrons plays in bouncers’ use of violence. To address this gap, we offer a micro-interactional analysis of violent behavior of bouncers. We observed video surveillance footage of naturally occurring barroom conflicts involving bouncers. A quantitative analysis shows that violence is relatively uncommon......, and when it occurs, it is associated with interactions where bouncers are a party to the conflict, compared to situations where they intervene as a third party. Further, a visual analysis of emotional cues identifies anger as a plausible mechanism leading bouncers to practice violent aggression. Thus......, adding to the situational and cultural interpretations in the literature, this study highlights interactional structures as a feature influencing the likelihood of violent bouncer behavior. In considering the implications of our study, we discuss strengths and weaknesses of applying video data analysis...

  5. Between Involvement and Detachment

    DEFF Research Database (Denmark)

    Thomasen, Gry

    a traditional reading of de Gaulle’s policies, and feared that if Gaullist thinking spread among the European allies, it would merit to a return to traditional European power politics. The analysis shows that, by 1964 the administration believed, according to this study, that NATO’s principle of integration......Between Involvement and Detachment takes grasp with the Johnson administration’s (1963-1969) perceptions of and responses to the Western European realignments. Arguing that the Johnson administration set out to maintain the American unilateralist position in the transatlantic relation, not just......, essentially, were detached as America rejected the European reason of state. The Western European realignments were recorded in the Johnson administration with de Gaulle’s critique of US hegemony in Western Europe in the early 1960s. The thesis argues that the administration to a large extent had...

  6. Effectiveness of citizen involvement

    Energy Technology Data Exchange (ETDEWEB)

    Robinson, L. [Prince William Sound Regional Citizen' s Advisory Council, Anchorage, AK (United States)

    2006-07-01

    This paper reviewed the rise of citizen involvement in industry that affects their community. Following the Exxon Valdez oil spill (EVOS) in 1989, the Oil Pollution Act of 1990 provided funding by industry for a citizens group to provide oversite of the Alyeska Pipeline Service Agency terminal and associated tankers. That role is currently filled by the Prince William Sound Regional Citizen's Advisory Council, a volunteer organization that represents communities that were affected by the EVOS. The history of the Prince William Sound Regional Citizen's Advisory Council was discussed along with its structure, funding and overview of projects and research into safer transportation of oil, better oil spill response capabilities and improved environmental protection practices. Some of the successes involving citizen input include the requirement that all tankers going into Prince William Sound be double hull by 2015; a world-class system of tugs escorting tankers in Prince William Sound; installation of an ice-detection radar on a small island near the site of the EVOS; a guidebook for communities affected by man-made disasters; identification of nearshore locations that should be the first to be protected in the case of another spill; and, the installation of a system to capture crude oil vapors when tankers take on cargo. Other projects underway include the study of invasive species that can be transported in the ballast water of tankers, efficacy of dispersants, soil contamination at the tanker loading site, emissions of hazardous air pollutants from ballast water treatment processes, and continual review of emergency response plans. In the 17 years since the formation of the Prince William Sound Regional Citizen's Advisory Council, it has been shown that communication and transparency are the keys to solving complacency, which is believed to have been a contributing factor to the EVOS. 3 refs.

  7. Binding of Clostridium botulinum C3 exoenzyme to intact cells.

    Science.gov (United States)

    Rohrbeck, Astrid; von Elsner, Leonie; Hagemann, Sandra; Just, Ingo

    2014-06-01

    C3 from Clostridium botulinum (C3) specifically modifies Rho GTPases RhoA, RhoB, and RhoC by mono-ADP-ribosylation. The confined substrate profile of C3 is the basis for its use as pharmacological tool in cell biology to study cellular functions of Rho GTPases. Although C3 exoenzyme does not possess a cell-binding/-translocation domain, C3 is taken up by intact cells via an unknown mechanism. In the present work, binding of C3 to the hippocampus-derived HT22 cells and J774A.1 macrophages was characterized. C3 bound concentration-dependent to HT22 and J774A.1 cells. Pronase treatment of intact cells significantly reduced both C3 binding and C3 cell entry. Removal of sugar residues by glycosidase F treatment resulted in an increased binding of C3, but a reduced cell entry. To explore the involvement of phosphorylation in the binding process of C3, intact HT22 and J774A.1 cells were pre-treated with vanadate prior to incubation with C3. Inhibition of de-phosphorylation by vanadate resulted in an increased binding of C3. To differentiate between intracellular and extracellular phosphorylation, intact cells were treated with CIP (calf intestine phosphatase) to remove extracellular phosphate residues. The removal of phosphate residues resulted in a strong reduction in binding of C3 to cells. In sum, the C3 membranous binding partner is proteinaceous, and the glycosylation as well as the phosphorylation state is critical for efficient binding of C3.

  8. Central melatonin binding sites in rainbow trout (Onchorhynchus mykiss).

    Science.gov (United States)

    Davies, B; Hannah, L T; Randall, C F; Bromage, N; Williams, L M

    1994-10-01

    A combination of in vitro autoradiography and membrane homogenate receptor assays has been used to localize and characterized 2-[125I]iodomelatonin binding sites in the brain of the rainbow trout (Onchorhynchus mykiss). Specific 2-[125I]iodomelatonin binding, defined as that displaced by 1 microM melatonin, increased linearly with increasing protein concentration in membrane homogenates of whole trout brain. Specific binding was both time and temperature dependent and reversible in the presence of 1 microM melatonin. Binding was saturable at between 100-150 pM 2-[125I]iodomelatonin and Scatchard analysis of saturation isotherms revealed a dissociation constant (Kd) of 15.00 +/- 0.95 pM and a maximum receptor number (Bmax) of 42.35 +/- 2.70 fm/mg protein (n = 16). Addition of 10(-4) M GTP gamma S (an analogue of guanosine triphosphate) to saturation isotherms apparently reduced the Bmax by 75% on average with no apparent change in the affinity of the binding. Scatchard analysis of saturation isotherms generated from whole brain membrane homogenates of trout kept on long days (15 hr light:9 hr dark) and killed either during the midlight or middark phase showed no significant differences in either the Kd or the Bmax of 2-[125I]iodomelatonin binding, although a robust rhythm in melatonin concentration was confirmed in these fish. Displacement of 2-[125I]iodomelatonin binding with increasing concentrations of competing ligands gave an order of potency of 2-iodomelatonin > melatonin > 5-HT. Localization of specific central 2-[125I]iodomelatonin binding in the rainbow trout showed high levels of binding associated with neuronal areas involved in the processing of visual signals, particularly the optic tectum and nucleus rotundus.(ABSTRACT TRUNCATED AT 250 WORDS)

  9. Structural and Histone Binding Ability Characterizations of Human PWWP Domains

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Hong; Zeng, Hong; Lam, Robert; Tempel, Wolfram; Amaya, Maria F.; Xu, Chao; Dombrovski, Ludmila; Qiu, Wei; Wang, Yanming; Min, Jinrong (Toronto); (Penn)

    2013-09-25

    The PWWP domain was first identified as a structural motif of 100-130 amino acids in the WHSC1 protein and predicted to be a protein-protein interaction domain. It belongs to the Tudor domain 'Royal Family', which consists of Tudor, chromodomain, MBT and PWWP domains. While Tudor, chromodomain and MBT domains have long been known to bind methylated histones, PWWP was shown to exhibit histone binding ability only until recently. The PWWP domain has been shown to be a DNA binding domain, but sequence analysis and previous structural studies show that the PWWP domain exhibits significant similarity to other 'Royal Family' members, implying that the PWWP domain has the potential to bind histones. In order to further explore the function of the PWWP domain, we used the protein family approach to determine the crystal structures of the PWWP domains from seven different human proteins. Our fluorescence polarization binding studies show that PWWP domains have weak histone binding ability, which is also confirmed by our NMR titration experiments. Furthermore, we determined the crystal structures of the BRPF1 PWWP domain in complex with H3K36me3, and HDGF2 PWWP domain in complex with H3K79me3 and H4K20me3. PWWP proteins constitute a new family of methyl lysine histone binders. The PWWP domain consists of three motifs: a canonical {beta}-barrel core, an insertion motif between the second and third {beta}-strands and a C-terminal {alpha}-helix bundle. Both the canonical {beta}-barrel core and the insertion motif are directly involved in histone binding. The PWWP domain has been previously shown to be a DNA binding domain. Therefore, the PWWP domain exhibits dual functions: binding both DNA and methyllysine histones.

  10. Design of lanthanide fingers: compact lanthanide-binding metalloproteins.

    Science.gov (United States)

    am Ende, Christopher W; Meng, Hai Yun; Ye, Mao; Pandey, Anil K; Zondlo, Neal J

    2010-08-16

    Lanthanides have interesting chemical properties; these include luminescent, magnetic, and catalytic functions. Toward the development of proteins incorporating novel functions, we have designed a new lanthanide-binding motif, lanthanide fingers. These were designed based on the Zif268 zinc finger, which exhibits a beta beta alpha structural motif. Lanthanide fingers utilize an Asp(2)Glu(2) metal-coordination environment to bind lanthanides through a tetracarboxylate peptide ligand. The iterative design of a general lanthanide-binding peptide incorporated the following key elements: 1) residues with high alpha-helix and beta-sheet propensities in the respective secondary structures; 2) an optimized big box alpha-helix N-cap; 3) a Schellman alpha-helix C-cap motif; and 4) an optional D-Pro-Ser type II' beta-turn in the beta-hairpin. The peptides were characterized for lanthanide binding by circular dichroism (CD), NMR, and fluorescence spectroscopy. In all instances, stabilization of the peptide secondary structures resulted in an increase in metal affinity. The optimized protein design was a 25-residue peptide that was a general lanthanide-binding motif; this binds all lanthanides examined in a competitive aqueous environment, with a dissociation constant of 9.3 microM for binding Er(3+). CD spectra of the peptide-lanthanide complexes are similar to those of zinc fingers and other beta beta alpha proteins. Metal binding involves residues from the N-terminal beta-hairpin and the C terminal alpha-helical segments of the peptide. NMR data indicated that metal binding induced a global change in the peptide structure. The D-Pro-Ser type II' beta-turn motif could be replaced by Thr-Ile to generate genetically encodable lanthanide fingers. Replacement of the central Phe with Trp generated genetically encodable lanthanide fingers that exhibited terbium luminescence greater than that of an EF-hand peptide.

  11. Comparative binding energy COMBINE analysis for understanding the binding determinants of type II dehydroquinase inhibitors.

    Science.gov (United States)

    Peón, Antonio; Coderch, Claire; Gago, Federico; González-Bello, Concepción

    2013-05-01

    Herein we report comparative binding energy (COMBINE) analyses to derive quantitative structure-activity relationship (QSAR) models that help rationalize the determinants of binding affinity for inhibitors of type II dehydroquinase (DHQ2), the third enzyme of the shikimic acid pathway. Independent COMBINE models were derived for Helicobacter pylori and Mycobacterium tuberculosis DHQ2, which is an essential enzyme in both these pathogenic bacteria that has no counterpart in human cells. These studies quantify the importance of the hydrogen bonding interactions between the ligands and the water molecule involved in the DHQ2 reaction mechanism. They also highlight important differences in the ligand interactions with the interface pocket close to the active site that could provide guides for future inhibitor design.

  12. Effect of ethanol administration and withdrawal on GABA receptor binding in rat cerebral cortex

    Energy Technology Data Exchange (ETDEWEB)

    Volicer, L.; Biagioni, T.M.

    1982-01-01

    Sodium independent GABA receptor binding was measured in synaptosomes prepared from cerebral cortex of rats made ethanol dependent by three daily ethanol administrations. In rats sacrificed 1 hour after the last ethanol dose there was a lower number of low affinity binding sites and lower affinity of the high affinity binding than in controls. The decreased affinity was present only in rats who showed symptoms of ethanol withdrawal during the course of ethanol administration. In rats sacrificed during ethanol withdrawal the affinity of the high affinity binding was lower than in controls and other binding characteristics were unchanged. This decreased binding was normalized by repeated Triton X-100 incubations indicating involvement of an endogenous inhibitor in this ethanol effect. Acute ethanol administration did not change GABA receptor binding.

  13. 肿瘤坏死因子α-863C/A多态性影响核因子-kB结合活力在脓毒症发病中的作用及机制%The effect of single nucleotide polymorphism of -863C/A of TNF-α on binding activity of nuclear factor kappa B with DNA and the mechanism involved in sepsis

    Institute of Scientific and Technical Information of China (English)

    乔安意; 于宝军

    2008-01-01

    Objective To investigate the effect of -863C/A polymorphism of TNF-α gene on the NF-kappa B binding activity with DNA motif,and the regulation of TNF-α expression involved in the mechanism of sepsis.Methods Thirty patients with sepsis were divided into three groups according to the gene type of-863 C/C ,C/A,A/A.The blood sample was harvested and stimulated with LPS.The culture supernatant TNF-α production was measured by ELISA,and the activation of p65-p50 or p50-p50 in WBC nuclei was examined by EMSA.Results In vitro,the activation of NF-kappa B and expression of TNF-α in the whole blood stimulated with LPS were significantly lower at 1st and 2nd week after sepsis than at Oand 4th week of sepsis.The activation style of NF-kappa B in genotypes with -863A characterized with p50-p50 predominant and the level of p50-p50 in nuclei was higher than that of C/C genotype group.In contrast,the ratio of p65-p50 to p50-p50 was lower in C/A and A/A groups than in C/C group (0.4±0.2 vs 0.7 + 0.4).Meanwhile,the expression of TNF-α was decreased significantly along with the lower activation of p65-p50 dimer.Conclusion The data indicated that different genotypes of 863C/A polymorphism on TNF-α gene could regulate NF-kappa B p65-p50 and p50-p50 activation and the binding with DNA motif and the expression of downstream gene including TNF-α.%目的 探讨TNF-α-863C/A基因多态性对NF-kB p65-p50和p50-p50活化的调控,以及在脓毒症发病中的作用及机制.方法 选择已知TNF-α-863C/A基因多态性的脓毒症患者30例,采集静脉血,用LPS刺激后,用ELISA法测定上清中TNF-α表达;用EMSA方法测定NF-kBp65-p50和p50-p50活化水平.结果 外周血经LPS刺激后NF-kB活化和TNF-α表达存在时相性变化,1-2周明显低于0及第4周水平;具有-863A等位基因的患者其NF-kB活化模式以p50-p50为主,明显高于C/C组水平,p65-p50:p50-p50的比值明显低于C/C组(0.4±0.2)比(0.7±0.4),相应地TNF-α表达随NF-kB两种二聚体

  14. Discovery and Characterization of a Cell-Permeable, Small-Molecule c-Abl Kinase Activator that Binds to the Myristoyl Binding Site

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Jingsong; Campobasso, Nino; Biju, Mangatt P.; Fisher, Kelly; Pan, Xiao-Qing; Cottom, Josh; Galbraith, Sarah; Ho, Thau; Zhang, Hong; Hong, Xuan; Ward, Paris; Hofmann, Glenn; Siegfried, Brett; Zappacosta, Francesca; Washio, Yoshiaki; Cao, Ping; Qu, Junya; Bertrand, Sophie; Wang, Da-Yuan; Head, Martha S.; Li, Hu; Moores, Sheri; Lai, Zhihong; Johanson, Kyung; Burton, George; Erickson-Miller, Connie; Simpson, Graham; Tummino, Peter; Copeland, Robert A.; Oliff, Allen (GSKPA)

    2014-10-02

    c-Abl kinase activity is regulated by a unique mechanism involving the formation of an autoinhibited conformation in which the N-terminal myristoyl group binds intramolecularly to the myristoyl binding site on the kinase domain and induces the bending of the {alpha}I helix that creates a docking surface for the SH2 domain. Here, we report a small-molecule c-Abl activator, DPH, that displays potent enzymatic and cellular activity in stimulating c-Abl activation. Structural analyses indicate that DPH binds to the myristoyl binding site and prevents the formation of the bent conformation of the {alpha}I helix through steric hindrance, a mode of action distinct from the previously identified allosteric c-Abl inhibitor, GNF-2, that also binds to the myristoyl binding site. DPH represents the first cell-permeable, small-molecule tool compound for c-Abl activation.

  15. Lectin binding patterns and carbohydrate mediation of sperm binding to llama oviductal cells in vitro.

    Science.gov (United States)

    Apichela, Silvana A; Valz-Gianinet, Jorge N; Schuster, Stefanie; Jiménez-Díaz, María A; Roldán-Olarte, Eugenia M; Miceli, Dora C

    2010-04-01

    Sperm binding to oviductal epithelium would be involved in sperm reservoir formation in the utero tubal junction (UTJ). Although in other mammals sperm-oviduct interaction has been proved to be mediated by carbohydrate-recognition mechanisms, the factors implicated in the sperm adhesion to oviductal epithelium of llama are still unknown. In order to assess the role of carbohydrates present in the mucosa surface, we examined the distribution of glycoconjugates in the llama oviduct by confocal lectin-histochemistry. Mannosyl, glucosyl, N-acetylglucosaminyl, galactosyl, N-acetylgalactosaminyl and sialic acid residues were detected in the oviductal mucose glycocalyx. By incubation of UTJ oviductal explants with LCA, DBA, UEA-1 or PNA lectin previous to co-culture with sperm, we observed a significant decrease in sperm binding only with LCA lectin. In the mucosa surface there were numerous d-glucosyl and D-manosyl residues, which were spotted by this lectin. Probably, this fact promotes the whole covering of the oviduct luminal surface by the sugar-lectin complex, preventing sperm access and adhesion of further residues. However, sperm incubation with mannose or glucose does not significantly prevent binding, which means that glucose and mannose would not be involved in a specific sperm-oviduct interaction. On the other hand, we observed a high reduction in sperm binding to UTJ explants with N-acetylgalactosamine and galactose (pllama sperm have lectin-like molecules in their surface, as is the case in other mammals. Probably, these lectin-like molecules, by means of N-acetylgalactosamine and galactose recognition, could link the sperm to the oviductal mucosa with the purpose of forming storing sites in the UTJ. Our results support the idea that more than one carbohydrate could participate in sperm reservoir formation in the llama UTJ oviductal segment.

  16. Asymmetric cation-binding catalysis

    DEFF Research Database (Denmark)

    Oliveira, Maria Teresa; Lee, Jiwoong

    2017-01-01

    and KCN, are selectively bound to the catalyst, providing exceptionally high enantioselectivities for kinetic resolutions, elimination reactions (fluoride base), and Strecker synthesis (cyanide nucleophile). Asymmetric cation-binding catalysis was recently expanded to silicon-based reagents, enabling...... solvents, thus increasing their applicability in synthesis. The expansion of this concept to chiral polyethers led to the emergence of asymmetric cation-binding catalysis, where chiral counter anions are generated from metal salts, particularly using BINOL-based polyethers. Alkali metal salts, namely KF...

  17. Species Differences in the Carbohydrate Binding Preferences of Surfactant Protein D

    DEFF Research Database (Denmark)

    Crouch, Erika C.; Smith, Kelly; McDonald, Barbara

    2006-01-01

    Interactions of surfactant protein D (SP-D) with micro-organisms and organic antigens involve binding to the trimeric neck plus carbohydrate recognition domain (neck+CRD). In these studies, we compared the ligand binding of homologous human, rat, and mouse trimeric neck+CRD fusion proteins, each ...

  18. FHA domain pThr binding specificity: it's all about me.

    Science.gov (United States)

    Coquelle, Nicolas; Glover, J N Mark

    2010-12-08

    The FHA domain is a phospho-peptide binding module involved in a wide range of cellular pathways, with a striking specificity for phospho-threonine over phospho-serine binding partners. Biochemical, structural, and dynamic simulations analysis allowed Pennell and colleagues to unravel the molecular basis of FHA domain phospho-threonine specificity. Copyright © 2010 Elsevier Ltd. All rights reserved.

  19. FHA Domain pThr Binding Specificity: It's All about Me

    OpenAIRE

    Coquelle, Nicolas; Glover, J.N.?Mark

    2010-01-01

    The FHA domain is a phospho-peptide binding module involved in a wide range of cellular pathways, with a striking specificity for phospho-threonine over phospho-serine binding partners. Biochemical, structural, and dynamic simulations analysis allowed Pennell and colleagues to unravel the molecular basis of FHA domain phospho-threonine specificity.

  20. Kinetics characterization of c-Src binding to lipid membranes: Switching from labile to persistent binding.

    Science.gov (United States)

    Le Roux, Anabel-Lise; Busquets, Maria Antònia; Sagués, Francesc; Pons, Miquel

    2016-02-01

    Cell signaling by the c-Src proto-oncogen requires the attachment of the protein to the inner side of the plasma membrane through the myristoylated N-terminal region, known as the SH4 domain. Additional binding regions of lower affinity are located in the neighbor intrinsically disordered Unique domain and the structured SH3 domain. Here we present a surface plasmon resonance study of the binding of a myristoylated protein including the SH4, Unique and SH3 domains of c-Src to immobilized liposomes. Two distinct binding processes were observed: a fast and a slow one. The second process lead to a persistently bound form (PB) with a slower binding and a much slower dissociation rate than the first one. The association and dissociation of the PB form could be detected using an anti-SH4 antibody. The kinetic analysis revealed that binding of the PB form follows a second order rate law suggesting that it involves the formation of c-Src dimers on the membrane surface. A kinetically equivalent PB form is observed in a myristoylated peptide containing only the SH4 domain but not in a construct including the three domains but with a 12-carbon lauroyl substituent instead of the 14-carbon myristoyl group. The PB form is observed with neutral lipids but its population increases when the immobilized liposomes contain negatively charged lipids. We suggest that the PB form may represent the active signaling form of c-Src while the labile form provides the capacity for fast 2D search of the target signaling site on the membrane surface.

  1. The Accountability Bind

    Directory of Open Access Journals (Sweden)

    Katrina Bulkley

    2001-10-01

    Full Text Available Charter schools involve a trading of autonomy for accountability. This accountability comes through two forces—markets through the choices of parents and students, and accountability to government through the writing of contracts that must be renewed for schools to continue to operate. Charter schools are supposed to be more accountable for educational performance than traditional public schools because authorizers have the ability to revoke charter contracts. Here, I focus on one central component of accountability to government: performance accountability or accountability for educational outcomes to charter school authorizers through the revocation or non-renewal of charter contracts. In this paper, I suggest that contract-based accountability for educational performance in charter schools may not be working as proponents argued it would. This article explores some explanations for why there are very few examples of charter schools that have been closed primarily because of failure to demonstrate educational performance or improvement. Future work will need to test if these challenges for authorizers hold in a variety of contexts. The conclusion examines the implications of these findings for the future of charter school accountability.

  2. [Nail involvement in leprosy].

    Science.gov (United States)

    Belinchón Romero, I; Ramos Rincón, J M; Reyes Rabell, F

    2012-05-01

    Leprosy, a disease caused by Mycobacterium leprae, primarily affects the skin and nerves, but the nails are also involved in as many as 3 out of 4 patients .The factors that trigger nail changes in leprosy are numerous and include repeated trauma, neuropathy, vascular impairment, infections, lepra reactions, and the drugs used to manage the disease. The changes most often reported include subungual hematomas, onycholysis, onychauxis, onychogryphosis, pterygium unguis, and onychoheterotopia, most of which can be attributed to nerve damage and trauma. Furthermore, the acro-osteolysis that occurs in the advanced stages of the disease may present with brachyonychia, racquet nails, or even anonychia. Infections of the nail bed leading to paronychia and onychomycosis should also be taken into account in leprosy. Other typical changes include longitudinal striae, pitting, macrolunula, Terry nails, leukonychia, hapalonychia, and Beau lines. In this review, we describe the principal nail changes associated with leprosy. These changes, which are highly varied and diverse in origin, are in fact a reflection of the significant morbidity caused by M. leprae infection.

  3. Outer membrane protein DsrA is the major fibronectin-binding determinant of Haemophilus ducreyi.

    Science.gov (United States)

    Leduc, Isabelle; White, C Dinitra; Nepluev, Igor; Throm, Robert E; Spinola, Stanley M; Elkins, Christopher

    2008-04-01

    The ability to bind extracellular matrix proteins is a critical virulence determinant for skin pathogens. Haemophilus ducreyi, the etiological agent of the genital ulcer disease chancroid, binds extracellular matrix components, including fibronectin (FN). We investigated H. ducreyi FN binding and report several important findings about this interaction. First, FN binding by H. ducreyi was greatly increased in bacteria grown on heme and almost completely inhibited by hemoglobin. Second, wild-type strain 35000HP bound significantly more FN than did a dsrA mutant in two different FN binding assays. Third, the expression of dsrA in the dsrA mutant restored FN binding and conferred the ability to bind FN to a non-FN-binding Haemophilus influenzae strain. Fourth, an anti-DsrA monoclonal antibody partially blocked FN binding by H. ducreyi. The hemoglobin receptor, the collagen-binding protein, the H. ducreyi lectin, the fine-tangle pili, and the outer membrane protein OmpA2 were not involved in H. ducreyi FN binding, since single mutants bound FN as well as the parent strain did. However, the major outer membrane protein may have a minor role in FN binding by H. ducreyi, since a double dsrA momp mutant bound less FN than did the single dsrA mutant. Finally, despite major sequence differences, DsrA proteins from both class I and class II H. ducreyi strains mediated FN and vitronectin binding. We concluded that DsrA is the major factor involved in FN binding by both classes of H. ducreyi strains.

  4. Probing binding hot spots at protein-RNA recognition sites.

    Science.gov (United States)

    Barik, Amita; Nithin, Chandran; Karampudi, Naga Bhushana Rao; Mukherjee, Sunandan; Bahadur, Ranjit Prasad

    2016-01-29

    We use evolutionary conservation derived from structure alignment of polypeptide sequences along with structural and physicochemical attributes of protein-RNA interfaces to probe the binding hot spots at protein-RNA recognition sites. We find that the degree of conservation varies across the RNA binding proteins; some evolve rapidly compared to others. Additionally, irrespective of the structural class of the complexes, residues at the RNA binding sites are evolutionary better conserved than those at the solvent exposed surfaces. For recognitions involving duplex RNA, residues interacting with the major groove are better conserved than those interacting with the minor groove. We identify multi-interface residues participating simultaneously in protein-protein and protein-RNA interfaces in complexes where more than one polypeptide is involved in RNA recognition, and show that they are better conserved compared to any other RNA binding residues. We find that the residues at water preservation site are better conserved than those at hydrated or at dehydrated sites. Finally, we develop a Random Forests model using structural and physicochemical attributes for predicting binding hot spots. The model accurately predicts 80% of the instances of experimental ΔΔG values in a particular class, and provides a stepping-stone towards the engineering of protein-RNA recognition sites with desired affinity.

  5. Probing binding hot spots at protein–RNA recognition sites

    Science.gov (United States)

    Barik, Amita; Nithin, Chandran; Karampudi, Naga Bhushana Rao; Mukherjee, Sunandan; Bahadur, Ranjit Prasad

    2016-01-01

    We use evolutionary conservation derived from structure alignment of polypeptide sequences along with structural and physicochemical attributes of protein–RNA interfaces to probe the binding hot spots at protein–RNA recognition sites. We find that the degree of conservation varies across the RNA binding proteins; some evolve rapidly compared to others. Additionally, irrespective of the structural class of the complexes, residues at the RNA binding sites are evolutionary better conserved than those at the solvent exposed surfaces. For recognitions involving duplex RNA, residues interacting with the major groove are better conserved than those interacting with the minor groove. We identify multi-interface residues participating simultaneously in protein–protein and protein–RNA interfaces in complexes where more than one polypeptide is involved in RNA recognition, and show that they are better conserved compared to any other RNA binding residues. We find that the residues at water preservation site are better conserved than those at hydrated or at dehydrated sites. Finally, we develop a Random Forests model using structural and physicochemical attributes for predicting binding hot spots. The model accurately predicts 80% of the instances of experimental ΔΔG values in a particular class, and provides a stepping-stone towards the engineering of protein–RNA recognition sites with desired affinity. PMID:26365245

  6. Characterization of Heparin-binding Site of Tissue Transglutaminase

    Science.gov (United States)

    Wang, Zhuo; Collighan, Russell J.; Pytel, Kamila; Rathbone, Daniel L.; Li, Xiaoling; Griffin, Martin

    2012-01-01

    Tissue transglutaminase (TG2) is a multifunctional Ca2+-activated protein cross-linking enzyme secreted into the extracellular matrix (ECM), where it is involved in wound healing and scarring, tissue fibrosis, celiac disease, and metastatic cancer. Extracellular TG2 can also facilitate cell adhesion important in wound healing through a nontransamidating mechanism via its association with fibronectin, heparan sulfates (HS), and integrins. Regulating the mechanism how TG2 is translocated into the ECM therefore provides a strategy for modulating these physiological and pathological functions of the enzyme. Here, through molecular modeling and mutagenesis, we have identified the HS-binding site of TG2 202KFLKNAGRDCSRRSSPVYVGR222. We demonstrate the requirement of this binding site for translocation of TG2 into the ECM through a mechanism involving cell surface shedding of HS. By synthesizing a peptide NPKFLKNAGRDCSRRSS corresponding to the HS-binding site within TG2, we also demonstrate how this mimicking peptide can in isolation compensate for the RGD-induced loss of cell adhesion on fibronectin via binding to syndecan-4, leading to activation of PKCα, pFAK-397, and ERK1/2 and the subsequent formation of focal adhesions and actin cytoskeleton organization. A novel regulatory mechanism for TG2 translocation into the extracellular compartment that depends upon TG2 conformation and the binding of HS is proposed. PMID:22298777

  7. Binding Affinity of Glycoconjugates to BACILLUS Spores and Toxins

    Science.gov (United States)

    Rasol, Aveen; Eassa, Souzan; Tarasenko, Olga

    2010-04-01

    Early recognition of Bacillus cereus group species is important since they can cause food-borne illnesses and deadly diseases in humans. Glycoconjugates (GCs) are carbohydrates covalently linked to non-sugar moieties including lipids, proteins or other entities. GCs are involved in recognition and signaling processes intrinsic to biochemical functions in cells. They also stimulate cell-cell adhesion and subsequent recognition and activation of receptors. We have demonstrated that GCs are involved in Bacillus cereus spore recognition. In the present study, we have investigated whether GCs possess the ability to bind and recognize B. cereus spores and Bacillus anthracis recombinant single toxins (sTX) and complex toxins (cTX). The affinity of GCs to spores + sTX and spores + cTX toxins was studied in the binding essay. Our results demonstrated that GC9 and GC10 were able to selectively bind to B. cereus spores and B. anthracis toxins. Different binding affinities for GCs were found toward Bacillus cereus spores + sTX and spores + cTX. Dilution of GCs does not impede the recognition and binding. Developed method provides a tool for simultaneous recognition and targeting of spores, bacteria toxins, and/or other entities.

  8. Atovaquone and quinine anti-malarials inhibit ATP binding cassette transporter activity

    NARCIS (Netherlands)

    Rijpma, S.R.; Heuvel, J.J.; Velden, M. van der; Sauerwein, R.W.; Russel, F.G.; Koenderink, J.B.

    2014-01-01

    BACKGROUND: Therapeutic blood plasma concentrations of anti-malarial drugs are essential for successful treatment. Pharmacokinetics of pharmaceutical compounds are dependent of adsorption, distribution, metabolism, and excretion. ATP binding cassette (ABC) transport proteins are particularly involve

  9. The chaperone and potential mannan-binding lectin (MBL) co-receptor calreticulin interacts with MBL through the binding site for MBL-associated serine proteases.

    Science.gov (United States)

    Pagh, Rasmus; Duus, Karen; Laursen, Inga; Hansen, Paul R; Mangor, Julie; Thielens, Nicole; Arlaud, Gérard J; Kongerslev, Leif; Højrup, Peter; Houen, Gunnar

    2008-02-01

    The chaperone calreticulin has been suggested to function as a C1q and collectin receptor. The interaction of calreticulin with mannan-binding lectin (MBL) was investigated by solid-phase binding assays. Calreticulin showed saturable and time-dependent binding to recombinant MBL, provided that MBL was immobilized on a solid surface or bound to mannan on a surface. The binding was non-covalent and biphasic with an initial salt-sensitive phase followed by a more stable salt-insensitive interaction. For plasma-derived MBL, known to be complexed with MBL-associated serine proteases (MASPs), no binding was observed. Interaction of calreticulin with recombinant MBL was fully inhibited by recombinant MASP-2, MASP-3 and MAp19, but not by the MASP-2 D105G and MAp19 Y59A variants characterized by defective MBL binding ability. Furthermore, MBL point mutants with impaired MASP binding showed no interaction with calreticulin. Comparative analysis of MBL with complement component C1q, its counterpart of the classical pathway, revealed that they display similar binding characteristics for calreticulin, providing further indication that calreticulin is a common co-receptor/chaperone for both proteins. In conclusion, the potential MBL co-receptor calreticulin binds to MBL at the MASP binding site and the interaction may involve a conformational change in MBL.

  10. Conserved odorant-binding proteins from aphids and eavesdropping predators.

    Directory of Open Access Journals (Sweden)

    Sophie Vandermoten

    Full Text Available BACKGROUND: The sesquiterpene (E-ß-farnesene is the main component of the alarm pheromone system of various aphid species studied to date, including the English grain aphid, Sitobion avenae. Aphid natural enemies, such as the marmalade hoverfly Episyrphus balteatus and the multicolored Asian lady beetle Harmonia axyridis, eavesdrop on aphid chemical communication and utilize (E-ß-farnesene as a kairomone to localize their immediate or offspring preys. These aphid-predator systems are important models to study how the olfactory systems of distant insect taxa process the same chemical signal. We postulated that odorant-binding proteins (OBPs, which are highly expressed in insect olfactory tissues and involved in the first step of odorant reception, have conserved regions involved in binding (E-ß-farnesene. METHODOLOGY: We cloned OBP genes from the English grain aphid and two major predators of this aphid species. We then expressed these proteins and compare their binding affinities to the alarm pheromone/kairomone. By using a fluorescence reporter, we tested binding of (E-ß-farnesene and other electrophysiologically and behaviorally active compounds, including a green leaf volatile attractant. CONCLUSION: We found that OBPs from disparate taxa of aphids and their predators are highly conserved proteins, with apparently no orthologue genes in other insect species. Properly folded, recombinant proteins from the English grain aphid, SaveOBP3, and the marmalade hoverfly, EbalOBP3, specifically bind (E-ß-farnesene with apparent high affinity. For the first time we have demonstrated that insect species belonging to distinct Orders have conserved OBPs, which specifically bind a common semiochemical and has no binding affinity for related compounds.

  11. Multidrug toxicity involving sumatriptan.

    Science.gov (United States)

    Knittel, Jessica L; Vorce, Shawn P; Levine, Barry; Hughes, Rhome L; Bosy, Thomas Z

    2015-01-01

    A multidrug fatality involving sumatriptan is reported. Sumatriptan is a tryptamine derivative that acts at 5-HT(1B/1D) receptors and is used for the treatment of migraines. The decedent was a 21-year-old white female found dead in bed by her spouse. No signs of physical trauma were observed and a large number of prescription medications were discovered at the scene. Toxicological analysis of the central blood revealed sumatriptan at a concentration of 1.03 mg/L. Following therapeutic dosing guidelines, sumatriptan concentrations do not exceed 0.095 mg/L. Sumatriptan was isolated by solid-phase extraction and analyzed using liquid chromatography-tandem mass spectrometry in multiple reaction monitoring mode. A tissue distribution study was completed with the following concentrations measured: 0.61 mg/L in femoral blood, 0.56 mg/L in iliac blood, 5.01 mg/L in urine, 0.51 mg/kg in liver, 3.66 mg/kg in kidney, 0.09 mg/kg in heart, 0.32 mg/kg in spleen, 0.01 mg/kg in brain, 15.99 mg/kg in lung and 78.54 mg/45 mL in the stomach contents. Carisoprodol, meprobamate, fluoxetine, doxylamine, orphenadrine, dextromethorphan and hydroxyzine were also present in the blood at the following concentrations: 3.35, 2.36, 0.63, 0.19, 0.06, 0.55 and 0.16 mg/L. The medical examiner ruled the cause of death as acute mixed drug toxicity and the manner of death as accident.

  12. Controlling Multivalent Binding through Surface Chemistry: Model Study on Streptavidin

    Science.gov (United States)

    2017-01-01

    Although multivalent binding to surfaces is an important tool in nanotechnology, quantitative information about the residual valency and orientation of surface-bound molecules is missing. To address these questions, we study streptavidin (SAv) binding to commonly used biotinylated surfaces such as supported lipid bilayers (SLBs) and self-assembled monolayers (SAMs). Stability and kinetics of SAv binding are characterized by quartz crystal microbalance with dissipation monitoring, while the residual valency of immobilized SAv is quantified using spectroscopic ellipsometry by monitoring binding of biotinylated probes. Purpose-designed SAv constructs having controlled valencies (mono-, di-, trivalent in terms of biotin-binding sites) are studied to rationalize the results obtained on regular (tetravalent) SAv. We find that divalent interaction of SAv with biotinylated surfaces is a strict requirement for stable immobilization, while monovalent attachment is reversible and, in the case of SLBs, leads to the extraction of biotinylated lipids from the bilayer. The surface density and lateral mobility of biotin, and the SAv surface coverage are all found to influence the average orientation and residual valency of SAv on a biotinylated surface. We demonstrate how the residual valency can be adjusted to one or two biotin binding sites per immobilized SAv by choosing appropriate surface chemistry. The obtained results provide means for the rational design of surface-confined supramolecular architectures involving specific biointeractions at tunable valency. This knowledge can be used for the development of well-defined bioactive coatings, biosensors and biomimetic model systems. PMID:28234007

  13. Pleiotropic virulence factor - Streptococcus pyogenes fibronectin-binding proteins.

    Science.gov (United States)

    Yamaguchi, Masaya; Terao, Yutaka; Kawabata, Shigetada

    2013-04-01

    Streptococcus pyogenes causes a broad spectrum of infectious diseases, including pharyngitis, skin infections and invasive necrotizing fasciitis. The initial phase of infection involves colonization, followed by intimate contact with the host cells, thus promoting bacterial uptake by them. S. pyogenes recognizes fibronectin (Fn) through its own Fn-binding proteins to obtain access to epithelial and endothelial cells in host tissue. Fn-binding proteins bind to Fn to form a bridge to α5 β1 -integrins, which leads to rearrangement of cytoskeletal actin in host cells and uptake of invading S. pyogenes. Recently, several structural analyses of the invasion mechanism showed molecular interactions by which Fn converts from a compact plasma protein to a fibrillar component of the extracellular matrix. After colonization, S. pyogenes must evade the host innate immune system to spread into blood vessels and deeper organs. Some Fn-binding proteins contribute to evasion of host innate immunity, such as the complement system and phagocytosis. In addition, Fn-binding proteins have received focus as non-M protein vaccine candidates, because of their localization and conservation among different M serotypes.Here, we review the roles of Fn-binding proteins in the pathogenesis and speculate regarding possible vaccine antigen candidates. © 2012 Blackwell Publishing Ltd.

  14. Binding Equilibrium Studies Between Co2+ and HAS or BSA

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    @@ Introduction Up to now,the interactions of Cu2+,Ni2+ and Zn2+ with serum albumin have been extensively studied[1-3].However,the interaction of serum with Co2+ has rarely been studied.Our study of Co2+-HSA by means of charge transfer spectra indicated that the metal center took an octahedron configuration and the binding site was probably located at the tripeptide segment of the N-terminal of albumin[4].Sadler et al.[5]has reported that the binding site of Co2+ in HSA is located at the tripeptide segment of HSA involving the four nitrogen atoms and a carboxyl oxygen atom of Aspl.In this paper the interaction of HSA and BSA with Co2+ at physiological pH is further studied by equilibrium dialysis.The number of binding sites and the cooperation among the binding sites are reported.According to the equilibrium dialysis results and the study of competition between Co2+ and Cu2+,Ca2+ or Zn2+ to be bound to HSA or BSA,it is suggested that there are three strong binding sites in both HSA and BSA.The possible locations of the strong binding sites of Co2+ in HSA and BSA have also been determined.

  15. A novel non-opioid binding site for endomorphin-1.

    Science.gov (United States)

    Lengyel, I; Toth, F; Biyashev, D; Szatmari, I; Monory, K; Tomboly, C; Toth, G; Benyhe, S; Borsodi, A

    2016-08-01

    Endomorphins are natural amidated opioid tetrapeptides with the following structure: Tyr-Pro-Trp-Phe-NH2 (endomorphin-1), and Tyr-Pro-Phe-Phe-NH2 (endomorphin-2). Endomorphins interact selectively with the μ-opioid or MOP receptors and exhibit nanomolar or sub-nanomolar receptor binding affinities, therefore they suggested to be endogenous agonists for the μ-opioid receptors. Endomorphins mediate a number of characteristic opioid effects, such as antinociception, however there are several physiological functions in which endomorphins appear to act in a fashion that does not involve binding to and activation of the μ-opioid receptor. Our recent data indicate that a radiolabelled [(3)H]endomorphin-1 with a specific radioactivity of 2.35 TBq/mmol - prepared by catalytic dehalogenation of the diiodinated peptide precursor in the presence of tritium gas - is able to bind to a second, naloxone insensitive recognition site in rat brain membranes. Binding heterogeneity, i.e., the presence of higher (Kd = 0.4 nM / Bmax = 120 fmol/mg protein) and lower (Kd = 8.2 nM / Bmax = 432 fmol/mg protein) affinity binding components is observed both in saturation binding experiments followed by Schatchard analysis, and in equilibrium competition binding studies. The signs of receptor multiplicity, e.g., curvilinear Schatchard plots or biphasic displacement curves are seen only if the non-specific binding is measured in the presence of excess unlabeled endomorphin-1 and not in the presence of excess unlabeled naloxone. The second, lower affinity non-opioid binding site is not recognized by heterocyclic opioid alkaloid ligands, neither agonists such as morphine, nor antagonists such as naloxone. On the contrary, endomorphin-1 is displaced from its lower affinity, higher capacity binding site by several natural neuropeptides, including methionine-enkephalin-Arg-Phe, nociceptin-orphanin FQ, angiotensin and FMRF-amide. This naloxone-insensitive, consequently non-opioid binding site seems

  16. Structural Basis of Rnd1 Binding to Plexin Rho GTPase Binding Domains (RBDs)

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Hui; Hota, Prasanta K.; Tong, Yufeng; Li, Buren; Shen, Limin; Nedyalkova, Lyudmila; Borthakur, Susmita; Kim, SoonJeung; Tempel, Wolfram; Buck, Matthias; Park, Hee-Won (Toronto); (Case Western U.-Med)

    2011-09-20

    Plexin receptors regulate cell adhesion, migration, and guidance. The Rho GTPase binding domain (RBD) of plexin-A1 and -B1 can bind GTPases, including Rnd1. By contrast, plexin-C1 and -D1 reportedly bind Rnd2 but associate with Rnd1 only weakly. The structural basis of this differential Rnd1 GTPase binding to plexin RBDs remains unclear. Here, we solved the structure of the plexin-A2 RBD in complex with Rnd1 and the structures of the plexin-C1 and plexin-D1 RBDs alone, also compared with the previously determined plexin-B1 RBD.Rnd1 complex structure. The plexin-A2 RBD {center_dot} Rnd1 complex is a heterodimer, whereas plexin-B1 and -A2 RBDs homodimerize at high concentration in solution, consistent with a proposed model for plexin activation. Plexin-C1 and -D1 RBDs are monomeric, consistent with major residue changes in the homodimerization loop. In plexin-A2 and -B1, the RBD {beta}3-{beta}4 loop adjusts its conformation to allow Rnd1 binding, whereas minimal structural changes occur in Rnd1. The plexin-C1 and -D1 RBDs lack several key non-polar residues at the corresponding GTPase binding surface and do not significantly interact with Rnd1. Isothermal titration calorimetry measurements on plexin-C1 and -D1 mutants reveal that the introduction of non-polar residues in this loop generates affinity for Rnd1. Structure and sequence comparisons suggest a similar mode of Rnd1 binding to the RBDs, whereas mutagenesis suggests that the interface with the highly homologous Rnd2 GTPase is different in detail. Our results confirm, from a structural perspective, that Rnd1 does not play a role in the activation of plexin-C1 and -D1. Plexin functions appear to be regulated by subfamily-specific mechanisms, some of which involve different Rho family GTPases.

  17. STAT4的DNA结合域中395~416位氨基酸残基序列参与IL-12介导的STAT4入核%Amino acids 395-416 in DNA binding domain of STAT4 is involved in IL-12-induced nuclear import of STAT4

    Institute of Scientific and Technical Information of China (English)

    黄玉梅; 文亚平; 李轩岸; 袁媛; 罗奇志; 黎明

    2012-01-01

    本研究旨在探讨信号转导和转录活化蛋白4 (signal transducer and activator of transcription 4,STAT4)受白介素-12 (interleukin-12,IL-12)剌激后移位入细胞核的机制.对STATs家族成员进行同源性比对分析结果显示,STAT4的DNA结合域的395~416位氨基酸残基序列可能具有二聚体特异性核定化信号(dimer-specific nuclear localization signal,dsNLS)功能.有鉴于此,本研究以pEGFP-C1为表达载体,分别构建了pEGFP-STAT4质粒、缺失395~416位氨基酸残基序列的缺失型STAT4质粒(pEGFP-STAT4-Del)、将SV40大T抗原上经典的NLS核酸序列插入表达载体的阳性对照质粒(pEGFP-NLS)和将缺失型STAT4插入pEGFP-NLS的pEGFP-NLS-STAT4-Del质粒.将这些质粒瞬时转染宫颈癌腺癌细胞系Caski细胞,经过IL-12刺激,发现野生型STAT4移位入细胞核,而缺失型STAT4分布在细胞浆中;进一步用leptomycin B处理,IL-12再刺激后野生型STAT4被滞留于细胞核中,而缺失型STAT4仍然分布在胞浆中;将NLS插入缺失型STAT4,能恢复缺失型STAT4的核移位.以上结果说明野生型STAT4在1L-12刺激下能移位入细胞核,其入核机制是在其DNA结合域的395~416位氨基酸残基序列具有dsNLS功能,能介导活化的STAT4移位入细胞核.%The purpose of the present study is to explore the mechanism of IL-12-induced nuclear import of signal transducer and activator of transcription 4 (STAT4). Assayed by analyses of homology alignment of STATs, amino acids 395-416 in DNA binding domain was found to be a potential dimer-specific nuclear Iocali2ation signal (dsNLS) of STAT4. Therefore, several plasmids were constructed. Wild-type STAT4 was inserted into the Sail and BamHI sites of pEGFP-Cl for the construction of piasmid pEGFP-STAT4. The DNA fragment of STAT4 with the deletion of amino acids 395-416 was amplified by RCR and introduced into the Sail and BamH1 sites of pEGFP-Cl which was named pEGFP-STAT4-Det. Classic NLS DNA sequence of SV

  18. Arabidopsis chloroplast chaperonin 10 is a calmodulin-binding protein

    Science.gov (United States)

    Yang, T.; Poovaiah, B. W.

    2000-01-01

    Calcium regulates diverse cellular activities in plants through the action of calmodulin (CaM). By using (35)S-labeled CaM to screen an Arabidopsis seedling cDNA expression library, a cDNA designated as AtCh-CPN10 (Arabidopsis thaliana chloroplast chaperonin 10) was cloned. Chloroplast CPN10, a nuclear-encoded protein, is a functional homolog of E. coli GroES. It is believed that CPN60 and CPN10 are involved in the assembly of Rubisco, a key enzyme involved in the photosynthetic pathway. Northern analysis revealed that AtCh-CPN10 is highly expressed in green tissues. The recombinant AtCh-CPN10 binds to CaM in a calcium-dependent manner. Deletion mutants revealed that there is only one CaM-binding site in the last 31 amino acids of the AtCh-CPN10 at the C-terminal end. The CaM-binding region in AtCh-CPN10 has higher homology to other chloroplast CPN10s in comparison to GroES and mitochondrial CPN10s, suggesting that CaM may only bind to chloroplast CPN10s. Furthermore, the results also suggest that the calcium/CaM messenger system is involved in regulating Rubisco assembly in the chloroplast, thereby influencing photosynthesis. Copyright 2000 Academic Press.

  19. Arabidopsis chloroplast chaperonin 10 is a calmodulin-binding protein

    Science.gov (United States)

    Yang, T.; Poovaiah, B. W.

    2000-01-01

    Calcium regulates diverse cellular activities in plants through the action of calmodulin (CaM). By using (35)S-labeled CaM to screen an Arabidopsis seedling cDNA expression library, a cDNA designated as AtCh-CPN10 (Arabidopsis thaliana chloroplast chaperonin 10) was cloned. Chloroplast CPN10, a nuclear-encoded protein, is a functional homolog of E. coli GroES. It is believed that CPN60 and CPN10 are involved in the assembly of Rubisco, a key enzyme involved in the photosynthetic pathway. Northern analysis revealed that AtCh-CPN10 is highly expressed in green tissues. The recombinant AtCh-CPN10 binds to CaM in a calcium-dependent manner. Deletion mutants revealed that there is only one CaM-binding site in the last 31 amino acids of the AtCh-CPN10 at the C-terminal end. The CaM-binding region in AtCh-CPN10 has higher homology to other chloroplast CPN10s in comparison to GroES and mitochondrial CPN10s, suggesting that CaM may only bind to chloroplast CPN10s. Furthermore, the results also suggest that the calcium/CaM messenger system is involved in regulating Rubisco assembly in the chloroplast, thereby influencing photosynthesis. Copyright 2000 Academic Press.

  20. The MLLE domain of the ubiquitin ligase UBR5 binds to its catalytic domain to regulate substrate binding.

    Science.gov (United States)

    Muñoz-Escobar, Juliana; Matta-Camacho, Edna; Kozlov, Guennadi; Gehring, Kalle

    2015-09-11

    E3 ubiquitin ligases catalyze the transfer of ubiquitin from an E2-conjugating enzyme to a substrate. UBR5, homologous to the E6AP C terminus (HECT)-type E3 ligase, mediates the ubiquitination of proteins involved in translation regulation, DNA damage response, and gluconeogenesis. In addition, UBR5 functions in a ligase-independent manner by prompting protein/protein interactions without ubiquitination of the binding partner. Despite recent functional studies, the mechanisms involved in substrate recognition and selective ubiquitination of its binding partners remain elusive. The C terminus of UBR5 harbors the HECT catalytic domain and an adjacent MLLE domain. MLLE domains mediate protein/protein interactions through the binding of a conserved peptide motif, termed PAM2. Here, we characterize the binding properties of the UBR5 MLLE domain to PAM2 peptides from Paip1 and GW182. The crystal structure with a Paip1 PAM2 peptide reveals the network of hydrophobic and ionic interactions that drive binding. In addition, we identify a novel interaction of the MLLE domain with the adjacent HECT domain mediated by a PAM2-like sequence. Our results confirm the role of the MLLE domain of UBR5 in substrate recruitment and suggest a potential role in regulating UBR5 ligase activity.

  1. A calmodulin binding protein from Arabidopsis is induced by ethylene and contains a DNA-binding motif

    Science.gov (United States)

    Reddy, A. S.; Reddy, V. S.; Golovkin, M.

    2000-01-01

    Calmodulin (CaM), a key calcium sensor in all eukaryotes, regulates diverse cellular processes by interacting with other proteins. To isolate CaM binding proteins involved in ethylene signal transduction, we screened an expression library prepared from ethylene-treated Arabidopsis seedlings with 35S-labeled CaM. A cDNA clone, EICBP (Ethylene-Induced CaM Binding Protein), encoding a protein that interacts with activated CaM was isolated in this screening. The CaM binding domain in EICBP was mapped to the C-terminus of the protein. These results indicate that calcium, through CaM, could regulate the activity of EICBP. The EICBP is expressed in different tissues and its expression in seedlings is induced by ethylene. The EICBP contains, in addition to a CaM binding domain, several features that are typical of transcription factors. These include a DNA-binding domain at the N terminus, an acidic region at the C terminus, and nuclear localization signals. In database searches a partial cDNA (CG-1) encoding a DNA-binding motif from parsley and an ethylene up-regulated partial cDNA from tomato (ER66) showed significant similarity to EICBP. In addition, five hypothetical proteins in the Arabidopsis genome also showed a very high sequence similarity with EICBP, indicating that there are several EICBP-related proteins in Arabidopsis. The structural features of EICBP are conserved in all EICBP-related proteins in Arabidopsis, suggesting that they may constitute a new family of DNA binding proteins and are likely to be involved in modulating gene expression in the presence of ethylene.

  2. Characterization of a small acyl-CoA-binding protein (ACBP) from Helianthus annuus L. and its binding affinities.

    Science.gov (United States)

    Aznar-Moreno, Jose A; Venegas-Calerón, Mónica; Du, Zhi-Yan; Garcés, Rafael; Tanner, Julian A; Chye, Mee-Len; Martínez-Force, Enrique; Salas, Joaquín J

    2016-05-01

    Acyl-CoA-binding proteins (ACBPs) bind to acyl-CoA esters and promote their interaction with other proteins, lipids and cell structures. Small class I ACBPs have been identified in different plants, such as Arabidopsis thaliana (AtACBP6), Brassica napus (BnACBP) and Oryza sativa (OsACBP1, OsACBP2, OsACBP3), and they are capable of binding to different acyl-CoA esters and phospholipids. Here we characterize HaACBP6, a class I ACBP expressed in sunflower (Helianthus annuus) tissues, studying the specificity of its corresponding recombinant HaACBP6 protein towards various acyl-CoA esters and phospholipids in vitro, particularly using isothermal titration calorimetry and protein phospholipid binding assays. This protein binds with high affinity to de novo synthetized derivatives palmitoly-CoA, stearoyl-CoA and oleoyl-CoA (Kd 0.29, 0.14 and 0.15 μM respectively). On the contrary, it showed lower affinity towards linoleoyl-CoA (Kd 5.6 μM). Moreover, rHaACBP6 binds to different phosphatidylcholine species (dipalmitoyl-PC, dioleoyl-PC and dilinoleoyl-PC), yet it displays no affinity towards other phospholipids like lyso-PC, phosphatidic acid and lysophosphatidic acid derivatives. In the light of these results, the possible involvement of this protein in sunflower oil synthesis is considered.

  3. Membrane binding of Neuronal Calcium Sensor-1 (NCS1).

    Science.gov (United States)

    Lemire, Samuel; Jeromin, Andreas; Boisselier, Élodie

    2016-03-01

    Neuronal Calcium Sensor-1 (NCS1) belongs to the family of Neuronal Calcium Sensor (NCS) proteins. NCS1 is composed of four EF-hand motifs and an N-terminal myristoylation. However, the presence of a calcium-myristoyl switch in NCS1 and its role in the membrane binding are controversial. The model of Langmuir lipid monolayers is thus used to mimic the cell membrane in order to characterize the membrane interactions of NCS1. Two binding parameters are calculated from monolayer measurements: the maximum insertion pressure, up to which protein binding is energetically favorable, and the synergy, reporting attractive or repulsive interactions with the lipid monolayers. Binding membrane measurements performed in the presence of myristoylated NCS1 reveal better binding interactions for phospholipids composed of phosphoethanolamine polar head groups and unsaturated fatty acyl chains. In the absence of calcium, the membrane binding measurements are drastically modified and suggest that the protein is more strongly bound to the membrane. Indeed, the binding of calcium by three EF-hand motifs of NCS1 leads to a conformation change. NCS1 arrangement at the membrane could thus be reshuffled for better interactions with its substrates. The N-terminal peptide of NCS1 is composed of two amphiphilic helices involved in the membrane interactions of NCS1. Moreover, the presence of the myristoyl group has a weak influence on the membrane binding of NCS1 suggesting the absence of a calcium-myristoyl switch mechanism in this protein. The myristoylation could thus have a structural role required in the folding/unfolding of NCS1 which is essential to its multiple biological functions.

  4. Binding of nickel and zinc ions to bacitracin A.

    Science.gov (United States)

    Scogin, D A; Mosberg, H I; Storm, D R; Gennis, R B

    1980-07-08

    Bacitracin A is a cyclic dodecapeptide antibiotic produced by Bacillus licheniformis. Bacteriocidal activity requires the presence of divalent cations such as Zn2+. The metal-bacitracin A complex binds to bactoprenyl pyrophosphate, a lipid intermediate required for cell wall biosynsthesis which is found within the bacterial membrane. In this paper, the pH dependence of the metal binding to bacitracin A is investigated in an effort to define the sites of metal coordination. Most of the studies described in this report were performed with Ni2+ and Zn2+. Metal binding was monitored by observing changes in the ultraviolet absorption spectrum of bacitracin A and by monitoring the proton release which is concomitant with metal binding to the peptide. It was determined that both Ni2+ and Zn2+ form 1:1 complexes with bacitracin A in solution. These complexes are soluble in acidic solutions, but above approximately pH 5.5 they become insoluble. On the basis of the data reported as well as results previously reported from other laboratories, a model for divalent metal ion binding to bacitracin is suggested. It is proposed that the metal coordinates directly to the glutamate carboxyl, the histidine imidazole, and the thiazoline ring. The aspartate carboxyl and N-terminal amino group are not directly involved in metal binding. It is further proposed that due to the proximity of the metab, the pK of the N-terminal amino is shifted from 7.7 to 5.7 upon metal binding. Deprotonation of this group is suggested to cause precipitation of the bacitracin A-metal complex. This model is consistent with all the metal binding data and, furthermore, is consistent with the 1H NMR data presented in the accompanying paper [Mosberg, H. I., Scogin, D. A., Storm, D. R., & Gennis, R. B. (1980) Biochemistry (following paper in this issue)].

  5. Determining Membrane Protein-Lipid Binding Thermodynamics Using Native Mass Spectrometry.

    Science.gov (United States)

    Cong, Xiao; Liu, Yang; Liu, Wen; Liang, Xiaowen; Russell, David H; Laganowsky, Arthur

    2016-04-06

    Membrane proteins are embedded in the biological membrane where the chemically diverse lipid environment can modulate their structure and function. However, the thermodynamics governing the molecular recognition and interaction of lipids with membrane proteins is poorly understood. Here, we report a method using native mass spectrometry (MS), to determine thermodynamics of individual ligand binding events to proteins. Unlike conventional methods, native MS can resolve individual ligand binding events and, coupled with an apparatus to control the temperature, determine binding thermodynamic parameters, such as for protein-lipid interactions. We validated our approach using three soluble protein-ligand systems (maltose binding protein, lysozyme, and nitrogen regulatory protein) and obtained similar results to those using isothermal titration calorimetry and surface plasmon resonance. We also determined for the first time the thermodynamics of individual lipid binding to the ammonia channel (AmtB), an integral membrane protein from Escherichia coli. Remarkably, we observed distinct thermodynamic signatures for the binding of different lipids and entropy-enthalpy compensation for binding lipids of variable chain length. Additionally, using a mutant form of AmtB that abolishes a specific phosphatidylglycerol (PG) binding site, we observed distinct changes in the thermodynamic signatures for binding PG, implying these signatures can identify key residues involved in specific lipid binding and potentially differentiate between specific lipid binding sites.

  6. Ligand photo-isomerization triggers conformational changes in iGluR2 ligand binding domain.

    Directory of Open Access Journals (Sweden)

    Tino Wolter

    Full Text Available Neurological glutamate receptors bind a variety of artificial ligands, both agonistic and antagonistic, in addition to glutamate. Studying their small molecule binding properties increases our understanding of the central nervous system and a variety of associated pathologies. The large, oligomeric multidomain membrane protein contains a large and flexible ligand binding domains which undergoes large conformational changes upon binding different ligands. A recent application of glutamate receptors is their activation or inhibition via photo-switchable ligands, making them key systems in the emerging field of optochemical genetics. In this work, we present a theoretical study on the binding mode and complex stability of a novel photo-switchable ligand, ATA-3, which reversibly binds to glutamate receptors ligand binding domains (LBDs. We propose two possible binding modes for this ligand based on flexible ligand docking calculations and show one of them to be analogues to the binding mode of a similar ligand, 2-BnTetAMPA. In long MD simulations, it was observed that transitions between both binding poses involve breaking and reforming the T686-E402 protein hydrogen bond. Simulating the ligand photo-isomerization process shows that the two possible configurations of the ligand azo-group have markedly different complex stabilities and equilibrium binding modes. A strong but slow protein response is observed after ligand configuration changes. This provides a microscopic foundation for the observed difference in ligand activity upon light-switching.

  7. Comparative analyses of the thermodynamic RNA binding signatures of different types of RNA recognition motifs

    Science.gov (United States)

    Cléry, Antoine; Allain, Frédéric H-T

    2017-01-01

    Abstract RNA recognition motifs (RRMs) are structurally versatile domains important in regulation of alternative splicing. Structural mechanisms of sequence-specific recognition of single-stranded RNAs (ssRNAs) by RRMs are well understood. The thermodynamic strategies are however unclear. Therefore, we utilized microcalorimetry and semi-empirical analyses to comparatively analyze the cognate ssRNA binding thermodynamics of four different RRM domains, each with a different RNA binding mode. The different binding modes are: canonical binding to the β-sheet surface; canonical binding with involvement of N- and C-termini; binding to conserved loops; and binding to an α-helix. Our results identify enthalpy as the sole and general force driving association at physiological temperatures. Also, networks of weak interactions are a general feature regulating stability of the different RRM–ssRNA complexes. In agreement, non-polyelectrolyte effects contributed between ∼75 and 90% of the overall free energy of binding in the considered complexes. The various RNA binding modes also displayed enormous heat capacity differences, that upon dissection revealed large differential changes in hydration, conformations and dynamics upon binding RNA. Altogether, different modes employed by RRMs to bind cognate ssRNAs utilize various thermodynamics strategies during the association process. PMID:28334819

  8. Ion binding to biological macromolecules.

    Science.gov (United States)

    Petukh, Marharyta; Alexov, Emil

    2014-11-01

    Biological macromolecules carry out their functions in water and in the presence of ions. The ions can bind to the macromolecules either specifically or non-specifically, or can simply to be a part of the water phase providing physiological gradient across various membranes. This review outlines the differences between specific and non-specific ion binding in terms of the function and stability of the corresponding macromolecules. Furthermore, the experimental techniques to identify ion positions and computational methods to predict ion binding are reviewed and their advantages compared. It is indicated that specifically bound ions are relatively easier to be revealed while non-specifically associated ions are difficult to predict. In addition, the binding and the residential time of non-specifically bound ions are very much sensitive to the environmental factors in the cells, specifically to the local pH and ion concentration. Since these characteristics differ among the cellular compartments, the non-specific ion binding must be investigated with respect to the sub-cellular localization of the corresponding macromolecule.

  9. The prion protein binds thiamine.

    Science.gov (United States)

    Perez-Pineiro, Rolando; Bjorndahl, Trent C; Berjanskii, Mark V; Hau, David; Li, Li; Huang, Alan; Lee, Rose; Gibbs, Ebrima; Ladner, Carol; Dong, Ying Wei; Abera, Ashenafi; Cashman, Neil R; Wishart, David S

    2011-11-01

    Although highly conserved throughout evolution, the exact biological function of the prion protein is still unclear. In an effort to identify the potential biological functions of the prion protein we conducted a small-molecule screening assay using the Syrian hamster prion protein [shPrP(90-232)]. The screen was performed using a library of 149 water-soluble metabolites that are known to pass through the blood-brain barrier. Using a combination of 1D NMR, fluorescence quenching and surface plasmon resonance we identified thiamine (vitamin B1) as a specific prion ligand with a binding constant of ~60 μM. Subsequent studies showed that this interaction is evolutionarily conserved, with similar binding constants being seen for mouse, hamster and human prions. Various protein construct lengths, both with and without the unstructured N-terminal region in the presence and absence of copper, were examined. This indicates that the N-terminus has no influence on the protein's ability to interact with thiamine. In addition to thiamine, the more biologically abundant forms of vitamin B1 (thiamine monophosphate and thiamine diphosphate) were also found to bind the prion protein with similar affinity. Heteronuclear NMR experiments were used to determine thiamine's interaction site, which is located between helix 1 and the preceding loop. These data, in conjunction with computer-aided docking and molecular dynamics, were used to model the thiamine-binding pharmacophore and a comparison with other thiamine binding proteins was performed to reveal the common features of interaction.

  10. Cholesterol binding to ion channels

    Directory of Open Access Journals (Sweden)

    Irena eLevitan

    2014-02-01

    Full Text Available Numerous studies demonstrated that membrane cholesterol is a major regulator of ion channel function. The goal of this review is to discuss significant advances that have been recently achieved in elucidating the mechanisms responsible for cholesterol regulation of ion channels. The first major insight that comes from growing number of studies that based on the sterol specificity of cholesterol effects, show that several types of ion channels (nAChR, Kir, BK, TRPV are regulated by specific sterol-protein interactions. This conclusion is supported by demonstrating direct saturable binding of cholesterol to a bacterial Kir channel. The second major advance in the field is the identification of putative cholesterol binding sites in several types of ion channels. These include sites at locations associated with the well-known cholesterol binding motif CRAC and its reversed form CARC in nAChR, BK, and TRPV, as well as novel cholesterol binding regions in Kir channels. Notably, in the majority of these channels, cholesterol is suggested to interact mainly with hydrophobic residues in non-annular regions of the channels being embedded in between transmembrane protein helices. We also discuss how identification of putative cholesterol binding sites is an essential step to understand the mechanistic basis of cholesterol-induced channel regulation. Clearly, however, these are only the first few steps in obtaining a general understanding of cholesterol-ion channels interactions and their roles in cellular and organ functions.

  11. Discovery of a novel allosteric inhibitor-binding site in ERK5: comparison with the canonical kinase hinge ATP-binding site.

    Science.gov (United States)

    Chen, Hongming; Tucker, Julie; Wang, Xiaotao; Gavine, Paul R; Phillips, Chris; Augustin, Martin A; Schreiner, Patrick; Steinbacher, Stefan; Preston, Marian; Ogg, Derek

    2016-05-01

    MAP kinases act as an integration point for multiple biochemical signals and are involved in a wide variety of cellular processes such as proliferation, differentiation, regulation of transcription and development. As a member of the MAP kinase family, ERK5 (MAPK7) is involved in the downstream signalling pathways of various cell-surface receptors, including receptor tyrosine kinases and G protein-coupled receptors. In the current study, five structures of the ERK5 kinase domain co-crystallized with ERK5 inhibitors are reported. Interestingly, three of the compounds bind at a novel allosteric binding site in ERK5, while the other two bind at the typical ATP-binding site. Binding of inhibitors at the allosteric site is accompanied by displacement of the P-loop into the ATP-binding site and is shown to be ATP-competitive in an enzymatic assay of ERK5 kinase activity. Kinase selectivity data show that the most potent allosteric inhibitor exhibits superior kinase selectivity compared with the two inhibitors that bind at the canonical ATP-binding site. An analysis of these structures and comparison with both a previously published ERK5-inhibitor complex structure (PDB entry 4b99) and the structures of three other kinases (CDK2, ITK and MEK) in complex with allosteric inhibitors are presented.

  12. DNA and RNA Quadruplex-Binding Proteins

    Directory of Open Access Journals (Sweden)

    Václav Brázda

    2014-09-01

    Full Text Available Four-stranded DNA structures were structurally characterized in vitro by NMR, X-ray and Circular Dichroism spectroscopy in detail. Among the different types of quadruplexes (i-Motifs, minor groove quadruplexes, G-quadruplexes, etc., the best described are G-quadruplexes which are featured by Hoogsteen base-paring. Sequences with the potential to form quadruplexes are widely present in genome of all organisms. They are found often in repetitive sequences such as telomeric ones, and also in promoter regions and 5' non-coding sequences. Recently, many proteins with binding affinity to G-quadruplexes have been identified. One of the initially portrayed G-rich regions, the human telomeric sequence (TTAGGGn, is recognized by many proteins which can modulate telomerase activity. Sequences with the potential to form G-quadruplexes are often located in promoter regions of various oncogenes. The NHE III1 region of the c-MYC promoter has been shown to interact with nucleolin protein as well as other G-quadruplex-binding proteins. A number of G-rich sequences are also present in promoter region of estrogen receptor alpha. In addition to DNA quadruplexes, RNA quadruplexes, which are critical in translational regulation, have also been predicted and observed. For example, the RNA quadruplex formation in telomere-repeat-containing RNA is involved in interaction with TRF2 (telomere repeat binding factor 2 and plays key role in telomere regulation. All these fundamental examples suggest the importance of quadruplex structures in cell processes and their understanding may provide better insight into aging and disease development.

  13. Shared RNA-binding sites for interacting members of the Drosophila ELAV family of neuronal proteins

    OpenAIRE

    Borgeson, Claudia D.; Samson, Marie-Laure

    2005-01-01

    The product of the Drosophila embryonic lethal abnormal visual system is a conserved protein (ELAV) necessary for normal neuronal differentiation and maintenance. It possesses three RNA-binding domains and is involved in the regulation of RNA metabolism. The long elav 3′-untranslated region (3′-UTR) is necessary for autoregulation. We used RNA-binding assays and in vitro selection to identify the ELAV best binding site in the elav 3′-UTR. This site resembles ELAV-binding sites identified prev...

  14. RNA-binding proteins in plants: the tip of an iceberg?

    Science.gov (United States)

    Fedoroff, Nina V.; Federoff, N. V. (Principal Investigator)

    2002-01-01

    RNA-binding proteins, which are involved in the synthesis, processing, transport, translation, and degradation of RNA, are emerging as important, often multifunctional, cellular regulatory proteins. Although relatively few RNA-binding proteins have been studied in plants, they are being identified with increasing frequency, both genetically and biochemically. RNA-binding proteins that regulate chloroplast mRNA stability and translation in response to light and that have been elegantly analyzed in Clamydomonas reinhardtii have counterparts with similar functions in higher plants. Several recent reports describe mutations in genes encoding RNA-binding proteins that affect plant development and hormone signaling.

  15. Functional connectivity supporting the selective maintenance of feature-location binding in visual working memory

    Directory of Open Access Journals (Sweden)

    Sachiko eTakahama

    2014-06-01

    Full Text Available Information on an object’s features bound to its location is very important for maintaining object representations in visual working memory. Interactions with dynamic multi-dimensional objects in an external environment require complex cognitive control, including the selective maintenance of feature-location binding. Here, we used event-related functional magnetic resonance imaging to investigate brain activity and functional connectivity related to the maintenance of complex feature-location binding. Participants were required to detect task-relevant changes in feature-location binding between objects defined by color, orientation, and location. We compared a complex binding task requiring complex feature-location binding (color-orientation-location with a simple binding task in which simple feature-location binding, such as color-location, was task-relevant and the other feature was task-irrelevant. Univariate analyses showed that the dorsolateral prefrontal cortex (DLPFC, hippocampus, and frontoparietal network were activated during the maintenance of complex feature-location binding. Functional connectivity analyses indicated cooperation between the inferior precentral sulcus (infPreCS, DLPFC, and hippocampus during the maintenance of complex feature-location binding. In contrast, the connectivity for the spatial updating of simple feature-location binding determined by reanalyzing the data from Takahama et al. (2010 demonstrated that the superior parietal lobule (SPL cooperated with the DLPFC and hippocampus. These results suggest that the connectivity for complex feature-location binding does not simply reflect general memory load and that the DLPFC and hippocampus flexibly modulate the dorsal frontoparietal network, depending on the task requirements, with the infPreCS involved in the maintenance of complex feature-location binding and the SPL involved in the spatial updating of simple feature-location binding.

  16. Discriminating binding mechanisms of an intrinsically disordered protein via a multi-state coarse-grained model

    Energy Technology Data Exchange (ETDEWEB)

    Knott, Michael [Department of Chemistry, Cambridge University, Lensfield Road, Cambridge CB2 1EW (United Kingdom); Best, Robert B., E-mail: robertbe@helix.nih.gov [Department of Chemistry, Cambridge University, Lensfield Road, Cambridge CB2 1EW (United Kingdom); Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892-0520 (United States)

    2014-05-07

    Many proteins undergo a conformational transition upon binding to their cognate binding partner, with intrinsically disordered proteins (IDPs) providing an extreme example in which a folding transition occurs. However, it is often not clear whether this occurs via an “induced fit” or “conformational selection” mechanism, or via some intermediate scenario. In the first case, transient encounters with the binding partner favour transitions to the bound structure before the two proteins dissociate, while in the second the bound structure must be selected from a subset of unbound structures which are in the correct state for binding, because transient encounters of the incorrect conformation with the binding partner are most likely to result in dissociation. A particularly interesting situation involves those intrinsically disordered proteins which can bind to different binding partners in different conformations. We have devised a multi-state coarse-grained simulation model which is able to capture the binding of IDPs in alternate conformations, and by applying it to the binding of nuclear coactivator binding domain (NCBD) to either ACTR or IRF-3 we are able to determine the binding mechanism. By all measures, the binding of NCBD to either binding partner appears to occur via an induced fit mechanism. Nonetheless, we also show how a scenario closer to conformational selection could arise by choosing an alternative non-binding structure for NCBD.

  17. Galectin-3-Binding and Metastasis

    Science.gov (United States)

    Nangia-Makker, Pratima; Balan, Vitaly; Raz, Avraham

    2013-01-01

    i. Summary Galectin-3 is a member of a family of carbohydrate-binding proteins. It is present in the nucleus, the cytoplasm and also extracellular matrix of many normal and neoplastic cell types. Arrays of reports show an upregulation of this protein in transformed and metastatic cell lines (1, 2). Moreover, in many human carcinomas, an increased expression of galectin-3 correlates with progressive tumor stages (3–6). Several lines of analysis have demonstrated that the galectins participate in cell-cell and cell-matrix interactions by recognizing and binding complimentary glycoconjugates and thereby play a crucial role in normal and pathological processes. Elevated expression of the protein is associated with an increased capacity for anchorage-independent growth, homotypic aggregation, and tumor cell lung colonization (7–9). In this chapter we describe the methods of purification of galectin-3 from transformed E. coli and some of the commonly used functional assays for analyzing galectin-3 binding. PMID:22674139

  18. Grafting of protein-protein binding sites

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    A strategy for grafting protein-protein binding sites is described. Firstly, key interaction residues at the interface of ligand protein to be grafted are identified and suitable positions in scaffold protein for grafting these key residues are sought. Secondly, the scaffold proteins are superposed onto the ligand protein based on the corresponding Ca and Cb atoms. The complementarity between the scaffold protein and the receptor protein is evaluated and only matches with high score are accepted. The relative position between scaffold and receptor proteins is adjusted so that the interface has a reasonable packing density. Then the scaffold protein is mutated to corresponding residues in ligand protein at each candidate position. And the residues having bad steric contacts with the receptor proteins, or buried charged residues not involved in the formation of any salt bridge are mutated. Finally, the mutated scaffold protein in complex with receptor protein is co-minimized by Charmm. In addition, we deduce a scoring function to evaluate the affinity between mutated scaffold protein and receptor protein by statistical analysis of rigid binding data sets.

  19. Method And Apparatus For Detecting Chemical Binding

    Energy Technology Data Exchange (ETDEWEB)

    Warner, Benjamin P. (Los Alamos, NM); Havrilla, George J. (Los Alamos, NM); Miller, Thomasin C. (Los Alamos, NM); Wells, Cyndi A. (Los Alamos, NM)

    2005-02-22

    The method for screening binding between a target binder and potential pharmaceutical chemicals involves sending a solution (preferably an aqueous solution) of the target binder through a conduit to a size exclusion filter, the target binder being too large to pass through the size exclusion filter, and then sending a solution of one or more potential pharmaceutical chemicals (preferably an aqueous solution) through the same conduit to the size exclusion filter after target binder has collected on the filter. The potential pharmaceutical chemicals are small enough to pass through the filter. Afterwards, x-rays are sent from an x-ray source to the size exclusion filter, and if the potential pharmaceutical chemicals form a complex with the target binder, the complex produces an x-ray fluorescence signal having an intensity that indicates that a complex has formed.

  20. Method and apparatus for detecting chemical binding

    Energy Technology Data Exchange (ETDEWEB)

    Warner, Benjamin P. (Los Alamos, NM); Havrilla, George J. (Los Alamos, NM); Miller, Thomasin C. (Los Alamos, NM); Wells, Cyndi A. (Los Alamos, NM)

    2007-07-10

    The method for screening binding between a target binder and potential pharmaceutical chemicals involves sending a solution (preferably an aqueous solution) of the target binder through a conduit to a size exclusion filter, the target binder being too large to pass through the size exclusion filter, and then sending a solution of one or more potential pharmaceutical chemicals (preferably an aqueous solution) through the same conduit to the size exclusion filter after target binder has collected on the filter. The potential pharmaceutical chemicals are small enough to pass through the filter. Afterwards, x-rays are sent from an x-ray source to the size exclusion filter, and if the potential pharmaceutical chemicals form a complex with the target binder, the complex produces an x-ray fluorescence signal having an intensity that indicates that a complex has formed.

  1. Computational Prediction of RNA-Binding Proteins and Binding Sites

    Directory of Open Access Journals (Sweden)

    Jingna Si

    2015-11-01

    Full Text Available Proteins and RNA interaction have vital roles in many cellular processes such as protein synthesis, sequence encoding, RNA transfer, and gene regulation at the transcriptional and post-transcriptional levels. Approximately 6%–8% of all proteins are RNA-binding proteins (RBPs. Distinguishing these RBPs or their binding residues is a major aim of structural biology. Previously, a number of experimental methods were developed for the determination of protein–RNA interactions. However, these experimental methods are expensive, time-consuming, and labor-intensive. Alternatively, researchers have developed many computational approaches to predict RBPs and protein–RNA binding sites, by combining various machine learning methods and abundant sequence and/or structural features. There are three kinds of computational approaches, which are prediction from protein sequence, prediction from protein structure, and protein-RNA docking. In this paper, we review all existing studies of predictions of RNA-binding sites and RBPs and complexes, including data sets used in different approaches, sequence and structural features used in several predictors, prediction method classifications, performance comparisons, evaluation methods, and future directions.

  2. Computational Prediction of RNA-Binding Proteins and Binding Sites.

    Science.gov (United States)

    Si, Jingna; Cui, Jing; Cheng, Jin; Wu, Rongling

    2015-01-01

    Proteins and RNA interaction have vital roles in many cellular processes such as protein synthesis, sequence encoding, RNA transfer, and gene regulation at the transcriptional and post-transcriptional levels. Approximately 6%-8% of all proteins are RNA-binding proteins (RBPs). Distinguishing these RBPs or their binding residues is a major aim of structural biology. Previously, a number of experimental methods were developed for the determination of protein-RNA interactions. However, these experimental methods are expensive, time-consuming, and labor-intensive. Alternatively, researchers have developed many computational approaches to predict RBPs and protein-RNA binding sites, by combining various machine learning methods and abundant sequence and/or structural features. There are three kinds of computational approaches, which are prediction from protein sequence, prediction from protein structure, and protein-RNA docking. In this paper, we review all existing studies of predictions of RNA-binding sites and RBPs and complexes, including data sets used in different approaches, sequence and structural features used in several predictors, prediction method classifications, performance comparisons, evaluation methods, and future directions.

  3. Panic Disorder: Is the PAG Involved?

    Directory of Open Access Journals (Sweden)

    Cristina Marta Del-Ben

    2009-01-01

    Full Text Available Data from studies with humans have suggested that abnormalities of midbrain structures, including the periaqueductal gray matter (PAG, could be involved in the neurobiology of panic disorder (PD. The electrical stimulation of the PAG in neurosurgical patients induces panic-like symptoms and the effect of drugs that are effective in the treatment of PD in the simulation of public speaking model of anxiety is in agreement with data from animal models of PD. Structural neuroimaging studies have shown increases in gray matter volume of midbrain and pons of PD patients. There is also evidence of lower serotonin transporter and receptor binding, and increases of metabolism in the midbrain of PD patients. Nevertheless, these midbrain abnormalities can not be considered as specific findings, since neuroimaging data indicate that PD patients have abnormalities in other brain structures that process fear and anxiety.

  4. Panic disorder: is the PAG involved?

    Science.gov (United States)

    Del-Ben, Cristina Marta; Graeff, Frederico Guilherme

    2009-01-01

    Data from studies with humans have suggested that abnormalities of midbrain structures, including the periaqueductal gray matter (PAG), could be involved in the neurobiology of panic disorder (PD). The electrical stimulation of the PAG in neurosurgical patients induces panic-like symptoms and the effect of drugs that are effective in the treatment of PD in the simulation of public speaking model of anxiety is in agreement with data from animal models of PD. Structural neuroimaging studies have shown increases in gray matter volume of midbrain and pons of PD patients. There is also evidence of lower serotonin transporter and receptor binding, and increases of metabolism in the midbrain of PD patients. Nevertheless, these midbrain abnormalities can not be considered as specific findings, since neuroimaging data indicate that PD patients have abnormalities in other brain structures that process fear and anxiety.

  5. Yeast ABC proteins involved in multidrug resistance.

    Science.gov (United States)

    Piecuch, Agata; Obłąk, Ewa

    2014-03-01

    Pleiotropic drug resistance is a complex phenomenon that involves many proteins that together create a network. One of the common mechanisms of multidrug resistance in eukaryotic cells is the active efflux of a broad range of xenobiotics through ATP-binding cassette (ABC) transporters. Saccharomyces cerevisiae is often used as a model to study such activity because of the functional and structural similarities of its ABC transporters to mammalian ones. Numerous ABC transporters are found in humans and some are associated with the resistance of tumors to chemotherapeutics. Efflux pump modulators that change the activity of ABC proteins are the most promising candidate drugs to overcome such resistance. These modulators can be chemically synthesized or isolated from natural sources (e.g., plant alkaloids) and might also be used in the treatment of fungal infections. There are several generations of synthetic modulators that differ in specificity, toxicity and effectiveness, and are often used for other clinical effects.

  6. Acetylcholine-Binding Protein Engineered to Mimic the α4-α4 Binding Pocket in α4β2 Nicotinic Acetylcholine Receptors Reveals Interface Specific Interactions Important for Binding and Activity

    DEFF Research Database (Denmark)

    Shahsavar, Azadeh; Ahring, Philip K; Olsen, Jeppe A

    2015-01-01

    residues, H142, Q150, and T152, were demonstrated to be involved in the distinct pharmacology of the α4-α4 versus α4-β2 binding sites. To obtain insight into the three-dimensional structure of the α4-α4 binding site, a surrogate protein reproducing α4-α4 binding characteristics was constructed...... structure of the mutated Ls-AChBP with the high-efficacy ligand NS3920, the corresponding histidine forms an intersubunit bridge that reinforces the ligand-mediated interactions between subunits. The structures further reveal that the binding site residues gain different and ligand-dependent interactions...... that could not be predicted based on wild-type Ls-AChBP structures in complex with the same agonists. The results show that an unprecedented correlation between binding in engineered AChBPs and functional receptors can be obtained and provide new opportunities for structure-based design of drugs targeting...

  7. A Novel DNA Binding Mechanism for maf Basic Region-Leucine Zipper Factors Inferred from a MafA-DNA Complex Structure and Binding Specificities

    Energy Technology Data Exchange (ETDEWEB)

    Lu, Xun; Guanga, Gerald P; Wan, Cheng; Rose, Robert B [Z; (W Elec.); (NCSU)

    2012-11-13

    MafA is a proto-oncoprotein and is critical for insulin gene expression in pancreatic β-cells. Maf proteins belong to the AP1 superfamily of basic region-leucine zipper (bZIP) transcription factors. Residues in the basic helix and an ancillary N-terminal domain, the Extended Homology Region (EHR), endow maf proteins with unique DNA binding properties: binding a 13 bp consensus site consisting of a core AP1 site (TGACTCA) flanked by TGC sequences and binding DNA stably as monomers. To further characterize maf DNA binding, we determined the structure of a MafA–DNA complex. MafA forms base-specific hydrogen bonds with the flanking G–5C–4 and central C0/G0 bases, but not with the core-TGA bases. However, in vitro binding studies utilizing a pulse–chase electrophoretic mobility shift assay protocol revealed that mutating either the core-TGA or flanking-TGC bases dramatically increases the binding off rate. Comparing the known maf structures, we propose that DNA binding specificity results from positioning the basic helix through unique phosphate contacts. The EHR does not contact DNA directly but stabilizes DNA binding by contacting the basic helix. Collectively, these results suggest a novel multistep DNA binding process involving a conformational change from contacting the core-TGA to contacting the flanking-TGC bases.

  8. Synthetic heparin-binding growth factor analogs

    Science.gov (United States)

    Pena, Louis A.; Zamora, Paul; Lin, Xinhua; Glass, John D.

    2007-01-23

    The invention provides synthetic heparin-binding growth factor analogs having at least one peptide chain that binds a heparin-binding growth factor receptor, covalently bound to a hydrophobic linker, which is in turn covalently bound to a non-signaling peptide that includes a heparin-binding domain. The synthetic heparin-binding growth factor analogs are useful as soluble biologics or as surface coatings for medical devices.

  9. Comprehensive human transcription factor binding site map for combinatory binding motifs discovery.

    Directory of Open Access Journals (Sweden)

    Arnoldo J Müller-Molina

    Full Text Available To know the map between transcription factors (TFs and their binding sites is essential to reverse engineer the regulation process. Only about 10%-20% of the transcription factor binding motifs (TFBMs have been reported. This lack of data hinders understanding gene regulation. To address this drawback, we propose a computational method that exploits never used TF properties to discover the missing TFBMs and their sites in all human gene promoters. The method starts by predicting a dictionary of regulatory "DNA words." From this dictionary, it distills 4098 novel predictions. To disclose the crosstalk between motifs, an additional algorithm extracts TF combinatorial binding patterns creating a collection of TF regulatory syntactic rules. Using these rules, we narrowed down a list of 504 novel motifs that appear frequently in syntax patterns. We tested the predictions against 509 known motifs confirming that our system can reliably predict ab initio motifs with an accuracy of 81%-far higher than previous approaches. We found that on average, 90% of the discovered combinatorial binding patterns target at least 10 genes, suggesting that to control in an independent manner smaller gene sets, supplementary regulatory mechanisms are required. Additionally, we discovered that the new TFBMs and their combinatorial patterns convey biological meaning, targeting TFs and genes related to developmental functions. Thus, among all the possible available targets in the genome, the TFs tend to regulate other TFs and genes involved in developmental functions. We provide a comprehensive resource for regulation analysis that includes a dictionary of "DNA words," newly predicted motifs and their corresponding combinatorial patterns. Combinatorial patterns are a useful filter to discover TFBMs that play a major role in orchestrating other factors and thus, are likely to lock/unlock cellular functional clusters.

  10. The GTP binding motif: variations on a theme.

    Science.gov (United States)

    Kjeldgaard, M; Nyborg, J; Clark, B F

    1996-10-01

    GTP binding proteins (G-proteins) have wide-ranging functions in biology, being involved in cell proliferation, signal transduction, protein synthesis, and protein targeting. Common to their functioning is that they are active in the GTP-bound form and inactive in the GDP-bound form. The protein synthesis elongation factor EF-Tu was the first G-protein whose nucleotide binding domain was solved structurally by X-ray crystallography to yield a structural definition of the GDP-bound form, but a still increasing number of new structures of G-proteins are appearing in the literature, in both GDP and GTP bound forms. A common structural core for nucleotide binding is present in all these structures, and this core has long been known to include common consensus sequence elements involved in binding of the nucleotide. Nevertheless, subtle changes in the common sequences reflect functional differences. Therefore, it becomes increasingly important to focus on how these differences are reflected in the structures, and how these structural differences are related to function. The aim of this review is to describe to what extent this structural motif for GDP/GTP binding is common to other known structures of this class of proteins. We first describe the common structural core of the G-proteins. Next, examples are based on information available on the Ras protein superfamily, the targeting protein ARF, elongation factors EF-Tu and EF-G, and the heterotrimeric G-proteins. Finally, we discuss the important structures of complexes between GTP binding proteins and their substrates that have appeared in the literature recently.

  11. Interspecies In Vitro Evaluation of Stereoselective Protein Binding for 3,4-Methylenedioxymethamphetamine

    Directory of Open Access Journals (Sweden)

    Wan Raihana Wan Aasim

    2017-01-01

    Full Text Available Abuse of 3,4-methylenedioxymethamphetamine (MDMA is becoming more common worldwide. To date, there is no information available on stereoselectivity of MDMA protein binding in humans, rats, and mice. Since stereoselectivity plays an important role in MDMA’s pharmacokinetics and pharmacodynamics, in this study we investigated its stereoselectivity in protein binding. The stereoselective protein binding of rac-MDMA was investigated using two different concentrations (20 and 200 ng/mL in human plasma and mouse and rat sera using an ultrafiltration technique. No significant stereoselectivity in protein binding was observed in both human plasma and rat serum; however, a significant stereoselective binding (p<0.05 was observed in mouse serum. Since the protein binding of MDMA in mouse serum is considerably lower than in humans and rats, caution should be exercised when using mice for in vitro studies involving MDMA.

  12. The human fatty acid-binding protein family: Evolutionary divergences and functions

    Directory of Open Access Journals (Sweden)

    Smathers Rebecca L

    2011-03-01

    Full Text Available Abstract Fatty acid-binding proteins (FABPs are members of the intracellular lipid-binding protein (iLBP family and are involved in reversibly binding intracellular hydrophobic ligands and trafficking them throughout cellular compartments, including the peroxisomes, mitochondria, endoplasmic reticulum and nucleus. FABPs are small, structurally conserved cytosolic proteins consisting of a water-filled, interior-binding pocket surrounded by ten anti-parallel beta sheets, forming a beta barrel. At the superior surface, two alpha-helices cap the pocket and are thought to regulate binding. FABPs have broad specificity, including the ability to bind long-chain (C16-C20 fatty acids, eicosanoids, bile salts and peroxisome proliferators. FABPs demonstrate strong evolutionary conservation and are present in a spectrum of species including Drosophila melanogaster, Caenorhabditis elegans, mouse and human. The human genome consists of nine putatively functional protein-coding FABP genes. The most recently identified family member, FABP12, has been less studied.

  13. Structural Basis for Negative Cooperativity in Growth Factor Binding to an EGF Receptor

    Energy Technology Data Exchange (ETDEWEB)

    Alvarado, Diego; Klein, Daryl E.; Lemmon, Mark A. (UPENN-MED)

    2010-09-27

    Transmembrane signaling by the epidermal growth factor receptor (EGFR) involves ligand-induced dimerization and allosteric regulation of the intracellular tyrosine kinase domain. Crystallographic studies have shown how ligand binding induces dimerization of the EGFR extracellular region but cannot explain the high-affinity and low-affinity classes of cell-surface EGF-binding sites inferred from curved Scatchard plots. From a series of crystal structures of the Drosophila EGFR extracellular region, we show here how Scatchard plot curvature arises from negatively cooperative ligand binding. The first ligand-binding event induces formation of an asymmetric dimer with only one bound ligand. The unoccupied site in this dimer is structurally restrained, leading to reduced affinity for binding of the second ligand, and thus negative cooperativity. Our results explain the cell-surface binding characteristics of EGF receptors and suggest how individual EGFR ligands might stabilize distinct dimeric species with different signaling properties.

  14. Peripheral benzodiazepine binding sites on striated muscles of the rat: Properties and effect of denervation

    Energy Technology Data Exchange (ETDEWEB)

    Mueller, W.E.; Ickstadt, A. (Mainz Univ. (Germany, F.R.). Pharmakologisches Inst.); Hopf, H.Ch. (Mainz Univ. (Germany, F.R.))

    1985-01-01

    In order to test the hypothesis that peripheral benzodiazepine binding sites mediate some direct effects of benzodiazepines on striated muscles, the properties of specific /sup 3/H-Ro 5-4864 binding to rat biceps and rat diaphragm homogenates were investigated. In both tissues a single population of sites was found with a Ksub(D) value of 3 nmol/l. The density of these sites in both muscles was higher than the density in rat brain, but was considerably lower than in rat kidney. Competition experiments indicate a substrate specificity of specific /sup 3/H-Ro 5-4864 binding similar to the properties already demonstrated for the specific binding of this ligand to peripheral benzodiazepine binding sites in many other tissues. The properties of these sites in the rat diaphragm are not changed after motoric denervation by phrenicectomy. It is concluded that peripheral benzodiazepine binding sites are not involved in direct effects of benzodiazepines on striated muscles.

  15. MANAGING TIGHT BINDING RECEPTORS FOR NEW SPEARATIONS TECHNOLOGIES

    Energy Technology Data Exchange (ETDEWEB)

    DARYLE H BUSCH RICHARD S GIVENS

    2004-12-10

    Much of the earth's pollution involves compounds of the metallic elements, including actinides, strontium, cesium, technetium, and RCRA metals. Metal ions bind to molecules called ligands, which are the molecular tools that can manipulate the metal ions under most conditions. This DOE-EMSP sponsored program strives (1) to provide the foundations for using the most powerful ligands in transformational separations technologies and (2) to produce seminal examples of their applications to separations appropriate to the DOE EM mission. These ultra tight-binding ligands can capture metal ions in the most competitive of circumstances (from mineralized sites, lesser ligands, and even extremely dilute solutions), but they react so slowly that they are useless in traditional separations methodologies. Two attacks on this problem are underway. The first accommodates to the challenging molecular lethargy by developing a seminal slow separations methodology termed the soil poultice. The second designs ligands that are only tight-binding while wrapped around the targeted metal ion, but can be put in place by switch-binding and removed by switch-release. We envision a kind of molecular switching process to accelerate the union between metal ion and tight-binding ligand. Molecular switching processes are suggested for overcoming the slow natural equilibration rate with which ultra tight-binding ligands combine with metal ions. Ligands that bind relatively weakly combine with metal ions rapidly, so the trick is to convert a ligand from a weak, rapidly binding species to a powerful, slow releasing ligand--during the binding of the ligand to the metal ion. Such switch-binding ligands must react with themselves, and the reaction must take place under the influence of the metal ion. For example, our generation 1 ligands showed that a well-designed linear ligand with ends that readily combine, forms a cyclic molecule when it wraps around a metal ion. Our generation 2 ligands are

  16. Specific erythrocyte binding capacity and biological activity of Plasmodium falciparum erythrocyte binding ligand 1 (EBL-1)-derived peptides.

    Science.gov (United States)

    Curtidor, Hernando; Rodríguez, Luis E; Ocampo, Marisol; López, Ramses; García, Javier E; Valbuena, John; Vera, Ricardo; Puentes, Alvaro; Vanegas, Magnolia; Patarroyo, Manuel E

    2005-02-01

    Erythrocyte binding ligand 1 (EBL-1) is a member of the ebl multigene family involved in Plasmodium falciparum invasion of erythrocytes. We found that five EBL-1 high-activity binding peptides (HABPs) bound specifically to erythrocytes: 29895 ((41)HKKKSGELNNNKSGILRSTY(60)), 29903 ((201)LYECGK-KIKEMKWICTDNQF(220)), 29923 ((601)CNAILGSYADIGDIVRGLDV(620)), 29924((621)WRDINTNKLSEK-FQKIFMGGY(640)), and 30018 ((2481)LEDIINLSKKKKKSINDTSFY(2500)). We also show that binding was saturable, not sialic acid-dependent, and that all peptides specifically bound to a 36-kDa protein on the erythrocyte membrane. The five HABPs inhibited in vitro merozoite invasion depending on the peptide concentration used, suggesting their possible role in the invasion process.

  17. Cellulose binding domain fusion proteins

    Science.gov (United States)

    Shoseyov, Oded; Shpiegl, Itai; Goldstein, Marc A.; Doi, Roy H.

    1998-01-01

    A cellulose binding domain (CBD) having a high affinity for crystalline cellulose and chitin is disclosed, along with methods for the molecular cloning and recombinant production thereof. Fusion products comprising the CBD and a second protein are likewise described. A wide range of applications are contemplated for both the CBD and the fusion products, including drug delivery, affinity separations, and diagnostic techniques.

  18. Binding mechanisms of intrinsically disordered proteins: theory, simulation, and experiment

    Directory of Open Access Journals (Sweden)

    Luca Mollica

    2016-09-01

    Full Text Available In recent years, protein science has been revolutionized by the discovery of intrinsically disordered proteins (IDPs. In contrast to the classical paradigm that a given protein sequence corresponds to a defined structure and an associated function, we now know that proteins can be functional in the absence of a stable three-dimensional structure. In many cases, disordered proteins or protein regions become structured, at least locally, upon interacting with their physiological partners. Many, sometimes conflicting, hypotheses have been put forward regarding the interaction mechanisms of IDPs and the potential advantages of disorder for protein-protein interactions. Whether disorder may increase, as proposed e.g. in the fly-casting hypothesis, or decrease binding rates, increase or decrease binding specificity, or what role pre-formed structure might play in interactions involving IDPs (conformational selection vs. induced fit, are subjects of intense debate. Experimentally, these questions remain difficult to address. Here, we review experimental studies of binding mechanisms of IDPs using NMR spectroscopy and transient kinetic techniques, as well as the underlying theoretical concepts and numerical methods that can be applied to describe these interactions at the atomic level. The available literature suggests that the kinetic and thermodynamic parameters characterizing interactions involving IDPs can vary widely and that there may be no single common mechanism that can explain the different binding modes observed experimentally. Rather, disordered proteins appear to make combined use of features such as pre-formed structure and flexibility, depending on the individual system and the functional context.

  19. Evolutionarily conserved bias of amino-acid usage refines the definition of PDZ-binding motif.

    Science.gov (United States)

    Chimura, Takahiko; Launey, Thomas; Ito, Masao

    2011-06-08

    The interactions between PDZ (PSD-95, Dlg, ZO-1) domains and PDZ-binding motifs play central roles in signal transductions within cells. Proteins with PDZ domains bind to PDZ-binding motifs almost exclusively when the motifs are located at the carboxyl (C-) terminal ends of their binding partners. However, it remains little explored whether PDZ-binding motifs show any preferential location at the C-terminal ends of proteins, at genome-level. Here, we examined the distribution of the type-I (x-x-S/T-x-I/L/V) or type-II (x-x-V-x-I/V) PDZ-binding motifs in proteins encoded in the genomes of five different species (human, mouse, zebrafish, fruit fly and nematode). We first established that these PDZ-binding motifs are indeed preferentially present at their C-terminal ends. Moreover, we found specific amino acid (AA) bias for the 'x' positions in the motifs at the C-terminal ends. In general, hydrophilic AAs were favored. Our genomics-based findings confirm and largely extend the results of previous interaction-based studies, allowing us to propose refined consensus sequences for all of the examined PDZ-binding motifs. An ontological analysis revealed that the refined motifs are functionally relevant since a large fraction of the proteins bearing the motif appear to be involved in signal transduction. Furthermore, co-precipitation experiments confirmed two new protein interactions predicted by our genomics-based approach. Finally, we show that influenza virus pathogenicity can be correlated with PDZ-binding motif, with high-virulence viral proteins bearing a refined PDZ-binding motif. Our refined definition of PDZ-binding motifs should provide important clues for identifying functional PDZ-binding motifs and proteins involved in signal transduction.

  20. Evolutionarily conserved bias of amino-acid usage refines the definition of PDZ-binding motif

    Directory of Open Access Journals (Sweden)

    Launey Thomas

    2011-06-01

    Full Text Available Abstract Background The interactions between PDZ (PSD-95, Dlg, ZO-1 domains and PDZ-binding motifs play central roles in signal transductions within cells. Proteins with PDZ domains bind to PDZ-binding motifs almost exclusively when the motifs are located at the carboxyl (C- terminal ends of their binding partners. However, it remains little explored whether PDZ-binding motifs show any preferential location at the C-terminal ends of proteins, at genome-level. Results Here, we examined the distribution of the type-I (x-x-S/T-x-I/L/V or type-II (x-x-V-x-I/V PDZ-binding motifs in proteins encoded in the genomes of five different species (human, mouse, zebrafish, fruit fly and nematode. We first established that these PDZ-binding motifs are indeed preferentially present at their C-terminal ends. Moreover, we found specific amino acid (AA bias for the 'x' positions in the motifs at the C-terminal ends. In general, hydrophilic AAs were favored. Our genomics-based findings confirm and largely extend the results of previous interaction-based studies, allowing us to propose refined consensus sequences for all of the examined PDZ-binding motifs. An ontological analysis revealed that the refined motifs are functionally relevant since a large fraction of the proteins bearing the motif appear to be involved in signal transduction. Furthermore, co-precipitation experiments confirmed two new protein interactions predicted by our genomics-based approach. Finally, we show that influenza virus pathogenicity can be correlated with PDZ-binding motif, with high-virulence viral proteins bearing a refined PDZ-binding motif. Conclusions Our refined definition of PDZ-binding motifs should provide important clues for identifying functional PDZ-binding motifs and proteins involved in signal transduction.

  1. Protein binding assay for hyaluronate

    Energy Technology Data Exchange (ETDEWEB)

    Lacy, B.E.; Underhill, C.B.

    1986-11-01

    A relatively quick and simple assay for hyaluronate was developed using the specific binding protein, hyaluronectin. The hyaluronectin was obtained by homogenizing the brains of Sprague-Dawley rats, and then centrifuging the homogenate. The resulting supernatant was used as a source of crude hyaluronectin. In the binding assay, the hyaluronectin was mixed with (/sup 3/H)hyaluronate, followed by an equal volume of saturated (NH/sub 4/)/sub 2/SO/sub 4/, which precipitated the hyaluronectin and any (/sup 3/H)hyaluronate associated with it, but left free (/sup 3/H)hyaluronate in solution. The mixture was then centrifuged, and the amount of bound (/sup 3/H)hyaluronate in the precipitate was determined. Using this assay, the authors found that hyaluronectin specifically bound hyaluronate, since other glycosaminoglycans failed to compete for the binding protein. In addition, the interaction between hyaluronectin and hyaluronate was of relatively high affinity, and the size of the hyaluronate did not appear to substantially alter the amount of binding. To determine the amount of hyaluronate in an unknown sample, they used a competition assay in which the binding of a set amount of (/sup 3/H)hyaluronate was blocked by the addition of unlabeled hyaluronate. By comparing the degree of competition of the unknown samples with that of known amounts of hyaluronate, it was possible to determine the amount of hyaluronate in the unknowns. They have found that this method is sensitive to 1 ..mu..g or less of hyaluronate, and is unaffected by the presence of proteins.

  2. Identification of IgE-binding proteins in soy lecithin.

    Science.gov (United States)

    Gu, X; Beardslee, T; Zeece, M; Sarath, G; Markwell, J

    2001-11-01

    Soy lecithin is widely used as an emulsifier in processed foods, pharmaceuticals and cosmetics. Soy lecithin is composed principally of phospholipids; however, it has also been shown to contain IgE-binding proteins, albeit at a low level. A few clinical cases involving allergic reactions to soy lecithin have been reported. The purpose of this investigation is to better characterize the IgE-binding proteins typically found in lecithin. Soy lecithin proteins were isolated following solvent extraction of lipid components and then separated on sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE). The separated lecithin proteins were immunoblotted with sera from soy-sensitive individuals to determine the pattern of IgE-binding proteins. The identity of IgE-reactive bands was determined from their N-terminal sequence. The level of protein in six lecithin samples obtained from commercial suppliers ranged from 100 to 1,400 ppm. Lecithin samples showed similar protein patterns when examined by SDS-PAGE. Immunoblotting with sera from soy-sensitive individuals showed IgE binding to bands corresponding to 7, 12, 20, 39 and 57 kD. N-terminal analysis of these IgE-binding bands resulted in sequences for 3 components. The 12-kD band was identified as a methionine-rich protein (MRP) and a member of the 2S albumin class of soy proteins. The 20-kD band was found to be soybean Kunitz trypsin inhibitor. The 39-kD band was matched to a soy protein with unknown function. Soy lecithin contains a number of IgE-binding proteins; thus, it might represent a source of hidden allergens. These allergens are a more significant concern for soy-allergic individuals consuming lecithin products as a health supplement. In addition, the MRP and the 39-kD protein identified in this study represent newly identified IgE-binding proteins. Copyright 2001 S. Karger AG, Basel

  3. Specific binding of benzodiazepines to human breast cancer cell lines.

    Science.gov (United States)

    Beinlich, A; Strohmeier, R; Kaufmann, M; Kuhl, H

    1999-01-01

    Binding of [3H]Ro5-4864, a peripheral benzodiazepine receptor (PBR) agonist, to BT-20 human, estrogen- (ER) and progesterone- (PR) receptor negative breast cancer cells was characterized. It was found to be specific, dose-dependent and saturable with a single population of binding sites. Dissociation constant (K(D)) was 8.5 nM, maximal binding capacity (Bmax) 339 fM/10(6) cells. Ro5-4864 (IC50 17.3 nM) and PK 11195 (IC50 12.3 nM) were able to compete with [3H]Ro5-4864 for binding, indicating specificity of interaction with PBR. Diazepam was able to displace [3H]Ro5-4864 from binding only at high concentrations (>1 microM), while ODN did not compete for PBR binding. Thymidine-uptake assay showed a biphasic response of cell proliferation. While low concentrations (100 nM) of Ro5-4864, PK 11195 and diazepam increased cell growth by 10 to 20%, higher concentrations (10-100 microM) significantly inhibited cell proliferation. PK 11195, a potent PBR ligand, was able to attenuate growth of BT-20 cells stimulated by 100 nM Ro5-4864 and to reverse growth reduction caused by 1 and 10 microM Ro5-4864, but not by 50 microM and 100 microM. This indicates that the antimitotic activity of higher concentrations of Ro5-4864 is independent of PBR binding. It is suggested, that PBR are involved in growth regulation of certain human breast cancer cell lines, possibly by supplying proliferating cells with energy, as their endogenous ligand is a polypeptide transporting Acyl-CoA.

  4. Binding characteristics of fluoroquinolones to synthetic levodopa melanin.

    Science.gov (United States)

    Ono, Chiho; Tanaka, Makoto

    2003-08-01

    To define the binding characteristics of fluoroquinolones to synthetic levodopa melanin, the binding of various drugs, including levofloxacin and ofloxacin, and positive controls (timolol and chloroquine), was investigated in-vitro. The affinity and capacity of the drug binding were calculated by Langmuir's adsorption isotherm. The affinity constant (K) and the binding capacity (r(max)) of levofloxacin were similar to those of timolol and much lower than those of chloroquine. Racemic ofloxacin and its enantiomers showed similar K and r(max), suggesting that the binding lacked stereoselectivity. The binding experiment with levofloxacin derivatives indicated that the basic nitrogen atom at position 7 of the quinolone ring, but not carboxyl group at position 3, would play a critical role in the interaction of fluoroquinolones with melanin. The melanin-drug complexes of levofloxacin and chloroquine were washed with neutral phosphate buffer, ethanol and 1 M HCl solution to explain the nature of the interaction of melanin with the drugs. Electrostatic forces mainly participate in the formation of the chloroquine-melanin complex, whereas van der Waals' and hydrophobic interactions are involved in the levofloxacin-melanin complex in addition to electrostatic forces. The interactions of various fluoroquinolones such as norfloxacin, enoxacin, sparfloxacin, ciprofloxacin and lomefloxacin with melanin were also studied. The results showed that the relative K value was: chloroquine approximately ciprofloxacin, sparfloxacin >/= lomefloxacin > timolol, levofloxacin approximately enoxacin, norfloxacin, and that the relative r(max) value was: norfloxacin, enoxacin >/= chloroquine, sparfloxacin > levofloxacin, ciprofloxacin, timolol, lomefloxacin. The fluoroquinolones vary in their affinity and capacity to bind with melanin, and ciprofloxacin and sparfloxacin showed a stronger interaction with melanin than the other fluoroquinolones studied.

  5. Theoretical model of interactions between ligand-binding sites in a dimeric protein and its application for the analysis of thiamine diphosphate binding to yeast transketolase.

    Science.gov (United States)

    Ospanov, Ruslan; Kochetov, German; Kurganov, Boris

    2006-11-20

    The binding of thiamin diphosphate (ThDP) to yeast dimeric apotransketolase (apoTK) is accompanied by the appearance of a band in the absorption spectrum with maximum at 320 nm. The saturation function has been analyzed using a scheme that involves binding of ThDP to each subunit followed by the conformational transition of this subunit. It is assumed that the binding of ThDP to one subunit may affect the conformational transition of the other subunit. Rigorous mathematical expressions describing the dependence of the optical absorption on the total concentration of ThDP are first developed. Equilibrium constants and corresponding rate constants for the binding of ThDP to apoTK have been estimated. The negative cooperativity in the ThDP binding has been characterized by the function reflecting the dependence of the conformational change on the saturation of apoTK by ThDP.

  6. Par-4 secretion: stoichiometry of 3-arylquinoline binding to vimentin.

    Science.gov (United States)

    Sviripa, Vitaliy M; Burikhanov, Ravshan; Obiero, Josiah M; Yuan, Yaxia; Nickell, Justin R; Dwoskin, Linda P; Zhan, Chang-Guo; Liu, Chunming; Tsodikov, Oleg V; Rangnekar, Vivek M; Watt, David S

    2016-01-01

    Advanced prostate tumors usually metastasize to the lung, bone, and other vital tissues and are resistant to conventional therapy. Prostate apoptosis response-4 protein (Par-4) is a tumor suppressor that causes apoptosis in therapy-resistant prostate cancer cells by binding specifically to a receptor, Glucose-regulated protein-78 (GRP78), found only on the surface of cancer cells. 3-Arylquinolines or "arylquins" induce normal cells to release Par-4 from the intermediate filament protein, vimentin and promote Par-4 secretion that targets cancer cells in a paracrine manner. A structure-activity study identified arylquins that promote Par-4 secretion, and an evaluation of arylquin binding to the hERG potassium ion channel using a [(3)H]-dofetilide binding assay permitted the identification of structural features that separated this undesired activity from the desired Par-4 secretory activity. A binding study that relied on the natural fluorescence of arylquins and that used the purified rod domain of vimentin (residues 99-411) suggested that the mechanism behind Par-4 release involved arylquin binding to multiple sites in the rod domain.

  7. Variables influencing DNA-binding in mouse liver.

    Science.gov (United States)

    Neumann, H G

    1987-01-01

    The suitability of certain mouse strains for carcinogenicity testing has been questioned. Some chemicals increase the incidence of liver tumors above a relatively high background, an effect not seen in rats. This raises the question whether species and tissue specific effects are involved which are reflected in the DNA binding of metabolites. DNA binding indices in mouse liver have been determined in only a few instances. They are comparable to those found for rat liver DNA with aniline, benzo(a)-pyrene, butadiene, dimethylnitrosamine, methylnitrosourea and they are lower in the mouse with aflatoxin B1, trans-4-acetylaminostilbene and 2-aminofluorene derivatives. The available data on DNA binding in mouse liver suggest that the same adducts are formed as in rats but that metabolism and repair are variables which can modify the extent of DNA damage. However, the extent of DNA binding does not always correlate with the susceptibility of this tissue to carcinogenesis. But mouse liver is no exception in this respect. It is concluded that the formation of mouse liver tumors in long term studies with genotoxic chemicals indicates tumor initiating potential. In contrast, there are other chemicals such as chlorinated hydrocarbon insecticides which do not bind to DNA to any extent and which are not genotoxic in common short term tests and yet give rise to liver tumors in mice but not in rats. Positive results in long term studies are suggested to indicate promoting properties of such compounds.

  8. Models of metal binding structures in fulvic acid from the Suwannee River, Georgia

    Energy Technology Data Exchange (ETDEWEB)

    Leenheer, J.A.; Brown, G.K.; Cabaniss, S.E. [Geological Survey, Denver, CO (United States); MacCarthy, P. [Colorado School of Mines, Golden, CO (United States). Dept. of Chemistry

    1998-08-15

    Fulvic acid, isolated from the Suwannee River, Georgia, was assessed for its ability to bind Ca{sup 2+}, Cd{sup 2+}, Cu{sup 2+}, Ni{sup 2+}, and Zn{sup 2+} ions at pH 6 before and after extensive fractionation that was designed to reveal the nature of metal binding functional groups. The binding constant for Ca{sup 2+} ion had the greatest increase of all the ions in a metal binding fraction that was selected for intensive characterization for the purpose of building quantitative average model structures. The metal binding fraction was characterized by quantitative {sup 13}C NMR, {sup 1}H NMR, and FT-IR spectrometry and elemental, titrimetric, and molecular weight determinations. The characterization data revealed that carboxyl groups were clustered in short-chain aliphatic dibasic acid structures. The Ca{sup 2+} binding data suggested that ether-substituted oxysuccinic acid structures are good models for the metal binding sites at pH 6. Structural models were derived based upon oxidation and photolytic rearrangements of cutin, lignin, and tannin precursors. These structural models rich in substituted dibasic acid structures revealed polydentate binding sites with the potential for both inner-sphere and outer-sphere type binding. The majority of the fulvic acid molecule was involved with metal binding rather than a small substructural unit.

  9. Multiplicity of carbohydrate-binding sites in -prism fold lectins: occurrence and possible evolutionary implications

    Indian Academy of Sciences (India)

    Alok Sharma; Divya Chandran; Desh D Singh; M Vijayan

    2007-09-01

    The -prism II fold lectins of known structure, all from monocots, invariably have three carbohydrate-binding sites in each subunit/domain. Until recently, -prism I fold lectins of known structure were all from dicots and they exhibited one carbohydrate-binding site per subunit/domain. However, the recently determined structure of the -prism fold I lectin from banana, a monocot, has two very similar carbohydrate-binding sites. This prompted a detailed analysis of all the sequences appropriate for two-lectin folds and which carry one or more relevant carbohydrate-binding motifs. The very recent observation of a -prism I fold lectin, griffithsin, with three binding sites in each domain further confirmed the need for such an analysis. The analysis demonstrates substantial diversity in the number of binding sites unrelated to the taxonomical position of the plant source. However, the number of binding sites and the symmetry within the sequence exhibit reasonable correlation. The distribution of the two families of -prism fold lectins among plants and the number of binding sites in them, appear to suggest that both of them arose through successive gene duplication, fusion and divergent evolution of the same primitive carbohydrate-binding motif involving a Greek key. Analysis with sequences in individual Greek keys as independent units lends further support to this conclusion. It would seem that the preponderance of three carbohydrate-binding sites per domain in monocot lectins, particularly those with the -prism II fold, is related to the role of plant lectins in defence.

  10. Protein-Ligand Binding from Distancefield Distances and Hamiltonian Replica Exchange Simulations.

    Science.gov (United States)

    de Ruiter, Anita; Oostenbrink, Chris

    2013-02-12

    The calculation of protein-ligand binding free energies is an important goal in the field of computational chemistry. Applying path-sampling methods for this purpose involves calculating the associated potential of mean force (PMF) and gives insight into the binding free energy along the binding process. Without a priori knowledge about the binding path, sampling reversible binding can be difficult to achieve. To alleviate this problem, we introduce the distancefield (DF) as a reaction coordinate for such calculations. DF is a grid-based method in which the shortest distance between the binding site and a ligand is determined avoiding routes that pass through the protein. Combining this reaction coordinate with Hamiltonian replica exchange molecular dynamics (HREMD) allows for the reversible binding of the ligand to the protein. A comparison is made between umbrella sampling using regular distance restraints and HREMD with DF restraints to study aspirin binding to the protein phospholipase A2. Although the free energies of binding are similar for both methods, the increased sampling with HREMD has a significant influence on the shape of the PMF. A remarkable agreement between the calculated binding free energies from the PMF and the experimental estimate is obtained.

  11. Anti Zn antibodies: cross reactivity and competitive binding with heavy metals.

    Science.gov (United States)

    Sarada, N C; Thamaraiselvi, K; Vijayalakshmi, M A

    2008-01-15

    Monoclonal antibodies of IgM class, specific to IDA-Zn were used for evaluating their Zn(2+) binding efficiency in the presence of trace metal ions such as Cr(3+) Cr(6+), Cu(2+) and Cd(2+). In the present work, antibody raised against the hapten IDA-Zn(II) was pre-incubated with different metal ions and the binding capacity to the specific hapten was tested using ELISA and immobilized metal ion affinity chromatography (IMAC) techniques. IMAC was carried out with the free antibody and antibody pre-incubated with selected heavy metal ions using Sepharose IDA-Zn(2+) column and the same samples were tested using a hapten specific ELISA with non-protein hapten carrier. Different effects were observed after pre-incubation with metal ions. Cr(3+) exhibited synergistic binding where as antagonism was detected with Cd(2+). The synergistic effect observed with Cr(3+) suggests involvement of binding sites other than that of zinc and conformational changes that result from Cr(3+) binding. It is probable that, this binding event also increases the accessibility of the zinc binding sites on IgM. On the same lines, the antagonism observed with Cd(2+) could be attributed to structural changes resulting in reduced accessibility to zinc binding sites. In case of Cr(6+), no appreciable change in binding to IDA-Zn was observed while Cu(2+) showed competitive binding.

  12. Global discovery of protein kinases and other nucleotide-binding proteins by mass spectrometry.

    Science.gov (United States)

    Xiao, Yongsheng; Wang, Yinsheng

    2016-09-01

    Nucleotide-binding proteins, such as protein kinases, ATPases and GTP-binding proteins, are among the most important families of proteins that are involved in a number of pivotal cellular processes. However, global study of the structure, function, and expression level of nucleotide-binding proteins as well as protein-nucleotide interactions can hardly be achieved with the use of conventional approaches owing to enormous diversity of the nucleotide-binding protein family. Recent advances in mass spectrometry (MS) instrumentation, coupled with a variety of nucleotide-binding protein enrichment methods, rendered MS-based proteomics a powerful tool for the comprehensive characterizations of the nucleotide-binding proteome, especially the kinome. Here, we review the recent developments in the use of mass spectrometry, together with general and widely used affinity enrichment approaches, for the proteome-wide capture, identification and quantification of nucleotide-binding proteins, including protein kinases, ATPases, GTPases, and other nucleotide-binding proteins. The working principles, advantages, and limitations of each enrichment platform in identifying nucleotide-binding proteins as well as profiling protein-nucleotide interactions are summarized. The perspectives in developing novel MS-based nucleotide-binding protein detection platform are also discussed. © 2014 Wiley Periodicals, Inc. Mass Spec Rev 35:601-619, 2016.

  13. RNA-binding IMPs promote cell adhesion and invadopodia formation

    DEFF Research Database (Denmark)

    Vikesaa, Jonas; Hansen, Thomas V O; Jønson, Lars

    2006-01-01

    Oncofetal RNA-binding IMPs have been implicated in mRNA localization, nuclear export, turnover and translational control. To depict the cellular actions of IMPs, we performed a loss-of-function analysis, which showed that IMPs are necessary for proper cell adhesion, cytoplasmic spreading...... and invadopodia formation. Loss of IMPs was associated with a coordinate downregulation of mRNAs encoding extracellular matrix and adhesion proteins. The transcripts were present in IMP RNP granules, implying that IMPs were directly involved in the post-transcriptional control of the transcripts. In particular......, we show that a 5.0 kb CD44 mRNA contained multiple IMP-binding sites in its 3'UTR, and following IMP depletion this species became unstable. Direct knockdown of the CD44 transcript mimicked the effect of IMPs on invadopodia, and we infer that CD44 mRNA stabilization may be involved in IMP...

  14. Mycoplasmal lipoprotein p37 binds human protein HER2.

    Science.gov (United States)

    Wu, Jun; Wu, Lijuan; Fang, Cheng; Nie, Rong; Wang, Jiamou; Wang, Xuan; Liu, Wenbin

    2016-11-01

    Mycoplasmas are a group of microbes that can cause human diseases. The mycoplasmal lipoprotein p37 promotes cancer metastasis, at least in part, by interacting with EGFR. In this study, we show that the p37 lipoprotein binds another member of the EGFR family, HER2, through the HER2 extracellular domain. The binding of p37-HER2 promotes phosphorylation of HER2 and activates the downstream signaling molecule Erk1/2. Because the HER2 signaling pathway contributes to breast tumor metastasis, our results imply that the mycoplasmal lipoprotein p37 may also be involved in breast cancer metastasis. This study contributes to our understanding of mycoplasmal lipoprotein p37 function and its potential involvement in tumorigenesis. Copyright © 2016. Published by Elsevier GmbH.

  15. Risperidone treatment increases CB1 receptor binding in rat brain

    DEFF Research Database (Denmark)

    Secher, Anna; Husum, Henriette; Holst, Birgitte

    2010-01-01

    BACKGROUND/AIMS: Body weight gain is a common side effect of treatment with antipsychotics, but the mechanisms underlying this weight gain are unknown. Several factors may be involved in antipsychotic-induced body weight gain including the cannabinoid receptor 1 (CB(1)), the serotonin receptor 2C...... positively correlated with visceral fat mass. Risperidone treatment increased CB(1) receptor binding in the arcuate nucleus (40%), hippocampus (25-30%) and amygdala (35%) without concurrent alterations in the CB(1) receptor mRNA. Risperidone treatment increased adiponectin mRNA. CONCLUSION: The present study...... showed that risperidone treatment altered CB(1) receptor binding in the rat brain. Risperidone-induced adiposity and metabolic dysfunction in the clinic may be explained by increased CB(1) receptor density in brain regions involved in appetite and regulation of metabolic function....

  16. Sacroiliac joint involvement in psoriasis.

    Science.gov (United States)

    Kaçar, Cahit; Sezer, Ilhan; Kocabaş, Hilal; Cay, Hasan Fatih; Cevikol, Can; Alpsoy, Erkan; Melikoğlu, Meltem Alkan; Akman, Ayşe

    2010-07-01

    Psoriasis is a skin disorder that is associated with arthritis. Sacroiliac joint involvement is considered to be less frequent than the other types of psoriatic arthritis. Additionally, the psoriatic sacroiliitis is considered to be asymmetric in general. We aimed to define the frequency and type of sacroiliac involvement in patients with psoriasis. Patients with psoriasis were included the study. Characteristics of skin, nail and articular involvement were noted. Psoriasis area and severity index was calculated. Antero-posterior pelvic X-rays were obtained and graded by two rheumatologists and a radiologist independently. One hundred and thirty-three patients were included. Thirty-seven of patients (27%) have articular involvement symptomatically. The sacroiliac joint involvement was observed in 34 (26%) of patients. More than one-half of sacroiliac involvement was bilateral while less than one-half was in symptomatic patients regarding sacroiliitis. Fifty-seven percentages of all patients have psoriatic nail involvement. Sacroiliac joint involvement did not show any significant association with psoriatic nail involvement or the severity of skin disease. We found higher frequency of sacroiliac joint involvement and bilateral sacroiliitis in patients with psoriasis. This is in contrast to present information about the association of psoriasis and sacroiliitis. These findings need confirmation by further studies and with more sophisticated techniques such as magnetic resonance imaging.

  17. Plant RNA binding proteins for control of RNA virus infection

    OpenAIRE

    Huh, Sung Un; Paek, Kyung-Hee

    2013-01-01

    Plant RNA viruses have effective strategies to infect host plants through either direct or indirect interactions with various host proteins, thus suppressing the host immune system. When plant RNA viruses enter host cells exposed RNAs of viruses are recognized by the host immune system through processes such as siRNA-dependent silencing. Interestingly, some host RNA binding proteins have been involved in the inhibition of RNA virus replication, movement, and translation through RNA-specific b...

  18. Mapping Escherichia coli elongation factor Tu residues involved in binding of aminoacyl-tRNA

    DEFF Research Database (Denmark)

    Wiborg, Ove; Andersen, C; Knudsen, Charlotte Rohde

    1996-01-01

    were characterized with respect to thermal and chemical stability, GTPase activity, tRNA affinity, and activity in an in vitro translation assay. Most conspicuously tRNA affinities were reduced for all mutants. The results verify our structural analysis of elongation factor Tu in complex with aminoacyl...

  19. INVOLVEMENT

    Directory of Open Access Journals (Sweden)

    Yeşim ULUSU

    2016-01-01

    Full Text Available The concept of “Involvement” is based on social psychology and specially attitude and attitude change subjects in the area of persuasive communication. The conceptualization of the “involvement” as a phe- nomenon was started to construct especially during the years between 1965-1980 when “involvement” was discussed in many areas of social sciences related to human behavior such as marketing, consumer behavior and advertising with its different dimensions.

  20. INVOLVEMENT

    OpenAIRE

    ULUSU, Yeşim

    2016-01-01

    The concept of “Involvement” is based on social psychology and specially attitude and attitude change subjects in the area of persuasive communication. The conceptualization of the “involvement” as a phe- nomenon was started to construct especially during the years between 1965-1980 when “involvement” was discussed in many areas of social sciences related to human behavior such as marketing, consumer behavior and advertising with its different dimensions.

  1. Non-peptide ligand binding to the formyl peptide receptor FPR2--A comparison to peptide ligand binding modes.

    Science.gov (United States)

    Stepniewski, Tomasz M; Filipek, Slawomir

    2015-07-15

    Ligands of the FPR2 receptor initiate many signaling pathways including activation of phospholipase C, protein kinase C, the mitogen-activated protein kinase, and phosphatidylinositol 3-kinase/protein kinase B pathway. The possible actions include also calcium flux, superoxide generation, as well as migration and proliferation of monocytes. FPR2 activation may induce a pro- and anti-inflammatory effect depending on the ligand type. It is also found that this receptor is involved in tumor growth. Most of currently known FPR2 ligands are agonists since they were designed based on N-formyl peptides, which are natural agonists of formyl receptors. Since the non-peptide drugs are indispensable for effective treatment strategies, we performed a docking study of such ligands employing a generated dual template homology model of the FPR2 receptor. The study revealed different binding modes of particular classes of these drugs. Based on the obtained docking poses we proposed a detailed location of three hydrophobic pockets in orthosteric binding site of FPR2. Our model emphasizes the importance of aromatic stacking, especially with regard to residues His102(3.29) and Phe257(6.51), for binding of FPR2 ligands. We also identified other residues important for non-peptide ligand binding in the binding site of FPR2. Copyright © 2015 Elsevier Ltd. All rights reserved.

  2. [Intracellular signals involved in glucose control].

    Science.gov (United States)

    Cruz, M; Velasco, E; Kumate, J

    2001-01-01

    Many proteins are involved in glucose control. The first step for glucose uptake is insulin receptor-binding. Stimulation of the insulin receptor results in rapid autophosphorylation and conformational changes in the beta chain and the subsequent phosphorylation of the insulin receptor substrate. This results in the docking of several SH2 domain proteins, including PI 3-kinase and other adapters. The final event is glucose transporter (GLUT) translocation to the cell surface. GLUT is in the cytosol but after insulin stimulation, several proteins are activated either in the GLUT vesicles or in the inner membrane. The role of the cytoskeleton is not well known, but it apparently participates in membrane fusion and vesicle mobilization. After glucose uptake, several hexokines metabolize the glucose to generate energy, convert the glucose in glycogen and store it. Type 2 diabetes is characterized by high glucose levels and insulin resistance. The insulin receptor is diminished on the cell surface membrane, tyrosine phosphorylation is decreased, serine and threonine phosphorylation is augmented. Apparently, the main problem with GLUT protein is in its translocation to the cell surface. At present, we know the role of many proteins involved in glucose control. However, we do not understand the significance of insulin resistance at the molecular level with type 2 diabetes.

  3. Monoarticular Hip Involvement in Pseudogout

    Directory of Open Access Journals (Sweden)

    Figen Kocyigit

    2015-01-01

    Full Text Available Pseudogout is the acutest form of arthritis in the elderly. Although clinical manifestations vary widely, polyarticular involvement is typical mimicking osteoarthritis or rheumatoid arthritis. Monoarticular involvement is relatively rare and is generally provoked by another medical condition. There are reported cases of hip involvement by pseudogout in monoarticular form. However, all of the cases were presented as septic arthritis. In this report, we present a case of monoarticular hip involvement mimicking soft tissue abscess. We confirmed the pseudogout diagnosis after ultrasonographic evaluation of the involved hip joint and pathological and biochemical analysis of synovial fluid analysis. Diagnosis is important to avoid unnecessary medical and surgical treatment in cases of the bizarre involvement of hip in pseudogout.

  4. Skin involvement in Dupuytren's disease.

    OpenAIRE

    Wade, R.; Igali, L; Figus, A

    2016-01-01

    Whether the palmar skin has a role in the development, propagation or recurrence of Dupuytren's disease remains unclear. Clinical assessment for skin involvement is difficult and its correlation with histology uncertain. We prospectively biopsied the palmar skin of consecutive patients undergoing single digit fasciectomy (for primary Dupuytren's disease without clinically involved skin) and dermofasciectomy (for clinically involved skin or recurrence) in order to investigate this relationship...

  5. Role of Bacillus thuringiensis toxin domains in toxicity and receptor binding in the Diamondback moth

    NARCIS (Netherlands)

    Ballester, V.; Granero, F.; Maagd, de R.A.; Bosch, D.; Mensua, J.L.; Ferre, J.

    1999-01-01

    The toxic fragment of Bacillus thuringiensis crystal proteins consists of three distinct structural domains. There is evidence that domain I is involved in pore formation and that domain II is involved in receptor binding and specificity. It has been found that, in some cases, domain III is also

  6. Distribution of PASTA domains in penicillin-binding proteins and serine/threonine kinases of Actinobacteria.

    Science.gov (United States)

    Ogawara, Hiroshi

    2016-09-01

    PASTA domains (penicillin-binding protein and serine/threonine kinase-associated domains) have been identified in penicillin-binding proteins and serine/threonine kinases of Gram-positive Firmicutes and Actinobacteria. They are believed to bind β-lactam antibiotics, and be involved in peptidoglycan metabolism, although their biological function is not definitively clarified. Actinobacteria, especially Streptomyces species, are distinct in that they undergo complex cellular differentiation and produce various antibiotics including β-lactams. This review focuses on the distribution of PASTA domains in penicillin-binding proteins and serine/threonine kinases in Actinobacteria. In Actinobacteria, PASTA domains are detectable exclusively in class A but not in class B penicillin-binding proteins, in sharp contrast to the cases in other bacteria. In penicillin-binding proteins, PASTA domains distribute independently from taxonomy with some distribution bias. Particularly interesting thing is that no Streptomyces species have penicillin-binding protein with PASTA domains. Protein kinases in Actinobacteria possess 0 to 5 PASTA domains in their molecules. Protein kinases in Streptomyces can be classified into three groups: no PASTA domain, 1 PASTA domain and 4 PASTA domain-containing groups. The 4 PASTA domain-containing groups can be further divided into two subgroups. The serine/threonine kinases in different groups may perform different functions. The pocket region in one of these subgroup is more dense and extended, thus it may be involved in binding of ligands like β-lactams more efficiently.

  7. Human plasminogen binding protein tetranectin

    DEFF Research Database (Denmark)

    Kastrup, J S; Rasmussen, H; Nielsen, B B;

    1997-01-01

    The recombinant human plasminogen binding protein tetranectin (TN) and the C-type lectin CRD of this protein (TN3) have been crystallized. TN3 crystallizes in the tetragonal space group P4(2)2(1)2 with cell dimensions a = b = 64.0, c = 75.7 A and with one molecule per asymmetric unit. The crystals...... to at least 2.5 A. A full data set has been collected to 3.0 A. The asymmetric unit contains one monomer of TN. Molecular replacement solutions for TN3 and TN have been obtained using the structure of the C-type lectin CRD of rat mannose-binding protein as search model. The rhombohedral space group indicates...

  8. Different types of working memory binding in epilepsy patients with unilateral anterior temporal lobectomy.

    Science.gov (United States)

    van Geldorp, Bonnie; Bouman, Zita; Hendriks, Marc P H; Kessels, Roy P C

    2014-03-01

    The medial temporal lobe is an important structure for long-term memory formation, but its role in working memory is less clear. Recent studies have shown hippocampal involvement during working memory tasks requiring binding of information. It is yet unclear whether this is limited to tasks containing spatial features. The present study contrasted three binding conditions and one single-item condition in patients with unilateral anterior temporal lobectomy. A group of 43 patients with temporal lobectomy (23 left; 20 right) and 20 matched controls were examined with a working memory task assessing spatial relational binding (object-location), non-spatial relational binding (object-object), conjunctive binding (object-colour) and working memory for single items. We varied the delay period (3 or 6s), as there is evidence showing that delay length may modulate working memory performance. The results indicate that performance was worse for patients than for controls in both relational binding conditions, whereas patients were unimpaired in conjunctive binding. Single-item memory was found to be marginally impaired, due to a deficit on long-delay trials only. In conclusion, working memory binding deficits are found in patients with unilateral anterior temporal lobectomy. The role of the medial temporal lobe in working memory is not limited to tasks containing spatial features. Rather, it seems to be involved in relational binding, but not in conjunctive binding. The medial temporal lobe gets involved when working memory capacity does not suffice, for example when relations have to be maintained or when the delay period is long. Copyright © 2014 Elsevier Inc. All rights reserved.

  9. Probing protein phosphatase substrate binding

    DEFF Research Database (Denmark)

    Højlys-Larsen, Kim B.; Sørensen, Kasper Kildegaard; Jensen, Knud Jørgen;

    2012-01-01

    Proteomics and high throughput analysis for systems biology can benefit significantly from solid-phase chemical tools for affinity pull-down of proteins from complex mixtures. Here we report the application of solid-phase synthesis of phosphopeptides for pull-down and analysis of the affinity...... around the phosphorylated residue are important for the binding affinity of ILKAP. We conclude that solid-phase affinity pull-down of proteins from complex mixtures can be applied in phosphoproteomics and systems biology....

  10. BINDING ISOTHERMS SURFACTANT-PROTEINS

    Directory of Open Access Journals (Sweden)

    Elena Irina Moater

    2011-12-01

    Full Text Available The interactions between surfactants and proteins shows some similarities with interactions between surfactants and polymers, but the hydrophobic amphoteric nature of proteins and their secondary and tertiary structure components make them different from conventional polymer systems. Many studies from the past about surfactant - proteins bonding used the dialysis techniques. Other techniques used to determine the binding isotherm, included ultrafiltration, ultracentrifugation, potentiometry, ion-selective electrode method and surface tension. High affinity isotherms which are typical of an anionic surfactant - protein bonding, exhibit an initial increase steep followed by a slow growth region and then a vertical growth above a certain concentration. This isotherm is typical of ionic surfactant to protein binding. Often the high affinity initial bond appears at very low concentrations of surfactant and therefore in some protein-surfactant systems, the exact shape of the isotherm in this region may be missing. The surfactant - protein binding is influenced by a number of variables such as the nature and chain length of surfactant, pH, ionic strength, temperature, nature of this protein and additives.

  11. Anion binding in biological systems

    Energy Technology Data Exchange (ETDEWEB)

    Feiters, Martin C [Department of Organic Chemistry, Institute for Molecules and Materials, Faculty of Science, Radboud University Nijmegen, Heyendaalseweg 135, 6525 AJ Nijmegen (Netherlands); Meyer-Klaucke, Wolfram [EMBL Hamburg Outstation at DESY, Notkestrasse 85, D-22607 Hamburg (Germany); Kostenko, Alexander V; Soldatov, Alexander V [Faculty of Physics, Southern Federal University, Sorge 5, Rostov-na-Donu, 344090 (Russian Federation); Leblanc, Catherine; Michel, Gurvan; Potin, Philippe [Centre National de la Recherche Scientifique and Universite Pierre et Marie Curie Paris-VI, Station Biologique de Roscoff, Place Georges Teissier, BP 74, F-29682 Roscoff cedex, Bretagne (France); Kuepper, Frithjof C [Scottish Association for Marine Science, Dunstaffnage Marine Laboratory, Oban, Argyll PA37 1QA, Scotland (United Kingdom); Hollenstein, Kaspar; Locher, Kaspar P [Institute of Molecular Biology and Biophysics, ETH Zuerich, Schafmattstrasse 20, Zuerich, 8093 (Switzerland); Bevers, Loes E; Hagedoorn, Peter-Leon; Hagen, Wilfred R, E-mail: m.feiters@science.ru.n [Department of Biotechnology, Delft University of Technology, Julianalaan 67, 2628 BC Delft (Netherlands)

    2009-11-15

    We compare aspects of biological X-ray absorption spectroscopy (XAS) studies of cations and anions, and report on some examples of anion binding in biological systems. Brown algae such as Laminaria digitata (oarweed) are effective accumulators of I from seawater, with tissue concentrations exceeding 50 mM, and the vanadate-containing enzyme haloperoxidase is implicated in halide accumulation. We have studied the chemical state of iodine and its biological role in Laminaria at the I K edge, and bromoperoxidase from Ascophyllum nodosum (knotted wrack) at the Br K edge. Mo is essential for many forms of life; W only for certain archaea, such as Archaeoglobus fulgidus and the hyperthermophilic archaeon Pyrococcus furiosus, and some bacteria. The metals are bound and transported as their oxo-anions, molybdate and tungstate, which are similar in size. The transport protein WtpA from P. furiosus binds tungstate more strongly than molybdate, and is related in sequence to Archaeoglobus fulgidus ModA, of which a crystal structure is known. We have measured A. fulgidus ModA with tungstate at the W L{sub 3} (2p{sub 3/2}) edge, and compared the results with the refined crystal structure. XAS studies of anion binding are feasible even if only weak interactions are present, are biologically relevant, and give new insights in the spectroscopy.

  12. Anion binding in biological systems

    Science.gov (United States)

    Feiters, Martin C.; Meyer-Klaucke, Wolfram; Kostenko, Alexander V.; Soldatov, Alexander V.; Leblanc, Catherine; Michel, Gurvan; Potin, Philippe; Küpper, Frithjof C.; Hollenstein, Kaspar; Locher, Kaspar P.; Bevers, Loes E.; Hagedoorn, Peter-Leon; Hagen, Wilfred R.

    2009-11-01

    We compare aspects of biological X-ray absorption spectroscopy (XAS) studies of cations and anions, and report on some examples of anion binding in biological systems. Brown algae such as Laminaria digitata (oarweed) are effective accumulators of I from seawater, with tissue concentrations exceeding 50 mM, and the vanadate-containing enzyme haloperoxidase is implicated in halide accumulation. We have studied the chemical state of iodine and its biological role in Laminaria at the I K edge, and bromoperoxidase from Ascophyllum nodosum (knotted wrack) at the Br K edge. Mo is essential for many forms of life; W only for certain archaea, such as Archaeoglobus fulgidus and the hyperthermophilic archaeon Pyrococcus furiosus, and some bacteria. The metals are bound and transported as their oxo-anions, molybdate and tungstate, which are similar in size. The transport protein WtpA from P. furiosus binds tungstate more strongly than molybdate, and is related in sequence to Archaeoglobus fulgidus ModA, of which a crystal structure is known. We have measured A. fulgidus ModA with tungstate at the W L3 (2p3/2) edge, and compared the results with the refined crystal structure. XAS studies of anion binding are feasible even if only weak interactions are present, are biologically relevant, and give new insights in the spectroscopy.

  13. Identification of potential nuclear reprogramming and differentiation factors by a novel selection method for cloning chromatin-binding proteins

    Institute of Scientific and Technical Information of China (English)

    LiuWang; AihuaZheng; LingYi; ChongrenXu; MingxiaoDing; HongkuiDeng

    2005-01-01

    Nuclear reprogramming is critical for animal cloning and stem cell creation through nuclear transfer, which requires extensive remodeling of chromosomal architecture involving dramatic changes in chromatin-binding proteins. To understand the mechanism of nuclear reprogramming, it is critical to identify chromatin-binding factors specify the reprogramming process. In this report, we have developed a high-throughput selection method, based on T7 phage display and chromatin immunoprecipitation, to isolate chromatin-binding factors expressed in mouse embryonic stem cells using primary mouse embryonic fibroblast chromatin. Seven chromatin-binding proteins have been isolated by this method. We have also isolated several chromatin-binding proteins involved in hepatocyte differentiation. Our method provides a powerful tool to rapidly and selectively identify chromatin-binding proteins. The method can be used to study epigenetic modification of chromatin during nuclear reprogramming, cell differentiation, and transdifferentiation.

  14. Resolving the problem of trapped water in binding cavities: prediction of host-guest binding free energies in the SAMPL5 challenge by funnel metadynamics

    Science.gov (United States)

    Bhakat, Soumendranath; Söderhjelm, Pär

    2017-01-01

    The funnel metadynamics method enables rigorous calculation of the potential of mean force along an arbitrary binding path and thereby evaluation of the absolute binding free energy. A problem of such physical paths is that the mechanism characterizing the binding process is not always obvious. In particular, it might involve reorganization of the solvent in the binding site, which is not easily captured with a few geometrically defined collective variables that can be used for biasing. In this paper, we propose and test a simple method to resolve this trapped-water problem by dividing the process into an artificial host-desolvation step and an actual binding step. We show that, under certain circumstances, the contribution from the desolvation step can be calculated without introducing further statistical errors. We apply the method to the problem of predicting host-guest binding free energies in the SAMPL5 blind challenge, using two octa-acid hosts and six guest molecules. For one of the hosts, well-converged results are obtained and the prediction of relative binding free energies is the best among all the SAMPL5 submissions. For the other host, which has a narrower binding pocket, the statistical uncertainties are slightly higher; longer simulations would therefore be needed to obtain conclusive results.

  15. The predicted 3D structure of the human D2 dopamine receptor and the binding site and binding affinities for agonists and antagonists

    Science.gov (United States)

    Kalani, M. Yashar S.; Vaidehi, Nagarajan; Hall, Spencer E.; Trabanino, Rene J.; Freddolino, Peter L.; Kalani, Maziyar A.; Floriano, Wely B.; Tak Kam, Victor Wai; Goddard, William A., III

    2004-03-01

    Dopamine neurotransmitter and its receptors play a critical role in the cell signaling process responsible for information transfer in neurons functioning in the nervous system. Development of improved therapeutics for such disorders as Parkinson's disease and schizophrenia would be significantly enhanced with the availability of the 3D structure for the dopamine receptors and of the binding site for dopamine and other agonists and antagonists. We report here the 3D structure of the long isoform of the human D2 dopamine receptor, predicted from primary sequence using first-principles theoretical and computational techniques (i.e., we did not use bioinformatic or experimental 3D structural information in predicting structures). The predicted 3D structure is validated by comparison of the predicted binding site and the relative binding affinities of dopamine, three known dopamine agonists (antiparkinsonian), and seven known antagonists (antipsychotic) in the D2 receptor to experimentally determined values. These structures correctly predict the critical residues for binding dopamine and several antagonists, identified by mutation studies, and give relative binding affinities that correlate well with experiments. The predicted binding site for dopamine and agonists is located between transmembrane (TM) helices 3, 4, 5, and 6, whereas the best antagonists bind to a site involving TM helices 2, 3, 4, 6, and 7 with minimal contacts to TM helix 5. We identify characteristic differences between the binding sites of agonists and antagonists.

  16. In silico docking of forchlorfenuron (FCF to septins suggests that FCF interferes with GTP binding.

    Directory of Open Access Journals (Sweden)

    Dimitrios Angelis

    Full Text Available Septins are GTP-binding proteins that form cytoskeleton-like filaments, which are essential for many functions in eukaryotic organisms. Small molecule compounds that disrupt septin filament assembly are valuable tools for dissecting septin functions with high temporal control. To date, forchlorfenuron (FCF is the only compound known to affect septin assembly and functions. FCF dampens the dynamics of septin assembly inducing the formation of enlarged stable polymers, but the underlying mechanism of action is unknown. To investigate how FCF binds and affects septins, we performed in silico simulations of FCF docking to all available crystal structures of septins. Docking of FCF with SEPT2 and SEPT3 indicated that FCF interacts preferentially with the nucleotide-binding pockets of septins. Strikingly, FCF is predicted to form hydrogen bonds with residues involved in GDP-binding, mimicking nucleotide binding. FCF docking with the structure of SEPT2-GppNHp, a nonhydrolyzable GTP analog, and SEPT7 showed that FCF may assume two alternative non-overlapping conformations deeply into and on the outer side of the nucleotide-binding pocket. Surprisingly, FCF was predicted to interact with the P-loop Walker A motif GxxxxGKS/T, which binds the phosphates of GTP, and the GTP specificity motif AKAD, which interacts with the guanine base of GTP, and highly conserved amino acids including a threonine, which is critical for GTP hydrolysis. Thus, in silico FCF exhibits a conserved mechanism of binding, interacting with septin signature motifs and residues involved in GTP binding and hydrolysis. Taken together, our results suggest that FCF stabilizes septins by locking them into a conformation that mimics a nucleotide-bound state, preventing further GTP binding and hydrolysis. Overall, this study provides the first insight into how FCF may bind and stabilize septins, and offers a blueprint for the rational design of FCF derivatives that could target septins with

  17. Citizen Involvement in Public Television.

    Science.gov (United States)

    Wenner, Lawrence A.

    The purpose of this study was to evaluate the amount and quality of citizen involvement in public television. From the perspective of the "average citizen," the concept of involvement is considered with regard to the Carnegie Commission, the Corporation for Public Broadcasting (CPB) borad of directors, the National Citizens Committee for…

  18. Preparing Teachers for Parent Involvement.

    Science.gov (United States)

    Safran, Daniel

    This paper examines the potential impact of parent involvement in the formal education of their children and suggests ways that teacher education can be restructured to prepare teachers to work with parents. This paper attempts to answer five questions: (1) Why should parents be involved in the formal education of their children? (2) Why should…

  19. Parental Involvement and Academic Achievement

    Science.gov (United States)

    Goodwin, Sarah Christine

    2015-01-01

    This research study examined the correlation between student achievement and parent's perceptions of their involvement in their child's schooling. Parent participants completed the Parent Involvement Project Parent Questionnaire. Results slightly indicated parents of students with higher level of achievement perceived less demand or invitations…

  20. Involvement of inositol in reproduction.

    NARCIS (Netherlands)

    Beemster, P.; Groenen, P.; Steegers-Theunissen, R.P.M.

    2002-01-01

    Inositol is involved in several aspects of reproduction. It affects overall embryogenesis, may prevent neural tube defects, and stimulates the production of lung surfactant. This article will review the involvement of inositol in reproduction. After describing the biologic function of inositol and i

  1. Direct Employee Involvement Quality (DEIQ)

    NARCIS (Netherlands)

    Torka, Nicole; Woerkom, van Marianne; Looise, Jan-Kees

    2008-01-01

    This paper focuses on one aspect of human resource management (HRM) that is important for innovative employee behaviour: direct employee involvement quality (DEIQ). However, research has also shown that employee involvement is often in serious need of improvement. This paper presents evidence from t

  2. Parental Involvement and Academic Achievement

    Science.gov (United States)

    Goodwin, Sarah Christine

    2015-01-01

    This research study examined the correlation between student achievement and parent's perceptions of their involvement in their child's schooling. Parent participants completed the Parent Involvement Project Parent Questionnaire. Results slightly indicated parents of students with higher level of achievement perceived less demand or invitations…

  3. Structural and histone binding ability characterizations of human PWWP domains.

    Directory of Open Access Journals (Sweden)

    Hong Wu

    Full Text Available BACKGROUND: The PWWP domain was first identified as a structural motif of 100-130 amino acids in the WHSC1 protein and predicted to be a protein-protein interaction domain. It belongs to the Tudor domain 'Royal Family', which consists of Tudor, chromodomain, MBT and PWWP domains. While Tudor, chromodomain and MBT domains have long been known to bind methylated histones, PWWP was shown to exhibit histone binding ability only until recently. METHODOLOGY/PRINCIPAL FINDINGS: The PWWP domain has been shown to be a DNA binding domain, but sequence analysis and previous structural studies show that the PWWP domain exhibits significant similarity to other 'Royal Family' members, implying that the PWWP domain has the potential to bind histones. In order to further explore the function of the PWWP domain, we used the protein family approach to determine the crystal structures of the PWWP domains from seven different human proteins. Our fluorescence polarization binding studies show that PWWP domains have weak histone binding ability, which is also confirmed by our NMR titration experiments. Furthermore, we determined the crystal structures of the BRPF1 PWWP domain in complex with H3K36me3, and HDGF2 PWWP domain in complex with H3K79me3 and H4K20me3. CONCLUSIONS: PWWP proteins constitute a new family of methyl lysine histone binders. The PWWP domain consists of three motifs: a canonical β-barrel core, an insertion motif between the second and third β-strands and a C-terminal α-helix bundle. Both the canonical β-barrel core and the insertion motif are directly involved in histone binding. The PWWP domain has been previously shown to be a DNA binding domain. Therefore, the PWWP domain exhibits dual functions: binding both DNA and methyllysine histones. ENHANCED VERSION: This article can also be viewed as an enhanced version in which the text of the article is integrated with interactive 3D representations and animated transitions. Please note that a web

  4. Engineering RNA-binding proteins for biology

    OpenAIRE

    Chen,Yu; Varani, Gabriele

    2013-01-01

    RNA-binding proteins play essential roles in the regulation of gene expression. Many have modular structures and combine relatively few common domains in various arrangements to recognize RNA sequences and/or structures. Recent progress in engineering the specificity of the PUF class RNA-binding proteins has shown that RNA-binding domains may be combined with various effector or functional domains to regulate the metabolism of targeted RNAs. Designer RNA-binding proteins with tailored sequenc...

  5. Rat Mannose-Binding Protein A Binds CD14

    OpenAIRE

    Chiba, Hirofumi; Sano, Hitomi; Iwaki, Daisuke; Murakami, Seiji; Mitsuzawa, Hiroaki; Takahashi, Toru; Konishi, Masanori; Takahashi, Hiroki; Kuroki, Yoshio

    2001-01-01

    Lipopolysaccharide (LPS) has been known to induce inflammation by interacting with CD14, which serves as a receptor for LPS. Mannose-binding protein (MBP) belongs to the collectin subgroup of the C-type lectin superfamily, along with surfactant proteins SP-A and SP-D. We have recently demonstrated that SP-A modulates LPS-induced cellular responses by interaction with CD14 (H. Sano, H. Sohma, T. Muta, S. Nomura, D. R. Voelker, and Y. Kuroki, J. Immunol. 163:387–395, 2000) and that SP-D also in...

  6. Binding of N-methylscopolamine to the extracellular domain of muscarinic acetylcholine receptors

    Science.gov (United States)

    Jakubík, Jan; Randáková, Alena; Zimčík, Pavel; El-Fakahany, Esam E.; Doležal, Vladimír

    2017-01-01

    Interaction of orthosteric ligands with extracellular domain was described at several aminergic G protein-coupled receptors, including muscarinic acetylcholine receptors. The orthosteric antagonists quinuclidinyl benzilate (QNB) and N-methylscopolamine (NMS) bind to the binding pocket of the muscarinic acetylcholine receptor formed by transmembrane α-helices. We show that high concentrations of either QNB or NMS slow down dissociation of their radiolabeled species from all five subtypes of muscarinic acetylcholine receptors, suggesting allosteric binding. The affinity of NMS at the allosteric site is in the micromolar range for all receptor subtypes. Using molecular modelling of the M2 receptor we found that E172 and E175 in the second extracellular loop and N419 in the third extracellular loop are involved in allosteric binding of NMS. Mutation of these amino acids to alanine decreased affinity of NMS for the allosteric binding site confirming results of molecular modelling. The allosteric binding site of NMS overlaps with the binding site of some allosteric, ectopic and bitopic ligands. Understanding of interactions of NMS at the allosteric binding site is essential for correct analysis of binding and action of these ligands.

  7. Arabidopsis AtADF1 is Functionally Affected by Mutations on Actin Binding Sites

    Institute of Scientific and Technical Information of China (English)

    Chun-Hai Dong; Wei-Ping Tang; Jia-Yao Liu

    2013-01-01

    The plant actin depolymerizing factor (ADF) binds to both monomeric and filamentous actin,and is directly involved in the depolymerization of actin filaments.To better understand the actin binding sites of the Arabidopsis thaliana L.AtADF1,we generated mutants of AtADF1 and investigated their functions in vitro and in vivo.Analysis of mutants harboring amino acid substitutions revealed that charged residues (Arg98 and Lys100) located at the α-helix 3 and forming an actin binding site together with the N-terminus are essential for both G-and F-actin binding.The basic residues on the β-strand 5 (K82/A) and the α-helix 4 (R135/A,R137/A) form another actin binding site that is important for F-actin binding.Using transient expression of CFP-tagged AtADF1 mutant proteins in onion (Allium cepa) peel epidermal cells and transgenic Arabidopsis thaliana L.plants overexpressing these mutants,we analyzed how these mutant proteins regulate actin organization and affect seedling growth.Our results show that the ADF mutants with a lower affinity for actin filament binding can still be functional,unless the affinity foractin monomers is also affected.The G-actin binding activity of the ADF plays an essential role in actin binding,depolymerization of actin polymers,and therefore in the control of actin organization.

  8. IgG Conformer's Binding to Amyloidogenic Aggregates.

    Directory of Open Access Journals (Sweden)

    Monichan Phay

    Full Text Available Amyloid-reactive IgGs isolated from pooled blood of normal individuals (pAbs have demonstrated clinical utility for amyloid diseases by in vivo targeting and clearing amyloidogenic proteins and peptides. We now report the following three novel findings on pAb conformer's binding to amyloidogenic aggregates: 1 pAb aggregates have greater activity than monomers (HMW species > dimers > monomers, 2 pAbs interactions with amyloidogenic aggregates at least partially involves unconventional (non-CDR interactions of F(ab regions, and 3 pAb's activity can be easily modulated by trace aggregates generated during sample processing. Specifically, we show that HMW aggregates and dimeric pAbs present in commercial preparations of pAbs, intravenous immunoglobulin (IVIg, had up to ~200- and ~7-fold stronger binding to aggregates of Aβ and transthyretin (TTR than the monomeric antibody. Notably, HMW aggregates were primarily responsible for the enhanced anti-amyloid activities of Aβ- and Cibacron blue-isolated IVIg IgGs. Human pAb conformer's binding to amyloidogenic aggregates was retained in normal human sera, and mimicked by murine pAbs isolated from normal pooled plasmas. An unconventional (non-CDR component to pAb's activity was indicated from control human mAbs, generated against non-amyloid targets, binding to aggregated Aβ and TTR. Similar to pAbs, HMW and dimeric mAb conformers bound stronger than their monomeric forms to amyloidogenic aggregates. However, mAbs had lower maximum binding signals, indicating that pAbs were required to saturate a diverse collection of binding sites. Taken together, our findings strongly support further investigations on the physiological function and clinical utility of the inherent anti-amyloid activities of monomeric but not aggregated IgGs.

  9. IgG Conformer's Binding to Amyloidogenic Aggregates

    Science.gov (United States)

    Phay, Monichan; Welzel, Alfred T.; Williams, Angela D.; McWilliams-Koeppen, Helen P.; Blinder, Veronika; O'Malley, Tiernan T.; Solomon, Alan; Walsh, Dominic M.; O'Nuallain, Brian

    2015-01-01

    Amyloid-reactive IgGs isolated from pooled blood of normal individuals (pAbs) have demonstrated clinical utility for amyloid diseases by in vivo targeting and clearing amyloidogenic proteins and peptides. We now report the following three novel findings on pAb conformer's binding to amyloidogenic aggregates: 1) pAb aggregates have greater activity than monomers (HMW species > dimers > monomers), 2) pAbs interactions with amyloidogenic aggregates at least partially involves unconventional (non-CDR) interactions of F(ab) regions, and 3) pAb's activity can be easily modulated by trace aggregates generated during sample processing. Specifically, we show that HMW aggregates and dimeric pAbs present in commercial preparations of pAbs, intravenous immunoglobulin (IVIg), had up to ~200- and ~7-fold stronger binding to aggregates of Aβ and transthyretin (TTR) than the monomeric antibody. Notably, HMW aggregates were primarily responsible for the enhanced anti-amyloid activities of Aβ- and Cibacron blue-isolated IVIg IgGs. Human pAb conformer's binding to amyloidogenic aggregates was retained in normal human sera, and mimicked by murine pAbs isolated from normal pooled plasmas. An unconventional (non-CDR) component to pAb's activity was indicated from control human mAbs, generated against non-amyloid targets, binding to aggregated Aβ and TTR. Similar to pAbs, HMW and dimeric mAb conformers bound stronger than their monomeric forms to amyloidogenic aggregates. However, mAbs had lower maximum binding signals, indicating that pAbs were required to saturate a diverse collection of binding sites. Taken together, our findings strongly support further investigations on the physiological function and clinical utility of the inherent anti-amyloid activities of monomeric but not aggregated IgGs. PMID:26367058

  10. Prediction of MHC class I binding peptides, using SVMHC

    Directory of Open Access Journals (Sweden)

    Elofsson Arne

    2002-09-01

    Full Text Available Abstract Background T-cells are key players in regulating a specific immune response. Activation of cytotoxic T-cells requires recognition of specific peptides bound to Major Histocompatibility Complex (MHC class I molecules. MHC-peptide complexes are potential tools for diagnosis and treatment of pathogens and cancer, as well as for the development of peptide vaccines. Only one in 100 to 200 potential binders actually binds to a certain MHC molecule, therefore a good prediction method for MHC class I binding peptides can reduce the number of candidate binders that need to be synthesized and tested. Results Here, we present a novel approach, SVMHC, based on support vector machines to predict the binding of peptides to MHC class I molecules. This method seems to perform slightly better than two profile based methods, SYFPEITHI and HLA_BIND. The implementation of SVMHC is quite simple and does not involve any manual steps, therefore as more data become available it is trivial to provide prediction for more MHC types. SVMHC currently contains prediction for 26 MHC class I types from the MHCPEP database or alternatively 6 MHC class I types from the higher quality SYFPEITHI database. The prediction models for these MHC types are implemented in a public web service available at http://www.sbc.su.se/svmhc/. Conclusions Prediction of MHC class I binding peptides using Support Vector Machines, shows high performance and is easy to apply to a large number of MHC class I types. As more peptide data are put into MHC databases, SVMHC can easily be updated to give prediction for additional MHC class I types. We suggest that the number of binding peptides needed for SVM training is at least 20 sequences.

  11. Lectin binding to cystic stages of Taenia taeniaeformis.

    Science.gov (United States)

    Sandeman, R M; Williams, J F

    1984-10-01

    Studies of membrane glycoconjugates of Taenia taeniaeformis were initiated by assays of the lectin binding characteristics of 35-day-old cysticerci. Parasites fixed in glutaraldehyde were incubated with one of the following FITC-labelled lectins: Concanavalin A (Con A), Lens culinaris agglutinin (LCA), Ricinus communis agglutinin (RCA), peanut agglutinin (PNA), fucose binding protein (FBP) and wheat germ agglutinin (WGA) and either their specific or a nonspecific sugar. Ultraviolet microscopy revealed that only Con A and LCA bound in large amounts to the surface of cysticerci. This binding was partly inhibited by the specific sugar, but the nonspecific sugar had little effect. The lectin not removed by either of the sugars may have been bound nonspecifically to the charged glycocalyx. Lectins were primarily bound on the anterior third of the parasite around the scolex invagination. Kinetic studies of lectin interactions were carried out with LCA and RCA by spectrophotofluorometric analysis of the amount bound specifically or nonspecifically over a range of lectin concentrations. Lens culinaris lectin binding was found to be specific and involve 2 receptors which showed large differences in their affinity for lectin and prevalence on the surface. Ricinus communis lectin did not bind specifically but nonspecific interactions were observed. Adherence of small numbers of host cells was shown to have no measurable effect on the lectin binding characteristics. The results suggest that the major surface carbohydrates exposed are D-mannose and/or D-glucose residues with the other sugar groups poorly represented. This relatively homogeneous surface may have implications for the antigenicity of the parasite in its host.

  12. Feature-Based Binding and Phase Theory

    Science.gov (United States)

    Antonenko, Andrei

    2012-01-01

    Current theories of binding cannot provide a uniform account for many facts associated with the distribution of anaphors, such as long-distance binding effects and the subject-orientation of monomorphemic anaphors. Further, traditional binding theory is incompatible with minimalist assumptions. In this dissertation I propose an analysis of…

  13. Structural and mutational analyses of the receptor binding domain of botulinum D/C mosaic neurotoxin: Insight into the ganglioside binding mechanism

    Energy Technology Data Exchange (ETDEWEB)

    Nuemket, Nipawan [Graduate School of Life Sciences, Hokkaido University, Sapporo 060-0810 (Japan); Tanaka, Yoshikazu [Creative Research Institution ' Sousei,' Hokkaido University, Sapporo 001-0021 (Japan); Faculty of Advanced Life Science, Hokkaido University, Sapporo 060-0810 (Japan); Tsukamoto, Kentaro; Tsuji, Takao [Department of Microbiology, Fujita Health University School of Medicine, Toyoake, Aichi 470-1192 (Japan); Nakamura, Keiji; Kozaki, Shunji [Department of Veterinary Science, Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Osaka 598-8531 (Japan); Yao, Min [Graduate School of Life Sciences, Hokkaido University, Sapporo 060-0810 (Japan); Faculty of Advanced Life Science, Hokkaido University, Sapporo 060-0810 (Japan); Tanaka, Isao, E-mail: tanaka@castor.sci.hokudai.ac.jp [Graduate School of Life Sciences, Hokkaido University, Sapporo 060-0810 (Japan); Faculty of Advanced Life Science, Hokkaido University, Sapporo 060-0810 (Japan)

    2011-07-29

    Highlights: {yields} We determined the crystal structure of the receptor binding domain of BoNT in complex with 3'-sialyllactose. {yields} An electron density derived from the 3'-sialyllactose was confirmed at the cleft in the C-terminal subdomain. {yields} Alanine site-directed mutagenesis showed that GBS and GBL are important for ganglioside binding. {yields} A cell binding mechanism, which involves cooperative contribution of two sites, was proposed. -- Abstract: Clostridium botulinum type D strain OFD05, which produces the D/C mosaic neurotoxin, was isolated from cattle killed by the recent botulism outbreak in Japan. The D/C mosaic neurotoxin is the most toxic of the botulinum neurotoxins (BoNT) characterized to date. Here, we determined the crystal structure of the receptor binding domain of BoNT from strain OFD05 in complex with 3'-sialyllactose at a resolution of 3.0 A. In the structure, an electron density derived from the 3'-sialyllactose was confirmed at the cleft in the C-terminal subdomain. Alanine site-directed mutagenesis showed the significant contribution of the residues surrounding the cleft to ganglioside recognition. In addition, a loop adjoining the cleft also plays an important role in ganglioside recognition. In contrast, little effect was observed when the residues located around the surface previously identified as the protein receptor binding site in other BoNTs were substituted. The results of cell binding analysis of the mutants were significantly correlated with the ganglioside binding properties. Based on these observations, a cell binding mechanism of BoNT from strain OFD05 is proposed, which involves cooperative contribution of two ganglioside binding sites.

  14. Non-canonical binding interactions of the RNA recognition motif (RRM) domains of P34 protein modulate binding within the 5S ribonucleoprotein particle (5S RNP).

    Science.gov (United States)

    Kamina, Anyango D; Williams, Noreen

    2017-01-01

    RNA binding proteins are involved in many aspects of RNA metabolism. In Trypanosoma brucei, our laboratory has identified two trypanosome-specific RNA binding proteins P34 and P37 that are involved in the maturation of the 60S subunit during ribosome biogenesis. These proteins are part of the T. brucei 5S ribonucleoprotein particle (5S RNP) and P34 binds to 5S ribosomal RNA (rRNA) and ribosomal protein L5 through its N-terminus and its RNA recognition motif (RRM) domains. We generated truncated P34 proteins to determine these domains' interactions with 5S rRNA and L5. Our analyses demonstrate that RRM1 of P34 mediates the majority of binding with 5S rRNA and the N-terminus together with RRM1 contribute the most to binding with L5. We determined that the consensus ribonucleoprotein (RNP) 1 and 2 sequences, characteristic of canonical RRM domains, are not fully conserved in the RRM domains of P34. However, the aromatic amino acids previously described to mediate base stacking interactions with their RNA target are conserved in both of the RRM domains of P34. Surprisingly, mutation of these aromatic residues did not disrupt but instead enhanced 5S rRNA binding. However, we identified four arginine residues located in RRM1 of P34 that strongly impact L5 binding. These mutational analyses of P34 suggest that the binding site for 5S rRNA and L5 are near each other and specific residues within P34 regulate the formation of the 5S RNP. These studies show the unique way that the domains of P34 mediate binding with the T. brucei 5S RNP.

  15. Ocular involvement in pemphigus vulgaris.

    Science.gov (United States)

    Akhyani, Maryam; Keshtkar-Jafari, Alireza; Chams-Davatchi, Cheyda; Lajevardi, Vahide; Beigi, Sara; Aghazadeh, Nessa; Rayati Damavandi, Maede; Arami, Shabnam

    2014-07-01

    Pemphigus vulgaris (PV) is an autoimmune disorder affecting the skin and mucous membranes. Ocular involvement in PV has been reported but its prevalence and clinical characteristics are not well defined. This prospective cross-sectional study of 103 PV patients was designed to determine the prevalence, clinical types and epidemiological trends of ocular involvement in a population of Iranian patients with PV. Ocular involvement was present in 17 (16.5%) patients. Conjunctivitis was the most prevalent type of ocular involvement (9/17, 52.9%), followed by erosion of the palpebral conjunctiva (7/17, 41.2%). Erosion of the bulbar conjunctiva was noted in only one patient (5.9%). The most commonly reported symptoms were eye irritation (76.5%) and redness (76.5%). No significant relation was found between ocular involvement and disease activity (partial remission or relapse). Mucoid discharge was significantly more common in patients with conjunctival erosions as compared to patients with conjunctivitis (P = 0.038). We conclude that ocular involvement is not rare in PV; 16.5% of PV patients develop ocular disease independent of the disease activity and extension. Conjunctivitis is the most common type of involvement, however, palpebral conjunctival erosion is more frequent than previously realized.

  16. Road rage and collision involvement.

    Science.gov (United States)

    Mann, Robert E; Zhao, Jinhui; Stoduto, Gina; Adlaf, Edward M; Smart, Reginald G; Donovan, John E

    2007-01-01

    To assess the contribution of road rage victimization and perpetration to collision involvement. The relationship between self-reported collision involvement and road rage victimization and perpetration was examined, based on telephone interviews with a representative sample of 4897 Ontario adult drivers interviewed between 2002 and 2004. Perpetrators and victims of both any road rage and serious road rage had a significantly higher risk of collision involvement than did those without road rage experience. This study provides epidemiological evidence that both victims and perpetrators of road rage experience increased collision risk. More detailed studies of the contribution of road rage to traffic crashes are needed.

  17. GOVERNMENT INVOLVEMENT IN CONSUMPTION BEHAVIOUR

    Directory of Open Access Journals (Sweden)

    CRISTINA ZAMFIR

    2010-01-01

    Full Text Available In this article, we will follow the involvement that the government has,through its expenses, on the consumption behavior. The involvement that the government has inthe consumption behavior is made through fees and taxes that are applied on income. Fees andtaxes are applied to the different forms of income but in this article we will be focused only onthe influence of them on wages. In order to analyze the involvement of government expenses onconsumption behavior an utility model will be used.

  18. Structural similarity between binding sites in influenza sialidase and isocitrate dehydrogenase: implications for an alternative approach to rational drug design.

    OpenAIRE

    Poirrette, A. R.; Artymiuk, P. J.; Grindley, H. M.; Rice, D.W.; Willett, P.

    1994-01-01

    Using searching techniques based on algorithms derived from graph theory, we have established a similarity between a 3-dimensional cluster of side chains implicated in drug binding in influenza sialidase and side chains involved in isocitrate binding in Escherichia coli isocitrate dehydrogenase. The possible implications of the use of such comparative methods in drug design are discussed.

  19. The nucleotide-binding site of bacterial translation initiation factor 2 (IF2) as a metabolic sensor

    NARCIS (Netherlands)

    Milon, P.; Tischenko, E.V.; Tomsic, J.; Caserta, E.; Folkers, G.E.; La Teana, A.; Rodnina, M.V.; Pon, C.L.; Boelens, R.; Gualerzi, C.O.

    2006-01-01

    Translational initiation factor 2 (IF2) is a guanine nucleotide-binding protein that can bind guanosine 3′,5′-(bis) diphosphate (ppGpp), an alarmone involved in stringent response in bacteria. In cells growing under optimal conditions, the GTP concentration is very high, and that of ppGpp very low.

  20. Platelets express three different splice variants of ApoER2 that are all involved in signaling

    NARCIS (Netherlands)

    Pennings, M.T.; Derksen, R.H.W.M.; Urbanus, R.T; Dalessi - Tekelenburg, W.L.H.; Hemrika, W.; de Groot, Ph.G.

    2007-01-01

    Background: ß2-Glycoprotein I is themost relevant antigen in antiphospholipid syndrome. We have shown that binding of dimerized ß2-GPI to platelets viaApoER2¢ sensitizes platelets for second activating stimuli. Objective: Determine the region of ApoER2 involved in the binding of dimeric b2-GPI. Meth

  1. Effects of common anesthetic agents on [(18)F]flumazenil binding to the GABAA receptor

    DEFF Research Database (Denmark)

    Palner, Mikael; Beinat, Corinne; Banister, Sam

    2016-01-01

    mice. CONCLUSIONS: Anesthesia has pronounced effects on the binding and blood-brain distribution of [(18)F]flumazenil. Consequently, considerable caution must be exercised in the interpretation of preclinical and clinical PET studies of GABAA receptors involving the use of anesthesia....... in preclinical imaging studies and clinical imaging studies involving patient populations that do not tolerate relatively longer scan times. The objective of this study was to examine the effects of anesthesia on the binding of [(18)F]flumazenil to GABAA receptors in mice. METHODS: Brain and whole blood......BACKGROUND: The availability of GABAA receptor binding sites in the brain can be assessed by positron emission tomography (PET) using the radioligand, [(18)F]flumazenil. However, the brain uptake and binding of this PET radioligand are influenced by anesthetic drugs, which are typically needed...

  2. Semi-empirical quantum evaluation of peptide - MHC class II binding

    Science.gov (United States)

    González, Ronald; Suárez, Carlos F.; Bohórquez, Hugo J.; Patarroyo, Manuel A.; Patarroyo, Manuel E.

    2017-01-01

    Peptide presentation by the major histocompatibility complex (MHC) is a key process for triggering a specific immune response. Studying peptide-MHC (pMHC) binding from a structural-based approach has potential for reducing the costs of investigation into vaccine development. This study involved using two semi-empirical quantum chemistry methods (PM7 and FMO-DFTB) for computing the binding energies of peptides bonded to HLA-DR1 and HLA-DR2. We found that key stabilising water molecules involved in the peptide binding mechanism were required for finding high correlation with IC50 experimental values. Our proposal is computationally non-intensive, and is a reliable alternative for studying pMHC binding interactions.

  3. Energetics of Heterotropic Cooperativity between α-Naphthoflavone and Testosterone Binding to CYP3A4

    Science.gov (United States)

    Roberts, Arthur G.; Atkins, William M.

    2007-01-01

    Cytochrome P450 3A4 (CYP3A4) is involved in the metabolism of a majority of drugs. Heterotropic cooperativity of drug binding to CYP3A4 was examined with the flavanoid, α-naphthoflavone (ANF) and the steroid, testosterone (TST). UV-vis and EPR spectroscopy of CYP3A4 show that ANF binding to CYP3A4 occurs with apparent negative cooperativity and that there are at least two binding sites: 1) a relatively tight spin-state insensitive binding site (CYP●ANF) and 2) a relatively low affinity spin-state sensitive binding site (CYP●ANF●ANF). Since binding to the spin-state insensitive binding site is considerably tighter for ANF than TST, the spin-state insensitive binding site could be occupied by ANF, while titrating TST at the other site(s). The spin-state insensitive binding site of ANF appears to compete with the spin-state insensitive binding site of TST. The formation of the spin-state insensitive CYP●ANF complex is strongly temperature dependent, when compared to the formation of the CYP●TST complex, suggesting that the formation of the CYP3A4●ANF complex leads to long-range conformational changes within the protein. When the CYP●ANF complex is titrated with TST, the formation of CYP●ANF●TST is favored by 3:1 over the formation of CYP●TST●TST, suggesting that there is an allosteric interaction between ANF and TST. A model of heterotropic cooperativity of CYP3A4 is presented, where the spin-state insensitive binding of ANF occurs at the same peripheral binding site of CYP3A4 as TST. PMID:17459328

  4. Effects of calmodulin on DNA-binding activity of heat shock transcription factor in vitro

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    The DNA-binding activity of heat shock transcription factor (HSF) was induced by heat shock (HS) of a whole cell extract. Addition of antiserum, specific to CaM, to a whole cell extract reduced bind of the HSF to the heat shock element (HSE) with maize, and the re-addition of CaM to the sample restored the activity of the HSF for binding to HSE. In addition, DNA-binding activity of the HSF was also induced by directly adding CaM to a whole cell extract at non-HS temperature with maize. Similar results were obtained with wheat and tomato. Our observations provide the first example of the involvement of CaM in regulation of the DNA-binding activity of the HSF.

  5. The complexity of condensed tannin binding to bovine serum albumin--An isothermal titration calorimetry study.

    Science.gov (United States)

    Kilmister, Rachel L; Faulkner, Peta; Downey, Mark O; Darby, Samuel J; Falconer, Robert J

    2016-01-01

    Isothermal titration calorimetry was applied to study the binding of purified proanthocyanidin oligomers to bovine serum albumin (BSA). The molecular weight of the proanthocyanidin oligomer had a major impact on its binding to BSA. The calculated change in enthalpy (ΔH) and association constant (Ka) became greater as the oligomer size increased then plateaued at the heptameric oligomer. These results support a model for precipitation of proteins by proanthocyanidin where increased oligomer size enhanced the opportunity for cross linkages between proteins ultimately forming sediment-able complexes. The authors suggest tannin binding to proteins is opportunistic and involves multiple sites, each with a different Ka and ΔH of binding. The ΔH of binding comprises both an endothermic hydrophobic interaction and exothermic hydrogen bond component. This suggests the calculated entropy value (ΔS) for tannin-protein interactions is subject to a systematic error and should be interpreted with caution. Copyright © 2015 Elsevier Ltd. All rights reserved.

  6. Both HMG boxes in Hmo1 are essential for DNA binding in vitro and in vivo.

    Science.gov (United States)

    Higashino, Ayako; Shiwa, Yuh; Yoshikawa, Hirofumi; Kokubo, Tetsuro; Kasahara, Koji

    2015-01-01

    Hmo1, a member of the high mobility group B family proteins in Saccharomyces cerevisiae, associates with the promoters of ribosomal protein genes (RPGs) to direct accurate transcriptional initiation. Here, to identify factors involved in the binding of Hmo1 to its targets and the mechanism of Hmo1-dependent transcriptional initiation, we developed a novel reporter system using the promoter of the RPG RPS5. A genetic screen did not identify any factors that influence Hmo1 binding, but did identify a number of mutations in Hmo1 that impair its DNA binding activity in vivo and in vitro. These results suggest that Hmo1 binds to its target promoters autonomously without any aid of additional factors. Furthermore, characterization of Hmo1 mutants showed that the box A domain plays a pivotal role in DNA binding and may be required for the recognition of structural properties of target promoters that occur in native chromatin.

  7. Six independent fucose-binding sites in the crystal structure of Aspergillus oryzae lectin.

    Science.gov (United States)

    Makyio, Hisayoshi; Shimabukuro, Junpei; Suzuki, Tatsuya; Imamura, Akihiro; Ishida, Hideharu; Kiso, Makoto; Ando, Hiromune; Kato, Ryuichi

    2016-08-26

    The crystal structure of AOL (a fucose-specific lectin of Aspergillus oryzae) has been solved by SAD (single-wavelength anomalous diffraction) and MAD (multi-wavelength anomalous diffraction) phasing of seleno-fucosides. The overall structure is a six-bladed β-propeller similar to that of other fucose-specific lectins. The fucose moieties of the seleno-fucosides are located in six fucose-binding sites. Although the Arg and Glu/Gln residues bound to the fucose moiety are common to all fucose-binding sites, the amino-acid residues involved in fucose binding at each site are not identical. The varying peak heights of the seleniums in the electron density map suggest that each fucose-binding site has a different carbohydrate binding affinity.

  8. Investigation on the binding of TNS to centrin, an EF-hand protein

    Science.gov (United States)

    Wang, Zhi-Jun; Ren, Lie-Xiang; Zhao, Ya-Qin; Li, Guo-Ting; Duan, Lian; Liang, Ai-Hua; Yang, Bin-Sheng

    2008-09-01

    The interaction between 2- p-toluidinylnaphthalene-6-sulfonate (TNS) and ciliate Euplotes Octocarinatus centrin (Cen) has been studied by fluorescence spectroscopy. The binding constants of TNS with Cen were measured at different temperature in the 0.01 M Hepes, pH 7.4. The binding process is exothermic and involves a positive entropy change. The negative value of enthalpy predominately contributes to the negative free energy of binding between TNS and Cen. The salt (KCl) increases the association constant of TNS and Cen. These results and resonance light scattering experiment suggest that the binding force between TNS and Cen is hydrophobic. The distance ( r) between TNS and tryptophan of mutant G115W, which sheds more insight into the binding of TNS to Cen, was determined as 4.85 nm based on Förster non-radiative energy transfer theory.

  9. Adsorption of DNA binding proteins to functionalized carbon nanotube surfaces with and without DNA wrapping.

    Science.gov (United States)

    Ishibashi, Yu; Oura, Shusuke; Umemura, Kazuo

    2017-09-01

    We examined the adsorption of DNA binding proteins on functionalized, single-walled carbon nanotubes (SWNTs). When SWNTs were functionalized with polyethylene glycol (PEG-SWNT), moderate adsorption of protein molecules was observed. In contrast, nanotubes functionalized with CONH2 groups (CONH2-SWNT) exhibited very strong interactions between the CONH2-SWNT and DNA binding proteins. Instead, when these SWNT surfaces were wrapped with DNA molecules (thymine 30-mers), protein binding was a little decreased. Our results revealed that DNA wrapped PEG-SWNT was one of the most promising candidates to realize DNA nanodevices involving protein reactions on DNA-SWNT surfaces. In addition, the DNA binding protein RecA was more adhesive than single-stranded DNA binding proteins to the functionalized SWNT surfaces.

  10. Mapping of the molecular determinants involved in the interaction between eps15 and AP-2

    DEFF Research Database (Denmark)

    Iannolo, G; Salcini, A E; Gaidarov, I

    1997-01-01

    domain, located in its NH2-terminal region. In addition, a proline-rich region, located in the COOH-terminal portion of eps15, can bind to the Src homology 3 domain of the crk proto-oncogene product in vitro. Recently, coimmunoprecipitation between eps15 and AP-2, a major component of coated pits......, was reported. Here, we characterize the molecular determinants of the eps15/AP-2 interaction. The AP-2 binding region of eps15 is localized in its COOH-terminal region and spans approximately 80 amino acids. At least three molecular determinants, located at residues 650-660, 680-690, and 720-730, are involved...... in the binding. AP-2 binds to eps15 through its alpha subunit (alpha-adaptin); in particular, the COOH-terminal region of alpha-adaptin, the so-called alpha-ear, contains the eps15 binding region....

  11. Biodiscovery of Aluminum Binding Peptides

    Science.gov (United States)

    2013-08-01

    for an additional 35-45 min. After induction, 5 µL cells were added to 25µL 250 nM YPet-Mona for 45 min. on ice. Cells were then pelleted and...binding mechanism of phage particles displaying a constrained heptapeptide with specific affinity to SiO2 and TiO2 ," Anal. Chem. 78(14), 4872-4879 (2006...hydroxyapatite crystals," Langmuir 27(12), 7620-7628 (2011). [15] Dickerson, M. B. A., et al., Peptide-induced room temperature formation of nanostructured TiO2

  12. The Adenovirus Type 3 Dodecahedron's RGD Loop Comprises an HSPG Binding Site That Influences Integrin Binding

    Directory of Open Access Journals (Sweden)

    E. Gout

    2010-01-01

    Full Text Available Human type 3 adenovirus dodecahedron (a virus like particle made of twelve penton bases features the ability to enter cells through Heparan Sulphate Proteoglycans (HSPGs and integrins interaction and is used as a versatile vector to deliver DNA or proteins. Cryo-EM reconstruction of the pseudoviral particle with Heparan Sulphate (HS oligosaccharide shows an extradensity on the RGD loop. A set of mutants was designed to study the respective roles of the RGD sequence (RGE mutant and of a basic sequence located just downstream. Results showed that the RGE mutant binding to the HS deficient CHO-2241 cells was abolished and unexpectedly, mutation of the basic sequence (KQKR to AQAS dramatically decreased integrin recognition by the viral pseudoparticle. This basic sequence is thus involved in integrin docking, showing a close interplay between HSPGs and integrin receptors.

  13. Statistics for Transcription Factor Binding Sites

    OpenAIRE

    2008-01-01

    Transcription factors (TFs) play a key role in gene regulation. They interact with specific binding sites or motifs on the DNA sequence and regulate expression of genes downstream of these binding sites. In silico prediction of potential binding of a TF to a binding site is an important task in computational biology. From a statistical point of view, the DNA sequence is a long text consisting of four different letters ('A','C','G', and 'T'). The binding of a TF to the sequence corresponds to ...

  14. Synthetic heparin-binding factor analogs

    Science.gov (United States)

    Pena, Louis A.; Zamora, Paul O.; Lin, Xinhua; Glass, John D.

    2010-04-20

    The invention provides synthetic heparin-binding growth factor analogs having at least one peptide chain, and preferably two peptide chains branched from a dipeptide branch moiety composed of two trifunctional amino acid residues, which peptide chain or chains bind a heparin-binding growth factor receptor and are covalently bound to a non-signaling peptide that includes a heparin-binding domain, preferably by a linker, which may be a hydrophobic linker. The synthetic heparin-binding growth factor analogs are useful as pharmaceutical agents, soluble biologics or as surface coatings for medical devices.